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Preface

This book is the core text for a tutorial programme in statistics for
social science and humanities students. Although it can be used as
a self-sufficient introduction to statistics, we recommend that it be
used alongside a structured set of exercises, worked examples,
and activities. An excellent collection of support materials is
available on a course web page (http://www.uct.ac.za/depts/
psychology/plato/numbers/) and on the accompanying CD.

The tutorial programme is aimed at a diverse group of disci-
plines. Students of Psychology, Sociology, Social Work, Anthro-
pology, Education, and Political Studies — indeed, all students in the
social sciences - will be able to use this book. Whatever your area of
study, we hope that it will stimulate you, teach you, tease you, and
promote you to the rank of inveterate inquirer. The skills we aim to
impart are central to any modern knowledge-based enterprise.
They are taught all over the world in programmes that are serious
about research, and thus provide a universal language for the social
sciences. More than that, they underpin successful theory and
application in almost every field of enquiry in the social sciences.
Indeed, expertise in quantitative methods is one of the strongest
transferable skills taught in the social sciences, and many employ-
ers demand some level of competence in this area.

Social science students differ in terms of their preparation for
courses in quantitative methods. They come from a diversity of
disciplines and backgrounds. This means that there will also be dif-
ferences in their level of mathematics proficiency. We acknowledge
this, and see it as a challenge. For this reason, we have included a
substantial collection of revision material in the appendices and on
the accompanying CD. All students entering a course in quantita-
tive methods will benefit by revising their school mathematics with
this material.

Our emphasis in the course, as a whole, is on statistical concepts
and techniques. We promote the use of simple mathematical mani-
pulations and calculations to aid understanding. It is important for
you to know how to do some basic statistical calculations, and we
encourage you to improve your skills no matter what your starting
level of proficiency is. In the modern world, however, there are
many aids to the error-prone activity of statistical computation, and
we specifically show you how to use calculators, spreadsheet pro-
grams, and statistical software packages. In the early tutorials, we
emphasise calculator and spreadsheet work, and in later tutorials we
assume the availability of a statistical package. We have provided



Vi

material showing you how to use SPSS® for particular statistical
analyses, but you could also use a package like STATISTCA, and we
have included extensive support material for that package in the
accompanying CD.

We have tried to enhance your experience in this text by the
extensive preparation of activities, interest boxes, application boxes,
graphic material, exercises, worked solutions to problems, and
Internet links and resources. You should use these to your advant-
age. We suggest that you keep a calculator at hand whenever you
read the text, and complete the activities and exercises. When you
have finished studying the text, we strongly recommend that you
spend some time browsing the CD for additional worked examples,
exercises, and worked solutions. We also encourage you to use the
Internet links, as there are many interactive web sites that demon-
strate statistical concepts and techniques in an interactive manner.

Colin Tredoux and Kevin Durrheim, March 2002
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Alpha (Type I error rate)

Beta (Type II error rate)

Delta, a parameter used to determine power of a statistical test
Mu, the population mean

Rho, the population correlation coefficient

Sigma (lower case), the population standard deviation

Sigma (upper case), the arithmetic summation operator
Chi-square statistic, or Chi-square distribution

Eta-square, a measure of effect size

Phi square, the mean square contingency coefficient

Sigma square, the population variance

Cramer’s V, a measure of effect size in contingency table analysis
The intercept coefficient in regression analysis

The slope coefficient in regression analysis

Difference between two scores

Effect size

Expected frequency

F distribution, or F ratio

Number of groups in a design

Mean Square

Population size

Sample size

Observed frequency

Probability

Tukey’s Q statistic (studentized range statistic)

Multiple regression coefficient

The Pearson product moment correlation coefficient

Square of r; coefficient of determination

Square of the multiple regression coefficient; degree of linear model fit
Spearman’s rank correlation coefficient

Sample variance

Standard error of the mean

Sums of squares

The t statistic, used to test hypotheses about mean differences; also the
t probability distribution

Sample mean

y prime, the predicted score in a regression equation

Standard normal deviate
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TUTORIAL Numbers, variables, and
measures

Colin Tredoux

After studying this tutorial, you should be able to:

® List some of the key functions served by
quantitative methods in the social sciences.

® Distinguish probabilistic and deterministic forms
of inductive reasoning.

® Define a number of basic terms including variable,
statistic, and parameter.

® Distinguish descriptive and inferential statistical
methods.

® |dentify some of the arguments against the use of
quantitative methods.

As you pick up this text and start to read it, you may be wondering
how you managed to get yourself into this predicament. After all,
many social science students choose the social sciences to escape the
terrors and tribulations of mathematics and numbers. You now find
that you are again faced with x and y, £ and o, and long strings of
numbers. Why do you have to do this? Surely there is no point in
trying to measure social phenomena? We all know the social world
is inherently slippery, and defies exact representation. Surely this is
a mistaken ambition?

You are not alone in this point of view. Anumber of theorists and
writers have put formidable reputations on the line in arguing
that quantification and quantitative methods have no place in
social science (Hornstein, 1988). Writing over 100 years ago, William
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James ridiculed the attempts by psychologists to quantify sensation
and perception:

To introspection, our feeling of pink is surely not a portion of our
feeling of scarlet; nor does the light of an electric arc seem to con-
tain that of a tallow candle in itself (cited in Hornstein, 1991, p. 45).

If you sympathise with this point of view, the bad news is that it has

lost the battle for sovereignty in the social sciences. Most social

sciences make extensive use of quantitative methods, and students

in these disciplines typically receive training in these methods from

their undergraduate years all the way to doctoral level. A cursory

flip through the current periodical holdings of any academic library

will convince you of the important place these methods have.

Of course, it may indeed be the case that quantification is misguid-

ed, and even non-rational (cf. Hornstein, 1991). We cannot defend

quantification against these charges, but we would like to persuade

you here that there are palpable advantages to quantification. oo o .0/ o
Quantitative methods provide powerful academic and intellectual ke extensive use
possibilities, and to jettison them is akin to refusing to use electric ~ of quantitative
lights because no-one has offered a satisfactory theory of electricity.  methods.

The advantages of quantitative methods

What advantages do quantitative methods confer on us? There are
a great many, which we will summarise as efficiency, approximation
(or modelling) and a powerful language.

Table 1.1 SA Census 1996: Country of birth by population group

African/Black  Coloured Indian/Asian White Other TOTAL
South Africa 30 148 148 3 502 353 1007 865 3845099 344946 38 848 411
SADC countries 413 133 7 792 2 140 2 140 104 480 529 685
Rest of Africa 7 395 329 657 11 358 296 20 035
Europe 4 661 529 783 209 144 2 081 217 198
Asia 405 377 17 888 9 194 691 28 555
North America 362 107 122 4972 120 5 683
Central and South 1772 138 204 6 476 99 8 689
America
Australia and 40 28 34 3725 60 3 887
New Zealand
Unspecified/Other 74 420 4 522 5670 55 682 4 162 144 456
TOTAL 30 651 337 3516 175 1035363 4248 179 355544 39 806 598

Table reproduced from an Internet page of the South African Statistical Services
(http://www.statssa.gov.za/Publications/Census%20summary)

TUTORIAL 1: NUMBERS, VARIABLES, AND MEASURES 3



Activity 1.1

Efficiency

Using numbers to communicate information is often extremely effi-
cient. Every ten years or so, South Africa has a national census, in
which information is collected about its inhabitants. Since there are
approximately 40 000 000 inhabitants, you will appreciate the enor-
mous amount of work and information that the numerical display
in Table 1.1 summarises. (You may also notice how the data implic-
itly contradicts the notion that South Africa is being swamped by a
tide of black immigration from other African countries.)

A non-quantitative approach would have struggled enormously
to represent the data in Table 1.1. Not the least of the concerns
would have been adequate summary concepts or descriptors. In the
case of quantitative research, on the other hand, there is a well-
developed theory of summary indicators, and a well-developed
technology to support these (e.g. computer software packages).

Examine Table 1.1 carefully. Do you see any interesting patterns? Try
to describe these without using any summary statistics (e.g. totals or
averages), and without using any symbols that represent numbers
(i.e. you can write ‘one’, but not “1).

Approximation/modelling

Quantitative techniques are often excellent at representing phenome-
na in the world, and in that respect they present us with wonderful
opportunities for complex study of the phenomena. What dimensions
do you think humans use for making similarity judgements of faces?

Fat

White Black

Thin

Figure 1.1 A spatial model for understanding human similarity judgements
of faces

NUMBERS, HYPOTHESES, AND CONCLUSIONS



Simply asking people how they make similarity judgements pro-
duces a bewildering variety of responses. However, a quantitative
technique called multidimensional scaling provides a spatial model
in which we can represent each dimension of similarity as an axis,
and each face as a point in the intersection space of these axes.
Figure 1.1 shows what a two-dimensional example of such a model
might look like.

This modelling allows us to infer what the important dimensions
of similarity judgements of faces are. If we had to sort through a
long set of verbal descriptions, it would take us a very long time,
and it is doubtful that we would arrive at the dimensions as clearly
as we can with the quantitative technique in question.

A powerful language

Perhaps the best thing about quantitative techniques is that there is
already an established theory and practice. Mathematicians, statis-
ticians, and (latterly) social scientists have spent many hundreds of
years developing and refining a powerful quantitative language.
When we use quantitative techniques we adopt this language, and
save ourselves a few centuries of work. This language is powerful,
and can make us highly competent in our interactions with the
physical world.

Imagine a game of dice on the street corner. Sipho is betting R10
that 5 will come up on the next throw of a single die and Malungisa
will pay him R30 if it does. Probability theory tells us that the
chance of the 5 coming up on the next throw is 1/6, and that the
expected gain in this game for Sipho is -R3.33 per roll of the die. The
game of dice can be understood in terms of a ‘language of pro-
bability’, and this allows those who understand it considerable
opportunity. Malungisa will be a rich man if he continues to entice
players like Sipho into the game.

Consider another everyday situation where quantification is
powerful. Activity 1.2 shows a weather forecast map. By looking at
it very briefly, you will be able to decide:

1. whether to take an umbrella to college,
2. whether you should nail your roof down, and
3. whether you need to water your vegetable plants tomorrow.

All this information is powerfully and effectively conveyed by
numbers, and their position in the two-dimensional diagram.

So, we have seen that quantitative methods are efficient, that they
provide useful models of phenomena, and that they provide us with
a powerful language. Is this enough to convince us that we should be
using them in the social sciences? Perhaps not, but let us reflect for
a moment on where we find quantitative methods in the world

TUTORIAL 1: NUMBERS, VARIABLES, AND MEASURES
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Activity 1.2

Inspect the following weather forecast, and see whether you can
answer the questions below just from the numbers you see displayed
on the map. Assume the forecast is for tomorrow. Justify your
answers.

a) Is it likely that you will you need a jersey if you are in Pieter-
maritzburg at midday?

b) Would it be a good idea to go kite-flying in Cape Town?

¢) Does the pattern shown here suggest summer or winter?

d) If you live in Bloemfontein, should you take precautions against
your water pipes bursting?

around us. Clearly, a number of professions depend on them:
accountants, actuaries, and engineers make no secret of this, and,
less obviously, architects and graphic designers. But there are many
other, more apparently non-technical occupations that do so too.
Consider the woman who owns the gambling casino down the road.
Her livelihood depends on the types of quantitative performance
outlined in the example of the game of dice. What about carpenters?
Carpentry depends in a fundamental sense on measurement and
quantification, and carpenters use quantitative devices ranging from
finely graded rules and set squares to sliding angle bevels.

Now think more generally about your everyday life. You proba-
bly visit a shop of some kind every day. Shops are highly quantified,
and your interaction with them is fundamentally of a quantitative
kind: you pay some money to the shop, which has quantified the
amount of profit it will take, the amount it will have to pay over to

NUMBERS, HYPOTHESES, AND CONCLUSIONS



revenue services, and the amount it owes for store rental and
salaries. In fact, we are completely embedded in a monetary econo-
my, in which the house we live in, the food we eat, and perhaps
even the thoughts that rush ceaselessly in our heads have particular
value. This monetary economy brings enormous flexibility to the
social exchange that appears to be inherent in human societies.

Still not convinced? Let us try one more argument. Many biolo-
gists and physiological psychologists now argue that some kind of
quantitative sense is native to the human species. In a recent book
entitled What Counts: How Every Brain is Hard-wired for Math, Butter-
worth (1999) summarises evidence suggesting that the human brain
has a ‘number module” - a specialised circuitry that enables us to cat-
egorise objects in terms of numerosity. We recognise and distinguish
objects in terms of numerosity (without being taught the meaning of
number) in an automatic and involuntary way, just as we automati-
cally and involuntarily see colours. In this way of looking at things,
quantification and quantitative thinking is inescapable, and at home
in the social sciences as it is in your kitchen.

Functions of quantification

There are a number of ways in which quantitative methods can
function within an academic discipline. We saw some of these in
the previous section, but it is useful to distinguish at a higher
level of abstraction two general kinds of functions that quantifi-
cation can support.

In the first place, quantification can serve an infrastructural or
administrative function. This is the sense in which societies are
embedded in a monetary economy, and much of the business of the
society has a structure within this economy. It is as if monetary
quantification has built a vast set of roads, highways, ramps, and
exits, and the society moves backwards and forwards on the roads,
just as it does on physical transport roads. As you sit reading this
tutorial, for example, the electric light that helps you read is having
its output numerically measured (kw/h) by your electricity suppli-
er, and this is in turn being transformed into an amount of money
that you will pay over to the supplier. A portion of the money paid
over by you may be paid over in turn to the company that produces
the electricity at source, say a hydro-electric power station in a
foreign country, and at the end of the financial year that company
will declare the amount of foreign revenue. This amount will in turn
be subsumed into a government report on foreign trade, and will
show up again in a number of international-level economic reports.
Ultimately, the amount of electricity you consumed reading this
paragraph will constitute a (tiny) portion of the index known

TUTORIAL 1: NUMBERS, VARIABLES, AND MEASURES



Activity 1.3

Functions of
quantification:

1. Administrative/
infrastructural

(e.g. a monetary
economy)

2. Aids to argument
and reasoning

as global economic growth, which measures by how much the
planet’s economic activity has increased or decreased. This in-
frastructural function is certainly important, but it is not of central
interest to us in this text.

Keep a diary or notebook with you for a day, and make a record of
instances where you have to deal with numbers as part of your every-
day life. Record as many instances as you can. Try to list for each
instance what function the quantification serves.

Secondly, quantitative methods can function as evidentiary aids or
systems. In other words, they can provide evidence for an argu-
ment, or against it. In addition, they frequently have deductive and
inductive devices or mechanisms that can be used to draw conclu-
sions and inferences. It is in this second sense that quantification is
of most interest to us in the social sciences. For example, a key issue
in health research around HIV is the transmission of HIV between
mother and child from breastfeeding. Quantitative research tells us
that the risk of transmission is very high, and that anti-retroviral
drugs may decrease this risk substantially. In order to draw this
conclusion, researchers carefully quantified physiological measures
(e.g. T-helper cell responses), and used a research design that
allowed them to use inferential statistical methods to determine
whether infants administered anti-retroviral treatment showed
lower rates of HIV infection than infants not administered anti-
retroviral treatment. (Interestingly, a key figure in this research is a
South African researcher, Louise Kuhn (Kuhn et al., 2000), who was
trained as a social scientist.)

Although quantitative methods are often thought of as the tools
of deterministic sciences, such as mechanical physics and chemistry,
a whole branch of mathematics is devoted to probabilistic methods.
These methods form the basis for most quantitative inquiry in the
social sciences. When we reason probabilistically, we make general-
isations and draw conclusions that are supported with probability
estimates, as opposed to the law-like statements and predictions we
make in deterministic reasoning. For example, we say that we are
95% confident that the average income for social science graduates
five years after graduation is between R85000 and R115000 per
annum. We do not say that we are certain of this, but we express
probabilistically defined confidence in it. On the other hand, if
we are reasoning deterministically, we say things like ‘“The force
exerted by an object is the product of its mass and its acceleration’,
and if we have precise estimates of the mass and acceleration, we
make a precise prediction.

NUMBERS, HYPOTHESES, AND CONCLUSIONS



Sometimes the probabilistic methods available to us can be used
to create models so close to the phenomenon that we wish to study
that the move from model to phenomenon to conclusion
is relatively effortless. Imagine that we are called on to evaluate
a police line-up from which an identification has been used as
evidence against an accused person. Two out of fifteen witnesses
identified the accused person from a line-up that consisted of the
suspect and five innocent police officers. One way of reasoning
about the rate of identification is to treat the line-up as a die-tossing
experiment: the die has six numbered sides (each number corre-
sponds to a member of the parade), and the die is tossed fifteen
times (fifteen witnesses). We can use a well-known probability
method here (the binomial distribution) to calculate the probability
that two of fifteen witnesses who were merely guessing randomly
could have identified the suspect. This is worth knowing, as a kind
of baseline estimate of the information value of the identifications.
The probability turns out to be approximately 0.47. In other words,
there is a one in two chance that two (or fewer) witnesses guessing
randomly would have chosen the suspect. This is surely not good
evidence against the suspect?

Read through some back copies of your local newspaper and try to
find instances where numbers have been used to support an argu-
ment. Try to categorise the ways in which they have been used.

Much of the time, however, the quantitative methods we use do not
directly fit the questions we study, and we rely on theorems to jus-
tify the application of the methods. When we evaluate the results of
a psychotherapy programme, or an AIDS counselling programme,
for example, we will often use a theorem called the Central Limit
Theorem, and a host of its derivatives, to decide whether the treat-
ment is effective.

Some basic concepts

In order to prepare for material in later tutorials, it is useful to intro-
duce some basic concepts.

Variables and constants

The first step in using a quantitative language is to convert objects
or entities in the real world into symbols and concepts of the lan-
guage. Thus, when we measure something like height, we talk
about height as being a wvariable, and we typically symbolise it
in some way, e.g. X. Since we will collect height measures from a

TUTORIAL 1: NUMBERS, VARIABLES, AND MEASURES
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Variables are
measured entities (or
attributes of entities)

that can take on
different values, e.g.
height, weight.

Constants are
quantities that do
not change, but
always have the
same value, e.g. the
speed of light.

Continuous
measures can take
any value within the
range defined as
valid for a particular
variable.

Discrete measures
can take only certain
values within a
range, e.g. 1, 2, 3,
but not 1.5, 2.5.

Activity 1.5

10

number of different people, we can expect these measures to vary,
that is to take on different values. For this reason, we call height a
variable, and we use a subscript or index variable to identify
particular scores on that variable. Thus, if we collect 5 measures
of height, the first score is x;, the second is x,, the third is xs, etc.
Often the subscript is implicit, and we will write x = {1.9, 1.5, 1.7,
1.6, 1.8}, meaning x; = 1.9, x, = 1.5, etc.

When we deal with a quantity that does not change, but always
has the same value, we refer to it as a constant, e.g. the speed of
light.

Continuous vs discrete variables/measures

Many variables and constants are measured on continuous scales,
which is to say that they can take any value in a defined range.
Measures of height and weight are obvious examples: given a
sufficiently accurate scale, and considerable patience, you can
measure out 30 grams of Beluga caviar per dinner guest, or
30.1 grams — or any amount again between these points. It is in this
sense of covering all possible values within a defined range that the
word continuous is used.

Discrete variables, on the other hand, can take only certain
values. A variable that records the order in which athletes finish the
100-metre egg-and-spoon race, for instance, can only take the values
1,2, 3, etc. It is not possible to finish in 3.25th place. Similarly, a vari-
able that records gender by assigning 1 to males and 2 to females
excludes all other values — it is not possible to receive a score of 1.5.
Discrete variables are also known as categorical variables.

Decide whether each of the following measures is a variable or a
constant, and whether it is continuous or discrete:

a) the time taken to complete a marathon race

b) the weight of the moon

c) the troy ounce weight of a kilogram of gold

d) the HIV status (+ or -) of an individual

e) the number of judges in the Cape High Court.

The difference between these two classes of variables or measures is
important. For our purposes, recognising whether a measure is
continuous or discrete will help us decide which kind of statistical
test to use. When we collect data on continuous variables (e.g. birth-
weight, caloric consumption per day), we will use a set of tech-
niques that exploit this continuous nature (e.g. t-tests, ANOVA),
and when we collect data on discrete variables (e.g. votes for a
political party, choice of spread for a sandwich), we will use a quite
different set of techniques (e.g. x?, Mann-Whitney). Tests for use on

NUMBERS, HYPOTHESES, AND CONCLUSIONS



continuous data are usually not appropriate for categorical data,
and vice versa.

Nominal, ordinal, interval, and ratio variables

Another way of distinguishing between different kinds of variables
is in terms of the mathematical properties of the numbers that the
variables can assume. We can use the numbers 1 and 2 to represent
males and females, to represent the individuals who came first and
second in an exam, or to represent the actual marks the two very
weak students got in an exam. In each of these cases, the numbers
have different mathematical properties. Mathematically, it is perfect-
ly legitimate to subtract 1 from 2 to get 1 (i.e. 2 — 1 = 1), but it is
absurd to say that subtracting a female (1) from a male (2) results in
a female (1). We say that the variables are measured on different scales
of measurement. It is conventional to distinguish between four scales
(or levels) of measurement: nominal, ordinal, interval, and ratio.

Nominal variables indicate only that there is a difference between
categories of objects, persons, or characteristics. Numbers are used
here as labels to distinguish one category from another. For exam-
ple, numbers can be used as category labels to distinguish between
different categories that make up the variables gender (male and
female), religion (Protestant, Catholic, Jewish, Muslim), and psy-
chopathology (schizophrenic, manic-depressive, neurotic). We can
label males 1 and females 2, but it would make no difference if
we labelled females 1 and males 2, or females 1 and males O.
All the numbers do is distinguish individuals in one group from
individuals in another. No mathematical operations (+, —, x, +) or
mathematical relations (<, less than; >, greater than) may be
performed with these numbers because the attributes that are
represented by these numbers do not allow such operations.
Although we can add or multiply 1 and 2, we cannot add or multi-
ply the attribute Protestant and Catholic.

Ordinal variables indicate categories that are both different from
each other, and ranked or ordered in terms of an attribute. When we
label developing countries ‘1’, and developed countries ‘2’, not only
are we distinguishing between them, but we are also marking the fact
that developed countries have more of the attribute ‘economic devel-
opment’ than developing countries. The same holds true when we
label university grades as A, B, C, D, or when we label opinions as
strongly agree, agree, disagree, and strongly disagree. With ordinal
measures we may perform mathematical relations (<, >), but not
mathematical operations (+, —, x, +). Just because 2 = 2 x 1, we can-
not say that developed countries (2) have twice as much economic
development as developing countries (1). We can only say that they
have more economic development. The differences between the

TUTORIAL 1: NUMBERS, VARIABLES, AND MEASURES
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amounts of the attributes that objects have do not correspond with
the mathematical differences between the numbers that are used to
represent these amounts. When the horses come in 1st, 2nd, and 3rd
at the races, the numbers 1, 2, and 3 are measured on an ordinal scale,
and do not tell us how far the second horse was behind the first horse
(i.e. the distances between the horses). The intervals between the
numbers on an ordinal scale are meaningless, and therefore no math-
ematical operations can be performed on these numbers.

Interval variables are true quantitative measures because in addi-
tion to marking difference and rank, the differences or distances
between any two numbers on the scale are meaningful. This means
that the difference between two scores is an accurate reflection
of the difference in the amount of an attribute that the two objects
have. Temperature, measured in degrees Celsius, is measured
on the interval scale, and a difference between 18 degrees and
20 degrees will be exactly the same as the difference between
25 degrees and 27 degrees. Most measures in the behavioural sciences
(e.g. IQ scores, scores on attitude scales, and knowledge tests) are con-
sidered interval measures. In addition to performing mathematical
relations (=, <), we may also legitimately perform the mathematical
operations of addition and subtraction (+, —) with these numbers.

Ratio variables have all the properties of interval scales, but
because they have a true zero value (which interval scales do not
have), the mathematical operations of multiplication and division
(x, +) may also be performed on these scales. Since the variable
age has a true zero value - i.e. at the moment when an individual
is born she or he has zero of the property age — we can say that a
40-year-old person is twice the age of a 20-year-old person.
Interval scales do not have a true zero point. Although someone
may get 0 out of 100 for an exam, this does not mean that the
person has zero of the attribute "’knowledge’. Thus we cannot say
that someone who got 80% has twice as much knowledge as
someone who got 40%. It is generally only physical properties —
e.g. time, length, weight — that have real zero points and are
thus measured on ratio scales. However, for most practical
purposes in research, variables measured on the interval and
ratio scales can be treated similarly.

Since the scale of measurement determines the kind of mathe-
matical operation that may legitimately be performed on a variable,
it also determines the kind of statistics that can be used to investi-
gate the scores on the variable. Although the distinction between
the four scales of measurement has been subjected to critique,
we will use the distinction throughout the book to help you make
decisions about how to describe and analyse data.

NUMBERS, HYPOTHESES, AND CONCLUSIONS



Independent and dependent variables
Very often we are interested in relations between variables, parti-  Independent
cularly if there is a temporal or logical reason to suspect a causal variables are
connection. For example, public health researchers have long Variables that are
been interested in the relation between cigarette smoking and P resumed'to affect
the incidence of lung cancer. There are few people now who do or Qetermme other
: ) ] variables.
not accept the conclusion that the relation is causal. When we
investigate relations of this kind between variables, we refer to  pependent variables
the outcome (e.g. incidence of lung cancer) as the dependent variable  are variables affected
(DV), and the other variable as the independent variable (IV). The  or determined by
choice of names derives from the assumption we make that one ind?pendent
of the variables is dependent on the other, or a consequence of  Variables.
the other.
In experimental design, the independent variable is usually
under the direct control of the experimenter, and is actively manip-
ulated. Imagine that we are investigating the effectiveness of an
anti-depressant with a classic randomised experiment. This would
involve actively randomising participants into an experimental and
control group, administering a dosage to the experimental group,
and withholding it from the control group. After the intervention
we would measure depression levels. The independent variable in
this experiment is Dosage (administered vs not administered), and
the dependent variable is Depression.
Independent and dependent variables are also commonly
known as predictor and criterion variables, or as predictor and response
variables.

In the following problems, identify the IV, DV, predictor, criterion, Activity 1.6
and response variables:
a) We measure the amount of red wine consumed in a country, and
the rate of heart attacks per 100 000 people.
b) We compare general happiness in those who have pet dogs, and
those who do not.
¢) We compare the suicide rate among the married to that among the
unmarried.

Samples, populations, statistics, and parameters

For many people the word statistic implies a calculation that attempts
to make a historical record of a quantified phenomenon, e.g. Donald
Bradman'’s batting average in test cricket was 99.4 runs, and the low-
est atmospheric pressure ever recorded was 880 mb. The way we use
the term statistic in this text is somewhat different. To explain this
usage, we make a distinction between sample and population.

TUTORIAL 1: NUMBERS, VARIABLES, AND MEASURES 13
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A population is an
entire collection of
objects or entities.

sample is a subset

of such a collection.
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Activity 1.7

Statistical
interference is the
act of generalising

from a sample to a
population.

Activity 1.8

A population is an entire collection of elements or individuals.
When we want to know what the average income per capita is
in South Africa, we really do want to know what the number is
when we sum every person’s income and divide it by the number of
people in the country. This is a very daunting task, and it is in fact
extremely rare to attempt a calculation of this sort! This does not
stop us from being interested in what the result of the calculation
would be.

Since we are usually unable to collect scores from an entire
population, we do the next best thing, which is to collect a sample of
scores. Our reasoning here is to use the sample calculation of
the measure we are interested in (e.g. average income) as an estimate
of the population value. These sample calculations are known as
statistics. The population value we attempt to estimate is called
a parameter.

In each of the following, decide which is a parameter and which is

a statistic:

a) the average matric History score in the 1937 end-of-year examina-
tions in South Africa

b) the average matric History score at Platbakkies High School
in 2001

c) the average matric History score in a collection of 10 Platbakkies
High School pupils who happen to be on Clifton 4th beach on
1 January 2001.

Of course, there are many factors that affect whether our sample
estimate is accurate. The basic idea is that a random sample should be
drawn from the population, but there are many complications as to
exactly how this is done. By a random sample, we mean a sample
that is gathered in such a way that every element in the population
has an equal likelihood of selection, and the selection of a particular
element is independent of, and does not influence, the selection of
any other element.

The act of generalising from sample data to populations is called
statistical inference, and is probably the central goal of statistical
methods. A great many techniques and methods we will cover in
this text are really just variations on this.

a) List five ways of drawing a sample that clearly do not satisfy the
requirements of randomness.

b) List three ways of drawing a sample that clearly do satisfy these
requirements.

NUMBERS, HYPOTHESES, AND CONCLUSIONS



It is extremely important to note that although the notion of a popu-
lation, as used in statistical work, frequently corresponds to our
ordinary or everyday understanding of the word, it is also used in
a more abstract way that can be quite confusing. Thus, we ordinar-
ily assume that a population is a totality of real individuals, as in
‘the population of a country’, but we also use the term to refer to
hypothetical populations. Thus, when we treat an experimental
group with anti-retroviral medication, and compare that group to
one not treated with the medication, we will say that we are trying
to make inferences about a population treated with anti-retroviral
medication, even though that is only a hypothetical population.
Similarly, a population need not be a large collection of entities: we
can study small collections of entities that are populations because
they are the totality of individuals that satisfy the membership
conditions of the group. Imagine trying to study the population of
vegetarian Buddhist Free State crocodile skinners, for example...!

Problems with the quantitative approach

Although we have argued at some length in this chapter in favour
of the use of quantitative methods in the social sciences, we also
wish to point out that there are grave problems. The key problem is
perhaps the way in which the easy rationality of probabilistic in-
ference has become an institutionalised canon, and has usurped
other evidentiary forms. Very few research articles will fail to apply
some statistical inferential method in support of a claim, and a great
many will rely solely on such methods to support conclusions, and
to generate questions for further research. This practice is reinforced
by journal reviewers and editors who often will not accept articles
that have not used some statistical inferential method — and by
universities that insist on teaching these methods, year after year,
despite strong student opposition!

Many critics have railed against this state of affairs. J. G. Taylor
(1958) denounced it as ‘... a cloak for intellectual sterility’, and
authors like Bakan (1966), Gonzalez (1994), and a slew of others
have called for a change in approach. The criticisms are usually well
founded, but there is a danger of discarding the wheat with the
chaff. There can be little doubt that probabilistic methods are
extremely useful in some social science research; it is just that they
are too pervasive, and are treated with singular reverence. Social
scientists have equated ‘quantitative” and ‘probabilistic’, and in so
doing have overlooked a vast array of quantitative techniques and
methodologies. The problem is not quantification, as some argue,
but the canons of quantification in the social science tabernacle.

TUTORIAL 1: NUMBERS, VARIABLES, AND MEASURES
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Summary

1.

Quantitative methods make up an important part of social science
research. They are especially useful to us because they are effi-
cient in communicating information, they allow modelling of
real-world phenomena, and they are part of a well worked-out
and powerful disciplinary language.

In the social sciences we are particularly interested in the way
of arguing with evidence that quantitative methods make
available. We tend to use probabilistic methods, rather than the
deterministic methods of some sciences. This shows in many of
our claims, where it is typical for us to argue that we are 95%
confident that an intervention works, or 99% confident that the
average birthweight of South African infants is between
2.2 and 3.4 kilograms.

Important basic concepts introduced in this chapter include: popu-
lation, sample, random sample, parameter, statistic, estimate, vari-
able, discrete measure, continuous measure, independent variable,
and dependent variable.

Exercises

. Give three examples of claims or propositions that are deferministic.
. Give three examples of claims or propositions that are probabilistic.

1
2
3.
4

List three well-known physical constants.

. Provide an example (real or hypothetical) where what is

considered a population in one study is considered a sample in
another study:.

One commonly used method of drawing a random sample from
a particular population is to generate a list of random telephone
numbers, and to conduct telephone interviews with respondents
on this list. Discuss four problems that can potentially render
this method invalid, using the definition of randomness offered
in this tutorial.

List ten continuous variables, and ten discrete variables.

Provide examples of potential or real research problems that
use designs that lend themselves to description in terms of inde-
pendent and dependent variables.
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8. Identify the scale of measurement of each of the following vari-

ables:

a) Systolic blood pressure, measured in millibars.

b) 1IQ, measured with a standard intelligence test.

¢) Customer satisfaction, measured on a 3-point scale —
unsatisfied, neutral, satisfied.

d) The price of petrol, measured in Rands per litre.

e) Handedness, including the categories left-handed, right-
handed, and ambidextrous.

TUTORIAL 1: NUMBERS, VARIABLES, AND MEASURES
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TUTORIAL Displaying data

Judy Austin

After studying this tutorial, you should be able to:

® Represent a dataset in tabular form, specifically as
a grouped or ungrouped frequency distribution
table or cumulative frequency distribution table.

® Represent a dataset graphically in the form of a
bar chart, histogram, or box-and-whisker plot.

® |nterpret visual displays of data.

® (Calculate and understand percentiles and percentile
ranks.

The decision to collect information in the form of quantitative
measurements or scores usually results from a desire to ‘see what
is going on’ with respect to some aspect of our existence. We
collect data on this ‘aspect of our existence” in the form of scores
on the variable of interest. For instance, we may wish to know
which undergraduate courses are the most popular, or how other
class members fared in a recent test, or what salaries new
graduates are earning. Since raw data is difficult to ‘read’, it is
necessary to process this data in order to inspect and interpret
a distribution of scores. Thus, to understand and describe class
performance, rather than inspecting a list of test scores of the
class, we would first collate the data and represent the scores
graphically. This will enable us, quite literally, to see what is
going on.

18 NUMBERS, HYPOTHESES AND CONCLUSIONS



Tabular and graphical displays provide us with a compact
picture or summary of the dataset from which we can gain an
impression of the overall trend in a distribution of scores. Displays
provide us with a means to inspect the shape of a distribution and
they help us to determine where an individual score lies relative to
others in the distribution. In this tutorial you will first learn about
different ways of displaying data in tabular and graphical form. You
should already be familiar with some of the displays that are used
in the media daily, such as in reporting economic indicators or
sports results. In the final section of the tutorial, you will learn how
to locate individual scores in a distribution of scores.

At the outset, an important distinction needs to be made between
types of data that require different kinds of display. We distinguish
between variables that can take on few values (usually integers),
known as discrete variables (e.g. number of students in a class, goals
scored in a soccer match), and those for which a theoretically infinite
number of values is possible, known as continuous variables (e.g.
height or mass of humans) (see Tutorial 1). You know you are deal-
ing with a discrete variable when there is a ‘gap” between the values
that the variable could possibly assume.For instance, shoe sizes
occur in halves — you may wear
size 5'/, or 6, but you cannot buy
shoes of size 57/s. In contrast, when
dealing with a continuous variable
such as time, there is an infinite
number of values between, say, 5'/> and 6 minutes that the variable
could assume. We are simply limited by our capacity to measure
very small distinctions. The reason for this distinction should be
clear to you: in representing discrete data, we need to capture the
‘gaps’ between values, and we need to represent the continuity
between values of continuous data.

Compile a list of ten variables
and decide whether each is
continuous or discrete.

The frequency distribution

The first step in ordering a dataset is to identify the range of scores
and establish the frequency with which each occurs. An efficient way
to summarise this information is to prepare a frequency distribution
table. To do this we need to list all the values that the variable takes
and then count how many times each of those values or scores
appears in the dataset, recording the tally or count for each score in
an adjacent column. From this table, we can begin to see patterns in
the dataset.

Consider the tuberculosis (TB) treatment outcomes that are
reported in Table 2.1. These come from records of a local
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Graphical and tabu-
lar displays of data
allow us to ‘see’ the
distribution of scores
on a variable.

Activity 2.1

The frequency of a
score refers to the
number of times
that the given score
appears within a
dataset.

A frequency
distribution is a
tabular or graphical
representation of a
dataset indicating
the set of scores on
a variable together
with their frequency.
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Activity 2.2

Community Health Clinic. One of six possible outcomes is re-
ported for each of 50 new patients treated at the clinic during the
preceding six months.

Whereas the dataset in Table 2.1 is difficult to interpret, the
frequency distribution reported in Table 2.2 shows a clear pattern
in the distribution of scores. The ‘frequency’ column reports the num-
ber of scores in each category. The majority of patients were either
cured or had completed treatment without having the test needed to
verify the cure. While very few patients died or failed to respond to
treatment, an alarming number of treatments were not completed
(patients either interrupted treatment or transferred to another centre).
The “% frequency’ column reports the percentage of observations that
fall in each outcome category. The percentage for each category is cal-

culated by dividing the frequency for the
Recalculate the percent: C.ategory by the total number .of s.ubje.cts
ages in the ‘% frequency’ (i.,e. N). The frequency distribution
ol off Telsile 2.2, allows us to describe the health of our 50
patients (i.e. our dataset).

Table 2.1 Treatment outcomes for N = 50 patients
treated for pulmonary TB

Rx C | C T C Rx C C T
T C Rx D Rx | C T Rx |
C | C Rx C C T | D C
F T Rx C C Rx D C | Rx
| Rx C | T C | T C C

C = Cured; Rx = Treatment completed; F = Treatment failure; T = Transferred out;
| = Interrupted; D = Died

Table 2.2 Frequency distribution of TB outcomes

Item Frequency % frequency
C 19 38
Rx 10 20
F 1 2
T 8 16
| 9 18
D 3 6

NUMBERS, HYPOTHESES AND CONCLUSIONS



The frequency bar chart

We said that frequency distributions could be tabular or graphical
representations of data. We have seen the frequency table, but how
do we produce a graph from this data?

Nominal data can readily be displayed by means of the frequen-
cy bar chart. Figure 2.1 reports a bar chart for the TB treatment
outcome data. Each category is designated by a bar placed on the
horizontal axis (x-axis). To emphasise the discontinuity or ‘gap” be-
tween categories, the bars are separated by blank spaces. As we are
dealing with nominal data in which categories differ qualitatively,
no particular ordering of categories along the horizontal axis can be
prescribed. Some authors do however suggest that a modicum of
logic be applied, such as arranging categories from highest to lowest
frequency. The bars in Figure 2.1 are organised so that the desirable
outcomes are placed to the left of the undesirable outcomes.

The frequency (number of cases) of each category is indicated on
the vertical axis (y-axis). Each bar indicates the same frequency
reported in the frequency distribution table, and the sum of the fre-
quencies is equal to the total number of items in the dataset (N =
50). The range of frequencies provided on the vertical axis slightly
exceeds the maximum observed frequency of any of the categories.
Do you see how much easier it is to ‘see what is going on” once we
have a concise visual summary of the data?

The ratio of the height to the width of the graph is known as the
aspect ratio. Changes in this ratio can alter the impression given by
the graph. Be sure to carefully examine bar graphs that appear in

FREQUENCY
S
Il
T

0

Cured  Completed Interrupted Transferred  Failed Died

TREATMENT OUTCOME

Figure 2.1 Frequency bar chart of TB treatment outcome data
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The values or
scores of nominal
data are used for
identification

(e.g. 1 = female,
2 = male), and
do not indicate the
amount of an
attribute.

A bar chart

is a graphical
representation of
nominal data in
which a vertical bar
reflects the frequency
of each category on
a discrete (or
categorical) variable.

The aspect ratio of
a bar chart is the
ratio of the height to
the width of the
‘bars’.
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the media, paying particular attention to the y-axis (see Figure 2.2).
Differences between the frequencies of each category are enhanced
when the y-axis does not begin at zero and the bars are short.
Conversely, differences can be minimised when the y-axis does start
at zero and the bars are tall. It is legitimate practice to have a break
in the vertical axis, hence the onus is on you to interpret the graph
correctly — and not be caught napping!

100

80 +

100

70 T
60 +
50 T

FREQUENCY

40 1
30 T
20 +
10 +

90 +

80 T

FREQUENCY

T T T T 60 T T T T T

CATEGORY CATEGORY

Figure 2.2 Two bar charts of the same data but with different aspect ratios

A grouped frequency

distribution is a

tabular or graphical

representation of
ordinal, interval, or

ratio data. Scores are
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grouped into class
intervals, for which
frequencies are
given.

Grouped frequency distributions

So far we have dealt only with nominal or discrete data. How do we
represent ordinal, interval, or ratio data by means of a frequency
distribution? Here we want to capture the characteristic that there
are no discrete gaps between the data scores.

Consider student test marks, which have a potential range from
0 to 100. By gathering the full set of marks for a class, you can answer
questions such as “Was the test too easy?’ (i.e. are most of the scores
clustered at the upper end of the range?) or ‘'How many students
failed the test?’ (i.e. how many scores are lower than 50%?). Here
again, these questions are difficult to answer by inspecting the ‘raw’
list of scores. It is much easier to make sense of the data once they
have been organised into a frequency distribution table. If we were
to follow the format used in the ordinal frequency distribution
(Table 2.2), where a frequency was computed for every score, we
would need 101 rows, to allow for every possible mark from 0 to
100%! If there were only 120 people in the class, we might well end
up with very few cases at each mark and we would not be much
better off than we were with the raw data. A better way to tabulate
the data so that we get a sense of ‘what is going on’ is to reduce the
number of possible values in the left-hand column by collapsing the
data into groups, thereby forming a grouped frequency distribution.
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To prepare a frequency distribution table, we need to consider
the size of the dataset, i.e. the number of observed scores, and the
range or distance from the lowest to the highest score. This will help
us decide how to divide the distribution into groups. For a set of
class marks ranging from 0 to 100%, we could use groups of 10%
where all scores falling between 1 and 10% are lumped together, all
scores between 11 and 20% form the next group, those between
21 and 30% the following group, etc., up to 100%. Categories of
scores determined in this manner are referred to as class intervals.

The most difficult step in constructing a grouped frequency table
is deciding how many class intervals to use. How many categories
should data be grouped into? There are no hard and fast rules.
Nevertheless some tables are more informative than others.
Tabulation of a small dataset across many class intervals will yield
little new information. Conversely, the compression of a large
dataset into very few class intervals will result in an excessive loss
of detail. Guidelines for determining the number and appropriate
size of class intervals are given in Box 2.1.

Creating class intervals

There are several methods for creating class intervals. As long ago as
1926, Herbert Sturges derived a formula for this purpose — based on
advanced statistical and mathematical techniques — that, despite
some criticism, is still widely used today in textbooks and computer
packages. For our purposes, however, it will be sufficient to use
either of the following procedures.

1. Use an existing convention

There is often an existing convention for dividing the data into
groups. For example, matriculation examination marks are
graded ‘A’, ‘B’, ‘C’, etc. where an “A’ represents marks of 80% and
higher, a ‘B” represents marks from 70 to 79%, a ‘C’ represents
marks from 60 to 69%, etc. University marks are normally cate-
gorised by a different convention, where ‘1st’ represents marks
from 75% upwards, ‘upper 2nd’ represents marks from 70 to
74%, ‘lower 2nd’ represents marks from 60 to 69%, ‘3rd” repre-
sents marks from 50 to 59%, etc. Where such a convention exists,
it usually makes sense to use it when constructing a grouped fre-
quency distribution.

2. Use equally spaced “arbitrary’ categories
Where no convention exists for breaking the data into categories,
arbitrary categories are employed, by dividing the data into
equally spaced intervals. The following steps will help you
decide on the size and the number of intervals to use.
a) Determine the range of the data by subtracting the lowest value
from the highest value and adding 1 to this difference score.

TUTORIAL 2: DISPLAYING DATA

A class interval is a
division or category

of scores on a

grouped frequency

distribution.

Box 2.1

23



The real upper limit
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limit refer to the true
boundaries of a class
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interval. They are
found midway
between the
apparent limits of
neighbouring class
intervals.

b) Given the range, consider what number of divisions of a reason-
able length, such as 5, 10, 50, or 100 units, could be accom-
modated. Do this by dividing the range by the size of the
class intervals. It is conventional to have approximately ten
class intervals.

c) Given the sample size, decide whether the chosen interval
range — and hence the number of class intervals — is appro-
priate by estimating the number of data items that could be
expected to fall within each division (bearing in mind that
there are likely to be more items in the middle than the outer
class intervals). A display with too many or too few items per
class interval is little better than an ordered set of raw data — it
does not help much in our quest to see what is going on in the
sample.

d) Determine the apparent limits of each class interval. These
are the highest and lowest scores that bracket the interval
(e.g. 70-79%). Ensure that the extreme values have been
provided for.

Which method you use depends on what you want the frequency
distribution to show and how you want to use the distribution.
Equally spaced intervals are most commonly employed since they
give a clear overview of the scores that is easily understood. In
contexts where specific categorical conventions are widely used and
understood, these should be used.

There is flexibility in constructing the class interval, but the aim
should be to produce a table or graph that enhances the readers’
ability to describe and interpret the data. Obviously, when data
from a large dataset are grouped in this manner, some of the detail
is lost and we would need to weigh that up against the advantage
of gaining a better idea of the overall shape of the dataset.
Although a given class interval may appear to range from two
integer values (e.g. 10 to 19), these ‘apparent limits” of the category
are not the same as the actual limits that are used to determine
whether individual scores fall within the category. Where do we
place a score of 19.4? Does it fall within the 10-19 interval or the
20-29 interval? The values 10 and 19 are defined as the apparent
lower and upper limits respectively of the 10-19 class interval. The
true limits of the interval, termed the real upper limit (RUL) and the
real lower limit (RLL), actually extend beyond the apparent limits by
half of the distance between the limit in question and the apparent
limit of the succeeding (or preceding) class interval. Given
succeeding class intervals 10-19 and 20-29, the real upper limit of
the interval 10-19 would be 19.5, i.e. the midpoint between 19, the
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apparent upper limit of the first interval, and 20, the apparent lower
limit of the succeeding interval. Of course, 19.5 is also the real lower
limit of the class interval 20-29.

Let us consider an example in which we have results, expressed
as percentages, for a class of 80 learners (see Table 2.3). When devis-
ing class intervals, wherever possible it is best to choose intervals
that have some logical significance. In the present example, groups
of 10% correspond with the familiar breakdown used in allocating
symbols to marks at school. Also, with a range of 100, class intervals
of size 10 would give us an opti-

mal number of 10 intervals. Table Identify the real upper limits
24 is a frequency distribution for and real lower limits of the
the test mark data. class intervals in Table 2.4.

Table 2.3 Marks from a class test (N = 80)

56 67 77 51 62 57 69 58
83 58 46 79 69 53 72 64
n 73 59 60 48 52 64 70
64 62 70 58 53 61 58 69
48 55 62 54 57 69 62 57
63 72 39 73 61 64 53 68
62 61 66 60 70 58 75 67
57 43 72 54 59 81 51 59

Using the data in Table 2.3, prepare a frequency distribution table
with class intervals representing university grades: First class pass
(75%+), Upper second (70-74%), Lower second (60-69%), Third
(50-59%), and Fail (< 50%).

From the ‘Frequency’ column of Table 2.4 we can see that the major-
ity of students scored in the 50s and 60s, while relatively few
achieved extremely high or low scores. Note that no students scored
marks below 30%. When several class intervals at the extremes of a
distribution are empty, they may be combined into one class. Thus
the distribution in Table 2.4 may be rewritten to begin with a class
interval labelled ‘< 30".

You will notice that, aside from the columns for frequency and
percentage frequency with which we are already familiar, Table 2.4
has additional columns reflecting cumulative frequency and cumula-
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67
63
57
55
73
46
52
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Activity 2.4

Cumulative
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76
69
65
60
57
66
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equal to a specified
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Table 2.4 Frequency distribution table of test marks

Class
interval
> 89
80-89
70-79
60-69
50-59
40-49
30-39
20-29
10-19
<10

Cumulative
percentage
frequency refers to
the percentage of
items within a

dataset that have a

value less than or

equal to a specified
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score.

Activity 2.5

Frequency Cumulative % frequency Cumulative
frequency % frequency
- 80 - 100.00
2 80 2.50 100.00
15 78 18.75 97.50
30 63 37.50 78.75
27 33 33.75 41.25
5 6 6.25 7.50
1 1 1.25 1.25

tive percentage frequency. Figures in these columns reflect the
frequency or percentage frequency of all cases with scores less than
the upper limit of the class interval alongside which they appear.
Cumulative frequencies and percentage frequencies for each class
interval are computed by summing the frequency or percentage
frequency for that interval together with the frequencies or percent-
age frequencies in all lower intervals. Thus, the cumulative
frequency for the 4049 interval is 6 (i.e. 1 + 5) and the cumulative
frequency for the 50-59 interval is 33 (i.e. 6 + 27). The cumulative
frequency in the highest category should sum to N, and the cumu-
lative percentage frequency should sum to 100%. Can you see why?

Cumulative indices are useful for answering questions such as
‘How many students failed?” or ‘What percentage of students
achieved a grade of less than 50%?” Can you read these values from
the table? The class interval 50-59 has a cumulative frequency of 33.
This means that 33 students scored 59% or less in the class test. A
cumulative percentage frequency of 41.25 is recorded for this class
interval. This enables us to speak of the percentage of students with
a test mark of 59 or less. We can say that 33 students or 41.25% of
the class achieved a test mark of 59 or less.

Using the frequency distribution in Table 2.4, calculate the percentage
of students who achieved 70% or more. There are two simple
methods for doing so. Can you see them?
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The histogram

Histograms are used to represent the distribution of interval or ratio
data. Histograms look like bar charts, but differ in much the same
way that the frequency distribution table for continuous data
differed from the nominal data table. Firstly, rather than using bars
to represent the frequency of individual data item values (e.g. males
and females), the bars represent frequencies of cases within class
intervals, which are arranged along the horizontal axis from left to
right in order of increasing magnitude. Secondly, no blank spaces
are allowed between class intervals as there are no ‘gaps’ between
classes. The test results reported in Table 2.3 are presented in the
form of a histogram in Figure 2.3.

35

25 -

FREQUENCY

T T T T T T T T
245 345 445 54.5 64.5 745 84.5 94.5
MARKS

Figure 2.3 Histogram of class test marks (N = 80)

Note that the midpoint of each class interval, i.e. the point midway
between the real lower limit and the real upper limit, is indicated on
the horizontal axis. Some people like to ensure that the midpoint has
an integer value by creating class intervals of which the width is an odd
number. The midpoint is obtained by means of the following formula:

RUL - RLL )

midpoint of class interval = RLL + < )
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Histograms are
graphical displays
that use bars to
represent the
frequencies of
continuous data
that are arranged

into class intervals.

Equation 2.1
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Activity 2.6

As the bulk of the marks are clustered between 50 and 69%, our
graph does not provide a great deal of information about the distri-
bution. A more detailed breakdown would be useful. We could
therefore choose to have class intervals of five rather than the ten
employed previously. Confining ourselves to the range within
which data items have been observed, we would have a histogram
with class intervals encompassing values from 35 to 85 as shown in
Figure 2.4. The decrease in inter-
Use Equation 2.1 to compute  val size has given us more inter-
the midpoints of the class inter-  vals, and a more detailed break-
vals in Table 2.4. down of the distribution.

FREQUENCY
S
Il
T

4 +

24
N == = I I B I I B B

<=35 37 42 47 52 57 62 67 72 77 82 >87
MARKS

Figure 2.4 Histogram of class test marks (N = 80)

Describing frequency distributions

One of the main reasons why we construct frequency distributions
is to describe the distribution of scores on a variable. This is what
we mean by ‘seeing what is going on” with the data: we describe the
distribution stating how the scores are arranged in categories or
class intervals.

We should answer two questions when describing the shape of
a frequency distribution. Firstly, are most of the scores low, or
are the majority of the scores in the middle or upper range of
the distribution? Secondly, are the frequencies in some intervals
much higher than those in other intervals, or do all the intervals
have roughly the same frequency? The first question refers to the
skewness of the distribution and the second question refers to the
peakedness or the kurtosis of the distribution.
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The skewness of a distribution refers to the degree to which it
deviates from symmetry. The frequency distributions in Figure 2.5 are
roughly symmetrical. A symmetrical distribution has its centremost
point lying in the middle of the distribution, and the distribution of
scores to the left and the right of this centremost point are mirror
images of each other. Symmetrical distributions often have the major-
ity of scores lying in the middle categories, and have a single peak
(i.e. they are unimodal). Class results on tests and examinations are
usually distributed symmetrically, with most students scoring in the
middle ranges, and with fewer students doing very well or very poor-
ly. Distributions with two peaks are called bimodal distributions.

Asymmetrical distributions can either be positively or negative-
ly skewed (see Figure 2.6). Positively skewed distributions have the
majority of the sample scoring in the lower range of the variable,
whereas negatively skewed distributions have the majority of
scores in the upper range of the variable. The skewness and sym-
metry of a frequency distribution provide useful information about
the sample and/or the measurement instrument. A positively
skewed distribution of test marks indicates that the sample did w0
poorly on the test and/or that the test was too difficult. On the other symmetry, modes,
hand, a negatively skewed distribution of test marks indicates that  skewness, and
the students did well on the test and/or that the test was too easy.  kurtosis.

Another way of describing the shape of a frequency distribution
is to examine its peakedness, also known as the kurtosis of the
distribution. Here we judge the degree to which certain intervals or
categories have higher frequencies than others. The two distribu-
tions in Figure 2.7 have the same number of subjects. The peaked
distribution has some intervals with high frequencies and other
intervals with low frequencies. In contrast, the flat distribution has
roughly similar frequencies in all intervals.

To describe the
shape of a frequency
distribution,

SYMMETRICAL UNIMODAL DISTRIBUTION SYMMETRICAL BIMODAL DISTRIBUTION
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Figure 2.5 Symmetrical unimodal and bimodal frequency distributions
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Figure 2.6 Asymmetrical frequency distributions
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Figure 2.7 Frequency distributions with different peakedness (kurtosis)

Activity 2.7

For each of the distributions reported in Figures 2.5 to 2.7, determine

the following;:

a)
b)
©)

d)
e)

f)

30

What is the sample size?

What was the range of scores?

What are the apparent limits and real upper and lower limits of
the first and last categories?

What is the highest and lowest class interval frequency?

What is the cumulative frequency of the interval with

midpoint 177?

If the scores are marks on a test out of 35, what does each of them
reveal about the class performance and /or the test?
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Frequency distributions allow us to describe a set of scores by
revealing patterns of symmetry, skewness, and peakedness of the
distribution. They also show the modes of the distribution. When
interpreting frequency distributions, it is important to ask what the
distribution shows about the sample and /or the measure. Imagine
that each of the distributions in Figures 2.5, 2.6, and 2.7 represents
marks on a class test. What does each of them reveal about the class
performance and /or the test?

Percentile ranks and percentiles

One of the main advantages of producing tables of frequencies and
cumulative frequencies is that they allow us to determine where a
particular score lies relative to other scores in a distribution. If you
scored 65% in a test, how well did you do? The answer depends on
how everyone else scored in the test. If the test was easy and 65%
was the lowest score, you did not do very well. However, if the test
was difficult and 65% was the highest score, you did very well. This
illustrates an important kind of statistical reasoning: we judge indi-
vidual scores in the context of all the other scores in a distribution.
The cumulative frequency and cumulative percentage frequency
allow us to locate an individual score in the context of the other
scores in a distribution. They tell us the number of scores (or the
percentage of scores) that fall below a specified score.

Consider first a mark of 50%. You may be relieved to have
‘scraped through” with a mark of 50%. Another way to evaluate
your performance is to ask: ‘"How many students scored less than
50%?" After all, 50% may have been the lowest or the highest score
on the test. You could also ask how many students did better than
you. We can simply read the answers to these questions off
the cumulative frequency table. From Table 2.4 we can see that
6 students (7.5%) received marks below 49.5% (the RUL of the 40—49
class interval). If you received a mark of 50% for this test, you did
not do very well, because only 7.5% of students performed worse
than you. To determine how many students did better than
you, simply subtract the number that did worse than you from the
total number of students: 74 (i.e. 80 — 6) students scored 50% or more.

When investigating questions such as these, we are, in fact, re-
ferring to a statistic known as the percentile rank. Thus, when we
stated earlier that 41.25% of the students achieved a test mark of
59 or less, we were saying that a test mark of 59 has a percentile
rank of 41.25 (or 41, with rounding). The mark, 59, is referred to as
the 41st percentile.

Thus far we have been using easy examples that involved read-
ing off from a frequency table the percentile rank associated with
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Remember the
difference between
the shape of
positively and
negatively skewed
distributions.

A percentile rank
indicates the
percentage of cases
that lie at or below a
specified point on
the scale on which
the data were
measured.

A percentile is

a point on a

scale at and below
which a specified
percentage of
cases in a

dataset falls.
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Equation 2.2

the RUL of a category. But what do we do when we want to com-
pute the percentile rank of a score that falls within an interval?
What is the percentile rank of a score of 65? Notice that 65 falls
inside the class interval 60-69 in Table 2.4.

To calculate a percentile rank from a cumulative frequency table,
we first need to identify the class interval into which the mark or
score of interest falls. Clearly, all cases falling into the class intervals
below the identified interval also fall below the score whose
percentile rank we are trying to determine. Thus the cumulative
frequency of the class interval below comprises part of our per-
centile rank. To that, we need to add the percentage of the identified
interval consisting of marks equal to or less than the mark or score
of interest. The formula is as follows:

score — RLL

percentile rank = % below + ——————— (interval %)
class int. width

where: % below = cumulative percentage frequency of the class
interval below the interval in which the score
of interest occurs
score = the score in respect of which we wish to
determine the percentile rank
RLL = real lower limit of the interval in which the
score of interest occurs
class int. width = the width of the class interval
interval % = the percentage of the distribution that falls
within the interval of interest

For example, to return to Table 2.4, the percentile rank of a mark of
65 is calculated as follows:

percentile rank = 41.25 + % (37.5)
= 61.88
=62

The formula can best be understood with reference to Figure 2.8.
The formula uses known information about the placing of a score
on a class interval to determine the unknown value for the per-
centile rank, which is a point on an associated percentage interval.
Since we know the interval width and RLL of the class interval, we
can determine ‘how far’ the score lies from the RLL (i.e. 65 — 59.5).
From the calculation, you can see that the formula expresses this as
a proportion by dividing the distance by the interval width (i.e. 10).
The score of 65 lies just over half way from the RLL (i.e. 0.55 of
the interval). We now have enough information to compute the
percentile rank. We know the width of the percentage interval (i.e.
37.5), and we now know that the percentile rank we are looking
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Interval % = 37.5

41.25 PR=7? 78.75
1 ]

‘ |

Percentage interval

L
I
L
Unknown distance = ?

Known distance = 5.5
Class interval | T |
59.5 X =65 69.5

|

Interval width = 10

Figure 2.8 Determining the percentile rank

for lies a similar distance (i.e. 0.55) away from the lower limit of this
interval. We multiply the ‘interval %’ by 0.55 to determine that
20.63% of the distribution lies between 59.5 and 65. This is the
‘“unknown distance’ in Figure 2.8. Thus, approximately 62% of the
scores (41.25 + 20.63) lie below the value of 65.

To calculate a percentile from a cumulative frequency distri-
bution table, we work the other way round, starting with a cumu-
lative percentage frequency to determine a corresponding score.
Once again, the first step is to identify the class interval and
corresponding percentage interval within which the percentile rank
lies. The formula for this procedure is as follows:

PR - % below

fp =RLL +
score otp interval %

(interval width)

where:  score of P = the score associated with a percentile rank

of p

cumulative percentage frequency of the class

interval below the interval in which the score

of interest occurs

PR = the percentile rank for which we wish to
identify a score

RLL = real lower limit of the interval in which the

percentage of interest occurs

the width of the class interval

the percentage of the distribution that falls

within the interval of interest

% below

interval width
interval %

Thus for our class test marks in Table 2.4, the 75th percentile, i.e. the
score at and below which 75% of the students’ marks are to be
found, would be calculated as follows:
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It is important to
distinguish between:
1. the score that
an individual
achieved on a test,
2. the percentile
rank that this score
represents, and

3. the percentile,
which is the point
on the scale
corresponding to

a given percentile
rank.
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75-41.25

37.5 (10)

score of p = 59.5 +

= 68.5

Figure 2.9 shows how the formula goes about determining the per-
centile. It determines ‘how far’ the percentile rank of 75 lies from the
lower limit of 41.25 (i.e. 75 — 41.25 = 33.75), and then expresses this
distance as a proportion of the interval % (i.e. 33.75 + 37.5 = .90).
The percentile that we want to calculate thus lies .90 of the class
interval away from the RLL, and we determine that the 75th per-
centile is 68.5. The value 68.5 is the point on the scale that cuts off the
lower three-quarters of the distribution. Note that this is true even
though no actual score of 68.5 was observed. The percentile relates
to the scale on which the scores were observed and not the actual
raw data.

41.25 PR =75
Percentage interval | I |
L
Known distance = 33.75
Unknown distance = ?
[ |
Class interval | t |
59.5 x=? 695

Figure 2.9 Determining the percentile

Thus far we have focused solely on the cumulative frequency, com-
puting the proportion of scores that fall at and below a specified
value. However, we can also compute the proportion of cases that
scored higher than a specified value, or the proportion of cases that
fall between two specified values.

Since we know that the cumulative frequency for all intervals
sums to N, and the cumulative percentage frequency sums to 100,
we can calculate the frequency or proportion of scores that lie above a
specified score by a simple subtraction:

(frequency > x) = N — (frequency < x)
(% frequency > x) = 100 — (% frequency < x)
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Thus, if we know that the cumulative frequency of the score 59.5is It is possible to com-

33 and we know that there are 80 scores in the dataset, we know  pute the proportion

also that 47 scores (i.e. 80 — 33) are greater than 59.5 (see Table 2.4). of a distribution that

Likewise, if the percentile rank of a score of 68.5 is 75, we also know fies t?elow or above a

that 25% of the distribution (i.e. 100 — 75) scored higher than 68.5. ggg\l/izlgi‘fvzogec’ogs
Since we can determine the frequency or proportion of scores

that lie below a specified value and we can calculate the frequency

or proportion of scores that lie above another specified value, we

can calculate the frequency or proportion of scores that lie between the

two values. Here what we do is to subtract from the total number of

scores (N) or from the total percentage (100), the frequency or

percentage of scores that lie below the lowest specified value (xi)

and the frequency or percentage of scores that lie above the higher

value (xy).

(frequency between x; and x;) = N — (frequency < x) — (frequency > x,)
(% frequency between x,and x,) = 100 — (% frequency < x;) — (% frequency > x,)

Refer back to Table 2.4. How many scores lie between 39.5 and 59.5?
Since we know that the cumulative frequency of 39.5 is 1, and the
frequency above 59.5 is 47 (see above), using the formula, we deter-
mine that 32 (i.e. 80 — 47 — 1) scores lie between 39.5 and 59.5.
Similarly, we can compute the proportion of scores that lie between
the value of 65 and the value of 68.5. We have already computed the
percentile ranks for these values: 62% of the scores are less than or
equal to the value 65, and 25% of the scores are greater than the
value 68.5. Thus 13% of the observed scores (i.e. 100 — 62 — 25) lie
between 65 and 68.5.

' Percentiles.can be undersfood as a way of diViding up a distri‘t?u- The median or 50th
tion of scores into 100 small intervals — 1st percentile, 2nd percentile, percentile is a value
3rd percentile ... 100th percentile. Dividing a distribution into 100  that divides a
equal proportions is just one of a number of conventional ways of ‘cut-  distribution into
ting up’ a distribution of scores. Distributions are also often divided  two halves.
into halves, quarters, and tenths. The formula for computing per-
centiles is used to compute the corresponding scores. To divide the
distribution in half, compute the 50th percentile (also know as the
median). To divide the distribution into quarters, compute the 25th
percentile (also known as the 1st quartile), the 50th percentile, and the
75th percentile (also known as the 3rd quartile). The 1st, 2nd, 3rd ...
deciles are determined by calculating the 10th, 20th, 30th percentiles.

For the data reported in Table 2.4 compute the following: Aty 20
a) The median, and the 1st and 3rd quartiles.

b) The 1st, 3rd, 6th, and 9th deciles.

c) The proportion of scores above 55.

d) The proportion of scores between 47 and 72.
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Worked example

South African meteorological services keep records of average day-
time temperatures for different areas of the country. To determine
the effects of global warming on daytime temperature in South
Africa, a researcher collects the yearly average temperature from
the records of 36 weather stations. Data are collected for the year
1960 and compared with data for the same stations for the year 2000
(see Table 2.5).

Table 2.5 Average daytime temperature in South Africa, 1960 and 2000

1960

2000

1960

2000

1

18.91

18.97

19

14.85

14.90

2

11.62

12.56

20

15.54

16.03

B

4 5 6 7 8 9 10 n 12 13 14 15 16 17 18

16.45 18.21 17.93 14.36 13.46 14.98 19.50 24.78 20.65 14.43 17.21 22.96 18.84 13.69 16.21 15.10

16.40 19.10 17.43 15.21 14.21 1521 19.53 26.33 19.59 14.65 18.32 23.06 18.06 14.34 16.89 15.21

21

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

17.01 11.41 15.98 12.70 22.15 17.89 13.02 19.68 14.03 20.71 18.89 17.31 18.34 15.09 13.09 13.03

17.39 13.41 16.93 14.09 21.89 17.93 19.56 19.98 14.65 21.00 19.69 18.56 19.24 15.79 14.01 14.38

Tables 2.6 and 2.7 are frequency tables for the two years respective-
ly. Each table divides the data into five equal class intervals, each
with an interval width of 2 degrees Celsius. The highest frequencies
for both tables are in the lower temperatures, especially the category
with a RLL of 12.95 and a RUL of 14.95. It is also apparent that the
2000 temperatures have a narrower range, and there appears to be
fewer observations in the lower ranges of temperature. Thus, the per-
centile rank of the temperature 14.95 is 36% in 1960, but is only 28%
in 2000. Evidence for an increase in temperature is also apparent at
the higher values of both distributions: the 97th percentile is higher
for the 2000 distribution (97th percentile = 24.95), than the 1960
distribution (97th percentile = 22.95).

To provide a more detailed view of the distributions of scores, the
histograms reported in Figure 2.10 have an interval width of 1 degree
Celsius. The 1960 distribution is unimodal and slightly positively
skewed. The 2000 distribution is bimodal, approximately symmetri-
cal, and appears to have an outlier in the topmost category.

This example illustrates the value of generating tabular and
graphical representations of the distribution of scores on a variable.
These basic descriptive statistical procedures allow us to see what is
going on with the data. On the basis of our displays, we can see that
there appears to have been a shift in temperature between 1960
and 2000. Specifically, whereas the 1960 distribution is positively
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Table 2.6 Average daytime temperature, 1960

Class Frequency Cumulative % Cumulative
interval frequency frequency % frequency
11.0-12.9 3 3 8 8
13.0-14.9 10 18 28 36
15.0-16.9 6 19 17 53
17.0-18.9 10 29 28 81
19.0-20.9 4 33 1 92
21.0-22.9 2 35 6 97
23.0-24.9 1 36 3 100
25.0-26.9 - -

Table 2.7 Average daytime temperature, 2000

Class Frequency Cumulative % Cumulative
interval frequency frequency % frequency
11.0-12.9 1 1 3 3
13.0-14.9 9 10 25 28
15.0-16.9 8 18 22 50
17.0-18.9 7 25 19 69
19.0-20.9 7 32 19 89
21.0-22.9 2 34 6 94
23.0-24.9 1 35 3 97
25.0-26.9 1 36 3 100
1960 2000
6 7
5 - ] 6 ]
— 5 | — —
4
— — 4 N
3 -
3 -
2 -
2 P —
0 T T T T T T T T T T T T T T T 0 T T T T T T T T T T T T T T
11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 13.0 140 150 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0

Figure 2.10 Histograms of annual average daytime temperature (N = 36)
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skewed, with lower temperatures clustered in the lower regions, the
2000 distribution is symmetrical. There are more observations in the
upper regions of temperature, and the middlemost score has moved
higher. There also appears to have been a reduction in the range of
temperatures, with observations in 2000 clustering more tightly
around the median.

Summary

1.

Categorical or discrete data are displayed in tables and bar charts,
whereas continuous data are displayed in tables, histograms, and
boxplots.

Tabular displays are interpreted by commenting on the frequen-
cies, percentage frequencies, and cumulative percentage frequen-
cies in different categories. Graphical displays of distributions
are interpreted by commenting on their symmetry or their
skewness, their modes, and their peakedness.

In addition to giving us a feel for the data, frequency displays
with cumulative percentage frequencies allow us to compute per-
centiles and percentile ranks. This enables us to locate particular
values relative to other values in a distribution, to determine the
proportion of scores higher or lower than a specified value, and to
determine the proportion of scores between two values.

Exercises

1.

Four political parties nominated candidates to contest the local
by-election. In order to assess their relative popularity, a jour-
nalist conducted a telephone survey of 40 residents, asking them
to identify the party for which they intended to vote. The
responses were as follows:

D Zz M Z H M D H M H
H M D H D M H D Z D
Z D H M Z H Z H Z H
H M Z Z H Z H Z H M

a) What level of measurement has been employed here?
b) Construct a frequency distribution table for this data.
c) Construct a frequency bar chart for the data.

d) Interpret the distribution of scores.

Refer to data for average daytime temperature in 1960 and 2000
reported in Table 2.5. Do the following:
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a) Construct a frequency table for the 1960 data with class
interval width equal to 1 degree Celsius.

b) Construct a histogram for the 1960 data with class interval
width equal to 2 degrees Celsius.

c) Places with annual temperatures greater than or equal to
19.4 are considered ‘hot’ places. What proportion of ob-
servations is ‘hot” in each distribution? (Hint: Compute the
percentile rank.)

d) If we wanted to select the highest and lowest 10% of scores in
each distribution, which temperatures would be the cut-off
values? (Hint: Compute the 1st and 9th deciles.)

. Sixty aspirant computer programmers underwent a battery of
aptitude tests, from which the following IQ scores were
extracted:

9% 104 102 95 118 116 125 87 99 100
87 88 106 108 98 102 90 119 105 97
100 91 112 91 104 93 98 91 9% 111
94 103 94 124 8 92 93 95 110 87
97 101 93 104 100 96 120 107 93 114
8 120 87 107 102 110 131 8 98 103

a) Construct a frequency distribution table for the data. What
size class interval did you choose? Why? What are the real
upper and lower limits of the class interval that contains the
data item “98"?

b) Construct a histogram of the data. Be sure to mark the mid-
point of each class interval on the graph.

c) Determine the percentile rank of a score of 100. Assuming
that the test has been designed to have 100 as the norm, what
can you say about this sample?

d) What score is found at the 75th percentile?

e) What proportion of the sample scored between 92 and 107?

TUTORIAL 2: DISPLAYING DATA
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TUTORIAL Central tendency

Martin Terre Blanche

After studying this tutorial, you should be able to:

® Explain the purpose of measures of central
tendency.

® |dentify three measures of central tendency.

® Explain the principle on which the mean, median,

and mode are based.

Calculate the mean, median, and mode.

® Explain the advantages and disadvantages of
using the mean, median, and mode in different
circumstances and in relation to different kinds
of data.

We live in an age of information overload and it is only by simpli-
fying and summarising that we are able to make sense of it all. In
Tutorial 2 we considered one useful way of summarising numerical
information, namely by using graphical displays. In this tutorial we
will discuss another approach, collectively known as measures of
central tendency. Such measures are single numbers that provide a
summary of a whole collection of numbers, e.g. the average score of
a group of students in a Sociology test or the average number of
goals of a soccer team. The average (usually called the mean in
statistical language) is one of the most useful measures of central
tendency; others are the median (the middle number when numbers
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are arranged from largest to smallest) and the mode (the most fre-
quently occurring number in a group of numbers). Each of these
measures of central tendency (mean, median, and mode) is a single
number summarising a group of numbers, but each is calculated in
a different way and each is used for different purposes.

The mean is the
arithmetic average of
a group of numbers.

The mean

The mean is simply the arithmetic average of a group of numbers.
If you want the mean of scores in a Sociology test, add together all
the scores and then divide the result by the number of scores. The
formula for this statistic is:

DR Equation 3.1
*Th
where: X is the mean
3 (the Greek letter sigma) indicates summation The mean equals the
(or adding up) sum of all the scores
x stands for each score divided by the num-
n is the number of scores ber of scores.

Let us see how we apply this formula to a set of scores. Imagine
that we have collected the annual income of five well-known South
African arms dealers, and these are (in R100 000s): 8.1, 7.6, 3.2,
12.3, 5.6. Then the calculation will be:

>x=81+76+32+123+5.6) =368

n=>5

This is not complicated, and most of us have been calculating
means (or averages as we usually call them) almost since we learnt
to add and divide.

The formula above uses the notation for what is called a sample
mean. When we calculate a population mean we use a slightly differ-
ent notation, but the mechanics of the calculation are identical. The
formula for the population mean is:

>x Equation 3.2

N

where u = the population mean, and the other symbols are as
discussed earlier.
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Box 3.1

Activity 3.1

Using a calculator to find X

All calculators that label themselves as ‘scientific’ offer functions
that make the work of calculating the arithmetic mean - and, in
fact, most calculations involving sigma () notation — dead easy.
Although not all models work in exactly the same way, they
generally ask you to turn the calculator into STAT mode, and enter
the data points. A great many calculations are then automatically
available to you —just pushing the “2x” key will give that calculation,
the X" key will give you the mean, the ‘S’ key gives the sample
standard deviation (see Tutorial 4), etc.

Step 1: Put the calculator in the STAT mode. Try pressing the button
marked MODE, then the « (point) button.

Step 2: Enter the data. Do this by entering the first data value (e.g.
8.1) and then pressing the data button. Try using the button
marked M+. Then enter the second data value (e.g. 7.6) and
press the data button. Enter all the data in this way.

Step 3: Find the desired calculations. Statistical functions (e.g. 2x,
3x?,s, X) are often found above the number buttons of the
calcultor. Press the sHIFT button first before pressing the
statistical function button.

Binet, the French educationist, who developed the first IQ test,
administers a test to 40 five-year-old children. The children are
required to complete a maze puzzle, and Binet times each child who
completes the puzzle. Here are the data (numbers refer to time, meas-
ured in seconds, and rounded to the nearest millisecond):

34.56 56.78 32.97 34.23 56.21 43.23 40.0 34.21 30.09 43.67 32.67 47.43 44.44
67.34 59.9 4534 4523 38.00 26.56 54.67 34.65 44.54 60.34 34.55 47.33 32.67
32,66 32.54 46.34 4139 39.23 30.00 34.65 39.56 42.67 52.78 35.32 33.33 50.00

60.00

Using your calculator, calculate and report the mean of the dataset.
Now check this by doing the calculation by hand.

The distinction between a population and sample mean is import-
ant, particularly when we do inferential statistics. We will discuss
this more fully in later tutorials; for the moment all that we need to
note is that the sample mean attempts to estimate the population
mean. When we calculate the mean salary of five arms dealers, as
we did above, we intend that the sample statistic (x) will give us an
estimate of the corresponding population statistic (u), which is the
mean of all arms dealers in South Africa.

NUMBERS, HYPOTHESES AND CONCLUSIONS



The mean is by far the most versatile and commonly used meas-
ure of central tendency, but there are occasions when it can be quite
misleading. Suppose you want to know how long, on average, stu-
dents at your university spend browsing the Internet per week. You
ask 9 students and get the 9 answers as shown in Table 3.1.

Table 3.1 Time on the Internet

Name Time Name Time
Itumeleng 0 hours Pravani 0 hours
Mcebesi 1 hour Johan 1 hour
Stephen 4 hours Xavier 4 hours
Ingrid 1 hour Linda 3 hours
Tumelo 31 hours

If you add up the hours, you will see that together the students
spend 45 hours on the Internet per week, or an average of 5 hours
each (45 hours divided by 9 students). However, in some ways this
is quite misleading, since with one exception all the students spend
less than 5 hours per week on the Internet. The mean is as high as
5 because of a single atypical person (Tumelo). So if you want to tell
somebody how long a typical student spends on the Net, you will
have to find a measure of central tendency more appropriate in this
instance than the mean.

The trimmed mean

One useful way of reducing the influence of extreme scores (also
called outliers) is to exclude the highest and lowest scores before
calculating the mean. This is known as a trimmed mean. To get the
trimmed mean for the sample data in Table 3.1, we first discard
Itumeleng’s and Pravani’s scores (the lowest); to balance that we
then also exclude the highest score (Tumelo’s); and finally we add
up the remaining scores and divide by 6 (because we are now only
working with 6 of the original 9 scores). Thus the trimmed mean is
2.33 (14 divided by 6), which gives a much better idea of how much
time a typical student spends on the Internet than the ‘ordinary’
mean of 5. But be careful - calculating a trimmed mean involves
throwing away some information (in this case Itumeleng, Pravani,
and Tumelo’s scores), and can be misleading. Suppose you were in
charge of the university’s computer system and had to determine
how much time to make available on the system per student
for Internet browsing. For such a purpose the mean of 5 would
be a more accurate figure than the trimmed mean of 2.33. Can you
see why?
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The mean can be
misleading when
there are extreme
values in a dataset.

Data entry errors
are commonly
responsible for
outliers in a dataset.
A noticeable
difference between
the ‘ordinary’ and
the trimmed mean
can be an indication
that such errors
have occurred.
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Box 3.2

Trimmed means are

not used because

they include discard-
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ing data.

Activity 3.2

Calculating the mean from grouped data

Percentage Frequency Midpoint Frequency x midpoint
1-10 0 5.5 0
11-20 0 15.5 0
21-30 0 25.5 0
31-40 2 35.5 71
41-50 2 455 91
51-60 3 55.5 166.5
61-70 4 65.5 262
71-80 4 75.5 302
81-90 5 85.5 427.5

91-100 0 95.5 0
N =20 >x = 1320

The best way to find the mean is to add together each individual’s
score and to divide by the number of individuals. However, some-
times we no longer have the individual scores and need to calculate
(approximately) the mean from data that have already been grouped
into class intervals.

To calculate the mean from such data, we should first multiply
the midpoint of each interval by the frequency (i.e. the number of
people in that interval), then add these together, and then divide by
the number of people (the total frequency).

Consider the table of marks obtained for a sociology research
project, shown above. The necessary calculations to determine the
mean are shown in columns alongside the frequency distribution.
Since 2x = 1 320, we must divide this by 20 (the total number of
students, NOT categories in the distribution), and this gives an
approximate mean mark for the project of 66%.

Another problem with the trimmed mean is that it can be difficult
to decide when scores are outliers that should be trimmed away.
What if there were three people who spent many hours on the
Internet? Could you afford to trim them away together with the
three lowest scores, leaving only three scores from which to cal-
culate the mean? How could you be sure that those students were
really atypical?

A frequency distribution of the data in Activity 3.1 is given below.

Category  Frequency

25.01-30 2
30.01-35 13
35.01-40 5
40.01-45 6
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Category  Frequency

45.01-50 6
50.01-55 2
55.01-60 4
60.01-55 1
65.01-70 1

Provide an estimation of the mean of the data, given the methods of
Box 3.2.

Calculate the trimmed mean for Binet’s data given in Activity 3.1.

The median

The median is a useful alternative to the mean. It is simply the
middle score when a group of scores are arranged from smallest to
largest. Another way of expressing this is to say that the median is
the score below which 50% of the scores fall. In the case of our
Internet example, Johan, who spends 1 hour per week on the
Internet, is right in the middle of the group, so the median is 1. If
there were an even number of people in the group (e.g. 10), nobody
would have been exactly in the middle of the group, and you would
have had to take the average of the person just below and the
person just above the middle as the median.

More formally, we can say that the median is that score which is
to be found in the median position, where the median position is
defined as the 50th percentile of the distribution of scores. When the
number of scores, N, is odd, and the scores are in ranked order, this

N+1
location is - When N is even, this formula will give us a frac-

tional number (e.g. 5.5), which is nonsensical, unless we agree that
this just implies the average of the scores adjacent to the fractional
number (e.g. in the case of 5.5, the scores in positions 5 and 6).
Like the trimmed mean, the median is useful for counteracting
the influence of an extreme score that causes the mean to be exces-
sively high or low. In addition, the median is useful where the mean
is pulled up or down by more than just one high or low score.
Consider, for example, the average income of South Africans. In this
country there are a small number of people who earn very high
salaries and a large number who earn very low salaries. The high
earners’ incomes are so large that together they pull up the mean
income, giving the impression that the typical working South
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The median is the
middle score in a

ranked distribution

of scores.
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Just as the median
divides a dataset into
two halves, the
dataset can also be
divided into smaller
parts called quartiles
(quarters), deciles
(tenths), and per-
centiles (hundredths).

Activity 3.4

The median is often
used as a measure
of central tendency

for very skewed
data.

The mode is the
most frequently
occuring score in a
distribution.
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African is not too badly off. In the 1996 Census, the mean income
was R2 140 per person per month. However, the median income
was only R1 100 per month, that is, 50% of working South
Africans earned R1 100 per month or less. Thus a typical South
African is far poorer than one would think by looking at mean
income only. Income levels in different countries are often reported
in terms of medians as well as means, and from this example we
can see why.

a) Determine the median for Binet’s data (see Activity 3.1).

b) What do you think is the ‘median category’ for the frequency
distribution given in Activity 3.2? Can you define the notion of a
‘median category’?

The median is useful for any measure where there is a sub-group
that seems to be pulling the mean up or down. We say that the
median is useful for skewed distributions. Examples of distributions
that are skewed include income (there are many low incomes and a
small number of inordinately high incomes), exams where the
answers have been ‘leaked’ (a small number of students with access
to the ‘leaked” answers do inordinately well), and winnings at a
casino (most winners win small amounts, but a lucky few win
millions). The median is usually a good measure of central tendency
for such scores.

Most collections of scores are symmetrically distributed, that is,
high and low scores are more-or-less evenly arranged around the
mean. Examples include newborn babies” heartbeats per minute, the
number of words in students’ essays, and the petrol consumption
of different types of cars. The mean is usually a good measure of
central tendency for such scores.

The mode

The mode is the score in a dataset that occurs with the greatest fre-
quency. Let us have another look at our table of hours spent on the
Internet (Table 3.1 on page 43).

As you can see, 1 hour per week is the most popular number of
hours spent on the Internet (3 of the 9 students). The mode is there-
fore 1, and we could say that the modal number of hours spent by
students on the Internet is 1 hour per week. Many datasets have a
single mode (they are ‘unimodal’), but sometimes two different
scores or categories occur with the same top frequency, in which
case we would say that the group of scores is ‘bimodal’. If, for
example, there were another student who spent 4 hours per week
on the Internet, we would have two modes — 1 hour and 4 hours -
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since there would be 3 students in each category. Bimodal distribu-
tions can be an indication that we are dealing with two different
populations. In this case we might suspect that there could be two
basic types of students — those who use the Internet very little and
those who use it almost on a daily basis.

Symbols for measures of central tendency

The mean of a sample is most commonly represented by a bar over the
letter representing the variable, e.g. X if the variable is or x. A
population mean is usually indicated by p (the Greek letter mu). An
all-purpose symbol sometimes used for the mean is M.

The median is usually abbreviated as Md.
The mode is usually abbreviated as Mo.

The mode can be a useful measure of central tendency for all sorts
of data, but is the only suitable measure when we are dealing with
nominal data, that is, data that consist of a series of labels rather
than numbers. For example, Table 3.2 shows political party support
by the same students as those in our Internet study.

Table 3.2 Student political party support

Itumeleng NNP Pravani ACDP Ingrid ANC
Mcebesi ANC Johan APP Linda ANC
Stephen DA Xavier NNP Tumelo ANC

The appropriate measure of central tendency for data of this sort is
the mode, which in this case is the ANC.

a) Determine the mode for Binet’s data (see Activity 3.1).

b) What do you think is the ‘modal category’ for the frequency
distribution given in Activity 3.2? Can you define the notion of a
‘modal category’?

Worked example

In quantitative media studies, a measure that is often used is the
amount of space (in column inches, or percentage of total space)
given to stories covering particular issues. For example, Edward
Herman and Noam Chomsky used this measure in their influential
book Manufacturing Consent (Herman & Chomsky, 1988) to argue that
differential newspaper coverage of the conflicts in East Timor and
Cambodia betrayed a conspiracy to safeguard American interests.
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Unimodal distribu-
tions have one mode
and bimodal distri-
butions have two
modes.

Box 3.3

The central tendency
of nominal data is
always represented
by the mode.

If data have already
been grouped into
class intervals, the
mode is taken to be
the midpoint of the
class interval
containing the
largest number of
cases.
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Imagine that we have tabulated the amount of space given in a selec-
tion of South African publications to the coverage of violent crime, to
see whether there is differential coverage. The data are shown in
Table 3.3. We want to calculate indices of central tendency.

We start by ranking the data, to prepare for calculating the
median and mode. This is shown in Table 3.4.

Table 3.3 Newspaper coverage of violent crime

Publication % of space Publication % of space
The Cape Crimes 3.8 The Dullstroom Magnate 0.2
Soweto Times 2.3 The Natal Witless 7.8
City Blues 1.2 The Beaufort West Globe 1.1
The Pretoria Gnus 4.5 Burger 4.3
The Weekly Wail 6.7 De Wildernis Krokodil 6.8
The Argosy 4.5 Die Bult 5.6
Ulundi Ululator 0.2 Die Afrikana 9.8
Business Whey 9.4 The Sunday Crimes 9.9
The Sunday Dependent 1.8 His Majesty's Voice 0.1
Rapper 5 Pieterseburger 3.2
The Daily Dispute 4.2 The Eastern Cape Herod 2.2

Table 3.4 Ranking of data

Rank  Publication % of space  Rank  Publication % of space
1 His Majesty's Voice 0.1 12 Burger 4.3
2 Ulundi Ululator 0.2 13 The Pretoria Gnus 4.5
3 The Dullstroom Magnate 0.2 14 The Argosy 4.5
4 The Beaufort West Globe 1.1 15 Rapper 5
5 City Blues 1.2 16 Die Bult 5.6
6 The Sunday Dependent 1.8 17 The Weekly Wail 6.7
7 The Eastern Cape Herod 2.2 18 De Wildernis Krokodil 6.8
8 Soweto Times 23 19 The Natal Witless 7.8
9 Pieterseburger 3.2 20 Business Whey 9.4
10 The Cape Crimes 3.8 21 Die Afrikana 9.8
1 The Daily Dispute 4.2 22 The Sunday Crimes 9.9
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Using a calculator

Mean

To calculate this, we use our calculators, following the procedure in
Box 3.1. Thus, we put the calculator into STAT mode, and enter
each of the data points. Then we press the key for the mean, usual-
ly sHIFT + X, and we see that the answer is 4.3.

Median
We note that there are 22 newspapers in our survey. Noting that this
is an even number, we apply the formula for the median position,

N+1

; , which gives us 11.5 or, following the earlier discussion, the
average of the 11th and 12th numbers, i.e. the average of 4.2 and
4.3 = 4.25.
Mode

We use the ranking to find data points with the same value, and we
notice that both 0.2 and 4.5 are repeated, once each. The dataset is
therefore bimodal, and the modes are 0.2 and 4.5.

We think you will agree that this was relatively easy, but we
could have made the task even easier, and more reliable, by using a
spreadsheet computer program. On the CD, we introduce you to
spreadsheets, so we will show you here how to go about doing the
calculations above with the aid of a spreadsheet.

Using a spreadsheet

Start by creating a new worksheet (use the ‘File’, ‘New’ command).
Then enter the row headings as you see them in the original data
table (create two columns only, as in the ranked data). Then enter

icrosoft Excel - Bookl

] Fls Edt Yew Insst Format Tooks Data Microsoft Excel - Book1

A [ B Eile Edit Wiew Inserk Format Tools Data Windov J File Edit Yiew Insert Format Toals Da

1 Publication 126 of space
Bl Voo s Voice [ (T G B o- | &2 B =2 G B «- = £ 8
3 |Ulundi Ulilater 0z = =
4 |The Dullstroom Magnate 0z A% _'J =| Average A28 [~ = Average
5 [The Beaufort West Globe 11 A B A B
6 |City Blues 1z 14 The Pretoria Grus 45 14 |The Pretoria Gnus 45
7 |TheHunday Dependant 15 :
B |TheEastem Cape Herod 22 15 The Argosy 45 15 | The frgosy 43
9 [Sowetu? 23 16 Rapper 5 16 |Rapper 3
10 |Pisterseburger 32 17 Die Bult 58 17 |DCie Bult 56
E g:egze%mes 32 18 | The Weekly Wail 67 18 | The Weskly Wail 87
¢ Daily Dispute = ? : . -
13 |Die Groot Burger 43 19 De Wildetnis Kyokodil 6.3 19 |De Wildernis Krokodil 63
14 | The Pretoria Gnus 45 20 | The Hatal Witless 73 20 The Hatal Witless 73
15 |The firgosy 43 21 Business Way 94 21 |Business Way o4
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17 |Die Bult 56 22 Die #sfrikana ! 9 22 Die Afrikana 98
16 | The Weskly Wail 67 23 The Sunday Crimes 99 23 |The Sunday Crimes 99
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Figure 3.1 Calculating the median, mean (average), and mode in Microsoft® Excel
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the data in the spreadsheet. You should now see something similar
to that shown in Figure 3.1. You then enter built-in formulas below
the data, entering the beginning and ending cell addresses of the
data range, as shown in Figure 3.1. Excel automatically calculates
the results, and displays them.

Summary

1.

Measures of central tendency are shorthand ways of describing
large collections of data. They are single numbers summarising
a set of numbers.

The three most commonly used measures of central tendency are
the mean, median, and mode.

The mean is the arithmetic average of a group of scores, the
median is the middle score when scores are arranged from
smallest to largest, and the mode is the most common score.

The mean is by far the most commonly used measure of central
tendency and in most situations provides a good summary of
where the midpoint of the data is. It is sensitive to outliers,
though.

The median is particularly useful when working with skewed
distributions.

The mode is particularly useful when working with nominal
data.

Exercises

1.

Which measure of central tendency - the mode, median, or
mean - is the highest for the following group of test scores?
Which is the lowest?

§,11,12,3,31,12,8,9,12,10, 5

The management board of a small mental hospital is budgeting
to re-plan facilities for patients, and needs to decide on how to
apportion funds to fit the needs of various disorders. They find
that in the past 6 months they have had the following pattern of
admissions: 8 patients with anxiety disorders, 41 with mood dis-
orders, 35 with schizophrenia, 4 with substance-abuse disorders,
and 8 with cognitive disorders. What measure of central tenden-
cy would you use to identify a ‘typical’ patient at the hospital?

In a study undertaken at the Witwatersrand Technikon on
people suffering from a condition called Moriti wa letswele, it was
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10.

found that in the 11-20-year group there were 7 participants;
in the 21-30-year group there were 15 participants; in the
31-40-year group there were 9 participants; and in the 41-50-
year group there were 5 participants. What was the typical age
of participants in this study?

Draw a picture of what central tendency means to you. Can
you give your drawing a name?

You are interested in the types of non-alcoholic drinks students
prefer. What measure would you use to find the most popular
type of drink?

You are a photographer arranging 7 members of a family for
a family photograph. You want to do a fan-like arrangement
around the person who occupies the middle position in height.
After placing the family in order of height, how would you
decide which person should occupy the middle position?

A soccer coach wants to encourage more goal-scoring in his
club. To motivate players he organises a competition among
the 3 teams. They are each to play 10 matches in the season, and
the team that has the highest average of goals scored in the sea-
son will win a prize. Which statistic would you use to calculate
the highest average?

In a skewed distribution, which measure (mean, median, or
mode) is a better reflection of central tendency?

Why would a government report the median national income,
while reporting the mean educational level?

In wage negotiations, management often refer to mean salaries,
while trade unions refer to median salaries. Why?

TUTORIAL 3: CENTRAL TENDENCY
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Variability

Martin Terre Blanche

After studying this tutorial, you should be able to:

® Explain the purpose of measures of variability.

® Name four measures of variability and explain
how they differ from each other.

® Calculate the range, average deviation, variance,
and standard deviation for a population.

® (Calculate the variance and standard deviation for
a sample.

® Explain and calculate the coefficient of variation.

Measures of central tendency (see Tutorial 3) tell us, in a highly eco-
nomical fashion, where the midpoint of a group of scores is, but
they do not reveal anything about the way the scores are arranged
around that midpoint. Measures of variation do exactly that — they
tell us how widely dispersed numbers are. There are three com-
monly used measures of variation — the range, the variance, and the
standard deviation — each of which helps us to understand the degree
of variability in a dataset in a different way.

Suppose we measured how many seconds it took people in three
different rooms to respond to having their name called out, and got
the results shown in Figure 4.1. These sets of scores have exactly the
same mean (3), but are very different sets of data. The first set shows
no variation at all, the second shows some variation, and the third,
by comparison, shows a lot of variation.
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Figure 4.1 Reaction times in seconds, with a plot of the scores

As another demonstration, consider the two bar charts in Figure 4.2, Measures of
depicting students’ scores out of 20 in a Psychology test. variability indicate
There are about 500 students in each class and in each case the ~the degree to which
mean, median, and mode are exactly 13. So, on average, the two Z?e scores are
) ispersed, or
classes did equally well on the test. As you can see, however, the .00t 00 oach
classes are very different in other respects. In Class 1, many stu-  ,¢por.
dents got low scores (20 cases as low as 7), but many other students
got exceptionally high scores. The students in Class 2 are more
similar to each other, with almost everybody scoring between 10
and 16. Thus there is less variability in Class 2 than in Class 1.
Measures of variability are ways of expressing such differing
degrees of variability mathematically.
Of course, the concept ‘variability” has wider application and
relevance than the prospect of measuring numerical dispersion
might suggest. Think about the great interest that ‘difference’ or
‘variation” has in our daily lives. Why are we interested in the prac-
tices and beliefs of different cultures? Why are we bored by daily
domestic rituals? Think also about the importance of variation to
our existence. We wake up 99 mornings out of a 100 feeling more or

TEST SCORES FOR CLASS 1 TEST SCORES FOR CLASS 2
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Figure 4.2 Test scores for two classes with different distributions
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The notion of
variation is central
to many statistical

concepts and

procedures.

Activity 4.1

The range is the
distance between

the bottom and top

of the dataset, or
distribution.

The crude range is
the difference
between the
maximum and
minimum scores.

The extended range

is
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this difference + 1.

less the same, but if we should wake with impaired vision and loss
of balance, we would be immediately alarmed. On the other hand,
we are generally not at all interested in our (near) failure to change
height from morning to morning. A strong argument can be made
for the epistemological importance of variation or difference in a
variety of human enterprises.

It is thus no accident that the concept of variability is one of the
most important and fundamental in statistics. It is vital to have a
firm understanding of this concept if we are to progress to an
understanding of inferential statistics.

The range

The range is the most straightforward measure of variability — it is
the difference between the highest and lowest scores in a dataset.
So in Class 1 of Figure 4.2 the

Calculate the extended and crude ~ range is 12 (the highest score, 19,

ranges for the data in each of minus the lowest score, 7), while

the sets in Figure 4.1. in Class 2 it is only 8

(17 minus 9).

The range as calculated here is also sometimes referred to as the
crude range. The extended range involves adding one to the crude
range. Count the number of bars in the bar graphs for Class 1 and
Class 2 and you will see why adding one to the difference between
the lowest and highest scores actually gives a more accurate indi-
cation of the range of scores obtained. It does not matter much
whether you use the crude or extended range, provided it is clear
which calculation you used. You should also make it clear whether
you are referring to the actual, observed range or the potential range
of scores. The range in Class 1is 12, and in Class 2 it is 8, but in both
cases the potential crude range is 20 — 0 = 20. The potential extend-
ed range (i.e. the number of possible scores students could have
got)is20-0+ 1 = 21.

Although the range is easy to understand and makes intuitive
sense, it is a rough-and-ready indication of variability, as it is based
on two numbers only — the highest and lowest scores. Figure 4.3
shows the number of accidents per month at two mines. The range
is the same for both mines, namely 7 —i.e. there are between 0 and
7 accidents per month at each mine. However, as you can see, there
are from 2 to 4 accidents most months at mine B, whereas there is
much more variability at mine A. Thus the range is susceptible to
the same problem as the mean - it can give a false impression if
there are atypical, extreme scores (outliers).

A range index that tries to avoid the problem of outliers is
known as the interquartile range, and is similar in some ways to the
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MINE A

MINE B

NO. OF MONTHS

o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7
ACCIDENTS ACCIDENTS

Figure 4.3 Accident rates at two mines

trimmed mean. The interquartile range is the distance between the 7, interquartile

25th and 75th percentiles of the dataset. It is the middle 50% of the
distribution, and therefore excludes extreme values, which lie at the
top or bottom of the distribution.

To see how the range index works, in Table 4.1 we show the fre-
quency distribution of the data from Table 3.1 in Tutorial 3 record-
ing the number of hours a group of students spend on the Internet.
Using the methods shown in Tutorial 2, we find that the 25th and
75th percentiles are 1 and 4 respectively. The interquartile range is
therefore 3. Notice that this is much
smaller and more ‘characteristic’
than the crude or extended ranges of
this dataset, which are 31 and
32 respectively.

Calculate the interquartile
ranges of the three datasets
shown in Figure 4.1.

Table 4.1 Frequency distribution of student hours on
the Internet

Frequency Cumulative % Cumulative
frequency  frequency %
x=<0 2 2 22.2 22.2
0<x=<10 6 8 66.7 88.9
10 < x <20 0 8 0 88.9
20<x =30 0 8 0 88.9
30 <x =40 1 9 1.1 100
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quartiles.

Activity 4.2
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If at this point you

find yourself puzzled

by why there is a
minus sign before
some difference
scores, you are
probably not
familiar with the

concept of negative
numbers and should
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seek mathematics
instruction. Start
with Tutorial 23 in
this book.

The average deviation

Table 4.2 Calculating the average deviation

Courses Difference Absolute

passed from mean difference
Itumeleng 0 -2 2
Pravani 1 -1 1
Ingrid 1 -1 1
Mcebesi 2 0
Johan 2 0
Linda 3 1 1
Stephen 3 1 1
Xavier 4
TOTAL 16 0 8

A more sophisticated way of indicating how much variation there is
in a dataset is to calculate, on average, how far each score is from
the mean. Table 4.2 shows data for the number of first-year courses
passed by a group of students. In total the students have passed
16 courses, and since there are 8 students, the mean number of
courses passed is 2 (16 courses divided by 8 students). The table
also shows the difference between each student’s score and the
mean (e.g. [tumeleng passed 0 courses, minus the mean of 2, equals
a difference score of -2). Since the mean is by definition exactly at
the mid-point of the distribution of scores, the negative differences
(scores below the mean) and positive differences (scores above the
mean) will cancel each other out. Therefore the total of the differ-
ence scores is always 0. (Checking that the total is 0 is a useful way
of ensuring that you have not made any errors in calculating the
difference scores.)

The last column shows the absolute differences, i.e. how far each
score is from the mean, irrespective of whether it is above or below
the mean. The absolute differences are just the differences with the
negative signs removed. By adding up the absolute differences
(which comes to a total of 8) and dividing by the number of
students (8), we get the average deviation, which in this case is 1
(8 divided by 8). The formula is as follows:

NUMBERS, HYPOTHESES AND CONCLUSIONS



_ 2 [x-u]

AD
N
where: AD = average deviation
¥ = summate (or add up)
X = each score
w = the population mean

N = the number of observations

Thus we can say that, on average, students have passed 1 course
more (or fewer) than the mean of 2. Suppose now that Pravani
actually passed 0 courses rather than 1, and Xavier passed 5 courses
rather than 4. In that case the average deviation would have been
1.25 (verify this yourself). Can you see that although the mean
remains the same (2), the average deviation has increased slightly?
We would then say that on average students have passed 1.25
courses more (or fewer) than the mean.

The variance

The most important and commonly used measure of variability in
statistics is the variance. Like the average deviation, the variance is a
more complete measure of variability than the range because it is
not derived from the highest and lowest scores only, but from a
formula that includes each score in the relevant dataset. Like the
average deviation, it also gives an indication of how far, on average,
each score is from the mean. It is, however, not quite as easy to
calculate or interpret.

If we are dealing with a population of scores, we calculate the
variance as follows:

o2 = 2 (X - M)z
N
where: 0% = the variance of the population
= summate (or add up)
each score
the population mean
= the number of observations

Ze x M
Il

To calculate the (population) variance manually it again helps to
draw up a table with columns for the raw scores and for the dif-
ference between each raw score and the mean. However, in the
last column we will now place the squared difference rather than
the absolute difference. Squaring numbers (multiplying them by
themselves) has the effect of removing all negative numbers. This
time we will use the data from Tutorial 3 on the number of hours
students spend on the Internet.
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Equation 4.1

The average
deviation is the
average of the
absolute distances of
individual scores
from the mean of
the distribution.

Equation 4.2

The variance is the
average of the
squared distances of
individual scores
from the mean of
the distribution.
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Equation 4.3

Box 4.1

Table 4.3 Calculating variance

Raw score Difference Squared
(x-w difference
(x - wy?
Itumeleng 0 -5 25
Pravani 0 -5 25
Ingrid 1 -4 16
Mcebesi 1 -4 16
Johan 1 -4 16
Linda 3 -2 4
Stephen 4 -1 1
Xavier 4 -1 1
Tumelo 31 26 676
TOTAL (2) 45 0 780

As always, the sum of the differences comes to 0. However, the sum
of squared differences is 780. Thus the variance (or average squared
difference) is 86.67 (780 divided by 9 students). Suppose we left
Tumelo (who had a very extreme score) out of the calculation, then
the sum of squared differences would be 104, and the variance
would be 13 (verify this calculation yourself). Notice the rather dra-
matic change.

Calculating the variance in this manner can be quite laborious,
especially if you are doing it all by hand. An alternative technique
is to use a mathematically equivalent formula, which makes the
computation of variance much easier:

XX

It is best to use this formula with a calculator that has built-in func-
tions for automatically calculating the components 2x* and Zx. This
is demonstrated in Box 4.1, as are the calculations for some other
indices of variation.

Using a calculator to find o?, o, s and s

Almost all modern scientific calculators offer a mode for entering
lists of data, and functions that make it easy to do calculations on the
data. Functions that calculate Zx* and Xx are very useful shortcuts
for working with computational formulae for measures of variation,
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and there are also functions that will calculate some standard meas-
ures of variation in one fell swoop! For the Casio-FX® 280 model, and
the data in the example involving courses passed by first-year
students (Table 4.2), the steps for calculating the variance with the
computational formula (Equation 4.3) are shown below. Your calcu-
lator may use different keys to generate output, but most calculator
functions are similar to those outlined below. Consult your calcula-
tor manual to determine how your calculator works.

Step Keys
1. Put calculator into STAT You change mode by pressing the
mode ‘MODE' key, then selecting STAT
mode, e.g. by pressing the - (point)
key.
2. Enter data Enter the first data item, then

press the ‘DATA' key (M+). Enter
the next item and press the ‘DATA'
key. Continue until all the data is
entered.

3. Find =x2 You should find the symbol "=x*
above one of your keys. First
press 'SHIFT' and then the Xx*' key.

4. Find Zx You should find the symbol "=x’
above one of your keys. First
press 'SHIFT' and then the ‘2x’ key.

To calculate 02

ZO, aer 25
N 8

8 _
o= = = _ 4 322221_5

N 8 8 8 8

However, notice that your calculator has the formula for o (the
population standard deviation) built in. So all you have to do to
calculate 0?2 is:

1. Put the calculator into STAT mode.

2. Enter the data.

3. Push ‘sHIFT” and then the ‘0’ key.

This will give you the value of o. Now, to find 02 square the value
of o, using the appropriate function.
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Activity 4.3

Equation 4.4

Equation 4.5

Activity 4.4

The computational
formula for the
population standard
deviation is the same
as the computational
formula for the
variance, except

that the square root
is taken, i.e.

= x)?
2x- N
N

Q
Il
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To calculate s* (the sample variance) notice that your calculator
has the formula for s (the sample standard deviation) built in. Push
the ‘sHIFT’ key and ‘s’ keys after step 2 in the table above, and then
square the value.

The variance is not easy to interpret. We can say that the students’
average squared difference from the mean was 13, but it is quite
hard to visualise what that might mean. The variance is neverthe-
less a very important statistic, and is very frequently used as part of
other statistical calculations. It also forms the basis for the standard
deviation, another measure of variability, which is easier to interpret.

By hand, calculate the average deviance and variance of the data in
the worked example of Tutorial 3. Now use your calculator to work
out the variance of that dataset, and also of each of the datasets in
Figure 4.1 of this tutorial.

The standard deviation

The standard deviation o, in the case of a population, is the square
root of the variance (02), so the formula is the same as for the vari-
ance, except that a square root is calculated:

2 (x—w?
o=y N

o= Vo?

Or, more simply:

Calculate the average deviations and standard deviations for each of
the datasets in Figure 4.1. Compare them and try to decide which
index is more informative.

Since calculating the square root of a number is the opposite of
squaring the number, the standard deviation in a sense undoes the
squaring that occurred in the course of calculating the variance and
thus brings the result back to the same scale as the original numbers.
Thus the (population) standard deviation of the amount of time
students spend on the Internet is 9.31 hours (the square root of 86.7).
If we left Tumelo out of the dataset the standard deviation would be
3.61 hours (the square root of 13).
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Although the standard deviation is not quite as straightfor-  The standard
ward as the average deviation, it works on a very similar principle ~ deviation is the
and can also be interpreted as the ‘average distance’ of the cases in ~ $quare root of the
a dataset from the mean. As will be evident in a later tutorial, 9"¢'99¢ Of the ’
knowing the standard deviation also allows us to compare indi- fggf/;;g;;’i?;?;es °
viduals” scores on different tests, and to predict with some cer-  #0m the mean of the
tainty what proportion of individuals scored within a particular  gjstribution.

range on a test.

The coefficient of variation Box 4.2

A group of people are employed to clear an area of non-indigenous,
invasive trees. Each person is also required to collect the seeds of
indigenous trees. The mean number of trees cut down per person on
a particular day is 109, with a standard deviation of 4. The mean
number of seeds collected per person is 12, with a standard devia-
tion of 2. Thus the standard deviation for cutting down trees is twice
as large as that for collecting seeds, and we might be tempted to
think that there is more variation in the group with regard to cutting
down trees than with regard to collecting seeds. In fact, the group is
much more homogenous (similar to each other) in terms of tree-
felling than in terms of seed-collecting. A deviation of 4 above and
below a large number such as 109 is proportionally much smaller
than a deviation of 2 above and below a small number such as 12. The coefficient of
This can be mathematically expressed using the coefficient of variation allows you
variation (cv), which is simply the variance divided by the mean. to compare the vari-
Bearing in mind that the variance is the square of the standard ance of samples with
deviation, we find: different means.
o> 16

v tree-felling = T =109 = 0.15

OV geed-collecti 7077i,033
seed-collecting = w 12V

Estimating population parameters from
sample data

Thus far we have shown how to calculate measures of central ten-
dency and variability of a group where the score of every member
of the group is known. Such groups are called populations and can
be very large (such as the population of South Africa) or very small
(such as those people riding in a particular taxi). Often, though, we
do not have information on everybody in a population, but have
to estimate population parameters from what we know of a
sub-group of this population (a sample). As we saw in Tutorial 3,
different symbols are used to indicate whether we are working with
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Equation 4.6

Equation 4.7

It is standard
practice to start the
examination of a
dataset with a
boxplot.

A box-and-whisker
plot is a graphical
representation of the
dispersion (or
spread) of a dataset.
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a sample statistic or a population parameter. The symbol for the
mean of a population is u while the mean of a sample is usually X.
Similarly, the variance of a population is o? (sigma squared) while
the variance of a sample is s%. The standard deviation of a popula-
tion is 0 and of a sample is s. Finally, it is conventional (but
not essential) to use a capital N to indicate the number of cases
when dealing with a population, and a small n when dealing with
a sample. The definition and computation formulas for sample
variance and standard deviation are:

(Z x)
- 2 (x—x)p 2X- n

(definition) §¢= —————— (computation)

SZ
n-1

s= 4/ M (definition) s =
n-1

Notice, most importantly, that the formulas for calculating the sample
variance and standard deviation involve dividing by n — 1 rather than
by n. Dividing by n — 1 provides a better, unbiased estimate of the
population parameter (0% or o) than dividing by n. This can be
proven both mathematically and empirically, but for the purposes of
this course, we will just take it on faith that this is the case.

(computation)

The boxplot

A boxplot or box-and-whisker plot is a means of displaying data that
emphasises the dispersion of the dataset, rather than the frequency
of individual values. Figure 4.4 reports computer-generated box-
plots for scores on four variables: a skewed and a symmetrical
variable, and variables with a small and a large range. The bold line
in the middle of the plots represents the median (the 50th percentile)
of each distribution. This is the middlemost score in the distribution.
The edges of the box above and below the median are the quartiles
(25th percentile below and 75th percentile above). The box repre-
sents the middlemost 50% of the distribution. The box has ‘whiskers’
(i.e. the vertical lines), one below the 1st quartile and one above the
3rd quartile. The whiskers are designed to indicate the lowest and
highest values in each distribution: they show the spread of scores of
the lower and upper 25% of the distributions. Each boxplot repre-
sents the distribution of a full set of scores, indicating the median,
and the values that bracket the inner and the outer scores.
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The plot also indicates outliers, which are extreme scores. What
the plot does is define values that are deemed to be so extreme or
different to the rest that they can be considered outliers. It does this
by starting at the median and then defining values that lie 50% (or
some other conventional value such as 75%) above and below the
median. Any values that lie outside this statistically defined distri-
bution are defined as outliers. The ‘Small range” plot in Figure 4.4
contains an outlier. Notice that, besides the single score of 7, the data
for this variable includes only values 2, 3, and 4. The value of 7 is
deemed to be outside the distribution of scores. Outliers can have a
distorting influence on statistical analysis, and should be carefully
investigated, and sometimes eliminated from the dataset. Outliers
often indicate data entry or measurement errors, which should be
corrected before further analysis. On the other hand, outliers can
indicate extreme but real observations. In such instances we could
either eliminate the outlier or

retain it for further analysis. For each distribution represented
This will depend on the aims in Figure 4.4, determine the value
of the analysis and the kind of the median and the first and
of statistical procedures we third quartiles.

apply to the data.

Outliers are extreme

scores.

Activity 4.5

skew | symm |[s_rang | |_rang

1.00 | 9.00 | 7.00 00| 107
1.00 | 800 | 200 | 1.00 8
1.00 | 7.00 | 300 | 800
200 | 500 | 400 | 4.00

200 | 200 | 3.00 | 11.00 9 |
3.00 | 400 | 400 | 7.00

100 | 3.00 | 3.00 | 7.00 47 }_|
p— —

1

5.00 | 2.00 | 3.00 | 10.00 ’

700 | 100 | 400 | 200 | 2 _ ; B N n
8.00 7.00 2.00 1.00 Skewed Symmetrical  Small range  Large range
9.00 | 800 | 200 | 1.00 TYPE OF DISTRIBUTION

Figure 4.4 Boxplots
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We interpret
boxplots by

commenting on the

shape of the
distribution, the

range of scores, and
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the presence of
outliers.

Activity 4.6

Boxplots provide a clear representation of the shape of the dis-
tribution. The first distribution in Figure 4.4 is positively skewed.
We can tell this from the fact that the median is closer to one edge
of the box, and there is only an upper whisker. This shows that 50%
of the observations lie within the narrow range of 1 and 2, while the
upper 50% of observations lie between 2 and 9. The lower categories
then have higher frequencies, and hence the distribution is posi-
tively skewed. In contrast, the symmetrical distribution has the
median in the middle of the box, and has whiskers of equal length.
The third distribution has a very low range. This can be seen from
the narrow spread of scores represented by the box and the whisker.
With the exception of the outlier, the scores tend to be clustered

around the median. In con-

Use the data in Table 4.4 to calculate trast, the fourth distribu-

the boxplot. Draw the boxplot. tion has a wide spread of

Describe the distribution. scores, it is almost symmet-

rical, and has no outliers.

Where outliers (i.e. values located beyond the extremes of the
whiskers) occur in the dataset, each is represented individually on
the graph by means of an asterisk (*).

Worked example

There are a number of practical situations in which variation is an
important concept, and in which measures can help you make
decisions. One of these faces you when you graduate with a social
science degree. What will you do with all the money you are about
to earn? If you are considering investing in shares on the stock
market, you will want to know how risky a particular share is.
Although you will no doubt want to invest in a share that gives
you a very good return (increases a lot in value), it is also well
known that shares that give high returns are also risky — that is,
there is a possibility of losing a large amount of money on the
share, just as there is of making a large amount! A useful statistic
is the standard deviation of the share price over a particular
period, which is said to give an index of the risk or volatility of
the share in that period. You can then use that index to rate the
riskiness of the share.

In the table below, we have the closing share price over a 20-day
period for a well-known South African company listed on the
Johannesburg Securities Exchange. We will calculate a number of
indices of variation, to demonstrate the concepts developed in this
tutorial.
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Table 4.4 Share price over a 20-day period (rands)

Day 1 2 3 4 5 6 7 8 9
Price 109 103.06 10275 108 107.56 10525 107.69 108.63 107

Day 1 12 13 14 15 16 17 18 19
Price 110 112,75 1135 11425 11525 1215 126.88 122.5 119

We start by entering this data into our calculators. This was shown
earlier in the tutorial in Box 4.1.

Central tendency
It is useful to know the average price in the period in question. This
we get from our calculator as 112.30

Variation

1. Indices of range
We start by rank ordering the data. This tells us that the maximum
and minimum values are 126.8 and 102.75, respectively. Therefore
the crude range = (maximum — minimum) = 126.8 - 102.75 = 24.05,
and the extended range = crude range + 1 = 25.05.

To find the interquartile range we have to find the 25th and 75th
percentiles of the frequency distribution of the data. We leave it
up to you as an exercise to show that these are 107.625 and 117.125
(see Tutorial 2 for the method). Therefore, the interquartile range
= (75th percentile — 25th percentile) = (117.125 — 107.625) = 9.5.

2. Indices of variation
We set the data out in calculational format, to show workings,
but at the same time advise you to take advantage of your
calculator’s ability to short-cut this process.

Day 1 2 3 4 5 6 7 8 9
Price 109  103.06 10275 108 107.56 10525 107.69 108.63 107
Day 1 12 13 14 15 16 17 18 19
Price 110 11275 1135 11425 11525 1215 12688 1225 119
Day 1 2 3 4 5 6 7 8 9
Dev. -33 -924 -955 -43 -474 -705 -461 -367 -53
Day 1 12 13 14 15 16 17 18 19
Dev. -23 045 1.2 1.95  2.95 92 1458 102 6.7
Day 1 2 3 4 5 6 7 8 9

Dev? 10.89  85.38 91.20 18.49  22.47 49.70 21.25 13.47  28.09

Day 11 12 13 14 15 16 17 18 19

Dev? 5820 0.20 1.44 3.80 8.70 84.64 21258 104.04 44.89
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In practice, popula-
tion formulas are sel-
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dom used.

To calculate the average deviation, we simply average the absolute
values of the row marked ‘Dev.’, i.e.

(-33l+[-9.24|+.+|102])

20 -

5.74

For the wvariance and standard deviation we first need to decide
whether to use the sample or population formulas. It is seldom that
we can make a good case for using the population formula, but in
this case we can, since we are only interested in the variation over
the 20-day period, and we have all the data for that period.
However, we can also make a case for treating the data as sample
points, and for the sake of completeness we will calculate sample
and population indices.

For all formulas, we will need the following interim results,
which can be obtained from our calculators after entering the data

in STAT mode: 2x? = 253163 x = 2246.07
Then,
(X x)y (2246.07)?
. . , XX - N 253163 - 20
population variance = 02 = =
N 20
= 46.072

and population standard deviation = Vo? = V46.07 = 6.79.

Similarly, (X x) (2246.07)
2X- n 253163- 20
n-1 Bl 19

sample variance = s* = = 48.50,

and sample standard deviation = Vs* = V48.5 = 6.96.

To check our calculations, or as an alternative to the long-winded
process we have just gone through, we simply press the ‘SHIFT” and
‘o’ keys on our calculators to get the population standard deviation.
We then square this to get the population variance. Similarly, to get
the sample standard deviation, we press the ‘SHIFT” and ‘s’ keys, and
we square this result to get the sample variance.

As another alternative, if you have started to use spreadsheets
for your calculations, here is how to do it in Microsoft Excel:

Start by creating a new worksheet (use the ‘File’, ‘New’ com-
mand). Then enter the data in the spreadsheet; we show a set-up
in Figure 4.5 where the data are entered in columns. You then
enter built-in formulas below the data, entering the beginning
and ending cell addresses of the data range, as shown in the
screenshots (notice the different formulas for populations
and samples). Excel automatically calculates the results, and dis-
plays them.
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crosoft Excel - H icrosoft Excel
] File Edit Yiew In | o = ARP(EM 4:833) =] File Edit View
=== P ] =STDEVP{B14:B33) |

c17 = s = BR(EN 4:633)

A B 5 =STDEW(B14:633)
13 |Day Price range =M ARB14:B33)-MIN(E1 4:B33) 18 5 107 56
i 14 1 109 iq range =QUARTILE(E14:833 3)-QUARTILE(B14:633,1) 19 [ 106.25
15 |2 103.06 20 7 107e8
16 3 10275 21 ] 10563
17 |4 103 20 s 107
|18 |5 107.56 23| w0 109
19 |8 105.25 24 1 1o
207 107.69 | 2 e
21 s 10563 26| 1 1135
2213 107 27 1 1ass
23 |10 109 28 15 11525
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29 15 1215 34
30 17 126.88 35 & 45.07
31 18 1225 3 | B.73
£ 10 it a7 | 4a.50
33 = 1225 s 696
Data Formulas Outcome

Figure 4.5 Calculating measures of variation with Microsoft® Excel

What do these indices of variation mean, in practical terms? The
standard deviation in the closing share price is nearly R7, which
means that in the 20-day period in question the stock price has on
average closed within R7 of the mean share price in the period.
One practical way to use this information is to compare this
standard deviation to the standard deviations of other share prices
calculated in the same way, correcting for differences in scale, or
size (see Box 4.2 for an example). Shares that have higher corrected
values for the standard deviation are, on average, riskier, and you
can use this information to guide your investment strategy.

Summary

1. Measures of variability show how widely dispersed scores in a
dataset are.

2. The crude range is the highest score minus the lowest score. The
extended range is the crude range plus one. The range can be
unduly affected by extreme scores.

3. The average deviation is the average absolute distance that scores
are away from the mean. A large average deviation indicates that
scores are widely dispersed. A small average deviation indicates
that scores are tightly bunched around the mean.
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4. The variance is the average squared distance of scores from the
mean. It plays an important role in a number of statistical calcu-
lations and advanced procedures.

5. The standard deviation is the square root of the variance. A large
standard deviation indicates that scores are widely dispersed. A
small standard deviation indicates that scores are tightly
bunched around the mean.

6. When the variance or standard deviation of a sample is used to
estimate the variance or standard deviation of a population, the
formulas involve division by n — 1 rather than by N.

7. The coefficient of variation allows us to compare the variability
in two distributions, even though the means of the distributions
may be very different. It is calculated by dividing the variance
by the mean.

Questions

1. Ten teenagers in a school were given a general knowledge test
on AIDS and another ten a test on drug-related behaviour. The
scores on the two tests were as follows:

Knowledge of AIDS:  §,1,8,6,12,9,6,5,11, 13
Knowledge of drugs: 91, 42, 98, 30, 18, 73, 84, 92, 45, 92

a) Calculate the mean score of the group on each test.

b) Calculate the variance and standard deviation of the two tests.

¢) On which test is there more variability?

d) Find the median for each test.

e) For each test say whether it is positively skewed, negatively
skewed, or symmetrical.

2. Two teams of players compete in a computer game. The scores
are as follows:

Team A: 125, 100, 50, 65, 3 000, 90
Team B: 100, 120, 119, 105, 99, 102

a) For each team, calculate the range, average deviation,
variance, and standard deviation.

b) Explain why in this case it would not matter much whether
you had calculated the crude or the extended range.

¢) Explain why the range is a problematic measure of variabil-
ity in Team A.

d) Which team shows more variability?
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3. The following represent the number of accidents that occurred at
five randomly selected pedestrian crossings in Cape Town in the
past year:

3,7,2,3,5

Estimate the standard deviation of accidents at pedestrian cross-
ings in the whole of Cape Town over the same period.

4. After one month in the country, a group of visiting students from
the United Kingdom know the following total number of words
in South African languages other than English.

Johnny 22
Fred 12
Mary 14
Bill 12
Jane 14
Susan 14
Michael 17
Sharon 19
Harry 11
Patricia 15
Eric 20

What is the range, average deviation, variance, and standard
deviation of the number of words known by these students? For
all similar students who visit South Africa, what would be the
variance and standard deviation of words known after one
month?
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The frequency view
of probability is that
the likelihood of an
event occurring is its
long-term frequency
of occurrence (e.g. in
a population, or in
past history).
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Probability and
theoretical distributions

Lance Lachenicht

After studying this tutorial, you should be able to:

® Understand probability as a relative frequency.

® Understand the representation of probabilities by
numbers.

® Understand the multiplication and addition rules

of probability.

Calculate the probabilities of multiple outcomes.

® (Calculate the number of arrangements of multiple
events.

® Understand and do simple calculations using the
binomial distribution.

Probability as frequency

The idea of probability that underlies most of the statistics that you
will learn in this tutorial course is that of frequency of occurrence. If
50% of coin tosses land as heads, then the chance of getting heads
when you toss a coin is 50%. If 95% of 18-month-old children are in
the ‘one-word-or-later’ stage of language learning, then your
chance of finding a child of 18 months who is not speaking is only
5%, or 1 in 20.
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The notion of frequency of occurrence can be expressed inanum-  Expressing frequen-
ber of ways. Suppose that 60 out of 150 people report dreaming  Cies as percentages
about a relative every year. We can express this baldly as it stands, = @nd proportions facil-
but more often we use one of the following expressions: as a simpler Itates comparisons.
fraction by cancelling down, i.e. two-fifths of people report dream-
ing of a relative (since “/150 = %15 = %s); as a decimal (0.4 of people
report dreaming of a relative); or as a percentage (40% of people
report dreaming of a relative). Decimals and percentages represent
proportions in a way that lends itself to easy comparison.

The notion of probability arising from an underlying frequency
is easy to understand but can pose some subtle difficulties when
used in arguments. For example, there is a general rule in logic that
holds that it is wrong to reason that because ‘Every A is B, ‘Every B
is A’. So if every human is an animal that walks on two legs, it does
not follow that every animal that walks on two legs is a human. The
same rule holds for frequency-based probabilities. If 90% of cats are
black, it does not follow that 90% of black things are cats! This may
seem obvious, but consider a parliamentarian who argues against
dagga smoking by pointing out that 95% of heroin addicts began as
dagga smokers. Presumably this is meant to show how dangerous
smoking dagga is. But the argument is fallacious. If 95% of heroin
smokers began by smoking dagga, it does not follow that 95% of
dagga smokers will become addicted to heroin.

How good is the following argument? (Defend your answer.) ‘More Activity 5.1
people suffer from mental illness than any other form of serious ill-
ness in South Africa. That is clear from the fact that at any time a third
of hospital beds are occupied by mentally ill patients, and no other ill-
ness approaches that proportion.”

If someone says that the probability of a criminal being male is 4 in  The higher the pro-
5, they are giving a specification of the weight of evidence for or  bability of an event
against an assertion (in this case, the assertion that a randomly  occurring, the more
selected criminal will most likely be male). This kind of probability conflc.iemt we are

. . . . that it will come
statement gives a measure of our confidence in the assertion. The .
higher the probability of a state of affairs, the greater the confidence
we are justified in having that it will come about. If the evidence in
favour of some event is utterly conclusive, we can assign it the num-
ber ‘1’. On the other hand, if the evidence against some event is
utterly conclusive, then we can assign it the number ‘0’. Between
these two points, the stronger the evidence, the greater the number  The value of a pro-
assigned to the probability. So the probability of someone running a  bability can vary
mile in 29 seconds is 0, and the probability of a person dying some from 0 to 1.
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based on past evi-
dence or on the

chance of a random
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event occurring.

Box 5.1

day is 1. On the other hand, the probability of a human randomly
selected from anywhere on earth being Chinese is about 0.2.

Probability and games of chance

Frequency-based probability estimates are based on experience or
evidence (e.g. measurements of frequencies). Saying that “The prob-
ability of those who smoke dagga going on to take heroin is about
1 in 100’ is an extrapolation from past to future. This probability is
based on what has happened before. It could change, so that we
could eventually say something like, “The probability of those who
smoke dagga going on to take heroin used to be 1 in 100 but is now
1in 110". In either case, we are basing our claim on evidence.

There is a contrast between the kind of claim discussed above,
based upon experience, and those involving games of chance such
as drawing a card from a pack, or tossing a coin. We also use num-
bers when estimating chance in such games, e.g. “The chance of
tossing a coin and getting tails is 1 in 2. Here it is assumed that toss-
ing a coin will approximate very closely to a completely random
series of two sorts of outcomes called heads and tails (H and T).
Statisticians are interested in random series and random selections,
and not in actually tossing coins or shuffling real cards. In fact, these
activities are close enough to true randomising procedures for
mathematical or statistical results to apply. So we ignore the very
remote possibility of a coin balancing on its edge, and say that the
probability of a coin falling heads upwards is 1 in 2. This implies
that the very same 1-in-2 probability applies to the coin falling tails
upwards, and that together these two outcomes exhaust all the pos-
sibilities when a coin is tossed. Moreover, we assume that the coin
will fall randomly so that we cannot predict the outcome of any par-
ticular toss, and that we cannot find any pattern in any sequence of
throws. Nevertheless, we are certain that in any very long series of
throws the number of heads will be very nearly equal to the number
of tails.

Random numbers

It is surprisingly difficult to define what a completely random series
of numbers might be. Bennett (1998) provides a good overview of
the debate about random numbers, which we summarise here. The
statistician Von Mises thought that a random sequence of numbers
must be one where it is completely impossible to predict the next
element in the sequence. However, every sequence of numbers has
to conform to some rule or formula (we may simply not know
what the rule is ahead of time). Kolmogorov, the famous Russian
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mathematician, tried to emend Von Mises’ definition by suggesting
that randomness has to be judged in terms of predictability by a
small set of simple rules. He thought that the randomness of a series
of numbers should be judged by the length of the formula required
to generate it. A completely random sequence would require a
formula nearly as long as the series of numbers itself.

Other thinkers (such as Ian Hacking) suggest that we are wrong
to concentrate on the random sequence of numbers, but that we
should instead concentrate on how the supposed sequence of random
numbers is generated. Hacking argues that ‘random samples are
defined entirely in terms of the sampling device’. But the problem
with this approach is that it is entirely possible for a non-random-
looking sequence of numbers to be generated by a random process.

The statisticians Kendall and Babington-Smith suggest that it
might be better to set aside this debate and concentrate on some tests
of the randomness of a sequence of numbers. They propose four
tests of the randomness of a sequence of numbers — the frequency
test, serial test, poker test, and gap test. Imagine that we have a set
of numbers ranging from 1 to 10. The frequency test of randomness
tests whether each of the ten digits from 1 to 10 will appear an
approximately equal number of times, about 1 time in 10. The serial
test examines each possible two-digit pair of numbers (12, 23, 54,
etc.) and determines whether they occur an approximately equal
number of times — about 1 time in 100. (This would detect a non-
random sequence such as 1 2 3 45 6 7 8 9 0 where each
digit occurs equally often but where only 5 (12 34 56 78 90) of 100
possible pairs occur.) The poker test compares five-digit groups of
numbers against the expected occurrence of certain five-card poker
hands. The gap test examines the number of digits (the gap length)
between the occurrences of the digit 0. In the gap test the sequence
043611978500245620 has gap lengths of 9, 0, and 5. The lengths of
these gaps are compared with what would be expected of digits
selected by chance.

Probabilities are sometimes referred to by small letters such as p and
g. If we consider coin tossing, then p might be the probability of
throwing a head, and g the probability of throwing a tail. Since
p = 0.5 (i.e. 50%), and sinceq = 0.5,p =g, andp+g=1,0rg=1-p
andp =1-g.

When an event has more than one possible outcome, we may be
particularly interested in one of these possibilities. Perhaps we may
bet on that particular outcome. (When we take a ticket in a lottery,
we are particularly interested in the probability that our ticket is
drawn.) Whatever the source of our interest in the outcome, if that
outcome comes about we will call it a success. The term ‘success’ is
very widely used in statistics irrespective of the intrinsic value of an
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abbreviation for
probability, e.g.
the probability of
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Probability is
defined as p = %,
i.e. the number of
‘successes’ divided

by the total number

of events.

Equation 5.1

Events are said to

be independent
when they do not

affect the probability

74

of each other
occurring.

Activity 5.2

outcome or whether any bets have been laid. Our interest may not
just be on a single toss of the coin, but on a succession of throws. We
might bet that there would be exactly two heads in three successive
throws. In that case several possible outcomes would count as a
success: HHT, HTH, THH. There are altogether eight possible out-
comes of a series of three coin tossings: HHH, HHT, HTH, HTT,
THH, THT, TTH, and TTT. Since each of these eight outcomes is
equally likely, and three of the eight count as successes, the pro-
bability of a success is %/s, or 37.5%.

The multiplication and addition rules of
probability

Unlike the toss of a coin, a single event may have more than two pos-
sible outcomes. If we roll a die, there are six possible outcomes. If we
draw a card from a pack of cards, there are 52 possible outcomes. We
may bet on such an event in a way that permits several different out-
comes to count as successes. For example, we may bet that we will
draw a heart from a pack of cards. Since there are 13 different hearts
to be drawn from the pack, the probability of a success is %/s, or 1 in
4,1i.e. 25%. In general we have the following rule:

a
p=—

n

where:  pis the probability of success
n is the total number of equally possible outcomes
a is the number of these that count as successes

The total number of successes can never be more than the number of
possible outcomes, so the value of p will always be between 0 and 1.
What happens when we bet on the outcome of a series of inde-
pendent events? Of crucial importance is the notion of independent
events when thinking about this problem, for the probability of suc-
cess in a series of independent events is estimated on the basis of the
probabilities of the individual events. If the events are not inde-
pendent, we cannot easily estimate the probability of a series of
events taking place. As an illustration of the conceptual difficulties
we get into when we base calculations upon non-independent
events, consider the explanation a little girl offered a truancy officer
for failing to attend school, given on the next page (Gardner, 1978).

Suppose a coin is thrown ten times. Below we list two possible
outcomes. Many people would argue that the second outcome is
more likely than the first. Are they correct? Justify your answer.

a) TTTTTTTTTT b) HTTTHHTHHT
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I sleep 8 hours every day. This means I sleep 8 x 365 or 2920
hours. There are 24 hours in a day so I sleep **/5, or 122 days.
The weekend (Saturday and Sunday) does not have school, and
this comes to 104 days in a year. The schools have 60 days of
holiday every year. I need three hours a day for meals. If you
work that out it’s 3 x 365 or 1095 hours per year which is about
45 days per year. And I need at least two hours of playtime every
day which is 2 x 365 or 730 hours which is about 30 days per
year. If you add these up (361 days) you will see I don’t have
time to go to school.

Can you see the problem with her reasoning? Note that sleep time
and weekend time are not independent. She sleeps on weekends.

As already pointed out, the probability of success when we bet
on a series of independent events is estimated on the basis of the
probabilities of the individual events. There are two cases to
consider: the probability of a conjunction (combination) of inde-
pendent outcomes (i.e. a and b), and the probability of a
disjunction (separation) of independent outcomes (i.e. a or b). If we
bet on the conjunction of independent outcomes (i.e. two or more
things happening together) then we must multiply the probabil-
ities of the outcomes together:

p(a and b) = p(a) x p(b)

For example, the probability of getting heads in two successive toss-
es of a coin is the probability of getting heads on the first toss mul-
tiplied by the probability of getting heads on the second toss (i.e.
0.5 x 0.5 = 0.25). Similarly, the probability of getting heads in three
successive tosses will be (0.5)°. In the general case, the probability of
getting heads in 7 successive tosses will be (0.5)".

What is the probability of drawing two successive hearts from a
pack of cards? Here we have to ask whether the first card will be
replaced after being drawn or not. If it is replaced then the second
drawing is independent of the first in the same way that two
successive tosses of a coin are independent. If the first card is
replaced we can find the probability of drawing two hearts by mul-
tiplying together the probabilities of the separate draws, i.e.
p = 0.25 x 0.25 = 0.0625. Performing independent trials analogous
to this is called sampling with replacement. However, if the first card
is not replaced, then the second draw takes place under conditions
that have been changed by the first and is therefore not independ-
ent. Suppose the first card drawn is a heart, and is not replaced.
The second draw is therefore not from a pack of 52 cards, but from
a pack of 51 cards with only 12 hearts. The chance of drawing
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The probability law
of conjunctions (the
multiplicative law):
The probability of two
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The probability law
of disjunctions (the
additive law):

The probability of
either of two inde-
pendent events
occurring is the sum
of their individual
probabilities, i.e. p(a
or b) = p(a) + p(b).

Box 5.2
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a heart is therefore no longer 1 in 4 but only 12 in 51 (0.235). To
get the probability of drawing two hearts when sampling without
replacement, we will have to multiply together two different
probabilities:
_ _13 12 _
p(a and b) = p(a) x p(b) = 5 X 51 0.059

When we are betting on the disjunction of two events (i.e. a or b),
then the probabilities of the individual outcomes are not multiplied
but added together. The formula for this is:

pla or b) = p(a) + p(b)

For example, we bet that in a single draw from a pack of cards there
will be either a diamond or a heart. The probability of a diamond is
!4, and so is the probability of a heart. The probability of drawing
either a diamond or a heart is therefore '/, + '/, = '/,. Likewise the
probability of either a head or a tail in a single coin toss is '/> + '/,
i.e. a certainty.

The addition rule applies when the outcomes are mutually exclu-
sive (no card is both a diamond and a heart, no toss can produce
both a head and a tail).

Coincident birthdays
Most people are surprised to learn that in a random selection of
23 persons there is a 50% chance that at least two of them have the
same birthday. The calculation of this result is straightforward. Begin
by finding the probability that everyone in the room has a different
birthday from everyone else (x) and then subtract this fraction from 1
to obtain the probability of at least one common birthday in the group.
Let us start by working out x, the probability of no coincident
birthdays. Take any particular person in the room. That person has
to occupy one of the 365 days. So a second person has a choice of
only 364 days if there are to be no coincident birthdays. Similarly a
third person has a choice of only 363 days, and the nth person has a
choice of 366 — n days. So the probability of everyone having differ-
ent birthdays becomes:

For 2 people: x = 365/365 x 364/365.

For 3 people: x = 365/365 x 364/365 x 363/365.

For n people: x = 365/365 x 364/365 x 363/365 ... (366 —n)/
365 = 365! / [(365 — n)! x 365].

Note that the ‘" symbol refers to the factorial operation, e.g.
31'=3x2x1;4 =4x3x2x1.
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Such large factorials as 365! can only be calculated by a calcula-
tor or a computer. At any rate, when n = 23 we find that x = 0.493.
Subtracting from 1 to find p, we get: p = 1 —x = 1-0.493 = 0.507.

Therefore, there is an even chance of finding two people with the
same birthday in a group of 23 people! Obviously, if you were part
of that group, it might not be YOUR birthday.

Every Saturday, a small principality offers a lottery, in which one of its
citizens can win great wealth. The game works as follows. Seven two-
digit numbers between ‘00" and ‘49" are chosen at random, with great
pomp. Gamblers can choose, ahead of time, any set of such numbers,
for R2.50. The total available fortune is split between the people who
have chosen the winning numbers. If no-one has chosen the winning
numbers, the fortune at stake is added to next week’s lottery game.
a) For gambler X, who purchases one ticket every Saturday, what is
the probability of winning the lottery on any particular Saturday?
b) If gambler X increases his weekly purchase to 25 tickets, what is
the probability of winning the lottery?

Probabilities of multiple outcomes

Using a tree diagram can help us calculate the probabilities of dif-
ferent outcomes. Table 5.1 sets out the probability of hearts being
thrown in three successive rolls of a four-sided die (i.e. the die is
not a cube) marked hearts, clubs, diamonds, and spades. The last
column of Table 5.1 sets out all the possible outcomes and their

Table 5.1 Calculating the probability of hearts being thrown
in three successive rolls of a four-sided 'card’ die

First roll Second roll Third roll Outcome probability
Heart (H) ('/.) H (') H (') HHH '/¢, = 0.016
N (/s HHN */s, = 0.047
N (/) H (/) HNH 3/s, = 0.047
N (3/s) HNN °/e, = 0.14
H (') H (') NHH */s, = 0.047
Not heart (N) (/) N (/) NHN °/ss = 0.14
N(3/4) H (1/4) NNH 9/64 = 0.14
N (3/4) NNN 27/54 = 0.42
> = es = 1
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happen. We use
formulas for
combinations and
permutations to
achieve this.

Equation 5.4

probabilities calculated by the multiplication rule from the proba-
bilities at each of the three steps. We can then apply the addition
rule to work out the probabilities of any given success: for instance,
the probability of rolling exactly two hearts in three throws is the
probability of HHN (%) plus that of HNH (%) plus that for NHH
(%/6s). Similarly, the probability of rolling at least two hearts is the
above probability plus the probability of HHH (/) is equal to
Yes+ Vor = ea.

The first step in the calculation of these probabilities is to work
out the number of possible outcomes that are to count as successes.
If a large number of events or trials are in question, it is not possi-
ble to do this by enumeration as we did in Table 5.1. For example, if
we were considering a run of 10 rolls of the four-sided die, the final
column in a diagram such as Table 5.1 would consist of 1024 entries.
Fortunately there is a formula for determining how many success-
ful outcomes there will be for any given number of events and
given definition of success.

Suppose n is the number of rolls of the die, and suppose that we
decide that success is to consist of 7 events of a particular type. Then
we need to know the number of possible combinations of r successes
from n events. The formula for calculating combinations is as follows:

(:l) - r!(nni r)!

Note that the “!" symbol refers to the factorial operation, e.g.

3'=3x2x1;4=4x3x2x1

If we apply this formula to our four-sided die to discover how many
possible combinations of two hearts there are in three rolls (substi-
tuting 2 for r and 3 for 1), we get:

(3) 3! 3x2x1

2) T 2a@-2) T @xnay -3

which is what we discovered by listing them. If we want to know
how many combinations of five diamonds there are in ten rolls, we

apply the formula:
( 10) 10 _ 3628800

5/ 5(10-5)! 14400 252

In order to work out the probability of a successful outcome, we
have to take account of not only the number of combinations but
also the probability of each outcome in a single trial. In the case of
the four-sided die, for instance, the probability of a heart at each trial
(roll) is only 1 in 4. We take this into account by using Equation 5.5.
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probability of r successes in 1 events = ( p ) xp X g

where:  p = probability of success on a single trial (roll)
q==0-p)

Thus the probability of obtaining 2 hearts in 3 rolls of the die is:
3
<2> x 0.25% x 0.75C¢-2 = 3 x 0.0625 x 0.75 = 0.141

Table 5.1 shows that the probability of each of the three ways of
drawing two hearts is 0.047. By the additive rule, the probability of
drawing two hearts = 0.047 + 0.047 + 0.047 = 0.141.

‘If an unbiased coin were to be tossed ten times and each time tails
came up, could we be certain that an eleventh toss of the coin would
show heads?” Discuss, justifying your answer.

The probability of exactly two hearts in six rolls is worked out by
the same formula:

6
<2> x 0.25% x 0.75* = 15 x 0.0625 x 0.316 = 0.296

Where the probability of a success is equal to the probability of a
failure at a single trial (as in tossing coins) the calculation is much
simpler. This is because when p and g are both equal to 0.5, then

r+n-r.

P’ x q'" is always equal to /2" (since '4 x '/;' =, " ""). Thus the
probability of five heads in ten tosses of coins is:

(1))

In this formula n = 10 and r = 5, so the probability is:

110
(10) ‘= = 3628800 1 _ 0.246

5)%2 1200 1024

The binomial distribution

We could use Equation 5.6 to calculate the probability of each pos-
sible successful outcome of ten tosses of a coin, from 0 to 10 heads.
The probabilities are set out in Table 5.2.

We can represent these probabilities on a graph such as Figure 5.1.
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outcomes or states of
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Table 5.2 Probability of number of heads
in ten coin tosses

No. of heads Probability
in ten tosses
0 0.001
1 0.010
2 0.044
3 0.117
4 0.205
5 0.246
6 0.205
7 0.117
8 0.044
9 0.010
10 0.001
0.25
0.20 —
E 0.15 —|
)
<
o
o
£ 0.10 —
0.05 —
0 \,_l\ T T T T I T \,_l\
0 1 2 3 4 5 6 7 8 9 10
NUMBER OF HEADS

Figure 5.1 Binomial distribution of heads in ten coin tosses

The probabilities represented in Table 5.2 are known as binomial prob-
abilities. A binomial probability is the probability of 1 out of 2 mutu-
ally exclusive and jointly exhaustive possible outcomes for an event. A
graph such as Figure 5.1 gives a binomial distribution, i.e. the distri-
bution of r occurrences of successful outcomes of n events. The
events in question must be independent of each other and each must
have only two possible outcomes (either naturally so, as in the case
of heads or tails, or because we have so grouped them, as in the case
of hearts versus non-hearts). They may have two equally probable
outcomes (as in heads versus tails), or two outcomes of unequal
probability (as in the case of hearts on a four-sided card die).
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The tosses, throws, draws and deals of games of chance provide A binominal proba-
the paradigm of these binomial events (also known as ‘Bernoulli ~ bility is the probabil-
trials’, after the mathematician who first studied them). Never- Ity of one out of two
theless, there are numerous other events that fulfil the definition of mu;ug{ly IeXCIL;]S'Ve
a binomial event and that can be studied by means of a binomial Z’Ce flJ c(;/:stit))/lee);utz_us-
distribution. For example, a birth, which may be the birth of a boy 5.
or a girl; a personality type, which may be introverted or extravert-
ed; a speech sound, which may be either a vowel or a consonant; an
answer to a test item that may be either correct or incorrect, can all
be counted as events with two possible outcomes. This means that
we can count as a ‘success’, if we desire, the birth of a girl, the occur-
rence of a vowel, the personality of an introvert, or the occurrence
of a correct answer.

Explain the terms ‘independent” and ‘mutually exclusive” in relation Activity 5.5

to probability theory. Give an example to illustrate the application of
each of these ideas.

The binomial distribution represented in Figure 5.1 was calculated
by applying the formula given by Equation 5.5, above, to particular
values of n, r, and p. The "number of combinations’” expression is
also known as the ‘binomial coefficient” because of this function.
But it very quickly becomes tiring to work out binomial distribu-
tions in this way. Fortunately, there are tables that give binomial
coefficients and binomial probabilities for different values of n and
r. Many electronic spreadsheets now include functions that will
calculate them. Fortunately for our purposes, you will not have to
engage in the regular calculation of binomials once you have
grasped the relevant concepts.

Because of the way in which it is calculated, any binomial distri-
bution is completely described by the two parameters p and #,
where n is the number of trials (the equivalent of tosses when
throwing a coin) and p is probability of a success. The mean of the
binomial distribution, i.e. the mean frequency of successes, is 11 x p.
The standard deviation of the distribution is Vitpg, where g = (1 —
p). For the number of heads in ten tosses of a coin, n = 10 and p =
0.5, so that the mean is 10 x 0.5 = 5, and the standard deviation is
Viipq = VIO X 05 05 = V25 = 158,

The binomial distribution of the tossing of coins, as shown in
Figure 5.1, is a symmetrical graph. This is because the probability of
heads and tails is equal. If we graph the distribution of the number
of hearts thrown in five tosses of the four-sided die (or the number

of hearts drawn in five draws with replacement from a normal pack
of cards), we find a different picture, as shown in Table 5.3. The
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Activity 5.6

A researcher collects opinion poll data in a busy shopping centre on
support for 1) public flogging for misdemeanours, and 2) vegetarian-
ism. The data is shown as a cross-tabulation of frequencies, below.

Support Oppose

flogging flogging
Vegetarian 85, 15
Meat eater 15 65

Assuming that this is a representative sample of the South African

population, and that the classification is mutually exclusive and

exhaustive:

a) What is the probability that a South African vegetarian supports
flogging?

b) What is the likelihood that a randomly selected person will be a
meat eater, and support flogging?

¢) Can you think of any way in which we could use probability
calculations to decide whether the variables ‘vegetarianism
support’ and ‘flogging support” are independent?

frequency distribution graphed from Table 5.3 is very skew in form.
This will be so wherever the probability of success differs from 0.5.
If the probability is greater than 0.5, the distribution will be nega-
tively skewed. On the other hand, if (as in Table 5.3) the probability
is less than 0.5, the distribution will be positively skewed. (The
information in Table 5.3 is graphed in Figure 5.2.)

However, whether the probability of success is equal to or dif-
ferent from 0.5, given a sufficiently large n, the distributions will
begin to approach the same form. This form, which is called the
normal distribution, is of great importance in statistics, and we will
briefly consider it now.

Table 5.3 Probability of 0 to 5 hearts
being drawn in four draws

No. of hearts Probability
in four draws

0.237
0.396
0.264
0.088
0.015
0.001

o WON = O
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Figure 5.2 Binomial distribution of hearts drawn from a pack of cards

The normal distribution

The normal distribution was developed in the early eighteenth
century by the mathematician Abraham de Moivre in his studies of
the probabilities of games of chance. He devised it as an approxima-
tion to facilitate the calculation of the distribution of chance events.
The binomial distribution is a discrete distribution. This means that it
takes on only whole number values. There can be two or three tosses
of a coin, but there cannot be 2.63 tosses of a coin. In place of the
stepped histogram, which represents the binomial distribution for a
finite number of events, De Moivre developed a smooth continuous
curve representing the form which the binomial distribution would
take for an infinite number of events with equiprobable outcomes.
He showed that this normal curve was much easier to calculate than
the discrete distribution of the binomial, and that it provided a
satisfactory approximation to the binomial distribution, even where
the probabilities of the outcomes were not equal, provided that the
number of events was relatively large.

The graph of a normal distribution is a bell-shaped curve (see
Figure 5.3). It is symmetrical and unimodal, so that the mean, the
median, and the mode of the distribution all coincide. Its tails
extend indefinitely to the right and left, so that it is theoretically
possible in normal distributions to obtain values at any distance
from the mean. The normal curve, as mathematicians say, asymp-
totically approaches the zero value on the y-axis.
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The binominal distri-
bution takes the
shape of a normal
distribution for a very
large number of trials.

The normal distribu-
tion is symmetrical,
unimodal, and bell
shaped.
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Many natural
phenomena are

normally distributed.

Like the binomial

distribution, the nor-

mine probabilities of
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mal distribution
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Figure 5.3 Normal distribution

The normal distribution has many applications outside the realm of
games of chance. Carl Gauss, for instance, discovered that the dis-
crepancies between repeated measurements of astronomical phe-
nomena were distributed according to De Moivre’s curve, and he
therefore named it ‘the normal curve of errors’. But it was soon
found that very many natural phenomena, and not just erroneous
measurements of them, were distributed normally. Common exam-
ples are the heights of human males, the weights of animals of the
same species, and the results of IQ tests. Height and weight are con-
tinuous variables that can take on any value that the accuracy of
measurement permits — hence the need for a continuous curve to
represent them. This is one reason why the normal distribution has
great importance in the physical and psychological sciences: many
of the data that these disciplines collect are themselves values of
continuous variables that are normally distributed. But that is not
the only reason, as we shall see in Tutorial 7.

The most common form in which you will encounter probability
concepts in this tutorial course is in relation to the types of pro-
bability distribution we have introduced you to in this chapter. In
particular, we will work extensively with the normal distribution in
this way. You will need to understand the material introduced in
Tutorials 6 and 7 before we can do this properly, but for the moment
we give a conceptual account of how this works.

A commonly used normal distribution in the social sciences is
that of the Intelligence Quotient (IQ). IQ tests were developed to
exploit the properties of the normal distribution, so we would
commonly find that IQ in a homogenous population is normally
distributed with a mean p = 100, and standard deviation ¢ = 15.
Figure 5.4 shows a plot of this distribution. The typical way of using
this distribution is to ask what the probability is of scoring lower
than a certain score, or higher than a certain score, or between two
scores. Thus, “What is the probability of scoring an 1Q of less than
80 points?’ is a typical question.

NUMBERS, HYPOTHESES AND CONCLUSIONS
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Figure 5.4 Normal probability distribution of 1Q

This problem is solved by calculating the area under the curve to
the left of the point 80. This is clearly a proportion of the whole area
under the curve, and it is more particularly the proportion of scores
equal to or less than 80. It is therefore also the probability in a popu-
lation of scoring 80 points, or less than 80 points.

How do we calculate the area? This used to be a laborious task
before the advent of digital computers, involving lengthy and error-
prone methods (the integral calculus), and people typically resorted
to reasonable approximations, published in table format. (Such a
table is included in Appendix 1.) Nowadays, the task is compara-
tively easy, and normal probability distribution functions are built
in as standard parts of spreadsheet programs.

The notion that the size of an area under the curve of a proba-
bility distribution can be used to test hypotheses has had profound
effects on statistical methods. It is one of the central ideas in all the
material that follows in this book.

Worked example

How fair are police line-ups? There are many recorded instances
where line-ups have appeared to be unfair, and although some line-
ups may be bad enough to dismiss from visual inspection, most are
not. For this reason, Doob & Kirshenbaum (1973) devised the ‘mock
witness technique’. A number of ‘mock witnesses” who have never
seen the perpetrator are given the verbal description originally
made by the eye-witness(es) to the police, and are then shown the
line-up and asked to choose the perpetrator. To the extent that mock
witnesses choose the suspect as opposed to other members of the
line-up, the line-up is considered unfair.

Tredoux (1998) argues for a probability conceptualisation of this
task that incorporates the use of the binomial distribution.
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The area under the

curve of a normal
distribution repre-
sents probability.
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Thus, we can think of each mock witness choice as a Bernoulli
trial, where the probability of success per trial is '/, where k = the
number of people in the line-up. The number of identifications of
the suspect will then take the binomial distribution, where we
consider identifications to be ‘successes” and the total number of
mock witnesses the total number of trials.

For example, in the line-up shown as Figure 5.5, the total num-
ber of members is six. Malpass et al. used 20 African-American
mock witnesses to evaluate this line-up (i.e. k = 6, and n = 20). Out
of the 20 mock witnesses, 18 chose the suspect (in position 1).
Clearly, this appears to be more than if mock witnesses were choos-
ing randomly (i.e. if line-up members were attracting choices equal-
ly), since that would be % = 0.167. However, we need to know
whether this difference could just have occurred by chance — we
have only 20 mock witnesses, and we can expect a lot of chance fluc-
tuation with such a small number. One way of testing it is to use the
binomial distribution: this will tell us the probability that 18 of 20
witnesses managed to choose the suspect just by chance.

® |ate teens, 15-16 years old,
no more than 18 years old
e African-American, black male

e Small build, about 120-140
pounds in weight

9

® Long hair in some kind of
braids; single row of braids

1
e Between 5'2 - 5'5 in height "?-
R
4

Figure 5.5 A police photo line-up conducted in the USA

However, we need to think a bit more carefully about this calcula-
tion. We do not really want to know the probability that exactly 18
out of 20 witnesses choose the suspect; we want to know whether it
is unusual that so many witnesses choose the suspect. If it is not
unusual, then the probability that more than 18 witnesses choose
the suspect should be high. So we calculate this probability (i.e. that
more than 18 witnesses choose the suspect), and if this probability
is small, then we conclude that it is unusual that 18 out of 20 wit-
nesses choose the suspect.

We can state this as a probability sum, in terms of our problem:

20

/7 ) 20
() xprxg= = ( . ) x 0.167' x 0.833""
r=19

r+1
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This calculation will prove difficult to do on a hand calculator, so we
use the Microsoft® Excel built-in binomial distribution function, as
shown in Figure 5.6. This function takes the following arguments (in
order): the number of successes, the number of trials, the probability
of a success, and whether the distribution is to be cumulated or not
(1 = yes, 2 = no). Notice that the formula in the figure does not use the
equation we determined above, but instead calculates 1 — cumulative
p (18 out of 20 successes), which is effectively the same calculation.
(The cumulative probability is just the sum of probabilities calculated
for the number of successes in question, plus all the successes for all
numbers of successes below the one in question.)

a0 | B | A | B
1 | ']
3 3
Formula Result

Figure 5.6 Microsoft® Excel formula and result for calculation with the
binomial distribution

The result of the calculation is 0.00000000000003, which suggests
that such an outcome is extremely unlikely to have occurred by
chance alone, and this is very convincing evidence that the line-up
was biased against the suspect.

Summary

1. There is no universally accepted definition of ‘probability’. A
common approach is to define the probability of an event as its
long-term frequency of occurrence (the frequency approach).

2. Probability is often defined for practical purposes as p = “,,
i.e. the number of ‘successes’ (2 in the equation) divided by the
total number of events. It is usually abbreviated as p, and the
expression p(x) is thus read to mean ‘the probability of x". As a
number, it varies between a minimum of 0 (certainty that an
event will not occur) and a maximum of 1 (certainty that an
event will occur).

3. Two fundamental probability ‘laws’ are the law of conjunctions
(the multiplicative law): p(a and b) = p(a) x p(b); and the law of
disjunctions (the additive law): p(a or b) = p(a) + p(b).

4. Probability calculations with discrete numbers (e.g. the whole
numbers) usually involve extensive counting. To simplify this,
we make use of counting rules, especially the rule for counting
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combinations, and probability distributions. One commonly
used discrete probability distribution is the binomial distribu-
tion, which we use when an event has two possible outcomes.
This allows us to quickly find the probability that # outcomes
occurred in r events, e.g. 12 heads in 20 tosses of a coin.

We also use probability distributions for continuous numbers
(e.g. the real numbers), and our most common method of using
these distributions is to calculate areas under a probability dis-
tribution curve. These areas represent probabilities, e.g. the
probability that a light bulb will burn between 0 and 620 hours
without failing. The most commonly used continuous probabil-
ity distribution in the social sciences is the normal distribution.

Exercises

1.

Assume that you have bought a ticket for a lottery and that your
sister has bought four tickets. You have just learned that 2 000
tickets have been sold.

a) What is the probability that you will win the prize?

b) What is the probability that your sister will win?

c) What is the probability that you or your sister will win?

Assume that you have bought a ticket for a lottery; your brother
has bought three tickets; this lottery has two prizes; and only
1 000 tickets have been sold.

a) Given that you do not win first prize, what is the probability
that you will win second prize? (The first-prize-winning
ticket is not put back into the draw.)

b) What is the probability that you will win first prize and that
you will win second prize?

c) What is the probability that you will win first prize and that
your brother will win second prize?

d) What is the probability that between the two of you, you will
win first and second prizes?

In some homes a mother’s behaviour seems to be independent
of her baby’s behaviour and vice versa. If mother looks at her
child for a total of 5 hours each day, and the baby looks at the
mother for 6 hours each day, and if they really do behave inde-
pendently, what is the probability that they will look at each
other at the same time?

Give an example of a discrete variable and an example of a con-
tinuous variable.

NUMBERS, HYPOTHESES AND CONCLUSIONS



10.

11.

Explain what is meant by saying that events are independent.
Ilustrate by giving examples where independence is violated
and where independence can be safely assumed.

In a six-choice task, participants are asked to choose the
stimulus that the experimenter has arbitrarily determined to
be correct. The 10 participants can guess only on the first trial.
Plot the expected distribution of the number of correct choices
on trial 1 (i.e. the probability of 0 to 10 participants guessing
the correct answer).

Refer to problem 6. What would you conclude if 6 of 10 par-
ticipants were correct on trial 1?

In a study of human cognition, we want to look at recall of four
different classes of words (nouns, verbs, adjectives, and
adverbs). Each subject will see one of each. We are afraid that
the order of presentation of the words may affect the results, so
we want each participant to have a different order. How many
participants will we need to have one participant per order?

What two pieces of information would you need to complete-
ly describe a binomial distribution?

Explain how you might set about determining whether a
sequence of numbers was truly random. Could you be
absolutely sure of your answer (i.e. that the numbers were
completely random)?

Find the number of combinations in the word RANDOM,
selecting at a time (a) three letters, and (b) five letters.
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TUTORIAL

Normal distribu-
tions allow us to

determine where an
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individual score lies
relative to other
scores in a set of
scores.

The standard normal
distribution

Kevin Durrheim

After studying this tutorial, you should be able to:

® Understand key concepts underlying the standard
normal distribution.

® Understand what z-scores are.

® Use the z-tables.

® Use the z formula to transform x-scores to
z-scores, and transform z-scores to x-scores.

The normal distribution, which was introduced in the previous
tutorial, is important since it provides a model of the shape of the
frequency distribution of many (but not all) naturally occurring
phenomena. We need to know the shape of a frequency distribution
if we wish to determine the position of a single score relative to the
rest of the distribution. Consequently, since an aim of many statist-
ical operations is to determine where individual cases stand relative
to other cases in a distribution of scores (see Tutorial 2), the normal
distribution is one of the key concepts you will study in this course.

The notion of the ‘relative position” of a case in a distribution has
much pragmatic utility. Consider the following question: If your
height is 1.6 metres, are you short or tall? The answer to this
question depends on whom you are comparing yourself with; it
depends on how tall you are relative to other people. If you are a
jockey, you may be considered tall, but if you are a professional
basketball player, you would be considered short. As you can see
from Figure 6.1, the reason why a 1.6-metre jockey would be con-
sidered tall is because he or she is taller than most other jockeys. In
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contrast, a 1.6-metre basketball
player is shorter than most other
basketball players. In statistics,
like in everyday reasoning, we
consider individual scores on vari-
ables such as height with reference to where these scores fall relative
to others on a distribution of scores. The normal distribution pro-
vides a powerful way of determining where individuals lie relative
to others on many naturally occurring variables, and it is for this
reason that it is fundamental to statistical analysis.

Think of — and list — ten
phenomena that are NOT
normally distributed.

Activity 6.1

JOCKEYS BASKETBALL PLAYERS

Shorter than
1.6m

Shorter than
1.6m

1.6m 1.6m

Figure 6.1 Normal curves for heights of jockeys and basketball players

How do we calculate precisely where an individual stands relative
to others on a normal distribution? Thus far we have made rather
vague claims about an individual jockey or basketball player being
taller or shorter than most other individuals in a population. But
how much is most in each of these cases? A precise science like
statistics needs to know exactly what proportion of basketball
players and jockeys are shorter than 1.6 metres. To answer such
questions, we must consider a special type of normal distribution —
the standard normal distribution.

The standard normal distribution

You will recall that distributions allow us to predict a probability
or proportion from an individual score. In order to make such
predictions, however, we need to have three pieces of information
that define the distribution: the mean, the variance, and the shape.
Although the normal distribution defines the shape of the distribu-
tion of many naturally occurring phenomena, to determine the
distribution for a particular variable (e.g. height, intelligence, phys-
ical fitness), we need to know its mean and variance. There are an
infinite number of normal distributions, each with a unique mean
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A distribution is
defined by its shape,
mean, and variance.
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To determine the
proportion of cases
falling above

or below a score

in a distribution we
need three pieces of
information about
the distribution: the
shape, the mean,
and the variance.

The standard
normal distribution
is a normal distribu-

tion with a mean
equal to 0 and a
variance equal to 1.
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and variance. There are different normal distributions for the height
and weight of males and females, and for the weight, wingspan,
and intelligence of pigeons. These normal distributions are different
from the distributions of matric results, and the maximum speed
of motorcars in South Africa. Although the frequency distributions
of all these variables have the same shape (i.e. they are normally
distributed), they all differ because they have different means and
variances.

The problem that arises from the fact that there are so many dif-
ferent normal distributions is that each of these distributions has a
different proportion of cases falling below any particular score. In
Figure 6.1, for example, a larger proportion of cases falls below the
score of 1.6 metres for jockeys than for basketball players. Each
distribution has a unique relationship between scores (i.e. points on
the x-axis) and proportions (i.e. area under the curve — or to the left
of — a particular point on the x-axis). To simplify matters, statis-
ticians have defined a single normal distribution that can serve as a
measuring standard for all normal distributions. The standard
normal distribution is a normal distribution with a mean equal to
0 and a variance equal to 1 (see Figure 6.2). Just as the metre is a
standard of length that makes centimetres and kilometres com-
parable, the standard normal distribution is a standard that is used
to make different normal distributions comparable. The standard
normal distribution is defined in terms of standard deviation units
(i.e. z-scores), and since a standard deviation can be calculated for
every normal distribution, all normal distributions can be related to
the standard normal distribution.

z-SCORES

Figure 6.2 The standard normal distribution

As you can see from Figure 6.2, whereas the normal distribution has
x-values along the x-axis — i.e. individual scores on a particular
variable — the standard normal distribution has z-values along the
x-axis. Unlike x-scores, z-scores are not individual scores, but are stan-
dardised scores. They do not depict the real values that individuals
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obtained on a variable. Instead they are hypothetical values calculat-
ed by statisticians to serve the descriptive function of showing where
individual cases lie relative to other cases. These z-scores indicate the
number of standard deviation units a score ‘lies” above or below the
mean. A z-score of 1 lies one standard deviation above the mean, while
a z-score of -2 lies two standard deviation units below the mean.

This standardised distribution is useful because statisticians
have calculated the exact proportion of cases that fall above or
below any particular z-score on this distribution (see the z-table in
Appendix 1). The purpose of developing a standard normal distri-
bution is that if we know the z-score on the x-axis of this distribu-
tion, we can simply refer to a table of z-scores and look up the exact
proportion of cases that fall above or below this score. The table will
tell us, for example, that a proportion of 0.50 (i.e. 50%) of the area
under the curve of the standard normal distribution falls above a
z-score of 0 (i.e. the mean). This means that 50% of the population
of scores that has a frequency distribution exactly the same as the
standard normal distribution would be greater than 0. As we will
see later, this table of proportions is very useful because we can
transform the x-value from any normal distribution into a z-score,
and then simply look up on the z-table the proportion of cases that
lies above or below the x-value.

Using tables of z-scores

Tables of z-scores contain two pieces of information: z-scores and
proportions. The z-scores are printed in the horizontal and vertical
margins, and the proportions are printed in the columns and rows of
the table (see Appendix 1). When we use the tables we usually aim
to associate a single z-score with a single proportion. Figure 6.3
shows a small section of the z-table that appears in Appendix 1.

z-scores indicate the
number of standard

deviation units a
score lies above or
below the mean.

The z-table tells us
what proportion of
the area under the
curve of a z distribu-

tion lies above or
below a particular
z-score.

z Smallerp  Largerp  Mean to z z Smaller p  Larger p

0 0.50000 0.50000 0.00000
0.01 0.49601 0.50399 0.00399 1.6 0.05480 0.94520
0.02 0.49202 0.50798 0.00798 1.61 0.05370 0.94630
0.03 0.48803 0.51197 0.01197 1.62 0.05262 0.94738
0.04 0.48405 0.51595 0.01595 1.63 0.05155 0.94845
0.05 0.48006 0.51994 0.01994 1.64 0.05050 0.94950
0.06 0.47608 0.52392 0.02392 1.65 0.04947 0.95053
0.07 0.47210 0.52790 0.02790 1.66 0.04846 0.95154
0.08 0.46812 0.53188 0.03188 1.67 0.04746 0.95254
0.09 0.46414 0.53586 0.03586 1.68 0.04648 0.95352
0.1 0.46017 0.53983 0.03983 1.69 0.04551 0.95449
0.1 0.45620 0.54380 0.04380 1.7 0.04457 0.95543
0.12 0.45224 0.54776 0.04776 1.71 0.04363 0.95637

Mean to z

0.44520
0.44630
0.44738
0.44845
0.44950
0.45053
0.45154
0.45254
0.45352
0.45449
0.45543
0.45637

Figure 6.3 A section of the z-table in Appendix 1
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The first column, marked ‘z’, records z-scores. In order to under-
stand the other columns, refer to the diagrammatic representation
of the standard normal distribution below (Figure 6.4).

Larger proportion

Mean to z
Smaller proportion

Z-SCORES Z-SCORES

Figure 6.4 Representation of labelled areas assumed by the z-table of Figure 6.3
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Activity 6.2

The z distribution is segmented in Figure 6.4 to create distinct areas.
In the first place, we think of a z-score (any z-score, that is) as divid-
ing the distribution into two proportions. Unless z = 0, one will be
larger, and one will be smaller. This is shown in the left-hand panel.
We can also think of a z-score as creating a proportion or segment
that extends from the mean (which is always 0), to the score, as is
shown in the right-hand panel.

a) Find the area ‘below’ the following z-scores (draw a diagram to
assist you — the area could be the ‘smaller” or ‘larger” proportion):
3.2,045,1.87,1.26

b) Find the area ‘above’ the following z-scores (again, draw a dia-
gram to assist you):
3.1,0.19,1.13, 2.54

The z-table assumes this representation, and all quantities reported in
the table must be interpreted with this in mind. Thus, the first entry
in the table at z = 0 yields both ‘smaller” and ‘larger” proportions of
0.5, and a ‘mean to z” proportion of 0. Since the mean z-score is 0, this
makes sense — the distance from the mean to a z-score of 0 is 0, and
the ‘larger” and ‘smaller” areas are the left and right 50% of the dis-
tribution, as the z distribution is perfectly symmetrical.

On the other hand, to find the areas for a z-score of 1.64, we
would run our eyes down the z columns until we find a z-value of
1.64 (highlighted in Figure 6.3), and we read the areas as the entries
in the cells alongside 1.64. This gives us a larger proportion of 0.95
(when rounded), a smaller proportion of 0.05, and a mean-to-z
proportion of 0.45. In other words, 95% of a z distribution lies below
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a z-score of 1.64, 5% lies above it, and 45% of the distribution lies
between the mean and the z-score. This z-score and its representa-
tion is shown in Figure 6.5.

0.95
0.05

T T
-1.64 0 1.64

Figure 6.5 A z-score of 1.64 as represented on the standard normal
distribution

Since 1 represents unity (or 100% of the area under the curve), we
assume that the total area under the curve of the standard normal
distribution is equal to 1. Therefore, if we know what proportion of
the area lies above a particular z-score, we can also calculate the
area that lies below that score. We do this simply by subtracting the
area that lies above the z-score from 1. If 0.50 lies above the mean
(i.e. z = 0), then 1 - 0.50 = 0.50, the area lying below the mean. If
0.05 lies above a z-score of 1.64, then 0.95 lies below the z-score of
1.64 (see Figure 6.5).
You will note that the
z-table only includes
positive z-values. This
means that it only con-
tains information for
the half of the standard
normal distribution that lies above the mean. Since the standard
normal distribution is symmetrical (i.e. the half above the mean is a
mirror image of the half below the mean), this poses no problem.
Any information for a positive z-value applies equally to the nega-
tive z-value. Thus, the area that lies above a z-score of 1 is exactly the
same as the area that lies below a z-score of 1. Similarly, if 0.975 of the
area lies below a z-score of 1.96, 0.975 lies above a z-score of —1.96.
Occasionally we may want to know the proportion of area lying
between two scores. For example, we may want to know the
proportion of area between a z-score of 1.96 and a z-score of —1.96.
Once you understand that you can subtract and add areas under the
curve, such questions become easy to answer. If we know that a
proportion of 0.975 lies above a z-score of —1.96, and an area of 0.025

(Draw diagrams to assist you.)

Find the area under the standard
normal curve to the left of the following
Z-SCores:

-3.2,1.45,-1.45

TUTORIAL 6: THE STANDARD NORMAL DISTRIBUTION

Although the
z-table only gives

us proportions lying
above positive
z-scores, 1) because
the total area under
the curve is 1, we
can calculate the
proportion below a
positive z-score by
subtracting the area
above the z-score
from 1, and 2)
because the normal
distribution is
symmetrical, the
proportion lying
above a positive
z-score is the same
as the area below
the negative z-score
of the same absolute
value.

Activity 6.3
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Activity 6.4

The z-table allows

us to look up
proportions, given
z-scores, as well as

determine z-scores,

96

given proportions.

lies above a z-score of 1.96, we can calculate the area between the
two z-scores by calculating the difference: 0.975 — 0.025 = 0.95 (see
Figure 6.6).

0.95
0.025 0.025

T
-1.96 0 196

Figure 6.6 The area between two z-scores on the standard normal
distribution

We can also work in the
opposite direction with
the tables. Instead of de-
termining  proportions
from z-scores, we can
determine z-scores from
proportions. Since we know that a z-score of zero cuts the standard
normal distribution exactly in half, we know that a proportion
associated with a z-score of zero is equal to 0.50. What then is the
z-score that divides the upper 0.20 of the area from the lower 0.80
(see Figure 6.7)? To answer this question, you must first find the
proportion of 0.20 in the body of the table, in the ‘Smaller p” column.
The closest figure you can find to 0.20 is 0.20045, which has an
associated z-score of 0.84. Therefore, the z-score above which 0.20 of
the area lies is approximately 0.84.

By way of summary, recall that the z-table for the standard
normal distribution allows us to determine the area under the curve

Calculate the area under the standard
normal curve between the following
pairs of z-scores:

(-2, 2), (1.2, 2.3), (-0.13, -0.11)

20%

80%

0 z=7?

Figure 6.7 Finding z from a known proportion
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that lies above or below any z-score, or between any two z-scores.
The table also allows us to determine the z-score associated with a
certain proportion. Although it can be a lot of fun looking up and
calculating values, since the standard normal distribution is a hypo-
thetical distribution (i.e. it is not found in reality, but defined by
statisticians), these values are not very interesting in and of them-
selves. We are usually not interested in merely calculating areas
under the curve, but want to calculate the proportion of individuals
in a population who score above or below certain values on a vari-
able. What we need to consider now is how to relate everything we
know about the statistical world of the standard normal distribu-
tion to the real world of individual scores on variables.

(Draw diagrams to assist youl.)

a) Find the z-scores that ‘cut off” the following areas ‘below’ them:
0.05, 0.91, 0.45

b) Find the z-scores that ‘cut off” the following areas ‘above’ them:
0.05, 0.91, 0.45

Linear interpolation
If we know that two scales are linearly related to each other, we can
use a technique called linear interpolation to determine where a score
lies on the one scale from our knowledge of where a related score lies
on the second scale. Linear interpolation has many applications, but
is particularly useful for determining z-scores when we are given
proportions that are not represented exactly in the z-tables. Suppose
that you are asked to determine the z-score above which 20% of
a (normally distributed) population falls. You will note that a
proportion of 0.20 is not recorded in the z-table. The closest
proportion (rounded) is 0.2005. In fact, 0.20 lies somewhere between
0.2005 and 0.1977. This means that the true z-score lies some-
where between 0.84 (which corresponds to a proportion of 0.2005)
and 0.85 (which corresponds to a proportion of 0.1977). We use linear
interpolation to determine the
exact z-score. Zz-scores Proportion; .

The figure alongside shows a5 -
graphically how we use linear
interpolation to calculate the
z-score. We have two scales .01 0028

with a linear relation between ,-24
them: a scale of proportions ' :|~p - 179 .20
ranging from 0.1977 to 0.2005, p=.179

and a scale of z-scores ranging

—=.2005
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distribution, above
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the real world.

from 0.85 to 0.84. By subtracting 0.1977 from 0.2005 we determine
that the length of the proportions scale is 0.0028; and we determine
similarly that the length of the z-score scale in question is 0.01. The
logic now is to determine how far up the proportions scale 0.20 is
away from 0.2005 (i.e. 0.20 — 0.2005 = 0.0005), and then determine
how much this is as a proportion of the ‘Proportions” interval. To do
this we divide 0.0005 by 0.0028 to get a proportion of 0.179. We know
now that 0.20 lies 0.179 of the way between 0.2005 and 0.1977. To cal-
culate z we must find the value that lies 0.179 of the way between
0.84 and 0.85. To do this we multiply the length of the portion of the
z-scale in question (i.e. 0.01) by the proportion (i.e. 0.179) to obtain a
value of 0.0018. By adding 0.0018 to the value of 0.84 we obtain a
better estimate of the z-value, namely 0.8418.

Two worlds: the statistical world and the
real world

By now you should be aware that the normal distribution provides
amodel of the distribution of many real-world variables. The height
of all South Africans, for example, is a real-world phenomenon, but
it can be represented in graphical form in the world of statistics by
means of a normal distribution with a certain mean and variance.
Our earlier discussion of the standard normal distribution was
restricted solely to the world of statistics: the questions we were
concerned with referred to scores and areas on the hypothetical fre-
quency distribution known as the standard normal distribution.

Since the normal distribution is a statistical model for distribu-
tions of scores that appear in the real world, our understanding of
this model can be applied to real-world issues. Of great importance
is the fact that we can translate a proportion of the area under the
curve of a statistical distribution into the proportion of a population
of cases in the real world.

Consider once again the standard normal distribution in Figure
6.2. Suppose that this distribution provides an accurate model of the
average daily temperature in Iceland. Although the standard
normal distribution is a hypothetical distribution, for the purposes
of this example imagine that the daily temperature in Iceland is
normally distributed, and has a mean of 0 and a standard deviation
of 1. Since we have assumed that our statistical model (i.e. the stan-
dard normal distribution) accurately represents the state of affairs
in Iceland, we can translate facts about proportion of area under
the curve on this model into information about the daily tempera-
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ture in Iceland. Since the daily temperature in Iceland is distributed
exactly the same as z-scores on the standard normal distribution, we
can use the z-tables to answer questions about the number (or pro-
portionate number) of days it is hotter or colder than a particular
temperature. This will be the same as the proportion of the area
under the curve that lies above or below a particular z-score. What
proportion of days in Iceland is colder than —1 degree Celsius? This
will be the same as the proportion of area below the z-score of —1.
From our z-table we can tell that the area under the curve below a
z-score of —1 is 0.1587. Thus, using this distribution as a model for
the distribution of temperature in Iceland, we can conclude that the
proportion of days colder than —1 is 0.1587. The important point is
that we can translate facts about the statistical world into facts about the
real world as long as our statistical models are accurate representations of
frequency distributions of real-world phenomena.

The proportion of the area under the curve of a statistical distri-
bution can tell us two useful pieces of information about real-world
phenomena: it can tell us about 1) the proportion of a population that
scores above or below a particular value, and 2) the probability that
a randomly selected individual from a population will score above
or below a particular value. We have already considered how the
area under the curve can be translated into facts about the propor-
tionate number of days in Iceland that the temperature is above or
below a particular value. If we assume that the temperature
changes randomly every day in Iceland (which it certainly does
not), what is the probability that the temperature tomorrow will be
below -1 degree Celsius? This is the same as the area below a
z-score of —1 on the standard normal distribution, i.e. 0.1587.

The magic of statistical distributions is that they provide models
of real-world events, and allow us to use our knowledge of these
models to state facts about the real world. We have seen that if a
real-world phenomenon is distributed in exactly the same manner
as the standard normal distribution, we can use the z-tables to
determine proportions and probabilities of events in the real world.
The only problem is that the standard normal distribution is a hypotheti-
cal distribution and very few variables in the real world have frequency
distributions that are exactly the same as the standard normal distribution.
This is not a big drawback, for, as was stated earlier, the standard
normal distribution is a standard that can be used to make the
distributions of different real-world phenomena comparable. If we
can convert x-scores on real-world variables into z-scores on the
standard normal distribution, then we can use the z-table to deter-
mine the proportions and probabilities of events relating to these
real-world variables.

TUTORIAL 6: THE STANDARD NORMAL DISTRIBUTION

The area under the
curve of a frequency

distribution can
translate directly
into 1) the
proportion of a
population that
scores above or
below a particular
value, and 2) the
probability that a
randomly selected
individual from a

population will score

above or below a
particular value.

99



To compare values
measured on differ-
ent scales, we must
convert these values
to a standard scale.

Equation 6.1

The z formula
allows us to convert
X-scores on a
naturally occurring
frequency
distribution into
corresponding
z-scores on the
standard normal
distribution. This
conversion allows us
to use the z-table to
determine the
proportion of cases
or the probability of
events occurring in
the real world.

100

Converting x-scores to z-scores

The standard normal distribution is used as a standard to make dif-
ferent real-world normal distributions comparable. It works much
like the metre, which is an internationally accepted standard of
length that allows us to compare lengths measured on different
scales, by transforming those lengths into metres. Say, for example,
that someone asks you which is further, 1 057 miles or 1 860 320
yards? Since we no longer use miles and yards as units of distance,
this is quite a difficult question. One way to answer it is to convert
both distances to kilometres, a standard measure of distance with
which we are all familiar. Once the distances have been converted
to a standard, they will be comparable. All we need to know are the
formulas by which we can convert miles and yards into kilometres.
Since 1 mile = 1.609 kilometres, and 1 yard = 0.0009142 kilometres,
by multiplying the 1 057 miles and 1 860 320 yards by these con-
version figures we determine that they are both equal to 1 700.7
kilometres, approximately the distance from Cape Town to Durban.
When converting scores like this, it is important to remember that
although the numbers change, the actual distance from Cape Town
to Durban remains the same.

In the same way that we can convert miles and yards to kilome-
tres, we can convert an x-score on any normal distribution, regard-
less of its mean or variance, into a z-score on a standard normal dis-
tribution. The formula for this conversion is as follows:

_X-u
o

In this formula, z is the z-score we want to calculate; x is the score
in a real-world distribution that we wish to convert into a z-score on
the standard normal distribution; p is the population mean of the
real-world distribution; and o is the population standard deviation
of the real-world distribution. Note that Greek letters are used to
depict population parameters (i.e. the mean and standard deviation
of populations), whereas Roman letters are used to depict sample
statistics (i.e. the mean and standard deviation of samples). As long
as we know the mean and standard deviation of a variable (i.e. the
population parameters) that is normally distributed, we can trans-
form any individual score on this distribution (i.e. an x-score) into a
z-score.

Example 1

We know that the height of all professional basketball players in
South Africa is normally distributed, with a mean of 1.95 metres
and a variance of 0.04 metres. What proportion of professional
basketball players is shorter than 1.6 metres?
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To calculate a z-score, we need to be sure that the variable is
normally distributed, and we need to know the mean and standard
deviation of the variable. In this example we are told that the distri-
bution of height in the population of basketball players is normally
distributed and we are given the mean and variance of the variable
height. We can calculate the standard deviation (see Tutorial 4):

o=V =V0.04 =02

Now that we have all the information required by the z formula, we

can compute the z-score that corresponds to an x-score of 1.6 metres

simply by substituting the information we have into the formula:

x-u  16-195
c 020

z = =-1.75
A score of 1.6 metres on the frequency distribution of the height of
professional basketball players is thus equivalent to a z-score of
-1.75 on the standard normal distribution. What we have done is
transform a score on one distribution (i.e. an x-score) into a score on
another distribution (i.e. a z-score), much like we would transform
a measurement in miles into a measurement in metres. Now we go
to the z-table and look up the proportion of the area that lies below
a z-score of —1.75. The proportion is equal to 0.0401 (or 4.01%). This
proportion under the standard normal distribution is precisely the
same as the proportion of professional basketball players who are
shorter than 1.6 metres. Although we have converted an x-score of
1.6 into a z-score of —1.75, the proportions below these scores on the
two distributions remain exactly the same (see Figure 6.8).
Although we used the z-tables for the standard normal distribu-
tion to calculate the area lying under the curve, in effect we have
just calculated the proportion of basketball players who are shorter

BASKETBALL PLAYERS STANDARD NORMAL DISTRIBUTION
0.0401 0.0401
T T T T
1.6 1.95 -1.75 0
HEIGHT (X-SCORES) Z-SCORES

Figure 6.8 Frequency distribution and transformed standard normal distribution
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Activity 6.6

than 1.6 metres. All we needed to know to perform this calculation
was: 1) that the height of the population of basketball players was
normally distributed 2) it had a mean of 1.95 and 3) it had a variance
of 0.04. If we had to randomly select one professional basketball
player in South Africa, the probability that this person would be
shorter than 1.6 metres is 0.0401. In other words, there would be a
4.01% chance that a randomly selected basketball player is shorter
than 1.6 metres.

The long-term average for the number of rainy days in Cape Town
during the month of April is known to be 9.3, with a standard devia-
tion of 3.6. What is the probability that a visitor to Cape Town in the
month of April will experience more than 15 days of rain?

Converting z-scores to x-scores

The standard normal distribution also allows us to work the other
way, calculating x-scores from proportions that we know. In such
instances, we are given a known proportion or probability and are
asked to calculate an x-score.

Example 2

What is the 9th decile of examination results for the research
methodology course, given that the results are normally distributed
with a mean of 65 and a standard deviation of 9?

Deciles are similar to quartiles (see Tutorial 2), except that
quartiles cut a distribution of scores into quarters, and deciles cut a
distribution of scores into tenths. Just as 25% of a distribution lies
below the 1st quartile and 75% lies below the 3rd quartile, 10% of
the distribution lies below the 1st decile, 50% below the 5th decile
and 90% below the 9th decile.

In this example, instead of converting an x-score into a z-score,
and then going on to determine a proportion, we work in the reverse
direction. Since we have been given a proportion, we first go to our
z-table to find the z-score that corresponds to the 9th decile. We want
to determine the z-score that divides the top 10% of a distribution
from the bottom 90%. A proportion of 0.10 of scores lie above the 9th
decile, and from the z-tables we can determine that a proportion of
0.10 corresponds with a z-score of 1.28. We now need to calculate an
x-score on our distribution of research methodology results that is
equivalent to a z-score of 1.28. To do this we need to juggle the
z formula around a little, so that it becomes a formula for calculating
x-scores from z-scores:

NUMBERS, HYPOTHESES AND CONCLUSIONS



X
Ifz = 8 , then zo = x — u, therefore:

o
X=z0+ U

By following standard mathematical procedures, we have changed
the z formula to enable us to calculate x-scores from z-scores. By
substituting the information we have been given into this formula
we can calculate the 9th decile (i.e. the x-score below which 90% of
scores in the distribution fall):

x=zo+u=(128x9) + 65 = 76.52

The 9th decile for the distribution of research methodology results
is thus a score of 76.52. Whereas 90% of the population of students
score below this value, 10% of students score above this value (see
Figure 6.9).

Equation 6.2

By basic algebraic
manipulation, the

z formula for
calculating z-scores
from x-scores can be
transformed into a
formula for
determining x-scores
from z-scores.

STANDARD NORMAL DISTRIBUTION FREQUENCY DISTRIBUTION OF RESULTS
90% 90%
10% 10%
T T T T
0 z=1.28 65 X =76.52

Figure 6.9 Standard normal distribution and frequency distribution of research methodology results

Examples 1 and 2 above illustrate the type of real-world infor-

mation that can be determined by converting scores on naturally

occurring distributions into scores on the standard normal distribu-
tion, and vice versa. There are two classes of information that can be
derived from using the formula for z-scores:

1. Asin Example 1, we can compute z-scores from x-scores that we
know. In such cases we aim to determine the proportion of a
population falling above or below the x-score, or the probability
of a randomly drawn case scoring above or below the x-value.

2. As in Example 2, we can compute an x-score from a z-score. In
such cases we are given a proportion or probability, and must
first look up the associated z-score, before using the transformed
z-score formula to determine the x-score.
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Box 6.2

Worked example

From the records of the World Health Organisation, we know that

the birthweight of babies is normally distributed, with a mean of

2.75 kilograms and a variance of 0.866 kilograms.

1. What is the probability that the next child who is born weighs
more than 4 kilograms?

2. What proportion of children has a birthweight of less than
1 kilogram?

3. What weight do the heaviest 15% of infants weigh more than, at
birth?

4. Between which weights do 95% of all infants fall at birth?

Solutions

X—=UW 4-275

1. z= o = 0931 - 134 thusp =0.0901
o Xow 1-275 _ B
2. z= o = o931 —-18, thus p = 0.0301

3. x=2zo+u = (1.035x0.931) + 2.75 = 3.714

4, X =z0+u = (x1.96 x 0.931) + 2.75
— (2.75-1.82,2.75 + 1.82) = (0.93, 4.57)

Using spreadsheets to do z calculations

Spreadsheet software can greatly assist students of statistics, especially
at the beginning stages. (You will find a tutorial on using spreadsheets
on the CD.) This is certainly true for calculations involving the normal
distribution, since spreadsheets can make the use of statistical tables
seem antediluvian!

Calculating proportions under the standard normal distribution curve
The easiest way to do this with Microsoft® Excel is to use the built-in
function NORMSDIST. Thus, to find the proportion of the standard
normal distribution that lies to the left of the z-score 1.25, you enter in a
blank cell NORMSDIST (1.25), and Excel returns the answer 0.89435016
to the cell.

Calculating z-scores that correspond to proportions under the standard
normal distribution curve

The easiest way to do this with Excel is to use the built-in function
NORMSINV. Thus, to find the z-score that cuts off 97.5% of the
distribution (i.e. that lies below it, or to the left of it), you enter
NORMSINV(0.975).
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However, and most usefully, Excel can obviate working with the
standard normal distribution altogether — it has functions built into
it that will do the work necessary to find the proportion (or z-score),
based on the value of the mean, the standard deviation and the data
point you wish evaluated.

Calculating proportions under any normal distribution curve

Use the built-in function NORMDIST. This function takes a number
of arguments, but you can avoid having to memorise these by using
the function wizard - ‘fx” on the standard toolbar — or SHIFT + F3 on
the keyboard. You will be asked for X, u, o, and whether you want
the cumulative form of the distribution (which you should choose).

Calculating z-scores under any normal distribution curve
Use the built-in function NORMINV. Again, you will have to specify
a number of arguments, namely proportion, u, and o.

Calculating z-scores

Excel also has a very useful function called STANDARDIZE, which
will return z-scores, and takes as arguments X, u, o. This is very
useful when you have a large number of z-scores to calculate — you
simply copy the formula.

Summary

1.

The normal distribution is one of the most important concepts in
statistics as it allows researchers to determine where individual
scores lie relative to others on many naturally occurring variables.

Three pieces of information define any distribution: the mean,

the variance, and the shape.

The standard normal distribution is a normal distribution with a

mean equal to 0 and a variance equal to 1.
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4. z-scores depict the number of standard deviation units the score

lies above or below the mean.

The table of z-values for the standard normal distribution allows
us to determine the area under the curve that lies above or below
any z-score, or between any two z-scores. The table also allows
us to determine the z-score associated with a certain proportion.

There are two classes of information that can be derived by

using the z formula:

a) We can compute z-scores from x-scores which are known. In
such cases we aim to determine the proportion of a popula-
tion falling above or below the x-score, or the probability of a
randomly drawn case scoring above or below the x-value.

b) We can compute an x-score from a z-score. In such cases,
we are given a proportion or probability, and must first look
up the associated z-score, before using the transformed
z-formula to determine the x-score.

Exercises

1.

Use a table of z-scores to determine the following proportions:
a) belowz =15

b) below z = -0.085

c) abovez =28

d) above z = -1.09

e) betweenz = 1.5and z = 2.8

f) between z = -2.455 and z = 1.765.

Use a table of z-scores to determine the following z-values:
a) the value below which 0.25 of the distribution falls

b) the value below which 0.85 of the distribution falls

¢) the value above which 0.725 of the distribution falls

d) the value above which 0.05 of the distribution falls.

In a study to examine helping behaviour we ask a confederate
(a little old lady) to pretend to collapse in the main road. We
count the number of people that walk by before assistance is
rendered. We repeat the procedure 2 000 times over a period of

one year. The data are normally distributed with a mean of 20

and a standard deviation of 5.

a) If we assume that this is the data for the population of cases
of helping behaviour, what is the probability that at least
35 people will walk past a little old lady who collapses in the
main road?

b) What is the 25th percentile of ‘helping behaviour’?
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4. The stress of getting engaged has precipitated a neurotic episode
and Edward has had to be hospitalised. He is however con-
cerned that this predicament will delay his marriage, which is to
happen in 30 days time. He finds out that hospitalisation for
neurotic episodes is normally distributed with a mean of 21 days
and a variance of 9 days. Edward wants to calculate how long he
can expect to be hospitalised. He wants to have 95% confidence
in his conclusions.

5. SAFA, the South African Football Association, has been advised
by a team of social psychology consultants that crowd dis-
turbances at football matches are much more likely to occur on
very hot and very cold days. Apparently, these extreme weather
conditions frustrate people, and this frustration easily boils over
into crowd disturbances. SAFA decide that they will call off any
scheduled soccer match if the temperature is more extreme than
it is 98.5% of the time. If the daily temperature in South Africa is
normally distributed with a mean of 22 and a standard deviation
of 9, at what temperatures will SAFA call off soccer matches?
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individual scores.

The sampling distribution
of the mean

Kevin Durrheim

After studying this tutorial, you should be able to:

® Develop a conceptual account of the sampling
distribution of the mean.

® Understand the significance of the Central Limit
Theorem for inferential statistics.

® (Calculate standard scores for the sampling
distribution of the mean using the z formula.

® Understand the concept ‘sampling error’ and
calculate estimates of standard error.

® Understand the concept ‘confidence interval’ and
calculate confidence intervals around estimates of
the mean.

Thus far we have considered the normal distribution and a special
instance of the normal distribution — the standard normal distribu-
tion. The normal distribution is a (population) frequency distribution
that has a characteristic bell-curved shape, and is defined by its mean
and variance. The standard normal distribution has a mean of 0 and
a variance of 1. In this tutorial, we will be considering another variant
of the normal distribution — the sampling distribution of the mean.
Outwardly, this distribution looks like any other normal distribution,
and it is also defined by its mean and variance. The sampling distri-
bution, however, is a completely different type of normal distribu-
tion. It is a (population) frequency distribution of sample means
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rather than individual scores. Something of a cognitive leap is
required to understand the concept of a sampling distribution. This
tutorial is designed to help you make this cognitive leap. The
sampling distribution is the most important concept you will study
in this introductory statistics course, as it is the foundation to all
inferential statistics. It is therefore imperative that you develop a
thorough understanding of the concept.

One of the main functions of statistics is to make inferences. We
want to be able to draw conclusions about populations from infor-
mation we have about samples. For example, we may want to know
whether schizophrenics are violent, and are thus a danger to the
public. To answer this question we need to know the average level
of violence of all schizophrenics. Since there are far too many schiz-
ophrenics for a researcher to measure the total population, we need
to estimate the violence levels of the population of schizophrenics.

The collection and use of empirical data to answer research questions
is often referred to as an inductive approach to knowledge generation,
and the wider epistemological tradition as empiricism.

Explore some of the philosophical debates about this approach,
and its alternatives. Use an academic library, and search for titles in
the philosophy of science, or in the philosophy of knowledge. (For a
shortcut, consult a dictionary or encyclopaedia of philosophy.)

There are many ways to make such estimates. In day-to-day life,
people often make unscientific inferences. They may have heard
somewhere that schizophrenics are violent, and then treat this
hearsay as fact. A better way of making inferences is to base our
conclusions on observation. This is not a sufficient condition,
though, as people often draw conclusions after observing a single
case. Someone may claim that they know schizophrenics are not
violent because their aunt was diagnosed schizophrenic, and she
was the sweetest, most harmless little old lady you could ever meet.
This is not a very good way of drawing inferences, because single
cases may not be representative of the population. The harmless
little old lady in the example above may be very different from most
other schizophrenics. Scientific inferences are usually based on
representative samples. We should collect a random sample of
many schizophrenics, measure their levels of violence, and then
draw inferences about the violence levels of the population of
schizophrenics. If these are higher than the violence levels of non-
schizophrenics, only then should we conclude that schizophrenics
are more violent that the general population. We may, nevertheless,
be wrong. The particular sample that we drew may, purely by
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chance, not be representative of the population. However, because
it is impossible to gain access to the whole population of schizo-
phrenics, this is the best estimate we can make. Statistics is the
science of making educated guesses of this kind, i.e. drawing
conclusions about populations from samples of cases.

It is because we use samples to draw inferences that we require
sampling distributions. The normal distribution, you will recall, is a
frequency distribution of single cases. It allows us to estimate where
an individual score stands in a distribution relative to other indi-
vidual scores. To draw scientific inferences, however, we need to
know where a sample mean stands in a distribution relative to other
sample means. We need to know, for example, where the mean
violence score for our sample of 250 schizophrenics lies in relation
to the mean violence scores of other samples we could have drawn
from the population. This, as we will see, helps us to determine how
accurately our sample mean estimates the population mean.

Sampling means

As you are already aware, the normal distribution is a useful model
of the distribution of scores of many real-world phenomena.
Imagine that we were awarded an enormous research grant,
employed a very large team of researchers, and actually went out
and measured the weight of all human beings on earth. As is shown
in Figure 7.1, the frequency distribution of these individual scores
would be normally distributed. Assume that the mean of all these
scores was calculated to be 70 kilograms and their variance was
calculated to be 144 kilograms. Using the skills you developed in
the previous tutorial, you can now do things like calculate the
proportion of people on earth who weigh more than 150 kilograms,
or the proportion of people weighing less than 50 kilograms. To do
this you need to transform these x-scores into z-scores and look up
the proportions in the z-table.

Individuals
Population 6=12
x=115kg
x =89 kg
- T
x=46kg x=58kg w=70ky x=82kg

Figure 7.1 A population of human weight measurements (in kg), and the normal distribution of

these measurements
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Since it is impossible to measure the weight of everyone on the
planet, researchers usually rely on drawing samples of cases.
Imagine, though, that we know that the true mean of the weight of
all people on earth is in fact 70 kilograms. If we draw a random
sample of 5 people and measure their weight, do you think the
mean of this sample will be exactly the same as the mean weight of
the population (i.e. 70 kilograms)? This is a most unlikely result.
Perhaps, just by chance, we selected a sample of 5 children. Since
children, on average, weigh less than adults, the mean of this sam-
ple could be as low as 49 kilograms. If we drew a second sample of
5 individuals randomly from the people on earth, do you think this
second sample mean would be exactly the same as the first sample
mean or the population mean? This is also most unlikely. Suppose
that just by chance a very fat person was included in the sample,
as well as 3 tall men. Our mean for this sample may well be
88 kilograms. If we continued to draw sample after sample of
individuals and calculated their mean weights, we would find
variability among these means, just as we find variability among
the weight of individuals. If we now took the means of all the
possible samples of n = 5 we could draw from the population, and
constructed a frequency distribution for these means, we would
have a sampling distribution of the mean for samples of size 5 (see
Figure 7.2).

When we sample
repeatedly from the
same population,

we expect the means
of these samples to
be different.

Plotting the means
of an infinite number
of samples of size n,
drawn from a popu-
lation, will give us a
sampling distribution
of the mean.

Individuals
Sample (n = 5)

Population

oz = 5.37

X =49 kg

X =88 kg

X=73kg

T
X=6463 X=70kg X=7537

Figure 7.2 Population, sample means, sampling distribution

Use a random number generator to draw 20 random samples of size
5 from a uniformly distributed population whose elements vary in
weight between 40 kilograms and 120 kilograms. (For how to do this
with a spreadsheet, see the tutorial on the CD.) Calculate and tabulate
the mean for each sample.

Now repeat the exercise with samples of size 20. Do you see any
difference?
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Box 7.1

At first glance, the distributions in Figures 7.1 and 7.2 seem remark-
ably alike. They are both normally distributed, and are distin-
guished by their mean and variance. On closer inspection, you will
observe the following differences between these distributions:

1. Scores. Whereas the cases marked along the x-axis of Figure 7.1
are x-values, the cases marked along the x-axis of the sampling
distribution in Figure 7.2 are X-values. The sampling distribution
of the mean is a frequency distribution of sample means.

2. Means. The mean of the distribution in Figure 7.1 is the mean of
all the individual scores in the population (i.e. the mean of all x’s
is X). If we have calculated the mean of the entire population,
then X = u. The mean of the sampling distribution of the mean,
in contrast, is the mean of all the sample means (i.e. the mean of
all the X’s).

3. Variances. Just as different individuals have different weights, so
too, different samples have different means. Where the variance
in Figure 7.1 refers to variance between individual x-values, the
variance in Figure 7.2 refers to the variance between different
sample means, i.e. the variance between X-values.

The sampling distribution of the mean can therefore be defined as the
distribution of sample means for an infinite number of random
samples of a particular size drawn from a population. To construct a
sampling distribution, we would need to draw as many samples as
we could from a population. With large populations, such as all
people on earth, this becomes a very large number of samples,
approaching infinity. The samples need to be randomly selected to

The Monte Carlo method

Although many of the models and theorems that statisticians use
cannot be tested by empirical measurement, a procedure known as
the Monte Carlo method is usually applied to the empirical study of
statistical models and theorems. Instead of actual measurements,
random number generators are used to generate a large “‘population’
of data (e.g. 10 000 random numbers between 0 and 100). (This
reliance on chance is the origin of the name of the method, referring
to the famous gambling casino in the state of Monaco.) The com-
puter can then also be used to select many thousands of samples of
a particular size from this artificial population, and can calculate the
mean and variance of the samples. The properties of the sampling
distribution of the mean can then be investigated by determining the
shape of the frequency distribution of these sample means, and by
determining the variance and mean of the distribution. For more on
Monte Carlo methods, use an Internet search engine to find Internet
sites dedicated to Monte Carlo simulations. (See the additional
material on the CD for instructions on using the Internet.)
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ensure that all the variability between the samples occurs by chance,
not because of our biased selection procedures. As we will see later,
the variance of the sampling distribution is influenced by the size of
the samples selected from the population, hence the need to define
sampling distributions in terms of a particular sample size. As you will
probably have realised, sampling distributions are not defined empir-
ically (i.e. by measurement). We would not actually draw an infinite
number of samples from a population, calculate their means, and then
compute a frequency distribution. The task would be impossible, by
definition. Instead, the sampling distribution of the mean is defined
theoretically by a theorem known as the Central Limit Theorem.

The Central Limit Theorem

You will recall that frequency distributions are defined by three
things: their shape, mean, and variance. The Central Limit Theorem
specifies the shape, mean, and variance of the sampling distribution
of the mean, and thus allows us to define completely this sampling
distribution without having to draw an infinite number of samples
from the parent population. The Central Limit Theorem states that:

Given a population with a mean u and a variance 0?, the sampling
distribution of the mean will have a mean equal to pand a variance
0?/n. The shape of the sampling distribution approaches normal
as the sample size (n) increases.

In other words, the mean of the sampling distribution of the mean
is equal to the population mean (i.e. u, = ) and the variance of
the sampling distribution of the mean is equal to the population

variance divided by n (i.e. 02 = %2). Thus, if we knew for a fact that

the population of people on earth has a mean weight of 70 kilo-
grams and a variance of 144 kilograms, then the sampling distri-
bution of the mean of samples of size n = 5 will have a mean of
70 kilograms (i.e. u, = u = 70 kg), and a variance of 28.8 (i.e.

Also, regardless of the shape of the population distribution, the
sampling distribution of the mean will be approximately normally
distributed as long as the sample size is not too small. This is an
important property of the sampling distribution of the mean. The
normal distribution is a useful model of the frequency distribution
of individual cases because many naturally occurring variables are
normally distributed. The normal distribution, however, is not
appropriate for many other naturally occurring variables that
are not normally distributed. Consider infant malnutrition, for
example. It is most unlikely that this variable will be normally

TUTORIAL 7: THE SAMPLING DISTRIBUTION OF THE MEAN

The sampling
distribution of
the mean is the
distribution of an
infinite number of
sample means of a
particular size
randomly selected
from a population.

The Central Limit
Theorem specifies
the shape, mean,
and variance of the
sampling distribution
of the mean.

Regardless of the
shape of the
population
distribution, the
sampling distribution
of the mean will be
approximately
normally distributed
as long as the
sample size is not
too small.
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The two frequency

distributions in

Figure 7.3 represent

the same popula-

tions of persons. Do

you know why they

look so different?

distributed because most infants in the world are not malnourished.
On the other hand, in very poor populations, various degrees of
infant malnutrition are prevalent. A likely frequency distribution
for the malnourishment index (ranging from 0 to a high of 5) for a
population of infants is given in Figure 7.3. Although the normal
distribution would be an inappropriate model for this variable, if
we selected a large number (e.g. 10 000) of random samples of size
100 each and constructed a frequency distribution of the mean mal-
nourishment score from each sample, this would be approximately
normally distributed (see Figure 7.3). If we knew that the population
mean malnourishment score was u = 2, and the population variance
was 02 = 0.8, then from the Central Limit Theorem we could conclude
that the sampling distribution of the mean for samples of size 100 will
have a mean u = 2 and avariance oz = % = 0.008. The standard devi-
ation of the sampling distribution of the mean would be 0.089, the
square root of the variance.

FREQUENCY DISTRIBUTION FOR MALNOURISHMENT SAMPLING DISTRIBUTION OF THE MEAN
Oy =.089
T
0 n=2 5 X=1911  pg=2  %=2089

Figure 7.3 Population distribution and sampling distribution of malnutrition variable
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Activity 7.3

What would the mean and variance be for each of the following
sampling distributions? Draw these distributions.

a) samples of n =5, u = 80 kg, and o = 15 kg

b) samples of n = 10, u = 80 kg, and o = 15 kg

c) samples of n = 100, uw = 80 kg, and o = 15 kg

d) samples of n =5, u = 80 kg, and o = 1.5 kg

e) samples of n = 10, u = 80 kg, and 6 = 1.5 kg

f) samples of n = 100, u = 80 kg, and o = 1.5 kg

The sampling distribution and the
standard normal distribution

The discussion thus far has explained what the sampling distribu-
tion of the mean is. We did this by drawing distinctions between the
sampling distribution of the mean and the normal distribution of
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individual scores. The Central Limit Theorem defines the properties
of the sampling distribution of the mean, given knowledge of the
distribution of individual scores. By now you may be wondering
what we can do with the sampling distribution of the mean. In fact,
you already know how to use the sampling distribution, because this
distribution is used in the same way as the normal distribution you
considered in previous tutorials: it is used to compute proportion of
cases lying above or below a specified value. The only difference is
that the type of questions we wish to answer changes because we are
now considering the distribution of sample means rather than indi-
vidual scores. Instead of asking what proportion of individuals score
above or below a particular score, we could ask what proportion of
samples have a mean greater or smaller than a particular value.
Instead of asking for the probability of a randomly selected individ-
ual scoring below a particular value, we ask for the probability of a
randomly selected sample having a mean less than a particular value.
In other words, the sampling distribution of the mean answers very
similar questions to those the normal distribution answers about
individual scores.

The calculations and formulas for the sampling distribution of the
mean are similar to those you considered in the previous tutorial. Just
as we transformed x-scores on the normal distribution into z-scores
on the standard normal distribution, we transform X-values on the
sampling distribution to z-scores on the standard normal distribu-
tion. Once the X-values have been transformed into z-scores, we can
use the table of z-scores to calculate proportions and probabilities.

If you have mastered the exercises in the previous tutorial you
should have no problem using the sampling distribution of the
mean. You will recall that the z formula is used to transform
x-scores into z-scores. To transform X-values into z-scores we need
to modify the z formula slightly to account for the fact that we are
now dealing with a distribution of mean scores rather than a distri-
bution of individual values:

X-u

becomes z =

X —
z= u
o

If you study the formulas carefully, you will note that we have
modified the z formula for x-scores into a z formula (Equation 6.1)
for X-values by substituting X for x and oy for 0. We must do this
because we are now transforming a sampling distribution of X-
values (with a mean u, and standard deviation o,) into the standard
normal distribution. We know from the Central Limit Theorem that
although the mean of the sampling distribution is equal to the pop-
ulation mean (i.e. u; = w), the variance of the sampling distribution
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The sampling distri-
bution of the mean
is used to determine

the proportion of

sample means we

expect above or
below a specified
value.

Compare Equation

7.1 and Equation

6.1. Do you see the

difference?

Equation 7.1
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Equation 7.2

is different to the variance of the parent population (i.e. o; = %Z). We
must change our z formula accordingly:
02

X— o X —
z:—u;butcr;: — = —; thusz =
n vn

X

5]

This formula allows us to transform X-values into z-scores, and thus
allows us to determine probabilities and proportions relating to
sample means.

Example 1

From years of testing, we know that IQ scores for individuals are
normally distributed with a mean of 100 and a standard deviation
of 15. If we select a random sample of 10 secondary school pupils,
what is the probability that their mean is less than 95?

You will note that, unlike the questions in the previous tutorial,
here we want to determine the probability that a sample mean, not
an individual score, falls below a particular value. Our first step in
calculating this probability is to transform our X-value of 95 into a
z-score:

Xx-pw _95-100 _ -5 -5

TS 15 15~ q7ag L0

Vi Vvio 3162

What we have done here is transform a sample mean of 95 from a
sampling distribution of the mean with a mean of 100 and a
standard deviation of 4.744 into a z-score of —1.054 on the standard
normal distribution (see Figure 7.4). In other words, our sample
mean of 95 falls just more than one standard deviation unit below
the mean of the sampling distribution (i.e. 5 is just bigger than 4.744
in the calculations above). If you now refer to your tables of

Og=4.774

95
1

T
X = 95.256 Ug =100 X =104.744

Figure 7.4 Sampling distribution for 1Q scores
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z-scores, you will see that a proportion of 0.146 lies above a z-score
of 1.054. This means that a proportion of 0.146 lies below a z-score
of —1.054. Therefore a proportion of 0.146 lies below a score of 95 on
our sampling distribution of the mean. This means that the pro-
bability that our sample would have a mean lower than 95 is 0.146
(i.e. a 14.6% chance).

The standard error

The Central Limit Theorem shows that the variance of the sampling
distribution can be controlled by the researcher. Since o, = o¥n, as the
sample size increases, so the variance of the sampling distribution
decreases. This is one of the reasons why researchers usually want
large samples: they aim to decrease the variance of the sampling
distribution. Decreasing variance in this way helps to increase the
accuracy of prediction. If you use a sample mean to predict a
population mean, the lower the variance of the sampling distri-
bution, the higher will be the accuracy of prediction. This is why it
is more accurate to predict the number of legs that humans have
from a sample of 10 individuals, than to predict the average weight
of humans from a sample of 10 individuals. Although not all
humans have two legs, individuals differ much more in their
weight than they do in the number of legs they have. Increasing the
sample size, thereby decreasing the variance of the sampling
distribution, allows us to use a sample to make more accurate
estimates of a population mean. It is for this reason that the
standard deviation of the sampling distribution, the square root of
the variance (i.e. oy), is known as the standard error of the estimate, or
‘standard error” for short.

There are two key determinants of the accuracy of sample estimates
of the mean - the inherent dispersion of the underlying population
distribution (reflected in the variance, o), and the size of sample (n)
drawn from the population. This can be seen from the formula for
the standard error, o, — o/Vn.

Substitute values for o and n to show that greater inherent
dispersion or variability requires greater sample sizes for accurate
sample estimates of the mean. (Hint: assume that o = 10, and try
substituting n = 10, and n = 100. Do this for a variety of values for n and
o, until you are clear that you understand the relationship.)

The standard error is an estimate of the average degree to which the
sample means in the sampling distribution are expected to differ
from each other. The standard error serves as an estimate of the
degree to which a sample accurately estimates the population
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The standard error
is:

a) the standard
deviation of the
sampling distribution
b) an estimate of the
degree to which the
sample means in the
sampling distribution
are expected to differ
from each other

¢) an estimate of the
degree to which a
sample accurately
estimates the
population mean.

Activity 7.4

Researchers can
increase the accura-
cy of an estimate of
a population mean
by increasing the
sample size, which
in turn reduces the
standard error.
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mean. Increasing our sample size decreases the standard error and
ensures that our sample mean provides a more accurate estimate of
our population mean.

Example 2

If we know that the mean weight of all people on earth is 70 kilo-
grams, with a variance of 144, consider the difference in standard
error if we draw samples of sizen = 5 or n = 50.

As you can see from the calculation below, the standard error
is the square root of the variance of the sampling distribution,
which we know from the Central Limit Theorem is 6*/n. For sam-
ples of size 5, the standard error is 5.367, i.e.

o’ [144
o = Vol =\ =y 5 = V288 =536

As you can determine from your tables of z-scores, 68.27% of the
area under the normal curve lies between one standard deviation
unit above and one standard deviation unit below the mean (i.e.
68.27% lies between the z-scores 1 and —1). This means that 68.27%
of the possible samples of size 5 that we could draw from the
population of human beings would have means that fall between
64.633 and 75.367 (see Figure 7.5). By using the same calculation
procedures, we compute the standard error for samples of size 50 to
be 1.697. This means that 68.27% of samples of size 50 that are
drawn from the population will have means that fall between
68.303 and 71.697 (see Figure 7.6). The larger samples are more
accurate estimates of the population mean than the smaller sam-
ples. The middle 68.27% of the sample means lie much closer to the
true population mean in Figure 7.6 than they do in Figure 7.5.

68.27% 68.27%

T T T
X=64633 Uy =70 X=75.367

1 T 1
X=68303 uy =70 X=71.697

Figure 7.5 Sampling distribution for mean Figure 7.6 Sampling distribution for

weight,n = 5

mean weight, n = 50
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Using spreadsheets for normal distribution calculations

A B EE B |
1 @ 400 1 | 100
20 15 2 s 15
3|k = 3« a5
40 0 4 |n 10
8z =(BE-BLCEZB4CSORTIES 5 |z -1 054092553
B |prz) =NORMSDIST(ES) B |pzy 0145920298
i v
A B Al B E
18 100 1 p 100
20 15 2 |o 15
3x 95 3 % o5
4 |n 10 T 10
5 plx ~MORMDIST(B3 B1 B2SORT(B4)1)
L&l 5 |p(x) 0145920295
» B

Figure 7.7 A layout in Microsoft” Excel for doing Example 1 (left
pane shows formula view, right pane shows the result)

Spreadsheets can be very useful for finding standard (z) scores, and
for doing precise normal probability calculations (rather than relying
on the approximations offered by z-tables). Calculations involving
sampling distributions of the mean must be treated as for the normal
distribution, making the adjustment to o manually (i.e. 0y = o/ \/H). In
Microsoft Excel, for example, several built-in functions make normal
distribution calculations relatively easy.

STANDARDIZE - returns a standard (z) score, taking the x-value,
u, and o as arguments.

NORMDIST - returns cumulative probabilities of the normal distri-
bution, taking x-value, u, and o as arguments.

NORMSDIST - returns cumulative probabilities of the standard
normal distribution, taking a z-value as an argument.

The usefulness of the NORMDIST function is that you do not need to
do the standardisation to a z-value. A layout in Excel for the calculations
involved in Example 1 is shown in Figure 7.7, in two alternate con-
structions: in the top pane, a layout is shown assuming the calculation
of z, and in the bottom pane, a layout for bypassing the calculation of z.

Example 2 shows how useful the sampling distribution of the mean
can be in determining the degree of accuracy with which a sample
mean estimates the population mean. The standard deviation of the
sampling distribution of the mean, the standard error, should
always be reported in surveys that aim to estimate population
means from sample means. If we wanted to estimate the average
life span of cigarette smokers, for example, we could draw a
random sample of say 1000 smokers who died over the past
10 years, and use the mean age at which they died as an estimate of
the population mean. We would then need to calculate the standard
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Activity 7.5

Confidence limits

an interval that
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tion mean we wish
to estimate with a

A

known probability
(ie. T —a).

confidence inter-
val is the interval

between the confi-
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dence limits.

error so that we know how accurate the estimate is. Drawing a large
sample of 1 000 subjects will usually ensure that the standard error
is small, and that the estimate will be reasonably accurate.

What size of sample would we need in each of the following cases to
reduce the standard error of the estimate to 0.01?

a) o=10 b) o=20 c) 0=50

d) o =100 e) o =500 f) o =1000

Confidence limits and confidence intervals.

Using samples to estimate population parameters always yields
uncertain results. Because there is random variance present in the
sampling distribution of the mean, we can never be sure that our
sample mean is exactly the same as the population parameter we
wish to estimate. However, in addition to estimating the population
parameter, if we know the variance of the sampling distribution of
the mean (or the standard error), we can also estimate how accurate
our parameter estimate will be. We use our knowledge of the stan-
dard error to set probable limits on an observation. This means that
we can define the end points of an interval, that we can say, with a
certain known probability, brackets the population mean we wish to
estimate. These probable limits are also known as confidence limits,
and the interval that they bracket is known as the confidence interval.
They are called confidence limits because we can say with a certain
confidence that the population parameter we wish to estimate lies
somewhere between these two points.

The brackets in Figure 7.8 represent the confidence limits. We
calculate confidence limits in order to know how accurate an esti-
mate of a population parameter is. If these were calculated to be the
95% confidence limits for an estimate, we could say with 95%
confidence that the population parameter we wish to estimate lies
between a value of 105 and 115. The interval between 105 and 115
is known as the 95% confidence interval.

| | { | ‘ |

\ )

95 100 105 10 15 120

Figure 7.8 Graphical depiction of a confidence interval

Example 3

Assume that we know that the weight of all humans on earth is nor-
mally distributed with a variance of 144. To estimate the mean
weight of South Africans, we could draw a sample of 100 people,
measure their weight, and calculate the mean. If we calculated this
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mean to be 73 kilograms, we could use this sample mean to estimate
the mean weight of all South Africans (i.e. a population parameter).
However, we may be wrong. It is unlikely that our sample mean
will be exactly the same as the population mean. What we do in
such cases is calculate a confidence interval so that we can say, with
a certain confidence, that the mean lies between two specified
values. Perhaps we could calculate 99% confidence limits, so that
we could state with 99% confidence that the real population mean
lies between values w and .. We use our knowledge of the stan-
dard normal distribution and the sampling distribution of the mean
to calculate confidence limits.

T T
7, =-2.575 0 7, = 2.575

Figure 7.9 99% cut-off points on the distribution (standard normal)

To set probable limits on an observation, we refer in the first place
to the standard normal distribution and the z-table. See from
Figure 7.9 that we first define z-scores that bracket off 99% of the
area under the curve of the standard normal distribution. The
z-scores will then be transformed into u-scores that bracket 99% of
all sample means of the sampling distribution. If the total area
under the curve is equal to 100%, and 99% of the area lies between
the z-scores, then 0.5% lies below z;, and 0.5% lies above z; (99% +
0.5% + 0.5% = 100%). Refer to your table of z-scores and note that
the z-score above which 0.5% of the area (i.e. a proportion of 0.005)
lies is equal to 2.575. Therefore the z-score below which 0.5% of the
area lies is equal to -2.575. What we now need to do is to transform

T
1, = 69.91 Uy =73 1, = 76.09

Figure 7.10 99% cut-off points on the sampling distribution (raw scores)
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Equation 7.3

Activity 7.6

z; = =2.575 and z, = 2.575 on the standard normal distribution into
w; and u, on the sampling distribution of the mean. We now need to
develop an expression for w in terms of the other variables in the
z formula, i.e. we need to manipulate the z formula so that it be-
comes a u formula:

—-u o _ o _
z=""4 ,thuszﬁ=x—u,thuszﬁ+x=u,
n
.9
thusu:xtz\/ﬁ

We now calculate w; and w, simply by substituting z, and z, into the
formulaas well as the information we have about the sampling
distribution:

o 12
u=>‘<izﬁ=7312.575xﬁ

12
=73+2575% g

=73+ (2575%x1.2) =73 +3.09

You will notice that the + symbol is used in the formula in place of
the + sign. This is because one of the z-scores is positive and the
other is negative (see Figure 7.9). We can now calculate the values for
w =73-3.09 = 6991, and w, = 73 + 3.09 = 76.09 (see Figure 7.10).
We thus conclude with 99% confidence that the mean weight of
South Africans lies between 69.91 kilograms and 76.09 kilograms.
The 99% confidence limits are thus 69.91 and 76.09.

a) Find the cut-off points on the standard normal distribution that
correspond to the:
i)  90% confidence limits
ii) 95% confidence limits
iii) 99% confidence limits.

b) Assuming that x = 100, o = 16, and n = 100, find the 90%, 95%,
and 99% confidence intervals for the sample estimate of .

Worked example

1. The Brief Symptom Inventory (BSI), a measure of psychopatho-
logical symptomatology, has been designed in such a way that it
is normally distributed, with a mean of 0 and a standard deviation
of 18. To examine whether stress affects the psychological well-
being of its employees, a large multinational company adminis-
ters the BSI to a random sample of employees.
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a) What statistical information could the researcher use to
estimate the psychological wellbeing of the population of
employees?

b) If the sample size is 200, what is the standard error?

¢) How large would the sample have to be to ensure that the
standard error is no larger than 0.8?

d) What is the mean and variance of the sampling distribution
of the mean of the BSI for samples of size 200?

e) If the researcher draws a sample of 250 people, what is the
probability that the mean for this sample is greater than —1.5?

f) If the researcher draws a sample of 50 people, what is the
probability that the mean for this sample is greater than —1.5?

g) Explain why your answers for (e) and (f) above differ.

Solutions

a) The sample mean is an obvious (and easy) statistic for us to
calculate, but there are many other possibilities (see Tutorial 3).

b) We write the formula for the standard error, and substitute in
the known quantities:

[8)

18
o= Vn-— V200 = 1.273

x

c) We first write the equation for the standard error, and then
re-arrange it to solve for n:

0.= %, s00,Vn=0,and Vn =
Vn o,
o’ 182
theref = — = 2
erefore, n o2 = 08 506.25

Therefore a sample of 507 would ensure that the standard
error was no larger than 0.8.

d) This follows from the Central Limit Theorem, and the formu-
la for the standard error (which we calculated in (b)), i.e.

we=u=0
o =1.273=1.621

e) We need to convert the mean score of —1.5 into a z-score (see
Equation 7.1), and then find the area lying above that z-score
(i.e. the “larger p” in the z-table):

X-p _-15-0_ -15

TS 18 118
Vn V250

thus p = 0.9066
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f) We follow the same procedure as for (e).

X-w _-15-0 _-15

z= i 18 Y =-0.59
Vn V50
thus p = 0.719

g) There is less variance in the sampling distribution of the
mean with a smaller standard error (i.e. a larger n). Therefore,
the sample means are more tightly clustered around the
population mean, and a greater proportion of samples lie
closer to the population mean.

Summary

1.

The sampling distribution of the mean is the distribution of
sample means for an infinite number of random samples of a
particular size drawn from a population.

The Central Limit Theorem specifies the shape, mean, and
variance of the sampling distribution of the mean, and thus
allows us to completely define this sampling distribution.

Using samples to estimate population parameters always yields
uncertain results. Because there is random variance present in
the sampling distribution of the mean, we can never be sure that
our sample mean is exactly the same as the population para-
meter we wish to estimate.

The Central Limit Theorem shows that the variance of the
sampling distribution can be controlled by the researcher. As the
sample size increases, so the variance of the sampling distribu-
tion decreases, and the accuracy of prediction increases.

The standard error is an estimate of the average degree to which
the different sample means in the sampling distribution are expect-
ed to differ from each other. It serves as an estimate of the degree
to which a sample mean accurately predicts a population mean.

Confidence limits are probable limits of an observation. They
are the end points of an interval, which we can say with a certain
known probability brackets the population mean we wish
to estimate. The interval they define is known as the confidence
interval.
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Exercises

1. Assume that from years of collecting data we know that the
weight of all adult South Africans is normally distributed with a
standard deviation of 15. A researcher selects a random sample
of South Africans.

a) To estimate the weight of the adult population of South

Africans, what information would the researchers require?

b) If the researcher draws a random sample of 250 adult South

Africans, what is the standard error of estimate?

¢) To ensure that the standard error is no smaller than 0.5, how
large would the sample have to be?

d) Let us say that after years of collecting data, the mean weight of
the adult South African population is found to be 75 kilograms.

i) If the researcher selects a random sample of 20 people,
what is the probability that their mean weight will be less
than 70 kilograms?

ii) What is the probability that the mean weight of this
sample of 20 will fall between a mean weight of 65 kilo-
grams and a mean weight of 80 kilograms?

iii) If the researcher draws a sample of 50 people, what is the
probability that the mean weight for this sample will be
greater than 80 kilograms?

iv) If the researcher draws a sample of only ten people, what
is the probability that the mean for this sample will be
less than 60 kilograms?

2. A measure of anxiety has been designed in such a way that it is
normally distributed with a mean of 0 and a standard deviation of
20. To investigate whether year-end examinations at South African
universities are associated with high levels of anxiety among the
student population, researchers decide to administer the anxiety
questionnaire to a random sample of students.

a) If the sample size is 200, what is the standard error?

b) How large does the sample have to be to ensure that the stan-
dard error is no smaller than 0.7?

¢) What is the mean and variance of the sampling distribution
of the mean for the anxiety questionnaire, for samples of
150 cases?

d) Knowing the mean and variance of the sampling distribution
of the mean for samples of 150 cases, what is the probability
that the mean will fall below an anxiety score of —2?

TUTORIAL 7: THE SAMPLING DISTRIBUTION OF THE MEAN 125



126

e) If the researcher draws a random sample of 300 students,
what is the probability that the mean of this sample will be
greater than 1.5?

f) If the researcher draws a random sample of 80 students, what
is the probability that the mean of this sample will be less
than -1?

. The records of the World Health Organisation reveal that the

birthweight of babies is normally distributed with a mean of

2.75 kilograms and a variance of 0.886 kilograms. Researchers

are interested in studying a random sample of 80 babies.

a) What is the mean of the sampling distribution?

b) What is the variance of the sampling distribution?

¢) What is the standard error?

d) What is the probability that the mean for the sample of
80 babies will be greater than 3.2 kilograms?

e) What is the probability that the mean for the sample of
80 babies will be less than 1.5 kilograms?

f) If we are going to use a sample mean to predict the population
mean, how can we increase the accuracy of the prediction?
Substantiate your answer.
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TUTORIAL

The sampling
distribution of the
mean is used to:
a) determine the
accuracy of an
estimate of a
population mean
b) test hypotheses
about a population
mean.

Hypothesis testing:
the z-test

Kevin Durrheim

After studying this tutorial, you should be able to:

® Understand the logic of hypothesis testing.

® Translate research questions into formal statistical
hypotheses.

® Use the z-test to test hypotheses.

® Understand different kinds of errors that may be
involved in hypothesis testing.

The previous tutorial introduced the sampling distribution of the
mean. You learned to define this distribution using the Central
Limit Theorem, and you learned one of the uses of the sampling
distribution, namely to estimate the accuracy with which a sample
mean estimates the population mean. Survey researchers, for
example, calculate the standard error of the estimate plus confi-
dence intervals to determine how accurate their estimates are.

In addition to estimating the accuracy of parameter estimates,
the sampling distribution of the mean serves a very important func-
tion in hypothesis testing. Imagine that someone told you that they
had a magic die that was loaded to show 6 when it was thrown.
Would you simply believe them and purchase the die for R100? You
would surely want to test the die before purchasing it? Specifically,
you would want to test the hypothesis that the die is in fact loaded.
Researchers often find themselves in similar situations, testing
hypotheses, for example, that schizophrenics are violent, or that
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Hypothesis testing
is a logical and
empirical procedure
whereby hypotheses
are formally set up
and then subjected
to empirical test.

Box 8.1

Hypotheses tests
can be used to
compare two means
or values.

The null hypothesis is
a statement that
maintains that there is
no difference between
the groups or condi-
tions. It is represented
by the symbol H.
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white South Africans are racist. The whole point of social science is
to subject such claims to empirical testing. When we use statistical
methods to help assess claims, we call this hypothesis testing.

Hypothesis testing

A hypothesis is a tentative statement of a relationship between two
variables, or as Neuman (1997, p. 108) puts it, hypotheses are
educated ‘guesses about how the social world works’. Hypothesis
testing is a logical and empirical procedure whereby hypotheses are
formally set up and subjected to empirical test. In the first stage of
hypothesis testing, the researcher states a research question, and
poses two hypotheses that refer to the possible outcomes of the
empirical investigation. The research question is the question that
the researcher wants to answer by doing the research. In our loaded
die problem, we would want to test whether the die shows 6 more
often than a fair die. This would tell us whether the die was loaded
or not. The research question for this investigation would be: ‘Does
the “magic” die show 6 more often than a fair die?” Answering this
question would be the whole point of the research.

Examples of research questions

All of the following research questions can be investigated with a hypothesis-

testing approach:

a) Are individuals less intelligent in crowd situations?

b) Do women and men perform similarly at facial recognition tasks?

¢) Have a group of children who were involved in a bus accident
suffered mental impairment?

d) Are schizophrenics violent?

You will note that all the research questions in Box 8.1 presuppose
two conditions or groups, and a comparison between them. We are
comparing a fair die with a loaded die; individuals in crowds with
the same individuals when they are not in crowds; women and
men; and children involved in a bus accident with similar children
who were not involved in a bus accident. A comparison group is
also implied by the research question “Are schizophrenics violent?’
What we want to know here is whether schizophrenics are more
violent than non-schizophrenic people.

The research question in a hypothesis-testing situation typically
seeks to determine whether groups are the same or not. Before con-
ducting an empirical investigation to determine this, the research
question is first translated into two hypotheses, known as the null
and alternative hypotheses. The null hypothesis is a statement that
maintains that there is no difference between the groups or condi-
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tions. It is represented by the symbol H,. From the loaded die
research question we would derive the following null hypothesis:

Ho: The loaded die shows 6 with the same probability as a fair die.

Examples of null hypotheses

1. Hp: There is no difference between the intelligence of individuals
when they are in crowds and when they are not in crowds.

2. Hy: Men and women perform similarly at facial recognition tasks.

3. Ho: There is no difference in mental functioning between the chil-
dren who were involved in the bus accident and similar children
who have not experienced trauma.

4. H,: Schizophrenic and non-schizophrenic people display similar
levels of violence.

In contrast to the null hypothesis, the alternative hypothesis is a state-
ment that maintains that there are differences between the groups or
conditions. This hypothesis makes a conjecture that is diametrically
opposed to the null hypothesis. The alternative hypothesis is repre-
sented by the symbol Hi. The alternative hypothesis can take two
forms, depending on the nature of the research question: it can be
either directional or non-directional. A directional alternative hypothesis
anticipates the direction of difference. It states the researcher’s expec-
tation regarding whether one group is going to score higher or lower
than the other group. A non-directional hypothesis merely states that
a difference is expected, without anticipating the direction of the dif-
ference. The ‘loaded die” research question involves a directional
alternative hypothesis because we want to determine whether the
loaded die shows heads more often than a fair die:

H;: The loaded die shows 6 more often than a fair die.

Examples of alternative hypotheses

1. Hi: Individuals in crowds are less intelligent than when they are
not in crowds.

2. Hi: Men and women perform differently at facial recognition tasks.

3. Hi: The children who were involved in the bus accident show
impaired mental functioning in comparison with similar children
who have not experienced trauma.

4. Hi: Schizophrenics are more violent than non-schizophrenics.

Can you identify which of the research questions in Box 8.1 require
directional or non-directional alternative hypotheses? Hypotheses
1, 3, and 4 are all directional, whereas 2 is non-directional (see
Box 8.3). Can you see why?
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Box 8.2

The alternative
hypothesis, H,, is

a statement that
maintains that there
are differences
between the groups
or conditions.

Directional alter-
native hypotheses
anticipate the direc-
tion of difference
whereas non-direc-
tional hypotheses
merely state that a
difference is expected.

Box 8.3
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Thus far the null hypothesis and alternative hypothesis have
been written out in words. However, they are usually written in
symbolic format. At the outset of a research project, before engaging
in any empirical testing, the researcher should state the research
question and hypotheses closely analogous to the following:

1. Research question: Are individuals less intelligent in crowd
situations?

Ho:w = w

Hiw <w
2. Research question: Do women and men perform the same at

facial recognition tasks?

Ho:w = w

Hiw = o

The research question in the first example implies a directional
alternative hypothesis. The words ‘less intelligent” in the research
question indicate that a ‘less than’ sign (i.e. <) should be used in H,
to show the researcher’s expectation. The research question in the
second example is non-directional, and a = sign is used in H; to indi-
cate the absence of direction.

In hypothesis testing, we are not really interested in whether or
not our sample means differ. They may differ because of random
variation introduced by the sampling process (i.e. error variance —
see Tutorial 7). We are interested in whether or not the population
means differ, therefore the hypotheses are stated in terms of the
population parameter (u) not the sample statistic (x). The mean of
the first population (e.g. individuals in crowds; women) is represent-
ed by w;, and the mean of the second population (e.g. individuals not
in crowds; men) is represented by u,. Once the research question and
hypotheses have been stated, the researcher may proceed to test the
hypotheses empirically. The results of the empirical investigation will
indicate whether the null hypothesis or the alternative hypothesis
should be rejected.

Activity 8.1 Citizen Joe goes to the local supermarket one Sunday morning, chooses

one cucumber, and approaches a checkout till. The till operator swipes
the cucumber across the barcode reader and the till declares that Citizen
Joe owes R111.78. Citizen Joe refuses to pay, declaring that the automat-
ed checkout system has made a mistake. Citizen Joe has just tested and
rejected a null hypothesis. What was the null hypothesis? Outline the
hypothesis testing procedure that Citizen Joe applied.

There are many different tests that can be used to help us decide
which hypothesis to reject. Each test is appropriate only in certain
situations. As you will see, doing the calculations is easy — the

130 NUMBERS, HYPOTHESES AND CONCLUSIONS



difficult part is deciding which test is the appropriate one to use!
This tutorial will discuss only one test, the z-test. You will consider
a second test, the t-test, in Tutorial 9.

The z-test

Statistical decisions are made on the basis of probability and are
always uncertain. Consider, once again, the problem of deciding
whether a die is loaded to show 6. Say you throw the die once and
it shows 6. Would you be convinced that the die is loaded and
purchase it for R100? Surely not? It might have shown 6 even if it is
not loaded. If you throw the die a second and a third time, it may
well show 6 on each occasion, and although you may now be more
convinced that the die is loaded, the three 6s could also have come
about by chance (see Tutorial 5). If you throw the die ten times and
each time it shows 6, you might decide to purchase the die, con-
vinced that it is in fact loaded. However, you may be wrong — the
ten 6s may have been a chance event, and you might not get a single
6 in the next ten throws! However, since it is very unlikely that a fair
die would show 6 ten times in a row —i.e. there is a very small pro-
bability of this occurring — you might decide to reject the null
hypothesis. In hypothesis testing, the researcher must decide how
unlikely an event must be before the null hypothesis can be reject-
ed. We need to define a cut-off point that, once reached, allows us
to stop throwing the die and make a decision.

Roll a die 100 times, recording the result each time. (If you prefer, sim-
ulate this with a spreadsheet program, generating random numbers
between 1 and 6.)

Identify sequences of 6s (i.e. when 6 appears two or more times in
a row). What are the ‘unlikely” sequences? How could you decide
what these are?

The z-test helps us to decide whether or not to reject the null
hypothesis by estimating how likely it is that the sample mean
obtained through research does in fact come from the population
defined by the null hypothesis. If only a very small proportion of
samples in the sampling distribution of the mean have means the
size of our observed mean, we will reject the null hypothesis in
favour of the alternative hypothesis.

Example 1

Thousands of studies conducted in all parts of the world over the
past 50 years have shown that authoritarianism, measured by the
F-scale, is normally distributed and has a mean of 45 and a standard
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Activity 8.2

The z-test allows us

to estimate the

likelihood that the

observed sample

mean comes from

the population

defined by the null

hypothesis.
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The significance

level (o) is the prob-
ability with which we
are willing to reject
the null hypothesis
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when it is correct.

deviation of 78 (high scores indicate greater authoritarianism). A
researcher wants to know whether South Africans are more authori-
tarian than other people. She selects a random sample of 600 subjects
who complete the F-scale. The mean score of this sample is 58. Can
the researcher conclude that South Africans are more authoritarian
than other groups of people?

As a first step, we must state our hypotheses: Ho: wy = w, = 45, and
Hi: wi > wo. The null hypothesis states that the mean authoritarian-
ism score for South Africans is equal to the international mean of 45.
The alternative hypothesis is directional, stating that the mean
authoritarianism score for South Africans is greater than the inter-
national mean.

It is quite clear that the sample mean is different to the popula-
tion mean. However, this may be attributable purely to error vari-
ance. It may have been a random or chance outcome, just like
throwing two 6s with two throws of a die is unlikely, but possible
nevertheless. We expect means of different samples to vary. What
we want to know is whether the sample mean differs so much from
the international mean that we can conclude that the two popu-
lations, i.e. South Africans and the rest of humanity, do in fact have
different means. We make this decision by setting a significance
level. The significance level (represented by the Greek symbol
alpha, «) is the probability with which we are willing to reject the
null hypothesis when it is correct. Statistical convention sets this sig-
nificance level at 0.05 or 0.01. As you can see from Figure 8.1, if our
sample mean falls within the region of the sampling distribution
that includes the 5% most extreme sample means, we reject the null
hypothesis.

Rejection
region

Mz

Figure 8.1 Sampling distribution for a one-tailed test (« = 0.05)

We may reject the null hypothesis incorrectly. Our sample may be
one of those extreme sample means that are legitimately part of the
sampling distribution. This can be likened to throwing ten consecu-
tive 6s with a die: it is a possible outcome, so although we reject the
null hypothesis and conclude that the die is loaded, we may be
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wrong. The area within the 5% region is known as the rejection
region because if our sample mean falls in this area, we reject the
null hypothesis.

The second step in hypothesis testing is to define the significance
level. Since the alternate hypothesis in Example 1 is directional, the
rejection region lies on only one tail of the sampling distribution.
We want to know whether or not our sample mean is greater than
the international mean. Thus the rejection region in Figure 8.1 is in
the upper tail of the distribution. If our hypothesis were that the
sample mean is lower than the international mean, we would place
the rejection region in the lower tail. If we had a non-directional
hypothesis, stating that the sample mean is different to the interna-
tional mean, the rejection region would be placed in both the upper
and lower tails (see Figure 8.2). In this case, the area under the curve
in each tail would be divided by two so that our overall alpha value
remained the same. It is important to state whether the alternative
hypothesis is directional or non-directional because this has im-
plications for whether we conduct one-tailed or two-tailed tests of
significance. We use one-tailed tests to reach decisions about
directional hypotheses, but two-tailed tests to reach decisions about
non-directional hypotheses.

Rejection
region

Rejection
region

Hg

Figure 8.2 Sampling distribution for two-tailed test of significance
(o = 0.05)

What does it mean if our sample mean falls in the rejection region?

(See Figure 8.1.) It could mean one of two things:

1. This sample properly belongs to the sampling distribution of the
mean defined by the null hypothesis, and the null hypothesis is
correct.

2. The sample mean comes from a sampling distribution with a
greater mean, and the null hypothesis should be rejected.

In the first case, the sample mean for the population of white South
Africans is in reality no different from the international mean, but

purely by chance our sample was one of the extreme (i.e. highest 5%
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The rejection region
is the area under
the curve of the
sampling distribution
of the mean that
includes sample
means that would
be observed at
probabilities below
the significance level.
If an observed mean
falls in the rejection
region, the null
hypothesis is
rejected.

If the alternative
hypothesis is direc-
tional, use a one-
tailed test. If it is
non-directional, use
a two-tailed test.
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made by rejecting the
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it in fact is true.

A Type Il error is
made by not
rejecting the

null hypothesis
when it is false.

Activity 8.3

of sample means) but legitimate samples belonging to the sampling
distribution defined in the null hypothesis. Another South African
sample may be much closer to the international mean (also by
chance). In the second case, a sample mean falling in the rejection
region would actually come from a population with a higher mean
than that defined by the null hypothesis (i.e. some population other
than that assumed in the null hypothesis).

Although a sample mean falling in the rejection region could
suggest two different things, when this happens we reject the null
hypothesis. Of course, the decision to reject the null hypothesis may
be incorrect. We may have committed what is termed a Type I error,
by rejecting the null hypothesis when it in fact is true. We make a
Type I error when, for example, we throw ten consecutive 6s with a
die, and decide that the die is loaded to show 6 (i.e. we reject the
null hypothesis that the die is not loaded), when in fact it is not. The
probability of making a Type I error is equal to alpha, o — since 5%
of the sample means from the sampling distribution of the interna-
tional mean fall in the rejection region, the probability of randomly
selecting a mean that falls in the rejection region is 0.05.

The solution to this problem may seem at first to be a simple
modification of the Type I error rate — we could just set alpha to
0.0001, for example. However, we then open ourselves up to com-
mitting a Type I error, i.e. not rejecting the null hypothesis when it
is false. We are in the same position here as when, after throwing ten
consecutive 6s with a die, we decide that the die is not loaded to
show 6 (i.e. we do not reject the null hypothesis), but it is in fact
loaded. We have to balance the likelihood of these errors against
each other — do we prefer to risk the false conclusion that the means
differ, or the false conclusion that the means do not differ? In some
circumstances we will tend to choose the first (where we want to be
sure that we do not miss a research finding), and in others the sec-
ond (where we do not want to risk an incorrect inference that the
groups/conditions in question differ).

The following table is often used to cross-classify decisions and the
true state of the world. Fill in the missing (?) entries, o = 0.05.

Decision True state of the world
Ho True H, False
Rei H Type ? error Correct decision
SIS p=7? p=1-[ = power
i i Correct decision Type ? error
Fail to reject H, p=7? A
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How do we know whether or not our sample mean falls in the rejec-
tion region? We transform our X-value into a z-score and decide
whether this score falls within the rejection region of the standard
normal distribution. To do this, we have to define the rejection
region of the standard normal distribution. Thus, the third step in
hypothesis testing is defining z... (called the critical value). The criti-
cal value is the z-score that brackets the rejection region. From your
table of z-scores you will see that 5% of the distribution lies above a
z-score of 1.645; therefore z... = 1.645 (see Figure 8.3).

The fourth step in hypothesis testing is calculating z.... We calcu-
late zcc by transforming our sample mean into a score on the
standard normal distribution. Returning to the data in Example 1,
we use Equation 7.1 to transform our X-value into ze:

_ X-w  58-45 13 13
Z=TG T 78 T 78 T 3184 ~ 408
Vn V600 24.495

All we have done in this calculation is substitute the data given to us
in Example 1 into the formula to calculate z-scores from X-values.

The fifth step in hypothesis testing is reaching a decision. We reach a
decision by comparing zc. with z. to determine whether z... falls in
the rejection region. This comparison is best done with the aid of a
diagram such as Figure 8.3. As you can see from Figure 8.3, z.. is
bigger than z.. and thus falls in the rejection region. We therefore
decide to reject the null hypothesis and conclude that South Africans
are more authoritarian than other people. We may be wrong (we may
have inadvertently made a Type I error), but given the results of our
study, this is the best decision we can make.

Rejection

T T
0 Zerit = 1.645  Zcaie = 4.083

Figure 8.3 Comparing z.: and z.. for the data of Example 1
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The critical value
(Zai) is the z-score
that brackets the
rejection region.

Decisions about
hypotheses are
reached by
comparing Zeac with
Zi; to determine
whether z. falls in
the rejection region.
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Box 8.4 . L . .
The five steps in statistical hypothesis testing

State the hypotheses.

Define the significance level.

Define the critical value(s).
Calculate the statistic (e.g. a z-score).
Reach a decision.

SUE-SIR NS

The best way to learn the logic and technique of statistical hypo-
thesis testing, in our opinion, is to look at — and attempt — multiple
examples. We therefore finish this tutorial with a number of worked
examples, and encourage you to try as many of the exercises at the
end of the tutorial as you can.

Worked examples

1. We know that the weight of humans is normally distributed
with a variance of 144, and a mean of 73 kilograms. To investi-
gate whether the weight of rural South Africans is different from
this international mean, we draw a random sample of 100 rural
South Africans and calculate their mean weight to be 69 kilo-
grams. Determine whether the weight of rural South Africans is
different from the international mean.

Solution
Research question: Is the weight of rural South Africans different
from the weight of humans in general?

Howi=w =73

Hi:w = we

Note that this is a two-tailed test (non-directional). We decide to
set a = 0.01. This will decrease our chances of making a Type I
error but increase our chances of making a Type II error. We
decide, however, that for this study, it is more important not to
reject a true null hypothesis than it is to accept a null hypothesis
that is false.

Since this is a two-tailed test with 1% of the area lying in the
rejection region, 0.5% of the area must lie in each tail of the stan-
dard normal distribution. To calculate z.i, we must refer to our
tables of z-scores and look up the z-score that cuts off an area of
0.5% (i.e. a proportion of 0.005, which is half of 0.01). From our
tables we determine that this z-value is equal to 2.575. This
means that a z-score of 2.575 cuts off an area of 0.005 in the upper
tail, and a z-score of —2.575 cuts off an area of 0.005 in the lower
tail. Therefore z.i = £2.575 (see Figure 8.4). To determine zc.., we
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Rejection
region

Rejection
region

T T T T
Zeale ==3.333 Zyit=-2.575 0 Zyit=2.575

Figure 8.4 Comparing z.i: and z.. for worked Exercise 1

substitute the information that we have into the formula to cal-
culate z-scores from X-values:

_ R-u 69-73 -4 -4
z="5 T 12 T127 1277333
Vn V100 10

As Figure 8.4 shows, z... = —3.333 is smaller than z. = -2.575
and thus falls in the rejection region. We therefore reject the null
hypothesis and conclude that the weight of rural South Africans
is lower than the international mean.

Discussion

If you take a look at Example 3 of Tutorial 7, you will note that the
sample weight for rural South Africans falls outside the 99% con-
fidence interval. We can use confidence intervals to test hypothe-
ses because both hypothesis testing and confidence intervals rely
on the notion that a sample drawn from the sampling distribution
has a certain known probability of having a mean greater than or
less than a specified value. Confidence limits are values that
bracket a certain proportion of means on the sampling distribu-
tion. The 99% confidence limits bracket 99% of the means in the
sampling distribution. For a sampling distribution with a mean
equal to 73 and a variance equal to 144, the 99% confidence limits
are 69.91 and 76.09. These confidence limits, once transformed
into z-scores, are equal to £2.575, the critical value for a hypothe-
sis test with « = 0.01. Thus a score of 69 falls outside the confi-
dence interval, and its corresponding z-score (i.e. —3.333) falls in
the rejection region. Confidence intervals and hypothesis testing
are similar ways of using the sampling distribution of the mean
to define the probability with which we can expect a particular
sample mean to be drawn from a parent population. In hypothe-
sis testing, however, if this probability is very small, we decide to
reject the null hypothesis and conclude that the sample mean in
fact comes from a different parent population.

TUTORIAL 8: HYPOTHESIS TESTING: THE Z-TEST

137



138

2. Research conducted around the world has shown that the Con-

servatism scale, a measure of conservative ideological beliefs, is

normally distributed with a mean of 45 and a variance of 45. To

test the theory that conservatism originates in strict parenting, a

researcher draws a sample of 45 adults who have had a very

strict upbringing. The mean for this sample is 47.

a) Does the data support the hypothesis that strict upbringing is
related to high levels of conservatism (set o« = 0.05)?

b) If the mean for the sample was found to be 47, would the
data support the hypothesis that there is a difference in
conservatism between this group of subjects and the interna-
tional mean (set « = 0.01)?

c) What is the chance of making a Type I error in (b) above?

d) What is the difference between the chance of making a Type
II error in (a) and (b), above?

e) Between what mean scores would you expect 80% of all
randomly selected samples of size 100 to score on the
Conservatism scale?

Solutions
a) Ho: wi = wo = 45; Hi: wi > we (or w > 45); one-tailed z-test;
a = 0.05; zai = 1.645
X-u 47-45 2 2

=76 T 671 T e 172

Vn V45 6.71

Za falls in the rejection region (see Figure 8.5). We therefore
reject the null hypothesis and conclude that strict upbringing is
related to high levels of conservatism.

Rejection
region

T l' T
Mz z=1645 z=2

Figure 8.5 Comparing z.: and z.. in Worked example 2a

b) Hy: wi = 45; Hi: w = 45; two-tailed z-test; o = 0.01; zie = £2.575.
From 2a), we know that z.. = 2.0, therefore z... does not fall
within the rejection region, and we cannot reject the null
hypothesis. We conclude that there is no difference in conser-
vatism scores between this group and the international mean
(see Figure 8.6).
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Rejection
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Rejection
region

I

T
z=-2.576 z=2 z=2576

Figure 8.6 Comparing z. and z.. in Worked example 2b

c) a = 0.01 (remember that the Type I error rate is by definition
equal to o).

d) You do not yet have the techniques that would allow you to
exactly calculate a Type Il error rate. However, note that there
is a higher chance of making a Type I error in question (a)
than in question (b), and therefore there is a lower chance of
making a Type II error in question (a) than in question (b)
(given that all other details are identical).

€) X=u+z 2 =45 (1.28 x 1) (See Equation 7.3.)
Vn

s X =43.72 and 46.28

Summary

1.

Hypothesis testing is a logical and empirical procedure whereby
hypotheses are formally set up and then subjected to empirical
test.

The null hypothesis is a statement that there is no difference
between groups or conditions. The alternative hypothesis is a
statement that there are differences between groups or condi-
tions. The alternative hypothesis can take two forms depending
on the nature of the research question: it can either be direction-
al or non-directional.

The z-test helps us to decide whether or not to reject the null
hypothesis by estimating how likely it is that the observed sample
mean comes from the population defined by the null hypothesis.

The significance level () is the probability with which we are
willing to reject the null hypothesis when it is correct.

A Type I error is committed by rejecting the null hypothesis
when it in fact is true. A Type Il error is committed by not reject-
ing the null hypothesis when it is false.
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. We reach decisions in hypothesis testing by comparing z... with

Zerit to determine whether z. falls in the rejection region.

. Statistical hypothesis testing involves the following five steps:

a) State the hypotheses.

b) Define the significance level.

¢) Define the critical value.

d) Calculate the z-score for the sample mean.
e) Reach a decision.

Exercises

1. State the null and alternative hypotheses for the following

research questions. State all hypotheses twice: first in words and

then in symbolic form.

a) Do girls play less roughly than boys?

b) Are people living in colder climates more susceptible to
catching colds and flu than those living in warmer climates?

¢) Do people above the age of 50 have a different metabolism
from younger people?

d) Are men violent?

e) Do extremely wealthy people have different attitudes towards
the poor from people who are less wealthy?

f) Are women sensitive?

. A researcher for the Department of Justice conducts a survey to

estimate the attitudes of South Africans to the introduction of the
death penalty. The researcher measures attitudes on a scale that
ranges from strongly opposed (-10) through neutral (0) to strongly
in favour (+10). The survey reveals that the scores on the attitude
scale were normally distributed with a mean of 5 and a standard
deviation of 13. Assume that these are population values. The
researcher is also aware that the population in Cape Town appears
to be more vocal about the disadvantages of the death penalty than
people from other cities. He decides to conduct the very same atti-
tude survey on a random sample of 100 Capetonians, and discov-

ers that the mean score is 1.

a) Test the hypothesis that Capetonians have a different attitude
to other South Africans regarding the introduction of the
death penalty (o = 0.01).

b) Are Capetonians more opposed to the death penalty than
other South Africans (« = 0.01)?

¢) What is the chance of making a Type I error in the above
tests?

d) How would the chance of making a Type I and Type II error
change if we changed the significance level to a = 0.05?
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e) If the researcher conducts the survey on a random sample of
50 Capetonians, would he still find that there is a difference
between their attitudes and those of other South Africans
(e = 0.01)?

3. From the records of the Department of Education, we discover
that matric results for the previous five years were normally
distributed with a mean of 62% and a variance of 168. The edu-
cation authorities identified ten schools around the country
where they suspected that examination papers had been leaked
and decided to test whether students from these schools had
performed better at their examinations (i.e. through cheating)
than would have been expected. They drew a random sample of
150 pupils from these ten schools and calculated their mean
result to be 63.8%.

a) Did pupils from these ten schools perform better than expect-
ed (a = 0.05)?

b) Conduct an analysis on the same data to test the research
question of whether the pupils performed differently from
expectation (a = 0.05).

c) The two tests result in different conclusions. Explain why.

d) What is the chance of making a Type I error in the above
tests?

e) How would the chance of making Type I and Type II errors
change if we altered the significance level of the tests to
a =0.01?
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TUTORIAL [-tests

David Nunez

After studying this tutorial, you should be able to:

® Compute the standard error of a sample
distribution.

® Check that a dataset does not violate the
assumptions required for a t-test.

® Set up a hypothesis test for comparing
distributions.

® Decide on the appropriate t-test subtype for a
given design.

® (Calculate a t-value.

® (Calculate the degrees of freedom for a
t-calculation.

Research questions in the social sciences are often about group
differences. Does an experimental group score differently to a control
group? Do men and women differ? If we could access these popula-
tions we could simply calculate the means (Us) to identify differ-
ences. However, because we seldom have access to populations, we
need to decide whether groups differ by inspecting the distribution
of sample scores. The t-test is used to determine whether the means
of two samples are sufficiently different to conclude that they in fact
are drawn from two distinct populations, or whether the scores
suggest that both samples come from single population.

The difficulty in using sample statistics rather than population
parameters is that samples only estimate populations. The Central
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Limit Theorem tells us that if we draw two samples from a popula-
tion and calculate the means of these samples, we can expect to get
two slightly different scores (see Tutorial 7). In fact, the Central
Limit Theorem tells us that we can expect the means of samples to
follow a particular distribution — the sampling distribution of the
mean. Our sample means are not exact representations of the popu-
lation mean, but rather differ slightly (on average, by an amount
indicated by the standard error — the standard deviation of the
sampling distribution of the mean). This variation is the reason why
we cannot simply look at the sample means when we want to see
how population means differ.

Clearly, we need to overcome the ambiguity imposed by the
standard error. How do we do this? The t-test provides a mecha-
nism. Basically, the t-test scales the difference between the sample
means by an estimate of the standard error. This way, we can deter-
mine if the difference between the means is large in relation to the
standard error. If this is the case, then the difference probably also
exists at the level of populations (the level of this probability is
determined by the distribution of ¢, which we will explain later).

Thinking of the t-test graphically

The aim of the f-test is to compare distributions that are normally
distributed. We can represent such distributions with a bell curve.
Imagine we have two distributions, as in Figure 9.1. How can we
tell if they actually derive from the same population?

The t-test is used
to compare two
(estimated)
population means.

10 20 30 40 50 60 70 80 90 100 110 120 130

Figure 9.1 Figure 9.2

These two distributions are obviously not the same. A covers lower
scores (more to the left), and B covers higher scores. We can see that
they are not overlapping; this means that scores from A are extreme-
ly unlikely to show up in a sample drawn from B. Now consider the
situation in Figure 9.2. Here, the distributions overlap. The scores in
the region represented by the grey bar are just as likely to belong to
either distribution. Although the distributions look quite separate,
we might say that they are similar, because they share quite a num-
ber of scores. Now consider a final situation — Figure 9.3. Here the
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The t-test allows us

to determine the

degree to which two
distributions overlap.

Activity 9.1

The degree to which

two distributions
overlap is deter-
mined by the

difference between
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the means and
variance of each
sample.

distributions are overlapping markedly, and it is beginning to look
as if they are definitely the same. The grey bar (common scores) is
much larger. This is what the t-test does, in essence — it allows us to
see how much the two distributions overlap. This overlap is com-
puted by taking into account the distance between the means of the
distributions, and also considering the width of the distributions
(their variance).

Get some pieces of transparent plastic and an overhead marker pen.

Draw a set of four normal curves: two with high variance (very wide),

two with low variance (very narrow). Place two of these curves on

top of each other to create an image similar to Figure 9.3. Using these
curves, investigate the following:

a) To what extent does the difference (distance) between the means of
the curves affect how much they overlap if both curves have the
same or different variances?

b) If both curves have a fixed, known mean, how does the variance
affect how much they overlap?

Common concepts behind the t-test

There are different types of t-tests, and the selection of the correct
one depends on the situation you are studying. In this chapter we
will first introduce the common concepts at a conceptual level, and
then we will look at the specific formulas and calculations involved
in performing each of the subtypes.

The general form of the t-test equation

Regardless of the specific type of t-test being performed, the t-test
formula always has the same general form (see Equation 6.1):

f o difference between the means

standard error

This general form should be familiar to you, as it is very similar to
the z-score transformation:

__ difference between score and population mean X— W

standard deviation of the population o

The central difference between a t-test and the z-score transforma-
tion is that the population parameters (u and o) do not have to be
known to perform a f-test. This difference is important, because in
the large majority of cases the population parameters are unknown.
Thus, the t-test can be used when we only have information from
our sample.
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When performing a t-test, however, we are still interested in
making claims about the population; in other words, we want to
make claims of statistical significance. In order to do this with the
z-test (see Tutorial 7), we had to scale the difference by the popula-
tion standard deviation. In a f-test, we do something similar, but
rather than relying on the exact population standard deviation, we
make use of a sample-based estimate. It is possible to make this esti-
mate, thanks to the Central Limit Theorem. The theorem specifies
the standard error of the sampling distributon of the mean. Recall
that:

Ty

The problem with this equation is that we require the population
parameter, o, which we often do not have. The t-test allows us to
test differences between means using an estimate of the standard
erTor:

The fact that this is not the actual population variance, but rather an
estimate is shown by the symbol used (i.e. s not o). This estimate is
referred to as the standard error of X (see Tutorial 7). This term lies right
at the heart of the t-test, and one of the most important issues in this
test is ensuring that our approximations are appropriate and correct.

Use the standard error formula to calculate the standard error of the
following samples:

a) 5,12,14,6,3,7

b) 53,57, 53,62, 63,52, 53

c) 12,14,10

d) 12,14,25

Sadly, calculating the standard error is not always quite as simple as
the formulas above suggest. Because in many t-tests there are two
separate samples, it is important to use the variance of both of these
samples to estimate the population standard deviation. How this is
done depends on a number of factors, such as the relative sizes of
each of the samples and the relative difference in the variance of the
samples. Later in this chapter, when we deal with specific subtypes
of the t-test, we will discuss how to do this for each case.

Interpreting a significant result on a t-test

Once you have completed your t-test, you will have made a decision
to reject (or not reject) Ho. In order to understand what your conclu-

TUTORIAL 9: T-TESTS

Unlike a z-test,

no population
parameters are
needed to perform
a t-test.

The standard error
is the standard
deviation of the
sampling distribution
of the mean (the
distribution created
by taking repeated
sample means from
a population).

Equation 9.1

Activity 9.2

145



To

da

146

analyse your data
with a t-test, the
ta need to comply
with the assump-
tions of normality,
homogeneity of
variance, and
independence.

sions means, it is necessary to think back to the meaning of the null
hypothesis. The purpose of a t-test is to evaluate the difference
between two means, so in most cases the null hypothesis states:

Ho: i = wa

Thus, the hypothesis is that the two means are equal. If we reject the
null hypothesis, we are saying that it is false. So, if we reject the
above hypothesis, we are actually saying that the two means are not
the same.

‘Not the same’ can have various meanings. For example, if mean
1 is larger than mean 2, then they are not the same. Also, if mean 1
is smaller than mean 2, they are not the same. Thus, to clear up the
confusion of what we mean by ‘the means are not the same’, we
state it, either by means of a directional or non-directional alterna-
tive hypothesis.

Assumptions about the data

Only certain datasets are suitable for analysis with t-tests. The
mechanism of the ¢-test makes certain assumptions about the data,
so it is important that you check to see if your data violates any of
these assumptions before you begin. If your data is not suitable for
this analysis, and you do use it, the results you get will be inaccu-
rate, and your conclusions incorrect. Please note that not all types of
t-test rely equally heavily on each of the assumptions. When we
describe the specific subtypes below, we will mention which are the
most important assumptions for each type.

1. The assumption of normality

It is assumed that all the samples you are analysing have been
drawn from populations that are normally distributed. To test for
normality, you can use formal tests of normality (although these
tests are beyond the scope of this chapter). You can get
arough idea if data is normally distributed by drawing a histogram
of the data and examining the shape of the distribution. If the his-
togram has a bell shape, then it is probably normally distributed.

2. The assumption of homogeneity of variance

If your samples have variances that are highly different, then it
is difficult to get accurate results from a t-test (see the section on
coping with heterogeneity of variance later in the tutorial). This
can be formally checked for, but is quite complex. We can ‘cheat’
and say that if the two variances differ by a factor of less than 4,
the variance is probably homogenous. This is a rule of thumb, so
it is not perfect, but seems to work a lot of the time. Apply the
following calculation to check for this:
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st Equation 9.2

where:  k is the ratio of the largest to the smallest variance
and s} is the larger and S, the smaller of the two variances

If, after performing the above calculation, you get a value of 4 or

more, your two variances are too different to use a t-test. Please

note that this is not a fixed rule - it is simply a rule of thumb.

Some statisticians insist on ratios of 5 or more; some are willing to

go with less.

Do the following pairs of datasets show homogeneity of variance? Activity 9.3
Use the ‘times four” method described in the tutorial.

a) st=21.8994; s2= 15.3448

b) s = 26.8994; s = 3.3448

c) si = 17.13025; s, = 8.50541

3. The assumption of independence If the same sample
The majority of t-tests (with the exception of the repeated meas-  of cases is used to
ures t-test) assume that the samples the means were calculated ~ geénerate both distri-
from did not influence each other’s scores in any way. For exam- butions of scores,

le if llect two datasets f th : 1 those scores are not
ple, if you collect two datasets from the same group of people (s . dependent.
in a pre-test/post-test design), then these two datasets are not
independent.

Subtypes of t-tests

Now that we have considered the concepts behind t-tests in general,
we can consider the different specific types of t-tests. For each of
these tests we will present an example of when it would be useful.

1. One-sample t-test

Recall that the z-test was used to determine whether a sample mean
differed from a population mean. We could use the z-test because
we had the value for the population standard deviation. The one-
sample t-test uses a similar formula to the z-test, but the standard
error is estimated from the sample standard deviation.
The formula for the one-sample t-test is as follows:
p=X - w Equation 9.3

Vn

where: X is the mean of the sample
u is the mean of the population
s is the standard deviation of the sample
n is the sample size
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Activity 9.4

Compare Equation 9.3 and Equation 7.2. Notice that the two
equations are similar, but that the ¢ formula does not require that we
know the population standard deviation.

The same 5-step procedure is used to test hypotheses with the
t-test as was used with the z-test (see Box 8.4). There is only one
slight complication. Since we used s rather than o in determining ¢,
the critical value for t has to be adjusted to take into account the fact
that we are estimating the standard error from the sample variance.
Since this estimate will be more accurate with larger samples, the
sample size has an impact on the value of t... In statistical termi-
nology, the value of t..: is determined by the degrees of freedom. For
the one-sample t-test the degrees of freedom are given by the
following formula:

df =n-1
where:  df stands for the degrees of freedom
n is the sample size

When looking up critical values on the t-table (see Appendix 1), we
need to select the value corresponding to the correct degrees of free-
dom. Refer to the t-table in Appendix 1. The first column gives the
degrees of freedom, and the other columns give t values at different
levels of a. If we conduct a f-test with a sample size n = 25, our
df = n -1 = 24. If we are conducting a two-tailed test with
o = 0.05, our critical ¢ value is 2.0639.

To sum up, the one-sample t-test is used to determine whether a
sample mean differs from a population mean. The following null
hypothesis is tested:

Ho: u = €; where ¢ is a particular value (e.g. Ho: p = 70).

We use the formula for ¢ to compute the observed value, and look
up tei on the t-table, taking the degrees of freedom into account.

Identifying the correct type of t-test for a given situation is very
important. For practice, go to an academic library and collect 10 jour-
nal articles which make use of a two-group design — if possible try to
find studies where the data was analysed using a t-test. Turn to the
section of each study where the analysis is discussed, and decide on
the correct type of t-test to use.

Worked example 1

We are asked to determine if a new meditation technique can help
reduce the intensity of panic attacks. We measure the severity of
panic attacks by asking participants to rate the intensity of attack on
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a scale from 1 to 20. From years of using this method, it is known that
panic attack sufferers give a mean rating of 14 (i.e. the population
mean is 14). We teach the new technique to a group of panic attack
sufferers, and ask them to rate their next attack. We collect the fol-
lowing data: 12, 18, 8, 21, 17, 12, 14, 9, 3. We need to calculate f and
thus determine if this sample was drawn from the population which
has a mean of 14 (i.e. if the meditation has an effect on the panic
attack severity). Use a = 0.05 and a two-tailed test: Hy: u = 14,
Hi: p = 14.
We begin by calculating the basic descriptive stats:

X =12.667;s = 5567;,n =9

We work out the standard error:

s  5.567
Vo = Vo — 185

Now we are ready to calculate t:

X—W 12.667 — 14
= = =-0.719
! s 1.855

Vn

The degrees of freedom for this calculation are n —1 = 8. The critical
value for this calculation (a0 = 0.05; two-tailed test) is 2.306. This
value is less than our calculated value, so we do not reject the null
hypothesis.

For the problems below, use a two-tailed test with o = 0.05. flediiy 68

a) Calculate t and determine if this sample is drawn from a popula-
tion with a mean of 12:
12,10,17, 8,13, 14, 6,19, 12, 11

b) Calculate t and determine if this sample is drawn from a popula-
tion with a mean of 135:
127,73, 118, 123, 89, 122

2. Independent samples t-test
This test is used to compare two distributions that are independent  The independent
of each other. The independent samples t-test is suitable in most sit- ~ samples t-test is
uations where you have created two separate groups by random u§ed to find a
assignment. It is not necessary to have equal sample sizes for your ~ difference between

. oo . the means of two
samples. It is quite important to ensure that the assumption of

. . . . . independent samples

homogeneity of variance is not violated for this test, but note that

. ) . . (e.g. separate
there are corrective formulas if you do violate the assumption. groups of subjects).
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Equation 9.4

Use the pooled
variance as your
standard error
estimate unless the
sample variances are
not homogenous.

Equation 9.5

Equation 9.6

Equation 9.7

Use separate
variance estimates if
the variances of your

two samples are
highly different (i.e.
one variance is at
least four times as
big as the other).
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The following formula applies to independent samples:

§1—§z
="

5% — %

where:  x; is the mean of the first sample
X.is the mean of the second sample
Sx

— % 1s the estimate of the standard error

Pooled variance

Because there are two completely independent samples used for this
test, it is problematic to approximate the shared standard error by
making use of the variance of one of the samples only, especially if the
sample sizes are quite different. To avoid this difficulty, we can find
an average variance of the two samples. To ensure that the larger sam-
ple does not overwhelm the smaller, we use a weighted average,
referred to as the pooled variance, and given by the formula:

m-1)s+m-1)s]

2 _
S, =

n+n,—2
where:  n,is the sample size of the first sample
n, is the sample size of the second sample
siis the variance of the first sample

s;is the variance of the second sample

Use the squared root of the pooled variance as your estimate of the
standard error in Equation 9.4. Thus:

X =X,
11
Sp n tn

Degrees of freedom
For an independent samples t-test use the following formula:

df=n,+n,-2

where:  n; is the sample size of the first sample

n, is the sample size of the second sample

Dealing with heterogeneity of variance in the samples
If your data does not have homogeneity of variance, it is still pos-
sible to analyse the data by making a few changes to the procedure.
These changes will lead to your test being more conservative,
however.

There are two changes involved. The first is to not pool the
variance, but rather use the separate variance estimates formula:
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s s Equation 9.8

Sx-%, =

where: slis the variance of the first sample

s;is the variance of the second sample
n;is the sample size of the first sample
n,is the sample size of the second sample

The second change is to use a different formula for degrees of
freedom. Rather than using the formula presented above, calculate
n; — 1 and n, — 2 separately and use the smaller of these values as your
degrees of freedom.

Worked example 2

We are asked to investigate whether a new technique for teaching
mathematics to dyslexic children is effective. To this end, we use the
new teaching method on a class of dyslexic children. We prepare a
maths test, and administer this test to the class we have taught with
the new method, as well as to another dyslexic class in a nearby
school, who have been taught with traditional methods.

Because the classes have no common factors between them, we
can think of them as independent samples. We name the class
taught with traditional methods A and the class taught with the
new method B. The results (marks out of 100) for each child are
presented in Table 9.1.

Table 9.1 Marks for two remedial mathematics classes

A: 15 23 45 23 43 12 43 27 32 18 19 26 28 23
B: 83 74 85 52 69 46 73 67 85 45 86 34 56 57

Did the new method work? We will need to calculate the value of
t for these two datasets. Based on that value, we will decide if the
two samples have been drawn from separate populations.

First, we work out the basic descriptive stats for each variable
(we will need these later).

A:X=2693 s>2=109.61 n=14 B: X =65.14 s>=1289.67 n=14

Next, we decide if we should use pooled variance or separate esti-
mates. The ratio of variances (**%7p6 = 2.64) is less than 4, so we
decide to use the pooled variance:

o (14-1)10961 + (14-1)280.67 _ 142493+ 376571 _ 5190.63
P 14+14-2 26 26

= 199.64

TUTORIAL 9: T-TESTS 151



Activity 9.6

The repeated
measures t-test is
used to compare
means when the
samples are not
independent. It is

also known as the
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related samples
t-test.

We will need the square root of this number, which is 14.13
Now that we have our standard error estimate, we can calculate ¢.

X=X 2693-6514 _ 3821 _
e ( 1 ) 5.34
1413 37+ 17

We now need to perform a hypothesis test using this data. As no
‘tailness’ is given, we will assume a two-tailed test (the most inclu-
sive option). The first step is to determine the null and alternative
hypotheses:

Ho: W = W

Hiw = wo

We need the degrees of freedom.
df=n-n,-2=14+14-2=26

We are not told alpha, so we will assume a = 0.05. Using df and a,
we consult a table of critical ¢ values. The value given (for a two-
tailed test) is 2.056.

Since 2.70 > 2.056, we reject the null hypothesis.

We conclude that the two samples were not drawn from the
same population —i.e. we conclude that the children taught with the
new method are performing better than those taught with the
traditional method. Refer back to Figures 9.1 to 9.3. Which best
represents the two samples in this exercise?

For each of the following pairs of data, A and B, calculate f and decide
if the samples were drawn from the same populations. Assume all
tests are one-tailed, . = 0.05.

a) A:12,13,15,18,11,9, 12 B: 15,15, 19, 11, 14, 16

b) A:102,97,57, 106, 12, 15 B: 125, 89, 102, 107, 112, 103

c) A:53,6,7 B:3,1,4,2,1,4

3. Repeated measures t-test

If you cannot ensure independence between your two datasets, you
can still compare the means of your data using a repeated measures
t-test (provided the other two assumptions have not been violated).
For example, if you were conducting a drug trial and wanted to test
the number of illness symptoms before and after taking the drug,
this would be the test to use (because the same subjects are used for
both samples and thus the scores are not independent).

Creating the variable ‘D’
To test samples which are related in some way, we create a new
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variable D, which is the difference between the two measurements:
Di=x- Yi

where:  x; is the i observation of the first variable (x)
yi is the i observation of the second variable (y)

In practical terms, what we do is create a new variable which has
the same sample size as the other variable, and then subtract the
scores on one variable from those on the other variable to create a
score for D. For example, if we had a set of observations for 2 vari-
ables (x and y), which are related, we simply subtract y from x for
each successive score, as shown in Table 9.2. Be careful to subtract

Table 9.2 Calculating D in the related samples t-test

X 10 14 9 13 12 1
y 4 8 12 1 12 4
D 6 6 =3 2 0 7

the correct x from the correct y, as we are interested in the difference
exhibited by a subject! Once we have this variable D, we will forget
about x and y for the remainder of the analysis — we will need to
work out the mean and variance of D, instead. To analyse D, we will
compare its mean (the mean difference score) to a hypothetical
mean score of zero. In other words, we are testing the hypothesis
that the difference between our variables is zero. To work out f, we
use the following formula:

where: D is the mean difference score
spis the standard deviation of difference scores
n is the number of difference scores

Degrees of freedom

The degrees of freedom for the repeated (or related) measures t-test
is equal to the number of pairs of observations minus one, i.e.
df = Np — 1.

Unequal sample sizes for x and y

Usually, there will be the same number of observations for x and
for y. However, it may happen (through participant drop-out, for
example), that some scores may be missing. Because we need pairs
of observations to calculate D, missing data can be a problem. To
cope with this, we can use a strategy known as casewise deletion,
where we simple ignore any subject for whom we do not have a full
set of observations (i.e. both an x and a y).
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D is a variable
created by
subtracting the
scores of the first
measurement from
those of the second
measurement for the
same subject.
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Worked example 3

We are investigating whether a new medication to combat insomnia
is effective. We recruit a number of insomniacs, and ask them to
record, over a two-month period, how many sleepless nights they
experience. Once the two months elapse, we give them the new
medication, and ask them to do the same for another two months.
Because we are using the same subjects, this is a repeated measures
design. We collect the data shown in Table 9.3, and need to calculate
t to determine if the improvement was statistically significant. The
hypotheses are: Ho: i = pp, Hi: wi < o

Table 9.3 Sleepless nights for insomniacs on medication
treatment with difference variable

Before 30 32 27 37 32 26 31 30
After 42 40 26 31 47 23 40 31
D =12 -8 1 6 =15 3 =3 =1

Firstly, we create D by using D = before — after.
Then we calculate basic descriptive stats of D (we will no longer
need the values of before or after).

D =-4375;sp=7.6333;n = 8

We calculate the standard error:

sp 76333 7.633

Vn = V8 2828 ~ 2098

With these, we can go ahead and calculate ¢:

D 4375

t—<S_D> = 2828
Vn

The degrees of freedom for this calculation are n — 1 (n of the D
variable, that is) which is 7. We can then determine if the result is
significant as we did in the example above. If the result is significant,
it means there is a difference in the distribution of scores before and

=-1.6211
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after the medication. If it is not significant, the two distributions are
the same — the medication made no significant difference.

In the following datasets, the variables A and B are related samples.

For each, calculate t and determine if the results are statistically sig-

nificant. Assume the tests are one-tailed with o = 0.05.

a) A:10,8,15,3,10,11,12,8,15,12 b) A:104, 103, 110, 103, 102, 101
B: 10, 10, 12, 9, 10, 12, 15,5, 12,5 B: 106, 110, 109, 124, 123, 104

Summary

1.

t-tests are used to determine the difference between means in
situations where we have to estimate the population standard
deviation from sample data.

Computing ¢ involves comparing the difference between the
means with the standard error, which is the standard deviation of
the sampling distribution of the mean.

There are three variants of the ¢-test: one-sample t-tests, independ-
ent samples t-tests and repeated measures (within-subjects) ¢-tests.

The t-test is only appropriate when the data complies with the
assumptions of normality, homogeneity of variance, and inde-
pendence.

Doing t-tests with Microsoft® Excel

Excel works for related samples t-tests, and independent samples
t-tests. It does not provide a function for directly calculating one-
sample t-tests (although this can be done — see below).

Setting up your data: you can set out your data either in rows or
columns. Place each variable (sample) in its own column. Excel will
happily deal with unequal sample sizes; it will compensate using the
case wise deletion strategy.

Calculating p: Once your data is entered, you will use the function
TTEST. The arguments are:

TTEST (first sample, second sample, number of tails, t-test type)

where:  first sample = the extents of the array (i.e. the cells on the
spreadsheet) containing your first sample’s data
second sample = the extents of the array containing your
second sample’s data
number of tails = (1 or 2) if this is to be a one- or two-tailed test
t-test type = (1, 2, or 3) a code representing the type of
test to be done (1 = repeated measures, 2 = independent
samples with homogeneity of variance, 3 = two samples
with unequal variance).

TUTORIAL 9: T-TESTS

Activity 9.7
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This function returns the p-value for the f-test on your data (but not
the actual t-statistic itself).

Calculating t: If you wish to see the actual value of ¢, use the TTEST
function above, and then use the TINV function to get the t-value.
You will need to know the degrees of freedom for the t-test (this is
not given by the program, so you will have to calculate it manually).
The arguments for TINV are:

TINV(probability, degrees of freedom)

where:  probability = the p-value as obtained from the TTEST function
degrees of freedom = the df of the calculation.

Calculating p if you know the t-value already: In the case of a one-
sample -test, you can work out f yourself, and then get Excel to show
you the p-value for that t. This function is also useful to get the
p-value if you do not have a t-table, or if you want the exact p-value.
The function that does this is TDIST. It takes the following argu-
ments:

TDIST(t-value, degrees of freedom, tails)

where:  f-value = the t-value you wish to know the p of
degrees of freedom = the degrees of freedom of the calculation
tails = (1 or 2) if the test is one- or two-tailed.

Box 9.2
0x9 Doing t-tests with SPSS®

form | Analyze Graphs  Utilties  Window  Help

P Feports L ;
,J Dezcriptive Statistics # :’J:JEI r@@] |
|z Compare Means » Meanz...
E General Linear Model # One-Sample T Test...
E. LCorrelate k Independent-Samples T Test...
1_2",:_ Regreszion k Paired-Samples T Test...
430 Classify b Onedway ANDVA
270 Data Reduction »
32r Scale 3
180  Monparametic Tests  »
191 kultiple Response r
26.00|

Figure 9.4 Analyze menu entries for t-tests in SPSS®

SPSS® will conduct the three f-tests discussed in this chapter. All are
available off the Analyze menu, as shown in Figure 9.4. The data need
to be set up in different ways for the three tests. This is described,
along with the dialog boxes, in Figure 9.5.
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v One-Sample T Test
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# rank D Rezet

# substanc

> varllD00 Cacel

Help

Test Yalue: 190 Dpticts...

One-sample t-test. The data need only be represented in a single column. The dialog box
requires you to define the column for the t-test, and also requires you to specify the value of
¢ in the null hypothesis (see earlier discussion).

WHEiE).

i Independent-Samples T Test

T i :
[ e
Paste
D Beset |
Cancl|
o |

Help

Cancel

KN

Lefine Groups...

Independent groups t-test. The data need to be entered in two columns - one
containing the group codes, and the other the data on the dependent variable. The
dialog box requires you to define the test variable (DV) and the grouping variable.

+ Pared-5amples T Test

# previl - Paired % ariables:

X

#» weape
#> rnarstat

o rank, I:l Reset

# substanc B I
# depress SeE

#) war00004 Help
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Current S elections

Wariablz 1:
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Related sample t-test. The data need to be entered in two columns - one column for each
of the samples, e.g. column 1 for the before data, and column 2 for the after data. The
dialog box requires you to select two variables as the related pair.

Figure 9.5 Data layout and dialog boxes for conducting t-tests in SPSS®

TUTORIAL 9: T-TESTS 157



158

Exercises

1. A study is conducted to investigate whether living in a place

with little sunlight can lead to depression. Researchers recruit
two groups of 20 subjects from two locations. One group lives in
Springbok, which experiences 8 hours of sunlight daily during
winter. The second group is recruited from Moscow, which
experiences only 4 hours of sunlight daily during winter. On the
winter solstice (the middle of winter), each group has their
depression levels measured using the Beck depression inven-
tory, which scores depression on a scale of 1 (no depression) to
10 (extreme depression). The following data are collected:

Springbok  2,4,3,2,2,3,2,7,1,1,2,3,2,1,6,3,4,2,3,3
Moscow 56,7,665,8,52,41,1,7,6,9,10,8,7,9, 4

Are the researchers correct in suggesting that living with low
levels of sunlight can lead to depression?

. You are investigating whether psychotic behaviour has a physio-

logical basis. Specifically, you suspect that the substantia nigra, a
small dense mass of the brain, is reduced in psychotic individuals.
It is known that the average diameter for the substantia nigra
in human adults is 13 millimetres. You obtain the brains of
15 deceased psychotic adults and dissect them to measure the
substantia nigrae of these brains. Your measurements are as follows
(measurements in millimeters):

Diameter 11,15,7,14,9,12, 16,9, 8,11, 13, 12, 15, 12, 11

Determine from these data if the substantia nigra of your
psychotic sample is indeed reduced.

. The previous study (from 2 above) is criticised on the basis that

the 13-millimetres average used is outdated. To silence these crit-
ics, you decide to do a longitudinal study: you will measure the
diameter of the substantia nigra of recently diagnosed psychotics,
and compare them to the diameter after 5 years of having the dis-
order. This time, you make use of Magnetic Resonance Imaging
(MRI) scans of patients to measure the substantia nigra. Fifteen
patients who have been diagnosed with psychosis less than 1 year
ago agree to take part in the study. Your measurements are:

Measurement 1 13,12, 16, 14, 13,15, 17, 13, 14, 16, 13, 16, 13,
19,12

After 5 years have elapsed, you contact as many of the patients
as you can. Unfortunately, you are only able to contact 9 of them.
You again measure (NA in the table means that patient was not
available for a second measurement):
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Measurement 2 9,10, NA, NA, 10, NA, 11, 10, NA, 17, 9, 8,
NA, 16, NA

Has there been a significant reduction in the size of the substantia
nigra of these patients?

4. Alocal basketball team is concerned that the current coach is not
training the players well. Specifically, they are concerned that
the team scored more points per game under the previous coach
than under the current one. You offer to analyse their perform-
ance under each coach to settle the question. You are given the
number of points scored for each game under the previous coach
and under the current one:

Current coach 86, 82,90, 92, 85, 82, 93, 80
Previous coach 120, 45, 100, 80, 54, 108, 67, 54, 112, 43, 86, 90

Is the team performing any differently under the new coach?
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10

Lance Lachenicht

After studying this tutorial, you should be able to:

® Understand and work with paired data.

® Depict paired data points in a scatterplot.

® Understand the concept of a best fitting line.

® Be able to find the coefficients of a best fitting

line.

Be able to make predictions from a regression

equation.

® Understand the limits of making predictions from
a regression equation.

® Understand that scatter depicts the strength of a
relationship between paired data points.

Paired data

Data are usually collected from a sample of things or people. Often
the researcher will just take a single measure from each person or
item. Sometimes however, data may be collected in pairs. Paired
data allow us to examine quite different things to what single meas-
ures allow. If we have paired data, we may be able to determine the
relationship between the two measures. To use a simple example,
look at Table 10.1, showing ‘Per cent ever practising family plan-
ning’, ‘Expenditure on family planning’, ‘Per cent urbanised’, and
‘GNP per capita’ for 15 countries in 1982. The source (Cliff, 1996,
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p- 109) from which this table is taken is not clear about the units, but
we can presume that ‘Per cent ever practising family planning’ and
‘Per cent urbanised’ are percentages of the country’s population.
‘Expenditure on family planning’ is probably measured in millions
of dollars, while ‘GNP per capita’ is in dollars.

Table 10.1 Selected characteristics for 15 countries

Expenditure Per cent GNP Per cent ever

on family urbanised per capita  practising family

planning (x;) (x2) (x3) planning (y)
Lesotho 0 4 73 6
Kenya 6 4 108 9
Peru 0 17 367 14
Sri Lanka 12 20 142 22
Indonesia 14 9 61 25
Thailand 20 8 142 36
Colombia 16 47 284 37
Malaysia 18 29 313 38
Guyana 0 20 318 42
Jamaica 23 8 593 44
Jordan 0 53 197 44
Panama 19 50 570 59
Costa Rica 21 18 464 59
Fiji 22 15 321 60
Korea 24 15 188 61

Graphing paired data

Regression analysis may be thought of as a refined way of analysing
scatterplots. So we need to begin our analysis of the family planning
data in Table 10.1 by creating a scatterplot of the data (x; and y).
This scatterplot is shown in Figure 10.1 on the next page. Is there
any pattern in the scatterplot showing a relationship between ‘Per
cent ever practising family planning” and ‘Expenditure on family
planning’?

The relationship depicted in Figure 10.1 is actually fairly clear: as
expenditure on family planning increases, so does the percentage of
the population ever having practised family planning. You should
note the possible ‘outlier” points associated with countries spending
nothing on family planning that seem to deviate from the pattern
(i.e. a fairly high proportion of their populations has at some time

TUTORIAL 10: REGRESSION

Scatterplots can
diagnose outlier
points.
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Data for regression
is collected in pairs,
i.e. measurements of
two variables are
collected on the
same person or
entity.

The x variable,
plotted on the
horizontal axis, is
known as the
predictor (or
independent)
variable. The

y variable, plotted
on the vertical axis,
is known as the
criterion (or
dependent) variable.
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tried family planning). It is possible that the data from these coun-
tries is incorrect or unavailable, or even that these countries may
benefit from the family planning expenditure in a neighbouring
country:.
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EXPENDITURE ON FAMILY PLANNING
Figure 10.1 Scatterplot of family planning data

A caveat (or warning) is in order at this stage. The paired data
should be collected from two independent measurements. This means
that, for example, the second datum in each pair should not be
created by mathematically manipulating the first datum in each
pair in any way, nor should they be two measures of the same thing.
If the first datum and the second datum in each pair are not inde-
pendently derived, you will almost certainly find a strong regres-
sion relationship between them, but that relationship may not
correspond to any relationship in the real world. Thus, a perfect
correlation between daytime temperature in degrees Celsius and
degrees Fahrenheit tells us nothing about the weather. It only
indicates that the temperatures on the two different scales are
mathematically related.

In regression analysis, the x variable, plotted on the horizontal
axis, is known as the predictor (or independent) variable; and the y
variable, plotted on the vertical axis, is known as the criterion (or
dependent) variable. In the dataset of Table 10.1, our predictor
variable is ‘Expenditure on family planning’ and our criterion
variable is ‘Per cent ever practising family planning’. Note: You should
always plot the predictor on the x-axis and the criterion on the y-axis.

The best fitting line

The overall shape of points plotted on a scatterplot is called the
trend. It seems clear that the overall shape or trend in the family
planning scatterplot is an upward-sloping one, although this is a
vague description upon which we can improve. Imagine drawing a
line through the middle of the scatterplot points. If we could find
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the equation for this line we could move from a vague description to
a precise mathematical description. Once the line has been defined in
a formal way; it is possible to make predictions about where we think
other points might lie. Fitting a line to a scatterplot involves a few
graphing ideas that have been explained in earlier tutorials.

The regression line, as it is sometimes called, is the best fitting line
that can be drawn through the points. However, it is important to
realise that not all trends apparent in scatterplots are best fitted with
straight lines. Sometimes the trend in a scatterplot shows a curved
shape (see Figure 10.8), and for such trends, non-linear regression is
required. In the present tutorial we are concerned with fitting
straight lines to scatterplots, and for this reason we are dealing with
linear regression.

Finding the regression coefficients for the best

fitting line

In order to define a straight line, precisely two pieces of information
are required. These are the slope of the line and the point on the
graph where it crosses the y or vertical axis (known as the intercept).
Lines that slope from the bottom left to the top right of the scatter-
plot are said to have a positive slope, i.e. the value of y will increase
as the value of x increases (see Figure 10.4). Lines with a negative
slope run from the top left to the bottom right, i.e. the value of y will
decrease as the value of x increases (see Figure 10.5). These ideas
about lines are explained in Tutorial 24. If you are uncertain about
them, review this information.

In the running example, the percentage of people ever having
practised family planning is represented on the vertical (y) axis and
expenditure on family planning is represented on the horizontal (x)
axis. If we are fitting a regression line, the equation to use will have
the form:

y =a+ bx

where: y represents the percentage of people ever having
practised family planning, the criterion variable
x represents expenditure on family planning, the predictor variable
a and b represent the two pieces of information required to fit the
line (i.e. b is the slope, and a is the intercept)

Most textbooks call a and b the regression coefficients. Try drawing in
an imaginary regression line by eye in Figure 10.1. If you do so, it
should be easy to read off the value of a (the intercept where the line
cuts the vertical axis). It is less easy to read the slope from the scat-
terplot — but remember, the slope of a line is the amount it increas-
es or decreases for each unit it moves from left to right.

TUTORIAL 10: REGRESSION

The regression line is
the best fitting line
that can be drawn
through the points
on a scatterplot.

Two pieces of infor-
mation completely
determine a linear
regression ‘line’: the
slope coefficient (b),
and the intercept
coefficient (a).

Equation 10.1
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The regression line
minimises the
squared distances of
the observed data
points from the line.
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Apart from making estimates by eye from scatterplots, there
are several other methods of finding the values of 4 and b. The
simplest is to feed your data into a calculator (or computer) and
obtain the answers at the press of some buttons. If you have a
calculator that will calculate regression, please spend a few min-
utes entering the paired data from Table 10.1 into your calculator
and obtain the values of 4 and b by pressing the relevant buttons.
(If you have never done this before, you will need to spend some
time reading the calculator manual in order to understand the nec-
essary steps.) If you do not have a calculator capable of calculating
regression, you will find some formulas for manual calculation in
the section below.

In the family planning data the slope is positive (+1.3135),
reflecting an upward-sloping line. This trend suggests a positive
relationship between expenditure on family planning and the
percentage of the population ever having used family planning.
When the expenditure on family planning increases, the percent-
age of the population ever having used family planning also rises.
If the relationship was negative, expenditure would increase as the
percentage of the population ever having used family planning
decreased.

It is not possible to explain exactly how the best fitting line is
determined in this tutorial, as such an explanation requires a
knowledge of calculus. Still, it is worth knowing that the best fit-
ting line through a set of points in a scatterplot has an important
property —if you take the distances of each point from the line (for
an example of these distances, see Figure 10.3), square them
and then add the squares together, the sum of the squared
distances will be smaller than for any other line you could have
chosen. This is why the regression line is sometimes called the
least-squares line.

Calculating the regression coefficients
Calculating a regression analysis requires that you determine the
following statistics:

n: the number of pairs of values (in our example, n = 15)
2X: the sum of the x values

2y: the sum of the y values

2x2: the sum of the squares of the x values

2xy:the sum of the xy products

These intermediate values are substituted into the following equa-
tion to find the covariance, sy, and following this, the slope, b:
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22Xy
2xy - =
Sxy = n-1
Sxy
b= )

Having calculated b, we can find the intercept a. The midpoint of
all the points on the scattergraph is the middlemost point in the
scatter (X, y). An important property of the best fitting line is that it
passes through this point. For this reason, we can substitute these
mean values into the general equation for a line (y = a + bx) and
then rearrange to solve for a:

a=y-bx

The example below uses this method to calculate the regression
equation for the family planning data given in Table 10.2:

X2y 195 x 556
22Xy — 8820 - — o —

15
- - - 11371
Sxy n-1 14

B Sxy 137
T st T 8656

Having found the value of b, we can use Equation 10.4 to find a:

a=y-bx
= 37.067 - 1.314 x 13 = 19.985

So the regression equation is:

y' = 19.985 + 1.314 x

You may ask, “‘What happens to the above regression equation if
the possible outlying points of Guyana and Jordan are omitted from
the dataset?” Recalculating the regression equation without particu-
lar (possibly outlying) points is a way of carrying out sensitivity
analysis, i.e. investigating the extent to which the regression model
depends upon particular, perhaps problematic data points.

TUTORIAL 10: REGRESSION

Equation 10.2

Equation 10.3

Equation 10.4

The effect of outliers
on a regression
analysis can be esti-
mated by comparing
the equation calculat-
ed on all data points
with the equation cal-
culated on the data
points left after
removing outliers.
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Table 10.2 Calculating the regression using data from
Table 10.1

Country Expenditure on Per cent ever practising Xy
family planning (x)  family planning (y)

Lesotho 0 6 0
Kenya 6 9 54
Peru 0 14 0
Sri Lanka 12 22 264
Indonesia 14 25 350
Thailand 20 36 720
Colombia 16 37 592
Malaysia 18 38 684
Guyana 0 42 0
Jamaica 23 44 1012
Jordan 0 44 0
Panama 19 59 1121
Costa Rica 21 59 1239
Fiji 22 60 1320
Korea 24 61 1 464

2x = 195 2y = 556 xy = 8 820
n=15 X =13 y = 37.067

sy = 9.304 sy = 18.595

A graph of this line over a scatterplot of the data is depicted in
Figure 10.2.
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Figure 10.2 Family planning data with regression line
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It is worth reflecting on the impact of the scale of the measure-
ments used in the regression analysis. Suppose for example that you
wish to calculate a regression line where the chosen variable was
‘age’. Would it be legitimate to enter ‘age’ as years, or would you
have to enter it as ‘months’ or ‘days’? The answer here is that ages
expressed in years, months, or days are all mathematically related to
each other. (You transform the ages from one description to the other
by mathematical means.) Any of these units can therefore be used.
Using one or the other will not change the shape of the regression line
at all, though it will move the line to different positions on the graph.

As an exercise to test your own understanding, find the regression
equation for predicting ‘Per cent ever practising family planning’ (y)
from ‘Per cent urbanised’ (X,) using the data in Table 10.1.

You may ask, ‘If the scales of either of the two axes in the scatterplot
were changed, would this alter the slope of the regression line?’
Actually, changing the scale of either axis may change the slope of
the regression line in terms of how steep it looks on the graph, but
the actual value for b would remain unchanged, so the effect would
be purely visual. This means that you should not pay too much
attention to how steep the slope looks on the graph, since this will
depend on the scales chosen when the graph is plotted.

Making predictions

The regression equation is essentially a mathematical summary of
what we think the relationship between the two variables might be.
We can use this mathematical relationship to make predictions,
though not without some danger of making a mistake.

Let us recall what the variables x and y are used to represent in
the family planning example above. x represents ‘Expenditure on
family planning’ in millions of dollars, and y represents ‘Percentage
of the country’s population ever practising family planning’. So the
regression equation above can be written as follows:

average per cent ever practising family planning
= 19.985 + 1.314 x average expenditure on family planning

Two social scientists develop a measure of general happiness. They each
use their measure to collect information about the state of happiness in
35 countries. How should we go about comparing these two different
measures of general happiness? What kind of results would lead you to
conclude that they are measuring equivalently or differently?

TUTORIAL 10: REGRESSION

Activity 10.1

The slope coefficient,
b, is not standard-
ised, and is strongly
affected by the rela-
tive scales of the x
and y variables.
Therefore, you should
not over-interpret the
‘steepness’ of the
regression line.

Activity 10.2

167



‘Within dataset’
predictions are called
interpolations.

Predictions ‘beyond’
the range of
values in the

dataset are called
extrapolations.

Predictions from
regression equations
are more accurate
when they are made
about points that
fall within the range
of points covered by
the original dataset.

Activity 10.3
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What this means is that if the country spends 20 million dollars on
family planning, then the predicted percentage of the population
practising family planning can be estimated as follows:

predicted per cent of population ever practising family planning
=19.985 + 1.314 x 20 = 46.265

The scatterplot containing the regression line (Figure 10.2) shows
that the data points are widely scattered around the regression line,
so our prediction cannot be considered to be very accurate. It would
be foolish to report our predictions as ‘46.265 per cent of the popu-
lation ever practising family planning’ because that suggests a pre-
cision quite unwarranted by our scattered data. At best we should
report it as 46% and still acknowledge that there is a considerable
margin of error in our prediction.

Usually predictions from regression equations are more accurate
when they are made about points that fall within the range of points
covered by the original dataset (as in our 20-million-dollar exam-
ple). Such ‘within dataset” predictions are called interpolations. If we
chose not 20 million dollars but 50 million as family planning
expenditure, then we would have to extrapolate and our prediction
would be even less reliable.

As an exercise to test your understanding, use your regression equa-
tion for predicting ‘Per cent ever practising family planning’ (y) from
‘Per cent urbanised” (x») using the data in Table 10.1 to predict the per
cent ever practising family planning in a 70% urbanised country.

The standard error of estimate

How good do you think the fit of the best fitting line has to be for
the regression equation to be meaningful? Obviously, if the scatter-
plot shows a very clear linear pattern, then the best fitting line will
be an accurate summary of the relationship in the data. But if the
points on the original scatterplot have no clear pattern along with a
wide scatter of points, then the line will have very little predictive
power and will not be very meaningful.

In Figure 10.3, the hypothetical relationship between fuel con-
sumption and engine size (in motor vehicles) is shown in two ways:
in the left-hand panel a line is drawn through ¥ (the mean fuel con-
sumption), and in the right-hand panel the predicted regression line
is drawn. In both cases, the observed data points are shown, and
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perpendicular lines are extended from the observed data points to
the horizontal or diagonal line (the line of fit). The left-hand panel
is actually a representation of the variance in y, since the line is the
mean, and the distances from the points to the line are therefore
merely the variation around the mean (see Tutorial 4).
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Figure 10.3 Plots depicting distances of points in a regression problem from i) the mean, and ii)

the regression line

In the case of the right-hand panel, the distance of each point from
the diagonal line is known as a ‘residual’, i.e. the amount by which
the fitted line deviates from that particular data point. If the regres-
sion line is a good fit, then the distances in the right-hand panel
should be quite small, and — very importantly — they should be a lot
smaller than the distances in the left-hand panel, since in the left-
hand panel there is no relationship between the variables.

One way of measuring the degree of fit, or the extent to which the
regression line is a good ‘model’ of the relationship in question, is to
‘average’ the residual distances. However, we cannot simply aver-
age the distances, as half of them are positive, and half are negative,
and these will simply balance each other out. (This is the same prob-
lem we faced when we calculated the standard deviation.) We use a
measure that is devised to take account of this difficulty, and is
known as the standard error of estimate. It is the standard deviation of
the residual distances, and is given by the following formula:

[ Xy
S.E. of estimate = n_2

where y' = the predicted scores of y, using the regression equation,
substituting the observed scores of x

TUTORIAL 10: REGRESSION

The standard
error of estimate
measures the

degree to which the
regression line ‘fits’
the observed data.

Equation 10.5
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Table 10.3 Layout for calculating the standard error

of estimate

Country X y y'
Lesotho 0 19.99
Kenya 6 27.87
Peru 0 14 19.99
Sri Lanka 12 22 35.75
Indonesia 14 25 38.38
Thailand 20 36 46.26
Colombia 16 37 41.01
Malaysia 18 38 43.63
Guyana 0 42 19.99
Jamaica 23 44 50.20
Jordan 0 44 19.99
Panama 19 59 44.95
Costa Rica 21 59 47.58
Fiji 22 60 48.89
Korea 24 61 51.52
>

y-y»
195.72
356.08
35.88
189.06
179.02
105.27
16.08
31.70
484.44
38.44
576.48
197.40
130.42
123.47
89.87

2 749.29

A layout for the calculation of the standard error of estimate for the
regression calculations reported in (and around) Table 10.2 is shown
in Table 10.3. Note that y" is calculated by substituting the observed x

scores into the regression equation for Lesotho:

y' = 19.985 + 1.314 = 19.99

Thus, to calculate the standard error:

Dy -y \/ 2749.29

S.E. of estimate = n_2 = 13

=V211.48 = 14.54
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A common difficulty with predictions
based on regression models

Regression models, when used for prediction, may be controversial
not because of the statistical methods involved, but because of the
nature of the data used in the model. Our predictions about the use
of birth-control methods, for example, are based on data from coun-
tries already practising birth control to various degrees. Now it
is possible that the family planning budget in these countries
simply reflects an awareness of the need for birth control in the
government of the country concerned rather than inducing such an
awareness in the population. Alternatively, consider an example
where a regression model was used to predict what proportion of
their salaries people saved. Suppose, further, that age was found to
be negatively related to high levels of saving (i.e. people save a
lower proportion as they get older). It is possible that people become
more profligate as they get older. But perhaps it is more likely that
as people get older their responsibilities increase and it is not pos-
sible for them to save as much as they used to when younger. In this
case, a third variable, responsibilities, is mediating the relationship
between age and saving. In regression (and correlation) analysis, the
temptation to draw causal inferences is always present, and such
inferences should always be drawn with great caution.

Think of an example of two variables where linear regression would
be inappropriate because the relationship between the variables is not
linear.

Scatter and correlation

The regression line is a useful statement of the underlying trend,
but it tells us nothing about the strength of the relationship.
Correlation is a measure of the strength of linear association
between two variables and is the subject matter of our next tutorial.
A perfect positive correlation might look like Figure 10.4. In a posi-
tive correlation, as one set of scores increases, so does the other set
of scores. A regression line fitted to this data should pass through
each data point.

Data that are plotted as in Figure 10.5 would illustrate a perfect
negative correlation, an inverse relationship. In a negative or
inverse relationship, as the one set of scores increases the other will
decrease. A regression line fitted to this data should also pass
through each data point.

TUTORIAL 10: REGRESSION

Causal inferences
should only be
drawn from regres-
sion analyses with
great caution.

Activity 10.4

The degree of scatter
around the straight
line is called the
“correlation’.

Correlation is a
measure of the
strength and direc-
tion of the linear
association between
two variables.
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X X

Figure 10.4 Scatterplot showing Figure 10.5 Scatterplot showing
perfect positive correlation perfect negative correlation

In practice, most scatterplots show relationships somewhat
between these two extremes. In scatterplots showing zero corre-
lation (see Figure 10.6) all the data points tend to be clumped
together in the middle of the plot. A regression line for this data is
not very meaningful. As the correlation increases, so the points
increasingly take on the form of a line (which may be positively or
negatively sloped), and the regression analysis becomes increasing-
ly meaningful and precise. Perfect relationships that are non-linear
(see Figure 10.8) are not suitable for regression analysis and may
have a zero correlation despite being strongly related.

X X X

Figure 10.6 Scatterplot
showing zero correlation
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Figure 10.7 Scatterplot show- Figure 10.8 Scatterplot show-
ing weak negative correlation ing perfect non-linear relation

Worked example

An ubiquitous problem in neuropsychological assessment is how to
determine the amount of cognitive damage a person with a head
injury has sustained. This enterprise rests on the comparison of
cognitive ability after head injury and cognitive ability before head
injury (i.e. “pre-morbid” ability). However, it is rarely possible to
directly determine pre-morbid ability. It is usually estimated by
gross generalisations about the person’s level of education, occupa-
tional status, etc. Nelson (1975) explored an interesting alternative,
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namely the ability to pronounce ‘irregular’” words. Words like
‘drachm’ or ‘beatify” require specific knowledge of pronunciation —
they cannot be pronounced by following rules — and this specific
knowledge is unaffected by many types of neurological injury. (A
standardised measure of this ability — the National Adult Reading
Test (NART) — is available in several countries, including South
Africa.) Secondly, this ability is also strongly related to a well-
defined and researched cognitive measure, Full Scale IQ (FSIQ), as
measured by intelligence tests (e.g. the Wechsler Adult Intelligence
Scale). It follows that we should consider using a regression equa-
tion that predicts FSIQ from performance on the NART: for neuro-
logically impaired patients, performance on the NART will proba-
bly be intact, and if the NART turns out to be strongly correlated to
FSIQ, we can use the regression equation relating the NART to FSIQ
in a healthy sample to predict the pre-morbid FSIQ of neurological-
ly injured patients.

The data in Table 10.4 reports NART and FSIQ scores for a
sample of 40 university students. We will conduct a regression
analysis on this data, and make some predictions for three patients,
who scored 37, 21, and 48, respectively, on the NART but who now
each score a FSIQ less than 80 points.

Table 10.4 NART and FSIQ scores for 40 university
students

NART (0] NART (0] NART (0] NART (0]

27 92 44 128 46 122 39 128
27 84 19 99 35 120 30 101
23 113 26 124 25 102 28 110
23 106 17 99 27 123 45 147
27 96 30 113 41 139 42 127
18 103 32 109 28 99 30 119
26 92 20 93 44 131 33 136
15 82 40 130 31 117 39 127
22 75 20 89 44 120 36 127
34 113 38 128 45 123 37 132
Solution

It is good practice to start a regression analysis by constructing a
scatterplot, since the plot can provide information on possible
departures from important assumptions, e.g. non-linearity of the
relationship. Figure 10.9 is a scatterplot of the NART and FSIQ data,
and suggests that relationship is linear, and strong.

TUTORIAL 10: REGRESSION
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Figure 10.9 Scatterplot of the relation between FSIQ and NART scores in
a student sample

It is useful to find the standard error of estimate, since this gives an
overall indication of the accuracy of the equation (we do not show
the calculation of individual errors of prediction).

Zo-yr \/ 43823

S.E. of estimate = n-2 38

= V11532 = 10.74

Although this standard error may seem quite large (it suggests that,
on average, our prediction will be 10.74 units in error), it should be
judged against the standard deviation of y, which is 17.22. In other
words, without our knowledge of NART scores, our predictions
would, on average, be 17.22 units in error (since the best we could
do is to use y as the prediction).

We then calculate interim statistics that we will need later:

Ix = 1253, Zy = 4518
X = 31.33,y = 112.95
Ixy = 146229

s« = 8.88, s, = 17.22

Then we calculate the covariance:

Xy 2);2}]

1253 x 4518
146229 - = =
= = 120.58
39
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Then we calculate b, the slope coefficient:

sy 12058
b="a" = "gsg ~

Then we calculate a, the intercept coefficient:

a=y-bx=11295-1.53 x 31.33
= 65.07

We can therefore write the equation as FSIQ' = 65.07 + 1.53 x NART.
All that remains is the prediction of FSIQ for the patients who
scored 37, 21, and 48 on the NART, respectively:

FSIQ' = 65.07 + 1.53 x 37 = 121.68 = 122
FSIQ' = 65.07 + 1.53 x 21 = 97.2 =97
FSIQ' = 65.07 + 1.53 x 48 = 138.51 = 139

From these predictions, we would suggest that the three patients
probably had very different pre-morbid intelligence levels, despite
presently having similar and moderately low intelligence scores.

Doing regression analysis with a spreadsheet program

A B C [B] E E G H | J K
; ;. QYQ 21(;4 Chart Wizard - Step 1 of 4 - Chart Type
% ;; 18143 ;;gg Standard Types ] Custom Types I
15 | 23 106 || 2428 Chark bype: Chart sub-type:
L6 | 27 96 2592
|32 | Ele] 138 4992
133 | a0 101 3030
| 34 | 28 110 3080
135 | 45 147 || 6615 4 j
| 41] 37 132 || 4sa4 m
42 S
43 Sum 1252 4518 146229
44 |Mean 3133 112.95 T
45 sev | 8.83 17.22 /\,\
45 b 1.53
47 |a 65.07
43 |Serror 10,74 Scatter, Compares pairs of values,
48
50
51 Press and Hold to Yiew Sample I
52
gi | Cancel | | Mext = | Einish I

Figure 10.10 Chart Wizard in Microsoft® Excel makes scatterplot
construction easy
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Although you can use a spreadsheet program to set regression data
up for analysis in a manner analogous to that shown in Table 10.2, it
is easier to use some of the built-in regression functions that most
spreadsheets have. Figure 10.11 shows a layout for use with Excel,
incorporating the built-in functions SLOPE, INTERCEPT, and STEYX.
(You should be able to work out what these refer to from their names!)
These functions work with two cell ranges, representing the y and x
data, respectively (note the order — 'y before x). Thus, slope (c2:c41,
b2:b41) calculates the slope coefficient for a linear regression with the
y data in cells c2:c41 and the x data in cells b2:b41.

An essential graphic in regression analysis is the scatterplot. It is
easy to construct one in Excel: highlight the range of data, and click
the Chart Wizard - button | [i{li . A “Wizard’ - as shown in Figure 10.10
- will guide you through the rest of the graph’s construction.

A B | B D
1 H e =
2 27 92 =B2*C2
3 27 a4 =B37C3
4 23 113 =B4*C4
o 23 106 =B5*CH
53 27 96 =BE*CH
32 KL 128 =B32*C32
33 an 1m =B33*C33
34 28 110 =B34*C34
35 45 147 =B35*C35
41 ar 132 =B41*C41
42
43 |Sum  -sumEZE4) =SUM[CZC4) =SUM[D2041)
44 |Mean - AVERAGEIEZEH41) = AVERAGE[C2.C41)
45 |Sdev  STOEW(EZ:E4H) =STOEW(C2C4)
46 | =SLOPE(CZ:CH E2E#1)
A7 |a = INTERCEPTIC2.C41 E2E41)
48 |Serror  STEYRICZCH B2E4)

A B C D E
1 " X W
2 27 92 2484
3 | 27 a4 2268
4 23 113 2589
a 23 106 2438

B 7 8 2502
32 39 128 4992
33 30 1M 3030
34 | 28 | 110 | 3080
3 45 147 6615
a1 37 132 4384
42

43 sum 1253 4518 146229
44 |Mean  31.33 11295

45 |Sdev 888 17.22

46 b 1.43

47 1a 65.07

A8 Serrar 1074
Aa

Figure 10.11 Layout and calculations for doing regression analysis in
Microsoft® Excel; data from worked example at the end of the tutorial
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Box 10.2
Doing regression analysis with SPSS® X

wform | Analyze  Graphs  Utilties  Window  Help

Reportz L
-] J Descriptive Statistic:  » —’| 'I' | I_"| %I @I]
Compare Means k
faig General Linear Model » l l
Carrelate r
9. g e
04.L Clazzify k Curve E stimatior. ..
113.0  Data Reduction »
106.0  Scale g
o5 [  Monparametic Tests  »
1030 Multiple Response k
! Linear Regression
® nart D Q‘:;Tln_dent— M
siq
Block1of1 _ Mext ﬂ]
Independentis] %
E Help

b

Method: |Enter X

Selection Warable:
LCasze Labels:

|
WS 2 ﬁtatistics...| Flots... | Save.. | thions...|

Figure 10.12 SPSS® menu commands for conducting a linear regression

ENE

Since SPSS® is one of the major professional statistical packages, it
predictably offers extensive support for linear regression analysis.
For the types of problem outlined in this tutorial, though, you
should stick to the default options. To run a linear regression, select
the ‘Analyze’ menu, and the appropriate sub-menus, as shown in
Figure 10.12. Notice that you have to ‘move’ the predictor (IV) and
predicted (DV) variables into the appropriate positions, i.e. from left
to right, using the mouse. Abbreviated output for an analysis of the
data in the worked example is shown in Figure 10.13.

TUTORIAL 10: REGRESSION
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MODEL SUMMARY

Adjusted | Std. Error of
Model R R Square | RSquare | the Estimate
1 .788 621 611 10.73877
COEFFICIENTS®
Unstandardised Standardised
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 65.072 6.298 10.333 .000
NART 1.528 .194 .788 7.895 .000

a. Dependent Variable: FSIQ

Figure 10.13 Abbreviated output from SPSS® for a linear regression
of the data from the worked example

Some of the results reported by SPSS® will make more sense to you
when you have studied the multiple regression tutorial (Tutorial 18),
but you should be familiar with most of the terms in the output.

The significance test reported here is equivalent to that outlined in
the following tutorial on correlation, and can be ignored for the
moment. Scatterplots are created very easily in SPSS®, and you should
always start your regression analysis with an inspection of one. To
construct a scatterplot, you choose “Scatter” from the ‘Graphs’ menu,
as shown in Figure 10.14. Choose an option (we recommend ‘Simple’)
off the ensuing scatterplot dialog box, and then define the variables
for the scatterplot using the SPSS® variable selection dialog control.
The resulting scatterplot is shown in the SPSS® output window.

iyl Scatterplot__________________ F3|
Graphs Utilitiez  in Scatterplot E
i Gallem [ -
1 i 1 il s ;
Interactive ¥ % Simple F I atrix Cancel ]
Bar.. . T =
Line... ..-:?.:' Overlay 3D Help

é Arga..

3 F'l;. i

j_ Hiohlow.

3 Pareti. . ' P varl0003 \:I 2 i

3 LControl... | B Paste
S Beset

I Boyplot.. | Fr—

: EII'QI Ha - Set Markers by M

3 \:I ,—— Help

| Seater. |

HjSng[al‘n_ 5 Label Cases by

e 5

3 _a._u Template

l T i ™ Use chart specifications from:

9 EuUEnCE. ]

3 ROC Curve... —}

3 Time Seres # Titles Options:

Figure 10.14 Dialog control boxes for constructing a scatterplot
in SPSS®
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Summary

1.

Analysis of independent data pairs can be very fruitful.
Graphical analysis of data pairs is typically done with the scat-
terplot, where the data pairs are represented as points in two
dimensional space.

The best fitting straight line in a scatterplot of data pairs is
referred to as the regression line, and is completely determined
by the slope (b) and intercept (a) coefficients. The equation for
the straight line takes the general form y = a + bx.

The equation for a straight line relating x and y can be used as a
prediction device, i.e. values of y can be predicted from knowl-
edge of values of x. Predictions are more accurate when they are
made about points that fall within the range of points covered by
the original data set.

The standard error of estimate and correlation coefficient
measure the degree to which the regression line ‘fits” the
observed data.

Exercises

1.

Ten pairs of observations on the variables x and y are given below:

a) Plot a scatter diagram.

b) Find the values for 2 and b for the regression line y = a + bx.

c) Draw the regression line on your diagram and mark the
point X, y.

x: 22 32 68 73 -13 -08 1.7 95 123 1.7
y: 1.2 05 00 -08 28 34 1.7 -17 -42 1.1

TUTORIAL 10: REGRESSION
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2. Find the regression equation for predicting ‘Per cent ever prac-

tising family planning’ (y) from ‘GNP per capita’ (xs) using the
data in Table 10.1.

. Use your regression equation for predicting ‘Per cent ever prac-

tising family planning’ (y) from ‘GNP per capita’ (xs) using the
data in Table 10.1 (previous exercise) to predict the per cent ever
practising family planning in a country with a GNP of 700. How
confident are you in your prediction?

. Below there are figures for a chain of stores linking the number

of sales staff to the daily takings in thousands of rands. Plot the
relationship between the two sets of scores using a scatterplot.
Using Figures 10.4 to 10.8 above as your guides, describe the cor-
relation (if any) between the two sets of test scores.

Shop: 1 2 3 4 5 6 7 8 9 10
Sales staff: 43 25 32 48 10 48 42 36 30 19
Takings (R): 15 11 13 18 3 17 15 14 12 8

. Find the regression equation for predicting daily takings from

the number of sales staff in the table in Question 4.

If there was an eleventh store in the chain that was omitted
from the dataset in the table, and this store had 21 sales staff,
what would store 11’s daily takings score be?

NUMBERS, HYPOTHESES AND CONCLUSIONS



TUTORIAL Correlation

11

Lance Lachenicht

After studying this tutorial, you should be able to:

® Understand correlation as a measure of the degree
of scatter around a regression line.

® (Calculate and interpret Pearson's product-moment
correlation, r, and the coefficient of determination, r%

® Understand that correlation does not imply
causation.

® Understand that correlations measure the strength
of linear relations.

® Understand that correlation may be misleading if
the underlying populations are not homogenous.

Introduction

The digit span test forms part of many standard intelligence tests. It
measures the maximum number of digits a person can retain in
short-term memory. The reported average digit spans in speakers of
a few languages are set out in Table 11.1.

The data reported in Table 11.1 were collected by several authors
in a number of different studies. These studies had their origin in a
comparison between the digit spans of Welsh and English speakers
(Ellis & Hennelly, 1980). Welsh speakers seem to have a smaller
capacity for retaining digit names in short-term memory than their
English counterparts. Subsequent studies have reported superior
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Table 11.1 Digit span and sound duration in a number
of languages

Language Mean number Digit span Rapid sound
of syllables per duration
digit name (msec/digit)

Welsh 1.1 5.77 385

English 1 1.1 6.55 321

Cantonese 1 g1y 265

English 2 1.1 7.21 256

Spanish 1.625 6.37 287

Hebrew 1.875 6.51 309

Arabic 2.25 5.77 370

Data from Hoosain, 1997, p. 122

performances from Cantonese speakers. Yet, it should be noted that
it takes longer to pronounce digit names in Welsh than in English.
The speed of pronunciation reported in Table 11.1 is determined by
asking participants to pronounce a group of random digits as
rapidly as possible and measuring the average time taken for each
number. This average time is not entirely a matter of the syllables in
each digit name (for example, it takes less time in English to say
seven with two syllables than to say six with one), though some lan-
guages do seem to have fewer syllables. Perhaps, as some
researchers (Ellis & Hennelly, 1980) have argued, it is possible that
the differences in digit spans between speakers of the different
languages could be accounted for by the different sound durations
for numbers in the different languages.

One way of investigating this possibility is to draw a scatterplot
of the information in Table 11.1, as shown in Figure 11.1. With the
exception of one point (Cantonese), the scatterplot seems to show a
clear inverse relationship between average digit span and sound
duration. As average sound duration increases, so digit span seems
to decrease. The digit span for Cantonese is not completely outside
this trend, but it falls fairly far from the other average digit span
scores. It is possible that this score is an ‘outlier’, which means that
it is possible that the Cantonese score includes a greater degree of
error or measurement imprecision than do the other scores, or even
that some other unknown factor has influenced the score. (Of
course, it is also possible that the score is correct.)
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In Tutorial 10 we showed how we could make the trend shown in
Figure 11.1 precise by inserting a regression line into the scatterplot.
In this tutorial we will show how we can assign a number to indicate
the strength of the inverse relationship visible in Figure 11.1.
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DIGIT SPAN
Figure 11.1 Scatterplot of digit span against sound duration

The product-moment correlation coefficient

Although it is useful to gauge the strength of a relationship by
looking at a scatterplot (and you should always look at a scatterplot
of your data), there are more formal methods based on calculations
that give a numerical value for the degree of correlation between
two variables. The product-moment coefficient of correlation, (also
known as Pearson’s correlation coefficient) is calculated on the basis of
how far the points lie from the ‘best-fit’ regression line. It is
symbolised by the small letter » (chosen because it is the first letter
of ‘regression’).

The formula for r, the (sample) product-moment correlation
coefficient, is:

= —LSX
S«Sy

where: x is the variable on the horizontal axis
y is the variable on the vertical axis
s« and s, are the standard deviations of x and y, respectively
Sy is the covariance between x and y

To calculate the covariance between x and y, we use the formula:

Sy 22Xy

n

S n-1
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The product-
moment correlation
coefficient (r) is

also known as
Pearson’s correlation
coefficient, named
after the English
mathematician, Karl
Pearson.

Equation 11.1

Equation 11.2
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s, = standard
deviation of x.

s, = standard
deviation of y.

Sy, = covariance of

xandy.

r = 0: no relationship

184

r = +1: perfect
positive linear
relationship

r = —1: perfect
negative linear
relationship

Certain calculators with statistical functions provide a key (usually
marked 7) for directly calculating the correlation coefficient. If you
do not have such a calculator, we give a method for the manual
calculation of r, below.

The meaning of r

The product-moment correlation formula has been concocted in such
a way as to ensure that the value of r will fall with in the range -1 to
+1. An r of -1 means a perfect negative correlation (a perfect inverse
relationship, where, as the value of x rises, so the value of y falls) and
an r of +1 means a perfect positive correlation (where the values of x
and y rise or fall together). An r of 0 means zero correlation, which
means that there is no relationship between x and y. Correlation coef-
ficients that fall between 0 and +1, or between 0 and -1, are harder to
interpret. Guilford (cited in Sprinthall, 1987) offers informal interpre-
tations for statistically significant Pearson correlations of various
sizes, reproduced in Table 11.2.

Table 11.2 Guilford's informal interpretations of the
magnitude of r

Value of r (+ or -) Informal interpretation

<0.2 Slight; almost no relationship

0.2 - 0.4 Low correlation; definite but small relationship
0.4 -0.7 Moderate correlation; substantial relationship

0.7 - 0.9 High correlation; strong relationship

09-1.0 Very high correlation; very dependable relationship

Calculating Pearson'’s r

It is best, when calculating » manually, to use a layout of the kind
shown in Table 11.3. Table 11.3 provides you with an efficient,
systematic way of calculating sxy, sx and sy, as well as the means of
x and y. In Table 11.3 the calculation of r is based on the data in Table
11.1, which sets out the data for digit span sets and rapid sound
duration as determined in seven studies (i.e. n = 7).
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Table 11.3 Calculating the correlation between digit
span and sound duration

x (digit span) y (sound duration) Xy

Welsh 5.77 385 2 221.45
English 1 6.55 321 2 102.55
Cantonese 9.9 265 2 623.5
English 2 7.21 256 1 845.76
Spanish 6.37 287 1828.19
Hebrew 6.51 309 2 011.59
Arabic 5.77 370 2 134.9

2 48.08 2193 14 767.94

S 1.43 49.57

From these results we can calculate r:

(48.08 x 2193)

14767.94 - 7
Sy = 6 =-49.14
Lo 4914
143 x 4957 ~ 706992
A value of r = -0.6932 shows a substantial inverse relationship

between digit span and rapid digit sound duration.

If you complete Activity 11.1 and reflect on the substantial
improvement in the correlation that arises from omitting the
Cantonese data, you will realise that correlation is not a robust
measure: it is strongly affected by outlying points. This means that
it is important to check data entry very carefully when calculating
correlation coefficients, and to carefully investigate any data points
that appear to be outliers. Further investigation does suggest that
the Cantonese score for digit span may indeed be exceptional
because the advantage does not extend to memory for words (word
span). Hoosain (1997, p. 123) comments, ‘This also weakens the
possibility that the digit span difference for Chinese is due to
motivation or inclination of subjects to memorise things’.

Recalculate the correlation coefficient for the data shown in Table 11.3,
omitting the Cantonese data. You should get a value close to —0.9310.
This is a much more substantial correlation than we obtained when the
Cantonese data was included. Why do you think omitting one data pair
causes such a substantial change in the correlation coefficient?
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Correlation is not a
robust measure: it is
strongly affected by

outlying points.

Activity 11.1
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An alternative index
of correlation is
called the rank

coefficient of
correlation,
sometimes known
as Spearman’s
coefficient of rank
correlation (r;) after
its inventor, Charles
Spearman.

When ranking data,
assign the value of 1
to the lowest score.

Rank correlation

It is not always necessary or possible when investigating correlation
to draw upon the sort of measured data reported in Table 11.1. An
alternative is to work from rank positions. When gymnastics com-
petitions are judged, for example, the marks that are awarded by
the judges may have little deep-rooted meaning, for they are really
intended to place the competitors in rank order - first, second, third,
etc. In this section we will look at a way of measuring the strength
of association between pairs of ranked variables. It would, of course,
be possible to use the correlation coefficient r in such cases, but there
is an alternative measure that was specially designed for ranked
data. It is called the rank coefficient of correlation (sometimes known as
Spearman’s coefficient of rank correlation after its inventor, Charles
Spearman). We will write the symbol for the Spearman coefficient as
t.. Although it is sometimes referred to as p (rho, the Greek letter for
7), we will not use this notation, since many authors reserve p as the
symbol for the population correlation coefficient.

If your data consists of natural ranks, you may proceed to calcu-
late . immediately. However, if your data consists of measures
(numbers rather than ranks), you will need to rank your data before
you calculate 7. In Table 11.4 ranks are assigned to the measures
reported in Table 11.1. The ‘English 2" study reported the lowest digit
sound duration (256), so this digit sound duration score is assigned
the rank of 1. The Cantonese study reported the second lowest digit
sound duration, so the Cantonese digit sound duration score is
assigned the rank of 2. We proceed in this manner until all the digit
sound duration scores have been assigned ranks. The digit span
scores are similarly ranked from lowest to highest. Notice that the
lowest digit span score is 5.77, and that speakers of two languages
(Welsh and Arabic) share this score. These two languages therefore

Table 11.4 Calculating rank correlation between digit span and sound duration

x (digit span)

Welsh 5.77
English 1 6.55
Cantonese 9.9

English 2 7.21
Spanish 6.37
Hebrew 6.51
Arabic 5.77

X
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Rank x vy (sound duration) Rank y d d*
1.5 385 7 -5.5 30.25

5 321 5 0 0

7 265 2 5 25

6 256 1 5 25

3 287 3 0 0

4 309 4 0 0
1.5 370 6 -4.5 20.25
100.5

NUMBERS, HYPOTHESES AND CONCLUSIONS



share the first two ranks (1 and 2) and each of them receives the aver-
age of these two shared (‘tied”) ranks (i.e. [1 + 2] /2 = 1.5). You should
be aware that r, does not give correct correlation values when there
are a large number of tied scores in the data — but one or two ties in
the data usually makes little difference to r..

The formula for . is based on calculating the differences (d)
between each pair of ranks and this is done in the column marked
d in Table 11.4. Each of these differences is then squared and
summed (see the column marked d? in Table 11.4). The formula for
75 is as follows:

62 d>

rs:l_n(nz—l)

where: n is the sample size
d is the difference between each pair of ranks

Substituting the results from Table 11.4 in the r, formula we get:

6 x 100.5

re=1- 7 x 48 = -0.7946

Notice that the r, value of —0.7946 is higher than the equivalent r
value of -0.6955, calculated earlier. According to Guilford’s criteria
(Table 11.2) Spearman’s 7, yields a high correlation while Pearson’s r
yields a moderate correlation. This is because methods based on
ranks (as opposed to scores) are more robust than methods based on
scores — i.e. they will be less influenced by outlying values.
Spearman’s 7. is therefore useful not only when you have collected
naturally ranked data, but also when you suspect that your measured
data may contain extreme or outlying scores.

Recalculate the correlation coefficient for the data shown in Table 11.4,
omitting the Cantonese data. Why do you think omitting one data pair
does not cause the substantial change it did in Activity 11.1?

If you calculated r, in Activity 11.2, you should have got r, = —0.7286.
This is lower than the equivalent r value of —0.931, calculated
previously. It seems that even though rank correlation is more robust
than Pearson’s correlation, it is also less sensitive when other things
such as sample size are equal.
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Box 11.1 . .
X Using a spreadsheet to calculate correlations

A B C | D | A LB e o]

Ex £ ¥ g 1 % Y | XY
Cdigit spar)  (sound duratin _ (digit | (sound

2 2 span) | duration
(3 Welsh 577 385 =B3C3 3 |welsh 577 385 |22215
(4 English1 635 321 =B4*C4 4 [English1 | 633 321 | 21026
5 (Cantonese 9.9 265 =B5*C5 B |Cantonese | 59 65 26235
B Englishi 721 256 =B6*CE B [Englichz | 731 256 | 18458
7 |Spanish 637 287 =B7*CT 17 |Sparish 637 87 [13282
B |Hebrew 6.1 309 =B8*CS B |Hebrew 651 309 20116
9 |Arbic 577 370 =B9*Co 8 |Arabic 577 370 21348
| . =3UR(B3 B9 =SUMCICH  =SUMDID® Hel 4808 | 2193 | 14768
11 S =STDEWEZEY)  =STDEV(C3CY) 11 B 1425361 | 49,5672
1z 2]
13| Covar  =(D10-B10FCIONT)E 13| Covar | -4313852
ﬂ r =B13HB11*C11) 7 r -0.69528

Figure 11.2 Layout for manual calculation of correlation in
Microsoft® Excel

The basic layout for the manual calculation of the correlation coeffi-
cient, as shown in Table 11.3, can be constructed with ease in spread-
sheet programs. The data are entered just as they are in Table 11.3,
and formulas are entered to calculate 2x, Xy, 2xy, s,, s,, as well as
final calculations involving these components. Figure 11.2, which is
a screen snapshot, shows the setup (including the formula notation)
and the results, as produced in Microsoft Excel. (An introduction to
spreadsheet programs is offered in the additional CD material.)

A B | D BI0 - = =CORREL(C2:.C8,D2:08)
Language  Mean mumber of Digit span  Rapid sound = B T¢© D
spllables per digit duration Language IMean nmumber of Digit  Rapid seund
y name (msecedigit) spllablesper  span  duration
2 Weten - o e : it name (msec/digr)
3 |Englishl 11 6.33 k! 2 Welsh 11 577 E3
4 |Centonese 1 a9 265 3 Englich 1 11 655 21
5 [English2 11 731 36 4 Cantonese 1 58 65
6 |Spanish 1625 637 87 5 |Englishd i1 7321 256
7 |Hebrew 1875 6.51 109 6 panish 1635 637 227
B |Asabic 225 537 70 7 Hebrew 1875 651 E)
9 8 Arabic 235 577 370
10 fe I:CORRELECZ C8 DZ'DBi _| g
h 10 ¢ [_ossszesw]

Figure 11.3 Layout for automatic calculation of correlation in
Microsoft®Excel

However, Excel also offers very useful shortcut formulas for calcu-
lating correlation coefficients. The formula CORREL calculates the
product-moment correlation directly, i.e. without all the interim
steps! A layout for this method is shown in Figure 11.3.

Box 11.2
X Using SPSS® to calculate correlations

Create a new SPSS® data file, and enter the data in two columns, as
shown in the accompanying screenshot (Figure 11.4). Name and
label the variables if you wish.
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Then choose “Analyze’ from the main menu and ‘Correlate” then
‘Bivariate’ from the “Analyze” sub-menus shown in the screenshot.
You will then need to select the variables for the correlation analysis,
using the mouse to highlight variable names, and the arrow in the
middle of the dialog box to move the variables into the right-hand
pane. Notice the options to select particular types of correlation
methods, and to calculate significance tests. Click ‘OK” when you are
done, and you should see the output of Figure 11.5. Notice that the
results are represented in the form of a matrix.

lang - SPS5 Data Editor

Fle Edit Wiew Data Transform Ana

1| Analyze Graphs  Utiities  Window  Help

o = Reports 4
== i J =
T J J = Descriptive Statistice  » = !—E I_' % @
— . Compare Means »
Ll | EIEHOn | General Linear Model » | |
1 577 3500 i p—— 3 .
2 BE5| 3210 Wik v
3 990 28500 < Regression »
4 72 26600 L Clazzify 4 Distances...
5 6.37  287.00 L Data Reduction k]
5] 6.51 309.00 [ Crale b
i 577 370.00 2 o .
] ] [ Monparametnc Tests  #
T Multiple Besponze 4

+ Bivariate Comelations

Wanables: o

Paste
Beset

Cancel

Elifzfel

Help

Conelation Coefficients
IV Pearson [ Kendal'staub [~ Speaman
Test of Significance

& Twotailed " One-tailed

i

Opticrs
V¥ Flag sigrificant conelations =

Figure 11.4 Calculation of correlation in SPSS®

Correlations

DIGITSPA | DURATION

DIGITEPA Pearson Correlation 1 - G445
Sig. (2-tailed) . 083

] 7 T

DURATIOMN  Pearson Correlation -.695 1
Sig. (2-tailed) 083 :

[+ 7 7

Figure 11.5 Output of correlation analysis in SPSS®
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Correlation does not
imply causation.

Correlations are
difficult to interpret
in a causal fashion. A
strong correlation
between two things
does not prove that
one caused the other.

Activity 11.3

A correlation between
two variables, A and
B, can arise for one
of three reasons: A
causes B; B causes A;
or A and B are inde-
pendently related to
a third variable, C.

Problems of interpre-
tation frequently
arise with the possi-
bility of the two vari-
ables being related to
an unknown third
variable.
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Cause and effect

For many everyday events, the link between cause and effect seems
fairly straightforward. Turn on the tap and water comes out; fall to
the ground and you will experience pain. But not all relationships
are so easy to interpret. If you have persistent back pain and have
tried a number of remedies for it, an improvement can be very hard
to interpret. It could be because of the hot baths you have been tak-
ing, or the exercises you have been doing, or perhaps it is because of
the vitamin pills you have been taking, or perhaps it is because of all
of these things or none of these things. With many ailments you will
get better merely with the passage of time, and it may be impossible
to speed the process with attempted cures. As it has been said, ‘With
proper medication the common cold usually lasts about a week, but
left to its own devices it can drag on for seven days’.

Correlations are similarly difficult to interpret in a causal fashion.
A strong correlation between two things does not prove that the one
has caused the other. A strong correlation indicates a statistical rela-
tionship, but there may be many reasons for this relationship
besides cause and effect. For example, it is known that the number
of crimes over time is correlated with the size of the police force.
Does this mean that larger police forces cause more crime or (more
likely) that greater crime causes police forces to expand? A simpler
explanation might be that a larger police force encourages a higher
proportion of victims to report crimes. Increases and decreases in
crime probably have little to do with the size of the police force and
much more to do with changes in the economic and social value
system over time.

Try to find at least two explanations for the following:

a) The number of cigarettes that people smoke is negatively corre-
lated with their income.

b) The average weekly pocket money paid to children in the United
States between 1976 and 1990 is strongly correlated with the num-
ber of violent crimes over the same period.

A correlation between two variables, A and B, can arise for one of
three reasons: A causes B; B causes A; or A and B are independent-
ly related to a third variable, C. Problems of interpretation fre-
quently arise with the possibility of the two variables being related
to an unknown third variable. For example, for the period covering
the last 80 years, the data relating Nelson Mandela’s age and the
population of the world are positively correlated — not because
there is a direct causal relationship but because they are both corre-
lated with a third variable: time.

NUMBERS, HYPOTHESES AND CONCLUSIONS



Some points to ponder

Correlations refer to linear relations between two
variables.

Correlations are meaningless if the variables are related in a non-
linear manner. Specifically, a lack of correlation between two meas-
ures does not imply a lack of association between them if they are
non-linearly related. Figure 11.6 illustrates the case of two variables,
x and y, that are strongly associated, but in the form of an inverse-U
relationship, rather than a linear relationship. Here the correlation
between x and y will be close to zero even though the two variables
are strongly associated. Because of the possibility of such non-linear
relationships, you should always inspect scatterplots of your data
rather than simply relying on correlation coefficients.

y L] L

X

Figure 11.6 Scatterplot showing non-linear relation

Correlation coefficients should not be averaged

Correlation coefficients are not like ordinary numbers and do not
obey the normal rules of arithmetic. It is incorrect to average sever-
al correlation coefficients by calculating their arithmetic mean. The
difference between two Pearson correlations is meaningful, and its
statistical significance can be tested, but there is no way of testing
the significance of a difference between two Spearman correlations.
Calculating the average of several Pearson correlation coefficients
involves somewhat complicated methods (the Fisher z transform),
beyond the scope of this tutorial, but a set of Spearman rank corre-
lations can be ‘averaged’ by calculating the median value of the set.

Correlation coefficients cannot be directly compared

A correlation of 0.8 does not represent an association that is twice as
strong as a correlation of 0.4. The correct procedure to compare
correlation coefficients is to calculate the square of each of the cor-
relation coefficients (r?). The square of a correlation coefficient is
known as the coefficient of determination. Broadly speaking, 7* is the
proportion of variation in one measure that is accounted for
statistically by the variation in the other measure. (For a graphical
explanation of this notion, see Tutorial 18.) A correlation of 0.8
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When thinking
about what a
correlation really

means, it is always
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helpful to
calculate r?.

Activity 11.4

means that 64% of the variation in one set of scores is accounted for
by the variation in the other (r* = 0.8 x 0.8 = 0.64). With a correla-
tion of 0.4, one measure accounts for only 16% of the variation in the
other measure (72> = 0.4 x 0.4 = 0.16). This means that a correlation
of 0.8 is really four times greater than a correlation of 0.4 (i.e. com-
pare 64% to 16%). When thinking about what a correlation really
means, it is always helpful to calculate r>. For example, in
correlations of the size that Guilford calls slight (r < 0.2), one of the
measures accounts for less than 4% of the variation in the other
measure! In our example, correlating digit span with average digit
sound duration, we arrived at a correlation of —0.6955. This means
that 48% of the variation in digit span scores can be accounted for
by variation in average digit sound duration. However, when we
excluded the Cantonese data, we calculated a correlation of —0.931,
a value that implies that 87% of the variation in digit span scores

can be accounted for by

Re-calculate the entries in Table 11.2 variation in average digit

to reflect values of 72, rather than r. sound duration — a much
stronger relationship.

Correlations are misleading if the underlying
populations are not homogenous

When interpreting a correlation, we assume that the strength of asso-
ciation between two variables applies across the entire range of these
variables. This means that we assume that high, middle and low
values of one variable are correlated with the other variable — that
variable x is affected by variable y in the same way at all levels. When
this is true, the underlying population is said to be homogenous.

However, imagine a drug that only affects people at very low or
very high dose levels. At low dose levels this drug makes people very
silent and at high dose levels it makes people very talkative. It has no
effect whatsoever on people at intermediate dose levels. The effect of
this drug might be depicted in Figure 11.7, which shows a moderate
relationship between drug dosage levels and talkativeness. The dan-
ger with the type of correlation depicted in Figure 11.7 is that it
implies that there is a general association between increasing dosage
of the drug and becoming more talkative. But in fact this association
is only true at the extreme ends of the talkativeness spectrum.

Alow correlation can also arise if two variables are positively cor-
related for one part of the population but negatively correlated for
another. Consider the introduction of a compulsory training pro-
gramme for motorcyclists that took place in the UK some years ago.
The intention of the training programme was to improve road safety
among motorcyclists and it was believed that the longer the training
programme (in hours), the more the road safety behaviour of motor-
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Figure 11.7 Scatterplot showing two variables that are positively
correlated only for extreme values

cyclists would improve (i.e. a positive correlation). In fact no rela-
tionship was found between the duration of the training programme
and motorcycle road safety habits. When a psychologist was consult-
ed she examined the findings and concluded that the population of
motorcyclists was not homogenous. The findings of the study could
be depicted as in Figure 11.8, where the two groups are marked using
different symbols. Motorcycle enthusiasts loved their motorcycles
and rode them for pleasure. This group spent many hours on their
motorcycles and were intimate with every detail of the behaviour of
their machines. For them the government training programme was
insulting because it presumed that they needed basic information
about motorcycling. The longer the training programme, the more
this group tended to react against the programme and ride danger-
ously. The other group of motorcyclists, the car enthusiasts, really
only rode their machines as a form of transport — they would have
preferred to drive cars but could not afford them. This group tended
to spend very little time on their cycles and did not know very much
about the behaviour of their machines. For this group the govern-
ment training programme was very helpful because it forced them to
spend more time becoming familiar with their motorcycles. The
longer the training programme, the more this group benefited.

Correlations are sensitive to restrictions in the range
of variables

The product-moment correlation coefficient can be substantially
attenuated by a restriction of range in the measured variables, and you
should attempt to ensure that this does not occur, or if it does, that
you acknowledge the problem when you interpret the correlation
coefficient. A clear example of this phenomenon is the relationship
between weight and boxing prowess, in the days before boxers and
boxing matches were regulated according to weight bands. As you
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Activity 11.5
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Figure 11.8 Scatterplot showing relation between two variables where the
sample is composed of two distinct groups

Life expectancy showed a general tendency to increase during the
19th and 20th centuries as standards of health care and hygiene
improved. The higher life expectancy varies between countries,
communities, and even families. You come across a graveyard in
Scotland and determine the year of death and age of death for
13 males in the Makhatini clan (see Table 11.5). Is there an indication
that life expectancy is increasing for this clan? What are the appropri-
ate measures to use in answering this question?

Table 11.5 Ages recorded on gravestones for 13 males
in the Makhatini clan

Year Age Year Age Year Age Year Age Year Age

1827 13 1895 34 1918 16 1941 74 1977 83
1828 13 1908 1 1924 68 1965 87
1884 83 1914 1 1936 77 1965 65

would expect, when there is no restriction on who can fight whom,
there is a strong correlation between the percentage of matches a
boxer wins, and his (or her) weight — heavier boxers tend to beat
lighter boxers, especially when flyweights are allowed to fight
heavyweights! Figure 11.9 shows a scatterplot of this relation (left
panel), and what happens to the relationship when the range of
weights is restricted (right panel).

As Figure 11.9 shows, restriction of range is a serious threat to the
accurate interpretation of correlation coefficients. In order to under-
stand whether a correlation accurately reflects the strength
of a relationship, we should ensure that the range of both variables
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Figure 11.9 The effect of restriction on range on the correlation coefficient

is not restricted. Ideally, we should compare the sample variance in
each of our measured variables to the population variance on the
same variables. This will often be a very difficult task, since we rarely
have information about population variances, but there may well be
suitable benchmarks — e.g. the sample variance should not be much
less than the variance reported for other samples in the literature.

Significance testing of r

Just as we acknowledge that sample means are only estimates of
population means, and will exhibit random sampling variation, so
we must acknowledge that sample correlation coefficients are only
estimates of the population correlation coefficient, p (rho), and will
also exhibit sampling variation. Thus, the correlation of —0.6932 for
the data of Table 11.1 might have turned out to be —0.5, or 0.9, or
some other value, had we collected an entirely different sample of
languages. Since correlation tests the strength of a linear relation-
ship, the critical question is whether the correlation provides evi-
dence of any relationship at all. That is, can we be confident that
p = 0, on the basis of the » we have calculated?

There are two widely accepted approaches to testing the sig-
nificance of r. The first is the simpler, and involves transforming r to
a t-value. The second involves transforming r to a z-value, and is too
complex to discuss here (see Hays, 1994).

Transforming r to ¢
For most purposes, a transformation of r to f is adequate, assuming
that the sample size is not too small (n = 10).

_rVn-2 Equation 11.4
= Viop
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Once we have converted the r-value to t, we proceed as we do for
t-tests, i.e. decide whether the calculated t-value exceeds the critical
t-value, and accordingly reject or accept H.

Thus, for the correlation calculated on the data of Table 11.1:

~ —0.6932V7-2 5150
F= V- (06932 ~ =

If we look up the critical value for t in our t-tables we find that this
exceeds the critical t-value (t = -2.01) for a one-tailed test, but not
for a two-tailed test (t = + 2.57). A one-tailed test is clearly implied
by the wording of the problem, so we reject H,, and conclude that
there is sufficient evidence of a relationship between digit span and
sound duration.

Worked example

Nearly all languages in the world include words for the lower car-
dinal numbers (such as ‘one,” ‘two’, and ‘three’). Many languages,
however, do not include words for the higher cardinal numbers
(such as ‘nine’, ‘ten’, a ‘hundred’, a ‘thousand’, etc.). One hypothe-
sis to explain this finding is that numeral words originate out of a
communicative need for words applicable to collections of things.
This hypothesis would hold that lower value number words are
invented more readily than higher value number words because
they are the ones humans need the most. This amounts to the claim
that in human affairs the need to refer to some specific low number
n is likely to arise more often than a need to refer to its successor,
n + 1. A test of this hypothesis can be found in some data collected
by Thorndike and Lorge (1944). They examined 4.5 million words
from popular magazines of the time. Table 11.6 sets out the frequen-
cy with which the words ‘two’, ‘three’, etc. occur in this dataset.

Table 11.6 The frequency of cardinal number words

Words Rank Frequency
two 1 5958
three 2 2673
four 3 1637
five 4 1462
Six 5 806
seven 6 615
eight 7 657
nine 8 468
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Solution
Although we should consider calculating the Pearson correlation
coefficient between cardinal number word and frequency, a scatter-
plot (Figure 11.10) shows that this is not suitable, since the relation is
clearly not linear. We therefore decide to calculate the Spearman rank
correlation, since ranking the frequencies will counter this problem.
It is easy to rank the cardinal number words in Table 11.6
because they are naturally ordered. Similarly, the frequencies with
which the words occur in Thorndike and Lorge (1944) can be read-
ily ranked. Table 11.7 sets out additional information for calculating
t.. There are eight cardinal number words in the dataset, son = 8.

Table 11.7 Calculating the rank correlation between
cardinal numbers and word frequency

Words Rank Frequency Rank y d a?
two 1 5958 8 -7 49
three 2 2 673 7 -5 25
four 3 1637 6 -3 9
five 4 1462 5 -1 1
six 5 806 4 1 1
seven 6 615 2 4 16
eight 7 657 3 4 16
nine 8 468 1 7 49
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Figure 11.10 Scatterplot of relation between cardinal number words and
frequency of usage

From this information, we can work out the Spearman rank corre-
lation:
62

n(n?-1)

6 x166 _

=1-—""=-09762
8 x 63

rs =
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This is a very high negative correlation, and we conclude that car-
dinal number words show frequency of usage in inverse relation to
their position in the cardinal sequence. Thus, words for earlier
numbers (e.g. two, three) are used much more frequently than
words for later numbers (e.g. eight, nine).

Summary

1.

In this tutorial, we were interested in measures of the strength of
linear relationship between two continuous or ranked measures.
This type of relationship is called a correlation, and is usually
indexed with a correlation coefficient.

A useful graphical device in understanding data of this kind is
the scatterplot, which is a plot of two variables assigned to the
x- and y-axes, respectively. In particular, this plot helps tells us if
the relationship is linear and if it is appropriate to calculate a
correlation coefficient.

The most common correlation coefficient is the product-moment
or Pearson coefficient. This is calculated by dividing the covari-
ance of two variables by the product of their standard deviations.
The product-moment coefficient is an index of the degree to
which the relationship can be described as a straight line (or by a
linear equation).

The size of (most) correlation coefficients ranges between -1 and
+1, where -1 = a perfectly linear negative relationship, 0 = no
relationship, and +1 = a perfectly linear positive relationship.

In many situations, it is useful to work with ranked data. The
Spearman rank correlation coefficient is used for this purpose,
although the Pearson coefficient can also be used on ranked
data.

In correlation problems, one should always beware of interpret-
ing correlations between variables as indicating causal relation-
ships. There might be other reasons for the correlation, most
importantly the presence of a ‘third variable’.

Before interpreting a correlation, one should always make sure
that the data does not depart noticeably from linearity, that the
underlying population of scores is homogeneous, and that the
range of either variable is not restricted.
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Exercises

1. The accompanying table shows an IQ score and an English test,
for each member of a sample of 10 pupils taken from a mixed
ability class. The English test was marked out of 50 and the

range of IQ values for the class was 80 to 140.

a) Estimate the product-moment correlation coefficient for the

class.

b) What does this correlation coefficient measure?

10: 110 107 127 100 132 130 98

109 114 124 136 95 102 111

English: 26 31 37 20 35 34 23 38 31

36 42 25 26 27

2. Fill in the blanks in the table below:

Correlation Variance shared
coefficient by two variables
- 100
0.85 -
- 68%
0.79 -
- 40%
- 25%
0.45 -
- 13%
0.22 -
0.19 -
- 0%

3. Fourteen students sat two Statistics tests, one theoretical and one
practical. Their marks are shown in the following table:

1 Theory
1 Practical
2 Theory
2 Practical

5
6
17
17

9
8
12
14

10

1"
13
15
17

20
20
16
18

14
18

a) Draw a scattergraph to represent these data.
b) Find the product-moment correlation coefficient.

¢) Using evidence from (a) and (b), explain why a straight line

regression model is appropriate for these data.
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4. Outline and explain the relationship between correlation and

regression analysis.

. Describe an imaginary study measuring the relationship

between two variables where the use of correlation coefficients
might be misleading because the underlying populations are not
homogenous.

. A cheese expert is blindfolded and asked to taste 10 cheeses and

arrange them in order of price. The correct order was A, B, C, D,
E, E G, H, L ]J. The order chosen by the expert was A, (B, D), C, G,
J, (E, E H, I). The brackets indicate cheeses to which the expert
assigned the same price. Using tied ranks, determine the value of
1. as a measure of the correlation between the expert’s opinion
and the true order.
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TUTORIAL 12: MEASUREMENTS

Measurements

Gillian Finchilescu

After studying this tutorial, you should be able to:

® Develop a scale to measure a construct or
attribute.

® Refine the scale through item analysis.

® Determine the reliability and validity of the scale.

In the social sciences, we often study variables or constructs that are
not tangible. Psychologists frequently explore such things as atti-
tudes, abilities, personality traits, perceptions; sociologists pursue
such things as social class, delinquency, alienation; political scien-
tists look at political leanings and voting intentions. In order to
research these constructs, we need to ‘measure’ them, i.e. develop
an index that allows us to ascertain whether the construct is pres-
ent, what its magnitude is, or the form in which it exists.

This tutorial discusses psychometric issues and statistical proce-
dures that are used in developing measurement instruments. We will
be applying some of the statistical procedures introduced earlier in
the text to investigate the ‘soundness’ of social science measures.

Measuring a construct

Suppose you were interested in investigating people’s attitude to a
country’s new language policy. You could simply ask people a ques-
tion such as ‘Do you think South Africa’s language policy is a good
thing?’, to which they could respond yes or no. However, there are
problems with this attitude measure: there is only a two-option
answer, for instance, and only one item is used.
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construct.

Box 12.1

The two-option answer, generally referred to as an alternative-
choice answer, forces people into one side or the other — pro/anti,
agree/disagree. There is no option to express indecision, nor is the
strength of the respondent’s feelings considered. A respondent who
is basically indifferent to the issue might, almost randomly, opt for
the negative alternative. This person will be allocated the same
score as someone who is fervently opposed to the issue. Thus, this
form of response scaling is very imprecise and can be misleading.

In addition, with only one item we have no way of telling how
reliable the response is — has the person answered randomly, or are
they likely to respond consistently on different occasions? A further
problem is that the question is very broad. The language policy
includes the stipulations (among others) that there are eleven official
languages in South Africa, and that all citizens have the right to
receive education in their ‘mother-tongue’. It is quite possible that
the respondent does not think there should be more than one official
language, but completely concurs with the ‘education in mother-
tongue’ stipulation. Thus, one positive or negative answer gives no
real information about the respondent’s feelings.

Most issues are complex and will require a range of questions to
assess them. For this reason it is usually best to create a summated
scale to measure a construct. A summated scale consists of a series
or set of items that ‘sample’ the construct. The responses to the item
ultimately are totalled to produce a single score that is the index or
measure of the construct.

Things to beware of when constructing items

Once you have decided on the content of the items of the scale or

test, and on the type of scaling, the next step is to construct indi-

vidual items. In doing so it is important to ensure the following:

1. The meaning of each item must be clear and not rely on
unspecified knowledge or assumptions.

2. Items must convey only one idea or question.

3. Some of the items in the scale should be phrased so they
express a reverse sentiment to that of the other items.

4. Try to avoid making the evaluative nature of the item too blatant.
Respondents tend to try to present themselves in a positive light,
so will frequently endorse socially desirable responses.

Defining the domain

After clearly defining the construct and variable we want to meas-
ure, the next step is to specify the domain of the construct. For
instance, suppose you wished to construct a scale to measure how
people feel about a proposal to privatise a municipal service such as

NUMBERS, HYPOTHESES AND CONCLUSIONS



refuse collection. To establish the relevant domain you could do
such things as: 1) discover what the proposal involved, 2) read
assessments of similar issues in other cities, or 3) establish the range
of perceptions held by stakeholders through interviews or focus
groups. From this a set of content areas can be formulated.

One means of ensuring that the entire domain is sampled is
to set up a grid, with the content areas as columns and the mani-
festations of these as rows. Then you would devise items to fit
each of the cells. Our present example might lead to a grid such as
the one in Table 12.1, which gives an example of items that would
fit in each cell.

Table 12.1 The construction of items that sample the domain

Manifestations Content

Labour concerns  Efficiency Accountability
Privatisation will
make the workers

more diligent

Privatisation will
lead to a better
service

Privatisation will
lead to workers

receiving better

salaries

Pro-privatisation

Privatisation will
lead to many job
losses

Anti-privatisation In a privatised
scheme, efficiency
will be measured
in terms of cost
saving rather than

quality of service

that the only con-
cern will be with
making a profit,

householders a
good service

Suggest some other items that fit the cells specified in the domain grid
of Table 12.1

Response scaling

When you have determined the content of the items, it is then
important to decide in what form the respondents will answer the
questions. Response scaling refers to methods of associating num-
bers with responses. Below we discuss four commonly used scaling
formats.

Alternative-choice

Alternative-choice format requires participants to respond to an
item by marking one of two choices, e.g. ‘yes’ or ‘no’, ‘true’ or
‘false’, ‘agree’ or ‘disagree’. Each of these options will be associated
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Privatisation means

and not with giving

Define the constructs
you want to measure
clearly, and ensure
that the items reflect
the ‘domain’ of the
construct.

Cost

Privatisation will
lead to lower costs
for the service

Privatisation will
lead to an escalation
of costs to the
householder as the
firm will have

to show profits

Activity 12.1
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with a number, e.g. 0 and 1. Although the alternative-choice scale
lacks precision, there are instances where it is appropriate, e.g. a
lifestyle measure that asks respondents to indicate (yes or no)
whether they possess objects such as a cellphone, television, and
video recorder.

Multiple-choice

Students are all too familiar with this response format, which is
commonly used for achievement and knowledge tests. A number of
possible answers are given for each item, and the respondent is
usually required to select only one. We could construct a test of
the community’s knowledge and perceptions of the new municipal
policy by using a number of multiple-choice items (see Figure 12.1).

Please answer the following questions by circling the correct answer.

1. According to the new municipal refuse collection policy, how often will refuse be

collected?

a) Daily

b) Weekly
c) Monthly
d) Annually

2. Which of the following statements describes the effect privatisation will have on the
cost of refuse collection?
a) The cost will increase.
b) The cost will decrease.
¢) The cost will decrease in the short term, but increase in the long term.
d) The cost will increase in the short term, but decrease in the long term.

Figure 12.1 Instructions and response format for a multiple-choice test

Responses to multiple-choice items are quantified by assigning the
value 1 to a correct response and the value 0 to an incorrect
response. When the items are not testing knowledge, numbers
(e.g. 1-4) or letters (e.g. a—d) are typically assigned to each of the
possible responses.

Rating scale

This scale is frequently called the Likert Scale (Likert, 1932), and is
especially useful for measuring attitudes and opinions. The item
generally consists of a statement to which the respondent must
indicate the degree of agreement or disagreement by marking a
point on the scale. In this format, a continuum of scale points is pre-
sented, anchored by ‘Strongly agree” on the one side and ‘Strongly
disagree’ on the other. To quantify the responses to each of the three
items of the measure of attitudes towards privatising municipal
services (see Figure 12.2), we typically assign numbers to the
response items as follows: SD = 0,D =1, N =2, A = 3,5A = 4.
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Please answer the following questions by indicating your reactions to each statement.
Circle the response option, using the following scale, to show the extent to which you
agree or disagree with each statement.

SD if you strongly disagree with the statement

D if you disagree with the statement
N if you are neutral about the statement
A if you agree with the statement

SA if you strongly agree with the statement

1. Privatising municipal services will lead to better service delivery.

SD D N A SA

2. Privatising municipal services will make workers more productive.

SD D N A SA

3. Privatising municipal services will escalate the cost of services.

SD D N A SA

Figure 12.2 Instructions and response format for a rating scale

In our measure, we have used a 5-point rating scale response for-
mat, but the optimal number of scaling points is a matter of debate.
Nunnally (1978) argues that the reliability of the (full summated)
scale increases with the number of scaling points used, levelling off
at 7 points. Measures with fewer points are easier to complete, but
are also less reliable. A further matter of debate is whether we
should have the central ‘undecided’ or ‘neutral” point, or whether it
is better to have an even number of steps that force the respondent
to one side or other. The argument against the midpoint is that it
allows respondents to avoid thinking about the item and having to
make a decision. On the other hand, respondents who are genuinely
undecided or neutral may become frustrated at not being able to
express this. Ultimately, the researcher must decide which format
best suits the research requirements.

Bipolar adjectives

This scale format is most commonly known as the semantic-differ-
ential scale, and was developed by Osgood and his associates
(Snider & Osgood, 1969). It is similar to the Likert scale in that a
continuum of points is presented, anchored at each end. However,
in this type of scaling the anchors consist of adjectives with oppo-
site meanings, such as good-bad, honest-dishonest. Respondents
are asked to describe a concept or category of person using this con-
tinuum. Thus, marking a number close to one end of the continuum
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would indicate that the respondent feels that that adjective strong-
ly describes the concept or category, whereas a number towards the
centre of the continuum indicates that neither of the adjectives is an
accurate representation. An example of such an item would be:

The new municipal refuse collection policy will lead to

Lower efficiency | | | | | | | | Higher efficiency

Box 12.2

Summing scale scores

The following example will be used to illustrate how to summate
the scores and evaluate the scale. A researcher wishes to run a sur-
vey on how people feel about the legalisation of marijuana. He
develops a questionnaire, which contains 4 knowledge items to
establish how much people know about the facts of marijuana, and
a 6-item attitude scale to measure the extent to which they would
support the legalisation of marijuana. The knowledge questions
were designed with multiple-choice responses, and the attitude
items responses on a 7-point Likert scale. The questionnaire is
shown in Box 12.2.

Opinions about marijuana (dagga) questionnaire

Thank you for taking part in this study. Your responses to this ques-
tionnaire are completely confidential. Your name is not required. When
the study is published all participants” scores will be amalgamated, so
your particular answers will not be identifiable.

Please complete the following personal questions.

Age: (Please tick 18-25 26-35 36-50 51+
the appropriate box)

Sex: Male I:I Female I:I

Please answer these questions by writing the correct answer in the
box next to the questions:
1. Marijuana (or dagga) is

A A synthetic substance

B Made from an insect

C Made from the leaf and flower tops of a plant

D Made from the horn of a rhinoceros Answer: I:I
2. Indicate which of the following is NOT another name for marijuana

A Crack

B Cannabis

C Ganja

D Grass Answer: I:I
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3. Which of the following effects are known to occur when a person

takes marijuana?

A Impaired motor skills
B Impaired sense of time
C Impaired sight

D Both Aand B

Answer: I:I

4. The active chemical in marijuana is

A Ecgonine

B Tetrahydrocannabinols
C Phalloidine

D Tetraiodothyronine

Answer: I:I

Please read each of the following items and indicate the degree to
which you agree or disagree with the item by ticking one of the

7 boxes. If you tick

1 - it means you strongly disagree
2 — it means you disagree

3 — it means you disagree slightly
4 - it means you are undecided

5 — it means you agree slightly
6 — it means you agree
7 — it means you strongly agree

1. Marijuana is not addictive, so it is a mistake to refer to is as a
dangerous drug in the same category as heroin or cocaine.

Songly [ [ [ [ [ [ [ | Stongly
Disagree 1 2 3 5 6 7 Agree

2. Smoking marijuana is less harmful to one’s health than drinking
alcohol.
Strongly | [ | | [ [ | | Strongly
Disagree 1 2 3 5 6 7 Agree

3. Smoking marijuana is very likely to lead to the use of more dan-
gerous drugs such as heroine and cocaine.

Strongly | [ [ [

| [ [ |  Strongly

Disagree 1 2 3

5 6 7 Agree

4. The legalisation of marijuana would lead to lower productivity

on the part of the workforce.

Strongly | [ [ [

| [ [ |  Strongly

Disagree 1 2 3

5 6 7 Agree

5. The many positive medical benefits of marijuana, such as in the
alleviation of nausea after chemotherapy and relieving eye-pres-
sure in glaucoma, are a strong argument for its legalisation.

Stongly [ [ [ ]

| [ [ | Stongly

Disagree 1 2 3

5 6 7 Agree

6. The pursuit of people selling marijuana is a waste of the police

force’s time and energy.

Strongly | [ [ [

| [ [ |  Strongly

Disagree 1 2 3

TUTORIAL 12: MEASUREMENTS
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Activity 12.2

Coding responses

After the questionnaire has been administered to a sample of
respondents, the responses to the questions must be coded and
stored in a data file. The responses to the marijuana questionnaire
are coded into numbers as follows:

Age: 18-25 = 1;26-35 = 2;36-50 = 3; 51+ = 4
Gender: male = 1; female = 2

Knowledge items: A=1,B=2,C=3,D
Attitude items: 1 to 7, as indicated

4

Figure 12.3 shows the first screen of an Excel spreadsheet holding
the coded responses of the representative sample. Notice that each
research participant is identified in the first column - P1, P2, P3, ...
etc. — and that responses to each of the questionnaire items are rep-
resented in the columns.
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Figure 12.3 Microsoft® Excel spreadsheet showing the responses of the

first 12 participants

Refer to Figure 12.3 and answer the following questions:
a) What is the age and gender of participants P1 and P2?
b) What did participant P3 respond to each of the 4 knowledge items?

Reverse scoring

The researcher has correctly varied the sense of the items such
that for some items agreement indicates a positive attitude (e.g. "2.
Smoking marijuana is less harmful to one’s health than drinking alcohol’)
and for others disagreement indicates a positive attitude (e.g.
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‘3. Smoking marijuana is very likely to lead to the use of more dangerous
drugs such as heroine and cocaine’). This strategy is necessary to
ensure that the respondents read each item and do not use a
response set in which they consistently mark only one side of the
scale. Clearly the scores as they stand could not be summed to give
a total score reflecting the stance of the individual. Before summa-
tion, you must reverse the scores of the opposite-meaning items
(7 for 1, 6 for 2, etc.). You should first decide whether a high score
is to indicate a positive or negative attitude. In this case, a high
score will indicate a pro-legalisation attitude. A simple method for
achieving this reversal is to use the following formula:

Y= (K+1)-X

where: Y = the new score
K = the number of scaling points used in the
rating scale or bipolar adjective scale
X = the number marked by the respondent

For example, in the attitude to marijuana example, a 7-point scale is
used. If a respondent has marked 2 on the third item (S3), then the
reversed score would beY = (7+1)-2=8-2 = 6.

Summing the scores

To obtain one score that represents the individual’s attitude or opin-
ion, the scores of the items are totalled or, alternatively, the average
of the scores can be found. The total is generally considered better
as it gives a wider range of scores. However, before doing this, you
must consider the missing scores. Missing scores occur when
respondents have not answered questions, either accidentally or
deliberately. There are a number of options to take in this situation:

1. Remove these respondents from the data file. This is a good option if
the sample is sufficiently large for the responses on the answered
questions not to be missed. However, if the questions were
deliberately missed (e.g. in protest), these respondents may rep-
resent a particular viewpoint. Excluding them would then
diminish the representativeness of the sample.

2. Replace the missing number with the average of the respondent’s other
scores. The total found in this manner is termed the weighted
total (or pro-rated total). The simplest way of calculating this is
to (i) find the average of the items for the individual, then (ii)
multiply that average by the number of items in the scale. This
is the most common method of dealing with missing numbers.

If you replace the missing scores (option 2), it is important to decide
on a maximum number of questions a respondent is ‘allowed’ to
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analysis.

miss. A rule of thumb is that every respondent should complete at
least 75% of the items. If more than 25% are missing, the respondent
should be dropped from the sample. In the above example, respon-
dents were excluded if more than one item was missed.

A scale measuring work stress consists of the following five items,
each of which was answered using a 6-point Likert scale anchored by
1 = strongly agree and 6 = strongly disagree. The number marked
by a respondent (Lindi S.) is given next to each item. It is intended
that a total high score on this scale should indicate a high level of
stress. Consider the items and decide which require the scores to be
reversed. Then calculate Lindi’s total score on this scale.

a) Ifrequently lie awake at night worrying about everything

I have to do the next day. (6)
b) Iswitch off all my work problems the minute I leave the office. (2)
¢) Ifrequently have the experience that my heart seems to start

beating faster than normal. 4)
d) Ioften have a hard time focusing on the task at hand. 3)
e) Itake unpleasant events in my stride. 1)

Evaluating a scale or test

When a new scale or test has been developed, it is important to
check that the scale measures what it claims to measure (its validi-
ty), and that it gives consistent scores (is reliable). It is also impor-
tant to check whether all the items in the scale are valuable and
should be retained, through item analysis.

In order to evaluate a scale, it must be tried out on a test sample.
Scales are usually constructed for general use, so the test sample
should be representative of the population for which the scale is
designed. Thus, if a scale is designed to measure the mathematical
aptitude of primary school children, the test sample must also con-
sist of primary school children. However, frequently you only wish
to evaluate the scale in the context of a particular study. For
instance, if in a study a test that has been developed elsewhere is
employed, it would still be advisable to check the psychometric
properties of scale with the sample used for the study.

In the following section, the concepts of reliability, validity, and
item analysis are explained, and procedures for establishing them
described. At this point, it may be useful to consider the underlying
theory of measurement. This is briefly discussed in Box 12.3.

Reliability
Imagine a ruler made of an elastic material that expands and con-
tracts unsystematically as you make different measurements. This
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Measurement theory and reliability
There are two schools of thought about the underlying theory of meas-
urement — classical measurement theory and generalisability theory.

Classical measurement theory argues that the measure or score pro-
duced by a test or scale consists of two components: the stable con-
struct being measured and factors that have nothing to do with the
construct. The construct or attribute is the core so its measure does
not vary. This is termed the true score, symbolised by T. However, a
range of other factors will also be present, and these are what lead to
inconsistencies in test scores. This is referred to as measurement
error, symbolised by e. Thus, a score (X) measured on any test or
instrument can be expressed by the following formula:

X=T+e

Clearly, the smaller the measurement error, the more accurate the score.
Measurement error comes from a number of sources, both unsystemat-
ic and systematic. Unsystematic error comes from such things as the
choice and expression of items, the way the test is administered, and the
test scored. If these procedures are done well, then measurement will be
limited. Systematic measurement error arises when the test is not valid,
i.e. when it is measuring something other than the true construct.

The reliability of any test hinges on the amount of measurement
error relative to that of the true score. Following the basic formula
above, the total variability of the scale or test scores in a sample can
be expressed as:

0’ = or” + 0/
where:  ox* = the variability of scores
= the variability due to the natural
distribution of the construct
o/ = the variability due to measurement error

N}

o7

The reliability coefficient can thus be seen as the ratio of the vari-
ability of the true score to that of the observed variability:

o1’ or?
I'nx = 0_>(2 = (o + 62
While classical theory holds that there is a ‘true” measure of the trait,
behaviour, or sentiment being measured by the test or scale, gener-
alisability theory holds that the scale or test is sampling a finite
domain of the variable. This locates the measure in a specific context,
determined by the particular test, the historical time, the tester, etc.
It is hoped to generalise this finite sample of the variable to a wider
universe of possible contexts. In this formulation the reliability of the
test refers to its generalisability. In practice, this does not differ much
from classical theory. The real difference is that it compels the test
developer to explicitly define the universe to which the test results
are intended to be generalised.
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would be an unreliable measurement instrument, as it would give
different results when the same object is measured on different
occasions. Although you will probably never have to deal with a
measuring instrument this unreliable, you should always try to
determine the reliability of the instrument you are using. A number
of different kinds of reliability indices can be computed for the
measurement instruments used by social scientists.

Test-retest reliability
The simplest way to establish reliability is to administer the test or
scale to a sample on two different occasions. If the scale is reliable,
the scores at the test and retest administration should be strongly
correlated. (Note that you would not expect the scores to be identi-
cal, as there are bound to be some practice or carry-over effects on
the second testing.) There are a number of difficulties inherent in
this method of determining reliability, though:

1. What is the optimal length of time that should elapse between
the administrations? If it is too soon, the participants may recall
their answers from the first administration. If left too long, extra-
neous events may influence the scores on the scale.

2. How do you maintain participant confidentiality while at the
same time asking for their names and addresses so that you can
trace them for the second administration of the scale?

The preferred measure of test-retest reliability is the correlation
coefficient between the sets of scores collected at the two adminis-
trations.

Alternate-forms reliability

Instead of using the same test twice, as in the test-retest method,
alternate-forms reliability requires the construction of two equivalent
versions of the same test, which have items that are closely matched.
Then the two forms are administered to the same set of people either
at different times or at the same time. If done at different times, half
the sample do version A on the first administration and half do ver-
sion B. These are then alternated on the second administration. This
counterbalancing technique controls for carry-over and maturation
effects. If the tests or scales are reliable, the scores on the two tests
should then not only be strongly correlated but should also produce
similar means and standard deviations. This technique removes the
problem of participants remembering their first responses.

The alternative forms can also both be administered at the same
time. This method is then more a test of internal consistency than of
constancy. Alternative forms reliability (in both instances) is the cor-
relation between the scores on the two forms of the test.
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A problem with the alternative forms method is that it is both
difficult and expensive to produce alternate forms that are suffi-
ciently independent and similar.

Split-half reliability
Split-half reliability is determined by administering the test on a sin-
gle occasion, then dividing the items of the scale into two equivalent
halves. The scores on the two halves are correlated to determine
whether they yield similar measures. The logic is that if the scores
from the two halves (from a single administration of the scale) are
strongly correlated, then administering the whole test on two sepa-
rate occasions would also lead to strong correlations (i.e. reliability).
The split-half reliability is calculated using the Spearman-Brown
formula, rather than the correlation coefficient between the two
halves. The correlation coefficient is based on only half the number of
items in the scale, so underestimates the reliability of the full scale.
The Spearman-Brown formula (r) corrects for the loss of scale length:

where 7, is the correlation coefficient
between the two halves

The problem with the split-half technique is that it is affected by the
way in which the scale is split into two. For instance, in ability tests
the items are frequently presented in order of difficulty. Thus split-
ting the test at the middle would give a different reliability coeffi-
cient than if alternative items were put into the different halves.
Ideally, the scale should be split into halves so that the halves are
roughly equivalent in terms of difficulty and coverage.

Internal consistency - coefficient alpha

Cronbach’s coefficient alpha is an estimate of consistency of
responses to different scale items. The Cronbach alpha can be
viewed as the average of the reliability coefficients that would result
if all possible split-half analyses were performed. It is, however,
strongly affected by the number of items in the scale. The logic here
is that high internal consistency within the scale inevitably leads to
strong test-retest reliability, since ‘the major source of measurement
error is because of the sampling of content” (Nunnally, 1978, p. 230).

The Cronbach alpha coefficient formula (r.):

y =D (1_ 201'2)

n-1 o?

where: 20?2 = sum of the item variances
02 = variance of the total score on the scale
n = number of items
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Activity 12.4

The 5-item stress scale discussed in Activity 12.3 is administered to a
large representative sample. The variance of each item and the vari-
ance of the total scores on the scale are presented in the table below.
Calculate the alpha coefficient for this scale and comment on the
scale’s reliability.

Itema | Itemb | Itemc | Itemd | Iteme | Total

Variance | 2.41 2.16 1.96 221 3.36 29.74

Box 12.4|
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Using SPSS® to compute reliability statistics

In our study, 64 respondents completed the 6-item marijuana atti-
tude scale. The data were analysed using SPSS® . The three figures
directly below show you how to conduct reliability analysis with
SPSS® . The output for the Cronbach alpha and the split-half relia-
bility coefficients is then given.

Step 1. Select the ‘Reliability analysis’ option on
the “Scale” item of the Analyze menu in SPSS®.

: Rehability Analyziz

Step 2. (a) Select the scale items, (b) select the kind
of reliability analysis you want to conduct, (c) tick
the option ‘List label items’.
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Step 3. Select desired statistical output.

RELIABILITY ANALYSIS- SCALE(ALPHA)

Mean  Std Dev Cases
1. S1 3.4194 1.7975 62.0
2. S2 5.1935 1.7910 62.0
3. RS3 5.2581 1.4365 62.0
4. RS4 4.0484 2.1381 62.0
5. S5 3.9516 1.9705 62.0
6. RS6 5.0484 1.9705 62.0
N of

Statistics for Mean Variance Std Dev Variables
SCALE 26.9194 61.4196 7.8371 6
Item-total Statistics

Scale Scale Corrected

Mean Variance  Item-  Alpha

if Item if Item Total if Item

Deleted Deleted Correl  Deleted

S1 23.5000 53.8934  .1627 .8416
S2 21.7258 47.5465 4318 .7865
RS3 21.6613 47.7031 .5873 .7580
RS4  22.8710 37.3929 7440  .7062
S5 22.9677 39.0481 .7508  .7072
RS6  21.8710 40.9339 .6585 7322

Reliability Coefficients
N of Cases = 62.0 N of Items = 6
Alpha = .7928

Step 4. Examine SPSS® output.
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A reliable scale may

or

may not be valid,
but a scale that is
not reliable can
never be valid.

Criteria for reliability

The criteria for reliability coefficients vary for the different types of

test. Much higher reliability coefficients are found (and demanded)

for achievement and ability tests than for personality or attitude
scales. However, the purpose of a test or scale is also a factor in

deciding whether the level of reliability is adequate. Aiken (1982)

argues that if the scale is to be used to compare groups of people,

then a reliability of 0.65 is sufficient. However, if an individual’s
score is to be compared with another, or against a set of norms, then
the reliability should be at least 0.85. Nunnally (1978) makes the dis-
tinction between scales used for basic research and those for applied

(diagnostic) purposes. Reliability coefficients of 0.70 are adequate

for research instruments, while coefficients of 0.90 should be the

minimum criteria for applied instruments.
There are a number of controllable factors that influence reliability:

1. The number of items in a test or scale. In general, the more items in
the scale, the higher the reliability it is likely to have. However,
this has to be weighed against the problem of participant moti-
vation. You will have more difficulty finding respondents if the
task looks very long, and they are likely to tire and give the items
less attention.

2. The variability of the test sample. In general, the greater the vari-
ability in the scale scores, the better the reliability. If a wide range
of people is used, as opposed to a small, homogenous group,
then a larger standard deviation in scores would be expected.
Thus, a better estimate of the reliability of a scale is obtained if
the test sample is representative of the wider population.

3. Limiting extraneous variables. All the extraneous variables that
contaminate ordinary research designs also affect reliability.
Badly run testing situations, ambiguous and misleading items,
unstandardised testing procedures, perceive-demand effects —
all these contribute to increasing the measurement error, thus
lowering reliability. Thus, a well-designed scale, with clear
instructions, tested under standardised conditions will help
limit the measurement error so that it reflects the true content of
the scale.

Validity
A scale or test is valid if it does in fact measure what it claims to
measure. This is not an easy judgement to make, as there is no direct
measure of validity. In general, this judgement depends on whether
the scale or test leads to inferences that are meaningful and useful.
There are various aspects to validity, which can be grouped under
three main categories: content validity, criterion-related validity,
and construct validity.
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Content validity

Content validity refers to how well the test or scale items represent the
domain of the construct being measured. If a scale measuring stress
has items only about the psychological effects of stress and ignores the
physical effects, then it will not have good content validity.

There are two ways of ascertaining the content validity of a
scale. First, face validity can be determined. Face validity refers to the
appearance of the test or scale. For example, if respondents were
told that the purpose of the previously discussed ‘marijuana’ ques-
tionnaire was to assess how people felt about consumer issues, they
would rightly feel they were being deceived. It is important for the
test or scale to appear authentic to the participants. While this is not
strictly a criterion for validity, it does have an effect on the test
scores if the participants have doubts about the test.

Second, the scale items can be evaluated by expert judges, who
independently examine the items and decide whether each of the
items is weakly relevant or strongly relevant to the content domain
of the construct. This allows us to ‘measure’ the extent of content
validity by calculating the proportion (or percentage) of items that
the judges agreed were strongly relevant. This measure ranges from
0 to 1.00 (or 100%).

X
Content validity =

where: x = number of items evaluated as strongly
relevant by both judges
N = total number of items in the scale

Criterion-related validity

Criterion-related validity refers to how well the scale or test antici-
pates a criterion behaviour or outcome, either at the present time
(concurrent validity) or in the future (predictive validity). The difficulty
with this type of validity lies in selecting the appropriate criterion.
The criteria for ability or achievement tests are generally perform-
ance in some form of examination. However, determining a criterion
for personality and attitude scales is much more difficult. Frequently,
other tests that have already been used to test the same construct are
used as criteria in evaluating concurrent validity. For example, to
evaluate the validity of a new test for depression, you would give the
newly developed scale and an established test of depression to the
representative sample. A strong correlation between the new and old
tests is evidence for concurrent validity. In the case of the ‘marijuana’
scale, concurrent validity could be established by also getting the
sample to complete another scale that measures attitudes to drugs.
The scale devised by the Northumbria Drugs Prevention Team in
1995 for use in Whitburn, UK would be one possibility.
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Equation 12.4

Concurrent validity
refers to how well
the test predicts a
criterion behaviour
at the present time.

Predictive validity
refers to how well

the test predicts a

criterion behaviour
in the future.
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Convergent validity
ascertains construct
validity through
comparing the scale
with a measure of
an allied construct.

Discriminant validity
ascertains construct
validity through con-
trasting the scale
with a measure of an
opposing construct.

Criterion-groups
validity ascertains
construct validity
through comparing
groups who logically
should respond to
the construct anti-
thetically.

A hypothetical measure of the predictive validity of this scale
would be a referendum on the legalisation of marijuana. If it was
possible to discover whether the individuals in the test sample
voted in favour or against the proposition, the predictive validity of
the test could be calculated. If the test is valid, the people who
scored high on the scale should vote “yes’ to legalisation of mari-
juana, and those who scored low should vote ‘no’. There are numer-
ous statistical tests that could be used to establish whether this rela-
tionship exists, e.g. the chi-square test of contingency, or the point-
biserial correlation.

Construct validity

This is the most difficult validity to determine, as it attempts to
establish whether the scale really does measure the construct it
claims to measure. Constructs are intangible and difficult to opera-
tionalise. Hence, to establish this validity, an array of methods is
used, aimed at discerning behaviour or sentiments that logically
emanate from the construct. One method is to find a construct that
should theoretically be allied to the one being measured. Thus con-
struct validity would be demonstrated by a strong correlation
between a sound measure of hedonism and the scores on our ‘mar-
ijjuana’ scale. This is termed convergent validity.

Another technique would be to find a construct that would be
contrary to the construct being measured. For instance, it could be
argued that people who believe in strong policing of the population
would be opposed to the legalisation of marijuana. Hence, it could
be argued that authoritarianism would be a contrasting construct.
We would thus expect a strong negative correlation between the
scores on the ‘marijuana’ scale and an established scale measuring
authoritarianism. This is referred to as discriminant validity.

Criterion-groups validity is investigated by determining whether
groups who would be expected to differ on the construct do in fact
score differently on the measure. Thus, in the case of the ‘marijuana’
scale, the scale could be administered to a group of practising
Rastafarians and a group of practising Muslims. It would be expected
that the scores of these two groups would be significantly different.

The use of other scales or tests as a check for validity (as in con-
current or convergent validity) does have problems. The criterion
scale may itself have dubious validity. Ideally, a behavioural criteri-
on would be advantageous.

Item analysis

Tests of validity and reliability are used to determine the properties
of an entire scale. Item analysis is used to determine if an item is
‘good’. There are two main criteria for this judgement. Firstly, the
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item should contribute positively to the scale’s reliability, i.e. to its
ability to measure the construct. Secondly, the item should differen-
tiate between high and low scorers on the entire scale. The first cri-
terion has been termed ‘item facilitation” and the second, ‘item dis-
crimination” (Rust & Golombok, 1989).

Item facilitation
In a knowledge test, such as a multiple-choice examination, you The item-difficulty
would calculate the item-difficulty index. This is the proportion of  index (of a knowl-
the test sample that answers the item correctly. If the item difficulty ~ €dge test item) is the
is 0, which occurs when none of the sample gets the item correct, the PP ortlor; Ozhthf
item is not useful in measuring the knowledge of the sample. There :ﬁ;gg’; hee it:m
are many reasons why this may occur, ranging from problemsinthe /., ctly.
way the question was presented to inappropriate level of difficulty
for the sample. Whatever the reason, the item in question does not
add to the value of the test. Similarly, if the whole sample gets the
item correct —i.e. the index = 1 — then the item is equally ineffective.
In general, items with item-difficulty indices of between 0.3 and 0.7
are acceptable, with 0.5 being optimal.
Consider the four knowledge questions in the ‘marijuana’ scale.
In question 1, the correct answer is C. In our sample of 64 respon-
dents, 58 marked the correct answer and 6 the incorrect answer. The
item-difficulty index is: IDI = 58/64 = 0.906
This is too high, indicating the item was too easy. In contrast,
consider question 4 on which only 8 people marked the correct
response (B). Hence: IDI = 8/64 = 0.125
This is too low, indicating the question was too difficult. Both
these questions thus have discriminatory power. On question 2, 43
people selected the correct answer (A), and 20 on question 3 (D) on.
The item-difficulty indices on these questions are:

Question 2: IDI = 43/64 = 0.672 Question 3: IDI = 20/64 = 0.313

Both these indices are acceptable.

In other kinds of tests and scales (e.g. attitude measures), where  Reverse scoring
the items are measured on an interval scale, the contribution an item  should be done
makes to a scale can be discerned using the Cronbach alpha proce- ~ before item analysis
dure. To examine the items, a series of Cronbach alphas is comput- ~ €O"MeNces.
ed for the measure, removing a different item on each occasion. If the
alpha coefficient improves markedly in comparison to when the
item is included, this indicates that the item has a detrimental effect
and should possibly be excluded from the scale. Note that SPSS®
reports this analysis whenever you request a Cronbach alpha.

Box 12.4 above shows the SPSS® output of a Cronbach alpha
analysis done on the 6 attitude items of the ‘marijuana’ scale. The
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Equation 12.5

program provides the alpha coefficients when each of the items is
excluded. Consider the furthest column on the right, entitled “Alpha
if deleted’. If item S1 is deleted, the alpha coefficient for the scale
will rise from 0.793 to 0.842, a gain of 0.05. No improvement in
reliability occurs for any of the other items. The researcher must
then decide whether this rise in reliability warrants the removal of
the item.

Item discrimination

In a knowledge test, an item-discrimination index (IDsl) can be cal-
culated as follows. The test sample is divided into four sub-samples
on the basis of their overall scores. The top 25% and bottom 25% are
extracted, and the number within each of these sub-samples that
correctly answered the item in question is calculated. The item-dis-
crimination index is then calculated as follows:

T-B

IDsl = N

where: T = number of the top 25% that correctly answered the item
B = number of the bottom 25% that correctly answered the item
N = the total number of people in either the top or bottom 25%

This index can vary from -1 to +1. Clearly, if the index is negative,
the item is bad since it means that a larger number of the poor
scorers are getting it right than the good scorers. The closer to +1 the
index, the better is the item’s discrimination power. But very high
values are not common. A general rule of thumb is that items with
discrimination-indices of 0.20 and above are reasonable.

In the case of items with interval scaling, item discrimination is
discerned from the correlation between the scores on the item in
question and the total score on the whole scale. (Ideally the total
should be calculated without the item score included.) Item analy-
sis programs generally provide this correlation coefficient. Consider
the SPSS® output in Box 12.4. The column entitled ‘Itm-Ttl Correl.’
provides this coefficient. A general rule of thumb is that a correla-
tion coefficient of less than +0.20 indicates a suspect item. In the
above example, item S1 has a correlation of 0.16. Thus both the item
facility criterion and the item discrimination criterion suggest that
51 is not good, and should be excluded from the scale. A close look
at the item "Marijuana is not addictive, so it is a mistake to refer to it as
a dangerous drug in the same category as heroin or cocaine’ suggests that
the reason for it being problematic is that it assumes that respon-
dents agree that marijuana is not addictive. Hence, two issues are
queried in the item - the addictiveness of marijuana, as well as its
degree of danger.
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A lecturer constructed a multiple-choice test to evaluate her course at
the end of the semester. Below is a table giving the item-difficulty
index (IDI) and the item-discrimination index (IDsI) for 8 of the test
items. Indicate if any of these items should be excluded from the test
bank, giving the reasons for this decision.

Question IDI IDsI
1 0.55 0.34
5 0.51 0.54
2 0.62 047
6 0.22 0.24
3 0.85 0.60
7 0.40 043
4 0.66 0.38
8 0.32 0.14

Standardisation and norms

‘Norms’ present relatively fixed gradations within the general pop-
ulation that can be used for benchmarking an individual’s perform-
ance. For example, knowing that an individual’s score on the
SAWALIS is 70 tells us very little until we know that the average
intelligence of the population on this IQ test is 100 with a standard
deviation of 15. It then becomes clear that this individual has a low
intelligence (the bottom 2.5% of the population). Similarly, we
might need to know the level at which people’s depression is so bad
that it would be advisable to hospitalise them for treatment. In
developing such norm-referenced tests, it is important to select a large
standardisation samples that are truly representative of the popula-
tion on which the test will be used. The scores of this sample on the
test are then transformed into one of a number of gradation systems:
e Percentiles and percentile ranks, in which scores are graded in terms
of the percentage of the sample that achieve at levels below the
score in question. For example, the score that is marked as the
40th percentile is the score below which 40% of the standard-
isation sample fall (ranked in terms of scores on the test).
e Standard scores, in which the scores are transformed to a standard
normal distribution with a mean of 0 and standard deviation of
1, and presented as z-scores (see Tutorial 6).
e T-scores, in which the scores are transformed to a normal distri-
bution with a mean of 50 and standard deviation of 10.
e Stanines, in which the scores are transformed into a distribution
with 9 points. The mean is 5 and standard deviation is 2.
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Ed Microsoft Excel - norms
JE’}__'I File Edit “iew Insert Format Tools Data Window Help

Constructing norms

To illustrate standardisation, the summed scores on the 6-item mar-
ijuana attitude scale will be used. Figure 12.4 shows these calcula-
tions for a small sub-sample of our sample of 64 respondents. The
first step in constructing T-scores and Stanines is to convert the raw
scores into z-scores, which requires the mean and standard devia-
tion of the sample’s scores. Column Q of the spreadsheet shows the
calculated z-scores for some of the data. The Excel instruction on
how to get the score for any particular score (i) is shown in cell T3.
The T score is found using the formula, x = (z x 0) + u, substituting
w = 50 and o = 10. The Stanines are found in the same way through
substituting uw = 5 and o = 2. These are illustrated in columns R and
S on the spreadsheet. The percentile rank of given score (percentage
of the sample that fall below that score) is found from z tables.

DEeds8ly

BB S| 0-o-

Q= A8 A IS ne -0,

I Arial

-2 - B 7U =

B W%, @3 i Pl

&= iE

QB9 j = |

A P Q R s | T
1 |ID TOTAL Z T Stanine Excel instructions
2 |P1 20| -0.8953| 41.047| 3.2094 z scores:
3 |P2 30| 0.3896| 53.896| 5.7791 =(Pi-26.968)/7.783
4 |P3 24| -0.3813| 46.187| 4.2373
5 |P4 17| -1.2807| 37.193| 2.4385 T scores:
& |P5 38| 1.4174| 64.174| 7.8349 =(Qi*10)+50
7 |P6 40| 1.6744| 66.744| 8.3488
& |P7 25| -0.2529| 47.471| 4.4943 Stanines:
g |P8 22| -0.6383| 43.617| 3.7234 =(Qi*2)+5
65 |P64 27| 0.0041| 50.041| 5.0082
66
67 |[Mean 26.968
68 |St. Dev.| 7.7833
d - 1

Figure 12.4 Microsoft® Excel spreadsheet illustrating calculation of z-scores,
T-scores, and Stanines

Use of norms

Norms enable us to interpret an individual’s score on a test. By
comparing the score to the norms, we can discern whether the in-
dividual is ‘average’ or ‘exceptional’, and how high or low the score
is relative to the population. Further, norms can be associated
with a diagnosis so critical norm values can be established for the
test user.
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Worked example

The following example describes the development of a scale that
will measure perceptions of the causes of industrial action. The per-
ception of interest is the degree to which either management or the
workers/trade unions are blamed.

Development of the scale items

The researcher starts by considering a range of popular media repre-
sentations of industrial conflict — in newspapers, magazines, radio,
and television. From this a domain of behaviours is outlined. The
content of this domain is specified as (i) politics, (ii) management—
worker relations, (iii) working conditions, (iv) money, (v) exploita-
tion, (vi) sector interests, and (vii) negative perceptions. As far as
possible, the manifestations of these behaviours are expressed as
management-blame and union-blame. Table 12.2 presents the grid
specifying the content and manifestations of the domain of behav-
iour sampled.

Table 12.2 The sampling domain for the causes of industrial action scale

Politics Worker- Working Money Exploitation
management  conditions
relations
Union-  The unions’ The unions Workers' Workers"  Workers'
blame political failing to failure to unrealistic desire for
agendas foster com- acknowl- wage more money
munication edge the expecta-  for the
between benefits tions minimum
workers and of employ- amount
management. ment of work
Manage- Manage- Management's Workers Manage-  Workers
ment- ment trying refusal to having real ment's reacting
blame to curtail negotiate with grievances greed for  against
the power  the workers about their higher their
of unions working profits exploitation
conditions

The scale was designed so that the respondents had to indicate the
degree to which they agreed or disagreed that the item was a cause
of industrial conflict by marking a box on a 7-point Likert scale,
anchored by 1 = strongly disagree and 7 = strongly agree. The full
list of items appears on the next page.
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Sector
interests

The union
seeking to
justify their
existence
to the
workers

Manage-
ment neg-
lecting the
interests of
workers

Negative
perceptions

Workers'
lack of
under-
standing of
the broad
economic
constraints

Manage-
ment seeing
workers as
dispensable
and easily
replaceable
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Industrial conflict is caused by:

Q1 The unions failing to foster communication between workers
and management.
Q2 Workers’ failure to acknowledge the benefits of employment.
Q3  Workers having real grievances about their working conditions.
Q4 Management’s greed for higher profits.
Q5 The unions’ political agendas.
Q6 Workers” unrealistic wage expectations.
Q7 Workers’ desire for more money for the minimum amount of
work.
Q8 Workers’ lack of understanding of the broad economic con-
straints.
Q9 Management’s refusal to negotiate with the workers.
Q10 The union seeking to justify their existence to the workers.
Q11 Management neglecting the interests of workers.
Q12 Management trying to curtail the power of unions.
Q13 Workers reacting against their exploitation.
Q14 Management seeing workers as dispensable and easily
replaceable.
The sample

The researcher was interested in the beliefs of people who would be
working in management. She thus decided to use as her test sample
students studying for degrees in human resource management.
Responses from a sample of 415 students were collected. All these
responses were quantified, and entered into an Excel spreadsheet,
which can be found on the accompanying CD.

Test for reliability and item analysis

The researcher immediately put this data into an item-analysis
programme. The results are given in Figure 12.5.

t‘wnhech alphe 55?809 stantelgsgazvd elpha

inter-item corr.

Itm-Totl Alpha if

variabla delated Correl. daleted

.044435 .207924 -542432

58.00497 - -050214 052471 -571801
58,32836 b -B67791 207625 -542631
5947264 4 -599456 . 298558 522009

58.14925 . .860575 +137840 555041
$8.91791 s 036653 039571 577308
58.96269 . -BB4594 129135 .560369
S8.38308 % .969938 .102028 -563021
99 ] s9.89801 2 -615907 .327126 .517103
58.66916 i -B45365 .202823 -543380
59.66916 a .520949 .395527 -502273
59. 10696 . -T727060 -304315 -524401
S8.78856 4 - 738099 263162 -531285

59.23881 G ~474180 325843 -513840

Figure 12.5 Item analysis of the industrial action scale, without item
reversals
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While looking at these results, the researcher noticed that there
were a large number of items that had item-total correlations of less
than 0.20. She then realised that she had not reversed the items for
which a high score (strongly agree) indicated union blame. She
reversed these scores using the formula, New score = 8 — Old score,
and redid the analysis. Figure 12.6 provides the results.

File Edit Yiew Analysis Graphs Options  Window Help

[45.55204 [Columns [Rows] [EIEREE

37 j=1F3
Cronbach alpha: .752479 Standardized alpha: (747985 :
nter-item corr.: .180151

3 Var. if | StDv. if ‘ Ttm-Totl Alpha if
deleted deleted Correl. deleted
94.8684 9.74004 .452217 .730522
g4 46.73632 92.7812 9.83230 . 404473 .733937
Q9 47.16169 94.2550 9.70850 . 396795 . 734830
. Q11 46.93283 91.8835 9.58559 . 484445 .725625
E Q12 46.37065 97.6213 9.88035 . 331726 L741477
E Q13 46.05224 91.4027 9.56048 .927258 .721685
Gy 014 46.50249 89.7923 9.47588 . 445521 .729029
By RQ1 47.94030 117.1755 10.82477 -.342437 L799273
RQ2 47.97015 93.6906 9.67939 . 4535684 . 729506
RQS 47.82587 96.7757 9.83746 FITEILL .7373%0
ROG 47.05721 92.4519 9.61519 . 442718 L7296819
RQ7 47.01244 92.0123 9.59230 .423103 L731790
ROB 47.59204 93.6594 9.67778 . 442044 . 730457

RQ10 47.30597 96.3915 9.91925 . 206486 .745560 ]_

Figure 12.6 Item analysis of the causes of industrial action scale
with items reversed

The Cronbach alpha has jumped to a respectable coefficient,
a = 0.75. However, the reversed score of question 1 (RQ1) appears
problematic. Its item-total correlation coefficient is negative, and the
alpha coefficient would improve if it were removed. A careful
consideration of the item ‘The unions failing to foster communication
between workers and management’ led to a suggestion as to why it was
perceived as problematic by the respondents. It is possible that
there was an implicit second question within the item — whether or
not it is the responsibility of unions to foster such communication.
This differs from the core issue of whether it is the failure of
communication that is a cause of industrial action. The researcher
consequently decided to remove this question from the scale. The
final Cronbach alpha coefficient

was a = 0.80, with all item-total =~ Use SPSS® to compute the

correlation coefficients being =~ Cronbach alpha coefficient for
greater than 0.20. the scale, with Item 1 removed.

Calculating the total scores

Each respondent’s score on the scale was calculated by summing
their scores on Q3, Q4, Q9, Q11, Q12, Q13, Q14, and the reversed
scores RQ2, RQ5, RQ6, RQ7, RO8, RQ10. However, a number of the
respondents (17) had left out at least one question. The researcher
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decided to replace missing responses with the mean of all other
responses (i.e. construct a weighted total), with the stipulation that
no more than 3 items can be missing. If a respondent has more than
3 questions unanswered, he or she will be excluded from the data
file. These total scores were calculated for each individual.

Test for validity

The researcher had also required the respondents to complete a
scale measuring political conservatism, as it would be expected that
people who are politically conservative would be more sympathetic
to management than to trade unions. On this scale the higher the
score, the more conservative the individual. These scores were corre-
lated with the total scores of the developed scale using the Pearson
Product-Moment Correlation test. The resultant correlation coeffi-
cient was r(408) = -0.512, p < 0.0001. This strong negative correlation
confirms that the more politically conservative the individual the less
blame they attributed to management for industrial action. This test
of convergent validity indicates that the scale has construct validity.
A final test of construct validity was done using criterion groups. The
researcher administered the scale to a group of 12 trade union mem-
bers and compared their scores to a group of 12 managers. A t-test
comparison was statistically significant (¢(22) = 2.351; p < 0.0281),
with the mean of the trade union members being higher than that of
the managers. Thus this scale appears to be a good measure of the
perceptions of industrial conflict.

Summary

1. The construction of a scale requires a clear definition of the
domain of behaviours or sentiments to be sampled. Items or
questions are then developed to represent this domain.

2. Item response formats can vary from alternative-choice and
multiple-choice options to forms of continuous rating. The most
common types of rating are the Likert scale and the bipolar
adjectives scale.

3. The phrasing of items is important. Items must contain only one
question, and their meaning should be unambiguous. They
should also be phrased in ways that limit the likelihood of a
socially desirable response. Within the scale, some of the items
should approach the question from the opposite sense to prevent
the use of response sets.
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4. The constructed scale must be evaluated — to check on the qual-
ity of the items, and the reliability and validity of the scale. To do
this, the scale is administered to a standardisation sample that is
representative of the population on which the scale will be used.

5. Norm-referenced tests make it possible to compare the score of
an individual on the test with a set of established norms. This is
particularly appropriate for diagnostic tests, and achievement
and ability tests. Such tests require that the standardisation
sample be carefully selected to represent the desired population.
Norm-referenced tests generally set the norms in terms of per-
centiles, z-scores or T-scores.

Exercises

1. Construct a short scale of no more than 10-12 items to measure
students’ attitudes to sharing accommodation with someone
who is known to be HIV positive. Set up a content/manifesta-
tion grid to help ensure that the domain is sampled. Think care-
fully about the type of response scaling you will use.

2. Aresearcher has constructed a scale with 10 items. The table on
the next page gives the results of an analysis providing the
Cronbach alpha of this data. The item statistics are also pro-
vided. On the basis of this analysis, indicate which items you
would suggest dropping from the scale. Give your reasons for
this decision.
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Summary for scale: Mean = 32.5417  Std. Dv. = 7.70026 Valid N: 72
Cronbach alpha: 0.721950  Standardised alpha: 0.730045
Average inter-item correlation: 0.216908

Mean if Var. if St. dw. if Item-total | Alpha if
deleted deleted deleted correl. deleted

Item1 31.02778 52.08256 7.216825 .359632 .705444

Item2 28.54167 47.30382 6.877777 412865 .694774

Item3 28.11111 49.07099 7.005069 .366284 .702515

Item4 30.37500 51.56771 7.181066 403496 .700653

Itemb 29.43056 44.52296 6.672553 .562439 .667590

Item6 29.22222 46.64506 6.829719 481164 .683222

Item7 28.52778 47.94368 6.924137 498486 .683238

Item8 28.95833 51.45660 7.173326 .216782 727521

Item9 28.56944 53.05073 7.283593 .124920 .744308

Item10 | 30.11111 44.59877 6.678231 477382 .682571

3. a) A class of 360 students took a multiple-choice examination.
Each examination item had four possible answers, of which
only one was correct. On the first of the items, the following
number of people in the class marked the correct answer: Item1
= 62; Item2 = 200; Item3 = 305. Calculate the item-difficulty
index for each and comment on the facility of each item.

b) On the basis of the marks on the whole examination, the class
was divided into four. The top and bottom 25% of the class
were extracted. The number of each of these sub-samples
endorsing each of the answer choices is presented for three
items. The answer with the asterisk is the correct answer.
Calculate the item discrimination index for the three items
and comment on whether the items should be retained or not.

ITEM 15 Alternatives ITEM 22 Alternatives ITEM 15 Alternatives
A|B|C|D A“|B|C|D A|B|C|D*
High scorers | 38 | 16 | 12 | 24 High scorers |50 | 14| 9 |17 High scorers| 6 | 2 | 2 | 80

Low scorers | 23|22 (30|15 Low scorers |23 |10 |42 |15 Low scorers {66 15| 9 | 8
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4. A newly developed scale is designed to measure masculinity.
The researchers perform a number of evaluative tests on the
scale using a large representative sample of men. These are list-
ed below. In each case indicate what psychometric property is
evaluated, and what it indicates about the scale.

a) The sample were given this scale as well as a well-estab-
lished test that also measures masculinity. The scores on the
two tests are correlated.

b) The sample was given the test twice, three weeks apart. The
scores on the test on the two administrations are correlated.

¢) The scale was given to a group of monks and to a group of
rugby players, and the scores of the two groups compared.

d) The sample was given this scale as well as an established
scale for androgeny.

e) The sample’s scores on the test were analysed to find the
Cronbach alpha coefficient and item-total statistics.
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TUTORIAL Statistical power

13

Lance Lachenicht

After studying this tutorial, you should be able to:

® Understand the analogy between criminal court
procedure and statistical test procedure.

® Understand Type | and Type Il errors, and relate
them to statistical power theory.

® Understand the factors that determine the power

of a statistical test.

Calculate effect size.

Calculate power for three varieties of the t-test.

® Understand the factors that influence the choice
of a sample size.

When all is said and done, the essence of science is the requirement
that researchers who propose a theory (e.g. the theory that tea-
drinking is a source of insomnia) put that theory to empirical test.
Statistical hypothesis testing is one such ‘formal’ testing procedure
(see Tutorial 8). Its structure is similar to the procedure in a criminal
trial (see Kraemer & Thiemann, 1987). In the analogy with a crimi-
nal trial, the researchers are the prosecutors, the collection of data is
the trial procedure itself, and the statistical test plays the role of the
judge deciding the verdict: true or false.

The central principle is that the researchers’ theory is considered
false until demonstrated beyond ‘reasonable’” doubt to be true, just
as an accused is presumed innocent in law. So, until the evidence
demonstrates the dangers of drinking tea, we assume that it is safe
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to drink tea. All of this is expressed as an assumption of the truth of
the null hypothesis, which is the contradiction of the researchers’
theory (usually expressed in the form of a statement that there is 1o
difference between two or more groups) (see Tutorial 8). Thus the
null hypothesis in our researchers’ theory is that tea-drinking has
no effect on sleep patterns. What is considered a ‘reasonable doubt’
about the truth of the null hypothesis is called a significance level.
(The significance level is sometimes known as the alpha level in a
study.) By convention (i.e. simply by common agreement among
researchers), a reasonable level of doubt about the truth of a theory
is one chance in twenty (5%, or a probability of 0.05) or, occasional-
ly, one chance in a hundred (1%, or a probability of 0.01) that the
theory is false.

Significance level and significance testing are not the same as
practical or theoretical significance. Once again the analogy with a
criminal trial can help explain this. Some criminal trials are about
important matters (such as murder or other serious crimes) and
others are about relatively trivial crimes (such as failure to pay a
parking ticket). A prosecution team may prove beyond reasonable
doubt that someone failed to pay their parking tickets, but that
proof would still not make this a serious crime. However, proving
beyond reasonable doubt that someone was a murderer would not
only be a successful prosecution but also an important one.
Significance in statistical testing is about the trial process — the
‘proving beyond reasonable doubt’ process — and not about the
importance of the issue being tested (e.g. the relative triviality of
parking tickets versus the seriousness of murder).

Error and statistical tests

Criminal trials may end with erroneous decisions. These are of two
kinds: an innocent person may be falsely found guilty, and a guilty
person may be falsely found innocent. The system of justice tends
to favour the latter error over the former, just as significance testing
tends to favour the null hypothesis over the researchers” hypothe-
sis. In significance testing, rejecting the null hypothesis when it is
true, which is the error of credulity, the error of taking something
seriously that is mere coincidence, is known as a Type I error. The
alternative error, accepting the null hypothesis when it is false, is
the error of scepticism. The error of scepticism, of treating as a mat-
ter of luck something that genuinely calls for explanation, is known
as a Type II error.

The philosopher/mathematician Pascal’s famous wager about
the existence of God can be seen as a meditation on the difference
between Type I and Type II errors. Given the null hypothesis that
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Significance level
and significance test-
ing are not the same
as practical or theo-
retical significance.

Type | error —
rejecting the null
hypothesis when

it s true.

Type Il error —
failing to reject the
null hypothesis when
it is false.

You may find it
useful to review
Activity 8.3 at
this stage.

231



The probability of
making a Type |

error is o, and the
probability of making
a Type Il error is f.

Power is the
probability of

correctly rejecting a
false null hypothesis,
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God does not exist, believing that there is a God when there is not,
would be a Type I error — if there is no God the null hypothesis is
true and the believer errs by being credulous. Failure to believe that
there is a God when there is would be a Type II error, for if there is
a God, the null hypothesis is false and the atheist errs by being
sceptical. Pascal argued that the sceptical error would be more
disastrous in its consequences than the credulous error, and there-
fore drew the conclusion that one should believe in God. Similarly,
a statistician may reflect on the consequences of Type I and Type II
errors in choosing a significance or alpha level, usually with less
profound considerations in mind! The situation can be represented
in the form of Table 13.1.

Table 13.1 Types of error in hypothesis testing

Ho true H, false

H, accepted Correct Type Il error {B}

H, rejected Type | error {a} | Correct

The probability of making a Type I error in any particular sig-
nificance test is alpha (a), the significance level. The probability of
making a Type 1II error is beta (). To summarise: Type I errors con-
cern the event of finding a difference that is not there; Type II errors
concern the event of not finding a difference that is there. For a vari-
ety of reasons, investigators have given much more importance to
Type L errors than to Type Il errors. The high cost of research and the
simple principle that we should plan a research project carefully
require that researchers start to pay more attention to Type II errors.

The power of a test is intimately related to Type II errors. Power is
defined as the probability of correctly rejecting a false null hypo-
thesis, and since the probability of mistakenly accepting a false null
hypothesis is , the inverse or complementary probability (i.e. the
probability of correctly rejecting a false null hypothesis) is 1 - 8. An
experiment with more power has a greater chance of rejecting a
false null hypothesis than does an experiment with less power.

When we run statistical significance tests we know the probabil-
ity of a Type I error (it is the alpha level we have chosen), but the
probability of making a Type II error is not known. However, we
can often estimate {3, the Type II error rate, or power (1 — 8), from
other information.
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What determines the power of an investigation?

Power is determined by four factors:

1. the probability of a Type I error

2. the true state of affairs guessed at by the alternative hypothesis
3. the sample size

4. the particular test to be employed.

The probability of a Type | error

The way in which the probability of a Type I error affects power is
best illustrated graphically. Think about the two distributions in
Figure 13.1. The distribution to the left (labelled Hy) represents the
sampling distribution of the mean when the null hypothesis is true
and u (the true population mean) equals w. The distribution on the
right represents the sampling distribution of the mean that would
arise if the null hypothesis were false and w (the true population
mean) equals w. Where the distribution on the right is placed
depends on what the value of w, happens to be. Alpha (a), the prob-
ability of a Type I error, is represented by the shaded area of the H,
distribution, assuming that we are using a one-tailed test. (For a
two-tailed test, the shaded area would represent %.) This area con-
tains the sample means that would result in significant values of t,
for example.

Power diagrams
0.45

Ho Hy such as Figure 13.1
are conceptual/
hypothetical aids,

0.30 and not distributions
of observed data.
0.15
B3
L
N
0.00 T

Mo Wy
Figure 13.1 An illustration of the sampling distributions of the mean
proposed by the null and alternate hypotheses

The second distribution (H,) represents the sampling distribution of
the mean when H, is false and the true mean is w;. From the figure,
it is clear that even when the null hypothesis is false, many of the
sample means will fall to the left of the critical value of alpha, caus-
ing us to fail to reject the null hypothesis, so making a Type Il error.
The probability of this error () is shown by the striped area of
Figure 13.1. However, when the null hypothesis is false and the
sample mean falls to the right of the value, we will correctly reject
the null hypothesis. The probability of correctly rejecting the null
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Activity 13.1

As a increases

(becomes less strict),
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power increases.

As the true effect
increases in size,
power increases.

hypothesis is what we mean by power and is the unshaded area of
the H, distribution (remember that the distributions overlap, so the
unshaded area includes the area in H; which the a portion of H,
obscures).

Consider a two-tailed independent samples t-test (a = 0.05) where
we find x; =17, X, = 20,8, = 5,8, = 6, n; = n, = 16. Is this difference
significant, against Ho: i = u,?

Assuming that all other values remain constant,

a) What value of (X; — X») would make it significant?

b) What values of n; and n, would make it significant?

c) What value of o would make it significant?

d) What values of s, and s, would make it significant?
(Hint: For each of (a) to (d), you need to substitute different values
for the statistics in question.)

Figure 13.1 helps us understand why power is a function of a. If we
are willing to increase alpha (from 0.05, to 0.1, for example) the cut-
off point will move to the left, thus both decreasing § and increas-
ing the probability of a Type I error. In most real research, the
researcher is not willing to increase alpha (and most journals will
not publish research with a high alpha), so manipulating alpha is
not a practical strategy for increasing the power of a study.

The true state of affairs guessed at by the alternative hypothesis
Power also depends upon the true state of affairs on which
the alternative hypothesis speculates. More precisely, power depends
upon the difference between the mean under the null hypothesis, uo,
and the mean under the alternative hypothesis, w (i.e. o — w). This
can be seen by comparing Figure 13.1 and Figure 13.2.

In Figure 13.2, the distance between w, and w, has been increased
and this has produced a large increase in power (the unshaded area
under the H; curve). This should not be surprising, since what we are
saying is that we have a better chance of finding a difference if that
difference is large. If the researchers” hypothesis is that two groups
are different but only by a very small amount, the danger of a Type II
error is very great. If (to return to our tea-drinking study) tea-drink-
ing does indeed cause insomnia but only by ten minutes a night on
average, then, because of the smallness of the difference, it will be
very easy to accept the null hypothesis even though it is in reality
false. However, if tea-drinking causes insomnia by as much as two
hours per night, it will be easy to refute the null hypothesis.
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Figure 13.2 The effect that altering (u, - w:) has on

The sample size

The relationship between sample size and power is linked to the
relationship between the variance of the sampling distribution (o3)
and power. This is because the variance of a sampling distribution
will decrease as the sample size increases. Comparing Figure 13.3
with Figure 13.1 illustrates what happens to the two sampling dis-
tributions (Hy and H;) when we increase n or decrease o2 As the
variance of the two distributions decreases, so the overlap between
them becomes smaller, which means that power increases (the
unshaded area under H;). In terms of our tea-drinking example, our
study will have greater power if we study two samples (an experi-
mental and a control group) of 100 participants rather than two
samples of 20 participants.

0.75

0.60

0.45

0.30

0.15

0.00

Figure 13.3 The effect that altering sample size has on 3

Of all the factors that affect power, sample size (n) is the easiest to
manipulate. This means that practical attempts to increase power
are generally concerned with the consequences of varying sample
size.
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As n increases, so
power increases.

Of all the factors that
affect power, sample
size (n) is the easiest
to manipulate.
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Activity 13.2

Tests designed for

continuous measure-

m

ments tend to be
ore powerful than

those designed for
categorical or ordi-
nal measurements.

Equation 13.1

Effect size (d) is a

standardised index;
in the case of tests

on means, it

expresses the differ-

ence between the

means in standard
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deviation units.

A large pharmaceutical company of some impropriety conducts a
study in which they administer a daily dose of 5 milligrams of
Phlogiston to a sample of obese patients, and a sample of control
patients. They find that the average difference after the intervention
is 1 kilogram, s; = 50, and s, = 55. Since they have already invested a
lot of capital in the drug, they must find results that show this differ-
ence is statistically significant. They do this by adding more subjects.
How many do they need? (o« = 0.05) What does this tell you about the
dependence of significant findings on sample size?

The particular test to be employed

The choice of statistical test also affects power. The power of statistical
tests is a complex subject beyond the scope of this tutorial. However,
you should note that tests designed for continuous measurements
tend to be more powerful than tests designed for categorised data.
Further, parametric tests, such as t-tests and ANOVA, tend to be more
powerful than non-parametric tests (such as the Wilcoxon and Mann-
Whitney tests: see Tutorial 20), even though they make more assump-
tions about the data.

Effect size

We have established that power is partly determined by the degree
of overlap between sampling distributions under the null and the
alternative hypothesis. A widely used measure of the distance
between u, and w; (the population means under the null hypothesis
and the alternative hypothesis) is called d, the effect size. Effect size is
defined as follows (when we are dealing with continuous measures):

Wo — W1
o

This formula means that d is a measure of the degree to which u,
and w, differ in terms of the standard deviation of the parent popu-
lation. Notice that the formula for d does not include the sample
size n, so d can be used in calculations to help us find an appropri-
ate sample size. Notice also that to calculate d we will need either to
know the population standard deviation or be able to estimate it. The
formula for d is similar to the formula for a z-score (see Tutorial 6).
Just as z-scores standardise differently scaled measurements into
standard deviation units so that they can be compared, so d stan-
dardises research effects into standard deviation units so that they
can be compared.

By itself, the formula for d does not tell us how to interpret a
particular value of d. Cohen (1988) offers some convention