

 Operations Research

•H.A. Eiselt C.-L. Sandblom

Operations Research

A Model-Based Approach

 Dalhousie University

Halifax, NS B3J 2X4
Canada

Professor Dr. C.-L. Sandblom

laws and regulations and therefore free for general use.

liable to prosecution under the German Copyright Law.

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is

in its current version, and permission for use must always be obtained from Springer. Violations are

imply, even in the absence of a specific statement, that such names are exempt from the relevant protective

concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication

Professor Dr. H. A. Eiselt
University of New Brunswick

7 Mac Aulay Drive
Faculty of Business Administration

Fredericton, NB E3B 5A3
Canada
haeiselt@unb.ca

Cover design: WMXDesign GmbH, Heidelberg, Germany

Springer is part of Springer Science+Business Media (www.springer.com)

Printed on acid-free paper

DOI 10.1007/978-3-642-10326-1

or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,

ISBN 978-3-642-10325-4 e-ISBN 978-3-642-10326-1

Library of Congress Control Number: 2010925338

Springer Heidelberg Dordrecht London New York

Springer-Verlag Berlin Heidelberg 2010

The use of general descriptive names, registered names, trademarks, etc. in this publication does not

carl-louis.sandblom@dal.ca

Faculty of Industrial Engineering

“And there is so much more value in learning why a set of conditions exists than
simply accepting those conditions and committing them to memory.”

Ben Stein

vii

PREFACE

Since the 1960s, operations research (or, alternatively, management science) has
become an indispensable tool in scientific management. In simple words, its goal
on the strategic and tactical levels is to aid in decision making and, on the operational
level, automate decision making. Its tools are algorithms, procedures that create and
improve solutions to a point at which optimal or, at least, satisfactory solutions have
been found.

While many texts on the subject emphasize methods, the special focus of this
book is on the applications of operations research in practice. Typically, a topic is
introduced by means of a description of its applications, a model is formulated and
its solution is presented. Then the solution is discussed and its implications for
decision making are outlined. We have attempted to maximize the understanding
of the topics by using intuitive reasoning while keeping mathematical notation and
the description of techniques to a minimum. The exercises are designed to fully
explore the material covered in the chapters, without resorting to mind-numbing
repetitions and trivialization.

The book is designed for (typically second year) students of business management
and industrial engineering. With the appropriate deletions, the material can be
used for a one-semester course in the subject, while the complete material will be
sufficient for a full-year course. The reasoning and explanations are intuitive
throughout. Each algorithm is followed by a numerical example that shows in
detail how the method progresses. After presenting the applications and the
techniques, each chapter ends with a number of fully solved examples that review
the concepts covered in the chapter. Some more technical material has been taken
out and is available at the publisher’s website.

It is our pleasure to thank all the people who have made this volume possible.
Special thanks are due to Dr. Müller of Springer Publishers, who first suggested
this volume at one of our meetings. It has been a very pleasurable experience to
work with Dr. Müller during the last quarter century on various projects. Thanks
are also due to Mrs. Milewski for her technical advice and timely replies to our
queries. We would also like to express our gratitude to our assistants #21 (a.k.a.

Preface viii

Courtney Palmer), as well as Jun Zhou and Eric Giacomin for their help in
producing the figures, and to the Buddha Man for his meticulous typing. Without
the help of all of these individuals, this book would not have seen the light of day.
We like to thank all of them.

H.A. Eiselt
C.-L. Sandblom

ix

CONTENTS

Preface vii

1. Introduction to Operations Research 1
1.1 The Nature and History of Operations Research 1
1.2 The Main Elements of Operations Research 4
1.3 The Modeling Process 9

2. Linear Programming 13

2.1 Introduction to Linear Programming 13
2.2 Applications of Linear Programming 18

2.2.1 Production Planning 18
2.2.2 Diet Problems 20
2.2.3 Allocation Problems 28
2.2.4 Employee Scheduling 32

35
2.2.6 Blending Problems 39
2.2.7 Transportation and Assignment Problems 43

Exercises 50
60

2.3.1 The Graphical Solution Method 60
2.3.2 Special Cases of Linear Programming Problems 70

Exercises 76
78

2.4.1 Graphical Sensitivity Analyses 78
2.4.2 Economic Analysis of an Optimal Solution 92

Exercises 100
105

Exercises 112

2.4 Postoptimality Analyses

2.3 Graphical Representation and Solution

2.5 Duality

2.2.5 Dynamic Production– Inventory Models

Contents x

3. Multiobjective Programming 115
3.1 Vector Optimization 116
3.2 Solution Approaches to Vector Optimization Problems 121
3.3 Goal Programming 124
Exercises 129

4. Integer Programming 135

4.1 Definitions and Basic Concepts 135
4.2 Applications of Integer Programming 140

4.2.1 Cutting Stock Problems 142
4.2.2 Diet Problems Revisited 146
4.2.3 Land Use 148
4.2.4 Modeling Fixed Charges 150
4.2.5 Workload Balancing 152

4.3 Solution Methods for Integer Programming Problems 154
4.3.1 Cutting Plane Methods 154
4.3.2 Branch-and-Bound Methods 155
4.3.3 Heuristic Methods 162

Exercises 165

5. Network Models 177

5.1 Definitions and Conventions 177
5.2 Network Flow Problems 179
5.3 Shortest Path Problems 189
5.4 Spanning Tree Problems 198
5.5 Routing Problems 200
Exercises 205

6. Location Models 217

6.1 The Major Elements of Location Problems 217
6.2 Covering Problems 220

6.2.1 The Location Set Covering Problem 221
6.2.2 The Maximal Covering Location Problem 227

6.3 Center Problems 230
6.3.1 1-Center Problems 231
6.3.2 p-Center Problems 233

6.4 Median Problems 235
6.4.1 Minisum Problems in the Plane 235
6.4.2 Minisum Problems in Networks 240

6.5 Other Location Problems 244
Exercises 247

7. Project Networks 257

7.1 The Critical Path Method 258
7.2 Project Acceleration 266

Contents xi

7.3 Project Planning with Resources 272
7.4 The PERT Method 275
Exercises 280

8. Machine Scheduling 287

8.1 Basic Concepts of Machine Scheduling 288
8.2 Single Machine Scheduling 290
8.3 Parallel Machine Scheduling 294
8.4 Dedicated Machine Scheduling 297
Exercises 301

9. Decision Analysis 305

9.1 Introduction to Decision Analysis 305
9.2 Visualizations of Decision Problems 307
9.3 Decision Rules Under Uncertainty and Risk 310
9.4 Sensitivity Analyses 316
9.5 Decision Trees and the Value of Information 319
9.6 Utility Theory 327
Exercises 328

10. Inventory Models 339

10.1 Basic Concepts in Inventory Planning 339
10.2 The Economic Order Quantity (EOQ) Model 343
10.3 The Economic Order Quantity with Positive Lead Time 346
10.4 The Economic Order Quantity with Backorders 349
10.5 The Economic Order Quantity with Quantity Discounts 352
10.6 The Production Lot Size Model 355
10.7 The Economic Order Quantity with Stochastic

Lead Time Demand 357
10.7.1 A Model that Optimizes the Reorder Point 359
10.7.2 A Stochastic Model with Simultaneous Computation

of Order Quantity and Reorder Point 360
10.8 Extensions of the Basic Inventory Models 362
Exercises 363

11. Stochastic Processes and Markov Chains 367

11.1 Basic Ideas and Concepts 367
11.2 Steady-State Solutions 372
11.3 Decision Making with Markov Chains 373
Exercises 376

12. Waiting Line Models 379

12.1 Basic Queuing Models 380
12.2 Optimization in Queuing 388
Exercises 392

Contents xii

13. Simulation 395
13.1 Introduction to Simulation 395
13.2 Random Numbers and their Generation 397
13.3 Examples of Simulations 402

13.3.1 Simulation of a Waiting Line System 402
13.3.2 Simulation of an Inventory System 405

Exercises 410

Appendices

A. Heuristic Algorithms 417

B. Vectors and Matrices 427

C. Systems of Simultaneous Linear Equations 429

D. Probability and Statistics 433

References 441

Subject Index

443

H.A. Eiselt and C.-L. Sandblom, Operations Research: A Model-Based Approach, 1
DOI 10.1007/978-3-642-10326-1_1, © Springer-Verlag Berlin Heidelberg 2010

In its first section, this introductory chapter first introduces operations research as
a discipline. It defines its function and then traces its roots to its beginnings. The
second section highlights some of the main elements of operations research and
discusses a number of potential difficulties and pitfalls. Finally, the third section
of this chapter suggests an eight-step procedure for the modeling process.

1.1 The Nature and History of Operations Research
The subject matter, operations research or management science (even though
there may be philosophical differences, we use the two terms interchangeably),
has been defined by many researchers in the field. Definitions range from “a
scientific approach to decision making,” to “the use of quantitative tools for
systems that originate from real life,” “scientific decision making,” and others. In
the mid-1970s, the Operations Research Society of America (then one of the two
large professional societies in the field) defined the subject matter as follows:

“Operations Research is concerned with scientifically deciding
how to best design and operate man-machine systems usually
under conditions requiring the allocation of scarce resources.”

Today, the Institute for Operations Research and Management Science (INFORMS)
markets operations research as the “science of better.” What all of this essentially
means is that the science uses indeed quantitative techniques to make and prepare
decisions, by determining the most efficient way to act under given circumstances.
In other words, rather than throwing large amounts of resources (such as money)
at a problem, operations research will determine ways to do things more efficiently.

Rather than being restricted to being a toolkit for quantitative planners, operations
research is much more: it is a way of thinking that does not just “do things,” but,
during each step of the way, attempts to do them more efficiently: the waitress, who

1 Introduction to Operations Research

1 Introduction to Operations Research 2

provides coffee refills along the way rather than making special trips; the
personnel manager who (re-) assigns employees so as to either minimize the
number of employees needed, or to schedule employees to shifts, so as to make
them more pleasant; the municipal planner, who incorporates the typically widely
diverging goals and objectives of multiple constituents or stakeholders when
locating a new sewage treatment plants; the project manager, who has to
coordinate many different and independent activities. All of these individuals can
benefit from the large variety of tools available.

operations research in practice. One of those obstacles is awareness. If managers

quantitative analysis, it does not matter at all, whether or not he can perform the
analyses himself: there are plenty of specialists out there to do the job. The first
step, though, requires someone to simply realize that operations research could be

reason why we have written this book with a strong focus on applications.

mathematics or statistics: Diophantine’s discourses on integer solutions to linear
equations in the third century AD are related to integer programming, Euler’s
work on the Königsberg bridge problem in 1736 is the first occurrence of graph
theory; Pascal, Bernoulli, and Bayes have made major advances in statistics. All
results found by these and many other scientists have put down a mathematical and
statistical foundation, on which operations research (and many other disciplines)
can rest comfortably.

While many authors credit the advances in the military in World War II to the
birth of operations research, we believe that the groundwork was laid considerably
earlier. F.W. Taylor is often called the “father of scientific management,” when he
performed his time studies in 1881. His main question was “what is the best way
to do a job,” which could very well be the motto of operations research. Henry L.
Gantt introduced bar charts, “Gantt charts” in today’s parlance, for scheduling
problems, and Agner Krarup Erlang introduced the discipline of queuing in 1909
when working at the Copenhagen Telephone exchange. The final contribution in
the early days was made by F.W. Harris in 1913, when he developed the “economic
order quantity” for inventory management, a result that is so robust that it is,
in one way or another, used to this day. All of these individuals would today be

When trying to find out where you are and where you are going, it is always a good
idea to determine where you come from. The next few paragraphs will highlight

There are a number of obstacles that stand in the way of the extensive use of

some of the main milestones to operations research. Clearly, space limitations

What are usually considered to be early contributions, are usually advances in

applied to a problem to a problem that presently requires a solution. This is the

history of operations research by Gass and Assad (2005).
require us to cut many corners. We would like to refer to the eminently readable

were to be able to realize that a problem may possibly benefit from the use of a

1.1 The Nature and History of Operations Research 3

referred to as industrial engineers, as their main concern was the smooth functioning
of industrial processes.

It is hardly surprising that these early contributions occurred at a time that saw
more complex industrial processes (the assembly line is but one example), a
tremendous increase in the division of labor, and with it the need for coordination
of activities.

Later notable work was performed by John von Neumann in the 1920s, when he
introduced the theory of games to the world. Leontief’s input – output models and
Kantorovich’s mathematical planning models for the Soviet economy were main
contributions in the 1930s. The 1940s saw Hitchcock’s transportation problem,
Stigler’s diet planning, and the aforementioned advances based on military
applications.

However, the main event occurred in August of 1947 when George Bernard

Arguably, no other event has influenced the science of operations research more

extended von Neumann’s results in game theory and proved some main theorems,

optimality conditions for nonlinear optimization problems in 1951 (which was
later discovered to be a reinvention of work by Karush in 1939). The year 1951
saw not only the first full publication of Dantzig’s simplex method in the open
literature, but also the first computer-based simplex method. As a matter of fact,
the advances in computing hardware and software had a tremendous impact on the
advances of operations research. Without the progress made in computer sciences,
operations research would not have been able to gain the status it has today.

New results keep pouring in. Starting in 1950, the Operational Research Quarterly
(later renamed the Journal of the Operational Research Society) was the first
journal in the field published in the United Kingdom. The first American journal
followed in 1952 with the Journal of the Operations Research Society of America.
Today, many countries have their own operations research journals. To name a
few, there are the European Journal of Operational Research (the largest operations
research journal by size, about 8,000 pages per year), INFOR (Canada), the OR
Spectrum (Germany), TOP (Spain), the Central European Journal of Operations
Research (Austria), the Yugoslav Journal of Operations Research, Opsearch
(India), Pesquisa Operacional (Brazil), and many more. In addition, there are many
specialist journals, such as Computers & Operations Research, Mathematical
Programming, Management Science, Naval Research Logistics, and many others.

And wherever there is a national journal, more often than not there is a national
society behind it. Each of these societies have an annual meeting, where researchers

Dantzig developed what is now called the simplex method for linear programming.

than this development. Other main developments are due to John F. Nash, who

Bellman’s dynamic programming principle in 1950, and Kuhn and Tucker’s

1 Introduction to Operations Research 4

present their latest findings. Again, in addition to these national conferences, there
are meetings devoted to special topics such as optimization, logistics, supply
chains, location, transportation, scheduling, and many more. It should be apparent
by now that the number of contributions can only be described as vast.

1.2 The Main Elements of Operations Research
This section will briefly explain the main elements of operations research. Essentially,
operations research is concerned with quantitative models and their solution. This
is actually, where some people make the distinction: they claim that while
management science is mostly concerned with models, operations research deals
mostly with solution methods. The model that we build for a given scenario is a
(hopefully close) picture of reality. A model will never include all components a
real situation does: features such as some of the choice criteria used by consumers
are not fully observable and will have to be ignored, decision makers’ risk aversion,
while it may be included to some degree in a decision making model, is not
completely explainable and will have to be estimated or ignored. It is very important
to distinguish between the original real-life problem, and the mathematical model
that is built. The step from the problem to the model entails gains and losses: while
we are losing some information, we gain solvability and gain insight into the
structure of the problem. As one of the founders of the science once wrote “the
purpose of mathematical programming [a subtopic of operations research, eds.] is
insight, not numbers.”

The next issue to be decided upon is the level of aggregation. In conjunction with
the decision maker the modeler will have to decide what to include in the model
and what to leave out. Comprehensive models are nice and avoid problems with
suboptimal solutions, but they are large, labor-intensive, and thus expensive. It
depends on the specific situation what level is appropriate. The aforementioned
suboptimal solutions may occur, if we were to optimize for only one department
of a firm. For instance, the manager of a shipping department or a large firm that
manufactured construction equipment consistently hired employees through a
temp agency, even though this was much more expensive than hiring people
directly. However, temporary employees were paid by headquarters, while the pay
for regular employees came directly out of the manager’s budget. Thus, hiring
temporary employees was optimal for the manager, even though it cost the firm
much more money.

The usual way to describe situations for operations research models is to first list
everything we want to do, and everything that we have to do and respect. What we
want to achieve (high profit, high levels of customer satisfaction, a large market
share, low production costs, or similar) is summarized in our objective(s). On the
other hand, all requirements (such as budget limitations, limitations of a firm’s

1.2 The Main Elements of Operations Research

5

capabilities with respect to manpower, knowledge base, available machinery, and
others) are summarized in the constraints. While in most operations research
tools, objectives and constraints are clearly separated, this is not always true in
reality. Consider, for instance, a simple budget constraint. It will state that the
amount of money we can spend in, say, a month cannot exceed the amount of
money that we have. We can write this as a formal constraint, as long as we are
aware of the fact that a constraint in operations research is absolute. This means
that whatever the solution technique is, it will not consider any solution that
violates this constraint. In other words, it will consider the constraint as hard. In
practice, however, the constraint may not be that hard. We could, for instance,
take out a loan and temporarily spend more than we have. While this is necessarily
a temporary measure and we would like to avoid it, it is possible in practice.
Written as a constraint, however, it is not possible. There are techniques that
address this problem by formulating the models differently, allowing short-term
deficits, but trying to minimize this. Notice that all of a sudden what we used to
clearly consider as a constraint has become part of the objective function.

Another important issue to deal with is the issue of measurement. While many of
the features of a model are easily measurable (take, for instance, profits, travel
time, processing times, the length and width of a stretch of road to be paved),
others may not be. Particularly in models regarding the public sector, it is not
always clear how to measure features of the model. For instance, when locating a
desirable public facility, how do we measure accessibility of the location? We
may express this feature in terms of average distance to the potential clients of this
facility, or we may want to locate the facility so as to have it located within a
certain distance of a majority of potential customers, or any similar measure. A
particular difficulty is presented when dealing with models that include such
nebulous concepts as “fairness.” Take the issue of a simple speeding ticket. The
penalty is supposed to hurt the speeder and thus make an impression. An obvious
constraint is that the law must treat everybody equally. So whoever speeds will
receive the same penalty, say $100. Such a penalty will, of course, hurt people
with a small annual income a lot more than somebody who makes several hundred
thousand dollars a year. Thus, while the penalty is equal, the pain is not.
Alternatively, one could assess the penalty as, say 1% of the monthly net income,
thus trying to distribute the pain evenly (it still does not, as a $10 penalty for
somebody with a $1,000 monthly net income hurts more than $1,000 penalty for
somebody with a $100,000 monthly income). This leads to ridiculous penalties,
such as $50,000 for speeding and, in the final analysis, is nonsensical as it negates
any incentive to earn more, as prices, fines, and other expenses are adjusted
accordingly. What we want to address here is simply the difficult expressing some
features of a model quantitatively.

Typically in many problems, public and private, the objective is ill-defined or
fuzzy. This will require the decision maker to formulate a surrogate or proxy
expression instead. For instance, the measurable criterion “profit” may be a proxy

1 Introduction to Operations Research 6

for the “well-being of the company.” Again, moving from the true objective to a
proxy involves gains and losses: we lose as the proxy expression does not do
exactly what we want our objective to do, but we gain by obtaining something that
is measurable and thus can be included in a quantitative model. The choice of a
suitable proxy expression is crucial for the applicability of the model.

Each operations research model will involve parameters and variables. While
parameters are numbers that we know (or can determine), but that are not under
our control, variables are numbers that we do not know (but would like to know),
and which are under our direct jurisdiction. Consider a few examples. The
estimated demand for a product is a parameter, while the number of units that we
make is a variable. The amount of beef we put in each can of chili is under our
jurisdiction and thus a variable, while the nutritional content of beans in the can is
not under our control and thus a parameter. The type of truck we use for a
shipment and the route the truck takes are variables, while the location of our
customer’s warehouse is a parameter. The purpose of the solution method is then
to determine the actual values of the variables, i.e., determine the production level,
the quantity of beef in a can, and the type of truck and route that a truck takes.

As far as solution techniques are concerned, we distinguish between exact and
heuristic solution techniques. An exact technique will find a solution that respects
all constraints included in the model and optimizes the objective specified by the
decision maker. Note that the solution the exact solution method will determine is
actually optimal for the model: if the model is only a very rough approximation of
the problem, the solution that is labeled “optimal” will not be very useful to the
decision maker, as it is optimal only for the model, not the problem. Solutions
obtained by heuristic or approximation methods are typically much easier to find,
but, as the name implies, are not necessarily the best (or even very good for that
matter). For more details, readers are referred to Appendix A. Solution techniques
come in two versions: they are either closed-form solutions or iterative algorithms.
A closed form solution is essentially a formula or a set of formulas: we input the
parameters and obtain values for our variables. Few models exist for which
closed-form solutions exist. Most models require the use of iterative algorithms.
(As an aside, the name algorithm derives from the Persian mathematician Al-
Khwarizmi, who worked and published in algebra around 820 AD). An iterative
algorithm starts with a solution, possibly a guess, the solution that is presently
employed, or some other solution, and then performs a test that checks whether or
not the solution satisfies certain criteria (such as feasibility or optimality). If the
solution passes the test, it is accepted and the algorithm terminates, otherwise, the
present solution is modified by the algorithm, a new solution (typically an
improved guess) is generated, which is then again tested, and further improved, if
necessary. Each loop that involves the test and an improvement is an iteration.
Many modern large-scale problems require thousands, if not millions, of iterations
to find a solution. This explains why the use of high-speed digital computers is

crucial for the solution of today’s models.

1.2 The Main Elements of Operations Research 7

The above discussion has made frequent mention of the concept of solution. It is
important to realize that a solution is a set of instructions. In production planning,
it will tell the decision maker what quantities to produce, in diet planning it will
tell the chefs what meals to prepare (e.g., in seniors’ residences), and in
transportation planning it will tell the dispatcher which trucks and which drivers to
dispatch where, and with what loads. Associated with each solution is a value of
the objective function, a value that tells the planner how much money will be
made if a certain production plan is adopted, how much it will cost, if a certain
meal schedule is followed, and what the consequences are if we schedule trucks
and drivers in a certain way.

There are four major concerns when applying any operations research model.
They are

(1) feasibility (can we do this?),
(2) optimality (is this the best we can do with what we have?)
(3) sensitivity (what happens, if some of the input parameters or conditions

beyond our control change), and
(4) implementability (is the solution that we have obtained something that we can

actually do?)

We will explain the first three phases in a very simple numerical

Example: A company faces a demand for its product. The magnitude of the
demand is a function of the price, and both, the price p and the quantity q, are to
be set by the company. It is known that the price-quantity relation is p = 10 −
0.01q, meaning that starting at $10 per unit, each unit increase of the demand
decreases the price all customers are willing to pay for the product by 1¢. It costs
$5 to make one unit, and general quantity-independent costs of $500 also apply.
The company wants to maximize its profit.

In order to formulate the problem, we will employ a very simple version of what
is known as the decomposition principle. Starting with a large component of the
problem that we cannot model per se, it subdivides this component into smaller
and smaller pieces, until we are able to find expressions for it. In this example,
“profit” is such a component. We first decompose profit by using its definition as
revenue minus costs. Now we have to deal with these two components separately.
First take revenue. Again, we decompose the entity by using the definition
“revenue equals price times quantity,” which leaves us with these two expressions.
At this point, we are able to deal with them directly, as we know that the quantity
is q and the price is p = 10 − 0.01q. Now consider costs. Decomposing costs, we
obtain fixed and variable costs as its two components. The fixed costs in this
example are known to be $500, while the variable costs are $5 per unit for a total
of 5q. We can then put together the profit function (the composition phase) as

1 Introduction to Operations Research 8

To facilitate our discussion, Figure 1.1 provides a plot of the profit function.

Figure 1.1

We can now explain the first three major concerns by using this example. First
consider feasibility. Let us assume that the planner considers it mandatory that we
are not making losses and that any solution that provides a loss is not feasible.
(This is not generally true: losses obviously occur and are generally unrelated to
conditions of feasibility). This leaves us with a break-even analysis, i.e., an
analysis that determines the types of production plans that generate a nonnegative
profit. This condition is = 0, and in Figure 1.1 we are looking for the quantities
at which the profit function intersects the abscissa. In our example, this occurs at
the quantities q = 138.1966 (the lowest quantity that generates a nonnegative
profit) and q = 361.8034, the highest quantity that generates nonnegative profits.
The prices at these two points are p = 8.6180 and 6.3820, respectively.

Next consider the issue of optimality. The quantity that generates the maximal
profit is the highest point of the profit curve and it occurs at the quantity q = 250.
The unit price of our product at that point equals p = $7.50 and the profit is $125.

Finally, let us examine what happens if some of the input parameters change.
What if the fixed costs are only $400? First we note that the optimal solution is
still at q = 250. As a matter of fact, we are observing a general phenomenon: the

140

120

100

80

60

40

20

140 160 180 200 220 240 260 280 300 320 340 360 380

Profit

Quantity

P = (10 − 0.01q)q − 5q − 500 = −.01q2 + 5q − 500.

P

1.3 The Modeling Process

9

optimal solution will not change if we add or subtract and fixed amount to our
from the objective function. The profit related to the optimal solution will, of
course change: as the fixed costs have decreased by $100, the profit at optimum
has increased by $100. The situation is different for the break-even points. They
are now at q = 100 and 400 with the associated prices of p = 9 and 6, respectively.
Another sensitivity analysis could ask what happens if the variable costs in the
original model (we don’t consider compounded changes) were to increase from $5
to $6. The new profit function will again be a parabola, but no point of it will be
on or above the abscissa. In other words, no point with positive profit exists. The
maximal profit is achieved at a quantity of q = 200, where we sustain a loss of

 = $100. As a matter of fact, this is a good example that the best possible
solution (the maximal profit) is still not very good, as it does not provide a
positive profit. (According to our definition of feasibility, it would not even be
feasible. Actually, in this instance there are no feasible solutions).

The last sensitivity analysis—again starting from the original situation—asks what
happens if the price-quantity relation changes to p = 10 − .005q. Again, another
parabola is the profit function, and the break-even points are now at the quantities
q = 112.70 and 887.30, while optimality is achieved at a quantity of q = 500 with
an associated profit of = $750. In this last case, we could have guessed what
would happen: as the price decreases more slowly than in the original model, there
are more chances to make a positive profit, so that the break-even points will be
farther apart and the optimum of the function is higher. In general, it is always a good
idea to compare the results provided by a mathematical solver with those the
decision maker or analyst comes up with intuitively. If optimized solution and
intuition do not match, it is important to carefully check the model, as one of them
will be wrong. Which one depends on the experience of the person involved and
the care with which the model was formulated.

1.3 The Modeling Process
This section will outline some of the major steps that will be followed when
formulating, solving, and implementing an operations research model. Clearly,
each situation has its own idiosyncrasies and difficulties, but some general ideas
are common to all of them. We will present the main eight steps below.

Step 1: Problem recognition. In order to build a successful model, the first step is
for someone to realize that it is not “business as usual,” and that it is simply no
longer good enough to follow the old “we have always done it like that” and, its

P

P

1 Introduction to Operations Research 10

sister expression in crime, “we have never done it like that.” Problem recognition
does not only include the realization that things are not what they were thought to
be, but also what the potential for improvement actually is. The decision maker
has to keep in mind that building a model is a lengthy and expensive process that
is only worth undertaking if there appears to be significant potential for
improvement. This step takes a manager who is fully familiar with the actual
situation in the firm and, at the very least, somewhat familiar with what operations
research can do.

Step 2: Authorization to model. This step will require the analyst, who is in charge
of model development to convince management of the need to produce a model
for (a part of) the operation. This “sale” of potential benefits to those who
eventually have to pay for it is obviously crucial. It requires very good
communication skills on the part of the analyst. Often, analysts make the mistake
to get lost in their technical lingo, which not only annoys decision makers, but
greatly reduces the chances of obtaining permission to model. Avoiding this pitfall
requires also that the analyst clearly understands the mindset and way of thinking
of the decision makers.

Step 3: Model building and data collection: This is a step, in which this book can
help with the model building. The first step of the modeler has to decide on the
scope and the level of aggregation. Is it necessary to get into small details of the
operations, or it is sufficient to adopt a macro view? This decision will have to
be made in conjunction with the decision maker(s) and maybe has already been
done in the previous step before the model building idea was developed and
presented. Finding out what is actually important may take quite a while, but
spending some time on it is definitely no waste. Once the level of aggregation has
been decided upon, the modeler will determine who the relevant stakeholders are
and what their objectives are. This is the time to decide on appropriate surrogate
criteria. In addition to find out about from management what their objectives are,
it will be necessary to learn about the constraints from the shop floor. This type of
information is typically unknown in the corner offices, and it will be of
tremendous benefit to the modeler and his model if such information is collected
directly at the source. Some analysts went to great lengths to accomplish this.
Gene Woolsey wrote about his modeling and data collection adventures in the
practice journal Interfaces with stories that involved him getting a job as a worker
in the unit he was supposed to model and seeing first hand what the actual
problems were. In addition to obtaining much better data than those are typically
available in offices, he also got to know the workers and their concerns. This
would come as a significant benefit later on when the results of his modeling
efforts would be implemented: the suggested solution would take these concerns
into consideration and greatly enhance chances of the adoption of the changes,
rather than resistance and passive boycotts of any suggested change. Once the data
have been collected, the formal model will be built. This typically starts with a
listing of the assumptions and simplifications that are made. This is important for

1.3 The Modeling Process 11

the decision maker later on, when the time comes to accept or reject the
recommendations made by the model. It is a lot better for the decision maker to
see right away that a model is not really applicable and not implement it, rather
than to implement it and having to live with the (dire) consequences later, just
because some assumptions did not apply in the given situation. Clearly, the
assumptions should be checked periodically with the decision maker, so as to
avoid wasting time. Then the decision variables are defined based on what the
decision maker(s) would like to know.

Step 4: Model solution. This is a step in which the modeler’s technical knowledge
is required. Here, we use the appropriate computer software, and document the
model properly so as to allow future users to more or less easily take over and use
the model again without having to go through the entire process again. There are a
few pitfalls. One of them is to use some software “just because we already have
it.” If the software does what we need, then it is perfectly all right to use it, but
changing the model to suit existing software is a highly questionable procedure.
Analysts have to keep in mind that a few thousand dollars for needed software are
very little compared to the costs incurred by the model-building team and the
potential benefit. Another issue to keep in mind is that modeling and model
solution nowadays—in contrast to the situation some decades ago—is an interactive
process. In “the olden days,” computational power was severely limited and
expensive. As a result, modelers tried to develop the entire model as well as
possible, then had it solved and, when it came back with errors (which it always
did), fixed the errors and were done. This required a lot of foresight, a lot of
thought, and long and arduous searches for the errors. Nowadays, computing
power is ubiquitous and cheap. A result is that modeling is typically done in an
interactive fashion. A fairly small part of the model is developed first, then solved,
and if there are any errors, they will be easy to find, as the model is still small.
Once the analyst is happy with the modeled part, additional parts are added. The
revised model is solved, and again, error detection is easy as anything wrong must
be related to the new part. This process goes back and forth, until the entire model
is developed.

Step 5: Model validation. In this step, the analyst will determine whether or not
the solution to the model that was obtained in the previous step does make sense
in the context of the real problem. If this is not the case, the model is not (yet) a
faithful representation of reality and it must be changed. In such a case, the
process will shuttle between Steps 3-5. It is always a good idea to determine if the
solution leads to a major change as compared to the present solution (if any). If
this is the case, it is rather unlikely that the new solution will be adopted by the
decision makers. It is also useful at this stage to include a number of sensitivity
analyses in the package prepared for the next step.

Step 6: Model presentation. In this step, the analyst(s) will “sell” the solution
to management. In trying to convince them to do so, it helps a great deal if the

1 Introduction to Operations Research 12

assumptions are clearly stated, the solution is clearly presented (and at least
tentatively checked against reality in the previous step), and some alternative
scenarios are also presented. As a matter of fact, in all cases other than the lowest
operational level, on which solutions are more or less automatically implemented,
there are decision makers, whose job is to make decisions, not to accept or reject
decisions from analysts. This means that the main function of operations research
is not so much decision making, but preparing the decision. Presenting some
workable decision alternatives is usually a good idea. This is a crucial step, which
does not only decide about the future of the model, but possibly the future of
the modelers themselves: no firm will keep employees whom it does not see
contributing to the benefit of the organization, and producing models that are not
used is no benefit. As a matter of fact, among the models that decision makers
actually asked to be built, only a surprisingly small portion were ever implemented.
This is highly detrimental to the firm and their employees in particular and the
profession as a whole.

Step 7: Implementation. Given the acceptance by the decision makers (most likely
with some modifications of the solution), the task is now to translate the model
recommendations into practice. At this point it will help a great deal if those who
have to live with the recommendation and the changes—the employees and
workers—will accept the solution rather than sabotage it. If the modeler created
goodwill in Step 3 of this procedure, listened to the concerns of those involved,
and included them in the model as far as possible, chances of acceptance are much
enhanced. In addition, as the solution of the model is implemented, it is crucial to
monitor the implementation each step of the way, so that it is possible to adjust the
solution in case some unexpected changes occur.

Step 8: Monitoring and Control. This phase of the process is largely overlooked.
It includes the timely comparison of the plan and reality. Reality changes, and the
plan should be adjusted accordingly. As the famous saying in the United States
Marine Corps goes, “improvise, adapt, overcome.” Furthermore, the more
frequently adjustments can and are being made, the less dramatic they will have to
be. As an example, assume that an individual has planned his budget for the
upcoming year. Suppose that $1,200 have been set aside for the purpose of
entertainment. If the individual monitors the situation monthly, he may find by the
end of January that he has already spent $500 on entertainment purposes. This
leaves $700 for the remainder of the year, or $63.64 for each of the remaining
eleven months. This is considerably less than the $100 that were planned for each
month, but is still not too dramatic. Monitoring only each second month, the
individual has not noticed that he spends way too much money and behaves in
February in the same way as in January by spending another $500. Checking the
situation by the end of February, there are only $200 for each of the remaining
months, or $20 for each months. This is a much more severe decrease from the
originally planned $100 per month and will be much more difficult to adhere to.

H.A. Eiselt and C.-L. Sandblom, Operations Research: A Model-Based Approach, 13
DOI 10.1007/978-3-642-10326-1_2, © Springer-Verlag Berlin Heidelberg 2010

2 Linear Programming

This chapter will introduce linear programming, one of the most powerful tools in
operations research. We first provide a short account of the history of the field,
followed by a discussion of the main assumptions and some features of linear
programming. Thus equipped, we then venture into some of the many applications
that can be modeled with linear programming. This is followed by a discussion of
the underlying graphical concepts and a discussion of the interpretation of the
solution with many examples of sensitivity analyses. Each of the sections in this
chapter is really a chapter in its own right. We have kept them under the umbrella
of the chapter “Linear Programming” so as to emphasize that they belong together
rather than being separate entities.

2.1 Introduction to Linear Programming
The purpose of this section is to provide a short introduction to linear programming
problems. We first present a short historical account of the topic, followed by the
main assumptions of linear programming problems, and finally some details about
the optimization problems under discussion.

As already discussed in Chapter 1, linear programming problems were first described
by George Bernard Dantzig in 1947. His findings that included his “simplex method
for linear programming” were presented in 1949 at a conference for research in
economics, and some of the papers, including Dantzig’s work, were published in
1951 in a volume edited by (later Nobel prize laureate) Tjalling C. Koopmans.
Much work was done in the early years. The first programmed solution code based
on Dantzig’s simplex method was already developed in 1951, many applications
were first discussed, among them the blending of aviation gasolines and trim loss
problems. The dual simplex method by Lemke and the Hungarian method for
assignment problems were also described and published in the 1950s. In 1963,
Dantzig’s book “Linear Programming and Extensions” was published, an “instant
classic.” The year 1979 saw the publication of a paper by Khachian, whose “ellipsoid
method” made quite a stir. However, while it has some remarkable theoretical
properties, it failed to perform well in practice and is not in use nowadays. On the

2 Linear Programming 14

other hand, Karmarkar’s interior point method, first described in 1984, has slowly
made some inroads. To this day, though, Dantzig’s simplex method is the method
of choice for the vast majority of all linear programming problems that are solved.

In order to structure our discussion, first consider a general mathematical
programming problem. It can be written as the problem

 P: Max z = f(x)
 s.t. g(x) R b,

where P stands for problem (sometimes we have multiple problems under
consideration, in which case we will write P1, P2, and so forth), f(x) is the
objective function, which is to be maximized and z is the objective function value
(e.g. profit, market share, sales, or cost) associated with the present solution x.
This objective is to be optimized subject to (or s.t. for short) the constraints g(x) R
b. We will come to them and their meaning again later.

Linear programming problems are special cases of the above formulation. In
particular, we have three fundamental assumptions in linear programming. They are:

(1) Deterministic property,
(2) divisibility, and
(3) linearity.

Consider first the deterministic property. Simply put, it requires that all
parameters are assumed to be known with certainty. (By the way, the antonym
of deterministic is probabilistic or stochastic). While this assumption appears
reasonable in some instances, it is not in others. Consider these examples. While
we know exactly how many machines we have for the processing of semi-finished
products, these machines may fail unexpectedly, making their actual capacities
probabilistic. Similarly, we know the magnitude of contracted sales, but we have
only rough estimates concerning next month’s additional demand. Given that
much of the world is probabilistic, how can we possibly apply linear programming
without making simplifications that may be so major so as to render the results
unusable? (Remember the old adage: “if a model does not fit the problem, don’t
use it.”) In general, there are two ways to circumvent the problem. One would be
to resort to techniques that do not make that assumption—such as stochastic
programming, a very complex field for which the available software is much less
powerful—or to circumvent the difficulty by using sensitivity analyses. This is the
procedure of choice for many decision makers. Suppose we have estimated next
month’s demand to be 500 units, but we are not sure about it. One way to handle
this is to solve the problem with a demand of 500 units. Once the optimal solution
is known, we attempt to find out what happens if the demand were to change
to values other than 500. (Notice the words “what – if” that always indicates
sensitivity analyses). For instance, we can change the demand to, say 490, resolve
the problem and find out what happens to our solution. This process can be

2.1 Introduction to Linear Programming 15

repeated to the relevant values of the demand. Once this has been accomplished,
the decision maker will have a clear idea what the effects on different levels of
demand are on the solution of the problem. The limitations of this approach are
obvious: the method is valid if only a small number of uncertain parameters exist,
but it will drown the decision maker in massive amounts of data, if much of the
information in the model is uncertain.

Next consider the issue of divisibility. Divisibility is ensured, if we allow the
variables in the model to be any real number (even though we will restrict
ourselves to rational numbers most of the time). Most importantly, divisibility
allows variables to be noninteger. While many instances do not allow it, this
assumption is typically less of a problem that we may first think. Suppose that our
model includes a variable that expresses the number of cans of corn that we make
and sell. It is obvious that this number must be integer, as partial cans cannot be
sold. The main question is, though: who cares if we make 1,345,827 or 1,345,826
cans? Many of the numbers in our model will be approximations anyway, so that
it is completely irrelevant if the number of cans in the optimal solution is integer
or not. Simple rounding will solve the problem. On the other hand, suppose that
the model under consideration includes a variable that expresses the number of
houses to be built in a subdivision. Simply rounding a noninteger solution up or
down may result in solutions that may not be as good as possible (or, depending
on the constraints, not even feasible). If integrality of a variable is essential, users
are well-advised to resort to techniques from integer programming, see Chapter 4
of this volume.

Finally the issue of linearity. (For a discussion of the issue of linearity, see
Appendix C of this book). The assumption in linear programming is that all
expressions, the objective function as well as all constraints, are linear. One of the
underlying assumptions that leads to linearity is proportionality. As an example, if
we purchase one pound of potatoes for, say, 50¢, then proportionality means that
two lbs will cost me $1, three lbs will cost $1.50, and so forth. So far, our costs
are proportional to the quantity and the cost function is 0.5x with $0.5 the per-unit
price of the potatoes and x denoting the quantities of potatoes we purchase. This is
part of a linear function. However, if the quantities we purchase become large,
the merchant may offer us a rebate, which will make the function nonlinear (or
piecewise linear).

Having stated all of the main assumptions we can now focus on the individual
components of linear programming problems. First consider the objective function.
In all of mathematical programming, objective functions either maximize a
function or they minimize it. Often, the objective expresses the wishes of the
decision maker in monetary terms, but nonmonetary objectives are possible and
common in applications in engineering and in the public sector. Note that if
the objective is Max z = f(x), it can alternatively and equivalently be written as
Min −z = −f(x). Suppose that originally, the idea was to maximize profit, then the
alternative objective is to minimize losses. In other words, each maximization

2 Linear Programming 16

function can be rewritten as a minimization function and vice versa. This eliminates
the need for separate methods or treatment of problems with minimization and
maximization objective.

Consider now the constraints. Rather than writing them in the very general form
g(x) R b that is often used in mathematical programming, we will write all
constraints as LHS R RHS. What this means is that the left hand side LHS is
in some desired relation to the right-hand side RHS. First, as relations linear
programming accepts ≤, =, and ≥ relations. This relation compares a feature of the
solution at hand with a proscribed standard. For instance, the number of pallets of
corn shipped out of a warehouse (the reality, what “is”) on the left-hand side is
compared to the quantity that our customers actually wanted (the stipulated target,
the “should”) on the right-hand side. Similarly, we can compare our actual
expenditures on the left-hand side with the targeted expenditures (i.e., our budget)
on the right-hand side. Typically, constraints are formulated so as to have a linear
function on the left-hand side and a single parameter on the right-hand side.

We will defer our discussion of the many facets of constraints to Section 2.1 of
this book, where a variety of applications of linear programming are discussed. At
this point, we will only mention a few general principles that relate to constraints.
As already discussed in Chapter 1, constraints are “hard” in the sense that the
linear programming solver will return a “there exists no feasible solution”
message in case the set of constraints does not allow a solution to be found. This
means that constraints are absolute and must be satisfied exactly. In other words,
given that we have $100, any plan that includes expenditures of say $100.01 will
not be considered as feasible. In reality, often constraints are much softer. This
will have to be considered in the formulation, for instance by formulating
constraints more loosely, e.g., consider the possibility of taking out a loan to
increase the budget, or by allowing solutions that do not fully satisfy a customer’s
demand. Another important advice for modeling is to avoid equations whenever
possible. Linear programming is well equipped to handle equations from a
technical point of view, but equations are very restrictive and often lead to
infeasibilities. We will return to this subject when we discuss applications and the
graphical solution method.

In order to more fully explain the structure and features of constraints, we
consider a very small numerical example. Suppose that we can manufacture
digital picture frames for the domestic market and frames for export. The
assembly of a domestic frame takes ten seconds each, while an export frame takes
12 seconds. The capacity of the machine on which both frames are assembled is
20 hours (or 72,000 seconds). Our distributors has placed orders for 2,500 domestic
frames and 3,000 export frames, but is prepared to take more. Each domestic
frame nets us $40, while each export frame contributes $45 to our overall profit.

Defining x1 and x2 as the number of domestic and export frames made and sold,
respectively, we can formulate the linear programming problem as

2.1 Introduction to Linear Programming 17

 P: Max z = 40x1 + 45x2
 s.t. 10x1 + 12x2 ≤ 72,000
 x1 ≥ 2,500
 x2 ≥ 3,000

Whenever an inequality of either “≤” or “≥” type is inputted, the solver will
automatically add an additional variable to the equation. These variables have an
important interpretation, which is why we will explain them here. In particular,
whenever we have a constraint of type LHS ≤ RHS, the solver automatically adds
a slack variable S to the left-hand side of the constraint and then uses the
constraint LHS + S = RHS with S ≥ 0. As an example of what a slack variable
means and why this procedure is valid, consider a simple budget constraint. In
such a constraint, the left-hand side expresses the amount of money we spend,
while the right-hand side specifies the amount of money that is available, so that
the constraint reads “the amount of money spent must be less or equal than the
amount of money available.” The slack variable is then the difference between
left- and right-hand side. In our budget constraint, the rewritten constraint then
states that the amount of money used (the original LHS) plus the amount of money
unused (the slack S) equals the amount of money available (the original RHS).

A similar procedure is used for inequalities of the “≥” type. Here, the original
constraint LHS ≥ RHS is transformed into an equation by subtracting a surplus or
excess variable E from the left-hand side so as to arrive at the reformulated
constraint LHS − E = RHS. For instance, in a production requirement, where the
left-hand side expresses the actual production, while the right-hand side value
specifies the smallest quantity that must be made, the excess variable specifies
the amount by which the present solution exceeds the requirement.

Consider now the above numerical example and suppose we have obtained the
solution x1 = 2,800 and x2 = 3,200. First of all, this indicates that we have decided
to manufacture 2,800 frames for the domestic and 3,200 frames for the export
market. By plugging these values into the objective function, we can determine
the profit level for this solution as z = 40(2,800) + 45(3,200) = $256,000. We can
also check if this solution is feasible: the plan requires 10(2,800) + 12(3,200) =
66,400 seconds to make, which is less than the available assembly time. As a
matter of fact, given that we have 72,000 seconds on the assembly machine and
this solution uses 66,400 seconds, there is a slack capacity of 72,000 − 66,400 =
5,600 seconds. The next two demand constraints are also satisfied: since we make
2,800, this is more than we need to (actually, an excess of 2,800 − 2,500 = 300
units); similarly, 3,200 units for the export market are 3,200 − 3,00 = 200 units in
excess of the requirement.

As an aside, the solution discussed in the previous paragraph is not optimal. At
optimum, we make 3,600 units for the domestic market and 3,000 units for the
export market. This results in zero slack capacity for the assembly machine and a

2 Linear Programming 18

surplus of 1,100 units for the domestic market and a zero surplus for the export
market. The profit at optimum is $279,000.

2.2 Applications of Linear Programming
This section presents a variety of linear programming applications. Each of these
applications is a prototype, in the sense that “real” applications in practice will
build upon these formulations by adding lots of “bells and whistles.” However, the
major use of learning about these bare-bones formulations is to understand the
type of formulations they present and the way the variables are defined, which is
typical for the type of application.

The following subsections describe in detail how some scenarios can be modeled.
They may be simplistic, but the models presented here include the most important
features of the application under consideration.

2.2.1 Production Planning

The formulation that we present in this section is a very basic prototype of
production planning models. It is probably the simplest possible problem to be
formulated, and the purpose to present it at this point is to introduce some of the
basic ideas of modeling. In this context, suppose that there are three products we
can manufacture. For simplicity, we will simply refer to them as P1, P2, and P3,
respectively. The three products sell for $20, $15, and $17, respectively. These
products are manufactured on two machines M1 and M2. Each of the two products
has to be processed on both machines. At this level, the order in which to process
the products on the machines is irrelevant. The two machines have capacities of 8
and 9 hours, respectively. After that time, the machines will require regular
maintenance, a task for which they have to be shut off and are no longer available.
The processing times of the three products on the two machines (in minutes per
quantity unit) are shown in Table 2.2.1.

Table 2.2.1: Processing times of the products on the machines

 P1 P2 P3
M1 3 5 4
M2 6 1 3

It is important to understand that the machine capacities and their usage are meant
in the following way. Suppose there is a clock attached to the machine that shows
the amount of time that is still available on the machine before the next scheduled
maintenance. Initially, the clock on the first machine shows 9 hours or 540 minutes.
Suppose now that four units of P2 are processed on M1. Given that the processing
time per unit is 5 minutes, the available time decreases by twenty minutes from
540 to 520. This process continues until one of the machines has no capacity left.

2.2 Applications of Linear Programming 19

This process is considered automatically in the formulation, we present it here so
as to stress the way time is managed here. It is often misunderstood that a capacity
of, say, 8 hours means a workday and the objective is to plan what product is
processed at what time on which machine. This type of micro planning is
discussed in detail in Chapter 8 of this volume.

The production costs are $120 per hour of machine time on M1, and $90 per hour
of machine time on M2. In other words, operating time costs $2 and $1.50 per
minute on the two respective machines. Given the operating times, the processing
costs of the three machines on M1 are $6, $10, and $8, respectively, while the
operating costs on M2 are $9, $1.50, and $4.50, respectively. This results in overall
unit processing costs of $15, $11.50, and $12.50 for each of the three products,
respectively. Considering the selling prices, we have profit contributions of $5.00,
$3.50, and $4.50 per unit of each of the three products.

The problem can then formulated so as to maximize the overall profit, while
respecting the capacity constraints of the two machines. In order to formulate the
problem, we first need to define the variables. In this example, we would like to
know the number of products that we will manufacture. How much time we will
use on the two machines in the process does not have to be defined as a variable, it
is a direct consequence of how many products we will make.

Defining x1, x2, and x3 the respective numbers of P1, P2, and P3 that we will
manufacture and sell, we can then start to formulate the objective function.
Knowing that the objective will maximize the profit, which is the sum of profits
that derive from the making and selling of products, we consider one such term
at a time. For instance, making and selling one unit of P1 nets $5, and we have

1
the making and selling of P1 will be 5x1, Similar expressions can be derived for
the other two products, resulting in the objective function shown below in the
formulation.

Next, consider the constraints. We need to formulate one constraint for each
machine. Each of these constraints will state that the actual usage of the resource
called processing time does not exceed the processing time that is available. The
time available is known, so the right-hand side of the constraints is easy. In order
to be more specific, we will deal with the first machine and formulate the actual
time that is used on M1. First, we note that the time will be consumed by the
making of the three products. Consider one such product at a time, say P1. We
know that it takes 3 minutes to process one unit of P1 on M1, and we have decided
to make x1 units of P1. This means that the processing time on M1 that is used for
the making of P1 is 3x1. Similarly, we will use a total of 5x2 minutes on M1 to
make all the units of P2 that we will manufacture, and we need 4x3 minutes on M1
to make all of P3. The sum of these processing times now must be less than or

1

equal to the available time of 540 minutes. This is the capacity constraint for M .

now decided to make x units of it. This means that the profit that derives from

2 Linear Programming 20

The capacity constraint for the second machine is formulated in similar fashion.
Finally, we have to ensure that we are making nonnegative numbers of the
products—after all, we are in the business of manufacturing and selling the
products, rather than buying them (which is what negative values of the variables
would indicate in this context). The formulation can then be written as the problem

Max z = 5x1 + 3.5x2 + 4.5x3
s.t. 3x1 + 5x2 + 4x3 ≤ 540
 6x1 + 1x2 + 3x3 ≤ 480
 x1, x2, x3 ≥ 0.

After solving the problem, the optimal solution indicates that the decision maker
should make and sell 20 units of P1, no units of P2, and 120 units of P3. The
associated total profit is $640.

2.2.2 Diet Problems

The diet problem is not only among the first linear programming problems to be
solved, but it is arguably also the most intuitive model. As a matter of fact, the
problem was studied in 1939 by the (later Nobel laureate) George Stigler in the
context of determining a cost-minimal nutritious food for the armed forces.
Incidentally, he included 77 different foods in his model. His solution, while not
optimized, was found to be quite close to the optimal solution for his data. An
interesting account of the history of the diet problem is found in Garner Garille
and Gass (1981).

In general, two versions of the problem can be thought of. They are roughly
equivalent to the fundamental economic principle, applied to the determination of
a diet. The two criteria are cost and nutritional value, where cost is an input factor,
while nutritional value is an output. Thus we can either try to minimize the cost
(the input), while guaranteeing at least a certain and predetermined nutritional
value (the output), or we can attempt to maximize the nutritional value (the
output), while using no more than a prespecified dollar value (the input). In order
to determine which of the two versions is more suitable, consider this. In the latter
approach, the constraint is a simple resource constraint that states that the total
amount of money spent on food cannot exceed the decision maker’s budget.

nutritional value. The problem with this is that the measure “nutritional value”
is not a simple number, it is what is usually referred to as multidimensional
measure, as it comprises a large number of measures: protein, carbohydrates, fats,
vitamins, minerals, etc. And it is obviously not meaningful to simply add those

On the other hand, the former version of the problem is much easier to handle. The

content” is relegated to the constraints. And this is where the requirements can be
objective is a simple (one-dimensional) cost minimization, in which the “nutritional

However, the objective function is more complex. It is stated to maximize the

different units together so as to obtain a single one-dimensional measure.

2.2 Applications of Linear Programming 21

handled quite easily: for each nutritional component, we can formulate one or two
constraints, an upper and/or a lower bound. As a simple numerical example,
consider three foodstuffs, e.g., hamburger, fries, and cheesecake (which indicates
that we are using the term “diet” in the widest possible sense). As far as nutrients
are concerned, we consider only calories and fat in our example. Table 2.2.2
shows the nutritional contents of the foodstuffs, the nutritional requirements, and
the prices per serving of the foods.

 Hamburger

3½ oz
Medium fries
4 oz

Cheesecake
2.8 oz

Nutritional
requirement

Calories 250 380 257 [1,800; 2,200]
Fat 13% 31% 28% ≤ 100%
Cost per serving $1.59 $2.19 $2.99

Note that our numerical example expresses the calories in terms of the usual kCal
and we have an upper and a lower bound for it. (Note that in practice, the
recommended caloric intake depends on gender and age of an individual as well as
other factors). On the other hand, the fat content is expressed in terms of the
recommended daily requirements and it is an upper bound.

The problem in the cost minimization version can then be formulated as follows.
First, we define the variables. As usual, the variables are defined depending on what

the decision maker’s goal is to determine the quantities of the individual foods that
are to be included in the daily diet, so that we will define variables x1, x2, and x3 as
the quantities of hamburgers, medium fries, and cheesecakes in the diet. As long as
we use well-defined “servings” as units, and stick to the same units for each food,
there is no problem inadvertently adding apples and oranges, or hamburgers and
fries. What we are adding are their nutritional contents, as we show in this example.

First consider the objective function. The general idea is to minimize the costs of
all foodstuffs in the diet. Consider one of these foods at a time. As shown in Table
2.2.2, each hamburger costs $1.59. Since there will be x1 hamburgers in the diet,
the total costs incurred by hamburgers in the diet are 1.59x1. Similarly, the costs
that can be attributed to fries and cheesecake are 2.19x2 and 2.99x3, respectively,
so that the objective function is the sum of these three terms.

Let us now formulate the constraints. In doing so, we consider one requirement at a
time. First, we focus on the lower bound of the constraints. What we would like to
express is that the caloric content of the diet should be at least 1,800. The calories
in the diet derive from the three foods. the number of calories in the diet that are
from hamburgers are 250 x1, the number of calories from fries are 380x2, and the
calories from cheesecake are 257x3. Adding up these three expressions results in

Table 2.2.2: Input data for the sample problem

the decision maker would like to know, but does not at the moment. In this model,

2 Linear Programming 22

the total number of calories that we actually have in the diet. This number should not
fall short of 1,800 (the first constraint), and it should also not exceed 2,200 (the
second constraint). Note that both of these constraints have the same left-hand side.

The constraint that regulates the fat content of the diet is constructed similarly.
Overall, the constraint should state that the content of fat in the diet should not
exceed 100% of the recommended daily value. Where does the fat in the diet
come from? In this example, it derives from hamburgers (for a total of 13x1), fries
(for a total of 31x2), and cheesecake (for a total of 28x3). This total fat content
should then not exceed 100%.

In summary, the problem can then be formulated as follows.

 1 2 3

 s.t. 250x1 + 380x2 + 257x3 ≥ 1,800 (calories, lower bound)
 250x1 + 380x2 + 257x3 ≤ 2,200 (calories, upper bound)
 13x1 + 31x2 + 28x3 ≤ 100 (fat, upper bound)
 x1, x2, x3 ≥ 0. (nonnegativity constraints)

In addition to the lower and upper bounds on the caloric intake and the upper
bound on the fat content of the diet, we include the nonnegativity constraints on
the quantities of foods included in the diet, as the idea is to eat rather than
regurgitate. Incidentally, the solution to this formulation specifies that the planner
eat 6⅓ hamburgers, ½ serving of fries, and no cheesecake. Doing so will provide
100% of the allowable fat intake, generate 1,800 calories, and cost $11.32.

While this solution may be optimal with respect to the problem as specified above, it
is clearly riddled with a number of problems. The number of hamburgers in the diet
is obviously much too high for all but the most determined junk food junkies. It will
require additional constraints which are added in the loop that attempts to reconcile the
solution of the model with the real problem of finding a cost-effective diet. In order
to illustrate the modeling process, we use a somewhat larger problem with real data.
The data of the eight foods included and the eleven nutrients is found in Table 2.2.3.

As far as the daily nutritional requirements are concerned, we have identified the
following parameters. The diet should include
• between 1,800 and 2,200 calories,
• no more than 65g of fat,
• no more than 300mg of cholesterol,
• no more than 2,400mg of sodium,
• at least 300g of carbohydrates,
• at least 25g of fiber,
• at least 50g or protein, and
• at least 100% of the recommended daily allowance of vitamins A and C,

calcium, and iron.

P: Min z = 1.59x + 2.19x + 2.99x

2.2 Applications of Linear Programming 23

Ta
bl

e
2.

2.
3:

 N
ut

rit
io

na
l c

on
te

nt
s o

f f
oo

ds
 a

nd
 th

ei
r p

ric
es

Pa

st
a

To
m

at
o

ju
ic

e
C

la
m

ch

ow
de

r
M

ed
iu

m

be
ef

ch

uc
k

M
ilk

O

ra
ng

e
ju

ic
e

A
pp

le

Po
ta

to

ch
ip

s

22
0

25
9

11
0

13
2

55

15
2

Fa
t

1g

0g

13
g

16
.3

g
2.

5g

0g

0.
22

g
9.

8g

C
ho

le
st

er
ol

0m

g
0m

g
5m

g
89

m
g

10
m

g
0m

g
0m

g
0m

g
1.

1m
g

16
8.

4m
g

C
ar

bo
hy

dr
at

es

63
g

12
g

19
g

20
g

12
g

33
.4

g
14

.6
g

15
g

Fi
be

r
3g

3g

2g

0g

0g

0g

2.

5g

1.
3g

Pr

ot
ei

n
11

g
2g

5g

26

.1
g

9g

0.
5g

0.

3g

2g

V
ita

m
in

 A

0%

8%

2%

1%

10
%

2%

1%

0%

V

ita
m

in
 C

0%

30

%

2%

0%

0%

62
%

8%

15

%

C
al

ci
um

2%

2%

2%

1%

30

%

0%

1%

1%

Ir
on

20

%

15
%

8%

17

%

0%

2%

1%

3%

Pr

ic
e

pe
r

se
rv

in
g

19
¢

pe
r

3
oz

56

¢
pe

r
10

fl.

oz
.

90
¢

pe
r

8.
8

fl.
oz

.
82

¢
pe

r
3

51
¢

pe
r

cu
p

53
¢

pe
r

8.
8

fl.
oz

.
37

¢
ea

ch

32
¢

pe
r 1

oz

C
al

or
ie

s

30
0

60

1/
2 o

z

So
di

um

1m
g

65
0m

g
79

0m
g

95
m

g
12

0m
g

5m
g

2 Linear Programming 24

We first define variables x1, …, x8 for the number of servings of the eight foods
outlined in Table 2.2.3. Following the ideas developed above for the small
problem, we can now formulate the diet problem. the formulation is as follows.

 P: Min z = .19x1 + .56x2 + .90x3 + .82x4 + .51x5 + .53x6 + .37x7 + .32x8

 s.t. 300x1 + 60x2 + 220x3 + 259x4 + 110x5 + 132x6 + 55x7 + 152x8 ≥ 1,800
 (Calories, lower bound)
 300x1 + 60x2 + 220x3 + 259x4 + 110x5 + 132x6 + 55x7 + 152x8 ≤ 2,200
 (Calories, upper bound)
 1x1 + 13x3 + 16.3x4 + 2.5x5 + 0.22x7 + 9.8x8 ≤ 65
 (Fat)
 5x3 + 89x4 + 10x5 ≤ 300
 (Cholesterol)
 1x1 + 650x2 + 790x3 + 95x4 + 120x5 + 5x6 + 1.1x7 + 168.4x8 ≤ 2,400
 (Sodium)
 63x1 + 12x2 + 19x3 + 20x4 + 12x5 + 33.4x6 + 14.6x7 + 15x8 ≥ 300
 (Carbohydrates)
 3x1 + 3x2 + 2x3 + 2.5x7 + 1.3x8 ≥ 25
 (Fiber)
 11x1 + 2x2 + 5x3 + 26.1x4 + 9x5 + 0.5x6 + 0.3x7 + 2x8 ≥ 50
 (Protein)
 8x2 + 2x3 + 1x4 + 10x5 + 2x6 + 1x7 ≥ 100
 (Vitamin A)
 30x2 + 2x3 + 62x6 + 8x7 + 15x8 ≥ 100
 (Vitamin C)
 2x1 + 2x2 +2x3 + 1x4 + 30x5 + 1x7 + 1x8 ≥ 100
 (Calcium)
 20x1 + 15x2 + 8x3 + 17x4 + 2x6 + 1x7 + 3x8 ≥ 100
 (Iron)
 x1, x2, …, x8 ≥ 0
 (Nonnegativity constraints)

In the subsequent discussion, we will refer to the solutions and their respective
nutritional contents shown in Table 2.2.4a and Table 2.2.4b (where entries in are
shown in boldface, if the nutritional content of a diet has reached its bound).
Solving the above model results in the original solution “0.” The most prominent
features of the solution is that other than a modest amount of pasta, the diet
includes only liquids, most prominently in excess of 9 servings of milk. The
decision maker may want to limit the milk intake to more reasonable levels, so
that an upper bound of four servings of milk is added, i.e., the constraint x5 ≤ 4. It
turns out that this constraint is so strong that the model has no more feasible
solution. In order to restore feasibility, the decision maker has now decided to
add additional foods, most prominently yoghurt, bread, and margarine (whose
quantities are denoted by the new variables x9, x10, and x11, respectively). The
prices and nutritional contents of the foods are shown in Table 2.2.5. Solving the

2.2 Applications of Linear Programming 25

Ta
bl

e
2.

2.
4a

: s
ol

ut
io

ns
 in

 th
e

m
od

el
in

g
pr

oc
es

s

Fo
od

st
uf

f
O

rig
in

al

So
lu

tio
n

N
o.

 “
0”

So
lu

tio
n

1

≤
6

br
ea

d
Sl

n
2

≤
4

m
ar

ga
rin

e
Sl

n
3

A
dd

 e
gg

s
Sl

n
4

C
al

or
ie

s
≤

2,
00

0
So

lu
tio

n
4a

C
ho

le
st

er
ol

≤

25
0

So
lu

tio
n

4b

Pa
st

a
2.

58

N
o

0.
1

1.
46

0

0
0

0
To

m
at

o
ju

ic
e

1.
95

0

0.
91

0

0
0

0
C

la
m

 c
ho

w
de

r
0

0
0

0
0

0
0

B
ee

f c
hu

ck

0.
09

In

tro
du

ce

0
0

0.
38

0.

2
0.

32

0.
36

O
ra

ng
e

Ju
ic

e
0.

08

1.
33

0.

87

5.
47

3.

47

2.
76

3.

2

Po
ta

to
 c

hi
ps

0

0

0
0

0
0

0
Y

og
hu

rt

0

0
0

0
0

0
B

re
ad

9.

57

6
1.

65

5
2.

99

2.
2

M
ar

ga
rin

e

5.

65

6.
05

4

4
4

4
Eg

gs

1.

14

1.
09

0.

84

C
os

t
$8

.1
4

$4

.6
2

$4
.7

0
$8

.8
1

$7
.1

2
$7

.2
6

$7
.6

3

fe
as

ib
le

≤
4

m
ilk

A
pp

le

4.
6

m
ar

ga
rin

e
2.

23

2.
35

8.

68

6.
0

7.
61

8.

2

so
lu

tio
n.

M
ilk

9.

3
yo

gh
ur

t,

3.
87

3.

45

4
4.

0
4

4
br

ea
d,

2 Linear Programming 26

problem with the new foods results in solution “1,” shown again in Tables 2.2.4a
and 2.2.4b.

Table 2.2.4b: Nutritional achievements of the solutions

 Original
solution
“0”

Solution
“1”

Solution
“2”

Solution
“3”

Solution
“4”

Solution
“4a”

Solution
“4b”

Calories
∈ [1,800;
2,200]

1,800 2,200 2.200 2,200 2,200 2,000 2,000

Fat
≤ 65

28 65 65 52 57 58 56

Cholesterol
≤ 300

101 39 35 74 300 300 250

Sodium
≤ 2,400

2,400 2,400 2,400 1,097 1,674 1,358 1,231

Carbs
≥ 300

369 340 340 401 366 324 332

Fiber
≥ 25

25 25 25 25 25 25 25

Protein
≥ 50

120 75 74 58 72 67 64

Vitamin A
≥ 100%

100 100 100 100 100 100 100

Vitamin C
≥ 100%

100 100 100 409 263 232 264

Calcium
≥ 100%

293 118 111 129 130 131 131

Iron
≥ 100%

100 103 107 100 100 100 100

We first notice that the price of the diet has decreased dramatically, a result of
new inexpensive foods that have been introduced into the problem. (As usual,
while added constraints limit the choices and increase the cost of the solution,
added variables represent added opportunities that may reduce the price). The
solution now includes significant amounts of the new foods bread and margarine.

that of the previous solution: the caloric content is now at the upper rather than the
lower bound, the fat content is also at the upper bound, while sodium is still at the
upper bound, and the nutrients fiber, vitamin A and vitamin C are at the lower
bounds.

The decision maker may feel that the present solution includes too much bread, so
that a constraint is added that limits the bread content of the diet to no more than
six slices, i.e., x10 ≤ 6. The result is Solution “2.” This solution is marginally more

expensive than its predecessor, it features significantly more pasta, and in general

The nutritional content of the new solution also differs quite dramatically from

2.2 Applications of Linear Programming 27

appears more palatable. however, the margarine content is quite high, so that in
the next step, the decision maker adds a requirement that limits the margarine
content to no more than four servings, i.e., x11 ≤ 4. The result is Solution “3.” This
requirement causes the price of the diet to almost double (which poses the
question whether or not the requirement is really that crucial). Furthermore, the
diet now consists mostly of milk, orange juice, and apples. It is hardly surprising
that the vitamin C content of the diet has quadrupled as compared to the previous
solution. Also, fat is no longer a binding constraint and the sodium content is cut
in half. However, the diet is still barely satisfying the fiber content, and its vitamin

Table 2.2.5: Additional foods

 Yoghurt Bread Becel Eggs
Calories 160 110 70 78
Fat 2.5g 1g 8g 5.3g
Cholesterol 10mg 0mg 0mg 212mg
Sodium 75mg 160mg 70mg 62mg
Carbs 20g 22g 0 0.6g
Fiber 0g 2g 0 0g
Protein 6g 4g 0g 6.3g
Vitamin A 2% 0% 10% 6%
Vitamin C 2% 0% 0% 0%
Calcium 20% 0% 0% 3%
Iron 2% 10% 0% 3%
Price per
serving

56¢ per ¾
cup

8.6¢ per
slice

5¢ per 2
teaspoons

20¢ each

In order to address some of the nutritional issues, the decision maker has decided
to add eggs as an additional food. Their price and nutritional content are shown
in Figure 4. Solving the expanded model results in Solution “4.” Now the diet
includes again more bread and margarine, and more moderate amounts of milk,

In principle, the decision maker is happy with the diet as it has been determined at
this point. However, it may be desirable to find out the effects that result from the
changes of some of the requirements. For instance, what happens if the caloric

model results in Solution 4a. We notice a very modest price increase, of a diet that
now includes less orange juice, more apples, and significantly less bread. We are
now at the upper allowable limit for cholesterol, while fiber, vitamin A and iron
are stubbornly clinging to their respective lower bounds. (A good idea at this point
would be to introduce additional foods that are rich in these nutrients).

Instead, the decision maker may wish to reduce the cholesterol in the diet from its
present upper bound of 300 to 250. Resolving the problem results again in a fairly
modest price increase and a solution that is similar to the previous diet, except that

A content is also at its lower bound.

orange juice, and apples. Also, the price has dropped to $7.12.

intake is restricted to no more than 2,000 rather than 2,200? Solving the revised

2 Linear Programming 28

now the quantity of apples has reached again unreasonable levels. We terminate our
discussion at this point, which is not to suggest that the present diet is reasonable:
the purpose of this section was to introduce the reader to the modeling process that
repeatedly revises the model based on the present solution.

2.2.3 Allocation Problems

Allocation problems are one of the most prominent areas of application in linear
programming. All models in this class have in common that they deal with the
allocation of scarce resources to (economic) activities. At times, more than one
scarce resource exists, in which case the modeler can choose any one of them as
the basis for the mathematical formulation. This will be further elaborated upon
below. Due to the many different types of allocation problems, we will present
two such scenarios below.

First consider an investment allocation problem. Problems of this nature were first
formulated by Markowitz in the early 1950s as nonlinear optimization problems.
Here, we will discuss a linear version of the problem. In this problem, the decision
maker has to decide how much of the scarce resource (money) to allocate to
different types of investments. As we will see below, this observation already
indicates how to define the variables.

In our numerical example, the investor has $300,000 that can be invested. In
addition to the money at hand, it is possible to borrow up to $100,000 at 12%
interest. This money can be used for leveraging (borrow to invest). The investor has
narrowed down the choices to six alternatives, shown in Table 2.2.6. The table
also shows the expected annual interest or dividend for the investment alternatives,
the expected annual increase of the value of the investment, and an indication of
the risk of the investment (per dollar).

Table 2.2.6: Types of investments and their features

Investment type Expected annual
interest/dividend

Expected annual
increase in value

Average risk per
dollar

Real estate 0% 18% 20
Silver 0% 10% 12
Savings
account

2% 0 1

Blue chip
stocks

3% 6% 7

Bonds 4% 0% 3
Hi-tech stocks 0% 20% 30

We will consider two versions of the problem: the first version attempts to
maximize the expected value of the assets at the end of the planning period (one
year), while the second version minimizes the total risk of the investment.

2.2 Applications of Linear Programming 29

First consider version 1. The value of the assets after one year equals today’s
value of the investment plus the expected interest or dividend plus the expected
change in value within a year minus the amount of money that was borrowed
(principal and interest). In addition to the restricted availability of money already
mentioned above, the decision maker faces the following constraints:

• The expected value of assets (exclusive interest) at the end of the planning

period should be at least 7% higher than at the beginning,
• invest at least 50% of all the money invested in stocks and bonds combined,
• invest no more than 20% of total amount available (excluding the amount

borrowed) in real estate and silver combined, and
• the average risk of the portfolio should not exceed 10.

In order to formulate the appropriate model, we first must define the problem
variables. The scarce resource in this application is money, so that we define xj as
the dollar amount invested in the j-th alternative. Here, x1 will denote the money
invested in real estate, x2 the money invested in silver, and so forth.

We can then formulate the objective function. Each dollar invested in real estate
will produce no interest or dividend, but will gain an expected 18%, so that the
investment of 1x1 will have appreciated to 1.18x1. A dollar invested in silver and a
savings account will appreciate to $1.10 and $1.02, respectively. A $1 investment
in blue chip stocks is expected to be worth $1.06 after a year plus a dividend of
3¢, making it worth $1.09). The remaining investments are dealt with in a similar
fashion. From our revenue we must deduct the amount borrowed (x7) plus the
interest to be paid on the borrowed amount (0.12x7), making it 1.12x7.

Consider now the constraints. An obvious restriction is that the investor cannot
invest more money than is available. The amount invested is nothing but the sum
of all individual investments, i.e., x1 + x2 + x3 + x4 + x5 + x6, while the amount that
is available is the sum of the $300,000 at hand plus the amount that is borrowed,
viz., x7. This is the budget constraint (1). Another straightforward restriction limits
the amount that can be borrowed to $100,000. This constraint is shown in (2).

The constraint that requires the invested money to show a growth of at least 7%
can now be formulated as follows. The actual value of the assets at the end of the
planning period uses the expected annual gains from Table 2.2.6, resulting in
1.18x1, 1.10x2, etc. The required increase of the invested money by at least 7% is
the product of 1.07 (the principal plus the required increase) and the invested
amount, which is the sum of the first six variables. This is shown in Constraint (3).

The constraints (4) and (5) model the requirements that at least 50% of the money
invested must be invested in stocks and bonds combined, and that no more than
20% of the money available can be invested in real estate and silver combined.
Note the difference between the two constraints: while in (4), we are dealing with

2 Linear Programming 30

a portion of the amount actually invested (the sum of the first six variables),
constraint (5) refers to the total amount available to the investor (exclusive the
amount that may be borrowed), which equals $300,000.

The average risk of the portfolio equals the total risk divided by the amount

invested, i.e.,
654321

654321 30371220
 x x x x x x

x x x x x x
+++++
+++++

, which is not to

exceed a value of 10. Multiplying the inequality by the (nonzero) denominator
results in relation (6). The nonnegativity constraints (7) conclude the formulation.
Version 1 of the model can then be summarized as follows.

 P: Max z = 1.18x1 + 1.10x2 + 1.02x3 + 1.09x4 + 1.04x5 + 1.20x6 − 1.12x7
 s.t. x1 + x2 + x3 + x4 + x5 + x6 ≤ 300,000 + x7 (1)
 x7 ≤ 100,000 (2)

1 2 3 4 5 6

1 2 3 4 5 6
 x4 + x5 + x6 ≥ 0.5(x1 + x2 + x3 + x4 + x5 + x6) (4)
 x1 + x2 ≤ 0.2(300,000) (5)
 20x1 + 12x2 + x3 + 7x4 + 3x5 + 30x6 ≤ 10(x1 + x2 + x3 + x4 + x5 + x6) (6)

1 2 7

Table 2.2.7 below shows the solution of this model with a 12% interest on
borrowed money (as formulated above), and a slight modification with 10%
interest on the amount we borrow.

Table 2.2.7: Optimal solutions to the different versions of the investment
allocation model

Investment
type

Version 1 with
12% interest on

borrowed money

Version 1 with
10% interest on

borrowed money

Version 2

Real estate 60,000 60,000 0
Silver 0 0 0
Savings
account

0 0 160,500

Blue chip
stocks

234,782.61 321,739.13 0

Bonds 0 0 160,500
Hi-tech stocks 5,217.39 18,260.87 0
Amount
borrowed

0 100,000 21,000

Version 2 of the investment model is very similar. It deletes constraint (6) from
the formulation and uses its left-hand side (the actual risk of the portfolio) in a
minimization objective. Furthermore, we require an appreciation of at least 7% on

1.18x + 1.10x + 1.00x + 1.06x + 1.00x + 1.20x
≥ 1.07(x + x +

 x , x , …, x ≥ 0. (7)

x + x + x + x) (3)

2.2 Applications of Linear Programming 31

the available money (exclusive the borrowed amount), i.e., $321,000 at the end of
the planning period. A summary of the optimal solutions is shown in Table 2.2.7.

Note the jump that occurs in the amount of money borrowed: apparently, given an
interest of 10% on borrowed money, it is still worthwhile to borrow and invest,
while an increase to 12% is prohibitive, so that no more money is borrowed and
no leveraging occurs. Also note the very different solution provided by Version 2
of the model.

Another allocation problem is found in the allocation of manpower—the scarce
resource in this context—to tasks. In this specific application, we deal with
allocating police officers to districts. Clearly, not all districts in a city are created
equal, so that the impact a single policeman provides to a district will be different
for different areas. In the numerical illustration below, we have a total of 67
police officers to distribute among five districts A, B, …, and E. Table 2.2.8 shows
the degree of protection offered to a district for each officer assigned to the
district.

Table 2.2.8: Protection provided by police officers and smallest allowable protection

 A B C D E
Additional marginal
protection per officer

3 7 10 5 4

Lowest acceptable
protection

40 50 70 60 40

For example, if six police officers are assigned to district A, then the degree of
protection is 6(3) = 18. Suppose that due to the intricacies of the job, it is not
possible to hire additional police officers in the short run. Actually, each police
officer who is not assigned to one of the districts can be hired out to a private
security company for a fee of $100 per officer and day. Other than the house taxes
(a flat fee for our purposes that does not have to be included in the problem),
hiring out police officers is the council’s only income. Council wants to set up a
linear programming problem that maximizes the department’s income (due to
hiring out police officers). The following restrictions have to be observed:

• It must be ensured that each district has at least the minimum protection as

specified in the table above,
• the average protection is at least 50, and
• we have to allocate at least 50% more officers to districts A, B, and C

combined than to districts D and E combined.

Formulating the problem, we have to define the variables first. The scare resource in
this context are police officers, so that we can define xj as the number of police
officers assigned to district j. For simplicity, we use xA, xB, xC, xD, and xE for the
five districts under consideration. The objective function then maximizes the product

2 Linear Programming 32

of the revenue for a police offers hired out for a day ($100) and the number of
police offers hired out. The number of police officers hired out for private security
work equals the number of police officers available (67) and the number of
officers assigned to the five districts (the sum of all five variables).

The first constraint simply requires that we cannot assign more police officers
than we have. Constraints (2) – (6) ensure that each district receives at least the
minimum protection required in Table 2.2.7. Constraint (7) requires that the average
protection in the five distracts is at least 50, and constraint (8) ensures that the first
three districts have at least twice as many police officers allocated to them as have
the last two. As usual, the nonnegativity constraints complete the formulation. The
model can then be written as follows.

 P: Max z = 100[67 − (xA + xB + xC + xD + xE)]
 s.t. xA + xB + xC + xD + xE ≤ 67 (1)
 3xA ≥ 40 (2)
 7xB ≥ 50 (3)
 10xC ≥ 70 (4)
 5xD ≥ 60 (5)
 4xE ≥ 40 (6)
 (3xA + 7xB + 10xC + 5xD + 4xE)/5 ≥ 50 (7)
 xA + xB + xC ≥ 1.5(xD + xE) (8)
 A B C D E

Solving the problem reveals that the number of police officers allocated to the five
districts are 13⅓, 12⅔, 7, 12, and 10, respectively (for now, we will disregard the
nonintegralities). This means that a total of 55 police officers are allocated,
leaving 12 police officers to be hired out, so that city council’s daily income from
this allocation is $1,200. Furthermore, this allocation results in protection levels of
40, 88⅔, 70, 60, and 40. In other words, all districts except the second receive the
minimal protection required, while district B receives 88⅔/50 ≈ 1.77 times the
protection that is minimally needed.

2.2.4 Employee Scheduling

The model in this section is, in some sense, also an allocation problem. However,
it has its own character, so that it justifies its own section. Consider a recurring
situation in which employees have to be assigned to shifts. The number of
employees required to be on the job varies throughout the day during a variety of
time slots. For instance, a bus route will require significant service during the
early morning and afternoon rush hours, while there will not be much service
during lunch hour or late at night. Similar requirements exist for nurses, pilots,
cashiers in grocery stores, and similar scenarios.

The difficulty with this problem is that we are typically not able to hire casual
labor whenever needed, but we will have to use permanent employees. So the

 x , x , x , x , x ≥ 0. (9)

2.2 Applications of Linear Programming 33

objective of the problem is to use the smallest number of employees and still be
able to staff the position(s) throughout the day.

In our numerical example, assume that a regular shift is 8 hours and assume that
there are 4-hour time segments during which personnel requirements have been
observed. The personnel requirements during the 4-hour time slots are shown in
Table 2.2.9 using a 24-hour clock.

Table 2.2.9: Personnel requirements during 4-hour time slots

Shift 0600−1000 1000−1400 1400−1800 1800−2200 2200–0200 0200−0600
Required
number of
employees

17

9

19

12

5

8

Assume that shift work can start every four hours at 6 a.m., 10 a.m., and so forth.
Our decision is then how many employees to hire at each of these points in time.
This means that we can define variables x06, x10, x14, x18, x22 and x02 as the number
of employees who start their shift at 6 a.m., 10 a.m., 2 p.m., and so forth. The total
number of employees required is then the sum of all of these variables. As far as
the constraints go, we have to require that a sufficient number of employees is
present during each time slot. Consider, for instance, the time slot between 1400
and 1800 hours, during which at least 19 employees are needed. The employees
working during this time slot are those whose shift starts at 1000 hours plus those
who start working at 1400 hours. This means that during this time slot x10 + x14
employees will be working, a number that must be at least 19. Similar constraints
have to be formulated for all six time slots. The formulation can then be written as
follows, where we ignore the integrality requirements for reasons of simplicity.

P: Min z = x06 + x10 + x14 + x18 + x22 + x02
 s.t. x06 + x02 ≥ 17
 x06 + x10 ≥ 9
 x10 + x14 ≥ 19
 x14 + x18 ≥ 12
 x18 + x22 ≥ 5
 x22 + x02 ≥ 8
 x06, x10, x14, x18, x22, x02

Problems of this type typically have multiple solutions. The problem as formulated
has an optimal solution that requires a total of 41 employees. The starting times of
their shifts are shown in Table 2.2.10.

Table 2.2.10: Starting times of employees in optimal solution for 4-hour time slots

Start of shift 0600 1000 1400 1800 2200 0200
Number of
employees 14 7 12 0 5 3

 ≥ 0.

2 Linear Programming 34

Note that this solution has the exact number of required employees during all time
slots, except for the time 1000-1400, where only 9 employees are needed, while
21 employees are available. In other words, there are 12 employees idle between
10 a.m. and 2 p.m.

As an extension of the above model, assume that it is now possible to start the
employees’ shifts each two hours rather than each four hours. Similarly, the time
requirements are known for 2-hour rather than four-hour segments throughout
the day. For instance, the 17 employees that were needed between 6 a.m. and 10 a.m.
in the above problem, are required between 6 a.m. and 8 a.m., while between 8 a.m.
and 10 a.m. only 11 employees are required. The personnel requirements during
the 2-hour time slots are shown in Table 2.2.11. Note that the larger requirement
of each two adjacent time slots that correspond to a 4-hour time slot in the above
example equals the requirement of that 4-hour slot. In that sense, we are using the
same example, just a finer grid.

Table 2.2.11: Personnel requirements during 2-hour time slots

Shift 0600−0800 0800−1000 1000−1200 1200−1400 1400-1600 1600−1800
Required
number of
employees

17

11

9

7

13

19

Shift 1800−2000 2000−2200 2200−2400 2400−0200 0200–0400 0400−0600
Required
number of
employees

12

8

5

3

3

8

The problem can then be formulated as follows.

P: Min z = x06 + x08 + x10 + x12 + x14 + x16 + x18 + x20 + x22 + x24 + x02 + x04
s.t. x06 x24 + x02 + x04 ≥ 17
 x06 + x08 x02 + x04 ≥ 11
 x06 + x08 + x10 x04 ≥ 9
 x06 + x08 + x10 + x12 ≥ 7
 x08 + x10 + x12 + x14 ≥ 13
 x10 + x12 + x14 + x16 ≥ 19
 x12 + x14 + x16 + x18 ≥ 12
 x14 + x16 + x18 + x20 ≥ 8
 x16 + x18 + x20 + x22 ≥ 5
 x18 + x20 + x22 + x24 ≥ 3
 x20 + x22 + x24 + x02 ≥ 3
 x22 + x24 + x02 + x04 ≥ 8
 x06, x08 x10, x12, x14, x16, x18, x20, x22, x24, x02, x04

The optimal solution of this problem requires now only 36 employees, and the
starting times are shown in Table 2.2.12.

 ≥ 0.

2.2 Applications of Linear Programming 35

Table 2.2.12: Starting times of employees in optimal solution for 2-hour time slots

Start of shift 06 08 10 12 14 16 18 20 22 24 02 04
Number of
employees 0 0 7 4 3 5 0 0 0 3 0 14

Particularly noteworthy are the more than 12% savings in the number of employees
that must be hired. In general, it is not surprising that the finer grid used here
provides a solution that is at least as good as that with 4-hour time slots. The
reason is that the previous solution can still be implemented and it would still
provide a feasible solution. However, with the additional possible starting times
there are additional possibilities which may—and in this case do—allow us to find
a better solution.

2.2.5 Dynamic Production – Inventory Models

This section describes models, in which decision makers do not only have to
answer the “how many” question as we have seen in many of the previous
applications, but they also require an answer to the question “when” to produce. In
the simplest case, assume we only consider a single product. Furthermore, suppose
that the time frame of interest has been subdivided into small time units, in which
production occurs. Throughout this section, we will refer to these units as “months.”
Within each month, production occurs and customers take out products based on
their demand.

Based on the production capacities, it may now not be possible to satisfy the
demand in each month. In order to avoid undersupplying our customers, we can
produce more than the demand indicates during the earlier months of the planning
period and keep the surplus in stock. This will, of course, cause inventory holding
costs to be incurred. Given that the production costs may vary between the
months, it may actually be preferable to manufacture goods earlier in the planning
period rather than later, but the decision will depend on the relation between the
production costs and the inventory holding costs. We will leave these decisions to
the optimizer and our model.

Before presenting a numerical example, it is important to discuss the exact
sequence of events within each month. At the beginning of each month, we take
stock. Since nothing has happened to the inventory between this point in time and
the previous month, the inventory level at the beginning of the month will denote
the number of units carried over from the previous month, which, in turn, will
determine the inventory holding costs. Then production occurs. After the desired
production quantity is made, customers take products out of our warehouse
according to the estimated demand. Whatever is left after that will be carried over
to the next month, and the process begins anew.

As a numerical illustration, consider the following scenario. The planning period
ranges from the beginning of January of some year and ends at the end of April.

2 Linear Programming 36

The estimated demand, production capacity, and unit production costs are shown
in Table 2.2.13.

Table 2.2.13: Parameters for the dynamic production – inventory model

 Month 1
(January)

Month 2
(February)

Month 3
(March)

Month 4
(April)

Estimated demand 80 70 130 150
Production capacity 120 140 150 140
Unit production cost $1.00 $1.10 $1.20 $1.25

In addition, it costs 5¢ to carry over one unit from the end of January to the
beginning of February, 15¢ to carry over one unit from the end of February to the
beginning of March, and another 15¢ to hold one unit in stock between the end of
March and the beginning of April. The decision maker has an opening inventory
of 20 units in the beginning of the planning period and desires to have nothing left
at the end of the planning period.

In order to formulate the model, we quite naturally need two types of variables,
one for production and the other for inventory. Denote the production variables by
x1, x2, x3, and x4, which are defined as the quantities to be manufactured in months
1, 2, 3, and 4, respectively. Similarly, we define the parameters d1, d2, d3, and d4 as
the demand in periods 1, 2, 3, and 4, respectively. Before defining the inventory
variables, we have to decide at which point to measure the inventory level. Given
our problem description above, we may decide to count inventory at the beginning
of each period. Alternatively, it is possible to determine the inventory level at the
end of a period, which we leave as exercise in Problem 3 at the end of this section.
Here, the we denote by I1, I2, I3, I4, and I5 the inventory levels at the beginning of
the periods 1 to 5. Note that the inventory levels I1 and I5 are not variables, but
parameters whose numbers we know: as outlined above, the opening inventory
I1 = 20, and the closing inventory I5 = 0.

The objective function is then a simple cost minimization function that consists of
two main components, the production costs and the inventory costs. As far as
constraints go, there are two types. First, there are the simple production capacity
constraints that specify that in no period can we produce more than our capacity
allows. Secondly, there are the inventory balancing constraints. They state that the
inventory level at the beginning of period t equals the inventory level at the
beginning of the previous period t−1 plus our production in the previous period
minus the demand in the previous period. Formally, we can write It = It−1 + xt−1 − dt−1
for t = 2 to n+1, where n is the last month within the time frame. These constraints
are the same as the usual balancing constraints in accounting that state that what
you have in your account today equals what you had yesterday plus the deposits
yesterday minus yesterday’s withdrawals. Our model can then be formulated as
follows.

2.2 Applications of Linear Programming 37

 Min z = 1x1 + 1.1x2 + 1.2x3 + 1.25x4 + .05I2 + .15I3 + .15I4

 s.t. x1 ≤ 120
 x2 ≤ 140
 x3 ≤ 150
 x4 ≤ 140
 I2 = I1 +x1 − 80 (or, as I1 = 20, x1 − I2 = 60)
 −I3 + I2 + x2 = 70
 −I4 + I3 + x3 = 130
 −I5 + I4 + x4 = 150 (or, as I5 = 0, x4 + I4 = 150)
 x1, x2, x3, x4, I2, I3, I4 ≥ 0.

The optimal production schedule has us manufacture 120, 10, 140 and 140 units of
the product in the four months, and the inventories carried over between months 1
and 2, 2 and 3, and 3 and 4 are 60, 0, and 10, respectively. The sum of the
production and inventory costs is $478.50.

The solution makes intuitive sense, as the low production level in February is a
result of the lower production costs in January and the low inventory costs between
January and February. On the other hand, the inventory carrying costs are significant
after February, so that inventories only occur between March and April, and these
are necessary as the April demand exceeds the production capacity in that month.

A potential extension of the model may consider warehouse capacities. In other
words, we may impose limits on the number of units we can keep in stock. Such
constraints are easily incorporated in this formulation. If in our numerical example
the largest possible inventory levels between months 1 and 2, months 2 and 3, and
months 3 and 4 are 40, 50, and 50, respectively, we add the constraints

 I2 ≤ 40
 I3 ≤ 50
 I4 ≤ 50.

With these additional constraints, the production levels in the four periods are
revised to 100, 30, 140, and 140, respectively, so that the inventory levels between
the periods are 40, 0 and 10, respectively. The total costs for this system then
(marginally) increase to $479.50.

This problem can also be formulated in an alternative fashion. Rather than using
separate variables for production and inventory, we can define double-subscripted
variables xij that indicate how many units of the product were manufactured in
month i for use in month j. Such a formulation will require some additional
preprocessing. For instance, in order to determine the objective function coefficient
for the variable x14 in the numerical example in this section, we need to add the
production costs in month 1 (when the product is made) and the inventory holding
costs from month 1 to 2, those from month 2 to 3, and those from month 3 to 4 for

2 Linear Programming 38

function are determined similarly.

In addition, there will be two sets of constraints. The first are again the constraints

production in Month 1 will be x11 + x12 + x13 + x14, the production in Month 2 will
be x22 + x23 + x24, and similar for the remaining two months. The second set of
constraints that are needed are then the demand constraints. The number of units
available in, say, Month 3 is x13 + x23 + x33
as large as the demand in that month. The problem can then be formulated as
follows.

 P: Min z = 1x11 + 1.05x12 + 1.2x13 + 1.35x14 + 1.1x22 + 1.25x23 + 1.4x24
 + 1.2x33 + 1.35x34 + 1.25x44

 s.t. x11 + x12 + x13 + x14 ≤ 120
 x22 + x23 + x24 ≤ 140
 x33 + x34 ≤ 150
 x44 ≤ 140
 x11 ≥ 60 (January’s is reduced by the available opening inventory of 20 units)
 x12 + x22 ≥ 70
 x13 + x23 + x33 ≥ 130
 x14 + x24 + x34 + x44 ≥ 150
 x11, x12, x13, x14, x22, x23, x24, x33, x34, x44 ≥ 0.

The optimal solution can best be summarized in a table such as that shown in
Table 2.2.14.

Table 2.2.14: Optimal solution of the production-inventory problem

 Month 1 Month 2 Month 3 Month 4
Month 1 60 60 0 0
Month 2 − 10 0 0
Month 3 − − 130 10
Month 4 − − − 140

The cost at optimum are $478.50, obviously the same as in the other formulation.
The actual production levels in the four months can be determined by adding the
values of the variables in the rows, while the sums in the columns result in
the months’ demand. It is also a good idea to plot the inventory changes on a time
line that lists the opening inventory of each month, adds the production within
the month, and then subtracts the demand later that month. This is shown in
Figure 2.2.1.

that require the production capacities to be respected. For instance, the total

a total of 1 + .05 + .15 + .15 = $1.35. The other coefficients in the objective

 and this number must be at least

2.2 Applications of Linear Programming 39

 Period 1 Period 2 Period 3 Period 4
20 + 120 − 80 = 60 0 + 140 − 130 = 10
 60 + 10 − 70 = 0 10 + 140 − 150 = 0

Figure 2.2.1

Hence, the inventory levels at the beginning of the periods 2, 3, and 4 are 60, 0,
and 10, respectively; again, reflecting the same result obtained earlier.

Incorporating limits on the warehouse capacity is also easy in this formulation.
The number of units put in stock between January and February is x12 + x13 + x14,
the level of stock between February and March is x23 + x24, and the level between
March and April is x34. All that needs to be done is to require these expressions
not to exceed 40, 50, and 50, respectively, and we will again obtain the same
result computed earlier for the formulation with explicit inventory variables.

Which of the formulations is used depends on the preferences of the user. The
former model with the explicit inventory variables has the advantage of having 2n
variables, given again n months within the planning period, while the latter model
with the double-subscripted variables requires ½n2 variables. However, since the
value of n is typically quite small and modern linear programming solvers can
easily deal with formulations that have hundreds of thousands of variables, this
should not be a problem.

2.2.6 Blending Problems

All blending problems have in common that they take a number of given
ingredients or raw materials and blend them in certain proportions to the final
products. In other words, in the process we are creating something new by mixing
existing materials. Typical examples for blending are coffees, teas, whiskeys,
tobaccos, and similar products. Clearly, there are some rules for the blending
process. For instance, in order to ensure a specific taste, it may be required that a
blend includes at least a certain proportion of a raw material.

The process is shown in Figure 2.2.2. On the left, there are m buckets with given
quantities of raw materials, while on the right, there are n empty buckets that are
to be filled with known quantities of the blends. In the blending process we take,
one at a time, a certain number of scoops from each of the raw materials and
transfer them into the buckets on the right. Once sufficient quantities have been
transferred to the “Product” buckets on the right, all that is left to do is stir,
package, and sell.

2 Linear Programming 40

Figure 2.2.2

This figure not only demonstrates the actual process, but it also allows us to see
how the variables in blending problems are to be defined. What we need to know
in any specific blending problem is how many “scoops” of each raw material goes
into each of the “Product” buckets. In more general terms, we define xij as the
quantity of raw material i that goes into product j.

As a numerical example, suppose that we are to blend two table wines from the
Moselle region in Germany. The two blends are the Filzener Hexenhammer and
the Leiwener Hosenscheisser. Both products are blends of wines from three
grapes, viz., Riesling, Müller-Thurgau, and Silvaner. The original wines are available
in quantities of 10,000, 5,000, and 6,000 gallons at a cost of $8, $6, and $5 per
gallon. The estimated demands for the two blends are 7,000 and 8,000 gallons and
the estimated sales prices are $16 and $18 per gallon.

The rules that have to be followed when blending the two wines are summarized
in Table 2.2.15. The meaning of these figures is best explaind by some of the
numbers. For instance, the interval [.45; .55] in the Riesling row and the Filzener
Hexenhammer column of the table indicates that at least 45% and at most 55% of
the Filzener Hexenhammer blend must be Riesling. Note that the Silvaner content
of the Hexenhammer must be exactly 35%. It is also noteworthy that while the
ranges for the Hexenhammer blend are quite tight (which usually indicates a well-
controlled and high-quality product), the ranges for the Hosenscheisser are very
wide, clearly indicating a cheap product that consists of, loosely speaking, more or
less whatever happens to be available.

2.2 Applications of Linear Programming 41

Table 2.2.15: Blending rules for the wines

 Blends

Basic wines

 Filzener Leiwener
Hexenhammer Hosenscheisser

Riesling
Müller-Thurgau
Silvaner

[.45; .55] [.20; .50]
[.10; .15] [.10; .60]
[.35; .35] [.30; .40]

As discussed above, we need six variables in this example. They are x11 (the quantity
of Riesling in the Hexenhammer), x12 (the quantity of Riesling in the Hosenscheisser),
x21 (the quantity of Müller-Thurgau in the Hexenhammer), and x22, x31, and x32
which are defined analogously. Before formulating the objective, it is beneficial to
first determine the quantities of the basic wines that are used in the blending process
and the quantities of the blends that are made in the process. For the time being, let
us assume that there are no losses in the process (e.g., spillage or thirsty employees).

Consider the basic wines and their uses first. Each of those wines is either put into
the Hexenhammer or the Hosenscheisser blend—that is all we can do with them in
this context. Thus the quantity of Riesling that we use is x11 + x12, the quantity of
Müller-Thurgau used in the process is x21 + x22, and the quantity of Silvaner that
is used is x31 + x32. Similarly we determine the quantities of the blends that are
produced. The quantity of each blend that is made in the process is nothing but
the sum of its ingredients. In our example, the quantity of Hexenhammer that we
blend equals x11 + x21 + x31, and the quantity of Hosenscheisser we make is x12 +
x22 +x32. The objective function is then to maximize profit, which, in turn equals
the difference between revenues from the two blends and the costs of the three
basic wines. It is shown as relation (1) below.

As far as constraints go, we have three different types of constraints. First there
are the supply constraints that require not to use more of the basic wines than we
can get, secondly there are the demand constraints that state that we have to make
at least as many gallons of the blends as our customers are estimated to demand,
and thirdly and finally, there are the blending constraints.

Since the quantities of the ingredients (the basic wines) and the products (the
blends) have already been determined above, the first two types of constraints are
easy to formulate. They are shown as constraints (2) and (3) in the formulation
below. The blending constraints (4) are formulated as follows. Consider the content
of Riesling in Hexenhammer. One of the blending constraints will state that the
quantity of Riesling in Hexenhammer (which is x11) must be at least 45% of the
total quantity of Hexenhammer, which has already been determined as x11 + x21 +
x31. In other words, we can write x11 ≥ .45(x11 + x21 + x31). This is the lower bound
of this combination of basic wine and blend. The upper bound is formulated in
similar fashion as x11 ≤ .55(x11 + x21 + x31). This is repeated for all combinations of
basic wines and blends. The complete formulation is then

2 Linear Programming 42

Max z = [16(x11 + x21 + x31) + 18(x12 + x22 + x32)]
 − [8(x11 + x12) + 6(x21 + x22) + 5(x31 + x32)] (1)

000,6
000,5
000,10s.t.

3231

2221

1211

≤+
≤+
≤+

xx
xx
xx

 (2)

000,8
000,7

322212

312111

≥++
≥++

xxx
xxx

 (3)

 x11 ≥ .45(x11 + x21 + x31)
 x21 ≥ .1(x11 + x21 + x31)
 x31 ≥ .35(x11 + x21 + x31)

 x12 ≥ .2(x12 + x22 + x32)
 x22 ≥ .1(x12 + x22 + x32)
 x32 ≥ .3(x12 + x22 + x32)

)(4.
)(6.
)(5.

)(35.
)(15.
)(55.

32221232

32221222

32221212

31211131

31211121

31211111

xxxx
xxxx
xxxx

xxxx
xxxx
xxxx

++≤
++≤
++≤

++≤
++≤
++≤

 (4)

 x11, x12, x21, x22, x31, x32 ≥ 0.

The optimal solution of the problem uses 3,850 gallons of Riesling, 700 gallons of
Müller-Thurgau, and 2,450 gallons of Silvaner in the Hexenhammer, so that a
total of 7,000 gallons of that blend are made. Note that this is exactly the quantity
that is desired. Similarly, we use 3,983.33 gallons of Riesling, 4,300 gallons of
Müller-Thurgau, and 3,550 gallons of Silvaner in the Hosenscheisser blend, making
it a total of 11,833.33 gallons of that blend. This is considerably more than the
minimum of 8,000 gallons that were required. Also note that in the process we use
a total of 7,833.33 gallons of Riesling (with 2,166.67 gallons left over), we use all
of the 5,000 gallons of Müller-Thurgau and all of the 6,000 gallons of Silvaner
that are available to us. The overall profit is $202,333.33.

It is easy to add other relevant constraints. Suppose that we need to control
the alcoholic content of the blends as well. For that purpose, assume that the
Riesling has an alcohol content of 8%, Müller-Thurgau has 7.5%, and Silvaner

2.2 Applications of Linear Programming 43

has 6%, and it is desired that the Hexenhammer has at least 7.3% alcohol content.
Note that the present solution contains .08(3,850) + .075(700) + .06(2,450) =
507.5 gallons of alcohol. Given that we are making 7,000 gallons of the blend, this
means that the present alcohol content of Hexenhammer is 507.5/7,000 = 7.25%,
which is not sufficient. The constraint requiring at least 7.3% can be written
as .08x11 + .075x21 + .06x31 ≥ .073(x11 + x21 + x31). The new optimal solution does
not change the quantity or composition of Hosenscheisser, but dramatically changes
the composition of Hexenhammer. It now contains 5,916.67 gallons Riesling,
2,366.67 gallons of Müller-Thurgau, and 3,350 gallons of Silvaner. The profit has
decreased to $198,466.7, roughly a 2% decrease.

2.2.7 Transportation and Assignment Problems

Transportation problems have been introduced into the discussion by Hitchcock
in 1941, thus predating the advent of linear programming by half a dozen years. It
must be understood that there is not a single model that encompasses all, or even
most, transportation scenarios. What we call “the” transportation problem in this
context is a very simple prototype that exhibits some basic structures that are
typically inherent in transportation problems. The structure has three essential
components. On the one hand, there are origins, where certain quantities of a
single homogeneous good are available (so that one unit of the good is exactly the
same, regardless from which origin it is taken). We can think of the origins as
warehouses at which goods are stored. For simplicity, we will use the terms
warehouse and origin interchangeably. Given that there is a total of m origins, we
assume that there is a known supply of si at origin i.

The second set of components are the destinations. This is where certain quantities
of the good are needed. We will refer to them as either destinations or customers.
We assume that there are n destinations, and suppose that there is a known
demand for our product at a magnitude of dj at destination j. So far, we have
existing goods on one side, and the need for goods (or, equivalently, existing
demand, on the other. The task is now to ship the existing goods from the origins
to the destinations, so as to respect the existing quantities at the origins, satisfy the
demand at the destinations, and organize the shipments as efficiently as possible.
As a matter of fact, we can visualize the structure of the problem by considering
the graph used in our discussion of blending problems (Figure 2.2.2). Rather than
input factors on the left and blended products on the right, we have origins and
destinations, and instead of taking a number of ladles full of raw materials and
put them into a bucket for a blended product, we ship a number of units from
a warehouse to a customer. The visuals and the story are very different, but the
mathematical structure is the same.

When requiring efficiency of the shipments, we will need a criterion by which to
measure efficiency. As usual, we will employ a monetary criterion. Here, an obvious
choice are the costs of transportation. In order to introduce cost components, we
assume that there is a cost of cij to ship a single unit of the good from origin i to

2 Linear Programming 44

destination j. Fixed unit cost of transportation mean a linear transportation cost
function, as one unit shipped from i to j costs cij, two units costs 2cij, and so forth.
The assumption of linearity of the cost function is crucial to our model. Assume that
we are shipping pallets of bottles from regional distribution centers to supermarkets.
Suppose now that the capacity of a truck is forty pallets. Then the transportation
cost for one pallet is one trip, the costs for two pallets are one trip (except for the
cost of loading and unloading the same as the cost for a single pallet), the costs for
three pallets are still mainly the costs of a single trip, etc. In other words, its costs
about the same to ship one pallet or up to forty pallets. Shipping pallet number 41,
though, requires a second trip, causing the costs to jump to the equivalent of two
trips. The result is a step function with break points at the truck capacities. One
way to “restore” the linearity assumption in this model is to measure the number
of units shipped in terms of truckloads. Disregarding the differences in loading
and unloading costs for different numbers of pallets, the cost function is now
linear. It is very important to note that the transportation network in this basic
problem allows only direct transportation from an origin to a destination. It is not
permitted to first ship from one origin to another to consolidate the load, to use
round trips (similar to multi-stop shopping), or similar non-direct routes.

Before formulating a small example, it is necessary to distinguish between balanced
and unbalanced transportation problems. A transportation is called balanced, if the
sum of all supplies equals the sum of all demands. In balanced transportation
problems, it will be possible to empty all the warehouses and satisfy all demands
of our customers. In unbalanced transportation problems, we either have more
units than customers want (the total supply exceeds the total demand), or we need
more units than we have (the total demand exceeds the total supply). In the former
case we will be able to satisfy all demand, but some units will be left over, while
in the latter case, we will empty all the warehouses, but some demand will remain
unsatisfied. We will discuss the balanced case first, and then offer modifications
that deal with unbalanced problems.

Consider a transportation problem with two origins and three destinations. The
supplies at the origins are 30 and 20 units, respectively, while at the destinations,
there are demands of 15, 25, and 10, respectively. Clearly, the total supply and the
total demand both equal 50, making the problem balanced. The unit transportation
costs are shown in the matrix C below, where an element in row i and column j
shows the value cij. For instance, shipping one unit from origin 1 to destination 3
costs $4.

 C = ⎥
⎦

⎤
⎢
⎣

⎡
532
471

The three types of parameters—the supplies, the demands, and the unit transportation
costs—completely describe the transportation problem. The model will minimize the
total transportation costs, while ensuring that supplies and demands are respected.

2.2 Applications of Linear Programming 45

In order to formulate the problem, we define decision variables xij that denote the
quantity that is shipped (directly) from origin i to destination j. The objective function
is then composed as follows. First of all, we compute the total transportation costs
along each origin – destination connection. As an example, in our numerical
illustration the link between origin 2 and destination 1 carries unit transportation
costs of $2 and the quantity we ship on that link is x21, making the total
transportation cost on that connection 2x21. Adding such expressions on all links
results in the overall total cost, which are then to be minimized in the objective
function of the model as shown below.

Next, consider the constraints of the problem. Generally speaking, there will be
two sets of constraints: the first set ensures (for balanced problems such as this
example) that the flow of goods out of each origin equals exactly the quantity that
is available at that origin. The second set of constraints requires that the flow of
goods that is received at a customer site equals the demand of that customer. As
an example for the first set of constraints, consider the second origin. From this
origin, goods can be shipped (directly) to destination 1 (the quantity shipped on
this link is x21), to destination 2 (the quantity is x22), and to destination 3 (with a
quantity of x23). Consequently, the total quantity shipped out of origin 2 is x21 + x22
+ x23 which is supposed to equal 20 units, the quantity available at origin 2. The
remaining supply constraints are formulated similarly.

We are now able to formulate the demand constraints. As a numerical example,
consider customer (or destination) 3. The goods that the customer receives either
come from origin 1 (a quantity of x13) and from origin 2 (a quantity of x23). As a
result the total quantity received at destination 3 is x13 + x23, which should equal
the demand of 10 at that point. Again, the other demand constraints are formulated
in similar fashion. The complete formulation is then as follows:

 P: Min z = 1x11 + 7x12 + 4x13 + 2x21 + 3x22 + 5x23

 s.t. x11 + x12 + x13 = 30
 x21 + x22 + x23 = 20

 x11 + x21 = 15
 x12 + x22 = 25
 x13 + x23 = 10

 x11, x12, x13, x21, x22, x23 ≥ 0.

The problem above is written in a way that makes the underlying structure clearly
visible. It is apparent that each variable appears exactly twice in the constraints,
once in a supply constraint and once in a demand constraint. The structure is very
special and it ensures that as long as all supplies and demands are integer, there
will exist at least one optimal solution to the problem that is also integer. The
special structure of the problem has given rise to specialized solution techniques,

2 Linear Programming 46

power, their importance has diminished, so that we have chosen not to include
them in this book, but instead include them on the website associated with this
book. Another feature of the problem should be mentioned, even though we will
not exploit it here. Given m origins and n destinations, the problem will have mn
variables and (m + n) constraints. However, one constraint is redundant (more
specifically: linearly dependent). This can be seen in the above formulation by
adding all supply constraints and then subtracting the first two demand constraints.

constraints to be considered. This number features prominently in the aforementioned
special solution methods.

The optimal solution to our example can be shown in the following transportation
plan T. In row i and column j, it shows the optimal value of the variable xij.

T = ⎥
⎦

⎤
⎢
⎣

⎡
0200

10515
.

In other words, we ship 15 units from origin 1 to destination 1, 5 units from origin
1 to destination 2, 10 units from origin 1 to destination 3, and all 20 units that are
available at origin 2 directly to destination 2. It is easy to ascertain (by multiplying
the elements of T with the corresponding elements of C and adding them up) that
the total transportation cost at optimum is z = 150. It is also worth mentioning
that each nondegenerate solution to a transportation problem has exactly (m+n−1)
variables at a strictly positive level. In case of degeneracy, there may be fewer
positive variables.

As far as extensions go, we will first look into unbalanced problems. First of all,
given any unbalanced problem, we can no longer formulate the problem with all
equations, as total supply and demand are no longer equal. In case of the total
supply exceeding the total demand, we will not distribute the entire supply to our
customers, so that some supply will be left over. This means that we can formulate
the demand constraints as equations as we have in a balanced problem, while
we write the supply constraints as less-or-equal-than constraints. That way, the
customer demand is satisfied everywhere, while some units are left over in one or
more of the origins. In the above example, let the supplies be 30 and 23 rather
than 30 and 20. The optimal solution ships 27 units out of origin 1 and 23 out of
origin 2, leaving three units unassigned at origin 1.

The case, in which the total supply falls short of the total demand is dealt with
similarly. Here, we will not be able to satisfy the entire demand, but in order to
come as close as possible of doing so, we will use our entire supply. This means
that we formulate the supply constraints as equations, while the demand constraints
will be written as less-than-or-equal constraints. In that way, the total supply is
shipped to customers, which will still leave some unsatisfied demand at one or

The result will be the third demand constraint. As a result, we will have (m+n−1)

such as the MODI (MOdified DIstribution) method. With increasing computational

2.2 Applications of Linear Programming 47

more customers. In the above original example, suppose that the demands are now
15, 25, and 12, respectively, rather than 15, 25, and 10. The optimal solution ships
15 units to destination 1, 23 units to destination 2, and 12 units to destination 3, so
that customer 2 will be left with an unsatisfied demand of 2 units. Extensions of
the basic model may include penalties for unsatisfied customers (loss of goodwill)
and units left over in a warehouse (inventory costs).

Two interesting extensions are called reshipments and overshipments. Both
modifications are some type of sensitivity analysis, in that we change some of the
existing assumptions. In the case of reshipments, we use the same transportation
network, but allow transportation on routes that are not direct. In other words, a
reshipment would be given if we were not to send a unit from, say, origin 1 to
destination 1 directly, but ship it from origin 1 to destination 3 (or some other
destination) first, then back to, say, origin 2, and from there on to destination 1.
Clearly, in order to use reshipments (or back-and-forth shipments), it must be
advantageous to do so. Consider again our example above. At optimum, we ship
five units from origin 1 to destination 2. To ship a single unit on that route, it costs
$7. Instead, we could ship up to five units from origin 1 to destination 1 for $1,
back to origin 2 for an additional $2, and from there to destination 2 for an
additional $3. Hence, it costs $6 to ship a single unit on this somewhat circuitous
route, $1 less than on the direct connection. Reshipping five units this way will
save 5(1) = $5 for a total transportation costs of $145. While reshipping may use
routes that go back and forth multiple times, it is unlikely that such routes will
exist in practice. The mathematical formulations of reshipments uses absolute
values of variables, as the value of a variable such as xij = −5 indicates that five
units are shipped back from destination j to origin i. This is not really problematic,
but it makes the formulation somewhat more unwieldy.

Overshipments are another way of improving on the optimal solution to the basic
problem by changing the assumptions somewhat. The idea is to allow additional
flow through the transportation network, which, paradoxically, may actually reduce
costs. Again, in our example consider the possibility to add one unit of supply to
origin 2 (for a total of 21), and one unit of demand to destination 1 (for a total of
16). The optimal solution to that problem will move 51, rather than 50, units
through the transportation network at a cost of 147, a decrease of $3 from the
original solution. Such a decrease is possible in this example, because we now
ship one additional unit on the link from origin 1 to destination 1 (costing an
additional $1), and on the connection from origin 2 to destination 2 (costing an
extra $3), but we can now transport one less unit on the expensive link from origin
1 to destination 2 (which saves $7). This explains the net savings of +1 + 3 − 7 =
−$3. While reshipments were easy to implement (just modify the plan of what is
shipped where), overshipments are considerably more difficult to apply. In order
to benefit from overshipments, we need additional units at the right origin, and
we have to convince at least one customer to accept more units than originally
demanded.

2 Linear Programming 48

Other extensions of the basic problem have been discussed as well. One such
extension includes capacities applied to the transportation links. Another, quite
natural, modification includes not only direct shipments as used here, but allows
transshipment points, at which the goods may be unloaded, temporarily stored,
and reloaded onto other trucks. In some practical applications, such transshipment
points do not just allow the consolidation of the loads, but also permit changing
transportation modes, e.g., from truck to rail. Capacity constraints on the
transportation points are a further natural feature to be included in a model. While
some of these extensions may be incorporated in network models (see Chapter 5
of this volume), planners will generally resort to standard linear programming
formulations to include all the desired features in the model.

A variety of other applications of “transportation problems” exist, some having
absolutely nothing to do with shipping units from one place to another. One such
example are the dynamic production – inventory models in Section 2.2.5. Here,
the “origins” represent the periods of productions, while the “destinations” are the
periods of consumption (or demand). A link from origin i to destination j exists, if
i ≤ j. The constraints then require that the outflows of the origins do not exceed the
production capacities, while the inflows of the destinations must be at least as
large as the known demand. Other applications assign groups of workers to shifts,
or differently equipped military units to potential targets.

While transportation problems have a specialized structure, assignment problems
are even more specialized. Consider a set of n employees that are to be assigned to
n tasks. We can use no more than 100% of an employee time in the allocation, and
to each task we must assign 100% of one or more employees’ time. Each allocation
bears a certain cost. As an example consider typists who, quite naturally, have
different abilities. Suppose that one of the tasks involves technical typing. In
order to perform the task, some typists may already know how to do it and can
perform the type of task quite efficiently (meaning that there will be low costs of
assigning this employee to the task), while other typists may have to be retrained,
necessitating higher assignment costs. The problem is then to assign employees’
time to tasks, so as to minimize the overall assignment costs.

In order to formulate the problem, we again first define the appropriate variables.
Here, we define xij as the percentage of worker i’s time that is assigned to task j.
In order to explain the way the model is formulated, suppose that we have
three employees and three tasks. The assignment costs are shown in the cost
matrix

 C =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

262
358
134

.

2.2 Applications of Linear Programming 49

If, for instance, we will use 20% of employee 1’s time for task 2, then the costs
are .2(3) = .6. The objective function will then minimize the sum of all assignment
costs.

As far as the constraints of the model go, we have one set of constraints that
specify that the sum of proportions of an employee’s time must add up to 100%.
Similarly, the sum of proportions of employees’ time devoted to any one task
must also add up to 100%. Given this structure, the problem can then be
formulated as follows.

 P: Min z = 4x11 + 3x12 + 1x13 + 8x21 + 5x22 + 3x23 + 2x31 + 6x32 + 2x33

 s.t. x11 + x12 + x13 = 1
 x21 + x22 + x23 = 1
 x31 + x32 + x33 = 1

 x11 + x21 + x31 = 1
 x12 + x22 + x32 = 1
 x13 + x23 + x33 = 1

 x11, x12, x13, x21, x22, x23, x31, x32, x33 ≥ 0.

It becomes apparent that the assignment is a very close relative of the
transportation problem discussed above. More specifically, since the constraints
and the objective are exactly the same, we can view assignment problems as
transportation problems with all supplies and demands equal to one. Given that,
there will be at least one optimal solution to the problem that has all variables
integer. It follows that at least one optimal solution has all variables either equal to
zero or equal to one. In many publications, the variables are assumed to be one
from the start, but this feature is really not an assumption of the general problem,
but a consequence of the structure of the problem. It does, however, provide for an
easier statement of the problem: the variables indicate whether or not an employee
is assigned to a task (they equal one if he is and zero if not), and the constraints
state that each employee is assigned to exactly one task, and each task is performed
by exactly one employee.

Similar to the transportation problem, specialized algorithms were developed for
the assignment problem. Of particular mention is the “Hungarian Method,” a
technique based upon a combinatorial theorem by the Hungarian mathematician
Egerváry. Again, its importance as a solution method has diminished and we will
not discuss it here, but relegate it to the website associated with this book.

Assignment problems have a number of applications, some not obviously related
to assignments. The earliest story reported by G.B. Dantzig in his 1963 book on
linear programming refers to it as the “marriage problem.” The story is that a
father has a number of daughters whom he wants to marry off. (It would work the

2 Linear Programming 50

same way with sons, in case this is desired). There are a number of prospects for
the matching, but each particular match requires a certain amount of dowry based
on the (in-)compatibility of the couple. The thrifty father’s overall objective to
minimize the total amount of dowry he will have to pay.

The marriage story in its original form does not appear to be among the prime
applications of assignment problems, though. Instead, decision makers may
attempt to match items such as sports teams with the objective of maximizing the
audience’s appeal (and with it revenue, as appealing games—those with long-
standing rivalries or those among teams with close standings—tend to attract
larger crowds.)

There are some well-known and well-documented extensions to assignment
problems, such as generalized assignment problems and quadratic assignment
problems. Both types of extensions are not only very difficult from a computational
point of view, but also beyond the scope of this volume.

Exercises
Problem 1 (production planning): Solve a variant of the standard production
planning problem. Three products P1, P2, and P3 are manufactured on two
machines M1 and M2. Each of the products must be processed on both machines in
arbitrary order. The unit profits of the products are $18, $12, and $6, respectively,
and the machine capacities are 24 and 16 hours per planning period. Table 2.2.16
indicates how many units of the products can be made each hour.

Table 2.2.16: Hourly production capabilities of the two machines

 P1 P2 P3
M1 3 5 10
M2 6 4 12

In addition, it is required that at least ten units of the second product are made.
Formulate a profit-maximizing linear programming problem.

Solution: Defining x1, x2, and x3 as the quantities of the products to be made, the
objective function below is formulated as usual. However, before we formulate
the constraints, we have to adjust the units. The entries in Table 2.2.16 are
expressed in terms of quantity units per hour. Multiplying them by the variables as
usual would result in the meaningless units (quantity units)2 per hour. Instead, we
need to convert the entries in the table to hours per quantity units or, more
conveniently, minutes per quantity unit. Multiplying by the variables (measured in
quantity units), we obtain minutes used in the production, which can then be
related to the capacities. The formulation can then be written as follows.

51

 Max z = 18x1 + 12x2 + 6x3
 s.t. 20x1 + 12x2 + 6x3 ≤ 1,440
 10x1 + 15x2 + 5x3 ≤ 960
 x2 ≥ 10
 x1, x2, x3 ≥ 0.

Incidentally, the optimal solution prescribes that 43.5, 10, and 75 units of the
respective products are made for a total profit of $1,353.

Problem 2 (allocation of time to courses): A student is planning the coming
semester. In particular, he is attempting to allocate the weekly number of hours of
study to the individual courses he is taking. Each hour of study will increase his
mark by a certain quantity (starting at zero). Table 2.2.17 shows the marginal
improvements of the marks given each hour of study (per week) as well as the
marks required for passing the course.

 Marketing Organizational

Behavior
Accounting Operations

Research
Finance

Marginal
improvement
of mark

5

4.5

5.5

3.5

5.5

Marks
required for
passing the
course

50

55

60

50

50

For example, if our student were to allocate 15 hours (per week) to marketing,
then his final mark is expected to be 15(5) = 75, which means passing the course.

The student’s objective is to minimize the total number of hours studied. In
addition, the following constraints have been identified:

• A passing grade should be achieved in each course.
• Obtain an average grade of at least 64.
• Suppose that the student has the option to flip hamburgers at McDonalds in

his spare time. This job pays $10 per hour. Assuming that the student has a
total of 80 hours available for study and flipping, formulate that our student
makes at least $100 per week.

• The number of hours allocated to operations research should be at least 20
percent of the number of hours allocated to the other four subjects combined.

Solution: Given that time is the scarce resource, we define xj as the number of
hours allocated to studying the j-th subject, j = 1, …, 5. The objective as well as
the individual and overall passing requirements and the need to spend at least 20%
of his studies on operations research are formulated in a straightforward fashion.

Exercises

Table 2.2.17: Input data for Problem 2

2 Linear Programming 52

The need to make at least $100 in the hamburger shop is formulated by first
determining the hours used for hamburger flipping, which is the number of hours
available overall (here 80) minus the hours used for studying (the sum of
variables). These hours are then multiplied by the hourly wage of $10, which is
then the amount of money made. This amount is then required to be at least $100.
Another important—and frequently forgotten—part of this type of problem is the
inclusion of constraints that limit the grades to 100. As a matter of fact, if these
constraints were omitted, our student would aim for passing grades in most
courses and allocate a large number of hours to one course, in which good marks
are easy to obtain, so that he receives in excess of 100 marks. Clearly, this is not
possible, making the additional limitations necessary.

 P: Min z = x1 + x2 + x3 + x4 + x5

 s.t. 5x1 ≥ 50
 4.5x2 ≥ 55
 5.5x3 ≥ 60
 3.5x4 ≥ 50
 5.5x5 ≥ 50

 5x1 ≤ 100
 4.5x2 ≤ 100
 5.5x3 ≤ 100
 3.5x4 ≤ 100
 5.5x5 ≤ 100

 5x1 + 4.5x2 + 5.5x3 + 3.5x4 + 5.5x5 ≥ 5(64)
 10[80 − (x1 + x2 + x3 + x4 + x5)] ≥ 100
 x4 ≥ .2(x1 + x2 + x3 + x5)
 1 2 3 4 5

If the problem were solved, we find that the student studies a total of about 66½
hours and obtains minimum passing grades in Marketing, Organizational Behavior,
and Operations Research, while he can expect 63.63 marks in Accounting (slightly
better than the passing requirement of 60), and a 65 marks in Finance,
significantly better than the required 50 marks.

Problem 3 (reformulation of the dynamic production-inventory problem):
Formulate the problem in Section 2.2.5 with inventory variables that are defined at
the end of the period.

Solution: Define now I0, I1, I2, I3, and I4 as the inventory levels at the end of
periods 0 (the beginning of the planning period), 1, 2, 3, and 4. We can then use
the same formulation provided in Section 2.2.5, except that we need to replace It
by It−1 for t = 1, 2, 3, and 4. Doing so results in the formulation

 x , x , x , x , x ≥ 0.

53

 P: Min z = 1x1 + 1.1x2 + 1.2x3 + 1.25x4 + .05I1 + .15I2 + .15I3

 s.t. x1 ≤ 120
 x2 ≤ 140
 x3 ≤ 150
 x4 ≤ 140
 I1 = I0 +x1 − 80 (or, as I0 = 20, x1 − I1 = 60)
 −I2 + I1 + x2 = 70
 −I3 + I2 + x3 = 130
 −I4 + I3 + x4 = 150 (or, as I4 = 0, x4 + I3 = 150)
 x1, x2, x3, x4, I1, I2, I3 ≥ 0.

Using an interpretation that reflects the inventory variables as defined here, the
solution is again the same as before.

Problem 4 (a two-product production–inventory model): A firm manufactures
two products. Their production capacities for the two products, unit production
costs, and estimated demands are shown in Table 2.2.18.

 Month 1 Month 2 Month 3

 Product
A

Product
B

Product
A

Product
B

Product
A

Product
B

Production
capacity 70 40 80 30 80 10

Unit
production

cost

$3.10

$10.50

$3.20

$10.80

$3.80

$12.00

Estimated
demand dA,dB

50 30 60 10 100 40

The opening inventories of the two products are 0 and 10 units, respectively. At
the end of Month 3, we do not want any inventories left. The inventory carrying
costs are 20¢ per unit of product A and 50¢ for each unit of product B. These costs
are incurred whenever one unit of a product is carried over from one month to the
next. The total inventory levels (for both products combined) from Month 1 to
Month 2 should not exceed 40 units, while the total inventory level between
Months 2 and 3 should not exceed 50 units. Find a cost-minimizing production
plan.

Solution: The decision variables are xA1, xA2, and xA3 as the production quantities
of product A in months 1, 2, and 3, and xB1, xB2, and xB3 as the production
quantities of product B in the three months. In addition, the inventory levels at the
beginning of periods 1, 2, 3, and 4 (where the inventory level at the beginning of

Exercises

Table 2.2.18: Parameters for Problem 4

2 Linear Programming 54

period 4 equals the inventory level at the end of period 3) for the two products are
defined as IA1, IA2, IA3, and IA4, and IB1, IB2, IB3, and IB4, respectively.

The formulation of the problem is then

 P: Min z = 3.1xA1 + 3.2xA2 + 3.8xA3 + 10.5xB1 + 10.8xB2 + 12xB3
 + .2IA2 + .2IA3 + .5IB2 + .5IB3
 s.t. xA1 ≤ 70
 xA2 ≤ 80
 xA3 ≤ 80
 xB1 ≤ 40
 xB2 ≤ 30
 xB3 ≤ 10
 IA1 = 0
 IB1 = 10
 IA2 = IA1 + xA1 − 50
 IA3 = IA2 + xA2 − 60
 IA4 = IA3 + xA3 − 100
 IB2 = IB1 + xB1 − 30
 IB3 = IB2 + xB2 − 10
 IB4 = IB3 + xB3 − 40
 IA4 = 0
 IB4 = 0
 IA2 + IB2 ≤ 40
 IA3 + IB3 ≤ 50
 xA1, xA2, xA3, xB1, xB2, xB3, IA1, IA2, IA3, IA4, IB1, IB2, IB3, IB4 ≥ 0.

The optimal solution is shown in Table 2.2.19. The associated costs are $1,498.

 Month 1 Month 2 Month 3
P1 IA1 xA1 dA1

0 +50 −50
IA2 xA2 dA2
=0
 0 +80 −60

IA3 xA3 dA3
 20 + 80 −100
=20

IA4
=0

P2 IB1 xB1 dB1
10 + 30 − 30

IB2 xB2 dB2
= 10
 10 + 30 − 10

IB3 xB3 dB3
 30 + 10 − 40
=30

IB4
= 0

Problem 5 (blending of tobaccos): The buyer of a large tobacco manufacturer has
the choice of four tobacco types Virginia, Burley, Latakia, and Kentucky. Once
sufficient quantities have been purchased, they will make three blends of pipe
tobacco, viz., Sweet Smell, Brown Lung, and Black Death. The following information
is available.

Table 2.2.19: Optimal solution of Prob l em 4

55

• The four types of tobacco cost $3, $6, $5, and $2 per pound (in the order they
were mentioned).

• The final blends are sold by the 4 oz pouch, i.e. there are four pouches per
pound.

• The blends sell for $7, $9, and $12 per pouch (in the above order).
• Sweet Smell consists of 20% Virginia, 50% Burley, and 30% Latakia, Brown

Lung is blended from 40% Latakia and equal proportions of the remaining
tobaccos, and Black Death is 80% Kentucky and 20% Latakia.

• The four tobaccos are available in limited quantities. We may purchase up to 300
lbs of Virginia, 500 lbs of Burley, 100 lbs of Latakia, and 50 lbs of Kentucky.

• Our customers have placed orders for exactly 500 pouches of Sweet Smell and
400 pouches of Brown Lung. There are no firm order for the expensive Black
Death, but we expect to be able to sell between 80 and 120 pouches.

(a) Formulate a linear programming problem for the above situation. Define the

variables clearly.
(b) Assume that there is a 5% loss in the blending process. Explain the changes in

the formulation.

Solution: (a) As usual, the variables are denoted by xij and defined as the quantity
of i-th raw tobacco in j-th blend. The problem is very similar to that in Section
2.2.6. The only major difference is that the raw materials are measured in pounds,
while the products are sold by the pouch. As four pouches make a pound, we need
to convert pouches to pounds by multiplying the quantities of the products by 4.
The problem can then be formulated as:

 P: Max z = 7(x11 + x21 + x31 + x41)4 + 9(x12 + x22 + x32 + x42)4
 + 12(x13 + x23 + x33 + x43)4 − 3(x11 + x12 + x13) − 6(x21 + x22 + x23)
 − 5(x31 + x32 + x33) − 2(x41 + x42 + x43)

 s.t. x11 + x12 + x13 ≤ 300
 x21 + x22 + x23 ≤ 500
 x31 + x32 + x33 ≤ 100
 x41 + x42 + x43 ≤ 50

 4(x11 + x21 + x31 + x41) = 500
 4(x12 + x22 + x32 + x42) = 400
 4(x13 + x23 + x33 + x43) ≤ 120
 4(x13 + x23 + x33 + x43) ≥ 80

 x11 = 0.2(x11 + x21 + x31 + x41)
 x21 = 0.5(x11 + x21 + x31 + x41)
 x31 = 0.3(x11 + x21 + x31 + x41)
 x12 = 0.2(x12 + x22 + x32 + x42)
 x22 = 0.2(x12 + x22 + x32 + x42)

Exercises

2 Linear Programming 56

 x32 = 0.4(x12 + x22 + x32 + x42)
 x42 = 0.2(x12 + x22 + x32 + x42)
 x33 = 0.2(x13 + x23 + x33 + x43)
 x43 = 0.8(x13 + x23 + x33 + x43)

 x11, x12, x13, x21, x22, x23 , x31, x32, x33, x41, x42, x43 ≥ 0.

(b) Suppose that there is a 5% loss in the blending process. This can easily be
accounted for as follows. Everywhere the quantity of a product is referred to, it is
replaced by the quantity multiplied by 1 − 5% = 0,95. In this formulation, we
replace (x11 + x21 + x31 + x41) by (x11 + x21 + x31 + x41)(.95) and similar for (x12 + x22
+ x32 + x42) and (x13 + x23 + x33 + x43) in the objective function, the second set of
constraints, and the right-hand sides of the last set of constraints. It would also be
easy to include different losses for different products.

Problem 6 (blending of gasolines): Table 2.2.20 describes components in a
petroleum refinery that can be used to blend gasoline.

Component Availability

(in barrels)
Octane
number

Vapor
pressure

Cost per barrel

Naphta 30,000 85 10 $53
Hydrocrackate 45,000 79 4 $48
Reformate 20,000 101 9 $62
Alkylate 15,000 108 5 $69

The purpose is to blend two types of gasoline, Regular and Premium, so as to
minimize the overall costs required to satisfy the demand. The Regular brand
consists of Naphta, Hydrocrackate, and Reformate, while Premium consists of
Naphta, Hydrocrackate, and Alkylate. The total contracted demand for gasoline is
80,000 barrels.

•

•

blend linearly by quantity.

Alkylate along with the two products Regular and Premium, we can define the
variables xij as the quantity of raw material i in product j.

Regular: The octane number must be at least 87 and the vapor pressure cannot

Solution: Given the four “raw materials” Naphta, Hydrocrackate, Reformate, and

exceed 7.2.

exceed 6.8.

Assume that there are no losses in the blending process and that all quantities

Premium: The octane number must be at least 91 and the vapor pressure cannot

Table 2.2.20: Input data for Problem 6

57

Min z = 53(x11 + x12) + 48(x21 + x22) + 62x31 + 69x42

s.t. x11 + x12 ≤ 30,000 (availability of Naphta)
x21 + x22 ≤ 45,000 (availability Hydrocrackate)
x31 ≤ 20,000 (availability of Reformate)
x42 ≤ 15,000 (availability of Alkylate)

x11 + x12 + x21 + x22 + x31 + x42 = 80,000 (demand)

85x11 + 79x21 + 101x31 ≥ 87(x11 + x21 + x31) (octane Regular)
10x11 + 4x21 + 9x31 ≤ 7.2(x11 + x21 + x31) (vapor pressure Regular)

85x12 + 79x22 + 108x42 ≥ 91(x12 + x22 + x42) (octane Premium)
10x12 + 4x22 + 5x42 ≤ 6.8 (x12 + x22 + x42) (vapor pressure Premium)

x11, x21, x31, x12, x22, x42 ≥ 0.

Problem 7 (blending with exact requirements): A fish processing plant makes
two types of fish sticks, the Scrumptious Skipper and the Delicious Sailor. The
Skipper consists of exactly 30% pollock, 40% haddock, and 30% sole, while
the Sailor contains 30% pollock, 20% haddock, and 50% sole. A one-pound
package of the Skipper sells for $2.50, while a one-pound pack of the Sailor retails
for $3.50. There are 4,000 lbs of pollock, 3,000 lbs of haddock, and 3,000 lbs of
sole available in the plant. Formulate a profit-maximizing linear program.

Solution: The usual thought would be to define the variables xij as the quantity of
the i-th type of fish in the j-th type of fish sticks. The formulation is then

 P: Max z = 2.5(x11 + x21 + x31) + 3.5(x12 + x22 + x32)
 s.t. x11 + x12 ≤ 4,000
 x21 + x22 ≤ 3,000
 x31 + x32 ≤ 3,000
 x11 = .3(x11 + x21 + x31)
 x21 = .4(x11 + x21 + x31)
 x31 = .3(x11 + x21 + x31)
 x12 = .3(x12 + x22 + x32)
 x22 = .2(x12 + x22 + x32)
 x32 = .5(x12 + x22 + x32)
 x11, x12, x21, x22, x31, x32

While this is a correct formulation, it is too large for what it does. We could
simply formulate variables x1 and x2 as the quantities of the two fish stick
packages that we make, and formulate

Exercises

 ≥ 0.

2 Linear Programming 58

 Max z = 2.5x1 + 3.5x2
 s.t. .3x1 + .3x2 ≤ 4,000
 .4x1 + .2x2 ≤ 3,000
 .3x1 + .5x2 ≤ 3,000
 x1, x2 ≥ 0.

In both cases, we make 6,428.57 packages of the Skipper and 2,142.86 packs of
the Sailor for a profit of $23,571.43. This shorter formulation is possible as there
is a fixed relation between the number of packages of the two products and the
quantity of the fish input (e.g., the quantity of pollock in the packages of Skipper
is exactly 0.3 times the quantity of Skipper packages). This was not the case in
Problems 5 and 6.

Problem 8 (a transportation problem): Consider a school district’s problem
to assign student from different villages to central schools. Typically, with the
closing of small neighborhood schools of the “little red schoolhouse” type and
the establishment of larger centralized schools, it has become necessary to bus the
students to the schools, (as these distances would even make Abe Lincoln take the
bus). The objective is to ensure that all students must be able to take a bus, and
school capacities cannot be violated.

Suppose there are three villages with 30, 50, and 20 students each. The two
centralized schools have capacities of 70 and 60 students, respectively. The
distances between the villages and the schools are shown in the matrix C below.

 C =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2060
3040
1520

.

(a) Formulate the problem.
(b) Suppose that the buses available to the district each have a capacity of 35

students. Formulate constraints to ensure that there are no overfilled buses.
(c) In addition to the constraints under (b), it is now required that each school is

filled to at least 75% capacity.

Solution: (a) We first define variables, so that xij denotes the number of students
bused from village i to school j. The model can then be formulated as follows.

 P: Min z = 20x11 + 15x12 + 40x21 + 30x22 + 60x31 + 20x32

 s.t. x11 + x12 = 30
 x21 + x22 = 50
 x31 + x32 = 20
 x11 + x21 + x31 ≤ 70
 x12 + x22 + x32 ≤ 60
 x11, x12, x21, x22, x31, x32 ≥ 0.

59

Incidentally, the solution is summarized in the optimal transportation plan

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

200
4010
030

T .

The total mileage to bus all students to schools is 2,600, and while the second
school is filled to capacity, the first students houses only 40 students, well shy of
its capacity of 70.

(b) The most obvious way to formulate this constraint is to impose capacities on

all routes, i.e., write six additional constraints x11 ≤ 35, x12 ≤ 35, …, x32 ≤ 35.
This is, however, unnecessary, as only buses leading out of the second village
could possibly have more students than the bus capacity allows. Hence it is
sufficient to add the two constraints x21 ≤ 35 and x2 ≤ 35. The new solution
has the transportation plan

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

200
3515
525

T

requiring a total mileage of 2,625, a very minor increase from the original 2,600.

(c) Filling the schools to at least 75% of capacity requires the two schools to

house at least 70(.75) = 52.5 and 60(.75) = 45 students. Since integrality is
required and these are lower bounds on the number of students, we have to
round up the first number to 53. We then add the constraints

 x11 + x21 + x31 ≥ 53
 x12 + x22 + x32 ≥ 45

to the problem. The optimal solution is then shown in the transportation plan

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

200
2723
030

T

with an associated total mileage of 2,730.

Exercises

2 Linear Programming 60

2.3 Graphical Representation and Solution
Having discussed a variety of different applications of linear programming
problems, this section will first demonstrate how linear programming problems
can be represented graphically. We then discuss in some detail a graphical solution
method. This is followed by a discussion of a number of special cases that may
occur in the modeling and solution process, and how to react to them as an
analyst.

Throughout this chapter, we will restrict ourselves to the case of two variables
in order to accommodate easy graphing. This does, of course, mean that the
technique we describe in this section is not made for the solution of realistic
problems that typically have tens of thousands of variables. Much rather, the
purpose of this discussion is to create an understanding of what happens in the
solution of linear programming problems and what the difficulties are, regardless
of the size of the problem.

The first subsection will demonstrate how constraints and objective functions
can be graphed and how the problem can be solved graphically. Based on the
understanding of this material, Section 2.3.2 will then discuss a number of special
situations that may occur in the solution process and how to deal with the resulting
messages from the solver.

2.3.1 The Graphical Solution Method

As discussed in the introduction to linear programming, each model consists of
an objective function and a number of constraints. This subsection will first
demonstrate how to plot constraints, then show how to deal with objective functions,
and then put it all together in the graphical solution method.

Assuming that we have two variables x1 and x2, a constraint could be a linear
function such as 3x1 + 2x2 ≤ 6. In order to plot this constraint, it is easiest to first
consider the associated equation 3x1 + 2x2 = 6. It is known that the line in two
dimensions is uniquely determined by two points. In order to do so, we can simply
set either of the variables to any value we like and solve for the other variable,
resulting in one of the required points. Repeating this step with a different value
will result in a second point. The straight line that leads through both of these
points is then the set of all points that satisfy the equation.

In our example, setting x1 = 0 leads to 2x2 = 6 or x2 = 3, so that the first point is
(x1, x2) = (0, 3). The second point can be obtained by setting x2 = 0, which leads
directly to 3x1 = 6, or, equivalently, x1 = 2. As a result, our second point is
(x1, x2) = (2, 0). The straight line in Figure 2.3.1 is the set of points that satisfy
3x1 + 2x2 = 6.

2.3 Graphical Representation and Solution 61

Figure 2.3.1

So far, we have determined that an equation is represented in two dimensions as a
straight line. (Note that in a single dimension an equation is just a point). In three
dimensions, an equation would be represented by a plane, so that in general, we
speak about an equation in any number of dimensions being represented by a
hyperplane.

Back in our two-dimensional example, recall that the constraint in question is the
inequality 3x1 + 2x2 ≤ 6, so that not only the set of points on the line are addresses.
As a matter of fact, a ≤ or ≥ inequality will refer to the set of points on the line and
all points in one of the two halfplanes generated by the line. The obvious question
is then which of the two halfplanes is addressed by the constraint in question.
Some people might believe that the halfplanes that belong to ≤ inequalities are
below the line, while those of ≥ are above the line. This is not true, as each ≤
inequality can be rewritten as an equivalent ≥ inequality. In our example, the
constraint 3x1 + 2x2 ≤ 6 is equivalent to its counterpart −3x1 − 2x2 ≥ −6. Both
constraints define exactly the same set of points.

A simple way to determine the proper halfplane is to choose any point that is not
located on the line we have plotted and determine whether or not it satisfies the
constraint in question. If so, then the point is located on the proper side of the line,
otherwise the halfplane is on the other side. In our example, consider, for instance,
the origin as a point. Its coordinates are (0, 0), so that the constraint 3x1 + 2x2 ≤ 6
reduces to 0 ≤ 6, which is correct. This means that the origin is on the “correct”
side of the line, which allows us to determine the halfplane as being on the lower
left side of the line. Had we chosen the point, say, (4, 2) instead, our constraint
would have been 3(4) + 2(2) ≤ 6 or 16 ≤ 6, which is wrong, meaning that the point

2 Linear Programming 62

(4, 2) is located on the “wrong” side of the line. As a matter of fact, the set of
points on the line and in the halfplane to the upper right of the line is determined
by the constraint 3x1 + 2x2 ≥ 6. Figure 2.3.1 shows both the hyperplane and both
halfplanes for all three types of constraints allowed in linear programming: =, ≤,
and ≥.

Given that an equation is represented by a straight line in two and a plane in three
dimensions, an inequality is represented by a halfplane in two dimensions and half
the space in three dimensions (the separating line is given by the associated
equation and the other half of the space is defined by the same inequality but with
inverted inequality sign). This has led to the term halfspace that, in contrast to

an inequality of the ≤ or ≥ type in any number of dimensions.

At this point, we are able to plot the hyperplane or halfspace for each constraint in

satisfies all of the given constraints. This is not really a restriction, as if we do not
want a constraint to be satisfied, why include it in the problem in the first place?
Given that all constraints must be satisfied, the feasible set is then the intersection

problem.

 P: Max z = 2x1 + 3x2
 s.t. x1 + 4x2 ≤ 12 (I)
 2x1 − x2 ≥ −2 (II)
 5x1 + 3x2 ≤ 15 (III)
 4x1 + 6x2 ≥ 6 (IV)
 x1 ≥ 0 (V)
 x2

The feasible set determined by the constraints of problem P, is shown as the
shaded area in Figure 2.3.2.

a given problem. In order to determine the feasible set (also called feasible region

halfplane, which applies only to two dimensions, applies to the representation of

or set of feasible solutions), we first need to define a solution as feasible, if it

of the halfspaces and/or hyperplanes that correspond to all constraints of the

(VI)

As a numerical illustration, consider the following numerical example.

 ≥ 0.

2.3 Graphical Representation and Solution 63

Figure 2.3.2

In our two-dimensional space, the feasible set is a linearly bounded polygon (in
general, referred to as a polytope). It consists of the boundary with its linear
segments and corner points (frequently referred to as extreme points) A, B, …, F,
as well as the interior. At each of the extreme points, at least two constraints are
satisfied as equations. These constraints are usually referred to as binding (or
tight) at this point. In our example, at point A, the constraints IV and V are
satisfied as equations, at point B, constraints II and V are satisfied as equations, at
point C, constraints I and II are satisfied as equations, and so forth.

We can then determine the exact coordinates of all extreme points by solving a
system of simultaneous linear equations. For instance, for point A, the system of
simultaneous linear equations includes all constraints satisfied as equations at this
point. Here, these are the equations based on constraints IV and V, so that the
system is

 4x1 + 6x2 = 6 and
 x1 = 0.

Replacing x1 = 0 in the first equation and solving for x2, we obtain x2 = 1, so that
the coordinates are (x1, x2) = (0, 1).

2 Linear Programming 64

Similarly, consider point C. At his point, the constraints I and II are binding, so
that we have the set of simultaneous linear equations

 x1 + 4x2 = 12
 2x1 − x2 = −2.

A system like this can be solved by any of the pertinent methods, see Appendix C

1 1 2
We then replace x1 by this expression in the second equation, so that we obtain
2(12 − 4x2) − x2 = −2. Solving this equation for x2 results in x2 = 9

26 ≈ 2.8889.
Replacing x2 by this value in x1 = 12 − 4x2 and solving for x1 results in x1 = 9

4 ≈

at that point, and their exact coordinates.

Table 2.3.1: Coordinates of extreme points of sample problem

Point Constraints
binding at point

Coordinates (x1, x2) z-value

A IV, V (0, 1) 3
B II, V (0, 2) 6
C I, II)2,(9

8
9
4 ≈ (.4444, 2.8889) 9.5556

D I, III)2,1(17
11

17
7 ≈ (1.4118, 2.6471) 10.7649

E III, VI (3, 0) 6
F IV, VI (1½, 0) 3

In n dimensions, each extreme point is determined by the intersection of n
hyperplanes, so that we have to solve a system of simultaneous linear equations in
n variables with n equations to determine the coordinates for each of these
extreme points.

Consider now the objective function. To simplify matters, we will at first ignore the
constraints and deal exclusively with the objective function and its representation,
before we combine objective function and constraints in the graphical solution
method.

For now, consider the objective function Max z = 2x1 + 5x2. Ignoring the
maximization for a moment, we have 2x1 + 5x2 = z, which is nothing but a regular
constraint with an unknown right-hand side value z. As discussed above, for any
value of z, we have an equation that can be represented by a hyperplane in the
space of variables, here the (x1, x2) space. Figure 2.3.3 shows these lines for values
of z = 5, 10, 15, and 20.

of this volume. One (albeit somewhat awkward) possibility is to use the substitution

0.4444. Table 2.3.1 shows the points, the constraints that are satisfied as equations

technique. Here, we solve the first equation for x , resulting in x = 12 − 4x .

2.3 Graphical Representation and Solution 65

Figure 2.3.3

Depending on the type of objective function under consideration, these lines are
usually referred to as iso-profit lines, iso-cost lines, or simply contour lines. Their
name derives from the fact that all points on any one of these lines have the same
value of the objective function. In other words, given the objective function under
consideration, all points on the line labeled z = 5 are considered equally good by
the decision maker. Similar, a decision maker will consider all points on the line
z = 10 as equally good―but better than those on the z = 5 line. The value of the
objective function gets better in the northeasterly direction.

It is then possible to construct a vector that points into the direction, in which the
objective function improves. This is the so-called gradient of the objective function.
Formally, a gradient is the vector of partial derivatives, but here it is sufficient to
think of it as the direction in which the solutions get better. The gradient is
constructed as follows, where we use gain our numerical example with the
objective Max z = 2x1 + 5x2. Each term of the objective function can be thought of
as the product of the step direction and the step length. Here, x1 means move to the
right, and the coefficient 2 tells us to move two steps into that direction. The next
term indicates that we should move 5 steps into the x2 direction. Starting at an
arbitrary point, we first move 2 steps into the x1 direction, followed by 5 steps into
the x2 direction. The starting point is then connected to the end point, resulting in
the gradient. Usually, we start these moves at the origin, but this is not necessary.

Observe that the gradient of the objective function is perpendicular to the iso-
profit lines. Once we have the gradient, it is not necessary to explicitly plot any of
the iso-profit lines. (In more than two dimensions, the gradient is a ray that is
orthogonal―the generalization of perpendicular to n dimensions―to the iso-profit
hyperplanes). From a practical point of view, we can plot the gradient of the
objective function and then push the perpendicular iso-profit lines as much into its
direction as possible―the farther we push, the higher the profit.

2 Linear Programming 66

Before putting it all together and describing the graphical solution technique, some
properties of the objective function are worth mentioning. Suppose that in the
above objective function each of the terms is measured in dollars. Assume now
that we have decided to measure the profit in Indian rupees instead. Suppose that
the exchange rate is 50 rupees per dollar, so that the objective function is now
Max z' = 100x1 + 250x2. Plotting this objective, we find that while the gradient is
much longer, the direction of the objective function is exactly the same. As we
will see later, such a change of currency will result in exactly the same solution as
the original objective function, only the objective value changes: z' will be 50
times the value z.

Another point of interest concerns minimization functions. What if the objective
function minimizes some costs, e.g., Min z = 3x1 + 7x2? No special procedure is
needed, as we can simply transform the minimization objective into an equivalent
maximization objective by multiplying it by a negative number, e.g., (−1). This
will result in the equivalent objective Max − z = −3x1 −7x2. As far as the gradient
of this function is concerned, it leads from the origin −3 steps into the x1 direction
(i.e., three steps to the left), followed by −7 steps into the x2 direction (i.e., 7 steps
down). Everything else remains exactly the same, the value of the objective function
improves (i.e., gets smaller in case of a minimization function) as we shift the iso-
cost lines more and more into the direction of the gradient. Figure 2.3.4 shows the
gradients for the following objective functions:

(a) Max z1 = 4x1 − 3x2
(b) Max z2 = −x1 + 3x2
(c) Min z3 = −2x1 − x2
(d) Min z4 = 2x1 + 3x2

Figure 2.3.4

2.3 Graphical Representation and Solution 67

It is worthwhile to notice that if we have one function such as z1 = 4x1 − 3x2 in the
above example, maximizing the function leads to a gradient that points into a
southeasterly direction. Minimizing the same function leads into the northwest,
diametrically opposed to the maximization of the same function.

We are now able to describe the complete graphical solution technique. After
determining the feasible set, we plot the gradient of the objective function and
move its iso-profit lines into the direction of the gradient, until we hit the last
feasible point. While there are solutions with better objective function values
beyond this point, none of them is feasible. Thus the last feasible point into the
direction of the gradient is the optimal point.

It is apparent that in this procedure, points in the interior of the feasible set cannot
be optimal; any optimal solution will be on the boundary of the feasible set. In

formally.

Theorem (Corner point theorem, Dantzig): At least one optimal solution is
located at an extreme point of the feasible set.

The graphical solution method will identify such a corner point, whose exact

this is done by way of solving a system of simultaneous linear equations. Once the
exact coordinates of the optimal solution point have been determined, all that is
left to do is to determine the quality of the solution, as measured by the objective
function. This is accomplished by replacing the variables in the objective function
by their optimal values and thus computing the z-value.

We can summarize the procedure in the following steps:

(1) Graph the constraints and determine the set of feasible solutions.
(2) Plot the gradient of the objective function.
(3) Apply the graphical solution technique that pushes iso-profit lines into the

direction of the gradient until the last feasible point is reached. This is the
optimal solution x .

(4) Determine which constraints are satisfied as equations at x =),(21 xx . Write
them as equations and solve the resulting system of simultaneous linear equations
for the exact coordinates of the optimal solution.

(5) Use the coordinates of the optimal point in the objective functions and compute
the value of the objective function.

Applying the first two steps of this procedure to the problem stated in the
beginning of this subsection, we obtain the graph in Figure 2.3.5. Pushing now
the iso-profit lines (some of which are shown) into the direction of the gradient,
we find that the last feasible point on our way into a Northeasterly direction id the
extreme point D. This is the optimal point. The constraints I and III are binding at

fact, Dantzig has proved his famous corner point theorem, which we will state here

coordinates we will have to determine next. As demonstrated earlier in this section,

2 Linear Programming 68

this point, so that we solve the system of simultaneous linear equations that
consists of relations I and III written as equations, i.e.,

 x1 + 4x2 = 12
 5x1 + 3x2 = 15.

The optimal solution is =),(21 xx)2,1(17

11
17
7 ≈ (1.4118, 2.6471), and the associated

value of the objective function is z = 17
1310 ≈ 10.7647. It can be shown that this

solution is not only optimal, but is the unique optimal solution to the problem.
Sometimes, an optimal point is found, such that at least one of its neighboring
extreme points has the same value of the objective function, and as such is also
optimal. This happens in our problem, if the same objective function were
minimized rather than maximized. In this case, we would find the points A and F
both as optimal solution points with 3=z . More about this issue can be found in
the next subsection on special cases.

Figure 2.3.5

While the graphical method as demonstrated above is an exact method (no
approximations were made in the process), its use is to explain the main concepts
and difficulties involved in solving linear programming problems. The reason is
that practical problems have not two or three, but tens of thousands of variables,
making graphing impossible. Since the graphical solution technique uses the exact

2.3 Graphical Representation and Solution 69

pictorial knowledge of the feasible set, it will be necessary to find an algebraic
technique that is independent of the graphical image. Dantzig’s simplex method is
such a tool. Rather than moving through the feasible space directly to the optimal
solution, the simplex method is an incremental technique that starts with a feasible
solution (which can be determined by some technique), improves it, tests whether
or not an optimal solution has been found, and if not, increases the solution
further. It does so by moving on the boundary of the feasible set from one extreme
point to an adjacent extreme point. The method also belongs to the class of feasible
(and improving) direction methods. This means that a step from a (feasible)
extreme point to an adjacent extreme point is only made, if the solution remains
feasible, and the value of the objective function improves in the process. A feature
of the feasible set, called convexity, guarantees that if a point is found none of
whose neighbors has a better z-value than the one we are presently at, this is an
overall (i.e., global) optimal solution.

To demonstrate a simplex path, i.e., the sequence of extreme points generated and
examined by the simplex method, consider again the example of Figure 2.3.5 and
assume that we have “somehow” determined point A as a starting point. Point A
has two neighboring extreme points F and B. Both are feasible, so that moves are
possible. However, while the move from A to B improves the value of the
objective function as B is on a higher iso-profit line, the move from A to F will
leave the value of the objective function unchanged. (This is one of the special
cases discussed in the next subsection). Since we are looking for improvements,
the simplex method will move to point B. At that point, we have again two
neighboring extreme points, viz., A and C. While a move from B to A retains
feasibility of the solution, the z-value would decrease, disallowing such move. On
the other hand, moving from B to C maintains feasibility and improves the value
of the objective function, so that the simplex method makes this move. At point C,
we have again two neighbors, which are B and D. Moving to B is not allowed, as
this would decrease the z-value. On the other hand, a move to D not only
maintains feasibility, but also increases the value of the objective function. The
neighboring extreme points at point D are C and E. Moving either way will keep
the solution feasible, but in both cases the value of the objective function will
decrease. At this point, the method terminates with the message that point D is an
optimal solution.

While examples have been constructed in which the simplex algorithm performs
very poorly, the average performance of the algorithm has been excellent. Given a
problem with m constraints, there is consensus that on average, the simplex
algorithm needs to examine only 1½m extreme points. In each step, we need to
examine an extreme point, which means we must solve a system of simultaneous
linear equations. Traditionally, computational details of this method, which is
considered to be one of the ten top algorithms of the 20th century, have been
included in texts such as this. Given the abundance of software (some of it
even free) and the fact that users do not need to know details about how the
method functions, we will not discuss the method in this book. Instead, for details

2 Linear Programming 70

interested readers are referred to Eiselt and Sandblom (2007) and the website that
accompanies this book.

Finally, we would like to address the question why, given the tremendous
computing power of today’s equipment, we do not simply enumerate all extreme
points, determine their exact coordinates and their objective values, and then
choose the one with the best objective value (meaning the highest value for
maximization and lowest value for minimization problems), which then will be
the optimal solution. Given Dantzig’s corner point theorem, the procedure is
certainly valid in that it will find an optimal solution. However, as the example
below will clearly demonstrate, it is of no practical value.

As an example consider a problem whose constraints are 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1,
and so forth for all n variables. With two variables, the feasible set is a square with
the four corner points (x1, x2) = (0, 0), (1, 0), (1, 1), and (0, 1). With three
variables, the set is a unit cube with eight corner points (x1, x2, x3) = (0, 0, 0), (0, 0, 1),
(0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), and (1, 1, 1). Continuing in this
fashion, we will have a feasible set in the shape of a hypercube with 2n extreme
points. Given a very small practical problem with only n = 100 variables, there are
2100 ≈ 1030 corner points. Given the fastest machines today that can deal with 1015
floating point operations per second (called 1 petaflop), and assuming that one such
operation can determine one extreme point (it cannot: we would need to solve a
system of simultaneous linear equation with 100 variables and 100 equations), we
would still need close to 670,000 years to solve the problem. This shows the
uselessness of enumeration techniques for linear programming problems.

2.3.2 Special Cases of Linear Programming Problems

This subsection discusses incidents that can occur when a linear programming
problem has been formulated and submitted for solution. The first two cases are
really error messages to the modeler. They require immediate intervention, as the

nature, it is good to know about them, but no user intervention is required. Below,
we will discuss each of these issues separately and illustrate it with a numerical
example.

The nonexistence of a feasible solution is related by the solver to the analyst.
Whenever that happens, this must be taken as an error message. This is also the
time for the user to intervene, as the solver is not able to act any further. The
error message indicates that constraints are too tight, meaning that there is a
contradiction among the constraints. This message is very often―but by no means
exclusively―received by inexperienced analysts, who include many constraints in
their model, some of which refer to situations they wish to happen rather than
those that must happen. It is very important to understand that constraints are
absolute, meaning that they cannot be violated.

(1) There exists no feasible solution.

solver will not be able to continue. The last three cases are of a more technical

2.3 Graphical Representation and Solution 71

As an illustration, consider the following numerical example. Since this special
case is caused exclusively by the constraints, we will not include an objective
function in our model. Suppose that the feasible set is determined by the following
set of constraints:

 P: 2x1 + 3x2 ≤ 7 (I)
 −x1 + x2 ≥ 3 (II)
 x1 ≥ 0 (III)
 x2 ≥ 0. (IV)

A graphical representation of the problem is shown in Figure 2.3.6. Clearly, there
is a contradiction between the constraints. To see this algebraically, rewrite
constraint II as x2 ≥ 3 + x1, which, as constraint III requires that x1 ≥ 0, implies that
x2 ≥ 3. Similarly, constraint I can be rewritten as 3x2 ≤ 7 − 2x1. As x1 ≥ 0 per
constraint III, this implies that 3x2 ≤ 7 or, equivalently, x2 ≤ 2⅓. This is an obvious
contradiction to the requirement that x2 ≥ 3.

Figure 2.3.6

The question often arises as to which of the constraints actually causes the
nonexistence of feasible solutions. To investigate this question, consider again the
example in Figure 2.3.6. If constraint I were to be deleted, the feasible set would
be the cone that is constructed by constraints II and III with the vertex at (0, 3). If
constraint II were to be deleted, the feasible set is the triangle with vertices at (0,
0), (3½, 0), and (0, 2⅓). If constraint III were to be deleted, the feasible set would
be the set that is determined by the halfspaces of constraints I, II, and IV which
has its vertices at the points (−.4, 2.6) and (3.5, 0). Finally, if constraint IV were to
be deleted, there would still be no feasible solution.

2 Linear Programming 72

In summary, we have seen that the deletion of any one of the constraints I, II,
and III causes infeasibility to disappear. This means that the question “which
constraint causes the infeasibility” is indeed the wrong question: it is not a single
constraint that causes infeasibility, but the incompatibility of a number of
constraints, here I, II, and III. Many solvers will not only provide the decision
maker with the “There exists no feasible solution” message, but also offer further
help. Typically, this help comes in the form of an identification of the set of
constraints that causes the infeasibility. If we were to add the constraints x1 ≥ 2
and x2 ≥ 2 to the region pictured in Figure 2.3.2 with constraints I – VI, there
would be no feasible solution, and the solver would notify the analyst that the
constraints 5x1 + 3x2 ≤ 15, x1 ≥ 2, and x2 ≥ 2 together cause the infeasibility.

The next question is then how to deal with infeasibilities should they occur. The
answer is that the planner has to decide which of the variables involved should be
“loosened up.” As an example of a budget constraint, loosening up such a “≤”
constraint would be accomplished by increasing the right-hand side value. In other
words, allowing some additional expenditures makes the problem less stringent.
Similarly, if a customer requires at least, say, 100 units, such a “≥” constraint
would be made looser by reducing this number by convincing the customer to
accept a somewhat smaller quantity. Even equations can be relaxed somewhat. As
an example, consider the equation 2x1 + 5x2 = 6, in which the left-hand side
indicates the quantity of certain critical nutrients or medicines that an individual
consumes. Any equation can be expresses as two opposing inequality constraints,
in our case as 2x1 + 5x2 ≤ 6 and 2x1 + 5x2 ≥ 6. Relaxing these two constraints
means allowing a bit less than 6 and a bit more than 6 units of that nutrient in the
diet, which can be achieved by changing the right-hand side values by some small
value. For instance, instead of the original constraints we could use 2x1 + 5x2 ≤ 6.1
and 2x1 + 5x2 ≥ 5.9, thus allowing a certain bandwidth within which there are
feasible solutions. These are so-called interval constraints that marginally increase
the size of the problem, but are much easier to deal with from a computational and
modeling point of view.

Often, however, it is not advisable to change the right-hand side value of a single
constraint, as a very significant change may be required to achieve feasibility. It is

side values. As an example, consider the example in Figure 2.3.6. Changing the

Similarly, the right-hand side value of constraint I must be increased from its

an increase of more than 28%. Alternatively, we could increase the right-hand side
value of constraint I by 14% to 8 and simultaneously reduce the right-hand side
value of constraint II by 11% down to 2.67, and obtain a feasible solution with
these smaller changes that may be easier to implement.

often much easier to make a number of smaller changes on multiple right-hand

right-hand side of constraint II alone would require us to reduce the original value

original value of 7 to at least 9 before a feasible solution can be obtained, that is

of 3 by more than 22% down to 2⅓ before a feasible solution could be obtained.

2.3 Graphical Representation and Solution 73

The existence of unbounded “optimal” solutions is, in some sense, the opposite of
nonexisting feasible solutions. This is true in the sense that in the previous case

and require tightening. Most frequently, this case occurs if some constraints
have been forgotten. Again, it is an error message that requires intervention from
the analyst.

As an illustration of this case, consider the following numerical example.

 P: Max z = 2x1 + x2
 s.t. x1 − x2 ≤ 2 (I)
 −2x1 + x2 ≤ 1 (II)
 x1, x2 ≥ 0.

Figure 2.3.7

The graphical representation of this problem is shown in Figure 2.3.7. Using
the graphical solution method, we notice that we can increase the value of the
objective function to arbitrary levels by following the direction pointed out by the
gradient of the objective function. (In case you should encounter arbitrarily high
profits in practice, remember that you learned it from us first. We are happy with
10% of infinity). Clearly, this cannot occur in practice, which is why we use the
word “optimal” in quotes. In order to resolve the issue, it helps if the analyst
asks how such arbitrarily good solutions can be obtained. For instance, in a
production problem we would determine that we make money by making and
selling products: given that machine capacities and demand are limited, profits are
limited, too. So it would benefit the modeler to investigate whether or not the
appropriate constraints have been included.

(2) Unbounded “optimal” solutions.

the constraints were too tight and had to be loosened up, they are too loose here

2 Linear Programming 74

At first glance, it appears that the reason for the existence of unbounded “optimal”
solutions is the fact that the feasible set is not bounded in one direction (in our
example, the northeast). However, if we leave the feasible set in our example
unchanged, but modified the objective function from its original Max z = 2x1 + x2
to Min z = 2x1 + x2, the graphical solution method would continue to use the same
contour lines, but the gradient of the new objective function would point into a
southwesterly direction, diametrically opposed to its previous direction. The (finite)
optimal solution is then found at the origin.

This small example illustrates that a feasible set that is unbounded in one direction
is a necessary, but not sufficient, condition for the existence of unbounded
“optimal” solutions. In addition, the gradient of the objective function must also
point “towards that opening.” Here, we will leave this imprecise wording as it is;
suffice it to mention that exact mathematical conditions for the existence of
unbounded “optimal” solutions do exist.

does not require intervention. Formally, dual degeneracy occurs if two adjacent
extreme points of the feasible set have the same value of the objective function.
An example is the problem shown in Figure 2.3.5. As already discussed in the
context of simplex paths, the point A has the same value of the objective function
as its neighboring point F. That in itself is not really noteworthy. The situation,
however, changes if dual degeneracy occurs at optimum. By definition, if we have
an optimal solution and another extreme point with the same z-value exists, that
point must also be optimal.

An example for this is again Figure 2.3.5, but with the original objective function
changed from Max z = 2x1 + 3x2 to Min z = 2x1 + 3x2. this changes the gradient of
the objective function by 180°, leaving us with the points A and F as optimal
solutions. Whenever two neighboring extreme points are optimal, all points
between them are also optimal, i.e., dual degeneracy at optimum means the
existence of alternative optimal solutions. In this example, the optimal coordinates
of the points A and F are (0, 1) and (1½, 0), respectively, both having an objective
value of z = 3. Some points on the line segment between these two points are
x = (¾, ½), (4

1
8
9 ,), and (4

3
8
3 ,). These points have an objective value of z = 3

and thus are optimal as well. However, none of them is an extreme point, and the
simplex method will not generate them.

Note that the fact that points that are not corner points of the feasible set are
optimal does not invalidate Dantzig’s corner point theorem. All the theorem states
is that at least one optimal solution is at an extreme point. This allows for the
possibility of nonextreme points being optimal, but only if there is another optimal
extreme point as well.

(3) Dual degeneracy.
This is the first of those special cases that an analyst should know about, but that

2.3 Graphical Representation and Solution 75

Redundancy is an issue that relates to individual constraints. In particular, a
constraint is said to be redundant, if it can be deleted from the set of constraints
without changing the feasible set. A more detailed definition will distinguish
between constraints that exhibit strong redundancy and those that are weakly

hyperplane shares at least one point with the feasible set, this is not the case for
strongly redundant constraints.

As an illustration, consider the following numerical example (without an objective
function, as it does not play a role in the discussion of redundancy).

 P: 3x1 + x2 ≤ 8 (I)
 x1 ≤ 2 (II)
 x1 − x2 ≤ 3 (III)
 x1 + 2x2 ≤ 6 (IV)
 x1, x2 ≥ 0.

Figure 2.3.8 depicts the feasible set of this problem.

Figure 2.3.8

Constraint III is obviously redundant as its removal does not change the shaded
area that symbolizes the feasible set. As a matter of fact, it is strongly redundant as
its bordering hyperplane does not touch the feasible set at any point. In contrast,
consider constraint I. It is also redundant (but just about so), so that its removal
likewise does not change the feasible set. However, it is only weakly redundant, as
it touches the feasible set at the point (2, 2). Had constraint I be instead 3x1 + x2 ≤
8.1, it would have been strongly redundant, had it been 3x1 + x2 ≤ 7.95, it would
not have been redundant at all, as it would have cut off the point (2, 2) and thus
shaped the feasible set.

(4) Redundancy.

redundant. While a weakly redundant constraint belongs to a constraint whose

2 Linear Programming 76

By their very definition, redundant constraints can be deleted from the problem
formulation without changing anything. The problem is that there is no easy
general way to recognize whether or not a constraint is redundant. Again, the
graphical representation is deceiving as in it, redundancy can easily be detected.
However, if all we have is a set of constraints that we cannot plot, detection of
redundancy is a different, and much more complicated, matter. As a matter of fact,
determining whether or not a constraint is redundant is as difficult as solving the
existing linear programming in the first place. And this is why we can, and pretty
much have to, ignore the issue and have the solver compute optimal solutions,
regardless whether or not redundant constraints exist in the formulation.

While the issue of primal degeneracy is of very little, if any, practical concern, it

care of, the simplex method may “cycle,” meaning that it generates the same

terms, primal degeneracy occurs in two dimensions, if more than two planes of
constraint intersect at a single point. In Figure 2.3.8, the point (2, 2) exhibits
degeneracy. As in two dimensions, the intersection of any two straight lines

as “overdetermined.” In n dimensions, primal degeneracy occurs if the hyperplanes
of more than n constraints intersect at one point. Any modern code will include a
module that deals with degeneracy, so that this is of no concern to users.

Exercises
Problem 1 (graphing constraints and objective, graphical solution method):
Consider the following linear programming problem.

Max z = x1 + x2
s.t. 5x1 + 2x2 ≤ 10 (I)
 x2 ≥ 1 (II)

1 2
 x1, x2 ≥

(a) Graph the constraints, determine the feasible set, and use the graphical solution

method to determine the optimal solution point. Which constraints are binding

value of the objective function at optimum.
(b) What if the objective were Min z = −3x1 −x2? Plot the new objective, use the

graphical solution method, determine the optimal solution point, its coordinates,
and the value of the objective function at optimum.

(c) Repeat (b) with the objective function Min z = x1 − 2x2

(5) (Primal) degeneracy.

is a very important theoretical matter. If primal degeneracy is not properly taken

point over and over again without ever reaching an optimal solution. In graphical

uniquely determines a point, we can think of points with primal degeneracy

 3x + 5x ≤ 15 (III)
 0.

at optimum? Compute the exact coordinates at optimum and calculate the

77

Figure 2.3.9

Solution:
The objective functions for (a), (b), and (c) are shown in Figure 2.3.9. The optimal
solutions are indicated by the points ba , and cx , respectively. The exact
coordinates are ax = [1.0526, 2.3684] with az = 3.4211, bx = [1.6, 1] with bz =
−5.8, and cx = [0, 3] with cz = −6. The binding constraints at the three points are
I and III, I and II, and III and the nonnegativity constraint x1 ≥ 0, respectively.

Problem 2 (graphing constraints and objective, graphical solution method):
Consider the following linear programming problem.

Max z = 3x1 + x2
s.t. 6x1 + 5x2 ≥ 30 (I)
 −x1 + 2x2 ≥ 4 (II)
 x2 ≤ 5 (III)

1 2

(a) Graph the constraints, determine the feasible set, and use the graphical solution

method to determine the optimal solution point. Which constraints are binding
at optimum? Compute the exact coordinates at optimum and calculate the value
of the objective function at optimum.

Exercises

x , x

 x , x ≥ 0.

2 Linear Programming 78

(b) Repeat (a) with the objective function Min z = x2.
(c) What happens if constraint I were of the type “≤” instead?

Figure 2.3.10
Solution:
(a) The feasible set is the shaded area in Figure 2.3.10, and the optimal solution

point is ax = [6, 5] with az = 23. Constraints II and III are binding at
optimum.

(b) The objective leads “straight down” as shown in the above figure. The optimal
solution point is bx = [2.3529, 3.1765] with the objective value bz = 3.1765.
At this point, the constraints I and II are binding.

(c) The feasible set would no longer be the shaded region but the quadrilateral
indicated by (c). Given the objective in (a), the optimal solution is again bx .

2.4 Postoptimality Analyses
This section will investigate what can be thought of as the third phase in linear
programming. In particular, it asks: “What happens, if…?” In simple words, we
will examine what happens, if there is some change in some of the components of
the linear programming problem that was formulated and solved earlier. The first
subsection will explore what it means graphically when we make the proposed
change, while the second subsection puts this knowledge to work and examines
what managerial consequences the anticipated changes will have.

2.4.1 Graphical Sensitivity Analyses

Recall that one of the main assumptions of linear programming is the deterministic
property. In other words, we assume that the structure of the problem as well as all

2.4 Postoptimality Analyses 79

with assuming that the deterministic property holds, while it actually does not. As
an example, suppose that we are facing an uncertain demand, which, as past
experience indicates, ranges from, say, 80 to 130 units. Furthermore, suppose that

demand were to increase (from 110) by 10 (to 120)?” “What if it increases by 20

can be obtained either by setting the demand to 120, 130, or any of the other
values the decision maker is interested in and actually resolving the problem, or by
gleaning the information from the printout. This information will then indicate how

are not sensitive at all, meaning that even significant changes in the original

of the solution, others are very sensitive, so that even minor changes in the input
parameters change the solution a great deal. There is nothing we can do about it,
but it is very important information to the decision maker. If it is known that a
model is very sensitive to changes, the decision maker will have to be very cautious
and monitor the process closely, obtaining additional and updated information at
many steps along the way. This is not as necessary in problems that are rather
insensitive to changes.

We distinguish between two different types of sensitivity analyses. The first type
deals with structural changes, meaning the addition and deletion of variables and
constraints. Changes of that nature are major and often dealt with by re-solving the
problem altogether. The second type of sensitivity analyses involves parameter
changes. In other words, in these cases numbers of the model change. Typically,
we deal with ceteris paribus changes, i.e., we determine what happens if one
number changes, while all other parameters remain unchanged. The advantage of
such an analysis is that it separates the different changes and analyzes their effect.
If we were to analyze simultaneous changes of a number of parameters, we would
not be able to specify what actually causes, say, the increase or decrease in the
total costs.

We will first look at the changes that may occur when we either add or delete a
variable or a constraint. The addition of variables and constraints is an issue
during the modeling process when a model is built. Furthermore, it may occur
after the problem has been solved when opportunities and requirements are added

of the parameters of the problem are assumed to be known with certainty. In virtually

temporarily fix the demand at the level of 110 and solve the problem. Once this

all realistic cases, this is a troubling assumption: prices may or may not be known

most of the time the demand is somewhere about 110 units. The idea is now to

Using postoptimality analyses can be seen as a “trick” that allows us to get away

has been done, we perform sensitivity analyses by asking: “What happens, if the

in advance, demand may be uncertain, machine capacities may change (due to
unforeseen breakdowns), employees may call in sick, thus changing the availability

sensitive the solution is to changes in the input parameters. While some problems

demand, prices, or other parameters do not result in major (or even any) changes

of manpower, and so forth. How then can we justify using linear programming at

(to 130)?” “What if it decreases by 10, 20, or 30 units?” Information of this type

all?

2 Linear Programming 80

to the problem as time passes. Similarly, it may happen that over time some
activities or possibilities no longer exist or constraints have become obsolete.
Whenever possible, we will deal with these cases on an intuitive level, which is
pretty much all that can be done short of re-solving the problem.

Consider the addition of a variable. In graphical terms, the addition of a variable
corresponds to the increase of the dimensionality of the problem. It is useful to
understand a variable as an opportunity, i.e., an additional activity that we may or
may not undertake. Having the variable allows us to choose the level at which we
engage in the activity (i.e., the value the variable assumes), while not including the
variable in the model is the same as setting its activity level or value equal to zero.
In this sense, adding a variable is the same as adding an opportunity. Doing so
allows us to increase the level of the new possible activity from a zero level to any
value within the constraints. The immediate conclusion is that the addition of a
variable can never result in a deterioration of the objective function value (a
decrease in maximization functions or an increase in minimization functions), but
possibly an improvement. Formally, defining the original problem as Porig with its
optimal objective value origz and the problem with the added variables as Paddvar
and its optimal objective value as ,addvarz we know that origz ≤ addvarz in problems
with maximization objective and origz ≤ addvarz in problems with minimization
objective. Along similar lines, if Porig has unbounded “optimal” solutions, then so
does the modified problem Paddvar. On the other hand, if the original problem Porig
has no feasible solution, the added variable may (or may not) allow Paddvar to have
feasible solutions.

There is little than can be said beyond this. Often, if variables are added in the
modeling process, it may be useful not to start solving the new problem from
scratch but to start with the previous optimal solution, which usually only requires
a few additional steps to reach the optimal solution of the new problem. However,
with the advances of optimization software, it often takes only seconds to re-solve
a problem, so that such considerations are no longer required.

The deletion of a variable can be discussed in analogous fashion. Again, let the
original problem be Porig, while the formulation without the now deleted variable
is Pdelvar. The objective function values of the two problems are defined as origz
and delvarz , respectively. Deleting a variable is now equivalent to deleting an
opportunity, or, more formally, forcing the value of a variable to zero. If the
value of the variable that is to be deleted equaled zero in Porig, then the variable
can be deleted without any change of the solution and origz = delvarz in both,
maximization and minimization problems. The main reason for this result is that
we are no longer allowing an activity that we did not engage in in the first place.
On the other hand, if the value of the variable that is to be deleted was positive in
the original problem Porig, the deletion of this variable will deprive us from a

2.4 Postoptimality Analyses 81

worthwhile activity, which lets the objective value deteriorate. In other words, we
have origz ≥ delvarz for maximization and origz ≤ delvarz for minimization problems.
It is also straightforward that if Pdelvar has unbounded “optimal” solutions, then so
does Porig, and if Porig has no feasible solution, then neither does Pdelvar.

The addition of a constraint is an issue that we can much more easily analyze,
as it allows us to visualize the situation in a graph. Again, we restrict ourselves
to small problems with only two variables, but the conclusions are valid for
any general formulation. Consider again some arbitrary original maximization
problem Porig and assume that a constraint is added, resulting in Paddcon. By
definition, adding a constraint means that the resulting problem Paddcon is more
restricted, so that its objective value origaddcon zz ≤ in maximization problems and

origaddcon zz ≥ in minimization problems. More specifically, if the new constraint
is satisfied by the optimal solution of Porig, then this solution will also be optimal
for the new problem Paddcon. (Note that this is the case if the new constraint is
either redundant or essential, but not binding at optimum). On the other hand, if
the old optimal solution violates the new constraint, then the optimal solution of
Paddcon is different from the optimal solution of Porig and the objective value will be
the same (in case of alternative optimal solutions) or be worse than before.
Furthermore, if the original problem has unbounded “optimal” solutions, then the
problem with the new constraint may or may not have bounded optimal solutions.
If the original problem has no feasible solutions, then adding a variable and
making it more constrained will not result in feasible solutions.

Finally, consider the deletion of a constraint. Again, assume that the problem
Porig has been solved, resulting in the objective value origz . The problem without
one or more of the constraints will be referred to as Pdelcon and its optimal value
of the objective function is delconz . It is apparent that the new problem Pdelcon
is less restricted than the original problem Porig, so that delconz ≥ origz holds for
maximization problems, while delconz ≤ origz holds for any minimization problem.
As in the case of constraint additions, we can distinguish between two cases:
either the constraint that is deleted was binding at optimum before it was deleted,
or it was not. In case it was binding, then it was, generally speaking, a constraint
that held back the solution and with its removal, better solutions may exist. On
the other hand, if the constraint was not binding, then it did not hold back in the
solution in the original problem, so that its removal cannot result in better
solutions. Again, if unbounded “optimal” solutions existed in Porig, then the
removal of a constraint cannot change that regardless if it is binding or not. If Porig
did not have feasible solutions, the deletion of a constraint may or may not result
in the problem Pdelcon having feasible solutions.

Next consider parameter changes. In order to classify such changes, consider the
following simple linear programming problem

2 Linear Programming 82

 P: Max z = 5x1 + 6x2
 s.t. x1 − 2x2 ≥ 2
 3x1 + 4x2 ≤ 12
 x1, x2 ≥ 0.

This model, as well as any other linear programming problem, includes three
different types of parameters. The first are the objective function coefficients
(typically denoted by c1, c2, …), which are the numbers found in the objective
function (here the numbers c1 = 5 and c2 = 6). Depending on the application, they
may be referred to as unit profits, cost coefficients, or similar names. The second
type of parameter are the right-hand side values (which we usually denote by b1,
b2, …). In our example, these are the values b1 = 2 and b2 = 12. Again, depending
on the specific applications, the right-hand side values may be referred to as
resource availabilities, demands, inventory levels, or similar names. Finally, there
are the left-hand side coefficients, which sometimes are called technological
coefficients a11, a12, …, a21, a22, … with the first subscript denoting the number of
the row or constraint and the second subscript standing for the number of the
column or variable. In our example the technological coefficients are a11 = 1,
a12 = −2, a21 = 3, and a22 = 4. Depending on the application, these values may
symbolize the processing times of a product on a machine, the content of nutrients
of a food item, the interest rate of a specific investment, or similar values. In this
book, we will investigate changes of the objective function coefficients and changes
of the right-hand side values. For changes of the left-hand side parameters, we
suggest to simply re-solve the problem.

First, consider changes of the objective function coefficients. In order to explore
what these parameter changes cause, we first look at the objective function and
ignore the constraints. To facilitate our arguments, consider the objective function
Max z = 3x1 + 2x2. The gradient of the objective is shown in Figure 2.4.1 and is
labeled (3, 2). Suppose now that we want to examine changes of c1, the value
associated with the variable x1. If this number, whose original value is “3,”
decreases to, say, “2,” the gradient tilts in a counterclockwise direction to a
position shown as (2, 2). If, on the other hand, c1 were to increase to, say, “4,”
then the gradient will tilt in a clockwise direction to the position shown as (4, 2).
If c1 were to further increase to a value of “5,” the gradient further tilts in a
clockwise direction to the position shown as (5, 2).

2.4 Postoptimality Analyses 83

Figure 2.4.1

We see that the increase of an objective function coefficient in a maximization
function symbolizes the fact that the activity that corresponds to its associated
variable has become more attractive or profitable. Thus the gradient of the
objective function is drawn more into that direction. In our example, we see that
as c1 increases from 3 to 4 and then to 5, the gradient is pulled further and further
into the x1 direction, i.e., to the right.

We note that since all the changes occur in the objective function, the feasible set
will remain unaffected by these changes. This means that if there are no feasible
solutions before the change, then there will be no feasible solutions after the
change. On the other hand, the case of unbounded “optimal” solutions is different,
as it does depend not only on the feasible set, but also on the gradient of the
objective function. As a simple example, consider the following linear programming
problem.

 P: Max 2x1 + 1x2
 s.t. x1 − x2 ≤ 2
 x1, x2 ≥ 0.

This problem is shown in Figure 2.4.2, in which the gradient of the objective
function is labeled by its coefficient as (2, 1). Clearly, there are unbounded
“optimal” solutions to the problem. However, if c2 decreases from its present
value of “1” to “−2” or even less (the gradient is shown as (2, −2)), the problem
has a unique finite optimal solution at 21 =x and 02 =x with an objective
function value of 4=z , clearly a finite value.

2 Linear Programming 84

Figure 2.4.2

We are now able to incorporate constraints in our discussion. In order to do so,
consider the following linear programming problem:

 P: Max z = 1x1 + 2x2
 s.t. x2 ≤ 3
 3x1 + 2x2 ≤ 11
 x1 − x2 ≤ 2
 x1, x2 ≥ 0.

The problem can be visualized in the graph in Figure 2.4.3.

2.4 Postoptimality Analyses 85

Figure 2.4.3

Using the graphical solution technique (or any solver), we determine that the point
B is the unique optimal solution with coordinates (x1, x2) = (1⅔, 3). Suppose now
that we want to examine the sensitivity of the solution with respect to c2, the
objective function coefficient of x2. If we were to increase the value that presently
equals 2 to some higher value, our previous discussion indicates that the gradient
of the objective function tilts in a counterclockwise direction. This does not,
however, have any effect on the solution, which stays at point B. As a matter of
fact, no finite value of c2, regardless of how large, will change the solution, which
remains at point B (meaning that the solution is very insensitive to increases of
this coefficient). Clearly, since 2x = 3 at optimum, the value of the objective
function will change as the activity that the variable x2 symbolizes becomes more
and more valuable.

Consider now a decrease of c2. Graphically, this means that the gradient of the
objective function tilts in a clockwise direction. For small changes, the optimal
solution remains at point B. However, once c2 reaches the value of ⅔, point B is
still optimal, but so is point C with coordinates (x1, x2) = (3, 1) (and all non-
extreme points on the line segment between these two points). This is clearly a
case of dual degeneracy at optimum, i.e., alternative optimal solutions. Once c2
decreases below the value of ⅔, point C is the unique optimal solution. Point C
remains optimal c2 reaches the value of −1. At this point, points C and D are both
optimal, again a case of alternative optimal solutions. If c2 drops below −1, point
D with coordinates (x1, x2) = (2, 0) remains optimal, regardless how small the
coefficient is.

We summarize the effects of the changes c2 in Table 2.4. 1.

2 Linear Programming 86

Table 2.4.1: Optimal solutions (21, xx) and objective values z for
different values of c2

Range of c2]−∞, −1[−1]−1, ⅔[⅔]⅔, +∞[

Optimal solution
point D D and C C C and B B

Optimal
coordinates

(21, xx)
(2, 0)

(2, 0)
and

(3, 1)
(3, 1)

(3, 1)
and

(1⅔, 3)
(1⅔, 3)

Optimal objective
value z 2 2 3 + c2 3⅔ 1⅔ + 3c2

Similar analyses can be performed for each of the given objective function
coefficients. Without further comments, Table 2.4.2 shows different ranges of c1
and the resulting optimal solution points, their coordinates, and their values of the
objective function.

Table 2.4.2: Optimal solutions (21, xx) and objective values z for
different values of c1

Range of c1]−∞, 0[0]0, 3[3]3, ∞[
Optimal solution
point

A A and B B B and C C

Optimal
coordinates (21, xx)

(0, 3) (0, 3) and
(1⅔, 3)

(1⅔, 3) (1⅔, 3)
and

(3, 1)

(3, 1)

Optimal objective
value z

6 6 6 + 1⅔c1 11 2 + 3c1

So far we have only looked at the effects of individual changes on the optimal
solution. There is, however, an interesting result that considers the effects of
simultaneous changes. The rule is called the 100 percent rule and it can be stated
as follows.

100% Rule: As long as the sum of the absolute values of the increases or
decreases of the objective function coefficients is no more than 100%, the optimal
solution point remains optimal.

Formally, we denote the largest allowable increase of an objective function
coefficient cj by jcΔ , while the largest allowable decrease of an objective

function coefficient cj is denoted by jcΔ . In our example, the optimal solution for

the original objective function Max z = 1x1 + 2x2 was (21, xx) = (1⅔, 3). As shown
in Table 2.4.2, this solution remains optimal as long as c1 (whose original value is

2.4 Postoptimality Analyses 87

c1 = 1) does not increase by more than 1cΔ = 2 to the upper limit of the range at
c1 = 3. Similarly, the solution remains optimal as long as c1 does not decrease by
more than 1cΔ = 1 to the lower end of the range at c1 = 0. Similarly, we obtain

the values 2cΔ = +∞ and 2cΔ = 1⅓. Suppose now that we want to investigate the
effect of a simultaneous increase of the value of c1 by Δc1 and a decrease of the
value of c2 by Δc2, the 100 percent rule then states that the optimal solution
(21, xx) = (1⅔, 3) remains optimal, as long as the sum of actual increases in
relation to their respective values jcΔ plus the sum of actual decreases in relation

to their respective values jcΔ does not exceed 100% = 1. In our example, we

obtain
2

2

1

1 ||||
c
c

c
c

Δ
Δ

+
Δ
Δ =

3
1
21

1
||

2
|| cc Δ
+

Δ ≤ 1. For instance, if we were to face a

simultaneous increase of c1 by ½ and a decrease of c2 by ½, the condition tells us

that
3
11

½
2
½
+ = ¼ + ⅜ = 8

5 < 1, so that the optimal solution remains optimal. On

the other hand, if the increase of c1 were ¾ and the decrease of c2 were 1, then we

would have
3
11
1

2
3/4

+ = ⅜ + ¾ = 8
9 > 1, so that the optimal solution will change.

A similar argument can be applied to a simultaneous decrease of c1 and increase
of c2, or simultaneous increases or decreases of both cost coefficients. Increasing
both cost coefficients simultaneously presents an interesting special case. As there
is no finite upper bound on c2, the 100% rule reduces to the regular limit on c1 and
no limit on c2.

Consider now changes of a single right-hand side value bi. Again, we will first
examine the effects such a change on the constraint itself before investigating
what happens to optimal solutions. As a numerical example, consider the constraint
2x1 + 3x2 ≤ 6. The resulting hyperplane and halfspace is shown in Figure 2.4.4,
labeled as b1 = 6.

2 Linear Programming 88

Figure 2.4.4

If we were to modify the right-hand side value to, say, b1 = 9, the hyperplane and
halfspace would shift in parallel fashion to the position shown in Figure 2.4.4 by
b1 = 9. A further increase to b1 = 12 is shown in the figure as well. Decreases of
the right-hand side value in our example would again result in a hyperplane and/or
halfspace shifting in parallel fashion, but now in a southwesterly direction.

Given this result, we are now able to examine changes of right-hand side values in
a linear programming problem. Before doing so, we note that such changes do in
no way affect the objective function, but they may change the feasible set.

As an illustration, consider again the numerical example that was used to discuss
changes of the objective function. For convenience, we restate the model here.

 P: Max z = 1x1 + 2x2
 s.t. x2 ≤ 3 (I)

 3x1 + 2x2 ≤ 11 (II)
 x1 − x2 ≤ 2 (III)
 x1, x2 ≥ 0.

Figure 2.4.5 shows the feasible set (the shaded area) and the gradient of the
objective function. The extreme points of the feasible set are 0, A, B, C, and D.
The optimal solution is again at the point B with coordinates (21, xx) = (1⅔, 3)
and value of the objective function z = 7⅔.

2.4 Postoptimality Analyses 89

Figure 2.4.5

Consider now changes of the second right-hand side value b2. If b2 increases, then
the hyperplane and halfspace of this constraint will move into a northeasterly
direction. For instance, if b2 = 15, the feasible set is now enlarged by the set with
the extreme points B, C, B1, and C1. This has a direct effect on the optimal
solution point, which has moved from its original position at point B to its new
position at point B1. Note that while the optimal coordinates of the optimal point
have changed, one thing has not: the point is still determined by the intersection of
the hyperplanes that belong to constraints I and II, the latter now with its new
right-hand side value. Such a point is referred to as a basis point or simply a
basis. We observe here that while the basis has not changed, the optimal solution
has moved to a new location. A further increase of b2 has the effect of changing
the feasible set to 0, A, B2, C2, and D, with an optimal solution at point B2. Again,
the basis has not changed (the point is still determined as the intersection of
hyperplanes I and II), but its location has moved further to the right. A further
increase to b2 = 21 results in a feasible set with extreme points 0, A, B3 = C3, and
D. The optimal solution is now at points B3 = C3. We observe that at this point,
hyperplanes I, II, and III now intersect at the same point, causing primal
degeneracy. Any further increase of b2 will not change the feasible set any further,
constraint II is now redundant.

Return now to the original value of b2 = 11 and slowly decrease this value. For
b2 = 9, for instance, the feasible set has shrunk to 0, A, B4, C4, and D with an optimal
solution at B4. A further decrease to b2 = 6 results in the feasible set with extreme
points 0, A = B5, and D = C5, indicating that primal degeneracy now occurs at A =
B5, and D = C5. The optimal solution is now at A = B5. A further decrease to b2 = 3

2 Linear Programming 90

results in a feasible set with extreme points 0, A6, and D6 with an optimal solution
at A6. A further decrease to b2 = 0 causes the feasible set to consist of only the
origin, which, as it is the only feasible point, is now also optimal. Any further
decrease of b2 will cause the problem not to have any feasible solutions. Our
results are summarized in Table 2.4.4.

In general, our discussion has revealed that changing a right-hand side value
from −∞ to +∞ (or vice versa) causes the constraint to be redundant at first, then
essential (shaping the feasible set, but possibly not changing the optimal solution),
binding (shaping the feasible set and any change of the right-hand side value,
regardless how small, changes the optimal solution), to so strong so as to cause the
nonexistence of feasible solutions. Not each case has to go through all of these
phases. For instance, changing the value of b2 will result in the constraint first
being redundant, then essential and binding, and then infeasible.

The ranges for changes of b1 and b3 are shown in Table 2.4.3 and Table 2.4.4,
respectively. We must note, though, that the interpretation of these intervals is
different from that in the case of changes in the objective function. While a range
of cj of, say, [3, 7] indicates that as long as cj is anywhere between 3 and 7, the
optimal solution will not change, the same interval for bi will indicate that as long
as bi is within this range, the optimal basis will not change. In other words, for all
changes within this range, the same constraints will be binding at optimum. The
solution will, however change. This makes the ranges for right-hand side values
less interesting to managers.

2.4 Postoptimality Analyses 91

R
an

ge
 o

f b
1

]–
∞

, 0
[

]5
½

, ∞
[

O
pt

im
al

co

or
di

na
te

s
(2

, 0
)

(2
+b

1,
b 1

)
(3

, 1
)

(–
b 1

+3 1

(0
, 5

½

(0
, 5

½
)

O
pt

im
al

ob

je
ct

iv
e

ex
is

ts

no

fe
as

ib
le

so

lu
tio

n
2

2+
3b

1
5

7
–

b 1

11

11

(x
1,

x 2
)

–
–

)

va

lu
e

z –

/3
/3

/32
/2

R
an

ge
 o

f b
2

]–
∞

, 0
[

0
]0

, 6
[

6
]6

,2
1[

21

]2
1,

 ∞
[

O
pt

im
al

 so
lu

tio
n

po
in

t
0

A7 , …
,A

A

=
 B

5
5

4
1

B2 , B
3

B3 =
 C

3
B3

=
 C

3

O
pt

im
al

 c
oo

rd
in

at
es

(0

, 0
)

(0
, ½

b

(0
, 3

)
(

b 2
 –

 2
, 3

)
(5

, 3
)

(5
, 3

)

O
pt

im
al

 o
bj

ec
tiv

e

ex
is

ts

no

fe
as

ib
le

so

lu
tio

n
0

b 2

6
4

+
b 2

11

11

2)
3

1 /

3
1 /

va
lu

e
z –

R
an

ge
 o

f b
3

]–
1

, ∞
[

(0
, 3

)
(3

+b
3,

3)

(1
, 3

)
O

pt
im

al
 c

oo
rd

in
at

es

O
pt

im
al

 o
bj

ec
tiv

e
va

lu
e

z

ex
is

ts
 n

o
fe

as
ib

le

so
lu

tio
n

3
7

–3

]–
3,

 –
1

[
–1

6
9

+
b

7

/ 32
/32/32/31

(1
, 3

)
/32

3
1 /

/32

–

Ta
bl

e
2.

4.
3:

 O
pt

im
al

 so
lu

tio
n

an
d

ob
je

ct
iv

e
va

lu
es

 o
f s

am
pl

e
pr

ob
le

m
 o

f v
ar

io
us

 v
al

ue
s o

f b

1 2

0
]0

, 1
[

1
]1

,5
½

[
5½

(x
1,

x 2
)

–
–

(x
1,

x 2
)

–
–

Th
er

e Th
er

e

]–
∞

, 3
[

Th
er

e

3

3

b
)

,

1

B
, B

, B
, B

,

1

Ta
bl

e
2.

4.
4:

 O
pt

im
al

 so
lu

tio
n

an
d

ob
je

ct
iv

e
va

lu
es

 o
f s

am
pl

e
pr

ob
le

m
 o

f v
ar

io
us

 v
al

ue
s o

f b

Ta
bl

e
2.

4.
5:

 O
pt

im
al

 so
lu

tio
n

an
d

ob
je

ct
iv

e
va

lu
es

 o
f s

am
pl

e
pr

ob
le

m
 o

f v
ar

io
us

 v
al

ue
s o

f b

2 Linear Programming 92

Finally in this section, we want to apply the 100% rule to right-hand side changes.
The rule itself is the same as that used for changes of objective function
coefficients. Here, with right-hand side values of b1 = 3, b2 = 11, and b3 = 2, we
have obtained intervals of [1, 5½], [6, 21], and [−1⅓, ∞[, see Tables 2.4.3, 2.4.4,
and 2.4.5. In other words, we have ½,2,2 11 =Δ=Δ bb 10,5 22 =Δ=Δ bb ,

=Δ 3b 3
13 , and .3 ∞=Δb With anticipated changes of the right-hand side values

from their present values to b1 = 4½, b2 = 7, and b3 unchanged at 2, we obtain

Δb1 = 1½, Δb2 = −4, and Δb3 = 0. We can then compute
2

2

1

1 ||||
b
b

b
b

Δ
Δ

+
Δ
Δ =

1
5
7

5
4

2½
½1

>=+ , so that these changes will not only cause the solution to change,

but also the basis, i.e., different constraints will be binding after the change.

As a different example, assume that b1 decreases from its present value of 3 to 2½
(meaning that Δb1 = −½), b2 increases by Δb2 = 2 to its new value of b2 = 13,
and the third right-hand side value decreases by Δb3 = −1 from its present value of

2 to its new value of b3 = 1. The condition is then
3

3

2

2

1

1 ||||||
b
b

b
b

b
b

Δ
Δ

+
Δ
Δ

+
Δ
Δ =

1
4
31

10
2

2
½

3
10

<=++ , so that after this change, the same constraints will be

binding. Again, the solution may (and most likely will) change.

2.4.2 Economic Analysis of an Optimal Solution

In this section, we will first provide a simulated printout that is typical for what
analysts obtain from a computer upon solving a linear programming problem. We
then explain the different features and the information provided by the printout. In
the second part of this section, we use a linear programming problem, provide the
printout, and answer a number of questions relevant to the decision maker.

In order to do so, we consider the following linear programming problem:

 P: Max z =3x1 − x2
 s.t. x1 − x2 = 2

 2x1 + 3x2 ≤ 16
 5x1 + x2 ≥ 15
 x , x2 ≥ 0.

The standard printout for the problem is shown in Table 2.4.6, while information
concerning sensitivity analyses is provided in Table 2.4.7.

1

2.4 Postoptimality Analyses 93

Table 2.4.6: Summary of Results for sample problem

SUMMARY OF RESULTS

VALUE OF THE OBJECTIVE FUNCTION 10.8000

 DECISION VALUE AT OPPORTUNITY
 VARIABLE OPTIMUM COST

 X1 4.4000 0.0000
 X2 2.4000 0.0000

 SLACK/EXCESS CONSTRAINT OPTIMAL SHADOW PRICE
 VARIABLE TYPE VALUE

 CONSTRAINT 1: EQ 0.0000 2.2000
 CONSTRAINT 2: LE 0.0000 0.4000
 CONSTRAINT 3: GE 9.4000 0.0000

part shows the optimal value of the objective function , in our example z = 10.8.
The second part shows the optimal values of the decision variables as well as

optimum, 1x = 4.4 and 2x
reduced cost) of a variable indicate how far the price or cost of a variable is away
from being included in the optimal solution. In our example, both opportunity
costs are zero, as both variables are included in the solution with a positive value.
Suppose now that there is a variable in a problem, whose price is $5 and whose
opportunity costs are 3. Furthermore, suppose that the variable equals zero at
optimum, i.e., it is not included in the optimal solution with a positive value. The
main reason for the variable not being part of the optimal solution is that it is not
profitable enough. More specifically, its price is not high enough. The opportunity
cost now indicates that the lowest price at which the variable would be included in
the solution is its present price plus the opportunity cost, in our example $5 + $3 =

variable in the solution. The interpretation of opportunity cost in cost minimization
problems is similar. In those problems, it indicates by how much the cost of a
variable has to decrease, before it will be part of a solution.

Consider now the third and last part of the Summary of Results that is headed the
words “slack or excess variable.” As discussed earlier in this book, the solver has
automatically added a slack variable to the left-hand side of each ≤ inequality and
subtracted an excess or surplus variable from the left-hand side of each ≥ inequality.

The printout first provides the number of constraint these variables are added to,
followed by a column that specifies the type of constraint (and with it the type of

The Summary of Results shown in Table 2.4.6 subdivides in three parts. The first

their opportunity costs. In our examples, the information provided indicates that at
 = 2.4. The opportunity cost (sometimes also called

$8. In other words, $8 is the lowest price at which we consider including the

2 Linear Programming 94

additional variable) that was automatically added. Here, we use the abbreviations
EQ for equation, LE for a “≤” constraint, and GE for a “≥” constraint. The optimal
values of the slack, excess, and artificial variables are provided in the next column.
In our example, they are 0, 0, and 9.4. These numbers indicate that the variable
associated with the first constraint has an optimal value of 0. This is obvious, as
the first constraint is an equation, which does not allow left- and right-hand sides to
differ. The second constraint is of type “≤,” meaning that the system automatically
added a slack variable to the left-hand side of the relation. The optimal value of this
slack variable is 0, indicating that the constraint is actually satisfied as an equation at
optimum, meaning that the constraint is binding at optimum. A constraints that is
binding at optimum constitutes a bottleneck of the problems. Bottlenecks require

immediately result in changes of the optimal solution. Finally, the third constraint is
of type “≥” and thus had an excess variables subtracted from its left-hand side. The
optimal value of this excess variable equals 9.4, indicating that at optimum, the left-
hand side exceeded the right-hand side value by 9.4. This is not a bottleneck, so that
smaller changes of the third right-hand side value will leave the solution unchanged.

The last column in Table 2.4.6 shows the shadow prices associated with the
constraints. The shadow price associated with a constraint indicates the change of
the value of the objective function, given that the right-hand side value of that
constraint increases by one unit. It does not provide any information about how
the solution would change, though.

In our example, the shadow price of the first constraint (the equation) equals 2.2.
This means that as the first right-hand side value b1 increases from its original
value of 2 by one unit to 3, the value of the objective function increases from 10.8

unit from its original value of 16 to 17 will result in a new optimal objective value
that is 0.4 higher than the original objective value of 10.8, i.e., z = 11.2. Finally,
the third constraint has a shadow price of 0. This indicates that a change of the

nor the value of the objective function at optimum.

option. The simulated printout for our example is shown in Table 2.4.7.

by 2.2 to 13. Similarly, the increase of the second right-hand side value by one

special attention as any changes in the right-hand side value of such equations will

third right-hand side value by one unit will neither change the optimal solution,

Additional information is available when choosing the “Sensitivity Analyses”

The Sensitivity Analyses option consists of two parts. The upper part headed
by Coefficients of the Objective Function analyzes changes of the objective
function coefficients cj, while the part headed by Right-Hand Side Values provides
information concerning changes of the right-hand side values bi.

In Table 2.4.7, the line headed by x1 specifies the original value of c1 = 3, and also
the interval = [1, ∞[. This interval indicates that as long as the value of c1 is equal
or larger than 1, the optimal solution shown in Table 2.4.6 will remain optimal.

2.4 Postoptimality Analyses 95

Consider now the bottom part of Table 2.4.7. The row headed by “Constraint 1”
specifies the original right-hand side value of the first constraint (which was b1 = 2),
as well as the interval [−1.6154, 8.0000]. This interval indicates that as long as the
first right-hand side value remains between these bounds, the optimal basis will
remain unchanged. In other words, within this range the same constraints remain
binding at optimum. The solution, however, may very well change, even within
this range. The remaining rows for the other two constraints are interpreted in a
similar fashion.

The remainder of this section will present a linear programming problem,
formulate it, and then interpret the results shown in a printout. The production
planning model we will use throughout this section is as follows.

Example: A footwear manufacturer is planning next year’s product line. Part of that
line are three types of hiking boots, called “Walker,” “Hiker,” and “Backpacker.”
Among the many raw materials used in the production are three particularly
important and costly materials: NOwater (a lining that waterproofs the boots),
Fabrinsula (fabric insulation for warmth), and Lugster (lug) soles. Currently, 10,000

SENSITIVITY ANALYSES

COEFFICIENTS OF THE OBJECTIVE FUNCTION

VARIABLE LOWEST ORIGINAL HIGHEST
 ALLOWABLE VALUE ALLOWABLE
 VALUE VALUE

Table 2.4.7: Sensitivity Analyses for sample problem

 X1 1.0000 3.0000 INFINITY
 X2 −3.0000 −1.0000 INFINITY

RIGHT-HAND SIDE VALUES

CONSTRAINT LOWEST ORIGINAL HIGHEST
NUMBER ALLOWABLE VALUE ALLOWABLE
 VALUE VALUE

CONSTRAINT 1 −1.6154 2.0000 8.0000
CONSTRAINT 2 8.1667 16.0000 INFINITY
CONSTRAINT 3 −INFINITY 15.0000 24.4000

Similarly, we can interpret the numbers in the row headed by x2. The original
value of the objective function coefficient of this variable is c2 = −1. The range
specified here is = [−3, ∞[, and it indicates that as long as c2 is −3 or higher, the
solution shown in Table 2.4.6 will remain optimal.

2 Linear Programming 96

sq. ft. of NOwater are available at $20 per sq. ft. Similarly, the manufacturer has
access to up to 5,000 oz. of Fabrinsula at $15 per ounce and up to 7,000 pairs of
Lugster soles at $10 per pair. The requirements for manufacturing the different
types of boots are given in the following table.

Table 2.4.8: Data for shoe production problem

 Products
 Walker Hiker Backpacker
NOwater 1/2 1 21/2 [sq. ft. per pair]
Fabrinsula 1/2 2/3 4/3 [oz. per pair]
Lugster 1 1 1 [pair of soles]

Contracts have been signed for the delivery of at least 3,000 pairs of “Walkers,”
at least 2,000 pairs of “Hikers,” and at least 1,000 pairs of “Backpackers.”
Customers are prepared to purchase additional quantities should they become

types. (Note: The unit profits in the objective function in the formulation below

and Lugster).

In order to formulate the problem, we first define variables xj as the quantity of the

as follows.

 P: Max z = 12.5x1 + 25x2 + 30x3
 s.t. ½x1 + x2 + 2½x3 ≤ 10,000 (NOwater availability)
 ½x1 + ⅔x2 + 1⅓x3 ≤ 5,000 (Fabrinsula availability)
 x1 + x2 + x3 ≤ 7,000 (Lugster soles availability)
 x1 ≥ 3,000 (Walker requirement)
 x2 ≥ 2,000 (Hiker requirement)
 x3 ≥ 1,000 (Backpacker requirement)
 x1, x2, x3 ≥ 0.

Before we provide the printout and continue with our interpretations, some comments
regarding the formulation are in order. While the constraints are straightforward,
the objective function coefficients have been obtained as follows. Consider the
“Walker” boots. They sell for $40 a pair, from which we have to deduct the costs
of ½ sq ft of NOwater ($10), ½ oz of Fabrinsula ($7.50) and one pair of soles
($10), leaving us with a per-unit profit of $12.50. This is the coefficient found in
the above formulation. The unit profits of the other two boots are computed in a
similar fashion.

Tables 2.4.9 and 2.4.10 provide the usual printouts with the sensitivity option.

have been computed as the price minus the costs for the required NOwater, Fabrinsula,

three types of boots that we made and sell. The formulation of the problem is then

available. The agreed-upon prices are $40, $65, and $110 per pair of the respective

2.4 Postoptimality Analyses 97

SUMMARY OF RESULTS

VALUE OF THE OBJECTIVE FUNCTION 143,749.60

 DECISION VALUE AT OPPORTUNITY
 VARIABLE OPTIMUM COST

 WALKER 3,000.0000 0.0000
 HIKER 2,750.0750 0.0000
 BACKPACKER 1,249.9249 0.0000

 SLACK/EXCESS CONSTRAINT OPTIMAL SHADOW PRICE
 VARIABLE TYPE VALUE

 NOWATER: LE 2,625.1125 0.0000
 FABRINSULA: LE 0.0000 7.5008
 LUGSTER: LE 0.0000 19.9993
 WALKER: GE 0.0000 -11.2496
 HIKER: GE 750.0750 0.0000
 BACKPACKER: GE 249.9250 0.0000

SENSITIVITY ANALYSES

COEFFICIENTS OF THE OBJECTIVE FUNCTION

VARIABLE LOWEST ORIGINAL HIGHEST
 ALLOWABLE VALUE ALLOWABLE
 VALUE VALUE

WALKER −INFINITY 12.50 23.75
HIKER 16.00 25.00 30.00
BACKPACKER 25.00 30.00 50.00

Table 2.4.9: Summary of Results for shoe production problem

Table 2.4.10: Sensitivity Analyses for shoe production problem

2 Linear Programming 98

LUGSTER: 6,625.00 7,000.00 7,249.89
WALKER: 2,001.60 3,000.00 3,600.02
HIKER: −INFINITY 2,000.00 2,750.08
BACKPACKER:

The following is a simulated dialog between an analyst, who modeled the problem
and provides the information from the printouts and the decision maker, who asks
the questions that are of managerial interest.

Q1: How many pairs of the boots should we manufacture and what will be the

associated profit?

A1: The solution suggests that we make 3,000 pairs of Walkers,
2,750 pairs of Hikers, and 1,250 pairs of Backpackers. Given
this production plan, we can expect a profit of $ 143,750.

Q2: You are undoubtedly aware of the fact that NOwater, Fabrinsula, and Lugster
are critical resources. How many of these do we use in the suggested plan and
how much is left over?

A2: The printout tells me that we will have 2,625 sq ft of NOwater
left over, while Fabrinsula and Lugster soles are both completely
used. The latter two are obvious bottlenecks in the process. In other
words, we are using 7,375 sq ft of NOwater, the complete supply of
5,000 oz of Fabrinsula, and all of the 7,000 pairs of Lugster soles.

Q3: I just was informed by our marketing research group that the Hiker boots are

very popular and just about all of our customers would be prepared to pay an
additional $10 to get a pair of these. Would such a price hike change the
optimal solution?

A3 (aside to himself): Ahh, a sensitivity analysis on the objective
function coefficient c2. The range within which the present
optimal solution remains optimal is [16, 30]. A price increase
by $10 leads to a price of $35 rather than the original $25,
which is not in the interval, thus the solution will change.
 (to the Decision Maker): If we hike the price by more than
$5, our solution will change.

Table 2.4.10 (continued)

−INFINITY 1,000.00 1,249.93

RIGHT-HAND SIDE VALUES

CONSTRAINT LOWEST ORIGINAL HIGHEST
 ALLOWABLE VALUE ALLOWABLE
 VALUE VALUE

NOWATER: 7,374.89 10,000.00 INFINITY
FABRINSULA: 4,833.40 5,000.00 5,500.00

2.4 Postoptimality Analyses 99

pair of Walkers, the Sensitivyity Analyses part of the printout
indicates that as long as the unit profit remains in the interval
]−∞, 23.75], the optimal solution will not change.
 (to the Decision maker): It does not matter by how much you
decrease the price of Walkers, we will not sell any more.

Q5: All right then. An interesting thing happened the other day. I met a salesman

who offered me an additional 100 oz of Fabrinsula for $8.50 per ounce.
Should we purchase that? You told me that we used up all the Fabrinsula that
we have. What if I squeeze the man a bit and get it for $5? Will we take it for
that price? And what will happen to our profit?

A5 (to himself): A sensitivity analysis on the second right-hand
side value b2. The Summary of Results tells me that the shadow
price of Fabrinsula is $7.50, so we should not purchase it for
more than that. Also, the basis will not change if we buy up to
500 ounces of Fabrinsula.
 (to the Decision Maker): No, don’t buy it for $8.50. As a
matter of fact, you should not pay more than $7.50 for an extra
ounce of Fabrinsula. If you can get it for $5, you can buy up to
500 oz of it. For each ounce that you get on top of what we
have, our profit will increase by $2.50. Beyond 500 extra
ounces, though, I will have to make additional calculations.

Q6: Wonderful. I have also considered an alternative, though. In one of our trade

magazines, I just read an offer for Lugster Soles that we could get for $19 a
pair. Would you consider that?

A6 (to himself): The shadow price for Lugster Soles is $20, and
the Sensitivity Analyses tell me that this holds for an increase of
up to 250 pairs.
 (to the Decision Maker): If you can get a pair for $19, get
them. They are worth $20 to us, so for each extra pair, we make
$1 in addition to our usual profit. You can get up to 250 pairs.

Q7: Thank you so much, Mr. Analyst. Your advice was very helpful. (Putters

around with his cell phone). Wait a minute―stop the presses! Our production
manager just texted me that 200 pairs of Lugster soles have been damaged in
our warehouse and can no longer be used. What are we going to do? How
much is that going to cost me?

A4 (to himself): Another sensitivity analysis on an objective
function coefficient. Given the present unit profit of $12.50 for a

Q4: We are presently making 3,000 Walkers, just enough to satisfy one of our
requirements. I wonder if it would be worthwhile to lower the price. Would
that lead to increased sales?

2 Linear Programming 100

The Decision Maker: I knew it. Why are they doing this to me? (Disappears into
the bowels of the Administration Building).

Exercises
Problem 1 (a diet problem): A planner considers designing a diet that consists of
Coke, garlic fingers, spring rolls, pita pockets, and apples. As far as nutrients go,
the planner includes calories, riboflavin, and vitamin A, of which at most 1,500, at
least 98, and at least 27 must be included in the diet. The cost minimization
problem was subsequently formulated as follows:

 Min z = .9x1 + 2.8x2 + 3.2x3 + 5.6x4 + 3.6x5
 s.t. 80x1 + 310x2 + 340x3 + 460x4 + 20x5 ≤ 1,500
 2x1 + 9x2 + 25x3 + 16x4 + 5x5 ≥ 98
 5x2 + 4x3 + 3x4 + 10x5 ≥ 27
 1 2 3 4 5

The printout of the problem is shown in Table 2.4.11.

SUMMARY OF RESULTS

VALUE OF THE OBJECTIVE FUNCTION 16.18609

 DECISION VALUE AT OPPORTUNITY
 VARIABLE OPTIMUM COST

 COKE 0.0000 0.7470
 GARLIC FINGERS 0.0000 0.5026
 SPRING ROLLS 3.6739 0.0000
 PITA POCKETS 0.0000 3.4104
 APPLES 1.2304 0.0000

 x , x , x , x , x ≥ 0.

Table 2.4.11: Summary of Results for Problem 1

A7 (to himself): The optimal basis remains unchanged as long
as we have between 6,625 and 7,250 pairs of soles. So 200 pairs
less will not change the basis, but it will change the solution.
And since the shadow price for Lugster Soles is $19, our profit
will decrease by 200(19) = $3,600.

 SLACK/EXCESS CONSTRAINT OPTIMAL SHADOW PRICE
 VARIABLE TYPE VALUE

 CALORIES: LE 226.2609 0.0000
 RIBOFLAVIN: GE 0.0000 −0.0765
 VITAMIN A: GE 0.0000 −0.3217

101

(c) How many calories does the diet include? How much riboflavin? How much
vitamin A?

(d) What is the highest price that will put Coke into the solution?
(e) What is the effect of increasing the riboflavin requirement from 98 to 99?

Solution:
(a) The diet consists of no Coke, no garlic fingers, 3.67 spring rolls, no pita

pockets, and 1.23 apples.
(b) The cost of the diet is $16.19.
(c) The diet includes 1,500 − 226.26 = 1,273.74 calories, 98 + 0 = 98 units of

riboflavin, and 27 + 0 = 27 units of vitamin A.
(d) Presently, Coke costs 90¢ which is apparently too much for it to be included

in the solution. Its opportunity cost is 74.7¢, so that its price will have be
decrease by at least that amount. In other words, Coke will be included in the
diet if its price is no higher than 90 − 74.7 = 15.3¢.

(e) The cost will increase by 7.65¢.

Problem 2 (an investment problem): An investment agency has been asked to
advise one of its clients how to invest all of his $100,000 among the 4 assets
shown in Table 2.4.12.

 Units of risk Expected rate
Assets
Northern Mines Shares 4 .15
Bucklin Automobiles 3.5 .11
Royal Bank of Commerce Shares 2 .07
NB Savings Bonds 1 .05

The client would like as high an annual return as is possible to receive while
incurring of an average of no more than 2.5 risk units per dollar invested. The
amount invested in Royal Bank cannot exceed $40,000. Furthermore, the
investment in Automobiles and Banks combined must be at least $20,000.

Defining x1, x2, x3, and x4 for the amount invested in the four alternatives, the
problem can be formulated as follows.

Exercises

Table 2.4.12: Risk and rate of return for Problem 2

of return per dollar invested

(a) What does the diet of the planner consist of? (Indicate type of food and quantity).
(b) How much does the diet cost?

2 Linear Programming 102

SUMMARY OF RESULTS

VALUE OF THE OBJECTIVE FUNCTION 9,733.333

 DECISION VALUE AT OPPORTUNITY
 VARIABLE OPTIMUM COST

 MINES 43,333.33 0.0000
 BUCKLIN 0.0000 0.01
 ROYAL BANK 20,000.00 0.0000
 SAVINGS 36,666.67 0.0000

 SLACK/EXCESS CONSTRAINT OPTIMAL SHADOW PRICE
 VARIABLE TYPE VALUE

 RISK LE 0.0000 0.0333
 INVESTMENT LE 0.0000 0.1000
 BANK LIMIT LE 20,000.00 0.0000
 BANK & AUTO GE 0.0000 −0.0133

SENSITIVITY ANALYSES

COEFFICIENTS OF THE OBJECTIVE FUNCTION

VARIABLE LOWEST ORIGINAL HIGHEST
 ALLOWABLE VALUE ALLOWABLE
 VALUE VALUE

MINES 0.1300 0.1500 INFINITY
BUCKLIN −INFINITY 0.1100 0.1200
ROYAL BANK 0.0600 0.0700 0.0833
SAVINGS 0.0300 0.0500 0.0700

Table 2.4.13: Summary of Results for Problem 2

Table 2.4.14: Sensitivity Analyses for Problem 2

 P: Max z = .15x1 + .11x2 + .07x3 + .05x4
 s.t. 1.5x1 + x2 − .5x3 − 1.5x4 ≤ 0
 x1 + x2 + x3 + x4 ≤ 100,000
 x3 ≤ 40,000
 x2 + x3 ≥ 20,000
 x1, x2, x3, x4 ≥ 0.

The printout is shown in Tables 2.4.13 and 2.4.14.

103

(a) How much is invested in each of the alternatives and what is the average rate
of return?

(b) Identify the bottlenecks in the investment plan.
(c) If we could borrow some additional funds at 11%, would it be worth our

while? Explain in one short sentence.
(d) There is a rumor that the return of the Royal Bank will increase to 8%. Will

this change the investor’s plans? What if it decreases to 5.5%? Explain in one
short sentence.

Solution: (a) The solution prescribes investments as follows: Mines: $43,333.33,

Automobile: $0, Bank: $20,000, and NB Savings: $36,666.66. The average
rate of return is 9.7333%.

(b) Risk constraint (constraint 1), total investment level (constraint 2), and at
least $20,000 in “Auto and Bank” (constraint 4) are all tight.

(c) Shadow price of total investment (constraint 2) is 0.1, i.e., the benefit of an
extra dollar is 10¢. Given the interest rate of 11% on loans, it is not
worthwhile to borrow.

(d) Sensitivity on objective function coefficients. The range for the bank shares
extends from 6% to 8.33%, so an increase from 7% to 8% will not change the
investment plan. A decrease to 5.5% will.

Problem 3 (a transportation problem): Consider a transportation problem with
two origins (warehouses) and three destinations (customers). The supplies at the
warehouses are 60 and 80 units, respectively, while the demand is exactly 30, 50,
and 40, respectively. The problem has been formulated as follows:

 Min z = 3x11 + 7x12 + 4x13 + 9x21 + 2x22 + 5x23
 s.t. x11 + x12 + x13 ≤ 60
 x21 + x22 + x23 ≤ 80
 x11 + x21 = 30
 x12 + x22 = 50
 x13 + x23 = 40
 x11, x12, x13, x21, x22, x23 ≥ 0.

The printout is shown in Tables 2.4.15 and 2.4.16.

Exercises

RIGHT-HAND SIDE VALUES

CONSTRAINT LOWEST ORIGINAL HIGHEST
 ALLOWABLE VALUE ALLOWABLE
 VALUE VALUE

RISK −130,000.00 0.0000 110,000.00
INVESTMENT 26,666.67 100,000.00 INFINITY
BANK LIMIT 20,000.00 40,000.00 INFINITY
BANK & AUTO 0.00 20,000.00 40,000.00

Table 2.4.14 (continued)

2 Linear Programming 104

 X13 30.0000 0.0000
 X21 0.0000 5.0000
 X22 50.0000 0.0000
 X23 10.0000 0.0000

 SLACK/EXCESS CONSTRAINT OPTIMAL SHADOW PRICE
 VARIABLE TYPE VALUE

 ORIGIN 1 LE 0.0000 1.0000
 ORIGIN 2 LE 20.0000 0.0000
 DESTINATION 1 EQ 0.0000 -4.0000
 DESTINATION 2 EQ 0.0000 -2.0000
 DESTINATION 3 EQ 0.0000 -5.0000

SENSITIVITY ANALYSES

COEFFICIENTS OF THE OBJECTIVE FUNCTION

VARIABLE LOWEST ORIGINAL HIGHEST
 ALLOWABLE VALUE ALLOWABLE
 VALUE VALUE

11 −INFINITY 3.00 8.00
X12 1.00 7.00 INFINITY
X13 −1.00 4.00 5.00
X21 4.00 9.00 INFINITY
X22 -INFINITY 2.00 8.00
X23 4.00 5.00 10.00

Table 2.4.16: Sensitivity Analyses for the Problem 3

SUMMARY OF RESULTS

VALUE OF THE OBJECTIVE FUNCTION 360.0000

 DECISION VALUE AT OPPORTUNITY
 VARIABLE OPTIMUM COST

 X11 30.0000 0.0000
 X12 0.0000 6.0000

Table 2.4.15: Summary of Results for Problem 3

2.5 Duality 105

(a) What is the shipment plan and what are the associated costs?
(b) Which of the warehouses are fully used and which have still some units of the

product in them (and how many)?
(c) What if the per-unit-cost of a shipment from origin 2 to destination 3 were to

increase by $2, would that change the optimal solution? What if the cost were
to decrease by $2?

(d) What would happen if the number of units available at the first warehouse
were to be reduced by one unit? (Include cost considerations).

(e) What if we were offered extra units delivered to warehouse 2 at a rate of $2
per unit?

Solution: (a) The shipments from the first origin 1 to the three destinations are 30,

0, and 30, while the shipments from Origin 2 to the three destinations are 0,
50, and 10. The total transportation costs are $360.

(b) All units in warehouse 1 are shipped out, but 20 units are left over in
warehouse 2.

(c) The range for the unit transportation costs c23 is [4, 10]. An increase by $2
puts the unit transportation cost at 5 + 2 = $7, which is in the interval. As a
result, there will be no change in the optimal transportation plan, but the costs
will increase by 2x23 = 20. A decrease of $2 would put the unit transportation
cost at 5 − 2 = 3, which is outside of the interval, so that the optimal
transportation plan (and its costs) will change.

(d) As the constraint the belongs to Origin 1 has zero slack, the solution will
change. As the shadow price is 1, the total cost will increase by $1.

(e) There are still 20 units left at Origin 2, so that no additional units are needed,
and we decline the offer.

2.5 Duality
This section explores some aspects of duality theory, the theory behind linear
programming that explores how and why solution methods work. Given the scope
of this book, we will restrict ourselves to some of the relations and interpretations,

RIGHT-HAND SIDE VALUES

CONSTRAINT LOWEST ORIGINAL HIGHEST
 ALLOWABLE VALUE ALLOWABLE
 VALUE VALUE

ORIGIN 1 40.00 60.00 70
ORIGIN 2 60.00 80.00 INFINITY
DESTINATION 1 20.00 30.00 50.00
DESTINATION 2 0.00 50.00 70.00
DESTINATION 3 30.00 40.00 60.00

Table 2.4.16 (continued)

2 Linear Programming 106

Defining variables x1 and x2 as the number of floor boards and spindles that we
make and sell, respectively, we can formulate the problem as follows.

 P: Max z = 1x1 + 4x2 (max profit)
 s.t. 5x1 + 5x2 ≤ 50,000 (saw)
 30x1 + 90x2 ≤ 450,000 (router)
 20x1 + 100x2 ≤ 600,000 (sander)
 x1, x2 ≥ 0. (nonnegativity)

To every linear programming problem, which we will call a primal problem, we
can now assign another linear programming problem, called the dual problem.
The variables in the primal problem are also referred to as the primal variables.

In order to explain the dual problem, we will refer to the firm that has the primal
problem as its planning model as the Manufacturer. Suppose now that there is
another company that, for reasons to be come clear as we proceed, we will refer to
as the Lessor. The Lessor actually owns the saws, routers, and sanders, which he
can use to either manufacture floor boards and spindles himself or lease out the
machine time to the Manufacturer or Lessee. The task for the Manufacturer is
now to set up a pricing system that will minimize its own overall costs, while
making it interesting to the Lessor to rent machine time to the Manufacturer rather
than make the products himself. Note that the Lessor will not rent out an hour here
or there, he either rents the entire time—50,000 seconds on the saw, 450,000
seconds on the router, and 600,000 seconds on the sander—or not at all.

In order to determine such a pricing system, the Manufacturer will set up a pricing
system that defines u1 as the price per second on the saw, u2 as the price per
second on the router, and u3 as the price per second on the sander. Clearly,
the Manufacturer’s task is to minimize the total cost of leasing the equipment.
Leasing the machine time on the saw will cost u1 dollars per second, and the time
to lease is 50,000 seconds, and similar for the other two machines. Hence the
objective is to minimize 50,000u1 + 450,000u2 + 600,000u3. The next task is to

without getting into technical details. For more details, interested readers are
referred to the standard advanced texts such as Dantzig (1963), Dantzig and Thapa
(1997), or Eiselt and Sandblom (2007).

In order to simplify our discussion, we will base our arguments on a production
problem similar to that presented in Section 2.2.1 when we introduced linear
programming. In this case, there are two products, floor boards and spindles, that
are processed on three machines: a saw, a router, and a sander. The unit profits of
the two products are $1 per floor board and $4 per spindle. The machines have
capacities (in seconds) of 50,000, 450,000, and 600,000. It takes 5 seconds to saw
the floor board or the spindle. Thirty seconds are needed to process a floor board
on the router, while a spindle takes 90 seconds on this machine. One floor board
requires 20 seconds on the sander, while a spindle needs 100 seconds for processing.

2.5 Duality 107

complete dual problem, which we will call PD. Below, we show the primal
problem and the dual problem next to each other.

 P: Max z = 1x1 + 4x2 PD: Min zD = 50,000u1 + 450,000u2 + 600,000u3
 s.t. 5x1 + 5x2 ≤ 50,000 s.t. 5u1 + 30u2 + 20u3 ≥ 1
 30x1 + 90x2 ≤ 450,000 5u1 + 90u2 + 100u3 ≥ 4
 20x1 + 100x2 ≤ 600,000 u1, u2, u3 ≥ 0.
 x1, x2 ≥ 0.

Before we continue discussing the relations between a primal and its associated
dual problem, we would like to point out that the roles of variables and constraints in
the two problems are exchanged. The objective function coefficients of the primal
are found on the right-hand sides of the dual, while the right-hand side values of
the primal are in the objective function of the dual. Similarly, the technological
coefficients on the left-hand sides are the same, but with rows and columns
exchanged.

Tables 2.5.1a and 2.5.1b show the optimal solutions of the primal and dual
problem, respectively. While it is optimal for the Manufacturer to make no floor
boards and 5,000 spindles (for a total profit of $20,000), the Lessor should charge
nothing for the saw and the sander, but 4.44¢ for each second of the router. Given
that he leases the machines to the Manufacturer rather than making floor boards
and spindles himself, his profit from the leasing will be $20,000.

Comparing the primal and dual solutions, we also note that the optimal values of
the primal variables are found in the dual solution as shadow prices of resources,
while the optimal values of the primal slack and excess variables are the opportunity
costs of the dual variables. Similarly, the shadow prices of the primal resources
equal the optimal values of the dual decision variables, and the opportunity costs
of the primal variables equal the optimal values of the slack and excess variables
in the dual. This means, of course, that we can solve either the primal or the dual
solution and have both optimal solutions available in one Summary of Results.

for the rental time that is required to make one unit of a product is at least as much
as making and selling the product directly. In order to illustrate, consider the floor
boards. It takes 5 seconds on the saw to make it, which, given the pricing system,
is evaluated at 5u1. In addition, we also use time on the router and the sander, and
these times are evaluated at 30u2 and 20u3, respectively. The sum of all of these
times—the rental time equivalent to making one floor board—should be at least as
much as the profit of making a floor board. If it were not, the Lessor might as well
go into the manufacturing business himself. This means that we have to require
that 5u1 + 30u2 + 20u3 ≥ 1. A similar constraint needs to be written for the
spindles, again in order to make it as least as attractive for the Lessor to rent out
time rather than manufacture himself. The constraint is 5u1 + 90u2 + 100u3 ≥ 4.
Adding the fact that the prices must all be nonnegative, we now have formulated a

make it interesting to the Lessor to rent out the machine time rather than
manufacturing it himself. This can be achieved by ensuring that the price achieved

2 Linear Programming 108

 5u1x1 + 30u2x1 + 20u3x1 ≥ 1x1 (the first dual constraint multiplied by x1)
 5u1x2 + 90u2x2 + 100u3x2 ≥ 4x2 (the second dual constraint multiplied by x1)
 zD = 50,000u1 + 450,000u2 + 600,000u3 (the dual objective function)

 x1, x2 ≥ 0, u1, u2, u3 ≥ 0. (nonnegativity constraints)

Adding all primal constraints we obtain 5x1u1 + 5x2u1 + 30x1u2 + 90x2u2 + 20x1u3
+ 100x2u3 ≤ 50,000u1 + 450,000u2 + 600,000u3, where we note that the right-hand
side value equals zD. Similarly, adding all dual constraints, we obtain 5u1x1 +
30u2x1 + 20u3x1 + 5u1x2 + 90u2x2 + 100u3x2 ≥ 1x1 + 4x2, where we note that the
right-hand side value of the aggregate constraint equals the primal value of the
objective function z. Putting the two expressions together, we obtain zD = 50,000u1
+ 450,000u2 + 600,000u3 ≥ 1x1 + 4x2 = z, or simply zD ≥ z. This property is
commonly referred to as weak duality. Given that the primal problem maximizes z
and the dual problem minimizes zD, the two values will move towards each other
and be equal when they reach an optimal solution. This situation is shown in
Figure 2.5.1.

 z zD z, zD for feasible solutions

Figure 2.5.1

In order to explain some further relations between the primal and its associated
dual problem, multiply each primal constraint with its associated dual variable and
each dual constraint with the primal variable it is associated with. (Note that due
to the nonnegativity constraints on the variables, the inequalities do not change).
We then obtain the following system:

 z = 1x1 + 4x2 (the primal objective function)

 5x1u1 + 5x2u1 ≤ 50,000u1 (the first primal constraint multiplied by u1)
 30x1u2 + 90x2u2 ≤ 450,000u2 (the second primal constraint multiplied by u2)
 20x1u3 + 100x2u3 ≤ 600,000u3 (the third primal constraint multiplied by u3)

2.5 Duality 109

Ta

bl
e

2.
5.

1:
 O

pt
im

al
 s

ol
ut

io
n

of
 p

ri
m

al
 a

nd
 d

ua
l p

ro
bl

em

SU
M

M
A

R
Y

 O
F

R
E

SU
LT

S
-

PR
IM

A
L

 V

A
L

U
E

O
F

T
H

E
 O

B
JE

C
T

IV
E

FU
N

C
T

IO
N

 2
0,

00
0.

00

 D
EC

IS
IO

N

V
A

L
U

E
A

T

 O

PP
O

R
T

U
N

IT
Y

V

A
R

IA
B

LE

 O

PT
IM

U
M

 C

O
ST

 FL

O
O

R
 B

O
A

R
D

S

 0

.0
00

0

 0

.3
33

3

SP
IN

D
LE

S

 5
,0

00
.0

0

 0

.0
00

0

 SL
A

C
K

/E
X

C
ES

S

 O
PT

IM
A

L

 S

H
A

D
O

W

V
A

R
IA

B
LE

 V
A

L
U

E

 P
R

IC
E

 SA

W

 2

5,
00

0
.0

0

0.
00

00

R
O

U
T

ER

0.

00
00

 0

.0
44

4

SA
N

D
ER

 1

00
,0

00
.0

0

0.
00

00

 (a
)

 D
EC

IS
IO

N

V
A

L
U

E
A

T

O
PP

O
R

T
U

N
IT

Y
V

A
R

IA
B

LE

 O

PT
IM

U
M

C
O

ST

 PR
IC

E
, S

A
W

0.
00

00

25

,0
00

.0
0

PR
IC

E
, R

O
U

T
ER

 0

.0
44

4

 0
.0

00
0

PR

IC
E

, S
A

N
D

ER

 0
.0

00
0

10

0,
00

0.
00

 SL

A
C

K
/E

X
C

ES
S

 O

PT
IM

A
L

 S
H

A
D

O
W

V

A
R

IA
B

LE

 V

A
L

U
E

 P
R

IC
E

 FL

O
O

R
 B

O
A

R
D

S

0.
33

33

 0

.0
00

0

SP
IN

D
LE

S

0.
00

00

5,
00

0.
00

(b
)

SU
M

M
A

R
Y

 O
F

R
ES

U
LT

S
- D

U
A

L

V
A

LU
E

O
F

TH
E

O
BJ

EC
TI

V
E

FU
N

C
TI

O
N

 2
0,

00
0.

00

2 Linear Programming

110

In order for the two objective values to be equal at optimum, it is necessary that
all of the primal inequalities multiplied by their respective dual variables and all
dual constraints multiplied by their respective primal variables are satisfied as
equations. In our example, this means that if 21, xx , 3x is an optimal solution of
the primal problem and 1u , 2u is an optimal solution of the dual problem, then

 11211 000,50305 uuxux =+ ,
 22221 000,4509030 uuxux =+ , and
 33231 000,60010020 uuxux =+ for the primal constraints, and

 1131211 1203050 xxuxuxu =++ , and
 2232221 4100905 xxuxuxu =++ for the dual constraints.

If we were to define slack variables S1, S2, and S3 for the three primal constraints
and excess variables DE1 and DE2 for the two dual constraints, and their optimal
values are also indicated by a bar over the variables, we can rewrite the above
equations as 011 =uS , 022 =uS , and 033 =uS for the primal problem, and

011 =xE D and 022 =xE D for the dual problem. These conditions are usually
called (weak) complementary slackness conditions.

These conditions mean that if an inequality constraint is not satisfied as an
equation at optimum, then its dual variable must be equal to zero. If a constraint is
satisfied as an equation, then its dual variable may be zero or positive. In terms of
our example, this means that if we do not fully use a resource (here: machine
capacities), then the dual variable (the shadow price of the resource) must equal
zero. If, on the other hand, a resource is fully used, then the dual variable may be
positive. Similarly, if a variable is positive, then its opportunity cost must be zero;
if a variable is zero, then its opportunity cost may be positive. This corresponds

It is worth noting that the dual of the dual problem is again the primal problem.

The remainder of this section will demonstrate some further relations between a
pair of primal and dual problems. In general, we have three possible cases:

(1) The primal problem and its dual both have finite optimal solutions with

Dzz = .
(2) One of the two problems has no feasible solution, while the other has unbounded

“optimal” solutions.
(3) Both problems have no feasible solutions.

with the interpretation we provided in Section 2.4 on postoptimality analyses.

2.5 Duality 111

We already have an example of the first case: the numerical illustration used
throughout this section belongs into that category.

In order to demonstrate the second case, consider the following pair of dual
problems:

 P: Max z = 3x1 + 2x2 PD: Min zD = −u1 + 2u2
 s.t. x1 − x2 ≤ 1 s.t. u1 − 2u2 ≥ 3
 −2x1 + 1x2 ≤ 2 −u1 + u2 ≥ 2
 x1, x2 ≥ 0 u1, u2 ≥ 0.

The graphical representations are shown in Figure 2.5.2a and b. It is apparent that
while the primal problem has unbounded “optimal” solutions, its dual problem has
no feasible solution.

 (a) (b)

Figure 2.5.2

Finally the third case, in which neither problem has a feasible solution. As a
numerical example, consider the following pair of dual problems:

 P: Max z = x1 + 3x2 PD: Min zD = u1 − 2u2
 s.t. 2x1 − 4x2 ≤ 1 s.t. 2u1 − u2 ≥ 1
 −x1 + 2x2 ≤ −2 −4u1 + 2u2 ≥ 3
 x1, x2 ≥ 0 u1, u2 ≥ 0.

The graphical representation of the two problems is shown in Figure 2.5.3. It is
apparent that the constraints in the primal and the dual problems are parallel to
each other, so that the feasible set is empty.

2 Linear Programming 112

 (a) (b)

Figure 2.5.3

Exercises
Problem 1 (setting up the dual problem): Consider the following primal linear
programming problem P:

 P: Min z = −3x1 + 4x2
 s.t. x1 + 2x2 = 5

 5x1 − x2 ≥ 2
 x1, x2 ≥ 0.

Set up the dual problem PD.

Solution: Since we have not provided any rules for the transformation other than
for maximization problems with “≤” constraints, so we simply bring the problem
P into that form. Changing a minimization problem to a maximization problem
and changing the direction of an inequality is standard. As far as the equation x1 +
2x2 = 5 is concerned, we replace it by two inequalities x1 + 2x2 ≤ 5 and x1 + 2x2 ≥
5. We can then define an equivalent version of the problem description P as

 P': Max −z = 3x1 − 4x2
 s.t. x1 + 2x2 ≤ 5
 −x1 − 2x2 ≤ −5
 −5x1 + x2 ≤ −2
 x1, x2 ≥ 0.

113

The dual of this problem is then

 :PD′ Min −zD = 5u1 − 5u2 − 2u3
 s.t. u1 − u2 − 5u3 ≥ 3
 2u1 − 2u2 + u3 ≥ −4
 u1, u2 ≥ 0.

If desired, we can clean up this problem a bit and write it in its equivalent form

 PD: Max zD = −5u1 + 5u2 + 2u3
 s.t. u1 − u2 − 5u3 ≥ 3
 −2u1 + 2u2 − u3 ≤ 4
 u1, u2 ≥ 0.

Problem 2 (duality for a single-constraint primal problem): Consider the
following single-constraint primal linear programming problem:

 P: Max z = 2x1 + 3x2 + 8x3 + 7x4 + 6x5
 s.t. x1 + 6x2 + 4x3 + 3x4 + 3x5 ≤ 11
 x1, x2, x3, x4, x5 ≥ 0.

(a) Formulate the dual problem PD. How many variables does it have?
(b) Show that PD can be solved by simple inspection. State the optimal solution

and objective function value of PD. Explain why Dzz = .
(c) Using duality relationships, find the unique optimal solution to P.

Solution: (a) The problem under consideration is a continuous knapsack problem

similar to those discussed in Chapter 4 of this book. Since there is only a
single constraint in the primal problem, the dual problem features only a
single variable. The dual is

 PD: Min zD = 11u
 s.t. u ≥ 2
 6u ≥ 3
 4u ≥ 8
 3u ≥ 7
 3u ≥ 6
 u ≥ 0.

(b) With zD = 11u, the optimal value of the variable u must be as small as

possible. Considering the lower bounds specified in the constraints, we
determine that u = max { 0,,,,,2 3

6
3
7

4
8

6
3 }= 3

12 , so that uzD 11= = 25.6667.
Since P has feasible solutions (for instance x1 = x2 = …= x5 = 0), and

Dz exists, z must exist as well and 3
225== Dzz .

Exercises

2 Linear Programming 114

(c) Since 3u ≥ 7 is the only constraint in the dual problem PD that is tight
(binding) at optimum, the excess variables of all other dual constraints are
strictly positive at optimum. The complementary slackness conditions then
require that 05321 ==== xxxx . Since 02 3

1 >=u , the slack variable of
the corresponding primal constraint must be zero at optimum, again due to
complementary slackness. The primal constraint is then binding at optimum,
so that 113 4 =x or 4x = 3.6667.

H.A. Eiselt and C.-L. Sandblom, Operations Research: A Model-Based Approach, 115
DOI 10.1007/978-3-642-10326-1_3, © Springer-Verlag Berlin Heidelberg 2010

3 Multiobjective Programming

As diverse as the problems in the previous chapters have been, they share one
common feature: they all have one single objective function and the result is an
optimal solution (or multiple optima, in case of dual degeneracy). However, the
concept of optimality applies only in case of a single objective. If we state that
something is “the best” or optimal, we always have an objective in mind: the
fastest car, the most comfortable vehicle, the automobile that is cheapest to
operate, and so forth. Whenever a second or even more objectives are included in
a problem, the concept of optimality no longer applies. For instance, if the top
speed of a vehicle and its gas mileage are relevant concerns, then the comparison
between a car, whose speed may go up to 110 miles per hour and which gives 20
miles to the gallon (highway rating) and a vehicle that can go up to 90 miles per
hour and which gives 25 miles to the gallon is no longer a simple one: the former
car is faster at the expense of fuel efficiency. It will now depend on the decision
maker which of the two criteria is considered more important. In other words, the
decision maker will―sooner or later―have to specify a tradeoff between the
criteria. This is the type of problems considered in this chapter.

While the terminology in this field is not quite standardized, we typically refer to
problems with multiple objectives or evaluation criteria as multicriteria decision
making problems or MCDM. There are two major subclasses of these problems,
one called multi-attribute decision making (MADM), and the other being
multiobjective (linear) programming (MOLP). In simple words, MADM problems
have a finite number of possible decisions among which the decision maker has to
choose one, given a number of criteria. Multiobjective programming problems, on
the other hand, are optimization problems like those discussed in the previous
chapters, except that they have at least two objective functions. In this chapter we
will exclusively deal with MOLP.

Interestingly enough, MOLP have been around almost as long as linear programming
problems. Similarly, the replacement of the concept of optimality by the (much
weaker) concept of pareto-optimality has been known to economists for more than
hundred years. (It is named after the Italian economist Vilfredo Pareto, 1848-1923).
In the sections below, we discuss two of the main approaches to multiobjective

3 Multiobjective Programming

116

linear programming: the vector optimization problem, and goal programming
problems. Their main distinction is rooted in the decision maker’s input. In vector
optimization problems, the decision maker does not provide any input regarding
the tradeoff between objectives. This means, of course, that many pareto-optimal
solutions will be generated, which then must be compared manually by the
decision maker―a process, in which he will have to use some (probably) implicit
tradeoffs. Another possibility is to openly define tradeoffs, which then allows the
analyst to reduce the problem to a standard linear programming problem. The
problem with this approach is that it will be impossible for any decision maker to
specify with any degree of certainty that one objective is, say, 2.7 times as important
as another. Such an approach will have to rely very heavily on sensitivity analyses.
Finally, we present goal programming, an approach that blurs the distinction between
objectives and constraints.

3.1 Vector Optimization
The most logical way to introduce vector optimization problems starts with linear
programming and then extends the analysis to multiple objectives. As usual, we
will give preference to intuitive reasoning based on graphical arguments.

As far as the formal statement of a vector optimization problem is concerned,
consider the following example that we will use in this in the next section.

 Max z1 = 3x1 + x2
 Max z2 = −2x1 + x2

 s.t. −x1 + x2 ≤ 3 (I)
 x2 ≤ 4 (II)
 x1 + x2 ≤ 6 (III)
 x1 ≤ 5 (IV)
 1 2

First of all, the name “vector optimization” stems from the fact that rather than a
single objective, we have a “vector” of objectives.

For now, consider a single objective , whose gradient of the objective function and
iso-profit line through some point “x” are shown in Figure 3.1.

 x , x ≥ 0.

3.1 Vector Optimization 117

Figure 3.1

To recap from our discussion in linear programming, the “z” in Figure 3.1
indicates the gradient of the objective function, while the line with flags “+++”
and “---” is the iso-profit line through an arbitrary point X. This iso-profit line
subdivides the space into two halfspaces: all points in the halfspace flagged with
“+++” have objective function values better (i.e., higher for maximization
problems and lower for minimization problems) than the point X.

Consider now a problem with two objective functions. We can then take an
arbitrary point X, anchor both objective functions at that point, and plot iso-profit
lines through it. This is shown in Figure 3.2.

Figure 3.2

Figure 3.2 is based on a problem with two objectives, whose gradients are shown
by the arrows marked with z1 and z1, respectively, and their two iso-profit lines.

3 Multiobjective Programming

118

The two iso-profit lines subdivide the plane into four parts, labeled with C++, C+−,
C−+, and C− −. In the following analysis, we will compare points in these four parts
of the plane with x.

First consider any point in the set labeled C− −. As compared to x, this point will be
worse than x with respective to the first objective and also worse with respect to
the second objective, as it is located in the intersection of the two halfplanes
flagged with “− − −. ” This means that if we had realized point x, there would be
no reason to move to any point in the set C− −, as the new point will be worse than
x with respect to both objectives. Next, consider a point in the set C−+. Here,
things are a bit more difficult, as any point in that set will be worse than x with
respect to the first objective but better than x with respect to the second objective.
This means that points in C−+ are not comparable to x.

A similar argument applies to all points in the set C+−. All points in this set are
better than X with respect to the first objective but worse than X with respect to the
second objective. So again, no comparison is possible. Finally, consider the set
C++. Any point in this set is better than X with respect to both objectives, so that
we would move out of the present solution X into C++ whenever possible. As all
points in C++ are better than x, we will call C++ the improvement cone (rooted at x).

Before using this concept to solve vector optimization problems, it is useful to
discuss the relation between objectives. Suppose that two objectives are very
similar, for example Max z1 = 2x1 + 5x2 and Max z2 = 2x1 + 6x2. It is apparent that
there is only little conflict between the two. This is shown in Figure 3.3a, where
the angle between the two gradients is very small. This results in an improvement
cone with a very large angle. Actually, in the extreme case of two identical
objectives (i.e., no conflict), the improvement cone is then the same as that shown
in Figure 3.1 with the halfplane labeled “+++.”

 (a) (b)

Figure 3.3

3.1 Vector Optimization 119

On the other hand, consider two objectives that show extensive conflict. This
situation is depicted in Figure 3.3b. Here, the angle between the two gradients is
large, and the angle of the improvement cone is very small, indicating that there is
only limited potential for improvement. In the limiting case, one gradient would
be diametrically opposed to the other, a case of total conflict. In such a case, the
improvement cone is empty and there is no potential for any improvement.

idea is to introduce additional criteria. As an example, consider a couple who is
planning this year’s vacation. Suppose that the husband would like to maximize
the amount of time the couple spends on the beach to relax (and watch other
people), the wife would like to minimize the time on the beach and go boating
instead, something the husband has absolutely no interest in. (A somewhat similar
situation has been dealt with in game theory under the name “battle of the sexes”).
This has escalated to a major fight, and as it is, there is no room for compromise.
Suppose now that we introduce another activity, e.g., events, festivals, zoos, or
museums, which we will call sites and events, something both are interested in, at
least to some extent. The objective functions given two dimensions are shown in
Figure 3.4, indicating that there is now an actual possibility for compromise.
Similar situations occur in labor negotiations, in which management wants to
minimize the amount spent on wages and salaries, while labor wants to maximize
it. Issues added to the list of topics to be negotiated could include concerns such as
work conditions, something both parties are interested in.

 Figure 3.4

 Back to the improvement cone. We stated above that whenever possible, we
would try to move out of an existing point X into the improvement cone. The only
thing that could prevent us from doing so are the constraints. In case it is possible
to move out of a feasible point X to another feasible point in the improvement
cone rooted at X, we should do so, indicating that the point X is not a point to be

However, it may be possible in such a case to find a compromise after all. The main

3 Multiobjective Programming

120

considered further, as there are other points that are better than X with respect to
all objectives. In other words, if the intersection of the improvement cone and the
feasible set includes at least one more point other than X, then X does no longer
have to be considered.

On the other hand, if moving out of X into its improvement cone will always result
in the loss of feasibility, then the point X is called nondominated (or, alternatively,
noninferior, efficient, or pareto-optimal). We will use these terms interchangeably.
The collection of all nondominated points is called the efficient frontier. It is
apparent that points in the interior of the feasible set cannot be nondominated, as it

some distance. This is shown in Figure 3.5, in which the feasible set is shaded,
and the extreme points are 0, A, B, C, D, and E. The gradients of the two
objectives are labeled z1 and z2, and improvement cones are shown anchored at all
extreme points as well as at some interior point X. From any of these points, we
will try to move into its improvement code and determine whether or not it is
possible to do so and stay within the feasible region. Clearly, at the interior point
X, this is feasible.

Figure 3.5

Consider now the extreme points of the feasible set. Starting with the origin 0, we
see that it is possible to stay feasible by keeping to the right of the improvement
cone, consequently the point 0 is dominated. The situation is different for the
extreme points A, B, C, and D. All of these points have improvement cones whose
intersections with the feasible set equal just the point itself, so that any improvement

is possible to move out of them into any direction and stay feasible, at least for

3.2 Solution Approaches to Vector Optimization Problems

121

will result in the loss of feasibility. All of these extreme points are nondominated.
Point E is not nondominated, as keeping to the left in its improvement cone is still
feasible, and all these points are better than E.

It can now be proved that the nondominated set is connected. This means that if
two neighboring extreme points are nondominated, then all points (on the border
of the feasible set) between them are also nondominated. This is the nondominated
frontier, which is shown in bold in Figure 3.5. All points on this frontier are of
interest to the decision maker, whose task is now to determine which of these
solutions to choose. The choice will depend on criteria other than those already
included in the model.

3.2 Solution Approaches to Vector Optimization Problems
This section will examine techniques that can be used to approximate the efficient
frontier. While it is possible to use a modified simplex method to determine all
extreme points on the efficient frontier, this is not only a lengthy process, but also
something that leaves the decision maker with tons of solutions to manually
compare. This is clearly not feasible. As a result, analysts typically determine a
few solutions, and, based on the decision maker’s response to those, will generate
more solutions that attempt to reflect the decision maker’s comments.

Two methods for this purpose stand out. One is the weighting method, and the
other is called the constraint method. The basic idea of the weighting method is to
first assign weights w1, w2, …, wp to the p given objectives, and then aggregate
them into a single new composite objective. The result is then a linear
programming problem that can easily be solved. The optimal solution to this
linear programming problem can then shown to be a point on the nondominated
frontier, at least as long as the weights are positive.

As a numerical illustration, consider the example introduced in the previous
section. Recall that the two objectives were Max z1 = 3x1 + x2 and Max z2 = −2x1 +
x2. Suppose that we choose w1 = 5 and w2 = 1. This means that one unit of
whatever the first objective measures is considered five times as important than
one unit of what the second objective measures. Using these weights, the
composite objective is then Max z = w1z1 + w2z2 = 5(3x1 + x2) + 1(−2x1 + x2) =
13x1 + 6x2. Using this objective in conjunction with the constraints of the
problems results in the optimal solution 121 =x , with an objective value of
z = 71. For our purposes, the value of the aggregated objective function is
irrelevant, it is more useful to take the solution obtained in the optimization and
insert the optimal values into the two individual objective functions, resulting in

161 =z and 92 −=z . As can be verified in Figure 3.5, the solution)1,5(=x is
a point on the nondominated frontier. Table 3.1 provides a listing of different

= 5, x

3 Multiobjective Programming

122

weight combinations and the nondominated points they generate. Note that all
nondominated solutions that this technique generates are at extreme points.

Table 3.1: Nondominated solutions generated by the weighting method

(w1, w2) z = w1z1 + w2z2),(21 xx),(21 zz
(5, 1) 13x1 + 6x2 D = (5, 1) (16, −9)
(3, 1) 7x1 + 4x2 D = (5, 1) (16, −9)
(1, 1) x1 + 2x2 C = (2, 4) (10, 0)
(1, 3) −3x1 + 4x2 B = (1, 4) (7, 2)
(1, 5) −7x1 + 6x2 A = (0, 3) (3, 3)

Figure 3.6

A graphical representation for our numerical problem is shown in Figure 3.6.
Notice the objectives z1 and z2 as limits, the gradients of all of their combinations
are between them. In particular, the gradients shown here are z1, those generated
by the weight combinations (5, 1), (3, 1), (1, 1), (1, 3), (1, 5), and z2, in
counterclockwise direction.

The second approach to generate nondominated solutions is the constraint method.
It can be described as a technique that keeps one of the objective functions, while
using the others as constraints with variable right-hand side values. This is done
by first designating one of the p objectives as objective, while all others are

3.2 Solution Approaches to Vector Optimization Problems 123

reformulated as constraints. Each objective of the type “Max zk” will be rewritten
as a constraint zk ≥ bk with a yet-to-be-determined value of bk, while each original
objective of the type “Min zk” will be rewritten as a constraint of the type zk ≤ bk
with variable values of bk. The resulting linear programming can then easily be
solved. The solution process is repeated for a number of combinations of values
bk, k=1, …, p. All solutions that are generated in this fashion are dominated.
However, these solutions are not necessarily extreme points of the feasible set.

As an illustration, consider again the example introduced in the previous section.
We will (arbitrarily) retain the first objective as an objective and reformulate the
second objective as a constraint. The problem can then be written as

 Max z1 = 3x1 + x2
 s.t. −x1 + x2 ≤ 3
 x2 ≤ 4
 x1 + x2 ≤ 6
 x1 ≤ 5
 −2x1 + x2 ≥ b2
 x1, x2 ≥ 0.

At this point, we can solve the problem for a variety of values of b2. A summary
of solutions for some chosen values is displayed in Table 3.2.

Table 3.2: Nondominated solutions determined with the constraint method

For b2 = 0, we obtain point C in Figure 3.5, and for b2 = −1, −2, …, −8, points
between C and D are found, while b2 = −9 and b2 = −10 result in point D. Note
that this selection of b2 values misses the nondominated solutions A and B. This is
why both, the weighting method and the constraint methods, are called
approximation methods. As a matter of fact, using b2 = 1 results in the solution

),(21 xx = (1½, 4), which is the point halfway between B and C, a value of b2 = 2

b2),(21 xx 1z
5 no feasible solution
0 (2, 4) 10
−1 (2⅓, 3⅔) 10⅔
−2 (2⅔, 3⅓) 11⅓
−3 (3, 3) 12
−4 (3⅓, 2⅔) 12⅔
−5 (3⅔, 2⅓) 13⅓
−6 (4, 2) 14
−7 (4⅓, 1⅔) 14⅔
−8 (4⅔, 1⅓) 15⅓
−9 (5, 1) 16
−10 (5, 1) 16

3 Multiobjective Programming

124

generates the solution),(21 xx = (1, 4), which is point B, a value of b2 = 3 results
in a solution),(21 xx = (0, 3), which is point A, and for values in excess of b4 = 4,
the problem has no feasible solutions. Figure 3.7 shows the feasible set of the
problem and the constraints based on the second objective for various values of b2.
The bold points are the resulting optimal solutions.

Figure 3.7

3.3 Goal Programming
When introducing goal programming, it is useful to return to the basic discussion
in the first chapters of this book about constraints and objective functions. Recall
that constraints express requirements that must be satisfied, while objective
functions are for requirements that should be satisfied, if possible. While this
distinction appears clear, the difference between “required” and “desired” is
blurred in reality. Consider a simple budget constraint that expresses the condition
that we cannot spend more than we have. While we should not do that, we could
by borrowing money. All offices must fit into the space that we own―but we can
rent some more. Don’t use more employees than are available―but that’s what
temp agencies are for. Payments are due on a specific date―but we may be able
to defer them. All of this is introduced into the discussion to demonstrate that
many requirements are much softer than they appear. And this is why modelers
should take precautions before formulating constraints, as they are absolute: if
they cannot be satisfied by the given data, the solver will return a message
indicating that there is no feasible solution.

3.3 Goal Programming

125

Goal programming is one tool that attempts to deal with “soft constraints.” The
general idea was developed by the later Nobel laureate Simon in 1957, who
introduced the concept of satisficing, a composite word that joins the concepts of
“satisfy” and “suffice.” The concept as applied to goal programming works as
follows. The soft constraint is first formulated as a regular constraint. It is then
reformulated as a goal constraint with the help of a target value (or aspiration
level) and deviational variables. The target value is a number that expresses how
many resources we have, what output we would like to achieve, or similar
measures. We then introduce deviational variables +

ld and −
ld which measure

over- and underachievements, respectively. The easiest way to formulate goal
constraints is to first write the requirement as a regular constraint, and then
reformulate it as shown in Table 3.3.

Table 3.3: Formulation of soft constraints as goal constraints

Desired situation Formulation of goal
constraint

Contribution to the
objective function

LHS ≤ RHS

LHS = RHS

Min +
ld

Min +− + ll dd

LHS ≥ RHS

RHSddLHS =−+ +−
ll

0, ≥+−
ll dd

Min −
ld

The deviational variable −

ld is similar to a slack variable, and the deviational
variable +

ld resembles an excess variable. While it appears counterintuitive that
slack and excess variables should appear in the same constraint, it really is not. As
an example, consider a budget constraint that states that the actual expenditures
should not exceed the available amount. First of all, the appearance of slack and
surplus in this constraint indicates that the actual expenditures may be smaller
than the available budget (underspending) or may exceed the actual budget
(overspending). Secondly, there are technical reasons that ensure that at most one
of the deviational variables can be positive, so that we cannot have over- and
underspending at the same time.

As a numerical example, suppose that we have $100 that we can spend on two
items, food and entertainment (panem et circensis, as the Romans would have it).
The amounts spent on the two items are x1 and x2, respectively, and the budget
constraint would be x1 + x2 ≤ 100. Reformulating it as a goal constraint leads to
x1 + x2 + −

ld − +
ld = 100. Suppose now that we have decided to spend $60 of food

and $30 on entertainment. This means that the goal constraint is then 90 + −
ld −

+
ld = 100 or −

ld − +
ld = 10. Given that all variables, including the deviational

variables, must satisfy the nonnegativity constraints, this implies that −
ld = 10.

3 Multiobjective Programming

126

The meaning is that the present budget is “underachieved” by $10, or, in more
standard terms, there are $10 left over.

If, on the other hand, we spend a total of, say, $90 on food and $30 on entertainment,
the goal constraint reads 120+ −

ld − +
ld = 100 or −

ld − +
ld = −20. Again, given the

nonnegativity of the deviational variables, the result is that +
ld = 20, indicating an

“overachievement” (or, similarly, overspending) of the budget by $20.

The last column in Table 3.3 then indicates the contribution to the overall
objective made by the deviational variables introduced in a goal constraint. In the
aforementioned budget constraint, the relation “actual amount spent ≤ amount
available” was desired, so that goal programming, after rewriting the constraint as
a goal constraint, will minimize the overachievement, i.e., overspending. Note that
this approach does justice to the “softness” of the budget constraint by allowing
overspending, but trying to minimize it. In practice, absolute or rigid constraints
and soft constraints can often be distinguished by the way the requirements are
worded. A telltale sign is the expression “if possible.” Whenever it is appended to
a requirement, it clearly indicates that formulation as a goal constraint is in order.

The next issue is then how to aggregate the deviational constraints into a single
objective function. The original version of goal programming has multiple levels,
each of them assumed to be infinitely more important than the next. This structure
has been criticized profusely in the literature, even though the principle is
common, even in linear programming: the absolute constraints are infinitely more
important than the objective. This can be seen that if a constraint cannot be
satisfied, we will obtain the signal “there exists no feasible solution” from the
solver, regardless how good the objective function value is or can be.

In this book, we will restrict ourselves to a single level, on which we aggregate the
deviational variables similar to the way we aggregated objective functions in the
weighting method in the previous section of this chapter. The problem with such a
procedure is commensurability. In other words, if one deviational variable
expresses the overexpenditure of the budget (measured in dollars), while another
expresses the underuse of manpower (measured in the number of employees), we
cannot simply add these two together. When using weights, then these weights must
include a tradeoff between the units. In the aforementioned example, a weight that is
multiplies by the overexpenditure of the budget will have to express the importance
of one dollar overexpenditure in relation to the underuse of one employee.

In order to illustrate the modeling process, consider the following numerical

Example: The owner of a chain of jewelry stores has to decide how to distribute
parts of a new shipment of diamonds to five stores in a region. The first three
stores of the chain are located in shopping malls. The following conditions have to
be observed.

3.3 Goal Programming 127

Absolutely necessary:
(a) Allocate between 1,000 and 1,200 carats to the five stores.
(b) Store 5 must receive at least 300 carats of diamonds.

Desired properties of the allocation:
(c) The stores in the malls should receive at least 80% of all the diamonds, if

possible.
(d) The allocations to the stores in the mall should be equal to each other, if

possible.
(e) The probabilities of theft in the stores have been estimated to be 0.1%, 0.1%,

9%, 2% and 3%. The owner would like to minimize the expected loss.

Requirement (e) takes priority in the list and is considered to be 25 times as
important as requirement (d), which, in turn, is considered twice as important as
(c).

In order to formulate the problem, we first define decision variables x1, x2, …, x5
as the quantity of diamonds allocated to stores 1, 2, 3, 4, and 5, respectively. The
absolute constraints can then be written as

 x1 + x2 + x3 + x4 + x5 ≥ 1,000 (1)
 x1 + x2 + x3 + x4 + x5 ≤ 1,200 (2)
 5

Consider now requirement (c). Written as a constraint, the requirement can be
formulated as x1 + x2 + x3 ≥ 0.8(x1 + x2 + x3 + x4 + x5) or, equivalently, as

 0.2x1 + 0.2x2 + 0.2x3 − 0.8x4 − 0.8x5 ≥ 0.

Rewriting the requirement as a goal constraint with deviational variables, we
obtain

 0.2x1 + 0.2x2 + 0.2x3 − 0.8x4 − 0.8x5 + −

1d − +
1d = 0 (4)

with Min −

1d as the contribution to the objective function.

Next consider requirement (d). The average allocation to a store in the mall is

)(3213
1 xxx ++ , so that we would like to see x1 =),(3213

1 xxx ++ x2 =

)(3213
1 xxx ++ , and x3 =)(3213

1 xxx ++ . Rewriting the first of these constraints

results in 033
1

23
1

13
2 =−− xxx . As a goal constraint, we write

 x ≥ 300. (3)

3 Multiobjective Programming

128

 02233
1

23
1

13
2 =−+−− +− ddxxx (5)

With the objective function contribution Min +− + 22 dd . Similarly, we obtain the
goal constraints

 03333

1
23

2
13

1 =−+−+− +− ddxxx (6)

and

 04433

2
23

1
13

1 =−++−− +− ddxxx (7)

with the objective function contributions Min +− + 33 dd and Min +− + 44 dd ,
respectively.

Finally, consider requirement (e). The original objective is written as

 Min z = 0.001x1 + 0.001x2 + 0.09x3 + 0.02x4 + 0.03x5.

Setting the expected loss at some unattainably low level, e.g., z = 0, we can then
require that the expected loss is no larger than that level, if possible (which it is
not, so that we minimize the overachievement). This is then written as

 0.001x1 + 0.001x2 + 0.09x3 + 0.02x4 + 0.03x5 + +− − 55 dd = 0 (8)

with the objective function contribution Min +

5d .

The problem can then be written as

 Min z = 50 +

5d + 2(+− + 22 dd) + 2(+− + 33 dd) + 2(+− + 44 dd) + −
1d

s.t. constraints (1) – (8) and the nonnegativity constraints for all variables.

The optimal solution allocates 466.69 carats of diamonds to store 1, another
233.31 carats of diamonds to store 2, no diamonds to stores 3 and 4, and the
minimally required 300 carats to store 5. The expected loss is measured by the
overachievement ,5

+d whose optimal value is 9.7. Due to the overriding impor-

tance of the expected loss, equality among the mall stores is no longer achieved.

129

Exercises
Problem 1 (improvement cone): Consider the following two vector optimization
problems (to simplify matters, the constraints have been ignored):

 (a) P1: Max z1 = 5x1 + 2x2, Max z2 = −2x1 − 2x2, Max z3 = 3x1, and

 (b) P2: Max z1 = x2, Max z2 = 4x1 − x2, Min z3 = x1 + x2.

Plot each of these two problems individually and determine the improvement
cone.

Solution: The improvement cone for (a) is shown in Figure 3.8a, the improvement
cone for (b) is empty as shown in Figure 3.8b.

Figure 3.8

Problem 2 (nondominated frontier and composite objective, graphical): Consider
the following linear programming problem:

 P: Max z1 = x1 + 2x2
 s.t. −2x1 + x2 ≤ 2
 x1 + x2 ≤ 5
 x1 ≤ 3
 x1, x2 ≥ 0.

(a) Plot the constraints and determine the feasible set.
(b) Graph the gradient of the objective function and use the graphical solution

technique to determine the optimal point. Compute the exact coordinates of
the optimal point and its value of the objective function.

(c) Consider a second objective function Max z2 = 2x1 − x2. Ignoring the first
objective, what is the optimal point? Compute its exact coordinates and its
value of the objective function.

Exercises

3 Multiobjective Programming

130

(d) Determine the nondominated frontier given the two objectives.
(e) Use the two objectives above to construct the composite objective function

with weights w1 = ¾ and w2 = ¼. What is the optimal solution with this
objective?

Solution: (a) The solutions are based on Figure 3.9.

Figure 3.9

(b) The exact coordinates of the optimal solution are x = (1, 4) with value of the
objective function .91 =z

(c) The optimal solution with the second objective is x = (3, 0) with .62 =z
(d) Shown by the bold line in Figure 3.10.
(e) Shown in Figure 3.10.

131

Figure 3.10

Problem 3 (vector optimization, nondominated frontier): Consider the following
vector optimization problem:

 P: Min z1 = x1 + x2
 Max z2 = 2x1 + x2

 s.t. x1 ≤ 3
 x2 ≤ 2
 −x1 + x2 ≤ 1
 x1, x2 ≥ 0.

(a) Graph the constraints, clearly indicate the feasible set, and graph the directions

of both objective functions.
(b) Determine the improvement cone in a separate graph.
(c) Plot the improvement cone at each extreme point of the feasible set and

determine the efficient frontier. Clearly describe the efficient frontier.

Exercises

3 Multiobjective Programming

132

Solution:

Figure 3.11

Problem 4 (weighting method): Consider again the vector optimization problem
in Problem 3.
(a) Use the weighting method with weight combinations w = (5, 1), (3, 1), (1, 1),

(1, 3), and (1, 5) to determine nondominated solutions.
(b) Use the constraint method by keeping the first objective and using the second

objective as constraint with a variable right-hand side value b2.
(c) Repeat (b) by keeping the second objective and using the first objective as a

constraint with variable right-hand side b1.

Figure 3.12

133

Solution:
(a) The different weight combinations result in the solutions shown below.

w x
5, 1 0, 0
3, 1 0, 0
1, 1 3, 0
1, 3 3, 2
1, 5 3, 2

(b) The method generates the noninferior solutions shown below for various

values of b2 in the constraint 2x1 + x2≤ b2.

b2 x 1z
−10 0, 0 0

0 0, 0 0
5 2.5, 0 2.5
6 3, 0 3
7 3, 1 4
8 3, 2 5
9 no feasible solution

(c) The method generates the noninferior solutions shown below for various

values of b2 in the constraint x1 + x2 ≥ b1.

b1 x 2z
10 3, 2 8
5 3, 2 8
4 3, 1 7
3 3, 0 6
2 2, 0 4
1 1, 0 2
0 0, 0 0
−1 no feasible solution

Problem 5 (goal programming formulation): A product P is to be blended from
three ingredients I1, I2, and I3. Firm requirements dictate that at least 100 lbs of P
are to be blended, and that the average cost of the blend per pound do not exceed
$2.80, given that one pound of the three ingredients costs $5, $3, and $2 for I1, I2,
and I3, respectively. In addition, it would be desirable if 20% of P were to be I1.
Similarly, the decision maker would like to have P consist of no more than 50% of
the cheap ingredient I3, if possible. This desirable feature is about half as important
as the former desirable feature. Formulate as a goal programming problem.

Exercises

3 Multiobjective Programming

134

Solution: As there is only a single product, we only need variables with a single
subscript. Define variables x1, x2, and x3 as the quantities of the three respective
ingredients in the product. The constraints can then be written as

 x1 + x2 + x3 ≥ 100 and
 5x1 + 3x2 + 2x3 ≤ 2.8(x1 + x2 + x3).

The first of the two desirable properties, written as a constraint is

 x1 ≥ 0.2(x1 + x2 + x3). Rewriting as a goal constraint, we obtain

 x1 + +− − 11 dd = .2(x1 + x2 + x3)

with objective function contribution Min −

1d . The latter desirable property,
written as a constraint, is

 x3 ≤ .5(x1 + x2 + x3). Rewritten as a goal constraint, we obtain

 x3 + +− − 22 dd 1 2 3

with objective function contribution Min +

2d . The objective function is

 Min z = 2 −

1d + +
2d .

Solving the problem results in 15, 35, and 50 lbs of the three ingredients being
used, so that exactly 100 lbs are blended, whose price is exactly equal to the

1

3

= .5(x + x + x)

required value of 2.8. It is apparent that the product includes 15% of I , 5% short of
the desired target. On the other hand, the upper limit of 50% of I is satisfied
as an equation.

H.A. Eiselt and C.-L. Sandblom, Operations Research: A Model-Based Approach, 135
DOI 10.1007/978-3-642-10326-1_4, © Springer-Verlag Berlin Heidelberg 2010

4 Integer Programming

Not too long after more and more applications of linear programming were
developed, it became apparent that in some of these applications, the variables
would not be able to attain just any (nonnegative) value, but should be integers.
As a simple applications, if a variable has been defined to denote the number of
cans of beans manufactured in the planning period, then surely it would make no
sense to make, say, 1,305,557.3 cans: the last 0.3 cans would have to be rounded
up or down. While this may be an acceptable practice when dealing with this
application (after all, it makes very little difference whether or not we make 0.3
cans more or less), in other applications this may make a huge difference. For
instance, assigning airplanes to routes or trucks to deliveries may very well make
the difference between gain and loss. Furthermore, simply rounding up or down a
noninteger (usually referred to as a continuous solution) will not necessarily result
in an optimal integer solution. We will demonstrate this fact below.

Even though the difference may be blurry, it may be useful to distinguish between
variables that are naturally required to be integer (such as the number of trucks to
be used for deliveries, the number of work crews dispatched to a construction site,
or the number of drums of hazardous material shipped from one site to another),
and so-called logical variables that also must be integer and are introduced for
logical reasons. Below, we will provide a number of examples of the latter.

Integer programming problems were first discussed by Gomory in the 1950s, who
also devised a solution technique for them. Gomory’s class of techniques is called
cutting plane techniques, and we will describe their basic idea below. A
breakthrough is the 1961 contribution by Land and Doig, whose branch-and-
bound method remains the standard solution technique to this day.

4.1 Definitions and Basic Concepts
In order to define integer programming problem, we will start with a standard
linear programming problem. As an example, consider the problem

4 Integer Programming 136

 P1: Max z = x1 + x2
 s.t. 3x1 + 5x2 ≤ 15
 5x1 + 2x2 ≤ 10
 x1, x2 ≥ 0.

The only difference between the standard linear programming problem above and
an integer programming problem is that some or all of the variables are, in
addition to be required to be nonnegative, are also required to be integer. It is very
helpful to think of the integrality condition as an additional requirement. All
integer programming problems that require some, but not all, variables, to be
integer, are called mixed-integer linear programming problems (or MILPs), while
problems, in which all variables are required to assume integer values, are called
all-integer linear programming (or AILP) problems.

If we replace in the above example the two nonnegativity constraints by x1 ≥ 0,
and x2 ≥ 0 and integer, then we have a mixed integer programming problem,
which we may call P2. Similarly, if we replace the nonnegativity constraints in P1
by the conditions x1 ≥ 0 and integer and x2 ≥ 0, we have another mixed-integer
linear programming problem P3. Finally, if we replace in P1 both nonnegativity
constraints by x1 ≥ 0 and integer as well as x2 ≥ 0 and integer, we then have the
all-integer linear programming problem P4.

The graphical representations of the feasible sets of the four problems P1, P2, P3,
and P4 are shown in Figures 4.1a – 4.1d. Figure 4.1a shows the usual linear
programming problem with the feasible set shaded. The mixed-integer linear
programming problem P2 is shown in Figure 4.1b; here, only the bold horizontal
bars are feasible, as only those guarantee that the variable x2 is integer, while in
addition, respecting the given constraints. Similarly, only the bold vertical bars in
Figure 4.1c are feasible for the mixed-integer linear programming problem P3.
Finally, the feasible set of the all-integer linear programming problem P4 consists
exclusively of the grid points shown in Figure 4.1d. Clearly, the feasible set of this
problem is smallest, as it is the most constrained. Incidentally, the optimal
solutions of the four problems are as follows:

 P1: x = (1.0526, 2.3684) with z = 3.4211,
 P2: x = (1, 2.4) with z = 3.4,
 P3: x = (1.2, 2) with z = 3.2, and
 P4: x = (1, 2) with z = 3.

Again, it is apparent that moving from the least restricted problem P1 on to the
more restricted problems P2 and P3 to the most restricted problem P4, the values of
the objective function are getting worse, i.e., they decrease in maximization
problems, while they would increase in minimization problems.

Furthermore, it is important to realize that none of the integer programming
problems has its optimal solution at an extreme point, which is always the case in
linear programming (recall Dantzig’s corner point theorem).

4.1 Definitions and Basic Concepts 137

Figures 4.1a – d

In the above example it appears as if integer programming problems could be
solved by first solving the (simpler) linear programming problem and then
rounding the solution up or down. This is, however, not the case. As an example,
consider the following all-integer linear programming problem P5:

 P5: Max z = 2x1 + x2
 s.t. 7x1 + 48x2 ≤ 84
 −x1 + 12x2 ≥ 3
 x1, x2 ≥ 0 and integer.

The two solid lines in Figure 4.2 show the two constraints (ignore the broken line
for now), and the bold dots indicate the all-integer solutions. The optimal solution
of the linear programming problem without the integrality requirements is x =
(6.5455, 0.7955) with z = 13.8864, while the optimal solution of the all-integer
programming problem is x = (5, 1) with z = 11. This is a solution that cannot be
obtained by simple rounding.

1

1

5

5

(a) (b)

(c) (d)

x1 1 5 x1

1 5 x1
1 5 x1

x2

1

5

x2

1

5

x2

1

5

x2

4 Integer Programming 138

Worse yet, if we were to change the right-hand side value of the second constraint
from “3” to “13,” one of the constraints in Figure 4.2 moves in parallel fashion to
the broken line. The feasible set for the linear programming problem without
integrality conditions is the triangle with the vertices (0, 12

11), (0, 1¾), and the

point marked with LPx ′ , which has coordinates (2.9091, 1.3258) and a value of
the objective function of 7.1439. The all-integer linear programming problem
does, however, hove no feasible solution (notice that there are no bold dots in the
triangle described above).

Figure 4.2

Finally, consider the feasible set generated by the following constraints:

 x1 + x2 ≤ 10
 5x1 + 3x2 ≥ 15
 x1 ≤ 6
 x2 ≤ 7
 x1, x2 ≥ 0.

The feasible set is shown in Figure 4.3.

4.1 Definitions and Basic Concepts 139

Figure 4.3

Inspection reveals that the feasible set has extreme points (3, 0), (6, 0), (6, 4),
(3, 7), (0, 7), and (0, 5). In other words, all corner points of the feasible set are
integer-valued. If we were to solve a linear programming problem with this
feasible set and any objective function, the optimal solution would―as proved by
Dantzig’s “corner point theorem”―be one of these points, and thus integer without
us actually requiring it. There are some large classes of linear programming
formulations that fall into this category, i.e., resulting in integer solutions without
explicitly including integer requirements. This is a very appealing feature, since
linear programming problems are generally much easier to solve than their integer
programming counterparts. We will return to these problems in the chapter on
network models.

The remainder of this section will discuss the relations between the objective
values of linear programming problems and integer linear programming problems.
In order to facilitate the discussion, we need to introduce some terminology.
Consider any mixed- or all-integer linear programming problem P. Its linear
programming relaxation Prel is the very same problem P except with all of the
integrality conditions deleted. Suppose that P is a maximization problem and its
optimal value of the objective function is .IPz Let now LPz denote the optimal
value of the objective function of its linear programming relaxation, then we find
that

 IPz ≤ LPz .

The reason for this relation is easy to see. Starting with the relaxation, we obtain
the integer programming problem by adding constraints, namely the integrality
constraints. And whenever constraints are added to a problem, the value of the
objective function gets worse, i.e., lower in case of maximization problems and

4 Integer Programming 140

higher in case of minimization problems. And that is exactly what is captured by
the above relation. Note that the inequality is reversed in case of minimization
problems. In other words, the linear programming relaxation provides an upper
bound on the value of the objective function of the integer programming problem
in case of maximization problems, while it is a lower bound in case of
minimization problems.

As a numerical example, consider the all-integer linear programming problem P5
introduced earlier in this section. The value of the objective function of the all-
integer solution was found to be IPz = 11, while the linear programming relaxation
has an optimal objective value of LPz = 13.8864.

Not only does the numerical example satisfy the inequality shown above as
expected, but it also allows us to define the gap between the objective values of an
integer programming problem and its linear programming relaxation. Formally,
the absolute integrality gap is defined as the difference IPLP zz − , while the

relative integrality gap is defined as
|}|,|{|max IPLP

IPLP
zz

zz −
. In the numerical

example the absolute integrality gap is 13.8864 − 11 = 2.8864, while the relative
integrality gap is 2.8864/13.8864 = .2079. The relative integrality gap is usually a
good indicator of the degree of difficulty of the problem. Any problem with a
relative integrality gap in excess of 0.1 or 10% is fairly difficult, while problems
with integrality gaps in excess of 0.5 or 50% are typically really difficult. The
integrality gap can, of course, only be computed after the problem and its
relaxations have been solved, thus diminishing its usefulness. However, often
good approximations for IPz and LPz are known.

4.2 Applications of Integer Programming
This section will introduce some classes and principles of applications of integer
programming problems. The simplest integer programming problem are the so-
called knapsack problems. Formally, knapsack problems have an objective and a
single constraint. The story behind the name can be told as follows. A backpacker
wants to decide which items to take into the woods. Items to be considered
include a tent, a sleeping bag, a stove, stove fuel, map, compass, and so forth.
With each item, the backpacker associates two numbers: one that expresses the
value of the item, and the other its weight. The problem is then to choose items, so
as to maximize their total value to the backpacker, while the total weight should
not exceed a prespecified limit.

There are a number of different version of knapsack problems. One version only
allows the backpacker to either pack an item or leave it home, while another

4.2 Applications of Integer Programming 141

version permits the hiker to take any (integer) number of units of an item. The
definition of variables is similar regardless of the application. In case we can only
decide to either pack an item or not, we will define a variable for item j, such that
yj = 1, if we include the item in our pack, and 0 otherwise. In contrast, if we are
allowed to take any number of units of item j, we will definite variables that are
defined as yj: the number of items of type j that we include in our pack, so that yj ≥
0 and integer. (As a matter of fact, in the former case we can also think of the
variable in terms of the number of items taken, only that this number is restricted
to no more than one). Note that in order to distinguish integer variables from those
that do not have to satisfy integrality, we will use yj for integer variables and xj for
continuous variables.

Knapsack problems occur in a variety of guises. The “cargo loading” prototype
problem is of this variety. For continuous knapsack problems (i.e., those, in which
the variables do not have to be integers or even zeroes and ones), see Exercise 2 in
Section 2.5. Another popular example of a knapsack problem is capital budgeting.
As a numerical illustration, suppose that a developer can engage in five different
projects, viz., a highrise building, a shopping mall, an amusement park, a warehouse,
and an airport. The expected profit contributions and resource consumption (e.g.,
the number of construction workers needed for the respective projects) are shown
in Table 4.1.

Table 4.1: Profit contributions and resource consumption of projects

 Highrise Shopping
mall

Amusement
park

Warehouses Airport

Profit
contribution

10

6

12

2

7

Resource
consumption 4 2 5 1 3

Assume now that the developer has seven work crews at his disposal, and suppose
that it is not possible to hire additional work crews. We can then define variables
yj = 1, if the developer is to engage in project j, and 0 otherwise (clearly, engaging
in partial projects is not feasible and none of the projects can be performed more
than once), so that the problem can be formulated as follows:

 P: Max z = 10y1 + 6y2 + 12y3 + 2y4 + 7y5

s.t. 4y1 + 2y2 + 5y3 + 1y4 + 3y5 ≤ 7
 y1, y2, y3, y4, y5 = 0 or 1.

The linear programming relaxation that includes just the objective, the single
constraint, and the nonnegativity constraints, has the optimal solution 2y = 3.5,

05431 ==== yyyy with the objective value 21=z . Adding upper bounds y1 ≤ 1,

 (in $1M)

4 Integer Programming 142

y2 ≤ 1, y3 ≤ 1, y4 ≤ 1, and y5 ≤ 1 results in 121 == yy , 8.03 =y , and 054 == yy
with an objective value of 4.18=z . Finally, requiring integrality of all variables,
we obtain the optimal solution 1421 === yyy , 053 == yy with the objective
value z = 18.

Many beginners think that knapsack problems―and particularly zero-one knapsack
problems―are so simple that modern computational equipment must surely be
able to solve such problems by simply enumerating all solutions, without having
to resort to complicated algorithms. Nothing could be further from the truth. In
order to demonstrate this, compute the number of different solutions of a zero-one
integer programming problem. A problem with a single variable has two solutions,
as the variable can assume the values of zero and one. With two variables, we
have four solutions: (0, 0), (0, 1), (1, 0), and (1, 1). With three variables, we
already have eight different solution, with four variables, there are sixteen
different solutions, and so on. As a matter of fact, adding a single variable will
double the number of solutions of the problem. The reason is this: the variable that
we add can have a value of zero or one. If it were zero, together with all possible
solution of the other variables, we have just as many solutions as before. The same
applies if the new variable were equal to one, so that adding a variable doubles the
number of solutions. This means that in case of n variables, we will have 2n
different solutions that have to be examined. This means that for n = 10, we have
1,024 solutions, for n = 20, there will be a million solutions, for n = 30 there is a
billion, for n = 40 a trillion, and so forth. Clearly, even if a computer could
examine a quadrillion solutions within a single second, (which is pretty much the
limit by today’s standards), a problem with 100 variables (a tiny problem by
today’s standards), would require more than 40 million years to examine all
solutions. For business problems, that time frame appears excessive.

It is no wonder that many users resort to heuristic algorithms for the solution of
integer programming problems. We will discuss exact and heuristic solution
techniques in Section 3 of this chapter.

4.2.1 Cutting Stock Problems

The first integer application we will discuss is a model, in which the variables
quite naturally must assume integer values. Cutting stock problems (or, alternatively,
stock cutting or trim loss problems) are among the early applications of integer
linear programming. The first studies concerned paper rolls, whose width is fixed,
but which can be cut to desired lengths. The decision maker then has a number of
larger rolls of paper of given length, which he has to cut down to smaller rolls that
are in demand. This is what is called a one-dimensional problem, as only the
length of the rolls is cut.

In order to explain the formulation, suppose that a home improvement store
carries wooden rods in a standard profile and width. They presently have two
lengths, 12 ft and 10 ft. In particular, they have twenty 12 ft rods and twenty-five

4.2 Applications of Integer Programming 143

10 ft rods in their warehouse. Management anticipates a need for sixty 8 ft rods,
forty 5 ft rods, and seventy-five 3 ft rods. In order to obtain the desired lengths,
we can either cut existing rods at a cost of 50¢ per cut, or purchase new rods at a
cost of $2, $1.50, and $1.10 for the 8 ft, 5 ft, and 3 ft rods, respectively.

There are two common types of objectives. Management could either attempt to
minimize the waste produced in the process, or could minimize the costs incurred
in the process. Minimizing waste is a popular option, yet it is nontrivial from a
conceptual point of view. A small piece, say a 2 ft rod, cannot be used and is

the total cost incurred in the process.

In order to formulate the problem, it is mandatory that we first devise a cutting
plan. A cutting plan will include all meaningful cutting patterns. Patterns that are
undesirable, either because they produce too much waste, are too difficult to cut,
or for some other reason, are simply not included in the cutting plan.

The cutting plan for this example is shown in Figure 4.4, where the meaningful
cutting patters are numbered 1 to 8 from top to bottom.

Figure 4.4

We can now define the decision variable y1 as the number of times that pattern 1 is
cut, and similarly for the remaining seven patterns. This takes care of the cutting
we have to do. In addition, we also require variables v1, v2, and v3 that determine
the number of 8 ft, 5 ft, and 3 ft rods that we purchase in addition to cutting longer
rods to the required sizes. Consequently, the objective function consists of two

12 ft 8 ft

5 ft 5 ft

5 ft 3 ft 3 ft

3 ft3 ft3 ft

8 ft

5 ft

5 ft

5 ft

3 ft

3 ft3 ft3 ft

3 ft

3 ft

10 ft

considered a complete waste. A larger piece, say a 4 ft rod, however, while formally

even if it is not used in this planning period. As a result, we will simply minimize
twice the waste of a 2 ft rod, can still be used as to satisfy some future demand,

4 Integer Programming 144

major components, the cost of cutting and the cost of purchasing. Consider first
the cutting costs. Pattern 1 requires two cuts, so that each time pattern 1 is cut, it
will cost $1. Given that pattern 1 is cut y1 times, the cost contribution of the first
pattern is 1y1. Similarly, pattern 8 requires three cuts or $1.50 each time it is cut.
Since pattern 8 is cut y8 times, its cost contribution is 1.5y8. Adding the purchasing
costs for the rods that are not cut, the objective function can then be formulated as

 Min z = 1y1 + 1y2 + 1.5y3 + 1.5y4 + 0.5y5 + 0.5y6 + 1y7 + 1.5y8
 + 2v1 + 1.5v2 + 1.1v3.

As far as the constraints are concerned, there will be two types, viz., supply and
demand constraints.

Consider first the supply constraints. In words, they state that the number of
patterns cut from an existing length cannot exceed the number of rods that are
available. Constraints of this type have to be formulated for each existing length.
Consider first the 12 ft length. It is used in patterns 1, 2, 3, and 4, which, as we
already know, are cut y1, y2, y3, and y4 times, respectively. Given that we have
twenty 12 ft rods available, we can formulate the supply constraint for the 12 ft
length as

 y1 + y2 + y3 + y4 ≤ 20. (1)

Similarly, the supply constraint for the 10 ft rods is

 y5 + y6 + y7 + y8 ≤ 25. (2)

The demand constraints are somewhat more difficult to formulate. As an example,
consider the first required length of 8 ft. It is produced by patterns 1 and 5. Each
time we cut pattern 1, we generate one 8 ft rod. Since we cut this pattern y1 times,
the number of 8 ft rods produced by cutting pattern 1 is 1y1. Similarly, since each
time pattern 5 is cut, we generate a single 8 ft rod, we make a total of 1y5 8 ft rods
by cutting pattern 5. Since the only other way to obtain 8 ft rods is to purchase
them (and we already have decided to buy v1 of them), the total number of 8 ft
rods that we will have is 1y1 + 1y5 + v1, a number that must be large enough to
satisfy the demand of 60 units. The demand constraint for the 8 ft rods can thus be
written as

 y1 + y5 + v1 ≥ 60. (3)

As far as 5 ft rods are concerned, the cutting plan reveals that they are generated
by patterns 2, 3, 6 and 7. Since each time pattern 1 is cut, we produce two 5 ft
rods, and as pattern 1 is cut y1 times, we will produce a total of 2y1 5 ft rods by
cutting pattern 1. Applying similar arguments for the other three patterns that
generate 5 ft rods, the constraint for these rods is

4.2 Applications of Integer Programming 145

 2y2 + 1y3 + 2y6 + 1y7 + v2 ≥ 40. (4)

Finally, the 3 ft rods. They are generated by patterns 1, 3, 4, 7 and 8. Each time
one of these patterns is cut, we generate 1, 2, 4, 1, and 3 of the required 3 ft rods.
As a result, we can write the constraint for the 3 ft rods as

 1y1 + 2y3 + 4y4 + 1y7 + 3y8 + v3 ≥ 75. (5)

The cutting stock problem can then be written as

 Min z = 1y1 + 1y2 + 1.5y3 + 1.5y4 + 0.5y5 + 0.5y6 + 1y7 + 1.5y8
 + 2v1 + 1.5v2 + 1.1v3.

 s.t. constraints (1) – (5)
 y1, y2, …, y8; v1, v2, v3 ≥ 0 and integer.

Solving the problem results in 1y = 2, 2y = 0, 3y = 0, 4y = 18, 5y = 5,

6y ,20= 7y = 0, and 8y = 0, as well as 1v = 53, 2v = 0, and 3v = 1. This
leaves none of the existing rods left over, and the demand is exactly satisfied.

Solving the same problems with demands of 20, 15, and 18 for the 8 ft, 5 ft, and
3 ft rods results in 1y = 6, 2y = 0, 3y = 0, 4y = 3, 5y = 14, 6y = 8, 7y = 0, and 8y = 8,
as well as 1v = 0, 2v = 0, and 3v = 0. In this case, nothing is purchased, we have
eleven 12 ft rods and three of the existing 10 ft rods left over, and the demand is
exactly satisfied for the 8 ft and 3 ft rods, while one 5 ft rod is cut but not used.

As expected, things get more complicated when cutting is possible in two dimensions.
However, it is not the formulation that becomes more difficult, but the cutting
plan that may now include many patterns. Just imagine cutting an irregular piece
of fabric that may be shifted and tilted by infinitesimally small amounts to any of
its sides, resulting in infinitely many patterns. To simplify matters, assume that the
patterns are regular. As a numerical example, consider a single board of plywood
of size 5 ft by 8 ft, and assume that we need two types of boards, type T1 is of size
2 ft × 4 ft, and type T2, which measures 3 ft square. Two of the many possible

Figure 4.5

patterns are then shown in Figure 4.5, where the shaded parts indicate waste.

4 Integer Programming 146

When evaluating these patterns, we could resort to the amount of waste that is
generated. The first pattern uses 34 sq ft out of the given 40 sq ft for a usage rate
of 85%. Pattern 2, in contrast, uses only 32 sq ft for a usage rate of 80%, so it
appears that pattern 1 is more efficient. This is, however, not necessarily the case.
Pattern 2 is easy to cut: Adjust the saw once to a 1 ft width, cut off the shaded part
at the bottom, readjust the machine to a 2 ft cutting width, and continue to cut the
four desired T1 pieces. Things are much more complicated when cutting pattern 1.
First of all, we should point out that only so-called guillotine cuts are feasible.
These are cuts that the existing piece all the way through. This restriction is
important, as non-guillotine cuts will result in many operator errors. Probably the
best way to cut pattern 1 is to first adjust the machine to a 2 ft width, cut the T1
piece on the right with the piece of waste at the bottom, then turn the remaining
board and cut the T1 piece at the bottom (this way, we do not have to readjust the
machine all the time), then readjust the machine to a 3 ft cutting width and cut the
top left piece in the middle, generating the two T2 pieces. And then we have to
readjust the machine again to cut off the waste at the bottom of the two T1 pieces.
It should have become clear that while this pattern uses more of the existing
board, it is much more complicated and thus costly to cut.

In other problems, integrality does not occur naturally but is a result of the way we
must formulate constraints. Some of these formulations use so-called logical
variables, which are zero-one variables that are introduced to model logical
implications that cannot be modeled in the usual variables. Recall that in a
standard linear programming problem with, say, 100 constraints, it is obvious that
all constraints must hold, otherwise there would be no reason to include them in
the problem in the first place. There are, however, instances, that require a
different treatment. For instance, if we have the choice of one of a number of
different machines, each with its own capacity, then the actual capacity constraint
is not given by all machines, but only by the one that is actually chosen. Such a
requirement belongs to the class of so-called either-or constraints. Another class
is that of conditional constraints. They can be spotted by their unique wording “if
this, then that.” Examples of these conditions will follow.

4.2.2 Diet Problems Revisited

First recall the standard diet problem in linear programming. To simplify matters,
consider only two foodstuffs and a single nutrient. The quantities of the two foods
are defined as x1 and x2, respectively, and at least five units of the nutrient are
required in the diet. We assume that the problem has been formulated as follows.

 Min z = 3x1 + 4x2
 s.t. x1 + 2x2 ≥ 5
 x1, x2 ≥ 0.

4.2 Applications of Integer Programming 147

Suppose now that the additional requirement is that if food 1 is included in the
diet (in any quantity), then food 2 should not be. (One of the reason for this may
be incompatibilities due to taste such as ice cream and mustard, or unfortunate
side effects of incompatible foods, such as water and green apples, or, worse,
yoghurt and yeast). This is a conditional constraint of the type “if food 1 is
included, then food 2 should not be.” We first must define logical zero-one
variables, one for each foodstuff. These new variables y1 (and y2) are defined as
being one, if food 1 (food 2) is included in the diet, and zero otherwise. We will
be needing these variables in addition to the variables x1 and x2 that denote the
quantities of the two foods that are included in the diet.

In order to model this situation, it is beneficial to use a small table that includes all
relevant solutions. Table 4.2 includes not only all combinations of the two foods,
but also a column that indicates whether or not the solution is acceptable. For
instance, the first row includes neither of the two foods, and while it may leave us
hungry, it does not violate the condition. Here, we find that only the solution that
has y1 and y2 both equal to one (the case in which both foods are in the diet) is
prohibited.

Table 4.2: Decision table for the diet problem

y1 y2 OK?
0 0
0 1
1 0
1 1 No

Eliminating this solution from consideration (this is where operations research
becomes a bit of an art, rather than a science) is to write the constraint

 y1 + y2 ≤ 1.

This surely excludes only the case of both foods in the diet, and adding this
constraint to our formulation should do it. However, it does not. The reason is that
by adding this constraint to the formulation, our new problem now has two sets of
constraints; one that includes only the continuous variables x1 and x2, and another,
completely separate part that includes only the variables y1 and y2. This would
allow the two types of variables to change their values independent of each other,
for instance allowing solutions that have y1 = 0 and x1 = 7. This does not make
sense, as y1 = 0 states that “food 1 is not included in the diet,” while x1 = 7 says
that “there are 7 units of food 1 in the diet.”

The remedy is to include additional linking constraints, i.e., constraints that
include the continuous variables x1 and x2 as well as the logical variables y1 and y2.
In this problem, the linking constraints are

4 Integer Programming 148

 x1 ≤ My1 and
 x2 ≤ My2,

where M is a “sufficiently large” constant. In order to understand the workings of
these linking constraints, consider the first of these constraints and use the two
possible solutions y1 = 1 and y1 = 0. If y1 = 1, then the constraint reads x1 ≤ M,
which, with M being very large, is a redundant constraint that does not affect the
solution. If, on the other hand, y1 = 0, then the constraint reads x1 ≤ 0, which, in
conjunction with the nonnegativity constraint x1 ≥ 0, forces x1 to be equal to zero.
This is exactly the desired effect, as if food 1 is not included in the diet (i.e., y1 = 0),
then its quantity in the diet (x1) must be zero as well. And this is what these
linking constraints guarantee.

Consider now a few extensions of the model. If, for instance, it would not be
acceptable to have a diet without any food (i.e., we were to consider the solution
y1 = y2 = 0 unacceptable), then the constraint y1 + y2 = 1 would guarantee that
while both foods cannot be together in the diet, at least one of them has to be.

Consider now the diet problem with the conditional constraint “if food 1 is
included in the diet, then food 2 must be included in the diet as well.” the decision
table for this condition is shown in Table 4.3.

Table 4.3: Decision table for the modified diet problem

y1 y2 OK?
0 0
0 1
1 0 No
1 1

For this scenario, the constraint

 y1 ≤ y2

must be included (together with the linking constraints). The only solution that
this constraints excludes is y = (0, 1), which is the desired effect.

4.2.3 Land Use

The next example deals with land use. Suppose that a land owner owns a parcel of
land that he has to decide what to do with. He has narrowed down his decisions to
two: either sell stumpage, i.e., harvest the land, or build an animal sanctuary, but
not both. Here, we will formulate only this aspect of the model and ignore all
other considerations. We will need a decision variable for each possible decision,
so that we define y1 = 1, if we decide to harvest the parcel, and 0 otherwise, and
y2 = 1, if we decide to build an animal sanctuary, and 0 otherwise. The decision
table for this problem is then shown in Table 4.4.

4.2 Applications of Integer Programming 149

Table 4.4: Decision table for the simple land use problem

y1 y2 OK?
0 0
0 1
1 0
1 1 No

Once formalized as done here, we see that the situation is the same as in the diet
problem by not allowing both options at the same time, which is modeled as y1 +

2 2

Things may get much more complicated when more options exist. Suppose now

1 2
building of a municipal well (decision variable y3). As in the previous land use

parcel in questions. Furthermore, the parcel cannot be harvested if there is a
municipal well on the parcel, while we could very well have a well and a
sanctuary on the same parcel. The decision table for this extended problem is
shown in Table 4.5.

Table 4.5: Decision table for the extended land use problem

The modeling of this situation is considerably more complicated than that in the
previous examples. As a matter of fact, we need two constraints to ensure that the
bottom three solutions in Table 4.5 are excluded from consideration. We first
formulate the constraint y1 + y2 ≤ 1, which eliminates the solutions in the last two
rows of the decision table, while, among the remaining six solutions, the
constraint y1 + y3 ≤ 1 eliminates the solution (1, 0, 1). This leaves the first five
solutions as options, which is what the decision maker had in mind.

y1 y2 y3 OK?
0 0 0
0 0 1
0 1 0
1 0 0
0 1 1
1 0 1 No
1 1 0 No
1 1 1 No

1
the case in the diet problem, we do not need linking variables, as there is nothing

(decision variable y), build a sanctuary (decision variable y), or allow the

to link.

that for the parcel in question, three choices have been identified: Harvest

example, it is not possible to harvest and have a sanctuary at the same time in the

y ≤ 1. Since this problem does not require quantitative variables x and x as was

4 Integer Programming 150

4.2.4 Modeling Fixed Charges

The purpose of this subsection is to introduce the reader to decision models that
provide options regarding the choice of machines, so as to only apply the machine
capacity constraints of those machines that are purchased or leased. In particular,
consider a publishing company that intends to produce its annual lineup of
operations research texts. This year, they have the books by Gabby and Blabby
(GB), Huff, Fluff, and Stuff (HFS), and the “Real OR” (ROR) texts. As usual
nowadays, authors are required to do everything except for the for the printing,
binding (and the subsequent marketing). A number of different machines can be
leased for the printing and binding. The three printing machines under
consideration are P1, P2, and P3, while the two binding machines are B4 and B5.
The processing times for the different books on the respective machines in
minutes per book are shown in Table 4.6.

Table 4.6: Processing times for printing and binding machines

 P1 P2 P3
GB 3 6 4
HFS 2 3 3
ROR 4 5 5

 B4 B5
GB 10 10
HFS 12 11
ROR 15 14

The capacities of the three printing machines are 120 100, and 110 hours (7,200,
6,000, and 6,600 minutes) in the planning period. Similarly, the capacities of the
binding machines are 333⅓ and 300 hours, respectively (or 20,000 and 18,000
minutes). The costs to lease the machines are independent of the number of books
made with them. They are $10,000, $8,000, $9,000, $20,000, and $23,000,
respectively. The profit contributions of the three books (other than the leasing
costs) have been identified as $40, $60, and $70. It has also been determined that
the publishing house should produce at least 500 copies of the landmark ROR
book in order to maintain a good academic image.

We can formulate the problem by first defining variables x1, x2 and x3 that indicate
the number of books of the three types that are manufactured and sold. (As usual
in single-period models, we assume that all units that are manufactured can also
be sold). In addition, we also need zero-one variables that show whether or not a
machine is leased. In particular, we define binary variables y1, y2, …, y5 that
assume a value of one, if a machine is leased, and 0 otherwise. The objective
function then consists of two parts: the sum of the profit contributions of the
individual books (which are 40x1, 60x2, and 70x3), and the sum of the leasing
costs, which are 10,000y1, 8,000y2, 9,000y3, 20,000y4, and 23,000y5, respectively.

First the easy constraints: making at least 500 copies of ROR is modeled as x3 ≥
500, and the fact that we need at least one printing and one binding machine can
be written as y1 + y2 + y3 ≥ 1 and y4 + y5 ≥ 1, respectively.

4.2 Applications of Integer Programming 151

Consider now the capacity constraints of the machines. As usual, they are written
as (machine usage) ≤ (machine capacity). For example, for the first printing
machine, the capacity constraint is 3x1 + 2x2 + 4x3 ≤ 7,200. The problem here is
that this constraint must hold only if the machine is actually leased. If it is not
leased, the constraint can be ignored. The way to model this is the same technique
that was applied in the diet problem to write the linking constraints. If the first
machine is not leased, y1 = 0, and the capacity constraint is made redundant, by
having a sufficiently large right-hand side value. (Again, we will use the very
large value M as introduced in linear programming). However, if the first machine
is leased, we have y1 = 1, and the right-hand side of the capacity constraint should
be 7,200, the actual capacity of the first machine. We can formulate this by
writing the right-hand side as 7,200 + M(1 – y1).

To demonstrate the validity of this formulation, let y1 = 0. In this case the right-
hand side value is 7,200 + M(1 – y1) = 7,200 + M, so that the constraint has a very
large right-hand side, making it redundant. On the other hand, if we do lease the
first machine and y1 = 1, the right-hand side value equals 7,200 + M(1 – y1) = 7,200,
which is the actual capacity of the first machine. The formulation can then be
written as follows.

 P: Max z = 40x1 + 60x2 + 70x3 − 10,000y1 − 8,000y2 − 9,000y3 − 20,000y4
 − 23,000y5
 s.t. 3x1 + 2x2 + 4x3 ≤ 7,200 + M(1−y1)
 6x1 + 3x2 + 5x3 ≤ 6,000 + M(1−y2)
 4x1 + 3x2 + 5x3 ≤ 6,600 + M(1−y3)
 10x1 + 12x2 + 15x3 ≤ 20,000 + M(1−y4)
 10x1 + 11x2 + 14x3 ≤ 18,000 + M(1−y5)
 x3 ≥ 500
 y1 + y2 + y3 ≥ 1
 y4 + y5 ≥ 1
 x1, x2, x3 ≥ 0 and integer
 y1, y2, y3, y4, y5 = 0 or 1.

Using a large value for the constant M (here, we use M = 1,000,000), multiplying
the brackets and sorting the variables, we obtain constraints such as 3x1 + 2x2 +
4x3 + 1,000,000y1 ≤ 1,007,200 for the first constraint, and similar for the other
four capacity constraints. The solution of this all-integer programming problem is

2y = 4y = 1 and 531 yyy == = 0 (i.e., we lease the second printing and the
second binding machine), and make 1x = 0 GB books, 2x = 1,039 HFS books, and

3x = 502 ROR books. The profit associated with this plan is $69,480. Note that
the slack capacities on the printout will indicate huge (and meaningless) values for
the machines that are not leased. This is due to the fact that their right-hand side
values have the artificial value of M = 1,000,000, from which some nonexistant
usage is subtracted.

4 Integer Programming 152

4.2.5 Workload Balancing

The problem presented in this subsection deals with the allocation of tasks to
employees, so as to ensure that none of the employees is overworked, while others
are partially idle. We assume that tasks cannot be split, meaning that once an
employee starts a job, he will have to finish it. Due to their different backgrounds
and training, a job will take different amounts of time if different employees
perform it. There are three workers W1, W2, and W3, who will have to perform
tasks T1, …, T5. Table 4.7 shows the processing times (in hours) for all worker –
task combinations.

Table 4.7: Processing times for worker-task combinations

 T1 T2 T3 T4 T5
W1 5 1 9 4 9
W2 4 3 8 3 8
W3 7 5 6 4 7

In order to formulate the problem, we need to introduce zero-one variables, which
are defined as yij = 1, if employee Wi is assigned to task Tj, and zero otherwise.
The only constraints of the model ensure that each task is assigned to exactly one
employee. Formally, we can write

 y1j + y2j + y3j = 1 for all j = 1, ..., 5.

The more contentious issue concerns the objective function. First, we note that the
actual working time of the employees can be written as

 w1 = 5y11 + 1y12 + 9y13 + 4y14 + 9y15,
 w2 = 4y21 + 3y22 + 8y23 + 3y24 + 8y25, and
 w3 = 7y31 + 5y32 + 6y33 + 4y34 + 7y35,

where the new variables w1, w2, and w3 denote that time that employees W1, W2,
and W3 are busy working on the tasks. One possibility to ensure fairness in the
solution is to attempt to make the longest working time as short as possible. In
other words, the employee who works longest should have the shortest working
hours possible. Formally for our problem, we can write this objective as

 Min z = max {w1, w2, w3}.

Clearly, this is not part of a linear programming problem the way we have defined
it. However, minimax objective functions of this type can easily be reformulated,
resulting in standard linear (or integer) programming problems. This is done by

4.2 Applications of Integer Programming 153

introducing a single new variable, say z, that measures the highest workload of
any employee, i.e., the maximum of the right-hand side of the above objective.
We will then minimize this highest workload, but then we must ensure that none
of the actual workloads is higher, which is done by introducing the three
constraints z ≥ w1, z ≥ w2, and z ≥ w3. Replacing w1, w2, and w3 by the functions of
yij, we can then write the model as

 Min z
 s.t. z ≥ 5y11 + 1y12 + 9y13 + 4y14 + 9y15
 z ≥ 4y21 + 3y22 + 8y23 + 3y24 + 8y25
 z ≥ 7y31 + 5y32 + 6y33 + 4y34 + 7y35
 y11 + y21 + y31 = 1
 y12 + y22 + y32 = 1
 y13 + y23 + y33 = 1
 y14 + y24 + y34 = 1
 y15 + y25 + y35 = 1
 ij

The solution will have worker W1 work on tasks T2 and T5, worker W2 works on
tasks T1 and T4, while worker W3 is assigned task T3. The resulting workloads for
the three employees are then 10, 7, and 6 hours, respectively (with the variable z = 10
denoting the highest of the workloads).

Other objective functions to ensure fairness have been used in the literature. For
instance, we could define a variable w = w1 + w2 + w3 as the total workload by all
of the employees, so that ideally, each employee would work ⅓w. We could not
minimize the sum of deviations from this workload. Since positive and negative
deviations will cancel out, we have to either minimize the sum of absolute values
of the deviations or square the deviations (as done to derive the variance in
statistics, which is the sum of squared deviations from the mean). This objective
would then be

 Min z = ((1/3)w − w1)2 + ((1/3)w − w2)2 + ((1/3)w − w3)2.

Unfortunately, this objective is nonlinear and the resulting problem will then be
nonlinear and integer, a very difficult combination. In general, fairness (or
“equity”) objectives should normally be combined with efficiency objectives. If
not, a solution such as workloads of 12, 12, and 12 for three employees would be
preferred to workloads of 4, 9, and 8 hours, because the former solution is “more
equal,” even though each employee would gain by moving from the former to the
latter solution.

y = 0 or 1 for i = 1, 2, 3; j = 1, …, 5.

4 Integer Programming 154

4.3 Solution Methods for Integer Programming Problems

This section will examine some of the techniques that can and are used to solve
integer programming problems. The first subsection will briefly describe the ideas
behind cutting plane methods. The second subsection thoroughly discusses the
basic features of branch-and-bound techniques, and the third subsection illustrates
some heuristic methods and how they may apply to some integer programming
problems.

4.3.1 Cutting Plane Methods

As mentioned in the introduction to this chapter, the first exact techniques for the
solution of integer programming problems were so-called cutting plane
techniques. Their general idea may be explained as follows. Recall that some
problems always have optimal integer solutions, such as the assignment problem
and the transportation problem (the latter only if all supplies and demands are
integer-valued). Given Dantzig’s corner point theorem (see Section 2.3), this
means that the feasible set of those two problems (and other like them) has corner
points, all of which are integer-valued. Clearly, very few formulations have this
property. If it were now feasible to find a restricted feasible set that includes all
integer solutions of the original feasible set but has all of its extreme points
integer-valued (something usually called a convex hull), then we could simply
solve the linear programming relaxation of the problem with this restricted
feasible set and then automatically obtain an integer solution. Unfortunately,
obtaining the convex hull of a feasible set is very difficult and the suggested
approach is not computationally viable.

However, it is not necessary to have the entire convex hull at our disposal. And
this is where cutting plane methods come in. The idea of cutting plane methods is
to locally approximate the convex hull. This is done as follows. We first solve the
linear programming relaxation of the given problem. If the optimal solution is
integer, we are done. Suppose now that it is not. We then formulate a cutting
plane, i.e. an additional constraint that does two things: (1) it must cut off (i.e.,
make infeasible) the present optimal solution, while (2) it cannot cut off any
feasible integer point.

As a numerical illustration, consider the following all-integer programming
problem:

 P: Max z = y1 + y2
 s.t. 3y1 + 2y2 ≤ 6
 y1 + 3y2 ≤ 3
 y1, y2 ≥ 0 and integer.

4.3 Solution Methods for Integer Programming Problems 155

Figure 4.6

The shaded area in Figure 4.6 shows the feasible set of the linear programming
relaxation, and the point shown as LPy = (12/7, 3/7) is the optimal solution of the
linear programming relaxation. The triangle shown by the broken lines that
connect the points (0, 0), (2, 0), and (0, 1) is the convex hull of the feasible set.
The dotted line shows the cutting plane 5y1 + 10y2 ≤ 12. Plugging in the
coordinates of LPy , we see that this point violates the condition of the cutting
plane, as 90/7 = 7

612 12. This is also apparent in the graph. On the other hand,
all four feasible integer points satisfy the condition, so that the condition is indeed
a cutting plane.

While cutting planes appear to be a very good idea, their computational performance
has been disappointing. In particular, the slices that are cut off tend to become
tiny, requiring a very large number of additional constraints to be added in the
process, which adds to the size of the problem and the degree of difficulty.

4.3.2 Branch-and-Bound Methods

In contrast to cutting plane methods, the concept of branch and bound in its many
variations is nowadays accepted as the universal solver for mixed- and all-integer
linear programming problems. The basic idea is simple. We first solve again the linear
programming relaxation. Again, if its coordinates of the solution point satisfy the
required integrality conditions, the process terminates. Suppose now that this is
not the case. We then select any variable that is required to be integer but, at the
present solution, is not. As an example, let the variable y7 = 3.4 at the present
solution. Given that y7 is required to be integer, the present solution does not
satisfy all integrality constraints. We will then subdivide the given problem (often
called the “parent”) into two new problems (the “children”), a process usually
referred to as “divide and conquer” (or, by some critics, “double your trouble”).

4 Integer Programming 156

Each of the two children contains exactly the same constraints as its parent plus
one single additional constraint. One child has the additional constraint y7 ≤ 3,
while the other child has the additional constraint y7 ≥ 4. That way, we completely
eliminate all solutions for which the variable 3 < y7 < 4. The reason that we can
actually cut out such a “corridor” without deleting important parts of the feasible
set is that none of the solutions that we eliminate from consideration are feasible,
in that none of them contain any point that has an integer value for the variable y7.

This way, we will build up what is known as a solution tree. Each “node” of the
tree, shown as a small box, represents a problem formulation and a solution. Once
we decide to work on a node or solution, we “branch” from it, meaning we generate
its children by adding a constraint as explained above. Once we have branched
from a node, it is no longer active. Also, nodes that represent integer solutions and
those that represent problem formulations that do not have feasible solutions are
also not active. This is best explained in terms of a small numerical example.

Consider the following all-integer optimization problem:

 Max z = 5y1 + 9y2
 s.t. 5y1 + 11y2 ≤ 94 Constraint I
 10y1 + 6y2 ≤ 87 Constraint II
 y1 , y2 ≥ 0 and integer.

The graphical representation of the problem is shown in Figure 4.7, where the
feasible set of the linear programming relaxation is the shaded area. The optimal
solution of the linear programming relaxation is depicted as the point LPy . The
intermediate results of our computations will be displayed and collected in the
solution tree shown in Figure 4.8. At present, only the top node, known as the root
of the tree, is known. At this point, this is also the only active node.

The first step is to examine the solution. In this example, both variables are
supposed to be integer and neither of them is. This means that we can start
working on either variable. Here, we choose to start working on y2. (Alternatively,
we could have started working on y1. This will result in a completely different
solution tree―which one is smaller and easier cannot be said in advance―which
is shown in Figure 4.9). At present, y2 = 6.3125, so that we will eliminate the
corridor 6 < y2 < 7, so that our first branching, shown in the solution tree in Figure
4.8 branches from the root tree to the two children, the one on the left with the
additional constraint y2 ≤ 6, and the one on the right with the additional constraint
y2 ≥ 7. In Figure 4.7, the feasible set of the right child is now the triangle with
vertices at (0, 7), (0, 8.5455), and 2y = (3.4, 7). Using the objective function, the
optimal solution of this subproblem is 2y . On the other hand, the feasible set of

4.3 Solution Methods for Integer Programming Problems 157

the left child is the trapezoid with corner points (0, 0), (0, 6), 1y = (5.1, 6), and

(8.7, 0). The optimal solution of this subproblem is 1y .

Figure 4.7

At this point we have two active nodes with solutions 1y 2y . Among all
active nodes, we always choose the one with the best value of the objective
function (i.e., highest for maximization problems and lowest for minimization
problems). In this example, it is the node with the solution 2y . This is the node
(now considered the parent) that we will examine and further work on, if
necessary. The solution 2y has values of 3.4 and 7 for the two variables, meaning
that while the variable y2 is integer as required, the variable y1 is not and we will
have to work on it. This means that from this solution, we will perform our second
branching that adds the constraint y1 ≤ 3 to the left child, and y1 ≥ 4 to the right
child. The additional constraints are shown in Figure 4.7 as small lines that will
have to be considered in conjunction with the triangle (the feasible set of
the parent) derived earlier. This results in a feasible set of the left child that is the
trapezoid with corner points (0, 6), (0, 8.5455), 3y = (3, 7.1818), and (3, 6), the
optimal solution of which is 3y . On the other hand, the right child has an empty
feasible set, as the intersection of the triangle of its parent and the constraint y1 ≥ 4
is empty. This is now indicated in the solution tree in Figure 4.8. At this point we
have two active nodes: the nodes labeled with solutions 1y and 3y . All other

 and

4 Integer Programming 158

nodes developed so far have either already been branched from or have no feasible
solution and thus need no longer to be considered.

Figure 4.8

The node with the best (here: highest) value of the objective functions value is

,3y so that our work continues here. Now the variable y2 = 7.1818 is again
noninteger and we will branch on it. Considering this node as the present parent,
we branch to the children by using the additional constraints y2 ≤ 7 and y2 ≥ 8,
respectively. The feasible set of the left child is the line segment with end points
(0, 7) and (3, 7). The optimal solution of this child is 4y = (3, 7) with a value of
the objective function of 78. This is our first integer solution so far in the tree. The
feasible set of the right child is the triangle with vertices (0, 8), (0, 8.5455), and

5y , with 5y being its optimal solution, whose objective value is also 78.

At this point, the active nodes are 1y , 4y , and 5y . Inspection reveals that 1y has
the highest value of the objective function, so that work will continue here,
regardless of the fact that we have already found an integer solution (that solution
may not be the best). This node is now temporarily considered the parent. In this
solution, y1 = 5.1, which violates the required integrality condition.

Recall that the feasible solution of this parent is the shaded area below y2 ≤ 6.
Branching y1 ≤ 5 and y1 ≥ 6, we obtain the two crosshatched feasible sets: the
rectangle with vertices (0, 0), (0, 6), 6y = (5, 6), and (5, 0) for the left child, and
the triangle with vertices (6, 0), 7y = (6, 4.5), and (8.7, 0) for the right child. The
respective optimal solutions are 6y and 7y , whose values of the objective
function are 79 and 70.5, respectively.

4.3 Solution Methods for Integer Programming Problems 159

At this point, we have four active nodes with solutions 4y , 5y , 6y , and 7y . The
node with the best value of the objective function is 6y , whose solution is 6y = (5, 6)
and objective value 79. Work will continue on this node. Inspection reveals that
all integrality conditions are now satisfied, so that the 6y represents an optimal
solution. Since no other active node has an equal objective value, this optimal
solution is unique, so that the problem is solved.

We have seen that the branch-and-bound method solves integer programming
problems by a sequence of linear programming problems. It is not at all
uncommon that one integer programming problem requires the solution of
hundreds of thousands of linear programming problems, all similar, but differing
by a few constraints. Consider again the solution tree in Figure 4.8 for some
additional considerations. For instance, the additional constraints to be considered
at a node are the constraints at all branchings from the root of the tree to the node
under consideration. For instance, the node with optimal solution 5y represents a
problem with the given objective function, all constraints of the linear
programming relaxation (here: constraints I and II), as well as the additional
constraints y2 ≥ 7, y1 ≤ 3, and y2 ≥ 8. An immediate consequence of this principle
leads to the observation that as you move on some path down the tree, the values
of the objective function of the problems either stay the same or get worse (i.e., go
down for maximization problems and go up for minimization problems). This
occurs as by adding constraints, the feasible set gets smaller, which cannot result
in better objective values.

It is also apparent that even a very small problem with only two variables can have
sizeable solution trees. When using a computer with linear programming software
installed, it is possible to practice by using the computer to solve the linear
programming problems at the nodes of the solution tree, while constructing the
solution tree manually. In order to solve the integer programming problem in such
“computer-assisted” fashion, it is necessary to learn how to edit the linear
programming problems. For instance, return from the problem with the solution

5y to 1y requires moving up to the root of the tree (thus removing the constraints
y2 ≥ 8, y1 ≤ 3, and y2 ≥ 7, and then moving down to the node labeled 1y by adding
the constraint y2 ≤ 6.

For practice, readers may either use the graphical approach or the computer-
assisted approach to solve the same problem but start branching at the root node
on the variable y1 rather than y2. This will result in the solution tree shown in
Figure 4.9. Note that this tree requires six branchings and the optimal solution is
found at the node labeled 9y .

4 Integer Programming 160

It is also important to realize that the very same procedure can be used to solved
mixed-integer linear programming problems. Whenever the best active node has
been chosen, we have to compare what is required to be integer and what is. As an
illustration, use the same example as above, except that y1 ≥ 0, while y2 ≥ 0 and
integer. Again, we first solve the linear programming relaxation and find the root
node of the solution tree. Now as y1 = 4.9125, it satisfies the nonnegativity
constraint, which is all that is required of this variable. On the other hand, y2 =
6.3125, which satisfies the nonnegativity constraint, but not the integrality
constraint, so we must branch on y2 (there is no choice as in the all-integer
problem). The branching is identical to the first branching shown in Figure 4.8. At
this point, 2y is the better solution with y1 = 3.4, y2 = 7 with an objective value of
80. At this point, the procedure terminates, as y1 is nonnegative as required, and y2
is also nonnegative and integer, as required; hence 2y is the optimal solution for
this problem.

This is also the time to demonstrate what the term “bound” in branch-and-bound
actually means. The idea is that during the procedure, the upper and lower bounds
on the optimal objective value of the all- or mixed-integer programming problem
are constantly tightened. Consider the process shown in Figure 4.9. Initially, as
shown in the first section of this chapter, we only know that IPz ≤ LPz , i.e., the
optimal objective value of the integer problem is no better than 81.375. For
maximization problems, the upper bound is always the objective value of the best
known active node, while the lower bound is the objective value of the best
known integer solution. Hence, initially −∞ ≤ IPz ≤ 81.375. After the first
branching, the upper bound has decreased to 80.5455. After the second branching,
the upper bound is reduced to 80.5, and the lower bound is now 74, as the integer
solution 3y is now known. Branching 3 further reduces the upper bound to 80,
branching 4 reduces the upper bound to 79.6364, branching 5 reduces the upper
bound to 79.5, while the lower bound is now increased to 78, as the integer
solution 7y has become known. Finally, after branching 6 the upper and lower
bounds coincide at 79, which terminates the process.

4.3 Solution Methods for Integer Programming Problems 161

Figure 4.9

We will now demonstrate how to deal with cases in which the mixed- or all-
integer programming problem has no feasible solution. As an illustration, consider
the all-integer programming problem

 P: Max z = y1 + 4y2
 s.t. 28y1 + 7y2 ≤ 49
 30y1 − 6y2 ≥ 36
 y1, y2 ≥ 0 and integer.

The solution tree for this problem, given that branching commences with y2, is
shown in Figure 4.10. Branching 1 results in one child of the root having no
feasible solution, while the other has a noninteger solution. Branching on this sole
active node, we obtain two children, both of whom have no feasible solutions. At
this point, there are no further active nodes and no solution has been found. The
tree that is obtained by start branching on y1 is even smaller: the two children of
the root of the tree both have no feasible solution.

4 Integer Programming 162

Figure 4.10

4.3.3 Heuristic Methods

It will have become clear in the above discussion that for very large problems,
exact methods may not be able to solve a given integer linear programming
problem within a reasonable time frame. Surely, whenever an exact method such
as the branch-and-bound technique described in the previous section has found an
integer solution, one could terminate computations, even though the integer
solution may not be optimal. As a matter of fact, while such a procedure will
result in a feasible solution, it may be far from optimal. Instead, users often use
heuristic techniques to find (hopefully reasonably good) solutions quickly. This
section will describe such a technique.

In order to illustrate the technique, consider the following knapsack problem:

 P: Max z = 12y1 + 20y2 + 31y3 + 17y4 + 24y5 + 29y6
 s.t. 2y1 + 4y2 + 6y3 + 3y4 + 5y5 + 5y6 ≤ 19
 y1, y2, y3, y4, y5, … y6 = 0 or 1.

In order to employ the Greedy Method (sometimes colloquially referred to as
“bang for the buck” method), we first need to rank the variables in nonincreasing
order of their “value” to us. Rather than simply using the coefficients in the
objective function to rank the variables, we compute the “value per weight” ratios
for each product by dividing the contribution to the objective function by the
coefficient in the constraint. We then rank the variables in nonincreasing order of
these ratios as shown in Table 4.8.

y1 = 1.4444
y2 = 1.2222

y
2 ³ 2

y 2
£
1

z = 6.3333

y1 = 1.5
y2 = 1
z = 5.5

no
feasible
solution

no
feasible
solution

no
feasible
solution

Branching 1

Branching 2

4.3 Solution Methods for Integer Programming Problems 163

Table 4.8: “Value per weight” of the individual items

Variable y1 y2 y3 y4 y5 y6
Value

per
weight

12/2 = 6 20/4 = 5 31/6 =
5.1667

17/3 =
5.6667 24/5 = 4.8 29/5 = 5.8

Rank 1 5 4 3 6 2

Starting with all variables set to zero, the Greedy algorithm will now increase the
values of variables one by one, starting with the highest rank, as long as resources
are available.

In Step 1, we set y1 := 1, which consumes 2 resource units and contributes 12 units

to the objective,
in Step 2, we set y6 := 1, which consumes 5 resource units and contributes 29 units

to the objective,
in Step 3, we set y4 := 1, which consumes 3 resource units and contributes 17 units

to the objective,
in Step 4, we set y3 := 1, which consumes 6 resource units and contributes 31 units

to the objective,
in Step 5, we set y2 := 1, which consumes 4 resource units. Stop and backtrack, as

this latest assignment exceeds the availability of resources.

In summary, the solution at the termination of the Greedy algorithm is

 y = [y1, y2, y3, y4, y5, y6] = [1, 0, 1, 1, 0, 1]

which uses 16 resource units and has a value of the objective function of z(y) = 89.

In the second phase, we use a simple improvement heuristic of the “interchange”
or “swap” type. This heuristic method raises one arbitrarily chosen variable from a
level of zero to one, while decreasing another also arbitrarily chosen variable from
one to zero. Whenever such an exchange is feasible and increases the value of the
objective function, it becomes our new starting point. The procedure is reapeated
until no further improvements are possible. Note that given the present solution,
we have an extra 3 resource units available. In the tables below, we list the
variable that leaves the solution (i.e., the variable whose value is reduced from its
present value of one to zero), the entering variable (i.e., the variable whose value
is increased from its present value of zero to one), the resulting new solution, the
marginal resource usage ΔR, and the change Δz of the objective function that
results from the swap.

Table 4.9: First swap move

Leaving
variable

Entering
variable

New solution ΔR Δz

y1 y2 0, 1, 1, 1, 0, 1 −2 + 4 = +2 −12 + 20 = + 8

4 Integer Programming 164

It is apparent that the first swap move in Table 4.9 results in an improvement, so
that the solution y = [0, 1, 1, 1, 0, 1] becomes the new basis with resource
consumption of 18 (so that we could use one additional resource unit) and
objective value of z(y) = 97. Starting with this solution, we perform again pairwise
exchanges shown in Table 4.10.

Leaving
variable

Entering
variable

New solution ΔR Δz

y2 y1 1, 0, 1, 1, 0, 1 −4 + 2 = −2 −20 + 12 = −8
y2 y5 0, 0, 1, 1, 1, 1 − 4 + 5 = 1 −20 + 24 = +4

1, 1], which uses all 19 resource units that are available, and has a value of the
objective function of z(y) = 101. With this new benchmark solution, we start

Leaving
variable

Entering
variable

New solution ΔR Δz

y3 y1 1, 0, 0, 1, 1, 1 − 6 + 2 = −4 −31 + 12 = −19
y3 y2 0, 1, 0, 1, 1, 1 −6 + 4 = −2 −31 + 20 = −11
y4 y1 1, 0, 1, 0, 1, 1 − 3 + 2 = − 1 −17 + 12 = −5
y4 y2 0, 1, 1, 0, 1, 1 −3 + 4 = +1:

infeasible

y5 y1 1, 0, 1, 1, 0, 1 −5 + 2 = −3 −24 + 12 = −12
Y5 y2 0, 1, 1, 1, 0, 1 −5 + 4 = −1 −24 + 20 = −
y6 y1 1, 0, 1, 1, 1, 0 −5 + 2 = −3 −29 + 12 = −17
y6 y2 0, 1, 1, 1, 1, 0 −5 + 4 = −1 −29 + 20 = −9

At this point, all feasible pairwise exchanges result in decreases of the value of the
objective function, so that the procedure terminates. Note that the fact that all
resource units happen to be used is a coincidence.

It is also worth pointing out that the Greedy procedure alone may result in very
poor solutions. As an example, consider the problem
 P: Max z = 10y1 + 8y2 + 7y3
 s.t. 54y1 + 48y2 + 47y3 ≤ 100
 y1, y2, y3 = 0 or 1.

The ranking of the variables is y1, y2, and y3 in that order. Setting the highest-
ranked variable y1 to 1 consumes 54 resource units and achieves an objective
value of z = 10. No other variables can be set to one, as only 46 resource units
remain. However, the solution y = [0, 1, 1] has an objective value of z = 15, much

Table 4.10a: Second swap move

Again, it was possible to improve the solution. The new solution is y = [0, 0, 1, 1,

another series of potential improvements.

Table 4.10b: Third swap move

165

superior to the solution obtained by the Greedy algorithm (without subsequent
Swap procedure). To see that Greedy alone without any improvement follow-up
may reach an objective value of only half the optimum, consider the problem

 P: Max z = 1.01y1 + 2y2
 s.t. 1.001y1 + 2y2 ≤ 2
 y1, y2 = 0 or 1.

The Greedy algorithm will find the solution y = [1, 0] with the objective value of
z = 1.01, while the optimal solution is y = [0, 1] with the value of the objecive
function z = 2.

Exercises
Problem 1 (a one-dimensional cutting stock problem): A home building store
faces the following problem. Their customers demand half inch plywood in the
sizes 4 ft ×3 ft, 4 ft × 5 ft, and 4 ft × 6 ft. Customer demand for these three sizes is
estimated to be at least 20, 50, and 40 and customers are prepared to pay $7, $9,
and $10 for each of these sheets, respectively. The store must generate these sizes
by cutting up standard 4 ft × 8 ft sheets, each of which costs them $6. These sheets
are in unlimited supply. Furthermore, each cut costs the store $1.50. Formulate a
model that indicates to the decision maker how to cut up the 4 ft × 8 ft sheets so as
to maximize their profit. Clearly show the cutting patterns and define your
variables properly.

Solution: Since the widths are all 4 ft, we only have to consider a single
dimension. The cutting plan includes patterns with two 3 ft × 4 ft boards (and the
resulting 2 ft × 4 ft piece of waste), one 3 ft × 4 ft board and a 5 ft × 4 ft board
without any waste, and a single 6 ft × 4 ft board with the resulting 2 ft × 4 ft piece
of waste. The number of cuts performed according to these three patterns are
denoted by y1, y2, and y3, respectively. The problem can then be formulated as

 P: Max z = [7(2y1 + y2) + 9(y2) + 10 (y3)] – 6[y1 + y2 + y3] – 1.5[2y1 + y2 + y3]
 = 5y1 + 8.5y2 + 2.5y3

 s.t. 2y1 + y2 ≥ 20 (generate at least twenty 4 ft × 3 ft sheets)
 y2 ≥ 50 (generate at least fifty 4 ft × 5 ft sheets)
 y3 ≥ 40 (generate at least forty 4 ft × 6 ft sheets)
 1 2 3

Problem 2 (a 2-dimensional cutting stock problem): A planner has 30 sheets of
plywood of size 10 ft × 10 ft. They presently need 20 sheets in the shape of disks
of diameter 5 ft as well as 15 sheets of plywood in the shape of 4 ft × 6 ft
rectangles. The cutting patterns that are considered by the decision maker are
shown in Figure 4.11.

Exercises

 y , y , y ≥ 0.

4 Integer Programming 166

Figure 4.11

It costs $2.00 to cut a disk and $1.50 to cut a rectangle. This price includes all
required cuts and is independent of the pattern the shape is cut from. Alternatively,
we could purchase a disk at $4.50 and a rectangle for $3.00 each.

Formulate a linear programming problem that

• minimizes the cost of obtaining the required shapes,
• does not use more 10 ft × 10 ft sheets than are available
• produces the required numbers of disks and rectangles, and
• ensures that the cutting results in no more than 30% of waste.

Define all variables clearly.

Solution: Define yj, j = 1, 2, 3 as the number of times the j-th pattern is cut. In
addition, define variables y4 and y5 as the number of disks and rectangles that are
purchased.

 Min z = 8 y1 + 6y2 + 5.5y3 + 4.5y4 + 3y5
 s.t. y1 + y2 + y3 ≤ 30
 4y1 + 2y3 + y4 ≥ 20
 4y2 + 1y3 + y5 ≥ 15
 .2146y1 + .04y2 + .3673y3 ≤ .3(y1 + y2 + y3)
 y1, y2, y3, y4, y5 ≥ 0.

Problem 3 (neighborhood constraints in forestry modeling): This model
concerns planning in forestry. In particular, suppose that a land owner has a
number of parcels, which, for the sake of simplicity, can be thought of as a regular
grid. The idea is now to plan which of the parcels should be harvested. Once it has
been decided to harvest a certain parcel, it will be clearcut. One restriction is to
ensure that neighboring parcels should not be harvested, so as to ensure avoiding
huge clearcut areas that foster erosion and do not sustain wildlife. Suppose that the
parcels are arranged and numbered as shown in Figure 4.12.

167

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Figure 4.12

Model the neighborhood constraints that ensure that neighboring parcels are not
harvested.

Solution: Define binary variables yj that assume a value of 1, if parcel j is
harvested and 0 otherwise. The constraints we are interested in can then be
expressed as conditional constraints of the type “if parcel j is harvested, then its
neighbor k cannot be harvested,” which will then have to be expressed for all
neighbors of each parcel. As an example, consider the neighboring parcels 1 and 2.
Table 4.11 shows the four cases.

Table 4.11: Decision table

y1 y2 OK?
0 0
0 1
1 0
1 1 No

It is apparent that the only case that is prohibited is when both neighboring parcels
are harvested at the same time. As a result, the constraint that prevents the
undesirable case from happening, we formulate y1 + y2 ≤ 1. This type of constraint
has to be formulated for all pairs of neighbors, e.g., parcels 1 and 2, 1 and 5, 2 and
3, 2 and 6, and so forth. For the above problem, there are no less than 24 such
neighborhood constraints. If parcels that only share a corner are also considered
neighbors (such as parcels 1 and 6 or parcels 8 and 11), that will add another 18
constraints.

Problem 4 (a warehouse distribution problem): A decision maker has presently
three warehouses with capacities of 30, 10, and 50 units, respectively. Operating
the three warehouses incurs fixed operating costs of $25, $50, and $45,
respectively. The first warehouse could be expanded by up to 20 units for a cost of
$1 per unit capacity. It is also possible to close any of the existing warehouses, in
which case no operating costs are incurred at that site. Furthermore, two additional
sites have been identified, where new warehouses might be opened. The costs to
open the two new warehouses are $15 and $25, and their respective capacities are
20 and 30 units.

Exercises

4 Integer Programming 168

As far as demand goes, there are presently three customers with demands of 20,
60, and 40 units. These demands have to be satisfied exactly. The unit transportation
costs between the existing and potential warehouses and the customers are shown
in Table 4.12, where the first three supply points refer to the existing warehouses,
while the last two supply points symbolize the potential new warehouses.
Formulate and solve an integer programming problem that minimizes the total
costs.

Table 4.12: Unit transportation costs

 Customer 1 Customer 2 Customer 3
Warehouse 1 3 7 4
Warehouse 2 2 6 8
Warehouse 3 9 3 4
New warehouse 1 5 6 4
New warehouse 2 7 3 9

Solution: In order to formulate the problem, we need to define a number of
variables. First of all, we define binary variables y1, y2, y3, y4, and y5, which
assume a value of one, if the warehouse is kept open (for the first three existing
warehouses), or is newly opened in case of the last two warehouses. Furthermore,
we define the continuous variable w, which denotes the number of capacity units,
by which the first warehouse is expanded. In addition, we will define the usual
continuous variables xij as the quantity that is shipped from warehouse i to
customer j.

The objective function is then the sum of facility costs (operating costs for the
existing warehouses and opening costs for the planned new warehouses),
expansion costs for the first warehouse, and transportation costs. The facility costs
are, of course, only incurred if the facilities are actually opened, so that we have
25y1 + 50y2 + 45y3 for the existing warehouses and 15y4 + 25y5 for the new
warehouses. The expansion costs for the first warehouse are 1w. Finally, the
transportation costs are 3x11 + 7x12 + 4x13 + 2x21 + …+ 9x53.

Consider now the constraints. First there are the capacity constraints of the
warehouses. For instance, the second warehouse has a capacity of 10, provided we
keep it open. The variable that determines this is y2, so that the constraint states
that the flow out of warehouse 2 cannot exceed the capacity of the warehouse, or
x21 + x22 + x23 ≤ 10y2. The constraints for the other existing or planned
warehouses, except for the first, are similar. The capacity of the first warehouse
equals 30y1 plus the capacity of the expansion (if any), which is w. We also have
to specify that the expansion will only be undertaken if the warehouse is kept
open, as it is meaningless to decide to close warehouse 1 and then expand its
capacity. This is written as w ≤ 20y1. The reason is that if the warehouse is kept
open, we have y1 = 1, so that the constraint states that we can expand its capacity

1

of 20 units. On the other hand, if warehouse 1 is closed, y = 0 and the constraint

169

states that w ≤ 0, meaning that no expansion is possible. The demand constraints
then require the inflow into the customer sites to be equal to the demand at the
site. The complete formulation is then as follows:

 1 2 3 4 5
 + 3x11 + 7x12 + 4x13 + 2x21 + 6x22 + 8x23 + 9x31 + 3x32 + 4x33
 + 5x41 + 6x42 + 4x43 + 7x51 + 3x52 + 9x53

 s.t. x11 + x12 + x13 ≤ 30y1 + w
 x21 + x22 + x23 ≤ 10y2
 x31 + x32 + x33 ≤ 50y3
 x41 + x42 + x43 ≤ 20y4
 x51 + x52 + x53 ≤ 30y5

 w ≤ 20y1

 x11 + x21 + x31 + x41 + x51 = 20
 x12 + x22 + x32 + x42 + x52 = 60
 x13 + x23 + x33 + x43 + x53 = 40

 xij ≥ 0 for all i, j; w ≥ 0
 y1, …, y5 = 0 or 1.

Solving the problem results in keeping warehouses 1 and 3 open, while closing
warehouse 2. In addition, warehouse 5 will be opened, while warehouse 4 is not. It
was also decided to expand the capacity of warehouse 1 by 10 units. The
shipments are as follows: from warehouse 1, we send 20 units to the first and 20
units to the third customer, from warehouse 3 we send 30 units to customer 2 and
20 units to customer 3, and from the newly opened warehouse 5 we ship 30 units
to customer 2. The total cost of the operations are $505.

Problem 5 (choosing vehicles for a display): An impresario wants to put up an
exhibit featuring some antique cars. The vehicles potentially available are a
Bugatti, Cadillac, Cobra, Corvette, Pierce Arrow, and Studebaker. The impact of
the individual vehicles has been estimated in terms of the number of people who
would make a special trip to see a vehicle as 58, 37, 42, 40, 55, and 33. The
budget of the organizer is $15,000, and the costs to transport the automobiles to
the venue (they are presently located at different sites) and the costs of their
insurance (depending on the vehicles’ estimated value) are $6,000, $4,000,
$3,800, $4,200, $5,500, and $3,200. The obvious idea is to choose vehicles for the
exhibit, so as to maximize the impact, while staying within the budget. In
addition, there are some further requirements.

• Choose at least three vehicles for the exhibit.
• If a Corvette is included in the exhibit, then a Cobra must also be included.
• If a Bugatti is not included in the show, then a Cadillac must be included.

Exercises

P: Min z = 25y + 50y + 45y + 15y + 25y + 1w

4 Integer Programming 170

Solution: In order to formulate the problem, we first define binary variables y1, y2,
y3, y4, y5, and y6 that assume a value of one, if the 1st, 2nd, …, 6th vehicle is
included in the exhibit, and 0 otherwise. The formulation of the objective function
and the budget constraint are straightforward. Consider now the additional
requirements. The number of vehicles included in the exhibit is expressed as the
sum of all variables, so that we can write y1 + y2 + y3 + y4 + y5 + y6 ≥ 3.

The next step is the conditional constraint “if Corvette, then Cobra,” or, more
formally, “if y4 = 1, then y3 = 1 as well.”

y4 y3 OK?
0 0
0 1
1 0 No
1 1

The undesirable solution y4 = 1 and y3 = 0 can be avoided by including the
constraint y4 ≤ y3, which violates the undesirable solution, while it is valid in the
other three solutions.

Consider now the last requirement. The conditional constraint is “if not Bugatti,
then Cadillac,” or, equivalently, “if y1 = 0, then y2 = 1.” Again, consider the
decision table below.

y1 y2 OK?
0 0 No
0 1
1 0
1 1

The only solution that violates the condition is the one that has neither of the two
vehicles in the exhibit. In other words, at least one of the two vehicles must be in
the exhibit, so we can formulate y1 + y2 ≥ 1.

The formulation of the entire problem is then

 Max z = 58y1 + 37y2 + 42y3 + 40y4 + 55y5 + 33y6

 s.t. 6,000y1 + 4,000y2 + 3,800y3 + 4,200y4 + 5,500y5 + 3,200y6 ≤ 15,000
 y1 + y2 + y3 + y4 + y5 + y6 ≥ 3
 y4 ≤ y3
 y1 + y2 ≥ 1
 y1, y2, y3, y4, y5…, y6 = 0 or 1.

171

Table 4.13 displays solutions and objective values for a large variety of budgets. It
is apparent that there is no feasible solution for any budget strictly less than 11, as
we have to include at least three vehicles in the exhibit, and the three least
expensive cars, the sixth, third, and second vehicle, cost 3,200 + 3,800 + 4,000 =
$11,000. On the other hand, exhibiting all vehicles costs $26,700, so that any
budget at or above this level will enable the organizer to exhibit all vehicles. Also
notice the “granularity” of the solutions: an increase in the budget by $1,000
results in an increase in the objective value by 7 (if increasing the budget from
$11,000 to $12,000), by 14 (if the budget is increased from $12,000 to $13,000),
by 7 if the budget is increased from $13,000 to $14,000, and so forth.

Table 4.13: Solutions of the car exhibit problem for different budgets

Budget
(in
$10,000)

11 12 13 14 15 16 17 18 19

Cars
included

2, 3,
6

2, 3,
4

1, 3,
6

1, 3,
4

1, 5,
6

1, 3,
5

1, 2,
3, 6

1, 2,
3, 4

1, 3,
5, 6

z-value 112 119 133 140 146 155 170 177 188

Budget 20 21 22 23 24 25 26 27
Cars
included

1, 3,
4, 5

2, 3,
4, 5, 6

1, 2,
3, 4, 6

1, 3,
4, 5, 6

1, 2,
3, 4, 5

1, 2,
3, 4, 5

1, 2,
3, 4, 5

1, 2,
3, 4,
5, 6

z-value 195 207 210 228 232 232 232 265

Problem 6 (solving a problem via branch-and-bound): Consider the following
all-integer optimization problem:

 P: Max z = 7y1 + 7y2
 s.t. 6y1 + 7y2 ≤ 34
 10y1 + 6y2 ≤ 43
 y1 , y2 ≥ 0 and integer.

(a) Produce the solution trees for branching starting with y1 and y2, respectively.
(b) What would the optimal solution be, if the integrality requirement for y2 had

been dropped?
(c) What are the additional constraints that were introduced between the root of

the tree and the last integer solution found in the tree, assuming that branching
starts with y1?

(d) What would have happened, if the left child that resulted from the first branching
had an objective value of 34.8?

Exercises

4 Integer Programming 172

Solution: (a) The solution that starts branching on y1 is shown in Figure 4.13.

Figure 4.13

The solution tree that starts branching on y2 is shown in Figure 4.14.

Figure 4.14

The problem has actually three alternative optimal solutions. Note that in both
trees, branching 4 is necessary to complete the solution tree. The optimal solutions

173

are: 1y = 3 and 2y = 2, 1y = 2 and 2y = 3, as well as 1y = 1 and 2y = 4, all with a
value of the objective function of z = 35.

(b) In this case we would have had to start branching with y1, so that Figure 4.13

applies. The optimal solution would be the right child of the root of the tree,
i.e., solution 2y , which has 1y = 3 and 2y = 2.1667 with an objective value
of z = 36.1667.

(c) The additional constraints are y1 ≥ 3, y2 ≤ 2, and y1 ≤ 3.
(d) In both trees, we would never have branched from the left child of the first

branching.

Problem 7 (choosing the correct branch-and-bound tree): Consider the
following all-integer programming problem:

 P: Max z = 2y1 + y2
 s.t. −3y1 + 15y2 ≤ 45
 3y1 − 4y2 ≤ 9

1 2

Four solution trees have been developed by four different individuals, each
claiming that their tree is correct. The trees are shown in Figures 4.15a, b, c, and
d. However, only one of the trees is correct. Which one? For each solution tree,
write one sentence that explains why this is or is not the correct tree.

Figure 4.15a

y1 = 9 6/11

y1 = 9

infeasible

infeasible

Stop, opt.

y2 = 4 4/5
z = 22 4/5

y1 = 8 1/3
y2 = 4
z = 20 2/3

y1 = 8
y2 = 4
z = 20

y2 = 4 10/11
z = 24

y1 = 10

y1 ³ 10

y
2 ³ 5

y
1 ³ 9

y1 £
 9

y 2
£
4

y 1
£
8

y2 = 5 1/5
z = 21 1/5

Exercises

 y , y ≥ 0 and integer.

4 Integer Programming 174

Figure 4.15b

Figure 4.15c

y1 = 9 6/11

y1 ³ 10y1 £
 9

y 2
£

4 y
2

 4
y
1 ³

³

 9

y 1
£
8

y2 = 4 10/11
z = 24

y1 = 9
y2 = 4 4/5
z = 22 4/5

y1 = 8 1/3
y2 = 4
z = 20 2/3

Stop, opt.

y1 = 8
y2 = 4
z = 20

infeasible

infeasible

infeasible

infeasible

infeasible

infeasible

Stop, opt.

y1=9 6/11

y1=9

y 1
 £ 9

y 2
 £ 4

y 2
 £ 8

y
1 ³ 10

y
2 ³ 5

y
1 ³ 9

y1=8 1/3

y1=8
y2=4

y2=4 4/5

y2=4

y2=4 10/11
z=24

z=22 4/5

z=20

z=23 1/5

175

Figure 4.15d

Solution:
The solution tree in Figure 4.15a is false. The right child of the root of the tree is

not feasible. If the solution there had been correct, branching should have
continued at that node.

The solution tree in Figure 4.15b is false. The branching on the second level
should be y2 ≤ 4 (as is), but the branch to the right child should be y2 ≥ 5, not
y2 ≥ 4.

The solution tree in Figure 4.15c is false. The second branching leading to the left
child has the objective value increase from z = 224/5 to z = 231/3, which cannot
happen in a maximization problem.

The solution tree in Figure 4.15d is correct.

programming problem.

 P: Max z = 21y1 + 11y2 + 65y3 + 58y4 + 122y5
 s.t. 21y1 + 10y2 + 42y3 + 37y4 + 64y5 ≤ 640
 y2 ≤ 2, y3 ≥ 1, 1 ≤ y4 ≤ 2, y5 ≤ 2
 y1, y2, y3, y4, y5 ≥ 0 and integer.

Use the Greedy algorithm and a Swap interchange to find a solution.

Solution: Ordering the variables with respect to their objective function contribution
per resource unit, the order is y5, followed by y4, y3, y2, and y1. Before we start
increasing the values of the variables, we need to set the variables to their

y1=9 6/11

infeasible

Stop, opt.

infeasible

infeasible

y1=9

y 1
£ 9 y

1 ³10

y
2 ³ 5

y
1 ³ 9

y 2
£ 4

y 1
£ 8

y2=4
z =20 1/3

y1=8 1/3

y1=8
y2=4
z =20

y2=4 4/5
z =22 4/5

y2=4 10/11
z=24

Exercises

Problem 8 (heuristics: Greedy and Swap method): Consider the following integer

4 Integer Programming 176

minimum values, i.e. y3 = 1 and y4 = 1, so that we do not have to worry about
lower bounds anymore. This leaves us with 640 − 42 − 37 = 561 resource units.

We now start the allocation with y5. The upper bound is 2, so we set y5 = 2, which
leaves us with 561 − 2(64) = 433 resource units. The next best variable is y4. As its
upper bound equals 2 and its value already equals 1, we can only increase y4 by 1.
This leaves 433 − 1(37) = 396 resource units. The next valuable variable is y3. It
does not have an upper bound, so that we increase its value as much as the
remaining resource units allow. We have 396 units left, each unit of y3 requires 42
units, so that the largest value of y3 = 9. Increasing y3 by that value leaves us 396 −
9(42) = 18 resource units left. The next most valuable variable is y2, whose upper
bound is 2. However, the remaining resource units are only good for an increase
of 1. This leaves us 8 resource units, which are not sufficient for any other
increase. In summary, we have the solution y = [0, 1, 10, 2, 2], for which the
objective value z = 1,021 may be calculated.

In the Swap procedure we will decrease the value of a variable by one, thus
freeing some resources, which we then try to use by increasing the value of some
other variable. For instance, decreasing the value of y2 by one frees 10 units for a
total of 18, which is not sufficient to increase any other variable by an integer
amount.

Reducing the variable y3 by frees up 42 units, so that 42 + 8 = 50 resource units
are now available. Note that it also reduces the objective value by 65. Those
resource units may be used to increase the value of y1 by 2, which increases the
objective value by 42, not enough to make up for the loss of 65. Alternatively, we
may increase y4 by one, which increases the objective value by 58, also not
sufficient to make up for the loss.

We may now try to reduce the value of y4 by 1, freeing 37 resource units for a
total of 45. Note that the objective value decreases by 58 in the process. The
resource may now be used to increase y3 by one unit, which increases the value of
the objective function by 65. This represents a net gain of +7, so that we make this
change permanent. The new solution is now y = [0, 1, 11, 1, 2] with an objective
value of z = 1,028. Three resource units remain available.

The process would continue here. We terminate the procedure at this point. It so
happens that the solution found here is optimal.

H.A. Eiselt and C.-L. Sandblom, Operations Research: A Model-Based Approach, 177
DOI 10.1007/978-3-642-10326-1_5, © Springer-Verlag Berlin Heidelberg 2010

5 Network Models

Graph theory, the subject at the root of this chapter, dates back to 1736, when the
Swiss mathematician Leonard Euler considered the now famed “Königsberg
bridge problem.” At that time, there were seven bridges across the River Pregel
that ran through the city of Königsberg on the Baltic Sea, and Euler wondered
whether or not it would be possible to start somewhere in the city, walk across
each of the bridges exactly once, and return to where he came from. (It was not).
We will return to Euler’s problem in Section 5.5 of this chapter. Two hundred
years later in 1936, the Hungarian mathematician Denès König wrote the seminal
book “The Theory of Finite and Infinite Graphs,” that laid the foundations of
modern graph theory. The subject was first used by operations researchers in the
1950s, most prominently by L.R. Ford and D.R. Fulkerson.

5.1 Definitions and Conventions

The models discussed in this section are optimization problems on a structure
commonly known as a graph. A graph (for simplicity, we will refer to graphs also
as networks, even though many graph-theorists will disagree) consists of nodes
(sometimes referred to as vertices) and arcs (or edges). While many authors refer
to undirected connections as edges and directed connections as arcs, we will make
no such distinction here. The graph in Figure 5.1 is an example with the nodes n1,
n2, n3, n4, and n5 represented by circles and the arcs represented by directed or
undirected lines. Arcs are written as either aij or (ni, nj), whatever is more
convenient. A graph that contains only undirected edges is called an undirected
graph, one with only directed arcs is a directed graph (frequently referred to as a
network), and a graph that includes directed and undirected arcs is called a mixed
graph.

5 Network Models 178

Figure 5.1

A path is defined as a sequence of nodes and arcs that starts at a node and ends at
some node (possibly, but not necessarily, where it started). In the graph in Figure
5.1, the sequence n5 − a52 − n2 − a23 − n3 is a path. A cycle in a graph is defined as
a path that begins and starts at the same node. In the graph in Figure 5.1, the
sequence n1 − a14 − n4 − a43 − n3 − a31 − n1 is a cycle. A node ni is said to be
reachable from another node ni, if there exists at least one path from ni to nj. A
connected graph is a graph, in which each node is reachable from each other node.
The graph in Figure 5.1 is connected. A tree (or tree graph) is defined as a
connected undirected graph, with the property that the removal of any arc or edge
from it will render the graph disconnected. In that sense, a tree graph is the
minimalist connected structure. An example for a tree is shown in Figure 5.2. Also
note that there exists exactly one path between any pair of nodes in a tree.

Figure 5.2

Any other problem-specific notation will be introduced whenever it is needed. We
should mention that while all problems discussed in this chapter can be formulated
as integer programming problems and solved with any of the pertinent solvers,
such a process is typically inefficient and may hide internal structures that allow
the user to gain insight into the problem. Typically, specific network-based algorithms
are very efficient and outperform general-purpose integer programming solvers.
However, such specific methods depend on the network structure. Even a single
additional constraint may destroy the particular structure and will no longer allow

n1 n2

n3

n4 n5

5.2 Network Flow Problems 179

programming formulations.

5.2 Network Flow Problems
In its simplest form, a network flow problem can be described as follows. It starts
with a graph, in which an unlimited (or, at least, sufficiently large) quantity of a
homogeneous good is available at a node called the source, while as many units as
possible are to be shipped from the source through the network to another node,
named the sink, where these units are in demand. (Some authors call this an O – D
flow, which refers to the flow from origin to destination). Units can be shipped
through as many nodes as necessary, as long as they do not exceed the capacity
specified at each of the arcs in the network. It is assumed that there are no losses
anywhere in the network. Once the problem has been solved, the optimal flow
pattern indicates how many units are shipped on which arcs, and the optimal flow
value indicates how many flow units are shipped through the network.

One of the many examples deals with the evacuation of people from buildings,
convention halls, or even cities. As an example, consider the situation shown in
Figure 5.3.

Figure 5.3

The floor plan depicts a large exhibition hall with the squares denoting kiosks. An
escape plan is needed for the auditorium on the left that has only one entrance
through the exhibit hall at the bottom left, labeled by ns at the bottom left of
Figure 5.3. From ns, people have to be evacuated through the exhibit hall towards
the door to the outside, marked by nt on the top right of Figure 5.3. The walkways
along the walls of the exhibit hall are fairly wide, and each of their segments
(from one corner to another) was shown to let up to 60 people per minute through

n2 n3 n6 nt

ns

n1 n4

n5 n8 n10

n7 n9

us to use the special algorithm, so that we have to return to standard integer

5 Network Models 180

in an emergency situation. The walkways in the center are narrower, so that only
40 people per minute can pass along each segment. The steps on some of the
outside segments shown by lines across the walkway, present additional obstacles,
so that these segments only allow 30 people per minute to pass through them. The
question is now how many people can pass through the exhibition hall in each
minute. Given the capacity of the auditorium, it can then be computed how long
an evacuation of the auditorium through the exhibit hall (from ns to nt) will take.
The graph in Figure 5.4 shows an image of the situation with the appropriate arc
capacities. The quest is now to find the largest possible flow from ns to nt.

Figure 5.4

A number of additional applications of flow problems can be found in Eiselt and
Sandblom (2000).

In order to formulate the problem, we first need to define variables. Here, the
continuous flow variables are xij, defined as the flow along the arc aij from ni
directly to node nj. Consider the example of Figure 5.4. Since all edges are
undirected, we need to define two variables for each edge, one for each direction.
Given that there are 17 edges, we will need 34 variables. (Some of the variables
can be ignored, though: we do not have to consider flows into the source, as the
entire purpose is to get as much flow out of there as possible. In other words, we
do not need to define x1s and x5s. Similarly, we do not need to consider flows out
of the sink). The objective will then maximize the flow through the network. This
flow can be expressed as the number of flow units that are sent out of the source.
In the example of Figure 5.4, this is xs1 + xs5. Alternatively, we can consider the
number of flow units that are sent into the sink, i.e., x6t + x9t.

As far as constraints are concerned, we have to consider two types. The first set of
constraints will have to ensure that no flow is lost at any of the nodes. Such

60

40

40

n1 n2

ns

n5 n4 n7

n9

n8 n10

n3 n6 nt

40

40 40

40 6040

30

30

30

30 60

60

60

60

5.2 Network Flow Problems 181

constraints are commonly called conservation equations, (flow) balancing equations,
or Kirchhoff node equations in reference to their counterpart in electrical networks.
They are formulated by requiring that the number of units that flow into a node
equals the number of units that flow out of a node. In the above example, the
conservation equation for the node n3 is x23 + x43 + x63 = x32 + x34 + x36.
Conservation equations have to be formulated for each node except for the source
and the sink. The second set of constraints are the capacity constraints that require
that the flow along each segment does not exceed the upper limit. Again, in this
example we have xs1 ≤ 60, xs5 ≤ 60, x12 ≤ 60, x21 ≤ 60, and so forth. Adding the
nonegativity constraints, a mathematical formulation has been obtained and the
problem could be solved with any off-the-shelf linear programming software.
Whenever available, specialized algorithms are, however, much faster, as they can
use the special structure of the problem.

Ford and Fulkerson were the first to describe a method to solve the maximal flow
problem. Their technique belongs to the large class of so-called labeling methods.
Labeling methods have been developed for many network models, and they all
have in common that they are very efficient. The idea of Ford and Fulkerson’s
incremental method is to (incrementally) increase the flow in forward arcs, and to
decrease the flow in backward arcs. Both of these steps are necessary in order to
reach an optimal solution. In order to illustrate, consider a “forward arc,” in which
we would like to increase the flow. If the capacity of such an arc is, say, 7, and the
present flow in the arc is 4, then we are able to increase the flow on this arc by the
present slack of 7 − 4 = 3 units. On the other hand, if a “backward arc” has a
capacity of 7 and a present flow of 4, we can decrease the flow on this arc by no
more than its present flow, i.e., by 4 units. This is the fundamental ideal of the
labeling technique. Starting with the source, the method attempts to label nodes
along arcs. The first part of a node’s label indicate the neighboring node it was
labeled from, while the second part of the label indicates the possible flow change
on the arc along which the labeling took place.

As in all procedures based on dynamic programming, the objective value―the
second part of the label―is determined by the objective value achieved so far plus
whatever contribution to the objective function has to be accounted for in this
step. More specifically, labeling a node nj from a node ni along an arc aij means
that the incremental flow that can be squeezed from the source to nj equals the
minimum of what incremental flow can be sent from the source to ni plus
whatever slack capacity we have along the arc aij.

Once all nodes that can be labeled have been labeled, the iteration comes to an end
in one of two states. We either have been able to label the sink, in which case a
breakthrough has occurred, or we were not able to label the sink, which is referred
to as a nonbreakthrough. If a breakthrough has occurred, we are able to increase
the flow through a network, while in case of a nonbreakthrough, the current flow
is maximal and the procedure terminates.

5 Network Models 182

The algorithm is best explained by means of a numerical

Example: Consider the network in Figure 5.5, whose numbers next to the arcs
indicate the capacity of the arc.

Figure 5.5

Suppose that the source ns is now labeled with (ns, ∞), indicating that we start at
the node ns, and so far, we can change the flow by any amount we choose. At this
point we could label either n1 and/or n2. Suppose we choose n1. Since we label the
node n1 from ns, the arc (ns, n1) is a forward arc and we attempt to increase its
flow. The capacity of the arc is 5, while its present flow is zero, meaning that we
can increase the flow in this arc by 5 units. This is indicated in the label of n1,
which is then (ns, 5). Now the nodes ns and n1 are labeled, and the process
continues. At this point, we have a large number of choices: we can either label n2
from the source ns, or label n2, n3 or nt from n1. Any technique that labels all nodes
from one node before moving on is referred to as breadth-first-search, while a
labeling strategy that attempts to move on a quickly as possible is called depth-
first-search. Suppose that we choose to label n2 from n1. Again, we are moving
with the direction of the arrow, so that this is a forward labeling step. The label of
the node n2 will then be (n1, min {5, 2−0}) = (n1, 2). The reason is that while we
could increase the flow from the source on some path (we don’t have to know at
this point which path) to n1 by 5 units, we can only ship two more units from n1 to
n2. At this point, n2 has been labeled and one of the many choices to continue
labeling is to label the sink nt from n2. The label of the sink nt is then (n2, min{2,
3−0}) = (n2, 2). Now the sink has been labeled, and we have achieved a
breakthrough.

Whenever a breakthrough occurs, we are able to increase the flow through the
network by at least one unit. In order to do so, we now have to retrieve the path on
which the flow change is possible. This is where the first part of the labels comes
in. In a backward recursion, we start at the sink nt. Its label indicates that its
predecessor is n2. Now the label of n2 shows that its predecessor was n1, whose

5.2 Network Flow Problems 183

predecessor, in turn, was ns. This means that we have successfully retrieved the
path ns – n1 – n2 – nt. This is the path on which the flow will be increased by 2
units, which is the second part of the label of the sink. The resulting flow pattern
is shown in Figure 5.6, where the arcs have two values: its capacity, and its
present flow.

Figure 5.6

We now delete all labels except the label of the source, and start anew. We can
again label n1 from the source ns, this time the label of n1 is (ns, min{∞, 5−2}) =
(ns, 3). From n1, it is possible to label the sink, whose label is then (n1, min{3,
4−0}) = (n1, 3). Again, we have obtained a breakthrough and the flow can be
increased by 3 units. The path on which this increase takes place is determined by
following the labels backwards from the sinks, which results in ns – n1 – nt. The
resulting flow pattern is shown in Figure 5.7.

Figure 5.7

5 Network Models 184

Again, resetting the labels, the process begins again. At this point, it is no longer
possible to label the node n1 from the source, as the flow has reached the capacity.
However, we can still label the node n2 with (ns, min{∞, 8−0}) = (ns, 8). From n2, we
can label the sink nt with the label (n2, min{8, 3−2}) = (n2, 1), and we have achieved
another breakthrough, on which the flow can be changed by one unit. The path
can be retrieved as ns – n2 – nt. The flow pattern is then shown in Figure 5.8.

Figure 5.8

The next iteration again starts by labeling the node n2 from the sink, which is
again our only choice. The label of the node n2 is now (ns, min{∞, 8−1}) = (ns, 7).
We can now label n3 from n2, so that the label on node n3 is (n2, min {7, 3−0}) =
(n2, 3). From n3, we can then label the sink with (n3, min {3, 5−0}) = (n3, 3), and
another breakthrough has occurred. The path on which the flow is changed can be
retrieved as ns – n2 – n3 – nt, and on all arcs along that path the flow is increased
by 3 units. The resulting flow pattern is then shown in Figure 5.9.

Figure 5.9

5.2 Network Flow Problems 185

Notice that so far, we have only used the forward labeling in the incremental
method. The next iteration commences by resetting the labels and restarting the
process. Given that the source is labeled as usual with (ns, ∞), the only choice is
now to label the node n2 with (ns, min{∞, 8−4}) = (ns, 4). From the node n2, no
forward labeling is possible. However, we can follow the arc from n1 to n2 against
the direction of the arc in a backward labeling step. This results in node n1
receiving the label (n2, min {4, 2}) = (n2, 2). From node n1, we can then either
label nt or n3. We choose n3, label it with (n1, min{2, 2−0}) = (n1, 2), and from n3,
we can then label the sink nt with (n3, min {2, 5−3}) = (n3, 2). Another
breakthrough has occurred, and the flow through the network can be increased by
2 units. The flow along which the flow will be changed is retrieved through
backward recursion as ns – n2 – n1 – n3 – nt, where the arc from n1 to n2 is used in
reverse direction. the new flow pattern is determined by increasing the flow in all
forward arcs on that path, while decreasing the flow in the solitary backward arc
on the path. The resulting flow pattern is shown in Figure 5.10.

Figure 5.10

In the next step, we start again by labeling the node n2 from the source, which
receives the label (ns, min {∞, 8−6}) = (ns, 2). At this point, further progress is
blocked. The only unlabeled node adjacent to the source is n1, and the arc (ns, n1)
is filled to capacity. From the node n2, further (forward) flow to n3 and nt cannot
be sent, as both arc flows are at capacity. Also, labeling node n1 from n2 is not
possible, as the arc flow on that (backward) arc is already at the lower bound of
zero. At this point we have labeled all nodes that can be labeled, and we were not
able to label the sink. This is a nonbreakthrough. This indicates that the present
flow pattern is indeed a maximal flow with a total flow of 11 units, the number of
flow units that leave the source and, since no flow is lost along the way, the
number of units that arrive at the sink. We would like to point out that this
maximal flow is not unique: sending one less unit from n1 to n3, and on to nt and
shipping it instead directly from n1 to nt results in a different flow pattern with the
same flow value.

5 Network Models 186

Assessing the situation, we find that we now have the set Ns = {ns, n2} of labeled
nodes, and its complement Nt = {n1, n3, nt} of unlabeled nodes. Observe that the
flows of all arcs that lead from a node in Ns to a node in Nt (here: the arcs (ns, n1),
(n2, n3), and (n2, nt)) are at capacity, while the flows of all arcs leading from a
node in Nt to a node in Ns (here: the arc (n1, n2)) are at the zero level. All arcs that
lead from a node in Ns to a node in Nt are said to be included in the minimal cut C.
In our example, C = {(ns, n1), (n2, n3), (n2, nt)}. Adding the capacities (not flows)
of all arcs in the minimal cut results in the value of the minimal cut, which, in or
example, equals 5 + 3 + 3 = 11. This leads to the famous

Theorem (Ford and Fulkerson): The value of a maximal flow equals the value
of a minimal cut.

The minimal cut constitutes a bottleneck in the network. If we want to increase the
capacities of some arcs in the network so as to be able to increase the flow through
the network, we have to increase the capacities of arcs that are in the minimal
cut(s). (Note that the minimal cut is not necessarily unique. As an example,
consider the network in Figure 5.11 with capacities next to the arcs. The broken
lines refer to the cuts C1 = {(ns, n1), (ns, n2)}, C2 = {(ns, n1), (n2, nt)}, and C3 =
{(n1, nt), (n2, nt)}. All cuts have a capacity equal to 5. Note that in case of multiple
cuts, the method described above will find only the minimal cut that is closest to
the source.

Figure 5.11

A variety of extensions of the maximal flow problem exists. One of the most
popular generalization is the min-cost feasible flow problem. Again, the idea is
very simple. In a network with a designated source and sink, each arc aij has a

3

C1

C2

C3

1

3

2 2

ns nt

n1

n2

5.2 Network Flow Problems 187

lower bound λij and an upper bound κij on the flow. (Recall that in the above max
flow problem all lower bounds were assumed to be zero). In addition, it is
assumed to cost cij dollars to send one unit of flow on the arc aij. The problem is
now to find a flow from source to sink that respects all lower and upper bounds on
the flows and that minimizes the total shipping costs.

As an example, consider the graph in Figure 5.12, where the numbers next to the
arcs symbolize the lower bounds λij, the upper bounds κij, and the unit costs cij.

Figure 5.12

The cost-minimizing flow problem has three types of constraints: the usual conser-
vation equations, along with the lower and upper bounds on each arc flow. This
specific problem can be formulated as follows.

s1 + 6xs2 + 2x12 + 2x13 + 5x1t + 6x24 + 7x2t + 1x32 + 3x34 + 6x4t

s.t. xs1 − x12 − x13 − x1t = 0
xs2 + x12 + x32 − x24 − x2t = 0
x13 − x32 − x34 = 0
x34 + x24 − x4t = 0
xs1

x32 ≥ 1
x1t ≥ 1
x2t ≥ 2
x4t ≥ 1
xs1 ≤ 7
xs2 ≤ 5
x12 ≤ 2

x13 ≤ 4
x32 ≤ 5
x1t ≤ 4
x34 ≤ 5
x24 ≤ 7
x2t ≤ 6
x4t ≤ 8

xij ≥ 0 for all arcs i, j.

Min z = 3x

 ≥ 3

5 Network Models 188

The solution can be obtained by any standard optimization package or specialized
algorithm. The optimal flow pattern is shown in Figure 5.13, the total flow from
source to sink is 4, and the associated total transportation costs are 47.

Figure 5.13

Further extensions are possible. One such extension has a required flow value f .
A typical network modification that accomplishes this requirement will simply
add an arc (nt, ns) with zero costs and lower and upper bound equal to f . The
original flow problem has then be reformulated as a circulation, in which the
conservation equations have to hold for all nodes, including the source and
the sink. Working with the mathematical formulation, all we have to do is add a
single constraint that requires that the flow value equals f . If f = 7 in the above
example, we either add the constraint xs1 + xs2 = 7, or, alternatively, x1t + x2t + x4t = 7
and re-solve. (In the above numerical example, the new solution will be the same
as that shown in Figure 5.13, except that an additional 3 flow units are shipped
from ns to n1 and on to nt).

It is now also possible to demonstrate how to cast the standard transportation
problem (see Section 2.2) into the mold of cost-minimal network flow problems.
In terms of the network, we will make the following modifications. In addition to
the existing origins and destinations, create an artificial source ns and artificial
sink nt. Connect the source with all origins, and connect all destinations with the
sink. (This type of problem reformulation can be used for all problems with
multiple sources and sinks). The lower bounds of all (source, origin) connections
are zero, while the upper bounds equal the supplies available at the respective
origin. Similarly, all (destination, sink) arcs have a zero lower bound and an upper
bound that equals the demand at the respective destination. Both types of arcs
have zero costs. The existing arcs that connect the origins and the destinations
have zero lower bounds and arbitrarily large upper bounds (except in cases, in
which capacities need to be considered), and carry the costs specified for the
original problem. Note that so far, the zero flow would be optimal, as none of the
arcs requires a flow greater than zero, and any flow from source to sink costs

5.3 Shortest Path Problems

189

money. In order to force flow through the network, we connect the sink with the
source by means of an artificial arc (nt, ns) that has zero costs, and an upper and
lower bound that are both equal to the minimum of the total supply and the total
demand at the sources and destinations, respectively. This way, the (sink, source)
arc forces as many flow units through the network as are in demand or are needed,
whatever is less.

Another possible extension includes capacity constraints at the nodes. Two
approaches are possible. The first uses the given network and modifies it so that it
includes node capacities. This can be accomplished by “splitting” all of the nodes
with node capacities. In particular, a node ni with node capacity κi is then replaced
by an “in-node” in′ into which all arcs lead that led into the original node ni, an
“out-node” in ′′ , out of which all arcs lead, that lead out of the original node ni.
Finally, the two new nodes in′ and in ′′ are connected by an arc (in′ , in ′′), whose
arc capacity is the original node capacity κi. What we have done in this approach
is simply to replace the node capacity by an arc capacity.

An alternative approach simply uses a mathematical programming formulation.
The number of flow units that flow through a node equals the number of units that
enter (and, as nothing is lost, leave) a node, and an appropriate additional
constraint is added. In the min-cost flow example of Figure 5.12 a capacity of,
say, 5 units through node n2 can be written as xs2 + x12 + x32 ≤ 5, or, equivalently,
by using the outflow, as x24 + x2t ≤ 5.

5.3 Shortest Path Problems
Similar to the maximum flow problem discussed in the previous section, shortest
path problems are easily described. Given a network with a prespecified source
and sink node as well as arc values cij that denote the cost (or distance, fuel, or any
other disutility) of traveling from node ni directly to node nj along arc aij, the task
is to find the shortest path from the source to the sink. The literature typically
distinguishes between one-to-one shortest path problems (those that search the
shortest path between source and sink), one-to-all shortest path problems (in
which the task is to find the shortest paths between the source and all other nodes
in the network), and the all-to-all shortest path problems (where the task is to
determine the shortest paths between all pairs of nodes). Clearly, it would be
possible―albeit inefficient―to use an algorithm for the one-to-one shortest path
problem and apply it repeatedly so as to solve the one-to-all and all-to-all shortest
path problems.

This section first describes a way to reformulate the one-to-one shortest path
problem, so that it fits into the mold of the cost-min feasible flow problem. It then
describes the workings of an all-to-all shortest path algorithm that is not only very

5 Network Models 190

efficient, but also needed in areas such as location models, where all shortest paths
have to be known before any location algorithm can even start.

First, we will discuss how to reformulate a shortest path problem as a min cost
flow problem. The idea is to force one flow unit through the network, and let the
optimizer find the cost-minimal, i.e., shortest, path. This is done by having lower
bounds of zero and upper bounds of one for all arcs, coupled with the actual costs
or distances specified for all arcs. So far, the optimal solution would be the zero
flow, as it is feasible and no cheaper solution can exist (at least not as long as the
arc distances are nonnegative). We then add the circulatory arc (nt, ns) with lower
and upper bound equal to one. This forces a single unit through the network and
will result in the desired solution. The graph transformation is shown in Figure
5.14, where Figure 5.14a shows the original graph with the distances or costs next
to the arcs, while Figure 5.14b has the lower bounds, the upper bounds, and the
cost/distances at the arcs.

 (a)

 (b)

Figure 5.14

As far as the mathematical formulation is concerned, we can use the usual min-
cost objective function, coupled with two sets of constraints. The first single
constraint ensures that exactly one unit leaves the source. The second set of
constraint are the usual conservation equations, which ensure that the flow unit
that leaves the source has only one place to go: the sink. In the example of Figure
5.14, the formulation would be as follows:

 Min z = 3xs1 + 7xs2 + 5x13 + 2x12 + 2x23 + 1x3t + 4x2t
 s.t. xs1 + xs2 = 1
 xs1 − x12 − x13 = 0
 xs2 + x12 − x23 − x2t = 0
 x13 + x23 − x3t = 0
 xij ≥ 0 for all i, j.

s1 + xs2 = 1 could be replaced by the constraint
x2t + x3t = 1, representing the flow into the sink.
Alternatively, the first constraint x

5.3 Shortest Path Problems 191

Shortest path problems have many real-world applications. In addition to the
obvious applications, in which the shortest path in a road network is to be found
(e.g., for GPS-based navigation systems), shortest path problems occur in
scenarios that seemingly have nothing to do with shortest paths. Instead, a process
has “discretized,” i.e., subdivided into a finite number of states that described the
system at that point in time. Each node of the network symbolizes a state of
the system, and an arc indicates a possible transition from one state to another.
The arc values show the amount of resources, such as time, money, or fuel, that a
transition takes.

A good example of such a problem deals with the problem of getting an aircraft

This problem is particularly relevant for fighter aircraft.

numbers in each node indicate the state the aircraft is in: the first component is the
ground speed in 100 mph, and the second number shows the aircraft’s altitude in

nodes describes a state the aircraft can be in with respect to speed and altitude, and
the arcs between these states indicate the possible transitions from one state to
another. The values next to the arcs show the time (in seconds) that is required to
make the transition from one node to another. For example, it takes five seconds
to bring the aircraft from the standstill position at (0, 0) to (1, 0), i.e., a speed of
100 mph at zero altitude (meaning on the runway). Suppose that it is desired to
bring the aircraft from a standstill position to a speed of 500 mph and an altitude
of 4,000 ft as quickly as possible.

1,000 ft. Initially, the aircraft is at (0, 0), i.e., standing still on the ground. Each

As a numerical example, consider the situation shown in Figure 5.15. The two

from a standstill position to a certain speed and altitude in the fastest possible way.

5 Network Models 192

Figure 5.15

At each state in this example, the pilot has three options: either stay at the same
altitude and speed up, remain at the same speed and climb, or speed up and climb
simultaneously. The shortest path in the above example includes the nodes (0, 0),
(1, 0), (2, 0), (2, 1), (2, 2), (3, 2), (4, 3), and (5, 4). In other words, the instructions
to the pilot would state to bring the aircraft from a standstill position to a a speed
of 200 mph, then remain at that speed and climb 2,000 ft, then stay at that altitude
and speed up to 300 mph, and then accelerate and climb simultaneously to the
desired speed of 500 mph and altitude of 4,000 ft. This way, it will take 39
seconds, the length of the shortest path, to reach the desired state.

One of the most popular techniques for the determination of shortest paths from
one node to all other nodes is Dijkstra’s technique that was first published in the
late 1950s. It is a highly efficient method that belongs to the class of so-called
label setting techniques (as opposed to other label-correcting techniques). The
main idea is to label the nodes ns, n1, …, with labels L(ns), L(n1), …, so that each
label consists of two parts. The first is the immediate predecessor of the node on
the shortest path known so far, and the second part is the length of the shortest
path known so far. Throughout the procedure, we distinguish between nodes that
have a temporary label and those with a permanent label. The label of a
permanently labeled node indicates the actual length of the shortest path from the
source to this node as well as the immediate predecessor on that path, while the
temporary label comprises the presently shortest known path and the node’s
immediate predecessor on it. In each step of the algorithm, one node with a

4

4

4

4

5 6

4

3

8

8

8

3

9

47 3

5

5

62,2 3,2

3,12,1

2,01,0 0,30,0

4,2

4,1

4,3 5,3

5,4

3,3

5,2

11

7

12

6

10

6

7 2

5.3 Shortest Path Problems 193

temporary label is chosen and its label made permanent. The upper bounds on the
estimates of the shortest paths to all direct successors of this node are revised, and
the process is repeated until the labels of all nodes are made permanent. It is
important to realize that Dijkstra’s method is only applicable to networks with
nonnegative arc lengths.

To initialize the method, assume that the source ns is labeled L(ns) = (ns, 0), while
all other nodes nj are labeled L(nj) = (nj, ∞). In the beginning, all nodes are
assumed to be temporary. The method now proceeds as follows. We choose the
temporarily labeled node whose (second part of the) label is minimal among all
temporarily labeled nodes. Ties are broken arbitrarily. The label of this node is
then made permanent. Suppose this node is ni. All of this node’s direct successors
are then investigated by comparing their second part of the label with the label of
ni plus the arc length of the arc aij. If the preset label of nj is smaller, we leave it
unchanged; if it is larger, we replace it by setting L(nj) = (ni, L(ni) + cij), i.e., by the
label of ni plus the length of the arc that connects ni and nj.

As an example of the procedure, consider the network in Figure 5.16.

Figure 5.16

As indicated above, in the initialization step (“Step 0”), we label the source as
L(ns) = (ns, 0) and all other nodes nj with L(nj) = (nj, ∞), and let all nodes be
temporary. The node with the lowest temporary label is the sink, so that it is
chosen and its label is made permanent. All computations discussed here are
summarized in Table 5.1, where the first time a label has been made permanent, it
receives a “*” and due to its permanent status, it is not listed again below.
Choosing ns to receive a permanent label means that the labels of its direct
successors n1, n2, and n3 may have to be revised (the labels of all other nodes
remain unchanged). Their present labels are compared with the label from ns,

5 Network Models 194

which is the source’s label (here: 0) plus the length of the arc from ns to the node
in question. For n1, the comparison is between ∞ and 0 + 5, which is 5, so that n1
is now labeled from ns, which is indicated in its new temporary label L(n1) = (ns, 5).
Similarly, the labels of the nodes n2 and n3 are (ns, 4) and (ns, 2), respectively.

We are now at the end of Step 1 in Table 5.1, where we choose the node with the
lowest temporary label. In this example, the node is n3, as it has the smallest label
with “2.” We now make this label permanent and revise the labels of its
successors n1, n2, and n5 in Step 2. The present label of the node n1 indicates that a
path of length 5 is already known from the source. If we were to label n1 from n3,
its label would be 2 + 2 = 4, which is shorter, so that the new label of L(n1) = (n3, 4).
For n2, we find that the presently shortest known path is of length 4 (its present
label), while labeling the node from n3 would lead us to a path of length of 2 + 6 = 8.
Since this new path is longer, we ignore it and leave the label of n2 unchanged.
Finally in this step, the present label of n5 indicates a path of length ∞ is known,
which is compared to the label the node would receive if labeled from n3, which is
2 + 8 = 12. This new label is shorter, so that node n5 receives the new label L(n5) =
(n3, 10).

This process continues until all nodes have been permanently labeled. The inter-
mediate and final results are shown in Table 5.1.

Table 5.1: Permanent and temporary labels during the Dijkstra method

Step

L(ns) L(n1) L(n2) L(n3) L(n4) L(n5) L(nt)

0 (ns, 0)* (n1, ∞) (n2, ∞) (n3, ∞) (n4, ∞) (n5, ∞) (nt, ∞)
1 (ns, 5) (ns, 4) (ns, 2)* (n4, ∞) (n5, ∞) (nt, ∞)
2 (n3, 4)* (ns, 4) (n4, ∞) (n3, 10) (nt, ∞)
3 (ns, 4)* (n1, 9) (n3, 10) (nt, ∞)
4 (n2, 5)* (n3, 10) (nt, ∞)
5 (n4, 7)* (n4, 9)
6 (n5, 8)*

The results in Table 5.1 can now be used to determine the tree of shortest paths
rooted at ns. This is done by choosing all permanent labels and connect the node
with its direct predecessor as specified in the label. In our example, the node nt has
n5 as its direct predecessor, so we introduce the arc a5t. The node n5 has n4 in its
label, so we introduce the arc a45, and so forth. The resulting arborescence is
shown in Figure 5.17.

5.3 Shortest Path Problems 195

Figure 5.17

The numbers next to the nodes are the lengths of the shortest paths from the
source ns to all nodes in the network.

Sometimes (as for instance in location models), it is required to determine the
paths between all pairs of nodes. Clearly, Dijkstra’s technique could be used by
considering one node as a source, determine the arborescence of all shortest paths
rooted at that node, and then repeat the process with all nodes as roots. This is
somewhat tedious, and there is a very efficient technique, called the Floyd-
Warshall method, that performs this task directly. All it requires are some matrix
operations. The method starts and works with the direct distance matrix C0, which
includes all node-to-node distances of the original problem. An iterative step in
iteration k can then be described as follows. In the first iteration, we use row and
column 1 as the key row and column. We then compare the shortest presently
known distance between node ni and node nj with a detour that uses node n1. The
shorter of the two distances is then used as the new shortest known distance. This
process is repeated for all pairs of nodes. That way, we reach the revised distance
matrix C1. We now use the second row and column as key row and column, and
compare all distances with the detour via n2. In the matrix, this is simply done by
comparing each element with the sum of its corresponding element in the key row
and key column. This process is repeated until all nodes have been used as detour
node once. The resulting matrix Cn (given that there graph has n nodes) is then the
matrix of shortest paths.

We will illustrate this procedure by means of an example. The graph and its
distances of the example are shown in Figure 5.18.

5 Network Models 196

Figure 5.18

The direct distance matrix of the mixed graph in the example is

C0 =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∞
∞∞

∞
∞

∞

05957
3084
50379
98037
547302
79720

Note that in case of undirected graphs, the direct distance matrix is symmetric. In
the first iteration k = 1, we will consider the node n1 as a possible detour node.
This is done by using the first row and column as the key row and column. This
row and column is copied without a change into the next matrix. For all other
elements, we compare the present distance with the one that uses n1 as a detour
node. As an example, the lowest known distance from n2 to n3 that is presently
known is c23 = 3. This is compared with the detour that uses node 1, i.e., the path
that uses the arcs (n2, n1) and (n1, n3), whose lengths are 2 and 7, respectively. In
other words, we now compare 3 with 2 + 7 = 9. Since the original length is
shorter, we keep it and continue with the next pair of nodes. Next, we compare the
distances from n2 to n4, without and with detour via n1. We find that c24 = 7 < 2 +
9 = c21 + c14, so that again, we make no change. We continue this way and find no
changes, until we reach the connection from n3 to n4. At present, c34 = ∞, i.e., there
is no direct connection. We compare this distance with the detour that uses n1, i.e.,
the arcs (n3, n1) and (n1, n4). Those distances are 7 and 9, so that we are now able
to reach n4 from n3 on a path of length 7 + 9 = 16. This turns out to be the only
change from matrix C0 to matrix C1, which is indicated in C1 by an asterisk.

5.3 Shortest Path Problems 197

C1 =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∞
∞∞

∞

∞

05957
3084
50379
98*16037
547302
79720

Starting now with C1, the process is repeated by using the second row and column
as key row(column) and comparing all known distances in C1 with the detour that
uses n2 as detour node. Again, we copy the key row and column without any
changes to C2. Here are some of the computations. For the connection from n1 to
n3, we presently have a length of 7, which we compare with the detour via node
n2, which has a length of 2 + 3 = 5, so that the new distance is shorter. Similarly,
the distance from n1 to n4 without the detour via n2 is 9, with the detour it is 2 + 7
= 9, a tie. The distance from n1 to n5 without the detour is ∞, with the detour, it is
2 + 4 = 6. The results are shown in the matrix C2, again with all changes indicated
by an asterisk.

C2 =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0*95*857
30*11*74*6
5*110379
*8*7*1003*5

547302
7*69*520

The remaining iterations are shown without further comment.

C3 =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

095857
3011746
5*1003*6*8
8710035
547302
769520

, C4 =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

095857
3011746
5100368
8710035
547302
769520

,

5 Network Models 198

C5 =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

095857
3011746
5100368
8710035
547302
769520

, and C6 =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

095857
30*8746
5*80368
8710035
547302
769520

The matrix C6 now includes the lengths of the shortest paths between all pairs of
nodes. We should note that it is also possible to construct a second set of matrices
parallel to the computations made above, so as to keep track not only of the
lengths of the shortest paths, but also the paths themselves. This is, however,
beyond the scope of this volume. Interested readers are referred to books, such as
Eiselt and Sandblom (2000).

5.4 Spanning Tree Problems
Similar to the models in the previous sections in this chapter, the problem behind
spanning trees is easily explained. Suppose there is an undirected graph that
includes the potential edges that connect the nodes of the graph. The values
associated with the edges indicate their costs. The problem is now to choose some
of the edges and include them in the solution, so that the costs are minimized,
while the network remains connected. This may result in a graph, in which the
path from one node to another leads through many intermediate nodes.

It is apparent that what we are looking for is a tree, as any graph with less edges
than a tree has will no longer be connected, while any graph that has one or more
edges than a tree will include at least one cycle, which is unnecessary.

Problems of this nature occur whenever it is very expensive to establish edges.
Typical examples are road networks, networks of power lines, or networks of
sewer tunnels. The example shown in Figure 5.19 shows all possible connections
that may be established, coupled with their respective costs.

5.4 Spanning Tree Problems

199

Figure 5.19

The task is now to find a subset of existing edges (the edges that belong to
connections that will actually be built), so as to minimize the total amount of
money necessary to connect all nodes with each other. The resulting connected
subgraph of the original graph with n nodes is a minimal spanning tree of the
given graph. Given that the result will be a tree, one can show that the optimal
solution will include exactly (n−1)edges.

A variety of solution methods exist for this type of problem. Here, we describe the
Kruskal technique, which was first published in 1956. Actually, the method is
nothing but a Greedy technique. However, while the Greedy heuristic typically
finds only approximate solutions, it is guaranteed to find an optimal solution for
this problem. It can be described as follows. We first sort the edges in order of
nondecreasing arc values, where ties are broken arbitrarily. Starting with the edge
that has the lowest arc value, we introduce one arc at a time, provided it does not
form a cycle with the already existing edges. The procedure continues until (n−1)
arcs are included in the solution.

In the example of Figure 5.19, we order the edges, which results in Table 5.2. The
table shows the edges and their costs in nondecreasing order.

Table 5.2: Edges of Figure 5.19 in order of their value

Arc a48 a6,12 a23 a78 a8,14 a12 a34 a6,11 a9,14 a24 a67

Cost 1 1 2 2 2 3 3 3 3 4 4
Inserted? No

Arc a38 a49 a5,14 a11,12 a26 a7,12 a8,12 a9,15 a16 a10,15 a27

Cost 5 5 5 5 6 6 6 6 7 7 8
Inserted? No No No No No No No No

5 Network Models 200

Table 5.2 (continued)

Table 5.2 indicates which edges are introduced and which are not. In order to
visualize the process, consider Figure 5.20. The solid lines are edges that are
introduced in the first nine steps, the broken-and-dotted lines are edges that are
introduced in the next two steps, and the dotted lines are edges introduced after
that. Note that after edge a13,14 is introduced, we have introduced 14 edges, and the
process terminates.

Figure 5.20

5.5 Routing Problems
Routing problems are among the most frequently used network models in practice.
We distinguish between two classes of routing models: arc routing and node
routing models. The first example of arc routing was provided by Euler and his
“Königsberg Bridge Problem” described at the beginning of this chapter. The idea
common to all arc routing problems is to find a tour in a given graph, so that each
arc is used on the tour exactly or at least once. Similarly, in node routing
problems, the idea is to find a tour that starts at some node and returns to it, while
using each node exactly or at least once in the process. Combinations of the two
classes are vehicle routing problems, which belong to the most difficult routing
problems.

Arc a13,14 a45 a12,13
Cost 8 9 9
Inserted? No No

5.5 Routing Problems

201

The best-known arc routing problem is the Chinese Postman Problem. The name
is due to Meigu Guan, who in the course of the “cultural” revolution in China was
assigned to the position of a postal worker in the early 1960s. There, he
considered the problem of a letter carrier, who would pick up the mail at some
point (a node in the street network), and deliver it to the individual households by
walking along each street at least once. The objective of the model is to minimize
total distance, and the constraints ensure that mail is delivered to the houses on all
streets of the network. While some version of the model are easy to solve, others
remain difficult. There are many important and popular applications of Chinese
Postman Problems, including street cleaning and snow removal. Clearly, those
problems are more difficult, as they will include hierarchies of streets, e.g.,
highways are typically plowed after a snowstorm before small neighborhood
streets.

Similar to arc routing, the field of node routing has a long history. It starts with
Hamilton’s “trip around the world” developed in 1856, a game in which players
have to find a tour that visits all desirable places (the nodes in a graph) at least
once. The best-known version of node routing is the famed traveling salesman
problem, surely one of the most popular models in all of operations research. The
story (not a real application, but a scenario that give the model its name) is that a
traveling salesman attempts to sell his goods in a number of cities in his region.
He must visit each city once and must return to the place he started from. In order
to have as much time as possible with the customers, the objective is to minimize
the total time (or distance) of the tour. Applications of traveling salesman
problems abound, many of them seemingly unrelated. One such example is the
drilling of holes into sheet metal with the use of an automated drill press. Drilling
the hole takes the same amount of time regardless of the sequence, in which the
holes are drilled, so that the objective is to minimize the amount of time it takes to
move the metal into the position, in which the next hole is to be drilled. This is
nothing but a traveling salesman problem.

Due to space limitations, we will only deal with traveling salesman problems in
this section. Good algorithms for some versions of the Chinese postman problem
exist, while the traveling salesman problem is notoriously difficult to solve.

At first glance, formulating a traveling salesman problem appears easy. We need
to formulate zero-one variables xij that assume a value of one, if the arc aij is part
of the tour, and 0 otherwise. The objective function is then simply to minimize the
sum of arc values, each multiplied with their respective binary variable. As far as
constraints go, we have to ensure that the traveling salesman tour enters each node
exactly once and that it leaves each node exactly once. In order to explain the
formulation, consider as an example the graph in Figure 5.21.

5 Network Models 202

Figure 5.21

The formulation as described above is then as follows:

Min z = 2x12 + 5x16 + 3x21 + 8x25 + 4x26 + 7x32 + 7x34 + 5x36 + 4x35 + 1x43 + 6x45 +

5x53 + 2x54 + 3x61 + 4x63 + 3x65

s.t. x12 + x16 = 1

x21 + x25 + x26 = 1

x32 + x34 + x35 + x36 = 1

x43 + x45 = 1

x53 + x54 = 1

x61 + x63 + x65 = 1

x21 + x61 = 1

x12 + x32 = 1

x43 + x53 + x63 = 1

x34 + x54 = 1

x25 + x35 + x45 + x65 = 1

x16 + x26 + x36 = 1

xij = 0 or 1 for all i, j.

The first six constraints in the above formulation force the outflow of each node to
be equal to one (meaning that the traveling salesman tour will leave each node
exactly once), while the second set of six constraints requires that the inflow into
each node equals one (meaning that the tour enters each node exactly once). If the
original graph would have direct connections between all pairs of nodes, the
above formulation would actually be identical to that of an assignment problem.
We know that for this type of problem, the zero-one constraints are satisfied
without us requiring them, so that the problem can be solved as a standard linear

5.5 Routing Problems 203

programming problem. The result we find includes the following nonzero
variables: 1655443362112 ====== xxxxxx , and all other variables equal zero.
The value of the objective function for this solution equals z = 16.

It is easily apparent that this solution does satisfy the constraints, but is not what
we were looking for: rather than one tour, the solution includes two subtours (n1 –
n2 – n1) and (n3 – n6 – n5 – n4 – n3). What we will have to add are so-called subtour
elimination constraints. There are different ways of doing this, but the most
efficient sets of such constraints require a huge number of constraints. To be
precise, for a graph of n nodes, there are 2n such subtour elimination constraints.
As a result, the modeler will refrain from including all of these constraints from
the beginning, but rather solve the problem without them. Then, if the solution has
no subtours, we are done. Otherwise, a single relevant subtour elimination
constraint is introduced. This is the process we follow here.

The idea is now this. First, we define Ns as the set of nodes in the chosen subtour,
and let sN denote the complement of this set. Note that the present solution has
no arc leading out of Ns to any node in sN . Therefore, we define a constraint that
requires at least one arc in the solution to lead out of a node in Ns to a node in sN .
In our example, choose the subtour (n1 – n2 – n1), so that Ns = {n1, n2} and sN =
{n3, n4, n5, n6}. The set {a16, a25, a26} includes all arcs that lead from Ns to sN , so
that we can formulate the constraint

 x16 + x25 + x26 ≥ 1.

We now solve the problem again with this additional constraint. Note that now
due to the additional constraint the “assignment structure” of the problem is lost
and it is necessary to include the zero-one requirements for all variables, which
makes the problem considerably more difficult. The optimal solution of the
problem is 1615443352612 ====== xxxxxx with an objective value of z = 16
(so apparently, there were alternative optimal solutions to the problem in the first
step). This means that our tour is (n1 – n2 – n6 – n1) and (n3 – n5 – n4 – n3),
meaning that we have successfully eliminated the previous subtour, but now have
a solution with another subtour, so that another subtour elimination constraint
must be added.

Given the subtour (n1 – n2 – n6 – n1), our sets are Ns = {n1, n2, n6} and sN = {n3,
n4, n5}, so that the set of arcs from Ns to sN is {a25, a63, a65}. The additional
constraint can then be written as

 x25 + x63 + x65 ≥ 1.

5 Network Models 204

Solving the problem again results in the solution == 2116 xx 4332 xx = 54x= 165 == x
with a value of the objective function z = 21. This solution includes the tour (n1 –
n6 – n5 – n4 – n3 – n2 – n1), which no longer includes a subtour. Thus this is the
optimal solution.

While this procedure may be feasible for small and medium-sized problems, it is
not for large-scale applications. Here, we may resort to heuristic algorithms. In the
simplest case, we may use the Greedy algorithm to find a tour. In this application,
we would start the Greedy algorithm with some node, find the nearest neighbor
(provided it does not result in a subtour), move on to the next neighbor, again
avoiding, subtours, and so forth. Note that the number of degrees of freedom is
constantly decreasing while we make choices. (Not that there is anything new in
that: Whenever you make a choice such as spending money on some item, you
will have less choices, i.e., money, for future decisions).

In order to explain the procedure, consider the distance matrix

 D =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

049478
403271
520386
438045
869403
623740

Arbitrarily starting with the node n1, the nearest neighbor, i.e., the smallest
element in the first row of D (other than the element d11 = 0, which would just
lead from n1 back to itself), is the connection to n5 at a distance of 2. From n5, i.e.,
in row 5 of the matrix, the nearest neighbor is n1 at a distance of 1. However, this
connection would create a subtour, so we look for the next-shortest distance. It is
the link from n5 to n3 with a distance of 2. From n3, the nearest neighbor is n5 with
a distance of 3, but going back to n5 would create a subtour. The next shortest
distances are those to n2 and n6, both with a distance of 4. Any tie-breaking rule
can be used, here, we choose n2. From n2, the nearest neighbor is n1, which cannot
be chosen, as it would create a subtour. The next-nearest neighbor is n3, which
cannot be chosen for the same reason. The next-nearest neighbor is n5, which is
also not eligible. The next-nearest neighbor is n6 at a distance of 8, which must be
chosen. Note how the lack of degrees of freedom forces us to choose undesirable
links at the later stages of the algorithm. Actually, at this point there is no degree
of freedom left, and we have to continue on to n4, the last remaining node, and
from there return to n1. The two distances are 9 and 6, respectively, so that the
entire tour is of length l = 31. In summary, the tour is n1 – n5 – n3 – n2 – n6 – n4 − n1.

205

In a “Phase 2” procedure, we can now attempt to improve the solution found
earlier. One way to do this is a “pairwise exchange” or “swap” method. It very
simply exchanges two (usually, but not necessarily, adjacent) nodes on the tour.
In the above tour, we may try to avoid the long distance from n6 to n4 by switching
the order, in which these two nodes are visited on the tour. Doing so results in the
tour n1 – n5 – n3 – n2 – n4 – n6 − n1, which has length l = 30, which is better,
so that this new tour becomes the starting point for further improvements.

Starting with the new tour, we may now attempt to avoid the direct connection
from n2 to n4, which is also a very long leg of the tour. Switching the order of
these two nodes results in the tour n1 – n5 – n3 – n4 – n2 – n6 − n1, which is of
length l = 36. This is higher than the previous (best known) solution, so that the
switch is not made. This swap process can be continued, until no swap change is
able to further decrease the length of the tour.

It is sometimes useful to use what is known as a multistart procedure. This means
that rather than starting with some random node (n1 in the above example), finding
a solution and then trying to improve it, we may try out all different nodes as
potential starting points. With each such node, we obtain a tour. We would then
choose the best tour, and try to find improvements from there.

In the above example, we could use the Greedy algorithm to find tours starting
with each of the six nodes. In addition to the tour that starts with n1, which has
already been determined above, we obtain the tours n2 – n1 – n5 – n3 – n6 – n4 − n2

of length l = 28, n3 – n5 – n1 – n4 – n6 – n2 − n3 of length l = 23, n4 – n5 – n1 – n2 –
n3 – n6 − n4 of length l = 24, n5 – n1 – n4 – n3 – n2 – n6 − n5 of length l = 23, and
n6 – n3 – n5 – n1 – n4 – n2 − n6 of length l = 27. The tours that start with n3 and n5 are
best, and the swap process would start with them. Any of these heuristic procedures
is computationally cheap and, once some tour has been obtained, the process can
be terminated at any point in time.

Exercises
Problem 1 (maximal flow algorithm, minimal cut): Consider the network in
Figure 5.22, in which the numbers next to the directed arcs denote the capacity of
the arcs.

Exercises

5 Network Models 206

Figure 5.22

Use the method by Ford and Fulkerson to determine a maximal flow. Show the
flow pattern. What is the value of the maximal flow? Which arcs are in the
minimal cut you have found?

Solution: Starting with a flow of zero at all arcs, we first increase the flow on the
following paths:
 path (ns, n1, nt): 6 units,
 path (ns, n2, n4, nt): 6 units,
 path (ns, n3, n5, nt): 6 units, and
 path (ns, n5, nt): 3 units.
The flow pattern is then shown in the network in Figure 5.23, where the two
numbers next to the arcs indicate the arc’s capacity and its present flow,
respectively.

6

8

2

6

8

3

7

6

8

4

5

5

4

9

9

ns n2 nt

n3

n1

n5

n4

207

Figure 5.23

The next step consists of an increase the flow on the following two paths:
 path (ns, n3, n2, n1, nt): 2 units, and
 path (ns, n2, n1, n4, nt): 1 unit.
The resulting flow pattern is shown in Figure 5.24.

Figure 5.24

At this point, there are no more degrees of freedom, and labeling can only be done
on the path (ns, n5, n3 (backward labeling at this point), n2, n1, n4, nt). The flow on
this path can be changed by one unit, resulting in the flow pattern shown in the
network in Figure 5.25.

Exercises

5 Network Models 208

Figure 5.25

Starting with the pattern in Figure 5.25, we can label the nodes ns, n3, and n5. At
this point, a nonbreakthrough occurs, and we can conclude that the flow pattern in
Figure 5.25 is maximal. The corresponding flow value is 25. The minimal cut
include the capacities of all arcs that lead from labeled to unlabeled nodes. Here
the minimal cut includes the arcs (ns, n1), (ns, n2), (n3, n2), and (n5, nt). Note that
the Ford and Fulkerson method only finds the cut that is closest to the source. In
this example, another minimal cut exists with arcs (ns, n1), (n2, n1), (n2, n4), and
(n5, nt); yet another cut is (n1, nt), (n4, nt), (n5, nt).

Problem 2 (formulation of a feasible flow problem with node constraints):
Consider the network shown in Figure 5.26, where the numbers next to the arcs
consists of the lower and upper bound on the flow in the arc, while the double-
digit numbers next to the arcs indicate the per-unit cost of the flow through the
arc.

209

Figure 5.26

In addition, we want to ensure that a total of 5 units flow from the source to the
sink and exactly two units flow through the node n3. Formulate.

Solution: Defining variables xij as the flow from node i to node j on the arc
connecting the two nodes, we can formulate the problem as follows.

P: Min z = 20xst + 50xs1 + 40xs2 + 20x12 + 50x13 + 60x1t + 20x21 + 50x23 + 40x2t +
30x3t

 s.t. xst + xs1 + xs2 = 5 (forcing 5 units through the network)
 xs1 + x21 − x12 − x13 − x1t = 0 (conservation equation for node n1)
 xs2 + x12 − x21 − x23 − x2t = 0 (conservation equation for node n2)
 x13 + x23 − x3t = 0 (conservation equation for node n3)
 x13 + x23 = 2 (or, equivalently, x3t = 2: forces a flow of 2 through node n3)

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

≤
≤
≤
≤
≤
≤
≤
≤
≤
≤

4
6
7
3
6
6
2
4
3
4

3

2

23

21

1

13

12

2

1

t

t

t

s

s

st

x
x
x
x
x
x
x
x
x
x

 (upper limits on arc flows)

Exercises

5 Network Models 210

⎭
⎬
⎫

≥
≥

2
1

1

1

t

s

x
x

 (lower limits on arc flows)

 xij ≥ 0 for all variables.

The optimal flow pattern is shown in Figure 5.27, where the numbers next to the
arcs are the arc flows. The total cost for the flow pattern are $480.

Figure 5.27

Changing the requirement regarding the throughput of node n3 from “exactly 2
units” to “at most 2 units” results in a flow of 3 units on the arc from ns to nt, and
2 units on the path from ns to n1 and nt. The total costs of this solution are $280.

Problem 3 (shortest path, Dijkstra method): Consider the network in Figure
5.28 and determine all shortest paths from ns to all other nodes.

211

Figure 5.28

Solution: Table 5.3 shows the labeling process.

Table 5.3: Labels of the nodes in the shortest path example

Step

L(ns) L(n1) L(n2) L(n3) L(n4) L(nt)

0 (ns, 0)* (n1, ∞) (n2, ∞) (n3, ∞) (n4, ∞) (nt, ∞)
1 (ns, 6) (ns, 2)* (n3, ∞) (n4, ∞) (nt, ∞)
2 (n2, 5)* (n2, 9) (n2, 11) (nt, ∞)
3 (n1, 8)* (n2, 11) (n1, 14)
4 (n3, 10)* (n1, 14), or

(n3, 14)
5 (n4, 13)

The tree with the shortest distances is shown in Figure 5.29. Note that in this
example, the tree is a simple path.

Exercises

5 Network Models 212

Figure 5.29

Problem 4 (shortest path, Floyd-Warshall method): Consider the network shown
in Figure 5.30.

Figure 5.30

Use the Floyd-Warshall algorithm to determine the shortest paths between all
pairs of nodes.

213

Solution: The direct distance matrix is

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∞
∞

∞

07924
0836

9803
23302
4620

The first two steps result in the following approximations (where the elements
with a “*” indicate changes and elements with a “=” indicate a tie in the step that
led to the new solution):

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∞
∞

∞

07924
0836

9803
23302
4620

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∞

∞

07924
*100836

9803
23302
4620

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0*5*524
*50*63*5
*5*603*5

23302
4*5*520

After this, there are no further changes, so that the last matrix is indeed the
shortest path matrix.

Problem 5 (minimal spanning tree): A manufacturing firm wants to connect its
nine plants by rail. The cost of establishing the line segments are shown in the
table below, where a number in row i and column j indicates the fixed costs to
connect plant i with plant j.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

02632476788483793
26051435461729184
32510259574332918
47432504222456366
67549542038625639
88617422380962715
48723345629603564
37912963562735023
93841866391564230

Solution: Putting the costs in nondecreasing order (ties are broken arbitrarily)
results in the sequence 15, 18, 22, 23, 25, 26, 27, 29, 32, 33, 35, 37, 38, 39, 42, 43,
45, 47, 48, 51, 54, 56, 61, 62, 63, 64, 66, 67, 72, 74, 84, 88, 91, 93, 95, and 96.

Exercises

5 Network Models 214

Starting at the beginning, we introduce connections (1, 4), (1, 7), (4, 6), and (1, 2)
with costs of 15, 18, 22, and 23. The next cheapest connection is (6, 7) with costs
of 25. However, plants 6 and 7 are already connected. the next connection is (8, 9)
with costs of 26, which we introduce. The next connection on the list is (2, 4) with
costs of 27. Plants 2 and 4 are already connected, so that we reject this connection
and continue. The next connection is (2, 7) with costs of 29, which is also
rejected. The next connection is (7, 9) with costs of 32, which is introduced. This
is followed by connection (3, 7) with costs of 33, which is introduced. This is
followed by the connections (2, 3) with costs of 35 and (2, 9) with costs of 37;
both of which are rejected. The connection (4, 5) with costs 38 connects two
previously unconnected nodes, and thus it is introduced. At this point, eight arcs
have been introduced and all plants are connected. Thus, an optimal solution has
been determined. Its costs are 207.

Problem 6 (heuristics applied to a traveling salesman problem): A pharma-
ceutical company uses glass containers to store their chemicals. Over time, they
reuse the containers, but if they do, they are required to clean them. The cleaning
costs depend on what was stored in the container before, and what will be stored
next. The cleaning costs of the six chemicals A, B, C, D, E, and F are shown in the
following matrix:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

061832
703469
312324
246155
839702
453560

For example, if chemical C is stored in a glass that was used for F before, then the
cleaning costs are 8 (from F to C, i.e., element (F, C), in the 6th row and 3rd
column.).

(a) Assume that presently, chemical D is stored in a container. Use the Greedy

algorithm to determine a sequence that has each of the six chemicals stored in
a container exactly once. (Ties are broken arbitrarily). Clearly specify the
sequence that results from the application of the Greedy algorithm. What are
the costs associated with the sequence?

(b) Use the pairwise exchange method to improve the solution determined under
(a). Examine all pairs until an exchange results in an improvement. Make this
improvement and stop (even though additional improvements may be possible).

215

Solution:
(a) Starting with D, we obtain the sequence D – E – C – F – A – B – D. The

length of the tour (here: the cost) is l = 1 + 4 + 2 + 2 + 6 + 9 = 24.
(b) In this application, the starting point at D is fixed. The following swap steps

can be made:
 Swap E and C. Result: D – C – E – F – A – B – D, length l = 31, reject.
 Swap C and F. Result: D – E – F – C – A – B – D, length l = 36, reject.
 Swap F and A. Result: D – E – C – A – F – B – D, length l = 26, reject.
 Swap A and B. Result: D – E – C – F – B – A – D, length l = 15, accept. This

solution becomes the new benchmark from which the swap steps continue.

Exercises

H.A. Eiselt and C.-L. Sandblom, Operations Research: A Model-Based Approach, 217
DOI 10.1007/978-3-642-10326-1_6, © Springer-Verlag Berlin Heidelberg 2010

6 Location Models

This chapter introduces the basic ideas of location models. We first provide a
short introduction to the subject and enumerate some of its major components.
This is followed by a detailed discussion of the major classes of location models.

6.1 The Major Elements of Location Problems
The origins of location theory are shrouded in history. The first to discuss location
models (and here, we use the term in the widest possible sense), were mathe-
maticians. One of the famous location-based puzzles (regarding the point in the

were investigated and solved by Torricelli and Fermat in the 17th century. The
geographer von Thünen wrote about his famed “von Thünen circles” regarding the
location of economic activities around a central place, and the German geographer
Weber wrote a treatise concerning location models early in the 20th century.
Hakimi (1964) introduced location models to the field of operations research. We
will encounter his famous theorem below. Since then, thousands of contributions
have been made by researchers from fields as diverse as mathematics, computer
science, geography, business administration, and economics.

While many of us have a pretty good idea what location problems are, let us take a
step back and examine its major components. The three main components of
every location model are space, customers and facilities. Supplies exist at the
facilities, demand occurs at the customer sites, and the goods are “somehow”
transported from the facilities to the customers. Let us now look at these
components in some detail.

We distinguish between two major classes of location models, those that occur in
the plane (or sometimes in three-dimensional space), and those that occur in
transportation networks. While not altogether correct, location models in the plane
tend to look at the problem from a macro point of view, while those models in
transportation networks investigate the scenario from a micro perspective. Location
problems in the plane are called continuous location models (as the facilities that
are to be located can be sited anywhere in the space under consideration) in

triangle from which the sum of distances to the triangle’s vertices is minimal)

6 Location Models 218

contrast to discrete location models, many of which occur in networks. In discrete
location models facilities can be located only at a finite number of points.

These two classes of problems are also different from the way the variables are
defined: determining the location of the variables in continuous models in the two-
dimensional plane requires the definition of variables (x1, y1), (x2, y2), … that
symbolize the coordinates of the facilities 1, 2, … . On the other hand, in network
models, we need a variable yj for each potential location that will assume a value
of one, if we actually do locate at site j, and 0 if we do not. This places continuous
location models into the field of linear or nonlinear optimization, while network
location models are typically formulated and solved as integer programming
problems.

As far as parameters go, we assume that the locations of our customers are known,
and so are their demands, which are commonly referred to as weights. Formally,
customer i (or, equivalently, customers at demand point i) are assumed to have a
weight of wi. In the 2-dimensional (Euclidean) plane, customer i is assumed to be
located at a point with coordinates (ai, bi), while in a network, customer i can be
found at node ni. Note that the points at which customers are located typically
represent either census units, towns, or other customer agglomerations.

Assume now that transportation takes place in the plane. While there exist many
different metrics and gauges, most authors use either rectilinear (or Manhattan)
distances, Euclidean or straight-line distances, or, sometimes, squared Euclidean
distances. Suppose that a customer is located at a point with coordinates (a, b),
while the facility is located at (x, y). The rectilinear or Manhattan distance
between the customer and the facility is then defined as |a – x| + |b – y|, i.e., it is
assumed that all movements take place parallel to the axes of the system of
coordinates. The Euclidean distance between the customer and the facility is
defined as 22)()(ybxa −+− , and the squared Euclidean distance between
these two points is 22)()(ybxa −+− . As an example, the Manhattan, Euclidean,
and squared Euclidean distances between the points (2, 3) and (7, 1) are 7, 29 ≈
5.3852, and 29, respectively.

In network models, it is common practice to assume that movements take place on
the shortest path between the customer and the facility. This means that the
shortest path algorithms (see Section 5.3 of this book) will typically have to be
applied before approaching a location model. In general, we will use the term
“distance,” by which we may mean the actual mileage between points or any other
disutility such as time or costs.

Other components of location problems include the following:

• the number of facilities (which may be fixed by the decision maker or may be

endogenous to the model),

6.1 The Major Elements of Location Problems 219

• the magnitude of the demand (which may be fixed, e.g., for essential goods,
or may depend on the proximity of the facility to the customer),

• the way customers are assigned to facilities (they either choose themselves, as
is the case in the context of retail facilities, which are customer choice
models, or firms allocate customers to their facilities in allocation models, as is
the case in deliveries from warehouses),

• the type of deterministic or probabilistic parameter we are dealing with,
• the single-level or hierarchical model (hierarchical models often exist in the

context of health care, with levels such as doctor, local clinic, and regional
hospital), where a higher-level facility can accomplish all tasks a lower-level
facility can. A clearly defined referral system is crucial in multi-level models,

• competitive or noncompetitive models (most competitive scenarios use game
theory as a tool and have firms compete in location, prices, and quantities).

One main component of any location model is the objective function pursued by
the decision maker. Until the mid-1970s, location models assumed that the
facilities to be located by the decision maker would be “attractive” to the
customers in some sense. That way, proximity to the customers was the main part
of the objective. Many facilities, however, do not fall into that mold. Consider, for
instance, a grocery store, a facility customers normally would consider desirable
to have in their proximity. However, as deliveries are made very early in the
morning, the same facility may very well be considered (at least partially)
undesirable. Clearly, power plants and landfills will be considered undesirable by
most customers. While a customer would attempt to “pull” a desirable facility
towards himself, he will attempt to “push” away an undesirable facility. In
addition to push and pull models, there are also “balancing” models, in which the
decision maker attempts to locate facilities so as to balance the business the
individual facilities have. This is often the case in the location of automobile
dealerships, motels of a chain, and fast food franchises, which are located so as to
avoid cannibalizing demand from its own (other) facilities.

Among the pull objectives, three classes have received most of the attention. The
first of these classes of models deals with covering objectives. The main idea is to
locate facilities, so that as many customers as possible are covered, i.e., within a
given distance of any of the facilities. Such objectives are often used for the
location of emergency equipment, i.e., ambulances, police stations, and fire
stations. The other two classes are center and median locations. In both of them,
the decision maker locates facilities so as to minimize a measure of distance. In
center problems, the planner will attempt to locate facilities, so that the largest
distance to customers is as small as possible. This objective was justified (in some
sense) by Rawls’s “Theory of Justice,” according to which the quality of a
solution is determined by the lowest quality of any of its components. While such

6 Location Models 220

objectives may be justified in the context of reliability systems, it takes an extreme
view and is strongly biased towards outliers. Median problems, on the other hand,
are probably the largest class in location models. Their objective is the minimization
of the weighted total distance. In other words, the distance between a customer
and his closest facility is determined (this can be considered a proxy for costs),
which is then multiplied by the magnitude of the customer’s demand. Considering
the distance as a proxy for the cost of shipping one truckload from the facility to
the customer (or vice versa), the customer’s demand then denotes the number of
truckloads to be shipped. The sum of all of these weighted distances is then a
proxy expression for the costs of the transportation of the goods to all customers.

Applications of location problems range from the location of schools to warehouses
and church camps, equipment for the removal of oil spills, warning sirens in towns in
case of floods, hurricanes, or tsunamis; bottling plants, landfills, newspaper transfer
points, sewage treatment plants, and many other facilities. Other applications include
nonphysical spaces. An example are brand positioning models, in which each
dimension of the space represents a feature that is deemed relevant to customers.
The features of each product will then determine its location in this feature space.
Similarly, each (potential) customer can be represented in the same space by his ideal
point, i.e., the point that has the features most preferred by the customer. Assuming
that each customer purchases the brand closest to his ideal point, it is then possible
to determine the estimated sales of each product. then it is also possible to relocate,
i.e., redesign, a brand so as to maximize the amount of demand it captures.

6.2 Covering Problems
The idea behind covering models is to locate facilities that provide some service
required by customers. If customers are positioned within a certain predefined
critical distance D from any of the facilities, then they are considered served or
“covered.” Two objectives for the location of facilities are to either cover all
customers in the network with the smallest number of facilities or, alternatively, to
cover as many customers as possible with a given number of facilities. Typical
examples of applications of covering models are found when emergency facilities
are to be located. Whether the facilities in question are fire stations, ambulances,
police cruisers, or any similar “facilities,” the objective is to maximize protection.
However, measuring protection is very difficult. In order to find an expression for
“protection,” we would need to know the value of responding to an emergency
from different distances or times. We can safely assume that an increase in the
time to respond to an area for fire protection will mean that the fire has a greater
chance to spread and it may reduce the chance to save property or a life if one is in
jeopardy. A similar argument applies to other types of protection. Unfortunately,
measurements of the value of protection are nearly impossible to make. In the case
of fire protection, standards of service have been suggested by the Insurance
Services Office that, when met, virtually guarantee an adequate level of protection

6.2 Covering Problems

221

or, at least, the lowest premiums for fire protection. For fire services the most
commonly used surrogate measure of performance is whether service can be
provided to areas within a prespecified distance or time. Here, we restrict
ourselves to covering problems on networks.

6.2.1 The Location Set Covering Problem

One of the first models that was developed to site emergency service facilities that
incorporates a maximum service distance standard is the Location Set Covering
Problem (LSCP) introduced in the early 1970s. The objective of the LSCP is to
locate the smallest number of facilities such that each demand node is “covered”
by one or more facilities. A demand node is said to be covered, if there is a facility
within a prespecified distance from the demand node. In the context of the
location of a fire hall, the decision maker could specify that a building is covered
(or sufficiently protected), if it is within 5 miles (or 7 minutes or some similar
measure) of the fire hall.

If we assume that the cost to purchase land and build a facility is roughly the same
for all nodes (or is small in comparison to maintaining each of the needed fire
crews), then the objective of using the least number of facilities is equivalent to
minimizing the cost of providing service to all demand.

Throughout this chapter, we will use the subscript i to denote customers, while the
subscript j is employed to denote facilities. For simplicity, we also assume that all

define dij as the shortest distance (or time, cost, or any other disutility) between
the demand node ni and the facility site at node nj. In addition, let the service
standard D denote the maximal service distance or time as specified by the

ij ij
if customers at node ni can be covered from a facility located at node nj, and 0
otherwise.

While it is possible to solve location set covering problems as integer programming
problems by using one of the standard commercial codes, it is usually a good idea
to apply a set of reduction rules that typically allow the user to dramatically
reduce the size of the problem and accelerate its solution. In quite a few cases, the
reduction rules actually solve the problem without us having to resort to an integer
programming problem at all.

The principles of the reduction technique are easily described, assuming that a

covering matrix C(D) is available.

decision maker. We can then define a covering matrix C(D) = (c), so that c = 1,

customers and facilities will be located at the nodes of the network. We can then

6 Location Models 222

• Essential Column. A column j is essential, if there exists a unit row (i.e., a
row with all zeroes and only a single “1”) with the “1” in column j. If an
essential column exists, then a facility must be located at the node nj.

• Dominated Column. A column j dominates a column k, if all elements in

column j are at least as large as those in column k. If a column is dominated,
it can be deleted.

• Dominated Row. A row i is said to dominate a row l, if all elements in row i

are less than or equal to those in row l. If a row is dominated, it can be
deleted.

The rationale behind the three rules is as follows.

In case of a unit row in, say, row i, with the “1” in position “j,” customer i can
only be covered by locating a facility at node nj. Since it is required to cover all
customers, we must locate a facility at node nj. Given that, we can then delete
column j (there is no need to locate another facility at the same node) and all
customers that have a “1” in column j, as the facility at node nj covers them and
we are not concerned with them anymore.

In case one column (i.e., potential facility location), say column j, has ones
wherever another column, say column k, does, and possibly a few more, then a
facility located at node nj will cover all customers that a facility at node nk could,
and possibly a few more. As a result, we would never locate a facility at node nk,
and hence it can be deleted.

Finally, we say that row i dominates row l, if all entries of row i are less than or
equal to those of row l. This means that if a facility covers customer i, then it also
covers customer l, but not necessarily vice versa. Loosely speaking, this implies
that customer i is more difficult to cover, so that we can delete the customer who
is easier to cover.

The individual rules can be applied repeatedly and in random order. If the
reduction terminates with no matrix remaining, an optimal solution has been
identified, and the problem is solved. If this is not the case, the reduced problem
will then have to be solved by integer programming.

6.2 Covering Problems 223

As an example, consider the network in Figure 6.1.

Figure 6.1

The matrix of shortest distances is

 n1 n2 n3 n4 n5 n6 n7 n8 n9
n1 0 5 11 14 6 12 14 20 18
n2 5 0 6 9 7 11 15 19 13
n3 11 6 0 9 11 5 16 13 7
n4 14 9 9 0 8 4 16 12 16
n5 6 7 11 8 0 6 8 14 17
n6 12 11 5 4 6 0 14 8 12
n7 14 15 16 16 8 14 0 7 9
n8 20 19 13 12 14 8 7 0 16
n9 18 13 7 16 17 12 9 16 0

Given a covering distance of D = 10, the covering matrix is then

 n1 n2 n3 n4 n5 n6 n7 n8 n9
n1 1 1 0 0 1 0 0 0 0
n2 1 1 1 1 1 0 0 0 0
n3 0 1 1 1 0 1 0 0 1
n4 0 1 1 1 1 1 0 0 0
n5 1 1 0 1 1 1 1 0 0
n6 0 0 1 1 1 1 0 1 0
n7 0 0 0 0 1 0 1 1 1
n8 0 0 0 0 0 1 1 1 0
n9 0 0 1 0 0 0 1 0 1

6 Location Models 224

It is apparent that there are no essential columns. As far as columns are concerned,
column 2 dominates column 1 which, in turn, can be deleted. Considering the
reduced matrix (i.e., the matrix after deleting column 1), we note that row 1
dominates rows 2, 4, and 5, so that rows 2, 4, and 5 can be deleted as well. The
reduced matrix is then

 n2 n3 n4 n5 n6 n7 n8 n9
n1 1 0 0 1 0 0 0 0
n3 1 1 1 0 1 0 0 1
n6 0 1 1 1 1 0 1 0
n7 0 0 0 1 0 1 1 1
n8 0 0 0 0 1 1 1 0
n9 0 1 0 0 0 1 0 1

We now repeat the procedure. First, there are still no essential columns. As far as
dominated columns are concerned, we find that column 3 dominates column 4, but
after the dominated column is deleted, there are no more dominated rows. The
next reduced matrix is thus

 n2 n3 n5 n6 n7 n8 n9
n1 1 0 1 0 0 0 0
n3 1 1 0 1 0 0 1
n6 0 1 1 1 0 1 0
n7 0 0 1 0 1 1 1
n8 0 0 0 1 1 1 0
n9 0 1 0 0 1 0 1

We are now unable to find any further essential columns, dominated rows or
columns. This means that we now have to solve this reduced problem by way of
integer programming. In order to do so, we define binary variables yj which
assume a value of 1, if a facility is located at node nj, and 0 otherwise. We are then
able to formulate the (reduced) LSCP as the following integer programming
problem.

 LSCP: Min z = y2 + y3 + y5 + y6 + y7 + y8 + y9
 s.t. y2 + y5 ≥ 1
 y2 + y3 + y6 + y9 ≥ 1
 y3 + y5 + y6 + y8 ≥ 1
 y5 + y7 + y8 + y9 ≥ 1
 y6 + y7 + y8 ≥ 1
 y3 + y7 + y9 ≥ 1
 y1, y2, …, y9 ≥ 0.

6.2 Covering Problems 225

The objective function minimizes the number of facilities that are located, and the
constraints ensure that at least one facility is located within reach of the
(remaining) customers 1, 3, 6, 7, 8 and 9.

First, we solve the problem as a linear programming problem, as often the solution
is integer without us requiring it, a property sometimes referred to as “integer
friendly.” In this example, the solution of the linear programming problem is

2y = ½, 3y = ¼, 5y = ½, 6y = ¼, 7y = ¾, and 098 == yy . The value of the
objective function for this solution is z = 2¼. Including zero-one conditions for all
variables results in the optimal solution 765 yyy == = 1 and all other variables
zero, i.e., facilities should be located at the nodes 5, 6, and 7. However, this
solution is not unique: other optimal solutions with three facilities locate them at
2, 3, and 7, or at 3, 5 and 8, or at 2, 3 and 8.

In order to further explore the problem, assume now that the distance standard is
changed to D = 9. The covering matrix is actually identical to that found for
D = 10. Suppose now that D = 8. The coverage matrix is then

 n1 n2 n3 n4 n5 n6 n7 n8 n9
n1 1 1 0 0 1 0 0 0 0
n2 1 1 1 0 1 0 0 0 0
n3 0 1 1 0 0 1 0 0 1
n4 0 0 0 1 1 1 0 0 0
n5 1 1 0 1 1 1 1 0 0
n6 0 0 1 1 1 1 0 1 0
n7 0 0 0 0 1 0 1 1 0
n8 0 0 0 0 0 1 1 1 0
n9 0 0 1 0 0 0 0 0 1

There is no essential column. However, column 2 dominates column 1, and
column 3 dominates column 9. As far as rows are concerned, row 1 dominates
rows 2 and 5, row 9 dominates row 3, and row 4 dominates row 6. Column 3 is
essential as it is the only facility location that can cover customers at node n9, so
that we must locate a facility at n3. Column 3 and row 9 can then be deleted. This
leaves us with the reduced matrix

 n2 n4 n5 n6 n7 n8
n1 1 0 1 0 0 0
n4 0 1 1 1 0 0
n7 0 0 1 0 1 1
n8 0 0 0 1 1 1

6 Location Models 226

Again, there is no essential column. However, column 5 dominates column 1 and
4, and columns 7 and 8 are equal, so that we retain either one. Row 1 dominates
rows 4 and 7, leaving us with

 n5 n6 n7
n1 1 0 0
n8 0 1 1

Now row 1 is a unit row, so that column 5 is essential. After removing it, columns
6 and 7 are identical, so that a facility can be located at either site. In summary, we
have now located facilities at n3, n5, and one of n6, n7, or n8. In other words, even
with a distance standard of D = 8, three facilities are sufficient to cover all
customers. Notice that it was not necessary to solve an explicit integer
programming problem at all, the reduction rules alone were sufficient to solve the
problem.

If the distance standard is reduced further to D = 7, four facilities are necessary to
cover all customers. These facilities will have to be located at n2, n3, n6, and n7, or
at n3, n5, n6, n7, or at n2, n3, n6, n8, or at n3, n5, n6, n8.

A further reduction of the distance to D = 6 results in five facilities being required
to cover all customers. The facilities will be located at n6, n7, n8, n9, and either n1
or n2.

In case the distance standard is set to D = 5, we need six facilities to cover all
customers. The facilities will be located at n1, n5, n6, n7, n8, and n9.

For a distance standard of D = 4, we need no less than eight facilities. In
particular, there will be a facility at each node, except for either node n4 or n6.

Once the distance standard is D < 4, there must be a facility at each node.

On the other hand, increasing the distance standard from the original D = 10 to
D = 11, we can determine that only two facilities are needed to cover all
customers. These facilities will be located at n5 and n7.

Finally, for any distance standard D ≥ 14, only a single facility is needed to cover
all customers. This facility will have to be located at the node n6. Note that this
solution is unique.

The results are summarized in Figure 6.2, which has the distance standard on the
ordinate and the number of facilities required to cover all nodes at the abscissa.

6.2 Covering Problems 227

Figure 6.2

6.2.2 The Maximal Covering Location Problem

In contrast to the location set covering problem discussed above, the Maximal
Covering Location Problem (MCLP) does not attempt the task to cover all
customers. Given a fixed number of p facilities, the task is to locate these facilities
so as to cover the largest possible number of customers. In addition to the
parameters defined in the previous section, we also need wi, which denotes the
number of customers (or the magnitude of the demand) at node ni.

As an illustration, consider again the example of the previous section with the
assumption that exactly two facilities are to be located. Furthermore, let the
covering distance be D = 10. The weights (i.e., the number of customers at a node)
are given as follows:

n1 n2 n3 n4 n5 n6 n7 n8 n9
120 160 100 110 130 140 190 220 200

In order to formulate the problem, we not only need the binary location variables

j i i
assumes a value of one, if a customer at node ni is covered by at least one facility,
and zero otherwise. The main reason for these additional variables is to avoid
double counting. The formulation of our problem is then

Max z = 120x1 + 160x2 + 100x3 + 110x4 + 130x5 + 140x6 + 190x7 + 220x8 + 200x9

 s.t. y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 = 2
 x1 ≤ y1 + y2 +y5
 x2 ≤ y1 + y2 + y3 + y4 + y5
 x3 ≤ y2 + y3 + y4 + y6 + y9
 x4 ≤ y2 + y3 + y4 + y5 + y6

y , but we also need coverage variables x , i = 1, …, n. A coverage variable x

10

8

6

4

2

0

1 2 3 4 5 6

6 Location Models 228

 x5 ≤ y1 + y2 + y4 + y5 + y6 + y7
 x6 ≤ y3 + y4 + y5 + y6 + y8
 x7 ≤ y5 + y7 + y8 + y9
 x8 ≤ y6 + y7 + y8
 x9 ≤ y3 + y7 + y9
 yj = 0 or 1 for all j and xi = 0 or 1 for all i.

Each term in the objective function will count all customers at a node being
covered, if and only if the node is covered by a facility. The main reason for the
use of the covering variables xi is to ensure that customers who are covered by
more than one facility will not be counted more than once. The first constraint
ensures that exactly 2 facilities will be located. The remaining constraints define
the coverage of a node. In particular, a node is considered covered, if there is at
least one facility within covering distance. In this example, consider the node n1.
This node could potentially be covered from a facility at node n1, n2, or n5. Its
covering constraint is x1 ≤ y1 + y2 + y5, which ensures that if there is no facility at
either n1, n2, or n5, then the right-hand side value of the constraint equals zero,
which forces the variable x1 to assume a value of zero as well. On the other hand,
if there exists at least one variable at any one of the three nodes, the right-hand
side value of the inequality is at least one, which renders it redundant, as x1 is
defined as a zero-one variable anyway. However, while x1 could assume a value of
either zero or one in such a case, the objective function includes the term 120x1
which is part of what is to be maximized. This pushes the value of x1 to as large a
value as possible, so that it will assume a value of “1,” whenever possible.

The optimal solution of the problem is 75 yy = = 1, meaning that we will locate
facilities at the nodes n5 and n7. All coverage variables except x3 equal one, and
the value of the objective function equals 270,1=z . This approach is viable for
smaller problems, but may fail for large problems due to the large number of
variables (which equals twice the number of nodes in the underlying network). So,
rather than solving the problem exactly, we may resort to a heuristic algorithm
that may, of course, not necessarily find an optimal solution. The heuristic we use
below is of the Greedy type in that it locates one facility at a time and in each step
it does so by locating the next facility, so as to maximize the number of additional
customers that are covered in that step. Being a heuristic, the myopic Greedy
procedure may not necessarily find an optimal solution.

The number of customers that are covered by a single facility located at one of the
nodes can then be determined by multiplying the coverage matrix by the vector of
weights from the left, i.e., compute wC(D). The j-th component of the resulting
vector indicates the number of customers that will be covered if a facility were to
be located at the node nj. In our example, we obtain

6.2 Covering Problems 229

[120, 160, 100, 110, 130, 140, 190, 220, 200]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

101000100
011100000
111010000
010111100
001111011
000111110
100101110
000011111
000010011

=

= [410, 620, 710, 640, 850, 700, 740, 550, 490]. The facility that serves most
customers is one that is located at n5, from where it covers 850 customers. Since
these customers are covered, we can most easily avoid double counting by
deleting the rows that belong to nodes, which are already covered by a facility at
n5. In our example, these are the nodes n1, n2, n4, n5, n6, n7. Deleting column n5 as
well (as we have already located a facility there), the reduced coverage matrix is

 n1 n2 n3 n4 n6 n7 n8 n9
n3 0 1 1 1 1 0 0 1
n8 0 0 0 0 1 1 1 0
n9 0 0 1 0 0 1 0 1

Multiplying this matrix with the remaining vector of weights [100, 220, 200] from
the left, we obtain [0, 100, 300, 100, 320, 420, 220, 300], whose unique maximum
is in the position that belongs to n7. That way, we cover an additional 420
customers and we can now delete the rows that belong to nodes n8 and n9 as well
as the column of n7. Since we have now exhausted our resources in the form of
two facilities, customers at n3 will remain unserved and we have succeeded
covering a total of 850 + 420 = 1,270 customers by locating the two facilities at
nodes n5 and n7. This, as we happen to know, is the optimal solution.

Typically, a construction heuristic such as Greedy will be followed by an
improvement heuristic. One such improvement heuristic is the swap-interchange
improvement heuristic. The idea is simple: in each step one facility is removed
from its present location and it is relocated to a site, at which there presently is no
facility. If such a move increases coverage, it is accepted, otherwise the search for
better solution continues until some stop criterion is satisfied.

We will illustrate this procedure by using again the example shown above. However,
since the Greedy heuristic already found an optimal solution, start with some other
nonoptimal solution. Suppose that we locate facilities at nodes n3 and n6. The two
facilities cover customers at the nodes n2, n3, n4, n6, and n9 and n3, n4, n5, n6, and
n8, respectively, so that all customers except those at nodes n1 and n7 are covered.

6 Location Models 230

We first try to remove a facility from its present location at n3 and move it to n1
instead. Such a move means that we lose coverage of customers at n2 and n9 for a
loss of 360 demand units, while the facility at the new location will cover
customers at n1, n2, and n5 (of whom customers at n5 were already covered by the
facility at n6), so that we gain 280 new customers. This indicates that our move
results in a net loss of 80 customers, so that the move is rejected.

Instead, we may try to relocate a facility from n3 to n2. A similar argument will
reveal the same loss of 80 customers, so this move is also rejected.

Yet another possibility is to relocate the facility from n3 to n4. This move results in
a net loss of 200 customers, so again, the move is rejected.

Consider now the relocation of a facility from n3 to n5. Again, the loss of
customers due to the removal of a facility from n3 equals 360 customers, while the
relocation of the facility at n5 will cover the previously uncovered customers at n1,
n2, and n7 for a gain of 470 customers, so that there is a total net gain of 110
customers. This means that the move is accepted, so that the new solution has
facilities located at n5 and n6. This process is repeated until no further
improvements are possible. Again, the swap method is a heuristic and as such is
not guaranteed to find an optimal solution.

We would like to conclude this section with a number of extensions of the basic
covering models discussed above. One possibility to deal with outliers (whose
coverage is very expensive) is to attempt to cover at least a certain proportion of
the population within a prespecified distance or time. For instance, one could
attempt to locate fire stations that has 90% of the potential customers within 8
minutes of the station.

Another important issue concerns congestion. Especially when resources are
scarce (e.g., ambulances), an important issue is what happens if a service call
arrives while the unit is presently busy. A possible way to deal with such
situations is the introduction of backup coverage. In other words, the decision
maker may try not just to cover each potential customer once, but try to cover a
certain proportion of customers more than once. The obvious question then
concerns the tradeoff between primary coverage for some people versus backup
coverage for others.

6.3 Center Problems
Another classical problem type comprises the so-called center problems. The
basic idea of all center problems is that they locate facilities so as to minimize the
longest distance between a customer and his closest facility. The underlying logic
of center problems is based on Rawls’s “Theory of Justice,” according to which

6.3 Center Problems

231

the quality of a solution depends on the least well-served entity. One of the problems
associated with the concept of centers is their exclusive focus on the customer
with the longest facility–customer distance. This can lead to highly undesirable
outcomes.

All center problems have an objective that minimizes the maximal (i.e., longest)
distance between the facility and any customer. In case of problems that involve
multiple facilities, the center objective minimizes the maximal distance between
any customer and its nearest facility.

Throughout this section, we assume again that all demand is clustered at the nodes
of the network (or at given points in the plane). We can then distinguish between
node centers, which are facility locations for which only the nodes are considered,
and absolute centers, in which case facilities may be located anywhere on the
network (including on arcs) or in the plane.

The need for this distinction is apparent by considering a graph with only a single
arc, at whose edges we have the nodes n1 and n2. Either node would serve as a
single node center (whose critical distance, i.e., the distance from the facility to
the farthest customer) equals the length of the arc. However, the point on the
graph that minimizes the maximal distance is at the center of the arc, from where
the longest distance to either customer is only half the length of the arc.

6.3.1 1-Center Problems

The simplest center problem is the 1-node center problem on a network. The
problem is to find a facility location, so as to minimize the maximal distance
between the facility and any of the customers. As an illustration, consider again
the graph in Figure 6.1 in the previous section.

Recall that the matrix of shortest distances was

 n1 n2 n3 n4 n5 n6 n7 n8 n9
n1 0 5 11 14 6 12 14 20 18
n2 5 0 6 9 7 11 15 19 13
n3 11 6 0 9 11 5 16 13 7
n4 14 9 9 0 8 4 16 12 16
n5 6 7 11 8 0 6 8 14 17
n6 12 11 5 4 6 0 14 8 12
n7 14 15 16 16 8 14 0 7 9
n8 20 19 13 12 14 8 7 0 16
n9 18 13 7 16 17 12 9 16 0

Again, the rows symbolize the customers, while the columns stand for the
facilities. If we were to position a facility at node n1, then the distances between

6 Location Models 232

the customers and the facility would be found in the first column. The longest
such distance is then the largest number in the first column, in our case 20.

A simple brute-force enumeration procedure now suggests itself for the determination
of a 1-node center on graphs: tentatively locate a facility at a node, determine the
distance to the farthest customers, repeat for all potential facility locations, and
choose the shortest distance. In other words, determine all column maxima in the
matrix, and chose the 1-center facility location as the column with the shortest
such distance. In our example, the column maxima are [20, 19, 16, 16, 17, 14, 16,
19, 18], so that the 1-node center is located at node n6 and the longest facility–
customer distance is 14.

Consider now the 1-absolute center problem in the plane with Manhattan
distances. This problem has a very simple closed-form solution. Assume that the n
customers are located at the points P1, P2, …, Pn with coordinates (a1, b1), (a2, b2),
…, (an, bn), and that the facility will be located at a point with the coordinates
(x, y). Note that regardless of the number of customers, the problem has only two
variables, viz., x and y.

In order to solve the problem, we need to define five auxiliary variables. They are

α1 = }{max ii
i

ba +

α2 = }{max ii
i

ba +−

α3 = }{max iii
ba −

α4 = }{max iii
ba −−

α5 = max {(α1 + α4), (α2 + α3)}.

The 1-absolute center is then located at (x, y) with coordinates

 x = ½(α3−α4) and y = ½(−α3−α4+α5) with longest distance z = ½α5,

and, alternatively,

 x = ½(α1−α2) and y = ½(α1+α2−α5) with longest distance z = ½α5.

As a numerical example, consider a problem with six customers, who are located
at the points P1: (0, 0), P2: (0, 3), P3: (1, 6), P4: (4, 5), P5: (4, 2), P6: (5, 0). We can
then calculate

6.3 Center Problems 233

 α1 = max {0+0, 0+3, 1+6, 4+5, 4+2, 5+0} = 9,
 α2 = max {−0+0, −0+3, −1+6, −4+5, −4+2, −5+0} = 5,
 α3 = max {0−0, 0−3, 1−6, 4−5, 4−2, 5−0} = 5,
 α4 = max {−0−0, −0−3, −1−6, −4−5, −4−2, −5−0} = 0, and
 α5 = max {(9 + 0), (5+5)} = 10.

The 1-absolute center facility location is then at

 x = 2½ and y = 2½ with z = 5, or, alternatively, x = 2, y = 2, with z = 5.

The Manhattan distances between the individual customers and the facility are 5,
3, 5, 4, 2, and 5 in case the facility is located at (2½, 2½), and they are 4, 3, 5, 5, 2,
5 in case the facility is located at (2, 2). It is apparent that the longest customer-
facility distance equals 5 in both cases.

6.3.2 p-Center Problems

This subsection considers node p-center problems in networks. The objective of
p-center problems is to locate a given number p of facilities, so that the longest
distance between any customer and its closest facility is as small as possible.
While, from a theoretical point of view, p-center problems are difficult, a simple
bisection method can be employed to solve p-center problems as a sequence of
covering problems.

The method commences with an initial guess of the covering distance D. We then
determine the smallest number of facilities required to cover all nodes given D.
The model to do so is, of course, the location set covering problem. Suppose that
the number of facilities required to cover all customers is p(D). If p(D) > p, then D
has to be revised upward; if p(D) ≤ p, then D can be decreased. This process
continues until a covering distance is found that cannot be reduced any further
without requiring additional facilities.

The initial interval];[DD must be sufficiently large to include the optimal

solution. An obvious choice of the lower bound is 0=D , while }max{)1(ijdnD −=

with the maximum taken over all edges in the network, is an upper bound on the
length of the longest path in the network. The reason is that no path in the network
can have more than (n−1) edges, and the length of each arc is no more than that
of the longest arc. Once lower and upper bounds on the covering distance are
determined, we apply a bisection search. This process can be described as follows.

6 Location Models 234

First we bisect the present interval],[DD and choose a covering distance D in the
center of this interval. In particular, we choose We then solve a
location set covering problem with the service standard D. The resulting number
of facilities required to cover all nodes is denoted by p(D). If p(D) ≤ p, then we
reduce the upper bound of the interval],[DD to DD = , otherwise we move up
the lower part of the interval to 1+= DD . Whenever the lower and upper bounds
of the interval are equal, we have found the optimal solution, in which case the
last-solved covering problem provides the location pattern of the facilities. As
long as DD ≠ , we determine a new covering distance D on the basis of the
interval],[DD with a new lower or upper bound. Then a new covering distance D
is computed as the center point of this interval and the procedure is repeated.

As a numerical illustration, consider the network in Figure 6.3 and assume that
p = 3 facilities are to be located.

Figure 6.3

We initialize the computations with a lower bound of D = 0 and an upper bound
of D = 7(9) = 63. Bisecting the interval results in the trial value of D = 31, for
which the set covering problem has a solution of p(D) = p(31) = 1, i.e., a single
facility, located anywhere, will cover all the nodes. As p(31) = 1 < 3 = p, we set
D := 31.

The results of the subsequent iterations are summarized in Table 6.1.

⎣ ⎦DD +(½D:=

6.4 Median Problems

235

Table 6.1: Bisection search to find a p-center solution in the example

Iteration

D D D p(D) Location

1 0 63 31 1 anywhere
2 0 31 15 1 anywhere
3 0 15 7 2 1 8 2 7 3 6
4 0 7 3 5 n1, n3, n4, then n7, and one of n1

and n6
5 4 7 5 2 (n1, n5), or (n1, n)
6 4 5 4 3 e.g., n1 and n5, and one of n3 and

n8
7 4 4 4 Stop, optimal.

6.4 Median Problems
As opposed to the center problems with their minimax objective discussed in the
previous section, this section is devoted to median problems which have minisum
objectives. In other words, they will locate facilities, so as to minimize the sum of
distances to the customers. This feature makes this type of objective amenable to
applications in the public and the private sector. Consider, for instance, the
location of a public facility such as a library. The municipal planner will attempt
to make the library as accessible as possible to all of its potential patrons. This
may be done by minimizing the average distance between the library and its
customers. It is not difficult to demonstrate that as long as the magnitude of the
demand remains constant, minimizing the sum of facility-customer distances is
the same as minimizing the average facility-customer distance.

6.4.1 Minisum Problems in the Plane

Throughout this section, we assume that the task is to locate a single new facility
anywhere in the plane. The n customers are assumed to be located at points P1, P2,
…, Pn with coordinates (ai, bi) and their demand is denoted by the weight wi. The
task at hand is now to locate a facility, whose coordinates are the variables (x, y).
Note that regardless of the number of customers in the problem, the model has no
more than two variables. As discussed above, the objective is to minimize the
weighted sum of customer-facility distances, a proxy of the total cost of the
transportation. This type of problems (in the plane) is frequently referred to as
Weber problem in reference to the work by the German economist-turned sociologist
Weber (1868 – 1958) that culminated in the publication of his book in 1909.

The simplest problem occurs when rectilinear distances are used. The objective
function is then separable, meaning that it is possible to optimize one variable at a
time. It turns out that the actual distances are irrelevant, it is only important how
the customers are located in relation to each other, but not how far from each

8

e.g., (n , n), or (n , n), or (n , n)

6 Location Models 236

other. Actually, the procedure is very simple. We first scan the customers from
left to right (or right to left) along the abscissa and add their weights, until the sum
of weights for the first time matches or exceeds half of the total weight. We then
repeat the process by scanning the facilities and adding their weights from top to
bottom (or bottom to top), until again the reach or exceed half the total weight for
the first time. The combination of the two coordinates is the location that
minimizes the sum of weighted rectilinear distances.

In order to illustrate the procedure, consider twelve customers P1, P2, …, P12,
whose locations are (a1, b1), (a2, b2), …, (a12, b12) and their weights are w1, w2, ..,
w12. The numerical values of the coordinates and weights are shown in Table 6.2.

Table 6.2: Locations and weights of customers in the example

Point Pj P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

ai 2 1 2 4 5 4 3 5 8 10 9 7
bi 1 4 5 2 4 6 7 9 9 10 5 2
wi 20 20 10 10 50 30 40 60 70 80 50 60

The arrangement of customers can be visualized in Figure 6.4.

Figure 6.4

First scan the abscissa. From left to right, customers can be rearranged as P2, then
P1 and P3, then P7, followed by P4 and P6, then P5 and P8, and so forth. Adding up
weights in that order results in 20 + (20 + 10) + 40 + (10 + 30) + (50 + 60) + … +
80. Given that the total weight, i.e., the total demand of all customers, equals 500,

6.4 Median Problems 237

we need to add up these values until, for the first time, they reach or exceed the
value of 500/2 = 250. This happens for customer P12 at the value x = 7. (The same
result is achieved if we were to add up values starting from the right). This
procedure is now repeated for the ordinate by adding up weights from either
bottom to top or top to bottom. From the bottom, we add 20 + (10 + 60) + (20 +
50) + (10 + 50) + 30, at which point we have reached the value of 250. This
occurs for customer P6 at y = 6, so that this is the optimal coordinate.

However, since the critical value of 250 was achieved exactly, there are alternative
optimal solutions. If we had added up weights from top to bottom, we would have
achieved the value of 250 for customer P7 at the coordinate y = 7, which is also
optimal. As a matter of fact, not only are the two points (x, y) = (7, 6) and (7, 7)
optimal, all points with x = 7 and y between 6 and 7 are optimal. The value of the
objective function can then be determined by computing the customer-facility
distances for all customers, multiplying them by the appropriate weights, and
adding them up. In our example, for the optimal location at (7, 6) we obtain the
total weighted distance 20(10) + 20(8) + 10(6) + 10(7) + 50(4) + 30(3) + 40(3) +
60(1) + 70(4) + 80(7) + 50(1) + 60(4) = 2,090.

Consider now the same example as before, but with the weights of P5 and P12
interchanged, i.e., w5 = 60 and w12 = 50. Now the optimized location is between
5 and 7 on the abscissa, and between 6 and 7 on the ordinate, so that all locations
in the rectangle with the corners at (5, 6), (5, 7), (7, 7), and (7, 6) are optimal.

Another model works with the same scenario and also minimizes the sum of
weighted distances. However, it uses squared Euclidean distances instead of
rectilinear distances. Again, the objective function turns out to be separable, so
that we are able to optimize for our variables x and y separately. Since these
variables are continuous, we can take partial derivatives, set them equal to zero,
and solve for the variables x and y. This process results in an optimal solution in
which the x-coordinate of the facility equals the sum of weighted x-coordinates of
the customers divided by the total weight, and similar for the y-coordinates. The
solution obtained by using squared Euclidean distances is the center-of-gravity of
the given points. As a numerical illustration, consider again the above example
with data shown in Table 6.1. Here, we obtain the optimal facility location at x =

602020
)60(7)20(1)20(2

++
+++

L

L = 3,140/500 = 6.28. The optimal y-coordinate is determined

in a similar fashion as y = 3,170/500 = 6.34. Note the difference between this
solution and that obtained by using rectilinear distances: despite the strong pull of
the customers with large weights in the Northeast corner, the solution that uses
squared Euclidean distances locates the facility more towards the Southeast than
the solution that uses rectilinear distances. This is due to the fact that by squaring
distances, long distances receive a heavy emphasis and the minimization function
will try to avoid them. In that sense, a minisum objective with squared Euclidean

6 Location Models 238

those of the minimax objective.

Using Euclidean distances, we can apply a similar approach. However, the objective
function is no longer separable. Setting partial derivatives to zero, we obtain the
optimality conditions

∑

∑

=

=

−+−

−+−
= n

i ii

i

n

i ii

ii

ybxa

w
ybxa

aw

x

1 22

1 22

)()(

)()(, and
∑

∑

=

=

−+−

−+−
= n

i ii

i

n

i ii

ii

ybxa

w
ybxa

bw

y

1 22

1 22

)()(

)()(.

Notice that in these two relations, the variables x and y appear on the left-hand
sides as well as on the right-hand sides. A “trick” first devised by Weiszfeld in
1937 is to use these relations in an iterative procedure. It starts with a guess (x, y),
inserts it on the right-hand side of the equations, computes new values for x and y
on the left-hand side, uses these values on the right-hand side to compute new
values on the left, and so forth.

As a starting point, it may be a good idea to use the center-of-gravity or the
solution given rectilinear distance. In order to demonstrate the Weiszfeld method,
consider the following numerical

Example: There are three customers at the points P1, P2, and P3 with coordinates
(0, 0), (3, 0), and (0, 5), respectively. The demands of the customers are w1 = 30,
w2 = 20, and w3 = 40. As a starting point, we use (x, y) = (5, 5), even though this is
quite an unreasonable initial point. The reason is that the optimal solution will
always be located in the triangle formed by the customers, and our starting point is
not. We have chosen this point to demonstrate that normally—there are
counterexamples, though—this technique converges very quickly. Before starting,
note that using rectilinear distances in this example results in an optimal facility
location at (0, 0), while squared Euclidean distances will locate the facility at
(⅔, 9

22).

Given a starting point with coordinates x = 5 and y = 5, we compute the next trial
point at

222222

222222

)55()50(

40

)50()53(

20

)50()50(

30
)55()50(

)40(0

)50()53(

)20(3

)50()50(

)30(0

−+−
+

−+−
+

−+−

−+−
+

−+−
+

−+−
=x ≈ .6982,

distances will find a solution that includes features of the usual minisum, and also

6.4 Median Problems 239

and

222222

222222

)55()50(

40

)50()53(

20

)50()50(

30
)55()50(

)40(5

)50()53(

)20(0

)50()50(

)30(0

−+−
+

−+−
+

−+−

−+−
+

−+−
+

−+−
=y ≈ 2.5068.

Given the new trial point (x, y) = (.6982, 2.5068)—which, incidentally, is quite
similar to the center-of-gravity determined earlier—we can then compute the next
trial point in similar fashion. It turns out to be (x, y) = (.5366, 2.3512), which is
quite close to the previous solution. This procedure terminates whenever some
stop criterion is satisfied, e.g., there is only a small change in the solution or the
value of the objective function.

A good tool that allows us envisage the forces that determine the solution is the
Varignon frame named after the French mathematician Varignon, 1654-1722.
Imagine a board, in which holes have been drilled at the points at which customers
are located. One string is fed through each hole and all strings are tied together in
one knot. Below the board, weights are attached to the strings, such that the
weights are proportional to the demand of the respective customer. Given only
gravity and in the absence of friction, the knot will then settle at the optimal point.
A graph of the Varignon frame is shown in Figure 6.5.

Figure 6.5

6 Location Models 240

6.4.2 Minisum Problems in Networks

Consider now the location of a single new facility on a network. The facility
location that minimizes the sum of weighted customer–facility distances is usually
referred to as a 1-median. An obvious extension of the 1-median problem is the p-
median problem that locates p facilities so as to minimize the sum of distances
between all customers and their respective closest facilities.

The main result we will use is due to Hakimi (1964), who proved the following

Theorem 6.1: At least one optimal solution of a p-median problem is located at a
node.

Given this result, we no longer have to search for an optimal solution anywhere on
an arc, but can restrict ourselves to the nodes of the network. In that sense, this
theorem is reminiscent of Dantzig’s corner point theorem that also restricted the
set of possible locations from an infinite set to a finite set.

First consider the case, in which the decision maker’s task is to determine a
1-median in a network. We assume that the matrix of shortest paths has already been
determined. Assuming that the matrix D = (dij) includes the lengths of the shortest
paths between all pairs of nodes, and the vector w = (wi), we now use Hakimi’s
theorem and compute the costs for all potential facility locations at the nodes of
the network. This can be accomplished by vector-matrix multiplication. In other
words, determine the vector wD, which includes in its j-th element the total
transportation cost (i.e., weighted distance) from all customers to a facility located
at node j. As an illustration consider the following

Example: The graph in Figure 6.6 includes the single-digit node-to-node (direct)
distances next to its edges and double-digit weights next to its nodes.

Figure 6.6

6.4 Median Problems 241

The matrix of shortest path distances is then

 n1 n2 n3 n4 n5
 n1 0 5 3 5 5
D: n2 5 0 8 10 10
 n3 3 8 0 2 2
 n4 5 10 2 0 4
 n5 5 10 2 4 0

while the vector of demands is w = [60, 40, 20, 50, 30]. Multiplying the vector
and the matrix results in wD = [660; 1,260; 660; 860; 940]. This means that if we
were to locate a facility at, say node n4, then our total transportation costs would
be 860. Choosing the minimum in this cost vector reveals that we should either
locate at node n1 or at node n3; in both cases the total transportation costs are 660.
In order to choose between the two alternatives, the decision maker may use
secondary criteria.

Arguably, p-median problems are among the most researched location models in
practice. Since they are difficult to solve, most large-scale problems will be solved
by heuristic algorithms. This section will describe one construction heuristic and
two improvement heuristics.

As usual, the Greedy heuristic works in sequential fashion. In the first stage, it
computes the weighted transportation costs for tentative locations at all nodes, and
then permanently locates a facility at the node that allows the transportation at the
lowest cost. This is exactly the same step as that in the exact method that locates a
single facility, i.e., the 1-median on a network.

Suppose now that a number of facilities have already been permanently located
and the Greedy heuristic attempts to locate an additional facility. This is
accomplished by tentatively locating a new facility at one (presently unoccupied)
node at a time. Suppose we tentatively locate a new facility at node nj. The
method will then compute the shortest distance between each customer at node ni
and the closest facility that either exists already or is proposed (at nj). These
distances will be collected in the column vector dj. The weighted distance is then
computed by multiplying the weights and these distances, i.e., wdj. This number
expresses the total transportation costs that are incurred if we, in addition to the
already existing facilities, locate a new facility at node nj. This process is repeated
for all possible tentative location, and the minimum is chosen. The location of the
new facility is then made permanent and the process continues until the desired
number of facilities has been located.

6 Location Models 242

We will illustrate this procedure by a numerical

Example: Consider again the network in Figure 6.6 and assume that the task is to
locate p = 3 facilities, so as to minimize the total transportation costs. The matrix
of shortest distances D was already determined in the previous section, and so
were the vector of weights w and the cost vector wD = [660; 1,260; 660; 860;
940]. Again, we choose to locate at either node n1 or at node n3. Arbitrarily choose
node n1.

We now tentatively locate the second facility at the nodes n2, n3, n4, and n5. For
the trial location at the node n2, we now have facilities at n1 and n2, so that the
distances between a customer and the closest of our facilities is found by taking
the minima of columns 1 and 2 in the distance matrix. Here, we obtain d2 = [0, 0,
3, 5, 5]T, so that wd2 = 460. For the trial location at n3, the shortest customer–
facility distances are found by computing the minimum among columns 1 and 3 in
the distance matrix D, resulting in d3 = [0, 5, 0, 2, 2]T, so that wd3 = 360.
Similarly, we compute d4 = [0, 5, 2, 0, 4]T with wd4 = 360, and d5 = [0, 5, 2, 4, 0]T
with wd5 = 440. Among those trials, the lowest location costs are found at either
node n3 or at node n4. Again, we arbitrarily break the tie and choose a facility
location at n3.

We now have facilities permanently located at the nodes n1 and n3. In this
iteration, we tentatively locate facilities at n2, n4, and n5, one at a time. For a trial
location at n2, we have locations at n1, n2, and n3, so that we determine the shortest
customer-facility distances by computing the minima in the first three columns.
This results in d2 = [0, 0, 0, 2, 2]T and wd2 = 160. Similarly, the trial facilities at n4
and n5 result in distances and total transportation costs of d4 = [0, 5, 0, 0, 2]T with
wd4 = 260 and d5 = [0, 5, 0, 2, 0]T with wd5 = 300. The lowest costs are found for
the tentative location at n2, which is now made permanent. Since we have now
located all available facilities, the process terminates with facilities located at n1,
n2, and n3. The total transportation costs are then 160.

If we had broken the tie for the first facility in the same way and located at n1, but
chose n4 for the second facility, we would have ended up with facilities located at
n1, n2, and n4 for total costs of 140. On the other hand, if we had broken the tie for
the location of the first facility in favor of n3, we would have ended up with
facilities located at n1, n2, and n3 with total transportation costs of 160, the same
location pattern as that determined earlier. Notice that none of the tie-breaking
rules has been proved superior.

As usual, any construction heuristic should be followed by an application of an
improvement heuristic. In this chapter, we will describe two techniques. The first
heuristic we apply is the so-called location-allocation heuristic. Simply put,
it alternates between location and allocation steps. In particular, the technique is

6.4 Median Problems 243

initialized with any solution. The better the solution the procedure starts with, the
better the solution may be expected to turn out (although not necessarily so).
Suppose now that any facility location with the required p facilities has been
determined by eyeballing, an application of the greedy method, or any other
technique. The first step of the heuristic is then the allocation phase. In it, we
simply assign each customer to its closest facility. This results in p clusters, each
with a single facility. In the location phase, we then consider one cluster at a time,
remove the facility from it, and determine an optimal facility location in it. This
new facility location may or may not be equal to the previous location of the
facility. This process is repeated for all clusters.

If there has been any change regarding the facility locations in the last step, the
procedure is repeated, until there are no further changes.

Example: Consider again the above example and suppose that facilities have been
located at n3, n4, and n5. The transportation costs for this location pattern are 500.
Allocating each customer to its closes facility results in clusters {n1, n2, n3} for the
facility at n3, {n4} for the facility at n4, and {n5} for the facility at n5. The location
phase of the heuristic method begins by considering the first cluster. The weights
of the customers at n1, n2, and n3 are w* = [60, 40, 20], and the partial distance
matrix for the three nodes is

 n1 n2 n3

D*= n1 0 5 3
 n2 5 0 8
 n3 3 8 0

Computing the total costs for all three potential facility locations in this cluster
(i.e., determine a new single facility in this cluster as shown in the previous
section), we obtain 260, 160, and 500, so that we choose the node n2 as the new
facility location in this cluster. The other two clusters include only one node each,
so that relocation is not possible. Thus the new location pattern includes facilities
at the nodes n2, n4, and n5.

Given these facility locations, the new clusters have {n1, n2} assigned to the
facility at n2, {n3, n4} assigned to the facility at n4, and {n5} assigned to the facility
at n5. The first cluster has weights w* = [w1, w2] = (60, 40) and with a distance

matrix of D* = ⎥
⎦

⎤
⎢
⎣

⎡
05
50

, we obtain costs of w*D* = [200, 300], so that the facility

will be relocated to n1 with a partial cost of 200. The weight and distance matrix
for the second cluster are w* = [w3, w4] = [20, 50], and the distance matrix is D* =

⎥
⎦

⎤
⎢
⎣

⎡
02
20

, so that the transportation costs for the two potential facility locations in

6 Location Models 244

this cluster are w*D* = [100, 40], meaning that the facility is again located at
node n4 with a partial cost of 40. The last cluster only includes a single node, so
that the facility is located at n5 in that cluster with partial costs of 0. The total costs
of this location arrangement are then 200 + 40 + 0 = 240.

The next iteration starts with the present facility locations at n1, n4, and n5. The
allocation phase results in the clusters {n1, n2}, {n3, n4}, and {n5}, which are the
same clusters as in the previous iteration. This means that the procedure has
terminated with facilities located at n1, n4, and n5 with total transportation costs of
240. Notice again that this solution is not optimal.

The second heuristic we describe in this chapter is the so-called vertex substitution
method, a technique that employs a simple “swap” step. Again starting with any
location arrangement of the required p facilities. In each iteration, the method
tentatively moves one of the facilities from its present location to an unassigned
location. If the swap reduces the total transportation costs, we have a new
solution, and the process continues. Otherwise, we continue with another pair of
locations. The process terminates, if no swap reduces the costs any further.

Example: Consider again the above example and initialize the method with the
facilities located at the nodes n3, n4, and n5. Moving a facility from n3 to n1 results
in a cost reduction from 500 to 240, so the move is made and the new solution has
facilities locate at n1, n4, and n5. Moving a facility from n1 to n2 raises the costs to
340, so the move is not made. Moving a facility from n1 to n3 increases the costs
to 500, and again, the move is not made. The move of a facility from n4 to n2
leaves the cost at 240, so a tie-breaking rule must be used. Here, we keep the
facilities at their present locations. Moving a facility from n4 to n3 increases
the cost to 300, so the move is not made. Moving a facility from n5 to n2 decreases
the costs to 160, so we make the move and have a new location arrangement with
facilities located at nodes n1, n2, and n4. The procedure is repeated until no further
improvements are possible.

6.5 Other Location Problems
This section is designed to introduce some additional types of location models that
have been discussed in the literature. The first such models deals with undesirable
facilities. While it appears apparent that facilities such as sewage treatment plants,
landfills, power plants, or prisons are undesirable to have in the neighborhood of a
residential area, things are more subtle than that. As a matter of fact, just about all
facilities have desirable and undesirable features. Take, for instance, a hospital.
Few people will argue that it would be great to have such a facility nearby, the
wailing sirens of ambulances that can and will be turned on at any time of day or
night will surely be considered a nuisance. A similar argument applies to facilities
such as prisons: whereas few people would like to have them nearby (other than

6.5 Other Location Problems

245

maybe to visit relatives), the many employees who work in these facilities would
not appreciate having them at a great distance from their home.

Modeling of the location of undesirable facilities can be done in two different
ways. We either use the standard cost-minimizing objective and define “forbidden
regions,” in which facilities cannot be located, or we use an objective function that
pushes the facilities away from the customers, rather than pulling them towards
them as cost-minimizing objectives do. There are a number of problems related to
both approaches. Using forbidden regions in networks is easy: if it is not desirable
or permitted to locate a facility at a node, we simply do not define a location
variable yj for that node (or, equivalently, set the location variable to zero). The
process is much more complicated in the plane, where the forbidden regions must
be defined as system of linear or nonlinear inequalities. Using a “push” objective
is not a straightforward process, either: first of all, if we optimize on an
unconstrained set, such an objective would attempt to push the facilities towards
infinity, which is obviously not reasonable. This means that it will be required to
define a feasible set, in which all facilities must be located. Again, the objective
that maximizes the weighted sum between customers and facilities will tend to
have the facilities locate at the border of the feasible set. A good example of this
behavior is the location of nuclear power plants in France, many of which have
been sited along the Rhine river, i.e., the border with Germany. Another problem
is that simply exchanging the “Min” for a “Max” in the objective function will not
suffice. The reason is that the usual cost-minimizing objective will automatically
assign a customer to his nearest facility, which is reasonable in almost all relevant
contexts. Similarly, a maximization objective, the objective will automatically
assign a customer to his farthest facility, which does not make sense in most
cases: customers are most affected by the nearest undesirable facility (as its effects
will be most pronounced on the customer), rather than the farthest facility. In
order to ensure that the effects of the closest facility are measured and counted
towards the objective (e.g., the overall pollution level on the population),
additional constraints are required. They result in fairly large formulations for
even small problems, thus necessitating the use of heuristic algorithms.

Another strand of work deals with location models that have “equity” objectives.
The idea is to locate facilities, so as to make them as equally accessible to all
(potential) customers. Models of this nature have a variety of difficulties
associated with them. First of all, it is not obvious what “equity” is. Dictionaries
will define it as “fairness,” a concept just as vague. The location models in this
category all deal with equality, rather than equity. More precisely, they attempt to
locate facilities, so as to make the shortest customer-facility distances (i.e., the
usual assignments) as equal as possible. Many measures for equality have been
described: the range (i.e., the difference between the shortest and the longest of
any customer-facility distances), the variance of these distances, the Lorenz curve
(a tool that economists use to display income disparities), and the related Gini

6 Location Models 246

index. It is important to realize that “equity” objectives should always be coupled
with an efficiency objective, as otherwise, they tend to result in degenerate
solutions. As an example, consider two customers located at the ends of a line
segment, and a third customer who is just below the center of that line segment.
The optimal solution for any single-facility location problem with equity objective
has the facility located at the center of the circle, on whose circumference all three
customers lie. This point can be very far away from the customers and, worse, as
the facility moves closer all customers benefit (as all customers are now closer to
the facility), but the solution is less equal. This is clearly undesirable and can only
be avoided, if some efficiency objective is considered as well.

Another active area of research concerns the location of hubs. Hubs are an
essential concept in a number of industries, most prominently the airline industry.
Typically, airline flights between an origin and a destination are routed through
one or two hubs. The inconvenience of having change planes once or twice is
acceptable due to the fact that without hubs, many origin-destination pairs would
not permit any flights between them due to low traffic volume. The flight volumes
to the hubs (or concentrators) is, however, often sufficient to justify flights to
them. In addition, flights between (remote) origins or destinations and more
central hubs are typically done by small commuter planes, whose costs per
passenger-mile are typically considerably higher than the costs of larger airplane
that operate between hubs. This is the reason for inter-hub discounts, i.e., lower
costs between hubs. Hub location problems are difficult to solve exactly. The
major reason for the difficulties is the size of the problem. Typically, the
formulation will use binary variables of the type yiklj, which assume a value of
one, if the traffic from origin i to destination j is routed through hubs k and l. For
example, in a network with one hundred nodes, each of which is an origin, a
destination, and a potential hub, there would be hundred million zero-one
variables. Even considering today’s powerful computing equipment, this is a very
large problem.

Competitive location models were introduced by Hotelling in 1929. A mathematical
statistician by trade, he considered the simplest competitive location problem one
can think of: two profit-maximizing duopolists locate one facility each on a line
segment. They offer a homogeneous good and compete in locations and prices.
Hotelling concluded that a situation, in which the duopolists would cluster
together at the center of the market, is stable. It took fifty years to prove him
wrong, and it is known today that there exists no stable solution in his original
version of the problem. Today, we consider two versions of competitive location
models. In the first class of problems, the main quest is to find, as Hotelling did,
stable solutions. These are called Nash equilibria. A Nash equilibrium is said to
exist, if none of the participants in the game has an incentive to unilaterally move
out of the current situation, which in this case means to change his location or
price. The second class of problem concerns von Stackelberg solutions. The

247

economist von Stackelberg considered two groups of participants: leaders and
followers. The leader will choose his actions (here: his location) first, knowing
that a follower will locate later. Note that the leader’s planning will require
assumptions concerning the follower’s objectives and perception. This is typically
summarized in a reaction function, which delineates the follower’s reaction to
each of the leader’s courses of action. In contrast, once the leader has made his
decision, the follower only has to observe what the leader has done, and make his
own decisions accordingly. It is apparent that the follower’s problem is a conditional
optimization problem (finding an optional location for the follower’s facilities,
given the leader’s facility locations), while the leader’s problem is very difficult,
as even the determination of the reaction function requires the solution of a zero-
one integer programming problem for each of the leader’s possible courses of action.

Finally, consider extensive facilities and facility layout problems. In both areas,
the facilities can no longer be represented as points on a map, so that the sizes of
the facilities are no longer negligible in relation to the space they are located in.
Problems of this nature are much more difficult than “simple” location problem.
The main reason is that the shape of the facilities must now also be considered.
Typical example of layout problems are the arrangements of work stations in an
office, the placement of rooms in a hospital (operating rooms, supply rooms,
recovery rooms, etc.), and the allocation of spaces in a shopping mall to stores.
The best-known facility layout model is the quadratic assignment problem.
Generally speaking, the purpose of this problem is to assign items to empty slots.
Depending on the specific application, this may mean work functions to stations,
offices to empty rooms, or drill bits to slots on a drill. One way to formulate
quadratic assignment problems is to define binary variables yijkl, which assume a
value of one, if item i is assigned to slot j and item k is assigned to slot l, and zero
otherwise. The advantage of this formulation is its linear objective function, while
the disadvantage is the very large number of variables. Another formulation uses
double-subscripted binary variables yij, which equal one, if item i is assigned to
slot j, and zero otherwise. This formulation has much fewer variables, but its
disadvantage is its quadratic objective function (hence the name of the formulation).
To this day, exact solutions for quadratic assignment problems with more than
about thirty items and slots remain elusive.

Exercises
Problem 1 (a location set covering problem): An administrative district includes
18 small villages. One of the functions of the district officer is to ensure that each
community is reasonably well served in case of a fire. It was established that no
village should be farther than 8 minutes from its closest fire hall. The graph with
the villages and the distances between them is shown in the Figure 6.7. All
villages must be covered.

Exercises

6 Location Models 248

Figure 6.7

Use the reduction algorithm for the location set covering problem to reduce the
problem as much as possible. First eliminate unit rows, then dominated columns,
then dominated rows, then repeat as often as possible. Is it possible to obtain a
solution with just the reduction rules? If so, where should the facilities be located

determined in the reduction process. How many facilities will be needed to cover

2 6 4 6 4

6 4 5 3 7

6 2 2 5 6

5 4 3 3 4 7

2 7 8 6 2 4

n1 n2 n3 n4 n5 n6

n8 n7 n9 n10 n11 n12

n15 n13 n14 n16 n17 n18

and how many facilities are required to cover all customers? If not, try to eyeball

all customers? The covering matrix is then shown in Table 6.2.

solutions in the remaining, smaller, system and put them together with locations

249

Exercises

Ta
bl

e
6.

2:
 C

ov
er

in
g

m
at

rix
 fo

r P
ro

bl
em

 1

n 1

n 2

n 3

n 4

n 5

n 6

n 7

n 8

n 9

n 1

0
n 1

1
n 1

2
n 1

3
n 1

4
n 1

5
n 1

6
n 1

7
n 1

8
n 1

1

1
1

0
0

0
1

1
0

0
0

0
1

0
0

0
0

0
n 2

1

1
1

0
0

0
1

1
1

0
0

0
0

0
0

0
0

0
n 3

1

1
1

1
0

0
0

1
1

1
0

0
0

0
0

0
0

0
n 4

0

0
1

1
1

0
0

0
1

1
1

0
0

0
0

0
0

0
n 5

0

0
0

1
1

1
0

0
0

0
1

0
0

0
0

0
1

0
6 7 8 9 n 1
0

n 1
1

n 1
2

n 1
3

n 1
4

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

0
0

n 1
5

n 1
6

0
0

0
0

0
0

0
0

0
1

1
0

0
1

1
1

1
0

n 1
7

n 1
8

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

n

1
1

1
0

0
0

1
1

1
0

0
0

1
1

0
0

0
0

n

0
0

0
0

1
1

0
0

0
0

1
1

0
0

0
0

0
0

n

1
1

0
0

0
0

1
1

0
0

0
0

1
1

0
0

0
0

0

0
1

1
1

0
0

0
1

1
1

0
0

0
1

1
1

0

0

0
0

0
0

0
0

0
1

1
0

0
1

1
1

1
1

0

0

0
0

0
0

1
0

0
0

0
1

1
0

0
0

0
0

1

0

0
0

0
1

0
0

0
0

1
1

0
0

0
1

1
1

1

n

0
1

1
1

0
0

0
1

1
1

1
0

0
0

1
0

0
0

0

0
0

1
1

1
0

0
1

1
1

1
0

0
0

1
1

1

1

0
0

0
0

0
1

1
0

0
0

0
1

1
1

0
0

0

6 Location Models 250

Solution:
Repeatedly applying the three reduction rules results in one facility located at
node n11. Applying the reduction rules again leaves us with the irreducible matrix:

 n8 n9 n13

n1 1 0 1

n3 1 1 0

n15 0 1 1

Locate facilities at 2 of the 3 columns, i.e. the solutions are (8, 9, 11) or (8, 11, 13)
or (9, 11, 13). In all cases, 3 facilities are sufficient to cover all customers.

Problem 2 (a maximal covering location problem): A smaller rural district has

is said to be covered, if it is within ten miles of the health post. The district
administration can pay for no more than two health posts. The geographical layout
of the villages is shown in Figure 6.8, in which the single-digit numbers indicate
the distances between the villages, and the double-digit numbers are the
populations of the villages:

Figure 6.8

3 5 6

4 7 3

5 6 4

5 6 8 4

6 9 2 5

n1 n2 n3 n4

n6 n5 n7 n8

n11 n9 n10 n12

20 60 80 50

80 20 60 50

90 50 40 90

the task of locating health posts in the country to serve remote villages. A village

251

 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12
n1 1 1 1 0 1 1 0 0 0 0 0 0
n2 1 1 1 0 1 1 1 0 0 0 0 0
n3 1 1 1 1 0 0 1 1 0 0 1 0
n4 0 0 1 1 0 0 1 1 0 0 0 0
n5 1 1 0 0 1 1 0 0 1 0 0 0
n6 1 1 0 0 1 1 1 1 1 1 1 0
n7 0 1 1 1 0 1 1 1 0 1 1 1
n8 0 0 1 1 0 1 1 1 0 0 1 1
n9 0 0 0 0 1 1 0 0 1 1 0 0
n10 0 0 0 0 0 1 1 0 1 1 1 1
n11 0 0 1 0 0 1 1 1 0 1 1 1
n12 0 0 1 0 0 0 1 1 0 1 1 1

(a) Use the Greedy heuristic to locate the two health posts, so as to maximize the

benefit of the health posts to the people.
(b) Demonstrate the Swap technique by exchanging the facility that was located

first with two other facilities, one at a time. (Choose the facilities with the
smallest subscripts). What are the new coverages and would you make either
of the swaps permanent?

Solution: (a)

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12
260 320 450 240 270 470 500 390 240 330 390 290

max

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12
100 100 20 0 190 190 − 0 170 90 0 0

max

max

Therefore, locate facilities at n5 and n7 or n6 and n7. Total coverage is 690.

(b) Temporarily swap n7 and n1. The new solution has then facilities at n1, n5 (or
n1, n6) and it will cover 350 (or 550) customers, so that there will be no
permanent swap.

Temporarily swap n7 and n2, and the new solution has facilities at n2 and n5 (or n2 and
n6). It covers 410 (or 550) customers, so again, there will be no permanent swap.

Problem 3 (1-median and 1-center on a network): Industrial customers have
contracted demands for heat pumps. These units are to be delivered from the
warehouse of a central supplier to the companies. The supplier is now attempting
to locate the warehouse, so as to minimize the transportation cost of the pumps to

Exercises

The covering matrix is then as follows:

6 Location Models 252

its customers. The demand is fairly constant throughout the year. The delivery is
per pickup truck, one heat pump at a time, resulting in a linear cost function.
Figure 6.9 shows the supplier’s customers, their double-digit demands, and the
single-digit distances between the customers.

Figure 6.9

A consultant of the supplier had suggested to locate the warehouse between the
nodes n2 and n3 at a distance of 5.4 from n2. They have based their argument on
the large weights of the adjacent nodes n2 and n3 that provide a strong pull to
locate the warehouse there.

(a) Without any calculations, do you agree with the consultant’s recommendation?
(b) Find a location on the network that minimizes the total delivery cost. How

much more expensive was the consultant’s recommendation?
(c) Ignore now the weights at the nodes, and assume that the same graph were to

be used by some planner to locate a vertex 1-center. Where would this center
be located?

Solution: (a) No. This is a 1-median problem and there is more to a solution than
just weight.

(b) w = [40, 60, 90, 30, 20],

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

061124
60587

1150912
28903
471230

D

Then wD = [1,550; 1,210; 1,390; 1,330; 1,450], so that node n2 is the optimal

location and the total transportation costs are 1,210. The consultant’s

3

7

5

9

4 2

6

40 60

30 90

20

n1 n2

n3 n4

n5

253

recommendation is [40, 60, 90, 30, 20] [8.4, 5.4, 3.6, 8.6, 7.4] = 1,390. The
costs are about 15% higher than optimal.

(c) The question is to determine a 1-node center. The column maxima are [12, 9,
12, 8, 11] with 8 being the minimum, so that node 4 will be optimal.

Problem 4 (1-node center in the plane with Manhattan distances): A rural
district is planning the location of its fire station. The station will have to serve
seven villages. The coordinates of the villages are (0, 0), (6, 1), (2, 3), (8, 3),
(0, 4), (4, 5), and (3, 7). As the people in the district are fierce defenders of
property rights, the roads were constructed parallel to the rectangular fields.

(a) What is the optimal minimax location of the fire station?
(b) Suppose that it takes the fire truck and its crew 3 minutes to get ready after an

emergency call, 2 minutes to drive one distance unit, and another 3 minutes to
get the hoses and pumps going. Given the solution determined under(a), how
much time elapses between the phone call and the beginning of the fire
fighting action at the site of the most distant customer? How long does it take
on average?

Solution:
(a) α1 = max {0, 7, 5, 11, 4, 9, 10} = 11,
 α2 = max {0, −5, 1, −5, 4, 1, 4} = 4,
 α3 = max {0, 5, −1, 5, −4, −1, −4} = 5, and
 α4 = max {0, −7, −5, −11, −4, −9, −10} = 0, so that

 α5 = max {11, 9} = 11.

Hence the optimal coordinates of the facility are
 x = ½(5) = 2½ and y = ½(6) = 3, as well as
 x = ½(7) = 3½ and y = ½(4) = 2,
 both with z = ½(11) = 5½.

Problem 5 (p-node center in a graph): Consider again Figure 6.9 and ignore the
weights at the nodes. For p = 2, determine the vertex p-center with the bisection
search algorithm.

Solution:

.0,36)9(4}max{)1(===−= DdnD ij

D = 18. Set cover: p(D) = 1, locate anywhere. D = 18.
D = 9. Set cover: p(D) = 1 with facility at node n2. .9=D
D = 4. Set cover: p(D) = 3 with facilities at nodes 4, 3, and one of 1, 2, 5. .5=D

Exercises

(b) Worst case: 6 + 2(5½) = 17 minutes. Average case: 6 + (1/7)57 = 14.14 min.

6 Location Models 254

D = 7. Set cover: p(D) = 2, with facilities at nodes 1 and 3. .7=D
D = 6. Set cover: p(D) = 2, with facilities at nodes 1 and either 3 or 4. .6=D
D = 5. Set cover: p(D) = 2 with facilities at 1 and either 3 or 4. .5=D
Now DD == 5 , Stop.

Problem 6 (1-median problem in the plane with Manhattan distances):

with weights 20, 40, 30, 50, 10, 60, 70, and 80.

Given Manhattan distances, determine the point that minimizes the sum of
distances to a single new facility. What are the total weighted costs from the new
facility to the customers?

Solution: The sum of weights equals 360, so that the location of the facility
should be at (5, 4), with distances to the customers of 9, 6, 2, 2, 3, 2, 3, and 7, so
that the weighted sum (total costs) equals 1,500.

Problem 7 (center-of-gravity and Weiszfeld method): Customers are located at
(0, 0), (6, 0), and (10, 5) with weights 4, 7, and 2, respectively.

(a) Calculate the center-of-gravity, i.e., the optimal solution of the minisum

location problem with squared Euclidean distances.
(b) Start with an initial guess of (1, 1) and perform one iteration with Weiszfeld’s

method to determine the 1-median.

(b)

3313.2
4043.4
2676.10

97
2

26
7

2
4

97
20

26
42

2
0

==
++

++
=x , 2305.0

4043.4
0153.1

97
2

26
7

2
4

97
10

26
0

2
0

==
++

++
=y .

Problem 8 (p-median with Greedy and vertex substitution heuristics): Consider
the undirected graph shown in Figure 6.10:

Figure 6.10

6 3 1

5

3

4 4

6

2 2 7

3

4

n1 n2 n3 n4

n5 n6 n7 n8

Customers are located at (0, 0), (7, 0), (6, 3), (5, 2), (5, 7), (3, 4), (6, 6), and (2, 8)

Solution: (a) center-of-gravity is at (62/13, 10/13) ≈ (4.77, 0.77).

255

Assume that the customers n1, n2, ..., n8 have demands of 38, 25, 13, 18, 15, 21,
32, and 40, respectively. Suppose now that the coverage distance is D = 4.

Where should the facilities be located and what is the total capture?

Solution:
(a)

Potential facility
location

n1 n2 n3 n4 n5 n6 n7 n8

Capture 38 124 88 88 61 61 128 72

Locate one facility at n7.

Potential facility
location

n1 n2 n3 n4 n5 n6 n8

Capture 38 36 0 0 36 36 0

Locate one facility at n1.

Potential facility
location

n2 n3 n4 n5 n6 n8

Capture 36 0 0 36 36 0

2 5 6
either (n7, n1, n5) or at (n7, n1, n6) with a total capture of 202. The facilities
capture everything, so there can be no better solution.

(b) Vertex substitution procedure: For example, start with facilities located at (n7,
n1, n5). Exchange n1 and n2. The exchange leads to facilities located at (n7, n2,
n5) that has a capture of 164 as opposed to the previous solution that has 202.
Do not swap.

Problem 9 (p-median in a network with Greedy, location-allocation heuristic):

Consider the graph in Figure 6.11.

Exercises

(a) Set up the capture table and apply the Greedy heuristic to locate 3 facilities.

(b) Use the vertex substitution heuristic to improve the solution.

Locate one facility at either n , n or at n . Hence the solution locates facilities at

6 Location Models 256

Figure 6.11

(a) Determine the 2-median by using the Greedy heuristic.
(b) Improve the solution found under (a) by the location-allocation heuristic.
(c) Ignore the solution found in (b) and improve the solution in (a) by the vertex

substitution method.

Solution:
(a) The weights are w = [60, 20, 40, 70, 40, 10] and the distance matrix is

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

097234
9031175
7308108
2118046
3710402
458620

D .

Locate the first facility: wD = [1,080, 1,290, 1,460, 1,190, 1,180, 1,230], so that
the first facility is located at n1.

For the second facility, we obtain costs of [−, 950, 820, 440, 530, 810], so that the
second facility will be located at n4 for a total z-value of 440.

(b) Allocation: To the facility at n1, we allocated customers at nodes n1, n2, n3,
and n6, and to the facility at n4, we allocate the customers at n4 and n5. The
optimization on the two problems then results in costs vectors [320, 310, 460,
380] with the minimum occurring at n2, and [120, 210] with the minimum at
n4. The next step then allocates to the facility at n2 the customers at n1, n2, n3,
and n5, to the facility at n4, the customers at n4 and n5, which is the same as
before. Hence the method has converged with an optimal solution with
facilities at n2 and n4 with a total cost of 310 + 120 = 430.

2 4

8

3

5

4 2

3

7

20

60

40 70

40 10
n1

n2

n3

n4 n5

n6

H.A. Eiselt and C.-L. Sandblom, Operations Research: A Model-Based Approach, 257
DOI 10.1007/978-3-642-10326-1_7, © Springer-Verlag Berlin Heidelberg 2010

7 Project Networks

Back in the days when projects were dealt with by a single individual or a group
of workers working sequentially, there was no need for project networks. As an
example, consider the construction of a house. Somewhat simplistically, assume
that a single individual wants to build a log cabin. He will first dig a hole in the
ground for the foundation, then pour the cement, then lay the logs one by one, and
so forth. Each job is completely finished before the next task begins. This is a
sequential plan, and there is very little that can be done as far as planning is
concerned. Consider, however, some of the issues that have arisen as a result of
the division of labor. Nowadays, the plumbers can work at the same time the
electrician does, but not before the walls have been established, which is also
required for the roof to be put up. Given these interdependencies, planning is
necessary in case time is an issue. Clearly, while it is possible that, say, electrician
and plumber can work in the building at the same time, it is not necessary to use
this parallelism: we can still have the two contractors work one after the other, if
we so wish. The project will take longer, but it is possible.

Project networks were designed by a number of firms in the 1950s. The so-called
critical path method (or CPM for short) was developed by du Pont de Nemours
and the Remington Rand Univac corporations for construction projects. At
roughly the same time, the United States Navy in conjunction with the Lockheed
Aircraft Corporation and the consulting firm of Booz, Allen, and Hamilton
devised the Program Evaluation and Review Technique (PERT) for their Polaris
missile program. Even though CPM and PERT have completely independent
backgrounds, today we can consider them very close brothers: their underlying
ideas are identical, the resulting networks are identical, and the only difference is
that CPM is a deterministic technique, PERT is (partially) stochastic.

This chapter is organized as follows. The first section will introduce the elements
of the critical path method, demonstrate its graphical representation, and describe
basic planning with the critical path method. The remaining sections of this
chapter deal with extensions of the basic concept: the second section allows the
acceleration of the project (a process that introduces costs into the model), the
third section allows resources to be used (which, with the obvious limitations,

7 Project Networks 258

results in an optimization model that allocates the scarce resources), and the final
section of this chapter discusses the probabilistic PERT method.

7.1 The Critical Path Method
Before getting in to details, the planner will have to decide on what level the
planning will take place. We may be interested in planning on the macro level in
order to get the “bigger picture.” As an example, when building a house, we may
have “foundation work” as a single task, another one is “electrical work,” another
is “plumbing,” another is “roofing,” and so forth. Zooming in closer, we may look
at each such task as a project in itself. For instance, plumbing may include
subtasks such as the installation of pipes, connections to outside lines or septic
systems, etc. Zooming in even further, the installation of lavatories may be further
subdivided into the mountain of the washbasin, the connection of the faucet to the
pipes, and so forth. We can construct project networks on each of these levels.

Once the level has been decided upon, the task in its entirety—the building of
the house, design and planting of a public or private garden, an individual’s
University studies—will be referred to as a project. Each project can now be

installing the flashing on the roof, or taking a specific course in a University
program are typical examples of such activities. Associated with each activity is
a duration that indicates how long it takes to complete the activity. In CPM,

only distinction to PERT, where the durations have underlying probability
distributions).

In addition to the activities and their durations, we also need to have precedence
relations. Such relations indicate which activities must be completely finished
before another activity can take place. For example, in order to start the activity
“drive with the car to grandmother,” the activities “gas up the car,” “pack the gifts
(wine and cheese) for grandmother,” and “lock the house” must be completely
finished. A complete set of precedence relations will specify the (immediate)
predecessors of each activity.

In the analysis in this section, we are only concerned about time. There is no
optimization that takes place here, all we want to know what the earliest time is by
which the project can be completed. And while making these calculations, we can
also find out when each task can and must be started and finished. That allows us
to determine bottleneck activities in the project, whose delay will delay the entire
project. In subsequent sections, we will include other components in the basic
network, including money and other resources.

One of the huge advantages of project networks and one of the reasons for their
popularity among users is the ease with which they can be understood and

subdivided into individual tasks or activities. Planting a bed of grape hyacinths,

the durations of all activities are assumed to be known with certainty (which is the

7.1 The Critical Path Method 259

visualized. Following the old adage that “a manager would much rather live

managers have adopted project networks as a standard tool in their toolkit. This
was helped tremendously be a change in the representation that was made some
time during the 1990s. Traditionally, each activity was represented by an arc in a
network, while nodes represented events (which are no more than the beginning

they are rather difficult to construct and may require a lot of artificial activities
(called dummy activities). A more modern way to visualize relations between
activities is the activity-on-node (AON) representation. In it, each node represents
an activity, while the arcs represent the precedence relations. In addition to the
given activities, each project network contains two artificial nodes ns and nt, which
are the starting node (the source) and the terminal node (the sink), which symbolize
the beginning and the end of the project. The project start has arcs leading out of it
to all activities that do not have any predecessors, while all nodes that represent
activities without successors will have arcs leading directly to the terminal node
“Project End.” For all other activities j, we introduce an arc from node i to node j,
if activity i is an immediate predecessor of j.

As a numerical illustration, consider the precedence relations shown in Table 7.1.

Table 7.1: Precedence relations for sample network

Activity Immediate
predecessor

Duration
(in weeks)

A − 5
B A 3
C A, B 7
D B 4
E B, C 6
F C, D, E 4
G D 2
H F, G 9
I F, G 6
J I 2

The network that includes all of the activities and precedence relations is shown in
Figure 7.1. Like each project network, it has a unique start ns, a unique end nt, all
arcs are directed, and no cycles can possibly exist, as they would require an
activity to be completely finished before it can actually start, which is obviously
impossible.

arc (AOA) representation. While AOA networks have some obvious advantages,
and/or the end of activities). Such a representation is referred to as an activity-on-

with a problem he cannot solve than with a solution he cannot understand,” many

7 Project Networks 260

Figure 7.1

As an example for (nested) precedence relations, consider activity F. It is clear
from the project network that the activities C, D, and E must be completely
finished before activity F can commence. However, activity C requires that A and
B are completely finished, activity D requires that B is finished, and activity E
requires that B and C are completely finished. So, in reality activity F cannot
commence before the activities A, B, C, D, and E are all finished. This does
not present a difficulty, but users should be aware of this. Incidentally, it is not
necessary to specify that activity C is a direct predecessor of F since E must
precede F anyway, and C precedes E.

We are now interested in finding the earliest possible time at which the entire
project can be completed. For computational convenience, we assume that the
project start occurs at time t = 0 and the end of the project occurs at time T, which
will be determined in the process. Consider now one of the many (14, to be
precise) paths of the network that lead from ns to nt, say ns – A – C – E – F – H – nt.
Starting at the end and moving back towards the beginning one step at a time,
we notice that nt can only finish if H is completely finished, which, in turn,
requires that F is completely done, which, in turn, requires that E is fully done, etc.
The length of any path from source to sink is defined as the sum of durations of all
of its activities. In this example, the path we are presently looking at has the length
of 5 + 7 + 6 + 4 + 9 = 31. This also means that while there are other precedence
relations, the ones on this path result in a project duration of 31, which is thus a
lower bound on the project duration. From this, we can conclude that the project
duration is equal to the length of the longest path in the network.

While it would certainly be possible to determine the longest path in a network
by enumeration (even though there will be a lot of paths), a different type of
computation is preferred as it will provide decision makers with additional and
very valuable information. This procedure will be described in the following.

The first part of the procedure uses what is commonly known as a forward pass, a
forward sweep, or a forward recursion. In the forward recursion, we compute the
earliest possible starting times (ES) of all activities, as well as their earliest
possible finishing times (EF). We start labeling the nodes in the forward pass with
the source node. The earliest starting time of the source node is arbitrarily set to

7.1 The Critical Path Method 261

ES(ns) = 0. For any node the earliest possible finishing time EF equals the earliest
possible starting time ES plus the duration of the activity t. As a result, EF(ns) = 0.
In order to continue labeling (which in the forward pass means assigning a value
ES to a node), we will use the following

Rule 1: In the forward pass, a node can only be labeled if all of its predecessors
have been labeled.

If more than one node satisfies the condition in Rule 1, labeling continues with
any of the nodes that satisfy the condition. The label ES of a node is then the
maximum among all EF labels of its direct predecessors. The reason for this
calculation is easily explained. Suppose that an activity has three direct
predecessors with earliest possible finishing times of 4, 7, and 9, respectively. It is
apparent that we cannot start before 4, as none of the predecessors has been
finished. Between time 4 and 7, the first predecessor is finished, but we will have
to wait until all predecessors have been finished, which is the case at time 9.

Applying this rule to our example means that, once ns has been labeled, we can
now label node A. Node A has only one predecessor, so that ES(A) = EF(ns).
Given that, we can calculate EF(A) = ES(A) + tA = 0 + 5 = 5. Now that node A is
labeled, we can continue labeling with nodes B and C. Arbitrarily choose node B.
Activity B also has only one predecessor, which is A. Consequently, ES(B) =
EF(A) = 5, and EF(B) = ES(B) + tB = 5 + 3 = 8. Now that activity B has been
labeled, we can continue labeling node C. As activity C has activities A and B as
predecessors, we have ES(C) = max {(EF(A), EF(B)} = max {5, 8} = 8, so that
EF(C) = ES(C) + tC = 8 + 7 = 15. Labeling can now continue with nodes D and E.
The results of the forward labeling phase are summarized in Table 7.2.

Table 7.2: The earliest possible starting and finishing times

Activity ns A B C D E F G H I J nt

Earliest possible
 starting time ES 0 0 5 8 8 15 21 12 25 25 31 34
Earliest possible
 finishing time EF 0 5 8 15 12 21 25 14 34 31 33 34

At this point, the sink nt has been labeled, and the ES and EF labels of the sink
(which are necessary equal, as the artificial activity nt has zero duration), indicate
the total duration of the project. In other words, we now know that the project can
be completed in T = 34 weeks. This terminates the forward sweep.

allowable,” we refer to the time we can start or finish an activity, given that
the project has to be completed by time T (in our example T = 34). As the forward

In the backward sweep, we will compute the latest allowable finishing times LF
and the latest allowable starting times LS of all activities (in that order). By “latest

7 Project Networks 262

sweep started with the source being labeled first, the backward sweep commences
by labeling the sink. Now we consider a node labeled, if we have computed its LF
and LS values. As the project duration T is now known, we will label the sink
node LF(nt) = LS(nt) = T. The rule for labeling other nodes is now

Rule 2: In the backward pass, a node can only be labeled if all of its successors
have been labeled.

With the sink as the only labeled node, only the activities H and J can be labeled.
Arbitrarily choose node H. This node has only one successor, so that LF(H) =
LS(nt) = 34. Given that activity H must be finished no later than 34 and its
duration is tH = 9, we determine that LS(H) = LF(H) − tH = 34 − 9 = 25. The
process for node J is similar, and we obtain LF(J) = LS(nt) = 34, and LS(J) = LF(J) −
tJ = 34 − 2 = 32. At this point, the nodes nt, H and J are labeled, so that we can
continue labeling only with node I (as node G has node I as a successor which is
not yet labeled). Node I has again only one successor, so that its label can easily
be calculated as LF(I) = LS(J) = 32 and LS(I) = LF(I) − tI = 32 − 6 = 26. At this
point, we can continue labeling the nodes G and F. Arbitrarily choose F. Node F
has activities H and I as successors. In order to determine its latest finishing time,
consider this. As we have just computed, its two successors H and I cannot start
any later than 25 and 26, respectively. If activity F were to finish any later than,
say, 25½, activity H could not start on time. In other words, in order to avoid
delaying the entire project it is necessary that all activities can start on time, so
that LF(F) = min{LS(H), LS(I)} = min{25, 26} = 25. The resulting latest
allowable starting time is then LS(F) = LF(F) − tF = 25 − 4 = 21. The next node to
be labeled is G. Since its successors are I and H, we have LF(G) = min{LS(I),
LS(H)} = min {26, 25} = 25, and LS(G) = LF(G) − tG = 25 − 2 = 23. The
procedure continues in this fashion until the source is labeled. The labels of all
nodes are shown in Table 7.3.

Table 7.3: The latest allowable starting and finishing times

Activity ns A B C D E F G H I J nt

Latest allowable
 starting time LS 0 0 5 8 17 15 21 23 25 26 32 34
Latest allowable
 finishing time LF 0 5 8 15 21 21 25 25 34 32 34 34

A good test for correctness is to examine LF(ns) in the backward sweep, this value
must be zero. If it is not, an error has been made. However, the converse is not

s

Now that all earliest possible and latest allowable starting and finishing times have

done correctly.

been computed, we are able to determine which of the activities are critical when

true: even if LF(n) = 0, it does not mean that the backward recursion has been

7.1 The Critical Path Method 263

scheduled and which are not. As an example, consider activity G. So far, we have
determined that the earliest possible time that we can schedule the activity is at
ES(G) = 12, while the latest possible finishing time of G is LF(G) = 25. This gives
us a time window of 25 − 12 = 13 weeks during which the activity has to be
scheduled. That is not problem, since the duration of the activity is only 2 weeks,
so that there is plenty of leeway. An expression of the magnitude of this leeway is
the total float of the activity G, which we will abbreviate here as TF(G). The total
float of an activity is the magnitude of the time window for its schedule minus the
duration of the activity. Formally for activity G, we have TF(G) = LF(G) − ES(G) −
tG = 25 − 12 − 2 = 11. Decision makers can use the information provided by the
total float as the amount of time by which the duration of an activity can increase
without delaying the entire project. Thus, activities with a large float are safe in
that their duration can increase significantly without delaying the entire project.
On the other hand, an activity with a large float indicates that there are too many
resources allocated to this activity. Redirecting these resources elsewhere may
result in possible decreases of the durations of other activities.

As another example, consider activity H. Its time window ranges from ES(H) = 25
to LF(H) = 34. With its duration of tH = 9, we can compute the activity’s total float
as TF(H) = LF(H) − ES(H) − tH = 34 − 25 − 9 = 0. This indicates that there is
absolutely no leeway when scheduling activity H. Activities that have no leeway
in the schedule are referred to as critical activities. A critical activity has the
property that as soon as its duration increases, the project will be delayed,
regardless how small the time increase actually is.

Critical activities are very similar to those resources in optimization problems that
are satisfied as equations at optimum and thus represent bottlenecks in the
problem. On the other hand, noncritical activities in project networks can be
compared to resources or constraints that have positive slacks or excess variables
at optimum. Note that for the ease of computations, we can calculate the total float
also as TF = LF − EF = LS − ES.

In order to have all information available at a glance, it is useful to draw the
network in a slightly different way. Rather than representing each node by a circle
with its name in it, we suggest to represent a node by a box with nine different
fields as shown in Figure 7.2. We will refer to the different fields by the
geographic directions they are found in, e.g., the field in the North, the Southwest,
etc. The center of the node is reserved for the name of the activity (here activity
D). The fields in the North and in the South both show the duration tD of the
activity.

Recall that during the forward sweep, we compute the earliest possible starting
time ES(D) and the earliest possible finishing time EF(D) of the activity under
consideration. They are found in the Northwest and the Northeastern fields,
respectively. In the backward sweep, we determine the latest allowable starting
time LS(D) and the latest allowable finishing time LF(D) of the activity. This

7 Project Networks 264

information is put into the fields in the Southwest and Southeast, respectively.
Finally, the field in the East will include the total float TF, which is computed
after the forward and backward passes have been completed. The field in the West
will remain empty for now. It is designed for the resource consumption of the
activity, which is not considered in the basic model.

Figure 7.2

The three fields in the top row of each node read from left to right symbolize the
relation ES + t = EF, while the three fields at the bottom of a node read from right
to left show the relation LF − t = LS. This is why we have chosen to include the
duration of the activity twice, once in the field in the North and again in the South.

Rather than using tables for the display of the information, we can work directly
on the graph, which is much easier, as it provides all required information at a
glance. The project network for our example is shown in Figure 7.3.

ES(D)

D

LS(D)

EF(D)

TF(D)

LF(D)

tD

tD

7.1 The Critical Path Method 265

Fi
gu

re
 7

.3

5
3

8
8

4
12

17
4

21

-
D

9

12
2

14

23
2

25

-
G

11

25
9

34

25
9

34

-
H

0

34
0

34

34
0

34

-
n t

0

0
0

0

0
0

0

-
n s

0

0
5

5

0
5

5

-
A

0

25
6

31

26
6

32

-
I

1

31
2

33

32
2

34

-
J

1

21
4

25

21
4

25

-
F

0

8
7

15

8
7

15

-
C

0

15
6

21

15
6

21

-
E

0

-
0

5
3

8

B

7 Project Networks 266

Having all of this information at hand, we are now able to determine what gave
the method its name, viz., the critical path. Formally, the critical path is a path
from the source ns to the sink nt that includes only critical activities, such that
node j can directly succeed node i on the critical path, only if ES(j) = LF(i). The
critical path in our example is shown in bold lines and it includes the activities
ns – A − B − C − E − F − H − nt. Clearly, the length of that path, obtained by
adding its activity durations, equals T = 34. Note that the critical path does not
include the link from node B to node E, even though E directly follows B, but
ES(E) = 15 > 8 = LF(B). This clearly indicates that it is not sufficient to simply
connect all neighboring nodes that have zero total float. Furthermore, it may
happen that a project network has multiple critical paths. The next section will
have examples of that case.

We conclude this section by summarizing the procedure that determines the
critical path:

(1) Use the forward pass to calculate the earliest possible starting and finishing

times of all activities.
(2) Use the backward pass to calculate the latest allowable starting and finishing

times of all activities.
(3) Calculate the total floats of all activities.
(4) Determine the critical path.

7.2 Project Acceleration
So far, we have considered time as the only criterion in project networks. Also
note that the technique described in the previous section did not involve any
optimization, all we have done is determined when the project can be finished and
which of the activities are bottlenecks in the system. In this section, we will return
to the basic model, but allow the possibility to accelerate individual activities, so
as to be able to finish the project earlier. The result will be a list that shows
possible finishing times of the project and the amounts that will have to be paid to
reach them. This will enable the planner to decide what combination of money
spent and project duration best fits the specific situation.

In order to describe the situation, consider a single activity. As before, the activity
will have what we now call a normal duration. Since we will engage in a marginal
analysis, the cost of the activity at its normal duration are immaterial (we will
have to engage in the activity in any case), and the only costs we consider are
those that are incurred due to the acceleration of the activity. Suppose that the
normal duration of our activity is 7 hours. It is now possible to use more resources
(e.g., more manpower, more tools, contracting out part of the activity, or any
similar measure) to accelerate this activity. Suppose that it costs $20 to reduce the
duration of the activity to 6 hours. Using more resources still, additional money

7.2 Project Acceleration 267

can reduce the duration of the activity further. For simplicity, we assume that the
cost function of the acceleration is linear, meaning that reducing the duration by
another hour to 5 hours costs another $20 for a total of $40. Note that normally the
cost function is increasing, meaning that reducing the duration by one hour costs,
say $x, reducing it by another hours costs more than $x, another reduction is more
expensive still, and so forth.

It is quite apparent that the reduction has some limitations, below which we
cannot reduce the duration of the activity any further. The shortest activity
duration of an activity that can be achieved is customarily referred to as crash
time, and the process of acceleration is sometimes called crashing. Our task is
now to determine which activities should be accelerated or crashed, so as to
achieve the desired result at the lowest possible cost.

As an illustration of the concept, consider the numerical example shown in
Figure 7.4.

Figure 7.4

The project has four activities A, B, C, and D, whose normal times, crash times,
and unit acceleration costs are shown next to the nodes. For example, activity D
normally takes 8 hours (there are no costs incurred at this duration), but we can
reduce the duration down to 7, 6, or 5 hours. Each hour of acceleration costs $200.
Note that activity B cannot be accelerated.

7 Project Networks 268

Figure 7.5

Figure 7.5 shows the project network under consideration along with the normal
durations of the activities (in hours) and the critical path, which is shown in bold
arcs. (Note that we normally have to use the forward sweep/backward sweep
procedure in each step, but since the project network here is so small, we may
enumerate the four paths A−C, A−D, B−C, and B−D, determine their respective
lengths and choose the longest path; it is the critical path). The present duration of
the project is 13 hours.

We now have to determine which activities to accelerate. Recall that the project
duration is determined by the length of the longest path in the network. This
means that as long as we are not accelerating an activity on the longest, i.e., the
critical path, the project duration will not be reduced. This leads to the important
realization that we must accelerate an activity on the critical path. And, among
those activities, we will choose the one that minimizes our marginal, i.e., additional
costs. In our example we have a choice between either accelerating activity A at a
cost of $600, or activity D at a cost of $200. Since it is less expensive to accelerate
activity D, we reduce its duration by a single hour to 7 hours. We now have a
new network (even though the networks structure has not changed and never will
during the computations, only one activity duration has changed) and we have to
determine the critical path and the project duration anew. The result is shown in
Figure 7.6.

7.2 Project Acceleration 269

Figure 7.6

We notice that there are now two critical, i.e., longest paths in the network. They
are ns − A − C − nt and ns − A − D − nt, both having a length of 12. Accelerating
the project further will pose some additional difficulties. In order to demonstrate
these problems, suppose that we were to again accelerate activity D. this would
cause the path ns − A − D − nt to be only 11 hours long, while the path ns − A − C −
nt would still be 12 hours long and as such, would now be the only critical path. In
other words, we would have spent another $200 and still would have to wait 12
hours to finish the project. This means that we have to refine the rule somewhat
that tells us which activities must be accelerated in order to speed up the project.
In fact, we will have to accelerate a set of activities, so that at least one of the
activities in this set is on each of the critical paths. For commercial uses, this can
be accomplished by network techniques; for our purpose we examine the network
and enumerate the possibilities. In the network in Figure 7.6, we can either
accelerate activity A (at a cost of $600), or the activities C and D (at a cost of $300
+ $200 = $500). Before making the actual decision, we have to ascertain that all of
these accelerations are actually possible, i.e., that the present durations are all
above the crash times. In our case, the activities A, C, and D have present
durations of 5, 7, and 7, while their crash times are 3, 4, and 5, so that all activities
can actually be accelerated. Since the cheapest option is to accelerate activities C
and D, we accelerate each of these activities by one unit each. Based on the new
activity durations, we also determine the new critical path(s). The results are
shown in Figure 7.7.

7 Project Networks 270

Figure 7.7

If any further accelerations is required, the options are the same as before.
Checking the possibility to accelerate, few find that the present activity durations
of the nodes on the critical path A, C, and D are 5, 6, and 6, while their crash
times are 3, 4, and 5, so durations of all of these activities can be reduced further.
The least expensive option again involves accelerating activities C and D by one
hour each, resulting in the situation shown in Figure 7.8.

Figure 7.8

While the critical paths are still the same, the situation has changed. Activity D
has now reached its crash time and no longer can be accelerated. This means that
the only way to accelerate both critical paths simultaneously is to speed up activity
A at a cost of $600. The resulting situation is shown in Figure 7.9.

7.2 Project Acceleration 271

Figure 7.9

Notice that at this point in time, all four paths from the source to the sink are
critical. This means that the next acceleration will have to ensure that at least one
activity on each path in the network is accelerated. However, in this case at least
one path, viz., the path ns − B − D − nt can no longer be accelerated at all: both
activities B and D are at their respective crash times. This means that the shortest
possible project duration is T = 9 and it can be achieved at a cost of $1,800. The
results achieved in the above computations are shown in Table 7.4.

Table 7.4: Summary of the project acceleration process

Accelerate
activity

Total acceleration
costs

Critical path Project
duration

— 0 A−D 13
D 0 + 200 = 200 A−C and A−D 12

C and D 200 + 500 = 700 A−C and A−D 11
C and D 700 + 500 = 1,200 A−C and A−D 10
C and D 1,200 + 600 = 1,800 A−C, A−D, B−C,

and A−D
9

This is where the decision maker comes in. He can now determine what it costs to
accelerate the project and whether or not it is worth it. This is a good example of
what operations research does best: prepare decisions (rather than actually make
them).

A few concluding comments are in order. It became clear that as the process
moved forward, more and more paths became critical, implying that more and
more activities had to be accelerated in order to reduce the project duration further.
This does, of course, imply increasing costs from each unit of acceleration. This

7 Project Networks 272

was to be expected, of course: at first it is easy to accelerate a project, but as the
timeframe becomes tighter and tighter, the costs skyrocket.

If it appears too cumbersome to go through the entire process, a quick idea of how
short the project duration can actually be is to crash all activities and determine
the critical path on that basis. While this will certainly result in the shortest
possible project duration, it is usually not necessary to crash all activities to reach
the same overall duration. A good illustration is the above example. The optimized
durations of 4, 5, 4, and 5 of the activities A, B, C, and D were sufficient to reduce
the project duration to 9, while the crash durations of the activities are 3, 4, 4,
and 5. Their use would result in the same overall project duration of 9.

7.3 Project Planning with Resources
So far, our discussion has centered around time planning. In the process, we have
assumed that sufficient resources are available to perform the activities in the time
specified for the individual activities. In this chapter we will extend the basic
model by adding a resource requirement. For simplicity, we will use only a single
resource, such as manpower, backhoes, machinery, or any other resource relevant to
the project. For simplicity, we will refer to the resource as employees throughout
this section. When we associate a resource requirement of, say, 30 units to an
activity, then that means that we will need those 30 resource units throughout the
duration of the activity. As an illustration, consider again the project network in
Figure 7.3 in Section 7.1.

Furthermore, assume that the resource consumptions of the individual activities
are shown in Table 7.5.

Table 7.5: Resource consumption of the activities in the example

Activity A B C D E F G H I J
Resource

consumption 10 20 40 20 25 30 10 25 20 25

In order to schedule the activities of the project network, it is useful to employ a
so-called Gantt chart. In essence, it is a horizontal bar chart, which features the
individual activities on the ordinate, while the abscissa is a time axis. Clearly, the
activities on the critical path are scheduled from their earliest possible (or, equally,
latest allowable) start times, so that they form a non-overlapping sequence of bars

position in the graph cannot be changed.

that has no gaps. The black bars in Figure 7.10 belong to critical activities and their

7.3 Project Planning with Resources 273

Figure 7.10

The matter is different with the noncritical activities, which have some leeway for
their schedule. Suppose now that we use a heuristic method for scheduling them,
which includes a rule that states that all noncritical activities should be scheduled
a early as possible. The regular bars that belong to the activities D, G, I, and J in
Figure 7.10 show how these activities are scheduled. This schedule now has very
clear resource implications. From time t = 0 to t = 5, we only perform activity A,
so that we need 10 employees. From t = 5 to t = 8, we perform only activity B,
which requires 20 employees. Starting at t = 8 to time t = 12, we perform the
activities C and D simultaneously. This requires 40 + 20 = 60 employees. At time

G is also scheduled, so that 40 employees for C and 10 employees for activity G
are needed. This process continues until the project is finished. The resource

requirements are shown in the resource requirement graph in Figure 7.11.

t = 12, activity D is finished, while C is still going on. However, at t = 12, activity

7 Project Networks 274

Figure 7.11

It is apparent that the resource requirement is very low in the beginning, then
peaks, drops and increases again towards the end. If we were to be able to employ
only casual labor that we need to pay only when needed, then the total resource
requirement is the shaded area in Figure 7.11. Calculating the size of the area from
the beginning we have 10 employees needed for 5 weeks, 20 employees needed
for 3 weeks, 60 employees needed for 4 weeks, and so forth, for a total of 1,155
employee weeks. Assuming that we pay employees $15 per hour for 8 hours a
day and 5 days a week, each employee will cost us $600 (plus fringe benefits,
which we ignore here for simplicity). This means that the resource costs will be
$693,000 for the entire project.

The situation changes dramatically if we have to hire all needed employees for the
entire duration of the project. As the highest manpower requirement at any point
in time is 60, this is the smallest number of permanent employees required for the
duration of the project. Employing 60 employees for the total of 34 weeks at a
cost of $600 per week costs $1,224,000, more than 76% more than the costs for
casual labor. This is caused by the fact that more than 43% of the time the
employees are paid, they are actually idle.

This calls for a different schedule whose maximal resource requirement is as low
as possible. This type of objective is of the minimax type, where we search to
minimize the maximum resource required at any point in time. Rather than using
the heuristic that schedules all activities as early as possible (not a bad choice in
general, as it allows for some noncritical activities to increase in duration without
jeopardizing the finishing of the project on time), we will use another heuristic
that schedules all activities as late as possible. The Gantt diagram that belongs
to that schedule and the associated resource consumption graph are shown in
Figure 7.12.

7.4 The PERT Method 275

Figure 7.12

It turns out that while this schedule uses the exact same number of employee
weeks of casual labor—1,155—the highest employee requirement at any one point
is only 50. This means that the costs for employees working throughout the
project is $1,020,000, which is 16.67% less than with the “earliest possible”
schedule. The idle time here is still 32%, though.

Other heuristics exist for the scheduling of noncritical activities. Depending on the
problem, they may be able to reduce the number of required resources further.
The problem can also be solved by exact methods, but the integer programming
problem that must be formulated for that purpose, is quite difficult. For details,
see, e.g., Eiselt and Sandblom (2004).

7.4 The PERT Method
All project planning models discussed so far have in common that they are
deterministic. More specifically, they have assumed that all components of the
network—the activities, their durations, and the precedence structure—are known
with certainty. This section will change that. In particular, we assume here that the
activity durations are no longer known with certainty. It is important to realize that
this is only one component that can be probabilistic: fully stochastic networks are
dealt with by very sophisticated project network tools such as GERT (graphical
review and evaluation technique), which are beyond the scope of this book.

7 Project Networks 276

The PERT method discussed in this section assumes that the duration of the
activities are random variables with known underlying probability distributions.
We do assume that the durations of activities are independent of each other. this
is a fairly strong assumption, not justified in cases such as construction, where
occurrences such as bad weather will affect many of the activities to take longer than
they normally would. As usual in all of operations research, check the assumptions
carefully, and if the assumptions do not fit the scenario under consideration, don’t
use the model.

Traditionally, it has been assumed that the duration of a single activity follows
Euler’s beta distribution. This assumption has been much criticized in the literature.
However, we can derive the same formulas without making such a strict and
controversial assumption. Our assumption is that the activity durations follow some
bell-shaped distribution. For bell-shaped distributions, the empirical rule in statistics
is known to apply; see Appendix D. It states that about all observations are within
three standard deviations about the mean, while about two thirds of all observations
are within one standard deviation about the mean. This leaves 1/6 of the total mass
for each of the two tails of the distribution. This situation is shown in Figure 7.13.

Figure 7.13

We can then define three time estimates for the duration of each activity: a most
likely time estimate tm (the mode of the distribution), a pessimistic estimate tp,
and an optimistic estimate to. The most likely time is associated with the central
part of the distribution, the pessimistic estimate belongs to the right tail of the
distribution, and the optimistic estimate is on the left tail of the distributions.
Their weights are 2/3, 1/6, and 1/6 as shown in Figure 7.13. Based on these
estimates, we can than compute a (weighted) mean for the duration of an activity

as t = pmo ttt 6
1

3
2

6
1 ++ =

6
4 pmo ttt ++

, which is exactly what was obtained by

using the much stronger assumption of the beta distribution. Similarly, with tp =
μ + 3σ and to = μ – 3σ, we can determine the variance of the activity duration as
σ2 = .)(2

36
1

op tt −

µ µ+1σ µ–1σ µ–3σ µ+3σ

3
2

6
1

6
1

7.4 The PERT Method 277

Armed with this information, we can then determine the mean duration and its
variance for all of the given activities from the three time estimates, specified for
each of them. Given the mean activity durations, we can use them in exactly the
same way we dealt with time estimates in the critical path method. Going through
the regular procedure—forward sweep, backward sweep, computation of floats,
critical path—we can determine the critical path on the basis of the mean durations
of the activities. In addition to the usual information about project duration,
critical and noncritical activities, and sensitivity analyses on the basis of floats, we
can use the variances of the durations on the critical path to make probability
statements. In particular, we can provide the decision maker with an estimate
concerning the probability with which the project can be completed within a
certain time.

In order to explain the concept, consider a numerical example, whose numerical
information is provided in Table 7.6. The graph for this project is the same as that
for the examples in the previous two sections, but the time estimates are obviously
different.

Table 7.6: Numerical information for example

Activity Immediate
predecessor

Time estimates (in hours)

 optimistic most likely pessimistic
A − 5 6 7
B A 3 3 3
C A, B 5 7 9
D B 3 4 11
E B, C 3 6 9
F C, D, E 4 4 4
G D 1 2 3
H F, G 6 9 12
I F, G 4 6 8
J I 2 2 2

Our first task is to calculate the mean activity durations for the ten activities. They
are 6, 3, 7, 5, 6, 4, 2, 9, 6, and 2, respectively. Those time estimates are then used
in the standard procedure discussed in the first section of this chapter. The results
are shown in Figure 7.14.

7 Project Networks 278

Fi
gu

re
 7

.1
4

6
3

9
9

5
14

17
5

22

-
D

9

14
2

16

24
2

26

-
G

10

26
9

35

26
9

35

-
H

0

35
0

35

35
0

35

-
n t

0

0
0

0

0
0

0

-
n s

0

0
6

6

0
6

6

-
A

0

26
6

32

27
6

33

-
I

1

32
2

34

33
2

35

-
J

1

22
4

26

22
4

26

-
F

0

9
7

16

9
7

16

-
C

0

16
6

22

16
6

22

-
E

0

-
0

6
3

9

B

7.4 The PERT Method 279

Consider now the critical path ns − A − B – C – E – F – H − nt. The mean project
duration of μ = 35 has already been computed in the procedure. We now have to
calculate the variance on this path. The variances of the individual activities on the

path (in order of their appearance) are ,0,,,0, 36
36

36
16

36
4 and 36

16 . The sum of these

variances equals σ2 = 36
92 , so that the standard deviation equals σ = 36

92 ≅
1.5986. Furthermore, the central limit theorem states that the project duration is
approximately normal with mean μ and standard deviation σ.

Given this information, we are now able to provide the decision maker with some
rough estimate about the probability with which the project can be finished within a
prespecified time frame T. Suppose that the decision maker wants to know what
the probability is that the project is finished within T = 36 hours. In order to be
able to use the standard normal distribution (see Appendix D in this book) we

calculate the z-score as
σ
μ−

=
Tz =

5986.1
3536− ≅ 0.6255, we find that the probability

P(X ≤ 36) = 73.42%. When calculating these probabilities, it is always useful to draw
the normal distribution function and indicate which area we are looking for. The area
relevant to this question is shown in Figure 7.15a, where it constitutes the shaded
area plus the entire mass to the left of the mean which, by definition, equals 0.5.

Similarly, we could compute the probability that the project takes more than
37 hours. Such information may be needed by the decision maker, as the late
completion of the project may carry a penalty with it. The z-score for the

completion time of 37 is z =
5986.1

3537 − ≅ 1.2511, from which we obtain a

probability of P(X ≥ 37) = 10.58%. The area of interest under the normal
distribution function is shown in Figure 7.15b.

Finally, we compute the probability that the project is completed between 33 and
37 hours. The area of interest is shown in Figure 7.15c, and it can be computed as
P(33 ≤ X ≤ 37) = P(33 ≤ X ≤ 35) + P(35 ≤ X ≤ 37) = 0.7884. In other words,
chances are about 80% that our project will be completed within the specified time
window.

7 Project Networks 280

Figure 7.15

A few comments are in order. First of all, much care should be taken with the
probability statements. They have been derived with a lot of assumptions, so that
it makes absolutely no sense to report them to the decision maker with two, four,
or even more digits to the right of the decimal point, implying great accuracy. These
probabilities are rough estimates, and this should be emphasized throughout.

Secondly, what we have used is what is called the time-critical path. In other
words, we have determined the critical path on the basis of estimated activity
durations only, and then computed the probabilities. This does not necessarily
provide the planner with the true critical path. As an example, consider two paths
in some network, one with a mean duration μ = 100 and a standard deviation of
σ = 10, while a second, obviously noncritical, path exists in the network with μ = 99
and σ = 100. Note that the noncritical path is shorter, but has a much higher standard

critical path as we do, is then 84.13%. However, computing the same probability
on the basis of the noncritical path is only 54.38%, meaning that the former result
(that we would obtain with our procedure), grossly overestimates the likelihood to
finish the project within the specified time frame. This problem persists in a
somewhat different guise even in our example: all probability statements assume
that the critical path remains critical. Note, however, that the noncritical activities
I and J have a very small float, making them almost critical. If their durations
were to increase by fairly small, insignificant amounts, they would become critical,
and their standard deviations, which have been completely ignored so far, would

statements we have calculated with the utmost caution.

Exercises
Problem 1 (acceleration of a project): Consider a project network with four
activities, their normal durations, their shortest possible durations (which can be
achieved at extra cost), & the acceleration cost per time unit. Details are shown in
Table 7.7.

 35 37 33

(c)

35 37

(b)
35 36

.5

(a)

suddenly have to be counted. This is yet another reason to treat the probability

deviation. The probability to finish the project, computed on the basis of the

281

Table 7.7: Details of the network in Problem 1

Activity Immediate

predecessor(s)
Normal duration

(in days)
Shortest possible
duration (in days)

Unit cost of
acceleration

A − 4 3 80
B A 5 3 30
C A 3 2 50
D A, C 2 1 40

(a) Draw the project network.

determine the critical path(s). What is the duration of the project?
(c) Accelerate the project by one day. Clearly indicate which (combinations of)

(d) What if the decision maker needs some further project acceleration? What is
the shortest project duration and what are the associated costs?

Solution:

Figure 7.16

(d) After the first acceleration (c), the activity durations are 4, 4, 3, and 1, and
the project duration is T = 8. At this time, we either accelerate A (cost $80) or
activities B and C (cost $80). Arbitrarily choose activity A. the activity durations
are then 3, 4, 3, and 1, and the project length is T = 7. The two critical paths are
still the only critical paths in the network. At this point, we can only accelerate
activities B and C, as A and D are both at their respective crash times. Accelerating
B and C costs $80. This leads to a project duration of T = 6, which cannot be
accelerated any further. The cost to get to this point is $230.

Problem 2 (scheduling with resources, Gantt chart and resource consumption
graph): A project has been subdivided into five activities. Their immediate
predecessors, activity durations, and resource consumption are shown in Table 7.8.

ns

D

BA

nt

3,2; 50 2,1; 40

4,3; 80 5,3; 30

C

Exercises

(b) Use the forward recursion, the backward recursion, calculate the floats, and

activities could be accelerated in order to speed up the project, and which
activity or activities should be accelerated. What are the associated costs?

7 Project Networks 282

Activity Immediate

Predecessor
Duration
(in days)

Resource
consumption

A − 3 40
B − 7 40
C A 5 30
D A, B, C 2 60
E B, D 5 70

(a) Draw the project network.

that all activities are scheduled as early as possible. What is the largest
resource consumption at any point in time?

Solution: (a)

Figure 7.17

0 3 3

0 3 3

0A

0 0 0

0 7 7

1 7 8

0 0 0

0

3 5 8

8 2 10

10 5 15

10 5 15

15 0 15

15 0 15

3 5 8

8 2 10

0C

0D

0E

1B

ns 0nt

Table 7.8: Details of the network in Problem 2

of all activities. What is the critical path? What is its duration?
(b) Calculate all earliest and latest starting and finishing times and the total floats

(c) Draw the Gantt chart and the associated resource consumption graph, assuming

(b) The critical path includes the activities A, C, D, and E. Its length is 15.

283

(c)

Figure 7.18

The largest resource consumption at any point in time is 80.

Problem 3 (PERT network): A project has been subdivided into five activities.
Their immediate predecessors and the estimated activity durations (optimistic,
most likely, and pessimistic) are shown in Table 7.9.

Activity Immediate

Predecessor
Estimated duration

(in days)
A − 1, 2, 3
B − 1, 3, 5
C A, B 3, 4, 5
D A, C 2, 2, 2
E C, D 1, 2, 21

(a) Draw the project network. Based on the mean activity durations, calculate all

earliest and latest starting and finishing times, and the total floats of all
activities. What is the critical path? What is its duration?

(b) Calculate the variance and standard deviation on the critical path.
(c) Calculate the probability that the project will be finished between 11 and 15

days.

Exercises

Table 7.9: Details of the network in Problem 3

7 Project Networks 284

(d) What is the probability that the project will be finished within 14 days? What
is the probability that the project will be finished in exactly 14 days?

Solution: (a)

Figure 7.19

The critical path is ns – B – C – D – E – nt. Its duration is 14 days.
(b) σ2 =]4000416[36

1 +++ = 36
420 , σ = 3.4157.

(c) P(11 ≤ X ≤ 15) = P(11 ≤ X ≤ 14) + P(14 ≤ X ≤ 15). Finding z-scores z1 and z2

for the two ranges results in z1 =
4157.3

1114 − = .8783, leading to 31.06%, and z2

=
4157.3

1415 − = .2928, leading to 11.41%, for a total of 42.47%.

(d) P(X ≤ 14) = 0.5. P(X = 14) = 0.

Problem 4 (GANTT chart, resource requirement graph, and PERT network):
A project has been subdivided into five activities. Their immediate predecessors
and the estimated activity durations (optimistic, most likely, and pessimistic) are
shown in Table 7.10.

Activity Immediate

Predecessor
Estimated duration

(in days)
A − 2, 6, 16
B − 2, 2, 8
C A 6, 8, 10
D B 5, 6, 7
E A, B 9, 9, 9

0 2 2

1 2 3

1A

0 0C

0B 0E

743000 14 0 14

14 0 14
3 4 70 0 0

0 3 3

4159330

9 5 14

0

7 2 9

7 2 9

0D

ns
nt

Table 7.10: Details of the network in Problem 4

285

(a) Draw the project network. On the basis of the expected durations, calculate
all earliest and latest starting and finishing times, and the total floats of all
activities. What is the critical path? What is its duration?

(b) Calculate the variance and standard deviation on the critical path.
(c) Calculate the probability that the project will be finished between 14 and 18

days.
(d) What would happen to the result under (c), if the time estimates of activity D

were to be revised to 3, 6, and 9? Explain in one short sentence.
(e) Consider the starting and finishing times calculated in (a) as well as resource

requirements of 20, 50, 30, 40, and 60, respectively. On that basis, draw a
GANTT diagram given that all activities are scheduled as early as possible.
What is the highest resource requirement at any one time during the project?

Solution: (a)

Figure 7.20

The critical path is ns − A – E − nt, and its length is 16.

(b) and (c) σ2 = ≈+)0196(36
1 5.4444 and σ ≈ 2,3333. Then z = 8572.

3333.2
1618

=
−

,

and P(14 ≤ X ≤ 18) = 2 (.3043) = 60.86%.
(d) Since activity D is not on the critical path, there will be no changes.

0 0 0

0 0 0

0ns

0 7 7

0 7 7

0A

0 3 3

4 3 7

4B
3 6 9

10 6 16

7D

7 8 15

8 8 16

1C

7 9 16

7 9 16

0E

16 0 16

16 0 16

0nt

(f) Repeat question (e) for the “Latest possible” scheduling rule.

Exercises

7 Project Networks 286

(e)

Figure 7.21

The highest resource requirement at any point in time during the project is 130.

(f)

Figure 7.22

H.A. Eiselt and C.-L. Sandblom, Operations Research: A Model-Based Approach, 287
DOI 10.1007/978-3-642-10326-1_8, © Springer-Verlag Berlin Heidelberg 2010

8 Machine Scheduling

The subject of this chapter is the allocation of jobs (or tasks) to processors (or
machines). These terms should be understood in the widest possible sense: in the
case of a doctor treating patients the doctor is the processor and the patients
represent the tasks, in the case of a tax auditor the auditor is the processor (or the
“machine”), while the individual cases are the tasks to be processed. This
allocation is to be made so as to optimize some objective. We will discuss a
number of these objectives below.

This problem is somewhat reminiscent of the production scheduling problem
introduced in Chapter 2 of this volume, and the project planning problems
discussed in Chapter 7. The main feature of the machine scheduling problems in
this chapter is that they include a sequencing component, which determines the
order in which tasks are processed on a machine, and a scheduling component that
determines at what time the processing of a task begins and ends on a machine.
Often, the term scheduling is meant to include both the sequencing and scheduling
parts of the allocation problem.

This chapter will deal exclusively with deterministic scheduling problems, i.e.,
situations in which all parameters are assumed to be known with certainty. This is
not to mean that these are the only relevant scheduling problems: on the contrary,
in many important real-world applications, some of the parameters involved in the
problem are uncertain. However, the structure of probabilistic problems is no
different from that of deterministic problems (other than the fact that probabilistic
problems are typically much more difficult than their deterministic counterparts),
and what we attempt to convey in this chapter is a general idea of scheduling
models, their applications, and degree of difficulty.

The first section of this chapter will introduce the basic concepts of scheduling
models. The remaining three sections of this chapter deal with different scheduling
scenarios with increasing degree of difficulty.

8 Machine Scheduling 288

8.1 Basic Concepts of Machine Scheduling
As mentioned above, each machine scheduling problem features n tasks (jobs) T1,
T2, …, Tn that are to be performed on m machines (processors) P1, P2, …, Pm.
Processing a task on a machine will take a certain (and known) amount of time,
which is referred to as the processing time. In particular, we define pij as the
processing time of task Tj on machine Pi for all combinations of tasks and
machines. In case there is only a single machine or all machines have the same
processing time for a job, we simplify the notation to pj.

We can then distinguish between three broad categories of models. The first
category assumes that there is only a single machine, we refer to this as single
machine scheduling. The second category has multiple machines working in
parallel, all able to perform the same function. This type of model is called a
parallel machine scheduling problem. There are two subcategories of parallel
machine scheduling. In the first, parallel machines are identical (meaning that all
machines take the same amount of time to process any given task), or they are
unrelated, which indicates that it takes different amounts of time to process any
given task on different machines.

The third broad category of models includes dedicated machine scheduling
models. The main characteristic of these models is that not all machines have the

machines. In particular, we distinguish between three subcategories. The first
category is an open shop. In an open shop, each task must be processed by all

In addition to the processing time pj introduced above, we may also have a

j

j j j

j j

agreed upon. If the task is not completed by that time, then there may be a penalty
for the delay.

Once all jobs have been scheduled on the machines, we can use a number of
different properties inherent in any given schedule. The first is the completion time
cj of job Tj, which is the time at which task Tj is completely finished. The second
property is the flow time fj of task Tj. The flow time is formally defined as fj = cj −
rj, and it can be thought of as the time that a job is in the system, either waiting to

capability to process all jobs, and not all jobs need to be processed on all

task T is ready for processing. In the simplest case, r = 0 for all tasks T , meaning

machines, but there is no specific order in which the processing must take place.

referred to as arrival time or release time) r , which indicates the time at which

The second category are flow shops, in which each job is to be processed on all

This could be a time specified in a contract or some other delivery time that was

number of additional parameters. The first such parameter is the ready time (also

machines, and each task is processed by the machines in the same specified order.

that all jobs are ready when the scheduling process starts. The second additional

set of machines, and the processing order is also job-specific.

parameter is the due time d , which is the time at which task T should be finished.

Finally, there are job shops, in which each job needs to be processed on a specific

8.1 Basic Concepts of Machine Scheduling 289

be processed or being processed. (This time is reminiscent as the “time in the
system” Ws in the analysis of waiting lines, see Chapter 12 of this book). Finally,
there is the lateness of a task Tj, which is defined as lj = cj − dj and tardiness,
which is expressed as tj = max{lj, 0}. The lateness of a task is the time that elapses
after the due date and the actual completion date of a task. For late jobs, lateness
and tardiness are the same. For jobs that are completed before their due date, the
lateness becomes negative, while their tardiness equals zero.

There are many different criteria that may be used to optimize scheduling systems.
Three of the most popular such criteria are introduced here. First, there is the
makespan (or schedule length) Cmax. It is formally defined as Cmax = }{max j

j
c ,

and it expresses the time at which the last of the tasks has been completed. Such a
measure is meaningful if a project can only be considered completed, if all of its
individual tasks have been completed (similar to project networks, see Chapter 7
of this volume). A typical example is the processing of machine parts that have
been ordered by a customer. All of them will be shipped in a box, and the box can
only be released for transportation, once all of the individual machine parts are
included.

The second criterion is the mean flow time F. The mean flow time is formally
defined as the unweighted average F =)...(21

1
nn fff +++ . (As a matter of fact,

by virtue of the definition of flow time, it is easy to demonstrate that the mean
flow time differs from the mean completion time)...(21

1
nn ccc +++ only by the

constant)...(21
1

nn rrr +++). The mean flow time refers to the average time that a
job is in the system either waiting to be processed or being processed. The mean
flow time is a meaningful measure in instances such as a maintenance or repair
system, in which a machine is not available if it is waiting for repair or being
repaired.

The third and last criterion in this context is the maximal lateness Lmax. The
maximal lateness is defined as Lmax = }{max j

j
l , and it expresses the longest

lateness among any of the jobs. This criterion is applicable in case some lateness
is unavoidable or deemed acceptable, but the decision maker attempts to ensure
that very long delays beyond the due date are avoided.

Before discussing any details of specific scheduling models, we should point out
some general features inherent in scheduling problems. In this type of model there
is a fairly fine line that separates models that are rather easy to solve (some of
which are represented in this chapter), while others, seemingly straightforward
extensions, are very difficult. In those cases, exact methods that find optimal
solutions will take a very long time, which may—depending on the individual
circumstances—render them impractical. In such cases, decision makers will

8 Machine Scheduling 290

resort to heuristic methods that have the advantage of providing (hopefully good)
solutions quickly, but the obvious disadvantage of not necessarily resulting in an
optimal solution. If a difficult problem has to be solved in real time, the use of a
heuristic is imperative; if some time is available, an exact algorithm may be
employed.

8.2 Single Machine Scheduling
The models in this section deal with the simplest of scheduling problems: there is
only a single machine on which tasks are to be processed. Before investigating the
solutions that result from the use of the three criteria introduced in the introduction
above, we may introduce another wrinkle in this seemingly primitive scenario. In
particular, we may consider modes that allow the preemption of a task, while
others do not. In case preemption is permitted, this means that each task has
associated with it a priority, and if a task with a higher priority becomes available
at a time, when a task with a lower priority is being processed, then processing on
the lower-level task stops, and the higher-level task is processed first. Examples of
preemption abound: consider the case of a surgeon who is dealing with a broken
leg as another patient with a heart attack arrives. Rather than referring to the usual
“first come, first served” rule (inviting juicy lawsuits), most surgeons would probably
stabilize the broken leg and deal with the heart patient first. Similar preemptions
are found for police officers, who would interrupt a routine investigation to attend
to a robbery in progress, or a plumber, who will interrupt the installation of a
water pump in a residence to attend to a broken main. In this section, we restrict
ourselves to cases, in which preemption is not permitted.

Minimizing the makespan in case of a single machine is not meaningful, as each
sequence of tasks will result in the very same value of Cmax. More specifically,
Cmax equals the sum of processing times of all tasks.

The objective that minimizes the mean flow time is not as straightforward.
However, it is not difficult either, as it has been shown that the simple Shortest
Processing Time (STP) Algorithm solves the problem optimally. The algorithm
can be summarized by a simple rule.

SPT Algorithm: Schedule the task with the shortest processing
time first. Delete the task and repeat the procedure until all tasks
have been scheduled.

Rather than illustrate the SPT algorithm by an example, we will first introduce a
minor extension of the rule. In particular, suppose that the decision maker has not
only processing times pj to consider, but there are also weights wj associated with
the tasks. The objective is then to minimize the average weighted flow time,
defined for task Tj as wjfj. The weighted generalization of the SPT algorithm can
than be stated as

8.2 Single Machine Scheduling

291

WSPT Algorithm (Smith’s Ratio Rule): Schedule the task with
the shortest weighted processing time pj/wj first. Delete the task
and repeat the procedure until all tasks have been scheduled.

As a numerical illustration, consider

Example 1: There are seven machines in a manufacturing unit. Scheduled
maintenance has to be performed on these machines once in a while. The
repairman has identified the processing times required for the maintenance. Costs
are incurred for downtime, regardless if the machine waits for service or is being
served. These costs differ between the machines. The estimated processing times
of the machines, the downtime costs, and the weighted processing times are
summarized in Table 8.1.

Table 8.1: Processing times and downtime cost for Example 1

Job # T1 T2 T3 T4 T5 T6 T7

Service time
(minutes) 30 25 40 50 45 60 35

Downtime cost
($ per minute) 2 3 6 9 4 8 3

Weighted processing
time pj/wj

15 8⅓ 6⅔ 9
55 11¼ 7½ 11⅔

Applying the WSPT algorithm, we first schedule task T4 (which has the lowest
weighted processing time of 9

55), followed by T3 with the next-lowest weighted
processing time of 6⅔, followed by T6, T2, T5, T7, and T1. The schedule is shown
in the Gantt chart (named after the American engineer Henry L. Gantt (1861 –
1919), who developed these charts in 1917) in Figure 8.1.

Figure 8.1

The tasks T4, T3, T6, …, T1 now have idle times of 0, 50, 90, 150, 175, 220, and
255, respectively. Adding the processing time to them results in 50, 90, 150, 175,
220, 255, and 285, respectively. Multiplying these by the individual per-minute
costs and adding them up results in a total of $4,930.

Consider now the objective that minimizes maximal lateness Lmax. Again,
this problem turns out to be easy from a computational point of view. A simple

8 Machine Scheduling 292

method was developed in the mid-1950s by Jackson, which is now commonly
referred to as the earliest due date algorithm (or EDD algorithm or Jackson’s
rule). It finds an optimal solution and can be stated as follows.

EDD Algorithm: Schedule the task with the earliest due date
first. Delete the task and repeat the procedure until all tasks have
been scheduled.

We will explain this rule by means of

Example 2: The accounting department of a large firm processes book-keeping
jobs for various divisions of the firm. At present, they have identified eleven tasks,
which are to be completed by a single team, one after another. The processing
times and the due dates for the individual jobs are shown in Table 8.2.

Table 8.2: Data for Example 2

Job # T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11
Processing time
(hours)

6 9 4 11 7 5 5 3 14 8 4

Due dates 25 15 32 70 55 10 45 30 30 80 58

The EDD rule starts by scheduling task T6 first (its due date is 10, the earliest of
all due dates), followed by T2, T1, and so forth. The Gantt chart for the schedule
obtained by the EDD rule is shown in Figure 8.3 (where the tie between tasks T8
and T9 that have the same due dates, is broken arbitrarily).

Figure 8.2

Simple inspection reveals that the tasks T6, T2, T1, and T8 are finished before the
due date. Task T9 is late by 7 hours, T3 is late by 9 hours, T7 is late by 1 hour, T5,
T11, T4, and T10 are again finished before their due dates. This means that the
maximal lateness occurs for job T3, so that Lmax = 9. Had we broken the tie in
favor of T9 rather than T8, task T9 would have been completed at time 34 (4 hours
late), task T8 would have been finished at time 37 (7 hours late). Otherwise, the
schedule would have been identical to that shown in Figure 8.2, with Lmax = 9
being still defined by job T3.

The discussion in this chapter may leave readers with the impression that single-
machine scheduling problems are easy. This is, however, not the case. Consider
again Example 2, but as an objective, we now use the total tardiness rather than

8.2 Single Machine Scheduling 293

sum = t1 + t2 + …+ t11
rather than Lmax = },..., 1121 l . We can find an optimal solution to the
problem by formulating an integer programming problem. In order to do so, we
first use variables t1, t2, …, t11 for the tardiness of the individual tasks. We then
define variables x1, x2, …, x11 for the actual starting times of the eleven tasks.
Furthermore, we need to define zero-one variables yij as

⎩
⎨
⎧

=

jobif,1 ji
ij

T
y ,

resulting in 112 = 121 zero-one variables yij in addition to the eleven continuous
variables t1, …, t11 and the eleven continuous variables x1, …, x11 for a total of 143
variables.

The objective simply minimizes the sum of tardinesses t1 + t2 + … + t11. As far as
constraints are concerned, we first must define tardiness, which is done by stating
that tardiness of a job can be expressed as its starting time plus its processing time
(resulting in its finishing time) minus the due date, assuming that the resulting
figure is positive. As an example, consider job T1, whose lateness can be written
as t1 = x1 + p1 − d1, provided that t1 ≥ 0, otherwise t1 is set to zero. This can be
achieved by writing x1 + p1 − d1 ≤ t1, as whatever value the left-hand side of this
inequality assumes, the objective function will ensure that the value of t1 is chosen
as small as possible. This constraint is written for each of the eleven tasks
separately.

We then have to ensure that a job must be completely finished before the next job
in line can begin being processed. Suppose that we have scheduled job T1 directly
before job T2. The pertinent constraint will then be x1 + p1 ≤ x2 + M(1−y12), where
M >> 0 is a suitably chosen large number. This constraint can be explained as
follows. The left-hand side expresses the finishing time of job T1, while the right-
hand side shows the starting time of job T2 plus M, if T1 is not scheduled before T2
and 0 if it is. In other words, if T1 is scheduled before T2, then this constraint
requires that the starting time of T2 is at least as large as the finishing time of T1
(i.e., T2 cannot start before T1 is finished), while in case that T1 is not scheduled
before T2, then the right-hand side of the inequality is very large, ensuring that it is
satisfied regardless of the values of the variables. The problem can then be written
as follows:

 P: Min z = t1 + t2 + …+ t11
 s.t. x1 + p1 − d1 ≤ t1
 M
 x11 + p11 − d11 ≤ t11
 x1 + p1 − x1 ≤ M(1−y11)

the maximal lateness. In other words, our objective is now L
max{l ,l

directly precedes job T
0, otherwise

where the subscripts i and j each can assume any value between 1 and 11,

8 Machine Scheduling 294

 x1 + p1 − x2 ≤ M(1−y12)
 M
 x1 + p1 − x11 ≤ M(1−y1,11)
 x2 + p2 − x1 ≤ M(1−y21)
 M
 x11 + p11 − x11 ≤ M(1−y11,11)

 x1, x2, …, x1 ≥ 0
 t1, t2, …, t11 ≥ 0
 y11, y12, …, y1,11, y21, y22, …y11,11 = 0 or 1.

Note that the size of the integer programming problem for a scheduling model
with n tasks includes n2 zero-one variables, 2n continuous variables, and n+n2
structural constraints plus nonnegativity and zero-one conditions. It is apparent
that the formulation becomes unwieldy for large numbers of tasks, thus possibly
requiring the use of heuristic algorithms.

8.3 Parallel Machine Scheduling
All scheduling models in this section have in common that the tasks can now be
processed on more than one machine. In general, we assume that a given number
m of machines are available. We further assume that these machines are identical
in the sense that not only can all machines process each of the tasks, but it takes
the same amount of time to process a task, regardless of the machine it is
processed on.

First consider the objective of minimizing makespan Cmax. It can be demonstrated
that this problem is very difficult from a computational point of view, even for
just two machines. This means that we typically have to resort to heuristics to
solve the problem (except in cases, in which there is ample time to find exact
solutions). The most popular heuristic method for this type of problem is the
longest processing time first (or LPT) algorithm. This heuristic method belongs to
the class of list scheduling methods. All list scheduling methods first produce a
priority list of tasks, starting with the job that is assigned the highest priority.
Using this list and starting with the task that has the highest priority, jobs are then
assigned one at a time to the first available machine. In particular, the longest
processing time first algorithm can be described by the following rule:

LPT Algorithm: Put the tasks in order of nonincreasing
processing times. Starting at the top, assign the first available
task to the first available machine. Repeat the procedure until all
tasks have been scheduled.

In order to demonstrate the way the algorithm works, consider again Example 1
above, but assume that now we have three servicemen available to perform the

8.3 Parallel Machine Scheduling

295

maintenance tasks. Putting the seven tasks in order of their processing time,
starting with the longest, we obtain the sequence T6, T4, T5, T3, T7, T1, and T2 with
processing times of 60, 50, 45, 40, 35, 30, and 25 minutes. In the beginning, all
three machines are available, so we first assign the longest task T6 to machine P1.
(Note that this machine will become available again at time 60, when T6 is

4 2
which is available now. (This machine will become available again at time 50,
when T4 is completely processed). The next task in line is T5 and it is assigned to
machine P3. This machine will become available again at time 45. The next task to

3
45, so that assigning T3 to the next available machine means that it is scheduled on
P3. This process continues until all jobs are scheduled. The actual schedule is
shown in the Gantt chart in Figure 8.3, where the shaded areas indicate the idle
time on the machines.

Figure 8.3

Note that the schedule length is Cmax = 110. It is worth mentioning that this
schedule is not optimal, which is not surprising, since the LPT algorithm, which it
was determined with, is not an exact algorithm but a heuristic. Incidentally, the
optimal solution schedules T6 and T7 on machine P1, jobs T4 and T5 are processed
on machine P2, and tasks T3, T1, and T2 are processed on P3. This schedule has no
idle time at all and all machines finish at time 95. Note that the optimality of a
schedule does not necessarily require that there is no idle time. On the other hand,
if there is no idle time, the schedule must obviously optimal.

Consider now the second of our objectives, which is to minimize mean flow time.
It has been demonstrated that this problem can be solved to optimality by means
of a fairly simple technique. The algorithm is frequently referred to as McNaughton’s
rule. It assumes that all tasks are ready at the beginning of the process, meaning
that the mean flow time reduces to the mean completion time.

Recall that there are n jobs and m machines. We can then formulate the following
method:

McNaughton’s Algorithm: First sort the jobs in order of
nondecreasing processing time (ties are broken arbitrarily).
Renumber them as .,...,, 21 nTTT ′′′ Then assign tasks ,, 11 mTT +′′

,...21 mT +′ to machine P1, tasks ,...,, 2222 mm TTT ++ ′′′ to machine P2,

completely processed). The next task in line is T , which is assigned to machine P ,

be scheduled is now T . The three machines become available again at 60, 50, and

8 Machine Scheduling 296

tasks ,...,, 2333 mm TTT ++ ′′′ to machine P3, and so forth. The tasks
are processed in the order that they are assigned in.

In order to illustrate this algorithm, consider again Example 1 above. Recall that
the reordered sequence of tasks is (7654321 ,,,,,, TTTTTTT ′′′′′′′) = (T2, T1, T7, T3, T5,
T4, T6) with the processing times (25, 30, 35, 40, 45, 50, 60). Given that we have
three machines, we assign to machine P1 the tasks 1T ′ , 4T ′ , and 7T ′ (or,
renumbering them again, T2, T3, and T6), machine P2 is assigned the jobs 2T ′ and

5T ′ (i.e., T1 and T5), and machine P3 will process jobs 3T ′ and 6T ′ , i.e., T7 and T4.
The resulting optimal schedule is shown in Figure 8.4.

Figure 8.4

The mean completion time of the solution in Figure 8.5 is F = 7

1 [25 + 65 + 125 +
30 + 75 + 35 + 85] = 440/7 ≅ 62.8571. The seemingly straightforward extension to
the model with nonidentical ready times renders the problem very difficult from a
computation point of view. This is yet another indication how fine a line there is

Finally, the minimization of the maximal lateness in case of parallel machines
turns out to be difficult, and we leave its discussion to specialized books, such as
Eiselt and Sandblom (2004).

between (sometimes very) easy and (sometimes very) difficult models.

8.4 Dedicated Machine Scheduling

297

8.4 Dedicated Machine Scheduling
This section deals with different types of dedicated machine scheduling models.
The first such model includes an open shop. Recall that in an open shop, each task
must be processed on each of a number of different machines, performing
different operations. The sequence of machines, in which the jobs are processed, is
immaterial. Here, we will deal only with the case of two machines, which happens
to be easy, while problems with three or more machines are difficult. Minimizing
the schedule length (makespan) Cmax is easy. Optimal schedules can be found by
means of the Longest Alternate Processing Time (LAPT) Algorithm. It can be
described as follows.

LAPT Algorithm: Whenever a machine becomes idle, schedule
the task on it that has the longest processing time on the other
machine, provided the task has not yet been processed on that
machine and is available at that time. If a task is not available,
the task with the next-longest processing time on the other
machine is scheduled. Ties are broken arbitrarily.

In order to illustrate the method, consider

Example 3: In an automotive assembly shop, each semi-finished product goes
through two phases, assembly of individual components, and checking of the
components. The sequence in which these tasks are performed is immaterial. The
times (in minutes) that it takes to assemble and check the six products are shown
in Table 8.3.

Table 8.3: Data for Example 3

Job # T1 T2 T3 T4 T5 T6
Processing time on P1 30 15 40 30 10 25
Processing time on P2 35 20 40 20 5 30

Using the LAPT algorithm, we begin by scheduling a task on machine P1. The task
with the longest processing time on P2 is T3, so this job is scheduled first on P1.
The next step is to schedule a task on P2 which now (we are still at time zero) idle.
The task with the longest processing time on P1 is again T3, which is not available
at this time, so that we schedule the task with the next-longest processing time on

1 1 4 1 3 1
scheduled on the two machines, T1 is the first task whose processing is finished at
time 35, and machine P2 becomes idle again. At this time, the available task with
the next longest processing time on P1 is T4, which is then scheduled next on P2.
The process continues in this fashion, and the resulting optimal schedule is shown

times on the machines. The total schedule length is Cmax = 155 minutes.

in Figure 8.5, where the shaded areas towards the end again indicate idle times

P next. This is either T or T . Arbitrarily choose T . With tasks T and T being

8 Machine Scheduling 298

Figure 8.5

There are no simple extensions of this model that are computationally easy. The
other two objectives (i.e., those that minimize mean completion time and maximal
lateness) are both very difficult from a computational point of view, even for two
machines. For their discussion, we refer to the advanced literature on the subject.

The second dedicated machine scheduling model is a flow shop model, i.e., a model
in which each task has to be processed by all machines, but in the same, prespecified
order. The schedule in Figure 8.5 does not satisfy this condition, note that for
instance job T3 is processed on P1 first and later on P2, while task T1 is processed
on P2 first and then on P1. Similar to the case of open shops, there are very few
cases that are easy to solve. Among them is the case of two machines, for which
the makespan is to be minimized. The solution algorithm is the famed Johnson’s
rule that was first described in the early 1950s. Assuming that all jobs have to be
processed on P1 first and then on P2, and the processing time of task Tj is p1j on
machine P1 and p2j on machine P2, the algorithm can be summarized as follows.

Johnson’s Algorithm: For all jobs whose processing time on P1
is the same or less than their processing time on P2 (i.e., p1j ≤
p2j), determine the subschedule S1 with the tasks in nondecreasing
order of their p1j values. For all other jobs (i.e., tasks for which
p1j > p2j), determine the subschedule S2 with all tasks in
nonincreasing order of their p2j values. The sequence of jobs is
then (S1, S2).

As a numerical example for Johnson’s rule, consider again Example 3, but with
the proviso that each job has to be assembled first and then it is checked, i.e., it is
processed on machine P1 first before it can be processed on P2. The tasks for
which the condition p1j ≤ p2j holds are T1, T2, T3, and T6, while the jobs with
p1j > p2j are T4 and T5. Putting the former four tasks in nondecreasing order of
the processing times on P1 results in the subsequence S1 = (T2, T6, T1, T3), while
the latter two jobs in nonincreasing order of their processing time on P2 are put
in the sequence S2 = (T4, T5). The resulting sequence is (T2, T6, T1, T3, T4, T5), and
the corresponding schedule is shown in the Gantt chart in Figure 8.6.

299

Figure 8.6

It is apparent that the schedule length is Cmax = 175. Note the increase in the
schedule length in comparison to the same example, in which the sequence of
processing in the machines is not fixed (i.e., the open shop) shown in Figure 8.5.
Given that a flow shop is more restrictive than an open shop (it has the additional
constraint that all tasks have to be performed in the same order on the machines),
the increase of the schedule length from 155 to 175 minutes is not surprising.

Simple extensions of the problem to more than two machines as well as the applic-
ation of the mean flow time and the minimization of tardiness are computationally
much more difficult. Again, we refer readers to the specialized literature.

The last model in this chapter deals with a job shop. Recall that by definition of a
job shop, not all tasks need to be performed on all machines, and the sequence
in which a job is processed on the machines is job-specific. Again, due to the
inherent complexity of the problem at hand, we will restrict ourselves to the problem
with two machines and the objective that minimizes the makespan. For this type
of problem, Jackson described an exact algorithm in 1955. Note that Jackson’s
method uses Johnson’s (flow shop) algorithm as a subroutine. The method can be
described as follows.

Jackson’s Job Shop Algorithm: Subdivide the set of jobs into
four subcategories:
 J1 includes all jobs that require processing only on machine
 P1,
 J2 includes all jobs that require processing only on machine
 P2,
 J12 is the set of jobs that require processing on machine P1
 first and then on P2, and
 J21 is the set of jobs that need to be processed on P2 first and
 then on P1.

Apply Johnson’s rule to the jobs in the set J12, resulting in the
sequence S12. Then apply Johnson’s rule to the jobs in the set
J21, but with the processing times p1j and p2j exchanged. The
result is the subsequence S21. All jobs in the two sets J1 and J2
are sequenced in arbitrary order (e.g., with those jobs that have
smaller subscripts scheduled first). We denote their sequences
by S1 and S2, respectively. The jobs are then sequenced as
follows: the job order on machine P1 is (S12, S1, S21), while the
job order on machine P2 is (S21, S2, S12).

8.4 Dedicated Machine Scheduling

8 Machine Scheduling 300

As a numerical illustration, we will use a modification of Example 3. The
pertinent information is found in Table 8.4.

Table 8.4: Data for Example 4

Job # T1 T2 T3 T4 T5 T6
Processing time p1j 30 15 − 30 10 25
Processing time p2j 35 20 40 − 5 30
Processing sequence P2, P1 P1, P2 P2 P1 P1, P2 P2, P1

First defining the sets, we have J1 = {T4}, J2 = {T3}, J12 = {T2, T5}, and J21 = {T1,
T6}. Since J1 and J2 include only a single task each, their respective subsequences
are S1 = (T4) and S2 = (T3). Applying Johnson’s algorithm to the tasks in the set
J12, we obtain the sequence S12 = (T2, T5). Consider now the set J21. Applying
Johnson’s rule to the two tasks in the set, viz., T1 and T6, with their processing times
p1j and p2j switched, we obtain the subsequence S21 = (T1, T6). Following Jackson’s
job shop algorithm, the overall sequence on machine P1 is then (S12, S1, S21) = (T2,
T5, T4, T1, T6), while the overall sequence on machine P2 is (S21, S2, S12) = (T1, T6,
T3, T2, T5). The appropriate Gantt chart is shown in Figure 8.7. It turns out that the
overall schedule length Cmax = 130 minutes. We also note that processor P1 is idle
for twenty minutes at the end of the schedule.

Figure 8.7

301

Exercises

problem has ten jobs with given processing times of 3, 1, 4, 1, 5, 9, 2, 6, 5, and 3
hours, respectively.

objective is to minimize mean flow time, find an optimal schedule and draw
the corresponding Gantt chart.

(b) Assume that there are two parallel machine to process the jobs. Trying to
minimize the schedule length, schedule the jobs using the LPT algorithm.
Display the corresponding Gantt chart.

(c) Given two parallel machines as under (b), what is the schedule that minimizes
the mean flow time? Display the corresponding Gantt chart.

(d) Reconsider questions (b) and (c) given that there are now three rather than
two parallel machines.

Solution:
(a) Assuming ready times rj = 0, the mean flow time is F is minimized by the

shortest processing time (SPT) algorithm. The sequence of jobs is T2, T4, T7,
T1, T10, T3, T5, T9, T8, and T6. The corresponding Gantt chart is shown in
Figure 8.8.

Figure 8.8

 The minimal mean flow time for this schedule is then F =

.15)3930...7421(10
1 =++++++ Since T1 and T10 both have processing

times of 3 hours, they may be swapped in the optimal schedule, thus creating
alternative optimal solutions. A similar argument applies to the pairs T2 and
T4, and T5 and T9.

(b) With two machines P1 and P2, the longest processing time (LPT) minimizes
the makespan Cmax.

Exercises

Problem 1 (single and parallel machine scheduling): A machine scheduling

(a) Assume that the jobs are to be performed on a single machine and that the

8 Machine Scheduling 302

Figure 8.9

 The makespan is 20 hours. In the schedule shown in Figure 8.9, one of the

machines is idle for one hour.
(c) With two machines, use McNaughton’s rule to minimize the mean flow time.

The Gantt chart is shown in Figure 8.10.

Figure 8.10

 The schedule length is 22 hours and the mean flow time is F =

6.8)2217...4311(10
1 =++++++ , and one processor is idle for five hours.

(d) With three machines, we use the LPT rule as a heuristic to minimize Cmax. the
Gantt chart is shown in Figure 8.11.

Figure 8.11

 The schedule has a makespan of 13 hours. Since there is no idle time, the
schedule must be optimal. Minimizing the mean flow time is done by using
McNaughton’s rule. The schedule is shown in Figure 8.12.

Figure 8.12

303

 The schedule length is 18 hours and the mean flow time is F = 6.6. Note that
there is significant idle time.

Problem 2 (open shop and flow shop scheduling): In a hospital laboratory, there
are two machines testing patient blood samples. Table 8.5 shows the number of
minutes required on each machine to process the samples.

Table 8.5: Data for Problem 2

Blood sample T1 T2 T3 T4 T5
Processing time on P1 8 9 7 9 3
Processing time on P2 2 3 8 4 6

(a) Assume that the order of processing the blood samples on the two machines is

arbitrary. Schedule the testing on the two machines so as to minimize the
schedule length. Display the optimal schedule in a Gantt chart. Indicate the
schedule length as well as the idle time.

(b) Assume now that all blood samples must be processed on P1 before they can
be processed on P2. Redo part (a) with these new assumptions.

(c) Are the optimal schedules in (a) and (b) unique? Discuss. There is no need to
display Gantt charts.

Solution: (a) The LAPT algorithm is used to obtain the optimal schedule shown in

Figure 8.13.

Figure 8.13

The minimal schedule length is Cmax = 36 minutes. There is no idle time on P1,
 while P2 is idle at the end for 13 minutes. This is an open shop model.
(b) Johnson’s rule is used to obtain the optimal schedule shown in Figure 8.14.

Figure 8.14

The minimal schedule length is now Cmax = 38 minutes. Processor P1 has an idle
time of 2 minutes at the very end of the schedule, whereas P2 has five separate idle
time periods, totaling 15 minutes. This is a flow shop model.

Exercises

8 Machine Scheduling 304

(c) In (a), tasks T2 and T4 could swap positions in the schedule of P1 (and on P2
for that matter) without consequences regarding the schedule length. There
are several other changes that would not destroy optimality. In (b), tasks T2

and T4 could also swap positions on P1, necessitating modifications on
processor P2.

H.A. Eiselt and C.-L. Sandblom, Operations Research: A Model-Based Approach, 305
DOI 10.1007/978-3-642-10326-1_9, © Springer-Verlag Berlin Heidelberg 2010

9 Decision Analysis

Everywhere in the world, at each moment, millions of people make their own
decentralized decisions: when to get up in the morning, what tie to wear, what to
eat for lunch or dinner, what to do in the evening (go to the theater or watch
television), where to vacation, and many more. Similarly, firms will decide which
mode of transportation to use when routing their products to customers, where to
locate regional distribution centers, what new product lines to develop, etc. This
chapter will first introduce the main elements of decision analysis, and then offer
some visualizations of decision analysis problem. This is followed by a discussion
of some simple decision rules, sensitivity analyses, and a discussion of the value
of information. The chapter wraps up the discussion by some thoughts on utility
theory.

9.1 Introduction to Decision Analysis
In order to put the decision making into a general framework, we must first
distinguish between the two major elements of decision making: the decision
made by the decision maker (whom we will think of as “us”) and the outcome that
results from our decision. Typically, the outcome is given in monetary terms, and
it is usually referred to as the payoff.

The type of problem under consideration in this chapter is not a philosophical
investigation into decisions; instead, it refers to a very specific scenario that is
prevalent in decision making circumstances. In particular, we assume that there
are a finite number of decisions at our disposal. Among these choices, the decision
maker’s task is to choose exactly one. This type of situation is often referred to as
a selection problem. Returning to the capital budgeting decision in the introduction to
integer programming in Chapter 4, we can define a binary variable yj for each
decision, such that the variable assumes a value of one if we make decision j, and
0 otherwise. A selection problem with n possible decisions will then feature the
constraint y1 + y2 + …+ yn = 1.

9 Decision Analysis 306

However, in contrast to problems that can simply be formulated as integer
programming problems, there are two possible extensions that typically arise. The
first extension involves the evaluation of a decision on more than a single
criterion. As an example, consider a department store that considers changing the
layout of its store. There are, of course, the costs of such a decision. But there is
more: there is the changed customer flow that may result in higher exposure of
some goods to customers and resulting potential higher sales of these products
(the main reason for a change in layout), the (temporary) confusion of customers
who may refrain from purchasing at the store, the potential retraining of
employees if the layout change was in conjunction with new products added to the
goods available at the store, and so forth. Similarly, consider the construction of a
new office highrise building in an urban area. Concerns will include costs, safety
(e.g., evacuation routes in case of emergencies), reimbursement of nearby
apartment renters for the loss of view and sunlight that may be blocked by the new
building, parking for employees and customers, and many more. Selection
problems in which multiple criteria are considered are called multicriteria
decision making problems (or MCDM). On the other hand, suppose that we only
consider a single criterion, but the outcome of our decision is no longer certain.
This is the standard scenario in decision analysis or, as it is frequently called,
games against nature. The name stems from game theory and can be explained as
follows. Consider a standard two-person-game with two players, one decision
maker (us), and the other being our opponent (nature). Each of the two players has
a number of possible actions at his disposal: the decision maker has the decisions,
while nature controls the “states of nature,” nature’s equivalent of the decision
maker’s decision choices. This is the scenario examined in this chapter.

There is, however, a fundamental asymmetry in games against nature. First of all,
the combination of the decision maker’s choice and nature’s state of nature will
determine the outcome for the decision maker (nature will face no outcome).
Secondly, the decision maker will examine the possible outcomes of his decisions
before choosing one, while nature does not consider the outcomes, but chooses her
strategies according to some probability distribution. This is the reason why the
decision maker is usually called “intelligent” (we prefer to think of it as
“rational”), while nature is referred as a “random player.”

As an illustration, consider the following numerical example with three decisions
d1, d2, and d3, and four states of nature s1, s2, s3, and s4. The payoffs are shown in
Table 9.1.

Table 9.1: Payoffs

 s1 s2 s3 s4
d1 3 −2 4 6
d2 2 0 −4 1
d3 5 2 0 −3

9.2 Visualizations of Decision Problems 307

The decision maker could argue that d1 is best, as under three states of nature there
is a reasonable payoff, while its largest possible loss is −2 and as such not as bad
as the losses that can occur with the other two decisions. If the decision maker
were to choose d1, while nature would randomly choose s3, then the decision
maker would obtain a payoff of 4.

It is important to realize that nature’s decision is either made simultaneously with
that of the decision maker without cooperation, or, equivalently, the decision
maker chooses first, followed by nature’s choice. As in all game-theoretic
situations, it is crucial to specify which player knows what and when. This also
marks the distinction concerning the level of certainty the decision maker has
about nature’s choice. As usual, consider the extremes first. If the decision maker
knows with certainty what nature is going to do, we face a decision problem under
certainty. Given the scenario of selection problems, this means that the decision
maker knows which column of the payoff matrix will apply. In the example of
Table 9.1, suppose that the decision maker knows that nature will choose s1. This
means that the consequences of the decisions are known with certainty: choosing
d1 will result in a payoff of 3, choosing d2 will result in a payoff of 2, and
choosing decision d3 will yield a payoff of 5. Clearly, the decision maker’s payoff
is maximized by the payoff of 5, which we arrive at by choosing d3. This is the
optimal solution and the problem is solved. (Before we continue with different
levels of knowledge, note that the decision maker has jurisdiction only over his
choices, e.g., d3, but he cannot choose the payoff directly).

On the other extreme is uncertainty. In decision making under uncertainty, the
decision maker has absolutely no idea about nature’s choice. Uncertainty is quite
rare, it may occur in the performance of new and untried products, behavior of
customers in new and untested markets, and other situations, in which no
information is provided. As in all decision-making situations, if the level of input
into the problem is low, the output will have to make do with simplistic rules. This
is precisely what happens in this situation as will be seen below.

Clearly, there is much territory between certainty and uncertainty. One milestone
in between is decision making under risk. In decision making under risk, the
decision maker is assumed to know the probability distribution. Examples would
include past weather observations for farmers, predictions concerning customer
behavior based on similar situations, and so forth. Rules for decision making
under risk are described below.

9.2 Visualizations of Decision Problems
Before getting into specific rules for different situations, we would like to describe
some ways to visualize decision making scenarios. Different visualization on
different levels are available. For the macro view, there are influence diagrams.
The idea is to show the basic interdependencies between decision and outcome,

9 Decision Analysis 308

while ignoring details. Their biggest strength is clarity, which is achieved by their
concentration of fundamental relations and their resulting small size. On the other
hand, decision trees are used for the micro view. They include specific decision
rules at each step of the way. Consequently, they tend to be large and cumbersome
to deal with.

In order to demonstrate influence diagrams, we first make a list with three
columns. The first column includes the decision maker’s possible decisions, the
second column represents the random events that somehow influence the
decisions and the outcomes, and the last column includes the consequences that
are a result of the decisions and the random events. As an illustration, consider a
department store that contemplates adding an electronics department to its
services. In case the introduction is accepted by the public, management considers
relocating that department into a separate building. The aforementioned listing is
shown in Table 9.2.

Decision Random event Consequence
Add electronics department General economic

conditions
Profit

Relocate department into a
separate building

Local acceptance of
services

In order to visualize the problem, we can create an influence diagram, in which
our decisions are shown by rectangles, random events are shown as circles, and
consequences are shown by triangles. We then add directed arcs, so that an arc
from some node i to another node j exists, if it is believed that i influences j. The
influence diagram for our problem could look as shown in Figure 9.1.

Table 9.2: Decision, Events, and Consequences for Influence Diagram

9.2 Visualizations of Decision Problems 309

Figure 9.1

The broken arcs in the figure are somewhat tenuous: they indicate the belief that
local acceptance of an electronics department or store is influenced by the existence
of an electronics department in our department store and our competitors’ reaction
to our introduction of the department.

On the other hand, we could zoom in and outline our decisions, our competitors’
decisions, and economic conditions in a decision tree. Decision trees have
decisions and events listed next to arcs. A square node indicates that we will make
a decision, a round node means that a decision is made not within our control (i.e.,
a random event), and a triangular node denotes the end of this branch of the tree.
Normally, there will be an indication next to a triangular node what the payoff is
to us at that point. For now, we will concentrate on the structure of the tree and
return to the numerical aspects of decision trees in a detailed discussion in Section
9.5 of this chapter. A possible decision tree for our sample problem is shown in
Figure 9.2.

Econ
conditions

Comp
reactions

Profit

Add electronics
department

Separate
building for
electronics
dept.

Local
acceptance

9 Decision Analysis 310

Figure 9.2

It indicates that after we have decided to expand, our competitor(s) could either
not react, also expand their stores accordingly, or build a superstore. While these
are not random events, they are shown here as such as these decisions are not
within our control. In case our competitors do not react, our profit will depend on
the state of the economy, which is shown in the Figure simply as “up” or “down.”
(This exceedingly simplistic notion has been used so as to save space―it should
have become clear by now that decision trees tend to get very large even if the
players do not have very many options). In case our competitor(s) expand, we can
either do not react ourselves or build the planned new building. Each of our
decisions will be followed by a random event, at which nature decides which turn
the economy takes. Finally, if the competitors have decided to build a superstore,
we may either withdraw due to limited options to raise capital, or build the
planned addition. Again, each decision is followed by the economy going up or
down.

9.3 Decision Rules Under Uncertainty and Risk
Our discussion below will be based on a numerical example with the payoff
matrix

9.3 Decision Rules Under Uncertainty and Risk 311

 s1 s2 s3
d1 2 −2 5
d2 0 −1 7
d3 2 1 1
d4 2 −3 4

Before performing any calculations, it is useful to first examine the payoff matrix
regarding dominances. A decision i (meaning row) dominates a decision k (row)
if all elements in row i are at least as large as the corresponding payoffs in row k.
In other words, for each state of nature, decision i is at least as good as decision k.
If this is the case, then decision k can be deleted from consideration. The
determination whether or not dominances exist in a problem requires pairwise
comparisons. In our example, let us first compare decisions d1 and d2. Given the
first state of nature s1, decision d1 results in a payoff of 2, while d2 nets us only 0,
so d1 is preferred. However, given s2, decision d1 results in a loss of 2, while d2
results in a loss of only 1, so that d2 is preferred. This means that neither decision
is consistently better than the other. Comparing d2 and d3 also results in no
dominance (d3 is preferred in case s1 or s2 occurs), while d2 is preferred to d3 in
case s3 comes up. However, the picture changes when comparing d1 and d4. Here,
it is apparent that d1 and d4 are equally good given s1, while d1 is better than d4 in
case of s2 and s3, so that d1 dominates d4; thus d4 can be deleted. The examination
would have to continue comparing d1 and d3.

Given m decisions, ½m(m−1) pairs of decisions will have to be compared. If any
dominances are missed by accident, no harm is done: the model will be a bit
bigger than it has to be, but no “reasonable” rule will choose a dominated
decision. Note that we cannot apply the concept of dominance to the states of
nature (i.e., the columns of the payoff matrix). The reason is that the concept of
dominances is based on a comparison of the payoffs, i.e., a rational decision
maker, and nature is no such player.

Consider now a decision making problem under uncertainty. One simple decision
rule will attempt to guard against the worst case. It has a variety of names, Wald’s
rule named after its inventor, the pessimistic rule based on the mindset of the
decision maker, and the maximin rule based on the way the rule works. First of all,
we will determine the anticipated payoffs associated with our decisions. In our
example, a pessimist choosing d1 would assume that the worst case applies and the
payoff will be −2. Similarly, decision d2 would result in a payoff of −1, and so
forth. The vector of anticipated payoffs would then be a = [−2, −1, 1, −3]T.
Formally, these are the row minima of the payoff matrix. Choosing the best
among these decisions will then be d3 as it leads to the maximum payoff among
the anticipated payoffs. This is the reason for calling the rule a “maximin” rule.

While the rule surely protects against the worst case, it has a number of shortcomings.
The most predominant problem with it is its exclusive focus on the worst case. For
instance, if someone had to pick up his multimillion dollar winnings from the

9 Decision Analysis 312

lottery office, the worst-case rule would suggest that he not do that: while walking
or driving to the office, he might get hit by a truck and die, the worst case that has
to be avoided. Since it is unknown how likely (or, in this case, how unlikely) such
an incident would be, a decision made on the basis of Wald’s rule would try to
prevent it.

Another, very similar, rule is the optimist’s rule. An optimist’s anticipated payoff
would include the best possible payoff for each decision, i.e., the row maxima. In
our example they would be a = [5, 7, 2, 4]. The optimist would then choose the
decision with the highest anticipated payoff, leading to a maximax rule. In our
illustration, d2 would be the optimist’s choice. This Polyanna-inspired rule suffers
from the same limitations as Wald’s rule, except that it has replaced guarding
against the worst case by anticipation of the best case.

A third rule for making decisions under uncertainty was independently developed
by Savage and Niehans. It is called the minimax regret criterion and it has become
the basis of what is often referred to as robust optimization. The idea is to
compare for each state of nature the payoff the decision maker gains with a
decision and the best possible payoff that could have been obtained given the
same state of nature. In our numerical example, we compute the regret of decision
d2 given the second state of nature s2. The payoff to the decision maker is −1.
However, if the decision maker had just known in advance which state of nature
would occur (the second), he could have his best response d3, which would have
led to a payoff of 1, the highest payoff given s2. The difference between the actual
payoff and the best possible payoff under that state of nature gives a regret of
1 − (−1) = 2. These regrets are calculated for all pairs of decisions and states of
nature, and they form the regret matrix. In our example, the regret matrix is

 R =
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

340
600
022
230

Note that regrets are never negative. Furthermore, there is always at least one zero
in each column of the regret matrix (belonging to the element that determines the
column maximum). The decision maker can then apply any rule on the regret
matrix rather than the original payoff matrix. If we were to use the pessimist’s rule
onto the regret matrix R, we would anticipate regrets of r = [3, 2, 6, 4]. Note that
these are the row maxima, not the row minima as used above. The reason is that a
payoff matrix includes payoffs that the decision maker would like to maximize,
whereas the regret matrix features regrets that, similar to costs, the decision maker
would like to minimize. Among the anticipated regrets, the decision maker will
then choose the lowest, which in our example is d2, a decision leading to an
anticipated regret of 2. Applied to the regret matrix, Wald’s rule is a minimax rule
in contrast to the maximin version that is used in case a payoff matrix is given.

9.3 Decision Rules Under Uncertainty and Risk 313

Consider now decision making under risk. In this scenario, we can associate with
each state of nature a probability pj, which has been determined by past observations.
Bayes’s rule is then used to compute the expected values and choose the decision
that leads to the maximum expected payoff, making Bayes’s criterion a weighted
maxisum rule. In our example, suppose that the probabilities of the three states of
nature have been determined as p = [.5, .3, .2]. The expected payoffs (or expected
monetary values EMV) are then as follows:

 EMV(d1) = 2(.5) − 2(.3) + 5(.2) = 1.4,
 EMV(d2) = 0(.5) − 1(.3) + 7(.2) = 1.1,
 EMV(d3) = 2(.5) + 1(.3) + 1(.2) = 1.5, and
 EMV(d4) = 2(.5) − 3(.3) + 4(.2) = .9.

Thus the anticipated payoffs are 1.4, 1.1, 1.5, and 0.9, so that the decision maker
will choose d3, a decision that has the highest expected payoff of 1.5. In case of a
tie, it is possible to use secondary criteria.

Bayes’s rule has been popularized by what is known as the Newspaper Boy
Problem. The decision of the newspaper boy concerns the number of newspapers
he will purchase in the presence of demand uncertainty. The probabilities of the
demand are based on past experience. If the boy buys too many papers on a slow
day, he will have papers left over, which will have to be disposed of for their very
low salvage value. On the other hand, if he purchases to few and the paper turns
out to have some interesting stories, he will not have enough papers to sell, so that
not only does he lose business today, but may irritate customers who may
purchase their papers elsewhere in the future.

As an illustration, consider the following numerical

Example: A newspaper boy knows that he can sell either 10, 20, 30, or 40 newspaper
on any given day (barring days with major headlines, such as assassinations, wars,
or the latest replacements of body parts of some actress). The boy will purchase a
newspaper for 20¢ and they sell for 90¢. The salvage value of an unsold newspaper
is 5¢, while the opportunity cost for newspapers has been estimated to be 15¢ for
each newspaper that could have been sold but was not due to the lack of supply.
The payoff matrix for the newsboy problem is then

 s1 s2 s3 s4

 A =

4

3

2

1

d
d
d
d

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

00.2850.1900.1150.2
50.1900.2150.1200.4
00.1150.1200.1450.5
50.200.450.500.7$

9 Decision Analysis 314

where the decisions d1, d2, d3, and d4 refer to the newspaper boy buying 10, 20, 30,
and 40 newspapers, while the states of nature s1, s2, s3, and s4 refer to a demand of
10, 20, 30, and 40, respectively. Note that all entries on the main diagonal refer to
cases, in which the sale equals the number of newspapers that were purchased,
while all entries above the main diagonal involve some unsatisfied demand with
its opportunity costs, while the entries below the main diagonal involve a surplus
of newspapers, so that salvage values have to be applied. Given probabilities of
p = [.6, .2, .1, .1] for the four states of nature, the four decisions have expected
payoffs of $5.95, $8.45, $8.95, and $8.45, so that the newspaper boy will buy
30 newspapers and expect a daily payoff of $8.95.

Applications of this type occur in many circumstances, in which we are dealing
with perishable goods. An excellent example is the airline industry. Seats in an
airplane are a perishable commodity, as, once the airplane door closes, an empty
seat is worthless. The airline’s decision problem is then to choose among their
aircraft the type that best fits the expected demand on each of the routes.

Back to our discussion of different approaches to decision making. In decision
making under risk, there is also the possibility to use target values. The idea with
this approach is to choose the decision that provides the highest probability that
the payoff does not fall short of a predetermined target value. To illustrate, use
again the example introduced earlier in this section. Suppose that a target value
T = 1 has been chosen. Decision d1 will then achieve this target value only if
nature chooses either s1 or s3 as her strategy, which will happen with a probability
of 0.5 and 0.2, respectively. This means that when using d1, there is a probability
of 0.7 that the target value is reached or exceeded.

When using decision d2, the target value T = 1 will be achieved only if s3 comes
up, which happens with a probability of 0.2. Similarly, decision d3 reaches the
target value in case nature plays s2 or s3, so that the probability of a payoff of at
least T equals 0.5, and for d4 the probability is 0.7. The decision maker will then
choose the decision that maximizes the probability of getting at least T = 1, which
is done by choosing either d1 or d4. Note that one of those optimal choices is the
dominated decision d4. This is possible; however, a dominated decision can never
be the unique optimum for any “reasonable” decision rule.

In order to derive a simple decision tool, we plot the probability that a decision
achieves at least a prespecified target value T against the full range of target
values T. For our example, Figure 9.3 provides the graph in question. In particular,
the solid line shows the achievements of decision d1, the broken line is for d2, and
the dotted line shows the results for d3. For clarity, we ignore the dominated
decision d4.

9.3 Decision Rules Under Uncertainty and Risk 315

Figure 9.3

Given the graph in Figure 9.3, we can very simply determine which decision has
the highest probability of reaching a target value. For instance, if the target value
were T = −1.5, then decisions d2 and d3 both have a probability of “1” to achieve
this value, while decision d1 has only a probability of .7 of achieving this payoff.
In other words, we are interested in the “upper envelope,” i.e., the highest of all of
the functions. Given that, we can determine which function is highest and
summarized it in the following decision rule:

 If T < −2, any decision will achieve the target.

If T ∈ [−2, −1], d2 and d3 are best. Both will reach the target with a probability
of 1.

 If T ∈ [−1, 1], d3 is best. It reaches the target with a probability of 1.
 If T ∈ [1, 2], d1 is best. It reaches the target with a probability of .7.
 If T ∈ [2, 5], d1 and d2 are best. Both achieve the target with a probability of
 0.2.
 If T ∈ [5, 7], d2 is best. It achieves the target with a probability of .2.
 If T > 7, none of the decisions will be able to reach the target.

A loose summary will indicate that d3 is best for low target values, d1 is best for
intermediate target values, while d2 is best for high target values. This is, of
course, not surprising: decision d3 has no extremes on the low end, while d2 does
have an extreme possible payoff on the high end.

9 Decision Analysis 316

9.4 Sensitivity Analyses
This section will examine two types of sensitivity analyses. The first (simpler) case
assumes that a payoff, i.e., one element of the payoff matrix, is no longer known
with certainty. The idea is to develop simple decision rules that provide guidance to
the decision maker in case the payoff changes. Again, we will base our arguments
on the example introduced at the beginning of this chapter, which is shown again
here for convenience.

 s1 s2 s3
d1 2 −2 5
d2 0 −1 7
d3 2 1 1
d4 2 −3 4
p .5 .3 .2

Suppose now that there is some uncertainty concerning the payoff of the second
decision in case of the third state of nature. We can then write the payoff as a23 = 7
+ ε with an unknown ε ∈ [−2, 3]. In other words, we expect the actual payoff to be
somewhere between 5 and 10. The expected payoffs can then be computed as

 EMV =
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
ε+

9.
5.1

2.1.1
4.1

.

Here, we can ignore decisions d1 and d4 as, regardless of the value of ε, decision
d3 is better than those. This leaves us with the comparison between d2 and d3.
Figure 9.4 plots the expected monetary values of the two decisions as a function
of the change ε.

Figure 9.4

9.4 Sensitivity Analyses 317

The two payoff curves EMV(d2) and EMV(d3) intersect at ε = 2. To the left of ε = 2,
the payoff is higher for decision d3, while to the right of ε = 2, the payoff with d2
is higher. This leads us to the following decision rule:

 If ε 2 (or, alternatively, a23 9), then decision d2 is best, and
 if ε ≤ 2 (or, alternatively, a23 ≤ 9), decision d3 is best.

Next, consider the possibility that there is some uncertainty surrounding a probability
estimate. This case is somewhat more difficult conceptually, as the increase or
decrease of a single probability will necessarily imply that other probabilities
change as well, based on the simple fact that the sum of probabilities equals one.
Back in our numerical example with the original payoffs, we are now no longer
certain about the probability of s1.

We may assume that an increase of p1 by some unknown value ε may reduce the

a decrease of p1. If this assumption were reasonable, we then have probabilities
[p1 + ε, p2 − ½ε, p3 − ½ε], or, with the values of p1, p2, and p3, we have [.5 + ε, .3 − ½ε,
.2 − ½ε]. Given these probabilities, we can then again compute the expected
monetary values, which are

 EMV(ε) =
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ε+
ε+
ε−
ε+

5.19.
15.1
31.1
5.4.1

1

1

as functions of ε. This is shown in Figure 9.5.

Figure 9.5

≤ ≤

Suppose now that it has been estimated that p will assume a value somewhere

probabilities of all other states of nature by the same amount, and similar for

ε ∈

 [−.2, +.1]. We can now again plot the expected monetary values of the decisions
between .3 and .6. In other words, starting with its present value of p = .5, the change

9 Decision Analysis 318

For any value of ε we are interested in the highest expected payoff, i.e., in the
point on the highest curve (something called the upper envelope, shown here by
the broken line). We observe in Figure 9.5 that the decisions d1 and d4 are
dominated by d3, leaving d2 and d3 as the only decisions of interest. The two
functions intersect where their payoffs are equal, i.e., at the point at which 1.1 −
3ε = 1.5 + 1ε. Solving for ε, we obtain ε = −.1 This leads to the following decision
rule:

 If ε ≤ −.1 (or, alternatively, p1 ≤ .4), then decision d2 is best, and
 if ε −.1 (or, alternatively, p1 .4), then decision d3 is best.

Note that it is not generally true that decision rules such as this consist of only two
parts. It is possible that any number of the existing decisions may be best for some
range of changes.

It is, of course, possible that a change of p1 does not affect the remaining
probabilities equally. For instance, it could be estimated that an increase of p1 by

2 3
The expected payoffs are then

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

ε+
ε+
ε−

ε+

3
8

3
5
3
5

9.
5.1

1.1

4.1

.

The payoff functions (as functions of ε) are shown in Figure 9.6.

Figure 9.6

≤ ≤

some unknown value ε will decrease p by ⅔ε, while p will decrease by ⅓ε.

EMV (e)

e−.2 −.1 .1

1.0

2.0
d 3

d 1

d 4

d 2

9.5 Decision Trees and the Value of Information 319

As above, we assume that ε ∈ [−.2, +.1]. A similar analysis to that provided above
reveals that decision d3 dominates d 4

2 3

 If ε −.15 (or, equivalently, p1 .35), then decision d2 is optimal, while
1 3

addition to the decision rules discussed in the previous section, we will determine
the value of information that goes beyond the probabilities for the states of nature
that we continue to assume to be known. We will commence our discussion with
an extreme case known as the expected value of perfect information (EVPI).
Clearly, no information is perfect, but this value provides an upper bound for the
value of any information, as no information can be worth more than perfect
information. Since it is easy to compute, it provides the decision maker with a
ballpark figure. In simple words, the EVPI is the difference of the payoff with
perfect information and the best we can do without any information beyond what
is included in the standard setting. As an illustration, consider again our example.
Recall that with the probabilities of 0.5, 0.3, and 0.2 of the three states of nature,
the highest expected monetary value was EMV* = 1.5, which was achieved by
choosing decision d3, where we use an asterisk to indicate optimality. This is the
best the decision maker can do without additional information. Consider now
perfect information. It means that the decision maker will know in advance which
state of nature will occur. It is important to realize that this does not mean that the
decision maker can change the probabilities of the states of nature—all we assume
that the decision maker knows which state of nature occurs before he makes his
own decision.

In our numerical example, the best response to the first state of nature s1 is to use
d1, d3, or d4; each of these responses will result in a payoff of 2 to the decision
maker. Similarly, if the decision maker knows that s2 occurs, his best response is
to choose d3, which results in a payoff of 1. Finally, if nature chooses s3 and the
decision maker knows about it beforehand, the best response is d2, netting 7. The
payoff matrix A is shown again below with the starred element indicating those
payoffs that result from the decision makes best response to nature’s action.

1 and d , leaving the decision maker with
d and d . Again, we are interested in the upper envelope, shown here by the

 if ε ≥ .15 (or, equivalently, p ≥ .35), then decision d is optimal.

broken line. The expected monetary values of the two decisions are equal if

In this section we will again consider decision making problems under risk. In

9.5 Decision Trees and the Value of Information

1.1 − 5/3ε = 1.5 + ε, i.e., for ε = −.15. This leads to the following decision rule:

≤≤

9 Decision Analysis 320

A =
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

43*2
1*1*2
*710

52*2

Given the known probability distribution p = [.5, .3, .2], we can state that 50% of
the time, nature chooses s1 and the decision maker obtains a payoff of 2 (the first
column), 30% of the time, nature chooses s2 and the decision maker’s best
reaction results in a payoff of 1, and finally, 10% of the time nature chooses s3 and
the decision maker’s response is d2, resulting in a payoff of 7. Hence, the expected
payoff with perfect information is EPPI = 2(.5) + 1(.3) + 7(.2) = 2.7. The expected
value of perfect information is then EVPI = EPPI − EMV* = 2.7 − 1.5 = 1.2. As
indicated above, this is an upper bound on the amount of money that the decision
maker should be prepared for any type of additional information.

Consider now a situation, in which the information provided to the decision maker
is imperfect. Imperfect information is usually provided by indicators. As an
example, consider the price of an individual stock. It is usually not possible to get
any direct information, so that we must rely on a proxy, such as demand for
products of firms in that industry or manufacturers’ receipts. Clearly, such proxies
are only of value if there is a links between them and the state of nature we want
to forecast. For instance, it would be meaningless to forecast the probability of
sales of a new camera by using the demand for potatoes. The stronger the links
between a proxy and the state of nature it is used to forecast, the closer we will be
to perfect information. The strength of the link between indicator and state of
nature is typically provided by a table of conditional probabilities. For our
example, assume there are two indicators I1 and I2, whose links to the three states
of nature is shown in Table 9.3.

Table 9.3: Conditional probabilities P(I|s)

 s1 s2 s3
I1 .6 .9 .2
I2 .4 .1 .8

In other words, given that the first state of nature s1 will eventually occur, indicator
I1 has a 60% chance of coming up, and similar for the other values. It is apparent
that the probabilities in each column add to one. (In the extreme case, there would
be three indicators and the probabilities P(I1|s1) = P(I2|s2) = P(I3|s3) = 1 and all
other conditional probabilities equal to zero. Then the three indicators are sure
predictors of the states of nature, and we have again perfect information. This is
the limiting case).

9.5 Decision Trees and the Value of Information 321

Before performing any computation, we will first depict the structure of the
decision-making process in the form of a decision tree. The general structure of
such a tree is shown in Figure 9.7.

Figure 9.7

In Figure 9.7, we start on the left with the square node (the root of the tree),
indicating that we have to make a decision first. Our decision is whether or not to
solicit additional information. The lower branch shows that no additional
indication is sought, and it will end up with what we have already done earlier
when applying Bayes’s rule. Often, this part of the tree is deleted and its outcome
at the end of the first branch is shown as EMV* (= 1.5 in our example).

Consider now the upper branch that indicates that we ask for additional information.
This will be followed by a random event according to which some indicator comes
up. this is shown by the circular node, followed by branches for all indicators I1,
…, Ip. Once we have received an indicator (meaning we now have additional
information), we must make one of our decisions d1, …, dm. This is shown again
as a decision node, followed by arcs, one for each of our decisions. Finally, once

9 Decision Analysis 322

we have made a decision, a random event, i.e., one of the states of nature will
occur. The end of the sequence of decisions and events is marked by a triangle,
next to which we will place the outcome for that particular scenario. It is
important to realize that each endpoint marked with a triangle actually symbolizes
a scenario that includes the entire sequence of decisions and events from the root
of the tree to that triangle. For instance, the topmost triangle on the right of the
tree indicates that we asked for additional information, received the indicator I1,
made decision d1, and then state of nature s1 occurred.

Once the structure of the tree has been determined, we need to put some numbers
into the tree. As already mentioned above, the payoffs are taken directly from the
payoff matrix and put next to the triangles on the right side of the decision tree.
What are now needed are probabilities. More specifically, we need two types of
probabilities. The first types are associated with the random events that govern
which of the indicators comes up. They are called indicator probabilities P(Ik). So
far, we do not have these probabilities. The second type of probabilities are
associated with the states of nature occurring at the very end of the decision tree,
just before the payoffs are due. At first glance, it would appear that the probabilities
that we used in Bayes’s rule (so-called prior probabilities) P(s) should be used.
This is, however not the case. The reason is that a state of nature occurs after an
indicator has come up. And the whole point of indicators is that they are not
independent from the states of nature.

So what we need are the so-called posterior probabilities P(s|I). In other words,
these are conditional probabilities that specify the likelihood that a state of nature
occurs, given that an indicator has come up earlier. And while it may appear that
we are given the posterior probabilities in a table such as Table 9.3, this is not the
case: while both are conditional probabilities, Table 9.3 includes probabilities of
the type P(I|s), posterior probabilities are P(s|I). In other words, the probabilities
will have to be inverted, which is done by what is known as Bayes’s theorem. This
theorem (or rather conversion rule) is explained in Appendix D of this book. We
will used it here in a very convenient computational scheme shown below. And a
byproduct of the conversion are the indicator probabilities that we also need to put
numbers on our decision tree.

The computational scheme that determines indicator probabilities and posterior
probabilities deals with each of the indicators separately. Consider again our
numerical example and use only the first indicator I1. Table 9.4 shows the
computational scheme we use as it applies to the indicator I1. The first column
lists the states of nature, and the second column includes their prior probabilities.
The third column includes the conditional variables that relate to the indicator
under consideration (here I1) and all states of nature. In other words, the third
column is nothing but the first row in Table 9.3. Following Bayes’s rule, we then
multiply the elements in the second and third columns and put them in the fourth
column. Their sum, shown at the bottom of column four, is then the indicator
probability for the indicator under consideration, here P(I1). Finally, the posterior

9.5 Decision Trees and the Value of Information 323

probabilities in the last column are obtained by dividing each element of column
four by the indicator probability, i.e., P(si|I1) = P(I1|si)P(si)/P(I1).

Table 9.4: Computation of P(I1) and P(s|I1)

s P(s) P(I1|s) P(I1|s)P(s) P(s|I1)
s1 .5 .6 .30 .4918
s2 .3 .9 .27 .4426
s3 .2 .2 .04 .0656
 P(I1) = .61

This procedure provides us with both, the indicator probabilities and the posterior
probabilities needed to complete the numerical information required in the
decision tree. Similar computations are then performed for the second indicator.
The results are shown in Table 9.5. Note that the sum of indicator probabilities
must equal one. The same applies to the posterior probabilities in the rightmost
columns of Tables 9.4 and 9.5.

Table 9.5: Computation of P(I2) and P(s|I2)

s P(s) P(I2|s) P(I2|s)P(s) P(s|I2)
s1 .5 .4 .20 .5128
s2 .3 .1 .03 .0769
s3 .2 .8 .16 .4103
 P(I2) = .39

The decision tree with all numerical information is then shown in Figure 9.8.

9 Decision Analysis 324

Figure 9.8

At this point, all numerical information is available and we need to discuss a
technique that determines the EPSI.

The general idea to deal with decision trees is to use a recursive procedure. This

two rules in doing so:

 Rule 1: Moving back into an event node, we take expected values, and
 Rule 2: Moving back into a decision node, we choose the decision with the
 highest expected payoff.

Applying the two rules to our example, we start in the northeast corner of Figure
9.8. Following the top three branches with the payoffs of 2, −2, and 5 at their

the posterior probabilities of the branches to calculate expected payoffs at the
event node at the beginning of the branches. In this case, we compute 2(.4918) −
2(.4426) + 5(.0656) = .4264. A similar process is used for the other branches.

respective ends, backwards, we reach an event node. This means that we use

procedure starts from the leaves of the tree and works back to the root. There are

9.5 Decision Trees and the Value of Information 325

have just been computed. Starting again from the top with the three event nodes
labeled with .4264, .0166, and 1.4918, we will follow the arcs that lead into these

highest payoff is 1.4918 and the decision that leads to this payoff is d3. Similarly,
comparing the expected payoff in the lower part of the diagram (2.9233, 2.7952,

payoff is d1. The arcs of the two decisions chosen in this step are bolded.

We now have two decision nodes labeled with 1.4918 and 2.9233, respectively.
Moving back another step means going into an event node, which is done by

This results in the expected payoff with imperfect information EPII = 2.05.
Similar to the definition of the expected value of perfect information (the
difference between the expected payoff with and without this information), we can
now define the expected value of imperfect information, most frequently called
expected value of sample information EVSI. The EVSI is defined as the difference

information. Formally, we obtain EVSI = EPII − EMV* = 2.05 − 1.5 = 0.55. This
is the highest amount that we should be prepared to pay for this information.

The final step consists of the computation of the efficiency E. The efficiency
measures how close the sample information is in comparison with perfect
information, i.e., E = EVSI/EVPI. In our example, we obtain E = .55/1.2 = .4583.
Loosely speaking, this means that the sample information is about 45% perfect.
Note that the value of sample information depends on the strength of the link
between the indicators and the state of nature. If the indicators are very strong, the
efficiency will be close to one, if they are very weak, it will be close (or equal to)
zero. Since EVSI is never negative and it can never exceed the value of EVPI, the
efficiency is always a number between 0 and 1. Loosely speaking, it indicates the
value of sample information as a proportion of perfection.

Consider now the same example with two different indicators, whose strengths are
shown in Table 9.6.

Table 9.6: Conditional probabilities P(I|s)

 s1 s2 s3
I1 .9 .6 .2
I2 .1 .4 .8

The indicator probabilities and posterior probabilities for this example are calculated
and shown in Tables 9.7 and 9.8 for the indicators I1 and I2, respectively.

computing the expected payoff by using the indicator probabilities 0.61 and 0.39.

The next step starts from the (total of six) event nodes whose expected payoffs

choose the decision that results in the highest expected payoff. In this case, the

between the expected payoff to the decision maker with and without sample

nodes one step backwards. Since these arcs lead into a decision node, we will

and 1.5128), the highest expected payoff is 2.9233 and the decision leading to this

9 Decision Analysis 326

Table 9.7: Computation of P(I1) and P(s|I1)

s P(s) P(I1|s) P(I1|s) P(s) P(s|I1)
s1 .5 .9 .45 .6716
s2 .3 .6 .18 .2687
s3 .2 .2 .04 .0597
 P(I1) = .67

Table 9.8: Computation of P(I2) and P(s|I2)

s P(s) P(I2|s) P(I2|s) P(s) P(s|I2)
s1 .5 .1 .05 .1515
s2 .3 .4 .12 .3636
s3 .2 .8 .16 .4848
 P(I2) = .33

Constructing a decision tree similar to that in Figure 9.8 and performing the
backward recursion results in EPII = 2.12, so that EVSI = 2.12 − 1.5 = .62 and
E = .62/1.2 = .5167, slightly more efficient than in the original example.

In case the indicators are totally random, we would expect the value of this
information to be zero. It can be readily seen that this is indeed the case. To
illustrate this, consider again the above example and suppose now that there are
three indicators. The conditional probabilities P(Ik|s) all equal ⅓. This results in all
indicator probabilities equaling ⅓ as well, while the posterior probabilities equal
the prior probabilities. Inserting them into the decision tree, we find that in the
first step of the backward recursion, we obtain the same expected payoffs we
would as if Bayes’s rule were used and, in the next step when making the
decision, we will choose the best Bayesian decision with a payoff of EMV* in
each of the three cases. The next step will multiply this value by the indicator
variables by ⅓, resulting again in EMV*, so that EPII = EMV* and EVSI = 0.

An interesting case occurs in the other extreme. It is apparent that if we were to
use a forecasting institute whose forecast is always correct the value of this
information equals the value of perfect information. On the other hand, imagine an
institute whose advice is always wrong. At first glance it would appear that the
value of such advice equals zero. This is, however, not correct. As a matter of fact,
such information is also perfect, as we can rely on it: whenever they say one thing,
we know that the opposite applies. It is the consistency between what is predicted
and what actually happens that really counts.

9.6 Utility Theory 327

9.6 Utility Theory
Utilities have been used for a long time by economists. Particularly noteworthy
are the analyses by the psychologists Kahnemann and Tversky in the 1970s. The
main idea is to express the usefulness of a product or a service to the individual
decision maker. In order to illustrate the concept, consider the following argument. If
the expected value were to apply, then a decision maker would be indifferent to
the choice of either a certain $50,000 gift and a lottery that pays $100,000 with a 50%
chance and a zero payoff with a 50% chance. The expected value in both cases is the
same: $50,000. However, most decision makers would prefer the certain $50,000.

Let us then take this argument a step further. Suppose we were to offer the
aforementioned lottery—a $50,000 payoff with a 50% chance and a zero payoff
with a 50% chance—to a decision maker and inquire what amount of money
received with certainty he were to consider equivalent to playing the lottery. this
value is called the certainty equivalent. The certainty equivalent is typically
determined by a string of questions that narrow down the value. For instance, we
would describe the lottery to the decision maker and offer, say, $45,000 for
certain. Would he take the $45,000? If so, we renege on our offer and offer only
$40,000 instead. This process continues until the certainty equivalent is found. For
many people, the certainty equivalent is quite low, some go as low as $20,000.
This shows a behavioral trait referred to as risk aversion. As a rule, if a decision
maker’s certainty equivalent is less than the expected value of the lottery, the
decision maker is risk averse. If the certainty equivalent is higher than the
expected value of the lottery, the decision maker is risk seeking (gamblers are a
typical example), while if a decision maker’s certainty equivalent equals the
expected value of a lottery, he is called risk neutral. The graph in Figure 9.9 plots
a dollar value against the decision maker’s certainty equivalent of the lottery.

Figure 9.9

9 Decision Analysis 328

Note that it is important to realize when asking these questions, that many times
people who claim they would rather take a risk and gamble than accept a fairly
small certainty equivalent, these people would change their mind once the actual
amount is put in front of them, taking the decision out of a purely “theoretical”
realm into the hands-on practical world. Also note that the certainty equivalents
are specific to a decision maker and are not transferable, as individuals differ in
their acceptance of risk.

Once the certainty equivalents have been determined, they can be used to replace
the actual payoffs, so that the problem is then to maximize the expected utility.
This concept is also able to deal with cases, in which information concerning the
likelihood of states of nature is known, but may be ignored by the decision maker.
As an example, consider the case of a patient, whose physician has the choice of a
number of drugs. Assume that one drug may be able to reduce the pain somewhat
without known side effects, while another may not only eliminate the pain, but
also the cause―with the possibility of major side effects that include death. If the
latter event has only a tiny probability of occurring, the expected “payoff ” to the

the physician may choose to either ignore the probabilities and use Wald’s rule so

or, similarly, may assign a very high negative “payoff ” to the possibility of major
side effects, resulting also in the former drug being chosen. Assigning very high

linear programming under the name penalty costs, whenever options or situations

Exercises

Problem 1 (influence diagram): Consider the following situation. Jill lives presently
in Missoula, Montana, where she has a fairly boring job. She has heard that there

Develop an influence diagram and a decision tree for the problem.

possible set of interdependencies of the decisions and events.

Decision Random event Consequence
Travel to Denver and look

for a job
Resettle in Denver
Purchase a house in Denver

Get job offer
Salary (or net worth)

patient may be such that the second and more effective drug may be chosen. However,

costs (typically shown as M >> 0) to options is a technique that is also used in

as to minimize the worst-case damage and choose the former less effective drug,

are to be avoided, while still using objectives that maximize the sum of benefits.

Solution: The list of potential events and the two graphs below indicate just some

are many opportunities in Denver, Colorado, and she plans to go there, possibly

Economic situation

to look things over in Denver.
resettle there, and buy a small house for herself. She plans to use her annual vacation

329

The influence diagram for this list is shown in Figure 9.10.

Figure 9.10

A possible decision tree that describes the sequence of events is shown in Figure
9.11.

Exercises

9 Decision Analysis 330

Figure 9.11

Problem 2 (single-stage decision-making under uncertainty and risk): Consider
the payoff matrix of a game against nature.

 s1 s2 s3 s4 s5 s6
d1 5 –2 7 1 0 –6
d2 6 0 3 –5 8 1
d3 1 4 0 0 –1 0
d4 4 –2 3 –5 6 0

(a) Explain in one short sentence the concept of a dominated decision. Are there

any dominated decisions in this example?
(b) How would an optimist decide?
(c) How would a pessimist decide?
(d) Find an optimal strategy using the minimax regret criterion.
(e) Suppose that the decision maker has been informed that the states of nature

occur with probabilities of .3, .2, .1, .1, .05, .25. How would a risk-neutral
decision maker decide?

(f) Construct the graph that plots the probabilities that a decision achieves a target
value T for all target values between −10 and 10 for all decisions. What is the
optimal decision for T = 3½? For T = 5½?

Solutions:
(a) A decision dominates another if it is better or the same for all states of nature.

2 4In this example, decision d dominates d .

331

(b) An optimist anticipates payoffs of 7, 8, 4, and 6, so that d2 would be chosen.
(c) A pessimist anticipates payoffs of 6, –5, –1, –5, so that d3 would be chosen.

(d) The regret matrix is R =
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

126462
191705
006440
780061

 2 4
(e) The anticipated payoffs in Bayes’s model are 0.4, 2.25, 1.05, and 0.9, so that

the decision maker will choose d2.
1 2 3 4

deleted for clarity.

Figure 9.12

For T = 3½, decision d1 is best, followed by d2 and d3. For T = 5½, d2 is best, then
d1 and d2.

Problem 3 (sensitivity analysis): Consider a decision problem with three decisions
and four states of nature. The payoff matrix is as follows:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−

1232
3211

4202

Furthermore, suppose that the probabilities of the four states of nature are .4, .1,
.3, and .2.

(a) Perform a sensitivity analysis on a34, the payoff that results from decision d3

coupled with the fourth state of nature. It has been estimated at a34 ∈ [0, 4].

Exercises

(f) d : solid line, d : broken line, d : dotted line, the dominated decision d is

of 8, 6, 9, 6, so that the (pessimistic) choice is d or d with regret of 6.

 with anticipated maximal regrets

9 Decision Analysis 332

(b) Back to the original situation, perform a sensitivity analysis on p2. It is
assumed that (i) for each unit of increase of p2, the probability p1 decreases
twice as much as each of p3 and p4, and (ii) that p2 may decrease by as much
as .05, while it may increase by at most .2.

Solution: (a) Given the payoff a34 = 1 + ε, we obtain expected monetary values of

1.0, 0.5, and 0.7 + 2ε for the three decisions. Given that a34 ∈ [0, 4], or,
equivalently, ε ∈ [−1, 3], Figure 9.13 shows the expected monetary values of
the three decisions as functions of ε and the upper envelope in form of the
broken line.

Figure 9.13

This leads to the following decision rule:
 if a34 2.5, (or, equivalently, ε 1.5), choose d1,
 if a34 ≥ 2.5 (or, equivalently, ε ≥ 1.5), choose d3.

(b) The updated probabilities are p = [.4 − ½ε, .1 + ε, .3 − ¼ε, .2 − ¼ε], and the

.7 + 2.25ε for the three decisions. Figure 9.14 shows the expected monetary
values of the three decisions as functions of ε and the upper envelope is
shown by the broken line.

resulting expected monetary values are EMV(ε) = 1.0 − 1.5ε, .5 + .75ε, and

≤≤

333

Figure 9.14

This results in the following decision rule:
 if p2 .18 (or, equivalently, ε .08), then choose d1,
 if p2 ≥ .18 (or, equivalently, ε ≥ .08), then choose d3.

Problem 4 (expected values of perfect and sample information): The Canadian
McMoose chain of fast-food outlets is deciding how to keep up with the changing
tastes of its customer base. They have narrowed down their choices to the
following three decisions: d1 = completely redecorate the existing franchises, d2 =
rebuild the outlets, and d3 = modify the existing decor slightly to emphasize the
“mooseyness” of the outlet. The chain faces different states of the economy s1, s2,
and s3: level, a slight upturn, a significant upturn. The payoffs for all combinations
of decisions and states of the economy is shown in the following table:

 s1 s2 s3
d1 5 4 2
d2 −4 2 9
d3 3 8 1

The probabilities for the three states of the economy have been determined as .3,
.2, and .5.

(a) Determine the expected payoffs for the three decisions and choose the most

preferred decision on that basis.
(b) What is the expected value of perfect information?
(c) The McMoose management considers hiring a research institute to obtain more

detailed information about the state of the economy. They use two indicators
I1 and I2 for their forecast. These two indicators are linked to the state of the
economy as shown in the following table of conditional probabilities P(I|s):

Exercises

≥ ≥

9 Decision Analysis 334

 s1 s2 s3
I1 .5 .1 .8
I2 .5 .9 .2

 Construct the decision tree for this problem and determine the expected value

of sample (imperfect) information. If the research institute charges 1.4 for
their services, should they be hired? Explain in one very short sentence.

(d) What is the efficiency of the sample information?

Solution:
(a) The expected payoffs are 3.3, 3.7, and 3.0, so that they would choose d2 and

get 3.7.
(b) EVPI = 7.6 − 3.7 = 3.9.
(c)
 For I1:

s P(s) P(I1|s) P(I1|s)P(s) P(s|I1)
s1 .3 .5 .15 .2632
s2 .2 .1 .02 .0351
s3 .5 .8 .40 .7018

 P(I1) = .57
 For I2:

s P(s) P(I2|s) P(I2|s)P(s) P(s|I2)
s1 .3 .5 .15 .3488
s2 .2 .9 .18 .4186
s3 .5 .2 .10 .2326

 P(I2) = .43

335

Figure 9.15

EVSI = 5.0301 − 3.7 = 1.3301, which is less than the amount requested by the
institute, so do not hire them.

(d) The efficiency is E = 1.3301/3.9 = .3411.

Problem 5 (expected value of perfect and sample information): The Australian
automobile manufacturer Australomobil must decide whether or not to manufacture
the transmissions of their “Piticus” model in-house (d1) or to subcontract them out
(d2). The company faces different levels of demand for the Piticus that are defined
as s1, s2, s3, and s4. The payoffs for all combinations of decisions and levels of
demand are shown in the following table:

 s1 s2 s3 s4
d1 4 −1 −2 4
d2 −4 2 1 3

Exercises

9 Decision Analysis 336

(a) Are there any dominances in the payoff matrix? Explain in one short sentence.
(b) How would a pessimist decide? What is the optimal decision under the regret

criterion? In both cases, what are the anticipated payoffs?
(c) Given prior probabilities of .2, .3, .4, and .1 for the states of nature, what is

the optimal decision with Bayes’s criterion? What is the expected payoff?
(d) What is the expected value of perfect information?
(e) The Australomobil management considers hiring a research institute to obtain

more detailed information about the future level of demand. They use two
indicators I1 and I2 for their forecast. These two indicators are linked to the level
of demand as shown in the following table of conditional probabilities P(I|s):

 s1 s2 s3 s4
I1 .4 .8 .9 .5
I2 .6 .2 .1 .5

 Construct the decision tree for this problem & determine the expected value

of sample (imperfect) information. If the research institute charges 0.7 for
their services, should they be hired? Explain in one very short sentence.

(f) What is the efficiency of the sample information?

Solution:
(a) There are no dominances. For s1, d1 is better than d2, but for s2, d2 is preferred

over d1.
(b) A pessimist will anticipate payoffs of −2 and −4, respectively. He will choose

d1 and anticipate a payoff of −2. For the regret criterion, we set up the regret
matrix

 R = ⎥
⎦

⎤
⎢
⎣

⎡
1008
0330

, so that the (anticipated) maximal regrets are 3 and 8. The

decision maker will then choose d1 and anticipate a regret of 3.
(c) The expected payoffs are .1 and .5, so that they would choose d2 and get .5.
(d) EVPI = 2.2 − .5 = 1.7.
(e)

s P(s) P(I1|s) P(I1|s)P(s) P(s|I1)
s1 .2 .4 .08 .1096
s2 .3 .8 .24 .3288
s3 .4 .9 .36 .4932
s4 .1 .5 .05 .0685

 P(I1) = .73

s P(s) P(I2|s) P(I2|s)P(s) P(s|I2)
s1 .2 .6 .12 .4444
s2 .3 .2 .06 .2222
s3 .4 .1 .04 .1481
s4 .1 .5 .05 .1852

 P(I2) = .27

337

Figure 9.16

EVSI = 1.21 − .5 = .71, which is slightly more than the amount requested by the
institute, so they should hire them.
(f) The efficiency is E = .71/1.7 = .4176.

Exercises

H.A. Eiselt and C.-L. Sandblom, Operations Research: A Model-Based Approach, 339
DOI 10.1007/978-3-642-10326-1_10, © Springer-Verlag Berlin Heidelberg 2010

10 Inventory Models

Worldwide, companies hold billions of dollars in inventories. The main reason is
to create a buffer that balances the differences between the inflow and outflow of
goods. Inventories can be thought of as water tanks: there may be a constant
inflow of water that is pumped into the tank by a pump, while the outflow is low
at night, high in the morning (when people get up, take a shower, etc), it then
decreases significantly until the demand again increases in the evening (when
people come home, do laundry, etc), just to fall off again for the night. Other,
popular, examples include grocery stores whose inventories consist of various
foodstuffs awaiting sale to its customers. Here, the delivery of the goods is in bulk
whenever a delivery truck arrives, while the demand is unknown and erratic. In
the case of hospitals, they have in stock medical supplies, bed linen and blood
plasma. Again, the demand for these items is uncertain and may differ widely
from one day to the next.

All these instances have a few basic features in common. They have a supply, a
demand, and some costs to obtain, keep, and dispose of inventories. The next
section will introduce a number of parameters and variables that are typically
found in inventory models. Section 10.2 describes a basic inventory model, and
the subsequent sections deal with a variety of extensions of the basic model.

10.1 Basic Concepts in Inventory Planning
For many organizations, inventories represent a major capital cost, in some cases
the dominant cost, so that the management of this capital becomes of the utmost
importance. When considering the inventories, we need to distinguish different
classes of items that are kept in stock. In practice, it turns out that about 10% of
the items that are kept in stock usually account for something in the order of 60%
of the value of all inventories. Such items are therefore of prime concern to the
company, and the stock of these items will need close attention. These most
important items are usually referred to as “A items” in the ABC classification
system developed by the General Electric Company in the 1950s. The items next
in line are the B items, which are of intermediate importance. They typically

10 Inventory Models 340

represent 30% of the items, corresponding to about 30% of the total inventory
value. Clearly, B items do require some attention, but obviously less than A items.
Finally, the bottom 60% of the items are the C items. They usually represent
maybe 10% of the monetary value of the total inventory. The control of C items in
inventory planning is less crucial than that of the A and B items. The models in
this chapter are mostly aimed at A items.

Due to the economic importance of the management of inventories, a considerable
body of knowledge has developed as a specialty of operations research. We may
mention just-in-time (JIT) systems that attempt to keep inventory levels in a
production system at an absolute minimum, and put to work in Toyota’s so-called
kanban system. There is also material requirements planning (MRP) aimed at
using the estimated demand for a final product in order to determine the need for
materials and components that are part of a final product. Multi-echelon and
supply-chain management systems also consider similar aspects of production-
inventory control systems. Such topics are beyond the scope of this text, in which
we can only cover some basic inventory models.

Throughout this chapter, we will deal with inventory models that concern just a
single item. Consider an item for which the demand per period (typically a year,
but other time frames can easily be accommodated) is known or estimated to be D
units. Unless otherwise specified, the parameter D is assumed to be constant over
time; if it is not, we will denote it by Dt with the subscript t indicating the time
period.

The number of items in stock is depleted over time by the demand. On the other
hand, the stock is also increased from time to time by additions caused by
deliveries, referred to as orders. Typically, replenishments are assumed to be
instantaneous (such as the arrival of goods by the truckload), resulting in sudden
jumps in the inventory level, whereas deliveries to satisfy demand are typically
assumed to be gradual. The order quantity is denoted by Q. In the models
presented in this book, Q turns out to be constant over time, given that the
parameters of the model do not change.

Related to the order quantity is also the lead time tL. The lead time is defined as
the time that elapses between the placement of an order and the moment that the
shipment actually arrives and is available on the shelf.

It is useful to distinguish between three types of inventory/stock levels:

IO denotes the inventory on hand. By this we mean stock that is physically on the

shelf and immediately available to satisfy demand. Clearly, IO must be
nonnegative, i.e., IO ≥ 0.

IN denotes the net inventory on hand, which is the inventory on hand minus

backorders, the latter being unsatisfied amounts of demand due to insufficient

10.1 Basic Concepts in Inventory Planning 341

inventory on hand. The backordered demand will be instantly delivered
whenever the stock is replenished and a sufficient number of items is on hand.
The relation IN = IO − (backorders) may be negative in case the backorders
exceed the inventory on hand. If there are no backorders, then IN = IO.

IP, denotes the inventory position, which is defined as IP = IN + (outstanding

orders).

Figure 10.1 may be used to visualize the differences between the different types of
inventories. The inventory on hand IO is shown by a solid line, the net inventory IN
by a broken line, and the inventory position IP is shown by a dotted line.

Figure 10.1

To the left of t1, the inventory level IO decreases until we place an order of
magnitude Q1 at time t1. (The lead time is t2 − t1). At this point, IO decreases
further, while IP jumps up by Q1 and decreases parallel to IO. At t2, the shipment
arrives, the inventory on hand jumps up and reunites with IP. From this point on,
the inventory on hand decreases until we place another order at t3. The order is of
magnitude Q2, and the lead time is t5 − t3. The inventory position jumps up by Q2
and decreases then parallel to the inventory on hand until t4 occurs, when we run
out of stock. From this point on, IO equals zero, while IN continues with negative
inventory levels, while the inventory position is parallel to IN. When the shipment
arrives at t5, the inventory level jumps up and all inventory curves are again
united. From this point on, IO decreases and reaches the zero level at t6. The
net inventory then continues in the negative inventory levels, while IO remains at
the zero level. At t7, we place an order of magnitude Q3 which we assume arrives

10 Inventory Models 342

instantaneously, i.e., we have zero lead time. The inventory level then continues to
rise and fall in similar fashion.

We then have the following IO, IN, and IP values:

 To the left of t1: IO = IN = IP,
 between t1 and t2: IO = IN, IP = IO + Q1,
 between t2 and t3: IO = IN = IP,
 between t3 and t4: IO = IN, IP = IO + Q2,
 between t4 and t5: IO = 0, IP = IN + Q2,
 between t5 and t6: IO = IN = IP,
 between t6 and t7: IO = 0, IP = IN, and finally
 to the right of t7: IO = IN = IP.

In the models we discuss below, the order size will usually be the same for all
orders, and the lead time will also be the same for all orders, if not zero. The cost
for carrying one unit of the good in inventory for one period is called the unit
carrying or holding cost. We will denote this cost by the parameter ch. Occasionally,
the carrying cost ch will be specified as a proportion of the inventory value rather
than per unit of inventory. This will be clearly indicated whenever it applies. The
total carrying cost is therefore related to the amount IO of inventory actually on
hand and will be zero for those time periods when IO = 0. For some inventory
models, backorders are not allowed, which implies that IN ≥ 0, whereas models
with backorders (i.e., planned shortages) include the unit shortage cost cs which is
the cost charged to be out of stock by one unit for one period of time. The carrying
costs ch derive from capital cost, i.e., the cost of capital tied up in inventory,
insurance, storage, security, heating/cooling, as well as costs for theft, damage,
and obsolescence. In practice, the major component is the capital cost.

In contrast, the ordering costs co are defined as the cost of placing an order and
having it delivered. It includes administrative costs as well as transportation costs.
Ordering costs are usually considered to be independent of the size of the order,
but since transportation costs are involved, one may question this assumption.
However, we may argue that transportation costs may not be directly related to the
size of the order: if the order is delivered by container or truck, the rate charged is
usually not much dependent on whether the container is one-quarter or three-
quarters full; a similar argument applied to truckloads. Additionally, if the transport-
ation costs were to relate to each item, then―assuming that the demand must be
satisfied―the total ordering cost for a period with a given demand D would be the
same, regardless of whether there are many small or few large orders. Being a
constant, this factor would then not affect the optimization.

10.2 The Economic Order Quantity (EOQ) Model 343

10.2 The Economic Order Quantity (EOQ) Model
The most basic inventory model, the economic order quantity or EOQ model, has
an interesting history. Although the EOQ formula was first published in 1913 by
Ford Whitman Harris, it has been known under other names such as Camp’s
formula and Wilson’s lot size formula in the 1920s and 1930s. An interesting
historical account is provided in an article by Erlenkotter, indicating deliberate
attempts in the past to deny Ford Whitman Harris the credit of originating the
EOQ.

The assumptions of the basic economic order quantity are:

• The inventory consists of one single unperishable good held in one location,
• the demand rate for the item is constant over time and demand must be

satisfied exactly,
• the item is ordered from a single supplier in the same amount each time. For

now, we assume that replenishment is instantaneous, even though that is not
really necessary as we will show later,

• there are no quantity discounts,
• stockouts are not allowed and the demand must be satisfied completely, and
• the planning horizon is infinite and all model parameters are stationary, i.e.,

they do not change over time.

It is apparent that the problem has two components: how much to order and when.
The question of when to order is simply resolved in case of instantaneous
replenishments: since the net inventory is not allowed to become negative, and
since it does not make sense for a replenishment to occur while net inventory is
positive, it must be optimal to place an order (and immediately receive the
shipment), when the inventory level reaches zero. Instead of looking at the time
when to reorder, we use the inventory level as a proxy for the time clock. The
three inventory levels IO, IN, and IP are all equal and can be denoted by I.

Since the order size was assumed to be the same each time, the inventory levels
over time will have the characteristic sawtooth pattern shown in Figure 10.2,
where the time between two consecutive replenishment times is referred to as the
inventory cycle length tc, while the order quantity is Q.

10 Inventory Models 344

inventory level

 time

Figure 10.2

We now wish to minimize the total inventory-related costs TC per period (year),
which is the sum of total ordering costs for the period and the total holding costs
for the period. We could add the purchasing costs as well, but since we have
assumed that the demand must be completely satisfied and there are no price
discounts, the purchasing costs would be a term pD with p denoting the unit price
of the good. This is a constant, and as such it will not affect the optimization and
can thus be deleted in the process.

First, consider the ordering costs. If we were to place N orders, each of size Q,
within the planning period, then the total amount ordered is NQ, which must equal
the demand D: since stockouts are not allowed, NQ cannot be less than D, and
with NQ > D we would be carrying more inventory than needed, incurring
unnecessary costs. With NQ = D, we find that N = D/Q equals the number of
orders per period. Incidentally, since tc is the length of one inventory cycle, of
which there are N in one period, tcN = 1 period, so that tc = 1/N = Q/D. Recalling
that the cost for one order is co, we conclude that total annual ordering costs are
coN = coD/q.

Since holding costs are charged per unit in inventory (the vertical axis in the

curve, which can be seen to be ½Q. In other words, the average inventory level is
h

inventory costs per period are

 TC = coD/Q + ½chQ.

This expression makes intuitive sense: the larger the order quantity Q, the lower
the total ordering costs, since larger, but fewer, orders are being placed. However,
the holding costs will be higher, since more inventory is being kept in stock (on
average). This is illustrated in Figure 10.3, where the abscissa measures the order

tc

Q

quantity, the ordinate measure the costs. The broken line (a rational function

½Q, implying that the total annual holding costs are c (½Q). Hence, the total

diagram in Figure 10.2), we will need to compute the total area under the sawtooth

10.2 The Economic Order Quantity (EOQ) Model 345

while the linear function (the broken line) represents the inventory holding costs.
the solid line is then the sum of the two components.

Figure 10.3

derivative with respect to Q, which results in

 TC ' = −coD/Q2 + ½ch.

Setting it equal to zero results in the optimum order quantity

 Q*
h

o

c
Dc2

=

(Technically, we also have to check the second derivative in order to ensure that
the optimal order quantity results in minimal, rather than maximal, inventory
costs. It does.) The expression for Q* is referred to as the economic order quantity
EOQ. Inserting this order quantity into the cost function, we obtain the inventory
costs at optimum, which are

 TC(Q*) = hohh cDccDccDc 2½½ oo =+ .

costs

order quantity Q

of type “constant divided by the order quantity Q”) represents the ordering costs,

To determine the value Q* that minimizes total inventory cost TC, we find the

10 Inventory Models 346

o h

inventory cycle length *
ct = 1/N* = Q*/D.

year. The cost of placing an order for the chargers is co = $100 and the holding
cost is ch = $4 per charger per year. The economic order quantity is therefore

200
4

)100)(800(2* ==Q chargers and the total cost is)4)(100)(800(2* =TC =

$800. The optimal number of orders to be placed throughout the year is N* =
*
c = Q*/D =

200/800 = ¼ year = 3 months. The total ordering costs are then 4(100) = $400,
which is half of the total cost, the other half is made up by the total holding costs.

A useful feature of the economic order quantity is its insensitivity to errors in
the input data (i.e., the parameters). In our example, assume that the annual
demand was erroneously estimated to be 920 chargers, instead of the correct
amount of 800 chargers, i.e., a 15% overstatement. Using the EOQ formula we
obtain the nonoptimal and erroneous value Q* from the expression

5.214
4

)100)(920(2* ≅=Q , which is an overstatement by slightly more than 7%,

only about half of the original relative error. One can show that due to the square
root of the formula, relative input data errors result in relative EOQ errors of only
about half the size, for reasonable errors (say, 30% or less). Checking the total
inventory costs that result from the wrong data, we find (using the true value of
D = 800 and the erroneous order quantity Q* = 214.5) that TC(Q* = 214.5) =

5.214
)800(100)½(4)(214.5+ = $801.96, which deviates only very marginally from

the true value of $800.

10.3 The Economic Order Quantity with Positive Lead Time
We will now carry our discussion further and extend the model to the situation
where a positive lead time tL elapses from the moment an order is placed and until
the time the quantity ordered has arrived and been added to the inventory.

It is apparent that the decision when to order will in no way affect the decision
how much to order. In other words, the optimum order quantity Q* still applies.
Instead of looking at the clock time for the point at which to place an order, we

Example: A retail store faces a demand of D = 800 car battery chargers per

optimum regardless of the value of the parameters D, c , and c ; however, the solution

Given Q*, we can then determine the related variables N* = D/Q* and the optimal

Q* is

D/Q* = 800/200 = 4 orders, and the optimal inventory cycle length is t

not optimal because holding and ordering costs are equal.

Note that it just so happens that holding and ordering costs are always equal at

10.3 The Economic Order Quantity with Positive Lead Time 347

will observe the inventory level and determine the order time in terms of the
reorder point R: when the on-hand inventory level IO decreases to the level R, an
order is placed, which will arrive after a delay of tL time units; at this point, the
inventory level, for optimal performance, should have reached zero. We will
consider two different cases, depending on the length of the lead time tL, which
differ on the basis of the relation between lead time and cycle time.

Case 1: *

cL tt ≤ , i.e., the lead time is less than or equal to the optimal inventory
cycle length. The demand during the lead time is then tLD, and it follows that if an
order of size Q* is placed when the inventory level reaches R* = tLD, then the
replenishment will arrive exactly at the time when the inventory on hand has been
depleted, which is neither too soon, nor too late. This situation is depicted in
Figure 10.4.

Figure 10.4

Case 2: *

cL tt > , i.e., the lead time is greater than the optimal inventory cycle

length. The demand during the lead time is still tLD, but since *
cL tt > , it follows

that tLD > ** QDtc = , which is the highest level of inventory on hand that we will
ever reach. The arrival of an order will therefore occur during a subsequent
inventory cycle and not during the cycle in which it was ordered. This situation is
illustrated in Figure 10.5, where ** 2 cLc ttt << .

10 Inventory Models 348

Figure 10.5

In general, there could be several replenishments occurring during the lead time.

This number is actually
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
*
c

L

t
t (the “floor of the number”), i.e., the ratio

*
c

L

t
t rounded down to the nearest integer. In Figure 10.5, the floor

 equals 1, so that

the replenishment arrives in the inventory cycle following immediately after the
one during which it was ordered. In general, we obtain the relation

 ** * Q
t
tDtR
c

L
L

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
−= .

It can easily be demonstrated that this expression will cover both cases above.

Since for tL < *
ct (as in Case 1),

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
*
c

L

t
t = 0, so that R*= tLD, which is the

expression derived for that case.

Example: Consider the battery charger example above with D = 800, co = $100,
and ch = $4, for which we have obtained an optimal order quantity of Q* = 200 at
an annual cost of TC* = 800. Given now a lead time of 2 months, i.e., 1/6 of a
year, we have tL = 1/6 < ¼ = *

ct , so that Case 1 applies. Here, we find the optimal
reorder point as

 R* = tLD = 1/6(800) = 133⅓ units.

10.4 The Economic Order Quantity with Backorders 349

On the other hand, with a lead time of tL = 4 months, i.e., ⅓ of a year, we have
tL = ⅓ > ¼ = *

ct , so that Case 2 applies, and we find that

 R*= ⅓(800) –)200(
4

1
3

1

⎥
⎦

⎥
⎢
⎣

⎢
 = 66⅔ units.

As mentioned earlier, these shipments will not arrive in the inventory cycle they
are ordered in, but in the next cycle.

A practical way to implement the reordering in Case 1 above where *

cL tt ≤ is the
two-bin system. Upon replenishment, the order quantity Q* is physically separated
and put into two storage bins. The first bin has a capacity of Q* − R* units, while
the second bin holds R* units. The demand for items in stock is then satisfied
exclusively from the first bin until it is empty. At that time, only the R* items in
the second bin remain and the inventory manager will reorder the item. From this
point onwards, all subsequent demand is now satisfied from the second bin. Given
the assumptions made in this section, the second bin will be depleted exactly at
the time when the next shipment arrives and the process is repeated.

A similar argument allows the two-bin system to be implemented in Case 2 with

*
cL tt > . Supermarkets use a “virtual” version of the two-bin system by electronically

monitoring inventory levels by counting items that pass through the checkout
counters. Orders are then automatically triggered when the appropriate reorder
point has been reached.

10.4 The Economic Order Quantity with Backorders
Assume now that we allow backorders, so that the net inventory level IN may
become negative, in the sense that unsatisfied demand is recorded or “backordered,”
to be satisfied immediately upon replenishment of the inventory. Such planned
shortages are considered to incur a shortage cost per unit and per period. These
unit shortage costs will be denoted by cs. These costs consist of the inconvenience
to the customer of the unsatisfied demand and they will be difficult to estimate in
practice. The costs could also include special handling costs that are incurred due
to the preferential delivery to the customer of the backordered units when they
become available. This will also imply that net inventory IN and inventory position
IP are the same, i.e., IN = IP. Assuming a repetitive situation, the net inventory
level will be as in Figure 10.6, where S denotes the amount of the maximal shortage.
Note in the figure that the maximal inventory directly after replenishment is no
longer Q as in the standard model, but Q − S, as the stockouts are satisfied first
before new inventory is built up.

10 Inventory Models 350

Figure10.6

In Figure 10.6, the parameter t1 denotes the length of time during an inventory
cycle during which the net inventory IN is nonnegative, i.e., when there is no
stockout. On the other hand, the parameter t2 denotes the length of time during
which there is no stock at hand. Clearly, t1 + t2 = tc. Using the geometric
relationship of the two similar (shaded) triangles in Figure 10.6, we find that
t1/t2 = (Q − S)/S. We will use this expression below.

We will now determine optimal levels of the order size Q and the optimal largest
shortage level S simultaneously by minimizing total inventory costs. These costs
now include not only ordering and holding costs as before, but also shortage costs.
As in the standard economic order quantity, the annual ordering costs are coD/Q.
As far as the carrying costs are concerned, we find that the average inventory level
is obtained by averaging the inventory level during the time that no stockouts
occur. This weighted average is ½(Q−S) during the time t1, while the inventory
level during the time stockouts occur is zero for the duration t2. After some

calculations, this leads to inventory holding costs of
Q
SQch 2

)(2− .

We can now deal with the average shortage in a similar fashion. The average
annual shortage is ½S during the time t2, which is when we have shortages. This

leads to total shortage costs of
Q

Scs 2

2
. The total inventory costs are therefore

 TC(Q, S) =
Q

Sc
Q
SQc

Q
Dc sho 22

)(22
+

−
+ .

timeS
−S

Q − S

Q − SQ

IN

tc

t2

t1

10.4 The Economic Order Quantity with Backorders 351

Using partial derivatives, we can show that the total inventory costs are minimized
for

s

sh

h

o

c
cc

c
DcQ +

=
2* and

sh

h

s

o

cc
c

c
DcS

+
=

2* = *Q
cc

c

sh

h
+

.

Example: Using the basic EOQ example above with its parameters D = 800, co =
$100, and ch = $4 to which we add unit shortage costs of cs = $6 per unit and year,

we can then determine the optimal order quantity as Q* =
6

64
4

)100)(800(2 + ≅

258.20 units. The optimal shortage can then be determined as ** Q
cc

cS
sh

h

+
= ≅

103.28. The total costs are then TC(Q*, S*) = 309.84 + 185.90 + 123.94 =
$619.68.

Note that while this model includes more cost items than the basic EOQ model,
the same demand and cost parameters cost less in this model. The reason is that

Nobody says that we have to have shortages (this model certainly allows not
having any), but here it is cost-effective to plan some shortages. As a matter of
fact, the relation between the unit shortage cost and the unit holding cost will

s h
are expensive and the solution will include only minor shortages. If, on the other
hand, cs/ch is small, then shortages are comparably cheap, and the model will
prescribe large shortages.

To push that argument even further, suppose that shortage costs would increase

beyond all reasonable limits, i.e., cs → ∞. Then the “correction factor”
s

sh

c
cc +

 in

the order quantity root will approach 1, so that the order quantity Q* will assume
the same value as in the basic EOQ model. At the same time, the magnitude of the
planned shortage will tend to zero, as the shortage cost appear only in the
denominator of the formula. Thus it becomes clear that the basic model is just a
special case of the model with shortages, given that shortage costs are infinitely
high. This result is nothing but an application of the usual principle of penalty
costs: if there is something that we do not want, assign a very high penalty to it,
and as a result, the optimizer will not include the very expensive option in the
solution.

this model allows the decision maker an added possibility, viz. to run shortages.

determine the magnitude of the planned shortage: if c /c is large, then shortages

10 Inventory Models 352

10.5 The Economic Order Quantity with Quantity Discounts
So far we have assumed that the unit purchasing cost p is constant and independent
of the order size Q. Recall that in the original economic order quantity model, the
costs actually were the sum of ordering, holding, and purchasing costs, viz.,

 TC(Q, p) = coD/Q + ½chQ + pD.

However, we argued, for a fixed price p, the purchasing costs during the period
under consideration are pD, which is a constant, which does not influence the
solution, so that we could (and did) ignore the purchasing costs. In practice,
however, many suppliers will offer incentives for purchases of larger quantities in
the form of lower unit costs. The basic economic order quantity model described
in Section 10.2 can easily be modified to take such quantity discounts into
consideration. For simplicity, we will restrict ourselves to the standard model with
no shortages allowed. To simplify our discussion, we assume that there are three
price levels, the original non-discounted price and two discount levels. It is
straightforward to extend the model to any number of discount levels.

Before we proceed, though, we have to make a minor modification. Recall that we
said earlier that the main component of the holding costs are the cost for tied-up
capital. Given that we paid a fixed price for the good so far, this cost could simply
be expressed as a dollar amount for each unit in stock. Given that we now are
paying a price that is no longer fixed but does depend on the discount level that
we choose, the unit holding costs have to be redefined. This is most easily done by
defining ch as a proportion of the unit purchasing price p. Given that, the
economic order quantity is redefined as

pc

DcQ
h

o2* = .

We will denote the given (non-discounted) price level as p0, the price with the
small discount as p1, and the price given the large discount as p2. Clearly, p0 > p1 >
p2. The rationale behind this scenario is simple. For the regular price of p0, we can
obtain any quantity we desire. In order to convince our supplier to sell the goods
for us at the lower price of p1, we have to purchase at least a certain quantity of
goods. This quantity will be called Q1. Going one step further, we can ask our
supplier to let us have the goods even cheaper at a price of p2, which he may agree
to, but only if we order at least Q2 units with the obvious condition that Q2 > Q1.

At this point, we have a cost function for each of the price levels. This situation is
shown in Figure 10.7.

10.5 The Economic Order Quantity with Quantity Discounts 353

Figure 10.7

The three cost functions are shown as TC(p0), TC(p1), and TC(p2), respectively.
The dots on the cost functions denote their respective optimal points, at which the
costs are minimized. The minimal quantity levels that allow for the discounts are
also shown.

Consider now the actual costs that we incur as the order quantity gradually
increases. For very low order quantities, we must be on the highest cost curve, as
we do not qualify for a discount. As we increase the value of Q, the costs decrease
and reach their minimum at the dot on the TC(p0) curve. As Q increases further,
the costs increase as well until we reach Q1. At this point, we do qualify for the
small discount, so that our actual costs jump down onto the cost curve TC(p1). As
this point happens to be to the right of the minimum on this function, the costs
increase as Q increases. This process continues until we reach Q2, the value that
allows us to obtain the second (larger) discount. Again, the costs drop at this point
onto the third and lowest cost function TC(p2). Increasing the value of Q further,
increases the total costs.

The piecewise nonlinear cost function is shown as a bold line in Figure 10.7. In
order to determine the order quantity with the overall minimal costs, we have to
examine each cost curve separately. More specifically, we determine the optimal
order quantity at each price level, and then compare them and choose the option
with the lowest costs.

First consider the highest cost curve without a price discount. We simply determine
the point of lowest cost with the EOQ and record the associated cost. This is the
optimal solution given the option of paying the regular price p0.

10 Inventory Models 354

We then continue to examine the costs incurred when paying the price p1. Again,
we determine the optimal quantity at this price by solving the economic order
quantity with this price. (Note that with decreasing prices, the optimal order
quantity increases slightly, as the expression in the denominator chp increases).
We then have to determine whether or not this quantity permits us to obtain the
discount. If so, we have found our optimal order quantity at this level. If this is not
the case, we have to move out of the optimum, but, as the function is increasing
the farther we move out of the optimum, just as much as required to qualify for the
discount.

In our illustration in Figure 10.7, the optimal order quantity is less than Q1, the
lowest quantity that qualifies for the price p1. We thus increase the order quantity
to Q1 and determine the costs at that point. This is the optimal order quantity given
the price p1.

This process is repeated for all discount levels. Once this has been accomplished,
we simply compare the best known costs at each price level and choose the overall
minimum. This is our optimal solution.

This process can be illustrated by the following numerical

Example: A company faces an annual demand for 10,000 footballs. The purchasing
costs are $2 per football, the holding cost are 5% of the purchasing price per
football and year, while the costs of placing one order are $80. The supplier now
offers a ½% discount in case the company orders at least 6,000 units. As an
alternative, the supplier also offers a 1% discount, if the company orders at least
15,000 units. Consider all alternatives, compute the total costs in each case and
make a recommendation.

The parameters of the problem include D = 10,000, ch =5% of p, and co = $80.

Case 1: No discount, so that p0 = $2. Then ch = $0.10, and we use the EOQ to
compute the order quantity as Q* = 4,000 with costs of TC* = 200 + 200 + 20,000
= $20,400.

Case 2: Small discount, so that p1 = $1.99. Then ch = $0.0995, and the solution of
the EOQ is Q* = 4,010.038. This quantity does not qualify for the discount, so
that we have to move out of the optimum just as much as necessary to qualify for
the discount. Hence we set Q := 6,000, for which we then obtain costs of TC(6,000)
= 133.33 + 298.50 + 19,900 = $20,331.83.

Case 3: Large discount, so that p2 = $1.98. Then ch = $0.099, and the solution of
the EOQ is Q* = 4,020.15. This quantity does not qualify for the discount, so that
we have to move out of the optimum just as much as necessary to qualify for the
discount. Hence we set Q := 15,000, for which we then obtain costs of TC(15,000)
= 53.33 + 742.50 + 19,800 = $20,595.83.

10.6 The Production Lot Size Model 355

Comparing the three options, Case 2 offers the lowest total costs, so that we should
order 6,000 footballs, obtain a ½% discount, and incur total costs of $20,331.83.

10.6 The Production Lot Size Model
As an alternative to ordering models of the type discussed so far in this chapter,
we may produce the desired items ourselves. In such a case, the items will not
arrive in one bulk as they do in case of orders, but they arrive one piece at a time
from our machines. Assume for the time being that we cannot regulate the speed
with which our machines produce the units: we either turn the machine on, in
which they churn out r units per day (this is our production rate), or we turn off
the machine, in which case we make nothing. Recall that our annual demand was
assumed to be of magnitude D, from which we can easily compute the daily
demand d, which is D/365, D/360, or D/250 (working days), depending on the
decision maker’s specifications. Before engaging in any computations, it is
necessary to determine whether or not the system has any feasible solutions. The
simple regularity condition is that r ≥ d. If this condition is not satisfied, then it
will not be possible to satisfy the total demand, and we have to find ways that
allows us to do so. The following arguments assume that the regularity condition
is satisfied.

Batch or intermittent production as described above occurs in many vertically
integrated companies, where the ordered items are produced internally. A production
run can then be considered an order, with the production run size corresponding
to the order size Q, and the production setup cost corresponding to the ordering
costs co.

Using an argument similar to that in Section 10.2, we note that D/Q is the number
of setups or production runs per period, so that the total setup costs are co(D/Q).
As far as the carrying costs are concerned, we will consider the production phase
tr (the phase during with production and demand occur) and the demand phase td
(the phase during which production does not occur, while demand occurs as usual)
separately. In the production phase, inventory accumulates at the rate of (r−d). We
notice that the duration of the production phase is tr = Q/r, so that the maximal
level of inventory at the end of each production run will by (r−d)Q/r. During the
demand phase, the inventory, that starts with a level of (r−d)Q/r, decreases to zero
in linear fashion at a rate of d, so that the slope of the function in Figure 10.8
during that phase is –d). The average inventory level during the entire cycle of
duration tc = tr + td is then ½ (r−d)q/r. Therefore, the total carrying cost per period
are ½ch(r−d)Q/r. As a result, the total production- and inventory-related costs are

 TC = coD/Q + ½ch(r−d)Q/r

10 Inventory Models 356

Figure 10.8

Following the same procedure applied to the standard economic order quantity in
Section 10.2, we find the derivative with respect to the single variable Q, which
results in TC ' = −coD/Q2 + ½ch(r−d)/r. Setting the derivative equal to zero results
in the unique optimal lot size of

dr

r
c
DcQ

h

o
−

=
2*

(Again, we have to check the second derivative so as to ensure that the lot size
actually minimizes the costs. It does).

We can now illustrate the economic lot size by means of a numerical

Example: A bottling plant faces an annual demand of 200,000 bottles of a certain
type. It can produce these bottles at a rate of 1,000 bottles per day during each of
the 300 working days in a year. Setup costs for a production run are $1,000, and
each bottle has a carrying cost of 10¢ per bottle and year.

We first check whether or not the regularity conditions holds. Here, we have r =
1,000 > 666.67 = 200,000/300 = d, so that the condition is indeed satisfied. Thus
we can compute the optimal quantity made during one production run as Q* =

67.666000,1
000,1

10.0
)000,1)(000,200(2

−
≅ 109,545 bottles. The corresponding costs

are TC(Q*) = $3,651.50.

An interesting observation concerns the relation between the optimal lot size
developed above and the economic order quantity. Given that we can equate the
production setup cost and the unit order cost in the two respective models, we find

time

inventory
on hand

maximum
inventory
level

tr td

10.7 The Economic Order Quantity with Stochastic Lead Time Demand 357

that the optimal value of Q in the lot size model is never smaller than the order
quantity in the economic order quantity, and that the costs in the lot sizing model
are never larger than those of the EOQ. As a matter of fact, the economic order
quantity can be seen as a special case of the lot sizing model with an infinite
production capacity (as exemplified by the fact that an order in the EOQ arrives
with infinite speed). Increasing r to arbitrarily high values has the expression
r/(r−d) approach one, so that the lot size formula reduces to the standard economic
order quantity. Applying this argument to our numerical example, we find that the
economic order quantity with the same parameters as those used in the example
equals Q* = 63,245.55, a policy that costs TC(Q*) = $6,324.56.

Along similar lines, it is also interesting to note that more capable machines, i.e.,
those with higher production rates, incur higher costs. As a matter of fact, the
machine with the “optimal” production rate has r = d, so that inventories are
unnecessary, as customers satisfy their demand at the same rate the machine
produces the goods. This is yet another example for optimal solution that fitting
the production to the demand results in solutions with the lowest cost (for another
example, see the “technology choice” example in the linear programming
formulations).

In conclusion, just like the economic order quantity, the production lot sizing
model has the attractive property of being robust, i.e., quite insensitive to changes
of the parameters (input data).

10.7 The Economic Order Quantity with Stochastic Lead Time
Demand

So far in this chapter we have assumed a deterministic environment, in which all
relevant data are known with certainty, and in which the consequences of our
actions are completely predictable. We will now extend our analysis to situations
involving uncertainty and begin with the simple but important case, in which the
demand during the lead time is a random variable. However, we assume that the
demand during the lead time follows a discrete probability distribution that is
known to us. The random behavior of the demand may cause undesired and
unplanned stockouts and surpluses, which is shown in Figure 10.9. From the
figure it is apparent that while the demand is irregular throughout, we are only
concerned about the irregularity that occurs between the time that we have placed
an order (i.e., after the reorder point has been reached), and the time that the next
shipment arrives.

10 Inventory Models 358

Figure 10.9

In Figure 10.9, inventory replenishment occurs at the time points t1, t2, t3, and t4,
points in time that are not necessarily evenly spaced, as a consequence of the
reorder point R having been reached at the points in time t1 − tL, t2 − tL, t3 − tL, and
t4 − tL. At t1, there is neither a stockout nor a surplus (a rather unlikely event); at t2
and t4 we have a surplus inventory when the next shipment arrives, while at t3,
there is an unplanned shortage. Whenever a surplus occurs, we have in fact carried
more inventory than was actually needed, thus incurring unnecessary carrying
costs, while in case of a stockout, there will be a penalty cost cp charged for each
unit we are out of stock. Note that cp is assumed to be independent of the length of
time that we are out of stock. This is in contrast to the shortage costs cs for the
backorder model of Section 10.4, where the shortage cost was defined per quantity
unit and per time unit. The difference between cp and cs in the backorder model
and this model is that the shortages in Section 10.4 were planned deliberately,
while the shortages in this section occur because there is a higher-than-expected

tL

Formally, we define cp as the penalty cost per unit and stockout. Furthermore, we
have)(DED = as the expected valued of demand per year, the lead time demand

dL (a random variable), and the expected value of dL is)(LL dEd = . The
(discrete) probability distribution of the lead time demand dL is p(dL), while F(dL)
is the cumulative probability distribution of dL. We will restrict our discussion to
the case, in which dL is a discrete random variable. Furthermore, in this simple
model, the length of the lead time tL is still deterministic, i.e., fixed and known to
the decision maker. We also assume that R − Ld ≥ 0, i.e., on average, there is still
a positive inventory level when replenishment occurs. If this condition were not to
be required, we would, on average, run out of stock at the end of each cycle.

t3

t2

inventory
level

r

order placed order arrives
tL

t1

stockout time t4

demand during the lead time .

10.7 The Economic Order Quantity with Stochastic Lead Time Demand 359

Therefore, we may regard the quantity R − Ld as the amount of stock that is kept
at all times. For this reason, this quantity is usually referred to as the expected
safety stock or buffer stock.

10.7.1 A Model that Optimizes the Reorder Point

The objective in this section is to minimize the sum of the carrying costs for the
expected safety stock plus the expected penalty costs for stockouts. This sum will
be denoted by TC1(R, Q), since it depends on the reorder point R as well as on the
order quantity Q. To start, we will simply use the order quantity QEOQ, which was
obtained independently of the reorder point by way of the economic order
quantity. This can be justified because of the robustness of the economic order
quantity formula. We then obtain the partial cost function

 TC1(R, QEOQ) = ch()LdR − + ∑
>

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Rd
LL

EOQ
p

L

dpRd
Q

Dc)()(

where QEOQ =
h

o

c
cD2

, and where the first part of the relation is the cost for

carrying the safety stock. The summation in the second part of relation is taken
over all instances, in which shortages occur, so that we compute the expected
shortage level. Differentiating TC1(R, QEOQ) with respect to R and setting the
resulting expression to zero yields the condition for the optimal reorder point R*,
which is

Dc

Qc
RdP

p

EOQh
L => *][.

As *][RdP L > = 1 − *][RdP L ≤ = 1 − F(*R), we obtain

 F(*R) = 1 −
Dc

Qc

p

EOQh .

Since we have assumed that dL is a discrete random variable, its cumulative
distribution function F will be a step function that assumes only discrete values in
the interval [0, 1]. Therefore, it is unlikely that the right-hand side of the above
equation will equal one of these discrete values. As a way out of this dilemma, we
let R* denote the smallest value that satisfies the inequality

 F(*R) ≥ 1 −
Dc

Qc

p

EOQh .

Note that we only have to consider the possible values of dL for R*.

10 Inventory Models 360

In order to illustrate the above discussion, consider the following numerical

Example: Consider again the battery charger example of Section 10.2 with a
demand of D = 800, ordering costs of co = $100 , and holding costs of ch = $4 per
charger per year. Furthermore, assume that the penalty costs are cp = $5 per
charger and stockout. Suppose that the expected annual demand is D = 800. Suppose
that the demand during lead time has the following probability distribution.

dL (units) p(dL) F(dL)
70 .1 .1
75 .2 .3
80 .2 .5
85 .3 .8
90 .2 1.0

The economic order quantity in this example equals QEOQ = 200 units, so that 1 −

Dc
Qc

p

EOQh = 1 −
)800(5
)200(4 = 0.8, and since the smallest value of dL with F(dL) ≥ 0.8

equals 85, we have *R = 85. As the expected demand ∑==
x

LLL xxpdEd)()(=

81.5, the expected safety stock will equal LdR −* = 85 − 81.5 = 3.5 units. The

carrying cost for the expected safety stock is then ch (LdR −*) = 4(85 − 81.5) =

$14, and the expected penalty cost is ∑
>

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

*
)(*)(

Rd
LL

EOQ
p

L

dpRd
Q

Dc =

)2.0)(8590(
200
8005 − = $20. Note that stockouts occur only if dL > *R = 85,

which happens only in case dL = 90, an occurrence that has a probability of 0.2.

10.7.2 A Stochastic Model with Simultaneous Computation of Order Quantity
and Reorder Point

We can now refine the above model and determine the order quantity Q and the
reorder point R simultaneously. For that purpose, we consider the expected total
cost of ordering, carrying, and penalty, i.e,

 TC2(Q, R) =) ½(Lho dRQc
Q
Dc −++ + ∑

>

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Rd
LLp

L

dpRd
Q
Dc)()(

10.7 The Economic Order Quantity with Stochastic Lead Time Demand 361

Using partial differentiation with respect to Q and to R and setting the result to
zero yields

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−+= ∑

> *

)(*)(2*
Rd

LLpo
h

L

dpRdcc
c
DQ and

Dc
QcRF

p

h−≥ 1*)(.

Again, it is understood that *R is taken to be the smallest value that satisfies the
inequality. The above two relations should be solved simultaneously, which is
difficult, since Q* and R* appear in both. Instead, we will use an iterative
procedure that shuttles between these two relations. It commences with an order
quantity Q*, uses the second of the two relations to determine a reorder point R*,
it uses this reorder point in the first relation to compute a revised value of Q*, and
so forth until the process converges and the numbers do not change anymore. As
an aside, note again that if the penalty costs get very large, the order quantity
reduces again to the standard economic order quantity of the basic model.

This process will be illustrated in the following numerical

Example: Consider again the situation of the example in the previous section with
a demand of D = 800, ordering costs of co = $100, holding costs of ch = $4 per
charger per year, penalty costs cp = $5 per charger and stockout, and the above
probability distribution of the demand.

Again, we obtain *Q = 200, so that R* = 85, just as in the previous procedure.
Using the modified economic order quantity, we then find a revised value of Q* as

)]2.0)(5(5100[
4

)800(2* +=Q ≈ 204.94 units.

Using this revised order quantity in the latter of the two relations, we find that

 *)(RF ≥ 1 −
)800(5

)94.204)(4(≈ .795, so that R* = 85 again, and thus the

procedure terminates.

Comparing the results for Q* and R* of the simple model in the previous
subsection and the refined approach in this subsection, we notice that in both cases
the reorder point is R* = 85 units, whereas the order quantity is Q* = 200 units in

10 Inventory Models 362

the simple model (obtained by using the standard economic order quantity), while
it is not very different at 204.95 ≈ 205 units in the refined model. Again, this
demonstrates the robustness of the economic order quantity formula.

10.8 Extensions of the Basic Inventory Models
This section will offer an outlook on some inventory policies. Following the
standard terminology (which is in some conflict of the symbols that we have used
so far), we define s as the reorder level (what we have referred to so far as the
reorder point, i.e., the inventory level at which an order is placed), R as the
intervals at which the inventory level is checked, and S as the inventory level we
have directly after a replenishment.

We now distinguish between periodic and continuous review systems. In a
periodic review system, we check the inventory levels at regular intervals R (e.g.,
hourly, daily, or weekly), while in a continuous review system, we continuously
watch the inventory level.

An order-point, order-quantity, or (s, Q) policy involves continuous review (i.e.,
R = 0) at which time an order of a given magnitude Q is placed whenever the
inventory reaches a prespecified reorder level s. An example of an (s, Q) policy is
the two-bin system described in Section 10.3.

An order-point, order-up-to-level, or (s, S) policy is another continuous review
policy. Its key is an inventory level S that is specified by the inventory manager.
This is an inventory level to be attained directly after a shipment is received. So,
once the reorder point s is reached, an order of size S − s is placed, which then
increases the inventory position level I p to S. This may be a reasonable policy in
case the demand is irregular, so that at the time that an order is placed the
inventory level may suddenly dip below s, at which time the regular order quantity
may then not be sufficiently large.

A periodic review, order-up-to-level, replenishment cycle policy, or (R, S) policy
is a periodic review policy. At each review instant (which occurs at intervals of
length R time units) an order is placed of a size that raises the inventory position
level I p to S.

In addition, there are hybrid policies such as the (R, s, S) policy, where at review
time nothing is done, if the inventory level is above s, whereas if it is at or below
the level s, an order is placed to increase the inventory level to the magnitude S.

Each of the above policies has its own advantages and drawbacks, and it depends
on the practical situation at hand which one is the most appropriate choice.
Typically, continuous review policies such as the (s, Q) and (s, S) policies are
suitable for the A items in the ABC classification introduced at the beginning of

363

this chapter. For B and C items, the cost of continuous review of the inventory
level may not be justified, so that periodic review policies may make more sense.
For C items, the review interval length R may be set, so that the review is done
less frequently for these items of minor value. Modern computerized inventory
control systems are of great help with any inventory system.

Exercises
Problem 1 (EOQ with positive lead time, shortages, production lot size): A
retailer faces an annual demand for 2,400,000 shirts with the “Mumbo Jumbo
Man−Savior of the Universe” logo. It costs $450 to place a single order and the
costs for keeping a single shirt in stock for an entire year are 60¢.

(a) How many units should the retailer order each time an order is placed and

what are the associated costs?
(b) Given the result under (a), how many orders should be placed and what is the

time between two consecutive orders (given a 360-day year)? What is the
reorder point if the lead time were 20 days?

(c) Assume now that it is possible to allow shortages, given that the portion of
the demand that cannot immediately be satisfied will be satisfied immediately
after the next shipment arrives. It has been estimated that the associated loss
of goodwill equals costs of 80¢ per shirt and year. Compute the order
quantity, the maximum shortage, and the associated costs.

(d) What would happen to the results in (c) if the unit shortage costs were to
increase by, say, 10¢? Explain in one short sentence, indicating the reason
why. Calculations are not required.

(e) Suppose now that the retailer were to purchase the equipment to make the
shirts in-house. The machine is capable of making 10,000 shirts per day
(again based on a 360-day year). What is the number of shirts made in each
production run? What are the total costs?

(f) How would the results under (e) change if the capacity of the machine under
(e) were not 10,000 units per day but only 6,000? Explain in one short sentence.

Solution: (a) D=2,400,000, Co = 450, Ch = 0.6, so that Q* = 60,000 & TC* =

$36,000.

(b) Then N* = 40 & *

ct = 1/40 [years] = 9 [days]. Reorder point R =

20(2,400,000/360) - 000,60
9
20

⎥⎦
⎥

⎢⎣
⎢ = $13,333.33.

(c) Q* = 79,372.54 and S* = 34,016.80. Costs TC = (holding costs) + (ordering
costs) + (shortage costs) = 7,775.27 + 13,606.72 + 5,831.45 = $27,213.44.

(d) If cs increases, shortages become more expensive, so that the order quantity
Q* and the maximum shortage S* both decrease, while the total costs will
increase.

Exercises

10 Inventory Models 364

(e) The regularity condition is satisfied. Q* = 103,923.05 and TC* = 10,392.30 +
10,392.30 = $20,784.60.

(f) The regularity condition is violated, i.e., the machine capacity is insufficient
to satisfy the demand.

Problem 2 (EOQ, positive lead time, shortages, production lot sizing): A
retailer faces an annual demand for 4,000,000 pairs of sneakers with the “King
Bong” logo. It costs $100 to place a single order and the costs for keeping a single
pair of sneakers in stock for an entire year are 50¢.

(a) How many pairs of sneakers should the retailer order each time an order is

placed and what are the associated costs?
(b) Given the result under (a), how many orders should be placed and what is the

time between two consecutive orders (given a 250-day year)? What is the
reorder point if the lead time were 8 days?

(c) Assume now that it is possible to allow shortages, given that the portion of
the demand that cannot immediately be satisfied will be satisfied immediately
after the next shipment arrives. It has been estimated that the associated loss
of goodwill equals costs of 20¢ per pair of sneakers and year. Compute the
order quantity, the maximum shortage, and the associated costs.

(d) What would happen to the results in (c) if the unit shortage costs were to
decrease by, say, 5¢? Explain in one short sentence, indicating the reason
why. Calculations are not required.

(e) Suppose now that the retailer were to purchase the equipment to make the
sneakers in-house. The machine is capable of making 20,000 pairs per day
(again based on a 250-day year). How many pairs of sneakers are made in
each production run? What are the total costs?

(f) How would the results under (e) change if the capacity of the machine under
(e) were not 20,000 units per day but 25,000? Explain in one short sentence.
No calculations are necessary.

Solution: (a) D = 4,000,000, Co = 100, Ch = 0.5, so that Q* = 40,000 and TC* =

$20,000.

(b) Then N* = 100 and *
ct = 1/100 [years] = 2.5 [days]. Reorder point R* =

8(4,000,000/250) − 000,40
5.2

8
⎥⎦
⎥

⎢⎣
⎢ = 8,000.

(c) Q* = 74,833.15 and S* = 53,452.25. Costs TC = (holding costs) + (ordering
costs) + (shortage costs) = 1,527.21 + 5,345.22 + 3,818.02 = $10,690.45.

(d) If cs decreases, shortages become even cheaper, so that the order quantity Q*
and the maximum shortage S* both increase, while the total costs will
decrease.

(e) The regularity condition is satisfied. Q* = 89,442.72 and TC* = 4,472.14 +
4,472.14 = $8,944.28.

(f) The order quantity will decrease and the inventory-related costs will increase.

365

Problem 3 (quantity discounts): The annual demand for a product is 9,000, and
the unit price of the product is $5. The holding costs are estimated to be 10% of
the price of the product, and the costs of placing a single order are $1,000.

(a) Calculate the optimal order quantity and the associated costs.
(b) The supplier now offers a discounted price of $4.80 if we order at least 8,000

units at a time. Should we take the offer? What are the associated costs?
(c) Our supplier adds another offer: a price of $4.75, if we purchase at least

18,000 units (so that we have to order only every other year). Should we take
this offer?

Solution: (a) With a unit price of p0 = $5, we obtain 000,6
)5)(1(.

)000,1)(000,9(2* ==Q

with TC* = 1,500 + 1,500 + 45,000 = $48,000.
(b) The discounted price of p1 = $4.80 leads to an optimal quantity of Q* =

6,123.72. This quantity does not qualify for a discount, so that we set Q := Q1
= 8,000. The associated costs are TC(Q1) = 1,125 + 1,920 + 43,200 =
$46,245. As the total costs are lower at this price level, we should take the
discount, order 8,000 units at a time, which will cost us $46,245.

(c) The deeply discounted price of p2 = $4.75 leads to an optimal order quantity
of Q* = 6,155.87, not enough to qualify for the price level. As a result, we
must increase the order quantity to the smallest level that allows the discount,
i.e., Q = Q2 = 18,000. At this level, the total costs are TC(Q2) = 500 + 4,275 +
42,750 = $47,525, less than paying the full price, but not as good as the
smaller discount determined under (b). Hence, the overall best option is to
order 8,000 units each time we place an order, a policy that will cost us
$46,245 in each cycle.

Problem 4 (EOQ with stochastic lead time demand): Let the annual demand for
a certain item be 1,000 units in the planning period. The holding costs are $5 per
unit, and the cost of placing an order is $36 per order. The penalty cost for
stockouts is $3 per unit and stockout. There is a demand for 55 units during the
lead time with a probability of 20%. The demand is 60 with a probability of 0.4, it
is 65 with a probability of 0.30, and it is 70 with a probability of 0.10.

(a) Calculate the expected demand during lead time.
(b) Determine the economic order quantity and the resulting reorder point.
(c) Find the order quantity and the reorder point by simultaneous computation.
(d) What is the buffer stock?
(e) What is the minimal expected total or ordering, holding, and penalty costs?

Exercises

10 Inventory Models 366

Solution: (a) E(dL) = (55)(0.2) + (60)(0.4) + (65)(0.3) + (70)(0.1) = 61.5.

(b) QEOQ =
5

36)000,1(2 = 120 units, and with F(R*) ≥ 1 −
)000,1(3

)120(5 = 1 − 0.2 =

 0.8, so that R* = 65.

(c) Revising Q* =]1.0)5(336[
5

)000,1(2
+ ≈ 122.47 units, F(R*) ≥ 1 −

)000,1(3
)47.122(5 ≈ 0.7959, so that R* = 65 units.

(d) The buffer stock is R* − Ld = 65 − 61.5 = 3.5 units.
(e) Costs TC2 = (ordering costs) + (holding costs) + (penalty costs) = 293.95 +

323.68 + 12.25 = $629.87.

H.A. Eiselt and C.-L. Sandblom, Operations Research: A Model-Based Approach, 367
DOI 10.1007/978-3-642-10326-1_11, © Springer-Verlag Berlin Heidelberg 2010

11 Stochastic Processes and Markov Chains

Some of the previous chapter have dealt with random events. This chapter will
deal with such events in a systematic way. In general, in stochastic processes,
events occur over time. Time can be dealt with either in continuous fashion, or
in discrete fashion. In the continuous case, we may look at the speed of an
automobile at any given point in time or at the inventory level of a product in a
supermarket at any time. In the discrete case, speed or inventory level are observed
only during specific points in time, e.g., each minute, once a week or at similar
intervals. In this chapter, we only deal with discrete-time models. The following
three sections will introduce some of the basic ideas of stochastic processes and
Markov chains.

11.1 Basic Ideas and Concepts
Consider first the random events that take place. Using the same examples as
above, there is an infinite number of different speeds that a vehicle could be
moving at, while the demand for a product may be very large, but is hardly
infinite. Some types of events are much more restrictive: as an example, consider
a light bulb. It will always be in exactly one of two “states of nature,” in that it
either works, or it does not. This is referred to as the state space, i.e., the number
of different states the “system” can possibly be in. As already hinted at, the
individual states are similar to the states of nature in decision analysis, see Chapter 9
in this volume. This chapter deals only with processes that have a finite state
space.

Each event in this discrete-time, finite state space process is then a random
variable Xt that depends on the time t at which it is observed. As an illustrative
example, consider a used car. Lately, the vehicle has displayed the warning
message “service engine soon” and it is known that this means that the vehicle is
in one of four states: it either runs well (state s1), it runs with minor problems
(state s2), it runs with major problems (state s3), or it fails altogether (state s4). At
any point in time, the vehicle is in exactly one of these four states. It stands to
reason that the state that the vehicle is in one year does depend on the state the car

11 Stochastic Processes and Markov Chains 368

was in the year before. More specifically, we can define transition probabilities pij
that indicate that the vehicle is in state j, given that it was in state i in the previous
year. (We assume that no repairs are performed). It is apparent that the transition
probabilities are conditional probabilities of the type pij = P(Xt+1 = j| Xt = i), or in
simple words, the probability that the random variable is in state sj in year t+1,
given that it was in state si in year t. As a numerical illustration, consider the
matrix P = (pij) of transition probabilities

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

00.1000
25.075.000
05.010.085.00
01.003.006.090.0

P

For example, if the vehicle has been running well in the previous year, then there
is a 90% chance that it will be running smoothly in this year as well, as shown by
the element p11. Or, if the vehicle experiences minor problems this year, then there
is a 5% chance that it will fail altogether next year, as shown by the element p24.

A few features of this transition matrix are noteworthy. First of all, note that all
elements below the main diagonal (i.e., in the lower left corner) are zero. This
simply means that, given that no repairs are performed, the vehicle will never
improve. Secondly, we can observe that the sum of probabilities in each row of the
transition matrix equals one. This is always the case, as the transition probabilities
are conditional probabilities, and as such, given that we are in a row at time t, we
must choose a successor state for time t+1. Thirdly, notice that once the car is in
state s4 (i.e., the vehicle fails), then it will never get out of it again. Thus, the state
s4 is referred to as an absorbing state. The example presented here is a stochastic
process with the Markovian property that holds, if the present state of the process
depends only on the state of the system immediately prior to this and the transition
probabilities. (As a historical aside, Andrey Andreyevitch Markov, 1856-1922,
was a Russian mathematician who made important contributions to the field of
probability and statistics).

A nice visual representation is the transition diagram. In this diagram, the nodes
represent the states of the process, and the arcs represent transitions with a
positive probability. The transition diagram for our automobile example is shown
in Figure 11.1.

11.1 Basic Ideas and Concepts 369

Figure 11.1

Note that absorbing states have only arcs leading into them, but not out (at least
not to other states). Here, we also assume that the process is stationary, meaning
that the transition probabilities do not change over time.

An obvious question to be asked is what happens, if we go through more than one
transition. In other words, the transition probabilities tell us what the likelihood is
to be in one state one period after the process starts. But what about two or more
periods? This is the question we discuss in the next paragraphs. In order to
facilitate the discussion, consider a simple example involving stock prices. In
particular, we only allow an upward movement of the price and a downward
movement. The transition probabilities are shown in the matrix

 P = ⎥
⎦

⎤
⎢
⎣

⎡
3.07.0
8.02.0

.

In other words, if the stock went up today, then there is a 20% chance that it will
go up again tomorrow, while there is an 80% chance that the stock’s price will
decline. Similarly, if the price of the stock decreased today, then there is a 70%
chance that it will increase tomorrow and a 30% chance that it will decrease
tomorrow. When analyzing changes after multiple periods, we could use a time-
state graph as shown in Figure 11.2, where the nodes t

is indicate the state of
nature i at the end of period t, the arcs denote the possible transitions, and their
values are the transition probabilities. As the transition probabilities are stationary,
an arc from, say, t

is to 1+t
js will have the same value as, say an arc from 2+t

is to
3+t

js .

11 Stochastic Processes and Markov Chains 370

Figure 11.2

Considering Figure 11.2, assume now that we are presently in an upswing of the
stock price, i.e., in state 0

1s . The probability that there will be an increase in stock
prices two days later will have to examine all paths from the present state 0

1s to
the state 2

1s . Here, there are exactly two paths: the first path leads from 0
1s to 1

1s

and on to 2
1s , while the second path leads from 0

1s first to 1
2s and then to 2

1s .
Note that the first path considers a price increase on the first day, while the second
has a decrease on the first day. The probability is then calculated as the sum of
probabilities along each path, which, in turn, are computed as the product of all
transition probabilities along the path. In this example, the probability on the
former path 0

1s , 1
1s , 2

1s is (.2)(.2) = .04 (meaning that there is only a 4% chance
of two price increases in a row), while the latter path 0

1s , 1
2s , 2

1s has a probability
of (.8)(.7) = .56, meaning that the probability of a price decrease on day one,
followed by a price increase on day two has a probability of 56%. This means that
we obtain the transition probability that that state changes from a price increase on
day t to a price increase on day t+2 as 0.04 + 0.56 = 0.60. Similarly, we compute
the remaining probabilities, resulting in the matrix P2, which indicates the
transition probabilities from day t to day t+2. It is

 P2 = ⎥
⎦

⎤
⎢
⎣

⎡
65.035.0
4.06.0

.

This procedure can be repeated for any number of days. While this is possible, the
procedure is extremely awkward. We can achieve the same results by simple
matrix multiplication. In particular, we can obtain P2 = PP, P3 = P2P = PPP, and
so forth, so that we obtain Pr = PPP…P, i.e., the matrix P multiplied itself r times.
For instance, in the stock example we obtain

 P3 = P2P = ⎥
⎦

⎤
⎢
⎣

⎡
65.035.0
4.06.0

⎥
⎦

⎤
⎢
⎣

⎡
3.07.0
8.02.0

 = ⎥
⎦

⎤
⎢
⎣

⎡
475.0525.0
6.04.0

.

11.1 Basic Ideas and Concepts 371

This means that given that there has been an increase in prices on day one, then
there is a 40% chance that there will be a rise in prices again two days later, and
similar for the other elements of the matrix.

So far, we have only dealt with conditional probabilities, i.e., given that a certain
state of nature prevails in the beginning, we computed the probability that some
(other) state of nature occurs after a given number of periods. Below, we start the
process with an initial probability distribution that assigns an unconditional
probability 0

iu to each state of nature si. These probabilities are then collected in

the initial probability row vector u0 =],...,,[00
2

0
1 muuu , assuming that there is a total

of m states of nature. The unconditional probabilities that describes the likelihood
that the system is in of the states of nature after one week is u1, which can be
computed by simple vector-matrix multiplication as u1 = u0P. In general, we have

 ur = ur−1P = u0Pr.

As an illustration, consider again the car example. Recall that its single-stage
transition matrix was

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

00.1000
25.075.000
05.010.085.00
01.003.006.090.0

P

with the states of nature being s1: running well, s2: running with minor problems,
s3: running with major problems, and s4: not running. Suppose now that the car is
initially running with minor problems, i.e., u0 = [0, 1, 0, 0]. After one year, we
have the probabilities

 u1 = u0P = [0, 1, 0, 0]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

00.1000
25.075.000
05.010.085.00
01.003.006.090.0

 = [0, 0.85, 0.10, 0.05],

i.e., there is no possibility that the vehicle with perform perfectly, there is an 85%
chance that it will continue to run with minor problems, there is a 10% chance that
the problems are now major, and there is a 5% chance that the vehicle will fail
altogether. For the second year, we obtain

11 Stochastic Processes and Markov Chains 372

 u2 = u1P = [0, 0.85, 0.10, 0.05]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

00.1000
25.075.000
05.010.085.00
01.003.006.090.0

 = [0, 0.7225, 0.16,

0.1175],

indicating that there is now a 72.25% chance that the minor problems will persist,
a 16% chance that the problems are now major, and an 11.75% chance that the
vehicle will fail.

11.2 Steady-State Solutions
One question is what will happen, if the process will somehow converge after a
large number of transitions. If it does, we will call the resulting solution a steady-
state solution. Clearly, a steady-state solution is an ideal concept that is not very
likely going to be realized in practice: take, for instance the used car example.
While we may keep the vehicle for a long time, the time will be finite, while a
steady state, a state that no longer depends on the initial conditions, it is typically
reached only after an infinite number of transitions. Still, the steady-state is an
important concept that will tell us to what a process converges, provided that it
converges at all. A sufficient condition for the existence of a steady state is given
if each state can be reached from each other state on a path that has positive
probability, and if there exists at least one state that leads to itself with a positive
probability.

We showed in the previous section that un = u0P = un−1P, and if n tends to infinity,
we obtain u∞ = u∞P. To distinguish the steady-state solutions from all others, it is
customary to replace u∞ by ππππ, so that the steady-state solutions will satisfy ππππ = ππππP.
In addition, we have to ensure that the sum of all elements in ππππ equals 1, as all
components of ππππ are probabilities that are mutually exclusive and collectively
exhaustive.

In the used car example, the system of simultaneous linear equations is

 π1 = 0.9π1
 π2 = 0.06π1 + 0.85π2
 π3 = 0.03π1 + 0.10π2 + 0.75π3
 π4 = 0.01π1 + 0.05π2 + 0.25π3 + π4
 π1 + π2 + π3 + π4 = 1

The first equation requires that π1 = 0, inserting this result in the second equation
leads to π2 = 0, and using this result in the third equation leads to π3 = 0. The
fourth equation then reduces to the tautological identity π4 = π4, but the last

11.3 Decision Making with Markov Chains 373

equation then helps to solve the system with π4 = 1. This is the obvious result
mentioned earlier in this section.

The stock example provides another illustration of the concept. It is easily seen
that the Markov chain is ergodic, so that a steady-state is certain to exist. In order
to determine the (unconditional) steady-state probabilities, we solve the system

 [π1, π2] = [π1, π2] ⎥
⎦

⎤
⎢
⎣

⎡
3.07.0
8.02.0

,

which can be written as

 π1 = 0.2π1 + 0.7π2
 π2 = 0.8π1 + 0.3π2, coupled with
 π1 + π2 = 1.

The system has steady-state probabilities π1 = 15

7 and π2 = 15
8 , or π ≅ [0.4667,

0.5333]. In other words, in the long run we can expect stock prices to rise about
47% of the time, while we can expect them to drop about 53% of the time.

11.3 Decision Making with Markov Chains
This section demonstrates how we can use the results obtained in the previous two
sections in the context of decision making. To explain, consider again the used car
example of the previous sections. Suppose now that there are three automobiles
for sale . They are of the same make and model and the transition probabilities in
the matrix P above apply to all of them. One vehicle is in perfect running order,
and it sells for $5,000. The second vehicle runs with minor problems and it sells
for $4,000, while the third vehicle has major problems and it costs $2,000. After
two years we want to sell the vehicle again. Its price then (as it does now) will
depend on its state. In particular, it has been estimated that a vehicle in perfect
condition will sell for $3,500, one with minor problems sells for $2,500, and a car
with major problems sells for $500. We assume that there is no difference
between the cars in maintenance costs and that no repairs are made (which is not
really realistic). Which car should we purchase?

We can address the problem by considering each option, one at a time. If we
purchase the vehicle that is in perfect condition, then we decide that u0 = [1, 0, 0, 0].
After one year, we obtain u1 = [0.9, 0.06, 0.03, 0.01] and after two years we have
u2 = [0.81, 0.105, 0.0555, 0.0295]. In other words, when we attempt to sell the
vehicle, it will still be in perfect shape with a probability of 81%, it will have
minor problems with a probability of 10.5%, and so forth. The expected price we
can sell the vehicle for is then 3,500(0.81) + 2,500(0.105) + 500(0.0555) +
0(0.0295) = $3,125.25, resulting in a loss of 5,000 − 3,125.25 = $1,874.75.

11 Stochastic Processes and Markov Chains 374

The other two vehicles are dealt with similarly. If we purchase the car with minor
flaws, we decide to choose u0 = [0, 1, 0, 0] and obtain the probability vectors u1 =
[0, 0.85, 0.10, 0.05] after one year and u2 = [0, 0.7225, 0.16, 0.1175] after two
years of ownership, so that the expected price of the car at the time of sale is
$1,886.25, which means a loss of $2,113.75.

Finally, consider the car with major flaws. Deciding to purchase it in the beginning
means to set u0 = [0, 0, 1, 0], so that by the end of year 1, we have u1 = [0, 0, 0.75,
0.25], and by the end of the second year (or, equivalently, at the beginning of year
3), we have probabilities u2 = [0, 0, 0.5625, 0.4375], so that the expected price of
sale is $281.25 for an expected loss of $1,718.75. Given our assumptions, our best
bet would be to purchase the car with the major flaws.

Consider now the possibility of either purchasing a warranty repair policy for
$100 per month or pay the $1,800 repair bill, whenever state s4 occurs. In either
case, whenever the system enters state s4, (the car fails), it stays in this state for
one period during which it is repaired and, at the end of this period, returns to s1
(runs without problems). The transition matrix then changes to

 P =
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0001
25.075.000
05.010.085.00
01.003.006.090.0

As opposed to the previous case without repairs, this transition matrix does not
have an absorbing state. Finding the steady-state probabilities for this case, we
obtain π = [π1, π2, π3, π4] =],,,[89

5
89
14

89
20

89
50 ≈ [.5618, .2247, .1573, .0562]. As

above, we can purchase a vehicle in state s1, s2, and s3 for $5,000, $4,000, and
$2,000, respectively, while we now add that a failed vehicle can be purchased for
$1,000. (Earlier, it made no sense to purchase a vehicle in state s4, as there were
no repairs). This means that in the long run, the annual expected cost of repairing
the vehicle is 0.0562(1,800) = $101.16 if we pay ourselves, or $100 for the policy,
which makes the purchase of the policy slightly superior.

Consider now again the case, in which four vehicles of the same make and model
are offered, one in each of the four states. The purchase prices and the repair costs
are the same as above. The idea is to purchase the vehicle at the end of year 0 (or,
equivalently, the beginning of year 1) and sell it again at the end of year 3 (the
beginning of year 4). The price for which the vehicle can be sold at that time has
been estimated to be $2,500 if it is running perfectly (state s1), $1,500 if it runs
with minor problems (state s2), $800 in case it has major problems (state s3), and
$100 if it fails (state s4). Analyzing this case necessitates the use of solution trees

11.3 Decision Making with Markov Chains 375

rather than the computation of the states u0, u1, u2, and u3. The reason is that we
can, for instance, purchase a vehicle with major flaws today and sell it at the end
of year 3 with major flaws. However, it may happen that this vehicle simply
stayed in this state, or it failed, we repaired it and it was perfect for one year, and
then it degenerated again to the state with major problems. The two cases have the
same initial state and the same state at the end of the planning period, but they
incur very different costs.

In particular, we will need four probability trees, one for each vehicle we can
purchase. For reasons of limitations of space, we display only the solution tree for
the vehicle that is initially running with major problems. The different states are
abbreviated as P (perfect running condition, state s1) Mi (state s2, minor problems),
Ma (state s3, major problems) and F (state s4, fail). All possible sequences of states
that may occur are shown in Figure 11.3. The two numbers next to the last set of
nodes when we sell the vehicle denote the probability that this string of events
occurs, and the costs occurred throughout the time that we own the vehicle. The
latter includes the purchase price plus repairs, if any, minus the price we obtain
when we sell the car. As an example, consider the string of events that can be
described as P – F – P – Mi. In other words, the car runs perfectly when we
purchase it, it then fails in the next year, after which it runs perfectly again, and it
exhibits minor problems after that. The probability for such a sequence of events
is (0.01)(1)(0.06) = 0.0006, and the costs include the purchase price of $5,000, the
repair bill of $1,800, and the sales price of $1,500, resulting in overall costs of
$5,300. The expected costs for purchasing a vehicle in perfect condition and
keeping it for three years are then $2,888.42.

We can then perform a similar analysis with a vehicle that is initially in state s2
(running with minor problems). The tree is a bit smaller, and the expected costs
are $3,650.21. Purchasing a car that has major problems will cost $1,375.92, while
buying a vehicle that fails and must be repaired right away will have expected
costs of $564.15, making this the preferred strategy of the buyer.

11 Stochastic Processes and Markov Chains 376

Figure 11.3

Exercises
Problem 1 (brand switching, computation of steady-state probabilities): Three
major motel chains compete for the lucrative economy market: Sunny 6, Cloudy 7,
and Rainy 8. It has been observed that customers who stay in one of the motels
usually patronize the same chain again, except if they perceive the service to be poor.
In particular, in case of Sunny 6, 10 percent of the time the service is perceived to be
poor in which case customers change to one of the other two chains with equal
probability. In case of Cloudy 7, service is perceived to be satisfactory 80 percent of
the time; if it is not, customers switch to one of the other two chains with equal
probability. Finally, 90 percent of the time service at Rainy 8 is deemed to be ok; if it
is not, customers always switch to Sunny 6.

(a) Set up the transition matrix P.
(b) In the long run, what percentage of customers patronize the three motels?
(c) Management of the Cloudy 7 chain perceives that its customer loyalty is not as

good as one could wish. By using of better management techniques, they may be
able to reduce the proportion of poor service to ten percent (again, in case of
poor service, customers switch to the other chains with equal likelihood). What
are the new steady-state proportions?

(d) Given that one percent of business is worth $500,000, what is the maximum
amount that the management of Cloudy 7 should be prepared to pay to
implement the new management techniques that result in the improved service?

377

Solution: (a) The transition matrix is

 P =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

9.01.
1.8.1.

05.05.9.
.

(b) The steady-state probabilities are π = []8

3
8

1
8

4 ,, = [0.5000, 0.1250, 0.3750].
(c) The revised transition matrix is

 P =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

9.01.
05.9.05.
05.05.9.

.

The steady-state probabilities are π = []9

3
9

2
9

4 ,, = [0.4444, 0.2222, 0.3333].
(d) The market share of the Cloudy 7 chain has increased by 9.7222%, which is

Problem 2 (criminal recidivism, value of a policy): Consider a city of 500,000

“misdemeanor,” or “felon.” Long-term studies indicate that the transition of an
individual from one state to another from one year to the next is shown in the
transition matrix

 P =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

60.030.010.0
10.040.050.0
01.004.095.0

.

City council contemplates a new program that costs $70,000,000 and changes the
transition probabilities to

 P' =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

40.040.020.0
05.025.070.0
01.004.095.0

.

Assume that an individual in the “misdemeanor” category costs about $1,000
annually, while the cost of a felon are $10,000 each year.

(a) What is the probability that a felon does not commit any crime in the next two

years with and without the crime prevention initiative?

worth $4,861,100, which is the maximal amount the management of Cloudy 7

people, which have been classified by the authorities as either “not criminal,”

should pay for the change.

Exercises

11 Stochastic Processes and Markov Chains 378

(b) What is the probability that an individual in the “misdemeanor” category does
not commit any crime in the next three years with and without the crime
prevention initiative?

(c) What are the steady state probabilities with and without the initiative? Compare
the long-term costs with and without the initiative.

Solution: (a) The probability of the string “felon” − “no crime” − “no crime” is

(0.1)(0.95) = 0.095 without the initiative and (0.2)(0.95) = 0.19 with it.
(b) The probability of the string “misdemeanor” − “no crime” − “no crime” − “no

crime” is (0.5)(0.95)(0.95) = 0.45125 without and (0.7)(0.95)(0.95) = 0.63175
with it.

(c) The steady-state probabilities are ππππ = [π1, π2, π3] = []239
10

239
19

239
210 ,, ≈

[0.87866, 0.07950, 0.04184] without the initiative and [π1, π2, π3] =
[]935

19
935

56
935

860 ,, ≈ [0.91979, 0.05989, 0.02032]. Without the initiative,
the expected costs per individual are $497.908, while they are $263.102 with
it. For the city of 500,000, this means costs of $248,954,000 without the
initiative and $131,551,000 with it, a savings of $117,403,000. Since the
savings exceed the costs of $70,000,000, the initiative should be introduced.

H.A. Eiselt and C.-L. Sandblom, Operations Research: A Model-Based Approach, 379
DOI 10.1007/978-3-642-10326-1_12, © Springer-Verlag Berlin Heidelberg 2010

12 Waiting Line Models

Waiting line or queuing system are pervasive. Many of us remember the long
lineups in front of stores in the Soviet Union and Vietnam, and we have all
experienced lineups in banks and supermarkets, but there are many more instances
with waiting lines: think, for instance, about traffic lights, where drivers line up
and wait, files that wait for processing in the inbox at a clerk’s workstation, or
telephone calls that are put in a queue. Queuing system were first examined by

worked for the Copenhagen Telephone Company. One of the questions he faced

required to provide an acceptable level of service.

A.K. Erlang

Phone switchboard operator

Agner Krarup Erlang (1878–1929). Erlang was a Danish mathematician, who

during this time was to determine the number of telephone circuits that are

12 Waiting Line Models 380

12.1 Basic Queuing Models
In order to avoid discussing only special cases, we will formalize queuing systems
as follows. All entities that are in need of service of some kind will be referred to
as customers, while the service is performed at service stations. The process can
then be thought of as follows. Customers are in a calling population. Once they
are in need of service (here, for simplicity, we will consider only a single type of
service customers are interested in), they will approach the service system, where
they will line up. When it is the customer’s turn, he will be served, after which the
customer will leave the service system and rejoin the calling population. The
structure of this process can be visualized in Figure 12.1.

Figure 12.1

The service system will require some further specifications. First of all, each
service system has only a single waiting line. A service system typically consists
of a number of c parallel service stations, each assumed to perform the same type
of service. Parallel service stations are usually referred to as channels. In some
instances, one channel consists of a series of service stations: imagine entering a
building, where a potential customer first have to be cleared by security, then
being directed to a general secretary, from where the service continues to the
department director’s secretary, and finally on to the department director. At each
station, the customer may be asked to leave the system, e.g., for not clearing
security, the unavailability of a service station, and for other reasons. Multi-phase
systems can be very complex and will not be discussed here.

In order to categorize queuing systems, Kendall (1918-2007) devised a taxonomy
in 1953 that, in a variety of versions, is the standard to this day. The original system
consists of three descriptors, and it has been extended to at most six components.

12.1 Basic Queuing Models 381

In order to be as general as possible, we introduce the complete six-component
system first, but then use only the more compact 3-component system later on.
The notation is

 A/B/C K/N/D,

where each letter is a placeholder for one component of waiting lines. These
components are now described in some detail.

The symbol A describes the arrival process. We will use the symbol “M,” if
arrivals are random and follow a so-called Poisson process (where the “M ” stands
for “Markovian).” The Poisson distribution (see Appendix D in this book)
describes such a process. Other popular processes include “D” or deterministic
arrivals (in which the time between arrivals is known with certainty, as is the case
on an assembly line) or “G,” where arrivals follow some general distribution, for
which only some key parameters are known, e.g., mean and variance.

The second component “B” symbolizes the service process. Again, the letter “M ”
symbolizes Markovian, i.e., exponential service time, while “D” and “G” (or,
more precisely, “GI ”) symbolize deterministic and general (general independent)
service times, respectively.

The letter C indicates the number of parallel service stations.

The letter K in the extended version of the taxonomy describes the number of
customers that can be accommodated in the entire system. This includes the
number of customers who wait as well as those that can be served. In case this
descriptor is not used, it is assumed that K is infinite. While no real-life system
has infinite capacity, assuming an infinite K simplifies the analysis tremendously
and is usually very close to the true results as soon as K exceeds 30 or 40.

The symbol N denotes the size of the calling population. As in the case of the
capacity of the system, N will assumed to approach infinity if it is not specified.
Again, for reasonably large values of N, we may assume its value to be sufficiently
close to infinity so as to simplify the computations.

Finally, the symbol D denotes the queuing discipline. Typical disciplines are
FCFS or FIFO (first-come, first-served or first in, first out), LCFS or LIFO (last
come, first served or last in, first out), or SIRO (service in random order). An
important category are priority queues, in which some customers receive
preferential treatment. The most prominent example of priority queues occurs in
health care, where more serious cases will be treated first. In case no queuing
discipline is specified, it is assumed that the FCFS discipline applies.

In general, it will be useful to think about waiting lines as buffers between arrival
and service. A good image would be one of a water tank. While a waiting line

12 Waiting Line Models 382

(similar to an inventory) grows with the inflow, it shrinks whenever service is
provided and customers leave the system.

In queuing theory, we distinguish between transient states and steady states. While
a steady state occurs if the system has been running for a very long time, transient
states are still, at least to some degree, dependent on the initial state of the system.
A simple example is the opening of a new cash register in a store. Initially, no one
is in the system and waiting times will be short. However, as the cash register
operates for some time, the service system becomes more congested and is no
longer dependent on the opening conditions.

The key task of queuing theory is to compute measures of interest from some key
input factors or queue characteristics. The key characteristics of a queue are those
described in the taxonomy. Measures of interest include average waiting times, the
probability that a newly arriving customer will have to wait, the average length of
a queue, and others. In order to formalize our discussion, we use the following
conventions about notation (which, incidentally are almost all standard in the
pertinent literature):

λ denotes the mean arrival rate, measured in [customers/hour]. It is the average

number of customers who actually arrive at the system in the specified
amount of time.

μ is the mean service rate, measured in [customers/hour]. It is the average number

of customers who can be served by a single service station.

It is worth noting that while λ expresses an actual observable fact, μ indicates a

service station can deal with μ = 12 customers per hour, then the inverse value is
1/μ = 1/12 [hours/customer] = 5 [minutes/customer]. This is the average service
time. The inverse value of the arrival rate can be interpreted similarly. If the
average arrival rate is λ = 10 [customers/hour], then 1/λ = 1/10 [hours/customer] =
6 [minutes/customer], meaning that on average, six minutes elapse between two
successive arrivals. This is referred to as the (average) interarrival time.

It is apparent that, in case of a single service station, the arrival rate cannot exceed
the service rate. If it would, then there are more arrivals than can be handled by
the service station, so that—given infinite patience of the customers—the waiting
line will grow towards infinity. This gives rise to a regularity condition. In
order to express it in a compact form, we define the traffic intensity (sometimes also

capability. The actual number of customers served does not only depend on the
service station’s capabilities, but also on the number of customers who desire

The inverse values of λ and μ also have important interpretations. Suppose that a

service (which depends on λ).

12.1 Basic Queuing Models 383

referred to as utilization rate) ρ = λ/μ. A feasible system (i.e., a system that has a
steady state) must then have ρ < c, where c denotes the number of parallel service
stations. As an example, consider a system with a single service station that faces
an arrival rate of λ = 24 customers per hour. For it to be feasible, the service rate
must be μ > 24, or, equivalently, the average service time cannot exceed 150
seconds.

On the output side are the measures that we are interested and that we can
compute. They include:

 Pn: the probability that there are n customers in the system (with the

 important special case of n = 0 and P0, i.e., the probability that the system
 is idle),

 Ws: the average waiting time per customer,
 Wq: the average time a customer spends in the queue,
 Ls: the average number of customers in the system, and
 Lq: the average number of customers in the queue.

Before stating formulas for these measures, there are some general relations that
hold in queuing, regardless of the specific system under consideration. The first
such relation is

 Ws = Wq + 1/μ. (1)

Simply stated, the relation expresses that the total time a customer spends in the
system equals the waiting time plus the service time. Another relation is known as
Little’s formula (based on the work by J.D.C. Little who published the formula in
1961), which states that

 •• λ= WL , (2)

where the “•” stand for either the subscript “s” or the subscript “q”. This formula
provides a convenient way to compute the number of customers in the queue and
in the system from the average time customers spends in the queue or in the
system, respectively (or vice versa).

The simplest queuing model is the M/M/1 model, in which the number of customer
arrivals are random and follow a Poisson process (making the interarrival times
exponentially distributed), and the service time is exponential (so that the service
rate again follows a Poisson distribution). The key queuing formulas for this
model are shown in Table 12.1.

12 Waiting Line Models 384

Table 12.1: Steady-state formulas for the M/M/1 queuing model

P0 = 1 − ρ
λ−μ

λ
=sL

λ−μ
=

1
sW

Pn = P0ρn
ρ−

ρ
=

λ−μ
ρλ

=
1

2

qL
λ−μ

ρ
=qW

As an illustration, consider the following

Example: Customers arrive at the counter of a bank at a rate of 30 per hour.
Arrivals are random and service time is exponential, so that we are dealing with an
M/M/1 model. The clerk’s average service time is 90 seconds. Putting the parameters
in their required form, we glean λ = 30 and μ = 45 from this information. As
ρ = λ/μ = 30/45 = ⅔ < 1, the system does have a steady state. The probability that
the bank teller is idle is P0 = 1 − ρ = ⅓. The probability that at least two customers
are waiting equals the probability that there are at least three customers in the
bank or, formally, P3 + P4 + P5 + … = 1 − P0 − P1 − P2 = 1 − ⅓ − ⅓(⅔)1 − ⅓(⅔)2
≅ 2963.27

8 ≈ or slightly less than one third. On average, there are Lq = 1.3333
customers waiting in line and the average time a customer spends in the system is
Ws = 1/15 {hour] = 4 minutes.

An interesting case arises when the decision maker specifies the service level and
determines bounds for the capabilities of the servers. Suppose that in an M/M/1
system with λ = 20, the decision maker specifies that the probability that there are
three or more customers in the system should not exceed 95%. The probability of
three or more customers in the system is again 1 − P0 − P1 − P2 = 1 − (1−ρ) −
ρ(1−ρ) − ρ2(1−ρ) = 1 − 1 + ρ − ρ + ρ2 − ρ2 + ρ3 = ρ3. As this probability should

not exceed 95%, we obtain the condition ρ3 = 95.3

3
≤

μ
λ , or, as λ = 20, μ3 >

8,000/.95 or μ > 20.3449. The reason that it is sufficient that the service rate
barely exceeds the arrival rate is that the probability of three or more customers in
the system is very small.

Suppose now that the service rate is no longer random but that it follows some
general distribution. All we know about this distribution is that the mean service
time is 1/μ and the variance of the distribution equals σ2. This means that we are
dealing with an M/G/1 model, for which some rather elegant formulas are
available. Again, as in all single channel systems in a steady state, P0 = 1 − ρ.
Furthermore, the Pollaczek-Khintchine formula developed in 1930 is

)1(2

222

ρ−
ρ+σλ

=qL . (3)

12.1 Basic Queuing Models 385

The values of Ls, Wq, and Ws can then be computed based on the general relations
(1) and (2). Before demonstrating this model on a numerical example, note that
the M/M/1 model is a special case of the M/G/1 model with σ2 = 1/μ2. Replacing

σ2 in the above expression results in
ρ−

ρ
=

1

2

qL , which is the standard formula of

the M/M/1 model. Similarly, we observe that in the case of the M/D/1 model, i.e.,
the queuing model with deterministic service time, the variance σ2 = 0, so that the

Pollaczek-Khintchine formula reduces in this case to
)1(2

2

ρ−
ρ

=qL . Observe that

the number of customers waiting in the case of the deterministic model is exactly
half of that of the standard model with exponential service time. In other words,
the performance of the queuing system can be improved quite dramatically by
reducing the variance of the service time.

Example: Arrivals of customers at a single service desk follow a Poisson
distribution, while the service time follows a general distribution. There is an
average of λ = 15 arrivals, while the service time is 3 minutes on average with a
standard deviation of 6 minutes. This means that 1/μ = 1/20 [hours] and σ2 =
1/(10)2 = 1/100, so that the average number of customers waiting in line is then
Lq = 5.625 and the average waiting time is Wq = .375 hours = 22.5 minutes. If the
service time were exponential, we obtain the standard M/M/1 system and the
performance measures Lq = 2.25 and Wq = 9 minutes, while the deterministic
model has Lq = 1.125 and Wq = 4.5 minutes.

Consider now the case of multiple service stations. Here, we have to make the
distinction between one multi-station service center and a number of parallel
single-service centers. The general rule is that each service center has only a
single waiting line. As an example, consider what we may refer to as a “bank
system” and a “supermarket system.” In a bank system, there is a single queue and
thus a single multi-server system. In contrast, a supermarket features multiple
waiting lines, hence we deal with multiple single-server systems.

Let us deal with multiple single-server systems first as they are a straightforward
extension of the concepts discussed earlier. The usual assumptions include no
balking (i.e., customers in need of service will join the queue regardless of its
length) and no jockeying (i.e., customers do not change queues if they perceive
that another queue may result in shorter waiting times). As an example, suppose
again that arrivals follow a Poisson distribution with a mean arrival rate of λ = 45
customers per hour, while service time is exponentially distributed with an
average service time of 1/μ = 2 minutes (or, equivalently, μ = 30 customers per
hour). Before performing any computations, feasibility requires that ρ = λ/μ =
45/30 = 1½ does not exceed the number of service stations c, requiring at least
two service stations in this instance. Suppose now that c = 3 service stations are
available. As a result, we now deal with three separate single-service systems, or,

12 Waiting Line Models 386

in terms of the taxonomy, 3 × M/M/1 systems. Consider now the customers. While
an average of λ = 45 customers are in need of service, each of the three systems
receives only about one third of this number, as customers may be assumed to
randomly choose the system they want to be served by. Hence, for each of the
three systems, we have an effective arrival rate of λ' = 15. The value λ' will then
replace λ in all of the formulas. In our example, feasibility is guaranteed as ρ' =
λ'/μ = 15/30 = ½ < 1 for each of the systems. We can then apply the usual steady-
state formulas for M/M/1 models shown in Table 1. For instance, the average time

a customer spends in the system is Ws =
'

1
λ−μ

 = 1/(30−15) = 1/15 hours = 4

minutes. On the other hand, the average number of customers waiting is Lq =

ρ−
ρ

1

2
 = (½)2/(1−½) = ½, meaning that on average half a customer is waiting in

line in each of the three subsystems. In other words, on average in all of our three
service systems combined, 1.5 customers will be waiting for service.

Next, consider a single M/M/3 system such as the one we encounter in a bank with
three tellers. Some of the relevant formulas are summarized in Table 12.2, where
the values of the waiting times W• can be computed by using Little’s formula (2).

Table 12.2: Formulas for M/M/c systems

)1(!

1
1

0
!

0

c

cc

i
i c

P
i

ρ

−

=

ρ

−
ρ

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

∑

⎪
⎩

⎪
⎨

⎧

>⎟
⎠
⎞⎜

⎝
⎛

≤≤
=

−

ρ

ρ

cnP

cnP
P

cn

n

cc

n
n

if,

0if,

0!

0!
n

02

1

)()!1(
P

cc
L

c

q ρ−−
ρ

=
+

 Ls = Lq + ρ

In our example, first compute the probability that there are no customers in the

system. Here,
19
4

)1(!3
)2/3(]1[

1

3
2/3

3

8
9

2
3

0 =

−
+++

=P . This allows us to compute Lq =

9/38 ≅ .2368, Ls = 9/38 + 3/2 ≅ 1.7368 and, applying Little’s formula (2), we
obtain Wq = Lq /λ = .3158 minutes and Ws = Ls /λ = 2.3158 minutes.

The differences between the two models arise from the fact that in the former
model with separate queues, it is possible that at least one customer is still
waiting, while a service station is idle. This is based on the aforementioned
assumption that jockeying is prohibited.

A simple extension is a model with self-service. It is easily derived from the
standard M/M/c model by letting the number of service stations c tend to infinity.

12.1 Basic Queuing Models 387

Such a model will not include any waiting time, so that Lq = Wq = 0 and Ws = 1/μ,

so that Ls = ρ. It can also be shown that in this case, n
n n

eP ρ=
ρ−

!
 for any n ≥ 0.

For more complex queuing models, it is useful to have either tables or figures at
hand that provide the decision maker with a quick idea of what to expect without
engaging in complex computations. Entire books with queuing graphs and
queuing tables exist. Figure 12.2 shows a typical example of such queuing graphs.
This particular graph depicts the situation of a c × M/M/1 graph, where the
abscissa shows the utilization rate ρ', while the ordinate is related to the total
number of customers in all systems . The steep solid line relates to the case of
a single facility (i.e., c = 1), the broken, broken-and-dotted, broken-and-twice-
dotted, and dotted lines are for c = 2, 3, 5, and 10 service stations, respectively.

Figure 12.2

Finally, we would like to have a look at multiple-server problems from a slightly
different angle. Suppose that the decision maker specifies a certain service level
and inquires how many service stations are needed in order to provide a
prespecified level of service. Questions of this nature frequently arise in the public
service, e.g., how many police officers are needed so as to adequately protect an
area. As an illustration, consider the following

sLc ′

12 Waiting Line Models 388

Example: An average of twenty customers per hour randomly arrive at a hospital.
The system uses a subsystem for each doctor on duty, and there will be an
unknown number of c doctors available. Given that each doctor can deal with an
average of ten patients per hour, hospital administrators want to ensure that the
average waiting time for any patient does not exceed 10 minutes. What is the
smallest number of doctors that allows this?

Solution: The system described above is a set of c parallel M/M/1 systems, and the
effective arrival rate at each of these systems is then λ' = λ/c. Following the results

in Table 12.1, the average waiting time is defined as
λ−μ

ρ
=qW , which, with

cc /' ' ρ===ρ μ
λ

μ
λ , can be rewritten as

c
cWq /

/
λ−μ

ρ
= =

c
c

/2010
/2

−
. The condition

is now that the average waiting time is no higher than 1/6 [hour], which can be
written as

c

c
/2010

/2
−

 ≤ 1/6.

This inequality can be rewritten as 6
1

2010
2

≤
−c

, so that c ≥ 3.2. In other words,

at least four doctors are needed to provide the desired service.

It may also be interesting to note that with three doctors, the average waiting time
is 12 minutes, while four doctors result in an average waiting time of only 6
minutes.

12.2 Optimization in Queuing
While queuing models are primarily designed to compute performance measures,
they can also be applied in the context of optimization. As an example, consider a
retail establishment. The owner of the store has to decide how many clerks to
employ for the cash registers at the checkout counter. Clearly, increasing the
number of clerks will increase the costs. However, at the same time more clerks
will result in less waiting time for customers, which, in turn, results in less ill will,
lost sales, and other customer behavior detrimental to sales. One of the main
problems applying these models is the quantification of the loss due to customer
ill will.

The example of a tool crib is much easier to justify. A tool crib is a place in which
expensive tools are kept that are not in constant use by the workers. Due to cost
considerations, it would not be feasible to provide each worker with one tool, so

12.2 Optimization in Queuing 389

that a service desk is established, where workers can sign out the tool whenever it
is needed. The costs of the system include the costs of the clerks as well as the
costs for the lost time of the workers. If c is the number of clerks and $c and $w
denote the hourly wage of a clerk and a worker, respectively, the costs can then be
written as

 C = (cost of clerks) + (costs of workers’ lost time) = c$c + $wLs.

The idea is now to determine the optimal number of clerks so as to minimize the
overall costs. As an illustration, consider the following

Example: The demand for a specialized tool occurs randomly at a rate of about
100 times per hour. Whenever the need arises, workers walk over to the tool crib,
sign out the tool, use it, and then return it to the tool crib. All clerks are equally
efficient with a service time of 3 minutes. For simplicity, we assume that the
organization of the signing out follows c × M/M/1 systems. Assume that the
hourly wage of a clerk is $c = 10, while a worker’s lost hour costs $w = 25.

Solution: With the given parameters of λ = 100 and μ = 20 (and thus ρ = 5), we
first note that due to the feasibility condition ρ ≤ c, we will need at least six clerks.
The optimal number of clerks can then be determined as follows. Consider the two
cost curves that determined the total costs. The costs for the clerks increases
linearly with the number of clerks. On the other hand, the cost for the workers’
lost time decreases hyperbolically with an increasing number of clerks. This is
shown in Figure 12.3. Note that while only integer values of c are relevant, we
display the costs for all real values of c so as to better show the shapes of the
curves.

12 Waiting Line Models 390

Figure 12.3

For a very small number of clerks (e.g., c = 6), waiting time for the workers will
be very long, resulting in high costs. As the number of clerks increases, waiting
times decrease and with them the costs. The reduction of workers’ waiting times
due to adding clerks to the system is very significant at first, but less and less so as
the number of clerks decreases, Eventually, the benefit of an additional clerk is
outweighed by his costs, so that the total costs start increasing again. This
suggests a brute force search procedure, in which the total costs are computed for
c = 6, 7, 8, … clerks until the costs that were initially decreasing, start increasing
again. At that point, the optimal number of clerks has been found. Detailed
computations are shown below.

c = 6: λ = 100/6 = 16.6667, ρ = 16.6667/20 = .8333, Ls = 5 in each system,
 Cost = 6(10) + 5(6)(25) = 810.
c = 7: λ = 100/7 = 14.2857, ρ = .7143, Ls = 2.5 in each system,
 Cost = 7(10) + 2.5(7)(25) = 507.5.
c = 8: λ = 100/8 = 12.5, ρ = .6250, Ls = 1.6667 in each system,
 Cost = 8(10) + 1.6667(8)(25) = 413.34.
c = 9: λ = 100/9 = 11.1111, ρ = .5556, Ls = 1.25 in each system,
 Cost = 9(10) + 1.25(9)(25) = 371.25.
c = 10: λ = 100/10 = 10, ρ = .5, Ls = 1 in each system,
 Cost = 10(10) + 1(10)(25) = 350.

12.2 Optimization in Queuing 391

c = 11: λ = 100/11 = 9.0909, ρ = .4545, Ls = .8333 in each system,
 Cost = 11(10) + (.8333)7(25) = 339.16.

s
 Cost = 12(10) + (.7143)12(25) = 334.29.
c = 13: λ = 100/13 = 7.6923, ρ = .3846, Ls = .625 in each system,
 Cost = 13(10) + .625(13)(25) = 333.13.
c = 14: λ = 100/14 = 7.1429, ρ = .3571, Ls = .5556 in each system,
 Cost = 14(10) + .5556(14)25 = 334.43.

At this point, the costs start increasing again, so that it is optimal to have c = 13
parallel service stations.

Another possibility to incorporate optimization in queuing systems occurs, when
retraining of clerks is considered. The basic setting is similar to that of the tool
crib above (with the firm paying for service as well as wasted time). The
retraining time for the clerks includes the actual (recurrent) retraining as well as
costs for the time that the clerk is absent during training, at which time the
position must be staffed by other clerks. It is typical that the costs to increase a
clerk’s service rate increase at an increasing rate. A numerical illustration is
provided in the following

Example: Customers arrive at a system at a rate of λ = 30 per hour. Keeping them
waiting is estimated to cost $20 per hour. At present, the service rate is μ = 40, but
with some additional training, this rate can be increased up to 60. Training to
achieve a service rate of μ ∈ [40, 60] costs 2(μ − 40)2. For simplicity, we assume
that an M/M/1 system is used. To what service rate should the clerk be trained so
as to minimize the training and the service costs?

Solution: The cost function under consideration includes again two components.
They are the training costs of the clerk and the cost for waiting customers.
Following the results in Table 12.1, the average waiting costs in an M/M/1 system

are
λ−μ

ρλ
=qL =

)(

2

λ−μμ
λ .

Then the cost function is then

 C = (retraining costs) + (waiting costs) = 2(μ − 40)2 + 20
)30(

900
−μμ

.

The graph in Figure 12.4 shows the total costs in this example. In particular, the
function reaches a minimum at μ = 41.12358 with costs C = 41.8742.

c = 12: λ = 100/12 = 8.3333, ρ =.4167, L = .7143 in each system,

12 Waiting Line Models 392

Figure 12.4

Total costs for a number of other service rates have also been computed. They are
shown in Table 12.3.

Table 12.3: Queuing costs for differently trained clerks

µ 40 41 42 50 60
C 45 41.9113 43.7143 218 810

In other words, leaving the clerk essentially un(re-)trained will cost $45, less than
10% off optimum, where as training the clerk up to capacity will cost 18 times in
total as much as leaving him untrained.

Exercises
Problem 1 (optimization of the number of channels and the service rate):
Customers arrive at a retail outlet a rate of 12 per hour. The total time that customers
spend in the store contributes to their dissatisfaction. A wasted customer hour has
been estimated to cost $20. A clerk at the checkout counter typically earns $8 and
can serve up to 10 customers per hour.

393

(a) What is the cost-minimal number of checkout counters?
(b) Suppose now that an alternative to the system under (a) is to employ two

clerks who have been retrained. Their retraining enables them to serve up to
15 customers per hour and they will earn $10 per hour. Is it worth considering
this option?

Solution:
(a)
 s

s
 c = 4, λ = 5 each, ρ = 3/10 = 0.3, Ls = .4286, so that TC = 20(4)(.4286)+4(8)
 = 66.29
 This implies that the optimal solution is to have 3 clerks. At optimum, the
 system will cost $64 per hour.
(b) With μ = 15, we obtain ρ = .4 and Ls = ⅔. Then cost = 20(2)(⅔) + 2(10) =
 $46.67, which is cheaper than the 3-clerk option in (a).

Joe plans to open his own gas station “Joe’s Place.” He has planned to open from
7 a.m. to 11 p.m. He estimates that fifteen customers will arrive each hour during
the day to fill up their tanks. Doing so takes typically four minutes plus one
minute for paying the bill. Joe now has to decide how many pumps to install. He
has read in the industry magazine “Full of Gas” that each hour that a customer
waits in line costs $15 in terms of loss of goodwill (i.e., patronizing a different gas
station in the future, buying smokes and other emergency items elsewhere, etc.).
Also, he has determined that installing a pump costs $100 per day.

(a) Determine the optimal number of pumps Joe should install.
(b) Joe has also heard that there may be a possible gasoline shortage―or at least

the perception of one―in the near future. Joe read that in the past, this meant
that customers do not really change their driving habits, but fill up their tanks
twice as often. Would that change his plans?

Solution: (a) Arrival rate per hour λ = 15, service time 1/µ = 4 + 1 = 5 minutes, or

µ = 12 customers per hour. Thus, we need at least c = 2 pumps for a steady
state to exist.

 c = 2: λ′ = 7.5 each, ρ = .625, Lq = 1.0417, so that TC(c=2) = 2(100) +
 16(2)15(1.0417) = 700,

 c = 3: λ′ = 5 each, ρ = .4167, Lq = .2976, so that TC(c=3) = 3(100) +
 16(3)15(.2976) = 514,

 c = 4: λ′ = 3.75 each, ρ = .3125, Lq = .1420, so that TC(c=4) = 4(100) +
 16(4)15(.1420) = 536,

 so that it is optimal to install c = 3 pumps.
(b) Arrival rate per hour λ = 30, service time 1/µ = 2 + 1 = 3 minutes (as the fill-

up time is now only 2 minutes, since the customers fill up when the tank is
half full), or µ = 20 customers per hour. Again, at least c = 2 pumps are needed.

 c = 3, λ = 4 each, ρ = 4/10 = 0.4, L = 2/3, so that TC = 20(3)(2/3)+3(8) = 64

Problem 2 (optimization of the number of channels and sensitivity analysis):

c = 2, λ = 6 each, ρ = 6/10 = 0.6, L = 1.5, so that TC = 20(2)(1.5)+2(8) = 76

Exercises

12 Waiting Line Models 394

 c = 2: λ′ = 15 each, ρ = .75, Lq = 2.25,
 so that TC(c = 2) = 2(100) + 16(2)15(2.25) = 1,280,
 c = 3: λ′ = 10 each, ρ = .5, Lq = .5,
 so that TC(c = 3) = 3(100) + 16(3)15(.5) = 660,
 c = 4: λ′ = 7.5 each, ρ = .375, Lq = .225,
 so that TC(c = 4) = 4(100) + 16(4)15(.225) = 562,
 c = 5: λ′ = 6 each, ρ = .3, Lq = .1286,
 so that TC(c = 5) = 5(100) + 16(5)15(.1286) = 592.59.
Under these circumstances, it would be best for Joe to have c = 4 pumps. This
represents a 9.34% cost increase over the case without the perception of a
shortage.

Problem 3 (comparing queuing systems with fast and slow service): Customers
arrive at a retail outlet at a rate of 30 customers per hour. The total time that
customers spend in the store contributes to their dissatisfaction. A wasted
customer hour has been estimated to cost $10. Management now has two options:
either employ one fully trained fast clerk, who is able to serve up to 50 customers
per hour, or two less trained slower clerks, who can handle up to 30 customers per
hour each. Each of the two clerks would have his own waiting line (the
supermarket system). Each of the slow clerks earn $6 per hour, while the fast clerk
is fully aware of his availability, and asks for $16 per hour.

(a) Should we hire the two slower clerks or the one fast clerk?
(b) A new applicant for the job offers his services. The company tried him out

and it turned out that he is able to handle no less than 75 customers per hour.
Based on the result under (a), what is the maximal amount that we would we
pay him?

Solution: (a) The arrival rate is λ = 30. The fast clerk offers µ = 50, so that

ρ = 30/50 = 0.6 and Ls = λ/(µ − λ) = 30/20 = 1.5. The hourly costs are then
(cost for clerk) + (costs for customers) = 16 + 1.5(10) = $31.
In case of the two clerks, there are two M/M/1 systems, each with an effective
arrival rate of λ′ = 15. With a service rate of µ = 30 each, we obtain ρ = 15/30
= 0.5 each, so that Ls = 15/(30 − 15) = 1 each. The hourly costs are then (costs
for two clerks) + 2(costs for customers in each system) = 2(6) + 2(1)(10) = 32.
As a result, we should hire the fast clerk, even though he charges more than
the two slow clerks together and can handle less customer than the two slower
clerks combined.

(b) Given a service rate of µ = 75, we obtain ρ = 0.4 and Ls = ⅔. With an unknown
wage w, this results in costs of w + ⅔(10) = 6⅔ + w. This amount should not
exceed the costs of the best-known solution (a single fast clerk with hourly
costs of $31), so that the bound on the superfast clerk’s wage is 6⅔ + w ≤ 31
or w ≤ $24.33.

H.A. Eiselt and C.-L. Sandblom, Operations Research: A Model-Based Approach, 395
DOI 10.1007/978-3-642-10326-1_13, © Springer-Verlag Berlin Heidelberg 2010

13 Simulation

Simulation is one of the major devices in an operations researcher’s toolkit, and
there is little doubt that it is among the most flexible and commonly used
techniques. In the words of Budnick et al. (1988),

“Simulation is primarily concerned with experimentally predicting
the behavior of a real system for the purpose of designing the
system or modifying behavior.”

In other words, simulation is a tool that builds a model of a real operation that is to
be investigated, and then feeds the system with externally generated data. We
generally distinguish between deterministic and stochastic simulation. The difference
is that the data that are fed into the system are either deterministic or stochastic.
This chapter will deal only with stochastic simulation, which is sometimes also
referred to as Monte Carlo simulation in reference to the Monte Carlo Casinos and
the (hopefully) random outcome of their games of chance.

Another distinction is between continuous and discrete event simulation. Continuous
simulation deals with processes that are continuous and that are modeled as
continuous. Typical examples include the growth of plants, movement of vehicles,
and temperatures. In contrast, discrete event simulation (the only kind of
simulation discussed in this chapter) has a finite number of points of time, during
which events occur. This could be the demand for a product during a specific day,
the number of times a website is visited, or the number of incidents of a specific
disease at a regional hospital.

13.1 Introduction to Simulation
The main reason for a researcher to resort to simulation is twofold. First of all,
simulation is probably the most flexible tool imaginable. Take queuing as an
example. While it is very difficult to incorporate reneging, jumping queues, and
other types of customer behavior in the usual analytical models (see, e.g., Chapter
12 of this volume), this presents no problem for simulation. Similarly, recall that

13 Simulation 396

the queuing formulas that have been derived refer to steady-state solutions. A
system may have to run for a very long time to reach a steady state, assuming that
one exists. As a result, a modeler may be more interest in transient states, which
are easily available in a simulation.

The second reason is that simulation is very cheap. Building a model that simulates
the opening of a new restaurant will most certainly be a lot less expensive than
trying it out. Even if costs are no subject, the time frame can be compressed in a
simulation. For instance, if we were to observe the demand structure of a product,
a long time would be required, so that results would probably be available when
the product has become technologically obsolete anyway.

The main steps of a discrete-event simulation include

(1) Building of the model,
(2) Assigning numbers to uncertain events according to their likelihoods,
(3) Generation of uncertain events,
(4) Application of the predetermined policies, and
(5) Evaluation of the results including verification of the model.

The generation of random numbers will be explained in some detail in the next
section. The generation of uncertain events and the application of policies to them
uses an accounting procedure that is demonstrated on a queuing example and an
inventory system in Section 13.3.

Before starting to discuss the generation of random numbers, we would like to
discuss their assignment to random events. This is best explained by way of an
example. Suppose that the owner of a store has observed the demand for a specific
item and has determined that there is a 10% chance that the demand is 20, there is
a 30% chance that the demand is 35, a 50% chance that the demand is 50, and a
10% chance that the demand is 60. The task is now to assign random numbers to
these random events, so that the likelihood of choosing a random number that is
assigned to an event equals the observed probability of the event. In our example,
we could use single-digit random numbers. If we generate uniformly distributed
random numbers, then all digits are equally likely to come up, i.e., the probability
of each digit’s appearance is 0.1. We could then assign the digit 3 to the demand
of 20, the digits 0, 5, and 8 to a demand of 35, the digits 1, 2, 6, 7, and 9 to a
demand of 50, and the digit 2 to the demand of 60. Since each digit has a 10%
chance of appearing, randomly generated events will have the different demands
come up with the observed probabilities. Alternatively, we could make the assign-
ments of double-digit random numbers (in a somewhat more orderly fashion) as
shown in Table 13.1. Again, the numbers assigned to the discrete events reflect
the observed probabilities.

13.2 Random Numbers and their Generation 397

Table 13.1: Assignment of random numbers to demands

Demand 20 35 50 60
Probability .1 .3 .5 .1
Numbers assigned to event 01-10 11-40 41-90 91-00

For the assignment shown in Table 13.1, if the random numbers 15, 27, 81 are
drawn, they refer to demands of 35, 35, and 50, respectively. It is apparent that
assigning different random numbers to random events―even while preserving
their probabilities―will result in different demands being generated. In order to
overcome the effects that are due the specific assignment, the process should be
repeated very often. For example, if the decision maker is interested in the demands
for a product during a 12-month period, we would not generate demands for one
year, but for thousands of years, so that differences due to different random
number assignments will vanish.

Given the size (more so than the complexity) of the task, it is of little surprise that
all simulations are computer-based. While it is possible to write simulations in any
all-purpose programming language such as C++, special simulation languages have
been around sind the 1960s. Among them are simulation languages such as
Simscript, Simula, GPSS (General Purpose System Simulation) and others. There
are even specialized simulation languages for specific classes of problems, such as
Simfactory.

Whenever a simulation has been performed, the validation of the results is
mandatory. Often this means checking the computer code and performing statistical
tests. However, the validation of some of the behavioral assumptions and the
structure of the model are at least as important. For instance, if it was assumed that
customers make a special trip to a gas station, this assumption has to be validated.
While this is a task that is typically performed before the simulation takes place, it
is sometimes necessary to validate an assumption after the fact. As an example,
consider a fast-food chain that attempts to locate a new branch. In addition to
behavioral studies before the simulation, it may be very useful to apply the model
with all of its assumption to an already existing branch and see whether or not it
recreates a known situation. If it does not, the discrepancies will allow the modeler
to pinpoint the aspects of the model, in which erroneous assumptions may have
been made.

13.2 Random Numbers and their Generation
Random numbers have been around for a long time. Among the earlier systematic
efforts to generate random numbers is the work by statistician Tippet, who
produces tens of thousands of random numbers derived from the measurements of
churches in England. In the mid-1950s the Rand Corporation published a tome “A
Million Random Numbers.” Today, we distinguish between true random numbers

13 Simulation 398

and pseudo-random numbers. Roughly speaking, true random numbers are generated
by way of a random process, while pseudo-random numbers are machine-
generated by means of a deterministic process. An obvious way to generate true
random numbers is to roll dice. Assuming that we have a usual six-sided die
which is not loaded or skewed, each side has a chance of 1/6 of coming up, i.e.,
the probability of each number is 16⅔%. It is not difficult to devise differently-
shaped dice that have ten sides, once for each possible digit. Note that for the time
being we only deal with uniformly distributed random numbers, i.e., those in
which all possible numbers have the same chance of appearing. If two-digit random
numbers are sought, use multiple dice, roll them all, and add their numbers. Note,
however, that care must be taken: taking, for instance, two standard six-sided dice,
rolling them and adding up their numbers, will not result in uniformly distributed
results. As an example, the outcome of “2” is only possible, if both dice show a
“1,” which has a probability of 1/36. On the other hand, an outcome of “8” has a
probability of 5/36, as it can be realized from 2 and 6, 3 and 5, 4 and 4, 5 and 3,
and 6 and 2.

However, changing the numbers on the faces enables us to use the same process.
If the first die has the numbers 0, 1, 2, 3, 4 and 5 on its side, the second has 0, 6,
12, 18, 24, 30, and 36 on its sides, the third has 0, 36, 72, 108, 144, and 180, the
fourth die has numbers 0, 216, 432, 648, 864, and 1,080, then the number that
results from adding the face values of the four dice is a random number between
1 and 1,295.

Generating random numbers by way of rolling dice may be fun, but it certainly is
not a viable method for industrial applications. This is when we resort to machine-
generated sequences of random numbers. The basic idea of all of these generators
is the same: given a seed, i.e., an initial user-determined value, we put this number
into a “black box,” which uses our input and its internal parameters to generate
another number, which is used twofold, as the first random number, and also as
the next input into the black box, which uses it to generate the next random
number.

Among the first random number generators is the Midsquare method, which is
said to date back to Nobel Prize laureate John von Neumann. The idea is to start
with a seed, square it, retain the middle digits as random number and next input,
and continue in this fashion. The main reasoning behind choosing the center part
of a number and delete its first last parts is this. The last digit(s) of a number is/are
not necessarily random. For instance, if the last digit is 5, the square of the
number, regardless what the number is, will have a last digit of 5 as well.
Similarly, if the last digit is an even number, then the square of the number will
also have an even last digit. As far as the leading digit is concerned, there is much
less of a chance of getting an 8 or a 9 than getting a smaller first digit.

As an example of the midsquare method, consider the seed x0 = 107364 and
assume that we are interested in five-digit pseudo-random numbers. Squaring this

13.2 Random Numbers and their Generation 399

number results in 115 27028 496, so that our first random number is x1 = 27028,
the center of the number shown by the appropriate spacing. Using x1 as input and
squaring it results in 73 05127 84, so that x2 = 05127. Squaring x2 results in
2 62861 29 and x3 = 62861. The process continues with x4 = 51505, x5 = 52765,
and so forth.

The midsquare method is plagued by a multitude of problems, though. Take, for
instance, the seed x0 = 41 and generate a sequence of random numbers by deleting
the first and last digit after squaring. This results in the sequence x1 = 68, x2 = 62,
x3 = 84, x4 = 05, x5 = 02, and x6 = 00, at which time the series has degenerated and
will never generate anything but zeroes.

A much better choice are so-called linear congruence methods. They work with
the function

 xi = (a + bxi−1) mod c,

where a, b, and c are integer parameters, while xi is the i-th random number as
usual. The “mod” function returns the remainder as the result of the division. As
an example, consider a number of examples. In case 17 mod 5, we divide 17 by 5,
which equals 3 and a remainder of 2, thus 17 mod 5 ≡ 2. Similarly, consider 31
mod 9. Dividing 31 by 9 equals 3 and a remainder of 4, so 31 mod 9 ≡ 4.

Suppose now that we use the parameters a = 17, b = 3, c = 101, and x0 = 53. We
can then compute

 x1 = [17 + 3(53)] mod 101 ≡ 75,
 x2 = [17 + 3(75)] mod 101 ≡ 40,
 x3 = [17 + 3(40)] mod 101 ≡ 36,
 x4 = [17 + 3(36)] mod 101 ≡ 24,
 x5 = [17 + 3(24)] mod 101 ≡ 89,

and so forth. It is apparent that the largest number that can be generated in this
example will be c − 1 = 100. This means that after at most 100 generated numbers,
the sequence generated with our parameters will reach a number that has been
generated before. And, since the parameters have not changed, the same sequence
will be generated over and over again. The number of different random numbers
that can be generated before the sequence repeats itself is called the cycle length
or the period of the generator. Typically, the idea is to choose the parameters, so
that the period is as long as possible. However, that is not the only criterion for a
good set of random numbers. Consider a generator with a = b = 1, c = 10, and a
seed x0 = 0. The generator determines x1 = 1, x2 = 2, x3 = 3, and so forth, until we
obtain x9 = 9, and x10 = x0 = 0. Thus the cycle length equals 10, but the sequence
looks anything but random.

13 Simulation 400

Another obvious criterion a sequence of uniformly distributed random numbers
has to satisfy is that each digit will come up about 10% of the time. The above
sequence 0, 1, 2, …, 9, 0, … does exactly that. However, the conditional
probability of, say, a 5 coming up directly following a 2, is zero, while the
probability of a 3 directly following a 2 is 1. This is an obvious test that this
particular sequence fails. And that makes it a pseudo-random number. In contrast,
remember the roll of a single die. Suppose that a 2 came up on one roll, and a 5 on
the next. We keep on rolling, until another 2 comes up. What is then the
probability that the next roll will show a 5? With a perfect die, it will be 1/6. With
any pseudo-random number, it will be 1, as whenever the same number comes up
again, we are in a cycle, which repeats itself.

There is a variety of other tests that random number generators have to pass in
order to be reasonable. The parameter c is particularly critical and it is often
chosen as a large prime number. Overall, each sequence of numbers generated in
this way has a finite period.

Part of the importance of random numbers is not so much that they are used for
simulations, but they are also crucial for internet security by way of encryptions,
and internet gambling. Given the amount of money involved in these ventures,
much is at stake. And the general idea is that random numbers can only truly be
generated by a process that involves random elements. Some fairly unusual
methods have been included, among others seeds that depend on the number of
particles emitted from radioactive elements, atmospheric noise from resistors, and,
a patented method, a seed based on random movements observed in lava lamps.

So far, we have discussed random numbers that are uniformly distributed. This is
not always desirable. However, fairly simple procedures can be employed to
transform uniformly distributed random numbers into random numbers that follow
other distributions. The easiest case is to determine random variables that are
uniformly distributed on [0, 1[. If numbers with k digits to the right of the decimal
point are sought, then each k-digit random number needs to be divided by the
largest k-digit number that can be generated, viz., 10k − 1. Random numbers that
are uniformly distributed on [0, 1[are very useful to generate random numbers
that follow other distributions.

Consider now Poisson-distributed random numbers. The cumulative density function
F(x) of a random variable x that follows a (discrete) Poisson distribution with
parameter λ can be found in many works with mathematical tables, e.g., Råde and
Westergren (2002). Table 13.2 shows the cumulative functional values for the
Poisson distribution with parameter λ = 2.5.

Table 13.2: Cumulative distribution values for a Poisson distribution with λ = 2.5

x 0 1 2 3 4 5
F(x) .0821 .2873 .5438 .7576 .8912 .9580

13.2 Random Numbers and their Generation 401

Table 13.2 (continued)

We can now generate Poisson-distributed random numbers by starting with uniformly
distributed random numbers. If such a random number falls into an interval F(x1)
and F(x2), then the Poisson-distributed random number is x2. As a numerical
example, consider the following uniformly distributed random numbers:

 .0537 .7406 .5926 .8807 .6603 .7126 .8016 .7973 .9584 .6570 .8457

The first random number is between 0 and F(x = 0), so that a random number of 0
results. The next random number 0.7406 is in the interval [.5438, .7576], so that
the next random number equals the x-value of the upper end of the interval, viz., 3.
Similarly, the next uniformly distributed random number .5926 is also located in
the interval [.5438, .7576], so that again the x-value of the upper bound x = 3
results as the next Poisson-distributed random number. Continuing in similar
fashion results in the ten random numbers 0, 3, 3, 4, 3, 3, 4, 4, 6, 3, and 4.

Consider now random numbers that follow an exponential distribution with parameter
λ. Denoting again uniformly distributed random numbers in [0, 1[by ui, we can
then compute exponentially distributed random numbers xi by using the formula xi
= −ln ui/λ. Given again the above eleven uniformly distributed random numbers,
we can compute exponentially distributed random numbers with parameter λ = 2.5
as

1.1697, 1.2012, .2093, .0508, .1660, .1355, .0885, .0906, .0170, .1680, and .0670.

On the other hand, random variables that follow a standard normal distribution can
be generated from uniformly distributed numbers in the [0, 1[interval in pairs.
Letting ui and ui+1 denote the i-th pair of uniformly distributed random variables,
we can obtain a pair of related standard normally distributed random variables xi,
xi+1 by using the relations

 xi =)2sin(ln2 1+π− ii uu and xi+1 =)2cos(ln2 1+π− ii uu .

The sequence of standard normally distributed random numbers derived from the
first ten uniformly distributed random numbers is

 .1962, 2.4104, .0986, 1.0278, .0711, .9083, .0581, .6625, .0298, and .2908.

Random numbers that follow other distributions can be computed as well. In the
next section we will demonstrate how these random numbers can be used to
model practical situations.

x 6 7 8 9 10
F(x) .9858 .9958 .9989 .9997 .9999

13 Simulation 402

13.3 Examples of Simulations

This section will present two numerical examples of simple simulations. While
they focus only on very specific aspects, they should be able to convey some of
the fundamental ideas used in real-world simulations.

13.3.1 Simulation of a Waiting Line System

The main goal of simulation is to evaluate existing solutions and policies. In other
words, we start with a policy (or a solution), and test how this policy or solution
will fare in an uncertain environment. And this uncertain environment is recreated
by generating scenarios, given the states of nature and their probabilities that have
been observed.

This may best be explained by a few examples. First consider a waiting line
system. For simplicity, we will work with a single-channel system. Customers
arrive at the service station, so that the interarrival times are uniformly distributed
on the integers between 4 and 9. The service times are also uniformly distributed,
but on the integers between 5 and 7 (i.e., a service time of 5 minutes has a
probability of ⅓, the same as a service time of 6 minutes and one of 7 minutes.
The purpose is now to evaluate the performance of the system. The criteria used
for that purpose can be manifold. On the customers’ side, we could use the
probability that a customer will have to wait, the average waiting time, and the
average number of customers in the system (really a proxy for the congestion of
the system). On the server’s side, we could be interested in the average idle time
during a workday, and, of course, the cost of the system.

First, we will have to assign events to random numbers. For simplicity, we will
use single digits for the interarrival times. A random digit of 4 means an interarrival
time of four minutes, a random number of 5 means an interarrival time of five
minutes, and so forth. In case a random digit 1, 2, 3, or 0 comes up, we will reject
the digit and move on to the next random number.

A similar procedure will be used for service times. Here, the random numbers 5,
6, and 7 denote the actual service times in minutes, all other random numbers will
be rejected. A set of uniformly distributed random numbers is shown in Table
13.3. Tables of random numbers can be read from left to right and top to bottom,
or right to left bottoms up, or in any other more or less organized way. Here, we
scan them row by row from left to right, starting with the first row.

2049 9135 6601 5112 5266 6728 2188 3846 3734 4017
7087 2825 8667 8831 1617 7239 9622 1622 0409 5822
6187 0189 5748 0380 8820 3606 7316 4297 2160 8973

Table 13.3: Random Digits

13.2 Random Numbers and their Generation 403

The scenarios for the first 15 customers are generated in Table 13.4. The first
column of the Table 13.4 is the customer number. Column 2 lists the interarrival
times that are generated with the random numbers from Table 13.3. The first two
digits are 2 and 0, and neither of them are assigned to actual interarrival times
(only digits between 4 and 9 are), so that these digits are rejected. The next two
digits are 4 and 9. They are assigned to interarrival times of 4 and 9, which are
now the interarrival times of the first two customers. The next four digits are 9, 1,
3, and 5. Here, 1 and 3 are unassigned and are rejected, so that only the digits 9
and 5 are usable, they are the interarrival times of the next two customers. This
process continues, until we have assigned interarrival times for the first 15
customers. So far we have used random numbers of the first seven of the ten
blocks of four digits each in the first row of Table 13.3.

We now use the same process to generate the service times for the first 15 customers.
Starting with the second row of random numbers in Table 13.3 (alternatively, we
could have simply continued where we left off with the interarrival times and
started with the eighth block in the first row), we use only random numbers
between 5 and 7 as service times, while rejecting all other digits. In the first block,
we keep the first and fourth digit (both 7s), while rejecting the second and third
digit (0 and 8), as they are unassigned. In the second block, the first three digits
are unassigned, leaving on the fourth digit (with a value of 5). The third block has
the first digit unassigned, but the remaining three digits (6, 6, and 7) are usable.
The fourth block has all digits unassigned, and so forth. The service times for the
first 15 customers are displayed in column 8 of Table 13.4.

We are now ready to perform the simulation. We start with customer 1, meaning
the first row of Table 13.4. Given that the system starts operating at, say, 9 a.m.,
and the interarrival time is 4 minutes, the first customer will arrive at 9:04 (column 3).
Since no other customer is presently in the system, service for customer 1 will start
immediately (column 7). This means that there was no waiting time (column 5),
while there was a 4 minute idle time before this customer’s arrival (column 6).
Given the service time of 7 minutes (column 8), service on customer 1 will be
finished at 9:11 (column 4). For simplicity, we compute the aggregate waiting
times (column 9) and the aggregate idle times (column 10) for each customer, so
that they are easily available for our evaluations later on.

The computations for customer 2 are similar. Given the interarrival time of 9 minutes,
this customer will arrive 9 minutes after customer 1 arrived, meaning at 9:13. Since
customer 1 has left the service station at 9:11, there was a 2-minute idle time
(column 6), but no waiting time for customer 2 (column 5). As a result, service
begins immediately at 9:13 (column 7). Given that the service takes 7 minutes
(column 8), customer 2 is done and leaves at 9:20.

This process continues in the same fashion until customer 6 leaves. Consider now
customer 7. When the customer arrives at 9:44, customer 6 is still in the system,
so that customer 7 will have to wait. More specifically, since customer is finished

13 Simulation 404

at 9:46, customer 7 will wait for 2 minutes (which is recorded in column 5).
Service for customer 7 starts at 9:46 (reported in column 7). Also note that so that
there is no idle time for the system, which is shown in column 6. Customer 7 will
leave the system after 6 minute service time (column 8) at 9:52 (column 4). The
process continues in similar fashion for the remaining eight customers.

This is also the point, at which other behavioral aspects could easily be incorporated.
Take, for instance, the possibility that a customer reneges, i.e., considers the
lineup too long (as a proxy for the expected waiting time) and decides not to wait
but go elsewhere instead or return at some other time. While such a behavior
would be rather difficult to incorporate in an analytical method, it is easy to do so
in a simulation. Here, if customer 7 will only enter the system, if there is no other
customer in the system, we would record at this time that one potential customer
was not served and continue with the next customer. The number of customers
who leave the system unserved is another criterion in the evaluation of the
performance of the system.

Table 13.4: Simulation of a queuing system

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1 4 9:04 9:11 0 4 9:04 7 0 4
2 9 9:13 9:20 0 2 9:13 7 0 6
3 9 9:22 9:27 0 2 9:22 5 0 8
4 5 9:27 9:33 0 0 9:27 6 0 8
5 6 9:33 9:39 0 0 9:33 6 0 8
6 6 9:39 9:46 0 0 9:39 7 0 8
7 5 9:44 9:52 2 0 9:46 6 2 8
8 5 9:49 9:59 3 0 9:52 7 5 8
9 6 9:55 10:06 4 0 9:59 7 9 8
10 6 10:01 10:12 5 0 10:06 6 14 8
11 6 10:07 10:18 5 0 10:12 6 19 8
12 7 10:14 10:23 4 0 10:18 5 23 8
13 8 10:22 10:29 1 0 10:23 6 24 8
14 8 10:30 10:37 0 1 10:30 7 24 9
15 8 10:38 10:43 0 1 10:38 5 24 10

Legend:
(1) Customer number
(2) Interarrival time (a random number from the list)
(3) The arrival time of the customer
(4) The time at which service performed for the customer is finished and the

customer leaves
(5) The time the customer had to wait (not including service time)
(6) The time that the service station is idle before the customer arrives
(7) Starting time of service for the customer

13.2 Random Numbers and their Generation 405

(8) Service time for the customer (a random number from the list)
(9) The cumulative waiting time, and
(10) The cumulative idle time.

Suppose this very small simulation is to be evaluated. We first observe that
there is some idle time in the beginning, while later on the system is very busy.
This is hardly surprising: after all, the average interarrival time is 6.5 minutes,
while the average service time is 6 minutes, leading to an average traffic intensity
of ρ = .9231, a clear sign of a very busy system.

We also observe that the total waiting time for all the 15 customers that we have
observed (column 9) is 24 minutes. In other words, there is an average waiting
time of 24/15 = 1.6 minutes per customer. This information will have to be
evaluated by the decision maker, who will have to decide whether or not this time
is too long. Note again that the waiting times are not even distributed throughout
the day, but get longer later in the day.

Another issue is the idle time of the system. The system has been operating from
its opening at 9:00 until the last customer left at 10:43, i.e., for a total of 103
minutes. The total idle time (row 15 of column 10) is ten minutes. This means that
the total idle time is 10/103 ≈ 10% of the time. Again, this time is clustered during
the early stages of the operation.

These, and potentially other, criteria can then be used by the decision maker to
evaluate and, if deemed necessary, improve the performance of the system by
using appropriate measures.

13.3.2 Simulation of an Inventory System

Another popular area, in which Monte Carlo simulation is applied, deals with
inventory management. Again, we first have to observe and quantify all system
parameters, and then decide on a policy, meaning assign values to the variables
under our jurisdiction. In this example, we distribute a single product, for which
there is a daily demand that is uniformly distributed between 0 and 99 units. The
lead time is assumed to be 3 days. Note that in more realistic applications, the lead
time will also be a random variable. Furthermore, we assume that we have an
opening inventory of 200 units. The unit costs are $100 to place an order and
receive the shipment, the daily holding costs are 10¢ per unit that is held
overnight, and the shortage costs are 30¢ for each unit that is not available and for
which a customer has to wait overnight. Unit holding costs and shortage costs are
linear in time, meaning that if a customer has to wait for 5 days to obtain the
desired good, the shortage costs will be 5(0.3) = $1.50. The present inventory
policy does not place a new order, if another order is still outstanding, even if the
inventory level is below the reorder point. Also, in case of shortages, we assume
that units are backordered and there are no lost sales. Other than that, management
has formulated the following

13 Simulation 406

Policy 1: Place an order of size Q = 300, whenever the inventory level observed at
the end of a day falls below the reorder point R = 150.

In order to perform the simulation, we first need random numbers. Table 13.5
provides the needed numbers, and we will assign a double-digit random number to
a demand of the same magnitude, i.e., a random number 67 will symbolize a
demand of 67.

Table 13.5: Random numbers

89 91 72 26 10 83 90 30 76 40

Table 13.6 shows the simulation for ten days. Some details of the computations
will be elaborated upon below.

Table 13.6: Simulation for Inventory Policy 1

Day

Inventory level
before opening

Demand Inventory level
after closing

Costs: Co, Ch, Cs

1 200 89 111 → order 100, 11.10, 0
2 111 91 20 0, 2.00, 0
3 20 72 –52 0, 0, 15.60
4 –52 + 300 = 248 26 222 0, 22.20, 0
5 222 10 212 0, 21.20, 0
6 212 83 129 → order 100, 12.90, 0
7 129 90 39 0, 3.90, 0
8 39 30 9 0, 0.90, 0
9 9 + 300 = 309 76 233 0, 23.30, 0
10 233 40 193 0, 19.30, 0

Before opening on Day 1, our inventory is 200 units as stated in the assumptions.
The demand on this day (the first two random digits from the list) is 89, so that by
the end of the day, our inventory level has decreased to 111. Comparing this value
to our reorder point, we realize that the present inventory level has fallen below
the reorder point of R = 150, so that we place an order. Given the (deterministic)
lead rime of 3 days, the shipment that relates to this order will arrive on Day 4
before we open the store. The costs on that day are: $100 for placing an order,
111(0.10) = $11.10 in terms of inventory holding costs (the 111 units to be carried
over to Day 2 multiplied by the unit holding costs), and zero shortage costs, as no
shortages were encountered.

Day 2 is dealt with similarly. Note that even though by the end of the day, only 20
units remain in stock which is much less than the reorder point, a new order will
not be placed according to the policy that prohibits placing a new order if another

13.2 Random Numbers and their Generation 407

order is still outstanding. During Day 3, we encounter a shortage. Similar to
carrying costs, shortages are assessed for the number of units we are short by the
end of the day (here: 52 units short at 30¢ each for $15.60).

This brings us to the morning of Day 4, at which time a shipment with 300 n
ew units comes in. This shipment belongs to the order placed on the evening of
Day 1. From this shipment, the demand of all customers whose items were on
backorder will be satisfied, before the regular demand takes over.

That way, we simulate the process for ten days. At this point, we can evaluate
Policy 1. We note that the ordering costs are $200, the carrying costs are $116.80,
and the shortage costs are $15.60, for total inventory costs of $332.40. Other
characteristics of the system can also be evaluated, for instance the service level,
which may be expressed as the proportion of the demand that can be satisfied
immediately rather than having to be backordered. For simplicity, we will
concentrate on cost considerations. In the simulation of Policy 1, we note that the
ordering costs dominate, while shortage costs are very low. This may lead to a
revised policy, in which we place larger orders. In particular, we formulate

Policy 2: Place an order of size Q = 600, whenever the inventory level observed at
the end of a day falls below the reorder point R = 150.

Using the same random numbers (and thus the same demand throughout the ten days),
the workings of this policy are shown in Table 13.7. Since the calculations are very
similar to those in Table 13.6, we just produce the results without further comments.

Table 13.7: Simulation for Inventory Policy 2

Day

Inventory level
before opening

Demand Inventory level
after closing

Costs: Co, Ch, Cs

1 200 89 111 → order 100, 11.10, 0
2 111 91 20 0, 2.00, 0
3 20 72 –52 0, 0, 15.60
4 –52 + 600 = 548 26 522 0, 52.20, 0
5 522 10 512 0, 51.20, 0
6 512 83 429 0, 42.90, 0
7 429 90 339 0, 33.90, 0
8 339 30 309 0, 30.90, 0
9 309 76 233 0, 23.30, 0
10 233 40 193 0, 19.30, 0

The individual total costs associated with Policy 2 are Co = 100, Ch = 266.80, and
Cs = 15.60 for total inventory costs of $382.40, a 15% increase over Policy 1. We
note that the holding costs are now very high, while shortage costs are still at their

13 Simulation 408

previous, low level. A (hopefully improved) new policy may be defined as having
a reorder point of, say, R = 100, and an order quantity of Q = 450. We leave
further experimentation to the reader.

In general, we would like to emphasize that the decision rule that is to be
evaluated with simulation does not have to be a fixed rule that is determined once
in the beginning and then left unchanged throughout the process. Instead, the rule
can include periodic updates. For instance, a diet planner could optimize the food
plan for a senior citizens’ home and, once one or more of the parameters change,
reoptimize and implement the new plan. Similarly, we could periodically update
the reorder point and order quantity in an inventory system.

In our example, we could formulate the following policy that features dynamic
readjustments of order quantity and reorder point:

Policy 3: (1) Starting with an order quantity of Q = 300, readjust the order

quantity whenever an order is placed, so that it is 3 times the average daily
demand since the last time an order was placed (i.e., 3 times the average daily
demand in the last cycle).

(2) Starting with a reorder point of R = 150, update the reorder point whenever an
order comes in, so that R:=R ±½(shortage/inventory level just before the new
order comes in). In other words, if there is a shortage just before the arrival of
the new order, the new reorder point equals the previous value of R plus half
the shortage. If, on the other hand, there is still some inventory left, half of
that amount is subtracted from the previous reorder point to obtain the new
value of R.

This somewhat more elaborate policy requires some additional explanations.
Again, we will use the same random numbers and thus the same demand as in the
previous policies. Initially, we have a reorder point of R = 150 and an order
quantity of Q = 300 as in Policy 1. As in Policy 1, the demand on Day 1 equals 89,
so that our inventory level has fallen to 111 by the end of the day. The order
quantity is now recalculated as three times the average daily demand since the last
order was placed. Since this is the first order that we place, the average is
computed for the time between the beginning of the simulation and the end of
Day 1. Since only one daily demand has occurred, the order quantity is computed
as Q = 3(89) = 267. Again, the shipment that relates to this order will arrive in the
morning of Day 4.

The computations are the same as for Policy 1 until the morning of Day 4 when
the shipment arrives. After deducting the backordered demand, we recomputed the
reorder point. Since we had a shortage of 52 units before the shipment arrived, the
new reorder point is R = 150 + ½(52) = 176.

The process continues again until Day 6. In the evening of Day 6, the inventory
level has fallen below the new reorder point of R = 176, and we place another

13.2 Random Numbers and their Generation 409

order, which will arrive in the morning of Day 9. The order quantity is now
computed on the basis of the average demand since the last order was placed.
Here, the previous order was placed on Day 1, and the demand since then was 91
units on Day 2, 72 units on Day 3, 26 units on Day 4, 10 units on Day 5, and 83
units on Day 6 for an average of 282/5 = 56.4 units. According to the policy, the
order quantity is three times this amount, i.e., 169.2 units, which we round to the
nearest integer, so that Q = 169.

From here, the inventory system continues without interruption until Day 9, when
the shipment arrives that was ordered at the end of Day 6. After satisfying the
demand with the backordered items, we still have 145 units in stock. Since there
was a shortage of 24 units just before opening on Day 9, the new reorder point is
calculated as the previous reorder point of 176 plus half of the latest shortage for R
= 176+ ½(24) = 188. Note that even though the opening inventory on Day 9 is
below the reorder point, the policy allows orders to be placed only by the end of
the day, which is done here at the end of Day 9. Since the last order on Day 6, the
daily demand has been 90, 30, and 76 for an average of 196/3 = 65⅓, so that the
new order quantity is computed as Q= 3(65⅓) = 196.

Table 13.8: Simulation for Inventory Policy 3

Day

Inventory level
before opening

Demand Inventory level
after closing

Costs: Co, Ch, Cs

1 200
(R = 150)

89 111 → order
Q = 267

 100, 11.10, 0

2 111 91 20 0, 2.00, 0
3 20 72 −52 0, 0, 15.60
4 −52 + 267 = 215

(R = 176)
26 189 0, 18.90, 0

5 189 10 179 0, 17.90, 0
6 179 83 96 → order

Q = 169
 100, 9.60, 0

7 96 90 6 0, 0.60, 0
8 6 30 −24 0, 0, 7.20
9 −24 + 169 = 145

(R = 188)
76 69 → order

Q = 196
 100, 6.90, 0

10 69 40 29 0, 2.90, 0

In this policy, the total ordering costs are $300, the carrying costs are $69.90, and
the shortage costs are $22.80 for a grand total of 392.70. Since these costs are
about 18% higher than those for Policy 1, further refinements are needed.
However, it is worth pointing out that the time frame of ten days is far too short to
make any real recommendations. It was chosen here merely for illustrative purposes.

13 Simulation 410

The above two examples were chosen for this book, as they deal with subject
matter that was introduced in earlier chapters, and because they are very intuitive.
Even these simple scenarios could be extended in a variety of directions so as to
become quite involved. Still the basic ideas remain the same regardless of the
complexity of the model.

Exercises
Problem 1 (simulation of a replacement problem): The lighting director of a
theater is worried about the maintenance and replacement of five floodlights. They
fail according to the number of weeks they have been installed and used. The
probability that a bulb still functions after it has been used for t weeks (i.e., it is
presently in its (t+1)-st week of use) is denoted by P(Y|t). The numerical values
are shown in Table 13.9. In addition, the single-digit random numbers associated
with the survival events are shown in the last row of the table.

Table 13.9: Conditional survival probabilities and associated random digits

 P(Y|0) P(Y|1) P(Y|2) P(Y|3) P(Y|≥ 4)
Probability 0.9 0.7 0.5 0.3 0.2
Random numbers 1 − 9 1 − 7 1 − 5 1 − 3 1 − 2

Whenever a bulb fails, it has to be replaced immediately, as “the show must go
on.” Changing a bulb individually is expensive, as scaffolding must be put up. The
entire process costs $350. On the other hand, changing all five bulbs once
regardless if they still work or not costs $800.

The director ponders two replacement policies: either replace the bulbs only when
they actually fail, or, alternatively, in addition to failures during the week which
have to be attended to immediately, change all bulbs every three weeks regardless
if they still work or not. It should be pointed out that even if multiple bulbs fail
during the same week, they may do so at different times, so that this case has to be
treated and paid for as individual failures.

Solution: Use the following random numbers to generate specific instances of
survival and failure:

83638 51597 70322 35984 03933 30948 36142 72865 63348 28024

Table 13.10 and Table 13.11 then display for each light its age in a given week,
the random number, and an indication, if a bulb works during any given week (W),
or if it fails (F). Consider, for instance, Light 4. In week 1, its age is 0 as the bulb
is new. According to Table 13.9, the random digits associated with not failing are
1 – 9, and since the random digit is 3, it will symbolize proper functioning. This

411

means that in the beginning of week 2, Light 4 is of age 2. The next random digit
is 9, which, for a bulb in week 2, means failure. This means that during week 2,
bulb 4 will be replaced and its age in week 3 will again be 0. The process
continues in this fashion for all bulbs. The result of this replacement policy is that
16 bulb replacements are necessary for a total cost of $5,600.

The simulation for the second policy is shown in Table 13.11. Here, we use the
same random digits as before. As an explanation of the numbers in the table,
consider Light 1. It works during weeks 1 and 2, but fails during week 3, when it
has to be replaced during the week. At the beginning of week 4 (indicated by a “*”
in the leftmost column), a group replacement is made, at what time the bulb of
Light 1 is replaced again, even though it was just replaced individually during the
previous week.

It turns out that this policy requires only 12 individual replacements for a total of
$4,200, plus three total replacements for $2,400 for a grand total of $6,600. This is
more than the costs of individual replacement alone, making the former strategy
preferable.

Exercises

13 Simulation 412

Ta
bl

e
13

.1
0:

 S
im

ul
at

io
n

gi
ve

n
on

ly
 in

di
vi

du
al

 re
pl

ac
em

en
ts

Ta
bl

e
13

.1
1:

 S
im

ul
at

io
n

gi
ve

n
in

di
vi

du
al

 re
pl

ac
em

en
ts

 in
 a

dd
iti

on
 to

 tr
iw

ee
kl

y
gr

ou
p

re
pl

ac
em

en
ts

413

Problem 2 (evaluation of investment strategies via simulation of stock prices):
The manager of an investment company manages a specific fund. There are
$1,000,000 available for investment and three stocks, currently priced at $17, $59,
and $103 per share, respectively, are considered for that fund. Planning is made on
a weekly basis and any amounts that are not invested will be kept in a short-term
money-market account that pays 0.01% per week.

The manager considers three investment strategies. The first strategy would be to
keep all of the money in the short-term account. This is the benchmark strategy.
The second strategy will invest 50% of the available money at the end of any
week that has seen at least a 2% increase in value, and will sell at the end of any
week that has seen a decline in stock price, provided that a gain can be realized.
Otherwise, the stock is held until a gain can be made. The third strategy is to
invest 50% of the available money in a stock whenever its price declines, and it
will be sold as soon as a gain can be realized. The manager will not purchase new
shares of a stock that is still held.

Stock prices are thought to follow two overlapping trends. On the one hand, their
value will be determined by the “state of the economy,” (measured by the relative
value of the currency, unemployment figures, manufacturers’ receipts, and similar
factors), and, on the other hand, by stock-specific factors. The change of the state
of the economy is denoted by Δ, while the changes of the standings of the three
industries are Δ1, Δ2, and Δ3, respectively. The stock prices are then thought to
be the sum of Δ and Δj for stock j, j = 1, 2, 3. The probabilities of these changes are
denoted by P(Δ), P(Δ1), P(Δ2), and P(Δ3). These probabilities have been observed
and are displayed in Table 13.12 for changes in the overall economy, Table 13.13
for the specific case of the first industry, and Table 13.14 for the second and third
industry. In each table, double-digit random numbers # are listed that are associated
with the individual changes Δ and Δj.

Table 13.12: Probabilities P(Δ) and random numbers #

Δ +2% +1% ±0 −1% −2%
P(Δ) 0.05 0.15 0.60 0.15 0.05

01-05 06-20 21-80 81-95 96-00

Table 13.13: Probabilities P(Δ1) and random numbers #

Δ1 +3% +1% ±0 −1% −3%
P(Δ) 0.03 0.15 0.70 0.10 0.02

01-02 03-12 13-82 83-97 98-00

Exercises

13 Simulation 414

Table 13.14: Probabilities P(Δ2) and P(Δ3) and random numbers #

Δ2, Δ3 +3% +1% ±0 −1% −4%
P(Δ2), PΔ3) 0.04 0.12 0.60 0.21 0.03

01-04 05-16 17-76 77-97 98-00

In addition, we will use the random numbers shown in Table 13.15. They are read
row by row from left to right.

Table 13.15: Random numbers

6959915528 3270108890 4539882224 7576293709
1302727211 7576371930 9295108634 6867423785

The task is to evaluate the different investment strategies of the investment
manager.

Solution: We first use the random numbers to simulate the states of the economy
Δ, followed by the simulation of the states of the three different industries Δ1, Δ2,
and Δ3. This allows us to compute the stock prices. All of these computations are
shown in Table 13.16.

Strategy 1: Leaving the entire amount of $1,000,000 in the short-term account for

ten weeks will net us $1,001,000.45, or a 0.1% gain.
Strategy 2: In week 1, none of the stocks has increased by at least 2%, so that we

keep our entire amount in the short-term account. By the end of week 2, we
have $1,000,200.01. Since Stock 2 increases by 3% in week 2, we purchase it
with half of the available money, i.e., $500,100. At the price of $61.38 a
share, we obtain 8,147.6051 shares. The first time we can realize a gain is at
the end of week 8, at which point we sell the shares at $61.99 a share for a
total of $505,070.04. This money is kept in the short-term account for two
weeks, resulting in a payoff at the end of week 10 in $505,171.06. The
remaining $500,100 that were not invested in week 2 will remain in the short-
term account, resulting in $504,114.83 for a total of $1,009,285.89 or an
increase of 0.929%.

Strategy 3: By the end of week 1, Stock 3 has declined in value, which leads the
investor to invest half of the available money in that stock. The $1,000,000
has appreciated due to its investment in the short-term account for one week,
so that 1,000,100 are available, half of which ($500,050) are invested in Stock
3. Each share costs $101.97, so that 4,903.8933 shares are purchased. Since
the shares will never exceed that value again during the ten weeks, they will
not be sold.

The remaining $500,050 are left in the short-term account for two weeks
until the end of Week 3, when they have appreciated to $500,150.02. As
Stocks 1 and 2 decreased in value in Week 3, half of the available amount is
invested in each. (Note, by the way, that Stock 3 decreased in Week 2, but

415

since we still hold shares of that stock, we do not invest in it again). The sum
of $250,075.01 is invested in Stock 1, which costs $16.66 per share, so that
we obtain 15,010.5048 shares. We hold them until the end of Week 8, when
their price increases to $16.83, which gives us $252,626.80.

Back to the end of Week 3, when we invested $250,075.01 in Stock 2 at
$60.77 a share, so that we obtain 4,115.1063 shares. We sell these shares at
the end of week 5 for $61.38 each, resulting in $252,585.22. We hold this
money in the short-term account until the end of Week 8, when the
investment in Stock 1 is liquidated. By that time, we have $505,212.02. Since
none of the stocks declined in Week 8, we hold the amount in the short-term
account for a week, resulting in $505,262.54. We are now at the end of Week
9. During Week 9, we observed all stocks declining. As we still hold Stock 3,
we cannot invest in it, so that we invest the entire remaining money in Stocks
1 and 2 in equal parts. For the 252,631.27 invested in Stock 1, we obtain
15,163.9418 shares, while for the same amount invested in Stock 2, we obtain
4,116.5271 shares of Stock 2.

Since none of the stock prices increases during Week 10, the account by
the end of the planning period consists of 15,163.9418 shares of Stock 1,
4,116.5271 shares of Stock 2, and 4,903.8933 shares of Stock 3. The total
value of the portfolio is thus $982,989.70, for a loss of 1.7%.

Comparing the three strategies, it appears that the second investment strategy is
best.

Exercises

13 Simulation 416

Ta
bl

e
13

.1
6:

 S
im

ul
at

io
n

of
 st

oc
k

pr
ic

es

417

Appendix A Heuristic Algorithms

In this book, you will hear about or even directly encounter a number of solution
algorithms. All of these algorithms fall into two broad categories: exact algorithms
(sometimes also somewhat misleadingly referred to as optimal algorithms) and
heuristic methods usually simply called heuristics. Exact algorithms have the
obvious advantage of providing the best possible solution there is, given the
user-defined constraints, whereas heuristics do not. Some heuristics do have error
bounds, some actually proven, while others are empirical, i.e., they state that a
certain heuristic usually (typically on average) finds solutions that have a certain
quality. On the other hand, there is computing speed. Some models are such that it
takes an exact algorithm exceedingly long to find the optimal solution. Is this
relevant? Well, it depends. If the task at hand is to, say, locate a landfill for
millions of dollars, you will not care if it takes a laptop two or three weeks to run,
so that it can find a solution that may potentially save hundreds of thousands of
dollars. There are limits to this argument, of course: if it takes years or even longer
to find a solution, most problems have either solved themselves or have become
irrelevant by that time. So, this is not acceptable.

In order to make the case for heuristics, consider the situation of automated guided
vehicles (AGVs). Suppose you have a number of individual work stations on the
shop floor, each of which processes a given piece from a semi-finished product to
the finished good. For that purpose, it will be necessary to move pieces, on which
work has been finished at one station to the next station. Note that it is not
necessarily the case that all goods are running through the same sequence of jobs,
not all tasks have to be performed at all work stations, and different levels of
customization are possible. The movement of goods may be accomplished by
automated guided vehicles that receive a message from a workstation whenever a
piece is ready for pickup, and the machine knows where the piece has to go next.
However, temporarily there may be more pieces to be transported than the
machine can handle, so that it will put the tasks in a list. Whenever it is ready it
will work on that list, depending on where it is at any point in time, how far it is
to the destination for that particular transportation job, how many work stations
will be idle if they have to wait for the next job, and many other considerations.
It is apparent that solutions to that problem have to be found in real time, i.e.,
immediately. This is where heuristic algorithms come in.

Appendix A Heuristic Algorithms 418

Heuristic algorithms typically have two phases. The first phase is the construction
phase, in which a solution is established. This phase starts with nothing, and by
the end of the phase, we have a solution. Phase 1 should be followed by Phase 2,
which is an improvement phase, in which the method uses simple modifications of
the present solution that improve the quality of the solution. The best known
heuristics are the Greedy Method (a construction method), and the Swap (or
pairwise exchange) method, which is an improvement method.

In order to illustrate the Greedy technique, consider the following example.
Suppose that a hiker is lost in the woods. In order to be visible from the air for a
rescue mission, he decides to climb as high as possible. Since he has neither a
map, nor an idea of where he really is (and it is very foggy, so that visibility is
very limited, making his vision myopic), he can only determine the shape of the
land in close vicinity. At any point, he can examine the terrain to his North,
Northwest, West, Southwest, South, Southeast, East, and Northeast. If there are
higher points in any of these directions, he will go into that direction that features
the highest nearby point (i.e., the best possible improvement, hence the name
“Greedy”). If the points in all eight directions are lower than where he is right
now, he will conclude that he is standing on top of a hill and stay there, assuming
that he has arrived.

Figure A.1 © Department of Natural Resources Canada. All rights reserved.

Mount
Edward

20
00

21002500

Appendix A Heuristic Algorithms 419

As an example, consider the situation shown in Figure A.1. In order to simplify
matters, we have determined the altitudes of the points shown as big black dots
and have them displayed again in Figure A.2.

Altitudes (in feet)

Figure A.2

Suppose now that the hiker is presently at the Northeasterly point in Figure A.2
at an altitude of 2,160 ft. There are only three surrounding points, those to the
West, the Southwest, and the South, with altitudes of 2,210, 2,230, and 2,050,
respectively. The highest of these is the point to the Southwest, which is then
where the hiker walks to. This point now has eight neighbors, the highest of which
is located directly to the West of the hiker’s present position at an altitude of
2,340. Consequently, the hiker relocates to this point. Repeating the procedure, the
hiker notices that all points in the vicinity of his present location are lower. So, he
concludes that he is standing on top of a hill. From the topographic map we know
that he is, but we also know that this is not the highest hill in the area of interest.

Formally, a point all of whose neighbors are lower (higher), is called a local
maximum (local minimum). If a local maximum (local minimum) is also the
highest (lowest) point overall, it is referred to as a global maximum (global
minimum). As an illustration, consider the function y = sin x + 0.05x2. For values
of x between −10 and +10, the function is shown in Figure A.3.

Appendix A Heuristic Algorithms 420

Figure A.3

The function has three minima on the domain shown, they are at x = −7.0689
(with y = 1.7911), at x = −1.4755 (with y = −.8879), and at x = 4.2711 (with y =
.0079). (Myopic) heuristics (as well as derivatives) will readily find local optima,
but not necessarily global optima. The reason for this is apparent: if any myopic
method arrives at, say, the rightmost of the three local minima in Figure A.3, how
is the method to know whether or not there are better points located to the left? If
a graph such as this were available, it is easy to see, but typically it is not, as
almost all problem are multidimensional, and thus cannot be graphed in three or
less dimensions.

The hiker’s plight described above might now be considered his own problem and
of little general interest, if it were not for the fact that each point on the map may
represent a course of action (determined by the values of its coordinates), and the
contour lines may represent their profit. So the search for the highest hill has now
become a search for the point of maximal profit, which is of considerable general
interest.

To make the problem even more interesting, had the hiker been in the extreme
Southeast and had used the Greedy method for his progress, he would actually
ended up at Mount Edward, the overall highest point in the region of interest. As a
matter of fact, the line that divides Figure A.2 indicates what is usually referred to
as catchment areas: if the hiker starts at any point to the Northeast of the line, he

5.5
f(x)

x

4.5

3.5

2.5

1.5

0.5

0.5

−1

−1.5

−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9

5

4

3

2

1

Appendix A Heuristic Algorithms 421

ends up at the local optimum at altitude 2,340 ft, if he starts at any point to the
Southwest of the line, he ends up on Mount Edward at the global maximum.
A similar situation applies to the function in Figure A.3. Starting a Greedy
minimization method any point to the left of x = −5.2671 (a local maximum), will
end up at the local minimum at x = −7.0689. Starting at any point between
x = −5.2671 and x = 1.7463 will end at the global minimum at x = −1.4276,
and starting anywhere to the right of x = 1.7463 will lead to the local minimum at
x = 4.2711.

This immediately suggests a technique that is called a multistart method. The idea
is simply to apply a Greedy technique starting at a number of different points,
compare the results, and choose the best (highest or lowest, depending on whether
a minimum or a maximum is sought).

Next we will discuss an improvement method. The Swap method is easy to
describe. Given a solution that has been obtained “somehow,” it takes two
components and exchanges them. Depending on the specific application, this may
mean exchange their sequence, their inclusion/exclusion status, or whatever the
problem commands. The method then computes the change of the value of the
objective function. If the value has improved (i.e., has increased in case of a
maximization problem or decreased in case of a minimization problem), the
modified solution becomes the new starting point and the previous solution is
discarded. This step is repeated until no further Swap step can improve the
solution any further.

As an example, consider the map in Figure A.4 and assume that the task at hand is
to determine the shortest route from Memphis, Tennessee, to Reno, Nevada. The
traveler has outlined the tour in layers, so that a drive from a city in one layer to a
city in the next is about a day’s drive.

Appendix A Heuristic Algorithms 422

Figure A.4

The distances are as follows: From Memphis to Omaha, Wichita, Oklahoma City,
and Dallas we have 650, 555, 460, and 460 miles, respectively. From Omaha to
Denver and Albuquerque there are 540 and 860 miles. The distances from Wichita
to Denver and Albuquerque are 510 and 585 miles, from Oklahoma City to
Denver and Albuquerque are 630 and 550 miles, and from Dallas to Denver and
Albuquerque are 780 and 640 miles, respectively. The distances from Denver to

the distance from Salt Lake City to Reno is 525 miles and from Phoenix to Reno
there are 735 miles.

In order to obtain some solution, we use the Greedy algorithm, starting at the origin

choose Dallas. The nearest neighbor of Dallas is Albuquerque, which is 640 miles
away (as opposed to Denver, which is 780 miles from Dallas). From Albuquerque,
we take the closest connection to Phoenix (460 miles), and from there we have no
choice but take the last long trip to Reno (735 miles). The trip leads us on the
route Memphis – Dallas – Albuquerque – Phoenix – Reno, and its total length is
2,295 miles.

At this point we start to swap. One possibility is to swap Phoenix and Salt Lake
City. This means that we have to add the connections from Albuquerque to Salt
Lake (610 miles) and from Salt Lake to Reno (525 miles), and subtract the
connections from Albuquerque to Phoenix (460 miles) and from Phoenix to Reno

Reno

Denver
Wichita

Dallas

Omaha

Oklahoma City
Memphis

AlbuquerquePhoenix

Salt Lake
City

there are 610 and 460 miles to Salt Lake City and Phoenix, respectively. Finally,

which is either Dallas or Oklahoma City, both 460 miles away. We arbitrarily

Salt Lake City and Phoenix are 505 and 835 miles, while from Albuquerque,

of our trip in Memphis. From here, Greedy will choose the nearest neighbor,

Appendix A Heuristic Algorithms 423

(735 miles), for net savings of 60 miles. This is an improvement, and so our new
route is Memphis – Dallas – Albuquerque – Salt Lake City – Reno, and its total
length is 2,235 miles.

We can now use the new solution and try other Swap moves. For instance, we
could attempt to swap Albuquerque and Denver. The net change of such a swap
move is +35 miles, so we will not make this change. Another possibility is to

change and obtain the route Memphis – Oklahoma City – Albuquerque – Salt
Lake City – Reno, whose length is 2,145 miles.

At this time we may examine again the pair Albuquerque and Denver. This swap
did not improve the solution the last time we tried it, but since then the solution

of +630 + 505 − 550 − 610 = −25, so that the change is made. this results in the
new route Memphis – Oklahoma City – Denver – Salt Lake City – Reno, which is
2,120 miles long.

We may now try to exchange Oklahoma City and Wichita, which leads to a net
change of +555 + 510 − 460 − 630 = −25, for another reduction in terms of the
total distance, which is now 2,095 miles. The route leads from Memphis –
Oklahoma City – Denver – Salt Lake City – Reno. At this point we may try to
further reduce the length of the tour, which is no longer possible with swap
moves. As a matter of fact (unbeknownst to us when we are just using heuristics),
the tour is actually optimal.

Our final example of a heuristic method deals with a much-studied field called bin
packing. We have an unspecified number of bins, all of which are of the same
prespecified length. We also have a number of rods that are to be placed into the
bins. The problem is one-dimensional, in that the bins and the rods have the same
height and width, so that only the length of the bins and the rods that are placed
into them will decide whether or not they actually fit. For instance, if the bin is 20
ft and there are one 6 ft rod, one 3 ft rod, and one 5 ft rod, then these three rods
will occupy 14 ft of the bin and leave 6 ft unoccupied. The task at hand is now to
put the existing rods into the smallest number of bins possible.

Despite its apparent simplicity, the problem has been proven to be very difficult
from a computational point of view. A Greedy-like heuristic is the so-called First
Fit (FF) Algorithm. In order to implement the method, we first assume that a
sufficiently large number of bins is available. These bins are numbered 1, 2, … .
The First Fit Algorithm that can be described as follows:

FF Algorithm: Put the next rod into the bin with the smallest
number into which it will fit.

has changed. In fact, swapping the two cities at this point results in a net change

swap Dallas and Oklahoma City. The net change is −90 miles, so we make the

Appendix A Heuristic Algorithms 424

As an example, suppose that all bins are 19 ft long. In addition, we have six 11 ft
rods, six 6 ft rods, and twelve 4 ft rods. In this type of situation, we can actually
compute a very simple bound for the number of bins that will be needed. Here, the
total length of the rods is 6(11) + 6(6) + 12(4) = 150 ft. Given that each bin is 19 ft
long, we will need at least 150/19 ≅ 7.89 bins. Since the number of bins must be
integer, we will need at least 8 bins. This also means that if we were to find a
solution to the problem that requires 8 bins, this solution must be optimal.

Apply now the First Fit Algorithm. Assigning the rods in order of their lengths
(i.e., the 11 ft rods first, then the 6 ft rods, and finally the 4 ft rods), we notice that
only a single 11 ft rod fits into each bin. This means that we have to put each of
the 11 ft rods into one bin each, so that we now have dealt with all 11 ft rods and
have used parts of six bins. Next, we assign the six 6 ft rods. Since each of them
fits into one of the already partially used bins, we now have six bins with one 11 ft
and one 6 ft rod each, leaving 2 ft of free space in each of the six bins. This is not
sufficient for any of the remaining 4 ft bins, so that we have to use additional bins.
We can place four 4 ft rods in each bin, leaving an empty (and unusable for us)
space of 3 ft each, which requires another three bins. We now have assigned all
rods to the bins. This solution requires a total of nine bins. There is no apparent
pairwise exchange (swap) step able to improve the solution.

On the other hand, if we were to put one 11 ft and two 4 ft rods into each of six
bins, this would leave no empty space at all. The remaining six 6 ft rods can be
put into two bins. Having again assigned all rods, this solution requires only eight
bins and, given the bound computed above, must be optimal.

A variety of other heuristics exists for this problem. An excellent (albeit difficult)
pertinent reference is the book by Garey and Johnson (1979). An interesting
extension of the problem makes available the different rods over time. This is
reminiscent of ready times in machine scheduling. The solution obtained in such a
case will be no better than the one found in the case in which all rods are available
at the beginning of the process (simply because the problem that makes rods only
available over time is more restrictive than the problem discussed here.

The efficiency of the heuristics and their performance may be evaluated in
different ways. An obvious evaluation is to use simulation (see Chapter 13 of this
book). This will enable users to specify an average or expected error bound of the
algorithm. For instance, in the above example the heuristic method uses 9 instead
of the optimal 8 bins, i.e., 12.5% more than optimal.

However, in some cases it is possible to determine theoretical error bounds, i.e.,
bounds that cannot be violated. For instance, it has been shown that the solution
found by the First Fit Heuristic cannot be worse than about 70% higher than the
optimal solution. One problem associated with the theoretical bounds is that while
they represent a reliable, provable property, they tend to be very high.

Appendix A Heuristic Algorithms 425

Many other heuristics have been presented in the literature. Many improvement
algorithms are neighborhood searches, whose main distinguishing feature is that
they start with a given solution and search for better solutions in the neighborhood
of the present solution. The Swap Method described above belongs to this class.
Another very successful heuristic in this class is tabu search. The idea of this
method is to get out of a local optimum by temporarily allowing the current
solution to deteriorate. In order to avoid cycling between solutions that are better
and those that are worse, a list of prohibited moves (a tabu list) is set up that is
updated as the algorithm progresses. This procedure allows to “get over the hump”
from the present point to other solutions that are hopefully better than the best
solution known at this point. For example, in Figure A.3, if the best known
minimum is x = −7.0689, we may allow worse solutions (i.e., those with higher
functional values) in our move to the left. This may allow us to find the global
minimum at x = −1.4755.

Other techniques are based on observations made in the technical or the natural
world. Examples are simulated annealing, a technique modeled after the way
molten metal cools. Similar to tabu search, it allows moves to solutions worse
than the best presently known solution. Such moves are allowed with a certain
probability that decreases during the course of the algorithm. The formulas ensure
that the probability to accept a move to a very bad solution is very small. Other
methods follow some behavioral patterns of ant colonies or bees.

427

Appendix B Vectors and Matrices

as a mere quick reference for some material used in this book.

Definition B1: An [m × n]-dimensional matrix

 A = (aij) =
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

mnmm

n

n

aaa

aaa
aaa

L

MOMM

L

K

21

22221

11211

ij

ij
m = n, the matrix is said to be square, if m = 1, it is called a row vector, if n = 1, it
is a column vector, and if m = n = 1, it is a scalar.

It is common practice to denote scalars by italicized letters, vectors by lower-case
bold letters, and matrices by capitalized letters in boldface.

Definition B2: Given an [m × n]-dimensional matrix A and an [n × p]-
dimensional matrix B, the product C = AB is an [m × p]-dimensional matrix
C = (cij), such that

 cij = ai1b1j + ai2b2j + …+ ainbnj, for i=1, …, m and j=1, …, n.

Example B1: With a = [3, 2 , −6] and

Appendices B and C are is intended to provide the reader with some basic refresher

is a two-dimensional array of elements a arranged in m horizontal rows and
n vertical columns, so that the element a is positioned in row i and column j. If

regrding some basic operations that involve matrices and vectors and the solution
of systems of simultaneous linear equations. It is not designed to replace a text, but

Appendix B Vectors and Matrices 428

 B =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

π

1113
267

50
,

we obtain aB = [,3627 − ,2681− 6223 −+π], and

 B2 = BB =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

π+−++−
π+−+−

π+−π−π+

3213555377
710493242

103011335
.

Definition B3: Given an [m × n]-dimensional matrix A, the transpose AT =)(T

ija

is the [n × m]-dimensional matrix with T
ija = aji for i = 1, …, m and j = 1, …, n.

Example B2: Use the vector a and the matrix B of Example 1, we then obtain

 aT =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

− 6
2

3
 and BT =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

π
−−

12
1165
370

.

429

Appendix C Systems of Simultaneous Linear
Equations

Definition C1: A mathematical relation is written as

 LHS R RHS,

where LHS denotes the left-hand side, R is the relation, and RHS is the right-hand
side of the relation.

Typically (but not necessarily), LHS is a function f(x1, x2, …, xn) of n variables x1,
x2, …, xn, R is a relation of type <, ≤, = ≥, >, or ≠, and RHS is a scalar.

Definition C2: A relation f(x1, x2, …, xn) R b is said to be linear, if the function f
can be written as f(x1, x2, …, xn) = a1x1 + a2x2 + …+ anxn. We will refer to f(x1, x2,
…, xn) as LHS, while b is the RHS.

Example C1: The relation 2x1 − .7x2 + 11 x3 ≤ 59 is linear, whereas the relations
2 1x − 0.7x2 + 11 x3 ≤ 59, 2x1 − 0.7x1x2 + 11 x3 ≤ 59, and 2x1 − 0.7x2 +

11 3
3x ≤ 59 are not, due to the appearance of the square root 1x , the product

x1x2, and the cubic 3
3x , respectively.

We will first deal with the case when the relation R is an equation. Assume now
that we have a system of m linear equations with n unknowns, and that we want to
find a solution, i.e., an assignment of values to the variables, that satisfies all
equations. It is now possible to prove the following

Theorem C1: Consider a system of m simultaneous linear equations in n
variables:

Appendix C Systems of Simultaneous Linear Equations 430

 a11x1 + a12x2 + … + a1nxn = b1
 a21x1 + a22x2 + … + a2nxn = b2
 M M M
 am1x1 + am2x2 + … +amnxn = bm

The system has either no solution, exactly one solution, or an infinite number of
solutions.

Example C2: Consider the system

 2x1 + 3x2 = 7
 4x1 + 6x2 = 10.

It is known that if we simultaneously multiply right-hand side and left-hand side
of an equation, we do not change its content. Multiplying the first equation by 2,
we obtain 4x1 + 6x2 = 14. Now the left-hand side of this equation and that of the
second equation are equal, but its right-hand side differs, indicating that there is an
inherent contradiction in the system. Thus it is no surprise that the system has no
solution.

On the other hand, consider the system

 2x1 + 3x2 = 7
 4x1 + 6x2 = 14.

Multiplying both sides of the first equation by 2 results in the second equation. In
other words, the two relations have exactly the same informational content. This
means that we really have only a single equation, and since we need one equation
to specify the value of each unknown. Hence this system has an infinite number of
solutions x1 and x2 = ⅓(7−2x1).

Consider now the case that has exactly one solution. Here, we are not concerned
with conditions in which a system has exactly one solution, but our focus is on
how to actually obtain such a solution, given that it exists. There are many
different versions of the Gaussian elimination technique (named after the German
mathematician Carl Friedrich Gauss, 1777-1855). In order to illustrate the technique,
consider the system of simultaneous linear equations

 2x1 + 3x2 − 5x3 = 1 (I)
 x1 − 2x2 + 4x3 = −3 (II)
 4x1 + x2 + 6x3 = 2 (III)

The idea is to first eliminate one variable, say x3, from all equations but one. The
system has then one equation in all (here: three) variables, whereas two equations
include only the remaining variables (here: x1 and x2).Among these remaining
variables, we now choose another variable to be eliminated (here: x2), and the

Appendix C Systems of Simultaneous Linear Equations 431

procedure is repeated. In the end, we have a single equation in just one variable,
which is then replaced by its value in all of the remaining equations, resulting in
another system, in which again one of the equations is just a function of a single
variable, which is replaced by its value everywhere, and so forth, until the system
is solved.

Applying this idea to our example, we fist eliminate the variable x3 from equation
(II) by multiplying (I) by 4 and multiplying (II) by 5, adding them, and then
replacing equation (II) by 4×(I) + 5×(II). The revised system can then be written as

 2x1 + 3x2 − 5x3 = 1 (I)
 13x1 + 2x2 = −11 (II') = 4×(I) + 5×(II)
 4x1 + x2 + 6x3 = 2 (III)

Next, we eliminate x3 from equation (III) and replace equation (III) by 6×(I) +
5×(III). This results in the system

 2x1 + 3x2 − 5x3 = 1 (I)
 13x1 + 2x2 = −11 (II')
 32x1 + 23x2 = 16 (III') = 6×(I) + 5×(III)

Since the equations (II') and (III') now contain only the two variables x1 and x2, we
can eliminate x2 from (III') by replacing (III') by 23×(II') − 2×(III'). This process
results in

 2x1 + 3x2 − 5x3 = 1 (I)
 13x1 + 2x2 = −11 (II')
 235x1 = −285 (III'') = 23×(II') − 2×(III').

We say that the system is now in triangular form, due to the pattern of coefficients
on the left hand side. This allows us to obtain the values of the variables in a
recursive procedure. First we can determine the value of x1 from equation (III'').
Clearly, x1 = 235

285− = 47
57− . Inserting the value of x1 into equation (II') allows us

to solve for the variable x2. In particular, we have 13(47
57−) + 2x2 = −11 results in

x2 = 47
112 . Finally, inserting the values of x1 and x2 into equation (I), we can solve

for x3. The relation reads 2(47
57−) + 3(47

112) − 5x3 = 1, which results in x3 = 47
35 .

The system has now been completely solved. The solution is [x1, x2, x3] =
[47

57− , 47
112 , 47

35] ≅ [−1.2128, 2.3830, 0.7447]. Inserting the values of the unknowns

into the original equations (I), (II), and (III), we can verify that the solution is
indeed correct. In analogous fashion, we can determine the solution of any system
of linear equations. For further details, see any pertinent introductory text on
linear algebra or the short summaries in Eiselt and Sandblom (2007) or (2004).

433

Appendix D Probability and Statistics

While most chapters in this book deal with deterministic models, some include
probabilistic models, in which concepts of probability are needed. This appendix
is intended to briefly cover those probabilistic concepts needed in this book. It is
by no means intended to replace a thorough knowledge of statistics.

Definition D1: The probability of an event (or outcome) of a random experiment
is a number p between 0 and 1, which measures the likelihood that the event will
occur.

A value of p close to 0 indicates that the event is unlikely to happen, while a value
of p close to 1 means that the event is very likely. We can interpret the probability
as the proportion of times that the even or outcome will occur, if the experiment is
repeated a large number of times.

Suppose now that the events are mutually exclusive (i.e., the events are distinct
and do not overlap) and collectively exhaustive (meaning that exactly one of them
will occur). We then obtain the following result

Theorem D1: If p1, p2, …, pn denote the probabilities of the mutually exclusive
and collectively exhaustive outcomes of an experiment, then p1 + p2 + …+ pn = 1.

Example D1: Consider an experiment that involves tossing a fair coin three times.
suppose that each outcome is either head or tail, standing on edge does not occur.
Denote H for “head” and T for tail, the outcome “first tail, then head, then tail” is
written as THT. Then there are eight possible outcomes: HHH, HHT, HTH, HTT,
THH, THT, TTH, and TTT. Given a fair coin, all outcomes are equally likely, and
since p1 + p2 + …+ p8 = 1, we obtain the result that each outcome has a probability
of P(HHH) = P(HHT) = …= P(TTT) = 8

1 .

The probability of a composite event that consists of several outcomes is the sum
of probabilities of the outcome of the event. For instance, the event “obtain exactly
one tail in three flips of a fair coin” refers to the event {HHT, HTH, THH}, so that

Appendix D Probability and Statistics 434

the probability of such an event is P({HHT, HTH, THH}) = 8
1 + 8

1 + 8
1 = 8

3 . The
event space is defined as the set of all possible events of an experiment.

Definition D2: A random variable X is a function defined on the event space of
an experiment.

Example D2: Given the above coin tossing experiment, let X denote the number of
heads that come up in the three tosses. There are four possibilities: X = 0 (which
occurs only in the event {TTT}, so that the probability of this event is P(X=0) =

8
1), X = 1 (which happens if one of the events {HTT, THT, TTH} occurs, so that

the probability P(X=1) = 8
3), X = 2 (an event that occurs if one of {HHT, HTH,

THH} occurs, so that P(X=2) = 8
3), and finally X = 3 (which occurs only if

{HHH} happens, so that P(X=3) = 8
1). Again, the sums of all possible events add

op to 1.

In general, we distinguish between two different types of random variables, discrete
and continuous random variables.

Definition D3: A random variable X is called discrete, if it can assume only one
of (countably many) values a1, a2, …. The function P(aj) = P(X=aj) = p(aj) is
called the discrete probability distribution (function) of X. The function F(aj) =
P(X ≤ aj) is called the cumulative probability distribution (function) of X.

Example D3: Again, define the random variable X as the number of heads in three
tosses of a fair coin. Table D1 shows the probability distribution function for this
event.

Table D1: Probability distribution for the coin toss example

X P F

0 8
1 8

1

1 8
3 8

4

2 8
3 8

7

3 8
1 8

8

We note that F(aj) is an increasing function of aj that eventually reaches the
value of 1 for the largest value of aj (in case of finitely many outcomes, and
that converges towards 1 for infinitely many outcomes aj. Since P and F are
probabilities, we must have 0 ≤ P(aj) ≤ 1 and 0 ≤ F(aj) ≤ 1 for all events aj.

435

Definition D4: A discrete random variable X with a probability distribution

function p(x) = P(X=x) =
!x

e
xλλ− , x=0, 1, 2, … is called Poisson-distributed

with parameter λ. In case a random variable follows this distribution, we will
write X ~ Po(λ), where Po stands for Poisson.

The Poisson distribution is named in honor of Siméon Denis Poisson, a French
mathematician, 1781 – 1840. The distribution is of major importance in queuing
(Chapter 12 of this book) and will be extensively used in that context.

Example D4: If the random variable X ~ Po(λ=1.3), then P(X=2) = p(2) =

!2
)3.1(2

3.1−e = 0.2303, and F(X≤1) = p(0) + p(1) = 0.6268.

Definition D5: A random variable X is called continuous, if there exists a function
f(x), such that the cumulative distribution function F(x) for X can be written as

F(x) = ∫
∞−

t

dttf)(. The function f(x) is called the (probability) density function of X.

There are two different continuous distributions that are used in this book, the
exponential and the normal distribution.

Definition D6: A continuous random variable X with the density function f(x) =
λe−λx with x ≥ 0 is said to exponentially distributed with parameter λ (a positive
constant). If X is exponentially distributed, we write X ~ Ex(λ).

It is not difficult to demonstrate that the cumulative distribution function of an
exponentially distributed variable with parameter λ is F(x) = 1 − e−λx.

Definition D7: A continuous random variable X with density function

22

2)(

2
1)(σ

μ−−

πσ
=

x

exf is said to follow a normal distribution (or, alternatively,

Gaussian distribution) with parameters μ and σ > 0. In such a case, we write X ~
N(μ, σ). The distribution N(0, 1), i.e., the normal distribution with μ = 0 and σ = 1
is called the standard normal distribution and is usually denoted by Z. Its density
function is called the normal curve (or bell curve), given by the function

2½
2
1)(xexf −
π

= .

Definition D8: The expected value (or mean or expectation) E(X) or µ of a
discrete random variable X is given by E(X) = μ = a1P(X=a1) + a2P(X=a2) + …,
meaning we multiply each outcome by its associated probability and add them up.

Appendix D Probability and Statistics

Appendix D Probability and Statistics 436

For a continuous random variable X, the expected value is given by E(X) =

μ = ∫
∞

∞−

dtttf)(.

There are discrete and continuous random variables for which there exists no
expected value.

Example D5: For the random variable X of Examples D2 and D3 where X denotes
the number of heads in three tosses of a fair coin, we obtain the expected value
E(X) = 0(8

1) + 1 (8
3) + 2(8

3) + 3(8
1) = 1½.

Theorem D2: If X ~ Po(λ), then E(X) = λ, if X ~ Ex(λ), then E(X) =
λ
1

, and if

X ~ N(μ, σ), then E(X) = μ.

Definition D9: The variance V(X) = σ2 of a random variable X with mean μ is
defined as E((X − μ)2). We call σ =)(XV the standard deviation of X.

There are discrete and continuous variables for which the mean exists, but the
variance does not. One can show that V(X) = E(X2) − μ2 and that V(X) ≥ 0 for all
random variables X, as long as E(X2), E(X), and V(X) exist.

Example D6: For the random variable X of Examples D.2 and D.3 where X
denotes the number of heads in three tosses of a fair coin, we obtain the variance
V(X) = E(X2) − μ2 = 3 − 2.25 = 0.75.

Theorem D3: If the random variable X ~ Po(λ), then V(X) = λ, if X ~ Ex(λ), then
V(X) = 2

1
λ

, and if X ~ N(μ, σ), then V(X) = σ2.

Theorem D4: If the random variable X ~ N(µ, σ), then Z = [(X − µ)/σ] ~ N(0, 1).

Theorem D5: For any random variable X and for any given numbers a < b, we
have P(a < X ≤ b) = F(b) − F(a). For any continuous random variable X, P(a ≤ X ≤
b) = P(a ≤ X < b) = P(a < X < b) = F(b) − F(a) as well as P(X = a) = P(X = b) = 0.

Example D7: Let the random variable X ~ N(2.3, 0.9) and compute the probability
P(1.7 ≤ X ≤ 2.6). We find that P(1.7 ≤ X ≤ 2.6) = ()90.0

3.26.2
9.0

3.2
9.0

3.27.1 −−− ≤≤ XP =

P(−0.6667 ≤ Z ≤ 0.3333) = F(0.3333) − F(−0.6667). The function F(x) =

dte t
x

2½
2
1 −

∞−
π∫ is called area under the normal curve and it is tabulated at the end

437

of this section for values x ≥ 0. By virtue of symmetry of the normal curve, we
find that F(−x) = 1 − F(x), therefore F(0.3333) − F(−0.6667) = F(0.3333) − 1 +
F(0.6667) = 0.6306 + 1 − 0.7475 = 0.3781 by reading the table and interpolating
as necessary.

It has been observed in practice that empirical data that are bell-shaped and
symmetric share some common properties. In particular, the empirical rule holds,
according to which, about 68% of all observations lie within one standard
deviation about the mean, about 95% of the observations are within two
standard deviations about the mean, and virtually all observations are within three
standard deviations about the mean. It is worth mentioning that this is not a
provable property, but an observed rule that often occurs in practice.

Making now stronger assumptions about the distribution in particular that it is not
only bell-shaped and symmetric, but normal, we are able to confirm the assertion
of the empirical rule. In particular, for a standard normal variable Z ~ N(0, 1) we
have F(0) = 0.5, F(1) = 0.8413, F(2) = 0.9773, and F(3) = 0.9987. Then P(−1≤ Z
≤ 1) = 2(0.8413 – 0.5) = 0.6826, P(−2≤ Z ≤ 2) = 2(0.9773 – 0.5) = 0.9546, and
P(−3 ≤ Z ≤ 3) = 2(0.9987 – 0.5) = 0.9974.

We will now consider events A, B, C, …, which are sets of outcomes of
experiments.

Definition D10: Given the events A and B, the union A ∪ B is the event consisting
of outcomes that are in A or in B or both. In contrast, the intersection A ∩ B is the
event that consists of outcomes that are in both A and B.

Theorem D6 (The addition law for probabilities): For any events A and B, we
have P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

Example D8: Recall Example D4, in which X ~ Po(λ=1.3). Furthermore, let A =
{X = 0 or 1} and B = {1 or 2}. Then A ∪ B = {X = 0, 1, or 2}, while A ∩ B =
{X = 1}. We then find P(A) = p(0) + p(1) = 0.6268, P(B) = p(1) + p(2) = 0.5846,
P(A ∪ B) p(0) + p(1) + p(2) = 0.8571, P(A ∩ B) = p(1) = 0.3543. In accordance
with the theorem, we find that P(A) + P(B) − P(A ∩ B) = 0.6268 + 0.5846 −
0.8571 = P(A ∪ B).

Definition D11: The sets A and B are said to be collectively exhaustive, if their
union A ∪ B includes all possible outcomes of an experiment. The two sets are
called mutually exclusive, if their intersection is empty. The complement A of a
set A (sometimes also written as ¬A) is the set of all possible outcomes not in A.

Appendix D Probability and Statistics

Appendix D Probability and Statistics 438

As far as probabilities are concerned, P(A) = 1 − P(A).

The addition low for probabilities can be generalized. For instance, for mutually
exclusive sets A1, A2, … Am, we obtain P(A1 ∪ A2 ∪ …∪ Am) = P(A1) + P(A2) + …
+ P(Am). To establish a multiplication law for probabilities, we need the following

Definition D12: For any events A and B with P(B) ≠ 0, the conditional probability
of A given B is

 P(A|B) =
)(

)(
BP

BAP ∩ .

Example D9: Consider an experiment, in which the random variable X denotes
that at most two heads come up in three tosses of a fair coin, i.e., X ≤ 2, and define
B as an event that sees at least one head in three tosses of a fair coin, i.e. X ≥ 1.
Then A ∩ B = {X = 1 or 2}, so that P(A ∩ B) = 4

3
8
3

8
3 =+ and P(B) =

8
7

4
1

8
3

8
3 =++ . Therefore, P(A|B) =

8
7

4
3

 = 7
6 ≈ 0.8571.

Theorem D7 (The multiplication law for probabilities): For any events A and B,
P(A ∩ B) = P(A|B) P(B).

Note that if P(B) = 0, then P(A|B) is not defined, but in this case the right-hand
side is interpreted as being zero.

Definition D13: The events A and B are said to be statistically independent, if
P(A ∩ B) = P(A) P(B).

Theorem D8 (Bayes’s theorem): Let the events A1, A2, …Am be mutually
exclusive and collectively exhaustive. Then for any event B with P(B) ≠ 0, we have

)()|(...)()|()()|(
)()|()|(

2211 mm

ii
i APABPAPABPAPABP

APABPBAP
+++

= , i=1,…, m

The theorem of Bayes (Thomas Bayes, English clergyman, 1702-1761) will be used
in Chapter 9 of this book. In the context of Bayes’s theorem, the unconditional
probabilities P(Ai) are called prior probabilities, while the conditional probabilities
P(Ai|B) are referred to as posterior probabilities.

439

Area under the normal curve

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
.00 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
.10 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5754
.20 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
.30 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
.40 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
.50 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
.60 .7258 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7518 .7549
.70 .7580 .7612 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
.80 .7881 .7910 .7939 .7967 .7996 .8023 .8051 .8079 .8106 .8133
.90 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9430 .9441
1.6 .9452 .9463 .9474 .9485 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9700 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9762 .9767
2.0 .9773 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9865 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9978 .9980 .9980 .9981
2.9 .9981 .9982 .9983 .9983 .9984 .9984 .9985 .9985 .9986 .9986
3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.5 .999767
4.0 .9999683
4.5 .99999660
5.0 .999999713

x

Appendix D Probability and Statistics

441

References

Axsäter S (2006) Inventory control (2nd ed.). Springer-Verlag, Berlin-Heidelberg-
New York

Blumenfeld D (2001) Operations research calculations handbook. CRC Press,

Boca Raton, FL

Budnick FS, Mojena R, Vollmann TE (1988) Principles of operations research for

management. (2nd ed.) Richard D. Irwin, Inc. Homewood, IL

Chan Y (2005) Location, transport and land-use: modelling spatial-temporal

information. Springer-Verlag, Berlin-Heidelberg-New York

Chhajed D, Lowe TJ (2008) (eds.) Building intuition: insights from basic

operations management models and principles. Springer Science + Business
Media LLC, New York, NY

Dantzig GB (1963) Linear programming and extensions. Princeton University

Press, Princeton, NJ

Dantzig GB, Thapa MN (1997) Linear programming: introduction. Springer,

New York, NY

Dantzig GB, Thapa MN (2004) Linear programming: theory and extensions.

Springer, New York, NY

Daskin MS (1995) Network and discrete location: models, algorithms, and

applications. J Wiley & Sons, Inc., New York, NY

Eiselt HA, Sandblom C-L (2000) Integer programming and network models.

Springer-Verlag, Berlin-Heidelberg-New York

Eiselt HA, Sandblom C-L (2004) Decision analysis, location models, and

Scheduling Problems. Springer-Verlag, Berlin-Heidelberg-New York

References 442

Eiselt HA, Sandblom C-L (2007) Linear programming and its applications.
Springer-Verlag, Berlin-Heidelberg-New York

Erlenkotter D (1990) Ford Whitman Harris and the economic order quantity

model. Operations Research 38: 937–946

Garner Garille S, Gass SI (1981) Stigler’s diet problem revisited. Operations

Research 49: 1–13

Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory

of NP-completeness. WH Freeman & Co., San Francisco, CA

Gass SI, Assad AA (2005) An annotated timeline of operations research: an

informal history. Kluwer Academic, New York, NY

Hillier FS, Lieberman GJ (2010) Introduction to operations research (9th ed),

McGraw-Hill/Irwin, New York, NY

Hillier FS, Hillier MS, Schmedders K, Stephens M (2008) Introduction to

management science: a modeling and case study approach with spreadsheets
(3rd ed.). McGraw-Hill/Irwin, Boston, MA

Lind D, Marchal W, Mason R, Gupta S, Kabadi S, Singh J (2004) Statistical

techniques in business and economics. First Canadian Edition, McGraw-Hill,
Toronto

Olson DL (1996) Decision aids for selection problems. Springer Series in

Operations Research, New York, NY

Råde L, Westergren B (1989) Beta: Mathematics handbook. (2nd ed.) CRC Press,

Boca Raton, FL

Walker RC (1999) Introduction to Mathematical Programming. Prentice Hall,

Upper Saddle River, NJ

Winston WL (2004) Operations research: applications and algorithms. (4th ed.)

Duxbury, Belmont, CA

Website that accompanies this book (includes additional material and problems):

http://www.springer.com/business/operations+research/book/978-3-642-10325-4

443

SUBJECT INDEX

A

ABC classification, 339–340
Active node, 156
Activity

critical, 263
duration, 258

Activity-on-arc representation. See AOA
representation

Activity-on-node representation. See AON
representation

AILP, 136
Algorithms, exact and heuristic, 417
All-integer linear programming problem. See

Allocation problem, 28–32
Anticipated payoffs, 311
AOA representation, 259
AON representation, 259–260
Arc, 177
Arrival rate, 382
Arrival time, 288
Aspiration level, 125
Assignment problems, 48–50

B

Backorders, 349–351
Backward pass, sweep, or recursion, 261–263
Basis point, 89
Bayes’s rule, 313
Bayes’s theorem, 322–323
Bin packing, 423
Bisection search, 234–235
Blending problems, 39–43
Bottleneck, 94
Branch-and-bound methods, 155–162
Breadth-first-search, 182
Break-even analysis, 8
Breakthrough, 181
Budget constraint, 29

C

Calling population, 380
Catchment areas, 420–421
Center-of-gravity, 237
Center problems, 230–235
Certainty equivalent, 327
Changes

objective function coefficients, 82–87
right-hand side values, 87–92
structural and parameter, 79

Channel, 380
Chinese postman problem, 201
Column

essential, 222
dominated, 222

Competitive location, 246
Complementary slackness conditions, 110
Conservation equations, 181
Constraint method, 122–124
Constraints, 5, 16

addition and deletion of, 81
binding, 63
conditional, 146
tight, 63

Contour lines, 65
Convex hull, 154
Convexity, 69
Corner point, 63

theorem, 67
Cost, holding or carrying, 342

ordering, 342
shortage, 342

Covering matrix, 221
Covering problems, 220–230

project acceleration, 266–272
Crashing, 267–272
Crash time, 267–272
Critical path, 266
Critical path method. See CPM

AILP

CPM, 258–266, 268–272, 277

Subject Index 444

Cut, minimal, 186
Cutting plane method, 154–155
Cutting stock problems, 142–146
Cycle, 178
Cycle length, 343, 399

D

Decision analysis, 305–328
Decision trees, 309–310, 321–324
Decomposition principle, 7
Degeneracy

dual, 74
primal, 76

Density function, 435
Depth-first search, 182
Destination, 43
Diet problem, 20–28, 146–148
Dijkstra method, 192–195
Discrete event simulation, 395
Distribution

exponential, 435
Gaussian, 435
normal, 435
Poisson, 435

Divisibility, 14–15
Duality, 105–112
Dual problem

setting up, 106–107
relations to primal problem, 107–112

Due time, 288
Dynamic programming, 3

E

Earliest possible finishing times. See EF
Earliest possible starting times. See ES
Economic order quantity. See EOQ
EDD algorithm, 292
Edge, 177
EF, 260–261
Efficiency, 325
Efficient point, 120
Either-or constraints, 146
Empirical rule, 437
Employee scheduling, 32–35
EMV, 313–319
EOQ, 343–346
EPII, 325
EPPI, 320
“Equity” objectives, 245
ES, 260–261
Euler, 177, 200
Euclidean distance, 218
Event, 433
EVPI, 319–320

EVSI, 325
Excess variable, 17
Expected monetary value. See EMV
Expected payoff with imperfect information.

See EPII
Expected payoff with perfect information. See

EPPI
Expected value, definition, 435
Expected value of imperfect (or sample)

information. See EVSI
Expected value of perfect information. See

EVPI
Extreme points, 63

number of, 69

F

Facilities, extensive, 247

undesirable, 244–245
Feasible direction methods, 69
Feasible

set, 62
solution, nonexistence, of 70–72

Feasibility, 7
First fit algorithm, 423–424
Fixed charges, 150–151
Flow, pattern and value, 179

balancing equations, 181
Flow shop, 288, 298
Flow time, 288

mean, 289
Floyd-Warshall method, 195–198
Forward pass, sweep, or recursion, 260

G

Games against nature, 306
Gantt chart, 272–275, 291
Gaussian elimination, 430–431
Gini index, 245–246
Goal programming, 124–128
Graph, directed, undirected, and mixed,

177
connected, 178

Graphical solution method, 60–70
Greedy method, 162–163, 204–205, 228–229,

241–242, 418
Guillotine cuts, 146

H

Halfplane, 61
Halfspace, 62
Heuristic methods, 162–165, 417–425
Hub location, 246
100% rule, 86–87, 92
Hyperplane, 61

Earliest due date algorithm. See EDD algorithm

Subject Index 445

I

Implementability, 7
Improvement cone, 118
Incremental technique, 69
Influence diagrams, 307–309
INFORMS, 1
Integer programming, 135–165
Integrality gap, absolute and relative, 140
Interarrival time, 382
Interchange heuristic, 163–165
Interval constraints, 72
Inventory models, 339–363
Inventory position, 341
Investment allocation, 28
Iso-profit lines, 65, 117–118

J

Jackson’s rule, 292
Jackson’s job shop algorithm, 299–300
Job shop, 288, 299
Johnson’s algorithm, 298–299
Just-in-time inventory system, 340

K

Kendall’s notation, 380–381
Kirchhoff node equations, 181
Knapsack problems, 140–142
Königsberg bridge problem, 2
Kruskal’s method, 199–200

L

Labeling methods, 181ff, 192ff
Land use problem, 148–149
LAPT algorithm, 297–298
Lateness, 289
Layout problems, 247
Lead time, 340, 346–349

stochastic, 357–362
Linear congruence methods, 399
Linearity, 15
Linear programming, 13ff

relaxation, 139
List scheduling methods, 294
Little’s formula, 383
Location-allocation heuristic, 242–244
Location models, 217–247
Location

continuous, 217
discrete, 218

Location set covering problem. See LSCP
Logical variables, 146
Longest alternate processing time algorithm.

See LAPT algorithm

Longest processing time first algorithm. See
LPT algorithm

Lorenz curve, 245
LPT algorithm, 294–295
LSCP, 221–227

M

Machine scheduling, 287–300

single, parallel, dedicated, 288
Makespan, 289
Management science, 1
Manhattan distance, 218
Markov chains, 367–376
Markovian property, 368
Marriage problem, 49
Material requirements planning, 340
Matrix, 427–428
Maximal covering location problem. See MCLP
Maximal flow problem, 179–186
Maximin rule, 311
MCDM, 115, 306
MCLP, 227–230
McNaughton’s algorithm, 295–296
Median problems, 235–244
Midsquare method, 398
MILP, 136
Min cost feasible flow problem, 186
Min-cut max flow theorem, 186
Minimax problems, 152
Mixed integer linear programming problem.

See MILP
Model, deterministic and stochastic, 14
Modeling process, 9ff
MODI method, 46
Multiattribute decision making, 115
Multicriteria decision making problems. See

MCDM
Multiobjective programming, 115–128
Multistart procedure, 205, 421

N

Nash equilibria, 246
Neighborhood search, 425
Network, 177

flows, 179–189
Newspaper boy problem, 313
Nodes, 177

decision, 324
event, 324
reachable, 178

Nonbreakthrough, 181
Nondominated frontier, 121
Nondominated point, 120
Noninferior point, 120
Normal duration, 266

Subject Index 446

O

Objective, 4

function, gradient of, 65
Open shop, 288, 297
Operations research

definition, 1
elements, 4
journals, 3

Opportunity costs, 93
Optimality, 7
Optimal solution

alternative, 74
economic analysis of, 92–100
unbounded, 73–74
unique, 68

Optimist’s rule, 312
Origin, 43
Overshipments, 47

P

Parameters, 6
Pareto-optimal point, 120
Path, 178
Payoff table, 306

Pessimistic rule, 311

Pollaczek-Khintchine formula, 384
Polytope, 63
Postoptimality analyses, 78–100
Precedence relations, 258
Preemption, 290
Probabilistic, 14
Probability

conditional, 438
definition, 433
distribution, 434
posterior, 322
prior, 322

Process, stationary, 369
Processing time, 288
Production–inventory models, 35–39
Production-lot size model, 355–357
Production planning, 18–20

PERT
Project networks, 257–280

Q

Quantity discounts, 352–355

R

Random numbers, true and pseudo, 397–398
Random variables, 434
Ready time, 288
Rectilinear distance, 218
Reduced costs, 93
Redundancy, 75–76
Regret criterion, 312
Release time, 288
Reorder point, 347–349
Reshipments, 47
Resource requirement graph, 273–274
Resources, scarce, 28
Review systems, continuous and periodic, 362
Risk, 28ff, 307, 313–315

aversion, neutral, seeking, 327
Robust optimization, 312
Routing, arc and node, 200
Row, dominated, 222

S

Satisficing, 125
Scalar, 427
Schedule length, 289
Selection problem, 305
Sensitivity analyses, 7, 78, 316–319

graphical, 78–92
Service

rate, 382
station, 380
time, 382

Shadow prices, 93, 94
Shop, open, flow, job, 288
Shortest path problems, 189–198
Shortest processing time algorithm. See SPT

algorithm
Simplex method, 69
Simulated annealing, 425
Simulation, deterministic and stochastic, 395
Simultaneous linear equations, 429–431
Sink, 179, 259
Smith’s ratio rule, 291
Solution

definition, 7
efficient, 120
nondominated, 120
noninferior, 120
pareto-optimal, 120

Source, 179, 259
Spanning tree, 198–200

minimal, 199–200
SPT algorithm, 290

Phase, construction and improvement,
 418

Program evaluation and review technique. See

PERT, 275–280

Subject Index 447

Standard deviation, 436
State

space, 367
absorbing, 368

Statistical independence, 438
Steady state solution, 372, 382
Stochastic processes, 367–376
Subtour elimination constraints, 203
Supply chain management, 340
Swap heuristic, 163–165, 229–230, 418

T

Tabu search, 425
Tardiness, 289
Target value, 125, 314–315
Tool crib, 388–389
Tradeoffs, 115
Traffic intensity, 382
Transient states, 382
Transition probabilities, 368
Transportation problems, 43–48
Transportation problem, (un-)balanced, 44
Traveling salesman problem, 201–205
Tree (graph), 178

U

Uncertainty, 307, 310–313
Undesirable facilities, 244–245
Utility theory, 327–328
Utilization rate. See traffic intensity

V

Variables, 6

addition and deletion of, 80–81
deviational, 125
excess, 17
slack, 17
surplus, 17

Variance, 436
Varignon frame, 239
Vector, 427–428
Vector optimization, 116–124
Vertex, 177
Vertex substitution method, 244
von Stackelberg solutions, 246–247

W

Wald’s rule, 311
Weighted shortest processing time algorithm.

Weighting method, 121–122
Weiszfeld method, 238–239
Workload balancing, 152–153
WSPT algorithm, 291

See WSPT algorithm

	3642103251
	Operations Research
	PREFACE
	CONTENTS
	1 Introduction to Operations Research
	1.1 The Nature and History of Operations Research
	1.2 The Main Elements of Operations Research
	1.3 The Modeling Process

	2 Linear Programming
	2.1 Introduction to Linear Programming
	2.2 Applications of Linear Programming
	2.2.1 Production Planning
	2.2.2 Diet Problems
	2.2.3 Allocation Problems
	2.2.4 Employee Scheduling
	2.2.5 Dynamic Production – Inventory Models
	2.2.6 Blending Problems
	2.2.7 Transportation and Assignment Problems
	Exercises

	2.3 Graphical Representation and Solution
	2.3.1 The Graphical Solution Method
	2.3.2 Special Cases of Linear Programming Problems
	Exercises

	2.4 Postoptimality Analyses
	2.4.1 Graphical Sensitivity Analyses
	2.4.2 Economic Analysis of an Optimal Solution
	Exercises

	2.5 Duality
	Exercises

	3 Multiobjective Programming
	3.1 Vector Optimization
	3.2 Solution Approaches to Vector Optimization Problems
	3.3 Goal Programming
	Exercises

	4 Integer Programming
	4.1 Definitions and Basic Concepts
	4.2 Applications of Integer Programming
	4.2.1 Cutting Stock Problems
	4.2.2 Diet Problems Revisited
	4.2.3 Land Use
	4.2.4 Modeling Fixed Charges
	4.2.5 Workload Balancing

	4.3 Solution Methods for Integer Programming Problems
	4.3.1 Cutting Plane Methods
	4.3.2 Branch-and-Bound Methods
	4.3.3 Heuristic Methods
	Exercises

	5 Network Models
	5.1 Definitions and Conventions
	5.2 Network Flow Problems
	5.3 Shortest Path Problems
	5.4 Spanning Tree Problems
	5.5 Routing Problems
	Exercises

	6 Location Models
	6.1 The Major Elements of Location Problems
	6.2 Covering Problems
	6.2.1 The Location Set Covering Problem
	6.2.2 The Maximal Covering Location Problem

	6.3 Center Problems
	6.3.1 1-Center Problems
	6.3.2 p-Center Problems

	6.4 Median Problems
	6.4.1 Minisum Problems in the Plane
	6.4.2 Minisum Problems in Networks

	6.5 Other Location Problems
	Exercises

	7 Project Networks
	7.1 The Critical Path Method
	7.2 Project Acceleration
	7.3 Project Planning with Resources
	7.4 The PERT Method
	Exercises

	8 Machine Scheduling
	8.1 Basic Concepts of Machine Scheduling
	8.2 Single Machine Scheduling
	8.3 Parallel Machine Scheduling
	8.4 Dedicated Machine Scheduling
	Exercises

	9 Decision Analysis
	9.1 Introduction to Decision Analysis
	9.2 Visualizations of Decision Problems
	9.3 Decision Rules Under Uncertainty and Risk
	9.4 Sensitivity Analyses
	9.5 Decision Trees and the Value of Information
	9.6 Utility Theory
	Exercises

	10 Inventory Models
	10.1 Basic Concepts in Inventory Planning
	10.2 The Economic Order Quantity (EOQ) Model
	10.3 The Economic Order Quantity with Positive Lead Time
	10.4 The Economic Order Quantity with Backorders
	10.5 The Economic Order Quantity with Quantity Discounts
	10.6 The Production Lot Size Model
	10.7 The Economic Order Quantity with Stochastic Lead Time Demand
	10.7.1 A Model that Optimizes the Reorder Point
	10.7.2 A Stochastic Model with Simultaneous Computation of Order Quantity and Reorder Point

	10.8 Extensions of the Basic Inventory Models
	Exercises

	11 Stochastic Processes and Markov Chains
	11.1 Basic Ideas and Concepts
	11.2 Steady-State Solutions
	11.3 Decision Making with Markov Chains
	Exercises

	12 Waiting Line Models
	12.1 Basic Queuing Models
	12.2 Optimization in Queuing
	Exercises

	13 Simulation
	13.1 Introduction to Simulation
	13.2 Random Numbers and their Generation
	13.3 Examples of Simulations
	13.3.1 Simulation of a Waiting Line System
	13.3.2 Simulation of an Inventory System
	Exercises

	Appendix A Heuristic Algorithms
	Appendix B Vectors and Matrices
	Appendix C Systems of Simultaneous Linear Equations
	Appendix D Probability and Statistics
	References
	SUBJECT INDEX

