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V

This book is the core text for a tutorial programme in statistics for
social science and humanities students. Although it can be used as
a self-sufficient introduction to statistics, we recommend that it be
used alongside a structured set of exercises, worked examples, 
and activities. An excellent collection of support materials is
available on a course web page (http://www.uct.ac.za/depts/
psychology/plato/numbers/) and on the accompanying CD.

The tutorial programme is aimed at a diverse group of disci-
plines. Students of Psychology, Sociology, Social Work, Anthro-
pology, Education, and Political Studies – indeed, all students in the
social sciences - will be able to use this book. Whatever your area of
study, we hope that it will stimulate you, teach you, tease you, and
promote you to the rank of inveterate inquirer. The skills we aim to
impart are central to any modern knowledge-based enterprise.
They are taught all over the world in programmes that are serious
about research, and thus provide a universal language for the social
sciences. More than that, they underpin successful theory and
application in almost every field of enquiry in the social sciences.
Indeed, expertise in quantitative methods is one of the strongest
transferable skills taught in the social sciences, and many employ-
ers demand some level of competence in this area.

Social science students differ in terms of their preparation for
courses in quantitative methods. They come from a diversity of
disciplines and backgrounds. This means that there will also be dif-
ferences in their level of mathematics proficiency. We acknowledge
this, and see it as a challenge. For this reason, we have included a
substantial collection of revision material in the appendices and on
the accompanying CD. All students entering a course in quantita-
tive methods will benefit by revising their school mathematics with
this material.

Our emphasis in the course, as a whole, is on statistical concepts
and techniques. We promote the use of simple mathematical mani-
pulations and calculations to aid understanding. It is important for
you to know how to do some basic statistical calculations, and we
encourage you to improve your skills no matter what your starting
level of proficiency is. In the modern world, however, there are
many aids to the error-prone activity of statistical computation, and
we specifically show you how to use calculators, spreadsheet pro-
grams, and statistical software packages. In the early tutorials, we
emphasise calculator and spreadsheet work, and in later tutorials we
assume the availability of a statistical package. We have provided
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VI

material showing you how to use SPSS® for particular statistical
analyses, but you could also use a package like STATISTCA, and we
have included extensive support material for that package in the
accompanying CD.

We have tried to enhance your experience in this text by the
extensive preparation of activities, interest boxes, application boxes,
graphic material, exercises, worked solutions to problems, and
Internet links and resources. You should use these to your advant-
age. We suggest that you keep a calculator at hand whenever you
read the text, and complete the activities and exercises. When you
have finished studying the text, we strongly recommend that you
spend some time browsing the CD for additional worked examples,
exercises, and worked solutions. We also encourage you to use the
Internet links, as there are many interactive web sites that demon-
strate statistical concepts and techniques in an interactive manner.

Colin Tredoux and Kevin Durrheim, March 2002
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VIII

� Alpha (Type I error rate)
β Beta (Type II error rate)
δ Delta, a parameter used to determine power of a statistical test
µ Mu, the population mean
ρ Rho, the population correlation coefficient
σ Sigma (lower case), the population standard deviation
Σ Sigma (upper case), the arithmetic summation operator
χ2 Chi-square statistic, or Chi-square distribution
η2 Eta-square, a measure of effect size
φ2 Phi square, the mean square contingency coefficient
σ 2 Sigma square, the population variance
φc Cramer’s V, a measure of effect size in contingency table analysis
a The intercept coefficient in regression analysis
b The slope coefficient in regression analysis
D Difference between two scores
d Effect size
E Expected frequency
F F distribution, or F ratio
k Number of groups in a design
MS Mean Square
N Population size
n Sample size
O Observed frequency
p Probability
Q Tukey’s Q statistic (studentized range statistic)
R Multiple regression coefficient
r The Pearson product moment correlation coefficient
r2 Square of r; coefficient of determination
R2 Square of the multiple regression coefficient; degree of linear model fit
rs Spearman’s rank correlation coefficient
s2 Sample variance
S2

x Standard error of the mean
SS Sums of squares
t The t statistic, used to test hypotheses about mean differences; also the

t probability distribution 
x Sample mean
y’ y prime, the predicted score in a regression equation
z Standard normal deviate

Glossary of Symbols



Section 1

Statistics

•••••••••••



As you pick up this text and start to read it, you may be wondering
how you managed to get yourself into this predicament. After all,
many social science students choose the social sciences to escape the
terrors and tribulations of mathematics and numbers. You now find
that you are again faced with x and y, Σ and σ, and long strings of
numbers. Why do you have to do this? Surely there is no point in
trying to measure social phenomena? We all know the social world
is inherently slippery, and defies exact representation. Surely this is
a mistaken ambition?

You are not alone in this point of view. A number of theorists and
writers have put formidable reputations on the line in arguing 
that quantification and quantitative methods have no place in 
social science (Hornstein, 1988). Writing over 100 years ago, William
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Numbers, variables, and
measures

Colin Tredoux

•••••••••••

TUTORIAL

After studying this tutorial, you should be able to:
• List some of the key functions served by 

quantitative methods in the social sciences.
• Distinguish probabilistic and deterministic forms

of inductive reasoning.
• Define a number of basic terms including variable,

statistic, and parameter.
• Distinguish descriptive and inferential statistical

methods.
• Identify some of the arguments against the use of

quantitative methods.
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James ridiculed the attempts by psychologists to quantify sensation
and perception: 

To introspection, our feeling of pink is surely not a portion of our
feeling of scarlet; nor does the light of an electric arc seem to con-
tain that of a tallow candle in itself (cited in Hornstein, 1991, p. 45).

If you sympathise with this point of view, the bad news is that it has
lost the battle for sovereignty in the social sciences. Most social
sciences make extensive use of quantitative methods, and students
in these disciplines typically receive training in these methods from
their undergraduate years all the way to doctoral level. A cursory
flip through the current periodical holdings of any academic library
will convince you of the important place these methods have. 
Of course, it may indeed be the case that quantification is misguid-
ed, and even non-rational (cf. Hornstein, 1991). We cannot defend
quantification against these charges, but we would like to persuade
you here that there are palpable advantages to quantification.
Quantitative methods provide powerful academic and intellectual
possibilities, and to jettison them is akin to refusing to use electric
lights because no-one has offered a satisfactory theory of electricity.

The advantages of quantitative methods
What advantages do quantitative methods confer on us? There are
a great many, which we will summarise as efficiency, approximation
(or modelling) and a powerful language.
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Most social sciences
make extensive use 
of quantitative 
methods.

Table 1.1  SA Census 1996: Country of birth by population group

African/Black Coloured Indian/Asian White Other TOTAL

South Africa 30 148 148 3 502 353 1 007 865 3 845 099 344 946 38 848 411
SADC countries 413 133 7 792 2 140 2 140 104 480 529 685
Rest of Africa 7 395 329 657 11 358 296 20 035
Europe 4 661 529 783 209 144 2 081 217 198
Asia 405 377 17 888 9 194 691 28 555
North America 362 107 122 4 972 120 5 683
Central and South 1 772 138 204 6 476 99 8 689

America
Australia and 40 28 34 3 725 60 3 887

New Zealand
Unspecified/Other 74 420 4 522 5 670 55 682 4 162 144 456

TOTAL 30 651 337 3 516 175 1 035 363 4 248 179 355 544 39 806 598

Table reproduced from an Internet page of the South African Statistical Services
(http://www.statssa.gov.za/Publications/Census%20summary)



Efficiency 
Using numbers to communicate information is often extremely effi-
cient. Every ten years or so, South Africa has a national census, in
which information is collected about its inhabitants. Since there are
approximately 40 000 000 inhabitants, you will appreciate the enor-
mous amount of work and information that the numerical display
in Table 1.1 summarises. (You may also notice how the data implic-
itly contradicts the notion that South Africa is being swamped by a
tide of black immigration from other African countries.) 

A non-quantitative approach would have struggled enormously
to represent the data in Table 1.1. Not the least of the concerns
would have been adequate summary concepts or descriptors. In the
case of quantitative research, on the other hand, there is a well-
developed theory of summary indicators, and a well-developed
technology to support these (e.g. computer software packages).
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Examine Table 1.1 carefully. Do you see any interesting patterns? Try
to describe these without using any summary statistics (e.g. totals or
averages), and without using any symbols that represent numbers 
(i.e. you can write ‘one’, but not ‘1’).

Activity 1.1

Approximation/modelling 
Quantitative techniques are often excellent at representing phenome-
na in the world, and in that respect they present us with wonderful
opportunities for complex study of the phenomena. What dimensions
do you think humans use for making similarity judgements of faces? 

Figure 1.1 A spatial model for understanding human similarity judgements
of faces

Fat

White Black

Thin



Simply asking people how they make similarity judgements pro-
duces a bewildering variety of responses. However, a quantitative
technique called multidimensional scaling provides a spatial model 
in which we can represent each dimension of similarity as an axis,
and each face as a point in the intersection space of these axes.
Figure 1.1 shows what a two-dimensional example of such a model
might look like. 

This modelling allows us to infer what the important dimensions
of similarity judgements of faces are. If we had to sort through a
long set of verbal descriptions, it would take us a very long time,
and it is doubtful that we would arrive at the dimensions as clearly
as we can with the quantitative technique in question.

A powerful language
Perhaps the best thing about quantitative techniques is that there is
already an established theory and practice. Mathematicians, statis-
ticians, and (latterly) social scientists have spent many hundreds of
years developing and refining a powerful quantitative language.
When we use quantitative techniques we adopt this language, and
save ourselves a few centuries of work. This language is powerful,
and can make us highly competent in our interactions with the
physical world. 

Imagine a game of dice on the street corner. Sipho is betting R10
that 5 will come up on the next throw of a single die and Malungisa
will pay him R30 if it does. Probability theory tells us that the
chance of the 5 coming up on the next throw is 1/6, and that the
expected gain in this game for Sipho is –R3.33 per roll of the die. The
game of dice can be understood in terms of a ‘language of pro-
bability’, and this allows those who understand it considerable
opportunity. Malungisa will be a rich man if he continues to entice
players like Sipho into the game. 

Consider another everyday situation where quantification is
powerful. Activity 1.2 shows a weather forecast map. By looking at
it very briefly, you will be able to decide:
1. whether to take an umbrella to college, 
2. whether you should nail your roof down, and 
3. whether you need to water your vegetable plants tomorrow. 

All this information is powerfully and effectively conveyed by
numbers, and their position in the two-dimensional diagram.

So, we have seen that quantitative methods are efficient, that they
provide useful models of phenomena, and that they provide us with
a powerful language. Is this enough to convince us that we should be
using them in the social sciences? Perhaps not, but let us reflect for
a moment on where we find quantitative methods in the world

TUTORIAL 1: NUMBERS, VARIABLES, AND MEASURES 5

Three advantages
of quantitative
methods:
1. Efficiency of 

communication
2. Modelling of 

real-world 
phenomena

3. A powerful and
centuries-old 
language



around us. Clearly, a number of professions depend on them:
accountants, actuaries, and engineers make no secret of this, and,
less obviously, architects and graphic designers. But there are many
other, more apparently non-technical occupations that do so too.
Consider the woman who owns the gambling casino down the road.
Her livelihood depends on the types of quantitative performance
outlined in the example of the game of dice. What about carpenters?
Carpentry depends in a fundamental sense on measurement and
quantification, and carpenters use quantitative devices ranging from
finely graded rules and set squares to sliding angle bevels. 

Now think more generally about your everyday life. You proba-
bly visit a shop of some kind every day. Shops are highly quantified,
and your interaction with them is fundamentally of a quantitative
kind: you pay some money to the shop, which has quantified the
amount of profit it will take, the amount it will have to pay over to
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Activity 1.2 Inspect the following weather forecast, and see whether you can
answer the questions below just from the numbers you see displayed
on the map. Assume the forecast is for tomorrow. Justify your
answers.

a) Is it likely that you will you need a jersey if you are in Pieter-
maritzburg at midday?

b) Would it be a good idea to go kite-flying in Cape Town?
c) Does the pattern shown here suggest summer or winter?
d) If you live in Bloemfontein, should you take precautions against

your water pipes bursting?



revenue services, and the amount it owes for store rental and
salaries. In fact, we are completely embedded in a monetary econo-
my, in which the house we live in, the food we eat, and perhaps
even the thoughts that rush ceaselessly in our heads have particular
value. This monetary economy brings enormous flexibility to the
social exchange that appears to be inherent in human societies. 

Still not convinced? Let us try one more argument. Many biolo-
gists and physiological psychologists now argue that some kind of
quantitative sense is native to the human species. In a recent book
entitled What Counts: How Every Brain is Hard-wired for Math, Butter-
worth (1999) summarises evidence suggesting that the human brain
has a ‘number module’ – a specialised circuitry that enables us to cat-
egorise objects in terms of numerosity. We recognise and distinguish
objects in terms of numerosity (without being taught the meaning of
number) in an automatic and involuntary way, just as we automati-
cally and involuntarily see colours. In this way of looking at things,
quantification and quantitative thinking is inescapable, and at home
in the social sciences as it is in your kitchen.

Functions of quantification
There are a number of ways in which quantitative methods can
function within an academic discipline. We saw some of these in 
the previous section, but it is useful to distinguish at a higher 
level of abstraction two general kinds of functions that quantifi-
cation can support.

In the first place, quantification can serve an infrastructural or
administrative function. This is the sense in which societies are
embedded in a monetary economy, and much of the business of the
society has a structure within this economy. It is as if monetary
quantification has built a vast set of roads, highways, ramps, and
exits, and the society moves backwards and forwards on the roads,
just as it does on physical transport roads. As you sit reading this
tutorial, for example, the electric light that helps you read is having
its output numerically measured (kw/h) by your electricity suppli-
er, and this is in turn being transformed into an amount of money
that you will pay over to the supplier. A portion of the money paid
over by you may be paid over in turn to the company that produces
the electricity at source, say a hydro-electric power station in a
foreign country, and at the end of the financial year that company
will declare the amount of foreign revenue. This amount will in turn
be subsumed into a government report on foreign trade, and will
show up again in a number of international-level economic reports.
Ultimately, the amount of electricity you consumed reading this
paragraph will constitute a (tiny) portion of the index known 

TUTORIAL 1: NUMBERS, VARIABLES, AND MEASURES 7



as global economic growth, which measures by how much the
planet’s economic activity has increased or decreased. This in-
frastructural function is certainly important, but it is not of central
interest to us in this text.
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Keep a diary or notebook with you for a day, and make a record of
instances where you have to deal with numbers as part of your every-
day life. Record as many instances as you can. Try to list for each
instance what function the quantification serves.

Activity 1.3

Secondly, quantitative methods can function as evidentiary aids or
systems. In other words, they can provide evidence for an argu-
ment, or against it. In addition, they frequently have deductive and
inductive devices or mechanisms that can be used to draw conclu-
sions and inferences. It is in this second sense that quantification is
of most interest to us in the social sciences. For example, a key issue
in health research around HIV is the transmission of HIV between
mother and child from breastfeeding. Quantitative research tells us
that the risk of transmission is very high, and that anti-retroviral
drugs may decrease this risk substantially. In order to draw this
conclusion, researchers carefully quantified physiological measures
(e.g. T-helper cell responses), and used a research design that
allowed them to use inferential statistical methods to determine
whether infants administered anti-retroviral treatment showed
lower rates of HIV infection than infants not administered anti-
retroviral treatment. (Interestingly, a key figure in this research is a
South African researcher, Louise Kuhn (Kuhn et al., 2000), who was
trained as a social scientist.)

Although quantitative methods are often thought of as the tools
of deterministic sciences, such as mechanical physics and chemistry,
a whole branch of mathematics is devoted to probabilistic methods.
These methods form the basis for most quantitative inquiry in the
social sciences. When we reason probabilistically, we make general-
isations and draw conclusions that are supported with probability
estimates, as opposed to the law-like statements and predictions we
make in deterministic reasoning. For example, we say that we are
95% confident that the average income for social science graduates
five years after graduation is between R85 000 and R115 000 per
annum. We do not say that we are certain of this, but we express
probabilistically defined confidence in it. On the other hand, if 
we are reasoning deterministically, we say things like ‘The force
exerted by an object is the product of its mass and its acceleration’,
and if we have precise estimates of the mass and acceleration, we
make a precise prediction.

Functions of 
quantification:

1.  Administrative/
infrastructural

(e.g. a monetary
economy)

2.  Aids to argument
and reasoning



Sometimes the probabilistic methods available to us can be used
to create models so close to the phenomenon that we wish to study
that the move from model to phenomenon to conclusion 
is relatively effortless. Imagine that we are called on to evaluate 
a police line-up from which an identification has been used as
evidence against an accused person. Two out of fifteen witnesses
identified the accused person from a line-up that consisted of the
suspect and five innocent police officers. One way of reasoning
about the rate of identification is to treat the line-up as a die-tossing
experiment: the die has six numbered sides (each number corre-
sponds to a member of the parade), and the die is tossed fifteen
times (fifteen witnesses). We can use a well-known probability
method here (the binomial distribution) to calculate the probability
that two of fifteen witnesses who were merely guessing randomly
could have identified the suspect. This is worth knowing, as a kind
of baseline estimate of the information value of the identifications.
The probability turns out to be approximately 0.47. In other words,
there is a one in two chance that two (or fewer) witnesses guessing
randomly would have chosen the suspect. This is surely not good
evidence against the suspect?

TUTORIAL 1: NUMBERS, VARIABLES, AND MEASURES 9

Probabilistic
methods form the
basis for most 
quantitative 
inquiry in the 
social sciences.

Read through some back copies of your local newspaper and try to
find instances where numbers have been used to support an argu-
ment. Try to categorise the ways in which they have been used.

Activity 1.4

Much of the time, however, the quantitative methods we use do not
directly fit the questions we study, and we rely on theorems to jus-
tify the application of the methods. When we evaluate the results of
a psychotherapy programme, or an AIDS counselling programme,
for example, we will often use a theorem called the Central Limit
Theorem, and a host of its derivatives, to decide whether the treat-
ment is effective. 

Some basic concepts
In order to prepare for material in later tutorials, it is useful to intro-
duce some basic concepts. 

Variables and constants
The first step in using a quantitative language is to convert objects
or entities in the real world into symbols and concepts of the lan-
guage. Thus, when we measure something like height, we talk
about height as being a variable, and we typically symbolise it 
in some way, e.g. x. Since we will collect height measures from a



number of different people, we can expect these measures to vary,
that is to take on different values. For this reason, we call height a
variable, and we use a subscript or index variable to identify
particular scores on that variable. Thus, if we collect 5 measures 
of height, the first score is x1, the second is x2, the third is x3, etc.
Often the subscript is implicit, and we will write x � {1.9, 1.5, 1.7,
1.6, 1.8}, meaning x1 � 1.9, x2 � 1.5, etc. 

When we deal with a quantity that does not change, but always
has the same value, we refer to it as a constant, e.g. the speed of
light. 

Continuous vs discrete variables/measures
Many variables and constants are measured on continuous scales,
which is to say that they can take any value in a defined range.
Measures of height and weight are obvious examples: given a
sufficiently accurate scale, and considerable patience, you can
measure out 30 grams of Beluga caviar per dinner guest, or 
30.1 grams – or any amount again between these points. It is in this
sense of covering all possible values within a defined range that the
word continuous is used.

Discrete variables, on the other hand, can take only certain
values. A variable that records the order in which athletes finish the 
100-metre egg-and-spoon race, for instance, can only take the values 
1, 2, 3, etc. It is not possible to finish in 3.25th place. Similarly, a vari-
able that records gender by assigning 1 to males and 2 to females
excludes all other values – it is not possible to receive a score of 1.5.
Discrete variables are also known as categorical variables.
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Variables are
measured entities (or
attributes of entities)

that can take on
different values, e.g.

height, weight.

Constants are
quantities that do

not change, but
always have the

same value, e.g. the
speed of light.

Continuous
measures can take

any value within the
range defined as

valid for a particular
variable.

Discrete measures
can take only certain

values within a
range, e.g. 1, 2, 3,

but not 1.5, 2.5. 

Decide whether each of the following measures is a variable or a 
constant, and whether it is continuous or discrete:
a) the time taken to complete a marathon race
b) the weight of the moon
c) the troy ounce weight of a kilogram of gold
d) the HIV status (+ or –) of an individual
e) the number of judges in the Cape High Court. 

Activity 1.5

The difference between these two classes of variables or measures is
important. For our purposes, recognising whether a measure is
continuous or discrete will help us decide which kind of statistical
test to use. When we collect data on continuous variables (e.g. birth-
weight, caloric consumption per day), we will use a set of tech-
niques that exploit this continuous nature (e.g. t-tests, ANOVA),
and when we collect data on discrete variables (e.g. votes for a
political party, choice of spread for a sandwich), we will use a quite
different set of techniques (e.g. χ2, Mann-Whitney). Tests for use on



continuous data are usually not appropriate for categorical data,
and vice versa.

Nominal, ordinal, interval, and ratio variables
Another way of distinguishing between different kinds of variables
is in terms of the mathematical properties of the numbers that the
variables can assume. We can use the numbers 1 and 2 to represent
males and females, to represent the individuals who came first and
second in an exam, or to represent the actual marks the two very
weak students got in an exam. In each of these cases, the numbers
have different mathematical properties. Mathematically, it is perfect-
ly legitimate to subtract 1 from 2 to get 1 (i.e. 2 – 1 � 1), but it is
absurd to say that subtracting a female (1) from a male (2) results in
a female (1). We say that the variables are measured on different scales
of measurement. It is conventional to distinguish between four scales
(or levels) of measurement: nominal, ordinal, interval, and ratio.

Nominal variables indicate only that there is a difference between
categories of objects, persons, or characteristics. Numbers are used
here as labels to distinguish one category from another. For exam-
ple, numbers can be used as category labels to distinguish between
different categories that make up the variables gender (male and
female), religion (Protestant, Catholic, Jewish, Muslim), and psy-
chopathology (schizophrenic, manic-depressive, neurotic). We can
label males 1 and females 2, but it would make no difference if 
we labelled females 1 and males 2, or females 1 and males 0. 
All the numbers do is distinguish individuals in one group from
individuals in another. No mathematical operations (+, –, ×, ÷) or
mathematical relations (<, less than; >, greater than) may be
performed with these numbers because the attributes that are
represented by these numbers do not allow such operations.
Although we can add or multiply 1 and 2, we cannot add or multi-
ply the attribute Protestant and Catholic.

Ordinal variables indicate categories that are both different from
each other, and ranked or ordered in terms of an attribute. When we
label developing countries ‘1’, and developed countries ‘2’, not only
are we distinguishing between them, but we are also marking the fact
that developed countries have more of the attribute ‘economic devel-
opment’ than developing countries. The same holds true when we
label university grades as A, B, C, D, or when we label opinions as
strongly agree, agree, disagree, and strongly disagree. With ordinal
measures we may perform mathematical relations (<, >), but not
mathematical operations (+, –, ×, ÷). Just because 2 � 2 × 1, we can-
not say that developed countries (2) have twice as much economic
development as developing countries (1). We can only say that they
have more economic development. The differences between the
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We distinguish
between variables in
terms of their scales
of measurement.



amounts of the attributes that objects have do not correspond with
the mathematical differences between the numbers that are used to
represent these amounts. When the horses come in 1st, 2nd, and 3rd
at the races, the numbers 1, 2, and 3 are measured on an ordinal scale,
and do not tell us how far the second horse was behind the first horse
(i.e. the distances between the horses). The intervals between the
numbers on an ordinal scale are meaningless, and therefore no math-
ematical operations can be performed on these numbers.

Interval variables are true quantitative measures because in addi-
tion to marking difference and rank, the differences or distances
between any two numbers on the scale are meaningful. This means
that the difference between two scores is an accurate reflection 
of the difference in the amount of an attribute that the two objects
have. Temperature, measured in degrees Celsius, is measured 
on the interval scale, and a difference between 18 degrees and 
20 degrees will be exactly the same as the difference between 
25 degrees and 27 degrees. Most measures in the behavioural sciences
(e.g. IQ scores, scores on attitude scales, and knowledge tests) are con-
sidered interval measures. In addition to performing mathematical
relations (�, �), we may also legitimately perform the mathematical
operations of addition and subtraction (+, –) with these numbers.

Ratio variables have all the properties of interval scales, but
because they have a true zero value (which interval scales do not
have), the mathematical operations of multiplication and division
(×, ÷) may also be performed on these scales. Since the variable 
age has a true zero value – i.e. at the moment when an individual
is born she or he has zero of the property age – we can say that a 
40-year-old person is twice the age of a 20-year-old person.
Interval scales do not have a true zero point. Although someone
may get 0 out of 100 for an exam, this does not mean that the
person has zero of the attribute ‘knowledge’. Thus we cannot say
that someone who got 80% has twice as much knowledge as
someone who got 40%. It is generally only physical properties –
e.g. time, length, weight – that have real zero points and are 
thus measured on ratio scales. However, for most practical
purposes in research, variables measured on the interval and 
ratio scales can be treated similarly.

Since the scale of measurement determines the kind of mathe-
matical operation that may legitimately be performed on a variable,
it also determines the kind of statistics that can be used to investi-
gate the scores on the variable. Although the distinction between
the four scales of measurement has been subjected to critique, 
we will use the distinction throughout the book to help you make
decisions about how to describe and analyse data. 
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Independent and dependent variables
Very often we are interested in relations between variables, parti-
cularly if there is a temporal or logical reason to suspect a causal
connection. For example, public health researchers have long 
been interested in the relation between cigarette smoking and 
the incidence of lung cancer. There are few people now who do 
not accept the conclusion that the relation is causal. When we
investigate relations of this kind between variables, we refer to 
the outcome (e.g. incidence of lung cancer) as the dependent variable
(DV), and the other variable as the independent variable (IV). The
choice of names derives from the assumption we make that one 
of the variables is dependent on the other, or a consequence of 
the other. 

In experimental design, the independent variable is usually
under the direct control of the experimenter, and is actively manip-
ulated. Imagine that we are investigating the effectiveness of an
anti-depressant with a classic randomised experiment. This would
involve actively randomising participants into an experimental and
control group, administering a dosage to the experimental group,
and withholding it from the control group. After the intervention
we would measure depression levels. The independent variable in
this experiment is Dosage (administered vs not administered), and
the dependent variable is Depression. 

Independent and dependent variables are also commonly
known as predictor and criterion variables, or as predictor and response
variables.

TUTORIAL 1: NUMBERS, VARIABLES, AND MEASURES 13

In the following problems, identify the IV, DV, predictor, criterion,
and response variables:
a) We measure the amount of red wine consumed in a country, and

the rate of heart attacks per 100 000 people.
b) We compare general happiness in those who have pet dogs, and

those who do not.
c) We compare the suicide rate among the married to that among the

unmarried.

Activity 1.6

Independent
variables are 
variables that are
presumed to affect 
or determine other
variables. 

Dependent variables
are variables affected
or determined by
independent
variables.

Samples, populations, statistics, and parameters
For many people the word statistic implies a calculation that attempts
to make a historical record of a quantified phenomenon, e.g. Donald
Bradman’s batting average in test cricket was 99.4 runs, and the low-
est atmospheric pressure ever recorded was 880 mb. The way we use
the term statistic in this text is somewhat different. To explain this
usage, we make a distinction between sample and population. 



A population is an entire collection of elements or individuals.
When we want to know what the average income per capita is 
in South Africa, we really do want to know what the number is 
when we sum every person’s income and divide it by the number of
people in the country. This is a very daunting task, and it is in fact
extremely rare to attempt a calculation of this sort! This does not
stop us from being interested in what the result of the calculation
would be.

Since we are usually unable to collect scores from an entire
population, we do the next best thing, which is to collect a sample of
scores. Our reasoning here is to use the sample calculation of 
the measure we are interested in (e.g. average income) as an estimate
of the population value. These sample calculations are known as
statistics. The population value we attempt to estimate is called 
a parameter. 
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A population is an
entire collection of
objects or entities. 

A sample is a subset
of such a collection. 

Statistical 
interference is the
act of generalising

from a sample to a
population.

In each of the following, decide which is a parameter and which is 
a statistic:
a) the average matric History score in the 1937 end-of-year examina-

tions in South Africa
b) the average matric History score at Platbakkies High School 

in 2001
c) the average matric History score in a collection of 10 Platbakkies

High School pupils who happen to be on Clifton 4th beach on 
1 January 2001.

Activity 1.7

Of course, there are many factors that affect whether our sample
estimate is accurate. The basic idea is that a random sample should be
drawn from the population, but there are many complications as to
exactly how this is done. By a random sample, we mean a sample
that is gathered in such a way that every element in the population
has an equal likelihood of selection, and the selection of a particular
element is independent of, and does not influence, the selection of
any other element.

The act of generalising from sample data to populations is called
statistical inference, and is probably the central goal of statistical
methods. A great many techniques and methods we will cover in
this text are really just variations on this.

a) List five ways of drawing a sample that clearly do not satisfy the
requirements of randomness.

b) List three ways of drawing a sample that clearly do satisfy these
requirements.

Activity 1.8



It is extremely important to note that although the notion of a popu-
lation, as used in statistical work, frequently corresponds to our
ordinary or everyday understanding of the word, it is also used in
a more abstract way that can be quite confusing. Thus, we ordinar-
ily assume that a population is a totality of real individuals, as in
‘the population of a country’, but we also use the term to refer to
hypothetical populations. Thus, when we treat an experimental
group with anti-retroviral medication, and compare that group to
one not treated with the medication, we will say that we are trying
to make inferences about a population treated with anti-retroviral
medication, even though that is only a hypothetical population.
Similarly, a population need not be a large collection of entities: we
can study small collections of entities that are populations because
they are the totality of individuals that satisfy the membership
conditions of the group. Imagine trying to study the population of
vegetarian Buddhist Free State crocodile skinners, for example …!

Problems with the quantitative approach
Although we have argued at some length in this chapter in favour
of the use of quantitative methods in the social sciences, we also
wish to point out that there are grave problems. The key problem is
perhaps the way in which the easy rationality of probabilistic in-
ference has become an institutionalised canon, and has usurped
other evidentiary forms. Very few research articles will fail to apply
some statistical inferential method in support of a claim, and a great
many will rely solely on such methods to support conclusions, and
to generate questions for further research. This practice is reinforced
by journal reviewers and editors who often will not accept articles
that have not used some statistical inferential method – and by
universities that insist on teaching these methods, year after year,
despite strong student opposition!

Many critics have railed against this state of affairs. J. G. Taylor
(1958) denounced it as ‘… a cloak for intellectual sterility’, and
authors like Bakan (1966), Gonzalez (1994), and a slew of others
have called for a change in approach. The criticisms are usually well
founded, but there is a danger of discarding the wheat with the
chaff. There can be little doubt that probabilistic methods are
extremely useful in some social science research; it is just that they
are too pervasive, and are treated with singular reverence. Social
scientists have equated ‘quantitative’ and ‘probabilistic’, and in so
doing have overlooked a vast array of quantitative techniques and
methodologies. The problem is not quantification, as some argue,
but the canons of quantification in the social science tabernacle.
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In statistics we are
often interested 
in hypothetical 
populations.



Summary
1. Quantitative methods make up an important part of social science

research. They are especially useful to us because they are effi-
cient in communicating information, they allow modelling of
real-world phenomena, and they are part of a well worked-out
and powerful disciplinary language.

2. In the social sciences we are particularly interested in the way 
of arguing with evidence that quantitative methods make
available. We tend to use probabilistic methods, rather than the
deterministic methods of some sciences. This shows in many of
our claims, where it is typical for us to argue that we are 95%
confident that an intervention works, or 99% confident that the
average birthweight of South African infants is between 
2.2 and 3.4 kilograms.

3. Important basic concepts introduced in this chapter include: popu-
lation, sample, random sample, parameter, statistic, estimate, vari-
able, discrete measure, continuous measure, independent variable,
and dependent variable. 

Exercises 
1. Give three examples of claims or propositions that are deterministic.

2. Give three examples of claims or propositions that are probabilistic.

3. List three well-known physical constants.

4. Provide an example (real or hypothetical) where what is
considered a population in one study is considered a sample in
another study.

5. One commonly used method of drawing a random sample from
a particular population is to generate a list of random telephone
numbers, and to conduct telephone interviews with respondents
on this list. Discuss four problems that can potentially render
this method invalid, using the definition of randomness offered
in this tutorial.

6. List ten continuous variables, and ten discrete variables.

7. Provide examples of potential or real research problems that 
use designs that lend themselves to description in terms of inde-
pendent and dependent variables.
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8. Identify the scale of measurement of each of the following vari-
ables:
a) Systolic blood pressure, measured in millibars.
b) IQ, measured with a standard intelligence test.
c) Customer satisfaction, measured on a 3-point scale – 

unsatisfied, neutral, satisfied.
d) The price of petrol, measured in Rands per litre.
e) Handedness, including the categories left-handed, right-

handed, and ambidextrous.
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Displaying data

Judy Austin

•••••••••••
After studying this tutorial, you should be able to:
• Represent a dataset in tabular form, specifically as

a grouped or ungrouped frequency distribution
table or cumulative frequency distribution table.

• Represent a dataset graphically in the form of a
bar chart, histogram, or box-and-whisker plot. 

• Interpret visual displays of data. 
• Calculate and understand percentiles and percentile

ranks.

The decision to collect information in the form of quantitative
measurements or scores usually results from a desire to ‘see what
is going on’ with respect to some aspect of our existence. We
collect data on this ‘aspect of our existence’ in the form of scores 
on the variable of interest. For instance, we may wish to know
which undergraduate courses are the most popular, or how other
class members fared in a recent test, or what salaries new
graduates are earning. Since raw data is difficult to ‘read’, it is
necessary to process this data in order to inspect and interpret 
a distribution of scores. Thus, to understand and describe class
performance, rather than inspecting a list of test scores of the 
class, we would first collate the data and represent the scores
graphically. This will enable us, quite literally, to see what is 
going on.

TUTORIAL

2



Tabular and graphical displays provide us with a compact
picture or summary of the dataset from which we can gain an
impression of the overall trend in a distribution of scores. Displays
provide us with a means to inspect the shape of a distribution and
they help us to determine where an individual score lies relative to
others in the distribution. In this tutorial you will first learn about
different ways of displaying data in tabular and graphical form. You
should already be familiar with some of the displays that are used
in the media daily, such as in reporting economic indicators or
sports results. In the final section of the tutorial, you will learn how
to locate individual scores in a distribution of scores. 

At the outset, an important distinction needs to be made between
types of data that require different kinds of display. We distinguish
between variables that can take on few values (usually integers),
known as discrete variables (e.g. number of students in a class, goals
scored in a soccer match), and those for which a theoretically infinite
number of values is possible, known as continuous variables (e.g.
height or mass of humans) (see Tutorial 1). You know you are deal-
ing with a discrete variable when there is a ‘gap’ between the values
that the variable could possibly assume.For instance, shoe sizes
occur in halves – you may wear
size 5 1/2 or 6, but you cannot buy
shoes of size 5 7/8. In contrast, when
dealing with a continuous variable
such as time, there is an infinite
number of values between, say, 51/2 and 6 minutes that the variable
could assume. We are simply limited by our capacity to measure
very small distinctions. The reason for this distinction should be
clear to you: in representing discrete data, we need to capture the
‘gaps’ between values, and we need to represent the continuity 
between values of continuous data.

The frequency distribution
The first step in ordering a dataset is to identify the range of scores
and establish the frequency with which each occurs. An efficient way
to summarise this information is to prepare a frequency distribution
table. To do this we need to list all the values that the variable takes
and then count how many times each of those values or scores
appears in the dataset, recording the tally or count for each score in
an adjacent column. From this table, we can begin to see patterns in
the dataset. 

Consider the tuberculosis (TB) treatment outcomes that are
reported in Table 2.1. These come from records of a local 
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Graphical and tabu-
lar displays of data
allow us to ‘see’ the
distribution of scores
on a variable.

Compile a list of ten variables
and decide whether each is
continuous or discrete.

Activity 2.1

The frequency of a
score refers to the
number of times
that the given score
appears within a
dataset.

A frequency
distribution is a
tabular or graphical
representation of a
dataset indicating
the set of scores on
a variable together
with their frequency.  
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Community Health Clinic. One of six possible outcomes is re-
ported for each of 50 new patients treated at the clinic during the
preceding six months.

Whereas the dataset in Table 2.1 is difficult to interpret, the
frequency distribution reported in Table 2.2 shows a clear pattern 
in the distribution of scores. The ‘frequency’ column reports the num-
ber of scores in each category. The majority of patients were either
cured or had completed treatment without having the test needed to
verify the cure. While very few patients died or failed to respond to
treatment, an alarming number of treatments were not completed
(patients either interrupted treatment or transferred to another centre).
The ‘% frequency’ column reports the percentage of observations that
fall in each outcome category. The percentage for each category is cal-

culated by dividing the frequency for the
category by the total number of subjects
(i.e. N). The frequency distribution
allows us to describe the health of our 50
patients (i.e. our dataset).

Table 2.1  Treatment outcomes for N � 50 patients
treated for pulmonary TB

Rx C I C T C Rx C C T     
T C Rx D Rx I C T Rx I
C I C Rx C C T I D C
F T Rx C C Rx D C I Rx
I Rx C I T C I T C C

C � Cured; Rx � Treatment completed; F � Treatment failure; T � Transferred out; 
I � Interrupted; D � Died

Table 2.2  Frequency distribution of TB outcomes

Item Frequency % frequency

C 19 38
Rx 10 20
F 1 2
T 8 16
I 9 18
D 3 6

Recalculate the percent-
ages in the ‘% frequency’
column of Table 2.2.

Activity 2.2
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The frequency bar chart
We said that frequency distributions could be tabular or graphical
representations of data. We have seen the frequency table, but how
do we produce a graph from this data?

Nominal data can readily be displayed by means of the frequen-
cy bar chart. Figure 2.1 reports a bar chart for the TB treatment
outcome data. Each category is designated by a bar placed on the
horizontal axis (x-axis). To emphasise the discontinuity or ‘gap’ be-
tween categories, the bars are separated by blank spaces. As we are
dealing with nominal data in which categories differ qualitatively,
no particular ordering of categories along the horizontal axis can be
prescribed. Some authors do however suggest that a modicum of
logic be applied, such as arranging categories from highest to lowest
frequency. The bars in Figure 2.1 are organised so that the desirable
outcomes are placed to the left of the undesirable outcomes.

The frequency (number of cases) of each category is indicated on
the vertical axis (y-axis). Each bar indicates the same frequency
reported in the frequency distribution table, and the sum of the fre-
quencies is equal to the total number of items in the dataset (N �
50). The range of frequencies provided on the vertical axis slightly
exceeds the maximum observed frequency of any of the categories.
Do you see how much easier it is to ‘see what is going on’ once we
have a concise visual summary of the data?

The ratio of the height to the width of the graph is known as the
aspect ratio. Changes in this ratio can alter the impression given by
the graph. Be sure to carefully examine bar graphs that appear in

The values or 
scores of nominal
data are used for
identification 
(e.g. 1 � female, 
2 � male), and 
do not indicate the
amount of an 
attribute.

A bar chart 
is a graphical 
representation of
nominal data in
which a vertical bar
reflects the frequency
of each category on 
a discrete (or 
categorical) variable.

Figure 2.1 Frequency bar chart of TB treatment outcome data
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the media, paying particular attention to the y-axis (see Figure 2.2).
Differences between the frequencies of each category are enhanced
when the y-axis does not begin at zero and the bars are short.
Conversely, differences can be minimised when the y-axis does start
at zero and the bars are tall. It is legitimate practice to have a break
in the vertical axis, hence the onus is on you to interpret the graph
correctly – and not be caught napping!

Grouped frequency distributions
So far we have dealt only with nominal or discrete data. How do we
represent ordinal, interval, or ratio data by means of a frequency
distribution? Here we want to capture the characteristic that there
are no discrete gaps between the data scores.

Consider student test marks, which have a potential range from
0 to 100. By gathering the full set of marks for a class, you can answer
questions such as ‘Was the test too easy?’ (i.e. are most of the scores
clustered at the upper end of the range?) or ‘How many students
failed the test?’ (i.e. how many scores are lower than 50%?). Here
again, these questions are difficult to answer by inspecting the ‘raw’
list of scores. It is much easier to make sense of the data once they
have been organised into a frequency distribution table. If we were
to follow the format used in the ordinal frequency distribution
(Table 2.2), where a frequency was computed for every score, we
would need 101 rows, to allow for every possible mark from 0 to
100%! If there were only 120 people in the class, we might well end
up with very few cases at each mark and we would not be much
better off than we were with the raw data. A better way to tabulate
the data so that we get a sense of ‘what is going on’ is to reduce the
number of possible values in the left-hand column by collapsing the
data into groups, thereby forming a grouped frequency distribution. 

A grouped frequency
distribution is a 

tabular or graphical
representation of

ordinal, interval, or
ratio data. Scores are

grouped into class
intervals, for which

frequencies are
given.

Figure 2.2 Two bar charts of the same data but with different aspect ratios



TUTORIAL 2: DISPLAYING DATA 23

To prepare a frequency distribution table, we need to consider
the size of the dataset, i.e. the number of observed scores, and the
range or distance from the lowest to the highest score. This will help
us decide how to divide the distribution into groups. For a set of
class marks ranging from 0 to 100%, we could use groups of 10%
where all scores falling between 1 and 10% are lumped together, all
scores between 11 and 20% form the next group, those between 
21 and 30% the following group, etc., up to 100%. Categories of
scores determined in this manner are referred to as class intervals. 

The most difficult step in constructing a grouped frequency table
is deciding how many class intervals to use. How many categories
should data be grouped into? There are no hard and fast rules.
Nevertheless some tables are more informative than others.
Tabulation of a small dataset across many class intervals will yield
little new information. Conversely, the compression of a large
dataset into very few class intervals will result in an excessive loss
of detail. Guidelines for determining the number and appropriate
size of class intervals are given in Box 2.1.

A class interval is a
division or category
of scores on a
grouped frequency
distribution.

Creating class intervals
There are several methods for creating class intervals. As long ago as
1926, Herbert Sturges derived a formula for this purpose – based on
advanced statistical and mathematical techniques – that, despite
some criticism, is still widely used today in textbooks and computer
packages. For our purposes, however, it will be sufficient to use
either of the following procedures.

1. Use an existing convention
There is often an existing convention for dividing the data into
groups. For example, matriculation examination marks are
graded ‘A’, ‘B’, ‘C’, etc. where an ‘A’ represents marks of 80% and
higher, a ‘B’ represents marks from 70 to 79%, a ‘C’ represents
marks from 60 to 69%, etc. University marks are normally cate-
gorised by a different convention, where ‘1st’ represents marks
from 75% upwards, ‘upper 2nd’ represents marks from 70 to
74%, ‘lower 2nd’ represents marks from 60 to 69%, ‘3rd’ repre-
sents marks from 50 to 59%, etc. Where such a convention exists,
it usually makes sense to use it when constructing a grouped fre-
quency distribution.

2. Use equally spaced ‘arbitrary’ categories
Where no convention exists for breaking the data into categories,
arbitrary categories are employed, by dividing the data into
equally spaced intervals. The following steps will help you
decide on the size and the number of intervals to use.
a) Determine the range of the data by subtracting the lowest value

from the highest value and adding 1 to this difference score.

Box 2.1
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There is flexibility in constructing the class interval, but the aim
should be to produce a table or graph that enhances the readers’
ability to describe and interpret the data. Obviously, when data
from a large dataset are grouped in this manner, some of the detail
is lost and we would need to weigh that up against the advantage
of gaining a better idea of the overall shape of the dataset. 

Although a given class interval may appear to range from two
integer values (e.g. 10 to 19), these ‘apparent limits’ of the category
are not the same as the actual limits that are used to determine
whether individual scores fall within the category. Where do we
place a score of 19.4? Does it fall within the 10–19 interval or the 
20–29 interval? The values 10 and 19 are defined as the apparent
lower and upper limits respectively of the 10–19 class interval. The
true limits of the interval, termed the real upper limit (RUL) and the
real lower limit (RLL), actually extend beyond the apparent limits by
half of the distance between the limit in question and the apparent
limit of the succeeding (or preceding) class interval. Given
succeeding class intervals 10–19 and 20–29, the real upper limit of
the interval 10–19 would be 19.5, i.e. the midpoint between 19, the

b) Given the range, consider what number of divisions of a reason-
able length, such as 5, 10, 50, or 100 units, could be accom-
modated. Do this by dividing the range by the size of the
class intervals. It is conventional to have approximately ten
class intervals. 

c) Given the sample size, decide whether the chosen interval
range – and hence the number of class intervals – is appro-
priate by estimating the number of data items that could be
expected to fall within each division (bearing in mind that
there are likely to be more items in the middle than the outer
class intervals). A display with too many or too few items per
class interval is little better than an ordered set of raw data – it
does not help much in our quest to see what is going on in the
sample.

d) Determine the apparent limits of each class interval. These 
are the highest and lowest scores that bracket the interval
(e.g. 70–79%). Ensure that the extreme values have been
provided for.

Which method you use depends on what you want the frequency
distribution to show and how you want to use the distribution.
Equally spaced intervals are most commonly employed since they
give a clear overview of the scores that is easily understood. In
contexts where specific categorical conventions are widely used and
understood, these should be used.

The real upper limit
and the real lower

limit refer to the true
boundaries of a class

interval. They are
found midway

between the 
apparent limits of

neighbouring class
intervals.
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Table 2.3  Marks from a class test (N � 80)

56 67 77 51 62 57 69 58 67 71

83 58 46 79 69 53 72 64 63 76

71 73 59 60 48 52 64 70 57 69

64 62 70 58 53 61 58 69 55 65

48 55 62 54 57 69 62 57 73 60

63 72 39 73 61 64 53 68 46 57

62 61 66 60 70 58 75 67 52 66

57 43 72 54 59 81 51 59 54 61

Activity 2.3

Using the data in Table 2.3, prepare a frequency distribution table
with class intervals representing university grades: First class pass
(75% +), Upper second (70–74%), Lower second (60–69%), Third
(50–59%), and Fail (< 50%).

Activity 2.4

apparent upper limit of the first interval, and 20, the apparent lower
limit of the succeeding interval. Of course, 19.5 is also the real lower
limit of the class interval 20–29.

Let us consider an example in which we have results, expressed
as percentages, for a class of 80 learners (see Table 2.3). When devis-
ing class intervals, wherever possible it is best to choose intervals
that have some logical significance. In the present example, groups
of 10% correspond with the familiar breakdown used in allocating
symbols to marks at school. Also, with a range of 100, class intervals
of size 10 would give us an opti-
mal number of 10 intervals. Table
2.4 is a frequency distribution for
the test mark data.

From the ‘Frequency’ column of Table 2.4 we can see that the major-
ity of students scored in the 50s and 60s, while relatively few
achieved extremely high or low scores. Note that no students scored
marks below 30%. When several class intervals at the extremes of a
distribution are empty, they may be combined into one class. Thus
the distribution in Table 2.4 may be rewritten to begin with a class
interval labelled ‘< 30’.

You will notice that, aside from the columns for frequency and
percentage frequency with which we are already familiar, Table 2.4
has additional columns reflecting cumulative frequency and cumula-

Identify the real upper limits
and real lower limits of the
class intervals in Table 2.4.

Cumulative 
frequency refers to
the frequency of all
data items with a
value less than or
equal to a specified
score.
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tive percentage frequency. Figures in these columns reflect the
frequency or percentage frequency of all cases with scores less than
the upper limit of the class interval alongside which they appear.
Cumulative frequencies and percentage frequencies for each class
interval are computed by summing the frequency or percentage
frequency for that interval together with the frequencies or percent-
age frequencies in all lower intervals. Thus, the cumulative
frequency for the 40–49 interval is 6 (i.e. 1 + 5) and the cumulative
frequency for the 50–59 interval is 33 (i.e. 6 + 27). The cumulative
frequency in the highest category should sum to N, and the cumu-
lative percentage frequency should sum to 100%. Can you see why?

Cumulative indices are useful for answering questions such as
‘How many students failed?’ or ‘What percentage of students
achieved a grade of less than 50%?’ Can you read these values from
the table? The class interval 50–59 has a cumulative frequency of 33.
This means that 33 students scored 59% or less in the class test. A
cumulative percentage frequency of 41.25 is recorded for this class
interval. This enables us to speak of the percentage of students with
a test mark of 59 or less. We can say that 33 students or 41.25% of
the class achieved a test mark of 59 or less.

Table 2.4  Frequency distribution table of test marks

Class Frequency Cumulative % frequency Cumulative

interval frequency % frequency

> 89 – 80 – 100.00

80-89 2 80 2.50 100.00

70-79 15 78 18.75 97.50

60-69 30 63 37.50 78.75

50-59 27 33 33.75 41.25

40-49 5 6 6.25 7.50

30-39 1 1 1.25 1.25

20-29 – – – –

10-19 – – – –

< 10 – – – –

Cumulative 
percentage 

frequency refers to
the percentage of

items within a
dataset that have a

value less than or
equal to a specified

score.

Using the frequency distribution in Table 2.4, calculate the percentage
of students who achieved 70% or more. There are two simple
methods for doing so. Can you see them?

Activity 2.5
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The histogram
Histograms are used to represent the distribution of interval or ratio
data. Histograms look like bar charts, but differ in much the same
way that the frequency distribution table for continuous data
differed from the nominal data table. Firstly, rather than using bars
to represent the frequency of individual data item values (e.g. males
and females), the bars represent frequencies of cases within class
intervals, which are arranged along the horizontal axis from left to
right in order of increasing magnitude. Secondly, no blank spaces
are allowed between class intervals as there are no ‘gaps’ between
classes. The test results reported in Table 2.3 are presented in the
form of a histogram in Figure 2.3.

Note that the midpoint of each class interval, i.e. the point midway
between the real lower limit and the real upper limit, is indicated on
the horizontal axis. Some people like to ensure that the midpoint has
an integer value by creating class intervals of which the width is an odd
number. The midpoint is obtained by means of the following formula:

midpoint of class interval � RLL + ( )RUL – RLL
��

2

Histograms are
graphical displays
that use bars to
represent the
frequencies of
continuous data
that are arranged
into class intervals.

Equation 2.1

Figure 2.3 Histogram of class test marks (N � 80)
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As the bulk of the marks are clustered between 50 and 69%, our
graph does not provide a great deal of information about the distri-
bution. A more detailed breakdown would be useful. We could
therefore choose to have class intervals of five rather than the ten
employed previously. Confining ourselves to the range within
which data items have been observed, we would have a histogram
with class intervals encompassing values from 35 to 85 as shown in

Figure 2.4. The decrease in inter-
val size has given us more inter-
vals, and a more detailed break-
down of the distribution.

Use Equation 2.1 to compute
the midpoints of the class inter-
vals in Table 2.4.

Activity 2.6
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Describing frequency distributions
One of the main reasons why we construct frequency distributions
is to describe the distribution of scores on a variable. This is what
we mean by ‘seeing what is going on’ with the data: we describe the
distribution stating how the scores are arranged in categories or
class intervals. 

We should answer two questions when describing the shape of
a frequency distribution. Firstly, are most of the scores low, or 
are the majority of the scores in the middle or upper range of 
the distribution? Secondly, are the frequencies in some intervals
much higher than those in other intervals, or do all the intervals
have roughly the same frequency? The first question refers to the
skewness of the distribution and the second question refers to the
peakedness or the kurtosis of the distribution.

Figure 2.4 Histogram of class test marks (N � 80)
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The skewness of a distribution refers to the degree to which it 
deviates from symmetry. The frequency distributions in Figure 2.5 are
roughly symmetrical. A symmetrical distribution has its centremost
point lying in the middle of the distribution, and the distribution of
scores to the left and the right of this centremost point are mirror
images of each other. Symmetrical distributions often have the major-
ity of scores lying in the middle categories, and have a single peak
(i.e. they are unimodal). Class results on tests and examinations are
usually distributed symmetrically, with most students scoring in the
middle ranges, and with fewer students doing very well or very poor-
ly. Distributions with two peaks are called bimodal distributions.

Asymmetrical distributions can either be positively or negative-
ly skewed (see Figure 2.6). Positively skewed distributions have the
majority of the sample scoring in the lower range of the variable,
whereas negatively skewed distributions have the majority of
scores in the upper range of the variable. The skewness and sym-
metry of a frequency distribution provide useful information about
the sample and/or the measurement instrument. A positively
skewed distribution of test marks indicates that the sample did
poorly on the test and/or that the test was too difficult. On the other
hand, a negatively skewed distribution of test marks indicates that
the students did well on the test and/or that the test was too easy. 

Another way of describing the shape of a frequency distribution 
is to examine its peakedness, also known as the kurtosis of the
distribution. Here we judge the degree to which certain intervals or
categories have higher frequencies than others. The two distribu-
tions in Figure 2.7 have the same number of subjects. The peaked
distribution has some intervals with high frequencies and other
intervals with low frequencies. In contrast, the flat distribution has
roughly similar frequencies in all intervals. 
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Figure 2.5 Symmetrical unimodal and bimodal frequency distributions

To describe the
shape of a frequency
distribution,
comment on its
symmetry, modes,
skewness, and
kurtosis.
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Figure 2.6 Asymmetrical frequency distributions
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Figure 2.7 Frequency distributions with different peakedness (kurtosis)

For each of the distributions reported in Figures 2.5 to 2.7, determine
the following:
a) What is the sample size?
b) What was the range of scores?
c) What are the apparent limits and real upper and lower limits of

the first and last categories?
d) What is the highest and lowest class interval frequency?
e) What is the cumulative frequency of the interval with 

midpoint 17?
f) If the scores are marks on a test out of 35, what does each of them

reveal about the class performance and/or the test?

Activity 2.7



Frequency distributions allow us to describe a set of scores by
revealing patterns of symmetry, skewness, and peakedness of the
distribution. They also show the modes of the distribution. When
interpreting frequency distributions, it is important to ask what the
distribution shows about the sample and/or the measure. Imagine
that each of the distributions in Figures 2.5, 2.6, and 2.7 represents
marks on a class test. What does each of them reveal about the class
performance and/or the test?

Percentile ranks and percentiles
One of the main advantages of producing tables of frequencies and
cumulative frequencies is that they allow us to determine where a
particular score lies relative to other scores in a distribution. If you
scored 65% in a test, how well did you do? The answer depends on
how everyone else scored in the test. If the test was easy and 65%
was the lowest score, you did not do very well. However, if the test
was difficult and 65% was the highest score, you did very well. This
illustrates an important kind of statistical reasoning: we judge indi-
vidual scores in the context of all the other scores in a distribution.
The cumulative frequency and cumulative percentage frequency
allow us to locate an individual score in the context of the other
scores in a distribution. They tell us the number of scores (or the
percentage of scores) that fall below a specified score.

Consider first a mark of 50%. You may be relieved to have
‘scraped through’ with a mark of 50%. Another way to evaluate
your performance is to ask: ‘How many students scored less than
50%?’ After all, 50% may have been the lowest or the highest score
on the test. You could also ask how many students did better than
you. We can simply read the answers to these questions off 
the cumulative frequency table. From Table 2.4 we can see that 
6 students (7.5%) received marks below 49.5% (the RUL of the 40–49
class interval). If you received a mark of 50% for this test, you did 
not do very well, because only 7.5% of students performed worse
than you. To determine how many students did better than
you, simply subtract the number that did worse than you from the
total number of students: 74 (i.e. 80 – 6) students scored 50% or more. 

When investigating questions such as these, we are, in fact, re-
ferring to a statistic known as the percentile rank. Thus, when we
stated earlier that 41.25% of the students achieved a test mark of 
59 or less, we were saying that a test mark of 59 has a percentile
rank of 41.25 (or 41, with rounding). The mark, 59, is referred to as
the 41st percentile.

Thus far we have been using easy examples that involved read-
ing off from a frequency table the percentile rank associated with
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Remember the 
difference between
the shape of 
positively and 
negatively skewed
distributions.

A percentile rank
indicates the 
percentage of cases
that lie at or below a
specified point on
the scale on which
the data were 
measured.

A percentile is 
a point on a 
scale at and below
which a specified 
percentage of 
cases in a 
dataset falls.



32 NUMBERS, HYPOTHESES AND CONCLUSIONS

the RUL of a category. But what do we do when we want to com-
pute the percentile rank of a score that falls within an interval?
What is the percentile rank of a score of 65? Notice that 65 falls
inside the class interval 60–69 in Table 2.4.

To calculate a percentile rank from a cumulative frequency table,
we first need to identify the class interval into which the mark or
score of interest falls. Clearly, all cases falling into the class intervals
below the identified interval also fall below the score whose
percentile rank we are trying to determine. Thus the cumulative
frequency of the class interval below comprises part of our per-
centile rank. To that, we need to add the percentage of the identified
interval consisting of marks equal to or less than the mark or score
of interest. The formula is as follows:

For example, to return to Table 2.4, the percentile rank of a mark of
65 is calculated as follows:

percentile rank � 41.25 + (37.5)

� 61.88 
� 62

The formula can best be understood with reference to Figure 2.8.
The formula uses known information about the placing of a score
on a class interval to determine the unknown value for the per-
centile rank, which is a point on an associated percentage interval.
Since we know the interval width and RLL of the class interval, we
can determine ‘how far’ the score lies from the RLL (i.e. 65 – 59.5).
From the calculation, you can see that the formula expresses this as
a proportion by dividing the distance by the interval width (i.e. 10).
The score of 65 lies just over half way from the RLL (i.e. 0.55 of 
the interval). We now have enough information to compute the
percentile rank. We know the width of the percentage interval (i.e.
37.5), and we now know that the percentile rank we are looking 

65 – 59.5
��

10

percentile rank � % below + (interval %)

where: % below  � cumulative percentage frequency of the class
interval below the interval in which the score
of interest occurs

score  � the score in respect of which we wish to
determine the percentile rank

RLL � real lower limit of the interval in which the
score of interest occurs

class int. width  � the width of the class interval
interval %  � the percentage of the distribution that falls

within the interval of interest

score – RLL
��
class int. width

Equation 2.2
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for lies a similar distance (i.e. 0.55) away from the lower limit of this
interval. We multiply the ‘interval %’ by 0.55 to determine that
20.63% of the distribution lies between 59.5 and 65. This is the
‘unknown distance’ in Figure 2.8. Thus, approximately 62% of the
scores (41.25 + 20.63) lie below the value of 65.

To calculate a percentile from a cumulative frequency distri-
bution table, we work the other way round, starting with a cumu-
lative percentage frequency to determine a corresponding score.
Once again, the first step is to identify the class interval and
corresponding percentage interval within which the percentile rank
lies. The formula for this procedure is as follows:

Interval % = 37.5

Interval width = 10

Unknown distance = ?

Known distance = 5.5

Percentage interval

Class interval

78.75PR = ?41.25

59.5 x = 65 69.5

Figure 2.8 Determining the percentile rank

score of p � RLL + (interval width)

where: score of P � the score associated with a percentile rank
of p

% below  � cumulative percentage frequency of the class
interval below the interval in which the score
of interest occurs

PR  � the percentile rank for which we wish to
identify a score

RLL � real lower limit of the interval in which the
percentage of interest occurs

interval width  � the width of the class interval
interval %  � the percentage of the distribution that falls

within the interval of interest

PR – % below
��

interval %
Equation 2.3

Thus for our class test marks in Table 2.4, the 75th percentile, i.e. the
score at and below which 75% of the students’ marks are to be
found, would be calculated as follows:



34 NUMBERS, HYPOTHESES AND CONCLUSIONS

score of p � 59.5 + (10)

� 68.5 

Figure 2.9 shows how the formula goes about determining the per-
centile. It determines ‘how far’ the percentile rank of 75 lies from the
lower limit of 41.25 (i.e. 75 – 41.25 � 33.75), and then expresses this
distance as a proportion of the interval % (i.e. 33.75 ÷ 37.5 � .90).
The percentile that we want to calculate thus lies .90 of the class
interval away from the RLL, and we determine that the 75th per-
centile is 68.5. The value 68.5 is the point on the scale that cuts off the
lower three-quarters of the distribution. Note that this is true even
though no actual score of 68.5 was observed. The percentile relates
to the scale on which the scores were observed and not the actual
raw data.

75 – 41.25
��

37.5

It is important to
distinguish between: 

1.  the score that 
an individual 

achieved on a test, 
2.  the percentile

rank that this score
represents, and 

3.  the percentile,
which is the point 

on the scale 
corresponding to 

a given percentile
rank.

Known distance = 33.75

Unknown distance = ?

Percentage interval

Class interval

PR = 7541.25

59.5 x = ? 69.5

Figure 2.9 Determining the percentile

Thus far we have focused solely on the cumulative frequency, com-
puting the proportion of scores that fall at and below a specified
value. However, we can also compute the proportion of cases that
scored higher than a specified value, or the proportion of cases that
fall between two specified values. 

Since we know that the cumulative frequency for all intervals
sums to N, and the cumulative percentage frequency sums to 100,
we can calculate the frequency or proportion of scores that lie above a
specified score by a simple subtraction:

(frequency > x) � N – (frequency ≤ x)
(% frequency > x) � 100 – (% frequency ≤ x)
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Thus, if we know that the cumulative frequency of the score 59.5 is
33 and we know that there are 80 scores in the dataset, we know
also that 47 scores (i.e. 80 – 33) are greater than 59.5 (see Table 2.4).
Likewise, if the percentile rank of a score of 68.5 is 75, we also know
that 25% of the distribution (i.e. 100 – 75) scored higher than 68.5.

Since we can determine the frequency or proportion of scores
that lie below a specified value and we can calculate the frequency
or proportion of scores that lie above another specified value, we
can calculate the frequency or proportion of scores that lie between the
two values. Here what we do is to subtract from the total number of
scores (N) or from the total percentage (100), the frequency or
percentage of scores that lie below the lowest specified value (xl)
and the frequency or percentage of scores that lie above the higher
value (xh).

(frequency between xl and xh) � N – (frequency ≤ xl) – (frequency ≥ xh)

(% frequency between xl and xh) � 100 – (% frequency ≤ xl) – (% frequency ≥ xh)

Refer back to Table 2.4. How many scores lie between 39.5 and 59.5?
Since we know that the cumulative frequency of 39.5 is 1, and the
frequency above 59.5 is 47 (see above), using the formula, we deter-
mine that 32 (i.e. 80 – 47 – 1) scores lie between 39.5 and 59.5.
Similarly, we can compute the proportion of scores that lie between
the value of 65 and the value of 68.5. We have already computed the
percentile ranks for these values: 62% of the scores are less than or
equal to the value 65, and 25% of the scores are greater than the
value 68.5. Thus 13% of the observed scores (i.e. 100 – 62 – 25) lie
between 65 and 68.5.

Percentiles can be understood as a way of dividing up a distribu-
tion of scores into 100 small intervals – 1st percentile, 2nd percentile,
3rd percentile … 100th percentile. Dividing a distribution into 100
equal proportions is just one of a number of conventional ways of ‘cut-
ting up’ a distribution of scores. Distributions are also often divided
into halves, quarters, and tenths. The formula for computing per-
centiles is used to compute the corresponding scores. To divide the
distribution in half, compute the 50th percentile (also know as the
median). To divide the distribution into quarters, compute the 25th
percentile (also known as the 1st quartile), the 50th percentile, and the
75th percentile (also known as the 3rd quartile). The 1st, 2nd, 3rd …
deciles are determined by calculating the 10th, 20th, 30th percentiles.

It is possible to com-
pute the proportion
of a distribution that
lies below or above a
particular score, or
between two scores.

The median or 50th
percentile is a value
that divides a 
distribution into 
two halves.

For the data reported in Table 2.4 compute the following:
a) The median, and the 1st and 3rd quartiles.
b) The 1st, 3rd, 6th, and 9th deciles.
c) The proportion of scores above 55.
d) The proportion of scores between 47 and 72.

Activity 2.8
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Worked example
South African meteorological services keep records of average day-
time temperatures for different areas of the country. To determine
the effects of global warming on daytime temperature in South
Africa, a researcher collects the yearly average temperature from
the records of 36 weather stations. Data are collected for the year
1960 and compared with data for the same stations for the year 2000 
(see Table 2.5). 

Table 2.5  Average daytime temperature in South Africa, 1960 and 2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

18.91 11.62 16.45 18.21 17.93 14.36 13.46 14.98 19.50 24.78 20.65 14.43 17.21 22.96 18.84 13.69 16.21 15.10

18.97 12.56 16.40 19.10 17.43 15.21 14.21 15.21 19.53 26.33 19.59 14.65 18.32 23.06 18.06 14.34 16.89 15.21

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

14.85 15.54 17.01 11.41 15.98 12.70 22.15 17.89 13.02 19.68 14.03 20.71 18.89 17.31 18.34 15.09 13.09 13.03

14.90 16.03 17.39 13.41 16.93 14.09 21.89 17.93 19.56 19.98 14.65 21.00 19.69 18.56 19.24 15.79 14.01 14.38

Station

Station

1960

2000

1960

2000

Tables 2.6 and 2.7 are frequency tables for the two years respective-
ly. Each table divides the data into five equal class intervals, each
with an interval width of 2 degrees Celsius. The highest frequencies
for both tables are in the lower temperatures, especially the category
with a RLL of 12.95 and a RUL of 14.95. It is also apparent that the
2000 temperatures have a narrower range, and there appears to be
fewer observations in the lower ranges of temperature. Thus, the per-
centile rank of the temperature 14.95 is 36% in 1960, but is only 28%
in 2000. Evidence for an increase in temperature is also apparent at
the higher values of both distributions: the 97th percentile is higher
for the 2000 distribution (97th percentile � 24.95), than the 1960
distribution (97th percentile � 22.95).

To provide a more detailed view of the distributions of scores, the
histograms reported in Figure 2.10 have an interval width of 1 degree
Celsius. The 1960 distribution is unimodal and slightly positively
skewed. The 2000 distribution is bimodal, approximately symmetri-
cal, and appears to have an outlier in the topmost category. 

This example illustrates the value of generating tabular and
graphical representations of the distribution of scores on a variable.
These basic descriptive statistical procedures allow us to see what is
going on with the data. On the basis of our displays, we can see that
there appears to have been a shift in temperature between 1960 
and 2000. Specifically, whereas the 1960 distribution is positively
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Table 2.6  Average daytime temperature, 1960

Class Frequency Cumulative % Cumulative
interval frequency frequency % frequency 

11.0–12.9 3 3 8 8

13.0–14.9 10 13 28 36

15.0–16.9 6 19 17 53

17.0–18.9 10 29 28 81

19.0–20.9 4 33 11 92

21.0–22.9 2 35 6 97

23.0–24.9 1 36 3 100

25.0–26.9 – –

Table 2.7  Average daytime temperature, 2000

Class Frequency Cumulative % Cumulative
interval frequency frequency % frequency 

11.0–12.9 1 1 3 3

13.0–14.9 9 10 25 28

15.0–16.9 8 18 22 50

17.0–18.9 7 25 19 69

19.0–20.9 7 32 19 89

21.0–22.9 2 34 6 94

23.0–24.9 1 35 3 97

25.0–26.9 1 36 3 100
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Figure 2.10 Histograms of annual average daytime temperature (N � 36)
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skewed, with lower temperatures clustered in the lower regions, the
2000 distribution is symmetrical. There are more observations in the
upper regions of temperature, and the middlemost score has moved
higher. There also appears to have been a reduction in the range of
temperatures, with observations in 2000 clustering more tightly
around the median.

Summary
1. Categorical or discrete data are displayed in tables and bar charts,

whereas continuous data are displayed in tables, histograms, and
boxplots. 

2. Tabular displays are interpreted by commenting on the frequen-
cies, percentage frequencies, and cumulative percentage frequen-
cies in different categories. Graphical displays of distributions
are interpreted by commenting on their symmetry or their
skewness, their modes, and their peakedness. 

3. In addition to giving us a feel for the data, frequency displays
with cumulative percentage frequencies allow us to compute per-
centiles and percentile ranks. This enables us to locate particular
values relative to other values in a distribution, to determine the
proportion of scores higher or lower than a specified value, and to
determine the proportion of scores between two values.

Exercises
1. Four political parties nominated candidates to contest the local

by-election. In order to assess their relative popularity, a jour-
nalist conducted a telephone survey of 40 residents, asking them
to identify the party for which they intended to vote. The
responses were as follows:

D Z M Z H M D H M H
H M D H D M H D Z D
Z D H M Z H Z H Z H
H M Z Z H Z H Z H M

a) What level of measurement has been employed here?
b) Construct a frequency distribution table for this data. 
c) Construct a frequency bar chart for the data.
d) Interpret the distribution of scores.

2. Refer to data for average daytime temperature in 1960 and 2000
reported in Table 2.5. Do the following:
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a) Construct a frequency table for the 1960 data with class
interval width equal to 1 degree Celsius.

b) Construct a histogram for the 1960 data with class interval
width equal to 2 degrees Celsius.

c) Places with annual temperatures greater than or equal to 
19.4 are considered ‘hot’ places. What proportion of ob-
servations is ‘hot’ in each distribution? (Hint: Compute the 
percentile rank.)

d) If we wanted to select the highest and lowest 10% of scores in
each distribution, which temperatures would be the cut-off
values? (Hint: Compute the 1st and 9th deciles.)

3. Sixty aspirant computer programmers underwent a battery of
aptitude tests, from which the following IQ scores were
extracted:

96 104 102 95 118 116 125 87 99 100
87 88 106 108 98 102 90 119 105 97
100 91 112 91 104 93 98 91 96 111
94 103 94 124 89 92 93 95 110 87
97 101 93 104 100 96 120 107 93 114
85 120 87 107 102 110 131 89 98 103

a) Construct a frequency distribution table for the data. What
size class interval did you choose? Why? What are the real
upper and lower limits of the class interval that contains the
data item ‘98’?

b) Construct a histogram of the data. Be sure to mark the mid-
point of each class interval on the graph. 

c) Determine the percentile rank of a score of 100. Assuming
that the test has been designed to have 100 as the norm, what
can you say about this sample?

d) What score is found at the 75th percentile?
e) What proportion of the sample scored between 92 and 107?
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Central tendency

Martin Terre Blanche

•••••••••••
After studying this tutorial, you should be able to:
• Explain the purpose of measures of central

tendency.
• Identify three measures of central tendency.
• Explain the principle on which the mean, median,

and mode are based.
• Calculate the mean, median, and mode.
• Explain the advantages and disadvantages of

using the mean, median, and mode in different
circumstances and in relation to different kinds 
of data.

TUTORIAL

3

We live in an age of information overload and it is only by simpli-
fying and summarising that we are able to make sense of it all. In
Tutorial 2 we considered one useful way of summarising numerical
information, namely by using graphical displays. In this tutorial we
will discuss another approach, collectively known as measures of
central tendency. Such measures are single numbers that provide a
summary of a whole collection of numbers, e.g. the average score of
a group of students in a Sociology test or the average number of
goals of a soccer team. The average (usually called the mean in
statistical language) is one of the most useful measures of central
tendency; others are the median (the middle number when numbers
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are arranged from largest to smallest) and the mode (the most fre-
quently occurring number in a group of numbers). Each of these
measures of central tendency (mean, median, and mode) is a single
number summarising a group of numbers, but each is calculated in
a different way and each is used for different purposes.

The mean
The mean is simply the arithmetic average of a group of numbers.
If you want the mean of scores in a Sociology test, add together all
the scores and then divide the result by the number of scores. The
formula for this statistic is:

x �

x is the mean
Σ (the Greek letter sigma) indicates summation
(or adding up)
x stands for each score
n is the number of scores

Σ x
�

n

Equation 3.1

Let us see how we apply this formula to a set of scores. Imagine
that we have collected the annual income of five well-known South
African arms dealers, and these are (in R100 000s): 8.1, 7.6, 3.2, 
12.3, 5.6. Then the calculation will be:

This is not complicated, and most of us have been calculating
means (or averages as we usually call them) almost since we learnt
to add and divide.

The formula above uses the notation for what is called a sample
mean. When we calculate a population mean we use a slightly differ-
ent notation, but the mechanics of the calculation are identical. The
formula for the population mean is:

µ �

where µ � the population mean, and the other symbols are as
discussed earlier.

Σ x
�

N

Equation 3.2

The mean is the
arithmetic average of
a group of numbers.

The mean equals the
sum of all the scores
divided by the num-
ber of scores.

where:

Σ x � (8.1 + 7.6 + 3.2 + 12.3 + 5.6) � 36.8

n � 5

x � � � 7.36
36.8
�

5
Σ x
�

n



The distinction between a population and sample mean is import-
ant, particularly when we do inferential statistics. We will discuss
this more fully in later tutorials; for the moment all that we need to
note is that the sample mean attempts to estimate the population
mean. When we calculate the mean salary of five arms dealers, as
we did above, we intend that the sample statistic (x) will give us an
estimate of the corresponding population statistic (µ), which is the
mean of all arms dealers in South Africa.
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Using a calculator to find x
All calculators that label themselves as ‘scientific’ offer functions
that make the work of calculating the arithmetic mean – and, in 
fact, most calculations involving sigma (Σ) notation – dead easy.
Although not all models work in exactly the same way, they
generally ask you to turn the calculator into STAT mode, and enter
the data points. A great many calculations are then automatically
available to you – just pushing the ‘Σx’ key will give that calculation,
the ‘x’ key will give you the mean, the ‘S’ key gives the sample
standard deviation (see Tutorial 4), etc. 

Step 1: Put the calculator in the STAT mode. Try pressing the button
marked MODE, then the · (point) button.

Step 2: Enter the data. Do this by entering the first data value (e.g.
8.1) and then pressing the data button. Try using the button
marked M+. Then enter the second data value (e.g. 7.6) and
press the data button. Enter all the data in this way.

Step 3: Find the desired calculations. Statistical functions (e.g. Σx,
Σx2, s, x) are often found above the number buttons of the
calcultor. Press the SHIFT button first before pressing the
statistical function button.

Box 3.1

Binet, the French educationist, who developed the first IQ test,
administers a test to 40 five-year-old children. The children are
required to complete a maze puzzle, and Binet times each child who
completes the puzzle. Here are the data (numbers refer to time, meas-
ured in seconds, and rounded to the nearest millisecond):

Using your calculator, calculate and report the mean of the dataset.
Now check this by doing the calculation by hand.

Activity 3.1

34.56 56.78 32.97 34.23 56.21 43.23 40.0 34.21 30.09 43.67 32.67 47.43 44.44

67.34 59.9 45.34 45.23 38.00 26.56 54.67 34.65 44.54 60.34 34.55 47.33 32.67

32.66 32.54 46.34 41.39 39.23 30.00 34.65 39.56 42.67 52.78 35.32 33.33 50.00

60.00
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Table 3.1  Time on the Internet
Name Time Name Time

Itumeleng 0 hours Pravani 0 hours
Mcebesi 1 hour Johan 1 hour
Stephen 4 hours Xavier 4 hours
Ingrid 1 hour Linda 3 hours
Tumelo 31 hours

If you add up the hours, you will see that together the students
spend 45 hours on the Internet per week, or an average of 5 hours
each (45 hours divided by 9 students). However, in some ways this
is quite misleading, since with one exception all the students spend
less than 5 hours per week on the Internet. The mean is as high as 
5 because of a single atypical person (Tumelo). So if you want to tell
somebody how long a typical student spends on the Net, you will
have to find a measure of central tendency more appropriate in this
instance than the mean.

The trimmed mean
One useful way of reducing the influence of extreme scores (also
called outliers) is to exclude the highest and lowest scores before
calculating the mean. This is known as a trimmed mean. To get the
trimmed mean for the sample data in Table 3.1, we first discard
Itumeleng’s and Pravani’s scores (the lowest); to balance that we
then also exclude the highest score (Tumelo’s); and finally we add
up the remaining scores and divide by 6 (because we are now only
working with 6 of the original 9 scores). Thus the trimmed mean is
2.33 (14 divided by 6), which gives a much better idea of how much
time a typical student spends on the Internet than the ‘ordinary’
mean of 5. But be careful – calculating a trimmed mean involves
throwing away some information (in this case Itumeleng, Pravani,
and Tumelo’s scores), and can be misleading. Suppose you were in
charge of the university’s computer system and had to determine
how much time to make available on the system per student 
for Internet browsing. For such a purpose the mean of 5 would 
be a more accurate figure than the trimmed mean of 2.33. Can you 
see why? 

Data entry errors 
are commonly
responsible for 
outliers in a dataset.
A noticeable 
difference between
the ‘ordinary’ and
the trimmed mean
can be an indication
that such errors
have occurred.

The mean is by far the most versatile and commonly used meas-
ure of central tendency, but there are occasions when it can be quite
misleading. Suppose you want to know how long, on average, stu-
dents at your university spend browsing the Internet per week. You
ask 9 students and get the 9 answers as shown in Table 3.1.

The mean can be
misleading when
there are extreme
values in a dataset.
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Calculating the mean from grouped data

Percentage Frequency Midpoint Frequency × midpoint

1–10 0 5.5 0
11–20 0 15.5 0
21–30 0 25.5 0
31–40 2 35.5 71
41–50 2 45.5 91
51–60 3 55.5 166.5
61–70 4 65.5 262
71–80 4 75.5 302
81–90 5 85.5 427.5
91–100 0 95.5 0

N � 20 Σx � 1 320

The best way to find the mean is to add together each individual’s
score and to divide by the number of individuals. However, some-
times we no longer have the individual scores and need to calculate
(approximately) the mean from data that have already been grouped
into class intervals. 

To calculate the mean from such data, we should first multiply
the midpoint of each interval by the frequency (i.e. the number of
people in that interval), then add these together, and then divide by
the number of people (the total frequency). 

Consider the table of marks obtained for a sociology research
project, shown above. The necessary calculations to determine the
mean are shown in columns alongside the frequency distribution.
Since Σx � 1 320, we must divide this by 20 (the total number of
students, NOT categories in the distribution), and this gives an
approximate mean mark for the project of 66%.

Box 3.2

Another problem with the trimmed mean is that it can be difficult
to decide when scores are outliers that should be trimmed away.
What if there were three people who spent many hours on the
Internet? Could you afford to trim them away together with the
three lowest scores, leaving only three scores from which to cal-
culate the mean? How could you be sure that those students were
really atypical? 

A frequency distribution of the data in Activity 3.1 is given below.Activity 3.2

Category Frequency

25.01–30 2
30.01–35 13
35.01–40 5
40.01–45 6

Trimmed means are
not used because

they include discard-
ing data.
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Provide an estimation of the mean of the data, given the methods of
Box 3.2.

The median
The median is a useful alternative to the mean. It is simply the
middle score when a group of scores are arranged from smallest to
largest. Another way of expressing this is to say that the median is
the score below which 50% of the scores fall. In the case of our
Internet example, Johan, who spends 1 hour per week on the
Internet, is right in the middle of the group, so the median is 1. If
there were an even number of people in the group (e.g. 10), nobody
would have been exactly in the middle of the group, and you would
have had to take the average of the person just below and the
person just above the middle as the median. 

More formally, we can say that the median is that score which is
to be found in the median position, where the median position is
defined as the 50th percentile of the distribution of scores. When the
number of scores, N, is odd, and the scores are in ranked order, this

location is . When N is even, this formula will give us a frac-

tional number (e.g. 5.5), which is nonsensical, unless we agree that
this just implies the average of the scores adjacent to the fractional
number (e.g. in the case of 5.5, the scores in positions 5 and 6).

Like the trimmed mean, the median is useful for counteracting
the influence of an extreme score that causes the mean to be exces-
sively high or low. In addition, the median is useful where the mean
is pulled up or down by more than just one high or low score.
Consider, for example, the average income of South Africans. In this
country there are a small number of people who earn very high
salaries and a large number who earn very low salaries. The high
earners’ incomes are so large that together they pull up the mean
income, giving the impression that the typical working South

N + 1
�

2

Calculate the trimmed mean for Binet’s data given in Activity 3.1. Activity 3.3

Category Frequency

45.01–50 6
50.01–55 2
55.01–60 4
60.01–55 1
65.01–70 1

The median is the
middle score in a
ranked distribution
of scores.

The median is not
influenced by
extreme scores.
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African is not too badly off. In the 1996 Census, the mean income
was R2 140 per person per month. However, the median income
was only R1 100 per month, that is, 50% of working South
Africans earned R1 100 per month or less. Thus a typical South
African is far poorer than one would think by looking at mean
income only. Income levels in different countries are often reported
in terms of medians as well as means, and from this example we
can see why.

a) Determine the median for Binet’s data (see Activity 3.1). 
b) What do you think is the ‘median category’ for the frequency

distribution given in Activity 3.2? Can you define the notion of a
‘median category’?

Activity 3.4

Just as the median
divides a dataset into

two halves, the
dataset can also be
divided into smaller

parts called quartiles
(quarters), deciles
(tenths), and per-

centiles (hundredths).

The median is often
used as a measure
of central tendency

for very skewed
data.

The mode is the
most frequently

occuring score in a
distribution.

The median is useful for any measure where there is a sub-group
that seems to be pulling the mean up or down. We say that the
median is useful for skewed distributions. Examples of distributions
that are skewed include income (there are many low incomes and a
small number of inordinately high incomes), exams where the
answers have been ‘leaked’ (a small number of students with access
to the ‘leaked’ answers do inordinately well), and winnings at a
casino (most winners win small amounts, but a lucky few win
millions). The median is usually a good measure of central tendency
for such scores. 

Most collections of scores are symmetrically distributed, that is,
high and low scores are more-or-less evenly arranged around the
mean. Examples include newborn babies’ heartbeats per minute, the
number of words in students’ essays, and the petrol consumption 
of different types of cars. The mean is usually a good measure of
central tendency for such scores.

The mode
The mode is the score in a dataset that occurs with the greatest fre-
quency. Let us have another look at our table of hours spent on the
Internet (Table 3.1 on page 43).

As you can see, 1 hour per week is the most popular number of
hours spent on the Internet (3 of the 9 students). The mode is there-
fore 1, and we could say that the modal number of hours spent by
students on the Internet is 1 hour per week. Many datasets have a
single mode (they are ‘unimodal’), but sometimes two different
scores or categories occur with the same top frequency, in which
case we would say that the group of scores is ‘bimodal’. If, for
example, there were another student who spent 4 hours per week
on the Internet, we would have two modes – 1 hour and 4 hours –
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since there would be 3 students in each category. Bimodal distribu-
tions can be an indication that we are dealing with two different
populations. In this case we might suspect that there could be two
basic types of students – those who use the Internet very little and
those who use it almost on a daily basis.

Symbols for measures of central tendency
The mean of a sample is most commonly represented by a bar over the
letter representing the variable, e.g. x if the variable is or x. A
population mean is usually indicated by µ (the Greek letter mu). An
all-purpose symbol sometimes used for the mean is M.

The median is usually abbreviated as Md.
The mode is usually abbreviated as Mo.

Box 3.3

The mode can be a useful measure of central tendency for all sorts
of data, but is the only suitable measure when we are dealing with
nominal data, that is, data that consist of a series of labels rather
than numbers. For example, Table 3.2 shows political party support
by the same students as those in our Internet study.

Table 3.2  Student political party support

Itumeleng NNP Pravani ACDP Ingrid ANC
Mcebesi ANC Johan APP Linda ANC
Stephen DA Xavier NNP Tumelo ANC

The appropriate measure of central tendency for data of this sort is
the mode, which in this case is the ANC.

If data have already
been grouped into
class intervals, the
mode is taken to be
the midpoint of the
class interval 
containing the
largest number of
cases.

a) Determine the mode for Binet’s data (see Activity 3.1). 
b) What do you think is the ‘modal category’ for the frequency

distribution given in Activity 3.2? Can you define the notion of a
‘modal category’?

Activity 3.5

Worked example
In quantitative media studies, a measure that is often used is the
amount of space (in column inches, or percentage of total space)
given to stories covering particular issues. For example, Edward
Herman and Noam Chomsky used this measure in their influential
book Manufacturing Consent (Herman & Chomsky, 1988) to argue that
differential newspaper coverage of the conflicts in East Timor and
Cambodia betrayed a conspiracy to safeguard American interests.

Unimodal distribu-
tions have one mode
and bimodal distri-
butions have two
modes.

The central tendency
of nominal data is
always represented
by the mode.
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Table 3.4  Ranking of data

Rank Publication % of space

1 His Majesty’s Voice 0.1

2 Ulundi Ululator 0.2

3 The Dullstroom Magnate 0.2

4 The Beaufort West Globe 1.1

5 City Blues 1.2

6 The Sunday Dependent 1.8

7 The Eastern Cape Herod 2.2

8 Soweto Times 2.3

9 Pieterseburger 3.2

10 The Cape Crimes 3.8

11 The Daily Dispute 4.2

Imagine that we have tabulated the amount of space given in a selec-
tion of South African publications to the coverage of violent crime, to
see whether there is differential coverage. The data are shown in
Table 3.3. We want to calculate indices of central tendency.

We start by ranking the data, to prepare for calculating the
median and mode. This is shown in Table 3.4.

Table 3.3  Newspaper coverage of violent crime

Publication % of space Publication % of space

The Cape Crimes 3.8 The Dullstroom Magnate 0.2

Soweto Times  2.3 The Natal Witless 7.8

City Blues 1.2 The Beaufort West Globe 1.1

The Pretoria Gnus 4.5 Burger 4.3

The Weekly Wail 6.7 De Wildernis Krokodil 6.8

The Argosy 4.5 Die Bult 5.6

Ulundi Ululator 0.2 Die Afrikana 9.8

Business Whey 9.4 The Sunday Crimes 9.9

The Sunday Dependent 1.8 His Majesty’s Voice 0.1

Rapper 5 Pieterseburger 3.2

The Daily Dispute 4.2 The Eastern Cape Herod 2.2

Rank Publication % of space

12 Burger 4.3

13 The Pretoria Gnus 4.5

14 The Argosy 4.5

15 Rapper 5

16 Die Bult 5.6

17 The Weekly Wail 6.7

18 De Wildernis Krokodil 6.8

19 The Natal Witless 7.8

20 Business Whey 9.4

21 Die Afrikana 9.8

22 The Sunday Crimes 9.9
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Using a calculator
Mean
To calculate this, we use our calculators, following the procedure in
Box 3.1. Thus, we put the calculator into STAT mode, and enter 
each of the data points. Then we press the key for the mean, usual-
ly SHIFT + x, and we see that the answer is 4.3.

Median
We note that there are 22 newspapers in our survey. Noting that this
is an even number, we apply the formula for the median position,

, which gives us 11.5 or, following the earlier discussion, the

average of the 11th and 12th numbers, i.e. the average of 4.2 and 
4.3 � 4.25.

Mode
We use the ranking to find data points with the same value, and we
notice that both 0.2 and 4.5 are repeated, once each. The dataset is
therefore bimodal, and the modes are 0.2 and 4.5.

We think you will agree that this was relatively easy, but we
could have made the task even easier, and more reliable, by using a
spreadsheet computer program. On the CD, we introduce you to
spreadsheets, so we will show you here how to go about doing the
calculations above with the aid of a spreadsheet.

Using a spreadsheet
Start by creating a new worksheet (use the ‘File’, ‘New’ command).
Then enter the row headings as you see them in the original data
table (create two columns only, as in the ranked data). Then enter

N + 1
�

2

Figure 3.1 Calculating the median, mean (average), and mode in Microsoft® Excel



the data in the spreadsheet. You should now see something similar
to that shown in Figure 3.1. You then enter built-in formulas below
the data, entering the beginning and ending cell addresses of the
data range, as shown in Figure 3.1. Excel automatically calculates
the results, and displays them.

Summary
1. Measures of central tendency are shorthand ways of describing

large collections of data. They are single numbers summarising
a set of numbers.

2. The three most commonly used measures of central tendency are
the mean, median, and mode.

3. The mean is the arithmetic average of a group of scores, the
median is the middle score when scores are arranged from
smallest to largest, and the mode is the most common score.

4. The mean is by far the most commonly used measure of central
tendency and in most situations provides a good summary of
where the midpoint of the data is. It is sensitive to outliers,
though.

5. The median is particularly useful when working with skewed
distributions.

6. The mode is particularly useful when working with nominal
data.

Exercises
1. Which measure of central tendency – the mode, median, or

mean – is the highest for the following group of test scores?
Which is the lowest?

8, 11, 12, 3, 31, 12, 8, 9, 12, 10, 5

2. The management board of a small mental hospital is budgeting
to re-plan facilities for patients, and needs to decide on how to
apportion funds to fit the needs of various disorders. They find
that in the past 6 months they have had the following pattern of
admissions: 8 patients with anxiety disorders, 41 with mood dis-
orders, 35 with schizophrenia, 4 with substance-abuse disorders,
and 8 with cognitive disorders. What measure of central tenden-
cy would you use to identify a ‘typical’ patient at the hospital?

3. In a study undertaken at the Witwatersrand Technikon on
people suffering from a condition called Moriti wa letswele, it was
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found that in the 11–20-year group there were 7 participants; 
in the 21–30-year group there were 15 participants; in the 
31–40-year group there were 9 participants; and in the 41–50-
year group there were 5 participants. What was the typical age
of participants in this study?

4. Draw a picture of what central tendency means to you. Can
you give your drawing a name?

5. You are interested in the types of non-alcoholic drinks students
prefer. What measure would you use to find the most popular
type of drink?

6. You are a photographer arranging 7 members of a family for 
a family photograph. You want to do a fan-like arrangement
around the person who occupies the middle position in height.
After placing the family in order of height, how would you
decide which person should occupy the middle position?

7. A soccer coach wants to encourage more goal-scoring in his
club. To motivate players he organises a competition among
the 3 teams. They are each to play 10 matches in the season, and
the team that has the highest average of goals scored in the sea-
son will win a prize. Which statistic would you use to calculate
the highest average?

8. In a skewed distribution, which measure (mean, median, or
mode) is a better reflection of central tendency?

9. Why would a government report the median national income,
while reporting the mean educational level?

10. In wage negotiations, management often refer to mean salaries,
while trade unions refer to median salaries. Why?
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Variability

Martin Terre Blanche

•••••••••••
After studying this tutorial, you should be able to:
• Explain the purpose of measures of variability.
• Name four measures of variability and explain

how they differ from each other.
• Calculate the range, average deviation, variance,

and standard deviation for a population.
• Calculate the variance and standard deviation for

a sample.
• Explain and calculate the coefficient of variation.

TUTORIAL

4

Measures of central tendency (see Tutorial 3) tell us, in a highly eco-
nomical fashion, where the midpoint of a group of scores is, but
they do not reveal anything about the way the scores are arranged
around that midpoint. Measures of variation do exactly that – they
tell us how widely dispersed numbers are. There are three com-
monly used measures of variation – the range, the variance, and the
standard deviation – each of which helps us to understand the degree
of variability in a dataset in a different way. 

Suppose we measured how many seconds it took people in three
different rooms to respond to having their name called out, and got
the results shown in Figure 4.1. These sets of scores have exactly the
same mean (3), but are very different sets of data. The first set shows
no variation at all, the second shows some variation, and the third,
by comparison, shows a lot of variation.
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As another demonstration, consider the two bar charts in Figure 4.2,
depicting students’ scores out of 20 in a Psychology test.

There are about 500 students in each class and in each case the
mean, median, and mode are exactly 13. So, on average, the two
classes did equally well on the test. As you can see, however, the
classes are very different in other respects. In Class 1, many stu-
dents got low scores (20 cases as low as 7), but many other students
got exceptionally high scores. The students in Class 2 are more
similar to each other, with almost everybody scoring between 10
and 16. Thus there is less variability in Class 2 than in Class 1.
Measures of variability are ways of expressing such differing
degrees of variability mathematically.

Of course, the concept ‘variability’ has wider application and
relevance than the prospect of measuring numerical dispersion
might suggest. Think about the great interest that ‘difference’ or
‘variation’ has in our daily lives. Why are we interested in the prac-
tices and beliefs of different cultures? Why are we bored by daily
domestic rituals? Think also about the importance of variation to
our existence. We wake up 99 mornings out of a 100 feeling more or

Room 1
3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3

Room 2
4   4   4   4   4   4   3   3   3   3   3   3   3   3   2   2   2   2   2   2

Room 3
3   4   3   6   3   1   6   3   4   3   1   3   2   3   3   5   1   2   6   3
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1.5

0.5
1 2 3

Figure 4.1 Reaction times in seconds, with a plot of the scores

Figure 4.2 Test scores for two classes with different distributions
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less the same, but if we should wake with impaired vision and loss
of balance, we would be immediately alarmed. On the other hand,
we are generally not at all interested in our (near) failure to change
height from morning to morning. A strong argument can be made
for the epistemological importance of variation or difference in a
variety of human enterprises.

It is thus no accident that the concept of variability is one of the
most important and fundamental in statistics. It is vital to have a
firm understanding of this concept if we are to progress to an
understanding of inferential statistics.

The range
The range is the most straightforward measure of variability – it is
the difference between the highest and lowest scores in a dataset. 

So in Class 1 of Figure 4.2 the
range is 12 (the highest score, 19,
minus the lowest score, 7), while
in Class 2 it is only 8 
(17 minus 9).

The range as calculated here is also sometimes referred to as the
crude range. The extended range involves adding one to the crude
range. Count the number of bars in the bar graphs for Class 1 and
Class 2 and you will see why adding one to the difference between
the lowest and highest scores actually gives a more accurate indi-
cation of the range of scores obtained. It does not matter much
whether you use the crude or extended range, provided it is clear
which calculation you used. You should also make it clear whether
you are referring to the actual, observed range or the potential range
of scores. The range in Class 1 is 12, and in Class 2 it is 8, but in both
cases the potential crude range is 20 – 0 � 20. The potential extend-
ed range (i.e. the number of possible scores students could have
got) is 20 – 0 + 1 � 21.

Although the range is easy to understand and makes intuitive
sense, it is a rough-and-ready indication of variability, as it is based
on two numbers only – the highest and lowest scores. Figure 4.3
shows the number of accidents per month at two mines. The range
is the same for both mines, namely 7 – i.e. there are between 0 and
7 accidents per month at each mine. However, as you can see, there
are from 2 to 4 accidents most months at mine B, whereas there is
much more variability at mine A. Thus the range is susceptible to
the same problem as the mean – it can give a false impression if
there are atypical, extreme scores (outliers).

A range index that tries to avoid the problem of outliers is
known as the interquartile range, and is similar in some ways to the
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The notion of 
variation is central
to many statistical

concepts and 
procedures.

Calculate the extended and crude
ranges for the data in each of
the sets in Figure 4.1.

Activity 4.1

The range is the 
distance between

the bottom and top
of the dataset, or

distribution. 
The crude range is

the difference
between the 

maximum and 
minimum scores.

The extended range
is this difference + 1.
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trimmed mean. The interquartile range is the distance between the
25th and 75th percentiles of the dataset. It is the middle 50% of the
distribution, and therefore excludes extreme values, which lie at the
top or bottom of the distribution. 

To see how the range index works, in Table 4.1 we show the fre-
quency distribution of the data from Table 3.1 in Tutorial 3 record-
ing the number of hours a group of students spend on the Internet.
Using the methods shown in Tutorial 2, we find that the 25th and
75th percentiles are 1 and 4 respectively. The interquartile range is
therefore 3. Notice that this is much
smaller and more ‘characteristic’
than the crude or extended ranges of
this dataset, which are 31 and 
32 respectively.
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Table 4.1 Frequency distribution of student hours on 
the Internet

Frequency Cumulative % Cumulative
frequency frequency %

x ≤ 0 2 2 22.2 22.2

0 < x ≤ 10 6 8 66.7 88.9

10 < x ≤ 20 0 8 0 88.9

20 < x ≤ 30 0 8 0 88.9

30 < x ≤ 40 1 9 11.1 100

Calculate the interquartile
ranges of the three datasets
shown in Figure 4.1.

Activity 4.2

Figure 4.3 Accident rates at two mines

The interquartile
range is the differ-
ence between the 
25th and 75th 
quartiles.
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The average deviation

Table 4.2  Calculating the average deviation

Courses Difference Absolute
passed from mean difference

Itumeleng 0 –2 2

Pravani 1 –1 1

Ingrid 1 –1 1

Mcebesi 2 0 0

Johan 2 0 0

Linda 3 1 1

Stephen 3 1 1

Xavier 4 2 2

TOTAL 16 0 8

A more sophisticated way of indicating how much variation there is
in a dataset is to calculate, on average, how far each score is from
the mean. Table 4.2 shows data for the number of first-year courses
passed by a group of students. In total the students have passed 
16 courses, and since there are 8 students, the mean number of
courses passed is 2 (16 courses divided by 8 students). The table
also shows the difference between each student’s score and the
mean (e.g. Itumeleng passed 0 courses, minus the mean of 2, equals
a difference score of –2). Since the mean is by definition exactly at
the mid-point of the distribution of scores, the negative differences
(scores below the mean) and positive differences (scores above the
mean) will cancel each other out. Therefore the total of the differ-
ence scores is always 0. (Checking that the total is 0 is a useful way
of ensuring that you have not made any errors in calculating the
difference scores.)

The last column shows the absolute differences, i.e. how far each
score is from the mean, irrespective of whether it is above or below
the mean. The absolute differences are just the differences with the
negative signs removed. By adding up the absolute differences
(which comes to a total of 8) and dividing by the number of
students (8), we get the average deviation, which in this case is 1 
(8 divided by 8). The formula is as follows:

If at this point you
find yourself puzzled

by why there is a
minus sign before

some difference
scores, you are

probably not 
familiar with the

concept of negative
numbers and should

seek mathematics
instruction. Start

with Tutorial 23 in
this book.
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Thus we can say that, on average, students have passed 1 course
more (or fewer) than the mean of 2. Suppose now that Pravani
actually passed 0 courses rather than 1, and Xavier passed 5 courses
rather than 4. In that case the average deviation would have been
1.25 (verify this yourself). Can you see that although the mean
remains the same (2), the average deviation has increased slightly?
We would then say that on average students have passed 1.25
courses more (or fewer) than the mean.

The variance
The most important and commonly used measure of variability in
statistics is the variance. Like the average deviation, the variance is a
more complete measure of variability than the range because it is
not derived from the highest and lowest scores only, but from a
formula that includes each score in the relevant dataset. Like the
average deviation, it also gives an indication of how far, on average,
each score is from the mean. It is, however, not quite as easy to
calculate or interpret. 

If we are dealing with a population of scores, we calculate the
variance as follows:

Equation 4.1

The average 
deviation is the 
average of the
absolute distances of
individual scores
from the mean of
the distribution.

Equation 4.2
σ 2 �

where: σ 2 � the variance of the population
Σ � summate (or add up)
x  � each score
µ � the population mean

N  � the number of observations

Σ (x – µ)2

��
N

To calculate the (population) variance manually it again helps to
draw up a table with columns for the raw scores and for the dif-
ference between each raw score and the mean. However, in the 
last column we will now place the squared difference rather than
the absolute difference. Squaring numbers (multiplying them by
themselves) has the effect of removing all negative numbers. This
time we will use the data from Tutorial 3 on the number of hours
students spend on the Internet.

The variance is the
average of the
squared distances of
individual scores
from the mean of
the distribution.

AD �

where: AD � average deviation
Σ � summate (or add up)
x  � each score
µ � the population mean

N � the number of observations

Σ | x – µ |
��

N
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Table 4.3  Calculating variance

Raw score Difference Squared
(x – µ) difference

(x – µ)2

Itumeleng 0 –5 25

Pravani 0 –5 25

Ingrid 1 –4 16

Mcebesi 1 –4 16

Johan 1 –4 16

Linda 3 –2 4

Stephen 4 –1 1

Xavier 4 –1 1

Tumelo 31 26 676

TOTAL (Σ) 45 0 780

As always, the sum of the differences comes to 0. However, the sum
of squared differences is 780. Thus the variance (or average squared
difference) is 86.67 (780 divided by 9 students). Suppose we left
Tumelo (who had a very extreme score) out of the calculation, then
the sum of squared differences would be 104, and the variance
would be 13 (verify this calculation yourself). Notice the rather dra-
matic change.

Calculating the variance in this manner can be quite laborious,
especially if you are doing it all by hand. An alternative technique
is to use a mathematically equivalent formula, which makes the
computation of variance much easier:

σ 2 �

It is best to use this formula with a calculator that has built-in func-
tions for automatically calculating the components Σx2 and Σx. This
is demonstrated in Box 4.1, as are the calculations for some other
indices of variation.

��
N

Equation 4.3 (Σ x)2

�
NΣ x2 –

Using a calculator to find σ 2, σ , s2, and s
Almost all modern scientific calculators offer a mode for entering
lists of data, and functions that make it easy to do calculations on the
data. Functions that calculate Σx2 and Σx are very useful shortcuts
for working with computational formulae for measures of variation,

Box 4.1
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and there are also functions that will calculate some standard meas-
ures of variation in one fell swoop! For the Casio-FX ® 280 model, and
the data in the example involving courses passed by first-year
students (Table 4.2), the steps for calculating the variance with the
computational formula (Equation 4.3) are shown below. Your calcu-
lator may use different keys to generate output, but most calculator
functions are similar to those outlined below. Consult your calcula-
tor manual to determine how your calculator works.

However, notice that your calculator has the formula for σ (the
population standard deviation) built in. So all you have to do to
calculate σ 2 is:
1. Put the calculator into STAT mode.
2. Enter the data.
3. Push ‘SHIFT‘ and then the ‘σ’ key.

This will give you the value of σ. Now, to find σ 2, square the value
of σ, using the appropriate function.

Step Keys

1. Put calculator into STAT 
mode

2. Enter data

3. Find Σx2

4. Find Σx

(Σ x)2

�
NΣ x2 –

(16)2

�
8

44 –

8

256
�

8
44 –

8
σ 2 � � � � � �1.512

�
8

44 – 32
�

8��
N

You change mode by pressing the
‘MODE‘ key, then selecting STAT
mode, e.g. by pressing the · (point)
key.

You should find the symbol ‘Σx2’
above one of your keys. First
press ‘SHIFT‘ and then the ‘Σx2’ key.

Enter the first data item, then
press the ‘DATA‘ key (M+). Enter
the next item and press the ‘DATA‘
key. Continue until all the data is
entered.

You should find the symbol ‘Σx’
above one of your keys. First
press ‘SHIFT‘ and then the ‘Σx’ key.

To calculate σ 2:
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The variance is not easy to interpret. We can say that the students’
average squared difference from the mean was 13, but it is quite
hard to visualise what that might mean. The variance is neverthe-
less a very important statistic, and is very frequently used as part of
other statistical calculations. It also forms the basis for the standard
deviation, another measure of variability, which is easier to interpret.

By hand, calculate the average deviance and variance of the data in
the worked example of Tutorial 3. Now use your calculator to work
out the variance of that dataset, and also of each of the datasets in
Figure 4.1 of this tutorial.

Activity 4.3

The standard deviation
The standard deviation σ, in the case of a population, is the square
root of the variance (σ 2), so the formula is the same as for the vari-
ance, except that a square root is calculated:

To calculate s2 (the sample variance) notice that your calculator
has the formula for s (the sample standard deviation) built in. Push
the ‘SHIFT‘ key and ‘s‘ keys after step 2 in the table above, and then
square the value.

σ � ��
Or, more simply:

σ � �σ�2�

Σ (x – µ)2

��
N

Equation 4.4

Equation 4.5

Calculate the average deviations and standard deviations for each of
the datasets in Figure 4.1. Compare them and try to decide which
index is more informative.

Activity 4.4

The computational 
formula for the 

population standard
deviation is the same
as the computational 

formula for the 
variance, except 

that the square root
is taken, i.e.

σ �

Since calculating the square root of a number is the opposite of
squaring the number, the standard deviation in a sense undoes the
squaring that occurred in the course of calculating the variance and
thus brings the result back to the same scale as the original numbers.
Thus the (population) standard deviation of the amount of time
students spend on the Internet is 9.31 hours (the square root of 86.7).
If we left Tumelo out of the dataset the standard deviation would be
3.61 hours (the square root of 13).Σ x2 – 

(Σ x)2

�
N

N�
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The coefficient of variation
A group of people are employed to clear an area of non-indigenous,
invasive trees. Each person is also required to collect the seeds of
indigenous trees. The mean number of trees cut down per person on
a particular day is 109, with a standard deviation of 4. The mean
number of seeds collected per person is 12, with a standard devia-
tion of 2. Thus the standard deviation for cutting down trees is twice
as large as that for collecting seeds, and we might be tempted to
think that there is more variation in the group with regard to cutting
down trees than with regard to collecting seeds. In fact, the group is
much more homogenous (similar to each other) in terms of tree-
felling than in terms of seed-collecting. A deviation of 4 above and
below a large number such as 109 is proportionally much smaller
than a deviation of 2 above and below a small number such as 12.
This can be mathematically expressed using the coefficient of
variation (cv), which is simply the variance divided by the mean.
Bearing in mind that the variance is the square of the standard
deviation, we find:

cv tree-felling � � � 0.15

cv seed-collecting � � � 0.33
4

�
12

σ 2

�
µ

16
�
109

σ 2

�
µ

Box 4.2

The standard 
deviation is the
square root of the
average of the
squared distances of
individual scores
from the mean of the 
distribution.

The coefficient of
variation allows you
to compare the vari-
ance of samples with
different means.

Although the standard deviation is not quite as straightfor-
ward as the average deviation, it works on a very similar principle
and can also be interpreted as the ‘average distance’ of the cases in
a dataset from the mean. As will be evident in a later tutorial,
knowing the standard deviation also allows us to compare indi-
viduals’ scores on different tests, and to predict with some cer-
tainty what proportion of individuals scored within a particular
range on a test.

Estimating population parameters from
sample data
Thus far we have shown how to calculate measures of central ten-
dency and variability of a group where the score of every member
of the group is known. Such groups are called populations and can
be very large (such as the population of South Africa) or very small
(such as those people riding in a particular taxi). Often, though, we
do not have information on everybody in a population, but have 
to estimate population parameters from what we know of a 
sub-group of this population (a sample). As we saw in Tutorial 3,
different symbols are used to indicate whether we are working with
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a sample statistic or a population parameter. The symbol for the
mean of a population is µ while the mean of a sample is usually x.
Similarly, the variance of a population is σ 2 (sigma squared) while
the variance of a sample is s2. The standard deviation of a popula-
tion is σ and of a sample is s. Finally, it is conventional (but 
not essential) to use a capital N to indicate the number of cases
when dealing with a population, and a small n when dealing with
a sample. The definition and computation formulas for sample
variance and standard deviation are:

s2 � (definition)        s2 � (computation)
Σ (x – x)2

��
n – 1

(Σ x)2

�
nΣ x2 –

n – 1

��(definition)   s � (computation)
Σ (x – x)2

��
n – 1

(Σ x)2

�
nΣ x 2 –

n – 1
�

Equation 4.6

Equation 4.7

Notice, most importantly, that the formulas for calculating the sample
variance and standard deviation involve dividing by n – 1 rather than
by n. Dividing by n – 1 provides a better, unbiased estimate of the
population parameter (σ 2, or σ) than dividing by n. This can be
proven both mathematically and empirically, but for the purposes of
this course, we will just take it on faith that this is the case. 

The boxplot
A boxplot or box-and-whisker plot is a means of displaying data that
emphasises the dispersion of the dataset, rather than the frequency
of individual values. Figure 4.4 reports computer-generated box-
plots for scores on four variables: a skewed and a symmetrical
variable, and variables with a small and a large range. The bold line
in the middle of the plots represents the median (the 50th percentile)
of each distribution. This is the middlemost score in the distribution.
The edges of the box above and below the median are the quartiles
(25th percentile below and 75th percentile above). The box repre-
sents the middlemost 50% of the distribution. The box has ‘whiskers’
(i.e. the vertical lines), one below the 1st quartile and one above the
3rd quartile. The whiskers are designed to indicate the lowest and
highest values in each distribution: they show the spread of scores of
the lower and upper 25% of the distributions. Each boxplot repre-
sents the distribution of a full set of scores, indicating the median,
and the values that bracket the inner and the outer scores.

A box-and-whisker
plot is a graphical

representation of the
dispersion (or

spread) of a dataset. 

It is standard 
practice to start the

examination of a
dataset with a 

boxplot.

s �
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The plot also indicates outliers, which are extreme scores. What
the plot does is define values that are deemed to be so extreme or
different to the rest that they can be considered outliers. It does this
by starting at the median and then defining values that lie 50% (or
some other conventional value such as 75%) above and below the
median. Any values that lie outside this statistically defined distri-
bution are defined as outliers. The ‘Small range’ plot in Figure 4.4
contains an outlier. Notice that, besides the single score of 7, the data
for this variable includes only values 2, 3, and 4. The value of 7 is
deemed to be outside the distribution of scores. Outliers can have a
distorting influence on statistical analysis, and should be carefully
investigated, and sometimes eliminated from the dataset. Outliers
often indicate data entry or measurement errors, which should be
corrected before further analysis. On the other hand, outliers can
indicate extreme but real observations. In such instances we could
either eliminate the outlier or
retain it for further analysis.
This will depend on the aims
of the analysis and the kind
of statistical procedures we
apply to the data.

For each distribution represented
in Figure 4.4, determine the value
of the median and the first and
third quartiles.

Activity 4.5
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Figure 4.4 Boxplots

Outliers are extreme
scores.
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Boxplots provide a clear representation of the shape of the dis-
tribution. The first distribution in Figure 4.4 is positively skewed.
We can tell this from the fact that the median is closer to one edge
of the box, and there is only an upper whisker. This shows that 50%
of the observations lie within the narrow range of 1 and 2, while the
upper 50% of observations lie between 2 and 9. The lower categories
then have higher frequencies, and hence the distribution is posi-
tively skewed. In contrast, the symmetrical distribution has the
median in the middle of the box, and has whiskers of equal length.
The third distribution has a very low range. This can be seen from
the narrow spread of scores represented by the box and the whisker.
With the exception of the outlier, the scores tend to be clustered

around the median. In con-
trast, the fourth distribu-
tion has a wide spread of
scores, it is almost symmet-
rical, and has no outliers. 

Where outliers (i.e. values located beyond the extremes of the
whiskers) occur in the dataset, each is represented individually on
the graph by means of an asterisk (*). 

Worked example
There are a number of practical situations in which variation is an
important concept, and in which measures can help you make
decisions. One of these faces you when you graduate with a social
science degree. What will you do with all the money you are about
to earn? If you are considering investing in shares on the stock
market, you will want to know how risky a particular share is.
Although you will no doubt want to invest in a share that gives
you a very good return (increases a lot in value), it is also well
known that shares that give high returns are also risky – that is,
there is a possibility of losing a large amount of money on the
share, just as there is of making a large amount! A useful statistic
is the standard deviation of the share price over a particular
period, which is said to give an index of the risk or volatility of 
the share in that period. You can then use that index to rate the
riskiness of the share. 

In the table below, we have the closing share price over a 20-day
period for a well-known South African company listed on the
Johannesburg Securities Exchange. We will calculate a number of
indices of variation, to demonstrate the concepts developed in this
tutorial.

Activity 4.6 Use the data in Table 4.4 to calculate
the boxplot. Draw the boxplot.
Describe the distribution.

We interpret 
boxplots by 

commenting on the
shape of the 

distribution, the
range of scores, and

the presence of 
outliers.
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Day 1 2 3 4 5 6 7 8 9 10
Price 109 103.06 102.75 108 107.56 105.25 107.69 108.63 107 109

Day 11 12 13 14 15 16 17 18 19 20
Price 110 112.75 113.5 114.25 115.25 121.5 126.88 122.5 119 122.5

Day 1 2 3 4 5 6 7 8 9 10
Dev. –3.3 –9.24 –9.55 –4.3 –4.74 –7.05 –4.61 –3.67 –5.3 –3.3

Day 11 12 13 14 15 16 17 18 19 20
Dev. –2.3 0.45 1.2 1.95 2.95 9.2 14.58 10.2 6.7 10.2

Day 1 2 3 4 5 6 7 8 9 10
Dev2 10.89 85.38 91.20 18.49 22.47 49.70 21.25 13.47 28.09 10.89

Day 11 12 13 14 15 16 17 18 19 20
Dev2 5.29 0.20 1.44 3.80 8.70 84.64 212.58 104.04 44.89 104.04

Table 4.4  Share price over a 20-day period (rands)

Day 1 2 3 4 5 6 7 8 9 10
Price 109 103.06 102.75 108 107.56 105.25 107.69 108.63 107 109

Day 11 12 13 14 15 16 17 18 19 20
Price 110 112.75 113.5 114.25 115.25 121.5 126.88 122.5 119 122.5

We start by entering this data into our calculators. This was shown
earlier in the tutorial in Box 4.1.

Central tendency
It is useful to know the average price in the period in question. This
we get from our calculator as 112.30

Variation
1. Indices of range

We start by rank ordering the data. This tells us that the maximum
and minimum values are 126.8 and 102.75, respectively. Therefore
the crude range � (maximum – minimum) � 126.8 – 102.75 � 24.05,
and the extended range � crude range + 1 � 25.05.

To find the interquartile range we have to find the 25th and 75th
percentiles of the frequency distribution of the data. We leave it 
up to you as an exercise to show that these are 107.625 and 117.125
(see Tutorial 2 for the method). Therefore, the interquartile range 
� (75th percentile – 25th percentile) � (117.125 – 107.625) � 9.5.

2. Indices of variation
We set the data out in calculational format, to show workings,
but at the same time advise you to take advantage of your
calculator’s ability to short-cut this process.
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(Σ x)2

�
NΣ x2 –

N 20
253163 –

(2246.07)2

� �

( Σ x)2

�
nΣ x2 –

n – 1 19
� � � 48.50,

� 46.072

sample variance � s2

To calculate the average deviation, we simply average the absolute
values of the row marked ‘Dev.’, i.e. 

� 5.74

For the variance and standard deviation we first need to decide
whether to use the sample or population formulas. It is seldom that
we can make a good case for using the population formula, but in
this case we can, since we are only interested in the variation over
the 20-day period, and we have all the data for that period.
However, we can also make a case for treating the data as sample
points, and for the sake of completeness we will calculate sample
and population indices.

For all formulas, we will need the following interim results,
which can be obtained from our calculators after entering the data
in STAT mode: Σx2 � 253163          Σx � 2246.07 

Then, 

(| –3.3| + | –9.24 | +..+ | 10.2 |)
����

20

population variance � σ 2

and population standard deviation � �σ�2� � �4�6�.0�7� � 6.79.

Similarly,

and sample standard deviation � �s2� � �4�8�.5� � 6.96.

To check our calculations, or as an alternative to the long-winded
process we have just gone through, we simply press the ‘SHIFT ’ and
‘σ ’ keys on our calculators to get the population standard deviation.
We then square this to get the population variance. Similarly, to get
the sample standard deviation, we press the ‘SHIFT ’ and ‘s’ keys, and
we square this result to get the sample variance.

As another alternative, if you have started to use spreadsheets
for your calculations, here is how to do it in Microsoft Excel:

Start by creating a new worksheet (use the ‘File’, ‘New’ com-
mand). Then enter the data in the spreadsheet; we show a set-up 
in Figure 4.5 where the data are entered in columns. You then
enter built-in formulas below the data, entering the beginning
and ending cell addresses of the data range, as shown in the
screenshots (notice the different formulas for populations 
and samples). Excel automatically calculates the results, and dis-
plays them.

In practice, popula-
tion formulas are sel-

dom used.

20

253163 –

(2246.07)2

20
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What do these indices of variation mean, in practical terms? The
standard deviation in the closing share price is nearly R7, which
means that in the 20-day period in question the stock price has on
average closed within R7 of the mean share price in the period. 
One practical way to use this information is to compare this
standard deviation to the standard deviations of other share prices
calculated in the same way, correcting for differences in scale, or
size (see Box 4.2 for an example). Shares that have higher corrected
values for the standard deviation are, on average, riskier, and you
can use this information to guide your investment strategy.

Summary
1. Measures of variability show how widely dispersed scores in a

dataset are.

2. The crude range is the highest score minus the lowest score. The
extended range is the crude range plus one. The range can be
unduly affected by extreme scores.

3. The average deviation is the average absolute distance that scores
are away from the mean. A large average deviation indicates that
scores are widely dispersed. A small average deviation indicates
that scores are tightly bunched around the mean.

Figure 4.5 Calculating measures of variation with Microsoft® Excel

Data OutcomeFormulas
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4. The variance is the average squared distance of scores from the
mean. It plays an important role in a number of statistical calcu-
lations and advanced procedures.

5. The standard deviation is the square root of the variance. A large
standard deviation indicates that scores are widely dispersed. A
small standard deviation indicates that scores are tightly
bunched around the mean.

6. When the variance or standard deviation of a sample is used to
estimate the variance or standard deviation of a population, the
formulas involve division by n – 1 rather than by N.

7. The coefficient of variation allows us to compare the variability
in two distributions, even though the means of the distributions
may be very different. It is calculated by dividing the variance
by the mean.

Questions
1. Ten teenagers in a school were given a general knowledge test

on AIDS and another ten a test on drug-related behaviour. The
scores on the two tests were as follows:

Knowledge of AIDS: 8, 1, 8, 6, 12, 9, 6, 5, 11, 13
Knowledge of drugs: 91, 42, 98, 30, 18, 73, 84, 92, 45, 92

a) Calculate the mean score of the group on each test.
b) Calculate the variance and standard deviation of the two tests.
c) On which test is there more variability?
d) Find the median for each test.
e) For each test say whether it is positively skewed, negatively

skewed, or symmetrical.

2. Two teams of players compete in a computer game. The scores
are as follows:

Team A: 125, 100, 50, 65, 3 000, 90
Team B: 100, 120, 119, 105, 99, 102

a) For each team, calculate the range, average deviation,
variance, and standard deviation.

b) Explain why in this case it would not matter much whether
you had calculated the crude or the extended range.

c) Explain why the range is a problematic measure of variabil-
ity in Team A.

d) Which team shows more variability?
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3. The following represent the number of accidents that occurred at
five randomly selected pedestrian crossings in Cape Town in the
past year:

3, 7, 2, 3, 5

Estimate the standard deviation of accidents at pedestrian cross-
ings in the whole of Cape Town over the same period.

4. After one month in the country, a group of visiting students from
the United Kingdom know the following total number of words
in South African languages other than English.

Johnny 22
Fred 12
Mary 14
Bill 12
Jane 14
Susan 14
Michael 17
Sharon 19
Harry 11
Patricia 15
Eric 20

What is the range, average deviation, variance, and standard
deviation of the number of words known by these students? For
all similar students who visit South Africa, what would be the
variance and standard deviation of words known after one
month?
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Probability and 
theoretical distributions

Lance Lachenicht

•••••••••••
After studying this tutorial, you should be able to:
• Understand probability as a relative frequency.
• Understand the representation of probabilities by

numbers.
• Understand the multiplication and addition rules

of probability.
• Calculate the probabilities of multiple outcomes.
• Calculate the number of arrangements of multiple

events.
• Understand and do simple calculations using the

binomial distribution.

TUTORIAL

5

Probability as frequency
The idea of probability that underlies most of the statistics that you
will learn in this tutorial course is that of frequency of occurrence. If
50% of coin tosses land as heads, then the chance of getting heads
when you toss a coin is 50%. If 95% of 18-month-old children are in
the ‘one-word-or-later’ stage of language learning, then your
chance of finding a child of 18 months who is not speaking is only
5%, or 1 in 20.

The frequency view
of probability is that
the likelihood of an

event occurring is its
long-term frequency

of occurrence (e.g. in
a population, or in

past history).



The notion of frequency of occurrence can be expressed in a num-
ber of ways. Suppose that 60 out of 150 people report dreaming
about a relative every year. We can express this baldly as it stands,
but more often we use one of the following expressions: as a simpler
fraction by cancelling down, i.e. two-fifths of people report dream-
ing of a relative (since 60/150 � 6/15 � 2/5); as a decimal (0.4 of people
report dreaming of a relative); or as a percentage (40% of people
report dreaming of a relative). Decimals and percentages represent
proportions in a way that lends itself to easy comparison.

The notion of probability arising from an underlying frequency
is easy to understand but can pose some subtle difficulties when
used in arguments. For example, there is a general rule in logic that
holds that it is wrong to reason that because ‘Every A is B’, ‘Every B
is A’. So if every human is an animal that walks on two legs, it does
not follow that every animal that walks on two legs is a human. The
same rule holds for frequency-based probabilities. If 90% of cats are
black, it does not follow that 90% of black things are cats! This may
seem obvious, but consider a parliamentarian who argues against
dagga smoking by pointing out that 95% of heroin addicts began as
dagga smokers. Presumably this is meant to show how dangerous
smoking dagga is. But the argument is fallacious. If 95% of heroin
smokers began by smoking dagga, it does not follow that 95% of
dagga smokers will become addicted to heroin.
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How good is the following argument? (Defend your answer.) ‘More
people suffer from mental illness than any other form of serious ill-
ness in South Africa. That is clear from the fact that at any time a third
of hospital beds are occupied by mentally ill patients, and no other ill-
ness approaches that proportion.’

Activity 5.1

If someone says that the probability of a criminal being male is 4 in
5, they are giving a specification of the weight of evidence for or
against an assertion (in this case, the assertion that a randomly
selected criminal will most likely be male). This kind of probability
statement gives a measure of our confidence in the assertion. The
higher the probability of a state of affairs, the greater the confidence
we are justified in having that it will come about. If the evidence in
favour of some event is utterly conclusive, we can assign it the num-
ber ‘1’. On the other hand, if the evidence against some event is
utterly conclusive, then we can assign it the number ‘0’. Between
these two points, the stronger the evidence, the greater the number
assigned to the probability. So the probability of someone running a
mile in 29 seconds is 0, and the probability of a person dying some

Expressing frequen-
cies as percentages
and proportions facil-
itates comparisons.

The higher the pro-
bability of an event
occurring, the more
confident we are
that it will come
about.

The value of a pro-
bability can vary
from 0 to 1.



day is 1. On the other hand, the probability of a human randomly
selected from anywhere on earth being Chinese is about 0.2. 

Probability and games of chance
Frequency-based probability estimates are based on experience or
evidence (e.g. measurements of frequencies). Saying that ‘The prob-
ability of those who smoke dagga going on to take heroin is about
1 in 100’ is an extrapolation from past to future. This probability is
based on what has happened before. It could change, so that we
could eventually say something like, ‘The probability of those who
smoke dagga going on to take heroin used to be 1 in 100 but is now
1 in 110’. In either case, we are basing our claim on evidence.

There is a contrast between the kind of claim discussed above,
based upon experience, and those involving games of chance such
as drawing a card from a pack, or tossing a coin. We also use num-
bers when estimating chance in such games, e.g. ‘The chance of
tossing a coin and getting tails is 1 in 2’. Here it is assumed that toss-
ing a coin will approximate very closely to a completely random
series of two sorts of outcomes called heads and tails (H and T).
Statisticians are interested in random series and random selections,
and not in actually tossing coins or shuffling real cards. In fact, these
activities are close enough to true randomising procedures for
mathematical or statistical results to apply. So we ignore the very
remote possibility of a coin balancing on its edge, and say that the
probability of a coin falling heads upwards is 1 in 2. This implies
that the very same 1-in-2 probability applies to the coin falling tails
upwards, and that together these two outcomes exhaust all the pos-
sibilities when a coin is tossed. Moreover, we assume that the coin
will fall randomly so that we cannot predict the outcome of any par-
ticular toss, and that we cannot find any pattern in any sequence of
throws. Nevertheless, we are certain that in any very long series of
throws the number of heads will be very nearly equal to the number
of tails.
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Random numbers
It is surprisingly difficult to define what a completely random series
of numbers might be. Bennett (1998) provides a good overview of
the debate about random numbers, which we summarise here. The
statistician Von Mises thought that a random sequence of numbers
must be one where it is completely impossible to predict the next
element in the sequence. However, every sequence of numbers has
to conform to some rule or formula (we may simply not know 
what the rule is ahead of time). Kolmogorov, the famous Russian

Box 5.1

Probabilities are
based on past evi-

dence or on the
chance of a random

event occurring.



Probabilities are sometimes referred to by small letters such as p and
q. If we consider coin tossing, then p might be the probability of
throwing a head, and q the probability of throwing a tail. Since 
p � 0.5 (i.e. 50%), and since q � 0.5, p � q, and p + q � 1, or q � 1 – p
and p � 1 – q. 

When an event has more than one possible outcome, we may be
particularly interested in one of these possibilities. Perhaps we may
bet on that particular outcome. (When we take a ticket in a lottery,
we are particularly interested in the probability that our ticket is
drawn.) Whatever the source of our interest in the outcome, if that
outcome comes about we will call it a success. The term ‘success’ is
very widely used in statistics irrespective of the intrinsic value of an
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mathematician, tried to emend Von Mises’ definition by suggesting
that randomness has to be judged in terms of predictability by a
small set of simple rules. He thought that the randomness of a series
of numbers should be judged by the length of the formula required
to generate it. A completely random sequence would require a
formula nearly as long as the series of numbers itself. 

Other thinkers (such as Ian Hacking) suggest that we are wrong
to concentrate on the random sequence of numbers, but that we
should instead concentrate on how the supposed sequence of random
numbers is generated. Hacking argues that ‘random samples are
defined entirely in terms of the sampling device’. But the problem
with this approach is that it is entirely possible for a non-random-
looking sequence of numbers to be generated by a random process. 

The statisticians Kendall and Babington-Smith suggest that it
might be better to set aside this debate and concentrate on some tests
of the randomness of a sequence of numbers. They propose four
tests of the randomness of a sequence of numbers – the frequency
test, serial test, poker test, and gap test. Imagine that we have a set
of numbers ranging from 1 to 10. The frequency test of randomness
tests whether each of the ten digits from 1 to 10 will appear an
approximately equal number of times, about 1 time in 10. The serial
test examines each possible two-digit pair of numbers (12, 23, 54,
etc.) and determines whether they occur an approximately equal
number of times – about 1 time in 100. (This would detect a non-
random sequence such as 1 2 3 4 5 6 7 8 9 0 where each 
digit occurs equally often but where only 5 (12 34 56 78 90) of 100
possible pairs occur.) The poker test compares five-digit groups of
numbers against the expected occurrence of certain five-card poker
hands. The gap test examines the number of digits (the gap length)
between the occurrences of the digit 0. In the gap test the sequence
043611978500245620 has gap lengths of 9, 0, and 5. The lengths of
these gaps are compared with what would be expected of digits
selected by chance.

The letter ‘p’ is 
often used as an
abbreviation for
probability, e.g. 
the probability of 
x is p(x).



outcome or whether any bets have been laid. Our interest may not
just be on a single toss of the coin, but on a succession of throws. We
might bet that there would be exactly two heads in three successive
throws. In that case several possible outcomes would count as a
success: HHT, HTH, THH. There are altogether eight possible out-
comes of a series of three coin tossings: HHH, HHT, HTH, HTT,
THH, THT, TTH, and TTT. Since each of these eight outcomes is
equally likely, and three of the eight count as successes, the pro-
bability of a success is 3/8, or 37.5%.

The multiplication and addition rules of
probability
Unlike the toss of a coin, a single event may have more than two pos-
sible outcomes. If we roll a die, there are six possible outcomes. If we
draw a card from a pack of cards, there are 52 possible outcomes. We
may bet on such an event in a way that permits several different out-
comes to count as successes. For example, we may bet that we will
draw a heart from a pack of cards. Since there are 13 different hearts
to be drawn from the pack, the probability of a success is 13/52 or 1 in
4, i.e. 25%. In general we have the following rule:

p �
a
�
n
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Probability is 
defined as p � a/n,
i.e. the number of 
‘successes’ divided 

by the total number
of events.

Equation 5.1

where: p is the probability of success
n is the total number of equally possible outcomes
a is the number of these that count as successes

Suppose a coin is thrown ten times. Below we list two possible 
outcomes. Many people would argue that the second outcome is
more likely than the first. Are they correct? Justify your answer. 
a) TTTTTTTTTT b) HTTTHHTHHT

Activity 5.2

The total number of successes can never be more than the number of
possible outcomes, so the value of p will always be between 0 and 1.

What happens when we bet on the outcome of a series of inde-
pendent events? Of crucial importance is the notion of independent
events when thinking about this problem, for the probability of suc-
cess in a series of independent events is estimated on the basis of the
probabilities of the individual events. If the events are not inde-
pendent, we cannot easily estimate the probability of a series of
events taking place. As an illustration of the conceptual difficulties
we get into when we base calculations upon non-independent
events, consider the explanation a little girl offered a truancy officer
for failing to attend school, given on the next page (Gardner, 1978).

Events are said to 
be independent

when they do not
affect the probability

of each other 
occurring.



I sleep 8 hours every day. This means I sleep 8 × 365 or 2920
hours. There are 24 hours in a day so I sleep 2920/24 or 122 days.
The weekend (Saturday and Sunday) does not have school, and
this comes to 104 days in a year. The schools have 60 days of
holiday every year. I need three hours a day for meals. If you
work that out it’s 3 × 365 or 1095 hours per year which is about
45 days per year. And I need at least two hours of playtime every
day which is 2 × 365 or 730 hours which is about 30 days per
year. If you add these up (361 days) you will see I don’t have
time to go to school. 

Can you see the problem with her reasoning? Note that sleep time
and weekend time are not independent. She sleeps on weekends.

As already pointed out, the probability of success when we bet 
on a series of independent events is estimated on the basis of the 
probabilities of the individual events. There are two cases to
consider: the probability of a conjunction (combination) of inde-
pendent outcomes (i.e. a and b), and the probability of a
disjunction (separation) of independent outcomes (i.e. a or b). If we
bet on the conjunction of independent outcomes (i.e. two or more
things happening together) then we must multiply the probabil-
ities of the outcomes together:

p(a and b) � p(a) × p(b)

For example, the probability of getting heads in two successive toss-
es of a coin is the probability of getting heads on the first toss mul-
tiplied by the probability of getting heads on the second toss (i.e. 
0.5 × 0.5 � 0.25). Similarly, the probability of getting heads in three
successive tosses will be (0.5)3. In the general case, the probability of
getting heads in n successive tosses will be (0.5)n. 

What is the probability of drawing two successive hearts from a
pack of cards? Here we have to ask whether the first card will be
replaced after being drawn or not. If it is replaced then the second
drawing is independent of the first in the same way that two
successive tosses of a coin are independent. If the first card is
replaced we can find the probability of drawing two hearts by mul-
tiplying together the probabilities of the separate draws, i.e. 
p � 0.25 × 0.25 � 0.0625. Performing independent trials analogous
to this is called sampling with replacement. However, if the first card
is not replaced, then the second draw takes place under conditions
that have been changed by the first and is therefore not independ-
ent. Suppose the first card drawn is a heart, and is not replaced. 
The second draw is therefore not from a pack of 52 cards, but from
a pack of 51 cards with only 12 hearts. The chance of drawing 
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Equation 5.2

The probability law
of conjunctions (the
multiplicative law):
The probability of two
independent events
jointly occurring is the 
product of their 
individual probabili-
ties, i.e. p(a and b)
� p(a) × p(b).

Random sampling
without replacement
undermines inde-
pendence of events.



a heart is therefore no longer 1 in 4 but only 12 in 51 (0.235). To 
get the probability of drawing two hearts when sampling without
replacement, we will have to multiply together two different
probabilities: 

p(a and b) � p(a) × p(b) � × � 0.059

When we are betting on the disjunction of two events (i.e. a or b),
then the probabilities of the individual outcomes are not multiplied
but added together. The formula for this is:

p(a or b) � p(a) + p(b)

For example, we bet that in a single draw from a pack of cards there
will be either a diamond or a heart. The probability of a diamond is
1/4, and so is the probability of a heart. The probability of drawing
either a diamond or a heart is therefore 1/4 + 1/4 � 1/2. Likewise the
probability of either a head or a tail in a single coin toss is 1/2 + 1/2,
i.e. a certainty. 

The addition rule applies when the outcomes are mutually exclu-
sive (no card is both a diamond and a heart, no toss can produce
both a head and a tail). 

12
�
51

13
�
52
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Coincident birthdays
Most people are surprised to learn that in a random selection of 
23 persons there is a 50% chance that at least two of them have the
same birthday. The calculation of this result is straightforward. Begin
by finding the probability that everyone in the room has a different
birthday from everyone else (x) and then subtract this fraction from 1
to obtain the probability of at least one common birthday in the group. 

Let us start by working out x, the probability of no coincident
birthdays. Take any particular person in the room. That person has
to occupy one of the 365 days. So a second person has a choice of
only 364 days if there are to be no coincident birthdays. Similarly a
third person has a choice of only 363 days, and the nth person has a
choice of 366 – n days. So the probability of everyone having differ-
ent birthdays becomes:

For 2 people: x � 365/365 × 364/365. 
For 3 people: x � 365/365 × 364/365 × 363/365.
For n people: x � 365/365 × 364/365 × 363/365 … (366 – n)/

365 � 365! / [(365 – n)! × 365]. 

Note that the ‘!’ symbol refers to the factorial operation, e.g. 
3! � 3 × 2 × 1; 4! � 4 × 3 × 2 × 1.

Box 5.2

Equation 5.3

The probability law
of disjunctions (the

additive law):
The probability of

either of two inde-
pendent events 

occurring is the sum
of their individual

probabilities, i.e. p(a
or b) � p(a) + p(b).



Probabilities of multiple outcomes
Using a tree diagram can help us calculate the probabilities of dif-
ferent outcomes. Table 5.1 sets out the probability of hearts being
thrown in three successive rolls of a four-sided die (i.e. the die is 
not a cube) marked hearts, clubs, diamonds, and spades. The last
column of Table 5.1 sets out all the possible outcomes and their
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Every Saturday, a small principality offers a lottery, in which one of its
citizens can win great wealth. The game works as follows. Seven two-
digit numbers between ‘00’ and ‘49’ are chosen at random, with great
pomp. Gamblers can choose, ahead of time, any set of such numbers,
for R2.50. The total available fortune is split between the people who
have chosen the winning numbers. If no-one has chosen the winning
numbers, the fortune at stake is added to next week’s lottery game.
a) For gambler X, who purchases one ticket every Saturday, what is

the probability of winning the lottery on any particular Saturday?
b) If gambler X increases his weekly purchase to 25 tickets, what is

the probability of winning the lottery?

Activity 5.3

Such large factorials as 365! can only be calculated by a calcula-
tor or a computer. At any rate, when n � 23 we find that x � 0.493.
Subtracting from 1 to find p, we get: p � 1 – x � 1 – 0.493 � 0.507.

Therefore, there is an even chance of finding two people with the
same birthday in a group of 23 people! Obviously, if you were part
of that group, it might not be YOUR birthday.

Table 5.1 Calculating the probability of hearts being thrown 
in three successive rolls of a four-sided ‘card’ die

First roll Second roll Third roll Outcome probability

Heart (H) (1/4) H (1/4) H (1/4) HHH 1/64 � 0.016
N (3/4) HHN 3/64 � 0.047

N (3/4) H (1/4) HNH 3/64 � 0.047

N (3/4) HNN 9/64 � 0.14

H (1/4) H (1/4) NHH 3/64 � 0.047
Not heart (N) (3/4) N (3/4) NHN 9/64 � 0.14

N(3/4) H (1/4) NNH 9/64 � 0.14

N (3/4) NNN 27/64 � 0.42

Σ � 64/64 � 1



probabilities calculated by the multiplication rule from the proba-
bilities at each of the three steps. We can then apply the addition
rule to work out the probabilities of any given success: for instance,
the probability of rolling exactly two hearts in three throws is the
probability of HHN (3/64) plus that of HNH (3/64) plus that for NHH
(3/64). Similarly, the probability of rolling at least two hearts is the
above probability plus the probability of HHH (1/64) is equal to 
9/64 + 1/64 � 10/64.

The first step in the calculation of these probabilities is to work
out the number of possible outcomes that are to count as successes.
If a large number of events or trials are in question, it is not possi-
ble to do this by enumeration as we did in Table 5.1. For example, if
we were considering a run of 10 rolls of the four-sided die, the final
column in a diagram such as Table 5.1 would consist of 1024 entries.
Fortunately there is a formula for determining how many success-
ful outcomes there will be for any given number of events and
given definition of success. 

Suppose n is the number of rolls of the die, and suppose that we
decide that success is to consist of r events of a particular type. Then
we need to know the number of possible combinations of r successes
from n events. The formula for calculating combinations is as follows:

( ) �

Note that the ‘!’ symbol refers to the factorial operation, e.g.

3! � 3 × 2 × 1; 4! � 4 × 3 × 2 × 1

If we apply this formula to our four-sided die to discover how many
possible combinations of two hearts there are in three rolls (substi-
tuting 2 for r and 3 for n), we get: 

( ) � � � 3

which is what we discovered by listing them. If we want to know
how many combinations of five diamonds there are in ten rolls, we
apply the formula:

( ) � � � 252

In order to work out the probability of a successful outcome, we
have to take account of not only the number of combinations but
also the probability of each outcome in a single trial. In the case of
the four-sided die, for instance, the probability of a heart at each trial
(roll) is only 1 in 4. We take this into account by using Equation 5.5.

3628800
�

14400
10

��
5!(10 – 5)!

10
5

3 × 2 × 1
��
(2 × 1)(1)!

3!
��
2!(3 – 2)!

3
2

n!
�
r!(n – r)!

n
r
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To calculate 
probabilities, we
must frequently

compute the number
of ways in which a

particular event can
happen. We use 

formulas for 
combinations and

permutations to 
achieve this.

Equation 5.4



probability of r successes in n events � ( ) × pr × qn – r

Thus the probability of obtaining 2 hearts in 3 rolls of the die is:

( ) × 0.252 × 0.75(3 – 2) � 3 × 0.0625 × 0.75 � 0.141

Table 5.1 shows that the probability of each of the three ways of
drawing two hearts is 0.047. By the additive rule, the probability of
drawing two hearts � 0.047 + 0.047 + 0.047 � 0.141. 

3
2

n
r
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Equation 5.5

Equation 5.6

‘If an unbiased coin were to be tossed ten times and each time tails
came up, could we be certain that an eleventh toss of the coin would
show heads?’ Discuss, justifying your answer.

Activity 5.4

The probability of exactly two hearts in six rolls is worked out by
the same formula:

( ) × 0.252 × 0.754 � 15 × 0.0625 × 0.316 � 0.296

Where the probability of a success is equal to the probability of a
failure at a single trial (as in tossing coins) the calculation is much
simpler. This is because when p and q are both equal to 0.5, then 

pr × qn – r is always equal to 1/2
n

(since 1/2
r

× 1/2
n – r

� 1/2
r + n – r

). Thus the

probability of five heads in ten tosses of coins is:

( ) × ( )
n

In this formula n � 10 and r � 5, so the probability is:

( ) ×
10

� × � 0.246

The binomial distribution
We could use Equation 5.6 to calculate the probability of each pos-
sible successful outcome of ten tosses of a coin, from 0 to 10 heads.
The probabilities are set out in Table 5.2.

We can represent these probabilities on a graph such as Figure 5.1.

1
�
1024

3628800
�

1202

1
2

10
5

1
2

n
r

6
2

where: p � probability of success on a single trial (roll)
q � (1 – p). 
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Figure 5.1 Binomial distribution of heads in ten coin tosses

Table 5.2 Probability of number of heads
in ten coin tosses

No. of heads Probability
in ten tosses

0 0.001
1 0.010
2 0.044
3 0.117
4 0.205
5 0.246
6 0.205
7 0.117
8 0.044
9 0.010
10 0.001

A categorisation is
said to be exhaustive

when all possible
outcomes or states of
the phenomenon are

represented. 

Events are said to be
mutually exclusive

when the occurrence
of one event makes

the occurrence of all
the other events

impossible.

The probabilities represented in Table 5.2 are known as binomial prob-
abilities. A binomial probability is the probability of 1 out of 2 mutu-
ally exclusive and jointly exhaustive possible outcomes for an event. A
graph such as Figure 5.1 gives a binomial distribution, i.e. the distri-
bution of r occurrences of successful outcomes of n events. The
events in question must be independent of each other and each must
have only two possible outcomes (either naturally so, as in the case
of heads or tails, or because we have so grouped them, as in the case
of hearts versus non-hearts). They may have two equally probable
outcomes (as in heads versus tails), or two outcomes of unequal
probability (as in the case of hearts on a four-sided card die).



The tosses, throws, draws and deals of games of chance provide
the paradigm of these binomial events (also known as ‘Bernoulli
trials’, after the mathematician who first studied them). Never-
theless, there are numerous other events that fulfil the definition of
a binomial event and that can be studied by means of a binomial
distribution. For example, a birth, which may be the birth of a boy
or a girl; a personality type, which may be introverted or extravert-
ed; a speech sound, which may be either a vowel or a consonant; an
answer to a test item that may be either correct or incorrect, can all
be counted as events with two possible outcomes. This means that
we can count as a ‘success’, if we desire, the birth of a girl, the occur-
rence of a vowel, the personality of an introvert, or the occurrence
of a correct answer. 
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Explain the terms ‘independent’ and ‘mutually exclusive’ in relation
to probability theory. Give an example to illustrate the application of
each of these ideas.

Activity 5.5

The binomial distribution represented in Figure 5.1 was calculated
by applying the formula given by Equation 5.5, above, to particular
values of n, r, and p. The ‘number of combinations’ expression is
also known as the ‘binomial coefficient’ because of this function.
But it very quickly becomes tiring to work out binomial distribu-
tions in this way. Fortunately, there are tables that give binomial
coefficients and binomial probabilities for different values of n and
r. Many electronic spreadsheets now include functions that will
calculate them. Fortunately for our purposes, you will not have to
engage in the regular calculation of binomials once you have
grasped the relevant concepts.

Because of the way in which it is calculated, any binomial distri-
bution is completely described by the two parameters p and n,
where n is the number of trials (the equivalent of tosses when
throwing a coin) and p is probability of a success. The mean of the
binomial distribution, i.e. the mean frequency of successes, is n × p.

The standard deviation of the distribution is �n�p�q�, where q � (1 –

p). For the number of heads in ten tosses of a coin, n � 10 and p �

0.5, so that the mean is 10 × 0.5 � 5, and the standard deviation is 

�n�p�q� � �1�0� ×� 0�.5� ×� 0�.5� � �2�.5� � 1.58.
The binomial distribution of the tossing of coins, as shown in

Figure 5.1, is a symmetrical graph. This is because the probability of
heads and tails is equal. If we graph the distribution of the number
of hearts thrown in five tosses of the four-sided die (or the number
of hearts drawn in five draws with replacement from a normal pack
of cards), we find a different picture, as shown in Table 5.3. The

A binominal proba-
bility is the probabil-
ity of one out of two
mutually exclusive
and jointly exhaus-
tive possible out-
comes.



frequency distribution graphed from Table 5.3 is very skew in form.
This will be so wherever the probability of success differs from 0.5.
If the probability is greater than 0.5, the distribution will be nega-
tively skewed. On the other hand, if (as in Table 5.3) the probability
is less than 0.5, the distribution will be positively skewed. (The
information in Table 5.3 is graphed in Figure 5.2.)

However, whether the probability of success is equal to or dif-
ferent from 0.5, given a sufficiently large n, the distributions will
begin to approach the same form. This form, which is called the
normal distribution, is of great importance in statistics, and we will
briefly consider it now. 
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A researcher collects opinion poll data in a busy shopping centre on
support for 1) public flogging for misdemeanours, and 2) vegetarian-
ism. The data is shown as a cross-tabulation of frequencies, below.

Assuming that this is a representative sample of the South African
population, and that the classification is mutually exclusive and
exhaustive:
a) What is the probability that a South African vegetarian supports

flogging?
b) What is the likelihood that a randomly selected person will be a

meat eater, and support flogging?
c) Can you think of any way in which we could use probability

calculations to decide whether the variables ‘vegetarianism
support’ and ‘flogging support’ are independent?

Activity 5.6

Support Oppose
flogging flogging

Vegetarian 35 15
Meat eater 15 35

Table 5.3 Probability of 0 to 5 hearts 
being drawn in four draws

No. of hearts Probability
in four draws

0 0.237
1 0.396
2 0.264
3 0.088
4 0.015
5 0.001



The normal distribution
The normal distribution was developed in the early eighteenth
century by the mathematician Abraham de Moivre in his studies of
the probabilities of games of chance. He devised it as an approxima-
tion to facilitate the calculation of the distribution of chance events.
The binomial distribution is a discrete distribution. This means that it
takes on only whole number values. There can be two or three tosses
of a coin, but there cannot be 2.63 tosses of a coin. In place of the
stepped histogram, which represents the binomial distribution for a
finite number of events, De Moivre developed a smooth continuous
curve representing the form which the binomial distribution would
take for an infinite number of events with equiprobable outcomes.
He showed that this normal curve was much easier to calculate than
the discrete distribution of the binomial, and that it provided a
satisfactory approximation to the binomial distribution, even where
the probabilities of the outcomes were not equal, provided that the
number of events was relatively large.

The graph of a normal distribution is a bell-shaped curve (see
Figure 5.3). It is symmetrical and unimodal, so that the mean, the
median, and the mode of the distribution all coincide. Its tails
extend indefinitely to the right and left, so that it is theoretically
possible in normal distributions to obtain values at any distance
from the mean. The normal curve, as mathematicians say, asymp-
totically approaches the zero value on the y-axis.
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Figure 5.2 Binomial distribution of hearts drawn from a pack of cards 

The binominal distri-
bution takes the
shape of a normal
distribution for a very
large number of trials.

The normal distribu-
tion is symmetrical,
unimodal, and bell
shaped.
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Figure 5.3 Normal distribution

The normal distribution has many applications outside the realm of
games of chance. Carl Gauss, for instance, discovered that the dis-
crepancies between repeated measurements of astronomical phe-
nomena were distributed according to De Moivre’s curve, and he
therefore named it ‘the normal curve of errors’. But it was soon
found that very many natural phenomena, and not just erroneous
measurements of them, were distributed normally. Common exam-
ples are the heights of human males, the weights of animals of the
same species, and the results of IQ tests. Height and weight are con-
tinuous variables that can take on any value that the accuracy of
measurement permits – hence the need for a continuous curve to
represent them. This is one reason why the normal distribution has
great importance in the physical and psychological sciences: many
of the data that these disciplines collect are themselves values of
continuous variables that are normally distributed. But that is not
the only reason, as we shall see in Tutorial 7.

The most common form in which you will encounter probability
concepts in this tutorial course is in relation to the types of pro-
bability distribution we have introduced you to in this chapter. In
particular, we will work extensively with the normal distribution in
this way. You will need to understand the material introduced in
Tutorials 6 and 7 before we can do this properly, but for the moment
we give a conceptual account of how this works.

A commonly used normal distribution in the social sciences is
that of the Intelligence Quotient (IQ). IQ tests were developed to
exploit the properties of the normal distribution, so we would
commonly find that IQ in a homogenous population is normally
distributed with a mean µ � 100, and standard deviation σ � 15.
Figure 5.4 shows a plot of this distribution. The typical way of using
this distribution is to ask what the probability is of scoring lower
than a certain score, or higher than a certain score, or between two
scores. Thus, ‘What is the probability of scoring an IQ of less than
80 points?’ is a typical question. 

Many natural 
phenomena are 

normally distributed.

Like the binomial
distribution, the nor-

mal distribution
allows us to deter-

mine probabilities of
events occurring.
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Figure 5.4 Normal probability distribution of IQ

This problem is solved by calculating the area under the curve to
the left of the point 80. This is clearly a proportion of the whole area
under the curve, and it is more particularly the proportion of scores
equal to or less than 80. It is therefore also the probability in a popu-
lation of scoring 80 points, or less than 80 points. 

How do we calculate the area? This used to be a laborious task
before the advent of digital computers, involving lengthy and error-
prone methods (the integral calculus), and people typically resorted
to reasonable approximations, published in table format. (Such a
table is included in Appendix 1.) Nowadays, the task is compara-
tively easy, and normal probability distribution functions are built
in as standard parts of spreadsheet programs. 

The notion that the size of an area under the curve of a proba-
bility distribution can be used to test hypotheses has had profound
effects on statistical methods. It is one of the central ideas in all the
material that follows in this book.

Worked example
How fair are police line-ups? There are many recorded instances
where line-ups have appeared to be unfair, and although some line-
ups may be bad enough to dismiss from visual inspection, most are
not. For this reason, Doob & Kirshenbaum (1973) devised the ‘mock
witness technique’. A number of ‘mock witnesses’ who have never
seen the perpetrator are given the verbal description originally
made by the eye-witness(es) to the police, and are then shown the
line-up and asked to choose the perpetrator. To the extent that mock
witnesses choose the suspect as opposed to other members of the
line-up, the line-up is considered unfair.

Tredoux (1998) argues for a probability conceptualisation of this
task that incorporates the use of the binomial distribution. 

The area under the
curve of a normal
distribution repre-
sents probability.



Thus, we can think of each mock witness choice as a Bernoulli
trial, where the probability of success per trial is 1/k, where k � the
number of people in the line-up. The number of identifications of
the suspect will then take the binomial distribution, where we
consider identifications to be ‘successes’ and the total number of
mock witnesses the total number of trials. 

For example, in the line-up shown as Figure 5.5, the total num-
ber of members is six. Malpass et al. used 20 African-American
mock witnesses to evaluate this line-up (i.e. k � 6, and n � 20). Out
of the 20 mock witnesses, 18 chose the suspect (in position 1).
Clearly, this appears to be more than if mock witnesses were choos-
ing randomly (i.e. if line-up members were attracting choices equal-
ly), since that would be 1/k � 0.167. However, we need to know
whether this difference could just have occurred by chance – we
have only 20 mock witnesses, and we can expect a lot of chance fluc-
tuation with such a small number. One way of testing it is to use the
binomial distribution: this will tell us the probability that 18 of 20
witnesses managed to choose the suspect just by chance.
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• Late teens, 15–16 years old, 
no more than 18 years old

• African-American, black male

• Small build, about 120–140 
pounds in weight

• Between 5’2 – 5’5 in height

• Long hair in some kind of 
braids; single row of braids

Figure 5.5 A police photo line-up conducted in the USA

n

r + 1

20

r � 19

However, we need to think a bit more carefully about this calcula-
tion. We do not really want to know the probability that exactly 18
out of 20 witnesses choose the suspect; we want to know whether it
is unusual that so many witnesses choose the suspect. If it is not
unusual, then the probability that more than 18 witnesses choose
the suspect should be high. So we calculate this probability (i.e. that
more than 18 witnesses choose the suspect), and if this probability
is small, then we conclude that it is unusual that 18 out of 20 wit-
nesses choose the suspect.

We can state this as a probability sum, in terms of our problem:

Σ( ) × pr × qn – r
� Σ � ( ) × 0.167r × 0.83320 – r20

r
n
r



This calculation will prove difficult to do on a hand calculator, so we
use the Microsoft® Excel built-in binomial distribution function, as
shown in Figure 5.6. This function takes the following arguments (in
order): the number of successes, the number of trials, the probability
of a success, and whether the distribution is to be cumulated or not 
(1 � yes, 2 � no). Notice that the formula in the figure does not use the
equation we determined above, but instead calculates 1 – cumulative
p (18 out of 20 successes), which is effectively the same calculation.
(The cumulative probability is just the sum of probabilities calculated
for the number of successes in question, plus all the successes for all
numbers of successes below the one in question.)
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Formula Result

Figure 5.6 Microsoft® Excel formula and result for calculation with the
binomial distribution

The result of the calculation is 0.00000000000003, which suggests
that such an outcome is extremely unlikely to have occurred by
chance alone, and this is very convincing evidence that the line-up
was biased against the suspect.

Summary
1. There is no universally accepted definition of ‘probability’. A

common approach is to define the probability of an event as its
long-term frequency of occurrence (the frequency approach).

2. Probability is often defined for practical purposes as p � a/n, 
i.e. the number of ‘successes’ (a in the equation) divided by the
total number of events. It is usually abbreviated as p, and the
expression p(x) is thus read to mean ‘the probability of x’. As a
number, it varies between a minimum of 0 (certainty that an
event will not occur) and a maximum of 1 (certainty that an
event will occur).

3. Two fundamental probability ‘laws’ are the law of conjunctions
(the multiplicative law): p(a and b) � p(a) × p(b); and the law of
disjunctions (the additive law): p(a or b) � p(a) + p(b).

4. Probability calculations with discrete numbers (e.g. the whole
numbers) usually involve extensive counting. To simplify this,
we make use of counting rules, especially the rule for counting



combinations, and probability distributions. One commonly
used discrete probability distribution is the binomial distribu-
tion, which we use when an event has two possible outcomes.
This allows us to quickly find the probability that n outcomes
occurred in r events, e.g. 12 heads in 20 tosses of a coin.

5. We also use probability distributions for continuous numbers
(e.g. the real numbers), and our most common method of using
these distributions is to calculate areas under a probability dis-
tribution curve. These areas represent probabilities, e.g. the
probability that a light bulb will burn between 0 and 620 hours
without failing. The most commonly used continuous probabil-
ity distribution in the social sciences is the normal distribution.

Exercises
1. Assume that you have bought a ticket for a lottery and that your

sister has bought four tickets. You have just learned that 2 000
tickets have been sold. 
a) What is the probability that you will win the prize?
b) What is the probability that your sister will win?
c) What is the probability that you or your sister will win?

2. Assume that you have bought a ticket for a lottery; your brother
has bought three tickets; this lottery has two prizes; and only 
1 000 tickets have been sold.
a) Given that you do not win first prize, what is the probability

that you will win second prize? (The first-prize-winning
ticket is not put back into the draw.)

b) What is the probability that you will win first prize and that
you will win second prize?

c) What is the probability that you will win first prize and that
your brother will win second prize?

d) What is the probability that between the two of you, you will
win first and second prizes?

3. In some homes a mother’s behaviour seems to be independent
of her baby’s behaviour and vice versa. If mother looks at her
child for a total of 5 hours each day, and the baby looks at the
mother for 6 hours each day, and if they really do behave inde-
pendently, what is the probability that they will look at each
other at the same time?

4. Give an example of a discrete variable and an example of a con-
tinuous variable.
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5. Explain what is meant by saying that events are independent.
Illustrate by giving examples where independence is violated
and where independence can be safely assumed.

6. In a six-choice task, participants are asked to choose the
stimulus that the experimenter has arbitrarily determined to
be correct. The 10 participants can guess only on the first trial.
Plot the expected distribution of the number of correct choices
on trial 1 (i.e. the probability of 0 to 10 participants guessing
the correct answer).

7. Refer to problem 6. What would you conclude if 6 of 10 par-
ticipants were correct on trial 1?

8. In a study of human cognition, we want to look at recall of four
different classes of words (nouns, verbs, adjectives, and
adverbs). Each subject will see one of each. We are afraid that
the order of presentation of the words may affect the results, so
we want each participant to have a different order. How many
participants will we need to have one participant per order?

9. What two pieces of information would you need to complete-
ly describe a binomial distribution?

10. Explain how you might set about determining whether a
sequence of numbers was truly random. Could you be
absolutely sure of your answer (i.e. that the numbers were
completely random)?

11. Find the number of combinations in the word RANDOM,
selecting at a time (a) three letters, and (b) five letters.
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The standard normal
distribution

Kevin Durrheim

•••••••••••
After studying this tutorial, you should be able to:
• Understand key concepts underlying the standard

normal distribution.
• Understand what z-scores are.
• Use the z-tables.
• Use the z formula to transform x-scores to

z-scores, and transform z-scores to x-scores.

TUTORIAL

6

The normal distribution, which was introduced in the previous
tutorial, is important since it provides a model of the shape of the
frequency distribution of many (but not all) naturally occurring
phenomena. We need to know the shape of a frequency distribution
if we wish to determine the position of a single score relative to the
rest of the distribution. Consequently, since an aim of many statist-
ical operations is to determine where individual cases stand relative
to other cases in a distribution of scores (see Tutorial 2), the normal
distribution is one of the key concepts you will study in this course. 

The notion of the ‘relative position’ of a case in a distribution has
much pragmatic utility. Consider the following question: If your
height is 1.6 metres, are you short or tall? The answer to this
question depends on whom you are comparing yourself with; it
depends on how tall you are relative to other people. If you are a
jockey, you may be considered tall, but if you are a professional
basketball player, you would be considered short. As you can see
from Figure 6.1, the reason why a 1.6-metre jockey would be con-
sidered tall is because he or she is taller than most other jockeys. In

Normal distribu-
tions allow us to 

determine where an
individual score lies

relative to other
scores in a set of

scores.



contrast, a 1.6-metre basketball
player is shorter than most other
basketball players. In statistics,
like in everyday reasoning, we
consider individual scores on vari-
ables such as height with reference to where these scores fall relative
to others on a distribution of scores. The normal distribution pro-
vides a powerful way of determining where individuals lie relative
to others on many naturally occurring variables, and it is for this
reason that it is fundamental to statistical analysis.
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Think of – and list – ten
phenomena that are NOT
normally distributed.

Activity 6.1

JOCKEYS BASKETBALL PLAYERS

Shorter than
1.6 m

Shorter than
1.6 m

1.6 m 1.6 m

How do we calculate precisely where an individual stands relative
to others on a normal distribution? Thus far we have made rather
vague claims about an individual jockey or basketball player being
taller or shorter than most other individuals in a population. But
how much is most in each of these cases? A precise science like
statistics needs to know exactly what proportion of basketball
players and jockeys are shorter than 1.6 metres. To answer such
questions, we must consider a special type of normal distribution –
the standard normal distribution.

The standard normal distribution
You will recall that distributions allow us to predict a probability 
or proportion from an individual score. In order to make such
predictions, however, we need to have three pieces of information
that define the distribution: the mean, the variance, and the shape.
Although the normal distribution defines the shape of the distribu-
tion of many naturally occurring phenomena, to determine the
distribution for a particular variable (e.g. height, intelligence, phys-
ical fitness), we need to know its mean and variance. There are an
infinite number of normal distributions, each with a unique mean

Figure 6.1 Normal curves for heights of jockeys and basketball players

A distribution is
defined by its shape,
mean, and variance.



and variance. There are different normal distributions for the height
and weight of males and females, and for the weight, wingspan,
and intelligence of pigeons. These normal distributions are different
from the distributions of matric results, and the maximum speed 
of motorcars in South Africa. Although the frequency distributions
of all these variables have the same shape (i.e. they are normally
distributed), they all differ because they have different means and
variances.

The problem that arises from the fact that there are so many dif-
ferent normal distributions is that each of these distributions has a
different proportion of cases falling below any particular score. In
Figure 6.1, for example, a larger proportion of cases falls below the
score of 1.6 metres for jockeys than for basketball players. Each
distribution has a unique relationship between scores (i.e. points on
the x-axis) and proportions (i.e. area under the curve – or to the left
of – a particular point on the x-axis). To simplify matters, statis-
ticians have defined a single normal distribution that can serve as a
measuring standard for all normal distributions. The standard
normal distribution is a normal distribution with a mean equal to 
0 and a variance equal to 1 (see Figure 6.2). Just as the metre is a
standard of length that makes centimetres and kilometres com-
parable, the standard normal distribution is a standard that is used
to make different normal distributions comparable. The standard
normal distribution is defined in terms of standard deviation units
(i.e. z-scores), and since a standard deviation can be calculated for
every normal distribution, all normal distributions can be related to
the standard normal distribution.
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To determine the
proportion of cases

falling above 
or below a score 

in a distribution we
need three pieces of

information about
the distribution: the

shape, the mean,
and the variance.

The standard 
normal distribution
is a normal distribu-

tion with a mean
equal to 0 and a

variance equal to 1. 

0–1–2 1 2

z-SCORES

Figure 6.2 The standard normal distribution

As you can see from Figure 6.2, whereas the normal distribution has
x-values along the x-axis – i.e. individual scores on a particular
variable – the standard normal distribution has z-values along the 
x-axis. Unlike x-scores, z-scores are not individual scores, but are stan-
dardised scores. They do not depict the real values that individuals



a

obtained on a variable. Instead they are hypothetical values calculat-
ed by statisticians to serve the descriptive function of showing where
individual cases lie relative to other cases. These z-scores indicate the
number of standard deviation units a score ‘lies’ above or below the
mean. A z-score of 1 lies one standard deviation above the mean, while
a z-score of –2 lies two standard deviation units below the mean. 

This standardised distribution is useful because statisticians
have calculated the exact proportion of cases that fall above or
below any particular z-score on this distribution (see the z-table in
Appendix 1). The purpose of developing a standard normal distri-
bution is that if we know the z-score on the x-axis of this distribu-
tion, we can simply refer to a table of z-scores and look up the exact
proportion of cases that fall above or below this score. The table will
tell us, for example, that a proportion of 0.50 (i.e. 50%) of the area
under the curve of the standard normal distribution falls above a 
z-score of 0 (i.e. the mean). This means that 50% of the population
of scores that has a frequency distribution exactly the same as the
standard normal distribution would be greater than 0. As we will
see later, this table of proportions is very useful because we can
transform the x-value from any normal distribution into a z-score,
and then simply look up on the z-table the proportion of cases that
lies above or below the x-value.

Using tables of z-scores
Tables of z-scores contain two pieces of information: z-scores and
proportions. The z-scores are printed in the horizontal and vertical
margins, and the proportions are printed in the columns and rows of
the table (see Appendix 1). When we use the tables we usually aim
to associate a single z-score with a single proportion. Figure 6.3
shows a small section of the z-table that appears in Appendix 1. 
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z-scores indicate the
number of standard
deviation units a
score lies above or
below the mean.

The z-table tells us
what proportion of
the area under the
curve of a z distribu-
tion lies above or
below a particular 
z-score.

z Smaller p Larger p Mean to z z Smaller p Larger p Mean to z

0 0.50000 0.50000 0.00000 … … … … …
0.01 0.49601 0.50399 0.00399 1.6 0.05480 0.94520 0.44520
0.02 0.49202 0.50798 0.00798 1.61 0.05370 0.94630 0.44630
0.03 0.48803 0.51197 0.01197 1.62 0.05262 0.94738 0.44738
0.04 0.48405 0.51595 0.01595 1.63 0.05155 0.94845 0.44845
0.05 0.48006 0.51994 0.01994 1.64 0.05050 0.94950 0.44950
0.06 0.47608 0.52392 0.02392 1.65 0.04947 0.95053 0.45053
0.07 0.47210 0.52790 0.02790 1.66 0.04846 0.95154 0.45154
0.08 0.46812 0.53188 0.03188 1.67 0.04746 0.95254 0.45254
0.09 0.46414 0.53586 0.03586 1.68 0.04648 0.95352 0.45352
0.1 0.46017 0.53983 0.03983 1.69 0.04551 0.95449 0.45449
0.11 0.45620 0.54380 0.04380 1.7 0.04457 0.95543 0.45543
0.12 0.45224 0.54776 0.04776 1.71 0.04363 0.95637 0.45637

Figure 6.3 A section of the z-table in Appendix 1



The first column, marked ‘z’, records z-scores. In order to under-
stand the other columns, refer to the diagrammatic representation
of the standard normal distribution below (Figure 6.4).
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Larger proportion Smaller proportion

0–1–2 1 2
Z-SCORES Z-SCORES

Mean to z

0–1–2 1 2

Figure 6.4 Representation of labelled areas assumed by the z-table of Figure 6.3

The z distribution is segmented in Figure 6.4 to create distinct areas.
In the first place, we think of a z-score (any z-score, that is) as divid-
ing the distribution into two proportions. Unless z � 0, one will be
larger, and one will be smaller. This is shown in the left-hand panel.
We can also think of a z-score as creating a proportion or segment
that extends from the mean (which is always 0), to the score, as is
shown in the right-hand panel.

a) Find the area ‘below’ the following z-scores (draw a diagram to
assist you – the area could be the ‘smaller’ or ‘larger’ proportion):
3.2, 0.45, 1.87, 1.26

b) Find the area ‘above’ the following z-scores (again, draw a dia-
gram to assist you):
3.1, 0.19, 1.13, 2.54

Activity 6.2

The z-table assumes this representation, and all quantities reported in
the table must be interpreted with this in mind. Thus, the first entry
in the table at z � 0 yields both ‘smaller’ and ‘larger’ proportions of
0.5, and a ‘mean to z’ proportion of 0. Since the mean z-score is 0, this
makes sense – the distance from the mean to a z-score of 0 is 0, and
the ‘larger’ and ‘smaller’ areas are the left and right 50% of the dis-
tribution, as the z distribution is perfectly symmetrical.

On the other hand, to find the areas for a z-score of 1.64, we
would run our eyes down the z columns until we find a z-value of
1.64 (highlighted in Figure 6.3), and we read the areas as the entries
in the cells alongside 1.64. This gives us a larger proportion of 0.95
(when rounded), a smaller proportion of 0.05, and a mean-to-z
proportion of 0.45. In other words, 95% of a z distribution lies below



a z-score of 1.64, 5% lies above it, and 45% of the distribution lies
between the mean and the z-score. This z-score and its representa-
tion is shown in Figure 6.5.
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0.05

0

0.95

–1.64 1.64

Figure 6.5 A z-score of 1.64 as represented on the standard normal 
distribution

Since 1 represents unity (or 100% of the area under the curve), we
assume that the total area under the curve of the standard normal
distribution is equal to 1. Therefore, if we know what proportion of
the area lies above a particular z-score, we can also calculate the
area that lies below that score. We do this simply by subtracting the
area that lies above the z-score from 1. If 0.50 lies above the mean
(i.e. z � 0), then 1 – 0.50 � 0.50, the area lying below the mean. If
0.05 lies above a z-score of 1.64, then 0.95 lies below the z-score of
1.64 (see Figure 6.5).

You will note that the
z-table only includes
positive z-values. This
means that it only con-
tains information for 
the half of the standard
normal distribution that lies above the mean. Since the standard
normal distribution is symmetrical (i.e. the half above the mean is a
mirror image of the half below the mean), this poses no problem.
Any information for a positive z-value applies equally to the nega-
tive z-value. Thus, the area that lies above a z-score of 1 is exactly the
same as the area that lies below a z-score of –1. Similarly, if 0.975 of the
area lies below a z-score of 1.96, 0.975 lies above a z-score of –1.96.

Occasionally we may want to know the proportion of area lying
between two scores. For example, we may want to know the 
proportion of area between a z-score of 1.96 and a z-score of –1.96.
Once you understand that you can subtract and add areas under the
curve, such questions become easy to answer. If we know that a
proportion of 0.975 lies above a z-score of –1.96, and an area of 0.025

(Draw diagrams to assist you.)
Find the area under the standard
normal curve to the left of the following
z-scores:
–3.2, 1.45, –1.45

Activity 6.3

Although the 
z-table only gives 
us proportions lying
above positive 
z-scores, 1) because
the total area under
the curve is 1, we
can calculate the
proportion below a
positive z-score by
subtracting the area
above the z-score
from 1, and 2)
because the normal
distribution is 
symmetrical, the
proportion lying
above a positive 
z-score is the same
as the area below
the negative z-score
of the same absolute
value. 



lies above a z-score of 1.96, we can calculate the area between the
two z-scores by calculating the difference: 0.975 – 0.025 � 0.95 (see
Figure 6.6). 
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0.025

0

0.95

–1.96 1.96

0.025

Figure 6.6 The area between two z-scores on the standard normal 
distribution

We can also work in the
opposite direction with
the tables. Instead of de-
termining proportions
from z-scores, we can
determine z-scores from

proportions. Since we know that a z-score of zero cuts the standard
normal distribution exactly in half, we know that a proportion
associated with a z-score of zero is equal to 0.50. What then is the 
z-score that divides the upper 0.20 of the area from the lower 0.80
(see Figure 6.7)? To answer this question, you must first find the
proportion of 0.20 in the body of the table, in the ‘Smaller p’ column.
The closest figure you can find to 0.20 is 0.20045, which has an
associated z-score of 0.84. Therefore, the z-score above which 0.20 of
the area lies is approximately 0.84. 

By way of summary, recall that the z-table for the standard
normal distribution allows us to determine the area under the curve

Calculate the area under the standard
normal curve between the following
pairs of z-scores:
(–2, 2), (1.2, 2.3), (–0.13, –0.11)

Activity 6.4

20%

0

80%

z = ?

Figure 6.7 Finding z from a known proportion

The z-table allows 
us to look up 

proportions, given 
z-scores, as well as
determine z-scores,
given proportions.



that lies above or below any z-score, or between any two z-scores.
The table also allows us to determine the z-score associated with a
certain proportion. Although it can be a lot of fun looking up and
calculating values, since the standard normal distribution is a hypo-
thetical distribution (i.e. it is not found in reality, but defined by
statisticians), these values are not very interesting in and of them-
selves. We are usually not interested in merely calculating areas
under the curve, but want to calculate the proportion of individuals
in a population who score above or below certain values on a vari-
able. What we need to consider now is how to relate everything we
know about the statistical world of the standard normal distribu-
tion to the real world of individual scores on variables.
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(Draw diagrams to assist you.)
a) Find the z-scores that ‘cut off’ the following areas ‘below’ them:

0.05, 0.91, 0.45
b) Find the z-scores that ‘cut off’ the following areas ‘above’ them:

0.05, 0.91, 0.45

Activity 6.5

Linear interpolation
If we know that two scales are linearly related to each other, we can
use a technique called linear interpolation to determine where a score
lies on the one scale from our knowledge of where a related score lies
on the second scale. Linear interpolation has many applications, but
is particularly useful for determining z-scores when we are given
proportions that are not represented exactly in the z-tables. Suppose
that you are asked to determine the z-score above which 20% of 
a (normally distributed) population falls. You will note that a 
proportion of 0.20 is not recorded in the z-table. The closest 
proportion (rounded) is 0.2005. In fact, 0.20 lies somewhere between
0.2005 and 0.1977. This means that the true z-score lies some-
where between 0.84 (which corresponds to a proportion of 0.2005)
and 0.85 (which corresponds to a proportion of 0.1977). We use linear
interpolation to determine the
exact z-score.

The figure alongside shows 
graphically how we use linear 
interpolation to calculate the 
z-score. We have two scales 
with a linear relation between 
them: a scale of proportions 
ranging from 0.1977 to 0.2005, 
and a scale of z-scores ranging

Box 6.1

.85

z-scores Proportions
.1977

.20

.2005

p = .179
p = .179

.0028

z = ?

.01

.84



Two worlds: the statistical world and the
real world
By now you should be aware that the normal distribution provides
a model of the distribution of many real-world variables. The height
of all South Africans, for example, is a real-world phenomenon, but
it can be represented in graphical form in the world of statistics by
means of a normal distribution with a certain mean and variance.
Our earlier discussion of the standard normal distribution was
restricted solely to the world of statistics: the questions we were
concerned with referred to scores and areas on the hypothetical fre-
quency distribution known as the standard normal distribution.

Since the normal distribution is a statistical model for distribu-
tions of scores that appear in the real world, our understanding of
this model can be applied to real-world issues. Of great importance
is the fact that we can translate a proportion of the area under the
curve of a statistical distribution into the proportion of a population
of cases in the real world. 

Consider once again the standard normal distribution in Figure
6.2. Suppose that this distribution provides an accurate model of the
average daily temperature in Iceland. Although the standard
normal distribution is a hypothetical distribution, for the purposes
of this example imagine that the daily temperature in Iceland is
normally distributed, and has a mean of 0 and a standard deviation
of 1. Since we have assumed that our statistical model (i.e. the stan-
dard normal distribution) accurately represents the state of affairs
in Iceland, we can translate facts about proportion of area under 
the curve on this model into information about the daily tempera-
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from 0.85 to 0.84. By subtracting 0.1977 from 0.2005 we determine
that the length of the proportions scale is 0.0028; and we determine
similarly that the length of the z-score scale in question is 0.01. The
logic now is to determine how far up the proportions scale 0.20 is
away from 0.2005 (i.e. 0.20 – 0.2005 � 0.0005), and then determine
how much this is as a proportion of the ‘Proportions’ interval. To do
this we divide 0.0005 by 0.0028 to get a proportion of 0.179. We know
now that 0.20 lies 0.179 of the way between 0.2005 and 0.1977. To cal-
culate z we must find the value that lies 0.179 of the way between
0.84 and 0.85. To do this we multiply the length of the portion of the
z-scale in question (i.e. 0.01) by the proportion (i.e. 0.179) to obtain a
value of 0.0018. By adding 0.0018 to the value of 0.84 we obtain a
better estimate of the z-value, namely 0.8418.

The normal distribu-
tion is a model that
we use to represent

many real-world
phenomena.

The area under the
curve of a normal

distribution, above
or below a particular

point, can be used
to represent a pro-
portion of cases in

the real world.



ture in Iceland. Since the daily temperature in Iceland is distributed
exactly the same as z-scores on the standard normal distribution, we
can use the z-tables to answer questions about the number (or pro-
portionate number) of days it is hotter or colder than a particular
temperature. This will be the same as the proportion of the area
under the curve that lies above or below a particular z-score. What
proportion of days in Iceland is colder than –1 degree Celsius? This
will be the same as the proportion of area below the z-score of –1.
From our z-table we can tell that the area under the curve below a
z-score of –1 is 0.1587. Thus, using this distribution as a model for
the distribution of temperature in Iceland, we can conclude that the
proportion of days colder than –1 is 0.1587. The important point is
that we can translate facts about the statistical world into facts about the
real world as long as our statistical models are accurate representations of
frequency distributions of real-world phenomena.

The proportion of the area under the curve of a statistical distri-
bution can tell us two useful pieces of information about real-world
phenomena: it can tell us about 1) the proportion of a population that
scores above or below a particular value, and 2) the probability that
a randomly selected individual from a population will score above
or below a particular value. We have already considered how the
area under the curve can be translated into facts about the propor-
tionate number of days in Iceland that the temperature is above or
below a particular value. If we assume that the temperature
changes randomly every day in Iceland (which it certainly does
not), what is the probability that the temperature tomorrow will be
below –1 degree Celsius? This is the same as the area below a 
z-score of –1 on the standard normal distribution, i.e. 0.1587.

The magic of statistical distributions is that they provide models
of real-world events, and allow us to use our knowledge of these
models to state facts about the real world. We have seen that if a
real-world phenomenon is distributed in exactly the same manner
as the standard normal distribution, we can use the z-tables to
determine proportions and probabilities of events in the real world.
The only problem is that the standard normal distribution is a hypotheti-
cal distribution and very few variables in the real world have frequency
distributions that are exactly the same as the standard normal distribution.
This is not a big drawback, for, as was stated earlier, the standard
normal distribution is a standard that can be used to make the
distributions of different real-world phenomena comparable. If we
can convert x-scores on real-world variables into z-scores on the
standard normal distribution, then we can use the z-table to deter-
mine the proportions and probabilities of events relating to these
real-world variables. 
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The area under the
curve of a frequency
distribution can
translate directly
into 1) the 
proportion of a 
population that
scores above or 
below a particular
value, and 2) the
probability that a
randomly selected
individual from a
population will score
above or below a
particular value.



Converting x-scores to z-scores
The standard normal distribution is used as a standard to make dif-
ferent real-world normal distributions comparable. It works much
like the metre, which is an internationally accepted standard of
length that allows us to compare lengths measured on different
scales, by transforming those lengths into metres. Say, for example,
that someone asks you which is further, 1 057 miles or 1 860 320
yards? Since we no longer use miles and yards as units of distance,
this is quite a difficult question. One way to answer it is to convert
both distances to kilometres, a standard measure of distance with
which we are all familiar. Once the distances have been converted
to a standard, they will be comparable. All we need to know are the
formulas by which we can convert miles and yards into kilometres.
Since 1 mile � 1.609 kilometres, and 1 yard � 0.0009142 kilometres,
by multiplying the 1 057 miles and 1 860 320 yards by these con-
version figures we determine that they are both equal to 1 700.7
kilometres, approximately the distance from Cape Town to Durban.
When converting scores like this, it is important to remember that
although the numbers change, the actual distance from Cape Town
to Durban remains the same. 

In the same way that we can convert miles and yards to kilome-
tres, we can convert an x-score on any normal distribution, regard-
less of its mean or variance, into a z-score on a standard normal dis-
tribution. The formula for this conversion is as follows:

z �

In this formula, z is the z-score we want to calculate; x is the score
in a real-world distribution that we wish to convert into a z-score on
the standard normal distribution; µ is the population mean of the
real-world distribution; and σ is the population standard deviation
of the real-world distribution. Note that Greek letters are used to
depict population parameters (i.e. the mean and standard deviation
of populations), whereas Roman letters are used to depict sample
statistics (i.e. the mean and standard deviation of samples). As long
as we know the mean and standard deviation of a variable (i.e. the
population parameters) that is normally distributed, we can trans-
form any individual score on this distribution (i.e. an x-score) into a
z-score. 

Example 1
We know that the height of all professional basketball players in
South Africa is normally distributed, with a mean of 1.95 metres
and a variance of 0.04 metres. What proportion of professional
basketball players is shorter than 1.6 metres?

x – µ
�

σ
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To compare values
measured on differ-
ent scales, we must
convert these values
to a standard scale.

Equation 6.1

The z formula
allows us to convert 

x-scores on a 
naturally occurring

frequency 
distribution into 

corresponding 
z-scores on the 

standard normal 
distribution. This

conversion allows us
to use the z-table to

determine the 
proportion of cases

or the probability of
events occurring in

the real world.
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To calculate a z-score, we need to be sure that the variable is
normally distributed, and we need to know the mean and standard
deviation of the variable. In this example we are told that the distri-
bution of height in the population of basketball players is normally
distributed and we are given the mean and variance of the variable
height. We can calculate the standard deviation (see Tutorial 4):

σ � �σ�2� � �0�.0�4� � 0.2

Now that we have all the information required by the z formula, we
can compute the z-score that corresponds to an x-score of 1.6 metres
simply by substituting the information we have into the formula:

z � � � –1.75

A score of 1.6 metres on the frequency distribution of the height of
professional basketball players is thus equivalent to a z-score of
–1.75 on the standard normal distribution. What we have done is
transform a score on one distribution (i.e. an x-score) into a score on
another distribution (i.e. a z-score), much like we would transform
a measurement in miles into a measurement in metres. Now we go
to the z-table and look up the proportion of the area that lies below
a z-score of –1.75. The proportion is equal to 0.0401 (or 4.01%). This
proportion under the standard normal distribution is precisely the
same as the proportion of professional basketball players who are
shorter than 1.6 metres. Although we have converted an x-score of
1.6 into a z-score of –1.75, the proportions below these scores on the
two distributions remain exactly the same (see Figure 6.8).

Although we used the z-tables for the standard normal distribu-
tion to calculate the area lying under the curve, in effect we have
just calculated the proportion of basketball players who are shorter

1.6 – 1.95
��

0.20
x – µ
�

σ

0.0401

1.6 1.95

HEIGHT (X-SCORES)

BASKETBALL PLAYERS

0.0401

–1.75 0

Z-SCORES

STANDARD NORMAL DISTRIBUTION

Figure 6.8 Frequency distribution and transformed standard normal distribution
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than 1.6 metres. All we needed to know to perform this calculation
was: 1) that the height of the population of basketball players was
normally distributed 2) it had a mean of 1.95 and 3) it had a variance
of 0.04. If we had to randomly select one professional basketball
player in South Africa, the probability that this person would be
shorter than 1.6 metres is 0.0401. In other words, there would be a
4.01% chance that a randomly selected basketball player is shorter
than 1.6 metres.

The long-term average for the number of rainy days in Cape Town
during the month of April is known to be 9.3, with a standard devia-
tion of 3.6. What is the probability that a visitor to Cape Town in the
month of April will experience more than 15 days of rain?

Activity 6.6

Converting z-scores to x-scores
The standard normal distribution also allows us to work the other
way, calculating x-scores from proportions that we know. In such
instances, we are given a known proportion or probability and are
asked to calculate an x-score.

Example 2
What is the 9th decile of examination results for the research
methodology course, given that the results are normally distributed
with a mean of 65 and a standard deviation of 9? 

Deciles are similar to quartiles (see Tutorial 2), except that
quartiles cut a distribution of scores into quarters, and deciles cut a
distribution of scores into tenths. Just as 25% of a distribution lies
below the 1st quartile and 75% lies below the 3rd quartile, 10% of
the distribution lies below the 1st decile, 50% below the 5th decile
and 90% below the 9th decile.

In this example, instead of converting an x-score into a z-score,
and then going on to determine a proportion, we work in the reverse
direction. Since we have been given a proportion, we first go to our
z-table to find the z-score that corresponds to the 9th decile. We want
to determine the z-score that divides the top 10% of a distribution
from the bottom 90%. A proportion of 0.10 of scores lie above the 9th
decile, and from the z-tables we can determine that a proportion of
0.10 corresponds with a z-score of 1.28. We now need to calculate an
x-score on our distribution of research methodology results that is
equivalent to a z-score of 1.28. To do this we need to juggle the 
z formula around a little, so that it becomes a formula for calculating
x-scores from z-scores:



If z � , then zσ � x – µ, therefore:

x = zσ + µ

By following standard mathematical procedures, we have changed
the z formula to enable us to calculate x-scores from z-scores. By
substituting the information we have been given into this formula
we can calculate the 9th decile (i.e. the x-score below which 90% of
scores in the distribution fall):

x � zσ + µ � (1.28 × 9) + 65 � 76.52

The 9th decile for the distribution of research methodology results
is thus a score of 76.52. Whereas 90% of the population of students
score below this value, 10% of students score above this value (see
Figure 6.9).

x – µ
�

σ
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Equation 6.2

By basic algebraic
manipulation, the 
z formula for 
calculating z-scores
from x-scores can be
transformed into a
formula for 
determining x-scores
from z-scores.

90%
10%

0 z = 1.28

STANDARD NORMAL DISTRIBUTION

90%
10%

65 x = 76.52

FREQUENCY DISTRIBUTION OF RESULTS

Figure 6.9 Standard normal distribution and frequency distribution of research methodology results

Examples 1 and 2 above illustrate the type of real-world infor-
mation that can be determined by converting scores on naturally
occurring distributions into scores on the standard normal distribu-
tion, and vice versa. There are two classes of information that can be
derived from using the formula for z-scores:
1. As in Example 1, we can compute z-scores from x-scores that we

know. In such cases we aim to determine the proportion of a
population falling above or below the x-score, or the probability
of a randomly drawn case scoring above or below the x-value.

2. As in Example 2, we can compute an x-score from a z-score. In
such cases we are given a proportion or probability, and must
first look up the associated z-score, before using the transformed
z-score formula to determine the x-score.
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Worked example
From the records of the World Health Organisation, we know that
the birthweight of babies is normally distributed, with a mean of
2.75 kilograms and a variance of 0.866 kilograms.
1. What is the probability that the next child who is born weighs

more than 4 kilograms?
2. What proportion of children has a birthweight of less than 

1 kilogram?
3. What weight do the heaviest 15% of infants weigh more than, at

birth?
4. Between which weights do 95% of all infants fall at birth?

Solutions

1. z � � � 1.34, thus p � 0.0901

2. z � � � –1.88, thus p � 0.0301

3. x � zσ + µ � (1.035 × 0.931) + 2.75 � 3.714

4. x � zσ + µ � (± 1.96 × 0.931) + 2.75
� (2.75 – 1.82, 2.75 + 1.82) � (0.93, 4.57)

1 – 2.75
�

0.931
x – µ
�

σ

4 – 2.75
�

0.931
x – µ
�

σ

Using spreadsheets to do z calculations
Spreadsheet software can greatly assist students of statistics, especially
at the beginning stages. (You will find a tutorial on using spreadsheets
on the CD.) This is certainly true for calculations involving the normal
distribution, since spreadsheets can make the use of statistical tables
seem antediluvian! 

Calculating proportions under the standard normal distribution curve
The easiest way to do this with Microsoft® Excel is to use the built-in
function NORMSDIST. Thus, to find the proportion of the standard
normal distribution that lies to the left of the z-score 1.25, you enter in a
blank cell NORMSDIST (1.25), and Excel returns the answer 0.89435016
to the cell.

Calculating z-scores that correspond to proportions under the standard
normal distribution curve
The easiest way to do this with Excel is to use the built-in function
NORMSINV. Thus, to find the z-score that cuts off 97.5% of the
distribution (i.e. that lies below it, or to the left of it), you enter
NORMSINV(0.975).

Box 6.2
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Summary
1. The normal distribution is one of the most important concepts in

statistics as it allows researchers to determine where individual
scores lie relative to others on many naturally occurring variables.

2. Three pieces of information define any distribution: the mean,
the variance, and the shape.

3. The standard normal distribution is a normal distribution with a
mean equal to 0 and a variance equal to 1.

However, and most usefully, Excel can obviate working with the
standard normal distribution altogether – it has functions built into
it that will do the work necessary to find the proportion (or z-score),
based on the value of the mean, the standard deviation and the data
point you wish evaluated.

Calculating proportions under any normal distribution curve
Use the built-in function NORMDIST. This function takes a number
of arguments, but you can avoid having to memorise these by using
the function wizard – ‘fx’ on the standard toolbar – or SHIFT + F3 on
the keyboard. You will be asked for X, µ, σ, and whether you want
the cumulative form of the distribution (which you should choose).

Calculating z-scores under any normal distribution curve
Use the built-in function NORMINV. Again, you will have to specify
a number of arguments, namely proportion, µ, and σ.

Calculating z-scores
Excel also has a very useful function called STANDARDIZE, which
will return z-scores, and takes as arguments X, µ, σ. This is very
useful when you have a large number of z-scores to calculate – you
simply copy the formula.



4. z-scores depict the number of standard deviation units the score
lies above or below the mean.

5. The table of z-values for the standard normal distribution allows
us to determine the area under the curve that lies above or below
any z-score, or between any two z-scores. The table also allows
us to determine the z-score associated with a certain proportion.

6. There are two classes of information that can be derived by
using the z formula:
a) We can compute z-scores from x-scores which are known. In

such cases we aim to determine the proportion of a popula-
tion falling above or below the x-score, or the probability of a
randomly drawn case scoring above or below the x-value.

b) We can compute an x-score from a z-score. In such cases, 
we are given a proportion or probability, and must first look
up the associated z-score, before using the transformed 
z-formula to determine the x-score.

Exercises
1. Use a table of z-scores to determine the following proportions:

a) below z � 1.5
b) below z � –0.085
c) above z � 2.8
d) above z � –1.09
e) between z � 1.5 and z � 2.8
f) between z � –2.455 and z � 1.765.

2. Use a table of z-scores to determine the following z-values:
a) the value below which 0.25 of the distribution falls
b) the value below which 0.85 of the distribution falls
c) the value above which 0.725 of the distribution falls
d) the value above which 0.05 of the distribution falls.

3. In a study to examine helping behaviour we ask a confederate 
(a little old lady) to pretend to collapse in the main road. We
count the number of people that walk by before assistance is
rendered. We repeat the procedure 2 000 times over a period of
one year. The data are normally distributed with a mean of 20
and a standard deviation of 5.
a) If we assume that this is the data for the population of cases

of helping behaviour, what is the probability that at least 
35 people will walk past a little old lady who collapses in the
main road?

b) What is the 25th percentile of ‘helping behaviour’?
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When transforming
x-scores to z-scores

or vice versa, 
visualise the problem

by drawing the 
standard normal 
distribution and 

the real-world 
distribution. 



4. The stress of getting engaged has precipitated a neurotic episode
and Edward has had to be hospitalised. He is however con-
cerned that this predicament will delay his marriage, which is to
happen in 30 days time. He finds out that hospitalisation for
neurotic episodes is normally distributed with a mean of 21 days
and a variance of 9 days. Edward wants to calculate how long he
can expect to be hospitalised. He wants to have 95% confidence
in his conclusions.

5. SAFA, the South African Football Association, has been advised
by a team of social psychology consultants that crowd dis-
turbances at football matches are much more likely to occur on
very hot and very cold days. Apparently, these extreme weather
conditions frustrate people, and this frustration easily boils over
into crowd disturbances. SAFA decide that they will call off any
scheduled soccer match if the temperature is more extreme than
it is 98.5% of the time. If the daily temperature in South Africa is
normally distributed with a mean of 22 and a standard deviation
of 9, at what temperatures will SAFA call off soccer matches?
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The sampling distribution
of the mean

Kevin Durrheim

•••••••••••
After studying this tutorial, you should be able to:
• Develop a conceptual account of the sampling

distribution of the mean.
• Understand the significance of the Central Limit

Theorem for inferential statistics.
• Calculate standard scores for the sampling

distribution of the mean using the z formula.
• Understand the concept ‘sampling error’ and

calculate estimates of standard error.
• Understand the concept ‘confidence interval’ and

calculate confidence intervals around estimates of
the mean.

TUTORIAL

7

Thus far we have considered the normal distribution and a special
instance of the normal distribution – the standard normal distribu-
tion. The normal distribution is a (population) frequency distribution
that has a characteristic bell-curved shape, and is defined by its mean
and variance. The standard normal distribution has a mean of 0 and
a variance of 1. In this tutorial, we will be considering another variant
of the normal distribution – the sampling distribution of the mean.
Outwardly, this distribution looks like any other normal distribution,
and it is also defined by its mean and variance. The sampling distri-
bution, however, is a completely different type of normal distribu-
tion. It is a (population) frequency distribution of sample means

The sampling
distribution of the

mean is a frequency
distribution of

sample means, not
individual scores.



rather than individual scores. Something of a cognitive leap is
required to understand the concept of a sampling distribution. This
tutorial is designed to help you make this cognitive leap. The
sampling distribution is the most important concept you will study
in this introductory statistics course, as it is the foundation to all
inferential statistics. It is therefore imperative that you develop a
thorough understanding of the concept.

One of the main functions of statistics is to make inferences. We
want to be able to draw conclusions about populations from infor-
mation we have about samples. For example, we may want to know
whether schizophrenics are violent, and are thus a danger to the
public. To answer this question we need to know the average level
of violence of all schizophrenics. Since there are far too many schiz-
ophrenics for a researcher to measure the total population, we need
to estimate the violence levels of the population of schizophrenics. 
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Drawing inferences
involves estimating
properties of 
populations from
information about
samples.

The collection and use of empirical data to answer research questions
is often referred to as an inductive approach to knowledge generation,
and the wider epistemological tradition as empiricism.

Explore some of the philosophical debates about this approach,
and its alternatives. Use an academic library, and search for titles in
the philosophy of science, or in the philosophy of knowledge. (For a
shortcut, consult a dictionary or encyclopaedia of philosophy.)

Activity 7.1

There are many ways to make such estimates. In day-to-day life,
people often make unscientific inferences. They may have heard
somewhere that schizophrenics are violent, and then treat this
hearsay as fact. A better way of making inferences is to base our
conclusions on observation. This is not a sufficient condition,
though, as people often draw conclusions after observing a single
case. Someone may claim that they know schizophrenics are not
violent because their aunt was diagnosed schizophrenic, and she
was the sweetest, most harmless little old lady you could ever meet.
This is not a very good way of drawing inferences, because single
cases may not be representative of the population. The harmless
little old lady in the example above may be very different from most
other schizophrenics. Scientific inferences are usually based on
representative samples. We should collect a random sample of
many schizophrenics, measure their levels of violence, and then
draw inferences about the violence levels of the population of
schizophrenics. If these are higher than the violence levels of non-
schizophrenics, only then should we conclude that schizophrenics
are more violent that the general population. We may, nevertheless,
be wrong. The particular sample that we drew may, purely by

To draw inferences 
a representative,
random sample is
required.



chance, not be representative of the population. However, because
it is impossible to gain access to the whole population of schizo-
phrenics, this is the best estimate we can make. Statistics is the
science of making educated guesses of this kind, i.e. drawing
conclusions about populations from samples of cases.

It is because we use samples to draw inferences that we require
sampling distributions. The normal distribution, you will recall, is a
frequency distribution of single cases. It allows us to estimate where
an individual score stands in a distribution relative to other indi-
vidual scores. To draw scientific inferences, however, we need to
know where a sample mean stands in a distribution relative to other
sample means. We need to know, for example, where the mean
violence score for our sample of 250 schizophrenics lies in relation
to the mean violence scores of other samples we could have drawn
from the population. This, as we will see, helps us to determine how
accurately our sample mean estimates the population mean.

Sampling means
As you are already aware, the normal distribution is a useful model
of the distribution of scores of many real-world phenomena.
Imagine that we were awarded an enormous research grant,
employed a very large team of researchers, and actually went out
and measured the weight of all human beings on earth. As is shown
in Figure 7.1, the frequency distribution of these individual scores
would be normally distributed. Assume that the mean of all these
scores was calculated to be 70 kilograms and their variance was
calculated to be 144 kilograms. Using the skills you developed in
the previous tutorial, you can now do things like calculate the
proportion of people on earth who weigh more than 150 kilograms,
or the proportion of people weighing less than 50 kilograms. To do
this you need to transform these x-scores into z-scores and look up
the proportions in the z-table.

110 NUMBERS, HYPOTHESES AND CONCLUSIONS

Individuals

Population

x = 115 kg

x = 89 kg

x = 46 kg x = 58 kg µ = 70 kg x = 82 kg

σ = 12

Figure 7.1 A population of human weight measurements (in kg), and the normal distribution of
these measurements



Since it is impossible to measure the weight of everyone on the
planet, researchers usually rely on drawing samples of cases.
Imagine, though, that we know that the true mean of the weight of
all people on earth is in fact 70 kilograms. If we draw a random
sample of 5 people and measure their weight, do you think the
mean of this sample will be exactly the same as the mean weight of
the population (i.e. 70 kilograms)? This is a most unlikely result.
Perhaps, just by chance, we selected a sample of 5 children. Since
children, on average, weigh less than adults, the mean of this sam-
ple could be as low as 49 kilograms. If we drew a second sample of
5 individuals randomly from the people on earth, do you think this
second sample mean would be exactly the same as the first sample
mean or the population mean? This is also most unlikely. Suppose
that just by chance a very fat person was included in the sample, 
as well as 3 tall men. Our mean for this sample may well be 
88 kilograms. If we continued to draw sample after sample of 
individuals and calculated their mean weights, we would find
variability among these means, just as we find variability among
the weight of individuals. If we now took the means of all the
possible samples of n � 5 we could draw from the population, and
constructed a frequency distribution for these means, we would
have a sampling distribution of the mean for samples of size 5 (see
Figure 7.2).
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Individuals

Sample (n = 5)

Population

x = 49 kg

x = 88 kg

x = 73 kg x = 64.63 x = 70 kg x = 75.37

σ   = 5.37x

Figure 7.2 Population, sample means, sampling distribution

Use a random number generator to draw 20 random samples of size 
5 from a uniformly distributed population whose elements vary in
weight between 40 kilograms and 120 kilograms. (For how to do this
with a spreadsheet, see the tutorial on the CD.) Calculate and tabulate
the mean for each sample.

Now repeat the exercise with samples of size 20. Do you see any
difference?

Activity 7.2

When we sample
repeatedly from the
same population, 
we expect the means
of these samples to 
be different.

Plotting the means
of an infinite number
of samples of size n,
drawn from a popu-
lation, will give us a
sampling distribution
of the mean.



At first glance, the distributions in Figures 7.1 and 7.2 seem remark-
ably alike. They are both normally distributed, and are distin-
guished by their mean and variance. On closer inspection, you will
observe the following differences between these distributions: 
1. Scores. Whereas the cases marked along the x-axis of Figure 7.1

are x-values, the cases marked along the x-axis of the sampling
distribution in Figure 7.2 are x-values. The sampling distribution
of the mean is a frequency distribution of sample means.

2. Means. The mean of the distribution in Figure 7.1 is the mean of
all the individual scores in the population (i.e. the mean of all x’s
is x). If we have calculated the mean of the entire population,
then x � µ. The mean of the sampling distribution of the mean,
in contrast, is the mean of all the sample means (i.e. the mean of
all the x’s).

3. Variances. Just as different individuals have different weights, so
too, different samples have different means. Where the variance
in Figure 7.1 refers to variance between individual x-values, the
variance in Figure 7.2 refers to the variance between different
sample means, i.e. the variance between x-values.

The sampling distribution of the mean can therefore be defined as the
distribution of sample means for an infinite number of random
samples of a particular size drawn from a population. To construct a
sampling distribution, we would need to draw as many samples as
we could from a population. With large populations, such as all 
people on earth, this becomes a very large number of samples,
approaching infinity. The samples need to be randomly selected to
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The Monte Carlo method
Although many of the models and theorems that statisticians use
cannot be tested by empirical measurement, a procedure known as
the Monte Carlo method is usually applied to the empirical study of
statistical models and theorems. Instead of actual measurements,
random number generators are used to generate a large ‘population’
of data (e.g. 10 000 random numbers between 0 and 100). (This
reliance on chance is the origin of the name of the method, referring
to the famous gambling casino in the state of Monaco.) The com-
puter can then also be used to select many thousands of samples of
a particular size from this artificial population, and can calculate the
mean and variance of the samples. The properties of the sampling
distribution of the mean can then be investigated by determining the
shape of the frequency distribution of these sample means, and by
determining the variance and mean of the distribution. For more on
Monte Carlo methods, use an Internet search engine to find Internet
sites dedicated to Monte Carlo simulations. (See the additional
material on the CD for instructions on using the Internet.)

Box 7.1



ensure that all the variability between the samples occurs by chance,
not because of our biased selection procedures. As we will see later,
the variance of the sampling distribution is influenced by the size of
the samples selected from the population, hence the need to define
sampling distributions in terms of a particular sample size. As you will
probably have realised, sampling distributions are not defined empir-
ically (i.e. by measurement). We would not actually draw an infinite
number of samples from a population, calculate their means, and then
compute a frequency distribution. The task would be impossible, by
definition. Instead, the sampling distribution of the mean is defined
theoretically by a theorem known as the Central Limit Theorem.

The Central Limit Theorem
You will recall that frequency distributions are defined by three
things: their shape, mean, and variance. The Central Limit Theorem
specifies the shape, mean, and variance of the sampling distribution
of the mean, and thus allows us to define completely this sampling
distribution without having to draw an infinite number of samples
from the parent population. The Central Limit Theorem states that:

Given a population with a mean µ and a variance σ 2, the sampling
distribution of the mean will have a mean equal to µand a variance
σ 2/ n. The shape of the sampling distribution approaches normal
as the sample size (n) increases.

In other words, the mean of the sampling distribution of the mean
is equal to the population mean (i.e. µx � µ) and the variance of 
the sampling distribution of the mean is equal to the population

variance divided by n (i.e. σ 2
x � ). Thus, if we knew for a fact that

the population of people on earth has a mean weight of 70 kilo-
grams and a variance of 144 kilograms, then the sampling distri-
bution of the mean of samples of size n � 5 will have a mean of 
70 kilograms (i.e. µ x � µ � 70 kg), and a variance of 28.8 (i.e. 

σ 2
x � � � 28.8). 

Also, regardless of the shape of the population distribution, the
sampling distribution of the mean will be approximately normally
distributed as long as the sample size is not too small. This is an
important property of the sampling distribution of the mean. The
normal distribution is a useful model of the frequency distribution
of individual cases because many naturally occurring variables are
normally distributed. The normal distribution, however, is not
appropriate for many other naturally occurring variables that 
are not normally distributed. Consider infant malnutrition, for
example. It is most unlikely that this variable will be normally

144
�

5
σ 2

�
n

σ 2

�
n
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The sampling 
distribution of 
the mean is the 
distribution of an
infinite number of
sample means of a
particular size 
randomly selected
from a population.

The Central Limit
Theorem specifies
the shape, mean,
and variance of the
sampling distribution
of the mean.

Regardless of the
shape of the 
population 
distribution, the
sampling distribution
of the mean will be
approximately 
normally distributed
as long as the 
sample size is not
too small.



distributed because most infants in the world are not malnourished.
On the other hand, in very poor populations, various degrees of
infant malnutrition are prevalent. A likely frequency distribution
for the malnourishment index (ranging from 0 to a high of 5) for a
population of infants is given in Figure 7.3. Although the normal
distribution would be an inappropriate model for this variable, if
we selected a large number (e.g. 10 000) of random samples of size
100 each and constructed a frequency distribution of the mean mal-
nourishment score from each sample, this would be approximately
normally distributed (see Figure 7.3). If we knew that the population
mean malnourishment score was µ � 2, and the population variance
was σ 2 � 0.8, then from the Central Limit Theorem we could conclude
that the sampling distribution of the mean for samples of size 100 will
have a mean µx � 2 and avariance σ 2

x � � 0.008. The standard devi-
ation of the sampling distribution of the mean would be 0.089, the
square root of the variance.

0.8
�
100
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σ   = .089x

x = 1.911 µ   = 2 x = 2.089

SAMPLING DISTRIBUTION OF THE MEAN

µ = 2

FREQUENCY DISTRIBUTION FOR MALNOURISHMENT

0 5 x

Figure 7.3 Population distribution and sampling distribution of malnutrition variable

What would  the mean and variance be for each of the following
sampling distributions? Draw these distributions.
a) samples of n � 5, µ � 80 kg, and σ � 15 kg
b) samples of n � 10, µ � 80 kg, and σ � 15 kg
c) samples of n � 100, µ � 80 kg, and σ � 15 kg
d) samples of n � 5, µ � 80 kg, and σ � 1.5 kg
e) samples of n � 10, µ � 80 kg, and σ � 1.5 kg
f) samples of n � 100, µ � 80 kg, and σ � 1.5 kg

Activity 7.3

The sampling distribution and the
standard normal distribution
The discussion thus far has explained what the sampling distribu-
tion of the mean is. We did this by drawing distinctions between the
sampling distribution of the mean and the normal distribution of

The two frequency
distributions in

Figure 7.3 represent
the same popula-

tions of persons. Do
you know why they

look so different?



individual scores. The Central Limit Theorem defines the properties
of the sampling distribution of the mean, given knowledge of the
distribution of individual scores. By now you may be wondering
what we can do with the sampling distribution of the mean. In fact,
you already know how to use the sampling distribution, because this
distribution is used in the same way as the normal distribution you
considered in previous tutorials: it is used to compute proportion of
cases lying above or below a specified value. The only difference is
that the type of questions we wish to answer changes because we are
now considering the distribution of sample means rather than indi-
vidual scores. Instead of asking what proportion of individuals score
above or below a particular score, we could ask what proportion of
samples have a mean greater or smaller than a particular value.
Instead of asking for the probability of a randomly selected individ-
ual scoring below a particular value, we ask for the probability of a
randomly selected sample having a mean less than a particular value.
In other words, the sampling distribution of the mean answers very
similar questions to those the normal distribution answers about
individual scores.

The calculations and formulas for the sampling distribution of the
mean are similar to those you considered in the previous tutorial. Just
as we transformed x-scores on the normal distribution into z-scores
on the standard normal distribution, we transform x-values on the
sampling distribution to z-scores on the standard normal distribu-
tion. Once the x-values have been transformed into z-scores, we can
use the table of z-scores to calculate proportions and probabilities. 

If you have mastered the exercises in the previous tutorial you
should have no problem using the sampling distribution of the
mean. You will recall that the z formula is used to transform 
x-scores into z-scores. To transform x-values into z-scores we need
to modify the z formula slightly to account for the fact that we are
now dealing with a distribution of mean scores rather than a distri-
bution of individual values: 
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Equation 7.1z � becomes z �
x – µ
�

σx

x – µ
�

σ

If you study the formulas carefully, you will note that we have
modified the z formula for x-scores into a z formula (Equation 6.1)
for x-values by substituting x for x and σx for σ. We must do this
because we are now transforming a sampling distribution of x-
values (with a mean µx and standard deviation σx) into the standard
normal distribution. We know from the Central Limit Theorem that
although the mean of the sampling distribution is equal to the pop-
ulation mean (i.e. µx � µ), the variance of the sampling distribution

The sampling distri-
bution of the mean
is used to determine
the proportion of
sample means we
expect above or
below a specified
value.

Compare Equation
7.1 and Equation
6.1. Do you see the
difference?



is different to the variance of the parent population (i.e. σ 2
x � ). We

must change our z formula accordingly:

σ 2

�
n
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z � ; but σx � � ; thus z � x – µ
�

σ
σ

�
�n

x – µ
�

σx

σ 2

�
n

�n

This formula allows us to transform x-values into z-scores, and thus
allows us to determine probabilities and proportions relating to
sample means.

Example 1
From years of testing, we know that IQ scores for individuals are
normally distributed with a mean of 100 and a standard deviation
of 15. If we select a random sample of 10 secondary school pupils,
what is the probability that their mean is less than 95? 

You will note that, unlike the questions in the previous tutorial,
here we want to determine the probability that a sample mean, not
an individual score, falls below a particular value. Our first step in
calculating this probability is to transform our x-value of 95 into a
z-score:

Equation 7.2

z � � � � � –1.054– 5
�
4.744

– 5
�
15

95 – 100
�

15
x – µ
�

σ

�n� �1�0� 3.162

What we have done here is transform a sample mean of 95 from a
sampling distribution of the mean with a mean of 100 and a
standard deviation of 4.744 into a z-score of –1.054 on the standard
normal distribution (see Figure 7.4). In other words, our sample
mean of 95 falls just more than one standard deviation unit below
the mean of the sampling distribution (i.e. 5 is just bigger than 4.744
in the calculations above). If you now refer to your tables of 

σ   = 4.774x

x = 95.256 µ   = 100 x = 104.744

95

x   

Figure 7.4 Sampling distribution for IQ scores

�



z-scores, you will see that a proportion of 0.146 lies above a z-score
of 1.054. This means that a proportion of 0.146 lies below a z-score
of –1.054. Therefore a proportion of 0.146 lies below a score of 95 on
our sampling distribution of the mean. This means that the pro-
bability that our sample would have a mean lower than 95 is 0.146
(i.e. a 14.6% chance).

The standard error
The Central Limit Theorem shows that the variance of the sampling
distribution can be controlled by the researcher. Since σ 2

X
� σ 2/n, as the

sample size increases, so the variance of the sampling distribution
decreases. This is one of the reasons why researchers usually want
large samples: they aim to decrease the variance of the sampling
distribution. Decreasing variance in this way helps to increase the
accuracy of prediction. If you use a sample mean to predict a
population mean, the lower the variance of the sampling distri-
bution, the higher will be the accuracy of prediction. This is why it
is more accurate to predict the number of legs that humans have
from a sample of 10 individuals, than to predict the average weight
of humans from a sample of 10 individuals. Although not all
humans have two legs, individuals differ much more in their
weight than they do in the number of legs they have. Increasing the
sample size, thereby decreasing the variance of the sampling
distribution, allows us to use a sample to make more accurate
estimates of a population mean. It is for this reason that the
standard deviation of the sampling distribution, the square root of
the variance (i.e. σx), is known as the standard error of the estimate, or
‘standard error’ for short. 
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There are two key determinants of the accuracy of sample estimates
of the mean – the inherent dispersion of the underlying population
distribution (reflected in the variance, σ), and the size of sample (n)
drawn from the population. This can be seen from the formula for

the standard error, 
Substitute values for σ and n to show that greater inherent

dispersion or variability requires greater sample sizes for accurate
sample estimates of the mean. (Hint: assume that σ � 10, and try
substituting n � 10, and n � 100. Do this for a variety of values for n and
σ, until you are clear that you understand the relationship.)

Activity 7.4

σx � σ/ .

The standard error
is:
a) the standard 
deviation of the
sampling distribution
b) an estimate of the
degree to which the
sample means in the
sampling distribution
are expected to differ
from each other
c) an estimate of the
degree to which a
sample accurately
estimates the 
population mean.

Researchers can
increase the accura-
cy of an estimate of
a population mean
by increasing the
sample size, which
in turn reduces the
standard error.

The standard error is an estimate of the average degree to which the
sample means in the sampling distribution are expected to differ
from each other. The standard error serves as an estimate of the
degree to which a sample accurately estimates the population

�n�



mean. Increasing our sample size decreases the standard error and
ensures that our sample mean provides a more accurate estimate of
our population mean.

Example 2
If we know that the mean weight of all people on earth is 70 kilo-
grams, with a variance of 144, consider the difference in standard
error if we draw samples of size n � 5 or n � 50. 

As you can see from the calculation below, the standard error 
is the square root of the variance of the sampling distribution,
which we know from the Central Limit Theorem is σ 2/ n. For sam-
ples of size 5, the standard error is 5.367, i.e.
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σ
X

� �σ�
X
� �� � � � �2�8�.8� � 5.367

144
�

5
σ 2

�n

As you can determine from your tables of z-scores, 68.27% of the
area under the normal curve lies between one standard deviation
unit above and one standard deviation unit below the mean (i.e.
68.27% lies between the z-scores 1 and –1). This means that 68.27%
of the possible samples of size 5 that we could draw from the
population of human beings would have means that fall between
64.633 and 75.367 (see Figure 7.5). By using the same calculation
procedures, we compute the standard error for samples of size 50 to
be 1.697. This means that 68.27% of samples of size 50 that are
drawn from the population will have means that fall between
68.303 and 71.697 (see Figure 7.6). The larger samples are more
accurate estimates of the population mean than the smaller sam-
ples. The middle 68.27% of the sample means lie much closer to the
true population mean in Figure 7.6 than they do in Figure 7.5.

x = 64.633 x = 75.367

68.27%

µ   = 70x   

Figure 7.5 Sampling distribution for mean
weight, n � 5

2

x = 68.303 x = 71.697

68.27%

µ   = 70x   

Figure 7.6 Sampling distribution for
mean weight, n � 50
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Using spreadsheets for normal distribution calculations

Spreadsheets can be very useful for finding standard (z) scores, and
for doing precise normal probability calculations (rather than relying
on the approximations offered by z-tables). Calculations involving
sampling distributions of the mean must be treated as for the normal
distribution, making the adjustment to σ manually (i.e. σx � σ/�n�). In
Microsoft Excel, for example, several built-in functions make normal
distribution calculations relatively easy.

STANDARDIZE – returns a standard (z) score, taking the x-value, 
µ, and σ as arguments.

NORMDIST – returns cumulative probabilities of the normal distri-
bution, taking x-value, µ, and σ as arguments.

NORMSDIST – returns cumulative probabilities of the standard
normal distribution, taking a z-value as an argument.

The usefulness of the NORMDIST function is that you do not need to
do the standardisation to a z-value. A layout in Excel for the calculations
involved in Example 1 is shown in Figure 7.7, in two alternate con-
structions: in the top pane, a layout is shown assuming the calculation
of z, and in the bottom pane, a layout for bypassing the calculation of z.

Box 7.2

Figure 7.7 A layout in Microsoft® Excel for doing Example 1 (left
pane shows formula view, right pane shows the result)

Example 2 shows how useful the sampling distribution of the mean
can be in determining the degree of accuracy with which a sample
mean estimates the population mean. The standard deviation of the
sampling distribution of the mean, the standard error, should
always be reported in surveys that aim to estimate population
means from sample means. If we wanted to estimate the average
life span of cigarette smokers, for example, we could draw a
random sample of say 1 000 smokers who died over the past 
10 years, and use the mean age at which they died as an estimate of
the population mean. We would then need to calculate the standard
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What size of sample would we need in each of the following cases to
reduce the standard error of the estimate to 0.01?
a) σ � 10 b) σ � 20 c) σ � 50  
d)  σ � 100  e) σ � 500 f) σ � 1 000

Activity 7.5

Confidence limits and confidence intervals.
Using samples to estimate population parameters always yields
uncertain results. Because there is random variance present in the
sampling distribution of the mean, we can never be sure that our
sample mean is exactly the same as the population parameter we
wish to estimate. However, in addition to estimating the population
parameter, if we know the variance of the sampling distribution of
the mean (or the standard error), we can also estimate how accurate
our parameter estimate will be. We use our knowledge of the stan-
dard error to set probable limits on an observation. This means that
we can define the end points of an interval, that we can say, with a
certain known probability, brackets the population mean we wish to
estimate. These probable limits are also known as confidence limits,
and the interval that they bracket is known as the confidence interval.
They are called confidence limits because we can say with a certain
confidence that the population parameter we wish to estimate lies
somewhere between these two points.

The brackets in Figure 7.8 represent the confidence limits. We
calculate confidence limits in order to know how accurate an esti-
mate of a population parameter is. If these were calculated to be the
95% confidence limits for an estimate, we could say with 95%
confidence that the population parameter we wish to estimate lies
between a value of 105 and 115. The interval between 105 and 115
is known as the 95% confidence interval. 

Confidence limits
are the end points of

an interval that
brackets the popula-

tion mean we wish
to estimate with a
known probability

(i.e. 1 – �).

A confidence inter-
val is the interval

between the confi-
dence limits.

error so that we know how accurate the estimate is. Drawing a large
sample of 1 000 subjects will usually ensure that the standard error
is small, and that the estimate will be reasonably accurate.

Figure 7.8 Graphical depiction of a confidence interval

( )
95 100 105 110 115 120

Example 3
Assume that we know that the weight of all humans on earth is nor-
mally distributed with a variance of 144. To estimate the mean
weight of South Africans, we could draw a sample of 100 people,
measure their weight, and calculate the mean. If we calculated this



mean to be 73 kilograms, we could use this sample mean to estimate
the mean weight of all South Africans (i.e. a population parameter).
However, we may be wrong. It is unlikely that our sample mean
will be exactly the same as the population mean. What we do in
such cases is calculate a confidence interval so that we can say, with
a certain confidence, that the mean lies between two specified
values. Perhaps we could calculate 99% confidence limits, so that
we could state with 99% confidence that the real population mean
lies between values µ1 and µ2. We use our knowledge of the stan-
dard normal distribution and the sampling distribution of the mean
to calculate confidence limits. 
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z1 = –2.575  z2 = 2.575 

99%

0

0.005 0.005

Figure 7.9 99% cut-off points on the distribution (standard normal) 

To set probable limits on an observation, we refer in the first place
to the standard normal distribution and the z-table. See from 
Figure 7.9 that we first define z-scores that bracket off 99% of the
area under the curve of the standard normal distribution. The 
z-scores will then be transformed into µ-scores that bracket 99% of
all sample means of the sampling distribution. If the total area
under the curve is equal to 100%, and 99% of the area lies between
the z-scores, then 0.5% lies below z1, and 0.5% lies above z2 (99% +
0.5% + 0.5% � 100%). Refer to your table of z-scores and note that
the z-score above which 0.5% of the area (i.e. a proportion of 0.005)
lies is equal to 2.575. Therefore the z-score below which 0.5% of the
area lies is equal to –2.575. What we now need to do is to transform 

99%0.005 0.005

µ1 = 69.91 µx = 73 µ2 = 76.09

Figure 7.10 99% cut-off points on the sampling distribution (raw scores)



z1 � –2.575 and z2 � 2.575 on the standard normal distribution into
µ1 and µ2 on the sampling distribution of the mean. We now need to
develop an expression for µ in terms of the other variables in the
z formula, i.e. we need to manipulate the z formula so that it be-
comes a µ formula:
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z � , thus z � x – µ, thus z + x � µ,

thus µ � x ± z
σ

�

σ
�

σ
�

x – µ
�

σ

We now calculate µ1 and µ2 simply by substituting z1 and z2 into the
formulaas well as the information we have about the sampling
distribution:

µ � x ± z � 73 ± 2.575 ×

µ � 73 ± 2.575 ×

µ � 73 ± (2.575 × 1.2) � 73 ± 3.09

12
�
10

12
�

σ
�

You will notice that the ± symbol is used in the formula in place of
the + sign. This is because one of the z-scores is positive and the
other is negative (see Figure 7.9). We can now calculate the values for
µ1 � 73 – 3.09 � 69.91, and µ2 � 73 + 3.09 � 76.09 (see Figure 7.10).
We thus conclude with 99% confidence that the mean weight of
South Africans lies between 69.91 kilograms and 76.09 kilograms.
The 99% confidence limits are thus 69.91 and 76.09.

a) Find the cut-off points on the standard normal distribution that
correspond to the: 
i) 90% confidence limits
ii) 95% confidence limits
iii) 99% confidence limits.

b) Assuming that x � 100, σ � 16, and n � 100, find the 90%, 95%,
and 99% confidence intervals for the sample estimate of µ.

Activity 7.6

Equation 7.3

Worked example
1. The Brief Symptom Inventory (BSI), a measure of psychopatho-

logical symptomatology, has been designed in such a way that it
is normally distributed, with a mean of 0 and a standard deviation
of 18. To examine whether stress affects the psychological well-
being of its employees, a large multinational company adminis-
ters the BSI to a random sample of employees.

�n�

�n� �n�

�n�

�n� �1�0�0�



a) What statistical information could the researcher use to
estimate the psychological wellbeing of the population of
employees?

b) If the sample size is 200, what is the standard error?
c) How large would the sample have to be to ensure that the

standard error is no larger than 0.8?
d) What is the mean and variance of the sampling distribution

of the mean of the BSI for samples of size 200?
e) If the researcher draws a sample of 250 people, what is the

probability that the mean for this sample is greater than –1.5?
f) If the researcher draws a sample of 50 people, what is the

probability that the mean for this sample is greater than –1.5?
g) Explain why your answers for (e) and (f) above differ.

Solutions
a) The sample mean is an obvious (and easy) statistic for us to

calculate, but there are many other possibilities (see Tutorial 3).
b) We write the formula for the standard error, and substitute in

the known quantities:
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σx �        � � 1.273
18

�
σ

�

σx �        , so σx �n� � σ, and �n� � 

therefore, n �
� 

� 506.25
182

�
0.82

σ2

�
σx

σ
�

2

Therefore a sample of 507 would ensure that the standard
error was no larger than 0.8.

d) This follows from the Central Limit Theorem, and the formu-
la for the standard error (which we calculated in (b)), i.e.

σ
�
σx

c) We first write the equation for the standard error, and then 
re-arrange it to solve for n:

µx � µ � 0

σ2
x � 1.2732 � 1.621

e) We need to convert the mean score of –1.5 into a z-score (see
Equation 7.1), and then find the area lying above that z-score
(i.e. the ‘larger p’ in the z-table):

z � � � � –1.32

thus p � 0.9066

–1.5
�
1.138

–1.5 – 0
�

18
x – µ
�

σ

�n� �2�0�0�

�n�

�n� �2�5�0�



f) We follow the same procedure as for (e).
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g) There is less variance in the sampling distribution of the
mean with a smaller standard error (i.e. a larger n). Therefore,
the sample means are more tightly clustered around the
population mean, and a greater proportion of samples lie
closer to the population mean. 

Summary
1. The sampling distribution of the mean is the distribution of

sample means for an infinite number of random samples of a
particular size drawn from a population.

2. The Central Limit Theorem specifies the shape, mean, and
variance of the sampling distribution of the mean, and thus
allows us to completely define this sampling distribution.

3. Using samples to estimate population parameters always yields
uncertain results. Because there is random variance present in
the sampling distribution of the mean, we can never be sure that
our sample mean is exactly the same as the population para-
meter we wish to estimate.

4. The Central Limit Theorem shows that the variance of the
sampling distribution can be controlled by the researcher. As the
sample size increases, so the variance of the sampling distribu-
tion decreases, and the accuracy of prediction increases.

5. The standard error is an estimate of the average degree to which
the different sample means in the sampling distribution are expect-
ed to differ from each other. It serves as an estimate of the degree
to which a sample mean accurately predicts a population mean.

6. Confidence limits are probable limits of an observation. They 
are the end points of an interval, which we can say with a certain
known probability brackets the population mean we wish 
to estimate. The interval they define is known as the confidence
interval.

�n� �5�0�

z � � � � –0.59

thus p � 0.719

–1.5
�
2.55

–1.5 – 0
�

18
x – µ
�
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Exercises
1. Assume that from years of collecting data we know that the

weight of all adult South Africans is normally distributed with a
standard deviation of 15. A researcher selects a random sample
of South Africans.
a) To estimate the weight of the adult population of South

Africans, what information would the researchers require?
b) If the researcher draws a random sample of 250 adult South

Africans, what is the standard error of estimate?
c) To ensure that the standard error is no smaller than 0.5, how

large would the sample have to be?
d) Let us say that after years of collecting data, the mean weight of

the adult South African population is found to be 75 kilograms.
i) If the researcher selects a random sample of 20 people,

what is the probability that their mean weight will be less
than 70 kilograms?

ii) What is the probability that the mean weight of this
sample of 20 will fall between a mean weight of 65 kilo-
grams and a mean weight of 80 kilograms?

iii) If the researcher draws a sample of 50 people, what is the
probability that the mean weight for this sample will be
greater than 80 kilograms?

iv) If the researcher draws a sample of only ten people, what
is the probability that the mean for this sample will be
less than 60 kilograms?

2. A measure of anxiety has been designed in such a way that it is
normally distributed with a mean of 0 and a standard deviation of
20. To investigate whether year-end examinations at South African
universities are associated with high levels of anxiety among the
student population, researchers decide to administer the anxiety
questionnaire to a random sample of students.
a) If the sample size is 200, what is the standard error?
b) How large does the sample have to be to ensure that the stan-

dard error is no smaller than 0.7?
c) What is the mean and variance of the sampling distribution

of the mean for the anxiety questionnaire, for samples of 
150 cases?

d) Knowing the mean and variance of the sampling distribution
of the mean for samples of 150 cases, what is the probability
that the mean will fall below an anxiety score of –2?
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e) If the researcher draws a random sample of 300 students,
what is the probability that the mean of this sample will be
greater than 1.5?

f) If the researcher draws a random sample of 80 students, what
is the probability that the mean of this sample will be less
than –1?

3. The records of the World Health Organisation reveal that the
birthweight of babies is normally distributed with a mean of 
2.75 kilograms and a variance of 0.886 kilograms. Researchers
are interested in studying a random sample of 80 babies.
a) What is the mean of the sampling distribution?
b) What is the variance of the sampling distribution?
c) What is the standard error?
d) What is the probability that the mean for the sample of 

80 babies will be greater than 3.2 kilograms?
e) What is the probability that the mean for the sample of 

80 babies will be less than 1.5 kilograms?
f) If we are going to use a sample mean to predict the population

mean, how can we increase the accuracy of the prediction?
Substantiate your answer.
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Hypothesis testing: 
the z-test

Kevin Durrheim

•••••••••••
After studying this tutorial, you should be able to:
• Understand the logic of hypothesis testing.
• Translate research questions into formal statistical

hypotheses.
• Use the z-test to test hypotheses.
• Understand different kinds of errors that may be

involved in hypothesis testing.

TUTORIAL

8

The previous tutorial introduced the sampling distribution of the
mean. You learned to define this distribution using the Central
Limit Theorem, and you learned one of the uses of the sampling
distribution, namely to estimate the accuracy with which a sample
mean estimates the population mean. Survey researchers, for
example, calculate the standard error of the estimate plus confi-
dence intervals to determine how accurate their estimates are.

In addition to estimating the accuracy of parameter estimates,
the sampling distribution of the mean serves a very important func-
tion in hypothesis testing. Imagine that someone told you that they
had a magic die that was loaded to show 6 when it was thrown.
Would you simply believe them and purchase the die for R100? You
would surely want to test the die before purchasing it? Specifically,
you would want to test the hypothesis that the die is in fact loaded.
Researchers often find themselves in similar situations, testing
hypotheses, for example, that schizophrenics are violent, or that

The sampling
distribution of the
mean is used to:
a) determine the

accuracy of an
estimate of a

population mean 
b) test hypotheses

about a population
mean.



white South Africans are racist. The whole point of social science is
to subject such claims to empirical testing. When we use statistical
methods to help assess claims, we call this hypothesis testing. 

Hypothesis testing
A hypothesis is a tentative statement of a relationship between two
variables, or as Neuman (1997, p. 108) puts it, hypotheses are
educated ‘guesses about how the social world works’. Hypothesis
testing is a logical and empirical procedure whereby hypotheses are
formally set up and subjected to empirical test. In the first stage of
hypothesis testing, the researcher states a research question, and
poses two hypotheses that refer to the possible outcomes of the
empirical investigation. The research question is the question that
the researcher wants to answer by doing the research. In our loaded
die problem, we would want to test whether the die shows 6 more
often than a fair die. This would tell us whether the die was loaded
or not. The research question for this investigation would be: ‘Does
the “magic” die show 6 more often than a fair die?’ Answering this
question would be the whole point of the research. 
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Examples of research questions
All of the following research questions can be investigated with a hypothesis-
testing approach:
a) Are individuals less intelligent in crowd situations?
b) Do women and men perform similarly at facial recognition tasks?
c) Have a group of children who were involved in a bus accident

suffered mental impairment?
d) Are schizophrenics violent?

Box 8.1

You will note that all the research questions in Box 8.1 presuppose
two conditions or groups, and a comparison between them. We are
comparing a fair die with a loaded die; individuals in crowds with
the same individuals when they are not in crowds; women and
men; and children involved in a bus accident with similar children
who were not involved in a bus accident. A comparison group is
also implied by the research question ‘Are schizophrenics violent?’
What we want to know here is whether schizophrenics are more
violent than non-schizophrenic people. 

The research question in a hypothesis-testing situation typically
seeks to determine whether groups are the same or not. Before con-
ducting an empirical investigation to determine this, the research
question is first translated into two hypotheses, known as the null
and alternative hypotheses. The null hypothesis is a statement that
maintains that there is no difference between the groups or condi-

Hypothesis testing
is a logical and

empirical procedure
whereby hypotheses

are formally set up
and then subjected

to empirical test.

The null hypothesis is
a statement that

maintains that there is
no difference between

the groups or condi-
tions. It is represented

by the symbol H0.

Hypotheses tests 
can be used to 

compare two means
or values.



tions. It is represented by the symbol H0. From the loaded die
research question we would derive the following null hypothesis:

H0: The loaded die shows 6 with the same probability as a fair die.
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Examples of null hypotheses
1. H0: There is no difference between the intelligence of individuals

when they are in crowds and when they are not in crowds.
2. H0: Men and women perform similarly at facial recognition tasks.
3. H0: There is no difference in mental functioning between the chil-

dren who were involved in the bus accident and similar children
who have not experienced trauma.

4. H0: Schizophrenic and non-schizophrenic people display similar
levels of violence.

Box 8.2

Box 8.3

The alternative
hypothesis, H1, is 
a statement that
maintains that there
are differences
between the groups
or conditions.

In contrast to the null hypothesis, the alternative hypothesis is a state-
ment that maintains that there are differences between the groups or
conditions. This hypothesis makes a conjecture that is diametrically
opposed to the null hypothesis. The alternative hypothesis is repre-
sented by the symbol H1. The alternative hypothesis can take two
forms, depending on the nature of the research question: it can be
either directional or non-directional. A directional alternative hypothesis
anticipates the direction of difference. It states the researcher’s expec-
tation regarding whether one group is going to score higher or lower
than the other group. A non-directional hypothesis merely states that
a difference is expected, without anticipating the direction of the dif-
ference. The ‘loaded die’ research question involves a directional
alternative hypothesis because we want to determine whether the
loaded die shows heads more often than a fair die:

H1: The loaded die shows 6 more often than a fair die.

Directional alter-
native hypotheses
anticipate the direc-
tion of difference
whereas non-direc-
tional hypotheses
merely state that a
difference is expected.

Examples of alternative hypotheses
1. H1: Individuals in crowds are less intelligent than when they are

not in crowds. 
2. H1: Men and women perform differently at facial recognition tasks.
3. H1: The children who were involved in the bus accident show

impaired mental functioning in comparison with similar children
who have not experienced trauma.

4. H1: Schizophrenics are more violent than non-schizophrenics.

Can you identify which of the research questions in Box 8.1 require
directional or non-directional alternative hypotheses? Hypotheses
1, 3, and 4 are all directional, whereas 2 is non-directional (see 
Box 8.3). Can you see why?



Thus far the null hypothesis and alternative hypothesis have
been written out in words. However, they are usually written in
symbolic format. At the outset of a research project, before engaging
in any empirical testing, the researcher should state the research
question and hypotheses closely analogous to the following:
1. Research question: Are individuals less intelligent in crowd

situations?
H0: µ1 � µ2

H1: µ1 � µ2

2. Research question: Do women and men perform the same at
facial recognition tasks?
H0: µ1 � µ2

H1: µ1 ≠ µ2

The research question in the first example implies a directional
alternative hypothesis. The words ‘less intelligent’ in the research
question indicate that a ‘less than’ sign (i.e. �) should be used in H1

to show the researcher’s expectation. The research question in the
second example is non-directional, and a ≠ sign is used in H1 to indi-
cate the absence of direction.

In hypothesis testing, we are not really interested in whether or
not our sample means differ. They may differ because of random
variation introduced by the sampling process (i.e. error variance –
see Tutorial 7). We are interested in whether or not the population
means differ, therefore the hypotheses are stated in terms of the
population parameter (µ) not the sample statistic (x). The mean of
the first population (e.g. individuals in crowds; women) is represent-
ed by µ1, and the mean of the second population (e.g. individuals not
in crowds; men) is represented by µ2. Once the research question and
hypotheses have been stated, the researcher may proceed to test the
hypotheses empirically. The results of the empirical investigation will
indicate whether the null hypothesis or the alternative hypothesis
should be rejected. 
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Citizen Joe goes to the local supermarket one Sunday morning, chooses
one cucumber, and approaches a checkout till. The till operator swipes
the cucumber across the barcode reader and the till declares that Citizen
Joe owes R111.78. Citizen Joe refuses to pay, declaring that the automat-
ed checkout system has made a mistake. Citizen Joe has just tested and
rejected a null hypothesis. What was the null hypothesis? Outline the
hypothesis testing procedure that Citizen Joe applied.

Activity 8.1

There are many different tests that can be used to help us decide
which hypothesis to reject. Each test is appropriate only in certain
situations. As you will see, doing the calculations is easy – the



difficult part is deciding which test is the appropriate one to use!
This tutorial will discuss only one test, the z-test. You will consider
a second test, the t-test, in Tutorial 9.

The z-test
Statistical decisions are made on the basis of probability and are
always uncertain. Consider, once again, the problem of deciding
whether a die is loaded to show 6. Say you throw the die once and
it shows 6. Would you be convinced that the die is loaded and
purchase it for R100? Surely not? It might have shown 6 even if it is
not loaded. If you throw the die a second and a third time, it may
well show 6 on each occasion, and although you may now be more
convinced that the die is loaded, the three 6s could also have come
about by chance (see Tutorial 5). If you throw the die ten times and
each time it shows 6, you might decide to purchase the die, con-
vinced that it is in fact loaded. However, you may be wrong – the
ten 6s may have been a chance event, and you might not get a single
6 in the next ten throws! However, since it is very unlikely that a fair
die would show 6 ten times in a row – i.e. there is a very small pro-
bability of this occurring – you might decide to reject the null
hypothesis. In hypothesis testing, the researcher must decide how
unlikely an event must be before the null hypothesis can be reject-
ed. We need to define a cut-off point that, once reached, allows us
to stop throwing the die and make a decision. 
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Roll a die 100 times, recording the result each time. (If you prefer, sim-
ulate this with a spreadsheet program, generating random numbers
between 1 and 6.)

Identify sequences of 6s (i.e. when 6 appears two or more times in
a row). What are the ‘unlikely’ sequences? How could you decide
what these are?

Activity 8.2

The z-test allows us
to estimate the 
likelihood that the
observed sample
mean comes from
the population
defined by the null
hypothesis.

The z-test helps us to decide whether or not to reject the null
hypothesis by estimating how likely it is that the sample mean
obtained through research does in fact come from the population
defined by the null hypothesis. If only a very small proportion of
samples in the sampling distribution of the mean have means the
size of our observed mean, we will reject the null hypothesis in
favour of the alternative hypothesis. 

Example 1
Thousands of studies conducted in all parts of the world over the
past 50 years have shown that authoritarianism, measured by the 
F-scale, is normally distributed and has a mean of 45 and a standard



deviation of 78 (high scores indicate greater authoritarianism). A
researcher wants to know whether South Africans are more authori-
tarian than other people. She selects a random sample of 600 subjects
who complete the F-scale. The mean score of this sample is 58. Can
the researcher conclude that South Africans are more authoritarian
than other groups of people? 

As a first step, we must state our hypotheses: H0: µ1 � µ2 � 45, and
H1: µ1 > µ2. The null hypothesis states that the mean authoritarian-
ism score for South Africans is equal to the international mean of 45.
The alternative hypothesis is directional, stating that the mean
authoritarianism score for South Africans is greater than the inter-
national mean. 

It is quite clear that the sample mean is different to the popula-
tion mean. However, this may be attributable purely to error vari-
ance. It may have been a random or chance outcome, just like
throwing two 6s with two throws of a die is unlikely, but possible
nevertheless. We expect means of different samples to vary. What
we want to know is whether the sample mean differs so much from
the international mean that we can conclude that the two popu-
lations, i.e. South Africans and the rest of humanity, do in fact have
different means. We make this decision by setting a significance
level. The significance level (represented by the Greek symbol
alpha, �) is the probability with which we are willing to reject the
null hypothesis when it is correct. Statistical convention sets this sig-
nificance level at 0.05 or 0.01. As you can see from Figure 8.1, if our
sample mean falls within the region of the sampling distribution
that includes the 5% most extreme sample means, we reject the null
hypothesis. 
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µ  x

Figure 8.1 Sampling distribution for a one-tailed test (� � 0.05)

The significance
level (�) is the prob-
ability with which we

are willing to reject
the null hypothesis
when it is correct.

We may reject the null hypothesis incorrectly. Our sample may be
one of those extreme sample means that are legitimately part of the
sampling distribution. This can be likened to throwing ten consecu-
tive 6s with a die: it is a possible outcome, so although we reject the
null hypothesis and conclude that the die is loaded, we may be



wrong. The area within the 5% region is known as the rejection
region because if our sample mean falls in this area, we reject the
null hypothesis. 

The second step in hypothesis testing is to define the significance
level. Since the alternate hypothesis in Example 1 is directional, the
rejection region lies on only one tail of the sampling distribution.
We want to know whether or not our sample mean is greater than
the international mean. Thus the rejection region in Figure 8.1 is in
the upper tail of the distribution. If our hypothesis were that the
sample mean is lower than the international mean, we would place
the rejection region in the lower tail. If we had a non-directional
hypothesis, stating that the sample mean is different to the interna-
tional mean, the rejection region would be placed in both the upper
and lower tails (see Figure 8.2). In this case, the area under the curve
in each tail would be divided by two so that our overall alpha value
remained the same. It is important to state whether the alternative
hypothesis is directional or non-directional because this has im-
plications for whether we conduct one-tailed or two-tailed tests of
significance. We use one-tailed tests to reach decisions about
directional hypotheses, but two-tailed tests to reach decisions about
non-directional hypotheses.
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The rejection region
is the area under 
the curve of the
sampling distribution
of the mean that
includes sample
means that would
be observed at 
probabilities below
the significance level.
If an observed mean
falls in the rejection
region, the null
hypothesis is 
rejected.

If the alternative
hypothesis is direc-
tional, use a one-
tailed test. If it is
non-directional, use
a two-tailed test.

0.95

.025

Rejection 
region

.025

Rejection 
region

µ   x

Figure 8.2 Sampling distribution for two-tailed test of significance 
(� � 0.05)

What does it mean if our sample mean falls in the rejection region?
(See Figure 8.1.) It could mean one of two things:
1. This sample properly belongs to the sampling distribution of the

mean defined by the null hypothesis, and the null hypothesis is
correct.

2. The sample mean comes from a sampling distribution with a
greater mean, and the null hypothesis should be rejected. 

In the first case, the sample mean for the population of white South
Africans is in reality no different from the international mean, but
purely by chance our sample was one of the extreme (i.e. highest 5%



of sample means) but legitimate samples belonging to the sampling
distribution defined in the null hypothesis. Another South African
sample may be much closer to the international mean (also by
chance). In the second case, a sample mean falling in the rejection
region would actually come from a population with a higher mean
than that defined by the null hypothesis (i.e. some population other
than that assumed in the null hypothesis).

Although a sample mean falling in the rejection region could
suggest two different things, when this happens we reject the null
hypothesis. Of course, the decision to reject the null hypothesis may
be incorrect. We may have committed what is termed a Type I error,
by rejecting the null hypothesis when it in fact is true. We make a
Type I error when, for example, we throw ten consecutive 6s with a
die, and decide that the die is loaded to show 6 (i.e. we reject the
null hypothesis that the die is not loaded), when in fact it is not. The
probability of making a Type I error is equal to alpha, � – since 5%
of the sample means from the sampling distribution of the interna-
tional mean fall in the rejection region, the probability of randomly
selecting a mean that falls in the rejection region is 0.05. 

The solution to this problem may seem at first to be a simple
modification of the Type I error rate – we could just set alpha to
0.0001, for example. However, we then open ourselves up to com-
mitting a Type II error, i.e. not rejecting the null hypothesis when it
is false. We are in the same position here as when, after throwing ten
consecutive 6s with a die, we decide that the die is not loaded to
show 6 (i.e. we do not reject the null hypothesis), but it is in fact
loaded. We have to balance the likelihood of these errors against
each other – do we prefer to risk the false conclusion that the means
differ, or the false conclusion that the means do not differ? In some
circumstances we will tend to choose the first (where we want to be
sure that we do not miss a research finding), and in others the sec-
ond (where we do not want to risk an incorrect inference that the
groups/conditions in question differ).
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The following table is often used to cross-classify decisions and the
true state of the world. Fill in the missing (?) entries, � � 0.05.

Decision

Reject H0

Fail to reject H0

Activity 8.3

Type ? error Correct decision

p � ? p � 1 – β � power

Correct decision Type ? error

p � ? p � β

H0 True H0 False

True state of the world

A Type I error is
made by rejecting the
null hypothesis when

it in fact is true. 

A Type II error is
made by not 
rejecting the 

null hypothesis 
when it is false.



How do we know whether or not our sample mean falls in the rejec-
tion region? We transform our x-value into a z-score and decide
whether this score falls within the rejection region of the standard
normal distribution. To do this, we have to define the rejection
region of the standard normal distribution. Thus, the third step in
hypothesis testing is defining zcrit (called the critical value). The criti-
cal value is the z-score that brackets the rejection region. From your
table of z-scores you will see that 5% of the distribution lies above a
z-score of 1.645; therefore zcrit � 1.645 (see Figure 8.3). 
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The critical value
(zcrit) is the z-score
that brackets the
rejection region.

z � � �     � � 4.083
13

�
3.184

13
�
78

58 – 45
�

78
x – µ
�

σ
�

24.495

The fourth step in hypothesis testing is calculating zcalc. We calcu-
late zcalc by transforming our sample mean into a score on the
standard normal distribution. Returning to the data in Example 1,
we use Equation 7.1 to transform our x-value into zcalc:

0.95

0.05

Rejection 
region

0 zcrit = 1.645 zcalc = 4.083

Figure 8.3 Comparing zcrit and zcalc for the data of Example 1

Decisions about
hypotheses are
reached by 
comparing zcalc with
zcrit to determine
whether zcalc falls in
the rejection region.

All we have done in this calculation is substitute the data given to us
in Example 1 into the formula to calculate z-scores from x-values.

The fifth step in hypothesis testing is reaching a decision. We reach a
decision by comparing zcalc with zcrit to determine whether zcalc falls in
the rejection region. This comparison is best done with the aid of a
diagram such as Figure 8.3. As you can see from Figure 8.3, zcalc is
bigger than zcrit and thus falls in the rejection region. We therefore
decide to reject the null hypothesis and conclude that South Africans
are more authoritarian than other people. We may be wrong (we may
have inadvertently made a Type I error), but given the results of our
study, this is the best decision we can make.

�n� �6�0�0�



The best way to learn the logic and technique of statistical hypo-
thesis testing, in our opinion, is to look at – and attempt – multiple
examples. We therefore finish this tutorial with a number of worked
examples, and encourage you to try as many of the exercises at the
end of the tutorial as you can.

Worked examples
1. We know that the weight of humans is normally distributed

with a variance of 144, and a mean of 73 kilograms. To investi-
gate whether the weight of rural South Africans is different from
this international mean, we draw a random sample of 100 rural
South Africans and calculate their mean weight to be 69 kilo-
grams. Determine whether the weight of rural South Africans is
different from the international mean.

Solution
Research question: Is the weight of rural South Africans different
from the weight of humans in general?

H0: µ1 � µ2 � 73
H1: µ1 ≠ µ2

Note that this is a two-tailed test (non-directional). We decide to
set � � 0.01. This will decrease our chances of making a Type I
error but increase our chances of making a Type II error. We
decide, however, that for this study, it is more important not to
reject a true null hypothesis than it is to accept a null hypothesis
that is false. 

Since this is a two-tailed test with 1% of the area lying in the
rejection region, 0.5% of the area must lie in each tail of the stan-
dard normal distribution. To calculate zcrit, we must refer to our
tables of z-scores and look up the z-score that cuts off an area of
0.5% (i.e. a proportion of 0.005, which is half of 0.01). From our
tables we determine that this z-value is equal to 2.575. This
means that a z-score of 2.575 cuts off an area of 0.005 in the upper
tail, and a z-score of –2.575 cuts off an area of 0.005 in the lower
tail. Therefore zcrit � ±2.575 (see Figure 8.4). To determine zcalc, we
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The five steps in statistical hypothesis testing
1. State the hypotheses.
2. Define the significance level.
3. Define the critical value(s).
4. Calculate the statistic (e.g. a z-score).
5. Reach a decision.

Box 8.4



substitute the information that we have into the formula to cal-
culate z-scores from x-values:
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Figure 8.4 Comparing zcrit and zcalc for worked Exercise 1
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As Figure 8.4 shows, zcalc � –3.333 is smaller than zcrit � –2.575
and thus falls in the rejection region. We therefore reject the null
hypothesis and conclude that the weight of rural South Africans
is lower than the international mean.

Discussion
If you take a look at Example 3 of Tutorial 7, you will note that the
sample weight for rural South Africans falls outside the 99% con-
fidence interval. We can use confidence intervals to test hypothe-
ses because both hypothesis testing and confidence intervals rely
on the notion that a sample drawn from the sampling distribution
has a certain known probability of having a mean greater than or
less than a specified value. Confidence limits are values that
bracket a certain proportion of means on the sampling distribu-
tion. The 99% confidence limits bracket 99% of the means in the
sampling distribution. For a sampling distribution with a mean
equal to 73 and a variance equal to 144, the 99% confidence limits
are 69.91 and 76.09. These confidence limits, once transformed
into z-scores, are equal to ±2.575, the critical value for a hypothe-
sis test with � � 0.01. Thus a score of 69 falls outside the confi-
dence interval, and its corresponding z-score (i.e. –3.333) falls in
the rejection region. Confidence intervals and hypothesis testing
are similar ways of using the  sampling distribution of the mean
to define the probability with which we can expect a particular
sample mean to be drawn from a parent population. In hypothe-
sis testing, however, if this probability is very small, we decide to
reject the null hypothesis and conclude that the sample mean in
fact comes from a different parent population.

�n� �1�0�0�



2. Research conducted around the world has shown that the Con-
servatism scale, a measure of conservative ideological beliefs, is
normally distributed with a mean of 45 and a variance of 45. To
test the theory that conservatism originates in strict parenting, a
researcher draws a sample of 45 adults who have had a very
strict upbringing. The mean for this sample is 47. 
a) Does the data support the hypothesis that strict upbringing is

related to high levels of conservatism (set � � 0.05)?
b) If the mean for the sample was found to be 47, would the 

data support the hypothesis that there is a difference in
conservatism between this group of subjects and the interna-
tional mean (set � � 0.01)?

c) What is the chance of making a Type I error in (b) above?
d) What is the difference between the chance of making a Type

II error in (a) and (b), above?
e) Between what mean scores would you expect 80% of all

randomly selected samples of size 100 to score on the
Conservatism scale?

Solutions
a) H0: µ1 � µ2 � 45; H1: µ1 > µ2 (or µ1 > 45); one-tailed z-test;

� � 0.05; zcrit � 1.645
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Figure 8.5 Comparing zcrit and zcalc in Worked example 2a

zcalc falls in the rejection region (see Figure 8.5). We therefore
reject the null hypothesis and conclude that strict upbringing is
related to high levels of conservatism.

z � � � � � 2
2
�
1

2
�
6.71

47 – 45
�

6.71
x – µ
�

σ
�

6.71

b) H0: µ1 � 45; H1: µ1 ≠ 45; two-tailed z-test; � � 0.01; zcrit � ± 2.575.
From 2a), we know that zcalc � 2.0, therefore zcalc does not fall
within the rejection region, and we cannot reject the null
hypothesis. We conclude that there is no difference in conser-
vatism scores between this group and the international mean
(see Figure 8.6).

�n� �4�5�



c) � � 0.01 (remember that the Type I error rate is by definition
equal to �).

d) You do not yet have the techniques that would allow you to
exactly calculate a Type II error rate. However, note that there
is a higher chance of making a Type I error in question (a)
than in question (b), and therefore there is a lower chance of
making a Type II error in question (a) than in question (b)
(given that all other details are identical). 
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Figure 8.6 Comparing zcrit and zcalc in Worked example 2b

σ
�e) x � µ ± z        � 45 ± (1.28 × 1) (See Equation 7.3.)

∴ x � 43.72 and 46.28

Summary
1. Hypothesis testing is a logical and empirical procedure whereby

hypotheses are formally set up and then subjected to empirical
test.

2. The null hypothesis is a statement that there is no difference
between groups or conditions. The alternative hypothesis is a
statement that there are differences between groups or condi-
tions. The alternative hypothesis can take two forms depending
on the nature of the research question: it can either be direction-
al or non-directional.

3. The z-test helps us to decide whether or not to reject the null
hypothesis by estimating how likely it is that the observed sample
mean comes from the population defined by the null hypothesis.

4. The significance level (�) is the probability with which we are
willing to reject the null hypothesis when it is correct.

5. A Type I error is committed by rejecting the null hypothesis
when it in fact is true. A Type II error is committed by not reject-
ing the null hypothesis when it is false. 

�n�
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6. We reach decisions in hypothesis testing by comparing zcalc with
zcrit to determine whether zcalc falls in the rejection region.

7. Statistical hypothesis testing involves the following five steps:
a) State the hypotheses.
b) Define the significance level.
c) Define the critical value.
d) Calculate the z-score for the sample mean.
e) Reach a decision.

Exercises 
1. State the null and alternative hypotheses for the following

research questions. State all hypotheses twice: first in words and
then in symbolic form.
a) Do girls play less roughly than boys?
b) Are people living in colder climates more susceptible to

catching colds and flu than those living in warmer climates?
c) Do people above the age of 50 have a different metabolism

from younger people?
d) Are men violent?
e) Do extremely wealthy people have different attitudes towards

the poor from people who are less wealthy?
f) Are women sensitive?

2. A researcher for the Department of Justice conducts a survey to
estimate the attitudes of South Africans to the introduction of the
death penalty. The researcher measures attitudes on a scale that
ranges from strongly opposed (–10) through neutral (0) to strongly
in favour (+10). The survey reveals that the scores on the attitude
scale were normally distributed with a mean of 5 and a standard
deviation of 13. Assume that these are population values. The
researcher is also aware that the population in Cape Town appears
to be more vocal about the disadvantages of the death penalty than
people from other cities. He decides to conduct the very same atti-
tude survey on a random sample of 100 Capetonians, and discov-
ers that the mean score is 1.
a) Test the hypothesis that Capetonians have a different attitude

to other South Africans regarding the introduction of the
death penalty (� � 0.01).

b) Are Capetonians more opposed to the death penalty than
other South Africans (� � 0.01)? 

c) What is the chance of making a Type I error in the above
tests?

d) How would the chance of making a Type I and Type II error
change if we changed the significance level to � � 0.05?



e) If the researcher conducts the survey on a random sample of
50 Capetonians, would he still find that there is a difference
between their attitudes and those of other South Africans
(� � 0.01)? 

3. From the records of the Department of Education, we discover
that matric results for the previous five years were normally
distributed with a mean of 62% and a variance of 168. The edu-
cation authorities identified ten schools around the country
where they suspected that examination papers had been leaked
and decided to test whether students from these schools had
performed better at their examinations (i.e. through cheating)
than would have been expected. They drew a random sample of
150 pupils from these ten schools and calculated their mean
result to be 63.8%. 
a) Did pupils from these ten schools perform better than expect-

ed (� � 0.05)?
b) Conduct an analysis on the same data to test the research

question of whether the pupils performed differently from
expectation (� � 0.05).

c) The two tests result in different conclusions. Explain why.
d) What is the chance of making a Type I error in the above

tests?
e) How would the chance of making Type I and Type II errors

change if we altered the significance level of the tests to 
� � 0.01?
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T-tests

David Nunez

•••••••••••
After studying this tutorial, you should be able to:
• Compute the standard error of a sample

distribution.
• Check that a dataset does not violate the

assumptions required for a t-test.
• Set up a hypothesis test for comparing

distributions.
• Decide on the appropriate t-test subtype for a

given design.
• Calculate a t-value.
• Calculate the degrees of freedom for a 

t-calculation.

TUTORIAL

9

Research questions in the social sciences are often about group
differences. Does an experimental group score differently to a control
group? Do men and women differ? If we could access these popula-
tions we could simply calculate the means (µs) to identify differ-
ences. However, because we seldom have access to populations, we
need to decide whether groups differ by inspecting the distribution
of sample scores. The t-test is used to determine whether the means
of two samples are sufficiently different to conclude that they in fact
are drawn from two distinct populations, or whether the scores
suggest that both samples come from  single population.

The difficulty in using sample statistics rather than population
parameters is that samples only estimate populations. The Central



Limit Theorem tells us that if we draw two samples from a popula-
tion and calculate the means of these samples, we can expect to get
two slightly different scores (see Tutorial 7). In fact, the Central
Limit Theorem tells us that we can expect the means of samples to
follow a particular distribution – the sampling distribution of the
mean. Our sample means are not exact representations of the popu-
lation mean, but rather differ slightly (on average, by an amount
indicated by the standard error – the standard deviation of the
sampling distribution of the mean). This variation is the reason why
we cannot simply look at the sample means when we want to see
how population means differ.

Clearly, we need to overcome the ambiguity imposed by the
standard error. How do we do this? The t-test provides a mecha-
nism. Basically, the t-test scales the difference between the sample
means by an estimate of the standard error. This way, we can deter-
mine if the difference between the means is large in relation to the
standard error. If this is the case, then the difference probably also
exists at the level of populations (the level of this probability is
determined by the distribution of t, which we will explain later).

Thinking of the t-test graphically
The aim of the t-test is to compare distributions that are normally
distributed. We can represent such distributions with a bell curve.
Imagine we have two distributions, as in Figure 9.1. How can we
tell if they actually derive from the same population?
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The t-test is used 
to compare two
(estimated) 
population means.

A B

10 20 30 40 50 60 70 80 90 100 110 120 130

A B A B

Figure 9.1 Figure 9.2 Figure 9.3

These two distributions are obviously not the same. A covers lower
scores (more to the left), and B covers higher scores. We can see that
they are not overlapping; this means that scores from A are extreme-
ly unlikely to show up in a sample drawn from B. Now consider the
situation in Figure 9.2. Here, the distributions overlap. The scores in
the region represented by the grey bar are just as likely to belong to
either distribution. Although the distributions look quite separate,
we might say that they are similar, because they share quite a num-
ber of scores. Now consider a final situation – Figure 9.3. Here the



distributions are overlapping markedly, and it is beginning to look
as if they are definitely the same. The grey bar (common scores) is
much larger. This is what the t-test does, in essence – it allows us to
see how much the two distributions overlap. This overlap is com-
puted by taking into account the distance between the means of the
distributions, and also considering the width of the distributions
(their variance).
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Get some pieces of transparent plastic and an overhead marker pen.
Draw a set of four normal curves: two with high variance (very wide), 
two with low variance (very narrow). Place two of these curves on
top of each other to create an image similar to Figure 9.3. Using these
curves, investigate the following:
a) To what extent does the difference (distance) between the means of

the curves affect how much they overlap if both curves have the
same or different variances?

b) If both curves have a fixed, known mean, how does the variance
affect how much they overlap?

Activity 9.1

Common concepts behind the t-test
There are different types of t-tests, and the selection of the correct
one depends on the situation you are studying. In this chapter we
will first introduce the common concepts at a conceptual level, and
then we will look at the specific formulas and calculations involved
in performing each of the subtypes.

The general form of the t-test equation
Regardless of the specific type of t-test being performed, the t-test
formula always has the same general form (see Equation 6.1): 

t �

This general form should be familiar to you, as it is very similar to
the z-score transformation: 

z � �

The central difference between a t-test and the z-score transforma-
tion is that the population parameters (µ and σ) do not have to be
known to perform a t-test. This difference is important, because in
the large majority of cases the population parameters are unknown.
Thus, the t-test can be used when we only have information from
our sample.

x – µ
�

σ

difference between score and population mean
������

standard deviation of the population

difference between the means
����

standard error

The t-test allows us
to determine the

degree to which two
distributions overlap.

The degree to which
two distributions
overlap is deter-

mined by the 
difference between

the means and 
variance of each

sample.



When performing a t-test, however, we are still interested in
making claims about the population; in other words, we want to
make claims of statistical significance. In order to do this with the 
z-test (see Tutorial 7), we had to scale the difference by the popula-
tion standard deviation. In a t-test, we do something similar, but
rather than relying on the exact population standard deviation, we
make use of a sample-based estimate. It is possible to make this esti-
mate, thanks to the Central Limit Theorem. The theorem specifies
the standard error of the sampling distributon of the mean. Recall
that:
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Unlike a z-test, 
no population
parameters are
needed to perform 
a t-test.

The fact that this is not the actual population variance, but rather an
estimate is shown by the symbol used (i.e. sX not σX). This estimate is
referred to as the standard error of x (see Tutorial 7). This term lies right
at the heart of the t-test, and one of the most important issues in this
test is ensuring that our approximations are appropriate and correct.

Equation 9.1

The standard error
is the standard 
deviation of the
sampling distribution
of the mean (the 
distribution created
by taking repeated
sample means from
a population).

Use the standard error formula to calculate the standard error of the
following samples: 
a) 5, 12, 14, 6, 3, 7
b) 53, 57, 53, 62, 63, 52, 53
c) 12, 14, 10
d) 12, 14, 25

Activity 9.2

Sadly, calculating the standard error is not always quite as simple as
the formulas above suggest. Because in many t-tests there are two
separate samples, it is important to use the variance of both of these
samples to estimate the population standard deviation. How this is
done depends on a number of factors, such as the relative sizes of
each of the samples and the relative difference in the variance of the
samples. Later in this chapter, when we deal with specific subtypes
of the t-test, we will discuss how to do this for each case.

Interpreting a significant result on a t-test
Once you have completed your t-test, you will have made a decision
to reject (or not reject) H0. In order to understand what your conclu-

σX �
σ

�

The problem with this equation is that we require the population
parameter, σ, which we often do not have. The t-test allows us to
test differences between means using an estimate of the standard
error:

sx �
s

�

�n�

�n�



sions means, it is necessary to think back to the meaning of the null
hypothesis. The purpose of a t-test is to evaluate the difference
between two means, so in most cases the null hypothesis states:

H0: µ1 � µ 2

Thus, the hypothesis is that the two means are equal. If we reject the
null hypothesis, we are saying that it is false. So, if we reject the
above hypothesis, we are actually saying that the two means are not
the same. 

‘Not the same’ can have various meanings. For example, if mean
1 is larger than mean 2, then they are not the same. Also, if mean 1
is smaller than mean 2, they are not the same. Thus, to clear up the
confusion of what we mean by ‘the means are not the same’, we
state it, either by means of a directional or non-directional alterna-
tive hypothesis.

Assumptions about the data 
Only certain datasets are suitable for analysis with t-tests. The
mechanism of the t-test makes certain assumptions about the data,
so it is important that you check to see if your data violates any of
these assumptions before you begin. If your data is not suitable for
this analysis, and you do use it, the results you get will be inaccu-
rate, and your conclusions incorrect. Please note that not all types of
t-test rely equally heavily on each of the assumptions. When we
describe the specific subtypes below, we will mention which are the
most important assumptions for each type. 

1. The assumption of normality
It is assumed that all the samples you are analysing have been
drawn from populations that are normally distributed. To test for
normality, you can use formal tests of normality (although these
tests are beyond the scope of this chapter). You can get 
a rough idea if data is normally distributed by drawing a histogram
of the data and examining the shape of the distribution. If the his-
togram has a bell shape, then it is probably normally distributed.

2. The assumption of homogeneity of variance
If your samples have variances that are highly different, then it
is difficult to get accurate results from a t-test (see the section on
coping with heterogeneity of variance later in the tutorial). This
can be formally checked for, but is quite complex. We can ‘cheat’
and say that if the two variances differ by a factor of less than 4,
the variance is probably homogenous. This is a rule of thumb, so
it is not perfect, but seems to work a lot of the time. Apply the
following calculation to check for this:
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To analyse your data
with a t-test, the

data need to comply
with the assump-

tions of normality,
homogeneity of 

variance, and 
independence.



If, after performing the above calculation, you get a value of 4 or
more, your two variances are too different to use a t-test. Please
note that this is not a fixed rule – it is simply a rule of thumb.
Some statisticians insist on ratios of 5 or more; some are willing to
go with less.
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Do the following pairs of datasets show homogeneity of variance?
Use the ‘times four’ method described in the tutorial.
a) s2

1 � 21.8994; s2
2 � 15.3448

b) s2
1 � 26.8994; s2

2 � 3.3448

c) s1 � 17.13025; s2 � 8.50541

Activity 9.3

k �
s2

1

s2
2

3. The assumption of independence
The majority of t-tests (with the exception of the repeated meas-
ures t-test) assume that the samples the means were calculated
from did not influence each other’s scores in any way. For exam-
ple, if you collect two datasets from the same group of people (as
in a pre-test/post-test design), then these two datasets are not
independent. 

Subtypes of t-tests
Now that we have considered the concepts behind t-tests in general,
we can consider the different specific types of t-tests. For each of
these tests we will present an example of when it would be useful.

1. One-sample t-test
Recall that the z-test was used to determine whether a sample mean
differed from a population mean. We could use the z-test because
we had the value for the population standard deviation. The one-
sample t-test uses a similar formula to the z-test, but the standard
error is estimated from the sample standard deviation.

The formula for the one-sample t-test is as follows:

Equation 9.2

Equation 9.3

where: k is the ratio of the largest to the smallest variance 
s2

1 is the larger and s
2
2 the smaller of the two variances

If the same sample
of cases is used to
generate both distri-
butions of scores,
those scores are not
independent.

s
�

t �
x – µ

where: x is the mean of the sample
µ is the mean of the population
s is the standard deviation of the sample
n is the sample size

and

�n�



Compare Equation 9.3 and Equation 7.2. Notice that the two
equations are similar, but that the t formula does not require that we
know the population standard deviation.

The same 5-step procedure is used to test hypotheses with the 
t-test as was used with the z-test (see Box 8.4). There is only one
slight complication. Since we used s rather than σ in determining t,
the critical value for t has to be adjusted to take into account the fact
that we are estimating the standard error from the sample variance.
Since this estimate will be more accurate with larger samples, the
sample size has an impact on the value of tcrit. In statistical termi-
nology, the value of tcrit is determined by the degrees of freedom. For
the one-sample t-test the degrees of freedom are given by the
following formula:
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Worked example 1
We are asked to determine if a new meditation technique can help
reduce the intensity of panic attacks. We measure the severity of
panic attacks by asking participants to rate the intensity of attack on

df � n – 1

where: df stands for the degrees of freedom
n is the sample size

When looking up critical values on the t-table (see Appendix 1), we
need to select the value corresponding to the correct degrees of free-
dom. Refer to the t-table in Appendix 1. The first column gives the
degrees of freedom, and the other columns give t values at different
levels of �. If we conduct a t-test with a sample size n � 25, our 
df � n – 1 � 24. If we are conducting a two-tailed test with 
� � 0.05, our critical t value is 2.0639.

To sum up, the one-sample t-test is used to determine whether a
sample mean differs from a population mean. The following null
hypothesis is tested:

H0: µ � ε; where ε is a particular value (e.g. H0: µ � 70).

We use the formula for t to compute the observed value, and look
up tcrit on the t-table, taking the degrees of freedom into account.

Identifying the correct type of t-test for a given situation is very
important. For practice, go to an academic library and collect 10 jour-
nal articles which make use of a two-group design – if possible try to
find studies where the data was analysed using a t-test. Turn to the
section of each study where the analysis is discussed, and decide on
the correct type of t-test to use.

Activity 9.4



a scale from 1 to 20. From years of using this method, it is known that
panic attack sufferers give a mean rating of 14 (i.e. the population
mean is 14). We teach the new technique to a group of panic attack
sufferers, and ask them to rate their next attack. We collect the fol-
lowing data: 12, 18, 8, 21, 17, 12, 14, 9, 3. We need to calculate t and
thus determine if this sample was drawn from the population which
has a mean of 14 (i.e. if the meditation has an effect on the panic
attack severity). Use α � 0.05 and a two-tailed test: H0: µ � 14, 
H1: µ ≠ 14.

We begin by calculating the basic descriptive stats:

x � 12.667; s � 5.567; n � 9

We work out the standard error:
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Now we are ready to calculate t:

� � 1.855
5.567
�

s
�

t �
x – µ
�

s
� � –0.71912.667 – 14
��

1.855

The degrees of freedom for this calculation are n – 1 � 8. The critical
value for this calculation (α � 0.05; two-tailed test) is 2.306. This
value is less than our calculated value, so we do not reject the null
hypothesis.

For the problems below, use a two-tailed test with α � 0.05.
a) Calculate t and determine if this sample is drawn from a popula-

tion with a mean of 12:
12, 10, 17, 8, 13, 14, 6, 19, 12, 11

b) Calculate t and determine if this sample is drawn from a popula-
tion with a mean of 135:
127, 73, 118, 123, 89, 122

Activity 9.5

2. Independent samples t-test
This test is used to compare two distributions that are independent
of each other. The independent samples t-test is suitable in most sit-
uations where you have created two separate groups by random
assignment. It is not necessary to have equal sample sizes for your
samples. It is quite important to ensure that the assumption of
homogeneity of variance is not violated for this test, but note that
there are corrective formulas if you do violate the assumption. 

The independent
samples t-test is
used to find a 
difference between
the means of two
independent samples
(e.g. separate
groups of subjects).

�n� �9�

�n�



The following formula applies to independent samples:
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Pooled variance
Because there are two completely independent samples used for this
test, it is problematic to approximate the shared standard error by
making use of the variance of one of the samples only, especially if the
sample sizes are quite different. To avoid this difficulty, we can find
an average variance of the two samples. To ensure that the larger sam-
ple does not overwhelm the smaller, we use a weighted average,
referred to as the pooled variance, and given by the formula:

s2
p �

(n1 – 1) s2
1 + (n2 – 1) s2

2

���
n1 + n2 – 2

where: n1 is the sample size of the first sample
n2 is the sample size of the second sample
s2

1 is the variance of the first sample
s2

2 is the variance of the second sample

df � n1 + n2 – 2

where: n1 is the sample size of the first sample
n2 is the sample size of the second sample

Use separate 
variance estimates if
the variances of your

two samples are
highly different (i.e.

one variance is at
least four times as
big as the other).

t �
x1 – x2

sx1 – x2

where: x1 is the mean of the first sample
x2 is the mean of the second sample
sx1 – x2 is the estimate of the standard error

Equation 9.4

Equation 9.5

Equation 9.6

Equation 9.7

Use the squared root of the pooled variance as your estimate of the
standard error in Equation 9.4. Thus:

x1 – x2

s2
p ( + )1�n2

1�n1

Degrees of freedom
For an independent samples t-test use the following formula:

Dealing with heterogeneity of variance in the samples
If your data does not have homogeneity of variance, it is still pos-
sible to analyse the data by making a few changes to the procedure.
These changes will lead to your test being more conservative,
however.

There are two changes involved. The first is to not pool the
variance, but rather use the separate variance estimates formula:

Use the pooled 
variance as your

standard error 
estimate unless the

sample variances are
not homogenous.

t �

�
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sx1 – x2 � s2
1

+
s2

2

n1 n2

where: s2
1 is the variance of the first sample

s2
2 is the variance of the second sample

n1 is the sample size of the first sample
n2 is the sample size of the second sample

Equation 9.8

The second change is to use a different formula for degrees of
freedom. Rather than using the formula presented above, calculate
n1 – 1 and n2 – 2 separately and use the smaller of these values as your
degrees of freedom. 

Worked example 2
We are asked to investigate whether a new technique for teaching
mathematics to dyslexic children is effective. To this end, we use the
new teaching method on a class of dyslexic children. We prepare a
maths test, and administer this test to the class we have taught with
the new method, as well as to another dyslexic class in a nearby
school, who have been taught with traditional methods. 

Because the classes have no common factors between them, we
can think of them as independent samples. We name the class
taught with traditional methods A and the class taught with the
new method B. The results (marks out of 100) for each child are
presented in Table 9.1. 

Table 9.1  Marks for two remedial mathematics classes

A: 15 23 45 23 43 12 43 27 32 18 19 26 28 23

B: 83 74 85 52 69 46 73 67 85 45 86 34 56 57

Did the new method work? We will need to calculate the value of 
t for these two datasets. Based on that value, we will decide if the
two samples have been drawn from separate populations. 

First, we work out the basic descriptive stats for each variable
(we will need these later).

A: x � 26.93   s2 � 109.61   n � 14          B: x � 65.14   s2 � 289.67   n � 14

Next, we decide if we should use pooled variance or separate esti-
mates. The ratio of variances ( 289.67/109.61 � 2.64) is less than 4, so we
decide to use the pooled variance:

s2
p � � � � 199.645190.63

�
26

1424.93 + 3765.71
��

26
(14 – 1)109.61 + (14 – 1)289.67
����

14 + 14 – 2

�



We will need the square root of this number, which is 14.13
Now that we have our standard error estimate, we can calculate t. 
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t �
x1 – x2

Sx1 – x2

26.93 – 65.14
� � � –7.16

We now need to perform a hypothesis test using this data. As no
‘tailness’ is given, we will assume a two-tailed test (the most inclu-
sive option). The first step is to determine the null and alternative
hypotheses:

H0: µ1 � µ2

H1: µ1 ≠ µ2

We need the degrees of freedom.

df � n1 – n2 – 2 � 14 + 14 – 2 � 26

We are not told alpha, so we will assume α � 0.05. Using df and α,
we consult a table of critical t values. The value given (for a two-
tailed test) is 2.056. 

Since 2.70 > 2.056, we reject the null hypothesis.
We conclude that the two samples were not drawn from the

same population – i.e. we conclude that the children taught with the
new method are performing better than those taught with the
traditional method. Refer back to Figures 9.1 to 9.3. Which best
represents the two samples in this exercise?

For each of the following pairs of data, A and B, calculate t and decide
if the samples were drawn from the same populations. Assume all
tests are one-tailed, α � 0.05. 
a) A: 12, 13, 15, 18, 11, 9, 12 B: 15, 15, 19, 11, 14, 16
b) A: 102, 97, 57, 106, 12, 15 B: 125, 89, 102, 107, 112, 103
c) A: 5, 3, 6, 7 B: 3, 1, 4, 2, 1, 4

Activity 9.6

3. Repeated measures t-test
If you cannot ensure independence between your two datasets, you
can still compare the means of your data using a repeated measures
t-test (provided the other two assumptions have not been violated).
For example, if you were conducting a drug trial and wanted to test
the number of illness symptoms before and after taking the drug,
this would be the test to use (because the same subjects are used for
both samples and thus the scores are not independent). 

Creating the variable ‘D’
To test samples which are related in some way, we create a new

The repeated 
measures t-test is
used to compare
means when the
samples are not

independent. It is
also known as the

related samples 
t-test.

14.13 ( + )1
�
14

1
�
14

–38.21
�

5.34
�
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the correct x from the correct y, as we are interested in the difference
exhibited by a subject! Once we have this variable D, we will forget
about x and y for the remainder of the analysis – we will need to
work out the mean and variance of D, instead. To analyse D, we will
compare its mean (the mean difference score) to a hypothetical
mean score of zero. In other words, we are testing the hypothesis
that the difference between our variables is zero. To work out t, we
use the following formula:

where: xi is the ith observation of the first variable (x)
yi is the ith observation of the second variable (y)

Di � xi – yi
D is a variable 
created by 
subtracting the
scores of the first
measurement from
those of the second
measurement for the
same subject.

In practical terms, what we do is create a new variable which has
the same sample size as the other variable, and then subtract the
scores on one variable from those on the other variable to create a
score for D. For example, if we had a set of observations for 2 vari-
ables (x and y), which are related, we simply subtract y from x for
each successive score, as shown in Table 9.2. Be careful to subtract

Table 9.2  Calculating D in the related samples t-test

x 10 14 9 13 12 11

y 4 8 12 11 12 4

D 6 6 –3 2 0 7

t �
D
sD( )

where: D is the mean difference score
sD is the standard deviation of difference scores
n is the number of difference scores

Degrees of freedom
The degrees of freedom for the repeated (or related) measures t-test
is equal to the number of pairs of observations minus one, i.e. 
df � nD – 1.

Unequal sample sizes for x and y
Usually, there will be the same number of observations for x and 
for y. However, it may happen (through participant drop-out, for
example), that some scores may be missing. Because we need pairs
of observations to calculate D, missing data can be a problem. To
cope with this, we can use a strategy known as casewise deletion,
where we simple ignore any subject for whom we do not have a full
set of observations (i.e. both an x and a y).

variable D, which is the difference between the two measurements:

�n�



Worked example 3
We are investigating whether a new medication to combat insomnia
is effective. We recruit a number of insomniacs, and ask them to
record, over a two-month period, how many sleepless nights they
experience. Once the two months elapse, we give them the new
medication, and ask them to do the same for another two months.
Because we are using the same subjects, this is a repeated measures
design. We collect the data shown in Table 9.3, and need to calculate
t to determine if the improvement was statistically significant. The
hypotheses are: H0: µ1 � µ2, H1: µ1 < µ2.
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Table 9.3 Sleepless nights for insomniacs on medication 
treatment with difference variable

Before 30 32 27 37 32 26 31 30

After 42 40 26 31 47 23 40 31

D –12 –8 1 6 –15 3 –9 –1

Firstly, we create D by using D � before – after.
Then we calculate basic descriptive stats of D (we will no longer

need the values of before or after).

D � –4.375; sD � 7.6333; n � 8

� � � 2.698
7.633
�
2.828

7.6333
�

sD
�

t �
D
sD( )

� � –1.6211
–4.375
�
2.828

We calculate the standard error:

With these, we can go ahead and calculate t:

The degrees of freedom for this calculation are n – 1 (n of the D
variable, that is) which is 7. We can then determine if the result is
significant as we did in the example above. If the result is significant,
it means there is a difference in the distribution of scores before and

�n� �8�

�n�
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Doing t-tests with Microsoft® Excel
Excel works for related samples t-tests, and independent samples 
t-tests. It does not provide a function for directly calculating one-
sample t-tests (although this can be done – see below).

Setting up your data: you can set out your data either in rows or
columns. Place each variable (sample) in its own column. Excel will
happily deal with unequal sample sizes; it will compensate using the
case wise deletion strategy.

Calculating p: Once your data is entered, you will use the function
TTEST. The arguments are:

TTEST(first sample, second sample, number of tails, t-test type)

where: first sample � the extents of the array (i.e. the cells on the
spreadsheet) containing your first sample’s data
second sample � the extents of the array containing your 
second sample’s data
number of tails � (1 or 2) if this is to be a one- or two-tailed test
t-test type � (1, 2, or 3) a code representing the type of 
test to be done (1 � repeated measures, 2 � independent 
samples with homogeneity of variance, 3 � two samples 
with unequal variance).

after the medication. If it is not significant, the two distributions are
the same – the medication made no significant difference.

In the following datasets, the variables A and B are related samples.
For each, calculate t and determine if the results are statistically sig-
nificant. Assume the tests are one-tailed with α � 0.05.
a)  A: 10, 8, 15, 3, 10, 11, 12, 8, 15, 12 b)  A: 104, 103, 110, 103, 102, 101

B: 10, 10, 12, 9, 10, 12, 15, 5, 12, 5 B: 106, 110, 109, 124, 123, 104 

Activity 9.7

Summary
1. t-tests are used to determine the difference between means in

situations where we have to estimate the population standard
deviation from sample data. 

2. Computing t involves comparing the difference between the
means with the standard error, which is the standard deviation of
the sampling distribution of the mean.

3. There are three variants of the t-test: one-sample t-tests, independ-
ent samples t-tests and repeated measures (within-subjects) t-tests.

4. The t-test is only appropriate when the data complies with the
assumptions of normality, homogeneity of variance, and inde-
pendence.

Box 9.1
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Doing t-tests with SPSS®

SPSS® will conduct the three t-tests discussed in this chapter. All are
available off the Analyze menu, as shown in Figure 9.4. The data need
to be set up in different ways for the three tests. This is described,
along with the dialog boxes, in Figure 9.5.

Box 9.2

Figure 9.4 Analyze menu entries for t-tests in SPSS®

This function returns the p-value for the t-test on your data (but not
the actual t-statistic itself).

Calculating t: If you wish to see the actual value of t, use the TTEST
function above, and then use the TINV function to get the t-value.
You will need to know the degrees of freedom for the t-test (this is
not given by the program, so you will have to calculate it manually).
The arguments for TINV are:

TINV(probability, degrees of freedom)

where: probability � the p-value as obtained from the TTEST function
degrees of freedom � the df of the calculation.

Calculating p if you know the t-value already: In the case of a one-
sample t-test, you can work out t yourself, and then get Excel to show
you the p-value for that t. This function is also useful to get the 
p-value if you do not have a t-table, or if you want the exact p-value.
The function that does this is TDIST. It takes the following argu-
ments:

TDIST(t-value, degrees of freedom, tails)

where: t-value � the t-value you wish to know the p of
degrees of freedom � the degrees of freedom of the calculation
tails � (1 or 2) if the test is one- or two-tailed.
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One-sample t-test. The data need only be represented in a single column. The dialog box
requires you to define the column for the t-test, and also requires you to specify the value of
ε in the null hypothesis (see earlier discussion).

Independent groups t-test. The data need to be entered in two columns – one
containing the group codes, and the other the data on the dependent variable. The
dialog box requires you to define the test variable (DV) and the grouping variable.

Related sample t-test. The data need to be entered in two columns – one column for each
of the samples, e.g. column 1 for the before data, and column 2 for the after data. The
dialog box requires you to select two variables as the related pair.

Figure 9.5 Data layout and dialog boxes for conducting t-tests in SPSS®
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Exercises
1. A study is conducted to investigate whether living in a place

with little sunlight can lead to depression. Researchers recruit
two groups of 20 subjects from two locations. One group lives in
Springbok, which experiences 8 hours of sunlight daily during
winter. The second group is recruited from Moscow, which
experiences only 4 hours of sunlight daily during winter. On the
winter solstice (the middle of winter), each group has their
depression levels measured using the Beck depression inven-
tory, which scores depression on a scale of 1 (no depression) to
10 (extreme depression). The following data are collected:

Springbok 2, 4, 3, 2, 2, 3, 2, 7, 1, 1, 2, 3, 2, 1, 6, 3, 4, 2, 3, 3
Moscow 5, 6, 7, 6, 6, 5, 8, 5, 2, 4, 1, 1, 7, 6, 9, 10, 8, 7, 9, 4

Are the researchers correct in suggesting that living with low
levels of sunlight can lead to depression?

2. You are investigating whether psychotic behaviour has a physio-
logical basis. Specifically, you suspect that the substantia nigra, a
small dense mass of the brain, is reduced in psychotic individuals.
It is known that the average diameter for the substantia nigra 
in human adults is 13 millimetres. You obtain the brains of 
15 deceased psychotic adults and dissect them to measure the
substantia nigrae of these brains. Your measurements are as follows
(measurements in millimeters):

Diameter 11, 15, 7, 14, 9, 12, 16, 9, 8, 11, 13, 12, 15, 12, 11

Determine from these data if the substantia nigra of your
psychotic sample is indeed reduced.

3. The previous study (from 2 above) is criticised on the basis that
the 13-millimetres average used is outdated. To silence these crit-
ics, you decide to do a longitudinal study: you will measure the
diameter of the substantia nigra of recently diagnosed psychotics,
and compare them to the diameter after 5 years of having the dis-
order. This time, you make use of Magnetic Resonance Imaging
(MRI) scans of patients to measure the substantia nigra. Fifteen
patients who have been diagnosed with psychosis less than 1 year
ago agree to take part in the study. Your measurements are:

Measurement 1 13, 12, 16, 14, 13, 15, 17, 13, 14, 16, 13, 16, 13, 
19, 12

After 5 years have elapsed, you contact as many of the patients
as you can. Unfortunately, you are only able to contact 9 of them.
You again measure (NA in the table means that patient was not
available for a second measurement):
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Measurement 2 9, 10, NA, NA, 10, NA, 11, 10, NA, 17, 9, 8, 
NA, 16, NA

Has there been a significant reduction in the size of the substantia
nigra of these patients?

4. A local basketball team is concerned that the current coach is not
training the players well. Specifically, they are concerned that
the team scored more points per game under the previous coach
than under the current one. You offer to analyse their perform-
ance under each coach to settle the question. You are given the
number of points scored for each game under the previous coach
and under the current one:

Current coach 86, 82, 90, 92, 85, 82, 93, 80
Previous coach 120, 45, 100, 80, 54, 108, 67, 54, 112, 43, 86, 90

Is the team performing any differently under the new coach?
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Regression

Lance Lachenicht

•••••••••••
After studying this tutorial, you should be able to:
• Understand and work with paired data.
• Depict paired data points in a scatterplot.
• Understand the concept of a best fitting line.
• Be able to find the coefficients of a best fitting

line.
• Be able to make predictions from a regression

equation.
• Understand the limits of making predictions from

a regression equation.
• Understand that scatter depicts the strength of a

relationship between paired data points.

TUTORIAL

10

Paired data
Data are usually collected from a sample of things or people. Often
the researcher will just take a single measure from each person or
item. Sometimes however, data may be collected in pairs. Paired
data allow us to examine quite different things to what single meas-
ures allow. If we have paired data, we may be able to determine the
relationship between the two measures. To use a simple example,
look at Table 10.1, showing ‘Per cent ever practising family plan-
ning’, ‘Expenditure on family planning’, ‘Per cent urbanised’, and
‘GNP per capita’ for 15 countries in 1982. The source (Cliff, 1996, 
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p. 109) from which this table is taken is not clear about the units, but
we can presume that ‘Per cent ever practising family planning’ and
‘Per cent urbanised’ are percentages of the country’s population.
‘Expenditure on family planning’ is probably measured in millions
of dollars, while ‘GNP per capita’ is in dollars. 

Table 10.1 Selected characteristics for 15 countries

Expenditure Per cent GNP Per cent ever
on family urbanised per capita practising family
planning (x1) (x2) (x3) planning (y)

Lesotho 0 4 73 6

Kenya 6 4 108 9

Peru 0 17 367 14

Sri Lanka 12 20 142 22

Indonesia 14 9 61 25

Thailand 20 8 142 36

Colombia 16 47 284 37

Malaysia 18 29 313 38

Guyana 0 20 318 42

Jamaica 23 8 593 44

Jordan 0 53 197 44

Panama 19 50 570 59

Costa Rica 21 18 464 59

Fiji 22 15 321 60

Korea 24 15 188 61

Graphing paired data
Regression analysis may be thought of as a refined way of analysing
scatterplots. So we need to begin our analysis of the family planning
data in Table 10.1 by creating a scatterplot of the data (x1 and y). 
This scatterplot is shown in Figure 10.1 on the next page. Is there
any pattern in the scatterplot showing a relationship between ‘Per
cent ever practising family planning’ and  ‘Expenditure on family
planning’? 

The relationship depicted in Figure 10.1 is actually fairly clear: as
expenditure on family planning increases, so does the percentage of
the population ever having practised family planning. You should
note the possible ‘outlier’ points associated with countries spending
nothing on family planning that seem to deviate from the pattern
(i.e. a fairly high proportion of their populations has at some time

Scatterplots can
diagnose outlier
points.
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tried family planning). It is possible that the data from these coun-
tries is incorrect or unavailable, or even that these countries may
benefit from the family planning expenditure in a neighbouring
country.

EXPENDITURE ON FAMILY PLANNING
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Figure 10.1 Scatterplot of family planning data

A caveat (or warning) is in order at this stage. The paired data
should be collected from two independent measurements. This means
that, for example, the second datum in each pair should not be
created by mathematically manipulating the first datum in each
pair in any way, nor should they be two measures of the same thing.
If the first datum and the second datum in each pair are not inde-
pendently derived, you will almost certainly find a strong regres-
sion relationship between them, but that relationship may not
correspond to any relationship in the real world. Thus, a perfect
correlation between daytime temperature in degrees Celsius and
degrees Fahrenheit tells us nothing about the weather. It only
indicates that the temperatures on the two different scales are
mathematically related. 

In regression analysis, the x variable, plotted on the horizontal
axis, is known as the predictor (or independent) variable; and the y
variable, plotted on the vertical axis, is known as the criterion (or
dependent) variable. In the dataset of Table 10.1, our predictor
variable is ‘Expenditure on family planning’ and our criterion
variable is ‘Per cent ever practising family planning’. Note: You should
always plot the predictor on the x-axis and the criterion on the y-axis.

The best fitting line
The overall shape of points plotted on a scatterplot is called the
trend. It seems clear that the overall shape or trend in the family
planning scatterplot is an upward-sloping one, although this is a
vague description upon which we can improve. Imagine drawing a
line through the middle of the scatterplot points. If we could find

Data for regression
is collected in pairs,

i.e. measurements of
two variables are

collected on the
same person or 

entity.

The x variable,
plotted on the

horizontal axis, is
known as the 
predictor (or 
independent) 
variable. The 

y variable, plotted
on the vertical axis,

is known as the 
criterion (or 

dependent) variable.
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the equation for this line we could move from a vague description to
a precise mathematical description. Once the line has been defined in
a formal way, it is possible to make predictions about where we think
other points might lie. Fitting a line to a scatterplot involves a few
graphing ideas that have been explained in earlier tutorials.

The regression line, as it is sometimes called, is the best fitting line
that can be drawn through the points. However, it is important to
realise that not all trends apparent in scatterplots are best fitted with
straight lines. Sometimes the trend in a scatterplot shows a curved
shape (see Figure 10.8), and for such trends, non-linear regression is
required. In the present tutorial we are concerned with fitting
straight lines to scatterplots, and for this reason we are dealing with
linear regression.

Finding the regression coefficients for the best
fitting line
In order to define a straight line, precisely two pieces of information
are required. These are the slope of the line and the point on the
graph where it crosses the y or vertical axis (known as the intercept).
Lines that slope from the bottom left to the top right of the scatter-
plot are said to have a positive slope, i.e. the value of y will increase
as the value of x increases (see Figure 10.4). Lines with a negative
slope run from the top left to the bottom right, i.e. the value of y will
decrease as the value of x increases (see Figure 10.5). These ideas
about lines are explained in Tutorial 24. If you are uncertain about
them, review this information.

In the running example, the percentage of people ever having
practised family planning is represented on the vertical (y) axis and
expenditure on family planning is represented on the horizontal (x)
axis. If we are fitting a regression line, the equation to use will have
the form:

Two pieces of infor-
mation completely
determine a linear
regression ‘line’: the
slope coefficient (b),
and the intercept
coefficient (a).

The regression line is
the best fitting line
that can be drawn
through the points
on a scatterplot.

where: y represents the percentage of people ever having 
practised family planning, the criterion variable
x represents expenditure on family planning, the predictor variable
a and b represent the two pieces of information required to fit the 
line (i.e. b is the slope, and a is the intercept)

Equation 10.1y � a + bx

Most textbooks call a and b the regression coefficients. Try drawing in
an imaginary regression line by eye in Figure 10.1. If you do so, it
should be easy to read off the value of a (the intercept where the line
cuts the vertical axis). It is less easy to read the slope from the scat-
terplot – but remember, the slope of a line is the amount it increas-
es or decreases for each unit it moves from left to right.



n: the number of pairs of values (in our example, n � 15)
Σx: the sum of the x values
Σy: the sum of the y values
Σx2: the sum of the squares of the x values
Σxy:the sum of the xy products
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Apart from making estimates by eye from scatterplots, there 
are several other methods of finding the values of a and b. The
simplest is to feed your data into a calculator (or computer) and
obtain the answers at the press of some buttons. If you have a
calculator that will calculate regression, please spend a few min-
utes entering the paired data from Table 10.1 into your calculator
and obtain the values of a and b by pressing the relevant buttons.
(If you have never done this before, you will need to spend some
time reading the calculator manual in order to understand the nec-
essary steps.) If you do not have a calculator capable of calculating
regression, you will find some formulas for manual calculation in
the section below.

In the family planning data the slope is positive (+1.3135),
reflecting an upward-sloping line. This trend suggests a positive
relationship between expenditure on family planning and the
percentage of the population ever having used family planning.
When the expenditure on family planning increases, the percent-
age of the population ever having used family planning also rises.
If the relationship was negative, expenditure would increase as the
percentage of the population ever having used family planning
decreased.

It is not possible to explain exactly how the best fitting line is
determined in this tutorial, as such an explanation requires a
knowledge of calculus. Still, it is worth knowing that the best fit-
ting line through a set of points in a scatterplot has an important
property – if you take the distances of each point from the line (for
an example of these distances, see Figure 10.3), square them 
and then add the squares together, the sum of the squared
distances will be smaller than for any other line you could have
chosen. This is why the regression line is sometimes called the
least-squares line. 

Calculating the regression coefficients
Calculating a regression analysis requires that you determine the
following statistics:

The regression line
minimises the

squared distances of
the observed data

points from the line.

These intermediate values are substituted into the following equa-
tion to find the covariance, sxy, and following this, the slope, b:
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Having calculated b, we can find the intercept a. The midpoint of 
all the points on the scattergraph is the middlemost point in the
scatter (x, y). An important property of the best fitting line is that it
passes through this point. For this reason, we can substitute these
mean values into the general equation for a line (y � a + bx) and
then rearrange to solve for a:

sxy �
Σ xy – 

ΣxΣy
�

n
n – 1

Equation 10.2

Equation 10.3

Equation 10.4

b �
sxy
�
s2

x

The example below uses this method to calculate the regression
equation for the family planning data given in Table 10.2:

a � y – bx

Having found the value of b, we can use Equation 10.4 to find a:

sxy �
Σ xy – 

ΣxΣy
�

n
n – 1

�
8820 – 

� 113.71

195 × 556
��

15
14

So the regression equation is:

a � y – bx
� 37.067 – 1.314 × 13 � 19.985

y’ � 19.985 + 1.314 x

You may ask, ‘What happens to the above regression equation if 
the possible outlying points of Guyana and Jordan are omitted from
the dataset?’ Recalculating the regression equation without particu-
lar (possibly outlying) points is a way of carrying out sensitivity
analysis, i.e. investigating the extent to which the regression model
depends upon particular, perhaps problematic data points.

The effect of outliers
on a regression
analysis can be esti-
mated by comparing
the equation calculat-
ed on all data points
with the equation cal-
culated on the data
points left after
removing outliers.

b � � � 1.314
113.71
�
86.56

sxy
�
s2

x
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Table 10.2  Calculating the regression using data from 
Table 10.1

Country Expenditure on Per cent ever practising xy
family planning (x) family planning (y)

Lesotho 0 6 0

Kenya 6 9 54

Peru 0 14 0

Sri Lanka 12 22 264

Indonesia 14 25 350

Thailand 20 36 720

Colombia 16 37 592

Malaysia 18 38 684

Guyana 0 42 0

Jamaica 23 44 1 012

Jordan 0 44 0

Panama 19 59 1 121

Costa Rica 21 59 1 239

Fiji 22 60 1 320

Korea 24 61 1 464

n � 15
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Figure 10.2 Family planning data with regression line

A graph of this line over a scatterplot of the data is depicted in
Figure 10.2.

Σx � 195

x � 13

sx � 9.304

Σy � 556

y � 37.067

sy � 18.595

Σxy � 8 820
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It is worth reflecting on the impact of the scale of the measure-
ments used in the regression analysis. Suppose for example that you
wish to calculate a regression line where the chosen variable was
‘age’. Would it be legitimate to enter ‘age’ as years, or would you
have to enter it as ‘months’ or ‘days’? The answer here is that ages
expressed in years, months, or days are all mathematically related to
each other. (You transform the ages from one description to the other
by mathematical means.) Any of these units can therefore be used.
Using one or the other will not change the shape of the regression line
at all, though it will move the line to different positions on the graph.

As an exercise to test your own understanding, find the regression
equation for predicting ‘Per cent ever practising family planning’ (y)
from ‘Per cent urbanised’ (x2) using the data in Table 10.1.

Activity 10.1

You may ask, ‘If the scales of either of the two axes in the scatterplot
were changed, would this alter the slope of the regression line?’
Actually, changing the scale of either axis may change the slope of
the regression line in terms of how steep it looks on the graph, but
the actual value for b would remain unchanged, so the effect would
be purely visual. This means that you should not pay too much
attention to how steep the slope looks on the graph, since this will
depend on the scales chosen when the graph is plotted.

Making predictions
The regression equation is essentially a mathematical summary of
what we think the relationship between the two variables might be.
We can use this mathematical relationship to make predictions,
though not without some danger of making a mistake. 

Let us recall what the variables x and y are used to represent in
the family planning example above. x represents ‘Expenditure on
family planning’ in millions of dollars, and y represents ‘Percentage
of the country’s population ever practising family planning’. So the
regression equation above can be written as follows:

average per cent ever practising family planning
� 19.985 + 1.314 × average expenditure on family planning

The slope coefficient,
b, is not standard-
ised, and is strongly
affected by the rela-
tive scales of the x
and y variables.
Therefore, you should
not over-interpret the
‘steepness’ of the
regression line.

Two social scientists develop a measure of general happiness. They each
use their measure to collect information about the state of happiness in
35 countries. How should we go about comparing these two different
measures of general happiness? What kind of results would lead you to
conclude that they are measuring equivalently or differently?

Activity 10.2
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What this means is that if the country spends 20 million dollars on
family planning, then the predicted percentage of the population
practising family planning can be estimated as follows:

predicted per cent of population ever practising family planning
� 19.985 + 1.314 × 20 � 46.265

The scatterplot containing the regression line (Figure 10.2) shows
that the data points are widely scattered around the regression line,
so our prediction cannot be considered to be very accurate. It would
be foolish to report our predictions as ‘46.265 per cent of the popu-
lation ever practising family planning’ because that suggests a pre-
cision quite unwarranted by our scattered data. At best we should
report it as 46% and still acknowledge that there is a considerable
margin of error in our prediction.

Usually predictions from regression equations are more accurate
when they are made about points that fall within the range of points
covered by the original dataset (as in our 20-million-dollar exam-
ple). Such ‘within dataset’ predictions are called interpolations. If we
chose not 20 million dollars but 50 million as family planning
expenditure, then we would have to extrapolate and our prediction
would be even less reliable. 

Predictions from
regression equations

are more accurate
when they are made

about points that
fall within the range
of points covered by
the original dataset. 

‘Within dataset’ 
predictions are called

interpolations.

Predictions ‘beyond’
the range of 
values in the 

dataset are called
extrapolations.

As an exercise to test your understanding, use your regression equa-
tion for predicting ‘Per cent ever practising family planning’ (y) from
‘Per cent urbanised’ (x2) using the data in Table 10.1  to predict the per
cent ever practising family planning in a 70% urbanised country.

Activity 10.3

The standard error of estimate
How good do you think the fit of the best fitting line has to be for
the regression equation to be meaningful? Obviously, if the scatter-
plot shows a very clear linear pattern, then the best fitting line will
be an accurate summary of the relationship in the data. But if the
points on the original scatterplot have no clear pattern along with a
wide scatter of points, then the line will have very little predictive
power and will not be very meaningful.

In Figure 10.3, the hypothetical relationship between fuel con-
sumption and engine size (in motor vehicles) is shown in two ways:
in the left-hand panel a line is drawn through y (the mean fuel con-
sumption), and in the right-hand panel the predicted regression line
is drawn. In both cases, the observed data points are shown, and
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perpendicular lines are extended from the observed data points to
the horizontal or diagonal line (the line of fit). The left-hand panel
is actually a representation of the variance in y, since the line is the
mean, and the distances from the points to the line are therefore
merely the variation around the mean (see Tutorial 4). 
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Figure 10.3 Plots depicting distances of points in a regression problem from i) the mean, and ii)
the regression line

In the case of the right-hand panel, the distance of each point from
the diagonal line is known as a ‘residual’, i.e. the amount by which
the fitted line deviates from that particular data point. If the regres-
sion line is a good fit, then the distances in the right-hand panel
should be quite small, and – very importantly – they should be a lot
smaller than the distances in the left-hand panel, since in the left-
hand panel there is no relationship between the variables.

One way of measuring the degree of fit, or the extent to which the
regression line is a good ‘model’ of the relationship in question, is to
‘average’ the residual distances. However, we cannot simply aver-
age the distances, as half of them are positive, and half are negative,
and these will simply balance each other out. (This is the same prob-
lem we faced when we calculated the standard deviation.) We use a
measure that is devised to take account of this difficulty, and is
known as the standard error of estimate. It is the standard deviation of
the residual distances, and is given by the following formula:

The standard 
error of estimate
measures the 
degree to which the
regression line ‘fits’
the observed data.

S.E. of estimate �
Σ(y – y’)2

��
n – 2

where y’ � the predicted scores of y, using the regression equation, 
substituting the observed scores of x

Equation 10.5

(i) (ii)

�
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A layout for the calculation of the standard error of estimate for the
regression calculations reported in (and around) Table 10.2 is shown
in Table 10.3. Note that y’ is calculated by substituting the observed x
scores into the regression equation for Lesotho:

Table 10.3  Layout for calculating the standard error 
of estimate

Country x y y’ (y – y’)2

Lesotho 0 6 19.99 195.72

Kenya 6 9 27.87 356.08

Peru 0 14 19.99 35.88

Sri Lanka 12 22 35.75 189.06

Indonesia 14 25 38.38 179.02

Thailand 20 36 46.26 105.27

Colombia 16 37 41.01 16.08

Malaysia 18 38 43.63 31.70

Guyana 0 42 19.99 484.44

Jamaica 23 44 50.20 38.44

Jordan 0 44 19.99 576.48

Panama 19 59 44.95 197.40

Costa Rica 21 59 47.58 130.42

Fiji 22 60 48.89 123.47

Korea 24 61 51.52 89.87

Σ 2 749.29

�
Σ(y – y’)2

��
n – 2 � � �2�1�1�.4�8� � 14.54

2749.29
�

13S.E. of estimate

y’ � 19.985 + 1.314 � 19.99

Thus, to calculate the standard error:

� �
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A common difficulty with predictions
based on regression models
Regression models, when used for prediction, may be controversial
not because of the statistical methods involved, but because of the
nature of the data used in the model. Our predictions about the use
of birth-control methods, for example, are based on data from coun-
tries already practising birth control to various degrees. Now it 
is possible that the family planning budget in these countries
simply reflects an awareness of the need for birth control in the
government of the country concerned rather than inducing such an
awareness in the population. Alternatively, consider an example
where a regression model was used to predict what proportion of
their salaries people saved. Suppose, further, that age was found to
be negatively related to high levels of saving (i.e. people save a
lower proportion as they get older). It is possible that people become
more profligate as they get older. But perhaps it is more likely that
as people get older their responsibilities increase and it is not pos-
sible for them to save as much as they used to when younger. In this
case, a third variable, responsibilities, is mediating the relationship
between age and saving. In regression (and correlation) analysis, the
temptation to draw causal inferences is always present, and such
inferences should always be drawn with great caution.

Think of an example of two variables where linear regression would
be inappropriate because the relationship between the variables is not
linear.

Activity 10.4

Causal inferences
should only be
drawn from regres-
sion analyses with
great caution.

The degree of scatter
around the straight
line is called the
‘correlation’.

Scatter and correlation
The regression line is a useful statement of the underlying trend,
but it tells us nothing about the strength of the relationship.
Correlation is a measure of the strength of linear association
between two variables and is the subject matter of our next tutorial.
A perfect positive correlation might look like Figure 10.4. In a posi-
tive correlation, as one set of scores increases, so does the other set
of scores. A regression line fitted to this data should pass through
each data point.

Data that are plotted as in Figure 10.5 would illustrate a perfect
negative correlation, an inverse relationship. In a negative or
inverse relationship, as the one set of scores increases the other will
decrease. A regression line fitted to this data should also pass
through each data point.

Correlation is a
measure of the
strength and direc-
tion of the linear
association between
two variables.
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Figure 10.4 Scatterplot showing
perfect positive correlation

Figure 10.5 Scatterplot showing
perfect negative correlation

y y y

x x x

Figure 10.6 Scatterplot
showing zero correlation

Figure 10.7 Scatterplot show-
ing weak negative correlation

Figure 10.8 Scatterplot show-
ing perfect non-linear relation

In practice, most scatterplots show relationships somewhat
between these two extremes. In scatterplots showing zero corre-
lation (see Figure 10.6) all the data points tend to be clumped
together in the middle of the plot. A regression line for this data is
not very meaningful. As the correlation increases, so the points
increasingly take on the form of a line (which may be positively or
negatively sloped), and the regression analysis becomes increasing-
ly meaningful and precise. Perfect relationships that are non-linear
(see Figure 10.8) are not suitable for regression analysis and may
have a zero correlation despite being strongly related.

Worked example
An ubiquitous problem in neuropsychological assessment is how to
determine the amount of cognitive damage a person with a head
injury has sustained. This enterprise rests on the comparison of
cognitive ability after head injury and cognitive ability before head
injury (i.e. ‘pre-morbid’ ability). However, it is rarely possible to
directly determine pre-morbid ability. It is usually estimated by
gross generalisations about the person’s level of education, occupa-
tional status, etc. Nelson (1975) explored an interesting alternative,
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namely the ability to pronounce ‘irregular’ words. Words like
‘drachm’ or ‘beatify’ require specific knowledge of pronunciation –
they cannot be pronounced by following rules – and this specific
knowledge is unaffected by many types of neurological injury. (A
standardised measure of this ability – the National Adult Reading
Test (NART) – is available in several countries, including South
Africa.) Secondly, this ability is also strongly related to a well-
defined and researched cognitive measure, Full Scale IQ (FSIQ), as
measured by intelligence tests (e.g. the Wechsler Adult Intelligence
Scale). It follows that we should consider using a regression equa-
tion that predicts FSIQ from performance on the NART: for neuro-
logically impaired patients, performance on the NART will proba-
bly be intact, and if the NART turns out to be strongly correlated to
FSIQ, we can use the regression equation relating the NART to FSIQ
in a healthy sample to predict the pre-morbid FSIQ of neurological-
ly injured patients.

The data in Table 10.4 reports NART and FSIQ scores for a
sample of 40 university students. We will conduct a regression
analysis on this data, and make some predictions for three patients,
who scored 37, 21, and 48, respectively, on the NART but who now
each score a FSIQ less than 80 points.

Table 10.4 NART and FSIQ scores for 40 university 
students

NART FSIQ NART FSIQ NART FSIQ NART FSIQ

27 92 44 128 46 122 39 128
27 84 19 99 35 120 30 101
23 113 26 124 25 102 28 110
23 106 17 99 27 123 45 147
27 96 30 113 41 139 42 127
18 103 32 109 28 99 30 119
26 92 20 93 44 131 33 136
15 82 40 130 31 117 39 127
22 75 20 89 44 120 36 127
34 113 38 128 45 123 37 132

Solution
It is good practice to start a regression analysis by constructing a
scatterplot, since the plot can provide information on possible
departures from important assumptions, e.g. non-linearity of the
relationship. Figure 10.9 is a scatterplot of the NART and FSIQ data,
and suggests that relationship is linear, and strong. 
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Figure 10.9 Scatterplot of the relation between FSIQ and NART scores in
a student sample

It is useful to find the standard error of estimate, since this gives an
overall indication of the accuracy of the equation (we do not show
the calculation of individual errors of prediction).

of estimate �
Σ(y – y’)2

��
n – 2 �

4382.3
�

38S.E.

� �1�1�5�.3�2� � 10.74

Although this standard error may seem quite large (it suggests that,
on average, our prediction will be 10.74 units in error), it should be
judged against the standard deviation of y, which is 17.22. In other
words, without our knowledge of NART scores, our predictions
would, on average, be 17.22 units in error (since the best we could
do is to use y as the prediction).

We then calculate interim statistics that we will need later:

sxy �
Σxy – 

ΣxΣy
�

n
n – 1

�
146229 – 

� 120.58

1253 × 4518
��

40
39

Then we calculate the covariance:

Σx � 1253, Σy � 4518
x � 31.33, y � 112.95
Σxy � 146229
sx � 8.88, sy � 17.22

� �
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Then we calculate a, the intercept coefficient:

Doing regression analysis with a spreadsheet program
Box 10.1

Then we calculate b, the slope coefficient:

b � � � 1.53
120.58
�

8.882

sxy
�
s2

x

a � y – b x � 112.95 – 1.53 × 31.33
� 65.07

We can therefore write the equation as FSIQ’ � 65.07 + 1.53 × NART.
All that remains is the prediction of FSIQ for the patients who

scored 37, 21, and 48 on the NART, respectively:

FSIQ’ � 65.07 + 1.53 × 37 � 121.68 ≈ 122
FSIQ’ � 65.07 + 1.53 × 21 � 97.2 ≈ 97
FSIQ’ � 65.07 + 1.53 × 48 � 138.51 ≈ 139

From these predictions, we would suggest that the three patients
probably had very different pre-morbid intelligence levels, despite
presently having similar and moderately low intelligence scores.

Figure 10.10 Chart Wizard in Microsoft® Excel makes scatterplot
construction easy
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Although you can use a spreadsheet program to set regression data
up for analysis in a manner analogous to that shown in Table 10.2, it
is easier to use some of the built-in regression functions that most
spreadsheets have. Figure 10.11 shows a layout for use with Excel,
incorporating the built-in functions SLOPE, INTERCEPT, and STEYX.
(You should be able to work out what these refer to from their names!)
These functions work with two cell ranges, representing the y and x
data, respectively (note the order  – y before x). Thus, slope (c2:c41,
b2:b41) calculates the slope coefficient for a linear regression with the
y data in cells c2:c41 and the x data in cells b2:b41.

An essential graphic in regression analysis is the scatterplot. It is
easy to construct one in Excel: highlight the range of data, and click
the Chart Wizard – button        . A ‘Wizard’ – as shown in Figure 10.10
– will guide you through the rest of the graph’s construction.

Figure 10.11 Layout and calculations for doing regression analysis in
Microsoft® Excel; data from worked example at the end of the tutorial
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Doing regression analysis with SPSS®

Since SPSS® is one of the major professional statistical packages, it
predictably offers extensive support for linear regression analysis.
For the types of problem outlined in this tutorial, though, you
should stick to the default options. To run a linear regression, select
the ‘Analyze’ menu, and the appropriate sub-menus, as shown in
Figure 10.12. Notice that you have to ‘move’ the predictor (IV) and
predicted (DV) variables into the appropriate positions, i.e. from left
to right, using the mouse. Abbreviated output for an analysis of the
data in the worked example is shown in Figure 10.13. 

Box 10.2

Figure 10.12 SPSS® menu commands for conducting a linear regression



Figure 10.13 Abbreviated output from SPSS® for a linear regression
of the data from the worked example

MODEL SUMMARY

COEFFICIENTSa

Std. Error of
the Estimate

Adjusted
R SquareR SquareRModel

1 .788 .621 .611 10.73877

Unstandardised
Coefficients

Standardised
Coefficients

Model B Std. Error Beta t Sig.
1 (Constant)

NART
65.072
1.528

6.298
.194 .788    

10.333
7.895

.000

.000
a. Dependent Variable: FSIQ

Some of the results reported by SPSS® will make more sense to you
when you have studied the multiple regression tutorial (Tutorial 18),
but you should be familiar with most of the terms in the output. 

The significance test reported here is equivalent to that outlined in
the following tutorial on correlation, and can be ignored for the
moment. Scatterplots are created very easily in SPSS®, and you should
always start your regression analysis with an inspection of one. To
construct a scatterplot, you choose ‘Scatter’ from the ‘Graphs’ menu,
as shown in Figure 10.14. Choose an option (we recommend ‘Simple’)
off the ensuing scatterplot dialog box, and then define the variables
for the scatterplot using the SPSS® variable selection dialog control.
The resulting scatterplot is shown in the SPSS® output window.

Figure 10.14 Dialog control boxes for constructing a scatterplot
in SPSS®
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Summary
1. Analysis of independent data pairs can be very fruitful.

Graphical analysis of data pairs is typically done with the scat-
terplot, where the data pairs are represented as points in two
dimensional space.

2. The best fitting straight line in a scatterplot of data pairs is
referred to as the regression line, and is completely determined
by the slope (b) and intercept (a) coefficients. The equation for
the straight line takes the general form y � a + bx. 

3. The equation for a straight line relating x and y can be used as a
prediction device, i.e. values of y can be predicted from knowl-
edge of values of x. Predictions are more accurate when they are
made about points that fall within the range of points covered by
the original data set.

4. The standard error of estimate and correlation coefficient
measure the degree to which the regression line ‘fits’ the
observed data.

Exercises 
1. Ten pairs of observations on the variables x and y are given below:

a) Plot a scatter diagram.
b) Find the values for a and b for the regression line y � a + bx.
c) Draw the regression line on your diagram and mark the 

point x, y.

x: 2.2 3.2 6.8 7.3 –1.3 –0.8 1.7 9.5 12.3 1.7
y: 1.2 0.5 0.0 –0.8 2.8 3.4 1.7 –1.7 –4.2 1.1
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2. Find the regression equation for predicting ‘Per cent ever prac-
tising family planning’ (y) from ‘GNP per capita’ (x3) using the
data in Table 10.1.

3. Use your regression equation for predicting ‘Per cent ever prac-
tising family planning’ (y) from ‘GNP per capita’ (x3) using the
data in Table 10.1 (previous exercise) to predict the per cent ever
practising family planning in a country with a GNP of 700. How
confident are you in your prediction?

4. Below there are figures for a chain of stores linking the number
of sales staff to the daily takings in thousands of rands. Plot the
relationship between the two sets of scores using a scatterplot.
Using Figures 10.4 to 10.8 above as your guides, describe the cor-
relation (if any) between the two sets of test scores.

Shop: 1 2 3 4 5 6 7 8 9 10
Sales staff: 43 25 32 48 10 48 42 36 30 19
Takings (R): 15 11 13 18 3 17 15 14 12 8

5. Find the regression equation for predicting daily takings from
the number of sales staff in the table in Question 4.

If there was an eleventh store in the chain that was omitted
from the dataset in the table, and this store had 21 sales staff,
what would store 11’s daily takings score be?
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Correlation

Lance Lachenicht

•••••••••••
After studying this tutorial, you should be able to:
• Understand correlation as a measure of the degree

of scatter around a regression line.
• Calculate and interpret Pearson’s product-moment

correlation, r, and the coefficient of determination, r 2.
• Understand that correlation does not imply 

causation.
• Understand that correlations measure the strength

of linear relations.
• Understand that correlation may be misleading if

the underlying populations are not homogenous.

TUTORIAL

11

Introduction
The digit span test forms part of many standard intelligence tests. It
measures the maximum number of digits a person can retain in
short-term memory. The reported average digit spans in speakers of
a few languages are set out in Table 11.1. 

The data reported in Table 11.1 were collected by several authors
in a number of different studies. These studies had their origin in a
comparison between the digit spans of Welsh and English speakers
(Ellis & Hennelly, 1980). Welsh speakers seem to have a smaller
capacity for retaining digit names in short-term memory than their
English counterparts. Subsequent studies have reported superior
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performances from Cantonese speakers. Yet, it should be noted that
it takes longer to pronounce digit names in Welsh than in English.
The speed of pronunciation reported in Table 11.1 is determined by
asking participants to pronounce a group of random digits as
rapidly as possible and measuring the average time taken for each
number. This average time is not entirely a matter of the syllables in
each digit name (for example, it takes less time in English to say
seven with two syllables than to say six with one), though some lan-
guages do seem to have fewer syllables. Perhaps, as some
researchers (Ellis & Hennelly, 1980) have argued, it is possible that
the differences in digit spans between speakers of the different
languages could be accounted for by the different sound durations
for numbers in the different languages.

One way of investigating this possibility is to draw a scatterplot
of the information in Table 11.1, as shown in Figure 11.1. With the
exception of one point (Cantonese), the scatterplot seems to show a
clear inverse relationship between average digit span and sound
duration. As average sound duration increases, so digit span seems
to decrease. The digit span for Cantonese is not completely outside
this trend, but it falls fairly far from the other average digit span
scores. It is possible that this score is an ‘outlier’, which means that
it is possible that the Cantonese score includes a greater degree of
error or measurement imprecision than do the other scores, or even
that some other unknown factor has influenced the score. (Of
course, it is also possible that the score is correct.)

Table 11.1 Digit span and sound duration in a number 
of languages

Language Mean number Digit span Rapid sound
of syllables per duration
digit name (msec/digit)

Welsh 1.1 5.77 385

English 1 1.1 6.55 321

Cantonese 1 9.9 265

English 2 1.1 7.21 256

Spanish 1.625 6.37 287

Hebrew 1.875 6.51 309

Arabic 2.25 5.77 370

Data from Hoosain, 1997, p. 122
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In Tutorial 10 we showed how we could make the trend shown in
Figure 11.1 precise by inserting a regression line into the scatterplot.
In this tutorial we will show how we can assign a number to indicate
the strength of the inverse relationship visible in Figure 11.1. 
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Figure 11.1 Scatterplot of digit span against sound duration

The product-moment correlation coefficient
Although it is useful to gauge the strength of a relationship by
looking at a scatterplot (and you should always look at a scatterplot
of your data), there are more formal methods based on calculations
that give a numerical value for the degree of correlation between
two variables. The product-moment coefficient of correlation, (also
known as Pearson’s correlation coefficient) is calculated on the basis of
how far the points lie from the ‘best-fit’ regression line. It is
symbolised by the small letter r (chosen because it is the first letter
of ‘regression’).

The formula for r, the (sample) product-moment correlation
coefficient, is:

The product-
moment correlation 
coefficient (r) is 
also known as
Pearson’s correlation
coefficient, named
after the English
mathematician, Karl
Pearson.

r �
sxy

�
sx sy

To calculate the covariance between x and y, we use the formula:

where: x is the variable on the horizontal axis 
y is the variable on the vertical axis
sx and sy are the standard deviations of x and y, respectively 
sxy is the covariance between x and y

Equation 11.1

Equation 11.2

sxy �
Σ xy – 

ΣxΣy
�

n
n – 1



184 NUMBERS, HYPOTHESES AND CONCLUSIONS

Certain calculators with statistical functions provide a key (usually
marked r) for directly calculating the correlation coefficient. If you
do not have such a calculator, we give a method for the manual
calculation of r, below.

The meaning of r
The product-moment correlation formula has been concocted in such
a way as to ensure that the value of r will fall with in the range –1 to
+1. An r of –1 means a perfect negative correlation (a perfect inverse
relationship, where, as the value of x rises, so the value of y falls) and
an r of +1 means a perfect positive correlation (where the values of x
and y rise or fall together). An r of 0 means zero correlation, which
means that there is no relationship between x and y. Correlation  coef-
ficients that fall between 0 and +1, or between 0 and –1, are harder to
interpret. Guilford (cited in Sprinthall, 1987) offers informal interpre-
tations for statistically significant Pearson correlations of various
sizes, reproduced in Table 11.2.

sx � standard
deviation of x.

sy � standard 
deviation of y.

sxy � covariance of 
x and y.

Table 11.2  Guilford’s informal interpretations of the 
magnitude of r

Value of r (+ or –) Informal interpretation

< 0.2 Slight; almost no relationship

0.2 – 0.4 Low correlation; definite but small relationship

0.4 – 0.7 Moderate correlation; substantial relationship

0.7 – 0.9 High correlation; strong relationship

0.9 – 1.0 Very high correlation; very dependable relationship

Calculating Pearson’s r
It is best, when calculating r manually, to use a layout of the kind
shown in Table 11.3. Table 11.3 provides you with an efficient,
systematic way of calculating sXY, sX and sY, as well as the means of
x and y. In Table 11.3 the calculation of r is based on the data in Table
11.1, which sets out the data for digit span sets and rapid sound
duration as determined in seven studies (i.e. n � 7). 

r � 0: no relationship

r � +1: perfect 
positive linear 

relationship

r � –1: perfect 
negative linear 

relationship
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From these results we can calculate r: 

Recalculate the correlation coefficient for the data shown in Table 11.3,
omitting the Cantonese data. You should get a value close to –0.9310.
This is a much more substantial correlation than we obtained when the
Cantonese data was included. Why do you think omitting one data pair
causes such a substantial change in the correlation coefficient?

Activity 11.1

Correlation is not a
robust measure: it is
strongly affected by
outlying points.

Table 11.3 Calculating the correlation between digit 
span and sound duration

x (digit span) y (sound duration) xy

Welsh 5.77 385 2 221.45
English 1 6.55 321 2 102.55
Cantonese 9.9 265 2 623.5
English 2 7.21 256 1 845.76
Spanish 6.37 287 1 828.19
Hebrew 6.51 309 2 011.59
Arabic 5.77 370 2 134.9

Σ 48.08 2 193 14 767.94
s 1.43 49.57

sxy �
14767.94 – 

� –49.14

(48.08 × 2193)
��

7
6

r � � –0.6932
–49.14

��
1.43 × 49.57

A value of r � –0.6932 shows a substantial inverse relationship
between digit span and rapid digit sound duration.

If you complete Activity 11.1 and reflect on the substantial
improvement in the correlation that arises from omitting the
Cantonese data, you will realise that correlation is not a robust
measure: it is strongly affected by outlying points. This means that
it is important to check data entry very carefully when calculating
correlation coefficients, and to carefully investigate any data points
that appear to be outliers. Further investigation does suggest that
the Cantonese score for digit span may indeed be exceptional
because the advantage does not extend to memory for words (word
span). Hoosain (1997, p. 123) comments, ‘This also weakens the
possibility that the digit span difference for Chinese is due to
motivation or inclination of subjects to memorise things’.
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Rank correlation
It is not always necessary or possible when investigating correlation
to draw upon the sort of measured data reported in Table 11.1. An
alternative is to work from rank positions. When gymnastics com-
petitions are judged, for example, the marks that are awarded by
the judges may have little deep-rooted meaning, for they are really
intended to place the competitors in rank order – first, second, third,
etc. In this section we will look at a way of measuring the strength
of association between pairs of ranked variables. It would, of course,
be possible to use the correlation coefficient r in such cases, but there
is an alternative measure that was specially designed for ranked
data. It is called the rank coefficient of correlation (sometimes known as
Spearman’s coefficient of rank correlation after its inventor, Charles
Spearman). We will write the symbol for the Spearman coefficient as
rs. Although it is sometimes referred to as ρ (rho, the Greek letter for
r), we will not use this notation, since many authors reserve ρ as the
symbol for the population correlation coefficient.

If your data consists of natural ranks, you may proceed to calcu-
late rs immediately. However, if your data consists of measures 
(numbers rather than ranks), you will need to rank your data before
you calculate rs. In Table 11.4 ranks are assigned to the measures
reported in Table 11.1. The ‘English 2’ study reported the lowest digit
sound duration (256), so this digit sound duration score is assigned
the rank of 1. The Cantonese study reported the second lowest digit
sound duration, so the Cantonese digit sound duration score is
assigned the rank of 2. We proceed in this manner until all the digit
sound duration scores have been assigned ranks. The digit span
scores are similarly ranked from lowest to highest. Notice that the
lowest digit span score is 5.77, and that speakers of two languages
(Welsh and Arabic) share this score. These two languages therefore

An alternative index
of correlation is
called the rank 

coefficient of 
correlation, 

sometimes known 
as Spearman’s 

coefficient of rank
correlation (rs) after
its inventor, Charles

Spearman.

When ranking data,
assign the value of 1

to the lowest score.

Table 11.4 Calculating rank correlation between digit span and sound duration

x (digit span) Rank x y (sound duration) Rank y d d 2

Welsh 5.77 1.5 385 7 –5.5 30.25
English 1 6.55 5 321 5 0 0
Cantonese 9.9 7 265 2 5 25
English 2 7.21 6 256 1 5 25
Spanish 6.37 3 287 3 0 0
Hebrew 6.51 4 309 4 0 0
Arabic 5.77 1.5 370 6 –4.5 20.25

Σ 100.5
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rs � 1 – 
6Σ d 2

�
n(n2 – 1)

Equation 11.3

Substituting the results from Table 11.4 in the rs formula we get:

where: n is the sample size
d is the difference between each pair of ranks

rs � 1 – � –0.7946
6 × 100.5
��

7 × 48

Recalculate the correlation coefficient for the data shown in Table 11.4,
omitting the Cantonese data. Why do you think omitting one data pair
does not cause the substantial change it did in Activity 11.1?

Activity 11.2

share the first two ranks (1 and 2) and each of them receives the aver-
age of these two shared (‘tied’) ranks (i.e. [1 + 2]/2 � 1.5). You should
be aware that rs does not give correct correlation values when there
are a large number of tied scores in the data – but one or two ties in
the data usually makes little difference to rs.

The formula for rs is based on calculating the differences (d)
between each pair of ranks and this is done in the column marked
d in Table 11.4. Each of these differences is then squared and
summed (see the column marked d 2 in Table 11.4). The formula for
rs is as follows:

Notice that the rs value of –0.7946 is higher than the equivalent r
value of -0.6955, calculated earlier. According to Guilford’s  criteria
(Table 11.2) Spearman’s rs yields a high correlation while Pearson’s r
yields a moderate correlation. This is because methods based on
ranks (as opposed to scores) are more robust than methods based on
scores – i.e. they will be less influenced by outlying values.
Spearman’s rs is therefore useful not only when you have collected
naturally ranked data, but also when you suspect that your measured
data may contain extreme or outlying scores.

If you calculated rs in Activity 11.2, you should have got rs � –0.7286.
This is lower than the equivalent r value of –0.931, calculated
previously. It seems that even though rank correlation is more robust
than Pearson’s correlation, it is also less sensitive when other things
such as sample size are equal. 

rs does not give 
correct correlation
values when there
are a large number
of tied scores in the
data – but one or
two ties in the data
usually makes little
difference to rs.

Spearman’s rs is
more robust than
Pearson’s r.

rs is less sensitive
than r, i.e. it has 
less power.
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Using a spreadsheet to calculate correlations

The basic layout for the manual calculation of the correlation coeffi-
cient, as shown in Table 11.3, can be constructed with ease in spread-
sheet programs. The data are entered just as they are in Table 11.3,
and formulas are entered to calculate Σx, Σy, Σxy, sx, sy, as well as
final calculations involving these components. Figure 11.2, which is
a screen snapshot, shows the setup (including the formula notation)
and the results, as produced in Microsoft Excel. (An introduction to
spreadsheet programs is offered in the additional CD material.)

However, Excel also offers very useful shortcut formulas for calcu-
lating correlation coefficients. The formula CORREL calculates the
product-moment correlation directly, i.e. without all the interim
steps! A layout for this method is shown in Figure 11.3. 

Box 11.1

Using SPSS® to calculate correlations
Create a new SPSS® data file, and enter the data in two columns, as
shown in the accompanying screenshot (Figure 11.4). Name and
label the variables if you wish.

Box 11.2

Figure 11.2 Layout for manual calculation of correlation in
Microsoft® Excel

Figure 11.3 Layout for automatic calculation of correlation in
Microsoft®Excel
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Then choose ‘Analyze’ from the main menu and ‘Correlate’ then
‘Bivariate’ from the ‘Analyze’ sub-menus shown in the screenshot.
You will then need to select the variables for the correlation analysis,
using the mouse to highlight variable names, and the arrow in the
middle of the dialog box to move the variables into the right-hand
pane. Notice the options to select particular types of correlation
methods, and to calculate significance tests. Click ‘OK’ when you are
done, and you should see the output of Figure 11.5. Notice that the
results are represented in the form of a matrix.

Figure 11.4 Calculation of correlation in SPSS®

Figure 11.5 Output of correlation analysis in SPSS®
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Cause and effect
For many everyday events, the link between cause and effect seems
fairly straightforward. Turn on the tap and water comes out; fall to
the ground and you will experience pain. But not all relationships
are so easy to interpret. If you have persistent back pain and have
tried a number of remedies for it, an improvement can be very hard
to interpret. It could be because of the hot baths you have been tak-
ing, or the exercises you have been doing, or perhaps it is because of
the vitamin pills you have been taking, or perhaps it is because of all
of these things or none of these things. With many ailments you will
get better merely with the passage of time, and it may be impossible
to speed the process with attempted cures. As it has been said, ‘With
proper medication the common cold usually lasts about a week, but
left to its own devices it can drag on for seven days’.

Correlations are similarly difficult to interpret in a causal fashion.
A strong correlation between two things does not prove that the one
has caused the other. A strong correlation indicates a statistical rela-
tionship, but there may be many reasons for this relationship
besides cause and effect. For example, it is known that the number
of crimes over time is correlated with the size of the police force.
Does this mean that larger police forces cause more crime or (more
likely) that greater crime causes police forces to expand? A simpler
explanation might be that a larger police force encourages a higher
proportion of victims to report crimes. Increases and decreases in
crime probably have little to do with the size of the police force and
much more to do with changes in the economic and social value
system over time.

Correlations are 
difficult to interpret

in a causal fashion. A
strong correlation

between two things
does not prove that

one caused the other.

A correlation between
two variables, A and
B, can arise for one
of three reasons: A

causes B; B causes A;
or A and B are inde-
pendently related to
a third variable, C. 

Problems of interpre-
tation frequently

arise with the possi-
bility of the two vari-

ables being related to
an unknown third

variable.

Try to find at least two explanations for the following:
a) The number of cigarettes that people smoke is negatively corre-

lated with their income.
b) The average weekly pocket money paid to children in the United

States between 1976 and 1990 is strongly correlated with the num-
ber of violent crimes over the same period.

Activity 11.3

A correlation between two variables, A and B, can arise for one of
three reasons: A causes B; B causes A; or A and B are independent-
ly related to a third variable, C. Problems of interpretation fre-
quently arise with the possibility of the two variables being related
to an unknown third variable. For example, for the period covering
the last 80 years, the data relating Nelson Mandela’s age and the
population of the world are positively correlated – not because
there is a direct causal relationship but because they are both corre-
lated with a third variable: time. 

Correlation does not
imply causation.
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Some points to ponder
Correlations refer to linear relations between two
variables.
Correlations are meaningless if the variables are related in a non-
linear manner. Specifically, a lack of correlation between two meas-
ures does not imply a lack of association between them if they are
non-linearly related. Figure 11.6 illustrates the case of two variables,
x and y, that are strongly associated, but in the form of an inverse-U
relationship, rather than a linear relationship. Here the correlation
between x and y will be close to zero even though the two variables
are strongly associated. Because of the possibility of such non-linear
relationships, you should always inspect scatterplots of your data
rather than simply relying on correlation coefficients.

y

x

Figure 11.6 Scatterplot showing non-linear relation

Correlation coefficients should not be averaged
Correlation coefficients are not like ordinary numbers and do not
obey the normal rules of arithmetic. It is incorrect to average sever-
al correlation coefficients by calculating their arithmetic mean. The
difference between two Pearson correlations is meaningful, and its
statistical significance can be tested, but there is no way of testing
the significance of a difference between two Spearman correlations.
Calculating the average of several Pearson correlation coefficients
involves somewhat complicated methods (the Fisher z transform),
beyond the scope of this tutorial, but a set of Spearman rank corre-
lations can be ‘averaged’ by calculating the median value of the set.

Correlation coefficients cannot be directly compared
A correlation of 0.8 does not represent an association that is twice as
strong as a correlation of 0.4. The correct procedure to compare
correlation coefficients is to calculate the square of each of the cor-
relation coefficients (r 2). The square of a correlation coefficient is
known as the coefficient of determination. Broadly speaking, r2 is the
proportion of variation in one measure that is accounted for
statistically by the variation in the other measure. (For a graphical
explanation of this notion, see Tutorial 18.) A correlation of 0.8

Correlations are
meaningless if the
variables are not
related in a linear
manner.

Correlations should
not be added, or
averaged, without
an appropriate
transformation.
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means that 64% of the variation in one set of scores is accounted for
by the variation in the other (r 2 � 0.8 × 0.8 � 0.64). With a correla-
tion of 0.4, one measure accounts for only 16% of the variation in the
other measure (r 2 � 0.4 × 0.4 � 0.16). This means that a correlation
of 0.8 is really four times greater than a correlation of 0.4 (i.e. com-
pare 64% to 16%). When thinking about what a correlation really
means, it is always helpful to calculate r 2. For example, in
correlations of the size that Guilford calls slight (r < 0.2), one of the
measures accounts for less than 4% of the variation in the other
measure! In our example, correlating digit span with average digit
sound duration, we arrived at a correlation of –0.6955. This means
that 48% of the variation in digit span scores can be accounted for
by variation in average digit sound duration. However, when we
excluded the Cantonese data, we calculated a correlation of –0.931,
a value that implies that 87% of the variation in digit span scores

can be accounted for by
variation in average digit
sound duration – a much
stronger relationship.

Correlations are misleading if the underlying
populations are not homogenous
When interpreting a correlation, we assume that the strength of asso-
ciation between two variables applies across the entire range of these
variables. This means that we assume that high, middle and low
values of one variable are correlated with the other variable –  that
variable x is affected by variable y in the same way at all levels. When
this is true, the underlying population is said to be homogenous.

However, imagine a drug that only affects people at very low or
very high dose levels. At low dose levels this drug makes people very
silent and at high dose levels it makes people very talkative. It has no
effect whatsoever on people at intermediate dose levels. The effect of
this drug might be depicted in Figure 11.7, which shows a moderate
relationship between drug dosage levels and talkativeness. The dan-
ger with the type of correlation depicted in Figure 11.7 is that it
implies that there is a general association between increasing dosage
of the drug and becoming more talkative. But in fact this association
is only true at the extreme ends of the talkativeness spectrum.

A low correlation can also arise if two variables are positively cor-
related for one part of the population but negatively correlated for
another. Consider the introduction of a compulsory training pro-
gramme for motorcyclists that took place in the UK some years ago.
The intention of the training programme was to improve road safety
among motorcyclists and it was believed that the longer the training
programme (in hours), the more the road safety behaviour of motor-

Re-calculate the entries in Table 11.2
to reflect values of r2, rather than r.

Activity 11.4

When thinking
about what a 

correlation really
means, it is always

helpful to 
calculate r 2. 
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Figure 11.7 Scatterplot showing two variables that are positively 
correlated only for extreme values

cyclists would improve (i.e. a positive correlation). In fact no rela-
tionship was found between the duration of the training programme
and motorcycle road safety habits. When a psychologist was consult-
ed she examined the findings and concluded that the population of
motorcyclists was not homogenous. The findings of the study could
be depicted as in Figure 11.8, where the two groups are marked using
different symbols. Motorcycle enthusiasts loved their motorcycles
and rode them for pleasure. This group spent many hours on their
motorcycles and were intimate with every detail of the behaviour of
their machines. For them the government training programme was
insulting because it presumed that they needed basic information
about motorcycling. The longer the training programme, the more
this group tended to react against the programme and ride danger-
ously. The other group of motorcyclists, the car enthusiasts, really
only rode their machines as a form of transport – they would have
preferred to drive cars but could not afford them. This group tended
to spend very little time on their cycles and did not know very much
about the behaviour of their machines. For this group the govern-
ment training programme was very helpful because it forced them to
spend more time becoming familiar with their motorcycles. The
longer the training programme, the more this group benefited. 

Correlations are sensitive to restrictions in the range
of variables
The product-moment correlation coefficient can be substantially
attenuated by a restriction of range in the measured variables, and you
should attempt to ensure that this does not occur, or if it does, that
you acknowledge the problem when you interpret the correlation
coefficient. A clear example of this phenomenon is the relationship
between weight and boxing prowess, in the days before boxers and
boxing matches were regulated according to weight bands. As you

Correlations are 
misleading if the
underlying popula-
tions are not
homogenous.
Researchers should
ensure that 
sub-groups in the
sample do not 
differ markedly on
either of the 
correlated variables.

Correlations are 
sensitive to 
restrictions in the
range of variables.
Researchers should
make sure that the
correlated variables
do not have 
unrepresentatively
small variances.
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Figure 11.8 Scatterplot showing relation between two variables where the
sample is composed of two distinct groups

would expect, when there is no restriction on who can fight whom,
there is a strong correlation between the percentage of matches a
boxer wins, and his (or her) weight – heavier boxers tend to beat
lighter boxers, especially when flyweights are allowed to fight
heavyweights! Figure 11.9 shows a scatterplot of this relation (left
panel), and what happens to the relationship when the range of
weights is restricted (right panel).

As Figure 11.9 shows, restriction of range is a serious threat to the
accurate interpretation of correlation coefficients. In order to under-
stand whether a correlation accurately reflects the strength 
of a relationship, we should ensure that the range of both  variables

Life expectancy showed a general tendency to increase during the
19th and 20th centuries as standards of health care and hygiene
improved. The higher life expectancy varies between countries,
communities, and even families. You come across a graveyard in
Scotland and determine the year of death and age of death for 
13 males in the Makhatini clan (see Table 11.5). Is there an indication
that life expectancy is increasing for this clan? What are the appropri-
ate measures to use in answering this question?

Activity 11.5

Table 11.5 Ages recorded on gravestones for 13 males 
in the Makhatini clan

Year Age Year Age Year Age Year Age Year Age

1827 13 1895 34 1918 16 1941 74 1977 83
1828 13 1908 1 1924 68 1965 87
1884 83 1914 11 1936 77 1965 65
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is not restricted. Ideally, we should compare the sample variance in
each of our measured variables to the population variance on the
same variables. This will often be a very difficult task, since we rarely
have information about population variances, but there may well be
suitable benchmarks – e.g. the sample variance should not be much
less than the variance reported for other samples in the literature. 

Significance testing of r
Just as we acknowledge that sample means are only estimates of
population means, and will exhibit random sampling variation, so
we must acknowledge that sample correlation coefficients are only
estimates of the population correlation coefficient, ρ (rho), and will
also exhibit sampling variation. Thus, the correlation of –0.6932 for
the data of Table 11.1 might have turned out to be –0.5, or 0.9, or
some other value, had we collected an entirely different sample of
languages. Since correlation tests the strength of a linear relation-
ship, the critical question is whether the correlation provides evi-
dence of any relationship at all. That is, can we be confident that 
ρ ≠ 0, on the basis of the r we have calculated?

There are two widely accepted approaches to testing the sig-
nificance of r. The first is the simpler, and involves transforming r to
a t-value. The second involves transforming r to a z-value, and is too
complex to discuss here (see Hays, 1994).

Transforming r to t
For most purposes, a transformation of r to t is adequate, assuming
that the sample size is not too small (n ≥ 10).
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Figure 11.9 The effect of restriction on range on the correlation coefficient

t �
r
�

Equation 11.4�n� –� 2�
�1� –� r�2�
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Once we have converted the r-value to t, we proceed as we do for 
t-tests, i.e. decide whether the calculated t-value exceeds the critical
t-value, and accordingly reject or accept H0.

Thus, for the correlation calculated on the data of Table 11.1:

t � � –2.150
–0.6932
��

If we look up the critical value for t in our t-tables we find that this
exceeds the critical t-value (t � –2.01) for a one-tailed test, but not
for a two-tailed test (t � ± 2.57). A one-tailed test is clearly implied
by the wording of the problem, so we reject H0, and conclude that
there is sufficient evidence of a relationship between digit span and
sound duration. 

Worked example
Nearly all languages in the world include words for the lower car-
dinal numbers (such as ‘one,’ ‘two’, and ‘three’). Many languages,
however, do not include words for the higher cardinal numbers
(such as ‘nine’, ‘ten’, a ‘hundred’, a ‘thousand’, etc.). One hypothe-
sis to explain this finding is that numeral words originate out of a
communicative need for words applicable to collections of things.
This hypothesis would hold that lower value number words are
invented more readily than higher value number words because
they are the ones humans need the most. This amounts to the claim
that in human affairs the need to refer to some specific low number
n is likely to arise more often than a need to refer to its successor, 
n + 1. A test of this hypothesis can be found in some data collected
by Thorndike and Lorge (1944). They examined 4.5 million words
from popular magazines of the time. Table 11.6 sets out the frequen-
cy with which the words ‘two’, ‘three’, etc. occur in this dataset.

Table 11.6  The frequency of cardinal number words
Words Rank Frequency

two 1 5958
three 2 2673
four 3 1637
five 4 1462
six 5 806
seven 6 615
eight 7 657
nine 8 468

�7� –� 2�
�1� –� (�–�0�.6�9�3�2�2)�
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Solution
Although we should consider calculating the Pearson correlation
coefficient between cardinal number word and frequency, a scatter-
plot (Figure 11.10) shows that this is not suitable, since the relation is
clearly not linear. We therefore decide to calculate the Spearman rank
correlation, since ranking the frequencies will counter this problem.

It is easy to rank the cardinal number words in Table 11.6
because they are naturally ordered. Similarly, the frequencies with
which the words occur in Thorndike and Lorge (1944) can be read-
ily ranked. Table 11.7 sets out additional information for calculating
rs. There are eight cardinal number words in the dataset, so n � 8. 

Table 11.7  Calculating the rank correlation between 
cardinal numbers and word frequency

Words Rank Frequency Rank y d d 2

two 1 5 958 8 -7 49
three 2 2 673 7 -5 25
four 3 1 637 6 -3 9
five 4 1 462 5 -1 1
six 5 806 4 1 1
seven 6 615 2 4 16
eight 7 657 3 4 16
nine 8 468 1 7 49

Σ 166
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Figure 11.10 Scatterplot of relation between cardinal number words and
frequency of usage

From this information, we can work out the Spearman rank corre-
lation:

rs � 1 –

� 1 – � –0.97626 × 166
�
8 × 63

6Σd2

�
n(n2 – 1)
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This is a very high negative correlation, and we conclude that car-
dinal number words show frequency of usage in inverse relation to
their position in the cardinal sequence. Thus, words for earlier
numbers (e.g. two, three) are used much more frequently than
words for later numbers (e.g. eight, nine).

Summary
1. In this tutorial, we were interested in measures of the strength of

linear relationship between two continuous or ranked measures.
This type of relationship is called a correlation, and is usually
indexed with a correlation coefficient.

2. A useful graphical device in understanding data of this kind is
the scatterplot, which is a plot of two variables assigned to the 
x- and y-axes, respectively. In particular, this plot helps tells us if
the relationship is linear and if it is appropriate to calculate a
correlation coefficient.

3. The most common correlation coefficient is the product-moment
or Pearson coefficient. This is calculated by dividing the covari-
ance of two variables by the product of their standard deviations.
The product-moment coefficient is an index of the degree to
which the relationship can be described as a straight line (or by a
linear equation).

4. The size of (most) correlation coefficients ranges between –1 and
+1, where –1 � a perfectly linear negative relationship, 0 � no
relationship, and +1 � a perfectly linear positive relationship.

5. In many situations, it is useful to work with ranked data. The
Spearman rank correlation coefficient is used for this purpose,
although the Pearson coefficient can also be used on ranked
data.

6. In correlation problems, one should always beware of interpret-
ing correlations between variables as indicating causal relation-
ships. There might be other reasons for the correlation, most
importantly the presence of a ‘third variable’.

7. Before interpreting a correlation, one should always make sure
that the data does not depart noticeably from linearity, that the
underlying population of scores is homogeneous, and that the
range of either variable is not restricted. 
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Exercises 
1. The accompanying table shows an IQ score and an English test,

for each member of a sample of 10 pupils taken from a mixed
ability class. The English test was marked out of 50 and the
range of IQ values for the class was 80 to 140.
a) Estimate the product-moment correlation coefficient for the

class.
b) What does this correlation coefficient measure?

IQ: 110 107 127 100 132 130 98 109 114 124 136 95 102 111

English: 26 31 37 20 35 34 23 38 31 36 42 25 26 27

Correlation Variance shared 
coefficient by two variables

– 100
0.85 –

– 68%
0.79 –

– 40%
– 25%

0.45 –
– 13%

0.22 –
0.19 –

– 0%

3. Fourteen students sat two Statistics tests, one theoretical and one
practical. Their marks are shown in the following table:

1 Theory 5 9 7 11 20 4
1 Practical 6 8 9 13 20 9
2 Theory 17 12 10 15 16 14
2 Practical 17 14 8 17 18 18

2. Fill in the blanks in the table below:

a) Draw a scattergraph to represent these data. 
b) Find the product-moment correlation coefficient. 
c) Using evidence from (a) and (b), explain why a straight line

regression model is appropriate for these data. 



4. Outline and explain the relationship between correlation and
regression analysis.

5. Describe an imaginary study measuring the relationship
between two variables where the use of correlation coefficients
might be misleading because the underlying populations are not
homogenous.

6. A cheese expert is blindfolded and asked to taste 10 cheeses and
arrange them in order of price. The correct order was A, B, C, D,
E, F, G, H, I, J. The order chosen by the expert was A, (B, D), C, G,
J, (E, F, H, I). The brackets indicate cheeses to which the expert
assigned the same price. Using tied ranks, determine the value of
rs as a measure of the correlation between the expert’s opinion
and the true order.
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Measurements

Gillian Finchilescu

•••••••••••
After studying this tutorial, you should be able to:
• Develop a scale to measure a construct or

attribute.
• Refine the scale through item analysis.
• Determine the reliability and validity of the scale.

TUTORIAL

12

In the social sciences, we often study variables or constructs that are
not tangible. Psychologists frequently explore such things as atti-
tudes, abilities, personality traits, perceptions; sociologists pursue
such things as social class, delinquency, alienation; political scien-
tists look at political leanings and voting intentions. In order to
research these constructs, we need to ‘measure’ them, i.e. develop
an index that allows us to ascertain whether the construct is pres-
ent, what its magnitude is, or the form in which it exists.

This tutorial discusses psychometric issues and statistical proce-
dures that are used in developing measurement instruments. We will
be applying some of the statistical procedures introduced earlier in
the text to investigate the ‘soundness’ of social science measures.

Measuring a construct
Suppose you were interested in investigating people’s attitude to a
country’s new language policy. You could simply ask people a ques-
tion such as ‘Do you think South Africa’s language policy is a good
thing?’, to which they could respond yes or no. However, there are
problems with this attitude measure: there is only a two-option
answer, for instance, and only one item is used.



The two-option answer, generally referred to as an alternative-
choice answer, forces people into one side or the other – pro/anti,
agree/disagree. There is no option to express indecision, nor is the
strength of the respondent’s feelings considered. A respondent who
is basically indifferent to the issue might, almost randomly, opt for
the negative alternative. This person will be allocated the same
score as someone who is fervently opposed to the issue. Thus, this
form of response scaling is very imprecise and can be misleading.

In addition, with only one item we have no way of telling how
reliable the response is – has the person answered randomly, or are
they likely to respond consistently on different occasions? A further
problem is that the question is very broad. The language policy
includes the stipulations (among others) that there are eleven official
languages in South Africa, and that all citizens have the right to
receive education in their ‘mother-tongue’. It is quite possible that
the respondent does not think there should be more than one official
language, but completely concurs with the ‘education in mother-
tongue’ stipulation. Thus, one positive or negative answer gives no
real information about the respondent’s feelings.

Most issues are complex and will require a range of questions to
assess them. For this reason it is usually best to create a summated
scale to measure a construct. A summated scale consists of a series
or set of items that ‘sample’ the construct. The responses to the item
ultimately are totalled to produce a single score that is the index or
measure of the construct.
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The soundness of a
measure is influenced

by the response
format, and the

number and kind of
items used.

A summated 
scale consists of a

series of items that
‘sample’ the central

construct.

Things to beware of when constructing items
Once you have decided on the content of the items of the scale or
test, and on the type of scaling, the next step is to construct indi-
vidual items. In doing so it is important to ensure the following:
1. The meaning of each item must be clear and not rely on

unspecified knowledge or assumptions. 
2. Items must convey only one idea or question. 
3. Some of the items in the scale should be phrased so they

express a reverse sentiment to that of the other items. 
4. Try to avoid making the evaluative nature of the item too blatant.

Respondents tend to try to present themselves in a positive light,
so will frequently endorse socially desirable responses.

Box 12.1

Defining the domain
After clearly defining the construct and variable we want to meas-
ure, the next step is to specify the domain of the construct. For
instance, suppose you wished to construct a scale to measure how
people feel about a proposal to privatise a municipal service such as



refuse collection. To establish the relevant domain you could do
such things as: 1) discover what the proposal involved, 2) read
assessments of similar issues in other cities, or 3) establish the range
of perceptions held by stakeholders through interviews or focus
groups. From this a set of content areas can be formulated.

One means of ensuring that the entire domain is sampled is 
to set up a grid, with the content areas as columns and the mani-
festations of these as rows. Then you would devise items to fit
each of the cells. Our present example might lead to a grid such as
the one in Table 12.1, which gives an example of items that would
fit in each cell.
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Define the constructs
you want to measure
clearly, and ensure
that the items reflect
the ‘domain’ of the
construct.

Table 12.1 The construction of items that sample the domain

Content

Labour concerns Efficiency Accountability Cost

Pro-privatisation Privatisation will Privatisation will Privatisation will Privatisation will
lead to workers lead to a better make the workers lead to lower costs 
receiving better service more diligent for the service
salaries

Anti-privatisation Privatisation will In a privatised Privatisation means Privatisation will
lead to many job scheme, efficiency that the only con- lead to an escalation
losses will be measured cern will be with of costs to the

in terms of cost making a profit, householder as the
saving rather than and not with giving firm will have 
quality of service householders a to show profits

good service 

Suggest some other items that fit the cells specified in the domain grid
of Table 12.1

Activity 12.1

Response scaling
When you have determined the content of the items, it is then
important to decide in what form the respondents will answer the
questions. Response scaling refers to methods of associating num-
bers with responses. Below we discuss four commonly used scaling
formats.

Alternative-choice
Alternative-choice format requires participants to respond to an
item by marking one of two choices, e.g. ‘yes’ or ‘no’, ‘true’ or
‘false’, ‘agree’ or ‘disagree’. Each of these options will be associated

Manifestations



with a number, e.g. 0 and 1. Although the alternative-choice scale
lacks precision, there are instances where it is appropriate, e.g. a
lifestyle measure that asks respondents to indicate (yes or no)
whether they possess objects such as a cellphone, television, and
video recorder.

Multiple-choice
Students are all too familiar with this response format, which is
commonly used for achievement and knowledge tests. A number of
possible answers are given for each item, and the respondent is
usually required to select only one. We could construct a test of 
the community’s knowledge and perceptions of the new municipal
policy by using a number of multiple-choice items (see Figure 12.1). 
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Please answer the following questions by circling the correct answer. 

1. According to the new municipal refuse collection policy, how often will refuse be
collected?
a) Daily
b) Weekly
c) Monthly
d) Annually

2. Which of the following statements describes the effect privatisation will have on the
cost of refuse collection?
a) The cost will increase.
b) The cost will decrease.
c) The cost will decrease in the short term, but increase in the long term.
d) The cost will increase in the short term, but decrease in the long term.

Figure 12.1 Instructions and response format for a multiple-choice test

Responses to multiple-choice items are quantified by assigning the
value 1 to a correct response and the value 0 to an incorrect
response. When the items are not testing knowledge, numbers 
(e.g. 1–4) or letters (e.g. a–d) are typically assigned to each of the
possible responses.

Rating scale
This scale is frequently called the Likert Scale (Likert, 1932), and is
especially useful for measuring attitudes and opinions. The item
generally consists of a statement to which the respondent must
indicate the degree of agreement or disagreement by marking a
point on the scale. In this format, a continuum of scale points is pre-
sented, anchored by ‘Strongly agree’ on the one side and ‘Strongly
disagree’ on the other. To quantify the responses to each of the three
items of the measure of attitudes towards privatising municipal
services (see Figure 12.2), we typically assign numbers to the
response items as follows: SD � 0, D � 1, N � 2, A � 3, SA � 4. 



In our measure, we have used a 5-point rating scale response for-
mat, but the optimal number of scaling points is a matter of debate.
Nunnally (1978) argues that the reliability of the (full summated)
scale increases with the number of scaling points used, levelling off
at 7 points. Measures with fewer points are easier to complete, but
are also less reliable. A further matter of debate is whether we
should have the central ‘undecided’ or ‘neutral’ point, or whether it
is better to have an even number of steps that force the respondent
to one side or other. The argument against the midpoint is that it
allows respondents to avoid thinking about the item and having to
make a decision. On the other hand, respondents who are genuinely
undecided or neutral may become frustrated at not being able to
express this. Ultimately, the researcher must decide which format
best suits the research requirements.

Bipolar adjectives
This scale format is most commonly known as the semantic-differ-
ential scale, and was developed by Osgood and his associates
(Snider & Osgood, 1969). It is similar to the Likert scale in that a
continuum of points is presented, anchored at each end. However,
in this type of scaling the anchors consist of adjectives with oppo-
site meanings, such as good–bad, honest–dishonest. Respondents
are asked to describe a concept or category of person using this con-
tinuum. Thus, marking a number close to one end of the continuum
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Please answer the following questions by indicating your reactions to each statement.
Circle the response option, using the following scale, to show the extent to which you
agree or disagree with each statement. 

1. Privatising municipal services will lead to better service delivery.

SD D N A SA

2. Privatising municipal services will make workers more productive.

SD D N A SA

3. Privatising municipal services will escalate the cost of services.

SD D N A SA

Figure 12.2 Instructions and response format for a rating scale

SD if you strongly disagree with the statement

D if you disagree with the statement

N if you are neutral about the statement

A if you agree with the statement

SA if you strongly agree with the statement



would indicate that the respondent feels that that adjective strong-
ly describes the concept or category, whereas a number towards the
centre of the continuum indicates that neither of the adjectives is an
accurate representation. An example of such an item would be:
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1 2 3 4 5 6 7

The new municipal refuse collection policy will lead to

Lower efficiency Higher efficiency

Summing scale scores 
The following example will be used to illustrate how to summate
the scores and evaluate the scale. A researcher wishes to run a sur-
vey on how people feel about the legalisation of marijuana. He
develops a questionnaire, which contains 4 knowledge items to
establish how much people know about the facts of marijuana, and
a 6-item attitude scale to measure the extent to which they would
support the legalisation of marijuana. The knowledge questions
were designed with multiple-choice responses, and the attitude
items responses on a 7-point Likert scale. The questionnaire is
shown in Box 12.2.

Opinions about marijuana (dagga) questionnaire

Thank you for taking part in this study. Your responses to this ques-
tionnaire are completely confidential. Your name is not required. When
the study is published all participants’ scores will be amalgamated, so
your particular answers will not be identifiable.

Please complete the following personal questions. 
Age: (Please tick 
the appropriate box)

Sex: Male Female

Please answer these questions by writing the correct answer in the
box next to the questions:
1. Marijuana (or dagga) is 

A A synthetic substance
B Made from an insect
C Made from the leaf and flower tops of a plant
D Made from the horn of a rhinoceros Answer: 

2. Indicate which of the following is NOT another name for marijuana 
A Crack
B Cannabis
C Ganja
D Grass Answer: 

Box 12.2

18–25 26–35 36–50 51+
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3. Which of the following effects are known to occur when a person
takes marijuana? 
A Impaired motor skills
B Impaired sense of time
C Impaired sight
D Both A and B Answer: 

4. The active chemical in marijuana is 
A Ecgonine
B Tetrahydrocannabinols
C Phalloidine
D Tetraiodothyronine Answer: 

Please read each of the following items and indicate the degree to
which you agree or disagree with the item by ticking one of the 
7 boxes. If you tick 

1. Marijuana is not addictive, so it is a mistake to refer to is as a
dangerous drug in the same category as heroin or cocaine.
Strongly Strongly
Disagree Agree

2. Smoking marijuana is less harmful to one’s health than drinking
alcohol.
Strongly Strongly
Disagree Agree

3. Smoking marijuana is very likely to lead to the use of more dan-
gerous drugs such as heroine and cocaine.
Strongly Strongly
Disagree Agree

4. The legalisation of marijuana would lead to lower productivity
on the part of the workforce.
Strongly Strongly
Disagree Agree

5. The many positive medical benefits of marijuana, such as in the
alleviation of nausea after chemotherapy and relieving eye-pres-
sure in glaucoma, are a strong argument for its legalisation.
Strongly Strongly
Disagree Agree

6. The pursuit of people selling marijuana is a waste of the police
force’s time and energy.
Strongly Strongly
Disagree Agree

1 – it means you strongly disagree 5 – it means you agree slightly
2 – it means you disagree 6 – it means you agree
3 – it means you disagree slightly 7 – it means you strongly agree
4 – it means you are undecided

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7



Coding responses
After the questionnaire has been administered to a sample of
respondents, the responses to the questions must be coded and
stored in a data file. The responses to the marijuana questionnaire
are coded into numbers as follows: 
• Age: 18–25 � 1; 26–35 � 2; 36–50 � 3; 51+ � 4 
• Gender: male � 1; female � 2
• Knowledge items: A � 1; B � 2; C � 3; D � 4 
• Attitude items: 1 to 7, as indicated

Figure 12.3 shows the first screen of an Excel spreadsheet holding
the coded responses of the representative sample. Notice that each
research participant is identified in the first column – P1, P2, P3, …
etc. – and that responses to each of the questionnaire items are rep-
resented in the columns.
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Figure 12.3 Microsoft® Excel spreadsheet showing the responses of the
first 12 participants

Refer to Figure 12.3 and answer the following questions:
a) What is the age and gender of participants P1 and P2?
b) What did participant P3 respond to each of the 4 knowledge items?

Activity 12.2

Reverse scoring
The researcher has correctly varied the sense of the items such 
that for some items agreement indicates a positive attitude (e.g. ‘2.
Smoking marijuana is less harmful to one’s health than drinking alcohol’)
and for others disagreement indicates a positive attitude (e.g. 



‘3. Smoking marijuana is very likely to lead to the use of more dangerous
drugs such as heroine and cocaine’). This strategy is necessary to
ensure that the respondents read each item and do not use a
response set in which they consistently mark only one side of the
scale. Clearly the scores as they stand could not be summed to give
a total score reflecting the stance of the individual. Before summa-
tion, you must reverse the scores of the opposite-meaning items 
(7 for 1, 6 for 2, etc.). You should first decide whether a high score 
is to indicate a positive or negative attitude. In this case, a high 
score will indicate a pro-legalisation attitude. A simple method for
achieving this reversal is to use the following formula:
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where: Y � the new score 
K � the number of scaling points used in the 

rating scale or bipolar adjective scale
X � the number marked by the respondent

Y � (K + 1) – X Equation 12.1

For example, in the attitude to marijuana example, a 7-point scale is
used. If a respondent has marked 2 on the third item (S3), then the
reversed score would be Y � (7 + 1) – 2 � 8 – 2 � 6.

Summing the scores
To obtain one score that represents the individual’s attitude or opin-
ion, the scores of the items are totalled or, alternatively, the average
of the scores can be found. The total is generally considered better
as it gives a wider range of scores. However, before doing this, you
must consider the missing scores. Missing scores occur when
respondents have not answered questions, either accidentally or
deliberately. There are a number of options to take in this situation:
1. Remove these respondents from the data file. This is a good option if

the sample is sufficiently large for the responses on the answered
questions not to be missed. However, if the questions were
deliberately missed (e.g. in protest), these respondents may rep-
resent a particular viewpoint. Excluding them would then
diminish the representativeness of the sample.

2. Replace the missing number with the average of the respondent’s other
scores. The total found in this manner is termed the weighted
total (or pro-rated total). The simplest way of calculating this is
to (i) find the average of the items for the individual, then (ii)
multiply that average by the number of items in the scale. This
is the most common method of dealing with missing numbers.

If you replace the missing scores (option 2), it is important to decide
on a maximum number of questions a respondent is ‘allowed’ to

After reverse scoring,
summed scores for
each respondent
should be saved in a
new spreadsheet
variable.



miss. A rule of thumb is that every respondent should complete at
least 75% of the items. If more than 25% are missing, the respondent
should be dropped from the sample. In the above example, respon-
dents were excluded if more than one item was missed. 
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A scale measuring work stress consists of the following five items,
each of which was answered using a 6-point Likert scale anchored by
1 � strongly agree and 6 � strongly disagree. The number marked 
by a respondent (Lindi S.) is given next to each item. It is intended
that a total high score on this scale should indicate a high level of
stress. Consider the items and decide which require the scores to be
reversed. Then calculate Lindi’s total score on this scale.

Activity 12.3

(6)
(2)

(4)
(3)
(1)

Evaluating a scale or test
When a new scale or test has been developed, it is important to
check that the scale measures what it claims to measure (its validi-
ty), and that it gives consistent scores (is reliable). It is also impor-
tant to check whether all the items in the scale are valuable and
should be retained, through item analysis. 

In order to evaluate a scale, it must be tried out on a test sample.
Scales are usually constructed for general use, so the test sample
should be representative of the population for which the scale is
designed. Thus, if a scale is designed to measure the mathematical
aptitude of primary school children, the test sample must also con-
sist of primary school children. However, frequently you only wish
to evaluate the scale in the context of a particular study. For
instance, if in a study a test that has been developed elsewhere is
employed, it would still be advisable to check the psychometric
properties of scale with the sample used for the study. 

In the following section, the concepts of reliability, validity, and
item analysis are explained, and procedures for establishing them
described. At this point, it may be useful to consider the underlying
theory of measurement. This is briefly discussed in Box 12.3.

Reliability
Imagine a ruler made of an elastic material that expands and con-
tracts unsystematically as you make different measurements. This

Evaluate the psycho-
metric properties of
a newly developed
measure by deter-
mining its validity

and reliability, and
by conducting item

analysis.

a) I frequently lie awake at night worrying about everything 
I have to do the next day.

b) I switch off all my work problems the minute I leave the office. 
c) I frequently have the experience that my heart seems to start

beating faster than normal.
d) I often have a hard time focusing on the task at hand.
e) I take unpleasant events in my stride.
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Measurement theory and reliability
There are two schools of thought about the underlying theory of meas-
urement – classical measurement theory and generalisability theory. 

Classical measurement theory argues that the measure or score pro-
duced by a test or scale consists of two components: the stable con-
struct being measured and factors that have nothing to do with the
construct. The construct or attribute is the core so its measure does
not vary. This is termed the true score, symbolised by T. However, a
range of other factors will also be present, and these are what lead to
inconsistencies in test scores. This is referred to as measurement
error, symbolised by e. Thus, a score (X) measured on any test or
instrument can be expressed by the following formula: 

X � T + e

Clearly, the smaller the measurement error, the more accurate the score.
Measurement error comes from a number of sources, both unsystemat-
ic and systematic. Unsystematic error comes from such things as the
choice and expression of items, the way the test is administered, and the
test scored. If these procedures are done well, then measurement will be
limited. Systematic measurement error arises when the test is not valid,
i.e. when it is measuring something other than the true construct.

The reliability of any test hinges on the amount of measurement
error relative to that of the true score. Following the basic formula
above, the total variability of the scale or test scores in a sample can
be expressed as:

σX
2 � σT

2 + σe
2

The reliability coefficient can thus be seen as the ratio of the vari-
ability of the true score to that of the observed variability:

rXX � �

While classical theory holds that there is a ‘true’ measure of the trait,
behaviour, or sentiment being measured by the test or scale, gener-
alisability theory holds that the scale or test is sampling a finite
domain of the variable. This locates the measure in a specific context,
determined by the particular test, the historical time, the tester, etc.
It is hoped to generalise this finite sample of the variable to a wider
universe of possible contexts. In this formulation the reliability of the
test refers to its generalisability. In practice, this does not differ much
from classical theory. The real difference is that it compels the test
developer to explicitly define the universe to which the test results
are intended to be generalised.

σT
2

��
(σT

2 + σe
2)

σT
2

�
σX

2

Box 12.3

where: σX
2 � the variability of scores

σT
2 � the variability due to the natural 

distribution of the construct
σe

2 � the variability due to measurement error



would be an unreliable measurement instrument, as it would give
different results when the same object is measured on different
occasions. Although you will probably never have to deal with a
measuring instrument this unreliable, you should always try to
determine the reliability of the instrument you are using. A number
of different kinds of reliability indices can be computed for the
measurement instruments used by social scientists.

Test-retest reliability
The simplest way to establish reliability is to administer the test or
scale to a sample on two different occasions. If the scale is reliable,
the scores at the test and retest administration should be strongly
correlated. (Note that you would not expect the scores to be identi-
cal, as there are bound to be some practice or carry-over effects on
the second testing.) There are a number of difficulties inherent in
this method of determining reliability, though:
1. What is the optimal length of time that should elapse between

the administrations? If it is too soon, the participants may recall
their answers from the first administration. If left too long, extra-
neous events may influence the scores on the scale.

2. How do you maintain participant confidentiality while at the
same time asking for their names and addresses so that you can
trace them for the second administration of the scale?

The preferred measure of test-retest reliability is the correlation
coefficient between the sets of scores collected at the two adminis-
trations.

Alternate-forms reliability
Instead of using the same test twice, as in the test-retest method,
alternate-forms reliability requires the construction of two equivalent
versions of the same test, which have items that are closely matched.
Then the two forms are administered to the same set of people either
at different times or at the same time. If done at different times, half
the sample do version A on the first administration and half do ver-
sion B. These are then alternated on the second administration. This
counterbalancing technique controls for carry-over and maturation
effects. If the tests or scales are reliable, the scores on the two tests
should then not only be strongly correlated but should also produce
similar means and standard deviations. This technique removes the
problem of participants remembering their first responses.

The alternative forms can also both be administered at the same
time. This method is then more a test of internal consistency than of
constancy. Alternative forms reliability (in both instances) is the cor-
relation between the scores on the two forms of the test.

212 NUMBERS, HYPOTHESES AND CONCLUSIONS

Counterbalancing is
typically used in

assessment of alter-
native form reliability

to control for the
extraneous effects

brought about as a
result of practice with
the test, and natural

changes over time.



A problem with the alternative forms method is that it is both
difficult and expensive to produce alternate forms that are suffi-
ciently independent and similar.

Split-half reliability
Split-half reliability is determined by administering the test on a sin-
gle occasion, then dividing the items of the scale into two equivalent
halves. The scores on the two halves are correlated to determine
whether they yield similar measures. The logic is that if the scores
from the two halves (from a single administration of the scale) are
strongly correlated, then administering the whole test on two sepa-
rate occasions would also lead to strong correlations (i.e. reliability).

The split-half reliability is calculated using the Spearman-Brown
formula, rather than the correlation coefficient between the two
halves. The correlation coefficient is based on only half the number of
items in the scale, so underestimates the reliability of the full scale.
The Spearman-Brown formula (rsb) corrects for the loss of scale length:
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Equation 12.2

Equation 12.3

where rhh is the correlation coefficient
between the two halves

The problem with the split-half technique is that it is affected by the
way in which the scale is split into two. For instance, in ability tests
the items are frequently presented in order of difficulty. Thus split-
ting the test at the middle would give a different reliability coeffi-
cient than if alternative items were put into the different halves.
Ideally, the scale should be split into halves so that the halves are
roughly equivalent in terms of difficulty and coverage.

Internal consistency – coefficient alpha
Cronbach’s coefficient alpha is an estimate of consistency of
responses to different scale items. The Cronbach alpha can be
viewed as the average of the reliability coefficients that would result
if all possible split-half analyses were performed. It is, however,
strongly affected by the number of items in the scale. The logic here
is that high internal consistency within the scale inevitably leads to
strong test-retest reliability, since ‘the major source of measurement
error is because of the sampling of content’ (Nunnally, 1978, p. 230). 

The Cronbach alpha coefficient formula (r�):

rsb �
2rhh

�
1 + rhh

r� � (1 – )Σ σj
2

�
σ2

n
�
n – 1

where: Σσj
2 � sum of the item variances 

σ2 � variance of the total score on the scale
n � number of items
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The 5-item stress scale discussed in Activity 12.3 is administered to a
large representative sample. The variance of each item and the vari-
ance of the total scores on the scale are presented in the table below.
Calculate the alpha coefficient for this scale and comment on the
scale’s reliability.

Activity 12.4

Item a Item b Item c Item d Item e Total

Variance 2.41 2.16 1.96 2.21 3.36 29.74

Using SPSS® to compute reliability statistics
In our study, 64 respondents completed the 6-item marijuana atti-
tude scale. The data were analysed using SPSS® . The three figures
directly below show you how to conduct reliability analysis with
SPSS® . The output for the Cronbach alpha and the split-half relia-
bility coefficients is then given.

Box 12.4

Step 1. Select the ‘Reliability analysis’ option on
the ‘Scale’ item of the Analyze menu in SPSS®.

Step 2. (a) Select the scale items, (b) select the kind
of reliability analysis you want to conduct, (c) tick
the option ‘List label items’.
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Step 3. Select desired statistical output.

Step 4. Examine SPSS® output.

RELIABILITY ANALYSIS- SCALE(ALPHA)

Mean Std Dev Cases

1. S1 3.4194 1.7975 62.0
2. S2 5.1935 1.7910 62.0
3. RS3 5.2581 1.4365 62.0
4. RS4 4.0484 2.1381 62.0
5. S5 3.9516 1.9705 62.0
6. RS6 5.0484 1.9705 62.0

N of

Statistics for Mean Variance Std Dev Variables
SCALE 26.9194 61.4196 7.8371 6

Item-total Statistics
Scale Scale Corrected
Mean Variance Item- Alpha
if Item if Item Total if Item
Deleted Deleted Correl Deleted

S1 23.5000 53.8934 .1627 .8416
S2 21.7258 47.5465 .4318 .7865
RS3 21.6613 47.7031 .5873 .7580
RS4 22.8710 37.3929 .7440 .7062
S5 22.9677 39.0481 .7508 .7072
RS6 21.8710 40.9339 .6585 .7322

Reliability Coefficients
N of Cases � 62.0 N of Items � 6
Alpha � .7928



Criteria for reliability
The criteria for reliability coefficients vary for the different types of
test. Much higher reliability coefficients are found (and demanded)
for achievement and ability tests than for personality or attitude
scales. However, the purpose of a test or scale is also a factor in
deciding whether the level of reliability is adequate. Aiken (1982)
argues that if the scale is to be used to compare groups of people,
then a reliability of 0.65 is sufficient. However, if an individual’s
score is to be compared with another, or against a set of norms, then
the reliability should be at least 0.85. Nunnally (1978) makes the dis-
tinction between scales used for basic research and those for applied
(diagnostic) purposes. Reliability coefficients of 0.70 are adequate
for research instruments, while coefficients of 0.90 should be the
minimum criteria for applied instruments.

There are a number of controllable factors that influence reliability:
1. The number of items in a test or scale. In general, the more items in

the scale, the higher the reliability it is likely to have. However,
this has to be weighed against the problem of participant moti-
vation. You will have more difficulty finding respondents if the
task looks very long, and they are likely to tire and give the items
less attention.

2. The variability of the test sample. In general, the greater the vari-
ability in the scale scores, the better the reliability. If a wide range
of people is used, as opposed to a small, homogenous group,
then a larger standard deviation in scores would be expected.
Thus, a better estimate of the reliability of a scale is obtained if
the test sample is representative of the wider population.

3. Limiting extraneous variables. All the extraneous variables that
contaminate ordinary research designs also affect reliability.
Badly run testing situations, ambiguous and misleading items,
unstandardised testing procedures, perceive-demand effects –
all these contribute to increasing the measurement error, thus
lowering reliability. Thus, a well-designed scale, with clear
instructions, tested under standardised conditions will help
limit the measurement error so that it reflects the true content of
the scale.

Validity
A scale or test is valid if it does in fact measure what it claims to
measure. This is not an easy judgement to make, as there is no direct
measure of validity. In general, this judgement depends on whether
the scale or test leads to inferences that are meaningful and useful.
There are various aspects to validity, which can be grouped under
three main categories: content validity, criterion-related validity,
and construct validity.
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A reliable scale may
or may not be valid,

but a scale that is
not reliable can
never be valid.



Content validity
Content validity refers to how well the test or scale items represent the
domain of the construct being measured. If a scale measuring stress
has items only about the psychological effects of stress and ignores the
physical effects, then it will not have good content validity.

There are two ways of ascertaining the content validity of a
scale. First, face validity can be determined. Face validity refers to the
appearance of the test or scale. For example, if respondents were
told that the purpose of the previously discussed ‘marijuana’ ques-
tionnaire was to assess how people felt about consumer issues, they
would rightly feel they were being deceived. It is important for the
test or scale to appear authentic to the participants. While this is not
strictly a criterion for validity, it does have an effect on the test
scores if the participants have doubts about the test.

Second, the scale items can be evaluated by expert judges, who
independently examine the items and decide whether each of the
items is weakly relevant or strongly relevant to the content domain
of the construct. This allows us to ‘measure’ the extent of content
validity by calculating the proportion (or percentage) of items that
the judges agreed were strongly relevant. This measure ranges from
0 to 1.00 (or 100%).
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Content validity �
x

�
N

where: x � number of items evaluated as strongly 
relevant by both judges

N � total number of items in the scale

Criterion-related validity
Criterion-related validity refers to how well the scale or test antici-
pates a criterion behaviour or outcome, either at the present time
(concurrent validity) or in the future (predictive validity). The difficulty
with this type of validity lies in selecting the appropriate criterion.
The criteria for ability or achievement tests are generally perform-
ance in some form of examination. However, determining a criterion
for personality and attitude scales is much more difficult. Frequently,
other tests that have already been used to test the same construct are
used as criteria in evaluating concurrent validity. For example, to
evaluate the validity of a new test for depression, you would give the
newly developed scale and an established test of depression to the
representative sample. A strong correlation between the new and old
tests is evidence for concurrent validity. In the case of the ‘marijuana’
scale, concurrent validity could be established by also getting the
sample to complete another scale that measures attitudes to drugs.
The scale devised by the Northumbria Drugs Prevention Team in
1995 for use in Whitburn, UK would be one possibility.

Concurrent validity
refers to how well
the test predicts a
criterion behaviour
at the present time.

Predictive validity
refers to how well
the test predicts a
criterion behaviour
in the future.

Equation 12.4



A hypothetical measure of the predictive validity of this scale
would be a referendum on the legalisation of marijuana. If it was
possible to discover whether the individuals in the test sample
voted in favour or against the proposition, the predictive validity of
the test could be calculated. If the test is valid, the people who
scored high on the scale should vote ‘yes’ to legalisation of mari-
juana, and those who scored low should vote ‘no’. There are numer-
ous statistical tests that could be used to establish whether this rela-
tionship exists, e.g. the chi-square test of contingency, or the point-
biserial correlation.

Construct validity
This is the most difficult validity to determine, as it attempts to
establish whether the scale really does measure the construct it
claims to measure. Constructs are intangible and difficult to opera-
tionalise. Hence, to establish this validity, an array of methods is
used, aimed at discerning behaviour or sentiments that logically
emanate from the construct. One method is to find a construct that
should theoretically be allied to the one being measured. Thus con-
struct validity would be demonstrated by a strong correlation
between a sound measure of hedonism and the scores on our ‘mar-
ijuana’ scale. This is termed convergent validity.

Another technique would be to find a construct that would be
contrary to the construct being measured. For instance, it could be
argued that people who believe in strong policing of the population
would be opposed to the legalisation of marijuana. Hence, it could
be argued that authoritarianism would be a contrasting construct.
We would thus expect a strong negative correlation between the
scores on the ‘marijuana’ scale and an established scale measuring
authoritarianism. This is referred to as discriminant validity. 

Criterion-groups validity is investigated by determining whether
groups who would be expected to differ on the construct do in fact
score differently on the measure. Thus, in the case of the ‘marijuana’
scale, the scale could be administered to a group of practising
Rastafarians and a group of practising Muslims. It would be expected
that the scores of these two groups would be significantly different.

The use of other scales or tests as a check for validity (as in con-
current or convergent validity) does have problems. The criterion
scale may itself have dubious validity. Ideally, a behavioural criteri-
on would be advantageous.

Item analysis
Tests of validity and reliability are used to determine the properties
of an entire scale. Item analysis is used to determine if an item is
‘good’. There are two main criteria for this judgement. Firstly, the
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Convergent validity
ascertains construct

validity through
comparing the scale

with a measure of
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Criterion-groups
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construct validity
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should respond to
the construct anti-

thetically.



item should contribute positively to the scale’s reliability, i.e. to its
ability to measure the construct. Secondly, the item should differen-
tiate between high and low scorers on the entire scale. The first cri-
terion has been termed ‘item facilitation’ and the second, ‘item dis-
crimination’ (Rust & Golombok, 1989).

Item facilitation
In a knowledge test, such as a multiple-choice examination, you
would calculate the item-difficulty index. This is the proportion of
the test sample that answers the item correctly. If the item difficulty
is 0, which occurs when none of the sample gets the item correct, the
item is not useful in measuring the knowledge of the sample. There
are many reasons why this may occur, ranging from problems in the
way the question was presented to inappropriate level of difficulty
for the sample. Whatever the reason, the item in question does not
add to the value of the test. Similarly, if the whole sample gets the
item correct – i.e. the index � 1 – then the item is equally ineffective.
In general, items with item-difficulty indices of between 0.3 and 0.7
are acceptable, with 0.5 being optimal.

Consider the four knowledge questions in the ‘marijuana’ scale.
In question 1, the correct answer is C. In our sample of 64 respon-
dents, 58 marked the correct answer and 6 the incorrect answer. The
item-difficulty index is: IDI � 58/64 � 0.906

This is too high, indicating the item was too easy. In contrast,
consider question 4 on which only 8 people marked the correct
response (B). Hence: IDI � 8/64 � 0.125

This is too low, indicating the question was too difficult. Both
these questions thus have discriminatory power. On question 2, 43
people selected the correct answer (A), and 20 on question 3 (D) on.
The item-difficulty indices on these questions are:

Question 2: IDI � 43/64 � 0.672 Question 3: IDI � 20/64 � 0.313

Both these indices are acceptable.
In other kinds of tests and scales (e.g. attitude measures), where

the items are measured on an interval scale, the contribution an item
makes to a scale can be discerned using the Cronbach alpha proce-
dure. To examine the items, a series of Cronbach alphas is comput-
ed for the measure, removing a different item on each occasion. If the
alpha coefficient improves markedly in comparison to when the
item is included, this indicates that the item has a detrimental effect
and should possibly be excluded from the scale. Note that SPSS®

reports this analysis whenever you request a Cronbach alpha.
Box 12.4 above shows the SPSS® output of a Cronbach alpha

analysis done on the 6 attitude items of the ‘marijuana’ scale. The
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The item-difficulty
index (of a knowl-
edge test item) is the
proportion of the
test sample that
answers the item
correctly.

Reverse scoring
should be done
before item analysis
commences.



program provides the alpha coefficients when each of the items is
excluded. Consider the furthest column on the right, entitled ‘Alpha
if deleted’. If item S1 is deleted, the alpha coefficient for the scale
will rise from 0.793 to 0.842, a gain of 0.05. No improvement in
reliability occurs for any of the other items. The researcher must
then decide whether this rise in reliability warrants the removal of
the item.

Item discrimination
In a knowledge test, an item-discrimination index (IDsI) can be cal-
culated as follows. The test sample is divided into four sub-samples
on the basis of their overall scores. The top 25% and bottom 25% are
extracted, and the number within each of these sub-samples that
correctly answered the item in question is calculated. The item-dis-
crimination index is then calculated as follows:
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where: T � number of the top 25% that correctly answered the item
B � number of the bottom 25% that correctly answered the item
N � the total number of people in either the top or bottom 25%

IDsI �
T – B
�

N

This index can vary from –1 to +1. Clearly, if the index is negative,
the item is bad since it means that a larger number of the poor
scorers are getting it right than the good scorers. The closer to +1 the
index, the better is the item’s discrimination power. But very high
values are not common. A general rule of thumb is that items with
discrimination-indices of 0.20 and above are reasonable. 

In the case of items with interval scaling, item discrimination is
discerned from the correlation between the scores on the item in
question and the total score on the whole scale. (Ideally the total
should be calculated without the item score included.) Item analy-
sis programs generally provide this correlation coefficient. Consider
the SPSS® output in Box 12.4. The column entitled ‘Itm-Ttl Correl.’
provides this coefficient. A general rule of thumb is that a correla-
tion coefficient of less than +0.20 indicates a suspect item. In the
above example, item S1 has a correlation of 0.16. Thus both the item
facility criterion and the item discrimination criterion suggest that
S1 is not good, and should be excluded from the scale. A close look
at the item ‘Marijuana is not addictive, so it is a mistake to refer to it as
a dangerous drug in the same category as heroin or cocaine’ suggests that
the reason for it being problematic is that it assumes that respon-
dents agree that marijuana is not addictive. Hence, two issues are
queried in the item – the addictiveness of marijuana, as well as its
degree of danger.

Equation 12.5
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A lecturer constructed a multiple-choice test to evaluate her course at
the end of the semester. Below is a table giving the item-difficulty
index (IDI) and the item-discrimination index (IDsI) for 8 of the test
items. Indicate if any of these items should be excluded from the test
bank, giving the reasons for this decision.

Activity 12.5

Question IDI IDsI

1 0.55 0.34
5 0.51 0.54
2 0.62 0.47
6 0.22 0.24
3 0.85 0.60
7 0.40 0.43
4 0.66 0.38
8 0.32 0.14

Standardisation and norms
‘Norms’ present relatively fixed gradations within the general pop-
ulation that can be used for benchmarking an individual’s perform-
ance. For example, knowing that an individual’s score on the
SAWAIS is 70 tells us very little until we know that the average
intelligence of the population on this IQ test is 100 with a standard
deviation of 15. It then becomes clear that this individual has a low
intelligence (the bottom 2.5% of the population). Similarly, we
might need to know the level at which people’s depression is so bad
that it would be advisable to hospitalise them for treatment. In
developing such norm-referenced tests, it is important to select a large
standardisation samples that are truly representative of the popula-
tion on which the test will be used. The scores of this sample on the
test are then transformed into one of a number of gradation systems:
• Percentiles and percentile ranks, in which scores are graded in terms

of the percentage of the sample that achieve at levels below the
score in question. For example, the score that is marked as the
40th percentile is the score below which 40% of the standard-
isation sample fall (ranked in terms of scores on the test).

• Standard scores, in which the scores are transformed to a standard
normal distribution with a mean of 0 and standard deviation of
1, and presented as z-scores (see Tutorial 6).

• T-scores, in which the scores are transformed to a normal distri-
bution with a mean of 50 and standard deviation of 10. 

• Stanines, in which the scores are transformed into a distribution
with 9 points. The mean is 5 and standard deviation is 2.



Constructing norms
To illustrate standardisation, the summed scores on the 6-item mar-
ijuana attitude scale will be used. Figure 12.4 shows these calcula-
tions for a small sub-sample of our sample of 64 respondents. The
first step in constructing T-scores and Stanines is to convert the raw
scores into z-scores, which requires the mean and standard devia-
tion of the sample’s scores. Column Q of the spreadsheet shows the
calculated z-scores for some of the data. The Excel instruction on
how to get the score for any particular score (i) is shown in cell T3.
The T score is found using the formula, x � (z × σ) + µ, substituting
µ � 50 and σ � 10. The Stanines are found in the same way through
substituting µ � 5 and σ � 2. These are illustrated in columns R and
S on the spreadsheet. The percentile rank of given score (percentage
of the sample that fall below that score) is found from z tables.
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Figure 12.4 Microsoft® Excel spreadsheet illustrating calculation of z-scores, 
T-scores, and Stanines

Use of norms
Norms enable us to interpret an individual’s score on a test. By
comparing the score to the norms, we can discern whether the in-
dividual is ‘average’ or ‘exceptional’, and how high or low the score
is relative to the population. Further, norms can be associated 
with a diagnosis so critical norm values can be established for the
test user.



Worked example
The following example describes the development of a scale that
will measure perceptions of the causes of industrial action. The per-
ception of interest is the degree to which either management or the
workers/trade unions are blamed. 

Development of the scale items
The researcher starts by considering a range of popular media repre-
sentations of industrial conflict – in newspapers, magazines, radio,
and television. From this a domain of behaviours is outlined. The
content of this domain is specified as (i) politics, (ii) management–
worker relations, (iii) working conditions, (iv) money, (v) exploita-
tion, (vi) sector interests, and (vii) negative perceptions. As far as
possible, the manifestations of these behaviours are expressed as
management-blame and union-blame. Table 12.2 presents the grid
specifying the content and manifestations of the domain of behav-
iour sampled.
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Table 12.2 The sampling domain for the causes of industrial action scale

Politics Worker– Working Money Exploitation Sector Negative
management conditions interests perceptions
relations

Union- The unions’ The unions Workers’ Workers’ Workers’ The union Workers’
blame political failing to failure to unrealistic desire for seeking to lack of

agendas foster com- acknowl- wage more money justify their under-
munication edge the expecta- for the existence standing of 
between benefits tions minimum to the the broad 
workers and of employ- amount workers economic
management. ment of work constraints

Manage- Manage- Management’s Workers Manage- Workers Manage- Manage-
ment- ment trying refusal to having real ment’s reacting ment neg- ment seeing
blame to curtail negotiate with grievances greed for against lecting the workers as 

the power the workers about their higher their interests of dispensable 
of unions working profits exploitation workers and easily

conditions replaceable

The scale was designed so that the respondents had to indicate the
degree to which they agreed or disagreed that the item was a cause
of industrial conflict by marking a box on a 7-point Likert scale,
anchored by 1 � strongly disagree and 7 � strongly agree. The full
list of items appears on the next page.



Industrial conflict is caused by:
Q1 The unions failing to foster communication between workers

and management.
Q2 Workers’ failure to acknowledge the benefits of employment.
Q3 Workers having real grievances about their working conditions.
Q4 Management’s greed for higher profits.
Q5 The unions’ political agendas.
Q6 Workers’ unrealistic wage expectations. 
Q7 Workers’ desire for more money for the minimum amount of

work.
Q8 Workers’ lack of understanding of the broad economic con-

straints.
Q9 Management’s refusal to negotiate with the workers.

Q10 The union seeking to justify their existence to the workers.
Q11 Management neglecting the interests of workers.
Q12 Management trying to curtail the power of unions.
Q13 Workers reacting against their exploitation.
Q14 Management seeing workers as dispensable and easily

replaceable.

The sample
The researcher was interested in the beliefs of people who would be
working in management. She thus decided to use as her test sample
students studying for degrees in human resource management.
Responses from a sample of 415 students were collected. All these
responses were quantified, and entered into an Excel spreadsheet,
which can be found on the accompanying CD. 

Test for reliability and item analysis
The researcher immediately put this data into an item-analysis
programme. The results are given in Figure 12.5.
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Figure 12.5 Item analysis of the industrial action scale, without item
reversals



While looking at these results, the researcher noticed that there
were a large number of items that had item-total correlations of less
than 0.20. She then realised that she had not reversed the items for
which a high score (strongly agree) indicated union blame. She
reversed these scores using the formula, New score � 8 – Old score,
and redid the analysis. Figure 12.6 provides the results.
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Figure 12.6 Item analysis of the causes of industrial action scale
with items reversed

The Cronbach alpha has jumped to a respectable coefficient, 
� � 0.75. However, the reversed score of question 1 (RQ1) appears
problematic. Its item-total correlation coefficient is negative, and the
alpha coefficient would improve if it were removed. A careful
consideration of the item ‘The unions failing to foster communication
between workers and management’ led to a suggestion as to why it was
perceived as problematic by the respondents. It is possible that
there was an implicit second question within the item – whether or
not it is the responsibility of unions to foster such communication.
This differs from the core issue of whether it is the failure of
communication that is a cause of industrial action. The researcher
consequently decided to remove this question from the scale. The
final Cronbach alpha coefficient
was � � 0.80, with all item-total
correlation coefficients being
greater than 0.20.

Calculating the total scores
Each respondent’s score on the scale was calculated by summing
their scores on Q3, Q4, Q9, Q11, Q12, Q13, Q14, and the reversed
scores RQ2, RQ5, RQ6, RQ7, RQ8, RQ10. However, a number of the
respondents (17) had left out at least one question. The researcher

Use SPSS® to compute the
Cronbach alpha coefficient for
the scale, with Item 1 removed.

Activity 12.6



decided to replace missing responses with the mean of all other
responses (i.e. construct a weighted total), with the stipulation that
no more than 3 items can be missing. If a respondent has more than
3 questions unanswered, he or she will be excluded from the data
file. These total scores were calculated for each individual.

Test for validity
The researcher had also required the respondents to complete a 
scale measuring political conservatism, as it would be expected that
people who are politically conservative would be more sympathetic
to management than to trade unions. On this scale the higher the
score, the more conservative the individual. These scores were corre-
lated with the total scores of the developed scale using the Pearson
Product-Moment Correlation test. The resultant correlation coeffi-
cient was r(408) � –0.512, p � 0.0001. This strong negative correlation
confirms that the more politically conservative the individual the less
blame they attributed to management for industrial action. This test
of convergent validity indicates that the scale has construct validity.
A final test of construct validity was done using criterion groups. The
researcher administered the scale to a group of 12 trade union mem-
bers and compared their scores to a group of 12 managers. A t-test
comparison was statistically significant (t(22) � 2.351; p � 0.0281),
with the mean of the trade union members being higher than that of
the managers. Thus this scale appears to be a good measure of the
perceptions of industrial conflict.

Summary
1. The construction of a scale requires a clear definition of the

domain of behaviours or sentiments to be sampled. Items or
questions are then developed to represent this domain.

2. Item response formats can vary from alternative-choice and
multiple-choice options to forms of continuous rating. The most
common types of rating are the Likert scale and the bipolar
adjectives scale.

3. The phrasing of items is important. Items must contain only one
question, and their meaning should be unambiguous. They
should also be phrased in ways that limit the likelihood of a
socially desirable response. Within the scale, some of the items
should approach the question from the opposite sense to prevent
the use of response sets.
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4. The constructed scale must be evaluated – to check on the qual-
ity of the items, and the reliability and validity of the scale. To do
this, the scale is administered to a standardisation sample that is
representative of the population on which the scale will be used. 

5. Norm-referenced tests make it possible to compare the score of
an individual on the test with a set of established norms. This is
particularly appropriate for diagnostic tests, and achievement
and ability tests. Such tests require that the standardisation
sample be carefully selected to represent the desired population.
Norm-referenced tests generally set the norms in terms of per-
centiles, z-scores or T-scores.

Exercises
1. Construct a short scale of no more than 10–12 items to measure

students’ attitudes to sharing accommodation with someone
who is known to be HIV positive. Set up a content/manifesta-
tion grid to help ensure that the domain is sampled. Think care-
fully about the type of response scaling you will use.

2. A researcher has constructed a scale with 10 items. The table on
the next page gives the results of an analysis providing the
Cronbach alpha of this data. The item statistics are also pro-
vided. On the basis of this analysis, indicate which items you
would suggest dropping from the scale. Give your reasons for
this decision.
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3. a) A class of 360 students took a multiple-choice examination.
Each examination item had four possible answers, of which
only one was correct. On the first of the items, the following
number of people in the class marked the correct answer: Item1
� 62; Item2 � 200; Item3 � 305. Calculate the item-difficulty
index for each and comment on the facility of each item.

b) On the basis of the marks on the whole examination, the class
was divided into four. The top and bottom 25% of the class
were extracted. The number of each of these sub-samples
endorsing each of the answer choices is presented for three
items. The answer with the asterisk is the correct answer.
Calculate the item discrimination index for the three items
and comment on whether the items should be retained or not.
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Summary for scale: Mean � 32.5417     Std. Dv. � 7.70026 Valid N: 72
Cronbach alpha: 0.721950     Standardised alpha: 0.730045
Average inter-item correlation: 0.216908

Mean if Var. if St. dv. if Item-total Alpha if
deleted deleted deleted correl. deleted

Item1 31.02778 52.08256 7.216825 .359632 .705444

Item2 28.54167 47.30382 6.877777 .412865 .694774

Item3 28.11111 49.07099 7.005069 .366284 .702515

Item4 30.37500 51.56771 7.181066 .403496 .700653

Item5 29.43056 44.52296 6.672553 .562439 .667590

Item6 29.22222 46.64506 6.829719 .481164 .683222

Item7 28.52778 47.94368 6.924137 .498486 .683238

Item8 28.95833 51.45660 7.173326 .216782 .727521

Item9 28.56944 53.05073 7.283593 .124920 .744308

Item10 30.11111 44.59877 6.678231 .477382 .682571

ITEM 15 Alternatives

A B C* D

High scorers 38 16 12 24

Low scorers 23 22 30 15

ITEM 22 Alternatives

A* B C D

High scorers 50 14 9 17

Low scorers 23 10 42 15

ITEM 15 Alternatives

A B C D*

High scorers 6 2 2 80

Low scorers 66 15 9 8



4. A newly developed scale is designed to measure masculinity.
The researchers perform a number of evaluative tests on the
scale using a large representative sample of men. These are list-
ed below. In each case indicate what psychometric property is
evaluated, and what it indicates about the scale.
a) The sample were given this scale as well as a well-estab-

lished test that also measures masculinity. The scores on the
two tests are correlated.

b) The sample was given the test twice, three weeks apart. The
scores on the test on the two administrations are correlated.

c) The scale was given to a group of monks and to a group of
rugby players, and the scores of the two groups compared.

d) The sample was given this scale as well as an established
scale for androgeny.

e) The sample’s scores on the test were analysed to find the
Cronbach alpha coefficient and item-total statistics.
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Statistical power

Lance Lachenicht

•••••••••••
After studying this tutorial, you should be able to:
• Understand the analogy between criminal court

procedure and statistical test procedure.
• Understand Type I and Type II errors, and relate

them to statistical power theory.
• Understand the factors that determine the power

of a statistical test.
• Calculate effect size.
• Calculate power for three varieties of the t-test.
• Understand the factors that influence the choice

of a sample size.

TUTORIAL

13

When all is said and done, the essence of science is the requirement
that researchers who propose a theory (e.g. the theory that tea-
drinking is a source of insomnia) put that theory to empirical test.
Statistical hypothesis testing is one such ‘formal’ testing procedure
(see Tutorial 8). Its structure is similar to the procedure in a criminal
trial (see Kraemer & Thiemann, 1987). In the analogy with a crimi-
nal trial, the researchers are the prosecutors, the collection of data is
the trial procedure itself, and the statistical test plays the role of the
judge deciding the verdict: true or false. 

The central principle is that the researchers’ theory is considered
false until demonstrated beyond ‘reasonable’ doubt to be true, just
as an accused is presumed innocent in law. So, until the evidence
demonstrates the dangers of drinking tea, we assume that it is safe



to drink tea. All of this is expressed as an assumption of the truth of
the null hypothesis, which is the contradiction of the researchers’
theory (usually expressed in the form of a statement that there is no
difference between two or more groups) (see Tutorial 8). Thus the
null hypothesis in our researchers’ theory is that tea-drinking has
no effect on sleep patterns. What is considered a ‘reasonable doubt’
about the truth of the null hypothesis is called a significance level.
(The significance level is sometimes known as the alpha level in a
study.) By convention (i.e. simply by common agreement among
researchers), a reasonable level of doubt about the truth of a theory
is one chance in twenty (5%, or a probability of 0.05) or, occasional-
ly, one chance in a hundred (1%, or a probability of 0.01) that the
theory is false. 

Significance level and significance testing are not the same as
practical or theoretical significance. Once again the analogy with a
criminal trial can help explain this. Some criminal trials are about
important matters (such as murder or other serious crimes) and
others are about relatively trivial crimes (such as failure to pay a
parking ticket). A prosecution team may prove beyond reasonable
doubt that someone failed to pay their parking tickets, but that
proof would still not make this a serious crime. However, proving
beyond  reasonable doubt that someone was a murderer would not
only be a successful prosecution but also an important one.
Significance in statistical testing is about the trial process – the
‘proving beyond reasonable doubt’ process – and not about the
importance of the issue being tested (e.g. the relative triviality of
parking tickets versus the seriousness of murder). 

Error and statistical tests
Criminal trials may end with erroneous decisions. These are of two
kinds: an innocent person may be falsely found guilty, and a guilty
person may be falsely found innocent. The system of justice tends
to favour the latter error over the former, just as significance testing
tends to favour the null hypothesis over the researchers’ hypothe-
sis. In significance testing, rejecting the null hypothesis when it is
true, which is the error of credulity, the error of taking something
seriously that is mere coincidence, is known as a Type I error. The
alternative error, accepting the null hypothesis when it is false, is
the error of scepticism. The error of scepticism, of treating as a mat-
ter of luck something that genuinely calls for explanation, is known
as a Type II error.

The philosopher/mathematician Pascal’s famous wager about
the existence of God can be seen as a meditation on the difference
between Type I and Type II errors. Given the null hypothesis that
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Significance level
and significance test-
ing are not the same
as practical or theo-
retical significance.

Type I error – 
rejecting the null
hypothesis when 
it is true. 
Type II error – 
failing to reject the
null hypothesis when
it is false.

You may find it 
useful to review
Activity 8.3 at 
this stage.
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God does not exist, believing that there is a God when there is not,
would be a Type I error – if there is no God the null hypothesis is
true and the believer errs by being credulous. Failure to believe that
there is a God when there is would be a Type II error, for if there is
a God, the null hypothesis is false and the atheist errs by being
sceptical. Pascal argued that the sceptical error would be more
disastrous in its consequences than the credulous error, and there-
fore drew the conclusion that one should believe in God. Similarly,
a statistician may reflect on the consequences of Type I and Type II
errors in choosing a significance or alpha level, usually with less
profound considerations in mind! The situation can be represented
in the form of Table 13.1.

Table 13.1  Types of error in hypothesis testing

H0 true H0 false

H0 accepted

H0 rejected

Correct Type II error {β}

Type I error {�} Correct

The probability of making a Type I error in any particular sig-
nificance test is alpha (�), the significance level. The probability of
making a Type II error is beta (β). To summarise: Type I errors con-
cern the event of finding a difference that is not there; Type II errors
concern the event of not finding a difference that is there. For a vari-
ety of reasons, investigators have given much more importance to
Type I errors than to Type II errors. The high cost of research and the
simple principle that we should plan a research project carefully
require that researchers start to pay more attention to Type II errors.

The power of a test is intimately related to Type II errors. Power is
defined as the probability of correctly rejecting a false null hypo-
thesis, and since the probability of mistakenly accepting a false null
hypothesis is β, the inverse or complementary probability (i.e. the
probability of correctly rejecting a false null hypothesis) is 1 – β. An
experiment with more power has a greater chance of rejecting a
false null hypothesis than does an experiment with less power.

When we run statistical significance tests we know the probabil-
ity of a Type I error (it is the alpha level we have chosen), but the
probability of making a Type II error is not known. However, we
can often estimate β, the Type II error rate, or power (1 – β), from
other information. 

Power is the 
probability of 

correctly rejecting a
false null hypothesis,

i.e. 1 – β.

The probability of
making a Type I

error is �, and the
probability of making

a Type II error is β.
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What determines the power of an investigation?
Power is determined by four factors:
1. the probability of a Type I error
2. the true state of affairs guessed at by the alternative hypothesis
3. the sample size
4. the particular test to be employed.

The probability of a Type I error
The way in which the probability of a Type I error affects power is
best illustrated graphically. Think about the two distributions in
Figure 13.1. The distribution to the left (labelled H0) represents the
sampling distribution of the mean when the null hypothesis is true
and µ (the true population mean) equals µ0. The distribution on the
right represents the sampling distribution of the mean that would
arise if the null hypothesis were false and µ (the true population
mean) equals µ1. Where the distribution on the right is placed
depends on what the value of µ1 happens to be. Alpha (�), the prob-
ability of a Type I error, is represented by the shaded area of the H0

distribution, assuming that we are using a one-tailed test. (For a
two-tailed test, the shaded area would represent .) This area con-
tains the sample means that would result in significant values of t,
for example. 

�
�
2

β

H0

µ0 µ1

0.45

0.30

0.15

0.00

H1

�

Figure 13.1 An illustration of the sampling distributions of the mean 
proposed by the null and alternate hypotheses

The second distribution (H1) represents the sampling distribution of
the mean when H0 is false and the true mean is µ1. From the figure,
it is clear that even when the null hypothesis is false, many of the
sample means will fall to the left of the critical value of alpha, caus-
ing us to fail to reject the null hypothesis, so making a Type II error.
The probability of this error (β) is shown by the striped area of
Figure 13.1. However, when the null hypothesis is false and the
sample mean falls to the right of the value, we will correctly reject
the null hypothesis. The probability of correctly rejecting the null

Power diagrams
such as Figure 13.1
are conceptual/
hypothetical aids,
and not distributions
of observed data.



As the true effect
increases in size,
power increases.
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hypothesis is what we mean by power and is the unshaded area of
the H1 distribution (remember that the distributions overlap, so the
unshaded area includes the area in H1 which the � portion of H0

obscures).

Consider a two-tailed independent samples t-test (� � 0.05) where 
we find  x1 � 17,  x2 � 20, s1 � 5, s2 � 6, n1 � n2 � 16. Is this difference
significant, against H0: µ1 � µ2?

Assuming that all other values remain constant,
a) What value of (x1 – x2) would make it significant?
b) What values of n1 and n2 would make it significant?
c) What value of � would make it significant?
d) What values of s1 and s2 would make it significant?

(Hint: For each of (a) to (d), you need to substitute different values
for the statistics in question.)

Activity 13.1

Figure 13.1 helps us understand why power is a function of �. If we
are willing to increase alpha (from 0.05, to 0.1, for example) the cut-
off point will move to the left, thus both decreasing β and increas-
ing the probability of a Type I error. In most real research, the
researcher is not willing to increase alpha (and most journals will
not publish research with a high alpha), so manipulating alpha is
not a practical strategy for increasing the power of a study.

The true state of affairs guessed at by the alternative hypothesis
Power also depends upon the true state of affairs on which 
the alternative hypothesis speculates. More precisely, power depends
upon the difference between the mean under the null hypothesis, µ0,
and the mean under the alternative hypothesis, µ1 (i.e. µ0 – µ1). This
can be seen by comparing Figure 13.1 and Figure 13.2.

In Figure 13.2, the distance between µ0 and µ1 has been increased
and this has produced a large increase in power (the unshaded area
under the H1 curve). This should not be surprising, since what we are
saying is that we have a better chance of finding a difference if that
difference is large. If the researchers’ hypothesis is that two groups
are different but only by a very small amount, the danger of a Type II
error is very great. If (to return to our tea-drinking study) tea-drink-
ing does indeed cause insomnia but only by ten minutes a night on
average, then, because of the smallness of the difference, it will be
very easy to accept the null hypothesis even though it is in reality
false. However, if tea-drinking causes insomnia by as much as two
hours per night, it will be easy to refute the null hypothesis.

As � increases
(becomes less strict),

power increases.
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The sample size
The relationship between sample size and power is linked to the
relationship between the variance of the sampling distribution (σ 2

x)
and power. This is because the variance of a sampling distribution
will decrease as the sample size increases. Comparing Figure 13.3
with Figure 13.1 illustrates what happens to the two sampling dis-
tributions (H0 and H1) when we increase n or decrease σ 2. As the
variance of the two distributions decreases, so the overlap between
them becomes smaller, which means that power increases (the
unshaded area under H1). In terms of our tea-drinking example, our
study will have greater power if we study two samples (an experi-
mental and a control group) of 100 participants rather than two
samples of 20 participants.

µ0 µ1

0.75

0.60

0.45

0.30

0.15

0.00
β

H0 H1

α

Figure 13.3 The effect that altering sample size has on β

Of all the factors that affect power, sample size (n) is the easiest to
manipulate. This means that practical attempts to increase power
are generally concerned with the consequences of varying sample
size.

As n increases, so
power increases. 
Of all the factors that
affect power, sample
size (n) is the easiest
to manipulate.

µ0 µ1

β

0.45

0.30

0.15

0.00

H0H0 H1

�

Figure 13.2 The effect that altering (µ0 – µ1) has on β
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Activity 13.2 A large pharmaceutical company of some impropriety conducts a
study in which they administer a daily dose of 5 milligrams of
Phlogiston to a sample of obese patients, and a sample of control
patients. They find that the average difference after the intervention
is 1 kilogram, s1 � 50, and s2 � 55. Since they have already invested a
lot of capital in the drug, they must find results that show this differ-
ence is statistically significant. They do this by adding more subjects.
How many do they need? (� � 0.05) What does this tell you about the
dependence of significant findings on sample size?

The particular test to be employed
The choice of statistical test also affects power. The power of statistical
tests is a complex subject beyond the scope of this tutorial. However,
you should note that tests designed for continuous measurements
tend to be more powerful than tests designed for categorised data.
Further, parametric tests, such as t-tests and ANOVA, tend to be more
powerful than non-parametric tests (such as the Wilcoxon and Mann-
Whitney tests: see Tutorial 20), even though they make more assump-
tions about the data.

Effect size
We have established that power is partly determined by the degree
of overlap between sampling distributions under the null and the
alternative hypothesis. A widely used measure of the distance
between µ0 and µ1 (the population means under the null hypothesis
and the alternative hypothesis) is called d, the effect size. Effect size is
defined as follows (when we are dealing with continuous measures):

d �

This formula means that d is a measure of the degree to which µ0

and µ1 differ in terms of the standard deviation of the parent popu-
lation. Notice that the formula for d does not include the sample
size n, so d can be used in calculations to help us find an appropri-
ate sample size. Notice also that to calculate d we will need either to
know the population standard deviation or be able to estimate it. The
formula for d is similar to the formula for a z-score (see Tutorial 6).
Just as z-scores standardise differently scaled measurements into
standard deviation units so that they can be compared, so d stan-
dardises research effects into standard deviation units so that they
can be compared.

By itself, the formula for d does not tell us how to interpret a
particular value of d. Cohen (1988) offers some conventional values
of d for small, medium, and large effect sizes, which we have
amended slightly in Table 13.2.

µ0 – µ1
�

σ

Tests designed for
continuous measure-

ments tend to be
more powerful than

those designed for
categorical or ordi-
nal measurements.

Effect size (d) is a
standardised index;
in the case of tests

on means, it
expresses the differ-

ence between the
means in standard

deviation units.

Equation 13.1
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The ‘trial’ strategy and power
The fact that statistical tests only control Type I error (this is what
they are designed to do) and do not control Type II error at all
means that statistical tests can be very misleading. If � is 0.05, and
the null hypothesis is true, then a statistical test is defined in such a
way that the chance of a Type I error will be, at most, 5%. However,
the Type II error is not controlled by a statistical test (it is not part 
of the statistical testing procedure), and theoretically could be as
high as 95%! (See the large Type II error shown in Figure 13.1.) So,
if the null hypothesis is false, statistical tests may not reject it with a
very high probability. Hunter and Schmidt (1990) offer several (real)
case studies where the Type II error rate is as high as 35%, i.e. the
theorist’s hypothesis is actually true but not reported as ‘significant’
in 35% of the cases. Just as criminal trials may often find guilty
people innocent (and are designed to do so in order to protect the
really innocent), so statistical tests are designed to avoid Type I
errors and may sacrifice true hypotheses in order to do so. 

In order to ‘tie’ Cohen’s notional levels of effect size to ‘real-world’
data, collect information about the following group differences, and
attempt to calculate the ‘degree of overlap’, assuming a normal
distribution (use your information to estimate µ and σ). All of the
information can be found quite easily on the Internet:
a) the average weights for adult rugby players, and adult male ballet

dancers
b) the heights of professional jockeys in South Africa, and male bas-

ketball players in the USA NBA league
c) the average weight of men who are 6 feet tall, at ages 20 and 40
d) the average fuel consumption for cars that have 1600cc engines,

and those that have 1300cc engines.

Activity 13.3

Table 13.2 Notional levels of effect size

Effect size d % of overlap of distributions

Very small < 0.10 > 92

Small 0.20 85

Medium 0.50 67

Large 0.80 53

Very large > 1 < 45

Source: Adapted from Cohen (1988)

Statistical tests 
are designed to
avoid Type I errors
and may sacrifice 
uncovering true
alternative 
hypotheses in 
order to do so. 

The right-hand column of Table 13.2, labelled ‘% of overlap of
distributions’, records the degree to which the distributions such as
those shown in Figures 13.1, 13.2, and 13.3 overlap. This means that
when d � 0.5, the distributions overlap by 67%.
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Researchers ought 
to report confidence
intervals, as well as
results of statistical

tests. 

Researchers ought to
pay great attention

to planning their
studies to ensure
adequate power.

There are two solutions (that perhaps ought to be carried out in
parallel with the significance test) to the problem of uncontrolled
Type II error. Firstly, researchers ought to report confidence intervals
(which were discussed in Tutorial 7), as well as statistical tests.
Confidence intervals express statistics (e.g. differences between
means) as a range of possible values, and the size of this range is an
indicator of the confidence we have in the decision. Secondly,
researchers ought to pay great attention to the planning of their
studies, making sure that their research plan has sufficient power to
detect real differences between groups. In the analogy with criminal
trials, the prosecution similarly has to plan the case against an
accused very carefully if it is to succeed in securing a conviction. 

The researchers, playing the role of the prosecution in the trial of
a hypothesis, must first have an adequate case for bringing the
theory to trial. Just as it is unreasonable for a prosecutor to bring
someone to trial for murder when there is no evidence that the
person committed the crime, so it is unreasonable for a researcher to
test a hypothesis for which there is no preliminary evidence.
Preliminary evidence that researchers commonly consider includes
literature reviews of relevant research areas, case histories, pilot
studies, theoretical considerations, and the like. Researchers, just
like real prosecutors, must decide on the basis of the preliminary
evidence whether the case is important enough, or the preliminary
evidence convincing enough, to bring the hypothesis to trial, i.e. to
test the hypothesis. 

The researchers must also formulate the trial strategy by which
they propose to put the hypothesis to the test. They must decide
what design to use, which measure of response or which dependent
variable to use, the number and timing of measurements per sub-
ject, which statistical test to use, and how many subjects to sample.
Now it is fairly obvious that all these decisions are going to affect
how strong the evidence is likely to be and whether it will be con-
vincing beyond a reasonable doubt. The strength of the evidence is
called the power of the trial (i.e. the probability of correctly rejecting
the null hypothesis).

In planning a study, it is possible and advisable to determine the
necessary power of the study if it is to support a hypothesis beyond
reasonable doubt. For the computation of power, it is necessary to
have developed from the preliminary evidence (pilot studies,
research reported in the literature, etc.) a critical effect size – a
measure of how strong the effect must be to have any practical or
theoretical importance. This is the minimum effect size d that the
researcher will consider to be of practical importance. In our tea-
drinking example, it is possible for tea-drinking to cause a loss of
sleep of only a few minutes duration, and it is possible for tea-

Power calculations
should be deter-

mined before data is
collected.

Power calculations
are a central aspect

of good study
design.

The critical effect
size is a measure of

how strong the
effect must be to

have any practical
significance.
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drinking to cause sleeplessness lasting hours. The researchers must
decide what loss of sleeping time is sufficient for the hypothesis to
have any importance. Clearly, the choice of a critical effect size has
to be based on the researchers’ understanding and knowledge of
the field, supplemented by any preliminary evidence that is avail-
able. It will also reflect the characteristics of the population being
studied (e.g. people sleep less as they grow older, so the critical
effect size will have to be larger for a sample of older people, and
smaller for a sample of younger people). From all of this, it should
be obvious that, just as a prosecutor cannot institute a trial without
evidence, so it is not possible to plan a powerful study without any
background or preliminary information. 

Power calculations
Power calculations are important if we are to determine how large
our sample should be to prove a hypothesis beyond a reasonable
doubt. These must start with an estimate of the critical effect size, d.
There are three ways of estimating the critical effect size: 
1. Prior research. On the basis of previous research we may be able to

obtain at least an approximation of d. From such earlier studies
we may be able to estimate population means and variances and
use these to calculate µ1 – µ0 and σ, and thus calculate d.

2. Personal assessment of what difference is important. In many cases a
researcher will be able to say something like ‘I’m interested in a
difference of at least 20 points between µ0 and µ1’. Anything less
than this is not seen as having practical importance. Suppose a
researcher is asked to investigate a procedure that is said to raise
the IQs of disadvantaged children. The researcher may decide
that anything less than an increase of 10 IQ points is not worth-
while. We already know that the standard deviation of IQ scores
is 15, so this researcher is looking for a d value of 10/15 or 0.67.
We know that σ � 15, µ1 – µ0 � 10, and we substitute
this into the equation for d:

d � � � 0.67

3. Use Cohen’s conventions. The researcher may decide to look for
a small, medium, or large effect as defined by Cohen (see Table
13.2). If our IQ researcher had decided to look for a small effect
in terms of Cohen’s criteria (0.2), this would amount to search-
ing for a difference of 3 IQ points. We know that d � 0.2, and we
know σ � 15, and we substitute this into the equation for d to
find µ1 – µ0:

0.2 � , so µ1 – µ0 � 15 × 0.2 � 3
µ1 – µ0
�

15

10
�
15

µ1 – µ0
�

σ

Three sources of 
estimates of effect
size (d):
1. Prior research
2. Assessment of

practical import-
ance.

3. Cohen’s conven-
tions.
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To calculate power, d is not sufficient on its own. The effect size must
be combined with the sample size in order to calculate power. This
combination yields a statistic called delta (δ). Delta is calculated dif-
ferently for each statistical test, so we express it in a generic form as:

δ � d[ f (n)]

In this formula, f(n) represents some function of the sample size 
that will differ from one statistical procedure to the next. Once delta
has been calculated, it can be used to find power in Table A1.3 of
Appendix 1. 

We will consider power calculations for the t-test below; calcula-
tions for the other methods and tests outlined in this text are too
complex, and we recommend you to Cohen’s (1988) authoritative
work for details. 

You will need different formulas for each of four possible cases
of the t-test. Recall from Tutorial 9 three types of t-test: single
sample, independent means, and matched sample. The fourth case
of the t-test arises when the independent samples t-test has two
unequal samples.

Power calculations for the one-sample t-test
In the case of a single sample t-test, the formulas you will need for
power calculations are given in Table 13.3. If you wanted to test the
hypothesis that students have a higher IQ than the general popu-
lation, you would use the one-sample t-test. You would need to ran-
domly select a sample of students (say 25) and measure their 
IQ scores. Let us say that you decide upon a critical effect size of 
5 IQ points between the students’ average IQ score and that of the
general population. So µ1 � 105, while µ0 � 100, and σ � 15 (the
known mean and standard deviation of the IQ test). Therefore: 

d � � � 0.33

It is now possible to calculate power, δ: 

105 – 100
��

15

µ1 – µ0
�

σ

Equation 13.2

δ (delta) is a symbol
used to denote a

transformation of d
to a form that can

be used to calculate
a (probability) value

for the power 
of a test.

Equation 13.3

Table 13.3  Power calculations for the one-sample t-test

σ d n δ

Estimate of Size of the 
standard deviation single sample

of population

µ1 – µ0
�

σ
d ×  

The effect size (d)
must be combined

with the sample size
(n) to determine

power.

Whether d is positive
or negative depends
on whether you sub-

tract µ0 from µ1 or
µ0 from µ1. Since the

power table only
contains positive 

values, drop the sign
of d. 

δ � d ×

� 0.33 × � 0.33 × 5 � 1.65

�n�

�2�5�

�n�
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Although you expect the students to have higher IQ scores than the
general population, you decide to use a two-tailed test at � � 0.05 to
protect against unexpected events. Using the power table (Appendix
1), you look up δ � 1.65 at � � 0.05 and find that power is between
0.36 and 0.4. By linear interpolation (see Box 6.1), power is roughly
0.38. This means that if the null hypothesis (that there is no difference
between the IQ of the general population and that of students) is
false, and the student IQ really is 105, then only 38% of the time will
you expect to find a significant difference. Turning this around, we
can say that 62% of the time you will make a Type II error.

Since you have been far-sighted enough to calculate power
before running your experiment, you can take corrective action and
increase your sample size. How big should your sample of students
be? This will depend upon what level of power you desire. If you
decide upon a level of power of 0.8 (i.e. 1 – β � 0.8) you can use the
power table in Appendix 1 to find delta (δ), by scanning the table in
the reverse direction to the way we used it in the calculation imme-
diately above. We find that for power � 0.8, δ � 2.8. We now have
enough information to calculate n:

δ � d × , so � , and ( )
2

� n

n � ( )
2

� 71.9

2.8
�
0.33

δ
�
d

δ
�
d

This means that for power � 0.8 you will need a sample size of 
72 students.

Generally, a power level of 0.8 is reasonable – to obtain higher
levels of power requires substantial increases in sample size. To
illustrate, consider that for power � 0.99 you would need a sample
size of 159 subjects, which would considerably increase your costs. 

Power calculations for the two-sample (independent)
t-test, n1 � n2

Here we assume that the two samples have the same standard devi-
ation and that we can find a single value to estimate that standard
deviation. The formula for delta is also slightly modified, as shown
in Table 13.4

Suppose we are comparing two treatments for depression. We
manage to find 50 depressed patients and we have divided them into
two equal groups, each receiving a different treatment. We ask our
subjects to count the number of times suicidal ideation occurs to
them each month. We expect that the difference between the two

Generally, a power
level of 0.8 is 
reasonable – to
obtain much higher
levels of power
requires large
increases in n.

�n�  �n�  
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Table 13.4  Power calculations for the two-sample t-test, 
n1 � n2

σ d n δ

Assume Size of each of
σ1 � σ2 � σ the (equal)

sample sizes

µ2 – µ1
�

σ
d × n

�
2

treatments will be 5 suicidal thoughts each month. From previous
research we expect a standard deviation of approximately 10 suicidal
thoughts each month. From this information:

d � � � 0.5

This is a moderate effect, in terms of Table 13.2. Given that we have
25 observations in each of our two groups, it is now possible to
calculate δ:

5
�
10

µ2 – µ1
�

σ

δ � d ×

� 0.5 × � 0.5 × 3.54 � 1.77
25
�
2

n
�
2

Equation 13.4

From the power table in Appendix 1, we see that δ � 1.77 with a
two-tailed test at � � 0.05 will yield a power of approximately 0.43.
This means that our attempt to compare the two treatments for
depression on a critical effect size of 5 suicidal thoughts a month has
a 43% chance of actually rejecting the null hypothesis if it is false
(i.e. a 57% chance of making a Type II error).

In this experiment, how many subjects would we need for a
power of 0.8? From the power table in Appendix 1 we see that a
power of 0.8 will require δ � 2.80. A little algebra will show that the
formula for calculating the sample size must be:

n � 2( )2δ
�
d

Applying this formula, we get:

n � 2( )2

� 2 × 31.36 � 62.72
2.8
�
0.5

We will therefore need 63 depressed subjects in each sample. It may
be impossible to obtain a sample of 126 depressed people (i.e. 63 in
each treatment group), and in this case the researcher may consider

If you cannot see
how to transform
the formula for δ

into a formula for n,
see Tutorial 24.

�

�
�
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lowering alpha to, say,  0.1, though if this is done, it will increase the
Type I error rate, and journal editors might be reluctant to publish
the findings.

What is the practice in your discipline for ensuring adequate levels 
of statistical power? You may be able to find a review, like that
published by Cohen (1962), but if you cannot, pick some t-test studies
from a few journals, making sure that they report the necessary
statistics for calculating power (n, mean and standard deviation will
do). Do some power calculations on these, treating the means and
variances as estimates of µ and σ.

Activity 13.4

Power calculations for the two-sample (independent)
t-test, n1 ≠ n2

Suppose our researcher had to assign depressed subjects to treat-
ment groups on the basis of their hospital locations, and that this
resulted in unequal numbers of depressed subjects in each treatment
group. In this case we would have to change our power calculations
to use the formulas given in Table 13.5.

Table 13.5  Power calculations for the two-sample t-test; 
n1 ≠ n2

σ d n δ

Assume
σ1 � σ2 � σ

µ1 – µ2
�

σ
d × nh

�
2nh �

2n1n2
�
n1 + n2

Notice that the principal change from the equal sample case is that
we calculate the harmonic mean (not the arithmetic mean) of the
two sample sizes and then use this harmonic mean in our calcula-
tions. The reasons are beyond the scope of this text.

Consider again our comparison of the effect of two different treat-
ments on monthly suicidal thoughts in depressed patients. In one
hospital where treatment A is to be applied we can find 35 depressed
patients. In the other hospital we can find only 25 patients. In this
case d remains 0.5 as calculated above. But we cannot calculate δ
until we calculate the harmonic mean of the two sample sizes. 

The harmonic mean
is typically used to
estimate the average
of a number of
unequal sample
sizes.nh � � � � 29.167

1750
�

60
2 × 35 × 25
��

35 + 25
2n1n2
�
n1 + n2

�
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Notice that the harmonic mean is a little lower than the arithmetic
mean (30) of the two samples. We can now proceed to calculate δ in
the same way as was done previously:

δ � d × � 0.5 × � 0.5 × 3.82 � 1.91
29.167�

2
n�
2

From the power table in Appendix 1, we see that δ � 1.91 with a
two-tailed test at � � 0.05 will yield a power of approximately 0.48.
This is a little better than was the case for the calculation above,
assuming equal sample sizes, but is surprising, since we have sub-
stantially increased the sample size in one group. We will omit the
calculation of the n required to obtain a desired power level of 0.8,
since this is somewhat more complex for the harmonic mean: it
should normally be adequate to calculate n on the assumption that
your research design will contain equal sample sizes.

To what extent does the mere presence of an unbalanced design affect
power? To understand this, calculate power for the following two-
sample t-test parameters:
a) µ1 � 20, µ2 � 15; σ � 10, n1 � 35, n2 � 35
b) µ1 � 20, µ2 � 15; σ � 10, n1 � 30, n2 � 40
c) µ1 � 20, µ2 � 15; σ � 10, n1 � 20, n2 � 50
d) µ1 � 20, µ2 � 15; σ � 10, n1 � 60, n2 � 10

Activity 13.5

Power calculations for the matched sample t-test 
A different complication arises when we consider the final type of 
t-test, the matched sample variant. Most of the formulas for a
matched sample t-test (given in Table 13.6) are the same as for a sin-
gle sample t-test. However, our estimate of the standard deviation
is different because matched sample t-tests involve calculating dif-
ference scores between the two samples. Our estimate of the stan-
dard deviation has to be an estimate of the standard deviation of
these difference scores. A formula that can be used for this task is
given in Table 13.6.

Table 13.6  Power calculations for the matched sample 
t-tests

σ d n δ

µ1 – µ2
�
σX1 

– X2

d ×  n (the number of
matched pairs)

Use σX1 – X2

(the standard 
deviation of the 

difference scores)

In order to do power
calculations for the

matched sample 
t-tests, we need a

value for p (rho), the
population correla-

tion coefficient.

� �

�n�
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The formula for estimating the standard deviation of the difference
scores between the two matched samples requires that we can esti-
mate the correlation between the two populations, and this may be
very difficult to do in practice. Assuming that we can obtain this esti-
mate, the rest of the procedure is the same as for the one-sample t-test.

As an example, recall the old naval practice of giving sailors a tot
of rum once a day. Suppose we wanted to compare sailors’ per-
formance on a vigilance task (using sonar to watch for submarines),
before and after receiving their tots of rum. In this task our score
will be the number of seconds that pass before the sailors notice a
change in the sonar echo. From other research there is reason to
believe that this task has a standard deviation of 15. We assume that
alcohol will degrade everyone’s performance equally, so that the
sailors’ performance before receiving their tots will correlate highly
with their performance after receiving their tots. On the basis of
other alcohol research, we estimate a correlation of 0.9. We use this
as the population correlation coefficient, ρ, in the calculation below.
From this information we can estimate σ X1 – X2

as follows:

σ X1 – X2 � σ   � 15 � 15(0.447) � 6.71

If we study the before- and after-tots performance of 30 sailors, and
obtain a critical effect size of 3, we can now estimate d as follows:

d � � � 0.45
3

�
6.71

µ2 – µ1
�σ X1 – X2

Similarly: 

δ � d × � 0.45 × �3�0� � 2.46

We look this up in the power table in Appendix 1, which returns a
power estimate of 0.7. In other words, we are 70% likely to reject a
false null hypothesis, if our assumptions regarding effect size and
variance are well founded.

Assume the same data as for the ‘tots of rum’ example in the text, but
treat it as if it were an independent sample t-test – i.e. µ1 – µ2 � 3, 
σ � 15, n1 � n2 � 30. Calculate the power of this test. Is it a more
powerful or less powerful test than the matched pairs t-test?

Activity 13.6

Factors that influence choice of sample size
We conclude by briefly considering some factors that influence the
choice of an appropriate sample size:
1. The higher the significance level, the greater the necessary

sample size in order to attain a certain level of power, i.e. more

�2�(1� –� ρ�)� �2�(1� –� 0�.9�)�

�n�



subjects are needed for 1% significance level tests than for 5%
significance level tests.

2. Two-tailed tests require larger sample sizes than one-tailed tests
for the same level of power. 

3. The smaller the critical effect size, the larger the sample size
required for the same level of power.

4. The larger the power required, the greater the sample size
needed. 

5. The smaller the sample size, the lower the power. This means
that with small sample sizes there is a greater chance of a non-
significant result all other things being equal.

6. Running a study with 20 or fewer subjects in typical social
science research designs involves a very high risk of failure
unless we are fortunate to have a large critical effect size.

7. The combination of small effect size and great power requires
enormous research effort. For example, to achieve 99% power for
a critical effect size of 0.01, a researcher must be prepared to find
and study more than 150 000 subjects!

Of course, the minimum sample size for a credible study differs
from discipline to discipline and from research topic to research
topic. Most opinion surveys cannot get away with less than 1 000
respondents, and most sociological and epidemiological studies
require many hundreds of subjects. But in some areas of Psychology,
sample sizes of 30 to 100 subjects are commonly seen. In some
disciplines, where there is little variance in measurements, single
subject research may be found.

Worked example
As you may know, one of the greatest threats to national health in
South Africa is the HIV virus. In South Africa, the preponderance of
evidence suggests that the disease is mostly spread by sexual
contact. Social scientists have addressed themselves to this problem
by attempting interventions that decrease risky sexual contact, and
promote safe-sex practices. A measure that is often used to index
these practices in populations at risk is the frequency of unprotected
sex outside of monogamous relationships. Since good-quality
research is expensive to do in this area, it is important that studies
are designed so that they have high levels of statistical power. 

Suppose that an intervention costs R73 per subject, and that we
know that the preferred dependent measure (‘unprotected sex’) has
a population standard deviation of 5.2. Previous studies have
shown that the change in the dependent measure we can expect
from interventions like this is approximately 0.23 units. We also
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• ‘tailedness’ of 
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know that before and after scores in these interventions tend to be
highly correlated: + 0.8 is a reasonable estimate of ρ. If we wish to
obtain power � 0.9, what sample size will we require? If our budg-
et is R56 000, what level of power will we be able to afford?

Solution
We need to calculate some preliminary statistics that we will need
for the final calculations. First, we calculate the standard deviation
of the difference scores, σ X1 – X2

σ X1 – X2
� σ �2�(1� –� ρ�)� � 5.2 �2�(1� –� 0�.8�)� � 5.2(0.63) � 3.29

Next, we need to establish what the effect size is:

d � � � 0.07
0.23
�
3.29

µ2 – µ1
�
σ X1 – X2

Now we need the transformation from power (1 – β) to n, which we
find with some basic algebra:

δ � d × �n�

∴ � �n�

∴ n � ( )2δ
�
d

δ
�
d

We use this result to solve for n. In the present example, we deter-
mine δ by looking it up on the power table in Appendix 1. If we look
up a power of 0.9 at alpha � 0.05 (given in the question), then move
across the left-most column (called ‘delta’), with linear interpola-
tion, we get a value of δ � 3.25. Therefore,

n � ( )2

� 2155.61 ≈ 2156
3.25
�
0.07

For the second part of the problem, we need to work out how many
participants we can afford, and then calculate the power that they
will yield, given our estimates of effect size and σ.

Since we have a total budget of R56 000, and it costs R73 per 
participant, we can afford R56 000/R73 � 767 participants.

To calculate power on the basis of this number, we need to re-
calculate δ:

δ � d × �n�

� 0.07 × �7�6�7� � 1.94
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We look up this value of δ in the relevant table, and we see that this
is approximately 0.5. In other words, if the assumptions we have
made are correct, and we proceed with the intervention, we will
only be able to afford a statistical power level of 0.5 within the con-
straints of our budget.

In short, we will have to re-examine the intervention, since the
primary reason for the low power is the small effect size associated
with the intervention.

Statistical software for power calculations
There is a fair amount of statistical software that facilitates power
calculations, and the statistical packages we have referred to in this
text (SPSS® and STATISTICA) provide support in this respect.
However, the support is normally provided in a separate software
package, and not as part of the base or regular installation. In our
experience, few institutions purchase the add-on package, so this
may not be an option for you. You can find a helpful review of
statistical software for power calculations at the following Internet
address: http://www.zoology.ubc.ca/~krebs/power.html

Luckily, there are several excellent freeware packages, which you
can download from the Internet. One of the best of these is GPOW-
ER, written by Franz Faul and Edgar Erdfelder of the University 
of Dusseldorf. A DOS/Windows version is available at
http://www.psycho.uni-duesseldorf.de/aap/projects/gpower/
binaries/gpowerdos/ GPOWER2I.EXE

This package is very simple to use. We will demonstrate only one
calculation, power of the independent samples t-test, assuming the
data of Activity 13.6.

Box 13.1
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Summary
1. Conducting a statistical test can be likened to running a criminal

trial: making a significant finding is a question of correct
evidentiary procedure, and does not point to the salience or
practical importance of the finding.

2. There are two types of error in statistical hypothesis testing:
Type I error (symbolised as �), where we mistakenly reject a true
null hypothesis, and Type II error (symbolised as β), where we
mistakenly fail to reject a false null hypothesis. The power of a
test is the probability of making the correct decision to reject 
the null hypothesis when it is false – it is the complement of a 
Type II error, and is therefore symbolised as 1 – β.

To calculate power, select ‘Post hoc’ under ‘Analysis’, and com-
plete the data required in the ‘Effect size’, ‘Alpha’, n1 and n2 cells. You
can also select ‘one-tailed’ or ‘two-tailed’ in the ‘Test is …’ section.

The program then displays the results of the calculation in the
‘Delta’ and ‘Power’ tabs.

As you can see, the power of the test in question is very low. If
we want to work out what sample size(s) we would need to increase
the power to some desired level, say 0.8, then we would select ‘A
priori’ in the ‘Analysis’ block, and the screen would change to allow
the entry of necessary information. Try this yourself, and you will
see that the required sample size is 620 in total, or 310 per group.
GPOWER also allows you to produce a number of useful graphs, via
the ‘Graph’ button on the main dialog. In Figure 13.4 we have plot-
ted power vs sample size for the ‘tot of rum’ example.

TEST FOR MEANS
Effect size d = 0.2, Alpha = 0.05

Test is one-tailed

TOTAL SAMPLE SIZE

PO
W

ER

1.0

0.8

0.6

0.4

0.2

0.0
0 200 400 600 800 1000

Figure 13.4 GPOWER graph, plotting power as a function of 
sample size for the ‘tot of rum’ example



3. Five central aspects of a research design determine the power of
a statistical hypothesis test: the size of the true difference or
effect; the sample size(s); the population variance σ; the α level
adopted in the study; and the type of statistical test.

4. Effect size is a measure of the experimental or observed differ-
ence, e.g. the difference between two means. The most commonly
used index of effect size is Cohen’s d, which expresses a mean
difference in standard deviation units.

5. Most power calculations require a priori information, typically µ
and σ. It is usual to estimate this from previous literature, or on
the basis of theory.

6. The major aims of power analysis are usually (1) the calculation
of 1 – β (statistical power), or (2) the calculation of the sample
size(s) required to obtain a particular value of 1 – β (statistical
power).

Exercises
1. Two graduate students recently completed their dissertations.

Each used a t-test for two independent groups. One found a
significant t using 15 subjects per group. The other found a sig-
nificant t of the same magnitude (i.e. the t-statistics were the
same size) using 55 subjects per group.
a) Which result impresses you the most? Why?
b) Draw a diagram of overlapping distributions (analogous to

Figure 13.1) to defend your answer.

2. We have just conducted a study comparing cognitive develop-
ment of low- and normal-birthweight babies who have reached
one year of age. Using a scale we devised, we found that the
sample means of the two groups were 25 and 30 respectively,
with a pooled standard deviation of 8. Assume that we wish to
replicate this experiment with 20 subjects in each group. If we
assume that the true means and standard deviations have been
estimated exactly, what is the a priori probability that we will
find a significant difference in our replication?

3. A PhD student has the impression that he must find significant
results if he wants to defend his dissertation successfully. He
wants to show a difference in social awareness, as measured by
his own scale, between a normal group and a group of ex-delin-
quents. He has a problem, however. He has data to suggest that
the normal group has a true mean of 38, and he has 50 of those
subjects. He has access to either 100 high-school graduates who
have been classed as delinquent in the past, or to 25 high-school
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dropouts who have a history of delinquency. He suspects that
the high-school graduates come from a population with a mean
of approximately 35, whereas the dropout group comes from a
population with a mean of approximately 30. He can use only
one of these groups. Which should he use? (Assume the stan-
dard deviation is the same for all groups.)

4. The table below shows sample sizes required for power � 0.80, 
alpha � 0.05, two-tailed test assumed. Generate a table analogous 
to that below for power � 0.80, alpha � 0.01, two-tailed.

Effect Size d One-sample t Two-sample t

Small .20 196 784
Medium .50 32 126
Large .80 13 49

5. Generate a table analogous to the one above for power � 0.60,
alpha � 0.05, two-tailed test assumed.

6. We want to test a null hypothesis about a single mean at alpha
� 0.05, one-tailed test assumed. All necessary assumptions are
met. Could there be a case in which we would be more likely to
reject a true null hypothesis than a false one? (In other words,
can power ever be less than alpha?)
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The logic of analysis of
variance

Kevin Durrheim

•••••••••••
After studying this tutorial, you should be able to:
• Explain what analysis of variance (ANOVA) is.
• Know the kind of research situations in which it

is appropriate to use ANOVA.
• Outline the statistical logic underlying ANOVA.
• Do basic ANOVA calculation with the aid of a 

calculator.

TUTORIAL

14

You have already been introduced to hypothesis testing as the
formal process by which we investigate research questions using
inferential statistics to reach decisions about the validity of the null
and alternative hypotheses. Thus far you have considered the z-test
and the t-test. These are inferential tests because they allow us to
draw conclusions about populations on the basis of information we
gain from observing and measuring samples. The basic difference
between analysis of variance (ANOVA) and the t-test and z-test is that
ANOVA allows us to test the difference between more than two
groups of subjects and the influence of more than one independent
variable.

Suppose we wanted to test the hypothesis that exposure to vio-
lent television programmes makes children aggressive. We could
employ the following experimental design:

Recruit 60 fourth grade schoolchildren and randomly assign
them into two groups. Show one group a particularly violent
movie, and show the other group a non-violent, but otherwise
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similar, movie. Immediately after the movie ask each child indi-
vidually to tell a story about ‘a family outing’, and measure the
subjects’ expressions of aggression in the story-telling task (see
Figure 14.1).

The dependent variable in the experiment is the number of aggres-
sive or violent incidents that the children refer to in their stories.
The null hypothesis is that children exposed to violent television
will be as aggressive as children not exposed to violent television.
The alternative hypothesis is that children exposed to violent tele-
vision will be more aggressive than children not exposed to violent
television. These hypotheses refer to children in general (i.e. the
population of children), and not merely to the particular group of
children who participated in the experiment. In order to draw
conclusions about the population of children on the basis of our
sample, we need to employ inferential statistics. The appropriate
inferential test to employ in analysing the results of this experiment
is the independent samples t-test (see Figure 14.1). This test will tell
us whether the difference between the two groups in our experi-
ment is large enough to conclude that the difference is very unlike-
ly to be a chance event. The t-test is appropriate here because we
have two groups of subjects and only one independent variable. 

60 subjects

Compare
t-test

Group A
x1

Group B
x2

Figure 14.1 Example design for study of aggression

If, in the above study, the researcher wanted to test whether expo-
sure to different types of violence influences aggression, she could
divide her pool of 60 subjects into three groups: a control group that
watches a non-violent movie; an experimental group that watches a
Kung Fu movie; and a second experimental group that watches a
movie depicting domestic violence. In this experiment we have one
independent variable with three groups, and ANOVA is the appro-
priate statistical procedure to analyse the results (see Figure 14.2),
since the t-test cannot be used for a simultaneous test of the differ-
ences between the three groups. 



254 NUMBERS, HYPOTHESES AND CONCLUSIONS

There is another type of research design where ANOVA is the
appropriate statistical procedure. This is when we have more than
one independent variable. Perhaps we hypothesise that males will
be more aggressive after watching the Kung Fu movie, but females
will be more aggressive after watching the domestic violence
movie. This experimental design consists of three groups of male
subjects – control plus two experimental groups as in Figure 14.2 –
and a similar three groups of female subjects, making six groups of
subjects altogether. In this study we have six groups of subjects
whose mean scores we want to compare, but we also have two inde-
pendent variables: gender and movie type. This design can answer
questions such as ‘Are males more aggressive than females across
all movie types?’, ‘Do the violent movies increase aggression for
both male and female subjects?’, and ‘Are males more aggressive
than females after watching the Kung Fu movie, but not the domes-
tic violence movie?’ These complex designs with more than one
independent variable are known as factorial ANOVA designs, and
will be considered in a later tutorial. At this stage you should know
that ANOVA differs from the t-test in that it identifies differences
between the means of more than two groups, and can be used in
designs with more than one independent variable. In this tutorial
we will consider simple ANOVA designs consisting of one inde-
pendent variable with three groups of subjects.

60 subjects

Compare
ANOVA

Group A
x1

Group B
x2

Group C
x3

Figure 14.2 Design for three-group study of aggression

Browse the journal holdings of your institution’s library, and try to
identify four studies that have used factorial experimental designs in
your discipline. Keep a note of how many times you see ANOVA
used as a data analysis method.

Activity 14.1

ANOVA is used to
test for differences

between the means
of more than two

groups, and can be
used in designs with
more than one inde-

pendent variable.
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The rationale for using ANOVA
Although we use the t-test and ANOVA for research designs that
involve different numbers of groups, both statistical procedures are
used to compare group means. In a typical ANOVA problem you
have three groups of subjects, whose means you want to compare
(see Table 14.1). The null hypothesis for an ANOVA problem is 
H0: µ1 � µ2 � µ3. (Recall that Greek letters refer to population para-
meters, thus our null hypothesis refers to population means.) As 
you can see from Table 14.1, we are no longer talking about a
difference between two means as we do for the t-test. Here we 
are dealing with a set of possible differences between means, i.e.
differences between:
1. x1 and x2

2. x1 and x3

3. x2 and x3

Table 14.1  Aggression scores for subjects 
exposed to types of TV violence

Type of television violence

Non-violent Kung Fu Domestic violence

2 3 4
0 6 1
1 4 2
3 6 3
3 1 3

x1 � 1.8 x2 � 4 x3 � 2.6

Analysing this design involves examining all three comparisons
simultaneously. Because we are examining a set of possible differ-
ences, instead of testing for a difference between two means, we test
for an effect. A significant effect is present in the data when at least
one of the possible comparisons between group means is significant.

We could approach the problem by using three different t-tests,
one for each of the group comparisons outlined above. Although
this approach will give you an indication of where the differences
lie between the three means, it is an unsatisfactory approach
because it leads to an increase in the familywise error rate. The fami-
lywise error rate is the probability of rejecting at least one null
hypothesis when it is true, in a set (family) of comparisons. You will
recall that the decisions we reach on the basis of inferential testing
are always uncertain. There is always the possibility of making a

The familywise error
rate is the probabili-
ty of rejecting at
least one null
hypothesis when it 
is true, in a set 
(family) of compar-
isons. The overall
Type I error rate
(familywise error
rate) for a set of
comparisons is con-
trolled by ANOVA.
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Type I or Type II error (see Tutorial 13). If we conduct a t-test with 
� � 0.05, then we have a 5% chance of making a Type I error by reject-
ing the null hypothesis when it is in fact true. If you conduct three
different t-tests, as you would need to in a design where you want to
compare three group means, the probability of incorrectly rejecting at
least one null hypothesis when it is true will be greater than 5%. We
calculate the familywise error rate by using the following formula:

Attempt to estimate the Type I error rate in the following designs 
(� � 0.05):
a) Two groups are compared with a t-test.
b) Five groups are compared to each other with t-tests.
c) Ten groups are compared to each other with t-tests.

Activity 14.2

Equation 14.2

ANOVA helps to deal with the problem of familywise error by
countering the increase in alpha that occurs when we compare more
than two group means. ANOVA is an ‘omnibus’ test of significance
and as an omnibus test, ANOVA employs a single calculation to test
all possible comparisons at once. This is why ANOVA tests for an
effect, rather than testing for a difference between means. If the
effect is significant, then we know that at least one of the three com-
parisons is significant.

The logic of ANOVA
Terminology
ANOVA is an acronym for ‘analysis of variance’. As the name
suggests, the procedure involves analysing variance. You will recall
that variance is a measure of the dispersion in a set of scores, and is
calculated by determining the ‘average distance’ of a set of scores
from its ‘centre’ or mean, by the formula:

s2 �
Σ(x – x)2

��
n – 1

1 – (1 – �)k

where: k � the number of significance tests

Thus, for the present example, the probability of making a Type I
error is 1 – (1 – 0.05)3 � 0.14. This can have serious consequences.
Imagine that you are testing whether a new drug is an effective
treatment for cancer, and you make a Type I error. This would lead
you to conclude that the drug is effective, whereas in reality it is an
ineffective treatment that would bring false hope to millions of
people who suffer from cancer.

Equation 14.1

ANOVA provides 
an omnibus test 

for an effect.
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The notion of variance and this formula underlies most of ANOVA.
Unfortunately we change our terminology slightly here, but the
concepts remain exactly the same. In ANOVA terminology, the
numerator in the formula – i.e. the top part of the formula, Σ(x – x)2

– is called the Sums of Squares (abbreviated to SS). It is easy to see
why this is called the Sum of Squares – the numerator estimates the
sum (i.e. Σ) of squared differences between each score in a set of
scores and the mean of those scores. Instead of talking about
variance, in ANOVA terminology we talk about Mean Squares
(abbreviated to MS). This is essentially what variance is – the mean
or average of the sum of squared differences between each score in
a set of scores and the mean of those scores. The denominator – i.e.
n – 1 – we call the degrees of freedom (abbreviated to df ). 

Rewrite these expressions (using their definitions) to find which
well-known formulae they refer to in ‘ANOVA speak’:

a) b)  

Activity 14.3

MSE �
SSE
�
dfE

�M�S�E� � � SSE
�
dfE

This change of terminology may appear an unnecessary complica-
tion, but in fact it simplifies things. This is because in ANOVA we
need to distinguish between, and estimate, two different types of
variance – random or error variance, and systematic variance.

Error variance and systematic variance
Error variance should be a familiar concept by now, as you came
across it in the discussion of the z-test and t-test. Error variance refers
to the random variation between sample means that we find when
we randomly select samples from a population. In Figure 14.3, we
have randomly selected three samples of size n � 20 from a popula-
tion that we know has a mean µ � 12 and a variance σ 2 � 9. As you

Individuals

Sample (n = 20)

Population

x = 10.9

x = 13.2

x = 9.7

Figure 14.3 Variation in random sample estimates of the population
mean

Error variance is
random or unex-
plained variance
between the means
of samples drawn
from the same 
population.
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can see, the means of the samples differ from the population mean
and from each other. This is expected, because we know from the
Central Limit Theorem that sample means from a population will be
distributed around the population mean with a certain amount of
variance. In other words, a randomly selected sample mean estimates
the population mean with some specifiable amount of error. This
variance between sample means is unexplained, random variance,
and is also commonly known as error variance.

The second source of variance of relevance to ANOVA is system-
atic variance. Systematic variance is the variance in a set of scores
that we can explain in terms of the independent variable. Say, for
example, that we are asked by a cookery school to test their pressure
cooker. It is essential that the pressure cooker works correctly at a
stable temperature and pressure to ensure that food is never over-
or under-cooked. We run the pressure cooker at 20 kilopascals, 40
kilopascals, and 60 kilopascals, and record the temperature at which
a liquid boils. We take five temperature readings at each pressure.
As you can see from Table 14.2, the five temperature readings at each
pressure reading are exactly the same. Our dataset consists of 15
numbers (five 45s, five 75s, and five 92s), and because all the num-
bers are not exactly the same (i.e. we have 45s, 75s, and 92s in our
dataset), we know that there is variance present in this dataset. In
this example, however, all the variance is systematic variance, i.e. all
the variance can be explained in terms of the independent variable,
which in this case is pressure. The variance between the 15 numbers
in our dataset can be explained completely by differences in the
pressure settings. We know this because there is no variance within
each of the groups. All the variance is attributable to differences
between the groups.

Systematic variance
is the variance in a

set of scores that we
can explain in terms

of the independent
variable.

Table 14.2  Temperature readings at three 
pressure settings

20 kp 40 kp 60 kp

45 75 92
45 75 92
45 75 92
45 75 92
45 75 92

x1 � 45 x2 � 75 x3 � 92
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Comparing variance within and between groups
The whole aim of computing ANOVA is to determine whether there
is systematic variance present. If there is systematic variance present
in a dataset, we have a significant effect. From the above example
we know that systematic variance is evident in the differences
between the group means. Unfortunately, we never have data like
that in Table 14.2. In all real-world research – especially in the social
sciences – there is always error variance present in our datasets.
Data are composed of some mixture of systematic and error
variance. This creates a problem because it means that we can never
identify and measure pure systematic variance. The differences
between group means will always be influenced by random or error
variance in addition to (possible) systematic variance. Systematic
variance is not independently measurable. To determine whether or
not there is systematic variance present in a dataset, we have to
follow a rather indirect path by comparing the variance within the
groups to the variance between the groups. 

Invent datasets of 5 cases per group that exhibit the following
characteristics: 
a) no random or error variation
b) no systematic variation
c) mostly systematic variation, with a little error variation
d) mostly random variation, with a little systematic  variation.

Are you uncertain whether you managed to create any of these? 
If so, why?

Activity 14.4

Comparing variance
within groups with
variance between
groups identifies 
systematic variance. 

Table 14.3 provides an illustration of two different datasets that both
have error variance present. We know that there is error variance
present in both datasets since, unlike the data in Table 14.2, the
scores within each of the cells differ from each other (note that ‘cells’
in this context is a synonym for ‘groups’). However, if you study the
pattern of scores in Dataset 1 and Dataset 2 in Table 14.3, you will
note that the two datasets are quite different. In Dataset 1, we have
a pattern of high variance within groups, but low variance between
groups. As you may imagine, it is quite unlikely that there are
systematic differences between these groups. Although the group
means differ, the differences are small in comparison with the
differences between scores within the groups. In other words, it is
quite unlikely that a significant effect would be found for this
pattern of data, since the difference between group means is small 
in comparison with the error variance between individual scores 
within the groups. This is a situation where the null hypothesis, 
H0: µ1 � µ2 � µ3, is very likely to be true.

We have a signifi-
cant effect when
there is systematic
variance present.



The variance within
cells is an estimate

of error variance,
while the variance

between group
means is an esti-

mate of error vari-
ance plus systematic
variance. Comparing
within and between
group variance pro-
vides an estimate of
systematic variance.
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If you compare the distribution of scores within the cells of Dataset
2 with the differences between the means, you will note a very dif-
ferent pattern. In this case there is very little variance within the
cells (look at the range of scores within each cell), but there are large
differences between the cell means. Here it appears as though there
may be systematic differences between the groups, since, although
there is error variance present, it appears to be relatively small in
comparison with the differences between the group means.
Although the group means are influenced by the error variance
within the cells, the differences between these means appears to be
too large to be explained entirely by the within-cell error variance.
In other words, it is quite likely that a significant effect would be
found for this pattern of data since the difference in group means is
large in comparison with the error variance between individual
scores within the groups. This is a situation where the null hypo-
thesis, H0: µ1 � µ2 � µ3, is very likely to be false.

The discussion thus far has been abstract. It has been stated that
we can determine the likelihood of there being an effect present in
the data – i.e. the presence of systematic variance – by comparing
the variation within the groups to the variation between the group
means. The reason why this comparison allows us to determine the
presence of systematic variance is that the variance within the cells
is error variance while the variance between the cells is made up of
a mixture of error variance and systematic variance. As has been
noted, it is not possible to measure pure systematic variance
because it is always mixed up with error variance. However, if we
have one estimate of pure error variance (i.e. the variance within the
cells) and one estimate of error variance plus systematic variance
(i.e. the variance between the group means), then by comparing the
two estimates we can determine the likelihood that there are sys-
tematic differences between the groups. If the variance between the

Table 14.3 Two datasets for aggression scores in three TV violence conditions

Dataset 1

Non-violent Kung Fu Domestic 
violence

3 2 7
9 8 4
2 7 1
5 1 9
1 4 3

x � 4 x � 4.4 x � 4.8

Dataset 2

Non-violent Kung Fu Domestic 
violence

2 5 9
2 3 7
1 3 9
3 4 8
1 6 5

x � 1.8 x � 4.2 x � 7.6



TUTORIAL 14: THE LOGIC OF ANALYSIS OF VARIANCE 261

group means (error variance + systematic variance) is much greater
than the variance within the cells (error variance), then this must be
due to the presence of systematic variance.

This comparison can be likened to an old man who, suffering
from gout and arthritis along with a number of other ailments
specific to old age, wakes up every morning with many aches and
pains. One day, however, the old man wakes up with a strong pain
in his chest and decides to go to the doctor for a check-up. The deci-
sion to go to the doctor is much the same as deciding whether there
is systematic variance present in an ANOVA. The daily aches and
pains can be likened to error variance. Some days these pains are
worse than others, but on the day in question the pain is systemat-
ically worse than usual. It is important to note that the daily aches
and pains are still there – just because the old man now has a pain
in the chest does not mean that the daily aches have disappeared.
However, in comparing his health on this particular day to his
general aches and pains, he decides that he is feeling significantly
worse and consults the doctor. In ANOVA, the variance between the
groups contains error variance mixed up with systematic variance,
just like the man has a chest pain mixed up with general aches and
pains. Just as the old man compares his health on the day in ques-
tion (a mixture of general pain and new pain) to his daily aches and
pains (general pain) to decide if he is systematically worse, in doing
ANOVA we compare variance between group means (a mixture of
error and systematic variance) with variance within cells (error
variance) to determine whether there is a significant effect.

In technical language, the variance within the cells is known as
MSError. As you should realise by now, this is an estimate of error vari-
ance. The variance between the groups is known as MSGroup, and is an
estimate of error variance plus systematic variance. To determine
whether an effect is present in an ANOVA, we should estimate math-
ematically the size of MSGroup and MSError, and then compare them. To
the extent that MSGroup (error variance + systematic variance) is larger
than MSError (error variance), it is likely that there is a significant effect.

By now you should have a clearer picture of what it means to
analyse or partition variance when you are doing ANOVA. The aim
is to determine whether there is an effect by teasing out systematic
variance (if it is present) from error variance. Comparing MSGroup

and MSError does this. What we are doing here is very similar to what
we did when calculating t for two independent groups:

MSError is a measure
of variance within
cells, and is an 
estimate of error
variance.

MSGroup is a measure
of variance between
group means, and is
an estimate of error
variance plus 
systematic variance.

t �
x1 – x2

s2
1

n1

s2
2

n2
+�

Equation 14.3



Table 14.4  Aggression scores for subjects 
exposed to TV violence

Type of television violence

Non-violent Kung Fu Domestic violence

2 3 4
0 6 1
1 4 2
3 6 3
3 1 3

x1 � 1.8 x2 � 4 x3 � 2.6

s2
1 � 1.7 s2

2 � 4.5 s2
3 � 1.3

n1 � 5 n2 � 5 n3 � 5
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In the t formula, the numerator (x1 – x2) is a measure of the degree
to which the group means differ from each other, similar to MSGroup,
and the denominator is a measure of error variance, comprised of
the variance between scores within each group, similar to MSError.
Dividing the difference between the means by the error variance
gives an indication of how much bigger the variance between the
means is than the error variance. This increases the value of t and
increases the likelihood that we can conclude that there are signifi-
cant differences between the groups. Although the number of groups
is typically greater in ANOVA designs than in t-test designs, and the
calculations change, the two statistical procedures are very similar at
a conceptual level.

Calculating one-way ANOVA
Although ANOVA calculations can be mathematically demanding, it
is important to master the simpler calculations to gain a proper
understanding of the basic principles of ANOVA. The simplest case
of ANOVA is when we have a research design with one independent
variable with three groups of equal sample size. In the remainder of
this tutorial, we will see how to determine whether there is a signif-
icant effect present in such designs. 

It should be clear by now that although we want to identify
systematic variance, it is unmeasurable. The question, therefore, is
how do we know when systematic variance is present? In practice,
we have two sources of measurable variance: MSGroup, the variance
between group means; and MSError, the variance within the groups.
Doing ANOVA entails calculating MSGroup and MSError, and then com-
paring them by dividing MSGroup by MSError. 
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The first step is to determine the intermediate statistics. Below each
column in Table 14.4 the intermediate statistics – x, s2, and n – are
recorded. These statistics are easy to calculate using the statistical
functions of your calculator (see Tutorials 3 and 4). It is also possible
to use a statistical computer package to calculate the intermediate
statistics (see Tutorial 25). It is best to calculate these intermediate sta-
tistics first, as they are necessary for calculating MSGroup and MSError.

The second step is to determine MSGroup and MSError. As you will
recall from the earlier discussion, MSError is the variance between
scores within the groups. It is calculated simply by finding the
average variance within the groups. The formula is reproduced as
Equation 14.4, and visual inspection shows that MSError is calculated
by summing the variance within the three groups and dividing by
k, the number of groups.

ANOVA step 1: find
x, s2 and n for each
subgroup.

ANOVA step 2: find
MSGroup and MSError.

Using Excel for simple ANOVA calculations
In our introduction to spreadsheet programs on the accompanying
CD, we argue that spreadsheets are very useful for forms of sta-
tistical analysis where you need – or want – to personally control 
the analysis. In this respect, they are very handy tools for analysis of
uncomplicated one-way ‘balanced’ ANOVA designs (i.e. equal
sample sizes in the groups).  Below we show a setup in Excel for the
analysis of the data in Table 14.4. We recommend that you try a
similar setup for some of the exercises at the end of the tutorial.

Notice that the setup includes the calculation of a critical value for
the F-test, as traditionally used in ANOVA calculations, but also
includes an exact probability calculation.

Box 14.1
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MSG � n × s2

X

� n ×

� 5 ×

� 5 × 

� 5 × � 6.2
2.48
�

2

1 + 1.44 + 0.04
��

2

(1.8 – 2.8)2 + (4 – 2.8)2 + (2.6 – 2.8)2

����
3 – 1

Σ(x – x)2

��
k – 1

Equation 14.5

MSE �

�

�

� � 2.5
7.5
�
3

1.7 + 4.5 + 1.3
��

3

s2
1 + s2

2 + s2
3

��
k

Σs2

�
k

Equation 14.4

MSGroup is an estimate of the variance between the groups. To calcu-
late MSGroup, treat the group means as raw data and calculate the
variance between these means. The full calculation of MSGroup is
shown below to illustrate what is meant by variance between the
group means. Each of the group means in Table 14.4, above, is sub-
tracted from the grand mean – i.e. the mean of the group means (2.8)
– and this figure is squared to find ‘how far’ each mean lies away
from the grand mean. This figure is then divided by k – 1 to deter-
mine the average distance the means lie away from their ‘centre’. In
practice it is much easier to calculate MSGroup using the statistical func-
tions on your calculator. All you do is punch in the group means –
1.8, 4, 2.6 – as data, calculate the variance, and then multiply by n. Do
this now and you will see that you arrive at the same solution.

The third step is to compare MSGroup and MSError. We compare MSGroup

and MSError by dividing MSGroup by MSError. Since MSGroup is comprised
of error variance and systematic variance while MSError contains only
error variance, as F becomes large, there is a greater probability that
there are systematic differences between the groups. If F is ‘large
enough’ we can reject the null hypothesis. F for the data in Table 14.4
is equal to 2.48, as calculated below:

ANOVA step 3: find

F = 
MSGroup
�
MSError
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F �
MSG
�
MSE

�
error + systematic
��

error

� � 2.48
6.2
�
2.5

If you examine the t formula once again, and compare this formula
with the F formula, you should note the similarities. Both the 
F-statistics and t-statistics are calculated by dividing the variation
between groups by the variance within cells. However, since the 
t-test is used for only two groups, the measure of variation between
groups is computed by a simple subtraction, whereas MSGroup is com-
puted by determining the variance between the group means. The
basic logic underlying ANOVA is the same as that underlying t.

The fourth step is to compare Fcalc with Fcrit. Although the value of F
in our example is larger than 1, and leads us to suspect that there may
be systematic variance present, this may have been a chance event.
The group means may differ from each other purely by chance. As
with the t-test, we must define a critical value to determine just how
large the F-statistic should be to reject the null hypothesis. We have to
define a level of probability with which we are willing to make a Type
I error, and then reach a decision regarding our null hypothesis. To
make a decision about the null hypothesis, we compare Fcalc with Fcrit. 

The F distribution (for 3, 3 degrees of freedom) is shown in 
Figure 14.4. Although F is not symmetrical – unlike the z and t dis-
tributions – we use the distribution in a very similar manner to reach
a decision about the null hypothesis. We define alpha, set at a critical
value, and then compare Fcalc with Fcrit.

Equation 14.6

ANOVA step 4: com-
pare Fcalc to Fcrit.

Fcrit

�

Figure 14.4 The F distribution (for df � 3 and 3)
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Fcrit is defined by two different degrees of freedom: the degrees of
freedom for MSGroup, and the degrees of freedom for MSError.

dfGroup � k – 1; 

dfError � k (n – 1)

Use your calculator to conduct a one-way ANOVA on both datasets
in Table 14.3. Were we correct about the relative proportions of
random and systematic variation?

Activity 14.5

The best way to learn the logic of ANOVA, in our opinion, is
through examples and exercises. We therefore finish this tutorial
with several worked examples, and ask you to attempt the exercis-
es at the end of the tutorial. Remember also that there are many
additional problems (with solutions) on the accompanying CD.

where: k is the number of group means we are comparing
n is the number of scores in each group

Equation 14.7

Equation 14.8

In our example, k � 3 and n � 5, therefore dfGroup � 2 and dfError � 12.
From our F-tables (see Appendix 1) we read off the Fcrit value with 
2 degrees of freedom for the numerator (i.e. associated with MSGroup,
which is the numerator in the F formula) and 12 degrees of freedom
for the denominator (i.e. associated with MSError, which is the denom-
inator in the F formula). The value for F is 3.89. Since Fcalc � 2.48 is
less than Fcrit � 3.89, we cannot reject the null hypothesis. There are
thus no systematic differences in aggression between the three
groups of subjects. We conclude that there is no significant effect. 

A prayer to accompany ANOVA
Analysis of variance was devised by R. A. Fisher, an English statis-
tician, while working at the Rothamsted agricultural research station
in the 1920s (see Fisher, 1937).  In a very short space of time it became
the dominant analytic technique in experimental design, in a wide
variety of disciplines.  In fact, its dominance is so overwhelming, it is
as if researchers are asked to observe the following creed:

The Design Creed (anonymous)
(To be recited while standing) 

I believe in Analysis of Variance, a Gift of the Almighty bestowed upon
grateful mankind by Divine Providence through the Inspiration of the
venerable Sir R. A. Fisher, Knight of the Realm, and His Disciples. 

I believe in the F Ratio wherein the uppermost Mean Square Between
overcomes the lowly Mean Square Within to yield Significant Blessings
upon Faithful Researchers. 

Box 14.2
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Young: 75, 86, 33, 62, 41, 68, 56

Middle-aged: 35, 54, 68, 29, 43, 72, 41

Old: 21, 39, 81, 28, 34, 42, 18

Worked examples
1. From years of shop floor experience, a senior trade unionist

believes that younger factory workers are more militant than
older workers. He decides to test his theory empirically by
randomly selecting seven subjects from three groups of workers
– young (aged 20–30), middle-aged (35–45), and old (50–60) – at
a large metal-processing plant. Each of the workers completes a
measure of trade union militancy. The data are reported in the
table below. Use a calculator to run a one-way ANOVA on this
data (� � 0.01). Can the trade unionist conclude that younger
factory workers are more militant than older workers? 

Solution
H0: µ1 � µ2 � µ3 x1 � 60.14 s2

1 � 345.81 n � 7
H1: µ1 ≠ µ2 ≠ µ3 x2 � 48.86 s2

2 � 268.48 k � 3
x3 � 37.57 s2

3 � 444.95

dfGroup � k – 1 � 2
dfError � k (n – 1) � 18
Therefore Fcrit � 6.01

MSG is computed with a calculator. In STATS mode, enter the
three group means as data, and calculate the variance. Multiply
this value by n � 7:

n × s2
X � 7 × 127.37 � 891.59

MSE is computed with a calculator. Simply average the cell (or
group) variances, i.e.

I shall continue to maximize Experimental Variance and minimize
Error Variance until the last of my Degrees of Freedom be spent and Divine
Control shall see fit to lift my soul from this vale of Errors and Confirm my
Hypotheses in that Blessed Realm where all Variance be Systematic
Variance and Error Variance be Nought. 
Amen

For a critical look at ANOVA and the impact it had on 20th century
social psychology, see Danziger (2000).



average s2 �

� 353.08

F � � � 2.53
891.59
�
353.08

MSG
�
MSE

345.81 + 268.48 + 444.95
���

3
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Since Fcalc � 2.53 is less than Fcrit � 6.01, we cannot reject the null
hypothesis. There are thus no systematic differences in militancy
between the three groups of subjects. The trade unionist cannot
conclude that younger factory workers are more militant than
older workers.

2. A researcher draws a random sample of 12 students and divides
the sample randomly into three equally large groups. She then
subjects each group to a different level of sleep deprivation 
and measures the intellectual functioning of each student on a 
10-point scale. A high score indicates high intellectual function-
ing. The data for degree of sleep deprivation are as follows:

Does the degree of sleep deprivation appear to effect level of
intellectual functioning? Conduct the appropriate analysis and
report relevant statistics. Assume � � 0.05.

Solution
Do the necessary calculations and draw up the ANOVA sum-
mary table.
H0: µ1 � µ2 � µ3 x1� 6.25 s2

1 � 2.92 n � 4
H0: µ1 ≠ µ2 ≠ µ3 x2 � 5.5 s2

2 � 1.67 k � 3
x3 � 5.75 s2

3 � 2.25

dfGroup � k – 1 � 2
dfError � k (n – 1) � 9
Therefore Fcrit � 5.14

MSG is calculated with a calculator. Enter the three means as data
points, and find the variance. Then multiply by n:

nS2
X � 4 × 0.146 � 0.58

Little: 8, 6, 7, 4

Mild: 5, 7, 6, 4

Severe: 7, 4, 7, 5
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MSError is calculated by averaging the cell variances:

average S2 � 2.28

Thus, F � � � 0.26

Since Fcrit � Fcalc we accept H0 and conclude that there is no sig-
nificant difference between the means of the three groups, i.e. we
can conclude that mean intellectual functioning does not differ
significantly with differing degrees of sleep deprivation.

Summary
1. Analysis of variance (ANOVA) is an inferential statistical proce-

dure that enables one to test for significant differences between
the means of more than two groups of subjects, and the influence
of more than one independent variable.

2. The familywise error rate is the probability of rejecting at least one
null hypothesis when it is true, in a set (family) of comparisons.

3. ANOVA is an omnibus test that protects against an increased
familywise error rate by employing a single calculation to test all
possible comparisons between means at once. It tests for an
effect rather than a difference between means. If the effect is sig-
nificant, then we know that the means of at least one of the com-
parisons we are testing are significantly different from each
other.

4. In ANOVA terminology, variance is renamed Mean Squares
(MS), the numerator in the variance formula is called the Sums
of Squares (SS), and the denominator is called the degrees of
freedom (df). 

5. The aim of computing the ANOVA is to determine whether there
is systematic variance present. If there is systematic variance pres-
ent in our dataset, we have a significant effect. However, we can
never identify and measure pure systematic variance. The differ-
ences between group means will always be influenced by random
(also known as error) variance, in addition to systematic variance.

6. In practice, we find our way around this problem by calculating
MSGroup (variance between the groups; an estimate of error vari-
ance plus systematic variance) and MSError (variance within cells;
an estimate of error variance) and then comparing them (by
calculating F). To the extent that MSGroup (error variance + sys-
tematic variance) is larger than MSError (error variance), and
therefore F > 1, it is likely that there is a significant effect. 

0.58
�
2.28

MSGroup
�
MSError



7. The procedure for calculating one-way ANOVAs (equal sample
sizes) by hand is as follows:
Step 1: Determine the intermediate statistics – x, s2, and n.
Step 2: Determine MSGroup and MSError.
Step 3: Compare MSGroup and MSError by calculating F.
Step 4: Compare Fcalc with Fcrit. 

Exercises
1. Below is a rough description of a number of ANOVA designs.

What is specified is k, the number of groups in the design; and
n, the number of scores in each group. Use the F-tables to deter-
mine Fcrit values for each design.
a) k � 3, n � 10, � � 0.05
b) k � 4, n � 6, � � 0.05
c) k � 5, n � 5, � � 0.05
d) k � 3, n � 9, � � 0.01
e) k � 6, n � 4, � � 0.1

2. Write a short paragraph in which you discuss the similarities
and differences between the t-test and F-test.

3. A cognitive psychologist tests the hypothesis that memory is
influenced by ambient noise. She randomly assigns 30 subjects
to three noise conditions, and records the number of words
(from a list of 100) the subjects recall after 15 minutes of study-
ing. The data she collected is shown in the table below. Use a
calculator to run a one-way ANOVA on this data (� � 0.05).
Does ambient noise influence recall?
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1st born 2nd born 3rd born

41 53 90
47 56 97
43 54 93
45 57 95

70 decibels 120 decibels 170 decibels

60, 43, 75, 58, 69, 59, 50, 63, 31, 47, 49, 65, 53, 59, 40,
53, 62, 79, 65, 58 71, 43, 54, 60, 36 61, 47, 53, 60, 55 

4. To investigate whether birth order is related to school perform-
ance, an educational researcher selects four families with three
children, and records the final school results of each of the
children. These appear in the table below. Use a calculator to run
a one-way ANOVA on this data (� � 0.05). Can the researcher
conclude that school performance is related to birth order? 
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One-way analysis of
variance

Kevin Durrheim

•••••••••••
After studying this tutorial, you should be able to:
• Calculate one-way ANOVAs by hand, and with the

help of SPSS®.
• Explain the concepts ‘multiple comparisons’ and

‘effect size’, and calculate them.
• Construct and interpret an ANOVA summary table.
• Test that the assumptions underlying the use of

ANOVA have not been violated.

TUTORIAL

15

In Tutorial 14, we introduced you to analysis of variance (ANOVA),
and outlined some simple calculations for a balanced one-way
ANOVA design. We will assume in this tutorial that you are famil-
iar with that material. 

ANOVA (analysis of variance) is a type of statistical analysis 
that is appropriate for designs having one independent variable
consisting of more than two groups (one-way ANOVA), or more
than one independent variable (factorial ANOVA). Because of
increased Type I error rates that arise when comparing more than
two means, we use ANOVA to detect the presence of a significant
effect. Detecting a significant effect involves identifying systematic
variation between the group means. However, since systematic
variance cannot be measured, ANOVA involves a comparison of the
variance between groups (MSGroup), an estimate of error variance
plus systematic variance, and the variance within groups (MSError),
an estimate of error variance.

ANOVA involves a
comparison of

MSGroup and MSError.



In the worked examples you considered in the previous tutorial, the
aim was merely to find out whether or not there was systematic vari-
ance present in the dataset. All we set out to do was to determine
whether the F-statistic was significant or not. If there is no significant
effect present in the datasets, it is appropriate to accept the null
hypothesis, and conclude that there are no significant differences
between the groups. However, when there is systematic variance
present, and we do reject the null hypothesis, further calculation is
required to determine the specific pattern of differences between the
group means. Does the first mean differ from the second, the second
from the third, or are all means significantly different from each
other? This is what we will consider in this tutorial. First, however,
let us work through an example where there is a significant effect.

Example 1
A Catholic scholar interested in religious matters wants to identify
the most devout Catholic order. He thinks that a good way to deter-
mine this may be in terms of the number of hours spent praying. He
recruits 15 subjects – 5 Jesuits, 5 Benedictines, and 5 Carmelites –
and records the average number of hours spent praying per day. He
now needs to analyse the data to see if the orders differ on the meas-
ured variable.

Step 1: Calculate intermediate statistics. These have been com-
puted with the help of a calculator and are reported in Table 15.1.
Already you can note that the variation of scores within each of the
groups is quite small, whereas the differences between the group
means are quite large. This suggests that there may be a significant
effect present in this data (i.e. we may be able to reject the null hypo-
thesis and conclude that there are group differences in the amount
of time spent praying).

Step 2: Calculate MSGroup and MSError. MSGroup is computed with a
calculator, firstly by determining the variance between the group
means, s 2

X, and multiplying this by n, the number of subjects within
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Complete the following ANOVA table and decide whether it reports
a significant effect – or, if you prefer, use your spreadsheet program
to estimate the probability value associated with the F-ratio in the
table. (You may need to refresh your understanding of Tutorial 14.)

Activity 15.1

Source SS df MS F

Group 0.053 0.63
Error 33
TOTAL 35

If F is significant,
and we reject H0, we

must identify how
the means differ.



each group (as detailed in Tutorial 14). MSError (denoted as MSE

below) is computed by finding the mean of the variances within all
of the three cells in the designs.
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Table 15.1 Time (hrs) spent praying by three Catholic 
orders

Jesuit Benedictine Carmelite

5 3 11
7 4 9
6 1 12
7 5 8
8 4 10

x � 6.6 x � 3.4 x � 10

s2 � 1.3 s2 � 2.3 s2 � 2.5

n � 5 n � 5 n � 5

MSG � n × s 2
X

MSG � 5 × 10.89 � 54.45

MSE �
s2

1  + s2
2  + s2

3

k

MSE � � 2.033
1.3 + 2.3 + 2.5
��

3

Step 3: Calculate F – i.e. divide MSGroup by MSError – in order to deter-
mine the extent to which MSGroup (the estimate of error and systematic
variance) is greater than MSError (the estimate of pure error variance). 

F � � � 26.78
54.45
�
2.033

MSG
�
MSE

The information we have calculated in the above three steps is usu-
ally reported in an ANOVA summary table (see Table 15.2). The first
column provides a record of the source of the variance: group, error,
and total. The second column reports the degrees of freedom, the
third the sums of squares, the fourth the mean squares, and the fifth

Table 15.2  ANOVA summary table for analysis of data 
in Table 15.1

Source df SS MS F

Group 2 108.92 54.46 26.78
Error 12 24.4 2.033

TOTAL 14 133.32



the F-value. The only values in the table we have not calculated
directly so far are the sums of squares. However, since the mean
square is equal to the sums of squares divided by the degrees of
freedom (see Tutorial 14), we compute the sums of squares simply
by multiplying the mean squares by the degrees of freedom. Note
that sums of squares are additive, whereas mean squares are not.
This means that – as in the case of degrees of freedom – we can add
the error and group sums of squares to determine the total sums of
squares. As we will see later, this ‘additivity’ allows us to determine
the effect size by calculating the proportion of the total variance
associated with differences between group means.
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Use a spreadsheet program (or calculator) to conduct a one-way
ANOVA on the data below. The data comes from a study comparing
the attractiveness of three types of deodorant when worn by rugby
players. The ratings were made by fellow players. Remember to
estimate effect size.

Activity 15.2

Deo 1 Deo 2 Deo 3

8.5, 8.7, 9.0, 8.9, 9.1 9.2, 9.5, 9.1, 9.4, 9.3 9.6, 9.7, 9.8, 9.9, 9.8

Step 4: Determine significance. Since MSGroup could be greater than
MSError purely by chance, we must refer to statistical tables to deter-
mine significance (or use a computer to calculate the exact proba-
bility). There are two types of degrees of freedom associated with F:
error degrees of freedom, and group degrees of freedom. If you refer to your
F-tables (see Appendix 1), you will see that Fcrit for 2 and 12 degrees
of freedom with alpha set at 0.05 (written as F.05(2,12)) is equal to 3.89
(i.e. F.05(2,12) � 3.89). We determine significance by comparing Fcalc

and Fcrit . In this case, Fcalc is greater than Fcrit , so we reject the null
hypothesis and conclude that there is an effect present in the data.
This means that there is at least one significant difference between
the means. As an omnibus test, ANOVA only tells us whether at least
one of the comparisons between means is significant – it does not tell
us which of the comparisons this is. To determine this, we can conduct
multiple comparisons.

Multiple comparisons and effect size
If we reject H0, then (for the running example) either µ1 ≠ µ2, or 
µ1 ≠ µ3, or µ2 ≠ µ3, or µ1 ≠ µ2 ≠ µ3. As an omnibus test, ANOVA can
only identify a significant effect. It cannot tell us where the differ-
ences between the means lie. Post hoc tests – which you can think
of as modified t-tests that control for familywise error rate – are

The sums of squares
and degrees of free-

dom are additive.



useful for determining precisely where the differences between the
means lie. There are a number of post hoc tests that are commonly
used with ANOVA; their relative benefits and rationale are the sub-
ject of several book-length discussions (e.g. Rosenthal & Rosnow,
1985). Here we will only consider Tukey’s Honestly Significantly
Difference test (HSD), since it is the test used most widely in the
social sciences.

It is conventional to specify all of the hypotheses in a generic
form, i.e.:
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Post hoc tests are
modified t-tests that
control Type I error
rate.

H0: µi � µj ; H1: µi ≠ µj ; (� � 0.05, for groups labelled i, j, and i ≠ j)

The formula to compute the HSD statistic is given below. Although
it looks horribly complicated, it is actually quite straightforward.
You have already calculated the information that appears under the
square root sign (MSError and n), and this can merely be substituted
into the formula. In fact, there is no need to calculate any new data
at all, because the value for Q(k, dfe) is determined from the Q-tables
(see Appendix 1). In the tables, k refers to the number of means
being compared and dfe is the error degrees of freedom. By adjust-
ing for the number of means being compared, the Q-value manages
to keep the overall probability of making a Type I error at 0.05
despite the increased number of comparisons. In this case k � 3 and
dfe � 12. The value on the Q-tables that corresponds with k � 3 and
dfe � 12 is 3.77. HSD is thus calculated to be 2.40. 

HSD � Q(k, dfe) 
MSe
�

n

HSD � 3.77 � 2.40
2.033
�

5

Equation 15.1

The HSD statistic is a critical range applied to pairwise comparisons
between groups. What this means is that if any of the differences
between the group means is greater than this critical range, we can
conclude that there are significant differences between these
groups. In practice what we do is calculate the differences between
all possible pairs of groups and then compare the absolute value of
these differences with the critical range:

Post hoc tests are
used to determine
where differences
between the means
are.

x1 – x2 � 6.6 – 3.4 � 3.2
x1 – x3 � 6.6 – 10 � –3.4 
x2 – x3 � 3.4 – 10 � –6.6

In all three instances, the absolute value of the difference between
the group means is greater than the critical range (2.40). We there-
fore reject the null hypothesis in each case and conclude that all
three groups differ from each other. By inspecting the magnitude of

�

�



each group mean, we conclude that the Carmelites pray the most,
followed by Jesuits, and that Benedictines pray the least. 
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Run multiple comparisons on the three groups in the dataset in
Activity 15.2. Would you have run these in the ordinary course of
analysing that data? Why?

Activity 15.3

The final set of calculations to be performed is to determine the effect
size. Simply obtaining significant differences between our treatment
means does not mean that the differences are large or important. As
you will have noted when you studied power (Tutorial 13), a sig-
nificant result does not necessarily mean that the experimental
effect is of practical significance. Effect size is an estimate of the
proportion of total variance explained by differences among the
treatment means, and is thus an indication of the strength of the
effect. The meaning of effect size is evident in the formula to
compute eta-squared (η2), a widely used index of effect size.
Although η2 is a biased estimate of effect size, it is simple to calcu-
late by hand and quite easy to understand:

Effect size is an 
estimate of the 

proportion of total
variance explained

by differences
among our treat-

ment means. 

η2 � � 0.82 (see Table 15.2)
108.92
�
133.32

As you can see from the formula, η2 is determined by dividing
SSgroup by SStotal. Since sums of squares are additive, this is equivalent
to calculating the proportion of the total variance that is explained
by differences between the group means. For this example, η2 � 0.82,
meaning that 82% of the total variance between scores is accounted
for by differences between the groups. This is an extremely large
effect size for an experiment in the social sciences, where significant
effect sizes are not infrequently below 0.1.

Using SPSS® to do one-way ANOVA
The examples we have considered thus far involve three groups
with an equal number of cases (equal cell sizes). These are called
balanced designs. The calculations for such balanced designs are
straightforward, and have been included to demonstrate the under-
lying logic of ANOVA. While it is important to have a sound under-
standing of this underlying logic, ANOVA calculations for more
complex designs can be rather complex and are best completed
using a computer. 

Equation 15.2
η2 � 

SSgroup
��

SStotal

Eta-squared (η2) is a
biased estimate of

effect size.



Example 2
An educationist tests the efficacy of a new remedial reading pro-
gramme on a group of Grade 5 children who have been identified
as slow learners. The sample of children is made up of 20 boys and
17 girls, whom she randomly assigns to either an experimental 
or control group. Fortunately for the researcher, there are no sig-
nificant differences between the mean reading speeds of the groups
before implementation of the programme. The control group attend
standard reading lessons while the learners in the experimental
condition attend the special remedial reading classes. After 
6 months the educationist records the number of words the children
read per minute. She must now establish whether there are any sig-
nificant differences between the groups.

In this example, we want to test the null hypothesis (H0: µ1 � µ2 �

µ3 � µ4) that there are no significant differences between the means of
the four groups. We can use any standard statistical computer pack-
age to perform this one-way ANOVA, but we will demonstrate the
use of SPSS®. However, we must first enter the data in appropriate
format on the package’s datasheet. This requires a different format to
that presented in Table 15.3. Instead of having four columns of data,
one for each group, we enter the data in three columns (see Figure
15.1). The first column contains subject identification codes; each
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Table 15.3 Number of words read per minute – data 
from Example 2

Female Male Female Male
control control experimental experimental

10, 15, 9,   17, 11, 23, 8, 22, 38, 33, 28, 30, 18,  
18, 21, 17, 12, 18, 11, 27, 19, 28, 33, 22, 19, 

19, 17 14, 16, 10 36, 18, 27 30, 23, 17, 19

Balanced designs
have an equal num-
ber of cases per cell.

Subject Group Words

1 1 10
2 1 15
3 1 9

… … …
9 2 17
10 2 11
11 2 23

Subject Group Words

… … …
19 3 22
20 3 38
21 3 33

… … …
28 4 28
29 4 30
30 4 18

… … …

Figure 15.1 Data from Table 15.3 in datasheet format



subject is numbered consecutively from 1 to 37. The second column
contains an indicator variable that identifies the group identity of the
subject. In this example, the female control group is coded 1, the male
control group is coded 2, the female experimental group is coded 3,
and the male experimental group is coded 4. The third column
contains the reading measure for each subject.
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Set the data from Activity 15.2 up in a form suitable for analysis with
SPSS® or another statistical package. Use the computer package to run
a one-way ANOVA, with multiple comparisons, to check your
answers to the earlier activities in this tutorial.

Activity 15.4

Once the data are in appropriate worksheet format, the mechanics
of running the ANOVA are simple. In this example, the SPSS® one-
way ANOVA procedure is used to do the calculations. 

Using SPSS® to conduct one-way ANOVA
Box 15.1

1. Pull down the ‘Analyze’ menu in SPSS®, select ‘Compare Means’,
and then ‘One-Way ANOVA’.

2. The ‘One-Way ANOVA’ window will now appear on the screen.
Now you can define your model, selecting ‘words’ as your
dependent variable, and ‘group’ as your factor.
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3. You should then see the dialog box above, which confirms your
choice of variables.  At this stage you can also request multiple
comparisons by clicking the ‘Post Hoc’ button.

4. The ensuing dialog allows you to choose from a variety of tests.
To select Tukey’s HSD test, click in the ‘Tukey’ tick box, and then
click ‘Continue’. You will return to the dialog in pane 3. Click ‘OK’
to run the procedure.

The output displayed in Figure 15.2 on the next page was produced
by the SPSS® one-way procedure. 

You should recognise the top table reported under the heading
‘WORDS’. This is the ANOVA summary table, reporting the degrees
of freedom, sums of squares, and mean squares for the group and
error terms. The table also reports the F-value and p. We use p to
determine whether we have a significant effect or not: p is the
probability that the null hypothesis is true. If the p-value is less than
0.05, we reject the null hypothesis. In this case p < 0.0005, indicating
that there is an effect, and that there are significant differences
between some of the group means. (Note that the p-value is report-
ed in the column marked ‘Sig.’, and the value ‘.000’ should not be
interpreted to mean that the probability is 0 – it is rounded to 0 at
three decimal places, but is better reported as p < 0.0005.) We will



have to refer to the outcome of the multiple comparison tests to
determine the specific pattern of mean differences. You will note
that we are using a slightly different procedure for hypothesis test-
ing here than we used earlier in the examples we analysed without
the computer. In the earlier worked examples, we compared Fcalc

with Fcrit to reach a decision. The computer makes life easier for us:
we no longer have to look up critical values, because the output
reports a close estimate of the exact probability that the null hypo-
thesis is true. All we have to do is compare this probability with the
significance level, �, to reach a decision. If the probability is less
than �, we reject the null hypothesis.
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ANOVA

WORDS

WORDS

Sum of
squares df F Sig.Mean square

Between groups
Within groups
Total

1165.810
1024.622
2190.432

3
33
36

388.603
31.048

12.516 .000

Tukey HSDa,b

Group
Subset for alpha = .05

N 1 2
2.00
1.00
4.00
3.00
Sig.

10
8

10
9

14.0000
15.7500

.907

23.00000
27.5556

.605

Figure 15.2 SPSS® output for one-way ANOVA procedure

Next, the output reports the outcome of the Tukey HSD tests, as
well as sample sizes and means for each of the four groups. (The
means are the entries in the third and fourth columns.) Clearly,
groups 3 and 4 have higher means than groups 1 and 2. The results
of the Tukey tests corroborate this impression about the means. The
Tukey tests hold the familywise error rate at 0.05 (the entry ‘Subset
for alpha � .05’ in the first row of the subsets table is confirmation).
This means that we have a 5% chance of making one Type I error in
all of our six individual two-group comparisons. This reduces the
Type I error rate (�) for each individual test. As you may well expect,
this small probability of making a Type I error is associated with a
larger probability of making a Type II error, which may, in certain
circumstances, be undesirable. Tukey’s is a very conservative test,
and in some instances it may be better to specify a familywise error
rate of 0.1 rather than 0.05 to reduce the chances of making a Type II
error with the individual multiple comparisons.

A conservative test
reduces Type I error

rate, but at the
expense of power.



SPSS® reports the results of the Tukey tests as a number of
‘homogenous subsets’ – that is, it forms subsets from groups whose
means are not significantly different from other groups within the
subset, but which are significantly different from groups in other
subsets. As the output shows, Groups 1 and 2 form one subset (their
means do not differ), and Groups 3 and 4 another subset (their
means do not differ from each other, but do differ from the means
of both Groups 1 and 2). The final row in the table, labelled ‘Sig.’ 
(for ‘significance’), reports the probability that the means within 
the subsets differ, and as we can see these are much higher than �,
so we accept that they do not differ.

Overall, the results of the remedial reading experiment are 
positive. They indicate that both the male and female control
groups read more slowly (i.e. fewer words per minute) than the
male and female experimental groups. The remedial reading
programme appears to work! The final bit of information we could
possibly want is to identify how strong this effect is. The one-way
ANOVA procedure in SPSS® does not report the effect size (it is 
available in other SPSS® procedures), but we can calculate it easily
by dividing SSgroup by SStotal. In this manner we find η2 � 0.53. It
would appear not only that there is a significant difference between
the experimental and control groups, but that the remedial reading
programme has a powerful effect on learners’ reading ability,
explaining 53% of the total variance in reading speed. 

Assumptions underlying ANOVA
As you can see from the worked example above, ANOVA is a won-
derfully efficient way of making sense of a dataset. When you first
look at the raw data, all you see is a collection of numbers. Once
these numbers have been processed and analysed, clear conclusions
can be drawn about the outcomes of a research study. However, we
need to be careful: ANOVA is based on certain assumptions, which,
if violated, can produce misleading results. So before conducting an
ANOVA, it is vitally important that you check whether any of the
assumptions have been violated.

There are two key assumptions in the case of one-way ANOVA.
These are precisely the same assumptions that underlie the t-test for
independent samples.

Normality
The populations from which the data (for each group of the inde-
pendent variable) are sampled should be normally distributed. Since
we have no access to the parent populations, this assumption is
tested by examining the distribution of the sample data. In practice,
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Before performing
any inferential 
statistical procedure,
it is vital to check
whether any of the
assumptions have
been violated. If the
assumptions are 
violated, the 
conclusions may 
be incorrect.



ANOVA is a robust statistical procedure, and the assumption of
normality can be violated with relatively minor effects. As a general

rule of thumb, if the popula-
tions can be assumed to be
either symmetrical or at least
of similar shape, ANOVA
will produce valid results.

Homogeneity of variance
The populations from which the data are sampled should have the
same variance. This assumption can be violated without major
effects on the final results. As a general rule of thumb, the largest
variance should not be more than four or five times the smallest.
However, if you do not have a balanced design (i.e. you have
unequal sample sizes), unequal variance can produce misleading
results.

To test that the assumptions have been met, we need firstly to
examine the shape of the distributions of the data, and secondly to
compare the variances of the groups. As you will see in Figure 15.3,
a series of boxplots has been used to check the shape of the distri-
butions in the remedial reading example. Since we have very few
subjects per group, we cannot expect the distributions to be per-
fectly normal. The boxplots indicate that the distributions are
roughly symmetrical, and we therefore expect the population
distributions to be approximately normal. The descriptive statistics
for the four experimental groups are reported in Figure 15.2, above.

Note that the scores for each group are similarly dispersed in the
boxplots. We can conclude therefore that our data satisfy the
requirement of homogeneity of variance. Both assumptions have
been satisfied, and we can interpret the results of our significance
tests with confidence.
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Check to see whether the data from
Activity 15.2 satisfies the assump-
tions required by ANOVA.

Activity 15.5

W
O

RD
S

GROUP

50

40

30

20

10

0
1.00 2.00 3.00 4.00

Figure 15.3 Boxplots of group scores for the data from Table 15.3

ANOVA is a robust
statistical procedure,
especially in the case
of balanced designs.



If assumptions are seriously violated, and you suspect that
ANOVA will produce misleading results, non-parametric or dis-
tribution-free statistical procedures can be used. Although these
procedures have less power than parametric tests, they are not
based on any assumptions about distributions (hence they are
sometimes called distribution-free tests). We consider non-parametric
alternatives to many parametric tests in Tutorial 19.

Worked example
1. A cognitive scientist is interested in the differential effectiveness

of memory-enhancing strategies. She recruits 40 subjects, and
assigns them randomly to a control group or one of three experi-
mental conditions. In each experimental condition, subjects are
required to learn a list of words using an enhancing strategy
particular to their group. All subjects are then tested for their
memory of the list of words. The strategies are a mnemonic strategy
(Group 2), rehearsal (Group 3), and a semantic elaboration strategy
(Group 4). The control group (Group 1) is not trained in any
specific strategy. The dependent variable is the number of words
recalled correctly. Analyse the data comprehensively to determine
which strategy (if any) is effective.
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Control 5, 4, 6, 4, 7, 3, 5, 6, 8, 5

Mnemonic 7, 5, 8, 6, 5, 7, 5, 7, 4, 8

Rehearsal 9, 9, 10, 10, 8, 9, 9, 6, 9, 8

Semantic 8, 7, 5, 6, 9, 8, 7, 10, 4, 6

Solution
To analyse the data fully, proceed in three stages:
a) Test assumptions to determine whether or not ANOVA is an

appropriate test.
b) Determine significance.
c) If F is significant, conduct post hoc tests and calculate the

effect size.

a) Testing assumptions
It is useful to calculate descriptive statistics here, and to
examine some graphical representations of the datasets. We
show the steps for doing this in SPSS®, and the output pro-
duced by the program.

If the assumptions of
ANOVA are violated,
use non-parametric
statistics.
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Commands

ii) Move the ‘group’ variable into the independent list, and 
‘memory’ variable into the dependent list, and click ‘OK’.

i) Select ‘Means’ from the ‘Compare Means’ option.

iii) To construct a boxplot, choose ‘Graphs’, then ‘Boxplot’, and
define the ‘Category Axis’ and ‘Variable’ appropriately.
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Output

MEANS
MEMORY

GROUP Mean N Std. Deviation
1.00
2.00
3.00
4.00
Total

5.3000
6.2000
8.7000
7.0000
6.8000

10
10
10
10
40

1.49433
1.39841
1.15950
1.82574
1.91083

*M
EM

O
RY

GROUP

12

10

8

6

4

2
1.00 2.00 3.00 4.00

The standard deviations for all four groups are similar and the
‘homogeneity of variance’ assumption is thus satisfied. The
boxplots show that the data for three of the groups is roughly
normal. The data for Group 3 however is very skewed. This
could suggest that ANOVA is not appropriate. Since the boxplots
are based on small sample sizes and the assumption refers to
normality of the parent populations, these plots are not con-
clusive. Since ANOVA is robust, we proceed with significance
testing. Non-parametric tests could also be run to determine
whether the same conclusions are reached.

b) Analysis of variance
We showed the steps for doing one-way ANOVA in SPSS® earlier,
so we will not repeat them here. The output from the one-way
procedure is shown below.

ANOVA
MEMORY

Sum of
squares df F Sig.Mean square

Between groups
Within groups
Total

62.600
79.800

142.400

3
36
39

20.867
2.217

9.414 .000

The p-value indicates that there is a significant effect and that we
can reject the null hypothesis. 

c) Post hoc tests and effect size
Since the ANOVA produced a significant 
F-ratio, we conduct multiple comparisons to 
determine which means are significantly 
different. We show only the output from 
SPSS®, not the steps taken to produce it.

Tukey HSDa,b

Group
Subset for alpha = .05

N 1 2
1.00
2.00
4.00
3.00
Sig.

10
10
10
10

5.3000
6.2000
7.0000

.068

7.0000
8.7000

.068
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Tukey’s HSD tests confirm that the significant differences lie
between Groups 1 and 3 and between Groups 2 and 3. This is not
that easy to see from the table, but it follows from the fact that
Group 3 is in a different subset from Groups 1 and 2. The diffi-
culty is to interpret Group 4 (semantic elaboration), which
belongs in both subsets. We are obliged to conclude that
although rehearsal (Group 3) achieves better results than the
‘control’ (Group 1) or ‘mnemonic’ (Group 2) conditions, there is
no evidence that it does any better than the semantic elaboration
(Group 4). 

It is always useful (and important) to calculate effect sizes,
and for the experiment at hand η2 � 0.44 (i.e. SSg/SStotal). This is
a strong effect size, which indicates that rehearsal can cause
substantial improvements in memory.

Summary
1. How to do one-way ANOVA (balanced designs) without the aid

of a computer:
Step 1: Calculate intermediate statistics (x, s2, n, k).
Step 2: Calculate MSGroup and MSError.
Step 3: Calculate F, and complete the ANOVA summary table.
Step 4: Look up Fcrit, and reach a decision.

–  If not significant, then STOP.
–  If significant, then proceed with Step 5.

Step 5: Run post hoc tests.
Step 6: Determine effect size.

2. Post hoc tests are used to determine precisely where the differ-
ences between the means lie when we have a significant effect.
They are modified t-tests that control Type I error rate.

3. Effect size (e.g. eta-squared, η2) is an estimate of the proportion
of total variance explained by differences among the treatment
means.

4. The procedure for computing ANOVA with a statistics package
is as follows:
Step 1: Save data in datasheet (worksheet) format.
Step 2: Test assumptions (boxplots and descriptive statistics).
Step 3: Run significance test and multiple comparisons.
Step 4: Determine effect size.

At each stage of analysis, the results reported in the computer
output must be interpreted comprehensively.



Exercises 
1. Examine and complete the following ANOVA table:
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Source df SS MS F

Drugs 2 ? ? 3.75
Error ? ? 8.3

TOTAL 39 ?

On the basis of the ANOVA table, attempt to describe the study
that generated the results represented by the table. Also, inter-
pret the results of the study as best you can. Indicate what else
you would like to know in order to analyse the results more
comprehensively.

2. A nurse wants to trace the consequences of premature delivery
on later personality development. In particular, the nurse pre-
dicts that premature babies will be orally dependent. She exam-
ines City Lane Hospital’s records and randomly draws three
groups of subjects: a group delivered before the 7th month of the
mother’s pregnancy, a group delivered between 7 and 8 1/2

months of pregnancy, and a group delivered after 8 1/2 months of
pregnancy. The nurse contacts each subject’s mother and asks
her to indicate how old the child was (in weeks) when she
stopped breastfeeding. The data are as follows:

Before Between After

52  39  67  34  53 35  43  38  50  37 34  38  33  32  47 
51  49  63  44  63 45  53  48  40  47 33  49  34  42  57 
48  38 35  55 49  39

Is the nurse’s theoretical hunch supported by the data? Analyse
the data comprehensively – e.g. run multiple comparisons if
necessary, and calculate magnitude of effect size to see how 
substantial the differences between the groups are.

3. Imagine now that the nurse in question 2, above, only collected
information for the first two groups (before 7th month and
between 7 and 8 1/2 months). Conduct a one-way ANOVA to
establish whether the groups differ. Conduct a t-test and com-
pare the results to those given by the ANOVA. Look closely at
the relationship between t and F. What do you observe?

4. Associate-Professor Freud-Detector is browsing through a 1934
education journal and comes across a study authored by the
notorious English social scientist, Burtt. The study compares IQ



scores across different socio-economic groups. Burtt reports an
analysis of variance and interprets the analysis of variance as
supporting the theory that people with higher IQs gravitate
towards higher socio-economic groups. Prof. Freud-Detector
wants to re-analyse the data and see whether there is any valid
statistical support to be found in the data for Burtt’s conclusion.
Unfortunately, Burtt does not report his raw data (a common
practice), but he does report means and standard deviations for
the three groups (low, middle, and high socio-economic stand-
ing). These are as follows:
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Low s.e.s Mid s.e.s High s.e.s

x � 87.4 x � 94.3 x � 101.4
s � 16.4 s � 12.4 s � 5.6

Burtt reports the following ANOVA table in his article:

Prof. Freud-Detector smells a rat. Do you? 

Source df SS MS F

s.e.s 2 1 256 628 3.75
Error 33 273.9 8.3

TOTAL 35 1 529.9
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Factorial analysis of
variance

Kevin Durrheim

•••••••••••
After studying this tutorial, you should be able to:
• Understand what a factorial design is, and know

when it is appropriate to use factorial designs.
• Understand the underlying logic of factorial

ANOVA.
• Use SPSS® to run factorial ANOVA procedures.
• Understand what interactions are, and know how

to identify and interpret interactions.
• Conduct and interpret simple effects and multiple

comparisons as they apply to factorial ANOVA.

TUTORIAL

16

The previous two tutorials dealt with one-way ANOVA, a proce-
dure that is used to analyse designs with one independent variable
(IV) consisting of more than two groups. ANOVA is also appropri-
ate to analyse designs that have more than one independent vari-
able. These are known as factorial designs. Consider a simple study
to test whether aggression is caused by the time spent watching 
TV violence and the type of violence watched. This is an extension
of the study we considered in Tutorial 14. We now have two inde-
pendent variables (type of violence, and time spent watching), and
one dependent variable (aggression).

As you can see from Table 16.1, instead of our design having three
groups of subjects – one non-violent control group, one Kung Fu
group, and one domestic violence group – we now have six groups
(compare Table 16.1 below with Table 14.1). To operationalise the

Factorial ANOVA is
used for research

designs that have
more than one 

independent 
variable. 



amount of TV violence watched, half the subjects are exposed 
to 2 hours of violence and the other half are exposed to 6 hours of
violence.

290 NUMBERS, HYPOTHESES AND CONCLUSIONS

Table 16.1 Data for TV violence experiment

Marginal 
Non-violent Kung Fu Domestic means

Factor A � 2 hours 2, 0, 1, 3, 3 3, 6, 4, 6, 1 4, 1, 2, 3, 3 2.8
Time x � 1.8 x � 4 x � 2.6 

6 hours 1, 3, 3, 5, 0 8, 10, 3, 4, 7 9, 6, 8, 10, 7 5.6
x � 2.4 x � 6.4 x � 8

Marginal means 2.1 5.2 5.3 Grand mean 4.2

Factor B � Type of violence

In ANOVA terminology, the independent variables are called
factors. The design represented in Table 16.1 has two factors: factor
A is the time spent watching TV and factor B is the type of violence
watched. Each of the factors has a number of levels, which are
different values of the independent variables. Time has two levels 
(2 hours and 6 hours) and type has three levels (non-violent, Kung
Fu and domestic violence). When the two levels of time are crossed
with the three levels of type we obtain a factorial design with six 
cells, or groups of data. The aim of factorial ANOVA is to test dif-
ferences between the cell means and the marginal (level) means.

In this tutorial we will be concerned only with factorial designs
in which every level of one variable is paired with every level of the
other variables. These factorial designs must include data at all
combinations of levels of the independent variables. In other words,
when the factors are crossed in the form of a table, there should be
no empty cells. If we had no non-violent control group in the 6-hour
condition in Table 16.1 (i.e. we only had five cells of data), then we
would not have a true factorial design.

Since the design in Table 16.1 has two independent variables, it is
called a two-way factorial design. Another way of describing the design
is to specify it as a 2 × 3 (pronounced ‘two by three’) factorial design,
reflecting the number of factors and levels in the design. Factorial
designs may have more than two factors: we can design three-way,
four-way, five-way, and higher-order factorial experiments. In our
TV violence study, imagine adding a further independent variable –
the gender of the child. Now we would have three independent
variables: type, time, and gender. In this design, instead of having six
cells of data as in Table 16.1, we would need 12 cells of data, six for
males and six for females. This would be a 2 × 2 × 3 factorial design.

Factorial designs
are research designs
with more than one

independent vari-
able, where every

level of each variable
is paired with every
level of all the other

variables.



As you can imagine, these designs can become very complex and
require a large number of subjects. If we added a fourth independent
variable to our study, the age of the child, with four different age
groups, we would have a 2 × 2 × 3 × 4 factorial design, which would
require 48 cells of data. In this tutorial we will only consider two-way
designs.
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Refer to Table 15.3. Now redraw the table in the form of a 2 × 2 design.
Do this by re-arranging the data into rows and columns as we have
done in Table 16.1 above. How many factors does the design have?
How many levels does each factor have? How many cells are there?
What research questions would we be able to answer with this
design?

Activity 16.1

Why use factorial designs?
Factorial designs are preferable to one-way designs for three relat-
ed reasons: 
1. They are realistic, capturing the complexity of social and psycho-

logical phenomena. 
2. They allow us to analyse interactions between variables. 
3. They are economical, allowing many hypotheses to be tested

simultaneously. 

All social and psychological phenomena have multiple interacting
causes. What are the causes of violence, for example? These include
psychological states such as frustration and learned aggression, as
well as sociological phenomena such as poverty and deprivation, to
name but a few. To investigate such phenomena, it makes sense to
design experiments that include more than one independent
variable. This will give the researcher greater leeway to generalise
the results of the research to real-world situations, since such experi-
ments are designed to reflect the complexity of the real world. If a
researcher designed an experiment to investigate the impact of frus-
tration on violence, the study would ignore contexts of poverty that
often underlie aggression and frustration in real-world situations.

The factors that should be included in a study are those that are
related either theoretically or empirically to the dependent variable.
Simply including arbitrary factors in an experiment will increase 
the complexity, cost, and error in the experiment with no additional
benefit. 

The second important advantage of using factorial designs is
that they allow us to analyse data in much more detail. In Example
2 of Tutorial 15 we analysed the data for the remedial reading exper-
iment in the form of a one-way ANOVA. In Activity 16.1 you saw

Factorial designs are
generally better than
multiple one-way
analyses of the same
data.



that the data could be arranged as a two-way design. Now, instead
of asking whether there are differences between the mean scores of
the four groups (as we did in the one-way design), we can analyse
the data in much more detail. We can determine whether males
differ from females, and we can determine whether there is a sig-
nificant difference between the means of the control and experi-
mental groups. The effects for the factors are called main effects. In
addition, we can investigate interactions between the independent
variables. An interaction is a situation in a factorial design in which
the effects of one independent variable depend upon the level of
another independent variable. This would occur if the experiment
turned out differently for males and females. If the mean scores for
the female experimental and control groups differed significantly,
but those for the male groups did not differ significantly, we would
have an interaction between our two factors: the programme
improved the reading of females but not males. Rather than simply
determining whether the reading programme is effective, interac-
tions allow us to determine whether the programme is effective for
both males and females. It is preferable to analyse the data by
means of factorial ANOVA because, instead of asking whether there
is a single effect, we can determine the significance of three differ-
ent effects. In this study, there are two main effects (gender and
group), and an interaction effect (between gender and group).

Factorial designs allow us to investigate the influence of many
independent variables, as well as interactions between them. This is
a major advantage, because real-world phenomena have multiple
determinants, many of which interact with each other. For example,
medical research has shown that females lack an enzyme to break
down alcohol, and that females therefore become intoxicated more
quickly than males. There is an interaction between gender and
intoxication after alcohol consumption. 

Finally, factorial designs are economical in terms of subjects. As
the discussion of the remedial reading experiment has shown, a
two-way design with the same number of subjects as a one-way
design allows us to investigate the influence of two independent
variables with more sensitivity.
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Main effects are the
effects for one vari-

able, ignoring all
other variables.

These are tests of
differences between

marginal means.

An interaction is a
situation in a 

factorial design in
which the effects of

one independent
variable depend

upon the level of
another independent

variable.

Think of your performance in exams over the past few years. List
eight variables that you believe have influenced your exam perform-
ance in different subjects. Imagine that you are designing an experi-
ment to determine two factors – subject difficulty and amount of time
spent studying – have an impact on exam performance (the DV). In
your experience, is there an interaction between subject difficulty and
time spent studying? (Hint: does five hours of studying have the same
effect on exam performance for easy and difficult subjects?)

Activity 16.2

Factorial designs
capture the com-

plexity of reality by
estimating the

effects of multiple,
interacting causes.



The logic of factorial ANOVA
Recall that ANOVA is an acronym for ‘analysis of variance’. With
factorial designs, the full implications of what it means to analyse
variance becomes evident. When we analysed the one-way
ANOVA, we partitioned (split up) the total sums of squares (SSTotal)
into variance between groups (SSGroups) and variance within groups
(SSError). In the two-way ANOVA we begin by doing the same thing:
we partition SSTotal into error variance and the variance between
groups. The groups in factorial designs are arranged in cells, and
SSTotal is partitioned, at a first stage, into SSError and SSCells. The SSCells

term is not very interesting in itself because it only tells us that at
least one of the cell means differs from the rest. We are more inter-
ested in the pattern of differences between the cells. Are there
significant differences between the factor levels, and is there an
interaction between the variables? At a second stage of analysis,
therefore, we partition SSCells into sums of squares terms for each of
the factors and for the interaction. For the data in Table 16.1, we
partition SSCells into variance due to time (SSTime), variance due to
type (SSType), and variance due to the interaction between time and
type (SST∗t) (see Figure 16.1). 
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Interactions are nor-
mally denoted by a
multiplication sign,
or an asterisk in
computerese – e.g. 
A × B or A*B.

SSTotal

SSError SSCells

SSTime SSType SST∗t

Figure 16.1 Partitioning of variance for the two-way ANOVA

Figure 16.1 can also be rewritten in the form of a simple equation:

SSTotal � SSTime + SSType + SST∗t + SSError

This equation is a simple model (called the score model) of how the
variation in the data (or scores) is broken into sections when the
data is analysed by ANOVA. It is particularly useful to specify the
model in this way because it helps to identify exactly what the
ANOVA procedure is doing. It also shows the relation between
ANOVA and other statistical techniques such as regression, and
many computer packages require you to use a regression model
when analysing data.

Although the calculations for two-way ANOVA proceed via the
two stages depicted in Figure 16.1, the logic underlying the analysis

Equation 16.1

The score model
shows how variation
between the scores is
partitioned.



is very similar to that underlying one-way ANOVA. The compu-
tations are also similar to the one-way case. SSTotal, SSError, and SSCells

are calculated in the same way as SSTotal, SSError, and SSGroups in the 
one-way ANOVA. SSCells is a measure of the variance between the
cell means. However, unlike the one-way case, the variance
between the cell means has three possible causes, and it is these
causes that we are interested in. The cell means in Table 16.1 may
differ because of 1) a difference between the 2-hour and the 6-hour
condition, 2) a difference between groups of subjects exposed to the
three types of violence, or 3) an interaction between time and type.
The ANOVA summary table for two-way ANOVA reports these
effects rather than the cells effect.

Assumptions of factorial ANOVA
Factorial ANOVA has the same assumptions as one-way ANOVA.
1. Normality. The populations represented by the data should 

be normally distributed, making the mean an appropriate
measure of central tendency. As in the one-way case, we must
estimate the distribution of the parent populations from the data
at hand. When we have small cell numbers, therefore, we should
tolerate deviations from normality, appreciating that our esti-
mates are unreliable. In addition, ANOVA is a robust statistical
procedure: the assumption of normality can be violated with rel-
atively minor effects. Nevertheless, ANOVA is inappropriate in
situations where you have unequal cell sizes and distributions
skewed in different directions.

2. Homogeneity of variance. The populations from which the data are
sampled should have the same variance. With balanced designs
(i.e. equal numbers of subjects per cell) this assumption can be
violated without major effects on the final results. 

It is essential to check that these assumptions apply to the data before
interpreting the outcomes of the analysis. If the assumptions are not
satisfied, you should consider using non-parametric statistics.
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Box 16.1

When cell sizes are
unequal, violations
of the assumptions

can produce mis-
leading results.

Using SPSS® to run a factorial ANOVA
The procedure for running a two-way ANOVA with a computer
package is very similar to running a one-way ANOVA. First, the data
must be in appropriate spreadsheet format (see Table 16.2). For a
two-way ANOVA, this requires two columns of identifying variables
for each of the independent variables. The data in Table 16.1 is re-
coded into four columns as reported in Table 16.2. The two levels of
time are represented in the table by using 1s to indicate subjects 
who watched 2 hours of violence, and 2s for subjects who watched 
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6 hours of violence. The ‘Type’
column contains 1s identifying
the control group, 2s for the
Kung Fu group, and 3s for the
domestic violence group. Note
that each of the six cells is thus
identified by a different combi-
nation of indicator variables,
and is thus uniquely defined by
the two columns. 

Once the data is in appro-
priate worksheet format, the
mechanics of running the
ANOVA are simple: 
1. Pull down the ‘Analyze’ menu.
2. Select the ‘General Linear

Model’ option. General linear
model provides general
statistical procedures for
computing a number of dif-
ferent ANOVA designs. For
our purposes, we will only
be using the ‘Univariate’
procedure.

3. Select the ‘Univariate’ option.
The ‘Univariate’ dialog box
will now appear on the
screen (see Figure 16.2).

4. Select variables. The depend-
ent variable is aggression.
Select this variable by click-
ing on ‘aggress’ in the
dialog box, and then click
on the arrow to shift the
variable into the
‘ D e p e n d e n t
Variable’ box. By
the same procedure,
shift the independ-
ent variables into
the ‘Fixed Factor(s)’
box. The remainder
of the boxes allow
you to perform
analyses that we
will not be covering
in this tutorial, so
they can be ignored.

Table 16.2 Data for the 
TV violence experiment

Subject Time Type Aggress

1 1 1 2
2 1 1 0
3 1 1 1
4 1 1 3
5 1 1 3
6 1 2 3
7 1 2 6
8 1 2 4
9 1 2 6

10 1 2 1
11 1 3 4
12 1 3 1
13 1 3 2
14 1 3 3
15 1 3 3
16 2 1 1
17 2 1 3
18 2 1 3
19 2 1 5
20 2 1 0
21 2 2 8
22 2 2 10
23 2 2 3
24 2 2 4
25 2 2 7
26 2 3 9
27 2 3 6
28 2 3 8
29 2 3 10
30 2 3 7

Figure 16.2 SPSS® ‘Univariate’ dialog box
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5. Specify plots. The ‘Plots’ key allows you to generate a graph of the
cell means, which will be useful when interpreting the outcome
of the analysis. Specify the plot by entering the variable Type into
the ‘Horizontal Axis’ box, and selecting Time into the ‘Separate
Lines’ box. Click on the ‘Add’ button, and then click ‘Continue’.

6. Select post hoc tests. Click the ‘Post Hoc’ button to open the ‘Post
Hoc’ dialog box (compare with Box 15.1). A number of different
options are provided. First select the variables for which you
want tests conducted, and then select the type of test. For our
data, the variable ‘time’ has only two levels, whose means are
interpretable without post hoc comparisons. We thus conduct
Tukey’s tests on ‘type’.

7. Select ‘Options’. SPSS® provides a number of useful optional analy-
ses. In the ‘Options’ dialog box, select the following options: 
a) ‘Estimates of Effect Size’ provides an estimate of effect size (η2)

for the main effects and interactions. 
b) ‘Homogeneity Tests’ allow us to test whether the assumption 

of homogeneity of variance is met. Levene’s test is used to
determine whether the parent populations represented by the
data have statistically similar variances. 

8. Run the procedure. Once the analysis has been specified as set 
out above, click ‘OK’ on the ‘Univariate’ dialog box to run the
procedure.

Analysing factorial ANOVA designs
The computations for factorial ANOVA are best done using statist-
ical software. Whichever stats package you use, it will have an
option for analysing factorial designs. The data must be entered in
spreadsheet format, and then the analysis must be specified. We
interpret the output in stages: first, confirm that the assumptions
have not been violated; then examine the ANOVA summary table;
and finally interpret the main effects and interactions.

Construct boxplots and run a factorial ANOVA for the TV violence
experiment (see Table 16.1) by following the steps outlined in Box 16.1.

Activity 16.3

1. Testing assumptions
Boxplots are used to help us decide whether the assumptions of
normality and homogeneity of variance have been met. The boxplots
in Figure 16.3 were generated using the ‘Boxplot’ option of the
‘Graphs’ menu of SPSS®. 

It is always a good
idea to run descrip-
tive analyses before
conducting inferen-

tial tests.



Since we have only 5 subjects per cell, we can expect that the box-
plots will not be very reliable indicators of population properties. If
we randomly selected another 5 respondents from the same popu-
lation, we would expect these new boxplots to have different means
and variances. (If you do not know why, refer to the discussion of
sampling distributions in Tutorial 7.)

The boxplots indicate a similar spread of scores for each of the
groups, suggesting that the condition of homeogeneity of variance
has been satisfied. We can confirm this conclusion by inspecting the
outcome of Levene’s test of homogeneity of variance in the SPSS®

output (Table 16.3). The F-value is not significant, suggesting that
we cannot reject the null hypothesis of equality of variance. 
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Figure 16.3 Boxplots for TV violence data

Table 16.3  Levene’s test

Dependent variable: AGGRESS

Tests the null hypothesis that the error variance of the dependent variable 
is equal across groups.

F df1 df2 Sig.

1.553 5 24 .211

In the boxplots of Figure 16.3, with the exception of the middle two
skewed plots, the distributions have similar shapes, reflecting
scores that are roughly normally distributed.

Our exploratory analysis suggests that the population distri-
butions represented by the cell data are roughly normal and have
similar variance. As is often the case with real-world research, the
evidence for normality and homogeneity of variance is somewhat

When sample sizes
are small, boxplots do
not provide reliable
visualisation of popu-
lation distributions.
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ambiguous. The boxplots do not show perfectly normally distri-
buted data. Nor are the cell variances equal. Given our small cell
sizes, we cannot expect this of the data. At the same time, ANOVA is
a relatively robust statistical procedure. On balance, then, it appears
that ANOVA is an appropriate method for analysing the data.

2. Examining the main effects and interactions
Recall that ANOVA involves partitioning the variation between
scores (i.e. on a dependent measure). The ANOVA summary table
shows how the total sums of squares for our TV violence experi-
ment (SSTotal � 772) is partitioned (see Table 16.4). In addition to the
estimate of error variance, sums of squares are reported for three
effects, namely Time, Type, and Time*Type. Notice that the SPSS®

output also reports the sums of squares for the model. The model
sum of squares is the SSCells term in Figure 16.1, and it represents the
variation between the cell means. As you can see from Figure 16.1,
the model sum of squares is then partitioned into two main effects
(Time and Type), and the interaction effect (Time*Type). Thus, if
you add together the sums of squares for Time (58.8), Type (66.2),
and Time*Type (29.4), you will obtain the value for the model sum
of squares (154.4). 

The effects for Time and Type are called main effects because
each effect is concerned with the effect of one variable at a time,
ignoring the effect of the other variable. If the main effects were
analysed by separate one-way ANOVAs, their mean squares, sums
of squares and degrees of freedom would be identical to the values
reported in the two-way summary table. However, the F-value for
each effect would be different, because MSError in a one-way analysis

The sums of squares
for the effects add

up to the model
sums of squares.

Table 16.4  ANOVA summary table

Dependent variable: AGGRESS

Source Type III sum df Mean square F Sig. Eta squared
of squares

Corrected 
model 154.400a 5 30.880 8.384 .000 .636

Intercept 529.200 1 529.200 143.674 .000 .857
TIME 58.800 1 58.800 15.964 .001 .399
TYPE 66.200 2 33.10 8.99 .001
TIME*TYPE 29.400 2 14.700 3.991 .032 .250
Error 88.400 24 3.683
TOTAL 772.000 30
Corrected

TOTAL 242.800 29
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is greater than MSError in a two-way analysis. The factorial analysis
reduces MSError in accounting for (or explaining) the variance due to
more than one main effect and the interaction. This reduced MSError,
divided into the same MSGroups (see Tutorial 14 for the F formula),
increases the value of F. This makes the factorial ANOVA more
sensitive than the one-way design, detecting effects that the one-
way design might miss.

The SPSS® output provides information that enables us to reach
statistical decisions regarding our null hypotheses. The F-values for
both main effects are significant at the level p < 0.001, and the inter-
action is significant at the level p < 0.032. The eta-squared values
indicate the proportion of total variability attributable to a factor.
All effects, especially the main effects, are strong. The model – main
effects and interaction – accounts for 63.6% of the total variance.

You can confirm this by dividing the sum of squares for the
model (154.4) by the corrected total sum of squares (242.8) as per
Equation 15.2. Note, however, that SPSS® computes the eta-squared
values for the main and interaction effects as a proportion of the
model eta-square. This is an inflated estimate and you should rely
on Equation 15.2 instead.

The significant main effects indicate that there are differences
between the marginal means of the different levels of each factor.
The ‘2-hour’ mean is significantly different from the ‘6-hour’ mean,
and there is at least one significant difference among the types of
violence means. The significant interaction effect reflects differences
between the cell means. It indicates that the pattern of differences in
aggression scores of the three 2-hour groups (non-violent, Kung Fu,
domestic violence) is not the same as the pattern of mean differ-
ences among the three 6-hour groups. 

Use a calculator and F-tables to check the results of the SPSS® ANOVA
summary table (Table 16.4). Do the following:
a) Recalculate the mean squares and F-values for all effects, using

the reported sums of squares and degrees of freedom.
b) Use the F-tables to determine critical F-values for the effects 

(� � 0.05). 

If you have difficulty with this exercise, you should revise Tutorials
14 and 15, and then attempt the questions again.

Activity 16.4

3. Interpreting main effects
Since the Time*Type interaction is significant, we should exercise
caution in interpreting our main effects. The interaction effect indi-
cates that the pattern of differences between the types of violence
will be different for subjects in the 2-hour and 6-hour conditions.
Interpreting marginal means in this situation can produce mislead-

Use multiple com-
parisons to interpret
main effects.
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Be very cautious in
interpreting main
effects when the

interaction effect is
significant.

ing conclusions. Thus, some authors argue that we should ignore
the main effects when we have a significant interaction, and pro-
ceed directly with an analysis of the interaction effect. This is an
overly conservative approach, and there are situations in which we
are interested in the difference of marginal means in their own right,
regardless of interactions. Cautious interpretation of the main
effects is warranted when we have a particular (theoretical) interest
in them, and/or when the main effects are strong in comparison
with the interaction effect (as is the case with our data).

Because Time has only two levels, we can interpret this effect
directly by inspecting the group means (see Table 16.1). The F-value
indicates that the 6-hour group (x � 5.6) scored significantly higher
on aggression than the 2-hour group (x � 2.8). 

The ‘Multiple comparisons’ output reports the results of Tukey’s
HSD test for Type (see Table 16.5). The first set of comparisons – in
the first two lines of the table – shows that the mean for level 1 of
Type (i.e. the control group) differed significantly from the means of
both the  Kung Fu group – level 2 of Type (p � 0.004) – and the
domestic violence group – level 3 of Type (p � 0.003). This con-
clusion is confirmed by inspecting the confidence intervals (see
Tutorial 7) for the difference between the groups. Since the interval
between the upper and lower bound scores does not include the
value 0, we conclude that the difference between the two means
must be greater than 0. An inspection of the means shows that the
non-violent group expressed less aggression than the other two
groups. The second Tukey’s comparison shows that the mean score
for level 2 of Type differs from the mean for level 1 (which we
already know), but does not differ from the mean for level 3. Thus
we conclude that subjects in the two experimental groups express a
similar level of aggression, which is significantly higher than that of
subjects in the non-violent control group.

Table 16.5  Multiple comparisons

Tukey HSD

Mean
95% confidence interval

(I) TYPE    (J) TYPE difference (I–J) Std. error Sig. Lower bound Upper bound

1.00 2.00 –3.1000* .8583 .004 –5.2434 –.9566
3.00 –3.2000* .8583 .003 –5.3434 –1.0566

2.00 1.00 3.1000* .8583 .004 .9566 5.2434
3.00 –1.0000E–01 .8583 .993 –2.2434 2.0434

3.00 1.00 3.2000* .8583 .003 1.0566 5.3434
2.00 1.000E–01 .8583 .993 –2.0434 2.2434
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4. Interpreting interactions
Significant interaction effects are often the most interesting findings
of factorial designs. They suggest that the experimental factors (the
IVs) interact with each other in determining responses (scores on
the DV). The approach that we adopt in interpreting interaction
effects is to consider mean differences between the levels of one 
IV separately for each level of the other IV. Whereas interpreting
main effects involves investigating differences among marginal
means, we interpret interactions by investigating differences among
cell means. 

Consider the data for our TV violence experiment once again
(see Table 16.1). To interpret the interaction, we consider the cell
means for the 2-hour condition separately from the cell means 
for the 6-hour condition. How does the pattern of mean scores for
the 2-hour condition differ from the pattern of mean scores for the
6-hour condition? Two statistical procedures can be used to help us
answer these questions: cell mean plots and simple effect analysis.

Cell mean plots. The cell mean plot that we specified when we ran
the SPSS® ‘Univariate’ procedure helps us to visualise the interac-
tion (see Figure 16.4). You can now see what it means when we
define an interaction as a situation where the effect for one inde-
pendent variable depends on the level of another independent
variable. The plot shows that the effect that type of violence has on
aggression depends on the length of time of exposure. There is no
single effect for exposure to violence. The graph shows that the 6-
hour group is more aggressive than the 2-hour group after watch-
ing the Kung Fu movie. A strange thing happens to the groups that
watched the domestic violence movie. The 6-hour group is even
more aggressive than the subjects that watched the Kung Fu
movies, but the group who watched 2 hours of domestic violence
was less aggressive than the group that watched 2 hours of Kung
Fu. This is a classic interaction: the different types of TV violence
have different effects on aggression, depending on the length of
time people are exposed to the violence. Domestic violence appears
to have a very strong impact on aggression, but only when watched
for extended periods of time.

This example illustrates why we should be wary of interpreting
main effects when we have a significant interaction. The marginal
means for level 2 and level 3 of the variable Type (i.e. Kung Fu and
domestic violence) are almost identical, whereas there are big dif-
ferences between the Kung Fu and domestic violence cell means for
the 2-hour and the 6-hour groups.

Study interactions by
inspecting the pat-
tern of differences
between cell means.

Use plots of cell
means and simple
effect analysis 
to interpret 
interactions.
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Figure 16.4 Cell mean plots

Simple effects. Whereas cell mean plots depict the pattern of
differences between the cell means, they do not tell us which set of
differences are statistically significant. Simple effects analyses are
inferential tests of cell mean differences. Running simple effects
involves testing for the effect of one independent variable at each
level of a second independent variable. We do this by running one-
way ANOVAs. 

Consider the cell mean plot for the TV violence data. We conduct
simple effects for this data by running two one-way ANOVAs, one
for the top line (6-hour group) and one for the bottom line (2-hour
group). However, the one-way ANOVAs we use here are modified.
The estimate of MSError we employ to calculate F is the error term for
the overall factorial analysis. This one-way ANOVA differs from the
one-way ANOVAs we considered in Tutorials 14 and 15. Previously,
error variance was estimated by the variation in the three cells of the
one-way design. With simple effects, we estimate error variance
from all the (six) cells of data we have at hand (remember that we
tested the assumption that the cells have equal variance), not just
from the variance within the (three) cells of data in the comparison.
This provides a more reliable estimate of the population variance
and it makes for a more powerful inferential test. 

Two-way designs allow us to analyse two different sets of sim-
ple effects. We can investigate the effect of the first factor for each
level of the second factor; or in reverse, we can investigate the
effects of the second factor for each level of the first factor. Thus, in
addition to conducting two one-way ANOVAs for the lines in the
cell mean plot, we can also conduct three one-way ANOVAs for the
differences between the two Time groups at each level of Type.

A simple effect is 
the effect of an 

independent 
variable at one 

level of a second
independent 

variable.

Use modified one-
way ANOVAs to run

simple effects.
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(Although we are comparing two means, the F-test results in the
same conclusions as the t-test.) 

Computing simple effects with SPSS®
A syntax file must be employed to run simple effects analyses with
SPSS®. Fortunately, the procedure and the syntax are simple and
intuitive.

Procedure
1. Open the ‘Syntax Editor’ window. Do this by selecting: 

‘File’ > ‘New’ > ‘Syntax’.
2. Type in the syntax exactly as illustrated below.
3. Run the procedure. Do this by pulling down the ‘Run’ menu on

the ‘Syntax Editor’ window, and selecting the ‘All’ option.

Syntax
For each set of simple effects write the following command:

Manova

DV BY Factor_A(1, x) Factor_B(1, y)/error � w

/design Factor_A within Factor_B(1) Factor_A within 

Factor_B(2) … Factor_A within Factor_B(y).

This syntax employs the MANOVA procedure, using one DV and
two IVs (Factor A, with x levels, and Factor B with y levels). The
third and fourth lines specify the effects for Factor A in each of the 
levels for Factor B. 

Example
The syntax for the TV violence experiment is as follows. Note that
the syntax is provided to test two different sets of simple effects.

Box 16.2

The outcome of the simple
effect analysis is reported in
Table 16.6. Notice that the esti-
mate of error variance is
derived from the full two-way
ANOVA summary table. The
‘WITHIN CELLS’ sums of squares, mean squares, and degrees of
freedom are the same as those reported earlier. 

Use SPSS® to run simple effects
analysis for the TV violence
data. Follow the procedure and
syntax provided in Box 16.2.

Activity 16.5
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Table 16.6  Simple effects

Tests of significance for AGGRESS using UNIQUE sums of squares

Source of variation SS df MS F Sig. of F

WITHIN CELLS 88.40 24 3.68
TIME WITHIN TYPE(1) .90 1 .90 .24 .626
TIME WITHIN TYPE(2) 14.40       1 14.40 3.91 .060
TIME WITHIN TYPE(3) 72.90       1 72.90 19.79 .000

Tests of significance for AGGRESS using UNIQUE sums of squares

Source of variation SS df MS F Sig. of F

WITHIN CELLS 88.40 24 3.68
TYPE WITHIN TIME(1) 12.40 2 6.20 1.68 .207
TYPE WITHIN TIME(2) 83.20 2 41.60 11.29 .000

Two sets of simple effects were conducted. The first set reports
significance tests for the difference between the two Time means at
each of the levels of Type. There are significant differences between
the two Time groups only for those in the domestic violence experi-
mental condition. The second set of simple effects pertains to the
differences between the three levels of Type separately for the 
2-hour and 6-hour conditions. This analysis suggests that exposure
to 2 hours of violence (domestic or Kung Fu) has no significant
effect on aggression, whereas exposure to 6 hours of violence does
increase levels of aggression. The results of the first set of simple
effects, as well as the cell mean plot, suggest that long periods of
exposure to domestic violence increase aggression.

There is no single correct way of interpreting interactions.
Plotting cell means and then interpreting the plot are essential first
steps in the analysis. This should provide an overall picture of 
how the means differ. Emerging explanations of the interaction
should then be further investigated by conducting one or two sets
of simple effects.

Types of interactions
It is conventional to distinguish between ordinal and disordinal
interactions. Ordinal interactions have simple effects that are in the
same direction, whereas disordinal interactions have simple effects
that are in opposite directions. We can judge whether an interaction
is ordinal or disordinal from the cell mean plots. 

Once you have 
successfully run 

simple effects, save
the syntax window.

It can be used for
later analyses, 

simply by changing
the variable names

and levels.
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Figure 16.5 provides examples of six different patterns of cell
means. Each of the graphs represents the cell means for a 2 × 3
factorial design. The three levels of the one variable are marked on
the x-axis of the graphs and the two levels of the second variable are
represented by the two lines. The top three graphs report the cell
means for situations where the interactions are not significant 
(i.e. there is no interaction). As a general rule, if the cell means plot
yields parallel lines, the interaction is not significant. In these
instances, the effects of the one variable are exactly the same for
both levels of the other variable.

The bottom three graphs represent significant interaction effects.
Note that the lines are not parallel. These graphs illustrate, once
again, the definition of an interaction. The effect for the one factor
differs according to the levels of the second factor. In the graph on
the left, the three means are equal for the top line, while the means
for the bottom line decrease from level 1 to level 3. The next two
graphs illustrate two different types of interaction effect. The
middle graph depicts a disordinal interaction. The lines cross,
meaning that they represent opposing effects. One of the lines
represents increasing means, while the other line represents
decreasing means. In these kinds of situations it is especially
dangerous to interpret main effects, because they hide important
underlying differences. The graph on the bottom right represents an
ordinal interaction. Although the lines are not parallel, they do not
cross. The two simple effects are in the same direction (both lines

If the lines connect-
ing the cell means
are parallel, there is
no interaction effect.

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

Figure 16.5 Cell mean plots for 2 × 3 factorial designs



represent increasing means). There is a significant interaction
because the top line is steeper than the bottom line. The sharper
increase of the top line indicates that the factor on the x-axis has a
stronger impact on the DV for this level of the y-factor than the level
represented by the bottom line. 
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Activity 16.6 Activity 16.1 required you to represent the data from Table 15.3 in a 
2 × 2 table.
a) Analyse this data, following the method outlined above.
b) Interpret the SPSS® output thoroughly. To check whether you have

specified the procedure correctly in SPSS®, compare your results
with the ANOVA summary table below.

Tests of between-subjects effects

Dependent variable: WORDS

Type III sum Mean Eta-
Source of squares df square F Sig. squared

Corrected model 1165.810a 3 388.603 12.516 .000 .532

Intercept 15120.785 1 15120.785 486.995 .000 .937

GENDER 67.001 1 67.001 2.158 .151 .061

GROUP 1080.301 1 1080.301 3479 .000 .513

GENDER*GROUP 8.326 1 8.326 .268 .608 .008

Error 1024.622 33 31.049

TOTAL 17515.000 37

Corrected TOTAL 2190.432 36

Conclusion
In the introduction, we argued that factorial designs are valuable
tools for social and psychological research. After studying this chap-
ter, you should understand what factorial ANOVA allows you to do.

The discussion in this tutorial is limited to two-way factorial
designs, and thus to two-way interactions. These are the simplest
factorial designs and are relatively easy to interpret because they
can be clearly represented by means of simple mean plots. In most
research, more complicated factorial designs are used. Firstly, the
effects of more than two factors are often investigated. In designs
with more independent variables, it is possible to obtain higher-
order interactions (most commonly three-way and four-way inter-
actions). As you can imagine, higher-order interactions are more
difficult to interpret. Secondly, the effects of repeated measures 
(within-subjects) factors are often investigated in designs alongside
effects for between-subjects factors. These will be considered in
Tutorial 17.



The analysis and interpretation of complex factorial designs is
beyond the scope of this tutorial. Nevertheless, you should be able
to understand the reports of complex factorial analyses in the
results sections of scientific journal articles. 
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Stephan and Rosenfield (1978) conducted a naturalistic field experi-
ment to determine whether previous inter-racial contact and actual
desegregation affected the race attitudes of American schoolchildren.
They selected black and white children living in a Southern American
city who had been to either racially segregated or integrated elemen-
tary schools (i.e. those who had had previous inter-racial contact and
those who had not). They conducted two surveys of these children,
one prior to the scrapping of racial segregation laws in the USA, and
one after the laws had been scrapped. They wanted to determine the
effect that the two variables had on subjects’ attitudes towards three
ethnic groups (whites, blacks, and Mexican Americans). Each subject
completed a questionnaire where they reported their attitudes
towards the three ethnic groups. Here is an extract from the ‘Results’
section of the paper.

‘The data was analysed with a 2 × 2 × 3, two-between, one-within analy-
sis of variance. The between factors were pre- versus post-desegregation
and whether the students had attended segregated or integrated ele-
mentary schools. The within factor consisted of the three ethnic groups
being evaluated [whites, blacks and Mexican Americans].

The results for the white students indicated that there was a main
effect for ethnic group being evaluated, F(2, 1008) � 68.03, p < 0.001.
Whites evaluated their own group more positively than the other two
groups. There was also a significant Type of Background (segregated or
integrated) × Pre/Post-Desegregation interaction, F(1,504) � 6.34, 
p < 0.02. Follow-up contrasts indicated that whites from segregated
backgrounds developed more negative attitudes towards all ethnic
groups after desegregation, F(1,504) � 11.75, p < 0.001; whereas those
from integrated backgrounds did not change their attitudes as a result
of desegregation (F < 1).

For blacks there was a significant ethnic group main effect, F(2,552)
� 53.97, p < .001. As was the case with the whites, blacks evaluated 
their own group more positively. Again, like the whites, the blacks also
showed a tendency toward a Type of Background × Pre/Post-
Desegregation interaction, F(1,276) � 2.77, p < 0.10. Contrasts indicated
that blacks from segregated backgrounds developed more negative atti-
tudes towards all the ethnic groups after desegregation, F(1,276) � 7.46,
p < 0.02; whereas blacks from integrated backgrounds did not.’

To test whether you understand the report, answer the following:
a) Was the black sample bigger than the white sample? 
b) Why is ethnic group a within-subjects (i.e. repeated measures) 

factor?

Activity 16.7
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c) Although we do not know the marginal or the cell means, the
main effects and interactions are described for us. Draw rough cell
mean plots that represent the main effects and interactions for the
black and the white subjects.

d) Do you think there is an interaction between ethnic group of the
respondent (black, white subject) and the within-subjects ethnic
group factor?

Summary
1. Two-way factorial designs are defined as research designs with

two independent variables, where every level of one variable is
paired with every level of the other variable.

2. Factorial designs are preferable to one-way designs for three
related reasons: 1) they are realistic in relation to social-psycho-
logical phenomena, 2) they allow us to analyse interactions, and
3) they are economical.

3. An interaction is a situation in a factorial design in which the
effects of one independent variable depend upon the level of
another independent variable.

The procedure for computing a two-way ANOVA using
SPSS®
Step 1: Make an SPSS® worksheet, including columns for each of

the independent variables.
Step 2: Test assumptions. Use boxplots to determine the shape 

of the distributions and Levene’s test to determine homo-
geneity of variance.

Step 3: Conduct significance tests on all effects, and generate a table
of cell and variable means. Calculate effect sizes of all
significant effects.

Step 4: Is the interaction significant? If so, interpret the main effects
cautiously and analyse the interaction by means of 1) cell
mean plots, and 2) simple effects.

Step 5: Are the main effects significant? If the interaction is not sig-
nificant, but the main effects are, use multiple comparisons to
interpret the differences between the marginal means.

Exercises
1. There has been some debate about the effect of aging on the

human sex drive. Some writers believe that the sex drive peaks
in late adolescence and then drops off as the person grows older.
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Others believe that the sex drive increases steadily until it peaks
during a person’s 40s. To investigate this, a researcher measures
the sex drive of 1 000 people (500 males and 500 females). These
subjects fell into three age groups: 19 to 28 years, 29 to 38 years,
and 39 to 48 years.
a) Why are the following analyses inappropriate?

• Conducting a one-way ANOVA for all the data to identify
differences between the mean sex drive scores for the
three age groups.

• Conducting two one-way ANOVAs (one for males and
the other for females) to determine whether different age
groups differ in sex drive. 

b) Draw cell mean plots representing four different possible
outcomes. Interpret each plot in words.

2. To test whether speech style influences the perceived guilt or
innocence of a suspected criminal, a forensic researcher conducts
an experiment in which English-speaking subjects listen to a
tape-recorded interview between an English-speaking male
interrogator and a male suspect accused of theft. There are three
different versions of the taped interview. In one version the
suspect speaks only English (convergent condition); in the
second interview the suspect speaks mainly English, but lapses
into Afrikaans (partially divergent condition); and in the third
interview the suspect speaks only Afrikaans (divergent condi-
tion). In addition, half the subjects are informed that the crime is
a blue-collar crime (theft of some cash) and the other half of the
subjects are informed that the crime is a white-collar crime
(fraud). Subjects are randomly assigned to one of the six condi-
tions. After listening to the taped interview they are asked to rate
the guilt of the suspect on a ten-point scale. The data are report-
ed in the table below. Write out the score model for the data, and
then analyse the data thoroughly using SPSS®.

Crime type

Blue collar White collar

Convergent 9, 5, 5, 7, 6, 5, 10, 6, 6, 8 9, 5, 6, 8, 7, 3, 4, 6, 5, 4

Part divergent 5, 7, 3, 4, 8, 2, 6, 5, 6, 3 5, 6, 1, 3, 8, 7, 6, 2, 2, 3 

Divergent 9, 10, 6, 8, 7, 9, 4, 10, 2, 4 3, 2, 5, 4, 9, 4, 10, 5, 4, 2

Speech
style

3. To investigate the psychological effects of taxi violence, a re-
searcher surveyed people passing through two taxi ranks. The
‘peaceful’ taxi rank had no history of violence, whereas the
‘violent’ taxi rank had a history of violent conflict, including
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shootings. Half the subjects were taxi passengers and half the
subjects were pedestrians passing through the taxi rank. Subjects
responded to a seven-item measure of anxiety. The data are
reported below. What conclusions can the researcher draw?

Violent Peaceful

Passengers 16, 18, 21, 13, 12, 17, 10, 21, 12, 21, 17, 19, 16, 11, 19,
15, 9, 12, 16 20, 16, 18

Pedestrians 17, 14, 20, 16, 13, 15, 11, 16, 16, 7, 13, 14, 9, 15, 13, 17, 
17, 19, 13, 18 9, 11, 7, 8

(Note: high scores on the anxiety measure indicate high levels of anxiety.)
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Repeated measures
analysis of variance

Colin Tredoux

•••••••••••
After studying this tutorial, you should be able to:
• Explain how analysis of variance partitions or

decomposes variance.
• Understand and interpret repeated measures

ANOVA tables.
• Distinguish multivariate and univariate approaches

to setting out ANOVA designs.
• Identify and discuss some statistical assumptions

underlying repeated measures ANOVA.
• Conduct one- and two-way repeated measures

ANOVAs with the aid of SPSS®.

TUTORIAL

17

Introduction
Earlier in this text you were introduced to ANOVA (see Tutorials 
14 to 16). The present chapter extends the discussion to the case of
research designs that employ multiple measurements. The best
known of this type of design is the classic before-after study: a
measurement is made, an intervention is administered, and a sec-
ond measurement is taken. You were introduced to the analysis of
this kind of design in Tutorial 9, namely as a repeated measures 
t-test, also known as a dependent measures t-test, or a within-sub-
jects t-test. Repeated measures tests are widely used in quantitative
social science, especially experimental designs. This is because they



confer particular advantages, which have to do with the reduction
of error variance. In short, repeated measures designs offer good
statistical power, and are more economical than between-subjects
designs, but make stronger assumptions, and are more likely to vio-
late these assumptions.

The approach in this tutorial will be to introduce you to rela-
tively simple examples of repeated measures analysis of variance.
(For more detailed treatments, see Howell, 1997, and Rosenthal &
Rosnow, 1985.) We will show you how to conduct one-way repeat-
ed measures ANOVA and two-way repeated measures ANOVA,
using SPSS®, and how to interpret graphical and tabular output
from that program. Repeated measures ANOVA is typically con-
ducted in one of two ways, often referred to as the ‘univariate’ and
‘multivariate’ setups, and we will deal with both. Finally, we will
discuss the assumptions underlying repeated measures ANOVA,
and show you how to test these. 

Decomposition of variance
The key concept underlying ANOVA is that of analysis or decompo-
sition of variance. We start with a dataset, calculate the total
variance within this set, and identify sources of variance that make
up the total. It is useful to review how this works for one-way
between-subjects ANOVA and for two-way between-subjects
ANOVA. As an example, consider the dataset in Table 17.1, which
represents the kilogram masses of 20 crocodiles on the farm
Crocodile Leap.
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Table 17.1  Kilogram masses of 20 crocodiles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

231 317 256 287 241 265 304 276 254 239 278 287 311 229 248 295 281 249 259 230

The total amount of variance in this dataset is simply the variance of
the scores around the mean. This is simple to calculate, and can be
expressed in descriptive statistics notation or in ANOVA notation.

The key concept
underlying ANOVA 

is that of analysis or
decomposition of

variance.

descriptive statistics

ANOVA notation

ANOVA notation

s2 �
Σ (x – x)2 

� 757.82
n – 1

SSTotal � Σ (x – x)2 
� 14398.55

MSTotal � �
Σ (x – x)2 

� 757.82
SSTotal
�
dfTotal n – 1



The total variance in the dataset is thus 757.82, or 14 398.55 in terms
of sums of squares, which is how we prefer to express it in ANOVA.
Now, let us add some information to the set of data scores, by
revealing that there are two species of crocodile in the set: the Nile
crocodile (crocodylus niloticus), and the Zambezi crocodile (crocody-
lus chilobicus).
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Table 17.2 Kilogram masses of 20 crocodiles of two different species

Note: N � Nile, Z � Zambezi

Species: N Z N Z Z N Z Z N N N Z Z N Z Z N Z Z N

Mass: 231 317 256 287 241 265 304 276 254 239 278 287 311 229 248 295 281 249 259 230

Table 17.3 One-way ANOVA table: variation of 
kilogram mass across crocodile species

Table 17.3 has in effect analysed the total variation (SSTotal � 14 398.55)
into separate components. Thus, the factor ‘Species’ accounts for 
3 883.6 of the total sum of squares, and the error (or unexplained)
component accounts for 10 514.95. You will notice that these amounts
sum to the total, 14 398.55. It is in this sense that ANOVA ‘decom-
poses’ or analyses variance.

In the case of two-way
analysis of variance, this princi-
ple is extended and becomes a
very powerful tool. Let us add
some more information to the
crocodile dataset in order to show this. We discover that the croco-
dile farmer on Crocodile Leap has been serving the crocodiles three
different kinds of diet, in order to see which produces crocodiles
with the greatest mass (he grows crocodiles for the export handbag
industry): CrocEpol cubes (cu), chopped chicken liver (li), and
tournedos Rossini (tr). The data are shown in Table 17.4.

A two-way analysis of variance for this data is shown in Table 17.5.
This table shows in a very clear way how analysis of variance works
to decompose variance. If you examine the value for error sums of
squares in the table, you will notice that it is 2 578.94. In the one-way

To refresh your knowledge of
ANOVA calculations, use SPSS®

to conduct a one-way ANOVA
on the data of Table 17.2.

Activity 17.1

Source SS df MS F p

Species 3 883.60 1 3 883.60 6.65 0.019
Error/Residual 10 514.95 18 584.16

TOTAL 14 398.55 19 757.82

Do you know how to
conduct a one-way
ANOVA? If not,
revise Tutorial 15.
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Table 17.4 Kilogram masses of 20 crocodiles of two different species, on 
three different diets

Feed: cu tr li tr cu li tr cu li cu tr li tr cu li tr li cu li cu

Species: N Z N Z Z N Z Z N N N Z Z N Z Z N Z Z N

Mass: 231 317 256 287 241 265 304 276 254 239 278 287 311 229 248 295 281 249 259 230

To refresh your knowledge of ANOVA calculations, use SPSS® to con-
duct a two-way ANOVA on the data of Table 17.4.

Activity 17.2

Table 17.5  Two-way ANOVA table: variation of kilogram 
mass across crocodile species and diet

Source df SS MS F p

Diet 2 4 987.5 2 493.75 13.54 0.0005
Species 1 995.96 995.96 5.41 0.036
Diet*Species 2 542.72 271.36 1.47 0.26
Error/Residual 14 2 578.94 184.21

TOTAL 19 14 398.58 757.82

table, the corresponding value is 10 514.95 – in other words, by adding
information about diet, we have considerably reduced the error for 
the sums of squares (from 10 514.95 to 2 578.94). Since all signifi-
cance tests of effects in the ANOVA table take the general form 
F � MSEffect/MSError , it should be clear to you that this reduction of error
variation is not trivial – it leads to better estimates of effects, and to
substantial increases in statistical power. 

Analysis of variance is all about analysing and partitioning vari-
ance. This is as true of repeated measures designs as it is of other
ANOVA designs, as we shall presently see.

Repeated measures designs and 
reduction/decomposition of variance
Consider the following example of a simple one-way repeated
measures ANOVA design.

Thirteen depressed adolescent children in a substance-abuse
centre are identified for depression treatment in a cognitive
behavioural programme called ‘Stop-Think-Don’t-Drink’ (STDD).

Decomposing vari-
ance allows us to

‘understand’ or
‘explain’ the varia-
tion of scores (on a

dependent variable)
in terms of the exper-
imental factors (IVs).



They are measured on the Beck depression inventory before treat-
ment, then admitted into the six-week programme, and finally
measured again on the depression inventory. The data for this study
are shown below, in Table 17.6.

TUTORIAL 17: REPEATED MEASURES ANALYSIS OF VARIANCE 315

Table 17.6  Depression scores of adolescents before and 
after cognitive behavioural intervention

Subject: 1 2 3 4 5 6 7 8 9 10 11 12 13

Before: 16 17 12 14 16 15 17 14 19 18 17 14 16

After: 15 16 11 14 15 15 16 12 18 14 17 14 15

A one-way repeated
measures ANOVA
proceeds as if the
design were a 
two-way analysis 
of variance, with
individual subjects
(participants) 
treated as levels 
of a factor.

Table 17.7 ANOVA on depression scores of adolescents 
before and after cognitive behavioural 
intervention

The analysis of this data proceeds as if the design were a two-way
analysis of variance, with time (before vs after) and subjects 
(1 … 13) as factors. (It may seem unusual to treat subjects as a fac-
tor, but this is a well-planned strategy.) We compute the sums of
squares, mean squares, and F-ratios just as we would for a two-way
ANOVA, but with one very important qualification: the interaction
is the error term in this model, and all the effects in the ANOVA
table must be constructed on this basis. Table 17.7 shows results of
calculations and the final ANOVA table.

Source SS df MS F p

Subjects 79.61 12 6.63
Time 6.5 1 6.5 11.14 0.006
Time*Subjects (Error/Residual) 7.0 12 0.58

TOTAL 93.11 25 3.72

Do you know how to
conduct a two-way
ANOVA? If not,
revise Tutorial 16.

By convention, the table for repeated measures ANOVA does not
report an F-ratio for the subjects factor, since it is of no substantive
interest in repeated measures designs (nor would it be statistically
acceptable – a different MSError would have to be used for such a
test). It is clear, nevertheless, that including ‘Subjects’ as a factor
considerably reduces the amount of error variation: in the ANOVA
table, the total SS accounted for by ‘Subjects’ is 79.61 – if we had not
included ‘Subjects’ as a factor, the error SS would have been 
93.11 – 6.5 � 86.61, and the error/residual MS term would have



been 86.61/24 � 3.60, instead of 0.58. In order to see this point clearly,
imagine that the data shown in Table 17.6 comes from a two-group
experiment, rather than from a repeated measures experiment (i.e.
we used two different groups of depressed adolescents, the control
group receiving no intervention, and the experimental group
receiving the behavioural intervention), as in Table 17.8.
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Table 17.8 Depression scores of two groups of 
adolescents in a cognitive behavioural study

Control: 16 17 12 14 16 15 17 14 19 18 17 14 16

Experimental: 15 16 11 14 15 15 16 12 18 14 17 14 15

Table 17.9 One-way ANOVA on depression scores of 
two group of adolescents in a cognitive 
behavioural intervention study

In a one-way 
repeated measures
ANOVA, the error

term is the interac-
tion between the

subjects factor and
the grouping factor.

See whether you can reproduce the analysis shown in Table 17.7,
using the methods you learned in Tutorial 16 for the analysis of 
two-way ANOVA designs.

Activity 17.3

The key advantage
of repeated meas-

ures ANOVA is that
variation in scores
due to differences

between individuals
is removed from the
error variance, thus

increasing the power
of the significance

test(s).

Source SS df MS F p

Group 6.5 1 6.5 1.80 0.19
Error/Residual 86.62 24 3.61

TOTAL 93.12 25 757.82

If you conduct a one-way ANOVA on this data, you will arrive at
the ANOVA table shown in Table 17.9. The table clearly shows that
the difference between the two groups is not statistically signifi-
cant, even though the means of the two groups are identical to the
before and after means in the repeated measures design! The
repeated measures analysis produced a statistically significant
result, because it was able to massively reduce the amount of 
error variance. Another way of putting this is that a great amount
of the variation in the scores was due to differences between
individuals, and the repeated measures analysis factored this into
the calculations.



One-way repeated measures ANOVA with
SPSS®
Most statistical packages provide modules for computing repeated
measures analysis of variance. Let us look at how to use SPSS® to
conduct a one-way repeated measures ANOVA. 

One-way repeated measures analysis of variance is available in
several forms in the SPSS® package, but the best method for entry-
level users is to use the ‘General Linear Model’ procedure.

For most SPSS® modules (and indeed most modern statistical pack-
ages), the data needs to be set up in what is called a multivariate data
design. The data are arranged in columns, without a ‘grouping vari-
able’, as is common in between-subjects layouts. Thus, for the data in
Table 17.6, above, the corresponding multivariate and between-
subjects layouts in an SPSS® spreadsheet are shown in Figure 17.1.
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Figure 17.1 Multivariate and between-subjects data layouts

MULTIVARIATE LAYOUT

BETWEEN-SUBJECTS LAYOUT

To do repeated
measures with SPSS®,
the data must be
arranged in what is
known as a multi-
variate data design.

After the data have been set up in the multivariate layout, we need
to start an appropriate SPSS® procedure to analyse the data. Thus,
we select the ‘Analyze’ menu, choose ‘General Linear Model’, and
then ‘Repeated Measures’ (see Figure 17.2). 

The first dialog box that appears after selecting ‘Repeated
Measures’ is shown in Figure 17.3. Here we specify the name of the
within-subjects (repeated measures) factor by naming the factor
and indicating how many levels it has. For this example, we name

Repeated measures
ANOVA designs are
anaysed in SPSS®

with the General
Linear Model
command.



the factor ‘Time’ and indicate that it has ‘2’ levels. Clicking ‘Add’
inserts the repeated measures factor into the window pane as indi-
cated in Figure 17.3. When you click the ‘Define’ key, the ‘Repeated
Measures’ dialog box will open (see Figure 17.4).
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Figure 17.2 SPSS® menu for
choosing the repeated measures
command

Figure 17.3 Initial dialog box for
specifying the levels of a repeated
measures factor

Figure 17.4  Dialog box for specifying the ANOVA design

On the ‘Repeated Measures’ dialog box we select the variables
(from the spreadsheet) that make up our within-subjects factor.
Since we defined the factor Time as having two levels, this dialog
box allows you to select the two variables that make up the factor.
The order of selection is important. To reflect the chronological
order of measurement, we select ‘Time1’ first and ‘Time2’ second.
We do this using the dialog box shown in Figure 17.4.

Be careful to select
the repeated meas-

ures variables in the
correct order in the

SPSS® dialog box.



We now run the analysis (by clicking ‘OK’ on the main dialog
box), and SPSS® generates a fair volume of output in the results
window. Much of this is of little interest to us in the present case, so
we look specifically at the section containing the relevant ANOVA
table. This is shown in Figure 17.5, as a slightly modified version of
the classic ANOVA table.
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Source df
Mean
Square F Sig.

Eta
SquaredTIME

Type III Sum
of Squares

TIME
Error (TIME)

Linear
Linear

6.500
7.000

1
12

6.500
.583

11.143 .006 .481

Figure 17.5 ANOVA table produced by SPSS®

Figure 17.5 shows that there is a significant effect for the repeated
measure Time. This is perhaps all we need to know about the pres-
ent design, given that it is relatively simple. However, if we wanted
to compute post hoc tests of differences between specific means, or
to examine whether our data satisfies standard ANOVA assump-
tions, we could do so. Although it is not really appropriate to
conduct post hoc tests for the present design, we will do so here in
order to show the method of specifying and interpreting these tests
in SPSS®. To conduct post hoc tests, we click the button ‘Post Hoc’
in Figure 17.4, and use the resulting dialog box in Figure 17.6 to
choose the type of test we wish to use. We select the factor we wish
to apply this test to in the dialog box of Figure 17.6, and the output
is generated as shown in Figure 17.7 (having selected the ‘Tukey’
test – which is actually the Tukey HSD test).

The output scrollsheet (Figure 17.7) does not present the post-
hoc test in an obvious manner. The comparisons are read from the
scrollsheet by taking the combinations of levels of the independent
variable, as shown in the extreme left-hand column. Thus, the first
row of the table below the heading line reports Time1 vs Time2,
and the mean difference is reported in the next cell as 1.000, along
with the standard error of the mean (next cell), and the sig-
nificance test probability (0.006 in the present example). A 95%
confidence interval is also reported. From these results, it is clear
that there is a significant difference between the levels of the inde-
pendent variable. The second row of the table under the heading
line repeats these results (reversing the direction of the com-
parison), in order to complete the ‘cycling’ of the levels of the
independent variable.
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(I) TIME Std. Error Sig.a Lower Bound Upper Bound

95% Confidence Interval for 
Differencea

(J) TIME

Mean
Difference

(I-J)
1

2

2

1

.300

.300

1.000*

–1.000*

.006

.006

.347

–1.653

1.653

–.347

Figure 17.7 Results of the Tukey post hoc analysis

Fully repeated
designs run all 

subjects in each of
the design cells.

Figure 17.6 Dialog box in SPSS® for specifying post hoc comparison tests

Two-way repeated measures ANOVA
We have looked at the simplest type of repeated measures ANOVA
design, namely one-way repeated measures ANOVA. Repeated
measures ANOVA designs can involve a great many factors, but the
statistical and interpretive problems increase greatly when we use
these designs. In this tutorial we will look only at two-way repeat-
ed measures ANOVA designs.

It is necessary to differentiate two types of two-way repeated
measures ANOVA designs. In the first we have repeated measures
on both factors ( fully repeated designs), and in the second we have
repeated measures on only one factor (mixed designs).

Fully repeated designs
These designs use all research participants at all levels of each of
two factors. Imagine that we want to examine the effects of 1) emo-
tional states, and 2) adopted facial expressions, on the physiological
measure of skin resistance. Twelve research participants are recruit-
ed, and are hooked up to a polygraph while they relive emotional
episodes (anger, fear, surprise, happiness, disgust, and sadness), or
adopt emotional facial expressions (anger, fear, surprise, happiness,
disgust, and sadness) (see Ekman, et al., 1983). In other words, each

Fully repeated
designs include only

within-subject 
factors.

Mixed designs
include within- and

between-subjects
factors.



research participant relives each of these six emotions, and adopts
each of these six emotional facial expressions, while a polygraph
records their skin resistance.

As you will remember from the earlier discussion, ANOVA
is a variance-partitioning procedure. In repeated measures
designs, the partitioning can be quite intricate, since variation due
to repeated participation is often conflated with variation due to
interventions (or groups). Generally, the partitioning works as
shown in Figure 17.8. 
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Total variation

Within subjectsBetween subjects

Between treatments Error

SSTotal

SSWithin subjectsSSBetween subjects

SSEffect SSError

Figure 17.8 General nature of the variance partitioning in repeated
measures ANOVA designs

Mixed designs run
subjects in (at least)
two independent
groups, and on (at
least) one repeated
measures factor.

The total variance is broken down at the first level of analysis to that
arising from differences ‘between subjects’ and that arising from
differences ‘within subjects’. On the ANOVA table, this corresponds
to breaking down the total sums of squares (SSTotal) into two compo-
nents (SSBetween and SSWithin, which sum to SSTotal). The variance within
subjects is then decomposed into a quantity due to differences
between treatments, and a residual or error quantity. On the ANOVA
table, this corresponds to breaking down SSWithin into SSEffect and SSError.
Sometimes ANOVA tables are constructed to reflect this hierarchical
breakdown of variance, as shown in Table 17.10.

It is a good idea to
construct variance
partitioning dia-
grams when con-
ducting ANOVAs,
since they visualise
the central goal of
the analysis.

Table 17.10 ANOVA table constructed as a hierarchical 
partitioning of variance (data from Figure 17.1)

Source SS df MS F p

Between subjects
Time 6.5 1 6.5 11.14 0.006

Within subjects
Subjects 79.61 12 6.63

Swg (Error/Residual) 7.0 12 0.58

TOTAL Ws 86.61 24

TOTAL 93.11 25 3.72

Note: Swg � subjects within groups; Ws � within subjects



The partitioning becomes more intricate when we have repeated
measurements on more than one of the variables in question. Thus,
in the present case (two-way repeated measures, fully repeated), we
have the partitioning in Figure 17.9
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SSTotal

SSWithin subjects

SSConditions

SSRelived emotions SSFacial expressions SSR*F

SSError

SSError
relived emotions

SSError facial 
expressions

SSError R*F

Figure 17.9 Variance partitioning in a two-way fully repeated measures
ANOVA design

It is not necessary to understand the partitioning shown here,
except to note that there is no computation for between-subjects
effects, since all effects are ‘wrapped up’ within subjects – there are
no groups. Notice that there are three separate error terms, one for
each of the independent variables, and one for the interaction of the
variables.

There is also no need to set the formulas or the calculations out
for this design. We enter the data into SPSS® in the format shown in
Figure 17.10. Notice how the data are organised into two sets of
measures, each repeated for each of the 12 research participants. In
SPSS® we have to specify the organisation of measures to form the
variables. This involves using the dialog boxes shown in Figures
17.11 and 17.12. The first of these is straightforward, but the second
must be used carefully to define the two repeated measures factors.
The first step is to define the Emotion factor, which has six levels,
and a Condition factor, which has two levels and refers to the type
of task (relived emotion or facial expression). The second step is to
select each of the variables that make up all combinations of the two
factors. Notice that the pane on the right of Figure 17.12 contains 
12 spaces in which to enter variable names. It is essential that we
enter the variables correctly. The numbers in brackets indicate
which variable should be entered first, second, third, etc. At the top
of the dialog box, the order of variables is given in the same order
that you defined them in the previous dialog box (i.e. Emotion,
condition). Define the levels of Emotion as follows: anger � 1, 
fear � 2, surprise � 3, happiness � 4, disgust � 5, and sadness � 6. 
Define the Condition factor as follows: relived emotion � 1 and
facial expression � 2. We then enter the variables in the following
order: the first variable (1,1) is anger_r, the second variable (1,2) is



anger_f, the third variable (2,1) is fear _r, etc. Can you enter the
remainder of the variables correctly? Once all the variables are
entered, click ‘OK’ to run the procedure.
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Figure 17.10 Data spreadsheet for two-way repeated measures ANOVA

Figure 17.11 Repeated measures specification
dialog box in SPSS®

Figure 17.12 Variable selection dialog box in the
SPSS® repeated measures analysis

Having specified the design, SPSS® produces the result output
shown in Figure 17.13.

The summary table is a little unusual – at this stage you may not
understand the terms ‘Sphericity’, ‘Greenhouse-Geisser’, etc. It is
enough for the moment to note that the standard ANOVA test is the
one labelled ‘Sphericity Assumed’. Figure 17.13 shows that only the
main effect for the Emotion factor is statistically significant, and
neither the main effect for Condition, nor the interaction effect, is
significant. This means that there are differences in skin resistance
readings among the six emotions – in some, the resistance is higher
(or lower) than in others. It makes no difference whether the emo-
tions were relived emotions or adopted facial expressions.
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Source

EMOTION Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

df
Mean 
Square F Sig.

Type III Sum
of Squares

54.851
54.851
54.851
54.851

49.636
49.636
49.636
49.636

2.669E-03
2.669E-03
2.669E-03
2.669E-03

5
2.867
3.984
1.000

55
31.535
43.823
11.000

1
1.000
1.000
1.000

10.970
19.133
13.768
54.851

.902
1.574
1.133
4.512

2.669E-03
2.669E-03
2.669E-03
2.669E-03

12.156
12.156
12.156
12.156

.003

.003

.003

.003

.000

.000

.000

.005

.960

.960

.960

.960

11.269
11.269
11.269
11.269

4.308
4.308
4.308
4.308

31.858
31.858
31.858
31.858

11
11.000
11.000
11.000

5
3.342
4.976
1.000

55
36.763
54.736
11.000

1.024
1.024
1.024
1.024

.862
1.289
.866

4.308

.579

.867

.582
2.896

1.488
1.488
1.488
1.488

.209

.231

.209

.248

Error (EMOTION) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

CONDTN Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Error (CONDTN) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

EMOTION * CONDTN Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Error 
(EMOTION * CONDTN)

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Figure 17.13 Results for two-way repeated measures ANOVA

Just as a significant
F-ratio in a between-

subjects ANOVA
often requires further
analysis so a signifi-

cant F-ratio in a
repeated measures

ANOVA may require
further analysis (e.g.

with simple effect
analysis or multiple

comparisons).

ANOVA is an omnibus test, and the F-ratios reported in Figure
17.13 are calculations for complex null hypotheses – the F for the emo-
tion factor could be significant because of an unusually high score
on just one of the emotions, or because of a systematic difference
among all of the emotions. A significant F-ratio simply tests the
hypothesis that there is at least one significant difference in a set (it
also keeps a check, to some extent, on the Type 1 error rate – see
Tutorial 15). For this reason, we typically run follow-up tests when
we do analysis of variance. In the case of factorial ANOVA, we can
conduct tests of simple effects, or we can do pairwise comparisons (see
Tutorial 16 for an explanation of these terms). In the present case,
only one main effect is significant, so there is no need to analyse
simple effects. We can proceed with pairwise comparisons between
the levels of the emotion factor, i.e. we will compare anger with
each of the other five emotions, sadness with the other five
emotions, etc. These are easily specified in SPSS® (see the earlier
discussion of the one-way design and Figure 17.6), and the result-
ing output for Tukey HSD tests is shown in Figure 17.14.

This complex table reveals a number of significant differences
among individual levels of the emotion factor. A detailed interpre-
tation would be a formidable task, but it is sufficient to note that a
number of the emotions produced different states of GSR activation
– which, in this particular case, was all that was at issue. For pur-
poses of clarifying the actual output of the table, note that the first



‘block’ of the table reports the results of pairwise comparisons
between emotion 1 (anger) and each of the other five emotions
(labelled 2–6 in the table). Likewise, the second block reports com-
parisons of emotion 2 (fear) with each of the other five emotions.
Notice that the mean difference, the standard error of the difference,
the probability returned by the significance test (labelled ‘Sig.’) and
the 95% confidence interval are reported for each test.

We could do a great deal more investigating here, but it is
probably adequate for our purposes to end the analysis with the
recommendation that you always calculate the effect sizes of
significant effects when running ANOVAs (see Tutorial 15). It is
preferable to do this with statistical software (SPSS® offers effect
sizes as optional statistics), but you can calculate η 2 easily enough
by hand (see Tutorial 15).
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(I) EMOTION Std. Error Sig. Lower Bound Upper Bound

95% Confidence Interval for 
Difference

(J) EMOTION

Mean
Difference

(I-J)
1 2

3
4
5
6

.287

.395

.284

.330

.270

.865*
.442

1.307*
1.397*
1.841*

.012

.287

.001

.001

.000

.233
–.427
.683
.670

1.247

1.496
1.310
1.931
2.124
2.436

2 1
3
4
5
6

.287

.309

.321

.169

.220

–.865*
–.423
.442

.532*

.977*

.012

.198

.195

.009

.001

–1.496
–1.102
–.264
.159
.493

–.233
.256

1.148
.905

1.460

3 1
2
4
5
6

.395

.309

.260

.270
.211

–.442
.423

.865*

.955*
1.400*

.287

.198
.007
.005
.000

–1.310
–.256
.294
.361
.935

.427
1.102
1.436
1.549
1.864

4 1
2
3
5
6

.284

.321

.260

.325

.179

–1.307*
–.442

–.865*
9.000E-02

.535*

.001

.195
.007
.787
.012

–1.931
–1.148
–1.436
–.625

.141

–.683
.264

–.294
.805
.928

5 1
2
3
4
6

.330

.169

.270

.325

.174

–1.397*
–.532*
–.955*

–9.000E-02
.445*

.001

.009

.005

.787

.027

–2.124
–.905

–1.549
–.805

6.102E-02

–.670
–.159
–.361
.625
.828

6 1
2
3
4
5

.270

.220
.211
.179
.174

–1.841*
–.977*

–1.400*
–.535*
–.445*

.000

.001

.000

.012

.027

–2.436
–1.460
–1.864
–.928
–.828

–1.247
–.493
–.935
–.141

–6.102E-02

Based on estimated marginal means
*. The mean difference is significant at the .05 level.

Figure 17.14  Results for post hoc tests in a two-way repeated measures
ANOVA design

Look at the ANOVA table for the analysis of the data in Table 17.6,
and decide whether it is appropriate to conduct multiple compar-
isons. If so, conduct multiple comparisons by hand, or with the aid of
statistical software. Interpret your results.

Activity 17.4



Mixed designs
The term ‘mixed design’ is used to describe an experiment or study
where one of the factors is a between-subjects factor, and the other
is a repeated measures or within-subjects factor. This design is com-
monly used in experimental research. 

Consider a study reported by Schuckit (1985). Schuckit meas-
ured the amount of body sway (in cm) in 34 drinking, non-alcoholic 
21- to 25-year-old males who had a first-degree alcoholic relative,
and compared the results to those of 34 controls. The controls were
matched on demographic characteristics and drinking histories, 
but did not have an alcoholic close relative. Each participant was
tested on three occasions, during which they drank 0.75 ml/kg or 
1.1 ml/kg of ethanol or a placebo. 
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Using your institution’s library resources, find five journal articles in
your discipline that use repeated measures designs with ANOVA.
Identify whether the designs in question are mixed or fully repeated.

Activity 17.5

Repeated measures factor

Placebo
0.75 ml/kg 
dose

1.1 ml/kg 
dose

Family 
history of alcoholism

No family 
history of alcoholism

Between-subjects factor

Figure 17.15 Two-way mixed ANOVA design in alcohol study, and data
layout

The level of body sway was measured 230 minutes after consump-
tion by asking participants to stand as still as possible for one
minute with their eyes open, feet together, and hands at their sides.
The design is shown in Figure 17.15, as well as hypothetical data for
20 participants, as entered into SPSS®.

Clearly, family history serves as a grouping variable, and since
research participants complete all three of the Dosage conditions, it
serves as a repeated measures factor. The partitioning diagram for
this design is shown as Figure 17.16.



There is no need to show details regarding the ANOVA computa-
tions, since it is unlikely that you will be doing the calculations by
hand. We enter this design in the repeated measures module of
SPSS® by choosing one independent variable (Family history) and
three dependent variables (dose1, dose2, and dose3). We then use
the repeated measures dialog box to define our factors. The dialog
boxes for doing this, and a selection of the resulting output, are
shown in Figure 17.17.
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Since there is a significant interaction between Family history and
Dosage, it is best to explore the nature of the interaction before
deciding on post hoc test strategies. A good way to do this is to
request a graph of the interaction, by clicking the ‘Plots’ option in
the main ANOVA menu dialog box (see Figure 17.17). The resulting
graph is shown in Figure 17.18, and it is clear from the figure that
the interaction is ordinal (see Tutorial 16) and that the Dosage effect
is much stronger than the Family history effect. The effect for
Family history appears to lie at level 2 of the Dosage factor. It would

SSTotal

SSBetween subjects SSWithin subjects

SSFamily history SSError family history SSDosage SSFam. his.*dosage SSError family 
his.*dosage

Figure 17.16 Partitioning diagram for mixed model ANOVA (one
between-subjects factor, one repeated measures factor)

TESTS OF WITHIN-SUBJECTS EFFECTS

Source

DOSE Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

df
Mean 
Square F Sig.

Type III Sum
of Squares

49.224
49.224
49.224
49.224

.433

.433

.433

.433

2.228
2.228
2.228
2.228

2
1.996
2.000
1.000

2
1.996
2.000
1.000

36
35.926
36.000
18.000

24.612
24.663
24.612
49.224

.217

.217

.217

.433

3.498
3.498
3.498
3.498

6.190E-02
6.203E-02
6.190E-02

.124

397.608
397.608
397.608
397.608

.000

.000

.000

.000

.041

.041

.041

.078

DOSE * FAMHIST Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Error (DOSE) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

TESTS OF BETWEEN-SUBJECTS EFFECTS

Source

Intercept
FAMHIST
Error

df
Mean 
Square F Sig.

Type III Sum
of Squares

260.970
1.509E-02

.699

1
1

18

260.970
1.509E-02
3.883E-02

6720.659
.389

.000

.541

Figure 17.17 Dialog boxes and selected output for analysis of the data in Figure 17.15

Interaction plots
(also known as cell
mean plots) are very
useful for the inter-
pretation of interac-
tions in all types of
ANOVA designs.



be appropriate to conduct multiple comparisons on the significant
main effect of Dosage, and multiple comparisons on the Family his-
tory factor at each level of dosage – i.e. we wish to compare the
means of each of the Dosage levels with each other, and we wish to
compare the group with a family history of alcoholism to that with-
out such a history, at each Dosage level. To understand this latter
comparison, think of it as comparing the alcoholic-family group to
the non-alcoholic-family group on body sway when 1) both groups
are given a placebo, 2) both groups are given the 0.75 dosage, and
3) both groups are given the 1.1 dosage. The latter analysis is tanta-
mount to a simple effects analysis of the Dosage factor. However, in
this particular type of design, the analysis of simple effects over the
within-subject factor is very controversial, and many authors recom-
mend against it (e.g. Winer, 1971). For the present data, where there
are just two levels on the Family history factor, one can instead con-
sider conducting a t-test at each dosage level. Figure 17.18 shows the
results for these t-tests, and the results for the multiple comparisons
on the Dosage main effect. 
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dosage1 dosage2 dosage3

DOSAGE

BO
DY

 S
W

AY

5.0

4.5

4.0

3.5

3.0

2.5

2.0

PAIRWISE COMPARISONS

(I) DOSE Std. Error Sig. Lower Bound Upper Bound

95% Confidence Interval for 
Differencea

(J) DOSE

Mean
Difference

(I-J)
1 2

3
.078
.080

–1.263*
–2.211*

.000

.000
–1.428
–2.380

–1.099
–2.042

2 1
3

.078

.077
1.263*
–.948*

.000

.000
1.099

–1.110
1.428
–.785

3 1
2

.080
.077

2.211*
.948*

.000

.000
2.042
.785

2.380
1.110

   Based on estimated marginal means
*  The mean difference is significant at the .05 level.

GROUP STATISTICS

DOSE3 0
1

4.6580
4.6724

10
10

DOSE1 0
1

2.5190
2.3891

10
10

DOSE2 0
1

3.5774
3.8577

10
10

FAMHIST N Mean

INDEPENDENT SAMPLES TEST

t-test for Equality of Means

t df Sig. (2-tailed)

DOSE3 –.102
–.102

18
17.831

DOSE1 1.056
1.056

18
17.980

DOSE2 –2.446
–2.446

.920

.920

.305

.305

.025

.025
18

17.780

Figure 17.18 Analysis of the effects reported in Figure 17.17



These results support the interpretation obtained from simple visu-
al inspection of the interaction chart (the cell means plot), namely
that 1) different dosages of alcohol produce clearly different
amounts of body sway, whether you have alcoholic family members
or not, and 2) when participants are given a moderate dose of alco-
hol, those with a family history of alcoholism show greater body
sway than those without a family history of alcoholism. However,
note that the t-tests reported in Figure 17.18 are not corrected in any
way for the likely increase in the Type 1 error rate, and corrections
should be effected manually. A commonly used statistic is the
Bonferroni correction, where the assumed alpha value, usually 0.05,
is divided by the number of comparisons. Thus, if you conduct
three significance tests, divide alpha by three, and only conclude
that there is a significant difference for a particular comparison if
the obtained probability is less than 0.017 (i.e. 0.05/3).
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The Bonferroni
correction is used 
to reduce the overall
Type I error rate in a
set (family) of com-
parisons. However, 
it is a conservative
test.

It is a good idea to practise specifying repeated measures designs in
SPSS® (or any other package you might be using). Try doing so for the
following (invent appropriate data if it makes it easier):
a) a fully repeated design with 3 levels in factor A and 2 levels in 

factor B (we call this a 3 × 2 design)
b) a mixed 4 × 6 design  (where A is repeated)
c) a fully repeated 3 × 3 × 3 design.

Activity 17.6

Assumptions underlying repeated measures
ANOVA
We make a number of assumptions when we use ANOVA to
analyse repeated measures designs. Repeated measures analysis of
variance relies on the standard distributional assumptions of all
forms of analysis of variance: the assumption of normality, and the
assumption of homogeneity of variance. These assumptions are
usually not difficult to meet, and the F-test is highly robust with
respect to violations of either. The assumption of homogeneity of
variance in ANOVA is really a simpler form of an assumption
known as compound symmetry. This assumption specifies that the
matrix of variances and covariances (the variance-covariance matrix)
associated with the data in question satisfies certain conditions. For
example, consider the matrix shown as Figure 17.19, which is the
variance-covariance matrix for the data in Table 17.6, a one-way
repeated measures design. Variances of variables are reported in
cells on the main diagonal of the matrix (top left and bottom right
cells), and covariances of variables are reported in cells off the main
diagonal (bottom left and top right cells).

The variance – 
covariance matrix is
a matrix that reports
variable variances in
the cells on the main
diagonal, and
covariances of 
variables in the 
off-diagonal cells.



The assumption of compound symmetry is that 1) the variances are
equal, and 2) the covariances are equal. In balanced between-
subjects ANOVA designs, however, the independent variables are
truly independent, and the covariances of these variables are thus all
equal to zero. Only the assumption of equal variance needs to be sat-
isfied. However, in repeated measures designs, the covariances
between independent variables are typically not zero, and we have
to satisfy the requirement that they are equal. In the case of the data
in Figure 17.19, it is obvious that we satisfy these assumptions, but
when the matrix is a lot larger, we will not necessarily satisfy the
assumptions. In fact, we quite frequently will not satisfy this condi-
tion, and unfortunately, the F-statistic is sensitive to such departures,
and the computed F-statistic is likely to be biased. There are a num-
ber of solutions to this problem, most of which involve adjusting the
degrees of freedom. We will not investigate them here, except to say
that most computer programs accommodate these solutions. Indeed,
that is why the SPSS® output (shown in several earlier tables and
figures) contains multiple lines, marked ‘Sphericity Assumed’,
‘Greenhouse Geisser’, etc. – the line labelled ‘Sphericity Assumed’ is
the standard ANOVA test, and the other lines report tests that make
corrections to accommodate the problems.
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Figure 17.19 Variance-covariance matrix for the data in Table 17.6

a) Identify and discuss three situations in which a repeated meas-
ures design would be more appropriate than an independent
groups design.

b) Identify and discuss three situations in which a repeated
measures design would be statistically useful, but methodolog-
ically suspect.

Activity 17.7

Although the 
F-statistic is usually

quite robust, it is
sensitive to depar-

tures from com-
pound symmetry.

If the assumption or
compound symmetry
is violated, interpret

the Greenhouse
Geisser (or similar)

inferential test.
There are some circumstances, though, in which the corrections are
of little assistance, and in which the use of repeated measures
ANOVA is not recommended. Repeated measures designs with
unequal cell sizes, and which do not satisfy the requirement of
compound symmetry, are especially sensitive, and should not be
submitted to ANOVA. Similarly, in all repeated measure ANOVAs,
simple effects and linear contrasts are sensitive to departures from
compound symmetry, and to use these you usually need to consult
a specialised volume on ANOVA (e.g. Winer, 1971).



One way to deal with this problem is to conduct Mauchly’s test
of sphericity, which is produced by SPSS® as default output from its
GLM repeated measures procedure. This test is applicable for
designs where the repeated measures factor has more than two
levels, and yields a statistic that can be interpreted as a χ2 deviate. If
the probability value for the χ2 is not less than the alpha level (e.g.
0.05), one can assume that the assumption of sphericity holds.
However, Mauchly’s test is very sensitive, and if the χ2 value is
significant, it might be a mistake to assume that the assumption of
sphericity has been broken. 

Clearly, the use of repeated measures analysis of variance
involves dodging a number of problems, all related to the assump-
tion of compound symmetry. For this reason, a number of authors
recommend against it altogether (e.g. Hays, 1994), and propose
instead the use of MANOVA (multivariate analysis of variance).
MANOVA does not assume compound symmetry, and so escapes
many of the problems that beset repeated measures ANOVA. How-
ever, research designs that are conceptualised in an ANOVA frame-
work need to be re-conceptualised in a MANOVA framework, and
this can be quite tricky with complex factorial designs. A detailed
and relatively uncomplicated treatment of MANOVA can be found
in Tabachnik and Fidell (1989).

Worked example
Information we receive after an event may often interfere with our
memory of the original event. This appears to be true in laboratory
settings as well as in natural, ‘real-life’ settings. Elizabeth Loftus of
the University of Washington has done a great deal of research on
this phenomenon, known as the postevent information effect (e.g.
Loftus et al., 1978; Loftus, 1983). The classic experimental design
Loftus used in most of her studies is a mixed model, repeated meas-
ures variant, which can be reduced diagrammatically to what is
shown in Figure 17.20.
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Use the Mauchly 
test of sphericity to
examine whether the
assumption of com-
pound symmetry has
been violated.

The most important
and exacting
assumption of
repeated measures
ANOVA is that 
of compound sym-
metry. Unbalanced
repeated measures
designs are 
particularly likely to
break this assump-
tion, and are not
recommended.

Group OEI Test A PEI Test B

Experimental X X X X

Control X X – X

OEI � original event information
PEI � postevent information

Figure 17.20  Classic mixed design used in postevent information experi-
ments



In her experiments, participants are usually randomly assigned to
an experimental or a control group, shown a film (or slide show, or
real event), and then tested on their recall of some of the infor-
mation in the showing. The experimental group is subsequently
misled about some of the original information (e.g. they might be
misled to believe that a person had a moustache), but the control
group is not. Both groups are subsequently tested on their recall 
of the original information, either with the original test, or with a
‘parallel’ version of it. 

Loftus and other researchers have run many variations on this
basic design. Figure 17.21 shows data in an SPSS® spreadsheet for a
design where there was a third group, which received consistent
(rather than misleading) postevent information, and where memo-
ry for the original information was measured as the number of
items correctly scored on a final test. We need to analyse these data.
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Solution
This design is a 3 × 2 factorial design with one repeated measures
factor (two levels: test A and test B), and one between-subjects fac-
tor (three levels: control, misled, and consistent). Although it has a
very small sample size (only five per condition), there are equal
numbers per cell, so the design is balanced. 

A boxplot shows that both the pre- and post-tests are a little asym-
metrical (see Figure 17.22), but there are no outliers, and there is no
clear reason to suspect that ANOVA is inappropriate with this data.
We could conduct more formal tests on the data to assess the reason-
ableness of the sphericity assumption (SPSS® offers a test of sphericity
known as ‘Mauchly’s test of sphericity’), but we will not do that here. 

We use the dialog boxes shown in Figure 17.23 to specify the
design and run the analysis. Inspection of the ANOVA table shows
that there is a significant interaction effect and a significant effect for

Figure 17.21  Data for a PEI study
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Figure 17.22 Boxplot for the data of Figure 17.21
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TESTS OF WITHIN-SUBJECTS EFFECTS

Source

TEST Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

df
Mean 
Square F Sig.

Type III Sum
of Squares

1.633
1.633
1.633
1.633

2.467
2.467
2.467
2.467

2.400 
2.400 
2.400 
2.400 

1
1.000
1.000
1.000

2
2.000
2.000
2.000

12
12.000
12.000
12.000

1.633
1.633
1.633
1.633

1.233
1.233
1.233
1.233

.200

.200

.200

.200

8.167
8.167
8.167
8.167

6.167
6.167
6.167
6.167

.014

.014

.014

.014

.014

.014

.014

.014

TEST * CONDITION Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Error (TEST) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

TESTS OF BETWEEN-SUBJECTS EFFECTS

Source

Intercept
CONDITION
Error

df
Mean 
Square F Sig.

Type III Sum
of Squares

126.150
2.100
5.000

1
2

12

126.150
1.050

.417

302.760
2.520

.000

.122

Figure 17.23 Dialog boxes and resulting output for repeated measures analysis of data in 
Figure 17.21



Test (the repeated measures factor), but no significant effect for the
between-subjects factor, Condition (experimental vs control). The
next step is to request an interaction plot via the initial dialog box,
and to inspect it. This plot suggests that control participants do
more poorly on a recognition test after the passage of some time,
whereas misled participants do much more poorly on the same
recognition test, and participants who have been reminded of criti-
cal details do much better. 

The question now is which formal significance tests we need to
run in order to formally test our interpretation of the interaction
plot. There is no point in performing tests of the differences
between the means of the Condition factor on their own, since the
logic of the design is to assume that they are identical to begin with,
but may end up different as a result of the experimental manipula-
tion. There is no point, either, in comparing means across the Time
factor, since the overall F-test for this effect was not significant. In
fact, we should go straight to the comparison of the three groups on
the second test, i.e. Time2, since the entire logic of the experiment is
to produce differences there. This is equivalent to doing a simple
effect analysis on the Condition factor, i.e. comparing across
Condition means at each level of Test. However, as discussed earli-
er, most statisticians warn against doing a simple effect analysis
over a mixed model repeated-measures factor, so we will instead
conduct two one-way ANOVAs on the data, evaluating the effect of
Condition at each level of Test. Since you are already familiar with
how to do this, using SPSS®, we simply report the overall F-tests,
and associated statistics, in Figure 17.24. 
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At Time1 At Time2 Pairwise comparisons

F � 0.11 F � 8.17 Condition at Time2 

df � 2,12 df � 2,12 Diff. Sig.

MSError � 0.42 MSError � 0.42 1 vs 2 1 0.04

p ≤ 0.90 p ≤ 0.006 1 vs 3 –0.6 0.22

2 vs 3 –1.6 0.0009

Figure 17.24 Summary results for follow-up analysis of data in Figure 17.21

The significant F-ratio for the test across Time2 tells us that we
should conduct multiple comparisons between these three means,
and summary results are also shown in Figure 17.24. These results
show that the group given misleading information (group 2) per-
forms more poorly at Time2 than either the control group (group 1)
or the group given consistent information (group 3). However, the
group given consistent information does not perform any better on
the final test than the control group. 
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Summary
1. The key concept in analysis of variance is that variance in a

dataset can be decomposed into components. In repeated meas-
ures ANOVA, variance is decomposed into that which arises
from between-subjects sources, that which arises from within-
subjects sources, and that which arises from an unidentified
source (the residual or error variance). Variance across the repeat-
ed measurements can be partly attributed to variation between
the entities or individuals, and the error or residual variance in
the ANOVA model can often be reduced substantially.

2. Data from one-way repeated measures ANOVA designs can be
analysed just as if they arose from a two-way factorial ANOVA
design. A factor coding subject identity is treated as a second
factor, and the interaction between this factor and the treatment
(or grouping) factor provides the information required for the
error term in the ANOVA model.

3. Factorial ANOVA designs that include one or more repeated
measures factors are generally either fully repeated (all the factors
are repeated) or mixed (some factors are repeated). There are
many complexities in the calculation of factorial repeated meas-
ures ANOVAs (e.g. appropriate error terms), and we generally
entrust the calculations to software packages like SPSS®.

4. Underlying mathematical and statistical assumptions are more
important in repeated measures ANOVA than in between-
subjects ANOVA. The most important of these is compound
symmetry – breaches of this assumption can be serious, espe-
cially if the design is unbalanced.

Exercises
1. An educational researcher wants to know how susceptible a

widely used reading test is to practice effects. The researcher
administers the test to eight school children three times over a
period of six weeks (once every two weeks). The data are as fol-
lows (the dependent variable is score on the reading test where
1 � poor, 12 � good):

Session 1: 5 6 3 8 5 3 7 6
Session 2: 6 4 7 5 6 4 8 6
Session 3: 8 4 6 6 7 6 5 7

a) What conclusions can the researcher draw? (Hint: perform a
repeated measures ANOVA.) 



b) Calculate the correlation coefficients between the sessions. 
c) Modify the data so as to increase the correlation coefficients

between the sessions and repeat your earlier analysis (in
question a). Report any changes that you might observe.

2. Identify and discuss three situations in which a repeated meas-
ures design would be more appropriate than an independent
groups design.

3. A sports scientist wants to compare three different methods of
fitness training (methods A, B, and C). She wants to use heart 
rate (in beats per minute) as an indicator of fitness (i.e. as the
dependent variable), but she knows that physiological measures
show inherent high variability. She decides to control for the
high variability by using a repeated measures design and
recruits 25 subjects to serve in the study. Their baseline heart
rates are determined. For three months they are trained with
method A. Their heart rates are then measured, and they are
taken off the fitness training regimen for two months. When the
two months have lapsed, they are trained for three months with
method B, and their heart rates are assessed at the end of this
period. The same is done for method C. Data are shown below,
as well as output from the SPSS® program. Interpret the output.
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TESTS OF WITHIN-SUBJECTS EFFECTS

Source

METHOD Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

df
Mean 
Square F Sig.

Type III Sum
of Squares

220.667
220.667
220.667
220.667

830.667
830.667
830.667
830.667

2
1.625
1.726
1.000

48
38.988
41.416
24.000

110.333
135.836
127.873
220.667

17.306
21.306
20.057
34.611

6.376
6.376
6.376
6.376

.004
.007
.006
.019

Error (METHOD) Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Subject: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Method A: 67 81 73 69 68 79 78 67 67 69 78 75 81 68 76 69 65 71 66 65 77 81 78 75 76
Method B: 63 77 75 65 67 70 75 67 71 70 72 76 66 73 72 71 66 71 70 63 68 72 76 75 73
Method C: 64 72 73 73 70 74 73 64 70 64 68 63 63 69 72 76 69 67 64 72 65 61 72 63 73

TESTS OF BETWEEN-SUBJECTS EFFECTS

Source

Intercept

df
Mean 
Square F Sig.

Type III Sum
of Squares

374109.453 1 374109.453
  

11779.677 .000
762.213 24 31.759

  
Error



4. Consider the following well-known example from Winer (1971).
An experiment is conducted in which six subjects are divided
into two groups according to the method of calibrating dials
(‘Method’). There are four shapes of dials (‘Shapes’), and each
subject gets four accuracy scores – one for each shape. This is a
two-way ANOVA with repeated measures on one factor – the
Shapes factor. Conduct the appropriate ANOVA analysis.
Interpret your results.
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(I) METHOD           (J) METHOD

1 2 2.200*

4.200*

–2.200*

2.200*

–4.200*

2.000*

.950

1.422

.950

1.108

1.422

1.108

3

3

PAIRWISE COMPARISONS

2 1

3 1

2

Mean
Difference

(I–J) Std. Error

.029

.007

.029

.084

.007

.084

Sig.

Shape 1 Shape 2 Shape 3 Shape 4

0 0 5 3

3 1 5 4

4 3 6 2

4 2 7 8

5 4 6 6

7 5 8 9

Method 1

Method 2
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Multiple regression

Colin Tredoux

•••••••••••
After studying this tutorial, you should be able to:
• Give the two central uses to which social

scientists put multiple regression analysis.
• Grasp the key concepts underlying multiple

regression analysis.
• Interpret computer-generated multiple regression

analyses. 
• Identify and take precautions against the problem

of multicollinearity.
• Identify non-linear relations and influential 

outliers.

TUTORIAL

18

In Tutorial 10, you were introduced to linear regression, and shown
how this technique can be used to describe and analyse simple
bivariate relationships. It may have struck you that the social world
is not (typically) composed of simple bivariate relationships, and
that a method that examines only bivariate relationships probably
overlooks the complexity of social and behavioural problems.
Indeed, the social world is enormously complex, and behavioural
and social phenomena are determined by a great many factors,
working in multiple, interacting patterns. We can make the
argument that most phenomena in the social and behavioural
sciences are inherently complex, and that we will only understand
relationships involving these phenomena if we use analytic tech-
niques that enable us to examine multiple, intricate relationships. 
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There are a number of multivariate procedures that are useful
for purposes of ‘modelling’ complex phenomena and relationships.
The most important of these is multiple linear regression, since most
other multivariate procedures are derived from it, and are easier to
understand in relation to it. Multiple linear regression follows in 
a natural way from simple linear regression, and we will assume 
in this chapter that you have a sound knowledge of the material
covered in Tutorial 10.

Multiple regression allows us to find a (linear) combination of
independent variables that maximally predicts (or ‘explains’) a
dependent variable. From this, we can gauge the relative contribu-
tion of variables in the combination, and we can use the combination
(or equation) as a predictive device to predict a value on the depend-
ent variable for particular configurations of data on the independent
variables.

An example may make the basic idea clear. Criminologists often
use multiple regression analysis to identify predictors of violent
behaviour amongst prisoners, and to build predictive models that
will allow them to estimate the likelihood that a particular prisoner
will commit a violent offense if released from prison. Thus, in the
IOWA system (see Duckitt, 1988), the variables prior violence score,
current offense score, street time score, criminal history score, current
escape score, and substance abuse score were identified as statistically
important predictors of violence risk. These variables are used in a
linear combination – i.e. weighted, and added together – to gener-
ate predictions of violence risk. This model can be expressed as a
regression equation (compare Equation 10.1), that looks something
like the following:

risk � 0.3*(current offense score) + 0.09*(street time score) +
0.11*(substance abuse score) + 0.13*(criminal history score) + 

0.21*(current escape score) + 0.32*(prior violence score)

Let us imagine that John E. Rotten presents himself for early parole.
We take measurements on the variables in question, and we enter
these values into the equation, and the result it generates (after
some modifications) is 4. We can now use the estimate that this
equation generates to assist our decision in respect of John E.
Rotten’s parole application. The IOWA system has conveniently
noted that a total score of 4 is high risk, and we will have to factor
this prediction into our decision, alongside any other considera-
tions, e.g. John E.’s legendary sense of humour.

Multiple regression is at one level really as simple as this exam-
ple suggests. A multiple regression equation is just an equation
consisting of multiple coefficients and multiple variables. However,

Multiple regression is
used to model multi-
variate relationships.
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it is comparatively rare in the social sciences to use multiple regres-
sion analysis in this way (i.e. as an equation generator), and most of
the time social researchers are interested in questions that are sub-
sidiary to the generation of the equation itself.

The most common usages of multiple regression in the social sci-
ences are akin to the two examples below:
1. We do not know what the correlates or predictors of post-natal

depression are, and suspect that they may include a host of vari-
ables, including the mother’s previous history of depression, her
resources for social support, her socio-economic status, etc.
Multiple regression is very useful at identifying such predictors,
and their combinatory effects.

2. We know that post-natal depression is correlated with socio-
economic status and social support. However, since socio-
economic status and social support are strongly negatively
correlated, we do not know whether social support offers any
unique understanding of post-natal depression, over and
above socio-economic status. Multiple regression provides
several very effective ways of ‘partialling’ the contributions 
of other independent variables out of multiple-way relation-
ships, and is thus an invaluable tool for much social science
research.

Although multiple regression is a useful and powerful statistical
method, it is also greatly abused in the social (and natural) sciences.
This usually happens in the context of situations like (1), above,
where researchers use powerful computers to build models of phe-
nomena on the flimsiest of grounds: a computer algorithm is used
to identify a set of predictive variables that optimally ‘predicts’ a
dependent variable, regardless of whether the selected set makes
theoretical sense.

Multiple regression
finds a linear 

combination of inde-
pendent variables

that predicts a 
dependent variable. 

Identify five key social problems that affect people in the area where
you live. Now next to each, list all the variables that you think are
related to or cause the problems. Do you think these variables are
independent, or are some of them related to each other?

Activity 18.1

This tutorial can do little more than introduce you to multiple
regression. For those who wish to study the method in greater
detail, the texts by Cohen & Cohen (1975), Pedhazur (1982), and
Draper & Smith (1981) are excellent sources.
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An example 
Imagine that we are interested in predictors of depression in a
sample of SANDF soldiers (see Mangxolo, 2000). We have informa-
tion about a number of psychological and social/demographic
characteristics, including their rank, age, race, level of education,
and previous military experience. Table 18.1 shows the data for a
sample of 40 soldiers. If we postulate a relationship between
military Rank (x), an independent variable, and Depression (y), the
dependent variable, we can write the regression equation describ-
ing the relationship as:

y � a + bx

where: y is the predicted variable
b is the regression (or slope) coefficient
a is the intercept term

We can use the methods set out in Tutorial 10 to determine the values
of a and b, which will give us an equation into which we simply need
to substitute values of x in order to arrive at predictions of y. With a
little additional computation, we can also obtain the standard error
of estimate, which will tell us, on average, how far our prediction will
differ from the real or true value of the dependent variable. Many
other regression statistics are also easily computed, and – as demon-
strated in Tutorial 10 – are important aids to the interpretation of the
regression equation. 

Useful as this is, we will not be able to proceed beyond the
consideration of just one predictor of depression at a time. It does
not take great insight to see that this is limiting – many things are
likely to affect depression among soldiers, and we need a method
that will allow us to simultaneously examine multiple predictors 
of depression. 

Imagine that we wish to examine the joint or simultaneous rela-
tionship of Rank and Substance use with Depression. If we agree to
assign the notation x1 to Rank, and x2 to Substance use, then we can
write the (multiple regression) equation relating the combination of
x1 and x2 to y as:

Equation 18.1

The standard error
of the estimate tells
us how much, on
average, regression
predictions differ
from observed 
values.

y � a + b1x1 + b2x2

where: b1 is the regression or slope coefficient associated with x1

b2 is the regression or slope coefficient associated with x2

a is the intercept term.

Equation 18.2
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We can solve for a, b1, and b2 using well-known mathematical
methods, but this is somewhat laborious, especially if we have more
than two independent variables. In practice, almost all the compu-
tation for multiple regression is done with the aid of statistical soft-
ware, and the statistical packages reviewed in this text have good
multiple regression modules. For the data in Table 18.1, the output
given by SPSS® is shown in Figure 18.1 on the next page.

Table 18.1  Data for several variables on SANDF soldiers

S Rank Substance Depression S Rank Substance Depression S Rank Substance Depression
use use use

1 1 1 2.05 15 3 1 2.11 29 2 2 2.24

2 1 1 0.9 16 3 1 2.1 30 2 2 2.56

3 1 1 1.72 17 3 1 1.44 2 2 2 2.34

4 1 1 1.12 18 3 1 1.58 32 2 2 2.55

5 1 1 1.97 19 3 1 2.4 33 2 2 2.23

6 1 1 1.15 20 3 1 2.95 34 2 2 2.81

7 1 1 2.17 21 1 2 1.3 35 3 2 2.55

8 2 1 2.3 22 1 2 2.85 36 3 2 3.07

9 2 1 0.65 23 1 2 1.69 37 3 2 2.57

10 2 1 1.62 24 1 2 3.04 38 3 2 3.8

11 2 1 0.72 25 1 2 3.16 39 3 2 2.55

12 2 1 2.34 26 1 2 2.85 40 3 2 2.67

13 2 1 1.6 27 1 2 1.21

14 3 1 1.63 28 2 2 1.91

S: soldier number; Rank: an ordinal variable lower numbers are lower ranks (lance-corporal � 1, corporal � 2,

officer � 3); Substance use: a dichotomous variable (1 � uses substances); Depression � scale score from the 

Symptom Check List, higher scores � greater depression (max. � 4).

In order to refresh your memory of the techniques and methods of
simple linear regression, enter the data in Table 18.1 into an SPSS® or
STATISTICA datasheet, and do the following:
1. Compute the correlation between rank and depression, and find

the regression equation relating the variables (treating depression
as a dependent variable).

2. Calculate the standard error of the estimate in this equation and
interpret this quantity.

3. Decide on the basis of a scatterplot of the variables if it was
sensible to compute a correlation coefficient.

Activity 18.2

There is much in this Figure (Figure 18.1) that may not be familiar
to you. For the moment, concentrate on the column labelled ‘B’ (we
will return to the other columns later in the chapter). The regression
coefficients are given here, as well as the value of the intercept
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(labelled ‘constant’). By substituting the information in column ‘B’
into Equation 18.2, we can write the equation relating Depression to
Substance use and Rank as:

Depression � 0.444 + (0.25 × rank) + (0.782 × substance use)

In other words, for every 1 unit change in Rank, we can expect
Depression to increase by 0.25 units, and for every 1 unit change in
substance use (in this case there are only two values for Substance
use), the Depression score increases by 0.782 units. In other words,
higher ranks tend to have higher levels of depression, and those
who use substances tend to have higher levels of depression.

We can use this equation to obtain a predicted value of depres-
sion for specific sets of values for Rank and Substance use. For
example, if a soldier of officer rank indicated abuse of substances,
the equation would be written as follows, substituting the value 3
for Rank and 1 for Substance abuse (see codes in Table 18.1):

Depression � 0.444 + (0.25 × 3) + (0.782 × 1) � 0.444 + 0.75 + 0.782 � 1.976

The predicted level of depression for an officer who abuses sub-
stances is therefore 1.976. 

Regression coefficients
The values of the coefficients b1 and b2 in the equation above are 0.25
and 0.782. These coefficients have much the same meaning as the
coefficient in a simple (one predictor) regression equation, with one
important difference. They are partial gradient or slope coefficients:

MODEL SUMMARY

Model R R Square
Adjusted
R Square

Std. Error of
the Estimate

1 .612 .375 .341 .58620

COEFFICIENTS

Model
1 (Constant)

RANK
SUBSTANC

.444

.250

.782

.373
.113
.185

.288

.549

1.188
2.213
4.219

.242

.033

.000

Unstandardised
Coefficients

Standardised
Coefficients

B Std. Error Beta t Sig.

ANOVA

Model df Mean Square F
Sum of
Squares

1 Regression
Residual
Total

7.613
12.714
20.327

2
37
39

3.806
.344

11.077 .000a
Sig.

Figure 18.1 SPSS® output for regression of Rank and Substance use on
depression in a sample of soldiers



for each change of one unit in x1, y' changes 0.25 units, provided x2 is
kept constant (does not change). The same interpretation holds for x2:
for each change of one unit in x2, y' changes 0.782 units, provided x1

is kept constant. Another way of saying this is that the regression
coefficient of each variable represents the unique contribution of that
variable to the prediction equation, or the contribution of the vari-
able after ‘partialling out’ the contributions of all other independent
variables. 

Consider the one-predictor regression equation relating Rank to
Depression:

y � a + bx
Depression � 1.646 + 0.235 × rank

Notice how the coefficient of Rank (0.235) changes from that in the
multiple regression equation (0.25) – the coefficient of Rank in the
multiple regression equation has been corrected according to the
amount of variance it shares with Substance use.

Partial correlation and multicollinearity
Perhaps the best way to understand regression coefficients in
multiple regression is through the notions of ‘partial’ and ‘shared’
variance and correlation.

An example may make this clear. Imagine that we are trying to
understand the factors that contribute to a car’s fuel consumption.
It is fairly clear on common-sense grounds that heavier cars will use
more fuel. In other words, the mass of a car (in kilograms) will be a
good predictor of fuel consumption. It is also clear that the size of
the engine will be a good predictor. However, these two variables
are themselves likely to be correlated: you are likely to find bigger
engines in heavier cars. This correlation will not be perfect – you
will find small, lightweight cars with enormous engines (think of
sport cars like Ferraris, Porsches, and Corvettes) – but it will be
moderately strong. Table 18.2 is a hypothetical example of a matrix
containing the intercorrelations of these variables. In this example,
it is very useful for us to know just how much each variable

344 NUMBERS, HYPOTHESES AND CONCLUSIONS

In a multiple 
regression equation,
the slope coefficients
are corrected for the

influence of other
variables in the

equation.

Table 18.2 Correlation matrix for relations between three 
motorcar variables

Fuel Engine Body
consumption size mass

Fuel consumption 1.0 0.6 0.8
Engine size 0.6 1.0 0.4
Body mass 0.8 0.4 1.0
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contributes uniquely to explaining fuel consumption. An index of
this unique contribution is the partial correlation (and its square).
Figure 18.2 provides a graphic metaphor for the multiple regression
analysis in which we try to model Fuel consumption (F) from
Engine size (S) and Body mass (M). Each oval represents the total
variance of that variable. Any overlap between the ovals represents
shared variance, that is co-variance, or the amount of variance in
one variable that is attributable to, or explicable from, the variance
in the other variable (e.g. the union of the areas marked ‘a’ and ‘b’
is the variance shared by S and F). The joint overlap between all
three variables (marked ‘b’) represents the shared contribution of S
and M to F, and it can clearly be seen that this total area is the inter-
section of two non-independent areas (a + b intersecting with c + b).
If we consider the unique contribution of S to F, it is the portion
marked ‘a’, and is a visual analog for the squared partial correlation
of S and F, that is, the proportion . A quantitity known as 
the (square of the) semi-partial correlation would be the proportion 

.a
��
a + b + c + d

a
�
a + d

a

d

b
c

F

S M

Figure 18.2 Venn diagram illustrating notions of ‘partial’ and ‘shared’
variances

In a multiple regression equation, the regression coefficients (b) are
corrected for the influence of other variables in the equation in the
same manner that partial correlations are corrected for their inter-
correlation with other variables. However, it is not a good thing to
have substantial intercorrelations between independent variables in
a multiple regression equation. If the intercorrelations are high, the
computational procedure is made vulnerable, and estimates of
regression coefficients may in particular be inaccurate. Technical
discussions of the reasons for this can be found in Hays (1994), and
Draper & Smith (1981). This problem is known as multicollinearity
and is very common in the social sciences. Although there are a
number of ways of dealing with the problem, the best remedy is
usually to reduce the predictor set by discarding ‘redundant’ vari-

Multicollinearity
occurs when 
predictor variables
are strongly inter-
correlated. This
should be avoided.

The partial correla-
tion of x, and y is
the correlation
between x and y
after removing a
third variable (e.g.
x2) and all its shared
variance from both
x, and y.

The semi-partial
correlation of x,
with y is the correla-
tion between x, and
y after removing a
third variable (e.g.
x2) and its shared
variance from x1.
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ables – if two (or more) predictor variables in a particular dataset
are highly intercorrelated, the researcher should choose one only,
and reject the other(s).

Standardised regression coefficients
One of the problems with regression coefficients – in simple as well
as in multiple regression – is that they are expressed in terms of
their original measurement scale. Thus, if you develop a regression
equation for the relationship that dosage of a drug (usually in
milligrams) and body weight (usually in kilograms) have with
depression, you may obtain regression coefficients that are based on
average dosages of 10 milligrams, and average weights of 70 kilo-
grams. You will probably end up with a set of coefficients like 2.4
and 17.8, and it will not be possible to compare them to each other,
since their size depends not only on the strength of their relation-
ship with the dependent variable, but also on the measurement
scale you used. Worse, if you were to use a different scale for dosage
(say kilograms), then the b coefficient would change radically. The
size of the b coefficients does not indicate the relative importance of vari-
ables in a multiple regression equation. 

One way to make regression coefficients comparable is by
standardising the variables in the multiple regression equation.
Standardisation in this respect is no different from what you were
introduced to in the context of z-scores and standard normal dis-
tributions (see Tutorial 6) – the means of variables in the equation
are set to 0 and the standard deviations to 1. All variables in the
equation are thus transformed to the same unit of measure and are
(roughly) comparable. The regression coefficients based on stan-
dardised variables are called beta coefficients and are denoted by
the Greek letter β (beta). When a regression equation is transformed
into its standardised form, the intercept term becomes 0, and thus
falls away. For the multiple regression equation that relates Rank
and Substance use to Depression in soldiers, from the SPSS® output
shown as Figure 12.1, we can write the standardised form as:

Depression � 0.288 × Substance use + 0.549 × Rank

The relative size of the coefficients of Substance use and Rank
suggests that Substance use is a more ‘important’ predictor of
Depression in soldiers than Rank. 

The multiple correlation coefficient (R) and the
standard error of estimate
In simple linear regression, there are several measures that express the
adequacy or ‘tightness’ of the fit, i.e. the extent to which the predicted
scores deviate from the observed scores. The best known of these is

The sizes of the b
coefficients in a

regression equation
do not reflect the

relative importance
of the variables.

The sizes of the β
coefficients usually
reflect the relative
importance of the

variables (except in
some circumstances).



TUTORIAL 18: MULTIPLE REGRESSION 347

the Pearson correlation coefficient (r), which is usually squared (r2) for
the sake of making the measure interpretable in terms of the amount of
variance in the dependent variable (y) that is ‘explained’ by the inde-
pendent variable (x). The greater r (and therefore r2) is, the stronger
the relationship, and the ‘better’ the regression equation.

Using a spreadsheet or calculator, and the data from Table 18.1,
calculate:
a) the correlation between depression and substance use, partialling

out rank
b) the b and β weights for the simple linear regression predicting

depression from substance use.

Activity 18.3

R2 and the standard
error of the esti-
mate are two useful
indices of the
explanatory power
of a regression
model.

One such measure of the adequacy of the multiple regression
equation is the analog to r, known as the multiple correlation coeffi-
cient, and denoted as R. The multiple correlation coefficient is the
correlation between the observed dependent variable (y) and the
predicted variable (y'), i.e. the correlation between the actual scores
that the sample obtained, and the score each individual would be
given on the basis of the regression equation. In the example con-
cerning the prediction of Depression among soldiers from
Substance use and Rank, the multiple correlation is 0.612 (see
Figure 18.1, ‘MODEL SUMMARY’). This value can be interpreted
in the same manner that we interpret ordinary correlation coeffi-
cients: it varies between –1 and 1, with the relationship becoming
stronger the closer it gets to either –1 or 1 (0 � no relationship). The
square of R (i.e. R2) gives the amount of variance in the dependent
variable explained by the combination of independent variables in
the regression equation. In the case of the equation predicting
depression, R2 is 0.375 – in other words, 37.5% of the variation in
depression scores is predicted by the (combined) variation in rank
and substance use scores.

Most computer programs will produce a statistic known as
adjusted R2, and denoted by R2

adj. This statistic ostensibly corrects
for the degrees of freedom in some of the terms involved in the esti-
mation of R2, but many statisticians do not place much faith in the
adjusted estimator, R2

adj (see Draper & Smith, 1981, for example).
Another measure of the adequacy of the regression equation is

the standard error of the estimate. This can be thought of as the
(corrected) average distance of the observed values from the pre-
dicted values. The closer this average distance is to 0, the better the
prediction. The closer it gets to y, the worse the prediction (since
just guessing the mean of the dependent variable is the worst we
could do, in the absence of any information about predictors). It has
the same meaning in simple and multiple regression.

‘R’ is known as the
multiple correlation
coefficient and is the
correlation (r)
between y and y '.
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Testing statistical significance in multiple regression
How confident are we that the regression equation we calculated on
the data in Table 18.1, above, represents anything more than mere
chance, or random sampling variation? Is it any more accurate than
if we had just used y for each prediction? This is an important ques-
tion, and we tend to conduct two distinct types of significance test in
order to answer it.

The signficance of R2, using the F distribution
Here we test whether the particular combination of independent
variables represented by the regression equation is better than we
could have achieved just by chance, or just by using y. The test we
use is in fact derived from analysis of variance, which is introduced
in Tutorial 14. For our sample data, the F-test for R2 is indicated in
Figure 12.1 as 11.077, with a p-value < 0.0005, and degrees of freedom
� 2,37. Since p < 0.05 we can conclude that Rank and Substance use
together account for a statistically significant proportion of the varia-
tion in Depression scores amongst soldiers. (Note that SPSS® rounds
the p-values to three places by default, and reports the misleading 
p-value 0.000 in Figure 18.1 – you should always round these up to
the next logical decimal place.)

Using a spreadsheet or calculator, and the data from Table 18.1,
calculate:
a) R2 for the relationship between Rank and Depression.
b) the standard error of estimate for the relationship between Rank

and Depression. Do this both from the formula (see Tutorial 10),
and from the definition above (divide by n – 1, rather than n, for
the correction).

Activity 18.4

The signficance of individual variables in the regression equation
Here we test each variable in the equation for statistical significance (in
fact, we test whether the value of each regression coefficient is greater
than 0). Some computer programs report t-values for this test, and
others report F-values – they amount to the same thing. The results for
our sample data are reported in Figure 18.1.

The t-tests for the regression coefficients are indicated in the 
fifth column. For Rank t � 2.213, with p < 0.03. For Substance use 
t � 4.22, with p < 0.0005. From this we can conclude that the (par-
tialled) effect of Substance use on depression is statistically signifi-
cant, as is the (partialled) effect of Rank on Depression.

There is always a
pair of degrees of

freedom values for
an F test of a regres-

sion model – df
model and df resid-

ual. Where there are
2 df for model and
100 df for residual,

we would write 
df = (2, 100).
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Which variables? Methods of model building 
One way of thinking about a multiple regression equation is to
think of it as a model. A number of variables are selected from a
potentially large collection, and combined in a linear sum. Each
variable is weighted within the combination by its regression
coefficient. This weighted combination ‘models’ the dependent
variable, in that it attempts to account for all values of the depend-
ent variable. R2 can then be thought of as an index of the degree of
‘model fit’, i.e. how much the predicted values depart from the
observed values. 

A key problem in this way of thinking about a regression equa-
tion is how to select variables for inclusion in the model. In some sit-
uations there are theoretical grounds for including variables, but
this is (too) rarely the case in social science research. In most
situations, we have a large collection of independent variables and
little idea of how to choose from this collection. There are a number
of solutions to this, ranging from informal inspection of the zero-
order correlations between the independent variables and depend-
ent variable, to a method of selecting the regression model that
accounts for the maximum possible amount of variation within the
set of independent variables (‘all possible subsets regression’). By
far the most common technique is that known as stepwise regression,
and we will examine this in some detail a little later.

Inspection of descriptive data and zero-order
correlations 
The first step in model-building should be careful inspection of
descriptive measures of the independent and dependent variables,
the (zero order) correlations of the independent variables with the
dependent variable, and the inter-correlations between the inde-
pendent variables. This inspection will reveal any anomalies in the

The most common
‘model-building’ in
regression is through
the use of stepwise
algorithms.

Rank each of the following matrices of intercorrelations in terms of their
potential multicollinearity (one of them is deliberately incomplete).

Activity 18.5

1 .4 .7

y x1 x2

.4 1 .1

.7 .3 1

1 .9 .8

y x1 x2

.9 1

.8 1

1 .2 .3 .5

y x1 x2 x3

.2 1 .2 .1

.1 .2 1 .2

.2 .1 .2 1

y

x1

x2

y

x1

x2

y

x1

x2

x3

(a) (b) (c)

Multiple regression
analysis builds mod-
els of the dependent
variable.

The first step in
model-building
should be careful
inspection of descrip-
tive measures of
variables.
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Regression command on ‘Analyze’ menu Main regression dialog box (note that Method
� Enter is selected)

Dialog box from clicking ‘Statistics’

2. Graphical output

3. Descriptive statistics and correlations
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Figure 18.3 SPSS® dialog boxes, boxplot, descriptive statistics, and correlation matrix produced in
SPSS® for examining SANDF data prior to regression
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data (e.g. outliers, coding mistakes), as well as possible problems
for the regression, such as multicollinearity and non-linearity. This
is easily done with most statistical packages, including SPSS®. Earlier
in this tutorial we looked at a regression equation that attempted 
to predict soldiers’ depression from knowledge of their rank and
substance use. Two of the variables we used in the equation are
measured at a nominal or ordinal level of measurement, and it is 
not possible to gain much insight into the data from descriptive
measures of these variables. However, it is useful to look at descrip-
tive measures of the dependent variable, and also at the matrix of
correlations involving all the variables in the model. Figure 18.3
shows a boxplot for the depression variable, a scatterplot, inter-
correlations, and descriptive statistics, as well as the dialog boxes in
SPSS® used to produce the latter two.

It is clear from the boxplot that Depression has no obvious outliers,
and appears reasonably symmetrical. The matrix of inter-correlations
indicates moderately strong correlations between the two predictor
variables (Rank and Substance usage) and the dependent variable
(Depression), but also shows that the correlation between Rank and
Substance usage is negligible (–0.03), which means that multicol-
linearity is not a threat to the regression analysis.

The sequential F-test
Most a posteriori methods of building regression models – i.e. those
in which the selection criteria are based on statistical rather than
theoretical criteria – rely on a test known as the sequential F-test, 
and it is useful to understand this test before we look at stepwise
regression.

Consider the situation where we have a model that relates one
predictor variable to the dependent variable, and this model pro-
vides a significant fit to data, given the results of the standard F-test.
We now wish to introduce a second predictor variable into the
model, but we will want to know whether doing this improves the
fit we achieved with just one predictor variable. The sequential (or
partial) F-test does exactly this. It compares the F-statistic obtained
with the single-predictor model to the F-statistic obtained with the
two-predictor model, taking into account the necessary loss of a
degree of freedom. This simple test is extraordinarily useful in
statistical model-building. 

Another equivalent way of thinking about this test is in terms of
the change in R2 that occurs when we add a variable (or variables)
to an equation. Referring back to an earlier example, imagine that
we are predicting Fuel consumption from Engine size. Then R2

would be analogous to the union of areas ‘a’ and ‘b’ in Figure 18.2.

Scatterplots should
always be construct-
ed for all combina-
tions of predictor
variables with the
dependent variable.
This helps detect
non-linearity and the
presence of outliers.

The sequential F-test
tests whether the
addition of a vari-
able to the model
significantly
improves the fit to
the data.
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If we then add car mass as a second variable, we will obtain an R2

analogous to the union of areas ‘a’, ‘b’, and ‘c’. The change in R2 is
in effect the area ‘c’, and the sequential significance test is set up to
determine whether the change is statistically significant.

What are some other ways to build regression models, apart from
stepwise algorithms? Use the resources in your institution’s library to
find examples of regression model-building that do not rely on step-
wise methods.

Activity 18.6

Stepwise multiple regression
This is overwhelmingly the most popular model-building algorithm
amongst social science researchers who use multiple regression. The
key idea is to build a model by increasing the number of variables 
in the regression equation one at a time, testing whether each
additional variable increases the F-statistic over the value obtained
without the additional variable. The first variable to be included 
in the model is that which has the highest correlation with the
dependent variable. The semi-partial correlations of all other inde-
pendent variables with the dependent variable are then computed
(see the earlier discussion of partial and semi-partial correlation).
The independent variable with the highest semi-partial correlation
with the dependent variable is then selected, and added to the
regression equation. If the sequential F-test shows that this addition
is statistically significant, the variable is kept in the equation. This
procedure continues until all of the variables have either been
accepted into the equation, or rejected. Figure 18.4 shows this
algorithm as a flowchart. (This model can also be built by decreasing
the number of variables in the regression equation one at a time.)

Most statistical packages have a good stepwise regression
module/procedure, and will produce a summary of the step-by-
step selection and rejection of variables. You do not need to do any
of the calculations depicted in Figure 18.4 by hand. 

For the running example concerning the prediction of depres-
sion in soldiers, we added three additional variables – the marital
status of the soldier (single vs with partner), whether the soldier
lives in the same province as he is stationed in (same province vs
different province), and the type of previous military organisation
the soldier belonged to, before the integration of the SANDF (sta-
tutory vs non-statutory forces). These are abbreviated MARSTAT,
WCAPE, and PREVMIL, respectively. Thus, five variables were
entered in total, and SPSS® was instructed to use stepwise regression

The sequence of
models tested by 

the SPSS® stepwise
procedure is shown
in footnotes to the

model summary
table of the SPSS®

output.
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Is the equation’s
F-value significant?

Calculate semi-partial correlations between 
remaining xi and y, removing all xi, already 
included in the equation

Choose xi for which correlation with y is greatest

Form regression equation y’ = a + b1x1

YES NO

NOYES

NOYES

STOP

STOP

Choose xi for which semi-partial correlation with y is greatest

Add xi, re-calculate regression equation

Is the sequential F-value significant?

Are there any more xi? 

Remove xi from 
the equation

Figure 18.4 Flowchart of the (forward) stepwise multiple regression 
algorithm

to select and test the best model. The dialog boxes necessary to run
the regression are shown in Figure 18.3 (but note that on the main
regression dialog box you need to select method � stepwise to run
a stepwise regression). Figure 18.5 reports the stepwise summary
for the analysis, as well as the ANOVA summary table for each step
(called ‘Model’ in the SPSS® output).

Notice that the model summary table details the amount of
change in R2 for each step, as well as the sequential F-test. The
ANOVA and ‘COEFFICIENTS’ tables treat each step as a separate
model, and provide the coefficients and ANOVA analysis of the
model at that step. For the running example, the stepwise analysis
selected three variables for inclusion in the final model, namely
Rank, Substance abuse, and Marital status. It rejected the remaining
two variables. The final model (‘3’ in the table) has an R2 of 0.45, and
its associated F-ratio is significant at p < 0.0005.



354 NUMBERS, HYPOTHESES AND CONCLUSIONS

Look carefully at the change in the size of the coefficients of the x vari-
ables in the regression ‘MODEL SUMMARY’ section of Figure 18.5.
Does this indicate relatively high or relatively low intercorrelations 
of the predictor variables? Check your answer against the inter-
correlations reported in Figure 18.3.

Activity 18.7

Hierarchical multiple regression
You will frequently find this term used in research reports and jour-
nal articles. It describes a form of regression model-building in
which the variable selection is explicitly controlled, and variables
are entered in a fixed sequence. This is particularly useful if the
variables have a logical order, or temporal priority. We do not have
the space to discuss this variant here, but refer interested readers to
Cohen & Cohen (1975) for a comprehensive discussion.

Hierarchical regres-
sion is a form of

model-building in
which the order of

entry is explicitly
controlled, usually

for reasons of theo-
retical coherence.

MODEL SUMMARY

Model R R Square
R Square
Change F Change df2df1 Sig. F Change

Adjusted
R Square

Std. Error of
the Estimate

1
2
3

.540a

.612b

.671c

.292

.375

.450

.292

.083

.076

.273

.341

.405

.61554

.58620

.55705

15.648
4.900
4.974

1
1
1

38
37
36

.000

.033

.032

a. Predictors: (Constant), SUBSTANC
b. Predictors: (Constant), SUBSTANC, RANK
c. Predictors: (Constant), SUBSTANC, RANK, MARSTAT

Change Statistics

COEFFICIENTSa

Model
1 (Constant)

SUBSTANC
.956
.770

.308

.195 .540
3.106
3.956

.004

.000
2 (Constant)

SUBSTANC
RANK

.444

.782

.250

.373

.185
.113

.549

.288

1.188
4.219
2.213

.242

.000

.033
3 (Constant)

SUBSTANC
RANK
MARSTAT

.990

.822

.243
-.395

.431

.177
.107
.177

.576

.280
-.277

2.296
4.639
2.267

-2.230

.028

.000

.029

.032

Unstandardised
Coefficients

Standardised
Coefficients

B Std. Error Beta t Sig.

ANOVAd

a. Predictors: (Constant), SUBSTANC
b. Predictors: (Constant), SUBSTANC, RANK
c. Predictors: (Constant), SUBSTANC, RANK, MARSTAT
d. Dependent Variable: DEPRESS

Model df
Mean 
Square F

Sum of
Squares

1 Regression
Residual
Total

5.929
14.398
20.327

1
38
39

5.929
.379

15.648 .000a

2 Regression
Residual
Total

7.613
12.714
20.327

2
37
39

3.806
.344

11.077 .000b

3 Regression
Residual
Total

9.156
11.171
20.327

3
36
39

3.052
.310

9.836 .000c

Sig.

a. Dependent Variable: DEPRESS

Figure 18.5 SPSS® summary output of stepwise regression for modelling depression in SANDF 
soldiers
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Cross-validation
The key quantitative method that regression assumes is known as
least squares. This method guarantees an optimally predictive set of
regression weights, but only for the particular data from which they are
derived. If we re-compute the regression on a different set of data,
the original regression weights will no longer be optimal.
Sometimes the amount of change in the weights can be substantial.
This is one of the most notorious features of multiple regression,
and one that makes it somewhat problematic as a general purpose
research tool. 

A method for dealing with the problem is to estimate how ‘valid’
the weights are for different sets of data. There will be shrinkage in
the value of R2 if the weights estimated on one set of data are used
on a second set of data, and the amount of shrinkage can tell us how
bad the cross-validation problem is. The simplest way of doing this
is to randomly divide the research sample into two, compute a
regression model for each half, and compare the regression weights
of the two models. More sophisticated methods are discussed in
specialised volumes (e.g. Cohen & Cohen, 1975).

Assumptions and limitations
Like most statistical procedures discussed in this text, regression
analysis makes a number of assumptions that should be observed
in practice. The most important of these is the assumption of linear-
ity: it is assumed that the relationship between each of the predictor
variables and the dependent variable is linear. If this assumption 
is not met in practice, it is possible to draw conclusions that are
completely mistaken. We should therefore always investigate the
linearity assumption – examination of scatterplots is often adequate
for this purpose. Although there are ways to remedy non-linearity
of relationships, the methods are beyond the scope of this text. 

A second assumption is that residuals – the amount by which the
fitted line deviates from the data points – are distributed normally.
The F-test is fairly robust with respect to minor violations of this
assumption, so only major violations warrant attention.

Apart from these assumptions, there are a number of practical
limitations and possible hindrances that must be taken into account
when conducting multiple regression analysis. One of these is the
critical way in which sample size can affect multiple regression
results (especially R2 values). It is possible to obtain very high R2

results when running multiple regression on small samples –
indeed, when there are exactly as many cases (subjects) as there are
variables, R2 will reach its maximum! 

The greatest threats
to a successful
regression analysis
are departures from
linearity, and the
presence of outliers.

A simple method of
cross validating a
regression analysis 
is to randomly divide
the research sample
into two, and com-
pute a regression
model for each half.

‘Residuals’ are the
individual amounts
by which the fitted
line deviates from the
observed data points
(see Figure 10.3).
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For this reason, it is a good idea to have many more cases than
variables. Although some authors suggest 10 cases per variable (i.e.
if you have 10 variables, you should have 100 cases), statistical
opinion is divided on the desirable ratio. The second practical limi-
tation is the sensitivity of regression analysis to outliers. These are
scores that are ‘unusual’ in the sense that they have a much higher
or lower value than most of the other scores in the dataset (they
were discussed in Tutorials 10 and 11). They tend to exert enormous
influence on regression results. 

Figure 18.6 shows two scatterplots with fitted least-squares lines,
which differ only in the presence of a single outlier. We can clearly
see from this how much influence outliers can exert on a regression
analysis, and for this reason we should make a major effort to
ensure that they are either excluded from datasets, or if left in, that
they do not exert major influence on the regression results. There
are advanced techniques for dealing with outliers, but that is
beyond the scope of the present tutorial.
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Figure 18.6 The effect of an outlier on a regression line and regression
analysis

Worked example
There are a number of jobs that require a certain amount of
strength to be able to render good performance (e.g. construction-
site workers, lumberjacks, motor mechanics). A specific problem is
how to select the best candidates for these kinds of jobs. One
solution is to develop an easily administrable measure of physical
ability, which does not risk injury, and is related to job perform-
ance. A study by Blakley et al. (1994) examined the predictive
ability of such a measure. Some of the data (50 cases) from that
study are presented in Table 18.3. These data were collected 
from individuals working in physically demanding jobs. Two
measures of strength – grip and arm strength – were gathered
from each participant, using the Jackson Evaluation System. Two
separate measures of job performance were taken. First, the super-
visors of the study participants were asked to rate how well 
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Table 18.3 Predictors of ability in physically demanding jobs

Subject Grip Arm Ratings Simulations

1 105.5 80.5 31.8 1.18
2 106.58 93 39.8 0.94
3 94 81 46.8 0.84
4 90.5 33.5 52.2 –2.45
5 92 96.5 38.6 –1.17
6 138 84.5 49 1.84
7 91.5 64 28 –0.62
8 189 122 49.266 4.87
9 115 101.5 45.6 0.77

10 121 84 52.6 2.97
11 128.5 93.5 46.4 3.16
12 128 84 46 0.27
13 82 39 31.3 –3.88
14 128.5 88 57 0.91
15 118 70.5 26.4 0.91
16 104.5 69.5 38.2 –0.94
17 120.5 95 48.4 3.09
18 77 29 43.6 –3.38
19 130 84 50.4 1.85
20 86.5 60 35.8 –0.4
21 142 115 26.6 2.69
22 71 66 38 0.2
23 95.5 89 41.4 –1.1
24 136.5 90 36.5 2.13
25 94.5 62.5 56.6 –1.59
26 90.5 64.5 47.8 –2.79
27 111.5 95.5 33 1.53
28 111 101 51.602 0.94
29 119 82.5 31.4 1.21
30 119.5 90.5 48.4 3.04
31 134 103.5 46 3.51
32 134 89 48.4 1.62
33 132.5 83.5 37 –0.62
34 121.5 89 45.4 –0.89
35 91.5 73 33.6 –0.82
36 173.5 117 54.2 0.68
37 128.5 80 56 1.43
38 104 68.5 35.6 –0.92
39 141 113 35.5 4.95
40 84.5 83 30.6 –1.09
41 123 66.5 48.8 0.32
42 133.5 87.5 40 0.21
43 132.5 99 47.4 1.64
44 82.5 57.5 44.8 –0.25
45 131 86 37 1.03
46 147 71 57.2 0.53
47 109.5 86.5 43 2.89
48 54 67.5 41.7 –1.38
49 126 63.5 37 1.33
50 94 38 37.3 –1.53



358 NUMBERS, HYPOTHESES AND CONCLUSIONS

their employee(s) performed, using a 60-point scale (higher scores
indicate better performance). Secondly, a work simulation was
developed (higher scores indicate better performance).

Solution
Let us see whether we can predict job performance based on grip
and/or arm strength. The first step is to inspect the descriptive
statistics from the study to ensure that we do not have outliers, or
seriously compromise the assumptions underlying the significance
tests. Figure 18.7 displays the output generated by the SPSS® pro-
gram, as the first step in its regression analysis.

DESCRIPTIVE STATISTICS

SIM
GRIP
ARM
RATINGS

.5932
114.3100
80.6400
42.4994

1.93558
25.34031
20.33747

8.34703

50
50
50
50

MEAN STD. DEVIATION N

Pearson Correlation SIM
GRIP
ARM
RATINGS

1.000
.688
.747
.137

.688
1.000
.682
.294

.747

.682
1.000

.105

.137

.294

.105
1.000

Sig. (1-tailed) SIM
GRIP
ARM
RATINGS

.000

.000

.341

.000
 

.000

.038

.000

.000

.470

.341

.038

.470

N SIM
GRIP
ARM
RATINGS

50
50
50
50

50
50
50
50

50
50
50
50

50
50
50
50

SIM GRIP ARM RATINGS
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Figure 18.7 Descriptive statistics, correlations, boxplots, and scatterplots
for the data in Table 18.3
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MODEL SUMMARY

Model R R Square
R Square
Change F Change df2df1 Sig. F Change

Adjusted
R Square

Std. Error of
the Estimate

1
2

.747a

.786b
.558
.617

.558

.060
.548
.601

1.30071
1.22263

60.507
7.327

1
1

48
47

.000

.009
a. Predictors: (Constant), ARM
b. Predictors: (Constant), ARM, GRIP

ANOVAc

a. Predictors: (Constant), ARM
b. Predictors: (Constant), ARM, GRIP
c. Dependent Variable: SIM

Model df
Mean 
Square F

Sum of
Squares

1 Regression
Residual
Total

102.368
81.209

183.577

1
48
48

102.368
1.692

60.507 .000a

2 Regression
Residual
Total

113.320
70.257

183.577

2
47
49

56.660
1.495

37.904 .000b

Sig.

Change Statistics

COEFFICIENTSa

Model
1 (Constant)

ARM
-5.138

0.071
.759
.009 .747

-6.766
7.779

.000

.000
2 (Constant)

ARM
GRIP

-6.305
0.049
0.026

.834

.012

.009
.519
.334

-7.560
4.202
2.707

.000

.000

.009

Unstandardized
Coefficients

Standardized
Coefficients

B Std. Error Beta t Sig.

a. Dependent Variable: SIM

Figure 18.8 Summary of stepwise regression analysis of strength simulation on arm and grip
stength

These data suggest that the variables are reasonably symmetrical,
and do not appear to exhibit any patterns that suggest against using
tests of statistical significance. The scatterplots do not reveal any
outliers or suggest non-linearity, which are potentially grave threats
to regression analysis. However, the correlation between Grip
strength and Arm strength is high, and we probably have multicol-
linearity. The low correlation between Supervisor ratings and the
Work simulation test is also cause for concern. For simplification, we
will assume that the Work simulation test is more accurate than the
supervisor’s rating, since supervisors are undoubtedly influenced
by employee attributes other than physical strength, and we wish to
focus only on aspects of the job that require physical strength.

We have one dependent variable – i.e. Work simulation score –
and two independent variables, Grip strength and Arm strength. The
best way to build a model here is probably to enter the variable that
has the highest correlation with the dependent variable, and then
force the remaining variable into the equation. The sequential F-test
will tell us whether it is worth keeping the second variable. We can
obtain all the information we need for this problem by examining the
record of a stepwise regression in SPSS®, which is shown in Figure 18.8.

It is clear from this analysis that arm strength is a useful predic-
tor of the simulation score, and it is also clear that grip strength
adds something to our prediction over and above that given by arm
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strength (the sequential F-test is significant at p < 0.01, even though
this variable only adds 6% to the explained variance). The com-
bined model produces an R2 coefficient of 0.62, which is high for this
kind of application. The specific results for Model 2 show us that the
overall model is statistically significant, and that it has a standard
error of the estimate of 1.22 (predictions of the simulation score will
on average be in error to an amount of 1.22). If we wish to write the
formal predictive model, in order to use it as an actuarial device, it is 

simulation score � –6.31 + 0.026 × Grip strength + 0.049 × Arm strength

Summary
1. Multiple regression is a widely used quantitative method for the

analysis of multivariate data. It allows us to find a (linear)
combination of independent variables that maximally predicts
(or ‘explains’) a dependent variable. From this, we can gauge the
relative contribution of variables in the combination, and we can
use the combination (or equation) as a predictive equation.
Multiple regression also provides several very effective ways of
‘partialling’ variables out of multiple-way relationships, allow-
ing us to determine the proportions and sources of variance that
are shared and that are unique.

2. The basic form of a multiple regression equation is y’ � a + b1x1

+ … + bixi + … bkxk, where y’ � the predicted variable, a � the
intercept (or constant), and the bi are the partial regression coef-
ficients. The bi expresses the unit change in y for the associated
xi, correcting (or partialling) for all other xi in the equation.

3. A potential danger to regression analysis is the presence of 
multicollinearity, i.e. when some of the predictor variables are
highly intercorrelated. This can make regression coefficients
very unstable, and the analysis difficult to interpret. 

4. Two useful indices of the explanatory power of a regression
model are R2 and the standard error of the estimate.

5. A common way of building regression models is to use software-
based stepwise algorithms, but researchers should be wary of
the capitalisation on chance that these algorithms are based on.
It is important to cross-validate regression models, and to test
them for theoretical coherence.

6. Two potentially grave threats to a regression analysis are breaches
of the assumption of linearity, and the presence of data outliers.
These should always be explored with scatterplots prior to analy-
sis, and corrected, if possible.
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Exercises
Note: Additional exercises are on the accompanying CD.

1. Examine the following results from a statistical package, and
answer the questions.

Predictor Coeff Stdev

Constant 20 10
Var1 –1 0.25
Var2 12 8
Var3 –15 5

Source SS df MS F

Regression 7500 3 ? ?
Error ? 18 ?

TOTAL 10000 21

a) Complete the ANOVA table.
b) Test the overall regression model for significance.
c) Test the individual regression coefficients for significance

using a t-test where t � , with n – (k + 1) degrees of
freedom.

2. A sociologist investigated predictors of amount of money fami-
lies spend on food. He discovered that the most important pre-
dictors were annual income and number of people in the family.
The regression equation was:

Food amount � 500 + 0.023*(Annual income) + 252*(No. of persons)

a) How much does amount spent on food increase per family
member?

b) If a family earned R1 000 more per year, by how much would
the amount spent on food increase?

c) What would a five-person family with an annual income of
R20 000 spend on food?

3. Baron and Strauss (1989) report data from the United States for
rape statistics per state, as well as additional data that can be
argued to be causally important. Use these data, as reported in
the table on the following pages to construct a regression model
that predicts rape rate on the basis of the listed independent
variables.

coeff
�
stdev
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Rape rate and other sociological variables, per US state

State Rapes/ % below % un- % women/ Md income Violent
100 000 poverty employ % men females/Md TV

level admin. income males

1 30 17.9 7.5 51.1 56.8 186
2 62.5 10.1 9.8 64.4 63.9 –
3 45.2 12.4 6.2 58.2 58.8 109
4 26.7 18.7 6.9 45.8 61.6 173
5 58.2 11.3 6.6 57.3 61.2 118
6 52.5 10.2 5 53.1 60.1 153
7 21.6 8.7 4.7 37.7 59 132
8 24.2 11.9 6.3 41.6 58.30 158
9 56.9 13 5.1 55.7 60.50 154
10 44.3 16.4 5.9 49 52.00 208
11 34.7 10 4.7 59.4 59.20 115
12 22.4 12.7 8 57.6 58.9 179
13 26.9 11.5 7.2 46.6 56.6 170
14 33.1 9.8 7.8 45.2 55.6 163
15 14.3 9.4 5 56.9 58.5 153
16 31.5 10.2 4 43.6 59.9 160
17 19.2 18.4 8.5 58.2 57.1 185
18 44.5 18.9 6 49.6 53.2 223
19 12.9 12.9 7.65 52.3 63.5 149
20 40.1 9.9 5.8 50.6 61.9 171
21 27.3 9.8 5.1 44.8 62.5 116
22 46.6 11.1 11 47.6 56.7 153
23 23.2 9.3 5.4 50 58.4 152
24 24.6 24.5 7.2 49.7 60.1 185
25 32.6 12.4 6.9 57.1 57.6 160
26 21 12.4 8.3 60 55.7 200
27 23.2 10.4 3.7 43.1 58.6 135
28 67.2 8.5 5.9 70.6 61.6 125
29 17.3 8.7 4.8 42.5 59.3 –
30 30.7 9.7 6.7 47 57.5 –
31 43.4 17.4 7.1 61.3 58.3 162
32 30.9 13.7 7.1 44.2 64.3 139
33 22.7 14.6 5.5 37.7 66 206
34 9.5 12.8 5.3 43.8 57 155
35 34.3 10.5 8 48.5 56.5 169
36 36.3 13.3 4.1 56.9 58.4 166
37 41.5 11.3 8.3 64.7 58.5 133
38 23 10.5 7.4 44.6 58.3 139
39 17.1 10.3 7 37.7 59.5 108
40 37.5 59.9 6.1 52.1 64.6 226
41 12.5 16.1 4.9 47.1 61.7 165
42 37.4 17 7.4 52.1 59.3 199
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Rape rate continued

State Rapes/ % below % un- % women/ Md income Violent
100 000 poverty employ % men females/Md TV

level admin. income males

43 47.3 14.9 4 54.7 57.7 167
44 27.7 10.7 5.5 47 54.2 159
45 29.1 11.4 6.3 50.6 64.4 146
46 27.4 11.5 5 52.2 62.2 163
47 52.7 10.2 7.4 60 57.3 131
48 15.8 14.5 8.5 50.3 51.4 189
49 14.9 8.5 6.6 49.1 58.6 164
50 28.6 8 4.1 51.5 50.2 179

Source: Data from Baron & Strauss (1989)
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Chi-square test

Lance Lachenicht

•••••••••••
After studying this tutorial, you should be able to:
• Decide whether counted data can be properly

arranged into contingency tables. 
• Calculate the chi-square test for a contingency

table, and determine the degrees of freedom for
the table, as well as look up the significance of
the chi-square value in a table.

• Find the strength of categorical associations in a 
contingency table using a variety of measures
including Cramer’s V, and the odds ratio.

• Find the source of the association in contingency
tables greater than 2 × 2 using the method of
adjusted standardised residuals.

• Understand the assumptions of the chi-square
test, and determine whether these hold.

• Carry out the above procedures using the 
computer statistics package SPSS®.

TUTORIAL

19

In previous tutorials, you have studied significance tests that apply
to comparisons between two groups where the data consist of
scores (i.e. measurements taken on interval or ratio scales). In the
present tutorial, we will study a significance test used where the
data consist of counts rather than scores. 
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Classifications
It is possible to classify the members of a population in many
different ways. People may be classified into married and single,
children and adults, politically active and politically indifferent, etc.
These are all examples of dichotomous classifications. Multiple classi-
fications are also possible, for example, Sheldon’s classification of
body types as ectomorphic (thin), mesomorphic (muscular), and
endomorphic (fat). Classifications are of interest to a researcher
mainly when they are exhaustive (sufficient categories are provided
to ‘exhaust’ or encompass all members of the population) and
mutually exclusive (each member of the population can be assigned
to one and only one classification). 

Which of the following classification are either not exhaustive, or 
not mutually exclusive?  
a) We draw cards randomly from a deck of 54 playing cards (i.e. with

two jokers) and classify them as hearts, diamonds, spades, or
clubs.

b) We randomly sample a group of students and classify individuals
as either male or female.

c) A hospital for treating TB looks at its records over the last ten years,
and notes that it has data for 389 of 412 patients who underwent
treatment. It classifies patients as relapsed or cured.

Activity 19.1

Classifications are a form of measurement (nominal measurement),
but they constitute qualitative rather than quantitative data. For
example, say that a person is classified as a mesomorph, and that
the same person is weighed. The person’s weight in kilograms is
quantitative data but the person’s classification as a mesomorph is
qualitative data. The same person may be classified and measured
in other ways – for example, we may ask whether that person is left-
or right-handed (additional classification), and also what that per-
son’s IQ score is (additional quantitative measurement). 

Contingency tables
When data are classified with respect to two or more qualitative
variables, the data form what is known as a contingency table. For
example, Table 19.1 shows a sample of 300 books classified in two
different ways: how the books were bound (three different meth-
ods) and whether or not the binding remained intact after five years
of use. (Notice that the categories in the table are both exhaustive
and mutually exclusive.)

An exhaustive clas-
sification leaves no
member of a popula-
tion unclassified.

In a mutually exclu-
sive classification,
each member of the
population can be
assigned to one and
only one category.



A χ2 test is typically
used to test for asso-
ciation between two

categorical variables.
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A table such as this is known as a contingency table, and this is a 
2 × 3 example, since the sample has been categorised in three ways
in terms of binding type (sleeve, stitched; hard cover, glue; paper
cover, glue), and categorised in two ways (dichotomised) in terms of
binding condition (intact, not intact). The simplest contingency table
is a 2 × 2 table (i.e. the data is dichotomised in two different ways). 

The ‘Sleeve, stitched’ and ‘Not intact’ classifications intersect in
the above table in what is known as a cell of the contingency table,
the cell that contains the number 41. The number in each of the 
cells of the table is a frequency, or a count. This number may be
transformed into a percentage or a proportion, but it must be
remembered that this number was originally a count rather than a
continuous measurement. Continuous data, such as age, can be
broken into discrete form and reported as counts (e.g. by classifying
people into age groups), and in this form, continuous data are
suitable for analysis in contingency tables. 

Tables such as our book-binding/durability table above have
two classifications of the data and are therefore called two-
dimensional tables. It is possible to have three-dimensional (and
higher) contingency tables, though they are beyond the scope of the
present tutorial. 

The χ2 significance test
A test that is appropriate for the analysis of counts is the χ2 test (spelt
‘chi-square test’, where the ‘ch’ is pronounced as ‘k’). Since the χ2 test
is a significance test with a very wide and general application, we
will devote some time to explaining its method of operation.

When used as a significance test, the χ2 test can be used as a good-
ness of fit test (i.e. does the existing data fit a theoretical distribution,
such as a normal distribution?). More frequently it is used to test the
association between two or more sets of categories (e.g. is left-hand-
edness associated with unusual prowess at tennis?). The null
hypothesis would be that no association exists between the sets of

Table 19.1 A contingency table showing cross-classifi-
cation of books by two binding variables

Sleeve, Hard cover, Paper cover, TOTAL
stitched glue glue

Not intact

Intact

TOTAL

41 27 22 90

79 53 78 210

120 80 100 300

A contingency table
is also commonly

known as a
crosstabulation

(crosstab for short).

A contingency table
is typically referred

to as an r × c table
(e.g. 3 × 2 table),

where r � the num-
ber of rows, c � the
number of columns,

and r × c � the
total number of cells

in the table.
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categories (e.g. left-handedness is not associated with unusual
prowess at tennis). The methods of calculating χ2 do not differ much
between these two kinds of uses, but the material in the present
tutorial is exclusively concerned with hypotheses about associa-
tions between categories.

The calculation of a χ2 test is best explained through an example.
Imagine that through interviews and advertisements we have
found 100 subjects who sleep fewer than five hours every night
(and wish to sleep more), and another 100 subjects who sleep eight
or more hours every night. Each of these subjects has informed us
whether they drink more than three cups of tea a day, three or fewer
cups a day, or no tea at all. This information allows us to classify our
subjects into long sleepers and short sleepers, and into heavy tea-
drinkers, moderate tea-drinkers, and tea abstainers. From all this
information we can set up a contingency table (Table 19.2). 

The contingency table shows that there are similarities and differ-
ences between the two samples. On first inspection, moderate tea-
drinkers seem to be long sleepers much more often than are heavy
tea-drinkers, and more tea abstainers seem to be short sleepers 
than long sleepers. However, heavy tea-drinkers seem to be evenly
divided between long and short sleepers. How are we to know
whether these differences between long and short sleepers are due to
sampling or chance variation, or reflect real differences?

We can apply the χ2 test to test the hypothesis that the two sam-
ples (long and short sleepers) come from the same population with
respect to tea drinking (i.e. that there is no association between the
two categorisations). 

The values in the cells of a contingency table must be absolute
frequencies and not proportions or percentages. Always retain 
the original frequencies even if you calculate percentages from 
your data. 

The key concept in this test is the notion of an expected frequen-
cy. In a test of association between variables, this boils down to 
the question of what we would expect if only chance variation
were operating across the categories of interest, and the cate-
gory frequencies were in fact equal in the population. For
example, let us say that we select 200 tea-drinkers at random, 
and there is no population difference between the categories
heavy, moderate, and abstainer. We have the categories shown 
in Table 19.3, and we need to know with what to replace the ques-
tion marks. You should intuitively see that this will be 200/3 ≈ 66.67.
We call this the expected frequency – the frequency we would
obtain if we drew an infinite number of samples of 200 tea-
drinkers from the population and randomly classified them
according to the agreed categorisation.

The values in the
cells of a contin-
gency table must be
absolute frequencies
and not proportions
or percentages.
Always retain the
original frequencies
even if you calculate
percentages from
your data. 

Expected frequency
is a hypothetical 
frequency calculated
either according to i)
a theoretical model
of a categorical
association (‘good-
ness of fit’), or ii)
chance expectation
(the classic two
dimensional χ2 test
of association).



In Tutorial 5, you were introduced to probability calculations. Some
of these principles can be applied to contingency tables. 

For the contingency table of the ‘tea-drinker’ data (Table 19.3), for
example, what is the probability that you are a heavy tea drinker and
a short sleeper? (Hint: this is a joint or conjunction probability.) In order
to find the expected number of heavy tea-drinkers who are also short
sleepers, you need to multiply this probability by the grand total n.
Show that this set of ‘probability calculations’ is equivalent to the
formula for calculating expected values.

Activity 19.2

expected frequency �
total of cell rows × total of cell columns
�����

grand total of all subjects
Equation 19.1

Table 19.3 Tea-drinkers and expected frequencies

Heavy Moderate Abstainer TOTAL

? ? ? 200
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Table 19.2 Contingency table representing data for 
insomnia study

Heavy tea- Moderate Tea TOTAL
drinkers tea-drinkers abstainers

Short sleepers

Long sleepers

TOTAL

28 32 40 100

27 52 21 100

55 84 61 200

It is not difficult to calculate expected frequencies for the tea-
drinker data. The population as a whole contains 84 moderate 
tea-drinkers. If the sample of long sleepers and the sample of short
sleepers were from the same population, we would expect the
moderate tea-drinkers to be distributed in proportion to the number
of people in each sample. Since the two samples actually contain the
same number of people, we would expect the same number of
moderate tea-drinkers in both the long and short sleepers, i.e. 42
people. We can work out the other columns in a similar fashion. The
general principle for working out the expected frequency in each
cell of a contingency table is:

In the case of the expected frequency for moderate tea- 
drinkers among the long sleepers, using the formula we get 
(100 × 84) ÷ 200 � 42. We can set out the expected frequencies for our
contingency table in the same form as the original contingency table.
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In this case, the calculation was very easy because the samples are
of equal size – this will not always be the case! 

Once we have expected and observed values for each cell, we are
in a position to calculate the χ2 statistic. To calculate χ2, we apply the
formula below. The resulting total is the χ2 value, and we can look
up its significance in the χ2 tables. Obviously, it will always have a
positive value because of the squaring of the differences.

If you take the square root of this formula, you can see its relation 

to the t-test , which you have studied already (see Tuto-

rial 9). Taking the square root you will get: , where the divisor,

the square root of the expected frequency, is equivalent to the stan-

dard error in the t-test , and the difference between O and E

corresponds to the difference between means in the t-test (x – µ).
For the data in the tables above we can set out the calculation in

the following way, starting at the top left cell and working column
by column.

Table 19.4 Contingency table representing expected 
frequencies for insomnia study

Heavy tea- Moderate Tea TOTAL
drinkers tea-drinkers abstainers

Short sleepers

Long sleepers

TOTAL

27.5 42 30.5 100

27.5 42 30.5 100

55 84 61 200

Since the formula for
χ2 is a sum of
squared numbers, χ2

is always a positive
number (i.e. χ2 ≥ 0).

where: O � observed frequency for a cell
E � expected frequency for a cell

χ2 � Σ
(O – E)2

E

Equation 19.2

t �
x – µ

s2

�
n

O – E
�

( )s2

�
n

( )

Table 19.5  Table showing calculation of χ2 for insomnia 
study

O E O – E (O – E )2

28 27.5 0.5 0.25 0.01

27 27.5 –0.5 0.25 0.01

32 42 –10 100 2.38

(O – E )2

�
E

�

�

�E�



Table 19.6  Selected χ2 distribution

χ2 value Probability

1.386 0.60
4.605 0.10
5.991 0.05
9.210 0.01

Assume that we want to conduct a test of independence of the two
dimensions constituting Table 19.1, and  calculate the expected values.

Activity 19.3

but if r � 1, or c � 1, then df � (c – 1), or df � (r – 1)

Equation 19.3

The degrees of free-
dom for a two-dimen-
sional χ2 are always 
(r –1) × (c – 1),
where r � number of
rows in the table,
and c � number of
columns in the table.

where: r � number of rows in the table
c � number of columns in the table
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Thus the χ2 statistic for the distribution of the three kinds of tea-
drinkers in our two samples is 10.68. The final stage of the signifi-
cance test is to evaluate the probability of obtaining a χ2 value of this
size. If we had carried out the χ2 test on a computer statistics
program, such as SPSS®, the program would have calculated this
probability for us, but as we are calculating it by hand at the
moment, we will need to consult a table.

The significance of a χ2 value depends on the degrees of freedom
associated with the contingency table. You have already come across
the notion of degrees of freedom in this text, so we simply show the
formula for determining the degrees of freedom in a χ2 test. If the table
has r rows and c columns (an r × c contingency table) then the df are:

The contingency table containing our tea-drinking data has two
rows and three columns. For a 2 × 3 contingency table, the size of the
table containing our tea-drinking data, the probability of obtaining
a χ2 value equal to or larger than the tabulated value is shown in
Table 19.6. 

Table 19.5  continued

O E O – E (O – E )2

52 42 10 100 2.38

40 30.5 9.5 90.25 2.95

21 30.5 –9.5 90.25 2.95

χ2 � 10.68

(O – E )2

�
E

Note that the form
of the χ2 significance

test is conceptually
similar to other sig-
nificance tests you
have encountered,
i.e. χ2 ≈ observed
difference ÷ sam-

pling error of expec-
tation.

df � (r – 1) × (c – 1)
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In evaluating the probability of a χ2 statistic from a contingency
table, enter the χ2 table (see Appendix 1) at the row corresponding
to the df for the contingency table. Then move along the row until
you reach the value of χ2 corresponding to the level of significance
you have determined. If the χ2 derived from the contingency table
is greater than this, then the null hypothesis of no association is
rejected. For our insomnia study, df � 2 and χ2

crit � 5.9915 (� �0.05).
Since our obtained χ2 (10.68) is greater than the critical  value, we
reject the null hypothesis and conclude that insomnia and tea drink-
ing are associated.

Measures of association in tables based on the χ2

statistic
In earlier tutorials (especially Tutorial 13) we introduced the notion
of effect size, and argued that it is important to measure effect
size(s) when conducting a statistical hypothesis test, and not simply
rely on the significance test. 

In the case of contingency tables, effect sizes are really measures of
how strong the association is between the two sets of categories that
define the table (hence they are usually called measures of association
for contingency tables). In the study of tea-drinking we introduced
earlier, the effect size is how strongly tea-drinking is associated with
insomnia. The χ2 value derived from a contingency table is not a good
measure of effect size, even if it is the appropriate measure to be used
for testing significance. One reason for not using χ2 as a measure 
of effect size is that it rises in proportion to the size of the sample,
confounding sample size and effect size. For this reason, the simplest
measure of effect size, the mean square contingency coefficient (usually
denoted by φ2) simply divides χ2 by the size of the sample: 

The χ2 value is not 
a good measure of
effect size.

Find the critical χ2 values for the following tables at � � 0.05 and 
� � 0.01:
a)  8 × 4          
b)  2 × 2          
c)  3 × 2          
d)  5 × 5          
e)  5 × 1

Activity 19.4

φ2 �
χ2

�
n

Equation 19.4

In the case of our tea-drinking study, φ2 � χ2/n � 10.68/200 � 0.0534,
which indicates a very small effect – perhaps too small to stop

Some measures of
association for con-
tingency tables:
1. φ2 (contingency

coefficient)
2. φc (Cramer’s V)
3. Odds ratio



Calculate Cramer’s V and the mean square contingency coefficient for
the book data in Table 19.1. Change the cell frequencies to produce
increasing sizes of the coefficients. Do the coefficients attain a maximum
size? (We suggest you use a spreadsheet program to assist you.)

Activity 18.5

The odds ratio is
very useful for inter-
preting 2 × 2 tables,
especially in medical

or epidemiological
studies.
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people drinking tea! φ2 is, however, not considered a good measure
of association, largely because it does not generate scores that fall
between 0 and 1 in the same way as a correlation does.
(Nevertheless φ2 is used, with some modifications, in meta-analytic
studies.) A measure of association in contingency tables with some-
what better properties is Cramer’s V, usually denoted by φc:

Unlike φ2, the maximum value of Cramer’s V is always 1 and 
the minimum value 0. In our tea and insomnia example, 

φc � � � �0�.0�5�3�4� � 0.2311.
10.68
�
200 × 1

χ2

�
n(k – 1)

Still, even Cramer’s V can be difficult to interpret. There are no
published rules of thumb for how large Cramer’s V has to be to
have a large, medium or small effect, and it cannot be interpreted
probabilistically. It is not directly comparable to any other measure
of correlation, such as Pearson’s r. Further, although Cramer’s V
equals 0 when there is no relation between the variables, there may
not be perfect association between the variables when Cramer’s V
equals 1. For these reasons, even though most computer programs
calculate Cramer’s V, and even though Cramer’s V is very widely
used, you may wish to use other measures of association that can be
interpreted probabilistically in terms of the data in the table. 

Another widely used measure of association is the odds ratio.
Odds ratios are very often used in medical studies to show the
relative risks of various treatments for illnesses. They have a very
definite advantage in being unaffected by sample size or by
unequal row or column totals. 

To illustrate odds ratios using our tea-drinking and insomnia
data, we will need to collapse over one of the categories to generate
a 2 × 2 table. Collapsing over categories is in general not a good idea
because it can (sometimes) alter the meaning of the data, either
obscuring or exaggerating the association between the categories.
Nevertheless, for the purposes of illustration, we collapse the

φc �
χ2

�
n(k – 1)

where: n is the sample size
k is defined as the smaller of r (the number of rows) or 

c (the number of columns)

Equation 19.5 �

� �
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categories of moderate and heavy tea-drinkers into one cate-
gory, ‘tea-drinkers’. In medical studies it is usual to arrange the 
disease in the
columns, and the
treatment, or factor
affecting the dis-
ease, in the rows.
After such rear-
rangement, our data
will appear as in
Table 19.7.

The risk (or odds) of ‘short sleep’ if you drink tea can be
expressed as the ratio of those who sleep little and drink tea to those
who sleep long and drink tea, i.e. 60/79 � 0.76. It seems that tea-
drinking helps one sleep longer, for the ratio is less than 1. Similarly,
the odds of ‘short sleep’ if you do not drink tea can be expressed as
the ratio of those who sleep little and do not drink tea to those who
sleep long and do not drink tea, i.e. 40/21 � 1.9. It seems that not
drinking tea is a risk factor in insomnia because the ratio is greater
than unity. This finding clashes with common sense though, and we
would need further studies to understand it.

The odds ratio can now be calculated. This is the ratio of the odds
of ‘Short sleep’ if you do not drink tea (1.9) to the odds of short sleep

if you do drink tea (0.76), i.e. 1.9/0.76 � 2.5. It seems that subjects
in the study who do not drink tea are 2.5 times as likely to suffer
insomnia than those who do drink tea. Alternatively, those who do

drink tea are only 0.4 times (i.e. 0.76/1.9) as likely to suffer insom-
nia as those who do not.

Howell (1997, p. 159) gives a compelling example of the use of
odds ratios. In a landmark study investigating the benefits of small
daily doses of aspirin on reducing heart attacks in men, 22 000
physicians were administered either aspirin or a placebo, and the
incidence of heart attacks in this groups was recorded. The data
from the study are given in Table 19.8.

Table 19.7  Re-arrangement of data 
from Table 19.4

60 79

40 21

Short sleep Long sleep

Tea

No tea

Odds are calculated
by dividing cell 
frequencies within a
single row or column.

The odds ratio is
calculated by divid-
ing the odds for one
column by the odds
for another column,
or the odds for one
row by the odds for
another row.

Table 19.8 Data for study investigating the efficacy of 
aspirin

104 10 933 11 037

189 10 845 11 034

293 21 778 22 071

Heart attack No heart attack TOTAL

Aspirin

Placebo

TOTAL



Two groups of 50 eye-witnesses to a crime are shown two police line-
ups either containing the perpetrator of the crime, or an innocent sus-
pect, standing with a number of foils.  

The number of eye-witness who identify the ‘target’ (perpetrator or
innocent suspect) is recorded and tabulated above, or who identify a
foil. Use the odds ratio to determine the risk of identifying an
innocent suspect in a police line-up relative to making a correct
identification of a guilty suspect.

Activity 19.6

Identifies target Identifies foils or ‘no decision’

Perpetrator absent 25 75

Perpetrator present 50 50

A significant χ2 does
not tell us where sig-

nificant differences
are located, and we
need to investigate
our data further to

find these (in an
analogous manner

to multiple compar-
isons in ANOVA).
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The odds of having a heart attack given that you were in the aspirin
group � 104/10 933 � 0.0095. The odds of having a heart attack if
you were in the placebo group � 189/10 845 � 0.0174. Neither of
these odds look like very great risks. But when you calculate the
odds ratio, 0.0174/0.0095 � 1.83, it appears that a person in the 
control (placebo) group is 1.83 times more likely to have a heart
attack than is a person in the aspirin group. This finding was
considered so convincing that the researchers – who had intended
to collect a great deal more data than this – immediately stopped the
study on the basis that it would be unethical to treat one group as a
placebo group, given the demonstrated efficacy of aspirin in reduc-
ing the incidence of heart attacks.

Isolating sources of association in r × c
tables
A significant χ2 for an r × c contingency table indicates that the vari-
ables forming the table are not independent. But this result does not
tell us whether the lack of independence occurs throughout the
table or only in a specific section. We may wish to know which parts
of a table are responsible for a deviation from independence for the
same reason that ANOVA researchers may wish to discover where,
amongst three or more groups, the significant difference lies. 

A number of different ways for isolating the parts of the contin-
gency table responsible for the departure from independence have
been proposed, including a method for splitting (partitioning) a
large table into smaller 2 × 2 tables (see Siegel & Castellan, 1988).
The method we will present here is called the analysis of residuals and
was devised by Haberman (1973).
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A residual in a contingency table is the deviation of the observed
from the expected frequency. Because the size of a deviation is
related to the size of the sample (see the discussion of measures of
association), we standardise the residuals by dividing by the root of
the expected frequency. In symbols, the standardised residual for
each cell is:

A residual in a con-
tingency table is the
deviation of the
observed from the
expected frequency.

e �
O – E
�

where: e is the standardised residual of the cell
O is the observed count in the cell
E is the expected count in the cell

Equation 19.6

Haberman (1973) shows that these standardised residuals can be fur-
ther adjusted to give them a very desirable property, assuming that
the variables forming the contingency table are independent. These
adjusted residuals, called d, are approximately normally distributed
with a mean of zero and a standard deviation of one. Recall from ear-
lier work on the normal distribution and z-scores that the normal
curve can be standardised with a mean of zero and a standard devi-
ation of one. The areas under the standardised curve have been
calculated. This means that the size of an adjusted residual can be
directly interpreted in a probabilistic way using a table of areas under
the standardised normal curve. From earlier work using the stan-
dardized normal curve, you will know that if the adjusted residual is
1.96 or greater (or, alternatively, less than –1.96), its associated prob-
ability is less than 0.05. Hence we can conclude that any adjusted
residual of this magnitude is significant (i.e. likely to occur by chance
less than 1 in 20 times). Similarly, if the adjusted residual is 2.58 or
greater (or, alternatively, –2.58 or less), it would occur by chance less
than 1 in 100 times, so we can conclude that if the adjusted residual
exceeds this value, it is significant at the 1% level.

The adjusted residuals d, are defined as follows:

A standardised
residual (e) is a
residual corrected for
(expected) cell size.

An adjusted residual
(d) is a residual
adjusted to have a
(approximate) 
standard normal 
distribution.

Interpret adjusted
residuals in the same
way as z-scores.

d �
e

(1 – )(1 – )ncol
�
ntotal

nrow
�
ntotal

Equation 19.7

Clearly, adjusted residuals can be time-consuming to calculate!
Fortunately, SPSS® will calculate these for you if you select the
appropriate options in the dialog boxes, or you can do them quite
easily on a spreadsheet. 

We apply the analysis of residuals to our tea-drinking and
insomnia example. The calculations are shown in Table 19.9 on the
next page. 

�E�

�



Assumptions of χ2

1.  (Rule of thumb)
Expected frequencies

should be greater
than 5 in at least

80% of the cells in
the table.

2.  Observations
summarised by the

frequency counts
must be independent.

Table 19.9  Calculation of standardised and adjusted 
residuals for the data of Table 19.4

Heavy tea- Moderate Tea TOTAL
drinkers tea-drinkers abstainers

Short sleepers

Long sleepers

TOTAL

28 32 40 100

27 52 21 100

55 84 61 200

Standardised residuals (e)

Short sleepers

Long sleepers

0.0953 –1.543 1.72

–0.0953 1.543 –1.72

Adjusted residuals (d)

Short sleepers

Long sleepers

0.158 –2.865 2.918

–0.158 2.865 –2.918
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From the analysis of residuals, it seems that moderate tea-
drinkers are significantly more likely to be long sleepers than
expected (adjusted residual � 2.87 > zcrit � 1.96), whilst tea abstain-
ers have significantly fewer long sleepers than expected (adjusted
residual � –2.92 < zcrit � –1.96). The adjusted residuals do not reach
significance for heavy tea-drinkers. 

Assumptions of the χ2 test
There are two assumptions that must be satisfied if a χ2 test is to be
used appropriately. 

The first is that the number of subjects expected in each cell must
reach a certain minimum. (Note: the assumption concerns the small-
est expected frequencies and not the smallest observed frequencies.)
Consequently, if there are many categories involved in the classifi-
cation, larger samples will be necessary. A rule of thumb that is
frequently used is that the expected frequency should be no less
than 5 in at least 80% of the cells, but for a more detailed exposition
see Wickens (1989) or Everitt (1992). If a problem in meeting these
conditions arises, then it is usual to try overcoming it by combining
categories, as we did in Table 19.7.

A second assumption of the test is that all the items or people
involved in the test are independent of each other. In practice in 
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the social sciences, the assumption of independence is usually
reduced to two points:
1. Each observation comes from a different subject.
2. No subject should be omitted from the table.

Neither of these points should be applied mindlessly – for example,
sometimes, even though each observation comes from a different
subject, the subjects are still linked (perhaps they filled in their
questionnaire together, or perhaps they are identical twins!). The
second point is intended to prevent systematic bias of the sample.
One should include not only subjects who gave a positive response,
but also subjects who failed to respond.

The χ2 test and SPSS®
SPSS® offers two ways of entering frequency data for analysis by
means of χ2. Paradoxically, this is easier if you have the raw data, i.e.
the individual data points recording the categorical variables, rather
than the frequency counts. To analyse the data, you select the
‘Analyze’ menu, the ‘Descriptive Statistics’ submenu, and then the
‘Crosstabs’ command (see Figure 19.1). This will produce an SPSS®

variable selection dialog box, which you should be familiar with if
you have used SPSS® at all. To produce residuals, significance tests
and effect sizes, choose ‘Options’, and select accordingly (Figure
19.1). The output produced by SPSS® for the ‘tea-drinker’ data is
shown in Figure 19.2 on the next page.

However, if you have a ready-made table (i.e. you already know
the frequencies for the cells of the contingency table), you will have
to use the ‘Data Weighting’ command. In our tea-drinking example,
the table can be entered as shown in Table 19.11 on the next page.

Here you enter the code for the rows in the first column, then the
code for the columns in the second column, and then the frequencies
in the third column. You will now have to use the ‘Data’ menu and
the ‘Weight Cases’ command. You will weight the cases by var00003
(the cell frequencies).

Notice how the combination of the var00001 and var00002
uniquely identifies each cell of the table. The first column contains
the code for long and short sleepers, and the second column contains
the code for the quantity of tea consumed. The third column
contains the frequencies to be found in each cell of the table. Notice
that SPSS® requires that you enter ‘codes’ for each of the categorical
variables. You cannot enter the names of the categories directly,
though you can have them inserted in the print-out by using the
‘Labels’ command. Be sure to make a note of what your codes mean
so that you can interpret your data correctly when you review your
work at a later date.

Box 19.1

SPSS® can be used to
conduct tabular and
χ2 analyses on either:
1. the raw scores, or
2. the cell frequencies.



Figure 19.1 Dialog control boxes for analysing cross-tabulations
(contingency tables) in SPSS®
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CHI-SQUARE TESTS

10.698a

10.844

2.783
200

2
2

1

.005

.004

.095

Pearson Chi-Square
Likelihood Ratio
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig
(2-sided)

TEADRINK * SLEEP Crosstabulation

TEADRINK

Total Count 100 100 200

1.00 2.00 Total

SYMMETRIC MEASURES

.231

.231
200

.005

.005
Nominal by
Nominal
N of Valid Cases 

Phi
Cramer‘s V

Value Approx. Sig.

SLEEP

28
.5
.1
.2

27
–.5
–.1
–.2

55Count
Residual
Std. Residual
Adjusted Residual

1.00

32
–10.0
–1.5
–2.9

52
10.0
1.5
2.9

55Count
Residual
Std. Residual
Adjusted Residual

2.00

40
9.5
1.7
2.9

21
–9.5
–1.7
–2.9

61Count
Residual
Std. Residual
Adjusted Residual

3.00

Figure 19.2 Output of crosstabs command in SPSS® for
‘tea-drinker’ data

Table 19.10 Data set-up for conducting a χ2 analysis 
of a contingency table in SPSS®

Var00001 Var00002 Var00003 Var00004

1 1 1 28

2 1 2 32

3 1 3 40

4 2 1 27

5 2 2 52

6 2 3 21
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Using a spreadsheet for tabular analysis
The calculations in a tabular analysis are usually quite easy, but
laborious. A spreadsheet program can help with the laborious part
of the calculations, and we show how this can be done with
Microsoft Excel, for the data in Figure 19.1.

The best way to do it in Excel is to create a layout almost ident-
ical to what you would probably do on a piece of paper. You then
insert built-in arithmetic formulas in the appropriate places, as
shown in Figure 19.3, where formulas have been entered for the
marginal sums, the expected frequencies, the χ2 statistic, two
measures of effect size, and the decomposition of the table into
residuals. What is especially helpful is the ability to use built-in dis-
tribution formulas for χ2, and for the adjusted residuals (which are
approximate standard normal deviates), since this gives accurate
probability calculations.

Box 19.2

Figure 19.3 Layout in Microsoft® Excel for doing tabular analysis

Formula view

Output view
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Worked example
What are the psychological consequences of traumatic events? One
answer is that it depends on the nature of the trauma. Gelman et al.
(2001) investigated a large sample of students at the student health
service of a South African university, and collected data on any
traumatic events they may or may not have experienced. She also
diagnostically assessed each student for the presence or absence of
a condition known as ‘post-traumatic stress disorder’ (PTSD), using
criteria set down in the Diagnostic and Statistical Manual of the
American Psychiatric Association. Cross-tabulations for the relation-
ship between two different types of trauma and the
presence/absence of PTSD are shown in Table 19.11.

Table 19.11  The relationship between trauma and PTSD

24 90

31 370

Y N
Sexual assault

PTSD     Y

N

17 95

40 361

Y N
Car accident

PTSD     Y

N

OBSERVED

y
n

y n
24
31
55

90
370
460

114
401
515

EXPECTED
12.17475728
42.82524272

101.8252427

358.1747573

(O–E)2

E

x 2

df
p

16.515

2
0.000259

φ2

Cramer’s V
Odds ratio

0.032067481
0.179073953
3.182795699

11.486
3.265

1.373

0.390

3.389
–1.807

–1.172

0.625

STANDARDIZED
RESIDUALS

OBSERVED

y
n

y n
17
40
57

95
361
456

112
401
513 

EXPECTED
12.44444444
44.55555556

99.55555556

356.4444444

(O–E)2

E

x 2

df
p

2.400

2
0.301176

φ2

Cramer’s V
Odds ratio

0.004678594
0.068400246

1.615

1.668
0.466

0.208

0.058

1.291

–0.682

–0.457

0.241

STANDARDIZED
RESIDUALS

Figure 19.4 Excel analysis of the data in Table 19.11

Calculations for these tables using a spreadsheet layout are shown
in Figure 19.4. It is clear from these calculations (verify this for your-
self) that there is a significant relationship between sexual assault
and the presence of PTSD, but this is not true for the relationship
between having a car accident and the presence of PTSD. 
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In terms of the odds ratio, if a student had been sexually assaulted, it
was 3.18 times more likely that he or she would develop PTSD than if
he or she had not been sexually assaulted. On the other hand, if a
student had had a car accident, it was only 1.6 times more likely that
he or she would develop PTSD than if he or she had not had a car acci-
dent. Inspection of the standardized residuals in the case of the signif-
icant cross-tabulation shows that the cell with the greatest departure
from chance expectation is that recording the number of respondents
who had been sexually assaulted, and who had developed PTSD.

Summary
1. In tabular analysis, we use classifications that are exhaustive and

mutually exclusive. Classifications are a form of measurement
(nominal measurement), but they constitute qualitative rather
than quantitative data.

2. When data are classified with respect to two or more qualitative
variables, the data form what is known as a contingency table.
The number in each of the cells of the table is a frequency, or a
count. We refer to the table as an r × c table, where r � the num-
ber of rows, and c � the number of columns (e.g. a 3 × 2 table).

3. A statistical significance test that is appropriate for the analysis
of counts is the χ2 test, typically used to test the association
between two or more categorical variables or dimensions
against a null hypothesis of no association.

4. The key concept in the χ2 test is that of expected frequency. This
value is what we would expect in each cell if only chance varia-
tion were operating across the categories of interest, and the cat-
egory frequencies were equal in the population. To calculate χ2,
the differences between the observed frequencies and the
expected frequencies are squared, divided by the expected
value, and summed.

5. The size of a calculated χ2 cannot serve as a measure of effect 
size since it is directly proportional to sample size. Three
common measures of effect size in χ2 analysis are the mean
square contingency coefficient (φ2), Cramer’s V (φ), and the odds
ratio (2 × 2 tables only).

6. A significant χ2 for an r × c contingency table indicates that the
variables forming the table are not independent, but does not
tell us whether the lack of independence occurs throughout the
table or only in a specific section. One useful way of isolating the
parts of the contingency table responsible for the departure 
from independence is the analysis of residuals, in which the
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differences between expected and observed frequencies are
transformed to standard normal deviates, and significant values
are identified.

7. Some important assumptions of χ2 analysis are: expected fre-
quencies should be greater than 5 in at least 80% of the cells in
the table and observations summarised by the frequency counts
must be independent.

Exercises
1. In the second grade, children were classified as showing or not

showing attention deficit disorder (ADD) behaviour. When
these same children reached the ninth grade, it was noted 
which of them were enrolled in a remedial English programme.
The data are shown below. Is attention deficit disorder behav-
iour during elementary school associated with enrolment in a
remedial English class in high school? If you find a significant
association, calculate Cramer’s V and the odds ratio to deter-
mine the strength of the association.

24 189 213

17 76 93

41 265 306

Remedial Non-remedial TOTAL
English English

Normal

ADD

TOTAL

2. Darley and Latané (1968) asked subjects to participate in a dis-
cussion carried on over an intercom. Aside from the experi-
menter to whom they were speaking, subjects thought that there
were 0, 1, or 4 other people (bystanders) also listening over
intercoms. Halfway through the discussion, the experimenter
feigned serious illness and asked for help. Darley and Latané
noted how often the subject sought help for the experimenter as
a function of the number of supposed bystanders. The data are
presented below. What could Darley and Latané conclude from
the results? What is the strength of any significant finding? Can
you isolate the source of any significant association in this table?

13 3 16

17 10 27

4 10 14

34 23 57

Yes No TOTAL
Sought assistance

Number of
bystanders

TOTAL

0

1

4
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29 21 50

41 9 50

70 30 100

Pro Against TOTAL

Before

After

TOTAL

3. Of 107 married couples, 11 of the women compared to 33 of the
men said that they fell in love with their partners at first sight.
a) What test would you use to determine whether this

difference was significant?
b) What are the degrees of freedom?
c) Would you use a one- or two-tailed probability level to

evaluate the significance of this value?
d) What is the probability value of the test?
e) Do significantly more men than women fall in love with

their future spouses at first sight?

4. We asked a group of 50 subjects whether they liked watching
rugby. We then made them watch a game, and then asked them
again whether they liked watching rugby. We recorded the data
as shown alongside: 
Would χ2 calculated on 
such a table be 
appropriate? 
Why or why not?

5. Briefly outline the assumptions of the chi-square test.

6. Make up an example of a contingency table where the classifica-
tion is not exhaustive. Make up another example where the clas-
sification is not mutually exclusive.
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Distribution-free tests

Lance Lachenicht

•••••••••••
After studying this tutorial, you should be able to:
• Understand the advantages and disadvantages of

distribution-free statistical tests.
• Calculate the sign test and the Wilcoxon matched

pairs tests for related samples.
• Calculate the Mann-Whitney U-test for unrelated

samples.
• Calculate the Kruskal-Wallis and Friedman tests

for three or more samples.

TUTORIAL

20

Most of the inferential statistical tests you have learned so far in this
course require you to estimate one or more population parameters.
Further, you are often required to make assumptions concerning the
shape of the distribution of the population. For example, the t-test uses
the sample variance s2 as an estimate of the population variance (σ2)
and also requires the assumption that the population from which
the sample was drawn is normal (or at least symmetrical). Tests
such as the t-test that require either assumptions about parameters
or their estimation are known as parametric tests.

There is, however, a class of tests that do not rely on parameter
estimation and/or distributional assumptions. Such tests are
known as non-parametric or distribution-free tests. It is usually the
case that if a test is non-parametric it is also distribution-free, so the
two names are used interchangeably. In fact, it is the distribution-
free characteristic of non-parametric tests that make them most
valuable to us. Sometimes the assumption of normality or symmetry
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is so badly violated that the use of parametric tests seems unaccept-
able. In such circumstances, we will turn to distribution-free tests.

All statistical tests need to estimate probabilities, and if distribu-
tion-free tests do not use the well-understood characteristics of the
normal curve, how do they estimate probabilities? Most distribu-
tion-free tests use either the characteristics of ranked data or they
use randomisation procedures to calculate probabilities. Tests based
on ranking usually require you to assign ranks to your original
numerical scores. It is unusual for a researcher to collect data in the
form of ranks in the first place.

The advantages and disadvantages of
distribution-free tests
There is a long-standing argument between advocates of parametric
tests and distribution-free tests, and we can certainly not settle this
argument here. Siegel and Castellan (1988) is a good source for argu-
ments in favour of using distribution-free tests. Generally, however,
parametric tests and procedures have been developed more than
distribution-free tests. There is a much smaller range of procedures
and much less flexibility when using distribution-free procedures.

Further, parametric tests have been shown to be relatively robust
to violations of their assumptions (i.e. they continue to perform reli-
ably even when their assumptions do not hold). However, there are
undoubtedly occasions when they should not be used, and we have
no alternative but to use distribution-free tests. Conditions that
cause parametric tests to fail include not only violations of assump-
tions such as the symmetry of the population distribution, but also
the presence of outliers (i.e. extreme and unusual values) in the
dataset. On the whole, distribution-free tests are much more robust
than parametric tests are to both kinds of violations. This makes
distribution-free tests and procedures ideal for the exploratory
analysis of data. 

Another argument often advanced in favour of parametric tests
is that they tend to be more powerful than distribution-free tests
(i.e. they will require smaller samples to obtain significant results
when there is a real difference or relationship). This, however, turns
out to be true mainly if the distributional assumptions of the para-
metric procedures are correct. Howell (1997, p. 646) notes that it is
possible to construct perfectly reasonable datasets where ‘distribu-
tion-free tests may have greater power than the corresponding
parametric tests’. When the distributional assumptions of para-
metric tests fail altogether, distribution-free tests are much more
powerful than parametric tests.
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How, practically, would you go about testing to see whether a non-
parametric test might be better to apply to a particular dataset than a
parametric test?

(Hint: think of the kinds of graphical displays you could construct, and
what they would tell you about the data, as well as suitable descriptive
statistics.)

Activity 20.1

Distribution-free
tests are most useful
with small datasets,
and when para-
metric assumptions
are severely violated.

Reasons for learning about distribution-free tests include their
widespread use in social science and medical literature (you may
often come across them in reading the literature), as well as their
relative simplicity of calculation (an advantage that has lost some
force since statistical computer packages became available). With
respect to simplicity of calculation on a computer, Howell (1997, 
p. 646) points out that ‘for an experimenter who has just invested
six months in collecting her data, a difference of five minutes in
computation time hardly justifies using a less desirable test’. With
respect to hand calculation, distribution-free tests are simple to cal-
culate only with small datasets. Ranking a very large amount of
data by hand is extremely cumbersome and laborious.

A difficulty of rank-based distribution-free tests arises from the
fact that data are gathered using a restricted range of scores. This
often results in the same score value appearing many times in a
particular dataset. When the same value appears more than once in
a dataset, a tied rank has to be assigned to that value. Many tied
values in a dataset will make rank-based tests cumbersome to cal-
culate and will also cause them to lose accuracy. 

To summarise, it seems that distribution-free tests are most use-
ful with small datasets and in circumstances where the assumptions
of the parametric test are severely violated or where there are out-
liers and extreme scores in the dataset making robust procedures
desirable.

Theory of ranks
The operation of ranking involves ordering the dataset from small-
est to largest, and assigning a rank of 1 to the smallest, 2 to the sec-
ond smallest, 3 to the third smallest, etc. until all the scores have
been ranked. Ranks are commonly used in distribution-free tests
because the theory of ranked data has been much studied in the
same way as the theory of normally distributed scores has been
much studied. The properties of ranked distributions are the same
no matter what the original data looked like. Ranking ten IQ scores
will produce the same distribution properties as ranking ten race
times, or ten scores of self-esteem – i.e. they will all receive the 



ranks 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. Therefore it is comparatively easy
for the statistician to estimate what the distribution of ranks would be if
the null hypothesis were true – the exact numerical value of the scores
will have no impact on the ranks, though the statistician will have to
repeat her/his probability calculations for different sample sizes. 

A cornucopia of tests
A glance through Siegel & Castellan (1988) will show that there are
many distribution-free tests. However, many of them are inter-
changeable (i.e. they effectively test the same null hypothesis).
Further, many are rather obscure and specialised. We will concen-
trate only on the better known and more widely used procedures in
this tutorial. You have already been introduced to some distribu-
tion-free procedures in earlier tutorials, including Spearman’s
correlation coefficient for ranked data, and χ2 for frequency data. In
this tutorial we will examine some distribution-free tests that are
really alternatives for parametric procedures covered in earlier
tutorials. For example, we will consider distribution-free replace-
ments for the t-test.

Related samples: The sign test
Related samples occur when the same group of people is measured
more than once, such as in ‘before and after’ research designs. For
example, to see whether a good movie lifts mood, we measure the
mood of a group of people before seeing a movie and then again
after they have seen the movie. Classically, the two measurements
(before and after) are then subtracted from one another, and the dif-
ferences between them are tested against the null hypothesis that
the mean difference is zero.

Just as the related samples t-test considers the difference
between two related samples, so does the sign test. However, the
sign test does not consider the size of the differences – it only con-
siders the sign of the differences. In other words, this test discards a
great deal of information about the inherent size of the differences
between the two samples. The sign test is really testing whether the
two samples have a median difference of zero.

Begin your analysis (Step 1) by deleting any case with identical
scores for both variables. Identical scores in the two variables are
ignored in the sign test. Now (Step 2) subtract the second group of
scores from the first group. It is important to remember to include the
sign of the difference (+ or –). Table 20.1 illustrates the process. In the
table we compare a group of chronic-pain patients on the number of
pain-free hours after treatment with hypnosis as opposed to treat-
ment with acupuncture  (data adapted from Sprent, 1981, p. 119).
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Activity 20.2Which of the following sets of data pairs do you think would be most
affected by the ‘loss of information’ inherent in the way the sign test is
constructed?

a) 4 4 7 6 8 5 4
5 3 9 2 4 5 5

b) 9 6 4 8 3 6 8
1 7 5 1 5 1 9

c) 2 8 6 4 7 8 1
9 1 6 6 5 2 6

Table 20.1 Pain-free hours for chronic-pain patients under two treatments

Patient: A B C D E F G H I J

Hypnosis: 11.7 12.1 13.3 15.1 15.9 15.3 11.9 16.2 15.1 13.6
Acupuncture: 10.9 11.9 13.4 15.4 14.8 14.8 12.3 15.0 14.2 13.1
Difference: 0.8 0.2 –0.1 –0.3 1.1 0.5 –0.4 1.2 0.9 0.5
Sign of diff.: + + – – + + – + + +

Having calculated the sign of the differences, your next step (Step 3)
is to count the number of difference scores that are positively signed
and the number of scores that are negatively signed. (Recall that zero
differences are ignored in the sign test.) For the above data there are
7 positively signed differences and 3 negatively signed differences.

Now (Step 4) take as your score whichever is the smaller number –
either the number of positive signs or the number of negative signs. In
our case, 3 is the smaller number (the number of negative signs). You
can look up the significance of this number in Table 8 in Appendix 1
(Step 5). From the table, with ten pairs of scores, we see that we need
values  of 0 or 1 for the smaller of the sign sums for significance at the
0.05 level – i.e. we cannot reject the null hypothesis that there is no
difference between the two treatments for chronic pain.

The sign test is not a powerful test, but it can be applied in prac-
tically any circumstance in which the expected population distribu-
tion under the null hypothesis is 50% of one outcome and 50% of
another outcome. This means that the sign test can always be used
to test for a departure from an expected 50:50 outcome.

Related samples: The Wilcoxon matched pairs test
The Wilcoxon matched pairs test (also known as the Wilcoxon signed
ranks test) is similar to the sign test except that when we have
obtained the difference scores between the two samples we must
rank-order the differences, ignoring the sign of the difference.

The Wilcoxon
matched pairs test
tests whether two
related samples have
the same median.



To begin, difference scores are calculated (Step 1) and ranked
(Step 2), ignoring the sign of the difference. When there are tied
values, the mean of the ranks that would have been assigned if it
were possible to separate the scores is given. For example, in the
pain data, which is repeated in Table 20.2, two differences of 0.5 are
to be found. These two differences should be assigned the ranks of 
5 and 6, but because they are tied, they are both assigned the mean
rank of 5.5. 
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Table 20.2 Pain-free hours for chronic-pain patients under two treatments

Patient: A B C D E F G H I J

Hypnosis: 11.7 12.1 13.3 15.1 15.9 15.3 11.9 16.2 15.1 13.6
Acupuncture: 10.9 11.9 13.4 15.4 14.8 14.8 12.3 15.0 14.2 13.1
Difference: 0.8 0.2 –0.1 –0.3 1.1 0.5 –0.4 1.2 0.9 0.5
Rank: 7 + 2 + 1 – 3 – 9 + 5.5 + 4 – 10 + 8 + 5.5 +

Having ranked the differences, we now (Step 3) re-attach the sign of
the differences (the signs follow the differences in Table 20.2). Next
(Step 4), the sum of the positive ranks is calculated and the sum of
the negative ranks is also calculated. For the example given in Table
20.2, the calculations are:

S+ � sum of positive ranks: 7 + 2 + 5.5 + 9 + 10 + 8 + 5.5 � 47
S– � sum of negative ranks: 1 + 3 + 4 � 8

Calculate the sums of positive ranks and negative ranks for each of
the datasets in Activity 20.2, as you would do for a Wilcoxon matched
pairs test. Do you think the Wilcoxon test suffers from the ‘loss of
information’ problem to the same extent as the sign test? Support
your answer by completing the sign and Wilcoxon tests for each of
the data pairs.

Activity 20.3

We now (Step 5) have to decide which is the smaller of the two 
sums of ranks. In this case it is the sum of the negative ranks (S–),
namely 8. The smaller of the two values is normally designated T. 
It is now possible (Step 6) to find the significance of the value of T (the
smaller of the two sums of ranks) from Appendix 1. The table is
designed in terms of the number of pairs of scores used, in this case
10. We look up 10 in the table, and see that a T of 8 or less is signifi-
cant at the 0.05 level. Our T-value is 8, so we have a significant differ-
ence between the two treatments at the 0.05 level. This is a different
result from the one we obtained using the sign test, a demonstration
of the greater power of the Wilcoxon matched pairs test, which uses
more of the information in the scores than does the sign test. 

The Wilcoxon
matched pairs test is
more powerful than

the sign test.



Table 20.3 Blood alcohol after three glasses of beer
(mg/100 ml)

Unrelated samples: The Mann-Whitney U-test
Perhaps the most common distribution-free test for differences
between unrelated samples is the Mann-Whitney U-test. This test is
also known as the Wilcoxon rank sum test. This test is used for
research designs similar to those for which the independent sam-
ples t-test is used. This means that it can be used whenever you
have two groups of scores that are independent of each other (e.g.
different samples of people).

Consider an example. Suppose a traditional healer claims that a
particular herb will reduce the absorption of alcohol into the blood-
stream. To test this claim, 11 men are asked to drink three glasses of
beer each. Five of the 11 men are randomly selected and dosed with
the herb. After 30 minutes, a blood sample is taken from each of the
men. The blood alcohol level (measured in mg/100 ml) of the 
11 men is given in Table 20.3. Is there sufficient evidence to conclude
that the herb influences the level of alcohol in the bloodstream? 
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The Mann-Whitney
U-test tests whether
two independent
samples have the
same median.

Given herb 79 85 105 93 100

Not given herb 99 102 107 117 110 108

Our first step (Step 1) is to rank all the scores from both groups of
participants from the smallest to the largest (see Table 20.4). Tied
scores are given average ranks. The scores for the larger group
should be entered into the first column. If both groups are the same
size, then it does not matter which group is entered into the first
column. In this case the larger group has 6 scores and the smaller
group has 5 scores.

Table 20.4 Calculating the Mann-Whitney U-test

Not given herb (x1) Rankings Given Rankings
(use this column for herb

larger group) (x2)

99 4 79 1
102 6 85 2
107 8 105 7
117 11 93 3
110 10 100 5
108 9

R1 � Σr � 48
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U � (n1 × n2) + – R1
n1 × (n1 + 1)
��

2

Applying this formula to our data:

U � (n1 × n2) + – R1 � (6 × 5) + – 48

� 30 + – 48 � 3
42
�2

6 × (6 + 1)
��2

n1 × (n1 + 1)
��

2

The next step (Step 2) is to sum the ranks for the larger group of
scores (see Table 20.4). In this case, the sum of the ranks of the larg-
er group of scores, R1, is 48. Next (Step 3) R1 and its sample size n1

(n1 � 6) together with the sample size of group 2 (n2 � 5) are entered
into the formula (see Equation 20.1), which returns the U-statistic. 

If you have already studied the independent samples t-test (see
Tutorial 9), and know how to use it, run the test on the data of
Table 20.4. Does the result differ from that obtained when running 
the Mann-Whitney test? If so, why the difference?

Activity 20.4

Equation 20.1

It is possible to calculate two values of U depending on which sam-
ple size you used in the above formulas. Check that you have
obtained the lesser of the two possible U values by applying this
transformation:

U’ � n1n2 – U

If U’ is less than U, then use U’ when using the tables to determine
significance.

Having obtained U, we must (Step 4) determine its significance
by consulting Appendix 1. Using the table for the unequal samples
Mann-Witney U-test requires you to find the na value in the column
headings and the nb value in the row headings. The table gives
maximum ranges of values for U that are significant. The calculated
value of U must be less than or equal to these tabled values, or greater
than or equal to the table values to be significant. The table reveals
that for sample sizes of 6 and 5, a calculated U of 3 equals the tabled
value of 3 for the 5% (right diagonal of the table) two-tailed (lower
table) test and so is significant at the 5% level. In other words, we
can reject the null hypotheses of no difference between the two
groups of beer drinkers in blood alcohol levels and conclude that
the herb did prevent the absorption of alcohol.

Three or more groups of scores: Kruskal-Wallis test
for unrelated samples
There are distribution-free tests that can test the difference between
three or more groups in much the same way as ANOVA does in para-



Table 20.5 Sentences per page for three detective writers

metric statistical procedures. The Kruskal-Wallis test is an extension
of the Mann-Whitney U-test for three or more independent samples,
and the Friedman test is an extension of the Wilcoxon test for three or
more related samples. In both cases, these tests depend upon the
same ranking procedures as their simpler two-sample versions. We
will briefly work through the calculation procedure, but these tests
can be performed by most statistical packages, including SPSS®.

The Kruskal-Wallis test is an omnibus test for the equality of inde-
pendent population medians. Consider the following problem. We
randomly select pages from a work by each of three writers, from
editions having the same typeface and page size. The number of
sentences per page is counted, and set out in Table 20.5. We use the
Kruskal-Wallis to test whether the median number of sentences per
page is the same for all three writers. We would like to know whether
the number of sentences per page is the same for the three writers of
detective fiction.
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The Kruskal-Wallis
test is an omnibus
test, analogous to
ANOVA, for the
equality of
independent
population medians.

Homme Aside: 13 27 26 22 26
Roman Noir: 43 35 47 32 31 37
Penny Dreadful: 33 27 33 26 44 33 54

To perform the Kruskal-Wallis, we rank all the scores without
regard to group membership and then calculate the sum of the
ranks for each group. R will denote the sums. If the null hypothesis
is true then we would expect the Rs to be roughly the same except
for any differences due to sample size. A measure of the extent to
which the Rs do differ is given by Equation 20.2.

H � Σ – 3 (N + 1)R2
�
ni

12
��
n(n + 1)

Equation 20.2

where: k � the number of groups
n � the number of observations in the group
R � the sum of the ranks in the group
N � the total sample size

H is evaluated like chi-square at k – 1 df (i.e. use the χ2 tables).
Applying this method to the detective writers data at hand, we

get the workings shown in Table 20.6.
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Table 20.6 Workings for comparing sentences per page with
the Kruskal-Wallis test

Homme Aside Roman Noir Penny Dreadful

Sentences Rank Sentences Rank Sentences Rank

13 1 43 15 33 11
27 6.5 35 13 27 6.5
26 4 47 17 33 11
22 2 32 9 26 4
26 4 31 8 44 16

37 14 33 11
54 18

Σ 17.5 76 77.5

Friedman’s rank test
is an omnibus test,

analogous to
repeated measures

ANOVA, for the
equality of related

population medians.

The Rs are thus 17.5, 76, and 77.5, while the n’s are 5, 6, and 7 respec-
tively. k � 3, since there are three groups, and N � 18.

H � × 1881.952 – 3(19)

� 66.033 – 57

� 9.033

df � 3 – 1
� 2

The critical value of chi-square at 2 df for � � 0.05 is 5.99 (see the χ2

tables), which H exceeds. Thus we can reject the null hypothesis
and conclude that the three detective writers do not write the same
number of sentences per page.

Three or more groups of scores: Friedman’s rank test
for related samples
The Friedman test for k correlated samples is an analogue of one-
way repeated measures analysis of variance. It is used for the analy-
sis of within-subjects designs where more than two conditions are
being compared. This test was developed by Milton Friedman, the
famous economist and Nobel laureate.

Suppose we want to test the hypothesis that the performance of
university students is related to how close they sit to the front of the
lecture hall. The experimenter obtains ten student participants.
Each student is randomly assigned to sit in the front, the middle, or
at the back of the lecture hall for a period of three weeks, after
which a test is written. The same student then takes up another one
of the three positions in the lecture hall, and another test is written.

12
��
18(18 + 1)



Eventually each student has three test results associated with three
different positions in the lecture hall. Hypothetical data for this
study are presented in Table 20.7. The ranking of the raw scores
within each subject’s set of three scores is shown in brackets. The
ranks are summed, and totals appear below each column.
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Table 20.7 Test results associated with different seating 
positions in a lecture theatre

Seating position

Student Front Middle Back

1 60 (1) 70 (3) 63 (2)
2 41 (1) 66 (3) 59 (2)
3 52 (2) 57 (3) 49 (1)
4 58 (3) 50 (1) 56 (2)
5 60 (1) 70 (3) 63 (2)
6 50 (1) 58 (3) 54 (2)
7 72 (1) 73 (2) 75 (3)
8 49 (2) 54 (3) 42 (1)
9 51 (1) 63 (2) 68 (3)
10 39 (1) 48 (2) 54 (3)

R � Σr 14 25 21

If the null hypothesis is true, we would expect the rankings to be
distributed randomly for each student (i.e. sitting in the front, the
middle, or at the back will make no difference to a student’s perform-
ance). So, if the null hypothesis is true, the sum of the rankings in
each seating position (column) would be roughly the same. However,
if seating position does make a difference, then there should be large
differences in the sum of the rankings for each column.

We rank the three test scores for each student and then sum the
rankings for the different seating positions. The variability of the
rankings is then assessed by means of Equation 20.3:

Equation 20.3
χ2

F � Σ R2 – 3N(k + 1)12
��
Nk(k + 1)

where: R � the sum of the ranks for each condition
N � the total number of subjects (students)
k � the number of conditions

The value of χ2
F

(Friedman’s ‘chi-square’) can be evaluated just like a
normal chi-square value at a df of k – 1. 

The data for our student seating position study can be evaluated
as follows:



χ 2
F

� × (142 + 252 + 212) – 3(10)(4) � 126.2 – 120 � 6.2

df � 3 – 1 � 2

The critical value of chi-square at 2 df for � � 0.05 is 5.99. Since 6.2
is larger than this value, we can conclude that the students’ per-
formance does vary with seating position (i.e. we can reject the null
hypothesis).

Siegel & Castellan (1988) explore some procedures for perform-
ing multiple comparisons between the conditions in a Friedman’s
analysis of variance by ranks. We will not report these here, but sug-
gest that you explore them when the need arises.

12
��
10 × 3 × 4

396 NUMBERS, HYPOTHESES AND CONCLUSIONS

Worked example
As you may know, the Cape Flats is an area in Cape Town compris-
ing several suburbs, including Manenberg, Lavender Hill, and
Mitchells Plain. Crime statistics over a number of years show that it
is one of the most violent areas in the world. For example, it has a
higher murder rate (over 90 per 100 000 population per annum)
than any of the countries listed in Interpol statistics for the period
1994–1996. It should clearly be a national goal to address this prob-
lem. One NGO (COPES, a part of the New World Foundation) has
developed a violence-reduction programme, which aims to reduce
violence levels in schools through a programmatic intervention. In
one part of the programme, school classes in the early grades are
randomly assigned to one of four interventions:
1. a control condition
2. an intervention aimed at improving numeracy and literacy skills

(N),
3. an intervention aimed at improving the said skills, plus improving

classroom management skills of teachers in the school (NC),
4. an intervention consisting of (1) + (2), as well as an additional

intervention aimed at teaching children positive, confrontation-
mediating social skills (NCS) (see Carolissen et al., 2001).

If you have studied repeated measure tests (e.g. related samples 
t-tests, or repeated measures ANOVA), you will know that repeated
measures tests are often more powerful than independent group
tests. With this in mind, conduct a Kruskal-Wallis test on the data in
Table 20.3, and decide whether this appears to be the case for non-
parametric procedures.

Activity 20.5
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One measure taken periodically is a rating of children’s aggressive-
ness towards each other. Each child is asked to name the three most
aggressive children in the class, and the three most friendly. A tabu-
lation is then constructed for each child in the class showing how
many children identify the child in question as being amongst the
three most aggressive. Data is given in Table 20.8 for each of the four
conditions. The question is whether the conditions show any sys-
tematic difference.

Table 20.8 Data for each of four conditions in a violence-reduction programme

NCS 2 1 0 2 1 11 3 2 1 2 2
NC 2 13 2 1 4 0 0 2 1
N 1 2 17 3 4 1 2 14 2 1 0
Control 12 18 4 3 14 2 1 3 13 5

Solution
Mere visual inspection of the data should convince you that the dis-
tributions are highly asymmetrical. A small number of children get
very high scores, but most children receive very low scores. We
decide to construct boxplots for each condition, using SPSS® (see
Figure 20.1). The data setup and dialog boxes for constructing the
boxplots are shown in Figure 20.2

Note: Entries are the number of raters who list the child among the three most aggressive

20

10

0

–10

*
* *

*

CONTROLNNCNCS
N = 9 9 9 9

Figure 20.1 Boxplot of the data in each condition



398 NUMBERS, HYPOTHESES AND CONCLUSIONS

‘Analyze’ menu; select ‘Non-
Parametric Tests’, and then ‘K 

Independent Samples’

Dialog boxes; choose ‘Kruskal-Wallis H’,
and move appropriate variables to ‘Test’
and ‘Grouping’ slots. Then, notice that
you have to define the top and bottom

of the range for the grouping
variable, as shown

SPSS® output of the Kruskall-Wall
is analysis. Note that the ‘Asymp.

Sig.’ refers to a specific way of 
calculating the probability value

with an ‘asymptotic function’, but
this does not change the usual
interpretation of the p value

Figure 20.3 SPSS® Menus, dialog boxes, and output for the Kruskall-Wallis test of the data in Table 20.8

Layout of data in
SPSS®

‘Graph’ menu;
select ‘Boxplot’

‘Boxplot’ dialog; choose
‘Simple’, and ‘Summaries 

for groups of cases’

Variable selection dialog; move the
data and category variables to

the appropriate slots

Figure 20.2 Data layout, menus, and dialog boxes for creating boxplots of the data in SPSS®

As you can see from the boxplots (Figure 20.1), each of the condi-
tions shows a highly asymmetrical pattern, and the presence of
outliers is suggested in each. The ‘outliers’, however, are clearly
acceptable data points, and we cannot simply exclude them.
Although we could explore the data further, producing frequency
distributions and descriptive measures, it seems fairly clear from a
visual inspection and the graphical display that we should consider
using non-parametric statistics here. Since we want to compare four



groups simultaneously, the preferred test is the Kruskal-Wallis test.
We use SPSS® to conduct the test, although it is easy enough to do
by hand (with a calculator), or on a spreadsheet. The steps required
to conduct the test, as well as the output, are shown in Figure 20.3.
The significant result (the calculated p value is smaller than 0.05)
tells us that the experimental conditions did indeed differ. From the
table of ranks, it is clear that the mean rank decreases according to
the condition; in particular, the ‘NCS’ and ‘NC’ conditions appear to
have the lowest average rating of aggressiveness.

Summary
1. Statistical tests that require assumptions about parameters or

their estimation are known as parametric tests. These assump-
tions are occasionally unreasonable, and then we use non-
parametric (or distribution-free) tests, which do not rely on
parameter estimation and/or distributional assumptions. On
the whole, distribution-free tests are much more robust than are
parametric tests, but parametric tests tend to be more powerful
than distribution-free tests. 

2. All statistical tests involve the calculation of probabilities, and so
need suitable probability models. Parametric tests use probabili-
ty distributions (e.g. the normal distribution), whereas non-para-
metric tests tend to use the theoretical distribution of ranks as a
probability model.

3. The sign test for matched samples is designed to test the equiva-
lence of two medians in a repeated measures, or related samples,
design. It is a non-parametric alternative to the repeated meas-
ures t-test, but it considers only the sign of the difference scores,
and not the size.

4. The Wilcoxon matched pairs test is similar to the sign test except
that it takes the size of the difference scores into account, and not
merely the sign.

5. The Mann-Whitney U-test is used for research designs similar to
those for which the independent samples t-test is used, i.e. when
we want to test for a difference between two independent groups.

6. There are distribution-free tests that can test the difference
between three or more groups in much the same way as ANOVA
does in parametric statistical procedures. The Kruskal-Wallis test
is an extension of the Mann-Whitney U-test for three or more
independent samples, and the Friedman is an extension of the
Wilcoxon test for three or more related samples.
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Exercises
1. An employer is testing 16 applicants for a job, one at a time. Each

has to perform a series of tests and the employer awards an
overall points score to each. As each applicant may discuss the
tests with later applicants before the latter are tested, it is sug-
gested that applicants tested later may have an unfair advan-
tage. Do the test scores below support this assertion? Use an
appropriate distribution-free test.
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Subject: 1 2 3 4 5 6 7 8 9

Test day: 3.5 4.5 2.0 5.6 4.8 6.9 7.1 16.1 3.4
Control day: 1 4.7 3.4 4.8 5.1 2.2 2.1 2.3 1

Group A: 21 20 15 27 20 21 29 26 26 34

Group B: 26 26 34 26 43 25 37 32 29 33 35

2. A parapsychologist asks nine subjects who each claim psychic
powers to use these to induce carelessness in customers visiting
a china shop. Subjects are to induce an increase in the breakage
rate due to customer accidents while the customers examine
stock. Each subject is asked to ‘will’ customers to break items on
a specified but different morning (the test day). The numbers of
breakages per 500 customers entering the shop on each test day
is compared with the number of breakages per 500 customers
entering the shop on the same day of the previous week (the
control day), when no such attempt to produce breakages 
had been made. The results (numbers of items broken per 500
customers) for the nine subjects are shown in the table below.
Analyse these results using a distribution-free method to deter-
mine whether or not they provide acceptable evidence that a
paranormal phenomenon occurred.

42 89 79 77 83 81 74 49 75 72 68 64 71 55 69 72

3. To compare two different keyboard layouts on a pocket calcula-
tor, a company divided 21 staff volunteers randomly into a
group of ten (A) and a group of 11 (B). Each group was asked to
carry out the same set of calculations, group A using the first
type of keyboard, and group B the second. Individuals were
assessed on the total times in minutes taken to complete the
calculations. These are given in the table below. Use an appropri-
ate test to determine whether one layout is preferable to another.



4. A sergeant-major orders 36 soldiers to parade tallest on the
right, shortest on the left, numbered 1 (tallest) to 36 (shortest).
Each soldier is then asked whether he/she smokes or drinks,
and the rank numbers of soldiers in the various categories are
given below. Is there evidence of an association between height
and drinking and smoking habits? (Hint: test whether there is an
effect for height between the four groups.)
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Drinker and smoker: 3 8 11 13 14 19 21 22 26 27 28 31 33 35
Smoker, non-drinker: 2 12 25 32 34
Drinker, non-smoker: 1 7 15 20 23 24 30 36
Non-smoker, non-drinker: 4 5 6 9 10 16 17 18 29

5. A social worker running a home for delinquent children wish-
es to show that it is successful in reducing delinquency. Twelve
adolescents who have been declared delinquent are selected
for the investigation. The number of days of truancy during the
month prior to placement in the home is measured. Similarly,
the number of days of truancy during the month they live in
the home, and the number of days of truancy during the month
after they leave the home are recorded. What do you conclude?

Adolescent: 1 2 3 4 5 6 7 8 9 10 11 12

Before: 10 12 12 19 5 13 20 8 12 10 8 18
During: 5 8 13 10 10 8 16 4 14 3 3 16
After: 8 7 10 12 8 7 12 5 9 5 3 2
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Meta-analysis

Colin Tredoux

•••••••••••
After studying this tutorial, you should be able to:
• Explain what is meant by the term ‘meta-analysis’.
• Present the arguments typically made against

narrative literature review methods.
• Outline the steps of the Schmidt-Hunter model of

meta-analysis.
• Conduct a meta-analysis of correlational studies.
• Conduct a meta-analysis of simple experimental

studies.

Most theories of human knowledge recognise the cumulation of
information as a vital goal. If we take a Popperian approach, we 
can view the process of cumulation as one that proceeds by discon-
firming incorrect views – in which we approach the ‘truth’ by
accumulating knowledge about what is false (see Popper, 1959;
Hacking, 1981). Alternately, we can take a Kuhnian perspective, and
view the process as one in which we make substantial gains by over-
throwing dominant paradigms, which are essentially collections of
knowledge (see Kuhn, 1962, 1970; Hacking, 1981). The views are
numerous; what they have in common is the notion that the process
of cumulation is fundamental to the enquiry after knowledge. 

In the social sciences, the process of cumulation assumes an
exaggerated importance. In the physical sciences it is common to
await a theory that will solve a theoretical or factual problem (and it
is not unusual for one theory to solve a tremendous number of prob-
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lems), but in the social sciences, this is rarely the case. Here we are
usually faced with situations in which there are literally hundreds
of relevant studies. These studies characteristically disagree with
each other in a number of respects, with no prospect of a definitive
study on the horizon to resolve the disagreements. 

Choose a well-researched topic from your discipline (e.g. differences in
suicide rates across demographic categories). Using library and other
information sources available to you, do a quick search for published
literature on the topic. How many studies have you identified from this
cursory search?

Activity 21.1

Three types of
literature review:
1. narrative review 
2. key-study review
3. quantitative review

(meta-analysis)

Take the case of psychotherapy outcome studies (Smith & Glass,
1977). If you look at recent reviews of the literature, you will find that
they refer to over 400 studies. Simply reading the studies will take
you over six months, never mind the task of drawing conclusions
about who is right and who is wrong! This is not an exceptional state
of affairs: in virtually any area in the social sciences, you will find a
hundred relevant studies.

Characteristic responses to the problem
The response from researchers to the problems posed by integration
of research findings across studies usually takes one of two forms.
In the first place, the researcher may provide a narrative review of
all the studies that constitute an entire research area. When the
research area is large, which may mean that more than 100 studies
are involved, the review is often as intimidating as the research area
itself. The review is a pedestrian exercise, ‘[with] … verbal synopses
of studies … strung out in dizzying lists’ (Glass, 1976, p. 4). In the
second instance, which is frequently seen in social science journals,
researchers limit their review to a subset of studies in the area, the rest
being rejected as methodologically flawed. A manageable amount of
information is selected from the body of published research and pre-
sented in the review, and the rest is simply swept aside. 

Both of these methods appear unacceptable. The first provides
little more than a re-description of the research to be reviewed, 
and the second wastes most of the available information, drawing 
a priori conclusions about matters that should really be settled
empirically.

This dissatisfaction with traditional forms of review is wide-
spread, particularly among quantitative researchers, who have
developed a family of alternative methods, which are quantitative
in nature. Although quantitative review methods have been used
since the 1950s (Hunter et al., 1982), it is only in recent years that a

In many areas of
research and study
in the social sciences
there are literally
hundreds of studies.
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fully-fledged statistical theory of quantitative review has emerged.
Glass (1976), one of the architects of the theory, has dubbed quantita-
tive review meta-analysis. However, it should be noted that there are
several forms or versions of analysis, and practitioners disagree about
statistically acceptable techniques. In this tutorial, the most advisable
route to take seems to adopt the more conservative approaches in the
literature. Consequently, the form of meta-analysis outlined here is
that pioneered by Hunter et al. (1982), known as the Schmidt-Hunter
model, which advises against the use of inferential methods in quan-
titative review. However, we can use the descriptive techniques sug-
gested by Hunter et al. in a manner that enables us to make quasi-
inferential conclusions. If you are interested to learn about other
forms of meta-analysis, you will find the treatments by Glass et al.
(1981) and Rosenthal (1984) instructive.

The Schmidt-Hunter model of meta-analysis
The Schmidt-Hunter model offers a definition of meta-analysis as
‘… the quantitative cumulation and analysis of descriptive statistics
across studies’ (Hunter et al., 1982, p. 137). It is possible to cumulate
any of a number of descriptive statistics across studies, but for most
purposes we will want to cumulate either correlations or effect sizes,
since most quantitative studies in the social sciences will express
their outcomes as one or the other. 

For example, we may be interested in the relationship between
authoritarianism and racial prejudice, as many sociologists and 
psychologists in South Africa have been. This relationship is typically
quantified as a correlation coefficient, and it shows considerable
variation across studies. Thus, Orpen (1973) finds r � 0.19, whereas
Duckitt (1991) finds r � 0.63.

Alternatively, we may be interested in the effect that misleading
information has on memory of an event, a research question
pioneered by Elizabeth Loftus (Loftus, 1974, 1975, 1983). In this
paradigm of research, participants are given information (e.g. a
film), randomised into control and experimental groups, misled
(differentially across experimental and control groups) for some
aspect of the information, and then tested for their recollection of
the event. There are over 70 studies on this question, and although
many find an effect for misinformation, the effect sizes vary

Meta-analysis is:
‘… the quantitative

cumulation and
analysis of descrip-

tive statistics across
studies’ (Hunter 

et al., 1982)

Get hold of a copy of the Annual Reviews series in your discipline, e.g.
Annual Review of Psychology; Annual Review of Sociology. Choose one of
the reviews printed there, and decide what kind of review it is, e.g. a
narrative review, a quantitative review, etc.

Activity 21.2

Key approaches to
meta-analyses:

1. Hunter, Schmidt
& Jackson, 1982

2. Glass, 1976
3. Rosenthal, 1984
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considerably. Thus, Sheehan and Tilden (1984) report d � 0.01, but
Christiaansen and Ochalek (1983) report d � 1.87.

To the extent that correlations or effect sizes vary across studies,
the Schmidt-Hunter model proposes that they exhibit the influence
of (1) artefactual error, and (2) moderator variables. 

By artefactual error we mean that the variation in effect sizes is
due to sources that do not have anything to do with real underlying
differences (e.g. the effectiveness of a treatment), but have to do with
the way the data was collected, and the measuring instruments used.
Imagine that two studies investigated the effectiveness of a drug
treatment for paranoia. If study A collected data using 100 19-year-
old female undergraduate college students from Pleasantville, and
study B collected data using a sample of male and female prisoners
ranging in age from 18 to 70, they might well find very different effect
sizes, and this may be due to the sample and sampling method,
rather than the effectiveness of the treatment. When the variation is
due to extraneous factors of this kind, we say that it is an artefact of
the study method or design. 

To the extent that
correlations or effect
sizes vary across
studies, they exhibit 
1. artefactual error,

and/or
2. substantive 

variation

Classify each of the following sources of variation as ‘artefactual’ or
‘substantive’:
a) different interview techniques
b) different attitude questionnaires
c) different countries in which studies were conducted
d) size of the samples used
e) the stability of a common measuring instrument.

Activity 21.3

The Schmidt-Hunter model proposes that there are three major
sources of artefactual variation, which should be removed, or correct-
ed, when we do meta-analysis.
1. Sampling error. The notion of a random sample is central to statis-

tical theory, but is just a fiction in practice. How would we draw
a random sample of all human beings? This task is close to
impossible, and in practical research situations in the social sci-
ences sampling is highly haphazard. Samples are drawn from
quite distinct populations, the size of samples drawn is often
quite small, and the method of drawing the samples relies less on
random selection than voluntarism. This means that sampling
error is likely to exert a substantial influence on the variation in
effect sizes, and we should try to correct for it, where possible.

2. Measurement error. Most measuring instruments in the social
sciences are imprecise, and can also vary substantially in terms
of their scale reliability. In the latter case, ‘reliability’ refers to the
replicability of observations using the instrument in question,

Artefactual sources
of variation in study
statistics are:
sampling error,
measurement error,
and restriction of
range.

The effect size d is
equal to the differ-
ence between the
means divided by the
standard deviation
(see Tutorial 13).



and even instruments considered to have high reliability can
yield scores that fluctuate considerably. Thus, if you measure
your weight on a bathroom scale now, and again in 30 minutes,
the fluctuation should be very small, but this is not the case 
for all measuring instruments – many questionnaires, attitude
scales, and other social science instruments can show consider-
able fluctuation. Where measurement error is known to be pres-
ent, it should be corrected for in the meta-analysis.

3. Restriction of range. This important concept was discussed in
Tutorial 11, and we refer you back to it if you do not remember
what it refers to. Simply put, if the selection process in some
studies has reduced the range of observed variation on the
dependent measure, relative to the population variation on the
same measure, we can expect effect sizes or correlations in those
studies to be reduced when compared to other studies. This
source of variation is again artefactual, and we should correct for
it in the meta-analysis, if we can.

In addition to artefactual error, there are also many substantive
sources of the variation in effect sizes between studies. A different
method may have been used, or different measures of the dependent
variable administered to participants, among their possible differ-
ences. A key goal of meta-analysis is to find or provide evidence of
such substantive forms of variation. We do this by coding potentially
substantive sources of variation as moderator variables.

Meta-analysis derives its usefulness from its ability to statistical-
ly correct effect sizes for the types of error listed above, and its abil-
ity to identify theoretically substantive sources of variation. 

The Schmidt-Hunter model of meta-analysis can be represented
as a set of steps, as in the flow chart in Figure 21.1 on the next page.

1. Collection of the population of studies
The point of a meta-analysis is to summarise the entire set of studies
on a particular topic. However, the topic needs to be defined
carefully, or it will not be possible to conduct a meta-analysis. If 
we decide to review the population of psychotherapy studies, 
for instance, we will find many that are not amenable to quantita-
tive summary, e.g. Freud’s case-studies. We must define the exact
topic explicitly: thus, ‘studies that evaluate psychotherapy outcome
quantitatively, and that use some form of statistical experimental

design’ will be more suit-
able for meta-analysis
than ‘studies that evalu-
ate psychotherapy’.
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List five research areas for which a meta-
analysis is unlikely to be appropriate.

Activity 21.4

A key goal of meta-
analysis is to find or
provide evidence of

substantive forms of
variation.

Moderator variables
are characteristics of

studies (e.g. meas-
ures used) that

potentially explain
their different results.

Many research topics
are not amenable to

investigation by
meta-analysis.
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CODE and TRANSFORM

ESTIMATE OVERALL
MEAN AND VARIANCE

OF EFFECT

CORRECT ESTIMATES
FOR ARTEFACTUAL

ERROR

PARTITION BY
MODERATOR VARIABLES

Figure 21.1 The Schmidt-Hunter model of meta-analysis

Collection of the population of studies

Coding of set of studies, including relevant study statistics,
e.g. t, F, χ2 and potential moderator variables

Transformation of study statistic(s) to a common statistic,
e.g. d or r

Computation of the mean and variance of the common
statistic across all studies, e.g. d or r, and σd or σr

σd (or σr) is corrected to eliminate sampling error

d– or r– and σd (or σr) are corrected for measurement error

d– or r– and σd (or σr) are corrected for restriction of range

Is σd (or σr) substantial enough to decompose?

YES NO

Break set of studies down by Mi (moderator variable i), i.e.
into as many groups as Mi has categories

For each category of Mi: Does Mi reduce σd (or σr) 
substantially?

YES NO

Retain Mi Reject Mi

Are there more Mi?

YES NO
STOP

STOP



408 NUMBERS, HYPOTHESES AND CONCLUSIONS

How do we go about collecting a population of studies? This task
presents formidable problems, and is probably not attainable in
practice. Although there are many information sources available 
to modern researchers that will allow the quick accumulation of
published studies (see Kaniki, 1999 for an overview), many studies
are not published, particularly when the findings are negative, or at
odds with prevailing opinion within a discipline (see Garcia, 1981,
for a remarkable example). Often studies are rejected by journal
reviewers, and remain confined to a file drawer.

The file drawer problem
It is well known in many scientific disciplines that disconfirmatory
findings are less likely to be published than confirmatory findings
(Rosenthal & Rosnow, 1991). This may be due to editorial interven-
tion in the scientific journals, or self-censorship on the part of
researchers. Whatever the reason, it is clear that many research find-
ings are not published, and the majority of these are findings of 
no correlation or no effect. This is known as the file drawer problem
(unpublished disconfirmatory studies end up in ‘file drawers’
rather than journals).

This poses an obvious problem for meta-analytic procedures,
since the published literature on a particular topic will contain a
preponderance of confirmatory findings, and averaged correlations
or effect sizes will be biased upwards. 

There are a couple of strategies we can consider using to lessen
the extent of this problem. In the first instance, researchers should
make an active effort to obtain as many unpublished studies as
possible and include them in the meta-analysis. This is difficult to
do, but a simple request to researchers in a particular field for
copies of unpublished papers will help. A second strategy is to con-
sider how ‘resistant’ a particular meta-analytic statistic is to dis-
confirmatory findings. For example, if d– � 0.9, on the basis of 
50 studies and a total of 5 000 subjects, we can work out how many
findings of d � 0 would be needed to reduce the figure of 0.9 to 0,
or to 0.45, or indeed to any alternative estimate. If it is clear that a
very large number of disconfirmatory findings would be needed, it
is reasonable to conclude that it is unlikely that undiscovered stud-
ies substantially bias the estimates arrived at in the meta-analysis.

2. Coding the set of studies
Once the entire set of studies has been collected, each study should
be ‘coded’ – i.e. the variables that are of interest to the meta-analysis
are noted, and data for each are collected from all studies in the set.
Typically, we will collect descriptive statistics from each study (e.g.

The file drawer
problem refers to the

failure to publish
disconfirmatory

findings and the
consequent

relegation of the
study to a ’file

drawer’.

It is important to 
collect as many

unpublished studies
as possible for a

meta-analysis.

We can evaluate the
sensitivity of a meta-
analysis by working
out how many dis-

confirmatory findings
of d � 0 it would

take to obtain d � 0.

Each study in a
meta-analysis is

‘coded’ for potential
moderator variables.
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s, n, etc.), and information about variables that may be useful in the
search for moderator variables (e.g. measures used, type of experi-
mental design, country the study was conducted in, etc.).

3. Transforming to a common statistic 
Studies that investigate particular topics often use different statist-
ical tests, even though their research designs may be very similar
(see Tutorial 22 for a discussion of this). Thus, one study might use
a t-test to explore an intervention effect, and another an F-test.
These different test statistics must be transformed to a common
statistic in order to conduct a meta-analysis. There are a number of
transformations available to us, and a number of potential common
statistics. For most purposes, though, we decide whether the topic
being investigated is that of a hypothesised relationship, or that of a
hypothesised difference between means. In the former case, we
transform to r (the correlation coefficient), and in the latter to d
(Cohen’s d). 

In the case of r, studies usually report this statistic directly, but
where they do not, we can use specific formulas for the transforma-
tion. For example, to transform t into r, we use the formula:

Equation 21.1

where: xe � the mean of the experimental group
xc � the mean of the control group
sp � the pooled standard deviation of the

experimental and control groups

Notice that Equation 21.1 reflects the difference between two
groups. Where a study has a more complex design, multiple ds will
need to be calculated. Thus, in a three-group design, you will calcu-
late a d for the difference between groups 1 and 2, a d for the differ-
ence between groups 1 and 3, and a d for the difference between
groups 2 and 3. For details on how to calculate the pooled standard
deviation(s), see Tutorial 9. 

It is common practice in journal review to require that these
details are reported in published studies, but where authors have
not reported them, you will need to request the details.

Test statistics may
differ across studies
in the set, and must
be transformed to a
common statistic.

r �
t2

��
t2 + (n1 + n2 – 2)

In the case of d, we can usually calculate this from the sample means
and standard deviations. The formula for d is:

d �
xe – xc

sp

The most widely
used common 
statistics are r (the
correlation coeffi-
cient), and d (effect
size, in standard
deviation units).

�



4. The computation of the mean value and variance
of the statistic across studies

The first step in a meta-analysis is to calculate the mean statistic
across all studies. However, we will need to weight each component
statistic (e.g. each study d) by the sample size of the study – we want
to give more weight to studies that had larger sample sizes, since
statistic estimates improve when based on larger sample sizes. The
formulas for calculating the mean r and d are shown as:

r– � d
–

�
Σ nidi—
Σ ni

Σ niri—
Σ ni

Equation 21.4
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Equation 21.2

Why do you think the formulas for cumulating effect size weight each
individual effect size by the size of the sample it was collected from?

Activity 21.5

Equation 21.3

where: n is the number of data pairs
If a particular d is derived from a comparison with unequal
sample sizes, the harmonic mean of the two ns should be
used (see Tutorial 13).

In Tutorial 11 you were warned against simply averaging correla-
tion coefficients, and here we are simply averaging them! It is possi-
ble to apply a Fisher transformation to each r in the study set, and
this is probably a better way to do it from a technical point of view,
but many authors do not agree that averaging correlation coeffi-
cients is fraught with dangers, as Tutorial 11 suggested, and do not
apply the correction.

We also need to calculate the average variance of the study statistic
across studies. Again, we weight each statistic by its associated sam-
ple size, as shown in Equation 21.3

σ2
r � σ2

d �

The mean statistic may be a good estimate of the mean population
value across studies, but the variance of the statistic across studies
will invariably be greatly inflated by several sources of artefactual
error (see the discussion on this earlier in the chapter). 

5. Correcting for sampling error
The first correction we make is for sampling error. We use the for-
mulas set out in Equation 21.4

Σ ni (di – d–)2

��
Σ ni

Σ ni (ri – r–)2

��
Σ ni

d2
�
8

est.σ2
d � σ2

d –
4 (1 + )k
��

N

where: k � the number of studies in the set
N � the total sample size (over all studies)

est σ2 � the estimated population variance
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The estimate of the variance of the common statistic across studies
is thus adjusted, and will be reduced to the extent that k and N are
large (i.e. to the extent that there are a greater number of studies in
the set, and therefore a greater number of subjects).

6. Correcting for measurement error and restriction
of range

Two common problems in many research designs are the presence of
measurement error, and restriction of range. Ideally, we should cor-
rect the variance of the common study statistic for both. We rarely
have data in the social sciences to effect the latter (and it is not typical
for social science research to suffer from the problem). In the former
case, we frequently do have data that bear on measurement reliabili-
ty, and we can make some corrections. However, many authors dis-
pute the validity of these corrections, and they can become quite
complex. We will not provide details here – as an advanced exercise
you may wish to consult Hunter et al. (1982).

7. Searching for moderator variables
When we have finished making corrections to the estimates of the
variance of the study statistic(s) across studies, we examine the size
of this corrected variance, e.g. est.σ2

d. If it is clear that the variance is
non-negligible, then we argue that there are real differences
between studies – that there are substantive differences over and
above differences introduced by artefact. We then use the informa-
tion we collected about the studies to try to find the source of the
differences – e.g. the type of experimental design used, the country
in which the data were collected, etc. We call each potential source
of variation a moderator variable, and we use these to split the studies
into subsets. Meta-analysis is applied to each subset separately. If
moderator variables are operative in the studies reviewed, then
large differences between subset means should appear, with corre-
sponding reduction in within-subset variation across studies. 

Activity 21.6Rank the following sets of effect sizes according to the amount of
variation in them. In which would it be most profitable to look for sub-
stantive sources of variation? Is there any way of definitively telling
this?
a) 1.3 0.4 0.01 0.9 0.23
b) 0.3 0.24 0.4 0.35 0.29
c) 0.9 0.9 0.9 0.9 0.9

If the corrected vari-
ance of the common
statistic is substan-
tial, we conclude
that there are real
differences between
studies.

For example, say we have a collection of 20 studies, ten of which
derive from the USA, and ten from South Africa. The studies meas-
ure the effectiveness of Z therapy (which induces catharsis by
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tickling patients’ feet with emu feathers). We calculate d– 
� 0.4, and 

σ2
d � 0.3. Clearly, this value of σ2

d suggests that effect size varies a lot
across studies. However, we do not know whether this variation is
due to real study differences, or to artefactual error. Once we correct
for artefactual error, we find σ2

d � 0.1. Although this may not seem
a high value, it does suggest that there is still variation in effect size
across studies, even after correction for artefactual error. We then
break the set of studies down into two sets, namely those conducted
in the USA and those conducted in South Africa. We now re-do the
meta-analysis for each subset, separately. We find for the USA
set, d

– 
� 0.7, and σ2

d � 0.05, and for the SA set, d
– 

� 0.1, and 
σ2

d � 0.1. Clearly, there is a massive difference between effect sizes
collected in the USA and SA. However, the variation in effect size
within subsets is still quite large, and we will want to (1) correct the
estimates for artefactual error, and (2) explore the two study sub-
sets for additional characteristics that might explain/reduce this
variation. The goal should be to reduce the observed variance in
effect sizes within subsets to zero.

Perhaps the best way to demonstrate the Schmidt-Hunter model of
meta-analysis is through worked examples. Two are provided below.

Worked example 1 (correlations)
Earlier we referred to the interest in South Africa in the relationship
between authoritarianism and racial prejudice. The original work,
however, was published by Adorno et al. (1950), who popularised
the so-called authoritarian personality theory. According to this
theory, racial prejudice is associated with a particular personality
style. This personality style is marked by a rigid adherence to
conventional values, the idealisation of figures of authority, and the
intolerance of ambiguity – a closed mind, so to speak. There have
been many criticisms of this theory – and empirical tests of the
theory in countries in which prejudice is institutionalised have
proved to be disconfirmatory. This, of course, is why South African
researchers have been interested in the theory. In his 1991 review of
the research, John Duckitt identified a total of 11 studies, and 25
correlation coefficients indexing the relationship between authori-
tarianism and racial prejudice. To these we should add all published
studies in the period from 1991 to the present, and we should make a
concerted attempt to find as many unpublished studies as possible. A
good way to do this is to (1) search the local literature databases for
postgraduate theses, and (2) contact all authors who have published
studies (e.g. Orpen, Duckitt), to see whether they have or know of
additional, unpublished studies.

Since this is merely an example, we will not add any studies to
the list, but will expediently assume that this is the population of

Moderator variables
are properties or

characteristics of sets
of studies that are

used to decompose
the variance in the

common statistic
(e.g. r).
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studies. The studies are summarised in Table 21.1. We can use meta-
analysis to ask certain questions regarding this set of studies. We
may want to ask, for instance, whether the difference in size
between the coefficients reported by Duckitt (1991) and Orpen
(1973) is a ‘real difference’ (e.g. the use of different attitude scales),
or merely artefactual error (e.g. sampling error). This is an impor-
tant question, since Duckitt (1991) claims that most of the scales
used in South African research on the authoritarian personality
have poor psychometric properties. 

An analysis of the set of studies, using the Schmidt-Hunter
model, is reported below.

Table 21.1 South African studies of the authoritarianism-racism relation 
(until 1991)

Study Sample Measure of prejudice r

Colman & Lambley, 1970 60 English students Anti-African scale 1 0.23
Colman & Lambley, 1970 60 English students Anti-African scale 2 0.33
Heaven, 1983 106 residents of Bloemfontein Social Distance 0.27
Heaven, 1983 106 residents of Bloemfontein Anti-Black 0.39
Heaven & Rajab, 1980 91 residents of Bloemfontein Anti-Black 0.38
Lambley, 1973 190 English Ethnocentrism scale 0.38
Lambley & Gilbert, 1970 106 English students Social Distance 0.32
Lambley & Gilbert, 1970 106 English students Social Distance 0.43
Orpen, 1971 88 English Anti-African 0.20
Orpen, 1971 88 English Social Distance 0.19
Orpen, 1973a 90 English Social Distance 0.29
Orpen, 1973b 81 Rhodesian students Anti-African 0.22
Orpen, 1973b 81 Rhodesian students Social Distance 1 0.19
Orpen, 1973b 81 Rhodesian students Social Distance 1 0.26
Orpen, 1973b 81 Rhodesian students Social Distance 1 0.11
Orpen, 1973b 81 Rhodesian students Social Distance 1 0.24
Orpen & Tsapogas, 1972 131 English scholars Anti-African 1 0.15
Orpen & Tsapogas, 1972 131 English scholars Anti-African 2 0.11
Orpen & Tsapogas, 1972 131 English scholars Social Distance 0.05
Orpen & Van der Schyff, 1972 58 apprentices Anti-African 0.33
Orpen & Van der Schyff, 1972 98 students Anti-African 0.20
Ray, 1980 100 residents of Johannesburg Anti-Black 0.59
Duckitt, 1990a 217 Pietermaritzburg students Subtle Racism 0.69
Duckitt, 1990a 217 Pietermaritzburg students Anti-Black Attitudes 0.53
Duckitt, 1990a 217 Pietermaritzburg students Social Distance 0.56
Duckitt, 1990a 217 Pietermaritzburg students Modif. Soc. Distance 0.63
Duckitt, 1990b 303 Wits students Subtle Racism 0.63
Duckitt, 1990b 303 Wits students Modif. Soc. Distance 0.65
Duckitt, 1990b 303 Wits students Inter-racial Behaviour 0.36
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Following the 8-point Schmidt-Hunter model, an inspection of
Table 21.1 shows that we have completed steps 1 and 2. In addition,
step 3 is not required, since all studies report r. It should be pointed
out that although we have identified a fair amount of published
research in the area, it is not clear that this is an exhaustive list of
published research. We should try to satisfy ourselves that this is
the case. Furthermore, we have not identified any relevant unpub-
lished studies, and it is highly likely that there are many of these,
especially since studies that produce disconfirming evidence are
more likely to remain unpublished (see Rosenthal & Rosnow, 1991).

Step 4 requires us to calculate the mean value of the correlation
across studies, along with the variance of this value across studies.
Thus, 

r– � ( + + … + ) � 0.41

σ2
r � ( + + … + ) � 0.0375

303 × (0.36 – 0.41)2
���

3922
60 × (0.33 – 0.41)2
��

3922
60 × (0.23 – 0.41)2
��

3922

303 × 0.36
��

3922
60 × 0.33
��

3922
60 × 0.23
��

3922

In other words, the average correlation coefficient between authori-
tarianism and prejudice, across studies, is 0.41, and the variance of
this coefficient is 0.0375. This estimate of the variance may appear
small on inspection, but it is not: if we convert it to a standard
deviation, for example, the value becomes 0.194 (remember σ � �σ�2�).
If we construct an interval around the mean estimated coefficient of
two standard deviations (0.41 ± 0.38), we get (0.03; 0.79). (Remember
from normal distribution theory that approximately 95% of the
normal distribution is contained within two standard deviations of
the mean.) In other words, the observed correlations in South Africa
between authoritarianism and racial prejudice vary considerably. 
We should try to correct the variance estimate for artefactual error,
and see whether there is any room after that for partitioning by
moderator variables. 

First, we correct for sampling error:

est.σ2
r � 0.0375 – � 0.0375 – � 0.0324

We should at this point correct for measurement error and for
restriction of range. However, since it is an example, and we do not
have the estimates of measurement error, we will assume that we
have effected as much correction as we can for artefactual error, and
it is clear that a lot of variation in effect size remains, even after cor-
rection. (In practice we would definitely make a concerted effort to
find estimates of measurement error for authoritarianism and preju-
dice measures.)

20.07
�
3922

(1 – 0.412)229
��

3922

2
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We move to step 7 of the model. It is clear that there is a consid-
erable amount of variance around the mean estimate of the correla-
tion coefficient, so we need to look for moderator variables. We
have already coded the studies for some details, but in a more
detailed meta-analysis we would want to include additional infor-
mation about the studies. The most fruitful code to explore for pres-
ent purposes is probably the type of measure of racial prejudice
used in the studies, as Duckitt (1991) has argued that many of them
have poor psychometric properties. We therefore repeat steps 3 to 6
of the Schmidt-Hunter model for each distinct type of test, exclud-
ing two studies that used unique prejudice measures. The results
are reported in Table 21.2.

Table 21.2  Measures of race prejudice used in South 
African studies of the authoritarianism-racism
relationship

Prejudice measure r– est. σ2 k n

Anti-African 0.20 0.00 8 707
Anti-Black 0.49 0.002 4 514
Modified Social Distance 0.64 0.00 2 520
Social Distance 0.29 0.02 11 1 168
Subtle Racism 0.66 0.00 2 520

It appears from Table 21.2 that the correlation between authoritari-
anism and racial prejudice depends on the scale used to measure
racial prejudice. The correlation is highest when measured with the
Subtle Racism and Modified Social Distance scales, and lowest when
measured with the Anti-African and Social Distance scales. The cor-
rected variance around the estimated mean correlation suggests that
the variation in correlations from studies using the Social Distance
scale should be investigated further. We can do this by coding those
studies for additional characteristics, and re-running the meta-
analysis for sub-groups of studies. The corrected variance for studies
using the Anti-Black scale is small enough, on the other hand, for us
to accept the mean correlation and not investigate any further.

Worked example 2 (effect sizes)
Witnesses to crimes are often exposed to information regarding the
event some time after it has taken place. There is an obvious and
important question here, namely what effect this information has
on the original memory of the event. Applied cognitive psycholo-
gists have investigated this question for some 25 years with a
variety of laboratory experiments. These postevent information



where: ze and zc � the standard normal deviates (z-scores) 
for the experimental and control groups
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experiments show that information acquired after an event may
influence witness reports of the event. Where the information is
consistent with what originally happened, witness reports are usual-
ly more accurate than they would have been in the absence of this
information, and where the information is inconsistent with what
originally happened, the reports are usually less accurate. However,
there is considerable controversy in the literature, and findings
often differ quite dramatically. A review that delineates the clear
and unambiguous findings in the literature is of some value.
Tredoux (1989) attempted such a review, and reported a meta-
analysis. The details follow below.

Identification of Studies
A literature search of journals that report studies in English and that
are abstracted in Psychological Abstracts and the Social Sciences
Citation Index was conducted. Studies reporting experiments in
which postevent information was a stated concern were selected for
analysis. Of these studies, those that reported differences between
experimental and control groups in terms of proportions were
selected for the meta-analysis. Altogether 70 experiments were
selected for meta-analysis, from some 25 studies. (An experiment is
defined here as an experimental-control comparison.) 

An estimate of the effect of the experimental manipulation on the
proportions of experimental and control groups correctly complet-
ing the required task was calculated using probit transformations of
the difference between the two groups – i.e. by differencing the stan-
dard normal deviates corresponding to the proportions observed in
the experimental and control groups (Glass et al., 1981, p. 138).

d � ze – zc

Note that this way of indexing an effect is typically used when the
measured variable is a proportion. In the postevent information
experiments, the outcome measure is normally the proportion of
items or details remembered correctly, and the difference between
the proportions remembered correctly by the experimental and
control group is the key measure of the experiment.

The meta-analysis was conducted in a stepwise manner, break-
ing down sets of studies according to residual variance remaining
after the meta-analysis at the previous level. Unfortunately, only
correction for sampling error could be made, as the psychometric
properties of the measures used in postevent information studies
are not well enough documented to permit correction for measure-
ment error, or for restriction of range.



A total of 2 041 subjects was used in the 70 experiments. The mean
effect (d–) across studies was 0.581, and the variance of the observed
effects was 0.299. After correction for sampling error (which was 0.116),
the variance was 0.183. This ‘unexplained variance’ is high, and means
that the differences in effect sizes between studies are likely to be due
to real differences in the properties of the studies.

Accordingly, studies were coded to permit inspection of differences
between studies. Studies were coded on a total of 13 properties, but for
present purposes it is useful to note only the following codes:
1. The type of information manipulation – neutral (i.e. unrelated) vs

inconsistent, consistent vs neutral, or consistent vs inconsistent.
The key idea in a postevent-information (PEI) experiment is that
research participants first witness some event, and are then
given information that attempts to mislead them for the original
event information (e.g. they could be told that the man they 
say committed the crime was bearded, when he was in fact
clean-shaven). A second group of participants is either used as a 
no-treatment control (e.g. they are given neutral or irrelevant
information), or as a booster-control (e.g. they are re-presented
with the original information). Alternatively, the experimental
group can be treated as a booster-experimental group (i.e. they
are re-presented with the original information), and compared to
a no-treatment control group. 

2. Whether the experimental design used a paradigmatic or revised
experimental design. On the final test, in which participants are
tested for their memory of the original information, pairs of
items are presented to participants, and they have to choose the
correct option. Traditionally (or paradigmatically), an item from
the original event is paired with a corresponding misleading item,
e.g. participants are asked to declare whether the perpetrator had
a beard or was clean-shaven. However, it is also possible to pair
the original information with new (but feasible) information,
rather than with the misleading information. Thus, if witnesses
see a man wielding a screwdriver as a weapon, we could try to
mislead the participants to believe that the weapon was a knife,
but at test time we need not pair ‘screwdriver’ and ‘knife’, but
could instead pair ‘screwdriver’ and ‘chisel’, for example. The
difference is fundamental, and the subject of a substantial con-
troversy (see McCloskey & Zaragoza, 1985).

3. The type of questioning method on the final test – hypnosis-assisted,
verbal questioning, or strictly paradigmatic, i.e. as in the original
studies reported by Loftus. How you attempt to elicit informa-
tion from a witnesses is important, and may affect whether a
witness gives misleading testimony. In the so-called strictly para-
digmatic studies, the test is always a multiple-choice type pairing
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–
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σ2
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Figure 21.2 Meta-analytic categorisation of literature on the postevent information effect 
(until 1987)

of items, and participants have to choose the correct option. In
other studies, the final test may elicit information by hypnosis
interview, or by verbal questioning.

The meta-analysis then proceeded in a hierarchical fashion. In the
first step, the total set of studies was split into three subsets, namely
whether the postevent information was consistent, inconsistent, or
neutral with respect to the original information. As can clearly be
seen from Figure 21.2, the ‘Consistent’ and ‘Neutral’ manipulations
each boost performance relative to the ‘Inconsistent’ (misled)
manipulation, with the ‘Consistent’ manipulation boosting per-
formance over that of the ‘Neutral’ group. In the case of both the
‘Consistent’ and ‘Neutral’ manipulations, the variance in effect
sizes is quite small, and analysis ceased. In the case of the
‘Inconsistent’ (or ‘misled’) manipulation, the variation in effect size
is quite large, though, even after correction for sampling error. 

In the second step, the ‘Inconsistent’ studies were split into 
subsets of studies that either used the ‘Paradigmatic’ or ‘Revised’
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versions of the experimental procedure. Here, after meta-analysis is
again applied, it is clear that the two types of design yield very
different effect sizes, but it is also clear that both subsets of studies
must be explored further, as the residual variance in effect size is
still large (0.134 and 0.22).

In the third step, the ‘paradigmatic’ and ‘revised’ subsets are
themselves split up into subsets. In the case of the ‘paradigmatic
designs’, the subsets are created on the basis of the type of informa-
tion-eliciting method used in the final test. In the case of the revised
designs, the subset had become so small that it only made sense to
group a set of six experiments reported by McCloskey & Zaragoza
(1985), and to omit the rest. A meta-analysis of each of the four sub-
sets created at this level of the hierarchy showed that the ‘strictly
paradimatic’ designs produced an average effect size of 0.83, with
no or negligible residual variance. Similarly, the experiments
reported by McCloskey and Zaragoza produced a mean effect size
of 0.05, with no residual variance in effect size. The other two sub-
sets clearly require further exploration, as their residual variance is
relatively large, but we will not consider any analysis deeper than
this level of the hierarchy.

We can summarise the literature, and say that there seems to be
little doubt that the type of information presented at the second
stage of postevent information experiments has a strong effect on
the memory performance of witnesses. Where consistent informa-
tion is presented, memory is improved relative to controls given
neutral information, or to participants given misleading informa-
tion. These effect sizes differ, which leads one to the conclusion that
the effect of misleading information is linear (or at least monotonic):
as postevent information changes from misleading to neutral, and
finally to consistent, the corresponding memory performance
increases at each stage. More than this, it seems that the type of final
test used and the method of eliciting information in the test both
strongly affect memory performance. The differential size of the
effects is very striking: strictly paradigmatic designs produce effects
that are 0.78 larger than the revised designs of McCloskey and
Zaragoza. This is a considerable difference.

Box 21.1
Software for meta-analysis
The calculations for the Schmidt-Hunter model of meta-analysis are
comparatively straightforward, and there is no real need for sophis-
ticated software. You will find spreadsheet programs particularly
useful, though, since their tabular layout and easy sorting 
procedures are particularly well suited for Schmidt-Hunter meta-
analysis. For other models of meta-analysis, it is useful to consider
software options. At the time of writing, none of the major statistical



Conclusion
Proponents of meta-analysis have certainly made a strong case for
quantitative research review, and there is little doubt that meta-
analysis is becoming a favoured form of review in quantitative
research areas. This is not to say that meta-analysis is without critics,
though. As early as 1984, Hans Eysenck objected to the underlying
ideas, and re-named meta-analysis ‘mega-silliness’. His objections
(and those of other commentators) centred on the way in which
good quality studies are aggregated with relatively weak studies
(and given the same weight as them). For a long time, researchers in
the social sciences have stressed the point of carefully evaluating
study methodology, and have developed a formidable literature 
(see, for example, Campbell, 1988), but this is simply overlooked by
meta-analysts. A number of other criticisms are often made, includ-
ing that the goal of obtaining every study on a particular problem is
not feasible – given the file drawer phenomenon. We will leave you
to review this literature, and make up your own mind about the
feasibility of the enterprise. There is no doubt, though, that the point
of departure for meta-analysis – that narrative review methods are
unsuited to the task of dealing with large bodies of quantitative
research – is convincing, and many social scientists have been won
over to the meta-analytic way of deciding research questions.

Summary
1. Meta-analysis is the name given to a family of approaches that

attempt the quantitative review of research literature. We have
focused only on the Schmidt-Hunter model in this tutorial.
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packages (SAS®, SPSS®, Statistica®) offer explicit support, but there
are a number of specialised software packages. Here is a listing of
some of these, with Internet details.

EPIMETA http://www.cdc.gov/epo/dpram/epimeta/epimeta.
htm A meta-analysis package with an emphasis on
applications in epidemiology

METAWIN http://www.metawinsoft.com A meta-analysis pack-
age that allows you to specify different underlying
statistical assumptions

DSTAT email: orders@leahq.mhs.compuserve.co An early
and simple implementation of the Schmidt-Hunter
model of meta-analysis

ABMA email: orders@leahq.mhs.compuserve.co A revised
and more sophisticated version of DSTAT



2. The key idea underlying meta-analysis is that differences in
findings produced by different studies are due to both substan-
tive differences between the studies, and artefactual differences.
The key goal of meta-analysis is to partition the variance (in the
‘common statistic’) into sources that are artefactual and sources
that are substantive. 

3. There are four major steps in the Schmidt-Hunter model:
a) Code and transform. We identify and collect the population of

studies on a particular topic, including as many unpublished
studies as possible. Studies are then coded for potential
moderator variables. A ‘common statistic’ is chosen, and each
study’s finding is transformed to this statistic.

b) Estimate overall mean and variance. We find the weighted mean
and variance of the common statistic.

c) Correct estimates for artefactual error. We reduce the variance of
the common statistic by the amounts attributable to sampling
error, measurement error, and restriction of range.

d) Partition by moderator variables. We follow a hierarchical heuris-
tic, applying meta-analysis to progressively deeper subsets of
studies, formed according to moderator variables.

Exercises
1. The table below contains data for a set of studies which have

examined the relation between marital communication and mar-
ital satisfaction (the column labelled ‘r’ has entries of correlation
coefficients). A number of other variables are included, since
they may moderate or mediate the correlation in question.
Examine the data, and provide a narrative review of this set of
studies. Then conduct a meta-analysis of the set of studies. Do
the conclusions of the meta-analysis agree with the conclusions
drawn in your narrative review?
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Study n r Gender Class Race Language Married
with ANC

1 19 0.52 m 2 w African Y
2 30 0.45 m 1 w African N
3 58 0.3 m 1 w African Y
4 20 0.36 m 1 w African N
5 25 0.26 m 1 w English Y
6 26 0.53 f 2 b English Y
7 62 0.45 f 2 w English N
8 58 0.33 m 2 w English N
9 71 0.18 f 2 w Afrikaans N
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Study n r Gender Class Race Language Married
with ANC

10 19 -0.02 m 1 b Afrikaans Y
11 25 0.56 m 2 c English Y
12 22 0.55 f 1 b English N
13 46 0.41 f 1 w African Y
14 69 0.44 f 2 w English N
15 30 0.22 m 2 w African Y
16 72 0.32 m 2 c African N
17 60 0.44 f 2 c African N
18 23 0.50 f 1 w African Y
19 55 0.32 m 1 w African
20 19 0.19 f 1 b Afrikaans N
21 23 0.14 m 1 b Afrikaans Y
22 44 -0.100 m 1 w Afrikaans N
23 20 0.46 f 1 b English N
24 59 0.43 f 2 w African N
25 28 0.54 f 1 w African Y
26 28 0.09 f 2 w Afrikaans N
27 69 0.31 f 2 w African N
28 29 0.10 m 1 w Afrikaans N
29 67 0.34 m 2 w African N
30 26 0.31 f 1 c English Y

2. Consider the data in the table below, which is taken from a meta-
analysis reported by Darlington et al. (1980). 

Darlington et al. examined the short-, medium-, and long-
term impact of pre-school programmes on competence of
school-children in low-income areas. The key outcome variable
was the proportion of pupils who failed to meet the require-
ments for admission to a higher grade. Conduct a meta-analysis,
and decide whether the accumulated data show any support for
the programme intervention. 

Note: ANC = ante-nuptial contract

Study n Experimental Control
proportion proportion

1 82 0.38 0.61
2 55 0.32 0.47
3 221 0.55 0.76
4 123 0.61 0.83
5 69 0.50 0.54
6 127 0.56 0.78
7 125 0.89 0.79
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Statistical reasoning

Ingrid Palmary and Kevin Durrheim 

•••••••••••
At the end of this tutorial, you should be able to: 
• Select appropriate statistical tests to analyse

different types of data.
• Understand the difference between brash and

stuffy approaches to data analysis.
• Provide a reasoned defence of your statistical

choices.

So far, each tutorial in this book has focused on a single statistical
procedure, considering when the procedure is appropriate and
showing how to calculate the statistics. In real-life statistical analysis,
however, as well as in examinations, the most difficult task is select-
ing the appropriate statistical procedure. With some experience and
practice, the mechanics of doing statistical analysis – especially 
with a computer – are relatively straightforward. The difficulty, 
when faced with a dataset, is deciding on the appropriate statistical
procedure to employ. In this chapter we consider some basic rules-
of-thumb for selecting appropriate statistical procedures. This is
done in two stages. First, a decision-making tree is presented which
provides a set of rules for selecting appropriate statistical procedures.
Next, we argue that the decision-making tree is only of limited value
because it is often the case that different approaches can be used to
make sense of data, sometimes leading to different conclusions. The
main theme of this chapter is that doing statistical analysis is an exer-
cise in careful decision-making and principled argument.
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A data set can often
be analysed with

different procedures,
sometimes leading to
different conclusions.



S Gender Age School C1 C2 C3 Csum A1 A1r A2 A3 Asum Matric

1 1 18 3 0 1 1 2 5 1 1 1 3 71
2 1 18 3 1 0 0 1 2 4 3 3 10 69
3 1 19 3 3 4 4 11 1 5 2 3 10 32
4 0 18 2 1 0 2 3 6 0 2 1 3 59
5 0 25 1 4 3 2 9 3 3 4 6 13 45
6 0 18 2 1 0 2 3 6 0 0 0 0 68
7 1 30 2 3 2 4 9 6 0 1 2 3 41
8 1 18 1 0 1 3 4 4 2 2 3 7 59
9 1 17 3 2 3 4 9 3 3 3 3 9 41
10 0 27 3 0 0 0 0 0 6 6 6 18 84
11 1 18 1 0 1 1 2 2 4 1 3 8 65
12 0 25 1 0 0 1 1 0 6 4 6 16 58
13 0 18 2 3 2 4 9 6 0 1 3 4 37
14 1 23 2 3 2 4 9 3 3 2 3 8 42
15 0 19 2 0 2 2 4 4 2 0 0 2 55
16 1 18 3 2 0 2 4 0 6 3 3 12 59
17 1 18 3 1 2 2 5 4 2 3 1 6 68
18 1 18 1 0 2 4 6 5 1 3 0 4 52
19 0 19 1 2 3 2 7 6 0 0 3 3 53
20 0 18 3 3 2 3 8 0 6 4 5 15 39
21 0 21 2 0 0 0 0 0 6 5 3 14 77
22 0 42 1 0 3 2 5 1 5 1 1 7 56
23 1 20 3 0 0 0 0 2 4 3 2 9 32

Asum � a composite of items A1–A3, measuring authoritarianism; Csum � a composite of items C1–C3, a measure of
conservatism.

By now you should recognise that a mass of numbers arranged
in a data matrix is the basic raw material used in statistical informa-
tion processing. The aim of statistical analysis is to find meaning in
the seemingly chaotic arrangement of numbers. Consider the data
matrix in Figure 22.1, which contains the scores of 23 subjects on 
12 variables. The original study from which the dataset was taken
sought to examine whether there was a relationship between con-
servatism, racism, and matric results among learners from three dif-
ferent schools in the Eastern Cape. The original data matrix was
made up of the responses of 107 subjects on 56 variables. If the num-
bers in rows and columns in this small matrix appear a confusing
and meaningless jumble, you can imagine the complexity and
apparent chaos of the original dataset, and other large datasets that
consist of thousands of subjects and hundreds of variables. 

The magic of statistical analysis lies in its power to detect mean-
ing and order in this apparent complexity and chaos. This is done
principally by describing the distributions of the variables and
identifying patterns of covariance – that is, relationships – between
variables. With the numerical processing power of inexpensive
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Figure 22.1 Data matrix from study investigating the relation between conservatism, 
authoritarianism, and matric results

The aim of statistical
analysis is to identify
patterns in a matrix

of raw data.

To detect meaning in
a data matrix,

describe the 
variables and deter-

mine associations
between variables.



technology, it has also become relatively easy to do statistical analy-
sis. The mechanics of pulling down windows and generating statis-
tical output are not at all complicated. The art is in knowing which
windows to pull down, which analyses to perform, and how to
skillfully interpret the output. Analysing statistics is like doing
detective work, where ‘the investigator must solve an interesting
case, similar to the “whodunnit” of a traditional murder mystery,
except that it is a “howcummit” – how come the data fall in a par-
ticular pattern’ (Abelson, 1995, p. 14). In making sense of data
matrices such as that in Figure 22.1, the analyst is doing more than
crunching numbers on a computer. The work of statistical analysis
is guided continually by reasoned decision-making, while striving
for accuracy, economy, and elegance of analysis.

Rules for making statistical decisions

Getting a feel for the data
The first step in data analysis, after the dataset has been constructed
and properly cleaned, is to get a feel for the data. The analyst can
only make reasoned decisions about which statistical procedures to
use after she or he has a clear picture of the type and nature of the
variables in the dataset. This initial scanning of the data involves
three operations. 

Defining variable type
Each variable should be examined to determine its scale or level of
measurement (see Tutorial 1). Is the variable discrete (categorical) or
continuous? Is the variable
measured on a nominal,
ordinal, interval, or ratio
scale of measurement? The
type of variable that we are
working with has an impact
on the kind of descriptive and inferential statistics we can perform
with the variable. Procedures such as frequency counts and bar
charts are used to describe discrete variables, whereas means, stan-
dard deviations, and histograms are used to describe interval and
ratio data. Similarly, the variable type will determine whether we
employ parametric or non-parametric inferential tests.

Describing the variables 
Once we know the type of variables we are working with, we are
well placed to gain a greater familiarity with the data by describing
each variable. The most useful descriptive statistics to generate for
continuous and interval variables are means, standard deviations,
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Refer to Figure 22.1. Identify the
scale of measurement of each vari-
able, and decide whether each
variable is discrete or continuous.

Activity 22.1

The scale of
measurement of a
variable determines
the kind of descrip-
tive and inferential
statistics that can be
conducted with the
variable.

After collecting data:
1. create a data

matrix, and
2. clean the data by

identifying data
entry errors.



ranges, and graphical displays (e.g. boxplots, or histograms). These
will give you an idea of how the sample scored on a variable (e.g.
high or low mean, within a wide or narrow range of scores),
whether the distribution of scores is skewed or symmetrical, and
whether there are any significant outliers. This information is useful
later in deciding whether the assumptions of inferential tests have
been met. Categorical or discrete variables are described by means of
frequency tables and bar charts to determine the number or propor-
tion of subjects in each category. Frequency tables should be studied
to determine whether any categories are very small, or whether the
sample is roughly equally distributed across the categories.
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Refer to Figure 22.1. Describe each of the variables in the dataset. Are
there any interesting features of the data that you should bear in mind
when doing inferential statistics and when interpreting the output?
Refer to the discussion in Tutorials 2–4.

Activity 22.2

Refer to Figure 22.1. Were any of the items for conservatism and
authoritarianism reverse scored? Conduct item analyses on the
conservatism and authoritarianism items. Do you think the scales have
been properly calculated? Define the measurement scale of each vari-
able, and generate descriptive statistics for each variable.

Activity 22.3

Only once the researcher has developed a close feel for the data
should inferential statistics be undertaken. A keen sense of the type
of data we are working with is essential for making informed
decisions about the type of statistical procedures to employ, and
will guide the interpretation of the results. 

Selecting the appropriate inferential test
The second stage of data analysis involves selecting and conducting
appropriate inferential procedures. Although it is possible that
different procedures can be used to analyse the same data, as will be
shown later, a set of rules should guide our decision-making at this
stage. These rules are set out in Figure 22.2.

Describe variables by
commenting on the
shape, central ten-

dency and variability
of the distributions.

Computing scale scores
At this early stage in the analysis, summed scale scores should be com-
puted. Responses to items that make up measurement scales should be
reverse scored where necessary, item analysis should be conducted, and
then the items summed to form composite variables. Composite scores
for the three item measures of conservatism and authoritarianism have
been calculated for the data in Figure 22.1. Once sound composite meas-
ures have been constructed, we should define the type and nature of
each variable by identifying its measurement scale and generating
descriptive statistics. (For a discussion of these issues, see Tutorial 12)
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Parametric
tests

one-sample
z-test

one-sample
t-test

2 sample
t-test

one-way
ANOVA

repeated measures
ANOVA

factorial 
ANOVA

related samples t-test;
difference scores

Non-parametric
tests

Mann-Whitney Kruskal-
Wallis

FriedmanWilcoxon

µ known
σ known

µ known
σ unknown

1 sample
repeated
measures

2 samples
independent

measures

1 IV and 1 DV
repeated
measures

1 IV and 1 DV
independent

samples

more than 1 IV, 
1 DV factorial

design

1 mean 2 means more than 2 means

Tests on means

DifferencesRelationships

Research question Tests on arrays of frequencies

Interval/continuous Nominal/categorial

Type of data
Level of measurement

Regression/Correlation

Chi-square

Figure 22.2
Rules for selecting appropriate inferential procedures



Type of data 
The first decision to make is whether we are working with categorical,
interval, or continuous data. If we have categorical variables, an
appropriate test of association is chi-square. If we want to determine
whether gender and school are independent in the data in Figure 22.1,
we would cross-tabulate these two variables, and determine whether
the χ2 statistic is significant. On the other hand, for continuous and
interval variables, we need to make further decisions before selecting
the appropriate inferential procedure.

Type of research question
Research questions may be broadly divided into two kinds: we
may either be looking for relationships between variables, or for
differences between means. If the data consists of two or more
continuous variables, such as conservatism, authoritarianism, and
matric results (see Figure 22.1), correlation and regression analysis
is appropriate. Correlations are used to determine whether two
variables are related, while regression is used to determine whether
predictor variables are related to dependent variables. If, on the
other hand, our independent variables are categorical and our
dependent variable is continuous, the aim of the analysis is to
determine whether the subjects in the different categories have
different mean scores on the dependent variable. In this situation,
there are a number of procedures available, depending on the
number of means.
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The number of
means being com-

pared and the rela-
tionship between the

means (dependent
or independent

scores) determine
which inferential test

should be used.

To analyse the relationship between conservatism, authoritarianism,
and matric results in Figure 22.1, first generate a correlation matrix to
determine the bivariate associations between the variables, and then
perform a multiple regression analysis to determine the regression 
of matric results on conservatism and authoritarianism. Evaluate
whether the regression is satisfactory (i.e. examine its strength, and 
significance).

Activity 22.4

Decide whether you
want to investigate

relationships
between scores, or 
group differences.

One mean
In some situations, the aim of the analysis is to determine whether
an obtained mean differs from some criterion. For example, we may
want to know whether the mean matric result for our sample differs
significantly from the mean matric result for the whole country. In
these cases we use either the one-sample z- or t-test. If we have the
population standard deviation, the z-test is appropriate, but if we only
have the sample standard deviation, and have to use this as an esti-
mate of the population standard deviation, the t-test is appropriate
(see Tutorials 7 and 9).



Two means
If we want to determine whether two means differ significantly from
each other, the appropriate test is determined by the nature of the
relationship between the two means. If the means are independent – i.e.
they are derived from different samples – an independent samples 
t-test is used for parametric data, and the Mann-Whitney test is used
for non-parametric data. If the means are related – i.e. if both means
come from the same subject – a related samples t-test is used for para-
metric data, and a Wilcoxon test is used for non-parametric data.

Multiple means
Here too, the kind of test to use is determined by the nature of the
relationship between the samples. For dependent or related samples,
repeated measures ANOVA is used for parametric data, and the
Friedman test is used for non-parametric data. If the samples are
independent, the appropriate test is determined by the number of
independent variables. If we have one independent variable, one-
way ANOVA is used to analyse parametric data, and the Kruskal-
Wallis test is used to analyse non-parametric data. If there are multi-
ple independent variables, factorial ANOVA is used for parametric
data and series of one-way Kruskal-Wallis tests are used to analyse
non-parametric data.
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Refer to Figure 22.1. Conduct a series of statistical analyses to deter-
mine whether there is an association between:
a) gender and matric results
b) gender and C1
c) school and authoritarianism
d) school and A2
e) school, gender and A3
f) school, gender and matric results
g) matric results for this sample, and the national mean of 48%.

Try to do each analysis in more than one way.

Activity 22.5

It is of the utmost importance that you know how to use the decision-
making tree presented in Figure 22.2. It is no use merely learning the
tree by heart. You need to practise using the tree until the decision-
making process becomes second nature. In this regard, you will find
the exercises at the end of the tutorial invaluable.

Defending statistical decisions
While the rules discussed above are necessary for selecting appropri-
ate statistical procedures, they are not sufficient. Statistical analysis

Only by practice will
you learn the appro-
priate use of the
different statistical
tests.



is not simply a rule-following activity. Creativity is required to pro-
duce economical, information-rich, and elegant results. The reason
for this is that there is often more than one way of analysing a par-
ticular set of variables. Different procedures will sometimes yield
the same results, but will sometimes yield different results. The skill
of analysis lies in selecting procedures that best answer the research
question at hand, and then defending these selections in a written
report of the analysis.

Variability in outcome and procedure
The problem with the decision tree reported in Figure 22.2 is that it
gives the impression that there is only one correct way of analysing
data. One of the most basic distinctions in the tree is between statis-
tics that can be used for analysing relationships and statistics that
can be used to test for differences between means. The distinction
between these two forms of analysis does not stand up to close
scrutiny. If group means – e.g. male and female – differ on a variable
– e.g. Matric results – it is obvious that there is a relationship
between the variables Gender and Matric results: the data are so
patterned that an individual’s score on one variable is related to his
or her score on the other. 
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Correlation Coefficients

MATRIC 
GENDER –.1691 

(   23)
P � .440 

t-tests for Independent Samples of SEX

Variances t-value df 2-Tail Sig SE of Diff CI for Diff

Equal .79 21 .440 6.079 (–7.861, 17.422)
Unequal .79 20.79 .441 6.081 (–7.875, 17.435)

Statistical analysis
should produce eco-

nomical, information
rich, elegant results.

Figure 22.3 SPSS® output for equivalent tests on the data of Figure 22.1

The SPSS® output in Figure 22.3 shows that correlation analysis and
the t-test can yield the same results. Both analyses were performed
to test whether the Gender and Matric results were related. As you
can see, the two analyses are equivalent. The p-values are precisely
the same (p � 0.440), and thus lead equally to the same conclusion
not to reject the null hypothesis. 

If two different procedures lead to the same results, on what
basis can we select one above the other? It all depends on the nature

You must always
defend your statisti-
cal decisions in your

research report.



of your research question, on the reasons why you are doing the
analysis, and on the other analyses that you are conducting. If the
main purpose of the analysis is to scan a number of variables for
association, correlation analysis would be sufficient. Correlation
analysis is more economical than analysis by t-test. You can scan a
large correlation matrix in a matter of seconds and have an idea of
the strength and nature of association between variables. It is often
useful therefore to use correlation analysis in early or exploratory
analyses of large datasets. On the other hand, if gender differences
are a central concern of the research, a t-test would be more appro-
priate, because it tests group mean differences.

Different procedures can be legitimately used for the same
analysis, and yield different results. Figure 22.4 reports the results
of two different ways of investigating the relationship between the
variables, School and Authoritarianism (Asum). First, a one-way
ANOVA was used to determine whether there was a significant
effect. The results indicate that there is no significant effect at the 
� � 0.05 level of significance. Normally we would terminate the
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In situations where
there is more than
one way of analysing
data, the appropri-
ate statistical proce-
dure will depend on
the nature of the
research question.

ANALYSIS OF VARIANCE
Source of Sum of Mean Sig
Variation Squares DF Square F of F

Main Effects 114.159 2 57.079 2.693 .092
SCHOOL 114.159 2 57.079 2.693 .092

Explained 114.159 2 57.079 2.693 .092
Residual 423.841 20 21.192
Total 538.000 22 24.455

t-tests for Independent Samples of SCHOOL
Variances t-value df 2-Tail Sig SE of Diff CI for Diff

Equal 1.37 12 .197 2.508 (–2.037, 8.894)
Unequal 1.37 12.00 .197 2.508 (–2.037, 8.894)

t-tests for Independent Samples of SCHOOL
Variances t-value df 2-Tail Sig SE of Diff CI for Diff

Equal –.84 14 .413 2.298 (–6.864, 2.991)
Unequal –.84 12.72 .418 2.312 (–6.942, 3.069)

t-tests for Independent Samples of SCHOOL
Variances t-value df 2-Tail Sig SE of Diff CI for Diff

Equal –2.33 14 .035 2.303 (–10.305, –.425)
Unequal –2.31 12.68 .038 2.319 (–10.388, –.342)

Figure 22.4 SPSS® output for ANOVA and t-test analysis



analysis here, and not reject the null hypothesis. Conducting a
series of t-tests would increase the familywise error rate, and
increase the probability of making a Type I error. Next, Figure 22.4
reports the results of three t-tests. Although the omnibus F-test was
not significant, note that the third test, for differences between
School 2 and 3 is significant at � � 0.05. In this instance we would
reject the null hypothesis and conclude that there is a difference
between the authoritarianism (Asum) scores of subjects from School 1
and School 2.

Using different analytic procedures on exactly the same data, we
arrive at two different conclusions. Which is the best? Once again, it
depends on your research question. If you have a general interest in
the relationship between school and authoritarianism, it would be
best to conduct an ANOVA. This would protect against increased
familywise error rate and provide conclusions we can have confi-
dence in. However, as we have seen, this may hide small differences
between groups. If you especially want to look for differences
between School 2 and School 3 – perhaps you suspect differences
because School 2 is an elite urban school while School 3 is an impov-
erished rural school – it would be perfectly legitimate to conduct
this single t-test to confirm your suspicions, as long as you conduct
only this test, and not the overall ANOVA, or the other two t-tests.
This is what is called a planned comparison.

The main purpose of statistical analysis is to reveal interesting
patterns in a dataset in the most economical and information-rich
way. We should not be constrained by a rigid set of rules, but should
adapt the type of analysis we use to the purpose of the analysis. Of
course, it is of the utmost importance that we do not use incorrect
procedures, which produce false or misleading results. If you 

do use a non-standard type of
analysis, it is very important
to explain why the procedure
has been used, and argue why
it is appropriate. 

Defensible reasoned argument
In selecting one statistical procedure over another, the researcher
has some influence over the findings that do or do not emerge from
a study. Statistical analysis therefore involves reasoned decision-
making. The researcher must choose tests wisely, give reasons why
certain tests were selected in favour of others, and interpret the
results in a way that makes sense to others working in the area. 

According to Abelson (1995) there are two opposing approaches
to statistical analysis: the brash approach and the stuffy approach.
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Use SPSS® to re-run the analyses
reported in Figure 22.3 and
Figure 22.4. (Use the data in
Figure 22.1)

Activity 22.6

Applying different
statistical procedures

to the same data
can produce consis-
tent or inconsistent

results.



Researchers adopt a brash approach when they employ analytic
strategies that increase the likelihood of rejecting the null hypothe-
sis. For example, instead of conducting an F-test, a brash researcher
would conduct a number of t-tests, with increased familywise error
rate increasing the probability of falsely rejecting at least one null
hypothesis. In contrast to the brash approach, the stuffy approach
involves an overly conservative approach to analysis, employing
procedures that decrease the likelihood of falsely rejecting the null
hypothesis. For example, a stuffy researcher would refuse to use
t-tests to examine differences between theoretically interesting
groups when the F-test is not significant. This could lead the
researcher to conclude that there are no significant group differ-
ences, when there may in fact be differences between the means of
select groups. The brash approach thus makes liberal use of data,
rejecting the null hypothesis on the basis of relatively weak evi-
dence in the data, whereas the stuffy approach is conservative, only
rejecting the null hypothesis in the light of very strong evidence.
Box 22.3 summarises Abelson’s rules for brashness and stuffiness. 
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The researcher has
influence on the
actual findings that
do or do not emerge
from a study – either
by the statistical pro-
cedures employed or
the interpretation of
the results.

Rules for brashness
1. Use a one-tailed test.
2. When there is more than one

test procedure available, use
the one producing the signif-
icant result(s).

3. Either include or exclude
outliers from your data,
depending on which works
better.

4. Use the ‘hocus-focus’ trick,
i.e. when several outcomes
are tested simultaneously,
focus on the one(s) with the
best p-value(s).

5. State the actual p-value but
talk around it.

Rules for stuffiness
1. Never use one-tailed tests.
2. Only use a single, predeter-

mined analysis for any data-
set.

3. Never exclude outliers.
4. Avoid special focus on any

particular result, especially if
it is favourable.

5. Stick strictly to a fixed sig-
nificance level, for example,
0.05, and make no distinc-
tions between outcomes that
nearly beat it (e.g. p < 0.06)
and those far from signifi-
cance.

Abelson’s rules for brashness and stuffiness

Consider Abelson’s rules for brashness and stuffiness. For each rule,
explain why the brash approach provides a liberal test of the null
hypothesis, and the stuffy approach provides a conservative test of the
null hypothesis.

Activity 22.7

Box 22.1

Abelson recommends that researchers should strive for a middle
ground between approaches that are brash (overly liberal use of the



data) or stuffy (overly conservative use of the data). Instead of adopt-
ing either one or the other approach, statistical procedures should be
used flexibly, i.e. in a manner that allows the researcher to detect the-
oretically important significant differences if they exist, but does not
force the data to reveal ‘significant effects’ that are chance events. If
researchers adopt this flexible approach, Abelson suggests that their
decision-making should be guided by defensible reasoned argument
(see Box 22.2). It is fine to employ procedures that lean either towards
brashness or stuffiness, as long as you can provide good reasons for
your choices. Most often, these reasons depend on your research
question – on what you are trying to find. If you have a specific theo-
retical interest in the differences between two group means, you can
justify selecting the t-test over the F-test. If you anticipate the way in
which the means differ, you can justify using a one-tailed test.
However, if you are merely ‘scoping’ a large dataset, looking for pat-
terns of difference, you would need to use relatively conservative,
stuffy rules, to produce results that will be believable. Statistical
analyses that are believable contain high-quality evidence with size-
able, well articulated, and general effects.
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To test whether you
are adopting a

defensible, reasoned
argument, ask

yourself whether
somebody who has

taken a different
approach to you

would be convinced
of the validity of your

approach.

Rules for a defensible reasoned argument
1. Decide on one-tailed, two-tailed, or lopsided tests.
2. Decide on which test to apply to the data.
3. Choose between different calculation formulas.
4. Determine your error rate.
5. Present your findings in an interesting way.

Box 22.2

Use procedures that
allow you to detect
theoretically impor-

tant differences if
they exist, but that

do not force data to
reveal ‘significant

effects’ that are
chance events.

1. Decide on one-tailed, two-tailed, or lopsided tests
Suppose we use a t-test to determine whether learners from rural
schools perform less well in matric final examinations than learners
from urban schools. We find that p � 0.055. Should we reject the
null hypothesis or not? It depends on whether you are using a one-
or two-tailed test. A two-tailed test with � � 0.10 will have a critical
region with p � 0.05 in each tail, leading to the conclusion not to
reject the null hypothesis. In contrast, we would reject the null
hypothesis if we used a one-tailed test with alpha set at 0.10, with 
p � 0.10 in one tail (see Tutorial 8). In this situation it would be lib-
eral (brash) to reject the null hypothesis and conservative (stuffy)
not to. Which approach we follow depends on what we already
know before conducting the analysis. We would be justified in
using a liberal approach if there was (1) a strong theoretical argu-
ment or (2) previous statistical evidence that the results of the study
were likely to fall only in that tail of the curve. For example, there is
much evidence that indicates that learners from rural schools obtain
lower matric results than learners from urban schools; and this

Always provide 
reasons for your 

statistical choices.



observation is supported by theory: that rural schools are poorly
resourced, and have higher student:teacher ratios than urban
schools. In cases such as this, we can justify adopting a liberal
approach to the data. In contrast, if we do not have firm expecta-
tions about the outcome of a statistical test, it would be better to
adopt a more conservative approach, using two-tailed tests, and
only rejecting the null hypothesis if the evidence for this is strong.

The problem that immediately presents is ‘What happens if the
results fall into the “wrong” tail’? What if we find that the rural school
sample has a higher mean matric score than our urban school sam-
ple? If we were to make this discovery after using a one-tailed test
with � � 0.05, and then switch to a two-tailed test, we would then
have a 5% region of rejection in one tail and a 2.5% region of rejection
in the other tail. In sum, then, our significance level would be
increased to � � 0.075. A compromise would be to use what is known
as a lopsided test. This would involve having a rejection region of 5% in
the expected tail and a very small 0.5% in the wrong tail (see Figure
22.5). This means that we would reject the null hypothesis in the
‘wrong’ tail only in the light of very strong evidence. The overall
probability of rejecting a true null hypothesis is 0.055, which is defen-
sibly close to our accepted two-tailed region of rejection (i.e. 0.05).
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0.945Rejection
region

Rejection
region

0.5 0.05

x=

Figure 22.5 Examples of a setup for a ‘lopsided’ significance test

The tailedness of the
test is determined by
what we already
know about the
effect – i.e. from the
literature.

Very strong evidence
and a conservative
or stuffy approach is
needed to support
unexpected findings.

2. Decide on which test to apply to the data
Often more than one test can be applied to the same data. How do we
choose which test is appropriate, given that there is seldom a ‘right’
test? To simply choose the one that leads to a significant result would
be tempting, but brash. The decision-making tree in Figure 22.2
should guide test selection, but there are two other considerations:
a) Expectations. Our research questions are informed by theory

and/or previous empirical research. If you have strong expecta-
tions about the outcome of an analysis – e.g. which means will
differ, and the direction of the differences – a more liberal
approach is appropriate. Because of the strong expectations, we



would need less strong evidence from the data to convince other
researchers that our conclusions are sound. For example, in the
analysis reported in Figure 22.4, we would be justified in using
the more liberal t-test only if we have specific expectations about
the difference between these two groups.

b) Properties of the data. Numerous properties of the data influence
test selection. Parametric tests are most powerful, but they can
lead to incorrect conclusions if applied to data that do not satisfy
certain assumptions. For example, there has been much debate
about whether a lack of normality should lead one to use the
non-parametric equivalent of the independent samples t-test.
The Mann-Whitney test uses ranks rather than the original pro-
blematically distributed scores, but is has less power than the 
t-test. Since the t-test is quite robust to threats to normality, we
may choose to use this more powerful parametric statistic.
However, in situations where data is very skewed, the Mann-
Whitney would be preferred. 

3. Choose between different calculation formulas
Several tests exist as a set of variants which can be used for similar
purposes. For example, there are many variants of multiple compari-
son tests. Some of these procedures (e.g. Tukey’s HSD) are more con-
servative than others (e.g. Fisher’s LSD). Choosing between different
calculation formulas is similar to choosing between different tests.
The appropriate test depends on the expectations we have about the
outcome of the test before we do the analysis. If we have strong theo-
retical and empirical grounds for expecting particular group means
to differ, we may use more liberal calculation formulas that increase
the likelihood of rejecting the null hypothesis. However, if we have
no prior expectations about the nature of group mean differences, we
would select more conservative tests.

4. Determine your error rate
The increased Type I error rate produced by conducting multiple
inferential tests is one of the biggest problems facing data analysts. If
enough tests are conducted, we are bound to find a ‘statistically
significant’ pattern that is in fact just a random outcome. If we
conduct 100 inferential tests all with � � 0.05, we expect five tests to
be significant even where there are no significant relationships or dif-
ferences between variables. Where we are conducting numerous
inferential tests, it may be wise to adopt a more conservative
approach, setting the alpha level slightly lower. On the other hand, we
would not want to adopt an overly conservative approach that could
lead us to miss something genuinely significant in the data. We must
strive for a middle path, adjusting our error rate, at the start of the
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The more confident
you are about the

outcome of the
analysis, the more

brash you can be. Of
course, you need to
give good empirical

or theoretical
reasons for your

confidence.

Adopt a conservative
approach when

conducting numerous
test – e.g. when you

are ‘scoping’ your
data.



data analysis, to the number of tests we expect to conduct. If you are
conducting multiple inferential tests, you could adopt a more conser-
vative approach by setting your alpha level at 0.01. Whatever you
decide, always report exact p-values (provided by SPSS®), as this
allows the reader to judge your conclusions for themselves.

5.  Interesting and credible presentation
Writing up the results of the analysis is an integral part of doing
statistics. Here too the researcher has an influence on what does and
does not look significant in the data. The brash approach would be
to interpret only the statistics that are significant, and support your
expectations. We could use what Abelson calls the hocus-focus trick
by focusing only on particular significant findings and making mar-
ginal findings seem significant. For example, a result that is 
not significant at 0.05 may be reported as ‘being significant at the
0.07 level’, or ‘being marginally significant (p � 0.07)’. This liberal
approach would be very interesting but somewhat misleading. A
conservative approach might report all significant p-values with
equal weighting but not examine the effect sizes associated with the
significant findings. While this would not be misleading, it would
also not be very interesting. There is an art to finding a meaningful
pattern of associations in the dataset, and then making this the cen-
tral theme of the write-up. The researcher emphasises especially
interesting and important findings, while also presenting findings
that are non-significant and/or disconfirming. This will ensure that
the presentation is both interesting and credible.

Sometimes it makes no difference which alternative test or
formula you use, what the error rate is, or how you report your
results. Sometimes, however, it can make a huge difference. Where
it does, the credibility of your statistical argument will depend on
reasoned decisions that you make. Where choices between alterna-
tives do exist, we can adopt either a conservative or liberal
approach. The advice is simple. Be your own toughest critic. Know
your data and be alert to any factors that make the above decisions
necessary. Above all, when writing up the results of the analysis,
clearly state your rationale for any decisions that you have made.

Conclusion
One of the most difficult aspects of doing statistics is selecting the
appropriate statistical procedures to make sense of the data. This is
partly a problem of rational decision-making. Certain tests can only
be used if certain specified conditions hold. If you use the incorrect
test, your conclusions will be wrong. The decision tree in Figure
22.2 will assist you in selecting the correct test. However, there is
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When reporting your
statistical analyses,
first provide a state-
ment and a defence
of the procedures
used.

Always report exact
p-values and effect
sizes.



more to selecting appropriate statistical procedures than using the
decision tree. Often multiple methods can be used to analyse the
same data. Sometimes these lead to similar conclusions, but some-
times they do not. In these situations we should follow Abelson’s
advice. We should avoid committing to either a brash or a stuffy
approach, and rather make flexible use of approaches that best suit
our data, whether they be conservative or liberal.

Worked example
The South African October Household Survey uses a nationally
representative sample of all South Africans to gain social statistics.
Figure 22.6 provides a sample of 20 cases and ten variables from the
survey. We are presented with the data and asked to analyse it. You
will need to attempt an analysis of this dataset before reading the
following commentary.

Before conducting inferential statistics, the variables must be
defined and described. Region, gender, race, and language group
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Yrs Mother %
Subject Region Gender Race Lang Age educ educ Income income

1 2 1 1 1 61 12 8 97 12
2 2 2 1 2 32 20 20 220 19
3 1 1 0 2 35 20 16 130 4
4 2 9 2 2 26 20 20 350 18
5 2 2 1 4 25 12 6 78 5
6 1 2 0 7 59 10 8 65 22
7 1 1 1 7 46 10 8 115 0
8 2 2 0 7 99 16 5 160 1
9 2 2 2 7 57 10 6 140 0

10 2 2 1 1 64 14 8 180 7
11 1 2 1 6 72 9 12 55 3
12 2 1 0 2 67 12 8 13 8
13 1 2 0 1 33 15 11 180 10
14 1 2 2 2 23 14 12 97 13
15 2 2 2 7 33 12 12 50 3
16 2 1 2 6 59 12 8 12 0
17 1 2 0 4 60 14 6 97 2
18 1 1 2 6 77 9 0 82 8
19 2 2 0 12 52 14 8 145 11
20 1 1 3 5 55 7 98 48 9

Region: urban (1) rural (2); Gender: female (1) male (2);  Race: black (0) white (1) coloured (2) Indian (3); Yrs
educ � years of education; Mother educ � mother’s years of education; Income � annual household income
(in R1 000s); % income � percentage of income spent on information (e.g. TV licence, newspapers, books, etc.)

Figure 22.6 Sample data matrix for the October Household Survey



are nominal variables, while the remainder are scale (interval or
ratio) variables. Can you see why? The only ambiguous variable is
% income. Although percentages have properties of a ratio scale of
measurement, the data that we have are skewed, and it might be
better to treat % income as an ordinal variable, ranking the sample
from lowest to highest in terms of the amount spent on information. 

A scan of the boxplots indicates something amiss with the data
for mother’s education. There is an outlier in the data, and it
appears as though there is a data entry error for Subject 20.
Frequency tables also indicate a problem for the variable Gender.
Can you spot it? When there are errors in the dataset, you should
return to the raw data to find the correct entry, or delete the incor-
rect entry from the data matrix, treating it as missing. The frequency
table for Race shows that there was only one Indian person in the
sample. We would thus only compare the means of the black, white,
and coloured samples in later inferential analyses. Similarly, a
number of the categories for the variable Language have low
frequencies, and these would need to be excluded from inferential
analysis involving this variable. 

The next step in our descriptive analysis is to conduct bivariate
descriptive analyses. These will help us get an overall picture of
how the variables are related to each other. This exercise is often
called scoping the data. Since we are running a number of inferential
tests, we will set � � 0.01 for this exercise, thereby reducing the
familywise error rate. Three sets of bivariate analyses are used.
Cross-tabulations and chi-square analyses are used to determine
associations between the nominal variables; correlation coefficients
are generated for the scale and ordinal variables; and a series of one-
way ANOVAs are used to identify associations between the scale
and the nominal variables.

The analyses suggest that although none of the nominal variables
are related to each other, the scale variables are. This is useful to
know, since it suggests that, if we use these scale variables as inde-
pendent variables, we will have problems with multicollinearity.
The correlation analysis indicates that Income is positively related to
Education (r � 0.714, p < 0.0001) and mother’s education (r � 0.547,
p � 0.015). In addition, Mother’s education is negatively correlated
with Age (r � –0.63, p � 0.004), and positively correlated with
Education (r � 0.727, p < 0.0001). The outcomes of the one-way
ANOVAs indicate that there are no significant relationships between
the scale and nominal variables.

Once the descriptive analyses are complete, you should reach a
decision about appropriate inferential analyses. Ideally, this decision
should be based on theoretical grounds, reflected in your research
question. The researchers want to know what variables predict
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Create an SPSS® dataset from the October Household Survey data
reported in Figure 22.6. 
a) Define each of the variables. 
b) Compute appropriate descriptive statistics for each of the variables.

What conclusions do you reach? Are there any outliers? What is the
shape of each distribution? What kind of inferential tests will you
use to analyse the data?

c) Conduct inferential tests on the data and report the outcome of the
analysis. What research questions were you examining?

Activity 22.8

Income, and thus we know that Income should be the dependent
variable in a multivariate analysis. Since we have determined that
Income is a continuous variable, and that it is associated only with
other continuous variables (Education and Mother’s education) we
would use multiple regression analysis to build a predictive model.
If income were significantly associated with the nominal variables,
factorial ANOVA would perhaps have been more appropriate. If
income were associated with both continuous and nominal variables,
we would first have to convert the continuous variables into categor-
ical variables (e.g. quartiles) and then run a factorial ANOVA.

Summary
1. Statistical decision-making involves a dual process of rule-

following and defensible reasoned argument.

2. Use descriptive statistics to ‘scope’ or get a feel the data before
selecting the appropriate inferential test.

3. To decide which statistical procedure to use, a) determine the
level of measurement of your variables, b) determine whether
the research question is about relationships or differences, and 
c) if the research question concerns group differences, determine
how many means and variables are to be investigated.

4. Since it is possible to analyse the same data in different ways,
sometimes producing different conclusions, it is necessary to
adopt a flexible approach to analysis and to defend the choices
you make.

Exercises
For each of the following research problems, decide which statistical
procedure is most appropriate for analysis of the data. Justify your
decision. Once you have decided which procedure is most appro-
priate, conduct the analysis.



1. An M.A. clinical psychology student is conducting a research
project on favoured theoretical models among practising clin-
ical psychologists in Cape Town. The student collects data for 
167 clinical psychologists (each psychologist indicates his or her
favoured theoretical model), which she reports as follows:

Freudian: 71; Kleinian: 36; Jungian: 42; Rogerian: 18

Is there any evidence to suggest that some theoretical models are
favoured over others?

2. A researcher suspects that ‘rapid smoking’, a behavioural thera-
py devised as a reduction aid for smokers, has no greater effect
than a placebo treatment would have. The researcher places an
advertisement in a newspaper, through which he recruits 19 sub-
jects, all of whom smoke. He randomly assigns the 19 subjects to
the experimental (rapid smoking) and control (placebo) groups
(10 in the experimental group, 9 in the control group). The sub-
jects undergo a period of treatment, and the researcher compares
the groups in terms of number of cigarettes smoked daily. The
results are as follows:

Experimental: 11, 21, 7, 19, 34, 20, 6, 15, 4, 10

Control: 39, 28, 43, 47, 38, 31, 30, 27, 40

Is the researcher’s contention supported by this data? Make a
point of analysing the data in as many different ways as you can.

3. In Milgram’s famous experiment on obedience (Milgram, 1974),
one of the critical variables was the proximity of the subject to
the victim. Four proximity conditions are reported below, and
the maximum voltage administered by each of ten subjects is
reported within the cells (in units of 10):

1 2 3 4

45, 38, 26, 35, 41, 30, 20, 16, 31, 23, 32, 18
34.5, 25, 30, 35, 29, 30, 39, 29, 31, 12, 19, 25
40, 39, 29, 34.5, 38, 30, 29, 10, 17, 20, 25
45 23, 3 25

1 � no contact at all with victim; 2 � baseline condition; 3 � in same room as
victim; 4 � has to force victim’s hand onto electric plate to deliver shock

Does obedience vary as a function of proximity?
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Basic work with numbers

Colin Tredoux

•••••••••••
After studying this tutorial, you should be able to:
• Carry out the basic arithmetic operations in the

correct order.
• Do simple computations involving negative 

numbers.
• Simplify and carry out arithmetic on common

fractions.
• Perform operations on decimal numbers, including

conversions to fractions.
• Define and use the terms frequency, proportion,

percentage, and ratio.
• Carry out calculations involving exponents.

TUTORIAL

23

Do you need this chapter?
Some social science students have a long-standing aversion to num-
bers and any activity with the dreaded word mathematics in it! In
an earlier chapter we tried to persuade you that anyone can do the
mathematics we require in social science statistics courses.
However, some of you have long decided that mathematics is
poison, and may have given up the subject relatively early in your
schooling. On the other hand, some of you may be quite adept at
mathematics, even if you do not have an abiding interest in the
discipline. 
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In order to determine whether you need to work through this
tutorial, we ask that you complete the test below. If you give correct
answers to fewer than 16 of the 20 questions, we recommend that
you work through the tutorial (the answers are at the end of the
tutorial). You can use a calculator.

1. 12 × 32 � ?
2. 390/15 � ?
3. –3 + 4 � ?
4. 2 – 7 � ?
5. –2 × 3 � ?
6. –15/–3 � ?
7. 1/2 + 1/4 � ?
8. 1/2 × 1/4 � ?
9. 0.6 + 1.3 � ?

10. 4 × 0.5 � ?
11. Express 2/10 in decimal form.
12. If 3 people in 400 are hemophiliacs, what proportion is this?
13. If 0.3 of the population have blue eyes, how many people

in a group of 500 will have blue eyes?
14. Express 0.001 as a percentage.
15. If I score 20% for a test where the total mark was 80, how

many marks did I score?
16. If a university spends R3 000 000 on employing science

lecturers, and R1 500 000 on employing social science
lecturers, what is the ratio of money spent employing these
two kinds of lecturers?

17. 92 � ?
18. 32 + 42 � ?
19. �1�6� � ?
20. 81

1/4 � ?

Number systems
Mathematicians recognise a great many number systems. For most
purposes in statistics, we deal with what may simply be called the
counting numbers (0, 1, 2, 3, 4 …). These are also commonly known
as integers or whole numbers. When we need to, we will make use
of number systems that recognise negative numbers (–1, –2, …) and
real numbers (e.g. 1/2, 0.1). It is not necessary for us to deal with for-
mal or abstract properties of these systems, since the concern in
this section is merely that you brush up some of your arithmetic
and algebraic skills.

Self-test 23.1
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Elementary operations 
The most fundamental or elementary procedures or operations in
mathematics are addition, subtraction, multiplication, and division.
These operations are represented by symbols we call operators.
Addition is represented by a plus sign (+), subtraction by a minus
sign (–), multiplication by three signs (×, ., *), and division by two
signs (/, ÷).

Addition
You should already know how to add single digit numbers, without
using a calculator. Consider the following sum:

4 + 5 � 9

We say that 9 is the sum of 4 and 5; in other words, the number 9
results when we add 4 and 5. But note that 5 + 4 � 9, or more gen-
erally:

The order in which we add numbers is thus unimportant. For exam-
ple, if we are faced with the expression 4 + 3 + 9 � 16, then we can
re-express this as any of the following:

In order to break longer sums up, we can use brackets to make the
task a bit easier to follow. Thus, 3 + 4 + 9 � 16 can be written as 
(3 + 4) + 9 � 7 + 9 � 16. The idea is to complete the section in
brackets first, and then move on.

Subtraction
You should also be very familiar with subtraction as an operation.
Instead of referring to the outcome of the operation as a sum, we
now refer to it as a difference. Thus, 6 – 2 � 4 can be expressed as ‘the
difference between 6 and 2 is 4’.

Unlike addition, the order in which we subtract is very important.
Consider that 5 – 3 � 2, but 3 – 5 � –2 (2 and –2 are not the same
number).

When we are faced with long expressions involving subtraction,
it is useful to use brackets to simplify the task, thus 10 – 2 – 3 � 5
can be written as (10 – 2) – 3 � 8 – 3 � 5.

Signs for arithmetic
operations:
addition: +

subtraction: –
multiplication: ×, ., *

division: /, ÷

3 + 1 � 4     1 + 3 � 4     3 + 8 �11     8 + 3 � 11
2 + 7 � 9     7 + 2 � 9     5 + 1 � 6     1 + 5 � 6

3 + 4 + 9 � 16,     or     9 + 3 + 4 � 16,     or     9 + 4 + 3 � 16

The order in which
we add numbers is

not important.
Thus, 3 + 4 � 7,

and 4 + 3 � 7.

The order in which
we subtract num-
bers is important.
Thus, 4 – 3 � 1, 
but 3 – 4 � –1.
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Multiplication
You will doubtless already know how to multiply numbers (even if
you cannot remember the 17 × table!). When two numbers are
multiplied, the result is referred to as the product. The order in
which numbers are multiplied is unimportant, at least when the
expression contains only multiplication. Thus, 6 × 4 � 24, and 
4 × 6 � 24.

As with addition and subtraction, it is useful to break long
multiplication sums up with brackets, e.g. 5 × 6 × 2 � (5 × 6) × 2
� 30 × 2 � 60.

Note that an additional way of indicating multiplication is to
place terms next to each other, in brackets. Thus (4)(3) � 4 × 3 � 12;
or (3 + 2)(5 + 1) = 5 × 6 � 30.

Division
When we divide, the result is referred to as the quotient. The order
in which numbers are divided is important. So, 12 ÷ 3 � 4, but 
3 ÷ 12 � 0.25.

As with multiplication, it is useful to break long division sums
up with brackets, e.g. 50 ÷ 5 ÷ 2 � (50 ÷ 5) ÷ 2 � 10 ÷ 2 � 5.

Expressions involving different operations
You will often be faced with arithmetic calculations involving
multiple, different operations. For example, 5 + 4 × 3 – 6 ÷ 2. These
expressions are best done by using brackets to simplify matters.
However, this simplification must be done according to rules of
priority regarding the sequence of arithmetic operations. These
rules are nicely summarised by the mnenomic BoDMAS (Brackets
first, then Division, then Multiplication, then Addition, then
Subtraction). Let us apply it to a complicated expression (note that
the values in bold were computed in the previous step):

5 + 6 × (3 + 2) × 7 – 8 ÷ 2

Step 1: Work out bracketed section. 5 + 6 × 5 × 7 – 8 ÷ 2
Step 2: Work out division. 5 + 6 × 5 × 7 – 4
Step 3: Work out first multiplication. 5 + 30 × 7 – 4
Step 4: Work out second multiplication. 5 + 210 – 4
Step 5: Work out addition. 215 – 4
Step 6: Work out subtraction. 211

You may find it useful to place brackets around the part of the
expression that you work on in each step. Thus, for step 2 above, do

The order in which
we divide numbers
is important.
Thus, 12 ÷ 3 � 4,
but 3 ÷ 12 � 0.25.

Rules of priority in
doing arithmetic:
BoDMAS
Brackets, then
Division, then
Multiplication, then
Addition, then
Subtraction.

The order in which
we multiply numbers
is not important.
Thus, 3 × 4 � 12 
and 4 × 3 � 12.
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this in two parts:
1. Bracket the part of the expression you are working on: 

5 + 6 × 5 × 7 – (8 ÷ 2)
2. Do the calculation within the brackets, and replace the brackets

and bracket contents with the results of that calculation:
5 + 6 × 5 × 7 – 4

It is also useful to know that we can expand expressions inside
brackets when multiplication is involved. Thus, 4 × (3 + 5) � (4 × 3)
+ (4 × 5) � 12 + 20 � 32. What we have done here is to multiply 
4 by each of the numbers inside the brackets. 

Answers for all exercises in this tutorial are provided at the end.

1. Determine which of the following expressions are true: 
a) 10 (6 + 5) � 60 + 50 b) 5 (6 + 5) � 35
c) 10 (50 + 1) � 500 + 1 d) (7/7) (8/4)/2 � 1
e) 10 (10 + 10) 10 � 2 000 f) 100 × 6 + 7 × 4 � 28 + 100 × 6

2. Evaluate the following expressions:
a) 7 (7 + 7/7) b) (7 × 5 + 3)/(9 × 2 + 1)
c) 12 × 7 ÷ 3 – 6 × 1 ÷ 6 d) (4 + 3) (5 + 2)

Negative numbers
Although we intuitively think of the counting numbers as starting
at 0 and increasing by steps of 1, there is considerable value also in
allowing the counting numbers to move in the opposite direction,
i.e. to values less than zero. Banks in particular find this is a useful
concept – think about the concept of an overdraft. If you have no
money in the bank, and then borrow R500 to pay a student loan,
how much money have you got? You have R500 less than nothing,
which is represented by –R500.

Imagine a number line, extending from an infinite negative num-
ber to an infinite positive number:

0 1 2 3 4 5–1–2–3–4–5

Now, addition can be thought of as moving to the right: 3 + 2 is the
same as starting at 3 and moving two places to the right: 

0–1–2–3–4–5 1 2 3 4 5

+2

In the same way, we can think of subtraction as moving to the left.

Exercise 23.1
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0–1–2–3–4–5 1 2 3 4 5

Addition of negative numbers to positive numbers is a bit more dif-
ficult, but becomes easier when you understand the multiplication
rules for negative numbers. For the moment we will ask you to take
it on faith that adding a negative number to a positive number is
equivalent to subtracting a positive number from a positive number. Thus,
3 + (–2) � 3 – 2 � 1. Similarly,

3 + (–1) � 3 – 1 � 2       1 + (–3) � 1 –3 � –2       11 + (–20) � –9

When we subtract negative numbers from positive or negative
numbers, things are a little more complex, but will be easier to grasp
when you know the multiplication rules for negative numbers.
Subtracting negative numbers from positive numbers is equivalent to
adding positive numbers to positive numbers. Thus, 3 – (–2) � 3 + 2. The
negative signs ‘cancel’ each other, and produce a positive sign.
Similarly:

3 – (–1) � 3 + 1 � 4     –5 – (–3) � –5 + 3 � –2     11 – (–20) � 11 + 20 � 32

Multiplication and division with negative numbers
It is easiest to learn how to multiply negative numbers by following
rote rules. There are only two rules that need to be learned. 
Rule 1 The product of a negative and positive number is a negative

number, regardless of which of the multiplying numbers are
positive or negative, e.g. –2 × 3 � –6, and 2 × –3 � –6.

Adding a negative
number to a positive
number is equivalent
to subtracting a 
positive number
from a positive 
number, e.g. 
3 + (–2) � 3 – 2 � 1.

Subtracting negative
numbers from 
positive numbers is
equivalent to adding
positive numbers to
positive numbers.
Thus, 3 – (–2) � 3 + 2.

0–1–2–3–4–5 1 2 3 4 5

–3

Note that we have ended up to the left of 0. In order to give this
expression any meaning, we have to allow numbers to the left of 
0 to exist. 

There are certain rules we have to follow when we perform
operations using negative numbers. 

Addition and subtraction with negative numbers
We have said that we can think of addition as moving to the right
on the number line, and subtraction as moving to the left on the
number line. This is easy to see when we add positive numbers to
negative numbers. For example, the number line below shows the
operation –2 + 3 � 1:

Consider the expression 2 – 3:
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Rule 2 The product of two negative numbers is a positive number,
e.g. –2 × –3 � 6.

Similar rules can be specified for division:
Rule 3 The result of dividing either a negative number by a posi-

tive number, or a positive number by a negative number, is
a negative number, e.g. –4 ÷ 2 � –2, 4 ÷ –2 � –2.

Rule 4 The quotient of two negative numbers is a positive num-
ber, e.g. –4 ÷ –2 � 2.

1. Evaluate the following expressions:
a) 36 + (–6) b) 13 – 6
c) (–3) + (–4) d) –8 + 1
e) 17 – (–4) –2 f) 7 + (–1) – (–4) + 2

2. Evaluate the following expressions:
a) –4 × 3 × 2 b) (–4)(–5)(4)
c) (–6)(–3) ÷ 3 × 3 d) (–6)(3) + 6 × 4 + (–2)(–3)
e) (–6)(4) – (–1)(–3) f) –1 × –1

Fractions
You will surely remember having encountered fractions in your
early school years – even if the memories are not entirely pleasant!
It is particularly easy to forget the simplifying procedures, and you
may find the reminders that follow quite useful.

Fractions are often thought of as ‘parts of whole numbers’ or
‘numbers in between whole numbers’. Look at the number line
below, and think of the number the arrow points to. It is neither 2
nor 3, but a number in between these numbers:

0 1 2 3 4 5–1–2–3–4–5

We write fractions in what is known as divisional notation:

7
�
8

13
�
14

9
�
5

5
�
8

3
�
4

1
�
2

We refer to the number ‘at the top’ as the numerator and the number
‘at the bottom’ as the denominator:

The denominator tells us how many parts there are in total, and the
numerator tells us how many parts of the total we are considering at
this point. For example, the fraction 1/4 might mean that we have cut a
cake into four slices, and that each person is given one of these slices.

numerator
��
denominator

Exercise 23.2

Rules for multiplica-
tion and division
with negative 
numbers:
• The product of a

negative and a
positive number is
a negative number.

• The product of
two negative 

numbers is a 
positive number.

• The result of 
dividing either a
negative number
by a positive num-
ber, or a positive
number by a neg-
ative number, is a
negative number.

•  The quotient of
two negative num-
bers is a positive
number.
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Likewise, we can cut the line between 0 and 1 into 4, and 1/4 represents
one of these devisions.

Addition and subtraction with fractions
The rules for adding and subtracting fractions differ markedly from
those for multiplying and dividing fractions, and it is easy to forget
or overlook this. 

When we add or subtract fractions, we need to find a common
denominator before we can proceed. For example, if we wish to
evaluate + , we have to change them so that the denominators are
the same – that is, the denominator value for both fractions should
be the same, but the overall value of each fraction should not
change. We do this by taking advantage of the fact that fractions can
be expressed in different, but equivalent forms. For example, the
fraction is equivalent to the fraction . (Do you need convincing of
this? If we cut the same cake into 2 or 4 pieces, would you have more
cake if you had 1 of the 2 pieces, or if you had 2 of the 4 pieces?)

The simplest way to find a common denominator is to multiply
each fraction in the sum (top and bottom) by the denominator of
every other fraction in the sum. Thus, for the sum + , we get 

× � as a transformed version of the first fraction in the sum,

and × � as the transformed version of the second fraction. We
add the fractions by adding the numerators, and keeping the
denominators constant, thus:

+ � + �

Subtraction of fractions follows exactly the same procedure, except
that we subtract numerators rather than adding them. For example:

– � – �

It is usual to transform fractions to their simplest form. This means
that we prefer to write as . (We saw above that these fractions are
equivalent numbers.) This can be achieved by dividing the top and
bottom terms by a common factor (i.e. a number that divides exactly
into both top and bottom). For example, in the answer to the
addition problem + , we wrote , but this can be simplified.
Notice that 2 divides into both top and bottom, and the fraction can
be simplified:

�

We need to develop a rule about how to change the fraction while
keeping its value constant:

3
�
4

6 ÷ 2
�
8 ÷ 2

6
�
8

1
�
4

1
�
2

1
�
2

2
�
4

2
�
8

2
�
8

4
�
8

1
�
4

1
�
2

6
�
8

2
�
8

4
�
8

1
�
4

1
�
2

2
�
8

2
�
2

1
�
4

4
�
8

4
�
4

1
�
2

1
�
4

1
�
2

2
�
4

1
�
2

1
�
4

1
�
2

To find a common
denominator, multi-
ply the denomina-
tors in the sum by
each other (e.g. 
for the sum + , 
multiply 2 and 4 to
get the common
denominator 8.

1
�
4

1
�
2

When simplifying
fractions, whatever
you divide the
numerator by, you
must also divide the
denominator by (e.g.
to simplify , divide
top and bottom by 2
to get ).1

�
2

2
�
4

Find a common 
factor to simplify
fractions.
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Rule 5 When simplifying fractions, whatever you divide the
numerator by, also divide the denominator by. 

1. Evaluate the following expressions:

a) + b) + 

c) + + d) – 

e) – + f) – 
2. Simplify the following fractions:

a) b)

c) d) 9
�
36

9
�
33

8
�
56

4
�
6

1
�
4

7
�
2

1
�
4

1
�
2

1
�
4

1
�
3

1
�
7

1
�
8

1
�
9

3
�
4

1
�
8

1
�
4

2
�
3

Multiplication and division with fractions
Contrary to what you might expect, multiplication and division are
actually easier for fractions than they are for whole numbers! There
is only one complexity, in the case of division.

Fractions are multiplied by multiplying the numerators by each
other, and the denominators by each other. Thus:

× � � �

Fraction multiplication frequently produces answers that need
simplification, and it is often beneficial to simplify by cancelling
while multiplying. An example will make this clear:

1
�
3

2
�
6

1 × 2
�
2 × 3

2
�
3

1
�
2

Fractions are multi-
plied by multiplying
the numerators by

each other and the
denominators by

each other.

× �
1
�
3

1
�
2

2
�
3

Notice how the 2 on the top is cancelled by the 2 on the bottom. To
explain why this is allowable, the sum can be re-written as 

× × × � , which is equivalent to × � . As is simply the

number 1, we can ignore multiplication by (i.e. 1), since it does
not affect the answer.

Fractions are divided in two steps. First we invert the fraction we
are dividing (‘stand it on its head’), and then we multiply the result-
ing fractions in the sum. To invert a fraction, we simply replace the
numerator with the denominator, and the denominator with the
numerator. Thus, to invert , we write . An example should make
the process clear:

÷ = × = = 2
4
�
2

4
�
1

1
�
2

1
�
4

1
�
2

2
�
1

1
�
2

2
�
2

2
�
2

1
�
3

1
�
3

2
�
2

1
�
3

1
�
2

1
�
1

1
�
3

2
�
1

Fractions are divided
by inverting the 
fraction you are
dividing by, and
multiplying the

inverted fraction by
the remaining, non-

inverted fraction.

Exercise 23.3
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An easy way to conceptualise this is to ask how many quarters there
are in a half, and the answer would be 2.

1. Evaluate the following expressions:

a) × b) ×

c) ( × ) d) ÷

e) ( + ) × f) ( + ) ÷ 3
�
4

1
�
5

5
�
10

3
�
4

1
�
5

5
�
10

11
�
5

5
�
11

3
�
11

8
�
9

11
�
5

5
�
11

1
�
16

3
�
4

24
�
99

Decimal numbers
A common way of expressing fractions (i.e. numbers that are
‘in-between’ whole numbers) is as decimal numbers. It is more
common, for example, to write 0.1 than .

The easiest way to think of decimal numbers is as transformed
versions of common fractions, where the transformation expresses
the common fraction in terms of a denominator that is a multiple 
of ten. Instead of we write 0.1, and instead of we write 0.23,
etc. (The decimal point separates a number into a 
whole number part and a fractional part.) Thus, 2321.93 is 2 thou-
sands + 3 hundreds + 2 tens + 1 unit + 9 tenths + 3 hundredths, or
2000 + 300 + 20 + 10 + 9 + 0.9 + 0.03.

Addition and subtraction with decimals 
Addition and subtraction in the case of decimals is no different from
addition and subtraction with whole numbers, except that decimal
places must be strictly lined up. A few examples:

23
�
100

1
�
10

1
�
10

Decimal numbers 
can be broken down
into components, i.e.

13.26

Fractional part
Decimal point

Whole number part

2321.93
47.21

2369.14
+

57.25
12.90
70.15 

+
918.23

4.06
914.17 

–
8918.48
345.12

8573.36 
–

Multiplication and division with decimals 
If you follow a very simple rule, you should have no difficulties
multiplying decimals – and arriving at the right answer! 

Rule 6 To multiply decimal numbers, multiply the numbers as if
they had no decimal places, and then insert as many deci-
mal places in your answer as there were in total in the orig-
inal numbers. 

To multiply two deci-
mal numbers, multi-
ply the numbers as if
they had no decimal
places, and then
insert as many deci-
mal places in your
answer as there
were in total in the
original numbers. 

Exercise 23.4
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For example, if you are asked to multiply 1.3 by 1.3, you multiply
13 by 13 � 169, and then add two decimal places (since each num-
ber had one decimal place) � 1.69. Further examples: 
a) 4.7 × 6.1 � 47 × 61 � 2867. Add two decimal places � 28.67
b) 1.23 × 2.45 � 30135. Add four decimal places � 3.0135
c) 19.01 × 14.2 � 269942. Add three decimal places � 269.942

Although it is a salubrious thing to do these calculations mentally,
or on paper, most of us prefer to use a calculator nowadays! If you
use a calculator, there will also be no need to use the rule above,
since calculators allow you to enter decimal numbers directly.

In the case of division with decimal numbers, there is no need to
compute sums manually or mentally if you have a calculator, and
we will not demonstrate manual ways of dividing with decimal
numbers here.

Converting from fractions to decimals, and from
decimals to fractions
In statistical calculations, we frequently need to convert from com-
mon fractions to decimal numbers. The easiest way of doing this is
to divide – especially if you have a calculator at hand. This is
because common fractions are expressed in division notation: 1/4

means ‘divide 1 by 4’. Examples:

a) � 9 ÷ 36 � 0.25

b) � 6 ÷ 8 � 0.75

c) � 1 ÷ 2 � 0.5

To convert from decimal numbers to common fractions, on the
other hand, takes some manual – but uncomplicated – work.
Remember from the discussion above that a decimal number can be
thought of as fraction with a denominator that is some multiple or
power of 10. Thus:

0.2 � 0.87 � 0.147 � 0.9843 �

You can confirm that these are correct by dividing numerator by
denominator. A simple rule for converting decimal numbers to frac-
tions can be derived from these examples. 

Rule 7 To convert decimal numbers to fractions, take the fraction-
al component of the decimal number (e.g. for 0.23 take 23)
as the numerator, and for the denominator take the num-
ber 1 and add as many 0s to it as there are digits in the
numerator (e.g. for the numerator 23 add 00 to 1).

9843
�
10000

147
�
1000

87
�
100

2
�
10

1
�
2

6
�
8

9
�
36

To convert a decimal
number to a fraction,

take the fractional
component of the

decimal number as
the numerator, and
for the denominator

take the number 1
and add as many 

0s to it as there 
are digits in the

numerator.
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For the number 0.23, the numerator will be 23, and the denomina-
tor 100, so the fractional form is .23

�
100

1. Evaluate the following expressions:
a) 0.23 + 0.08 b) 0.456 – 0.1901
c) 0.57 × 0.43 d) 0.34 × (0.45 + 0.12)
e) 0.4 ÷ 0.5 f) 0.67 ÷ (0.104 + 0.34)

2. Convert to decimal numbers:

a) b)

c) d)
3. Convert to common fractions:

a) 0.08 b) 0.456
c) 0.5712 d) 0.005

437
�
1000

4
�
3

3
�
7

1
�
47

Frequencies, proportions, percentages
and ratios
The notion of frequency or frequencies plays an important role in sta-
tistics, particularly in descriptive methods. Similarly, the notion of a
proportion is vital if we are to understand probability theory and its
use in inferential methods. It is important to master these concepts,
and the related concepts introduced in this section, if you are to suc-
ceed at statistical analysis.

In many forms of research, we collect units of information. For
example, we may ask passers-by in a shopping mall whom they
intend to vote for in the national election. We could then count the
‘votes’ each political party got, and compare the parties. Or we might
scrutinise the files of a public hospital and count the number of people
who presented with physical trauma sustained in a domestic envi-
ronment. In each of these cases, we would use the word frequency to
represent the total number of instances of the event we are interested
in. For example, if 120 people vote for the ANC, we say that the
frequency (or frequency count) in that category is 120.

By itself the frequency of an instance rarely tells us all that we
need to know. We need comparative information to make the
frequency meaningful. For example, if we also knew that the total
frequency of voters in our shopping mall study was 200, then we
would be in a better position to make sense of the frequency count
of 120 who voted for the ANC. A common way of transforming a
frequency, then, is to express it as a proportion of the total frequency
count. This is achieved by dividing the frequency of the instance by
the total frequency.

A proportion is 
created by dividing
how often or 
numerous something
is by the total 
number of things in
the population it is
drawn from.

Exercise 23.5
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proportion � , e.g. 0.6 �

Proportions are themselves often converted to percentages to make
their meaning still clearer. This is done by multiplying the propor-
tion by 100, and expressing the resulting sum as ‘percentage’ or ‘%’.
This gives a rate per 100 units. For example, we discover in the
second of our research projects listed above, that 120 000 people
have been admitted to the public hospital in the past year, and that
3 560 of these presented with domestic abuse. The proportion of

people presenting for domestic abuse is thus � 0.03. If we

express this as a percentage, we get 0.03 × 100 � 3%. In other words,
of every 100 people admitted to the hospital in the previous year,
three presented with trauma from domestic abuse. The conversion
from proportion to percentage is thus:

percentage (%) � proportion × 100

The converse of this calculation, namely to derive a frequency from
a proportion or percentage, is also useful. Thus, if we read that 21%
of people in South Africa are HIV-positive, and we also know that
there is a total population of 43 million people in South Africa, then
we can convert this percentage into a frequency, using:

frequency � proportion × total frequency

For the HIV calculation:

frequency � 0.21 × 43 000 000 � 9 030 000

Another numerical index that is frequently used to assist interpre-
tation is the ratio of one frequency to another. Here the comparative
value is not the total frequency, but the frequency of instances in
another category. Let us imagine that we find from our hospital
study that 3 000 of the 3 560 people presenting with domestic abuse
are female. One way of expressing this in an interpretable manner
is to express the presenting rate among females in relation to males.
The usual way of doing this is as a ratio. For example, we divide the
number of presenting females by the number of presenting males:

� 5.357 

In other words, for every male who presents, there are 5.357 females
who present (or we can say that the ratio is 1: 5.357).

3000
�
560

3560
�
120 000

120
�
200

frequency of the instance
���

total frequency count

To convert a 
proportion to a 

percentage, multiply
the proportion by

100.
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Powers, exponents, roots
Mathematics is to a large extent concerned with notation and ways
of simplifying operations and calculations. For example, when 
we write the common fraction 1/2, we mean 1 divided by 2.
Simplification by notation becomes exceptionally useful when we
apply it to complicated and repetitive operations. Consider the fol-
lowing multiplication problem: 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5.
Completing this calculation manually is almost as laborious as writ-
ing it! 

When we wish to simplify problems involving multiplication,
we use what are called powers. For example, 5 × 5 can be written as
52 (‘the square of 5’, or ‘5 squared’). In general, the power (2 in this
example) expresses number of times the base (5 in this example) is
multiplied by itself. Thus:
5 × 5 � 52 � 25 (the second power of 5, or 5 to the power of 2)
5 × 5 × 5 � 53 � 125 (the third power of 5, or 5 to the power of 3)
5 × 5 × 5 × 5 � 54 � 625 (the fourth power of 5, or 5 to the power of 4)

There are some useful properties relating to the addition, subtraction,
multiplication, and division of powers, but since these are rarely
required in elementary statistical work we will not detail them here.
However, it is worth knowing the following two special powers:
1. The power ‘1’. Any number raised to the power ‘1’ is merely itself.

1. Irma Pogg-en-poel conducts a survey in ‘The Edge’ rave club
in Johannesburg. She records the location of body piercings
for each person in the nightclub (assume that each ‘pierced’
person has one piercing only). Her results are shown in the
frequency distribution below:

Eyebrow 8; nose 13; ear 48; nipple 6; navel 23; genital 2.

a) Calculate the ratio of genital piercings to ear piercings.
b) What percentage of people have eyebrow piercings?
c) What proportion of people have navel piercings?
d) For every person who has a pierced nipple, how many

people have a pierced nose?
2. If a student spends 43% of her time sleeping, how many

hours are left in the day for other activities?
3. If a certain university spends 18% of its funds on re-

muneration for management, and its total budget was
R450 000 000, how much was management paid?

Exercise 23.6
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Thus, 51 � 5, 91 � 9, etc. By extension, any number that 
does not have its power declared is implicitly raised to 
the power 1 (e.g. when we write 5 × 3, we could equally write 
51 × 31).

2. The power ‘0’. Any number raised to the power ‘0’ is unity, in
other words, the number 1. Thus 50 � 1, 30 � 1, etc.

A concept closely related to that of a power is the root. We have seen
that the number 25 can be written as 52, but we can also express this
fact as �2�5� � 5. What we mean is that the number which when mul-
tiplied by itself gives 25 is 5, and we use the square root sign  �1� to
symbolise this property. Just as there are third, fourth, and larger
powers, so there are cubed, quartic, and smaller roots. For example:

�2�5� � 5, the square root (although it is customary not to show 
the 2)

�1�2�5� � 5, the cube root
�6�2�5� � 5, the quartic root

Finding the values of expressions that raise numbers to the 
powers, or that take roots, is best done by electronic calculator or
computer. Most calculators have an exponent button that looks

much like the following:

To find the value of 53, for example, press 5, then press the exponent
button, and then press 3.

Powers and roots are collectively known as exponents, and it is
possible to express roots in the same superscripted way in which
powers are expressed. In general, a root is transformed to an expo-
nent by raising the number-to-be-rooted by a fractional exponent,
where the numerator of the fraction is always 1, and the denomina-
tor is the number corresponding to the ‘dimension’ of the root.
Thus:

1. Any number raised
to the power 1

remains unchanged,
e.g. 51 � 5.

2. Any number raised
to the power 

0 � the number 1,
e.g. 50 � 1.

2

3

4

3�5� � 5 �8�1� � 81
1
�
3

1
�
2

1. Evaluate the following expressions (use a calculator!):
a) 92 b) 94

c) 92 – 9 d) 9
e) �5�4� f) �8�1� – 92

g) 5*�9� h) (10 – 8)2

2. Transform the following expressions or numbers to use
exponents:
a) 7 × 7 b) (6 × 6 × 6) – (3 × 3 × 3)
c) 81 d) 625

1
�
2

Exercise 23.7
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How much do you think you have improved? Test yourself
with the following test, which is a ‘parallel form’ of that at the
beginning of the chapter. If you score more than 16 out of 20,
you can expect to cope with the kind of mathematical material
in this book. If not, we suggest that you work through this tuto-
rial again, doing lots more examples, which can be downloaded
from the webpage on the CD.
1. 12 × 8 � ?
2. 225/5 � ?
3. 2 + (–4) � ?
4. –2 – 8 � ?
5. –4 × –2 � ?
6. 6/–2 � ?
7. 1/2 – 1/8 � ?
8. 1/3 × 1/2 � ?
9. 1.7 – 0.2 � ?

10. 0.25 × 0.5 � ?
11. Express (8/20) in decimal form.
12. If in a light-bulb factory 2 out of every 160 bulbs fail, what

proportion is this?
13. If 0.01 of the population suffers from schizophrenia, how

many students in a class of 300 will succumb to the disease?
14. Express 0.125 as a percentage.
15. If 80% of Psychology students are women, how many

women will there be in a class of 600?
16. If on average a student spends R500 on textbooks, and 

R3 000 on beer, what is the book to beer expense ratio?
17. 62 � ?
18. 23 + 50 � ?
19. �1�6�9� � ?
20. 81 � ?

1
�
4

Self-test 23.2

Answers to Self-test 23.1
1. 384
2. 26
3. 1
4. –5
5. –6
6. 5
7. 3/4

8. 1/8

9. 1.9
10. 2

Answers to Self-test 23.2
1. 96
2. 45
3. –2
4. –10
5. 8
6. –3
7. 3/8

8. 1/6

9. 1.5
10. 0.125



Answers to exercises

Exercise 23.1
1. a) true, b) false, c) false, d) true, e) true, f) true
2. a) 56, b) 2, c) 27, d) 49

Exercise 23.2
1. a) 30, b) 7, c) –7, d) –7, e) 19, f) 12
2. a) –24, b) 80, c) 18, d) 12, e) –27, f) 1

Exercise 23.3
1. a) 11/12, b) 7/8, c) 191/504, d) 1/12, e) – 1/4, f) 13/4

2. a) 2/3, b) 1/7, c) 3/11, d) 1/4

Exercise 23.4
1. a) 3/64, b) 1, c) 1, d) 25/121, e) 21/40, f) 14/15

Exercise 23.5
1. a) 0.31, b) 0.2659, c) 0.2451, d) 0.1938, e) 0.8, f) 1.509
2. a) 0.021, b) 0.428571, c) 1.333, d) 0.437
3. a) 2/25, b) 57/125, c) 357/625, d) 1/200

Exercise 23.6
1. a) 1:24, b) 8%, c) 0.23, d) 13/6, or 2.17
2. 13.68 hours
3. R81 000 000

Exercise 23.7
1. a) 81, b) 6561, c) 72, d) 3, e) 7.35, f) –72, g) 15, h) 4
2. a) 72, b) 63 – 33, c) 92, d) 54
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Answers to Self-test 23.1
11. 0.2
12. 0.0075
13. 150
14. 0.1%
15. 16
16. 2:1
17. 81
18. 25 
19. 4
20. 3

Answers to Self-test 23.2
11. 0.4
12. 0.0125
13. 3
14. 12.5%
15. 480
16. 1:6
17. 36
18. 9 
19. 13
20. 3
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Equations, substitution,
and summation

Colin Tredoux

•••••••••••
After studying this tutorial, you should be able to:
• Identify constants and variables in descriptions of

problems.
• Solve equations with one unknown term.
• Evaluate summation expressions, given problem

data.

TUTORIAL

24

Do you need this tutorial?
As we indicated in the previous tutorial, many students do not have
sufficient mathematical preparation for statistics courses. It may be
a good idea for you to work through the material in the present
tutorial, but it might also be of little value to you. If you decided
that you needed to work through the previous tutorial, then you
will probably need to work through this one too. If you decided that
you did not need to work through that material, and are uncertain
about whether you need to work through the present tutorial, we
ask that you complete the test that follows. If you give correct
answers to fewer than 12 of the 15 questions, we recommend that
you work through the tutorial (the answers are at the end of the
tutorial). You may use calculators.
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Some basic terms
In statistics, we frequently deal with variables, constants, equations, and
coefficients. It is useful to have some idea of what these terms mean
before we outline operations and procedures typically applied to them.

It is very handy to use a symbol, letter, or some other means to
refer to an object. Imagine how difficult it would be to talk about the
country South Africa if a name did not exist for it! Mathematicians
exploit this function of language to the fullest. The radius of a cir-
cle, the speed of light, specific gravity, the operations of addition,
exponentiation, etc. are all assigned letters or symbols that denote
them. This is done in several ways.
1. Numbers or values that do not change (within a particular con-

text) are called constants. There are many well-known examples
in the physical world that satisfy this condition, e.g. c, the speed
of light (≈300 000 km/s in a vacuum), used in Einstein’s famous
formula, E � mc2.

2. Objects or entities that show change in their quantity are called
variables and are referred to by symbols or letters. Thus, x might
refer to the Full Scale Intelligence Quotient as measured in a group
of children – ‘x’ would have many different values across the 
children. Similarly, we could use y to refer to height, in a sample of
100 people.

Solve the following equations for x:
1. x + 3 � 4
2. x + 3 � 2
3. –x + 2 � 1
4. x + y – 2 � 8
5. x/2 + 7 � –43
6. z � (x – µ)/σ

Evaluate the following expressions for x � {4, 3, 2}, k � 5,
y � {8, 1, 2}:
7. Σx
8. Σx2

9. Σ(x – y)
10. Σk
11. Σkxy
12. (Σx)2

13. Σy2 – (Σx)2

14. Σ(y – 1)
15. Σx/n

Quantities that do
not change are

called constants
(e.g. the speed of

light).

Variables are entities
that can exhibit
change in their

quantity (e.g.
height, across a

sample of children).

Self-test 24.1
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3. Symbols are often combined in a kind of ‘sentence form’ (e.g. 
F � + 32). This form of sentence is known as an equation, since
the left-hand side of the statement equates (i.e. is equal) to
the right-hand side of the statement:

9
�
5

left-hand side

right-hand side
F � C + 32

9
�
5

4. Equations are usually formed from combinations of variables,
constants, and the basic arithmetic operations (addition, sub-
traction, multiplication, and division). We refer to a value in 
the equation by which another value is to be multiplied as a
coefficient of the other value. Thus, in the example above, is the
coefficient of C.

As a general rule, whatever you do to one side of an equation,
you must do to the other side. If you remove an added value from
one side of the equation by subtracting it, you must subtract the
same value from the other side. If you remove a value that one side
is being divided by, by multiplying by that same value, then you
must multiply the other side by the same value too. Simply, what
this amounts to is the shortcut rule that you can remove a value from
one side of the equation, across the equals sign, but that you must do the
opposite mathematical operation with that value once it is inserted into the
other side of the equation. 

Equations
Equations are put to a number of typical uses in mathematics. In 
the first place, they can be used to translate from one scale of meas-
urement to another. Thus, the equation F � C + 32 translates from
degrees Celsius to degrees Fahrenheit (both are scales of measure-
ment for temperature). For example, we can substitute 40 for C° in
the equation, and complete the calculations:

F° � C° + 32 � × 40 + 32 � 72 + 32 � 104

Another typical use is to express problems in the form of an equa-
tion, so that solutions can be found for one or more of the variables
in the equation. This often has great practical value. Imagine that
you are doing the family shopping at your local supermarket, and
you only have R12 left. You want as many toilet rolls as you can get
for your R12. Each toilet roll costs 75c. In order to solve this prob-
lem, we notice that we can write the following statement (in math-
ematical notation):

9
�
5

9
�
5

9
�
5

9
�
5

Equations consist 
of two parts – a 
left-hand side, and
a right-hand side,
connected by an
equals sign. The
sides are different
but equivalent ways 
of expressing the
same property or
characteristic.

Another formula that
translates from one
scale into another:
miles*1.60943 �
kilometres
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total price � (price per unit) × (number of units)

We start by substituting known values into the equation. Thus,
‘total price’ � R12, and the ‘price per unit’ � R0.75. With a little bit
of algebraic manipulation, we can rewrite the statement as:

R12 ÷ R0.75 � number of units

The answer to this is 16 units, or toilet rolls.

Solving equations
The second use of equations, as outlined in the example above, is
the most important for our purposes. The point is to find the value
of an unknown element in the equation, when all the other elements
are known. In other words, what value, when substituted for the
unknown element or variable, ‘satisfies’ the equation – i.e. makes it
true? If our equation is

3 + x � 5

then only the value 2 will substitute for x so that the statement is true.
Most of the work in solving equations is finding out how to

manipulate the equation so that we can determine the value of the
unknown element (here ‘x’). The fundamental insight is that any
operation carried out on both sides of an equation does not affect its truth-
value. To see this, examine the following statements. The first is
obviously true. Now convince yourself that the rest are also true,
and notice that all we have done in each case is to apply the same
operation to each side of the equation:

x � x
3x � 3x

x – 3 � x – 3
x + 3 � x + 3

x/3 � x/3

Let us take an earlier example to solve:

3 + x � 5

In the example above, we can subtract 3 from both the left-hand and
right-hand sides of the equation and be confident that we have not
corrupted the equation. Thus,

3 + x – 3 � 5 – 3
(3 – 3) + x � 2

x � 2

Note that we could have applied the shortcut rule here by simply
taking + 3 accross the equals sign and making + –3.

The usual way to
solve an equation for
an unknown (e.g. x)

is to use arithmetic
operations to ‘iso-

late’ x until it is
alone on the left- or

right-hand side of
the equation.

When attempting to
isolate x in an equa-

tion, arithmetic
operations carried
out on one side of
the equation must
also be carried out
on the other side.
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A strategy that works very well is to isolate x on one side of the
equation. This can be a little tricky, but should pose no real problem
if you remember to 1) apply the rules of precedence regarding arith-
metic operations, and 2) perform one simplification at a time.

Let us do a slightly more complex example. Solve for C in the
equation below, given that F° � 120°.

F � C + 32

Step 1: Replace F with 120:

120 � C + 32

Step 2: Eliminate all the constants. Since the equation is adding 
32 on the RHS (right-hand side), subtract 32 from both
sides of the equation: 

120 – 32 � C + 32 – 32

88 � C

Step 3: Since the equation is multiplying the unknown (C) by ,
divide both sides by :

88 ÷ � C ÷ 

88 × � C × 

48.889 � C

In principle, it is not necessary to know the value of any of the ele-
ments of the equation, if we accept that the goal is to express a par-
ticular unknown in terms of the other elements of the equation. For
example, we can write the equation for converting from Celsius to
Fahrenheit in terms of Celsius rather than Fahrenheit, as initially
presented in this chapter.

F � C + 32

F – 32 � C

(F – 32) � C
5
�
9

9
�
5

9
�
5

5
�
9

9
�
5

5
�
9

9
�
5

9
�
5

9
�
5

9
�
5

9
�
5

9
�
5

9
�
5

9
�
5

9
�
5

Shortcut rule: what-
ever you do to one
side of an equation,
you must do to the
other side. If you
remove an added
value from one side
of the equation by
subtracting it, you
must subtract the
same value from the
other side. If you
remove a value that
one side is being
divided by, by multi-
plying by that value,
you must multiply
the other side by the
same value.
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Summary
Of all the mathematical skills you require for statistics, the ability 
to read and work with summation operators is perhaps the most
important. You may have observed how much effort is made in
mathematics to find simplifying notation. We saw in the previous
tutorial how efficiently this is achieved for multiplication by using
exponents. 

In statistics, we are frequently faced with large datasets, and we
are required to conduct fairly laborious, repetitive calculations
involving addition. For this reason, we use notation that greatly
simplifies our work, making it more readable and efficient. To
express addition, we use the Greek letter Σ (capital sigma). For
example, to add the numbers {3, 1, 5}, we use the notation:

In the social 
sciences, we typically

use abbreviated
summation notation,

e.g. Σx rather than

Σ xi

n

i � 1

Σxi

n

i�1

Some explanation is required here! We read this as: ‘the sum of x,
from the first value of x to the nth value of x’. 

Σxi � xi � 1 + xi � 2 + xi � 3 � 3 + 1 + 5 � 9

1. Substitute:
a) Given the equation y � 2x + 7, calculate y for: i) x � 1,

ii) x � –3.5, iii) x �

b) Given the equation y � 4x – 4, calculate y for: i) x � 0, 
ii) x � –2, iii) x �

c) Given the equation y � x3 – 1, calculate y for: i) x � –1,
ii) x � 2, iii) x � 0

2. What is the coefficient of x?
a) y � 3x + 2
b) y � 4x2 + 2x + 1
c) y � (3 + 5)x + 2
d) 12 × 4x

3. Solve for x:
a) y � 2x + 7
b) y � 3 – 6x
c) y + 3 � x – 2
d) y � + 8
e) y � 2x + k, given that k is a constant
f) 2y � 2x + k, given that k is a constant
g) y � ax + b, given that both a and b are constants

x
�
2

2
�
3

–2
�
8

Exercise 24.1

Σxi

n

i�1
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‘i’ is thus called an index variable, since it indexes the variable x. n
refers to the last value of x in the given set. The notation can be
varied in many ways. For example: 

Σxi

n

i�1

This notation means that you should add the second and third
values in the set for the variable x.

In practice, you will usually add the entire set, and for that
reason it is common in social science statistics texts to omit the
superscripts and subscripts. We will follow this simplification here.

In other words, when we mean       , we will merely write Σx. 
Summation notation can be used to denote more complex oper-

ations than just adding a set of first-power numbers. We can add
squares, differences, and indeed any result of an arithmetic opera-
tion. This is demonstrated below for the datasets x � {5, 7, 3, 1}, and
y � {4, 2, 1, 6}

Squares: Σx2 � 52 + 72 + 32 + 12 � 25 + 49 + 9 + 1 � 84 
Differences: Σ(x – y) � (5 – 4) + (7 – 2) + (3 – 1) + (1 – 6) � 1 + 5 + 2  – 5 � 3
Cross products: Σxy � (5 × 4) + (7 × 2) + (3 × 1) + (1 × 6) � 20 + 14 + 3 + 6 � 43 

Arithmetic operations can also be applied to the outcomes of
expressions involving summation. Assuming the same datasets as
above:

(Σx)2 � (5 + 7 + 3 + 1)2 � (16)2 � 256
(Σx – (Σ ))2 � [(5 + 7 + 3 + 1) – (5/4 + 7/4 + 3/4 + 1/4)]2 � (16 – 4)2 � 144

There are a number of rules that make manual summation opera-
tions much easier. In the example just above, we divided each x in
the term (Σ ) by n, but a rule tells us that (Σ ) is equivalent to .
There are a number of these rules, but we will not detail them here,
since it is all much more easily done on your calculator! Most
reasonable quality calculators have summation functions, and for the
price of three movie tickets you will be able to purchase one. Several
tutorials in this book (e.g. Tutorials 3 and 4) explain how to use
calculators for statistical calculations, and we suggest that you work
through the sections dealing with summation (see especially Box 3.1).

A couple of rules that are important, and that your calculator
will not be able to solve for you, concern how to work with con-
stants in summation notation. Consider the following expressions,
where x � {7, 3, 9} and k � 6:

Σx � 7 + 3 + 9 � 19
Σk � k + k + k � 6 + 6 + 6 � 18 � 3 × 6 � nk

Σkx � (6 × 7) + (6 × 3) + (6 × 9) � 42 + 18 + 54 � 114 � 6 × 19 � kΣx

(Σx)
�

n
x
�
n

x
�
n

x
�
n

Σxi

3

i�2

Scientific calculators
have many built-in
functions that make
summation calcula-
tions easy (e.g. Σx,
Σx2.)
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In other words:
1. When you sum a constant, you simply multiply it by the number

of data points in the set it is associated with. In the example
above, we multiplied the constant, 6, by the number of items in
the data set, 3, to get 18 as our result. The rule can be stated as 
Σk � nk.

2. When you sum a multiple of a constant, you multiply the sum of
the variable by the constant, i.e. the constant moves to the front
of the summation sign. The rule can be stated as Σkx � kΣx.

The best way to get on top of summation calculations is to do as
many practice calculations and exercises as possible. 

Examples
Calculate a) to j), where k � 4, x � {2, 4, 6, 8, 3} and y � {–3, 5, 3, 6, 4}: 
a) Σx b) Σy c) Σx2 d) Σy2 e) Σxy f) (Σx)2 g) (Σy)2 h) ΣxΣy
i) Σkx2 j) ΣkΣx2

a) Σx � 2 + 4 + 6 + 8 + 3 � 23
b) Σy � –3 + 5 + 3 + 6 + 4 � 15
c) Σx2 � 22 + 42 + 62 + 82 + 32 � 4 + 16 + 36 + 64 + 9 � 129
d) Σy2 � –32 + 52 + 32 + 62 + 42 � 9 + 25 + 9 + 36 +16 � 95
e) Σxy � (2 × –3) + (4 × 5) + (6 × 3) + (8 × 6) + (3 × 4)

� –6 + 20 + 18 + 48 + 12 � 92
f) (Σx)2 � 232 � 529
g) (Σy)2 � 152 � 225
h) ΣxΣy � 23 × 15 � 345
i) Σkx2 � kΣx2 � 4 × 129 � 516
j) ΣkΣx2 � nkΣx2 � 20 × 129 � 2 580

1. For all 3 of the following datasets, calculate a) to i) below
(use calculators):
a) x � 4.2, 3.5, 6.7, 8.6 y � 3.5, 2.3, 7.8, 8.5
b) x � 12, 19, 16, 18, 35 y � 19, 13, 23, 18, 11
c) x � 102, 121, 231, 143, 119 y � 112, 98, 231, 119, 103

a) Σx b) Σx2 c) (Σx)2 d) Σy e) Σy2 f) (Σy)2 g) Σxy

h) Σx2 – (Σx)2 i) j) ΣxΣy

2. For the datasets x, y and z, below, calculate a) to i)

(Σy2 – (Σy)2)
��

n – 1

Rules for using con-
stants in summation

terms:
• Σk � nk

• Σkx � kΣx

Exercise 24.2

x 2 6 4 5 5 1
y 3 6 5 2 2 1
z 4 2 8 1 2 7
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Solutions to Self-test 24.1
1. x � 1
2. x � –1
3. x � 1
4. x � 10 – y
5. x � –100
6. x � zσ + µ
7. 9
8. 29
9. –2

10. 15
11. 195 
12. 81 
13. –12 
14. 8 
15. 3

a) Σx b) Σz c) Σy2 d) (Σx)2 e) Σxy f) 

g) Σ(x – 4)(y – 3)     h) (Σz2x)/Σy i)

Σxy
�

2

Σyi

2

i�1

Solve the following equations for x:
1. x – 1 � 4
2. – x + 4 � 2
3. x ÷ 2 � 1
4. x + 2x – y � 8
5. x2/2 + 7 � 43
6. z � (x + µ)/σ

Evaluate the following expressions for x � {5, 1, 2}, k � 5, 
y � {9, 7, 2}:
7. Σx/n
8. Σ(x2)
9. Σ(x – y)2

10. Σnk
11. Σxy
12. (Σx)2

13. Σx2 – (Σx)2

14. Σ(y – k)
15. Σ x2/n

Self-test 24.2

Solutions to Self-test 24.2
1. x � 5 
2. x � 2 
3. x � 2 
4. x �

5. x � �7�2�
6. x � zσ – µ
7. 2.7 
8. 30 
9. 52 

10. 45 
11. 56 
12. 64 
13. –34 
14. 3 
15. 10

(8 + y)
�

2
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Solutions to exercises

Exercise 24.1
1. a) i) 9 ii) 0 iii) 6.5

b) i) –4 ii) –12 iii) –
c) i) –2 ii) 7 iii) –1

2. a) 3
b) 2
c) 8
d) 48

3. a) x � (y – 7)/2
b) x � (3 – y)/6
c) x � y + 5
d) x � 2y – 16
e) x � (y – k)/2
f) x � (2y – k)/2
g) x � (y – b)/a

Exercise 24.2
1. 1st dataset

a) 23
b) 148.74
c) 529
d) 22.1
e) 150.63
f) 488.41
g) 148.11
h) –380.26 
i) –112.59
j) 508.3

2nd dataset
a) 100
b) 2 310
c) 10 000
d) 84
e) 1 504
f) 7 056
g) 1 552
h) –7 690
i) –1 388
j) 8 400

4
�
3



3rd dataset
a) 716 
b) 113 016 
c) 512 656 
d) 663 
e) 100 279 
f) 439 569 
g) 105 917 
h) –399 640
i) –84 822.5
j) 474 708 

2. a) 23
b) 24
c) 79
d) 529
e) 83
f) 41.5
g) 10

TUTORIAL 24: EQUATIONS, SUBSTITUTION, AND SUMMATION 471
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Reading and
understanding
graphs

Lance Lachenicht

•••••••••••
After studying this tutorial, you should be able to:
• Understand and interpret simple line graphs.
• Understand and interpret simple category plots.
• Draw simple line graphs.
• Draw simple category plots.

Social science research makes extensive use of graphs and charts.
Graphs are intended to make things easier for you. A good graph
reveals things that might otherwise be obscure or difficult to under-
stand. A graph is a way of making numerical information visual, so
that patterns and relationships can be clearly seen.

About graphs
A man you may have heard about in other contexts, called René
Descartes (b. 1596), invented graphical illustration while lying in 
bed recovering from an illness. Lying on his back, feeling bored,
Descartes kept his mind occupied by studying a crack spreading
across the ceiling (see Figure 25.1). 

The thought occurred to him that to find any point or small spot
on the ceiling, we need two measurements. One measurement is not
enough, but two measurements will exactly locate any point on the
ceiling. Thus, a particular point could be exactly three metres from
the edge of the ceiling near your feet, and two metres from the left-
hand ceiling edge. 

TUTORIAL

25

A graph is a way of
making numerical

information visual,
so that patterns and
relationships can be

clearly seen.
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It is quite simple: you start by taking those two edges of the ceiling as
your base or ‘0’ lines. Then, from any point on the ceiling you can
obtain a pair of numbers that exactly locate the point (each number
being a measurement from one of the two edges or base lines). Figure
25.1 illustrates this for two different points on Descartes’ ceiling.

However, Descartes was more interested in the fact that we can
start from pairs of numbers and place them as points in space.
Given any pair of numbers, we can locate them as a unique point on
a surface (such as a ceiling, or a sheet of paper) if we have base lines
on the surface from which to plot the point. Even more interesting
for Descartes was the fact that if you have a series of many pairs of
numbers linked together by some rule, they will form a line. (A line,
for our purposes, is just an accumulation of many points.) The
characteristics of the line – whether it runs up or down, whether it
slopes forward or backwards, whether it is curved or straight, etc. –
show the kind of rule that links the pairs of numbers. We will exam-
ine this in more detail after giving some examples.

Crack in ceiling
A

B

Edge of ceiling

Edge of ceiling

0

0

1

2

3

1 2 3 4 5 6 7
4.25

1.25

Corner from which measurement begins

Points A and B are located by means of two measurements

Figure 25.1 Locating a point on the crack in Descartes’ ceiling

Do you think we could extend Descartes’ co-ordinate system to
describe three-dimensional objects (we would then have x, y, and z
axes)?  Do you think we could extend the co-ordinate system beyond
that? Can you think of uses for a multi-dimensional co-ordinate
system?

Activity 25.1

The (x,y) pairs
Descartes used as
the basis for de-
scribing his ceiling
are often referred 
to as Cartesian 
co-ordinates.

Example 1: Study and leisure hours
You decide to plan your day. There are only 24 hours in it. A little 
self-observation and consultation of your lecture timetable show that 
14 hours of each day will be spent sleeping, having meals, and
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attending lectures. Only 10 hours are left to divide between study
and leisure activities.

There are many ways in which you could divide your 10 hours –
at one extreme you could spend all 10 at leisure and none at study.
That would be unsatisfactory, because you might not pass your
exams. You could also spend all 10 hours studying. That too would
be unsatisfactory, because you would become bored with studying
and you would lack exercise. Between these extreme choices there
are many possible divisions. We set out 7 of them in Table 25.1

Table 25.1 Seven combinations of leisure and study time

A B C D E F G

Leisure hours: 10 8 7 6 4.5 2.5 0

Study hours: 0 2 3 4 5.5 7.5 10

TOTAL 10 10 10 10 10 10 10

Here we have two lists of numbers. One set gives the possible
leisure hours and the other the possible study hours. However,
these sets of numbers are dependent on each other. Each leisure
time number is paired with a study time number. If we only have 
10 free hours, then spending 10 hours at recreation means that it is
impossible to study at all. However, spending 4 of the 10 hours
studying means that there can only be 6 hours left for recreation.
Similarly, spending 25% of your 10 hours (i.e. 21/2 hours) at leisure
means that you must have 71/2 hours in which to study. The link
between the two sets of numbers is therefore quite simple: together
they must add up to 10.

The study time/leisure time example reveals the kind of situation
that graphs illustrate: a series of pairs of numbers linked together by
some rule. The graph based upon these pairs of numbers appears in
Figure 25.2. In the figure, the vertical line (|) at the left, and the hori-
zontal line (——) at the bottom correspond to the two edges of
Descartes’ ceiling. Each is divided into a numbered scale, and the
meaning of the numbers is given by the labels, ‘Hours of study time’
(horizontally) and ‘Hours of leisure time’ (vertically). The slanting
line with points marked A through G is the actual graph illustrating
the relationship between study time and leisure time. 

The horizontal line is the horizontal axis, sometimes called the
x-axis. The horizontal axis is just a useful line for measuring distances
in the horizontal dimension. In the study time/leisure time example,
one member of each number pair must stand for a certain number of
study hours. In the figure, the study time number has been given to
the horizontal dimension of the graph. The horizontal axis provides a

It is possible to repre-
sent the data in

Table 25.1 as pairs
of data points, i.e.
(0, 10), (2, 8) …

(10, 0), rather than
in tabular format.

The horizontal or
x-axis is placed at
the bottom of the

graph. 
The vertical or 

y-axis is placed at
the left of the graph. 
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scale for dividing this dimension into numbers between 0 and 10,
with 0 at the extreme left and 10 at the extreme right.

The horizontal or x-axis is placed at the bottom of the graph as a
matter of custom and convenience. You can think of it as a kind of
sliding line that could be moved vertically up or down the diagram
– much as you would move a ruler up or down the page, always
keeping it completely horizontal. For example, look at the 2 mark
on the x-axis. Above it is a broken line extending up to point B. Any
point on this broken line stands for 2 study hours, because it is 
2 measuring units away from the left-hand edge. If the horizontal
axis were to be moved upwards, the 2-mark on that axis would
touch every point on the broken line up to and beyond B, and it
would only touch points on this line. 

A

B

D

E

F

G

H
O

U
RS

 O
F 

LE
IS

U
RE

 T
IM

E

HOURS OF STUDY TIME

0
0

2

4

6

8

10

2 4 6 8 10

Figure 25.2 Graph of the data in Table 25.1

Activity 25.2Drawing a few graphs is helpful in learning about them. On a piece of
paper, redraw Figure 25.2.  
1. Label your axis lines. 
2. Pick a scale for each axis – i.e. choose how much distance on the

axis you are going to use to represent one hour.
3. Record as many pairs of numbers as you please (e.g. 1 and 9 hours,

30 minutes and 9.5 hours, etc.) on the graph.

Your plotted points should lie along a line comparable to AG in Figure
25.2. After you are satisfied that this is true, draw in the line that repre-
sents all the possible points you could mark if you had the time and
patience. You cannot possibly find any ‘add-up-to-10’ combination that
does not fall on the line. The beauty of the line AG, however, is not
simply that it includes all the points that satisfy the linking rule
(adding up to 10), but that it includes only those points. In other words,
the line has no point that does not meet the linking rule that determines
the two sets of numbers you are graphing.



Similarly, the vertical line at the left of the graph is the y-axis or
the vertical axis. It is a measuring line that could be moved from the
left to the right across the diagram measuring amounts of leisure
time. Thus any point on the broken horizontal line running from the
y-axis through B, stands for 8 hours of leisure time.

Given the two axes, their position at the bottom and at the left of
the graph is convenient because they perform a service for each
other. In Figure 25.2, the vertical axis is primarily the measuring line
for leisure time, but because of its position it is also the zero line 
for study time. Any point that falls on this line represents no time
spent studying. Similarly, any point on the horizontal axis represents
0 leisure hours.

The lower left-hand corner at which the two axes meet is called
the origin. It signifies 0 leisure hours and 0 study hours. (Note: Not
all graphs have a double zero origin.) 

Example 2: The relation between word length and
recognition latency
One concept/tool that cognitive scientists use to explore the mind is
‘mental chronometry’ (a ‘chronometer’ is a very precise clock). This
involves an attempt to determine how long different tasks take.
From the length of time required for each mental process, re-
searchers can work out the complexity and nature of the task.
Suppose you decided to study the effect of word length (measured
in letters) on the time needed for a research participant to push a
button. Pushing the button would show that the research participant
had recognised and understood the word (the subject’s ‘recognition
latency’ for the words, in technical jargon). You would expect that the
longer words would take longer to recognise than the shorter words
(the clocks needed to measure such a relationship would have to be
very precise).

Suppose that you present a group of ten research participants
with six sets of five words. In this task the first set of words is three
letters long, the second set is four letters long, the third set is five let-
ters long, etc. until the sixth set of words that are eight letters long.
The words are presented on a computer screen in a random order (i.e.
no particular order at all), and the researcher requires that parti-
cipants push a button as soon as they recognise the word. In each
case the computer measures the delay between presentation of 
the word and the participant pushing the button, showing that 
her or she had recognised the word. The computer then calculates an
average ‘response latency’ score for each of the six sets of words of
different lengths. Table 25.2 sets out these average scores. Try to
sketch this graph before looking at the solution, shown in Figure 25.3.
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The lower left-hand
corner at which the

two axes meet is
called the origin.
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Figure 25.3 Graph of the data in Table 25.2

Example 3: A preference curve
A special type of curve is found whenever preferences are dealt with.
Consider the relationship between a person’s enjoyment of a bath and
the temperature of the bath water. In psychology, we often refer to a
person’s enjoyment or lack of enjoyment as the person’s hedonic tone.
(Hedonic means ‘of pleasure’.) Suppose we measured hedonic tone on
a five-point scale with zero (0) being the point of indifference – the
person finds the bath water neither unpleasant nor pleasant. A very
pleasant experience is assigned the number 1, and an extremely pleas-
urable experience (maximum enjoyment) is assigned the number 2.
On the other hand, an unpleasant experience (very little enjoyment) is
given the number –1, and an extremely unpleasant experience is given
the number –2. The hedonic scale then ranges from –2 to 2 and would
look something like: –2 –1 0 +1 +2.

Table 25.2 Response latencies for words of different
lengths

Word length (letters): 3 4 5 6 7 8

Word recognition 
latency (msec.): 510 540 565 585 610 630

Table 25.3 The enjoyment of baths at different
temperatures

Temperature (C°): 0 10 20 30 40 50 60 70 80 90

Hedonic tone: –2 –1 –.5 0 1 2 1.8 .5 –.5 –2



If the slope of the line
is constant, it is a

straight line, and is
said to be linear.

If the slope of the line
is not constant, it is a

curved line, and is
said to be non-linear.
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Figure 25.4 Graph of the data in Table 25.3

Suppose we run an experiment where we ask participants to get into
baths where the water has different temperatures. Sometimes the
participants want to jump out the baths almost immediately, at other
times they want to linger (perhaps the length of time they linger in
the bath could be used as an alternative measure of hedonic tone?).
Each participant takes ten baths, each bath at a different set tempera-
ture. After each bath, the participant is asked to rate how pleasurable
the bath was in terms of the five-point hedonic tone rating scale.
Table 25.3 sets out the average scores for 20 subjects.  Try to sketch the
graph before looking at the solution in Figure 25.4

If the line points
downwards (from

left to right), it has a
negative (or inverse)

slope.
If the line points

upwards (from left
to right), it has a

positive slope.

The direction of the line
In the ‘study time vs leisure time’ graph, the line slopes downwards
from left to right, but in the ‘response latency vs word length’ graph,
the line slopes upwards from left to right. The downward slope of the
study/leisure graph illustrates the trade-off between study time and
leisure time – more study time has the consequence that you will
have less leisure time. In terms of the graph, if you are to stay on the
line, you must inevitably follow the downward movement of the line
– and this means that you have to give up some leisure time to have
more study time. The increase in one member of the number pair is
associated with a decrease in the other member of the pair.

We are now trying to describe the graph line in terms of what
happens to it as we start following the line at the left and move
towards the right. Think of the line as the path traced by a point that
moves towards the right, always satisfying the requirements of the
linking rule as it does so.

In the study/leisure example, an increase of one hour in study
time means a decrease of one hour in leisure time. Graphically, this
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means a straight line falling constantly to the right. We describe
such graphs as depicting inverse relationships.

In the ‘response latency for words of different lengths’ graph, the
line does not slope downwards but upwards. Increasing the length
of the word increases the length of time that a person needs to
respond to the word. There is a positive relationship between the
pairs of numbers: an increase in one number of the pair leads to an
increase in the other number of the pair. Can you work out whether
the increase is (roughly) constant for all pairs of numbers?

In the ‘bath water preference’ curve, there is initially an increas-
ing relationship between both numbers of the pair (the line initially
slopes upwards like the ‘word length latency’ graph), but the curve
seems to reach a peak and then slope downwards like the study/
leisure graph.

Figure 25.5 contains six different graphs. In each of these graphs x
signifies the amount being measured horizontally, and y the amount
being measured vertically. Each graph depicts a different direction
and/or curvature of the line. Graphs (a), (d), and (c) have a negative
slope (on average), whereas (e) and (f) have a positive slope (on aver-
age). Graphs (a), (b), (d), and (e) are straight-line graphs (i.e. with a
constant slope), whereas (c) and (f) are non-linear graphs (i.e. with a
slope that changes at different x,y locations). 

y

x
(a)

y

x
(b)

y

x
(c)

y

x
(d)

y

x
(e)

y

x
(f)

Figure 25.5 Six graphs, varying in slope, linearity, and direction

Points to remember
1. When you encounter a graph, always establish what is being

measured on the horizontal axis and what is being measured on
the vertical axis. 

2. The line on the graph always measures some form of relationship
between two items or variables. Behind the line are two sets of
numbers linked together, pair by pair.
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3. Notice which way the line runs. If it rises to the right, it means
that as one number in each pair of numbers increases, the other
number increases too. If the line falls as it moves to the right, then
the paired numbers change inversely. As one goes up the other
goes down.

4. If the pairs of numbers are related by a constant amount, the
graph will depict a straight line. But if the pairs of numbers are
related by varying amounts (increasing, decreasing, etc.), then the
graph will depict a curved line.

When graphs are used to show relationships between variables,
knowing the exact pairs of numbers behind the graph is often not
very important. Of greater importance may be such questions as: Is
the line rising or falling from left to right? Is the line straight or
curved? 

Graphing numbers by categories
When we considered the relation between leisure and study time, we
were considering the relation between two sets of numbers (those
representing leisure hours, and those representing study hours). It
sometimes happens that we have to consider the relation between a
set of numbers and a set of categories. Suppose you had the class 
test results for five students. Their results could be tabulated as in
Table 25.4. Here the categories we are concerned with refer to differ-
ent students, and the numbers we are concerned with are the per-
centage marks they obtained in their test. A student does not sound

Table 25.4  Class test results for five students

Dumisani Peter Sandra Kajal Precious

Test %: 80 60 67 70 64

Dumisani Peter Sandra Kajal Precious
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Figure 25.6 Bar graph of data in Table 25.4
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Table 25.5  Uninstructed memory for words in children

like a category but of course it is possible to think of each student as a
set containing only one member. Instead of students, we could have
been presenting the average percentage marks for whole classes.
Although the link in the above table is between students (non-
numeric) and numbers (percentage marks), it is still possible to pres-
ent this information graphically. Each number will be paired with a
category, and the categories will be assigned an arbitrary amount of
space on the graph. (See Figure 25.6.)

Graphing numbers by categories is very important in many
social science studies. Consider a study of memory in four-year-old
and eight-year-old children. Each child in the study is instructed to
remember a list of 12 words. After being presented with the words,
the children are asked to wait five minutes, and then the experi-
menter comes back and asks the child to repeat the words she or he
remembers. The number of words the child remembers is the child’s
‘memory score’. Suppose, after one such study, the experimenter
obtains the results in Table 25.5. These can be represented by either
a line graph or a bar graph. (See Figure 25.7.)

Age (years): four eight

Number of words remembered: 3 7.5
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Figure 25.7 Bar graph and line graph of data in Table 25.5

Suppose a subsequent researcher discovers this finding (which seems
to be that older children remember more words than younger
children). This researcher believes that there is no deficit of memory
in young children. Instead, he thinks that perhaps the young children
are merely ignorant of the limits of their own memory, and in 
not realising that they will forget the words, they do not rehearse
them. So he speculates that if the younger children are instructed in
some techniques to enhance memory, they will perform as well as, or
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Table 25.6 Instructed and uninstructed memory in children

Uninstructed Rehearsal instruction

Age (years) four eight four eight

No. of words
remembered 2.5 8 8 9.5

nearly as well as, the older children. The researcher decides that it
will be easy to instruct the children in the use of rehearsal – they will
be told to repeat the words over and over to themselves until the
researcher returns and asks them what words they remember.
Naturally, the researcher believes that it will be important to assess
whether rehearsal helps the older children as well as the younger
children. 

So this is what the researcher does. He has two conditions in his
experiment: an ‘uninstructed condition’ where neither of the two
groups of children are told how to remember the words, and a
‘rehearsal condition’ in which both the four-year-old and eight-
year-old groups of children are told to remember the words by say-
ing them over and over until the experimenter comes back and asks
them what they remember. 

In this two-condition study, the researcher obtains the results in
Table 25.6.

These findings can be drawn using one graph with two lines on 
it (each line depicting a different condition of the experiment). 
See Figure 25.8.
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Figure 25.8 Categorised line graph of data in Table 25.6

Activity 25.3 Try to construct a line graph of the test results of Table 25.6.  What
would you do if the table had 100 names in it?



Figure 25.9 shows four graphs depicting possible outcomes of
‘two-condition’ experiments carried out upon two categories of
subjects. In each case the dependent variable score (number of
words remembered) is shown as y in the graphs, the two age-group
categories (four and eight years) are assigned to the x-axis, and the
two conditions are labelled R and U (Rehearsal and Uninstructed).
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Try to interpret each of the patterns in Figure 25.9. What are the results
of the study in each case?

Activity 25.4

y
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Figure 25.9 Four graphs, depicting possible outcomes of
two-condition experiments

Exercises
1. Fill in the missing numbers. In Figure 25.2, point D stands for

_____ leisure hours and for _____ study hours.

2. Fill in the missing word. Take any point inside the triangle formed
by the two axes and the line AG in Figure 25.2 (i.e. below and to
the left of AG). The pair of measurements for any such point must
together total _________________________ than 10.

3. Plot a graph depicting the relationship between response latency
and length of words using the data in Table 25.2. Notice that it is
not sensible to attempt to start the graph from zero milliseconds!
Notice also in this graph that you do not know the linking rule
that relates the points to one another – part of the point of the
research is to discover whether there is such a linking rule.



4. Which of the six diagrams in Figure 25.5 illustrates an inverse
relation (positive change in one and a negative change in the
other) between x and y?

5. In which of the diagrams in Figure 25.5 is y’s response to a change
in x zero?

6. In which of the diagrams in Figure 25.5 do you find a positive
relation (i.e. a positive change in x is accompanied by a positive
change in y) rather than an inverse relation between x and y?

7. Imagine that graph (d) in Figure 25.9 depicts the outcome of the
instructed and uninstructed memory research with four- and
eight-year-old children. Explain what the results depicted in the
graph would mean for the experiment.

8. The following table reports the average price of gold on the
London bullion market for five consecutive years. Draw a line
graph and bar graph of the data. When should you have invested
in gold to make the most profit in the period in question? When
should you have sold the gold in order to make the most profit?
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1990 1991 1992 1993 1994

$265 $255 $275 $295 $290

9. Blood pressure is measured as two variables – systolic blood pres-
sure and diastolic blood pressure. Below is a table reporting average
systolic and diastolic measures for cardiac risk patients who have
undergone three different treatment regimens. Draw a graph of
the data, including both blood pressure readings on the same
graph.

Bypass Stent Transplant

Systolic 90 110 150
Diastolic 50 75 120
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Statistical tables•••••

APPENDIX

1
Table A1.1: z-table – the standard normal distribution

z Smaller p Larger p Mean to z z Smaller p Larger p Mean to z z Smaller p Larger p Mean to z

0 0.50000 0.50000 0.00000 0.65 0.25785 0.74215 0.24215 1.3 0.09680 0.90320 0.40320
0.01 0.49601 0.50399 0.00399 0.66 0.25463 0.74537 0.24537 1.31 0.09510 0.90490 0.40490
0.02 0.49202 0.50798 0.00798 0.67 0.25143 0.74857 0.24857 1.32 0.09342 0.90658 0.40658
0.03 0.48803 0.51197 0.01197 0.68 0.24825 0.75175 0.25175 1.33 0.09176 0.90824 0.40824
0.04 0.48405 0.51595 0.01595 0.69 0.24510 0.75490 0.25490 1.34 0.09012 0.90988 0.40988
0.05 0.48006 0.51994 0.01994 0.7 0.24196 0.75804 0.25804 1.35 0.08851 0.91149 0.41149
0.06 0.47608 0.52392 0.02392 0.71 0.23885 0.76115 0.26115 1.36 0.08692 0.91308 0.41308
0.07 0.47210 0.52790 0.02790 0.72 0.23576 0.76424 0.26424 1.37 0.08534 0.91466 0.41466
0.08 0.46812 0.53188 0.03188 0.73 0.23270 0.76730 0.26730 1.38 0.08379 0.91621 0.41621
0.09 0.46414 0.53586 0.03586 0.74 0.22965 0.77035 0.27035 1.39 0.08226 0.91774 0.41774
0.1 0.46017 0.53983 0.03983 0.75 0.22663 0.77337 0.27337 1.4 0.08076 0.91924 0.41924
0.11 0.45620 0.54380 0.04380 0.76 0.22363 0.77637 0.27637 1.41 0.07927 0.92073 0.42073
0.12 0.45224 0.54776 0.04776 0.77 0.22065 0.77935 0.27935 1.42 0.07780 0.92220 0.42220
0.13 0.44828 0.55172 0.05172 0.78 0.21770 0.78230 0.28230 1.43 0.07636 0.92364 0.42364
0.14 0.44433 0.55567 0.05567 0.79 0.21476 0.78524 0.28524 1.44 0.07493 0.92507 0.42507
0.15 0.44038 0.55962 0.05962 0.8 0.21186 0.78814 0.28814 1.45 0.07353 0.92647 0.42647
0.16 0.43644 0.56356 0.06356 0.81 0.20897 0.79103 0.29103 1.46 0.07215 0.92785 0.42785
0.17 0.43251 0.56749 0.06749 0.82 0.20611 0.79389 0.29389 1.47 0.07078 0.92922 0.42922
0.18 0.42858 0.57142 0.07142 0.83 0.20327 0.79673 0.29673 1.48 0.06944 0.93056 0.43056
0.19 0.42465 0.57535 0.07535 0.84 0.20045 0.79955 0.29955 1.49 0.06811 0.93189 0.43189
0.2 0.42074 0.57926 0.07926 0.85 0.19766 0.80234 0.30234 1.5 0.06681 0.93319 0.43319
0.21 0.41683 0.58317 0.08317 0.86 0.19489 0.80511 0.30511 1.51 0.06552 0.93448 0.43448
0.22 0.41294 0.58706 0.08706 0.87 0.19215 0.80785 0.30785 1.52 0.06426 0.93574 0.43574
0.23 0.40905 0.59095 0.09095 0.88 0.18943 0.81057 0.31057 1.53 0.06301 0.93699 0.43699
0.24 0.40517 0.59483 0.09483 0.89 0.18673 0.81327 0.31327 1.54 0.06178 0.93822 0.43822
0.25 0.40129 0.59871 0.09871 0.9 0.18406 0.81594 0.31594 1.55 0.06057 0.93943 0.43943
0.26 0.39743 0.60257 0.10257 0.91 0.18141 0.81859 0.31859 1.56 0.05938 0.94062 0.44062
0.27 0.39358 0.60642 0.10642 0.92 0.17879 0.82121 0.32121 1.57 0.05821 0.94179 0.44179
0.28 0.38974 0.61026 0.11026 0.93 0.17619 0.82381 0.32381 1.58 0.05705 0.94295 0.44295
0.29 0.38591 0.61409 0.11409 0.94 0.17361 0.82639 0.32639 1.59 0.05592 0.94408 0.44408
0.3 0.38209 0.61791 0.11791 0.95 0.17106 0.82894 0.32894 1.6 0.05480 0.94520 0.44520
0.31 0.37828 0.62172 0.12172 0.96 0.16853 0.83147 0.33147 1.61 0.05370 0.94630 0.44630
0.32 0.37448 0.62552 0.12552 0.97 0.16602 0.83398 0.33398 1.62 0.05262 0.94738 0.44738
0.33 0.37070 0.62930 0.12930 0.98 0.16354 0.83646 0.33646 1.63 0.05155 0.94845 0.44845
0.34 0.36693 0.63307 0.13307 0.99 0.16109 0.83891 0.33891 1.64 0.05050 0.94950 0.44950
0.35 0.36317 0.63683 0.13683 1 0.15866 0.84134 0.34134 1.65 0.04947 0.95053 0.45053
0.36 0.35942 0.64058 0.14058 1.01 0.15625 0.84375 0.34375 1.66 0.04846 0.95154 0.45154
0.37 0.35569 0.64431 0.14431 1.02 0.15386 0.84614 0.34614 1.67 0.04746 0.95254 0.45254
0.38 0.35197 0.64803 0.14803 1.03 0.15151 0.84849 0.34849 1.68 0.04648 0.95352 0.45352
0.39 0.34827 0.65173 0.15173 1.04 0.14917 0.85083 0.35083 1.69 0.04551 0.95449 0.45449
0.4 0.34458 0.65542 0.15542 1.05 0.14686 0.85314 0.35314 1.7 0.04457 0.95543 0.45543
0.41 0.34090 0.65910 0.15910 1.06 0.14457 0.85543 0.35543 1.71 0.04363 0.95637 0.45637
0.42 0.33724 0.66276 0.16276 1.07 0.14231 0.85769 0.35769 1.72 0.04272 0.95728 0.45728
0.43 0.33360 0.66640 0.16640 1.08 0.14007 0.85993 0.35993 1.73 0.04182 0.95818 0.45818
0.44 0.32997 0.67003 0.17003 1.09 0.13786 0.86214 0.36214 1.74 0.04093 0.95907 0.45907
0.45 0.32636 0.67364 0.17364 1.1 0.13567 0.86433 0.36433 1.75 0.04006 0.95994 0.45994
0.46 0.32276 0.67724 0.17724 1.11 0.13350 0.86650 0.36650 1.76 0.03920 0.96080 0.46080
0.47 0.31918 0.68082 0.18082 1.12 0.13136 0.86864 0.36864 1.77 0.03836 0.96164 0.46164
0.48 0.31561 0.68439 0.18439 1.13 0.12924 0.87076 0.37076 1.78 0.03754 0.96246 0.46246
0.49 0.31207 0.68793 0.18793 1.14 0.12714 0.87286 0.37286 1.79 0.03673 0.96327 0.46327
0.5 0.30854 0.69146 0.19146 1.15 0.12507 0.87493 0.37493 1.8 0.03593 0.96407 0.46407
0.51 0.30503 0.69497 0.19497 1.16 0.12302 0.87698 0.37698 1.81 0.03515 0.96485 0.46485
0.52 0.30153 0.69847 0.19847 1.17 0.12100 0.87900 0.37900 1.82 0.03438 0.96562 0.46562
0.53 0.29806 0.70194 0.20194 1.18 0.11900 0.88100 0.38100 1.83 0.03362 0.96638 0.46638
0.54 0.29460 0.70540 0.20540 1.19 0.11702 0.88298 0.38298 1.84 0.03288 0.96712 0.46712
0.55 0.29116 0.70884 0.20884 1.2 0.11507 0.88493 0.38493 1.85 0.03216 0.96784 0.46784
0.56 0.28774 0.71226 0.21226 1.21 0.11314 0.88686 0.38686 1.86 0.03144 0.96856 0.46856
0.57 0.28434 0.71566 0.21566 1.22 0.11123 0.88877 0.38877 1.87 0.03074 0.96926 0.46926
0.58 0.28096 0.71904 0.21904 1.23 0.10935 0.89065 0.39065 1.88 0.03005 0.96995 0.46995
0.59 0.27760 0.72240 0.22240 1.24 0.10749 0.89251 0.39251 1.89 0.02938 0.97062 0.47062
0.6 0.27425 0.72575 0.22575 1.25 0.10565 0.89435 0.39435 1.9 0.02872 0.97128 0.47128
0.61 0.27093 0.72907 0.22907 1.26 0.10383 0.89617 0.39617 1.91 0.02807 0.97193 0.47193
0.62 0.26763 0.73237 0.23237 1.27 0.10204 0.89796 0.39796 1.92 0.02743 0.97257 0.47257
0.63 0.26435 0.73565 0.23565 1.28 0.10027 0.89973 0.39973 1.93 0.02680 0.97320 0.47320
0.64 0.26109 0.73891 0.23891 1.29 0.09853 0.90147 0.40147 1.94 0.02619 0.97381 0.47381
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z Smaller p Larger p Mean to z z Smaller p Larger p Mean to z z Smaller p Larger p Mean to z

1.95 0.02559 0.97441 0.47441 2.6 0.00466 0.99534 0.49534 3.3 0.00048 0.99952 0.49952
1.96 0.02500 0.97500 0.47500 2.61 0.00453 0.99547 0.49547 3.4 0.00034 0.99966 0.49966
1.97 0.02442 0.97558 0.47558 2.62 0.00440 0.99560 0.49560 3.5 0.00023 0.99977 0.49977
1.98 0.02385 0.97615 0.47615 2.63 0.00427 0.99573 0.49573 3.6 0.00016 0.99984 0.49984
1.99 0.02330 0.97670 0.47670 2.64 0.00415 0.99585 0.49585 3.7 0.00011 0.99989 0.49989

2 0.02275 0.97725 0.47725 2.65 0.00402 0.99598 0.49598 3.8 0.00007 0.99993 0.49993
2.01 0.02222 0.97778 0.47778 2.66 0.00391 0.99609 0.49609 3.9 0.00005 0.99995 0.49995
2.02 0.02169 0.97831 0.47831 2.67 0.00379 0.99621 0.49621 4 0.00003 0.99997 0.49997
2.03 0.02118 0.97882 0.47882 2.68 0.00368 0.99632 0.49632 4.1 0.00002 0.99998 0.49998
2.04 0.02068 0.97932 0.47932 2.69 0.00357 0.99643 0.49643 4.2 0.00001 0.99999 0.49999
2.05 0.02018 0.97982 0.47982 2.7 0.00347 0.99653 0.49653
2.06 0.01970 0.98030 0.48030 2.71 0.00336 0.99664 0.49664
2.07 0.01923 0.98077 0.48077 2.72 0.00326 0.99674 0.49674
2.08 0.01876 0.98124 0.48124 2.73 0.00317 0.99683 0.49683
2.09 0.01831 0.98169 0.48169 2.74 0.00307 0.99693 0.49693
2.1 0.01786 0.98214 0.48214 2.75 0.00298 0.99702 0.49702
2.11 0.01743 0.98257 0.48257 2.76 0.00289 0.99711 0.49711
2.12 0.01700 0.98300 0.48300 2.77 0.00280 0.99720 0.49720
2.13 0.01659 0.98341 0.48341 2.78 0.00272 0.99728 0.49728
2.14 0.01618 0.98382 0.48382 2.79 0.00264 0.99736 0.49736
2.15 0.01578 0.98422 0.48422 2.8 0.00256 0.99744 0.49744
2.16 0.01539 0.98461 0.48461 2.81 0.00248 0.99752 0.49752
2.17 0.01500 0.98500 0.48500 2.82 0.00240 0.99760 0.49760
2.18 0.01463 0.98537 0.48537 2.83 0.00233 0.99767 0.49767
2.19 0.01426 0.98574 0.48574 2.84 0.00226 0.99774 0.49774
2.2 0.01390 0.98610 0.48610 2.85 0.00219 0.99781 0.49781
2.21 0.01355 0.98645 0.48645 2.86 0.00212 0.99788 0.49788
2.22 0.01321 0.98679 0.48679 2.87 0.00205 0.99795 0.49795
2.23 0.01287 0.98713 0.48713 2.88 0.00199 0.99801 0.49801
2.24 0.01255 0.98745 0.48745 2.89 0.00193 0.99807 0.49807
2.25 0.01222 0.98778 0.48778 2.9 0.00187 0.99813 0.49813
2.26 0.01191 0.98809 0.48809 2.91 0.00181 0.99819 0.49819
2.27 0.01160 0.98840 0.48840 2.92 0.00175 0.99825 0.49825
2.28 0.01130 0.98870 0.48870 2.93 0.00169 0.99831 0.49831
2.29 0.01101 0.98899 0.48899 2.94 0.00164 0.99836 0.49836
2.3 0.01072 0.98928 0.48928 2.95 0.00159 0.99841 0.49841
2.31 0.01044 0.98956 0.48956 2.96 0.00154 0.99846 0.49846
2.32 0.01017 0.98983 0.48983 2.97 0.00149 0.99851 0.49851
2.33 0.00990 0.99010 0.49010 2.98 0.00144 0.99856 0.49856
2.34 0.00964 0.99036 0.49036 2.99 0.00139 0.99861 0.49861
2.35 0.00939 0.99061 0.49061 3 0.00135 0.99865 0.49865
2.36 0.00914 0.99086 0.49086 3.01 0.00131 0.99869 0.49869
2.37 0.00889 0.99111 0.49111 3.02 0.00126 0.99874 0.49874
2.38 0.00866 0.99134 0.49134 3.03 0.00122 0.99878 0.49878
2.39 0.00842 0.99158 0.49158 3.04 0.00118 0.99882 0.49882
2.4 0.00820 0.99180 0.49180 3.05 0.00114 0.99886 0.49886
2.41 0.00798 0.99202 0.49202 3.06 0.00111 0.99889 0.49889
2.42 0.00776 0.99224 0.49224 3.07 0.00107 0.99893 0.49893
2.43 0.00755 0.99245 0.49245 3.08 0.00104 0.99896 0.49896
2.44 0.00734 0.99266 0.49266 3.09 0.00100 0.99900 0.49900
2.45 0.00714 0.99286 0.49286 3.1 0.00097 0.99903 0.49903
2.46 0.00695 0.99305 0.49305 3.11 0.00094 0.99906 0.49906
2.47 0.00676 0.99324 0.49324 3.12 0.00090 0.99910 0.49910
.48 0.00657 0.99343 0.49343 3.13 0.00087 0.99913 0.49913
2.49 0.00639 0.99361 0.49361 3.14 0.00084 0.99916 0.49916
2.5 0.00621 0.99379 0.49379 3.15 0.00082 0.99918 0.49918
2.51 0.00604 0.99396 0.49396 3.16 0.00079 0.99921 0.49921
2.52 0.00587 0.99413 0.49413 3.17 0.00076 0.99924 0.49924
2.53 0.00570 0.99430 0.49430 3.18 0.00074 0.99926 0.49926
2.54 0.00554 0.99446 0.49446 3.19 0.00071 0.99929 0.49929
2.55 0.00539 0.99461 0.49461 3.2 0.00069 0.99931 0.49931
2.56 0.00523 0.99477 0.49477 3.21 0.00066 0.99934 0.49934
2.57 0.00508 0.99492 0.49492 3.22 0.00064 0.99936 0.49936
2.58 0.00494 0.99506 0.49506 3.23 0.00062 0.99938 0.49938
2.59 0.00480 0.99520 0.49520 3.24 0.00060 0.99940 0.49940

All values calculated by the
authors of this text.
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Table A1.2: t-table – values of the t distribution for varying
degrees of freedom (df) and �

� for two-tailed test 0.001 0.01 0.02 0.05 0.1 0.2 0.3

� for one-tailed test 0.0005 0.005 0.01 0.025 0.05 0.1 0.15

1 636.5776 63.6559 31.8210 12.7062 6.3137 3.0777 1.9626
2 31.5998 9.9250 6.9645 4.3027 2.9200 1.8856 1.3862
3 12.9244 5.8408 4.5407 3.1824 2.3534 1.6377 1.2498
4 8.6101 4.6041 3.7469 2.7765 2.1318 1.5332 1.1896
5 6.8685 4.0321 3.3649 2.5706 2.0150 1.4759 1.1558
6 5.9587 3.7074 3.1427 2.4469 1.9432 1.4398 1.1342
7 5.4081 3.4995 2.9979 2.3646 1.8946 1.4149 1.1192
8 5.0414 3.3554 2.8965 2.3060 1.8595 1.3968 1.1081
9 4.7809 3.2498 2.8214 2.2622 1.8331 1.3830 1.0997

10 4.5868 3.1693 2.7638 2.2281 1.8125 1.3722 1.0931
11 4.4369 3.1058 2.7181 2.2010 1.7959 1.3634 1.0877
12 4.3178 3.0545 2.6810 2.1788 1.7823 1.3562 1.0832
13 4.2209 3.0123 2.6503 2.1604 1.7709 1.3502 1.0795
14 4.1403 2.9768 2.6245 2.1448 1.7613 1.3450 1.0763
15 4.0728 2.9467 2.6025 2.1315 1.7531 1.3406 1.0735
16 4.0149 2.9208 2.5835 2.1199 1.7459 1.3368 1.0711
17 3.9651 2.8982 2.5669 2.1098 1.7396 1.3334 1.0690
18 3.9217 2.8784 2.5524 2.1009 1.7341 1.3304 1.0672
19 3.8833 2.8609 2.5395 2.0930 1.7291 1.3277 1.0655
20 3.8496 2.8453 2.5280 2.0860 1.7247 1.3253 1.0640
21 3.8193 2.8314 2.5176 2.0796 1.7207 1.3232 1.0627
22 3.7922 2.8188 2.5083 2.0739 1.7171 1.3212 1.0614
23 3.7676 2.8073 2.4999 2.0687 1.7139 1.3195 1.0603
24 3.7454 2.7970 2.4922 2.0639 1.7109 1.3178 1.0593
25 3.7251 2.7874 2.4851 2.0595 1.7081 1.3163 1.0584
26 3.7067 2.7787 2.4786 2.0555 1.7056 1.3150 1.0575
27 3.6895 2.7707 2.4727 2.0518 1.7033 1.3137 1.0567
28 3.6739 2.7633 2.4671 2.0484 1.7011 1.3125 1.0560
29 3.6595 2.7564 2.4620 2.0452 1.6991 1.3114 1.0553
30 3.6460 2.7500 2.4573 2.0423 1.6973 1.3104 1.0547
31 3.6335 2.7440 2.4528 2.0395 1.6955 1.3095 1.0541
32 3.6218 2.7385 2.4487 2.0369 1.6939 1.3086 1.0535
33 3.6109 2.7333 2.4448 2.0345 1.6924 1.3077 1.0530
34 3.6007 2.7284 2.4411 2.0322 1.6909 1.3070 1.0525
35 3.5911 2.7238 2.4377 2.0301 1.6896 1.3062 1.0520
36 3.5821 2.7195 2.4345 2.0281 1.6883 1.3055 1.0516
37 3.5737 2.7154 2.4314 2.0262 1.6871 1.3049 1.0512
38 3.5657 2.7116 2.4286 2.0244 1.6860 1.3042 1.0508
39 3.5581 2.7079 2.4258 2.0227 1.6849 1.3036 1.0504
40 3.5510 2.7045 2.4233 2.0211 1.6839 1.3031 1.0500
45 3.5203 2.6896 2.4121 2.0141 1.6794 1.3007 1.0485
50 3.4960 2.6778 2.4033 2.0086 1.6759 1.2987 1.0473
55 3.4765 2.6682 2.3961 2.0040 1.6730 1.2971 1.0463
60 3.4602 2.6603 2.3901 2.0003 1.6706 1.2958 1.0455

100 3.3905 2.6259 2.3642 1.9840 1.6602 1.2901 1.0418
1000 3.3002 2.5807 2.3301 1.9623 1.6464 1.2824 1.0370

All values calculated by the authors of this text
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Table A1.3: Power – calculating power (1 - β) from a known delta (δ)

Alpha (�) for a two-tailed test

δ 0.05 0.01
1.00 0.17 0.06
1.10 0.20 0.07
1.20 0.22 0.08
1.30 0.26 0.10
1.40 0.29 0.12
1.50 0.32 0.14
1.60 0.36 0.17
1.70 0.40 0.19
1.80 0.44 0.22
1.90 0.48 0.25
2.00 0.52 0.28
2.10 0.56 0.32
2.20 0.60 0.35
2.30 0.63 0.39
2.40 0.67 0.43
2.50 0.71 0.47
2.60 0.74 0.51
2.70 0.77 0.55
2.80 0.80 0.59
2.90 0.83 0.63
3.00 0.85 0.66
3.10 0.87 0.70
3.20 0.89 0.73
3.30 0.91 0.77
3.40 0.93 0.80
3.50 0.94 0.82
3.60 0.95 0.85
3.70 0.96 0.87
3.80 0.97 0.89
3.90 0.97 0.91
4.00 0.98 0.92
4.10 0.98 0.94
4.20 0.99 0.95
4.30 0.99 0.96
4.40 0.99 0.97
4.50 0.99 0.97
4.60 — 0.98
4.70 — 0.98
4.80 — 0.99
4.90 — 0.99
5.00 — 0.99

From: Howell, D.C. (1995). Fundamental Statistics for the Behavioural Sciences.
Duxbury: N.J.
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Numerator degrees of freedom (df)
1 2 3 4 5 6 7 8 9 10 15 20 25 30 40 50 100

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88 245.95 248.02 249.26 250.10 251.14 251.77 253.04
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.43 19.45 19.46 19.46 19.47 19.48 19.49
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.70 8.66 8.63 8.62 8.59 8.58 8.55
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.86 5.80 5.77 5.75 5.72 5.70 5.66
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.62 4.56 4.52 4.50 4.46 4.44 4.41
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.94 3.87 3.83 3.81 3.77 3.75 3.71
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.51 3.44 3.40 3.38 3.34 3.32 3.27
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.22 3.15 3.11 3.08 3.04 3.02 2.97
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.01 2.94 2.89 2.86 2.83 2.80 2.76

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.85 2.77 2.73 2.70 2.66 2.64 2.59
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.72 2.65 2.60 2.57 2.53 2.51 2.46
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.62 2.54 2.50 2.47 2.43 2.40 2.35
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.53 2.46 2.41 2.38 2.34 2.31 2.26
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.46 2.39 2.34 2.31 2.27 2.24 2.19
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.40 2.33 2.28 2.25 2.20 2.18 2.12
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.35 2.28 2.23 2.19 2.15 2.12 2.07
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.31 2.23 2.18 2.15 2.10 2.08 2.02
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.27 2.19 2.14 2.11 2.06 2.04 1.98
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.23 2.16 2.11 2.07 2.03 2.00 1.94
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.20 2.12 2.07 2.04 1.99 1.97 1.91
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.18 2.10 2.05 2.01 1.96 1.94 1.88
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.15 2.07 2.02 1.98 1.94 1.91 1.85
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.13 2.05 2.00 1.96 1.91 1.88 1.82
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.11 2.03 1.97 1.94 1.89 1.86 1.80
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.09 2.01 1.96 1.92 1.87 1.84 1.78
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.07 1.99 1.94 1.90 1.85 1.82 1.76
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.06 1.97 1.92 1.88 1.84 1.81 1.74
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.04 1.96 1.91 1.87 1.82 1.79 1.73
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.03 1.94 1.89 1.85 1.81 1.77 1.71
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.01 1.93 1.88 1.84 1.79 1.76 1.70
35 4.12 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.16 2.11 1.96 1.88 1.82 1.79 1.74 1.70 1.63
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 1.92 1.84 1.78 1.74 1.69 1.66 1.59
45 4.06 3.20 2.81 2.58 2.42 2.31 2.22 2.15 2.10 2.05 1.89 1.81 1.75 1.71 1.66 1.63 1.55
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.87 1.78 1.73 1.69 1.63 1.60 1.52
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.84 1.75 1.69 1.65 1.59 1.56 1.48
70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.02 1.97 1.81 1.72 1.66 1.62 1.57 1.53 1.45
80 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00 1.95 1.79 1.70 1.64 1.60 1.54 1.51 1.43
90 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.99 1.94 1.78 1.69 1.63 1.59 1.53 1.49 1.41

100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.77 1.68 1.62 1.57 1.52 1.48 1.39
200 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88 1.72 1.62 1.56 1.52 1.46 1.41 1.32
300 3.87 3.03 2.63 2.40 2.24 2.13 2.04 1.97 1.91 1.86 1.70 1.61 1.54 1.50 1.43 1.39 1.30
400 3.86 3.02 2.63 2.39 2.24 2.12 2.03 1.96 1.90 1.85 1.69 1.60 1.53 1.49 1.42 1.38 1.28
500 3.86 3.01 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 1.69 1.59 1.53 1.48 1.42 1.38 1.28

1000 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89 1.84 1.68 1.58 1.52 1.47 1.41 1.36 1.26
10000 3.84 3.00 2.61 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.67 1.57 1.51 1.46 1.40 1.35 1.25

All values calculated by the authors of this text

Table A1.4: Table of the F-distribution: � � 0.05
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Numerator degrees of freedom (df)
1 2 3 4 5 6 7 8 9 10 15 20 25 30 40 50 100

1 4052.2 4999.3 5403.5 5624.3 5763.96 5858.95 5928.3 5980.95 6022.4 6055.9 6156.97 6208.66 6239.86 6260.4 6286.4 6302.3 6333.9
2 98.50 99.00 99.16 99.25 99.30 99.33 99.36 99.38 99.39 99.40 99.43 99.45 99.46 99.47 99.48 99.48 99.49
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23 26.87 26.69 26.58 26.50 26.41 26.35 26.24
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.20 14.02 13.91 13.84 13.75 13.69 13.58
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.72 9.55 9.45 9.38 9.29 9.24 9.13
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.56 7.40 7.30 7.23 7.14 7.09 6.99
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.31 6.16 6.06 5.99 5.91 5.86 5.75
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.52 5.36 5.26 5.20 5.12 5.07 4.96
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 4.96 4.81 4.71 4.65 4.57 4.52 4.41

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.56 4.41 4.31 4.25 4.17 4.12 4.01
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.25 4.10 4.01 3.94 3.86 3.81 3.71
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.01 3.86 3.76 3.70 3.62 3.57 3.47
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.82 3.66 3.57 3.51 3.43 3.38 3.27
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.66 3.51 3.41 3.35 3.27 3.22 3.11
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.52 3.37 3.28 3.21 3.13 3.08 2.98
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.41 3.26 3.16 3.10 3.02 2.97 2.86
17 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.31 3.16 3.07 3.00 2.92 2.87 2.76
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.23 3.08 2.98 2.92 2.84 2.78 2.68
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.15 3.00 2.91 2.84 2.76 2.71 2.60
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.09 2.94 2.84 2.78 2.69 2.64 2.54
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.03 2.88 2.79 2.72 2.64 2.58 2.48
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 2.98 2.83 2.73 2.67 2.58 2.53 2.42
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 2.93 2.78 2.69 2.62 2.54 2.48 2.37
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 2.89 2.74 2.64 2.58 2.49 2.44 2.33
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.85 2.70 2.60 2.54 2.45 2.40 2.29
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.81 2.66 2.57 2.50 2.42 2.36 2.25
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.78 2.63 2.54 2.47 2.38 2.33 2.22
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.75 2.60 2.51 2.44 2.35 2.30 2.19
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.73 2.57 2.48 2.41 2.33 2.27 2.16
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.70 2.55 2.45 2.39 2.30 2.25 2.13
35 7.42 5.27 4.40 3.91 3.59 3.37 3.20 3.07 2.96 2.88 2.60 2.44 2.35 2.28 2.19 2.14 2.02
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.52 2.37 2.27 2.20 2.11 2.06 1.94
45 7.23 5.11 4.25 3.77 3.45 3.23 3.07 2.94 2.83 2.74 2.46 2.31 2.21 2.14 2.05 2.00 1.88
50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70 2.42 2.27 2.17 2.10 2.01 1.95 1.82
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.35 2.20 2.10 2.03 1.94 1.88 1.75
70 7.01 4.92 4.07 3.60 3.29 3.07 2.91 2.78 2.67 2.59 2.31 2.15 2.05 1.98 1.89 1.83 1.70
80 6.96 4.88 4.04 3.56 3.26 3.04 2.87 2.74 2.64 2.55 2.27 2.12 2.01 1.94 1.85 1.79 1.65
90 6.93 4.85 4.01 3.53 3.23 3.01 2.84 2.72 2.61 2.52 2.24 2.09 1.99 1.92 1.82 1.76 1.62

100 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.22 2.07 1.97 1.89 1.80 1.74 1.60
200 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50 2.41 2.13 1.97 1.87 1.79 1.69 1.63 1.48
300 6.72 4.68 3.85 3.38 3.08 2.86 2.70 2.57 2.47 2.38 2.10 1.94 1.84 1.76 1.66 1.59 1.44
400 6.70 4.66 3.83 3.37 3.06 2.85 2.68 2.56 2.45 2.37 2.08 1.92 1.82 1.75 1.64 1.58 1.42
500 6.69 4.65 3.82 3.36 3.05 2.84 2.68 2.55 2.44 2.36 2.07 1.92 1.81 1.74 1.63 1.57 1.41
102 6.66 4.63 3.80 3.34 3.04 2.82 2.66 2.53 2.43 2.34 2.06 1.90 1.79 1.72 1.61 1.54 1.38
103 6.64 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.04 1.88 1.77 1.70 1.59 1.53 1.36

All values calculated by the authors of this text

Table A1.5: Table of the F-distribution: � = 0.01
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Table A1.6: Values of Tukey’s Studentised Range Statistic (Q)

Degrees of freedom
within groups

(degrees of freedom k = number of means being compared
in denominator of

F-ratio) � 2 3 4 5 6 7 8 9 10 11 12

1 0.05 18 27 32.8 37.1 40.4 43.1 45.4 47.4 49.1 50.6 52
0.01 90 135 164 186 202 216 227 237 246 253 260

2 0.05 6.09 8.3 9.8 10.9 11.7 12.4 13 13.5 14 14.4 14.7
0.01 14 19 22.3 24.7 26.6 28.2 29.5 30.7 31.7 32.6 33.4

3 0.05 4.5 5.91 6.82 7.5 8.04 8.48 8.85 9.18 9.46 9.72 9.95
0.01 8.26 10.6 12.2 13.3 14.2 15 15.6 16.2 16.7 17.1 17.5

4 0.05 3.93 5.04 5.76 6.29 6.71 7.05 7.35 7.6 7.83 8.03 8.21
0.01 6.51 8.12 9.17 9.96 10.6 11.1 11.5 11.9 12.3 12.6 12.8

5 0.05 3.64 4.6 5.22 5.67 6.03 6.33 6.58 6.8 6.99 7.17 7.32
0.01 5.7 6.97 7.8 8.42 8.91 9.32 9.67 9.97 10.2 10.5 10.7

6 0.05 3.46 4.34 4.9 5.31 5.63 5.89 6.12 6.32 6.49 6.65 6.79
0.01 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.1 9.3 9.49

7 0.05 3.34 4.16 4.69 5.66 5.36 5.61 5.82 6 6.16 6.3 6.43
0.01 4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 8.55 8.71

8 0.05 3.26 4.04 4.53 4.89 5.17 5.4 5.6 5.77 5.92 6.05 6.18
0.01 4.74 5.63 6.2 6.63 6.96 7.24 7.47 7.68 7.87 8.03 8.18

9 0.05 3.2 3.95 4.42 4.76 5.02 5.24 5.43 5.6 5.74 5.87 5.98
0.01 4.6 5.43 5.96 6.35 6.66 6.91 7.13 7.32 7.49 7.65 7.78

10 0.05 3.15 3.88 4.33 4.65 4.91 5.12 5.3 5.46 5.6 5.72 5.83
0.01 4.48 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21 7.36 7.48

11 0.05 3.11 3.82 4.26 4.57 4.82 5.03 5.2 5.35 5.49 5.61 5.71
0.01 4.39 5.14 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.13 7.26

12 0.05 3.08 3.77 4.2 4.51 4.75 4.95 5.12 5.27 5.4 5.51 5.62
0.01 4.32 5.04 5.5 5.84 6.1 6.32 6.51 6.67 6.81 6.94 7.06

13 0.05 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43 5.53
0.01 4.26 4.96 5.4 5.73 5.98 6.19 6.37 6.53 6.67 6.79 6.9

14 0.05 3.03 3.7 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36 5.46
0.01 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 6.66 6.77

16 0.05 3 3.65 4.05 4.33 4.56 4.74 4.9 5.03 5.15 5.26 5.35
0.01 4.13 4.78 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46 6.56

18 0.05 2.97 3.61 4 4.28 4.49 4.67 4.82 4.96 5.07 5.17 5.27
0.01 4.07 4.7 5.09 5.38 5.6 5.79 5.94 6.08 6.2 6.31 6.41

20 0.05 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.9 5.01 5.11 5.2
0.01 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19 6.29

24 0.05 2.92 3.53 3.9 4.17 4.37 4.54 4.68 4.81 4.92 5.01 5.1
0.01 3.96 4.54 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02 6.11

30 0.05 2.89 3.49 3.84 4.1 4.3 4.46 4.6 4.72 4.83 4.92 5
0.01 3.89 4.45 4.8 5.05 5.24 5.4 5.54 5.56 5.76 5.85 5.93

40 0.05 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.74 4.82 4.91
0.01 3.82 4.37 4.7 4.93 5.11 5.27 5.39 5.5 5.6 5.69 5.77

60 0.05 2.83 3.4 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73 4.81
0.01 3.76 4.28 4.6 4.82 4.99 5.13 5.25 5.36 5.45 5.53 5.6

120 0.05 2.8 3.36 3.69 3.92 4.1 4.24 4.36 4.48 4.56 4.64 4.72
0.01 3.7 4.2 4.5 4.71 4.87 5.01 5.12 5.21 5.3 5.38 5.44

∞ 0.05 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55 4.62
0.01 3.64 4.12 4.4 4.6 4.76 4.88 4.99 5.08 5.16 5.23 5.29

From B. J. Winer (1962). Statistical Principles in Experimental Design. New York: McGraw-Hill
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0.0005 0.001 0.005 0.01 0.025 0.05 0.1 0.15 0.2 0.25 0.3

1 12.1153 10.8274 7.8794 6.6349 5.0239 3.8415 2.7055 2.0722 1.6424 1.3233 1.0742
2 15.2014 13.8150 10.5965 9.2104 7.3778 5.9915 4.6052 3.7942 3.2189 2.7726 2.4079
3 17.7311 16.2660 12.8381 11.3449 9.3484 7.8147 6.2514 5.3170 4.6416 4.1083 3.6649
4 19.9977 18.4662 14.8602 13.2767 11.1433 9.4877 7.7794 6.7449 5.9886 5.3853 4.8784
5 22.1057 20.5147 16.7496 15.0863 12.8325 11.0705 9.2363 8.1152 7.2893 6.6257 6.0644
6 24.1016 22.4575 18.5475 16.8119 14.4494 12.5916 10.6446 9.4461 8.5581 7.8408 7.2311
7 26.0179 24.3213 20.2777 18.4753 16.0128 14.0671 12.0170 10.7479 9.8032 9.0371 8.3834
8 27.8674 26.1239 21.9549 20.0902 17.5345 15.5073 13.3616 12.0271 11.0301 10.2189 9.5245
9 29.6669 27.8767 23.5893 21.6660 19.0228 16.9190 14.6837 13.2880 12.2421 11.3887 10.6564

10 31.4195 29.5879 25.1881 23.2093 20.4832 18.3070 15.9872 14.5339 13.4420 12.5489 11.7807
11 33.1382 31.2635 26.7569 24.7250 21.9200 19.6752 17.2750 15.7671 14.6314 13.7007 12.8987
12 34.8211 32.9092 28.2997 26.2170 23.3367 21.0261 18.5493 16.9893 15.8120 14.8454 14.0111
13 36.4768 34.5274 29.8193 27.6882 24.7356 22.3620 19.8119 18.2020 16.9848 15.9839 15.1187
14 38.1085 36.1239 31.3194 29.1412 26.1189 23.6848 21.0641 19.4062 18.1508 17.1169 16.2221
15 39.7173 37.6978 32.8015 30.5780 27.4884 24.9958 22.3071 20.6030 19.3107 18.2451 17.3217
16 41.3077 39.2518 34.2671 31.9999 28.8453 26.2962 23.5418 21.7931 20.4651 19.3689 18.4179
17 42.8808 40.7911 35.7184 33.4087 30.1910 27.5871 24.7690 22.9770 21.6146 20.4887 19.5110
18 44.4337 42.3119 37.1564 34.8052 31.5264 28.8693 25.9894 24.1555 22.7595 21.6049 20.6014
19 45.9738 43.8194 38.5821 36.1908 32.8523 30.1435 27.2036 25.3289 23.9004 22.7178 21.6891
20 47.4977 45.3142 39.9969 37.5663 34.1696 31.4104 28.4120 26.4976 25.0375 23.8277 22.7745
21 49.0096 46.7963 41.4009 38.9322 35.4789 32.6706 29.6151 27.6620 26.1711 24.9348 23.8578
22 50.5105 48.2676 42.7957 40.2894 36.7807 33.9245 30.8133 28.8224 27.3015 26.0393 24.9390
23 51.9995 49.7276 44.1814 41.6383 38.0756 35.1725 32.0069 29.9792 28.4288 27.1413 26.0184
24 53.4776 51.1790 45.5584 42.9798 39.3641 36.4150 33.1962 31.1325 29.5533 28.2412 27.0960
25 54.9475 52.6187 46.9280 44.3140 40.6465 37.6525 34.3816 32.2825 30.6752 29.3388 28.1719
26 56.4068 54.0511 48.2898 45.6416 41.9231 38.8851 35.5632 33.4295 31.7946 30.4346 29.2463
27 57.8556 55.4751 49.6450 46.9628 43.1945 40.1133 36.7412 34.5736 32.9117 31.5284 30.3193
28 59.2990 56.8918 50.9936 48.2782 44.4608 41.3372 37.9159 35.7150 34.0266 32.6205 31.3909
29 60.7342 58.3006 52.3355 49.5878 45.7223 42.5569 39.0875 36.8538 35.1394 33.7109 32.4612
30 62.1600 59.7022 53.6719 50.8922 46.9792 43.7730 40.2560 37.9902 36.2502 34.7997 33.5302
31 63.5813 61.0980 55.0025 52.1914 48.2319 44.9853 41.4217 39.1244 37.3591 35.8871 34.5981
32 64.9935 62.4873 56.3280 53.4857 49.4804 46.1942 42.5847 40.2563 38.4663 36.9730 35.6649
33 66.4013 63.8694 57.6483 54.7754 50.7251 47.3999 43.7452 41.3861 39.5718 38.0575 36.7307
34 67.8042 65.2471 58.9637 56.0609 51.9660 48.6024 44.9032 42.5140 40.6756 39.1408 37.7954
35 69.1975 66.6192 60.2746 57.3420 53.2033 49.8018 46.0588 43.6399 41.7780 40.2228 38.8591
36 70.5882 67.9850 61.5811 58.6192 54.4373 50.9985 47.2122 44.7641 42.8788 41.3036 39.9220
37 71.9713 69.3476 62.8832 59.8926 55.6680 52.1923 48.3634 45.8864 43.9782 42.3833 40.9839
38 73.3500 70.7039 64.1812 61.1620 56.8955 53.3835 49.5126 47.0072 45.0763 43.4619 42.0450
39 74.7237 72.0550 65.4753 62.4281 58.1201 54.5722 50.6598 48.1263 46.1730 44.5395 43.1053
40 76.0963 73.4029 66.7660 63.6908 59.3417 55.7585 51.8050 49.2438 47.2685 45.6160 44.1649
45 82.8734 80.0776 73.1660 69.9569 65.4101 61.6562 57.5053 54.8105 52.7288 50.9849 49.4517
50 89.5597 86.6603 79.4898 76.1538 71.4202 67.5048 63.1671 60.3460 58.1638 56.3336 54.7228
55 96.1607 93.1671 85.7491 82.2920 77.3804 73.3115 68.7962 65.8550 63.5772 61.6650 59.9804
60 102.6971 99.6078 91.9518 88.3794 83.2977 79.0820 74.3970 71.3411 68.9721 66.9815 65.2265

100 153.1638 149.4488 140.1697 135.8069 129.5613 124.3421 118.4980 114.6588 111.6667 109.1412 106.9058
1000 1153.7344 1143.9196 1118.9475 1106.9690 1089.5307 1074.6794 1057.7240 1046.3849 1037.8381 1030.1157 1023.2140

All values calculated by the authors of this text

Table A1.7: Values of the χ2 distribution for varying degrees of freedom (df) and �
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Table A1.8: Two-tailed 5% significance
values for the sign test giving values

for the smaller of the two sums

NOTE: The value must be in the listed 
ranges for the sample result to be 

significant at the 5% level.

Number of pairs of Significant at 5% if
scores (ignoring ties) in these ranges

6-8 0 only
9-11 0 to 1

12-14 0 to 2
15-16 0 to 3
17-19 0 to 4
20-22 0 to 5
23-24 0 to 6
25-27 0 to 7
28-29 0 to 8
0-32 0 to 9
33-34 0 to 10
35-36 0 to 11
37-39 0 to 12
40-41 0 to 13
42-43 0 to 14
44-46 0 to 15
47-48 0 to 16
49-50 0 to 17

Table A1.9: Wilcoxon matched pairs –
two-tailed 5% significance values 

for the Wilcoxon matched pairs test
giving values of T (the smaller of the 

two signed rank sums)

Number of pairs of Significant at 
scores (ignoring any 5% if in these 

tied pairs) ranges

6 0 only
7 0 to 2
8 0 to 4
9 0 to 6
10 0 to 8
11 0 to 11
12 0 to 14
13 0 to 17
14 0 to 21
15 0 to 25
16 0 to 30
17 0 to 35
18 0 to 40
19 0 to 46
20 0 to 52
21 0 to 59
22 0 to 66
23 0 to 73
24 0 to 81
25 0 to 89
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Table A10: Critical Values of the Mann-Whitney U for a Directional Test at .05 or a
Nondirectional Test at .10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 –– –– –– –– –– –– –– –– –– –– –– –– –– –– –– –– –– –– 0 0
19 20

2 –– –– –– –– 0 0 0 1 1 1 1 2 2 2 3 3 3 4 4 4
10 12 14 15 17 19 21 22 24 26 27 29 31 32 34 36

3 –– –– 0 0 1 2 2 3 3 4 5 5 6 7 7 8 9 9 10 11
9 12 14 16 19 21 24 26 28 31 33 35 38 40 42 45 47 49

4 –– –– 0 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18
12 15 18 21 24 27 30 33 36 39 42 45 48 50 53 56 59 62

5 –– 0 1 2 4 5 6 8 9 11 12 13 15 16 18 19 20 22 23 25
10 14 18 21 25 29 32 36 39 43 47 50 54 57 61 65 68 72 75

6 –– 0 2 3 5 7 8 10 12 14 16 17 19 21 23 25 26 28 30 32
12 16 21 25 29 34 38 42 46 50 55 59 63 67 71 76 80 84 88

7 –– 0 2 4 6 8 11 13 15 17 19 21 24 26 28 30 33 35 37 39
14 19 24 29 34 38 43 48 53 58 63 67 72 77 82 86 91 96 101

8 –– 1 3 56 8 10 13 15 18 20 23 26 28 31 33 36 39 41 44 47
15 21 27 32 38 43 49 54 60 65 70 76 81 87 92 97 103 108 113

9 –– 1 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54
17 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126

10 –– 1 4 7 11 14 17 20 24 27 31 34 37 41 44 48 51 55 58 62
19 26 33 39 46 53 60 66 73 78 75 82 88 106 112 119 125 132 138

11 –– 1 5 8 12 16 19 23 27 31 34 38 42 46 50 54 57 61 65 69
21 28 36 43 50 58 65 72 79 87 94 101 108 115 122 130 137 144 151

12 –– 2 5 9 13 17 21 26 30 34 38 42 47 51 55 60 64 68 72 77
22 31 39 47 55 63 70 78 86 94 102 109 117 125 132 140 148 156 163

13 –– 2 6 10 15 19 24 28 33 37 42 47 51 56 61 65 70 75 80 84
24 33 42 50 59 67 76 84 93 101 109 118 126 134 143 151 159 167 176

14 –– 2 7 11 16 21 26 31 36 41 46 51 56 61 66 71 77 82 87 92
26 35 45 54 63 72 81 90 99 108 117 126 135 144 153 161 170 179 188

15 –– 3 7 12 18 23 28 33 39 44 50 55 61 66 72 77 83 88 94 100
27 38 48 57 67 77 87 96 106 115 125 134 144 153 163 172 182 191 200

16 –– 3 8 14 19 25 30 36 42 48 54 60 65 71 77 83 89 95 101 107
29 40 50 61 71 82 92 102 112 122 132 143 153 163 173 183 193 203 213

17 –– 3 9 15 20 26 33 39 45 51 57 64 70 77 83 89 96 102 109 115
31 42 53 65 76 86 97 108 119 130 140 151 161 172 183 193 204 214 225

18 –– 4 9 16 22 28 35 41 48 55 61 68 75 82 88 95 102 109 116 123
32 45 56 68 80 91 103 114 123 137 148 159 170 182 193 204 215 226 237

19 0 4 10 17 23 30 37 44 51 58 65 72 80 87 94 101 109 116 123 130
19 34 47 59 72 84 96 108 120 132 144 156 167 179 191 203 214 226 238 250

20 0 4 11 18 25 32 39 47 54 62 69 77 84 92 100 107 115 123 130 138
20 36 49 62 75 88 101 113 126 138 151 163 176 188 200 213 225 237 250 262

n
n

B
A

(Dashes in the body of the table indicate that no decision is possible at the stated level of significance.)

If the observed value of U falls between (but not including) the two values presented in the table for nA and nB, do not reject H0. Otherwise, reject H0.
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Table A11: Critical Values of the Mann-Whitney U for a Directional Test at .025 or a
Nondirectional Test at .05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 –– –– –– –– –– –– –– –– –– –– –– –– –– –– –– –– –– –– –– ––

2 –– –– –– –– –– –– –– 0 0 0 0 1 1 1 1 1 2 2 2 2
16 18 20 22 23 25 27 29 31 32 34 36 38

3 –– –– –– –– 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8
15 17 20 22 25 27 30 32 35 37 40 42 45 47 50 52

4 –– –– –– 0 1 2 3 4 4 5 6 7 8 9 10 11 11 12 13 13
16 19 22 25 28 32 35 38 41 44 47 50 53 57 60 63 67

5 –– –– 0 1 2 3 5 6 7 8 9 11 12 13 14 15 17 18 19 20
15 19 23 27 30 34 38 42 46 49 53 57 61 65 68 72 76 80

6 –– –– 1 2 3 5 6 8 10 11 13 14 16 17 19 21 22 24 25 27
17 22 27 31 36 40 44 49 53 58 62 67 71 75 80 84 89 93

7 –– –– 1 3 5 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
20 25 30 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106

8 –– 0 2 4 6 8 10 13 15 17 19 22 24 26 29 31 34 36 38 41
16 22 28 34 40 46 51 57 63 69 74 80 86 91 97 102 108 111 119

9 –– 0 2 4 7 10 12 15 17 20 23 26 28 31 34 37 39 42 45 48
18 25 32 38 44 51 57 64 70 76 82 89 95 101 107 114 120 126 132

10 –– 0 3 5 8 11 14 17 20 23 26 29 33 36 39 42 45 48 52 55
20 27 35 42 49 56 63 70 77 84 91 97 104 111 118 125 132 138 145

11 –– 0 3 6 9 13 16 19 23 26 30 33 37 40 44 47 51 55 58 62
22 30 38 46 53 61 69 76 84 91 99 106 114 121 129 136 143 151 158

12 –– 1 4 7 11 14 18 22 26 29 33 37 41 45 49 53 57 61 65 69
23 32 41 49 58 66 74 82 91 99 107 115 123 131 139 141 155 163 171

13 –– 1 4 8 12 16 20 24 28 33 37 41 45 50 54 59 63 67 72 76
25 35 44 53 62 71 80 89 97 106 115 124 132 141 149 158 167 175 184

14 –– 1 5 9 13 17 22 26 31 36 40 45 50 55 59 64 67 74 78 83
27 37 47 51 67 76 86 95 104 114 123 132 141 151 160 171 178 188 197

15 –– 1 5 10 14 19 24 29 34 39 474 49 54 59 64 70 75 80 85 90
29 40 50 61 71 81 91 101 111 121 131 141 151 161 170 180 190 200 210

16 –– 1 6 11 15 21 26 31 37 42 47 53 59 64 70 75 81 86 92 98
31 42 53 65 75 86 97 107 118 129 139 149 160 170 181 191 202 212 222

17 –– 2 6 11 17 22 28 34 39 45 51 57 63 67 75 81 87 93 99 105
32 45 57 68 80 91 102 114 125 136 147 158 171 180 191 202 213 224 235

18 –– 2 7 12 18 24 30 36 42 48 55 61 67 74 80 86 93 99 106 112
34 47 60 72 84 96 108 120 132 143 155 167 178 190 202 213 225 236 248

19 –– 2 7 13 19 25 32 38 45 52 58 65 72 78 85 92 99 106 113 119
36 50 63 76 89 101 114 126 138 151 163 175 188 200 212 224 236 248 261

20 –– 2 8 13 20 27 34 41 48 55 62 69 76 83 90 98 105 112 119 127
38 52 67 80 93 106 119 132 145 158 171 184 197 210 222 235 248 261 273

n
n

B
A

(Dashes in the body of the table indicate that no decision is possible at the stated level of significance.)

Source: From Mann, H. B., and Whitney, D. R., “On a Test of Whether One of Two Random Variables Is Stochastically Larger Than the Other,” Annals of
Mathematical Statistics 18 (1947): 50–60, and Auble, D., “Extended Tables for the Mann-Whitney Statistic,” Bulletin of the Institute of Education
Research at Indiana University, vol. 1, no. 2 (1953), as used in Runyon and Haber, Fundamentals of Behavioral Statistic, 3rd ed., Addison-Wesley, Reading,
Mass., 1976. Reprinted by permission.
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Starting with SPSS®

Kevin Durrheim

•••••••••••
At the end of this tutorial, you should be able to: 
• Start SPSS® and make a shortcut to SPSS® on your

desktop.
• Understand and use three different kinds of

windows available on SPSS®.
• Create, import, and save a data file.
• Transform and manipulate data entered into SPSS®.
• Be able to work with output from SPSS®.
• Have an overview of the variety of procedures

available in SPSS®.

SPSS® is an acronym for Statistical Package for the Social Sciences. It
is a powerful data management and statistical analysis program that
has been specifically designed for applications in the social sciences.
The Windows version is easy to learn and use, and newer versions 
of the package (from version 8 onward) offer not only a number of
specialised statistical applications for social scientists, but also good
quality graphical output.

This chapter provides a brief introduction to SPSS®, taking the
reader on a basic step-by-step tour of the program. You are encour-
aged to spend time playing with the program, trying out different
procedures, as you gradually become comfortable in the SPSS®

environment. Specific applications of the program are considered 
in more detail in the relevant tutorials in this book. SPSS® has an
online help menu that you should consult if you get stuck.

APPENDIX

2

If you are using SPSS®

on a computer
network (LAN), you
will need to register
with the computer

administrators of
your institution.

If you are reading
this material and you

are not sitting in
front of a computer

(with SPSS®), you are
wasting your time.
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The SPSS® environment
SPSS® has three different main windows: a Data Editor window, an
Output Viewer window, and a Syntax window. You will need to
know how to use some functions of all three windows, and to switch
between them. This is the SPSS® environment.

1. The Data Editor window
When you open SPSS®, the Data Editor window appears on the screen
(see Figure A2.1). The window contains a spreadsheet consisting of a
matrix of rows and columns. This is the context in which to enter and
edit data, and do various transformations of the data. Data can either

Starting SPSS®
Starting SPSS® from the ‘Program’ group 
Click the ‘Start’ button at the bottom left of the desktop window;
select ‘Programs’, and then select ‘SPSS® for Windows’.

Setting up an SPSS® shortcut
A shortcut will allow you to access SPSS® easily from your desktop. 
To set up a shortcut:
1. Right click any blank area of your desktop window. Select the

option ‘New’ and then select ‘Shortcut’. A ‘Create Shortcut’ dialog
box will appear. 

2. Type in the command line – ‘C:\Program Files\SPSS®\Spsswin.
exe’ – or browse if Spsswin.exe is in a different directory.

3. A SPSS® shortcut should appear on your desktop. By double click-
ing on the icon, you open SPSS®.

Box A2.1

Figure A2.1 SPSS® Data Editor window
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be entered directly into SPSS®, or imported from a spreadsheet (e.g.
Excel), and then saved as an SPSS® data file. 

Above the data matrix are a set of pull-down menus – ‘File’, ‘Edit’,
‘View’, etc. – that allow you to perform various operations such as
saving and editing files, manipulating and transforming data, per-
forming statistical analysis and producing graphical displays. Just
below the set of pull-down menus is a toolbar that provides shortcuts
for some key operations.

2. The ‘Output Viewer’ window
The results of an analysis are given in the ‘Output Viewer’ window
(see Figure A2.2). The window opens automatically once you have
run SPSS® commands. A new ‘Data Editor’ window can be opened
by selecting the options ‘New’ and ‘Data’ on the ‘File’ menu. Data
files can be saved and opened in the usual way – i.e. by options on
the ‘File’ menu. ‘Output Viewer’ window files have a .spo extension.
The window on the left of the SPSS® ‘Output Viewer’ provides an

To move around the
Data Editor, use the
arrow keys. To enter
data, highlight a cell
of the matrix, type in

the data entry, and
press the ‘Enter’ key.

Figure A2.2 SPSS® ‘Output Viewer’ window

historical record of the analyses you have conducted. It helps you 
to navigate through the output. The ‘Output History’ window in 
Figure A2.2 shows that the SPSS® ‘Frequencies’ procedure was conduct-
ed, and that frequency statistics were generated as well as a bar chart.

The window on the right provides the actual output.1 In Figure
A2.2, frequency statistics are reported in this output window. There
are two kinds of objects in an output file: tables and charts. These
objects can be highlighted, cut, copied, and deleted; and you can
move about both windows by means of the arrow keys.

1 The ‘Output Viewer’ windows for earlier versions of SPSS® are a little different.
They do not have an ‘Output History’ window, and the output in the right window
is formatted differently.

SPSS® provides two
kinds of output:

tables and charts.
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3. The ‘Syntax Editor’ window
Before SPSS® adopted the Windows environment, statistical com-
mands were written out in SPSS® syntax. The ‘Syntax Editor’
window in Figure A2.3 illustrates the syntax for the ‘Frequencies’
command. ‘Syntax Editor’ provides a powerful but rather cumber-
some way of issuing SPSS® commands, and it has been replaced by
the use of menus, dialog boxes, and windows. Nevertheless, there are
some procedures that can only be performed by writing syntax files.
If you need to use such a procedure, you should consult an SPSS®

reference manual. 

You can switch
between windows
either by pulling
down the ‘Window’
menu, or by selecting
the file on the ‘Start’
bar at the bottom of
your desktop.

Figure A2.3 SPSS® ‘Syntax Editor’ window

Activity A2.1Open one of the sample files that are provided by SPSS®. 
1. Pull down the ‘File’ menu and select ‘Open’ (or use the ‘Open file’

icon on the left of the toolbar). 
2. In the SPSS® directory you will find a number of sample SPSS® data

files (which all have a .sav extension). Double click on any one of
these files (e.g. 1991 U.S. General Social Survey.sav). Data will now
appear in rows and columns in the data matrix.

How many subjects and variables are in the dataset? Do you recognise
which are nominal or interval variables? 

Now try running some descriptive statistics.
3. Pull down the ‘Analyze’ menu, select the ‘Summarize’ option and

then select ‘Frequencies’. 
4. On the ‘Frequencies’ 

window, select two 
nominal variables by 
highlighting them in 
the display box, and 
then clicking the 
arrow to shift them 
into the variables box. 
Click the ‘OK’ button 
to run the analysis.



Figure A2.4 The ‘Define Variable’ dialog box
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Setting up an SPSS® data file
Creating a data file is the first step in every analysis. The data must be
arranged in a format that the statistical software can recognise and
work with. SPSS® gives you the option of creating a new data file
with the SPSS® data editor, or of importing a data file from some
other spreadsheet format. Once the spreadsheet has been set up, the
data can be transformed in useful ways, and the file can be saved as
an SPSS® data file.

Using the SPSS® ‘Data Editor’
The SPSS® ‘Data Editor’ is used in much the same way as any spread-
sheet. Data (scores) are entered in cells, along rows, and down
columns. The data for each respondent are entered in a single row,
and the columns contain data for different variables. 

To move about the ‘Data Editor’, use the mouse and the scroll
bars or the arrow keys. To enter data simply position the cursor on
the cell into which you want to enter a score, and type in the score.
When you move to the next cell the score will be entered. 

To name the variables, double click on one of the cells labelled
‘var’ at the top of the columns of a new spreadsheet. A ‘Define
Variable’ dialog box will open (see Figure A2.4). In this dialog box
you can name the variable by typing in the variable name in the box
provided. The dialog box also allows you to define the scale of
measurement on which the variable is measured: nominal, ordinal,
or scale (interval or ratio).

Always enter data in
the form of one

column for each
variable and one row
for each respondent.

After entering 
the data, name 

each variable and
define its scale of

measurement.
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Note that the variable is named and described in the dialog box, and
that you are provided with options for changing the variable settings.
The default settings for ‘Missing Values’ and the ‘Column Format’
options do not normally need to be changed, but it is often useful to
change the ‘Type’ and ‘Labels’ settings.
1. ‘Type’. Variables can be defined as a number of different types. For

our purposes, the default ‘Numeric’ type is used most often.
Numeric variables should contain only numeric data. If your data
includes letters, the variable should be defined as a string vari-
able. Be careful not to define numeric data as string variables or
you will not be able to perform any statistical operations on them.

2. ‘Labels’. The ‘Define Labels’ dialog box (see Figure A2.5) allows
you to specify variable and value labels. The ‘Variable Label’ is
simply another longer and more descriptive name for your vari-
able. Variable names cannot be longer than eight characters, so
you can define your variable more fully here. Thus, the variable
name ‘%income’ may be described here as ‘% household income
spent on information (e.g. books, magazines, TV licence)’. In addi-
tion to describing the variable, we can also describe numeric data
here. SPSS® supports a double notation, where each score (in the
‘Data Editor’ window) can simultaneously have a numeric and a
text value. These text values are called ‘Value Labels’. For exam-
ple, if you used the code 1 to represent female respondents and 2
to represent males, you can here apply the ‘Value Labels’ ‘female’
and ‘male’ to the values 1 and 2 respectively. These value labels
will appear in your output (instead of raw codes), making it easi-
er to interpret.

Figure A2.5 The Define Labels dialog box

To set the value labels
1. Open the ‘Define Labels’ dialog box by double clicking on the variable name.
2. In the space provided in the dialog box, enter the numeric ‘Value’ and the text

‘Value Label’. Click ‘Add’.
3. Once all value labels have been specified in this manner, click ‘Continue’.

Specifying variable
and value labels is
essential for commu-
nicating the meaning
of the data to others
and to yourself, when
you have to redo
analysis at a later
stage.



Cut-and-paste pro-
vides an easy way to

import or export data
into or from SPSS®.

Variables and cells of
a spreadsheet may
be moved between

applications such as
SPSS®, Excel, and MS

Word simply by
blocking (selecting)

the variables or cells,
copying them (use

the Ctrl-C key), and
then pasting them

(use the Ctrl-V key) in
the other application.

Entering data in Excel so that it is ‘SPSS® ready’
Some limitations of SPSS® are worth bearing in mind when entering
data into Excel, since this will affect data importation.
a) SPSS® does not support variable names longer than eight characters,

and does not support variable names entered over more than one
row. Enter variable names only in the first row of the Excel work-
sheet, and make sure that none are longer than eight characters.

b) Make sure that all the data in the Excel worksheet are in ‘value
format’. Where you have variables defined as formulas, convert
these so that they are fixed values. (Use the ‘Copy’ and ‘Paste
Special Values’ commands off the ‘Edit’ menu.)

c) If you have missing data, do not enter symbols or values to denote
these. Rather leave the cell blank. All blank cells will be read into
SPSS® as missing data.

Box A2.2
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a) Create a small dataset that contains the variables ‘Subject’ and
‘Gender’. Label the subjects 1, 2, 3, 4. Subjects 1 and 2 are female
(code 1) and subjects 3 and 4 are male (code 2). 

b) Open the ‘Define Variable’ window to name the two variables and
to check that they are defined as numeric variables. For the variable
Gender, (a) enter the variable label ‘Gender of subjects’, and (b)
specify the value labels ‘female’ and ‘male’ for the values 1 and 2.

c) Define the scale of measurement of each variable.

Activity A2.2

Importing data
Importing data from another spreadsheet format into SPSS® is as
easy as opening a file. It is important, though, that the data should
be in a recognised format such as Excel or DBase. If the data is in
another format, it is best to save the file first in Excel format before
importing it.

To import a file
1. Pull down the ‘File’ menu and select the ‘Open’ option. An ‘Open File’ dialog

box will appear. Specify the type of file you want to open by selecting from
the range in the ‘Files of Type’ list. 

2. Select the correct directory and file, and click the ‘Open’ button. An ‘Open File
Options’ dialog box will open.

3. Indicate whether you want to ‘Read variable names’. If your external spread-
sheet has variable names specified, tick the appropriate box and click ‘OK’.
The external spreadsheet will be imported into SPSS®. It will appear in the
‘Data Editor’ dialog box with variable names at the top of the columns.

Saving data 
Data is precious, and should be saved on a reliable computer and
backed up. The data file can be saved in SPSS® format or it can be
exported in a different format.
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1. Saving a file in SPSS® format. Once you have created an SPSS®

data file, the file should be saved in SPSS® format (i.e. with a .sav
extension). This is done by selecting the ‘Save’ option on the ‘File’
menu. You will be prompted to provide a directory and file name.

2. Saving a file in other formats. To save your data file in another
format (e.g. Excel, DBase), select the ‘Save As’ option on the ‘File’
menu. The ‘Save Data As’ dialog box allows you to select the
required output format.

Transforming data with SPSS®
It is often the case that the original dataset needs to be modified in
various ways before you can proceed with data analysis. For
example, items may need to be reverse-scored or summed to form
scale scores. SPSS® provides two menus that allow you to work with
datasets that are saved in the SPSS® ‘Data Editor’ (see Figure A2.6). 

The ‘Transform’ menu enables you to perform a number of useful
data transformations, including ranking the cases in a particular
order and generating random numbers. The ‘Data’ menu enables you
to sort and re-order cases, to select specific cases for analysis, and to
weight cases. We only consider more frequently used options of these
two menus here. It is recommended that you experiment with the
other options, with the aid of the SPSS® ‘Help’ menu. 

Figure A2.6 The ‘Data’ and ‘Transform’ menus

Data transformations
are not automatically
entered into the data
editor. You must
instruct SPSS® to 
run pending trans-
formations.

Compute
This option allows you to compute data values according to speci-
fied mathematical formulas. For example, you can sum and multi-
ply different variables, or transform the values according to other



Figure A2.7 The ‘Compute Variable’ dialog box
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mathematical operations (e.g. logarithmic, square). The ‘Compute’
option is often used at the beginning of an analysis, to reverse score
variables and to construct summed scale scores.

To compute
1. Select the ‘Compute’ option on the ‘Transform’ menu.
2. Complete the ‘Compute Variable’ dialog box (see Figure A2.7).

a) Insert the ‘Target Variable’, which is the name of the new variable you
want the transformed data to be saved into in the ‘Data Editor’ window.

b) Complete the ‘Numeric Expression’. For example, if you want to sum
variables VAR1 and VAR2, you would write ‘VAR1 + VAR2’ or
‘SUM(Var1, Var2)’; or if you wanted to subtract the value of 1 from VAR1,
you would write ‘VAR1 – 1’. 

3. Click the ‘OK’ button and the new transformed variable will be calculated
and stored in memory.

4. To insert the ‘Pending Transformations’, open the ‘Transform’ menu and click
the ‘Run Pending Transformations’ option. The newly computed variable will
automatically be inserted into the data file.

Recode
This option allows you to recode the values of a variable, either
‘Recode into Same Variables’ or  ‘Recode into Different Variables’.
Recoding into the same variable will write the transformed data into
the original variable and thereby change your original data.
Recoding into a different variable will create a new variable with the
transformed data. The ‘Recode’ option is often used to change the
scores of nominal data – e.g. change all 1 values to 3 – or to create cat-
egories (e.g. quartiles) from continuous data.
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To recode
1. Select the ‘Recode’ option on the ‘Transform’ menu, and indicate whether you

want to code into the same variable or a different variable.
2. Complete the ‘Recode’ dialog box (see Figure A2.8).

a) Select the variable you want to recode, and name your new output vari-
able. Click ‘Change’ and the recode statement will be inserted in the dia-
log box.

b) You can recode either by selecting ‘Old and New Values’ or by selecting the
‘If’ option and specifying an expression. A dialog box will appear, which
should be completed to run the procedure. 

3. The ‘Old and New Values’ dialog box allows you to indicate each value or
range of values that you want to recode.
a) Specify the old value or range.
b) Specify the new value.
c) Click the ‘Add’ button. Once you have specified all values to be recoded,

click ‘Continue’, and then click ‘OK’ on the ‘Recode’ dialog box.
4. To insert the newly recoded variable into the data file, open the ‘Transform’

menu and click the ‘Run Pending Transformations’ option. The new variable
will automatically be inserted into data file.

Select cases
This option provides several methods for selecting a subgroup of
cases. When a statistical procedure is to be conducted with only a
subsample of cases, this subsample should first be selected for analy-
sis. Most often this subsample will be chosen if a condition is satisfied.
This option allows you to specify the conditions under which a case
is included in the dataset. To select cases from a nominal variable,
specify the categories to be included (e.g. Gender � 1). To select cases
from a continuous variable, specify the range of cases to be included
(e.g. Age � 40). Before running the ‘Select Cases’ procedure, make
sure that unselected cases are filtered and not deleted. 

Figure A2.8 Recode dialog box

Once you have made
any changes to your
data, remember to
save the data file
before exiting SPSS®.



Experiment with the options on the ‘Data’ and ‘Transform’ menus.
Open one of the SPSS® sample data files (e.g. 1991 U.S. General Social
Survey.sav) and do the following:
a) Change any continuous variable into a dichotomous variable using

the ‘Recode’ command.
b) Compute a new variable that is the sum of any two original vari-

ables.
c) For any nominal variable (e.g. Gender), select only cases coded ‘1’.

Activity A2.3

Church attendance

Yes No

Age
Old 65 25

Young 25 12

Figure A2.9 Weighting cases 
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Weight Cases
Recall that the rule for data entry states that the spreadsheet should
contain one variable per column and one subject per row. This rule
needs to be bent in order to analyse cross-tabulations where the data
consists of cell frequencies (see Figure A2.9). When these data are
entered onto a spreadsheet, we end up with one cell per row instead
of one case per row. Weighting cases is a means of instructing the
data editor to treat the frequency variable as a cell frequency rather
than a case score. What this does is to treat the data as though there
are 65 cases in the first cell, 25 in the second, 25 in the third, and 12 in
the fourth. The new weighted data set has 127 cases, whereas the
original cross-tabulation has only four rows of cells frequencies. If
your data is in the form of a cross-tabulation, you need to weight the
cases before running procedures such as chi-square analysis.

To weight cases 
1. On the ‘Data’ menu select the ‘Weight Cases’ option.
2. Weight cases by the frequency variable, and run the procedure.

Conducting statistical analyses with SPSS®
The SPSS® ‘Analyze’ menu offers a wide range of statistical proce-
dures, only some of which will be covered in this book. SPSS® will
run any procedure that is specified correctly. It is up to the researcher
to determine which procedures are appropriate to any set of data,
and to specify these procedures correctly.  The discussion here aims
to provide a brief overview of the statistical procedures available,
and to introduce the novice to a few basic SPSS® procedures. More
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detailed discussion of select procedures is provided in 
relevant tutorials throughout the book. 

Descriptive Statistics
This provides options to generate summary statistics,
frequency tables, and graphical displays for continuous
and categorical data. These functions are especially useful
for generating univariate descriptive statistics and cross-
tabulations. The following functions are offered:
• ‘Frequencies’ provides descriptive statistics (e.g. meas-

ures of dispersion and central tendency) and graphical
displays (e.g. bar charts, pie charts). This option is
especially useful for ‘getting a feel’ of categorical data.

• ‘Descriptives’ generates descriptive statistics (e.g. per-
centile values, and measures of dispersion, central
tendency, and skewness). This option is also useful for
‘getting a feel’ of continuous data.

• ‘Explore’ produces summary statistics and graphical dis-
plays (e.g. stem-and-leaf displays and histograms),
either for all of your cases or separately for groups of cases. It is par-
ticularly useful for data screening, identifying outliers, and testing
assumptions on the sample as a whole and on subgroups.

• ‘Crosstabs’ creates two-way and multiway tables, and provides a
number of tests of association for two-way tables (including chi-
square tests). It is useful for conducting simple descriptive and
inferential analyses of categorical data, and for generating clus-
tered bar charts.

The procedures for running each of these four types of descriptive
statistics on SPSS® are straightforward and very similar.

Figure A2.10 The ‘Analyze’ menu

Figure A2.11 The ‘Frequencies’ dialog box

Running descriptive procedures
1. Select the kind of procedure you wish to run. For nominal data use

‘Frequencies’ or ‘Crosstabs’; and use ‘Descriptives’ and ‘Explore’ for interval
and ratio (i.e. scale) variables.



2. Although the dialog box for each operation differs slightly, you can specify all
four procedures by the following steps:
a) Select the variables to be described.
b) Browse the statistics and chart options, and select the output you require

(see Figure A2.11).

Custom Tables
This provides options to produce different kinds of tables, containing
both frequencies and summary statistics.
• ‘Basic Tables’ produces tables displaying cross-tabulations

between two or more categorical variables. It is used to generate
publication-quality tables of descriptive statistics (e.g. means,
standard deviations) for scale variables, among subgroups that
are defined in terms of one or more categorical variables.

• ‘General Tables’ provides summary statistics of frequencies, counts,
percentages, etc. in the cells defined by one or more categorical
variables.

• ‘Multiple Response Tables’ produces basic univariate and multi vari-
ate frequency tables and cross-tabulations, similar to ‘Basic Tables’,
but in which one or more of the variables is a repeated measure. It is
useful for generating descriptive data for repeated measures data.

• ‘Tables of Frequencies’ produces multiway tables of frequencies
and/or percentages. 

Producing custom tables
1. Select the kind of procedure you wish to run. For nominal data use ‘General

Tables’ or ‘Tables of Frequencies’; for scale variable summary statistics in
subgroups use ‘Basic Tables; and for repeated measures data use ‘Multiple
Response Tables’.

2. Although the dialog box for each operation differs slightly, you can specify all
four procedures by the following steps:
a) Specify the variables to be described, arranging them in table rows and

columns.
b) Browse the ‘Statistics’ options, and select the output you require (see

Figure A2.12).
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Activity A2.4 Open one of the SPSS® sample data files (e.g. 1991 U.S. General Social
Survey.sav) and do the following:
a) Conduct descriptive analyses of any two nominal and any two

scale variables.
b) Cross-tabulate two categorical variables.
c) Produce a table of summary statistics for one scale variable by all

categories of a second categorical variable.
d) For any nominal variable (e.g. Gender), select only cases coded 1 
e) Produce a summary table of frequencies for the intersection of two

categorical variables (only for Gender � 1).
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Compare means
This offers procedures to compute inferential statistics for the differ-
ence between means. Each procedure also allows you to specify
options to generate descriptive statistics, contrasts, and charts.
• ‘Means’ calculates subgroup means and other univariate statis-

tics for dependent variables within categories of one or more
independent variables. It also allows you to compute one-way
ANOVA, eta-square, and tests for linearity.

• ‘One-Sample T Test’ tests whether the mean of a single variable dif-
fers from a specified value.

• ‘Independent-Samples T Test’ tests for differences between the
means for two independent groups of cases. 

• ‘Paired-Samples T Test’ computes a within-subjects or repeated
measures t-test, by comparing the means of two variables (e.g.
pre-test and post-test scores) for a single group. 

• ‘One-Way ANOVA’ computes one-way analysis of variance as well
as post hoc tests, mean plots, and homogeneity of variance tests.

Comparing means
1. On the ‘Analyze’ menu, select the kind of procedure you want to run. 
2. The dialog boxes for all the compare means options are similar to the box for

the independent samples t-test (see Figure A2.13).
a) Specify the DV (test variable) and the IV (grouping variable). 
b) Use the ‘Define groups’ key to specify the levels (i.e. the indicator values

for each group) of the IV.
c) Click ‘ok’ to run the procedure.

Figure A2.12 ‘Basic Tables’ dialog box



Figure A2.13 The ‘Independent-Samples T Test’ dialog box
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General Linear Model (GLM)
This option on the ‘Analyze’ menu offers procedures for computing
one-way, factorial, and repeated measures ANOVA. GLM output
includes both regression analysis and analysis of variance output,
and you can specify options to generate descriptive statistics, con-
trasts, and charts. 
• ‘Univariate’ tests the effects of IVs on the means of various group-

ings of a single dependent variable. It is used to analyse one-way
and factorial designs (independent samples). 

• ‘Repeated Measures’ tests the effects of multiple independent
variables on related measures. It is used when the DV comprise
multiple scores by each subject on the same measure.

Correlate
This analysis option offers three different ways of computing the
strength and direction of association between variables. Only the
‘Bivariate Correlations’ option is relevant to this course. ‘Bivariate
Correlations’ allows you to compute correlation matrices for a list of
variables.

Correlating variables
1. Select the ‘Bivariate Correlations’ option.
2. In the dialog box (Figure A2.14), select the variables you wish to correlate,

indicate the kind of correlation coefficient you require, decide whether you
require one- or two-tailed tests, and run the procedure by clicking ‘OK’.

Detailed instructions
for running GLM

procedures are
provided in Tutorials

15 and 16.
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Regression
This offers a number of options to investigate linear and non-linear
relations between variables. It is used to construct predictive models
of a criterion (DV) from combinations of predictor variables (IVs).
Only the ‘Linear Regression’ option is relevant to this course. It pro-
vides estimates of the coefficients of the linear equation (of IVs) that
best predicts the DV.

Regressing variables
1. Select the ‘Linear Regression’ option, and complete the dialog box (Figure

A2.15) as follows:
2. a) Select the dependent variable you want to predict.

b) Select independent variables.
c) If you have more than one IV, indicate the method by which the IVs will

be entered into the regression model (e.g. stepwise, forward).
d) Specify additional statistics and plots.
e) Run the procedure by clicking ‘OK’.

Figure A2.14 The ‘Bivariate Correlations’ dialog box

Figure A2.15 Linear regression dialog box



Open one of the SPSS® sample data files (e.g. 1991 U.S. General Social
Survey.sav) and do the following:
a) Correlate a set of five continuous variables.
b) Correlate a set of ordinal variables.
c) Correlate a set of dichotomous variables.

Activity A2.5
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Scale
SPSS® provides an option to estimate the reliability of items that
make up a measure or scale. The ‘Reliability Analysis’ procedure
calculates commonly used measures of scale reliability, including
Cronbach’s alpha and split-half estimates. The dialog box allows you
to specify a number of inter-item and item-scale statistics that help in
identifying poor items. 

Non-parametric tests
This is used for calculating non-parametric tests of measures of asso-
ciation (goodness-of-fit tests) and differences (rank tests) between
two or more groups. Options include the chi-square test, the Mann-
Whitney test, Kruskal-Wallis test, the Wilcoxon signed rank test, and
the Friedman test.

Generating graphical displays with SPSS®
The SPSS® ‘Graphs’ menu provides a number
of options to produce publication quality
graphs. These options generate charts that
illustrate patterns and associations for all
kinds of data. The ‘Gallery’ option contains
thumbnail images of each of the charts, and
you can select a graphical procedure from
there. The ‘Interactive’ option opens interac-
tive dialog boxes that can help guide you
through the chart construction. Once a graph
option has been selected, a series of dialog
boxes will open to guide you. You are strong-
ly advised to use the help menus to find
examples that illustrate the different options. 
• Bar creates simple, clustered, or stacked

bar charts to represent summaries for
groups of cases (e.g. counts, percentages) or summaries of sepa-
rate variables (e.g. means). Simple graphs are univariate, whereas
clustered and stacked graphs are multivariate. ‘Summaries of
groups of cases’ is employed when all variables are categorical,
whereas ‘Summaries of separate variables’ is employed when the

If a graph does not
turn out as you

expected, try
re-specifying it.

Figure A2.15 Graphs



APPENDIX 2: STARTING WITH SPSS® 513

bars represent properties of a distribution of an ordinal or scale
variable. 

• Line creates single or multiple line charts, to represent summaries
for groups of cases or summaries of separate variables. 

• Boxplot creates simple and clustered boxplots to represent the dis-
tributions of scores.

• Scatter creates two- and three-dimensional scatterplots represent-
ing the association between variables (for one or more groups of
cases).

• Histogram creates a histogram showing the frequency distribution
of a single numeric variable.

Creating charts
The dialog boxes for the different graphs are very similar to each other, and all are
very helpful. The ‘Bar chart’ option is used to illustrate how you go about setting
up a chart.
1. Select the kind of chart required (i.e. ‘Bar’).
2. Complete the first dialog box (Figure A2.16).

a) Select the ‘Simple’ option for univariate charts, and select
‘Clustered’ or ‘Stacked’ for multivariate charts.

b) If the data in charts are descriptive statistics of a scale or
ordinal variable, select ‘Summaries of separate variables’; if
the data in the charts are the summary statistic of a categori-
cal variable (e.g. frequency, percentage) then select ‘Sum-
maries for groups of cases’.

c) Click ‘Define’.
3. Complete the second dialog box. Figure A2.17 provides a dialog

box for a clustered bar chart.
a) Select a variable to be represented in the category axis (i.e. 

x-axis) and define the clusters by means of a second
categorical variable.

b) Select the option that you want the bars to represent.
4. Select ‘Titles’ and ‘Options’ as desired, and click ‘OK’ to run the procedure.

Figure A2.16 The ‘Bar Chart’-dialog

Figure A2.17 The ‘Clustered Bar’ chart dialog box
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Working with SPSS® output
Once you have run an SPSS® procedure, the output is saved auto-
matically into an ‘Output Viewer’ window (see Figure A2.2). On the
left is the output history window; on the right is the actual output.
You can either edit the output in SPSS® to tailor tables and graphs to
specific publishing requirements, or you can save the output in dif-
ferent formats, to be edited later in other Windows applications.

The SPSS® output window is comprised of ‘objects’ that are saved
in SPSS® format. There are two kinds of objects – tables and charts.
These objects have different virtual structure and are edited and
saved in different ways. 

Editing output
1. Selecting bits of output to edit. To edit, cut, copy, delete or save out-

put, the output must first be selected. To select a piece of output,
click on the output you want to select in the ‘Output History’ win-
dow. The selected output will appear in the right-hand output
window. It is also possible to select a piece of output by scrolling
down the output window and then clicking on the graph or table
you want to select.

2. Editing tables. Once you have selected a table, double click on the
table in the right-hand output window. You will now be able to
edit the table. Left click on the table, and a menu of editing options
will appear. The following options are particularly helpful:
• ‘Toolbar’ enables you to edit the font, justification, and table

content. 
• ‘Pivoting Trays’ enables you to change the format of tables 

(e.g. making rows columns and vice versa) simply by dragging
icons. 

3. Editing graphs. Once you have selected an SPSS® chart, double click
on the chart in the right-hand output window. This will auto-
matically open an ‘SPSS® Chart Editor’ window (see Figure A2.18).

Open one of the SPSS® sample data files (e.g. 1991 U.S. General Social
Survey.sav) and do the following:
a) Using variables of your choice, create a clustered bar chart to

summarise groups of cases. 
b) Using variables of your choice, create a clustered line chart to

summarise separate variables. 
c) Construct a histogram and a boxplot for any two scale variables.
d) Construct a scatterplot to illustrate an association between

variables.
e) Correlate these two variables.
e) Save the output.

Activity A2.6

Print SPSS® output
either by clicking the

print icon on the
toolbar of the

‘Output Viewer’ win-
dow, or by selecting

the ‘Print’ command
on the ‘File’ menu of
the ‘Output Viewer’

window.
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The ‘Chart’ menu gives you a wide range of editing options. You
can also edit particular parts of the chart (e.g. the legend, title) by
double clicking on these in the chart window. Once you have
completed editing your chart, close the ‘Chart Editor’ window.

Figure A2.18  The ‘Chart Editor’ window

Saving output
1. Saving the output file

• SPSS® format. To save your output as an SPSS® viewer (.spo)
file, open the ‘File’ menu on the SPSS® ‘Output’ window and
select ‘Save’ or ‘Save As’.  You will be able to open this file
again in SPSS® for further editing, but you will not be able to
open the file in another program. 

• Exporting a file. To save your output in an external format, open
the ‘File’ menu on the SPSS® ‘Output’ window and select
‘Export’. An ‘Export’ window will open that allows you to
save your output in various ways (Figure A2.19). Charts are
saved as images in JPEG or other graphic formats. Tables are
saved as text files. It is also possible to save both tables and
charts in HTML format. You can choose to save either the
whole file or selected objects in the ‘Output Viewer’ window.
Once you have selected what you want to export, named the
export file and specified the export format, click ‘OK’ and the
file will be saved in an external format. HTML files can be
viewed in a web browser, text files can be viewed in a word
processor, and graphic files can be viewed in a graphics editor
such as Paint.

To open Paint (if you
have it installed on
your computer),
select the ‘Programs’
option on your start
bar (to open the start
bar, click ‘Start’ on
the bottom left-hand
corner), select
‘Accessories’, and
then select ‘Paint’.
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2. Saving objects. In addition to saving whole files and parts of files,
there are a number of different ways of saving selected tables and
charts.
• Selecting (edited) output objects. Find the item to be saved by

scrolling down either the ‘Output History’ or ‘Output’ win-
dows. Select an object by clicking on it in either window.

• Using the ‘Export Output’ dialog box. Once the object is selected,
follow the steps for ‘Exporting a file’ (see above). In the dialog
box make sure that the ‘Selected Objects’ option is selected,
and that you have indicated whether you are saving a table or
a chart. The exported object will be saved as an external file.

• Copying and pasting objects. It is cumbersome to save each
selected object in a unique file. It is far more efficient to copy
an object and then simply paste it into a word processor. In this
way you will be able to transfer select tables and charts into
your final written report. There are two ways of copying
objects. The best way is to select the object, then left-click on
the object. On the pop-up menu, select the ‘Copy Object’
option. Once the object has been copied into memory, open
your word processor, and paste the object. Both tables and
graphs can be copied in this way. The other way of copying
and pasting is to use keyboard shortcuts. Select the output,
copy it with the Crtl-C shortcut, open the word processor and
paste the object with the Ctrl-V shortcut. It is often a good idea
to save text and tables in a non-scalable font such as Courier
(9pt) to keep the formatting.

Figure A2.19 The ‘Export Output’ dialog box

Always write up the
results of your analy-

sis in a professional
manner. Construct a

report by copying
tables and charts

from SPSS® output
into a word proces-

sor, and then adding
your written analysis.
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Summary
1. SPSS® is a powerful statistical processing package for social scien-

tists. It can be used to transform and manipulate data, to do statis-
tical analysis, and to produce graphs.

2. The SPSS® environment is comprised of three windows: the ‘Data
Editor’ window, the ‘Output Viewer’ window, and the ‘Syntax
Editor’ window. You should know how to open, save, and export
these windows, to navigate about them, and to use the available
functions of each window. 

3. Transform and manipulate data in the SPSS® ‘Data Editor’ by
using options on the ‘Data’ and ‘Transform’ menus. These options
allow you to order your dataset by defining variables and value
labels, and to do preliminary operations on your data, such as
reverse scoring and creating summed scale scores.

4. Generate statistical analysis by using the procedures on the
‘Analyze’ menu. It is important that you apply the correct pro-
cedure to the data at hand, and that you specify the operation
correctly.

5. Produce SPSS® charts by selecting from the options on the
‘Graphs’ menu. Make sure that you select the correct graph to
illustrate the data you have, and then play around with different
options until you are satisfied that you have the best graph.

6. Produce professional reports by copying select SPSS® output
objects into a word processor and then adding your written
analysis.

Open the SPSS® output file that you saved in Activity A2.6. Do the 
following:
a) Select the bar chart; open the chart editor; change the title, the

‘Legend’ and the ‘Axis’ title, and add a footnote.
b) Select the correlation matrix, and edit the table by making the

column headings bold.
c) Copy the edited bar chart and table into a word processor, and save

the file.
d) Export the entire file as an HTML file and open it in your web

browser.

Activity A2.7
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Exercises
1. a) Create a new data file called Orgstress. (Use the ‘New’ option

on the ‘File’ menu.)
b) Enter the following data in the spreadsheet editor:

Subject Sex Age Stress1 Stress2

Sizwe Male 45 13 18
Susan Female 30 22 21
Achmat Male 34 23 19
Megan Female 46 9 7
Liziwe Female 32 26 20
Bulelwa Female 21 14 5
Johan Male 59 13 29
Charl Male 24 11 7

c) Now change the ‘Stress1’ value for Susan to 8.
d) Use the mouse and navigation keys to familiarise yourself

with moving around the SPSS® spreadsheet window.
e) Insert a new variable. (On the ‘Data’ menu, select ‘Insert variable’.)
f) Make the new variable equal to the sum of ‘Stress1’ and

‘Stress2’.
g) Create a new variable which is the product of ‘Age’ and

‘Stress1’.
h) Select only the male subjects, and compute their mean age.

2 a) Export the SPSS® data file Orgstress (created above) to an Excel
file format.

b) Import the Excel file you have just saved, making sure to
import the first row as variable names. 

c) Check whether each variable is a string or numeric variable. 
d) Change all variables, excluding ‘Subject’, into numeric vari-

ables.
e) Give all variables a variable label, and give all categorical

variables value labels.

3 a) Open the file Orgstress.
b) Produce a frequency distribution for the variable ‘Age’.
c) Edit the frequency table as follows:

i) Make the row and column headings bold.
ii) Give the table a new title.

d) Produce a histogram for the variable ‘Age’.
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e) Edit the graph as follows:
i) Increase the font size of the title.
ii) Change the spacing between the bars.
iii) Give the graph an outer frame.
iv) Change the legend font. (Play around and experiment with

different options on the ‘Chart Editor’ dialog box.)
f) Copy the frequency table and the histogram as objects and

insert them into a word processor.
g) Save the SPSS® output file as Orgstress.spo and exit SPSS®. 
h) Re-start SPSS® and call up the file Orgstress.spo.

4. a) Open the file Orgstress.sav. Make sure that a word processor is
running in the background. 

b) Produce boxplots for ‘Age’, ‘Stress1’, and ‘Stress2’.
c) Produce clustered bar charts of mean scores on ‘Stress1’ and

‘Stress2’ for males and females.
d) Produce a table of summary statistics for male and female

scores on ‘Age’, ‘Stress1’, and ‘Stress2’.
e) Edit all tables and graphs by giving them suitable titles. 
f) Export the file by saving it in HTML format. Open the file in a

web browser.

5. a) Open the file Orgstress.sav. 
b) Correlate ‘Stress1’, ‘Stress2’, and ‘Age’.
c) Conduct t-tests to determine whether males and females score

differently on ‘Stress1’, ‘Stress2’, and ‘Age’.
d) Produce a professional report of the analysis by saving each of

the tables produced in (b) and (c) into a word processor, and
writing up commentary on the procedure and outcome of each
analysis.
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Entries in bold type refer to margin text
and definitions. Entries in italics refer
to illustrative material.

µ formula 122
χ2 10

distribution 492
χ2 significance test 366–374

assumptions of 376–381, 376; 
and SPSS 377–380, 378, 379, 380

A
Abelson’s rules for brashness and 

stuffiness 433
addition 446

with decimals 453
with fractions 451–452
with negative numbers 449; rules 
of probability 74–77

adjusted residuals 375, 375, 376
algorithms, stepwise 349
alpha 233, 234

coefficient 213–214; level 231, 232
alternate-forms reliability 212–213
alternative choice response scaling 203–204
alternative hypothesis 129, 129, 130, 131,

233, 234, 253
directional 129, 129, 130

analysing factorial ANOVA designs
296–304

analysis
item 218–220; of residuals 374; 
sensitivity 165; simple effect 301; 
statistical, approaches to 432–433

analysis of variance 252–270, 285; see also
ANOVA
factorial 289–310; one-way 271–288; 
repeated measures 311–337

ANOVA 10, 252, 253, 254, 254, 271, 274,
275, 311, 374, 392, 429, 431, 432
analysis 353; assumptions of factorial
294; assumptions underlying
281–283; assumptions underlying
repeated measures 329–331; calculat-
ing one-way 262–267; designs,
analysing factorial 296–304; factorial

271, 289, 289; homogeneity of
variance 282–283; logic of 256–262;
normality 281–282; notation 312; 
one-way 271, 277, 316; one-way
repeated measures 312; one-way
repeated measures with SPSS
317–320; rationale for using 255–256;
summary table 298; terminology
256–257; two-way repeated measures
312, 320–329; using SPSS 276–281

approximation 3
argument, defensible reasoned 432–437

rules for 434
arithmetic operations, signs for 446, 446
artefactual error 405
aspect ratio 21, 21, 22
association

isolating sources of 374–376 
measures of 371–374

assumptions
about data 146–147
of homogeneity of variance 146–147
of independence 147
of normality 146

assumptions, testing 296–298
asymmetrical frequency distributions 30
average 40
average deviation 56–57, 57, 66

calculating 56
axis

horizontal 21, 27, 474, 474; vertical 21,
474

B
balanced designs 276
bar chart 21, 27; (see also bar graph)

graph 54
bell-shaped curve 83, 108, 143
Bernoulli trials 81
best fitting line 162–167
beta 232
bimodal distribution 29
binomial

distribution 79–83; probability 81
BoDMAS 447, 447
Bonferroni correction 329

Index
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box-and-whisker plot 62–64
boxplot 62–64, 63, 282, 296, 297

drawing 64; interpretation 64
brash approach to statistical analysis

432–433

C
calculation formulas, choosing between

436
calculator, using 42, 49, 58–60
cardinal numbers 196, 196, 197
casewise deletion 153
cause and effect 190
cell mean plots 301, 305, 327, 327
Central Limit Theorem 9, 113–114, 113,

115, 117, 118, 127, 142–143, 145, 258
central tendency 40–51, 52, 65
chance, games of, probability and 72–74
chart, bar 21–22, 21, 27
chi-square test 364–384
class interval 23, 24, 23, 23–24, 47

midpoint 27
classical measurement theory 211
classifications 365

additional 365; dichotomous 365;
exhaustive 365, 365; multiple 365;
mutually exclusive 365, 365

coding
responses 208; the set of studies
408–409

coefficient
alpha 213–214; of correlation, rank
186, 186; of determination 191; mean
square contingency 371; multiple
correlation 346–347; Pearson’s
correlation 183, 183; product-moment
correlation 183–185, 183; of rank
correlation, Spearman’s 186, 186;
slope 167; of variation 61, 61

coefficients 462, 463
regression 163, 342–348; regression,
calculating 164–167; standardised
regression 346

Cohen’s conventions 239–240
common

denominator 451, 451; factor 451, 451;
statistics 409

comparison, planned 432
comparisons

multiple 274–276; pairwise 324
complex null hypotheses 324

compound symmetry 329, 331, 331
concurrent validity 217, 217
confidence

intervals 120–122, 120, 121, 238, 238;
limits 120–122, 120

conjunctions, probability law of 75
consistency, internal 213–214
constants 9–13, 10, 462, 462
construct

measuring 201–202, validity 218
constructing norms 222
content validity 217
contingency

coefficient, mean square 371; tables
365–366, 366, 366

continuous
data 27; measures 10; scales 10; 
variables 19; variables/measures 10

convergent validity 218
criterion-groups 218; discriminant
218

correction, Bonferroni 329
correlation 171–172, 171, 181–200

cannot be directly compared 191–192;
coefficient of 186, 186; coefficients 
not averaged 191; and linear rela-
tions 191; misleading 192–193; 
partial 344–346; perfect negative 172; 
perfect non-linear 172; perfect 
positive 172; rank 186–187; semi-
partial 345; sensitive to restrictions
in range of variables 193–195;

Spearman’s coefficient of rank 186,
186; weak negative 172; zero 172;
zero-order 349–351

correlation coefficient
Pearson’s 183, 183; product-moment
183–185, 183

count, frequency 455
counting numbers 445
counts 364, 366
covariance 424
Cramers’ V 372
criterion 162, 162

variables 13
criterion-groups validity 218
critical 

effect size 238, 238, 246; value 135,
135

Cronbach’s coefficient alpha 213, 219,
225
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crosstabulation 366, 366
cross-validation 355, 355
crude range 54, 54, 65
cumulative

frequency 25, 25, 34; indices 26; per-
centage frequency 25–26, 26, 31, 34

curve
bell-shaped 83, 143; preference
477–478

cut-off points 121, 122

D
D 152–153, 153
data 28, 52

continuous 27; deciding on test to
apply to 435–436; design, multivariate
317, 317; displaying 18–39; entry
errors 43; getting a feel for 425–426;
graphing 161–162; grouped 44;
inspection of descriptive 349–351;
matrix 424; paired 160–162; 
properties of 436; qualitative 365;
quantitative 365; raw 18; sample
61–62; type of 428

data, nominal 21, 21, 22, 47
assumptions about 146–147; discrete
22; interval 22; ordinal 22; ratio 22
bimodal 46; unimodal 46

de Moivre, Abraham 83, 84
deciles 102
decimal numbers 453–455

addition and subtraction with 453;
multiplication and division with
453–454

decomposition of variance 312–314
defensible reasoned argument 432–437

rules for 434
degrees of freedom (df) 150, 153, 257,487

error 274, group 274
deletion, casewise 153
delta 240, 240
denominator 450

common 451, 451
dependent variables 13, 13
depression 315, 315, 316, 316, 341
Descartes, René 472, 473, 473
descriptive data, inspection of 349–351
design

multivariate data 317, 317; two-way
factorial 290

designs

balanced 276, 277; factorial 290, 290;
fully repeated 320–325, 320; mixed
320, 320, 321, 326–329; reasons for
using factorial 291–292

determination, coefficient of 191
deviation

average 56–57, 57, 66; calculating
average 56; population standard 428;
standard 52, 60–61, 61, 66

dichotomous classifications 365
directional alternative hypothesis 129,

129
discontinuity 21
discrete

data 22; distribution 83; measures 10;
variables 19; variables/measures 10

discriminant validity 218
discrimination, item 220
disjunctions, probability of 76
disordinal interactions 304
displaying data 18–39
displays

graphical 19; tabular 19
distribution

asymmetrical 30; bimodal 29; bino-
mial 79–83; discrete 83; frequency
19–20, 19, 21, 22, 27, 28–31, 90,101,
103, 111; kurtosis 29, 30; negatively
skewed 29; normal 83–85, 84, 108,
110, 113; peakedness 29, 30; popula-
tion 114; positively skewed 29; sam-
pling 111, 112, 114, 114–122, 116, 118,
119, 132, 133; sampling, of the mean
108–126, 108, 113, 127; shape of 19,
385; standard normal 90–107, 95, 96,
98, 99, 101, 103, 114–122, 116,
485–486; standard normal, χ2 492;
symmetrical 29; unimodal 29; 

distribution-free tests 283, 385–401, 387
advantages and disadvantages 386–387

distributions, skewed 46
bimodal 47; unimodal 47

distributions, theoretical 70–89
division 447

with decimals 453–454; with fractions
452–453; with negative numbers
449–450

divisional notation 450
domain, defining 202–203
drawing inferences 109
dyslexic children 151



526 NUMBERS, HYPOTHESES, AND CONCLUSIONS

E
effect

cause and 190; simple 302, 302, 304; 
size 236–237, 236, 274–276, 276,
285–286, 371

effects
main 292, 292; simple 324

efficiency 3, 4
electricity 7
electronic spreadsheets 81
elementary operations 446–448
empirical investigation 128
equations 461–471, 463

multiple regression 344; solving
464–466

error 231–239
artefactual 405; correcting for
measurement 411; correcting 
for sampling 410–411; degrees 
of freedom 274, of estimate, 
standard 168–170, 169, 346–347, 347;
measurement 405–406; rate, deter-
mining 436–437; rate, familywise 255,
255; sampling 405; standard 117–120,
117, 143, 145, 145; Type I 134, 134,
231, 231, 231, 231, 234, 237; Type II
134, 134, 237; variance 257, 257

estimate 42
calculating standard error of 170; 
standard error of 117–120, 117,
168–170, 169, 346–347, 347

evaluating a score or test 210–221
event, independent 74, 74
Excel, Microsoft®, 67, 87, 104, 105, 119,

155–156, 175–176, 188, 208, 222, 263
exhaustive

classifications 365, 365; outcomes 80, 80
expectations 435–436
expected frequency 367, 367, 376
experimental design 13
expert judges 217
exponents 457–458
extended range 54, 54, 65
extrapolations 168, 168

F
F distribution 348, 489, 490
F-formula 265
F-ratio 315, 324
F-statistic 330
F-test, sequential 351–352

F-value 274, 287
face validity 217
facilitation, item 219–220
factor, common 451, 451
factorial analysis of variance 289–310
factorial ANOVA

analysing designs 296–304; assump-
tions of 294; examining main effects
and interactions 298–299; interpreting
interactions 301–304; interpreting
main effects 299–300; logic of 293–294;
testing assumptions 296–298

factorial designs 290, 290
reasons for using 291–292; two-way
290

factors 290
familywise error rate 255, 255
file drawer problem 408, 408
Fisher z transform 191
Fisher, R.A. 266
Fisher’s LSD 436
fractions 450–453

addition and subtraction with
451–452; converting to decimals
454–455; multiplication and division
with 452–453

freedom, degrees of 150, 153, 257, 487
error 274; group 274

frequencies 455–457
frequency 21, 366

asymmetrical distribution 30; bar
chart 21–22, 21; count 455; cumula-
tive 25, 25, 31, 34; cumulative per-
centage 25–26, 26, 31, 34; distribution
19–20, 19, 28–31, 90, 101, 103, 111; 
distribution table 21, 22, 27; expected
367, 367, 376; kurtosis 28, 29, 30;
observed 376; peakedness of distri-
bution 28, 29, 30; probability as
70–72; skewness of distribution 28,
29; symmetrical bimodal distribution
29, 29; symmetrical unimodal distri-
bution 29, 29; of a score 19; table of
31; test of 73; view of probability 70

frequency-based probabilities 71
Friedman’s rank test 394–396, 394
fully repeated designs 320–325, 320

G
games of chance, probability and 72–74
gap test 73
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Gauss, Carl 84
generalisability theory 211
GPOWER 248, 249
graph, bar 54
graphical displays 19

representations 21
graphing paired data 161–162
graphs 472–484, 472
Greenhouse Geisser 330
group degrees of freedom 274
grouped

data 44; frequency distribution 
22–26, 22

Guilford, informal interpretations of the
magnitude of r 184

H
harmonic mean 243, 243
heterogeneity of variance 150–151
hierarchical multiple regression 354
histogram 27–28, 27

class test marks 28
homogeneity of variance, assumption of

147–147
Honestly Significantly Difference test

(HSD) 275, 280, 300
horizontal axis 21, 27, 474, 474
hypothesis

alternative 129, 129, 130, 131, 
233, 234, 253; complex null 324; 
directional alternative 129, 129, 
130; non-directional 129, 129; 
null 128, 128, 129, 130, 131, 132, 
134, 146, 231, 232, 233, 253; 
testing 127–141, 128; testing 
statistical 230

hypothetical population 15

I
independence, assumption of 147
independent

event 74, 74; samples t-test 149–152,
149; variables 13, 13

index
item-difficulty 219, 219; numerical
456; variable 10, 467

indices
of range 65; of variation 65–67

individual score 110
inferences 109

drawing 109

inferential
statistics 42; test, selecting the 
appropriate 426–429

integers 445
interaction 292, 293

plots 327, 327
interactions

disordinal 304; ordinal 304; types of
304–306

intercept 163
internal consistency 213
interpolations 168, 168

linear 97–98
interquartile range 54, 55, 65
interval

class 23, 24, 23, 23–24; class midpoint
27; data 22; variables 12

intervals, confidence 120–122, 120, 121
inverse relationship 479
investigation, empirical 128
isolating sources of association 374–376
item

analysis 218–220; discrimination 220;
facilitation 219–220

item-difficulty index 219, 219

J
James, William 2–3
judges, expert 217

K
Kendall, Maurice 73
Kolmogorov, 72, 73
Kruskal-Wallis test 392–394, 393, 429
Kuhnian perspective 402

L
least-squares line 164
level

alpha 231, 232; significance 132, 132,
133, 231, 245

levels 290
Levenes’ test 297, 297
Likert scale 204–205
limit

apparent, 24; real lower 24, 24, 27;
real upper 24, 24, 27

limits
confidence 120–122, 120; probable, 120

line
best fitting 162–167; least-squares
164; regression 163, 171



528 NUMBERS, HYPOTHESES, AND CONCLUSIONS

linear
interpolation 97–98; line 478; regres-
sion 163; regression, multiple 339

linearity,
departures from 355; multicollinearity
344–346, 345

lopsided test 434–435
lottery 73, 77
lower limit, real 24, 24, 27

M
main effects 292, 292
Mann-Whitney 10

U-test 391–392, 391, 429, 436, 494, 495
MANOVA 331
matched pairs test, Wilcoxon 389–390, 389
matrix

data 424; variance-covariance 329,
329, 330

Mauchley’s test of sphericity 331
mean 40, 41–45, 41; 52, 115

harmonic 243, 243; one 428; plots, 
cell 301, 302, 305; population 41, 130,
257; sample 41, 130; sampling
distribution of 108–126, 108, 113, 127;
square contingency coefficient 371;
statistic, calculating 
410; symbol for 47; squares (MS) 257;
trimmed 43–45; using a 
calculator 49

means 112
multiple 429; sampling 110–113, 111;
two 429

measure, robust 185, 185
measurement

of association 371–374; error 405–406;
error, correcting for 411; scale of 11,
425

measurement theory
and reliability 211; classical 211

measures of variability 53
measures, repeated 311–337

design 314–316
median 35, 40, 45–46, 45, 62

position 45; symbol for 47; using a
calculator 49

meta-analysis 402–422
Schmidt-Hunter model of 404–420;
software for 419–420

Microsoft, Excel 67, 87, 104, 105, 119,
155–156, 175–176, 188, 208, 222, 263

midpoint 27
mixed designs 320, 320, 321, 326–329
mode 41, 46–47

symbol for 47; using a calculator 49
model

building, methods of 349; score 293,
293

modelling 3, 5
moderator variables 405, 411, 412

searching for 411
Monte Carlo method 112
MSError 261, 261, 262, 263, 264, 271, 272,

273, 274, 275, 298, 299, 302, 315
MSGroup 261, 261, 262, 263, 264, 271, 272,

273, 274, 299
multicollinearity 344–346, 345
multiple

classifications 365; comparisons
274–276, 299, 300; correlation
coefficient 346–347; linear 
regression 339; means 429; 
outcomes, probabilities of 77–79

multiple regression 338–363, 340
equation 344; hierarchical 354; 
stepwise 352–353; testing statistical
significance in 348

multiple-choice response scaling 204
multiplication 447

converting to fractions 454–455; 
with decimals 453–454; with fractions
452–453; with negative numbers
449–450; rules of probability 74–77

multivariate
analysis of variance (MANOVA) 331;
data design 317, 317

mutually exclusive
classifications 365, 365; outcomes 80, 
80

N
negative numbers 445, 448–450

addition and subtraction with 449;
multiplication and division with
449–450

negative slope 478, 479, 479
nominal

data 21, 21, 22, 47; data table 27;
variables 11

non-directional hypothesis 129, 129
non-linear line 478, 479, 479
non-parametric tests 385, 386
non-quantitive approach 4
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normal distribution 83–85, 84, 90, 110, 113
standard 90–107, 92, 92, 95, 96, 98, 99,
101, 103, 114–122, 116

normality, assumption of 146
norms

constructing 222; standardisation and
221–226; use of 222

null hypothesis 128, 128, 129, 130, 131,
132, 134, 146, 231, 232, 233, 253
complex 324

number
line 448; systems 445

numbers 2
addition and subtraction with deci-
mal 453; addition and subtraction
with negative 449; basic work with
444–460; counting 445; decimal
453–455; graphing by categories
480–483; multiplication and division
with decimal 453–454; multiplication
and division with negative 449–450;
negative 445, 448–450; real 445;
random 72–73; whole 445

numerator 450
numerical index 456
numerosity 7

O
observations, percentage of 20
observed frequency 376
odds 373

ratio 372, 372, 373, 373
one mean 428
one-sample t-test 147–149

power calculations for 240–241
one-tailed test 132, 133, 434–435
one-way analysis of variance 271–288
one-way ANOVA 277

calculating 262–267; using SPSS to do
276–281, 278, 279, 280

operations, elementary 446–448
operators, summation 466
ordinal

data 22; interactions 304; variables
11–12

origin 476
outcome, variability in 430–432
outcomes

exhaustive 80, 80; multiple, pro-
babilities of 77–79; mutually 
exclusive 80, 80#

outliers 43, 44, 54, 63, 63, 64, 165, 355,
356, 356, 386

P
paired data 160–162

graphing 161–162
pairs 162
pairwise comparisons 324
parameter 13–15

estimates 127
parameters, population 61–62, 142, 145
parametric tests 385, 385
partial correlation 344–346
partitioning 321, 322, 374
Pascal 231
peakedness of frequency distribution 28,

29
Pearson’s

correlation coefficient 183, 183, 191; r
184–185

percentage of observations 20
percentages 455–457
percentile 31–38, 31, 33, 35, 221

determining 34; ranks 221
perfect

negative correlation 172; non-linear
correlation 172; positive correlation
172

planned comparison 432
plot, box-and-whisker 62–64, 62
plots

cell mean 301, 302, 305, 327, 327;
interaction 327, 327

pooled variance 150
Popperian approach 402
population 13–15, 14, 108, 111, 130

distribution 114; hypothetical 15;
mean 41, 130, 258; parameters 61–62,
142, 145; standard deviation 428; 
studies, collection of 406–408; symbol
for 47; variance 57

positive slope 478, 479, 479
post hoc tests 275, 275, 285–286
potential range 54
power 232, 232,488

statistical 230–251; ‘trial’ strategy and
237–239

power calculations 239–245
for the matched sample t-test 244–245;
for the one-sample t-test 240–241; for
the two-sample t-test 241–243, 243–244
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powers 457–458
precentile rank 31–38, 31, 34

determining 33
predictions 167–168

difficulties 171
predictive validity 217, 218
predictor 162, 162

variables 13
presentation, interesting and credible 437
prior research 239
probabilistic methods 8–9, 9
probabilities of multiple outcomes 77–79
probability 5, 70–89, 74, 99

addition rules of 74–77; as binomial
81; frequency 70–72; frequency-based
71; frequency view of 70; and games
of chance 72–74; multiplication rules
of 74–77

probability law
of conjunctions 75; of disjunctions 76

probable limits 120
product-moment correlation coefficient

183–185, 183
proportion 99, 455–457, 455
psychometrics 201–229

Q
Q-tables 275
Q-values 275
qualitative

approach, problems with 15; data 365
quantification 3

functions of 7–9
quantitative

data 365; measurements 18; measures
12

quantitative methods 3
advantages of 3–7; approximation/
modelling 4–5; efficiency 4; eviden-
tiary aids 8; powerful language 5–7;
problems with 15

quartile 62, 102
question, type of research 428
questioning method 417–418

R
r

calculating Pearson’s 184–185;
Guildford’s interpretations 184;
meaning of 184; significance testing
of 195–196; transforming to t 195–196 

R2, significance of 348
random

numbers 72–73; sample 14, 109, 111;
series 72; variance 257

randomised experiment 13
range 52, 54–55, 54

crude 54, 54, 65; extended 54, 54, 65;
indices of 65; interquartile 54, 55, 65;
potential 54; restriction of 193–185,
406, 411

rank correlation 186–187
coefficient of 186, 186; Spearman’s
coefficient of 186, 186

rank, percentile 31–38, 31
determining 33

ranks, theory of 387–388
rating scale 204–205
ratio

aspect 21, 21, 22; data 22; odds 372,
372, 373, 373; variables 12

ratios 455–457
real

lower limit (RLL) 24, 24, 27, 32, 34;
numbers 445; upper limit (RUL) 24,
24, 27, 32; world 98–103

reasoned argument, defensible 432–437
rules for 434

reasoning, statistical 423–441
region, rejection 133, 133
regression 160–180

analysis assumptions 355–356; 
analysis limitations 355–356; 
calculating 166; calculating coeffi-
cients 164–167; coefficients 163,
343–348; line 163, 171; hierarchical
multiple 354; linear 163; models, 
difficulty with predictions 171; 
multiple, 338–363, 340; multiple 
linear 339; testing statistical signifi-
cance in multiple 348; stepwise 349;
stepwise multiple 352–353

rejection region 133, 133
relationship

inverse 479; positive 479
reliability 210–216, 224–225

alternate-forms 212–213; criteria for
216; measurement theory and 211;
split-half 213; test-retest 212

repeated measures 311–337
design 314–316; t-test 152–155, 152

replacement, sampling with 75
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representations
graphical 21; tabular 21

research
question, type of 428; prior 239

residual 355, 375, 375
adjusted 375, 375, 376; analysing 374;
standardised 375, 375, 376

response
scaling 203–206; variables 13

responses, coding 208
restriction of range 193–195, 406, 411
reverse scoring 208–209
revised experimental design 417
risk 64
RLL 32, 34
robust measure 185, 185
roots 457–458
RUL 31, 32

S
sample 13–15, 14, 224

data, estimating population 
parameters 61–62; mean 41, 111, 130;
random 109, 111; size 235, 246; 
symbol for 47

sample size 235, 246
factors that influence choice of 
245–246; unequal 153

sampling
means 110–113; with replacement 75

sampling distribution 111, 112, 114,
114–122, 116, 118, 119, 132, 133
of the mean 108–126, 108, 113, 127

sampling error 405
correcting for 410–411

scale
items, development of 223–224; of
measurement 11, 425; scores, 
computing 426

scale, rating 204–205
Likert 204–205; scores, summing
206–210; semantic-difference 205

scales, construction of 201–229
scaling, response 203–206; alter-

native-choice 203–204; multiple-
choice 204

scatter 171–172
scatterplots 161, 164, 168, 172, 182, 183,

193, 351, 358, 359
Schmidt-Hunter model of meta-analysis

404–420, 407

score 115
individual 110; model 293, 293; or
test, evaluating 210–221

scores 18, 112
calculating 225–226; computing scale
426; distribution of 19; frequency of
19; number of 20; ‘raw’ 22; standard
221; summing 209–210; summing
scale 206–210

scoring, reverse 208–209
semi-partial correlation 345
sensitivity analysis 165
sequential F-test 351–352
serial test 73
shape of the distribution 385
sign test 388–389, 388
significance

level 132, 132, 133, 231, 245; testing of
r 195–196; two-tailed 493

simple
effect analysis 301; effects 302, 302,

304, 324
skewed distributions 46
skewness of frequency distribution 28,

29
slope 163

coefficient 167; linear 478; negative
478, 479, 479; non-linear 478, 479, 479;
positive 478, 479, 479

Spearman, Charles 186
Spearman’s coefficient of rank correla-

tion 186, 186, 191
split-half reliability 213
spreadsheet 49–50, 85, 104–105, 119,

155–157, 188–189
electronic 81; regression analysis
with 175–178

SPSS 156–157, 177–178, 188–189,
214–215, 248, 430, 431, 496–519
ANOVA table produced by 319;
compute 503–504; correlate 510;
custom tables 508–509; data, import-
ing 502; data, saving 502–503; data,
transforming 503–506; Data Editor
500–502; Data Editor Window
497–498; data file, setting up 500–503;
descriptive statistics 507–508; factorial
ANOVA, running 294–296; General
Linear Model 510; graphical displays
512–514; means, comparing 509; non-
parametric tests 512; one-way
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ANOVA, doing 276–281; one-way
repeated measures ANOVA
with 317–320; output, editing 514–515;
output, saving 515–517; 
output, working with 514–517;
Output Viewer window 498; recode
504–505; regression 511; simple
effects, computing with 303; scale 512;
select cases 505; statistical analyses
506–512; two-way ANOVA, comput-
ing 308; Syntax Editor window 499;
weight cases 506; χ2 test and 377–380,
378, 379, 380

squares
mean 257; sums of 257

standard
deviation 52, 60–61, 61, 66; deviation,
population 428; error 117–120, 117,
143, 145, 145; error of estimate
168–170, 169, 346–347, 347; normal
distribution 90–107, 92, 92, 95, 96, 98,
99, 101, 103, 114–122, 116, 485–486;
scores 221

standardisation and norms 221–226
standardised

regression coefficients 346; residuals
375, 375, 376

stanines 221, 222
statistic

mean, calculating 410; transforming
to a common 409 

statistical
analysis, approaches to 432–433;
decisions, defending 429–432;
decisions, rules for making 425–429;
hypothesis testing 230; interference
14; power 230–251; reasoning
423–441; tests, error and 231–239;
world 98–103

statistics 13–15
common 409; inferential 42

stepwise
algorithms 349; multiple regression
352–353; regression 349

studies, coding 408–409
stuffy approach to statistical analysis

432–433
substitution 461–471
subtraction 446

with decimals 453; with fractions
451–452; with negative numbers 449

success 73
probability of 75

summary 19
summation 461–471

operators 466
summing

scale scores 206–210; scores 209–210 
sums of squares (SS) 257
symmetrical

bimodal distribution 29, 29; unimodal
distribution 29, 29

symmetry, compound 329, 331, 331
systematic variance 257, 258, 259, 259

T
T scores 221
t-table 487
t-test 10, 142–159, 143, 253, 255, 256, 

257, 311
common concepts 144–147; equation
144–145; independent samples
149–152, 149; interpreting a signi-
ficant result 145–146; one-sample
147–149; power calculations for the
matched sample 244–245; power
calculations for one-sample 240–241;
power calculations for two-sample
241–243, 243–244; repeated measures
152–155, 152; subtypes 147–155;
using spreadsheets 155–157

t, transforming r to 195–196
table

frequency distribution 22, 27; nominal
data 27

tables
contingency 365–366, 366; two-
dimensional 366

tabular displays 19
representations 21

tendency, central 40–51, 52, 65
test

evaluating a score or 210–221;
Friedman’s rank 394–396, 394;
Honestly Significantly Difference
(HSD) 275; Kruskal-Wallis 
392–394, 393; lopsided 434–435; 
Mann-Whitney U- 391–392, 
391; one-tailed 132, 133, 434–435;
selecting the appropriate 
inferential 426–419, 427; sign
388–389, 388; two-tailed 133, 133,
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434–435; Wilcoxon matched pairs
389–390, 389; χ2 significance 366–374

test marks 22
distribution table 26; histogram 28

testing, statistical hypothesis 230
test-retest reliability 212
tests

construction of 201–229; distribution-
free 283, 385–401, 387; non-
parametric 385, 386; parametric, 385,
385; post hoc 275, 275, 
285–286; statistical, error and
231–239; two-tailed 246

theoretical distributions 70–89
theory of ranks 387–388
trend 162
trial

Bernoulli 81; strategy and power
237–239

trimmed mean 43–45
Tukey’s HSD test 300, 319, 324, 436

results of 320
Tukey’s Studentised Range Statistic 491
two means 429
two-condition study 482
two-dimensional tables 366
two-sample t-test, power calculations

for 241–243
two-tailed

significance values 493; test 133, 133,
246, 434–435

two-way
ANOVA, calculating with SPSS 308;
factorial design 290; repeated
measures ANOVA 320–328

Type I error 134, 134, 231, 231, 234, 237,
256, 275, 280
probability of 233–234

Type II error 134, 134, 231, 231, 233, 237,
241, 256, 280

U
unequal sample size 153
unimodal distribution 29
upper limit, real 24, 24, 27
U-test, Mann-Whitney 391–392, 391

V
validity 216–218

concurrent 217, 217; construct 218;
content 217; covergent 218; 

cross-criterion 217–218; face 217;
predictive 217, 217; test for 226

value, critical 135, 135
variability 52–69

in outcome and procedure 430–432;
measures of 53

variable
categorical 426; continuous 425;
describing 425–426; discrete 425, 426;
index 467; interval 425; type, defining
425#

variables 9–13, 10, 28
continuous 19; continuous ‘d’
152–153; criterion 13; dependent 13,
13; discrete 19; independent 12, 13;
interval 12; moderator 
405, 411, 412; moderator, searching
for 411–412; nominal 11; ordinal
11–12; ratio 12; predictor 13; response
13; skewed 62; symmetrical 62

variance 52, 57–60, 57, 66, 112
assumption of homogeneity of
146–147; amount of 347; analysis of
252–270, 285; calculating 58; 
decomposition of 312–314, 312; 
error 257–258, 257; comparing, 
within and between groups 259–262,
260; factorial analysis of 289–310; 
heterogeneity of 150–151; homo-
geneity of 282–283; one-way analysis
of 271–288; pooled 150; random 257;
reduction/ decompositon of 314–316;
repeated meassures analysis of
311–337; systematic 257–258, 258, 
259, 259

variance-covariance matrix 329, 329, 
330

variation 52, 65
coefficient of 61, 61; indices of 65–67;
substantive sources of 406

Venn diagram 346
vertical axis 21, 474
volatility 64
Von Mises 72, 73

W
weak negative correlation 172
whiskers 62, 64
whole numbers 445
Wilcoxon matched pairs test 389–390,

389, 429, 493
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X
x-axis 21, 92, 474, 474, 475
x-scores 92, 110

converting to z-scores 100–102; 
converting z-scores to 102–103

x-values 92, 115, 116

Y
y-axis 21, 22, 474

Z
z calculations, using spreadsheets 104–105
z formula 100, 115, 122

z-scores 92, 93, 93, 93, 95, 96, 97, 100,
101, 110, 115, 116, 118, 121, 236
converting x-scores to 100–102;
converting to x-scores 102–103; 
and t-test transformation 144; using
tables of 93–98

z-tables 93, 93, 94, 94, 95, 96, 110, 121
z-test 127–141, 131, 147, 148, 257
z-values 92
zero

correlation 172; value, true 12
zero-order correlations 349–351
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