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PREFACE 

Since the 1960s, operations research (or, alternatively, management science) has 
become an indispensable tool in scientific management. In simple words, its goal 
on the strategic and tactical levels is to aid in decision making and, on the operational 
level, automate decision making. Its tools are algorithms, procedures that create and 
improve solutions to a point at which optimal or, at least, satisfactory solutions have 
been found.  
 
While many texts on the subject emphasize methods, the special focus of this 
book is on the applications of operations research in practice. Typically, a topic is 
introduced by means of a description of its applications, a model is formulated and 
its solution is presented. Then the solution is discussed and its implications for 
decision making are outlined. We have attempted to maximize the understanding 
of the topics by using intuitive reasoning while keeping mathematical notation and 
the description of techniques to a minimum. The exercises are designed to fully 
explore the material covered in the chapters, without resorting to mind-numbing 
repetitions and trivialization.  
 
The book is designed for (typically second year) students of business management 
and industrial engineering. With the appropriate deletions, the material can be 
used for a one-semester course in the subject, while the complete material will be 
sufficient for a full-year course. The reasoning and explanations are intuitive 
throughout. Each algorithm is followed by a numerical example that shows in 
detail how the method progresses. After presenting the applications and the 
techniques, each chapter ends with a number of fully solved examples that review 
the concepts covered in the chapter. Some more technical material has been taken 
out and is available at the publisher’s website.  
 
It is our pleasure to thank all the people who have made this volume possible. 
Special thanks are due to Dr. Müller of Springer Publishers, who first suggested 
this volume at one of our meetings. It has been a very pleasurable experience to 
work with Dr. Müller during the last quarter century on various projects. Thanks 
are also due to Mrs. Milewski for her technical advice and timely replies to our 
queries. We would also like to express our gratitude to our assistants #21 (a.k.a. 
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Courtney Palmer), as well as Jun Zhou and Eric Giacomin for their help in 
producing the figures, and to the Buddha Man for his meticulous typing. Without 
the help of all of these individuals, this book would not have seen the light of day. 
We like to thank all of them.  
 

H.A. Eiselt 
C.-L. Sandblom 
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In its first section, this introductory chapter first introduces operations research as 
a discipline. It defines its function and then traces its roots to its beginnings. The 
second section highlights some of the main elements of operations research and 
discusses a number of potential difficulties and pitfalls. Finally, the third section 
of this chapter suggests an eight-step procedure for the modeling process.  

1.1   The Nature and History of Operations Research 
The subject matter, operations research or management science (even though 
there may be philosophical differences, we use the two terms interchangeably), 
has been defined by many researchers in the field. Definitions range from “a 
scientific approach to decision making,” to “the use of quantitative tools for 
systems that originate from real life,” “scientific decision making,” and others. In 
the mid-1970s, the Operations Research Society of America (then one of the two 
large professional societies in the field) defined the subject matter as follows:  
 

“Operations Research is concerned with scientifically deciding 
how to best design and operate man-machine systems usually 
under conditions requiring the allocation of scarce resources.” 

 
Today, the Institute for Operations Research and Management Science (INFORMS) 
markets operations research as the “science of better.” What all of this essentially 
means is that the science uses indeed quantitative techniques to make and prepare 
decisions, by determining the most efficient way to act under given circumstances. 
In other words, rather than throwing large amounts of resources (such as money) 
at a problem, operations research will determine ways to do things more efficiently.  
 
Rather than being restricted to being a toolkit for quantitative planners, operations 
research is much more: it is a way of thinking that does not just “do things,” but, 
during each step of the  way, attempts to do them more efficiently: the waitress, who 
 
 

1   Introduction to Operations Research 
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provides coffee refills along the way rather than making special trips; the 
personnel manager who (re-) assigns employees so as to either minimize the 
number of employees needed, or to schedule employees to shifts, so as to make 
them more pleasant; the municipal planner, who incorporates the typically widely 
diverging goals and objectives of multiple constituents or stakeholders when 
locating a new sewage treatment plants; the project manager, who has to 
coordinate many different and independent activities. All of these individuals can 
benefit from the large variety of tools available.  
 

operations research in practice. One of those obstacles is awareness. If managers 

quantitative analysis, it does not matter at all, whether or not he can perform the 
analyses himself: there are plenty of specialists out there to do the job. The first 
step, though, requires someone to simply realize that operations research could be 

reason why we have written this book with a strong focus on applications.  
 

 

mathematics or statistics: Diophantine’s discourses on integer solutions to linear 
equations in the third century AD are related to integer programming, Euler’s 
work on the Königsberg bridge problem in 1736 is the first occurrence of graph 
theory; Pascal, Bernoulli, and Bayes have made major advances in statistics. All 
results found by these and many other scientists have put down a mathematical and 
statistical foundation, on which operations research (and many other disciplines) 
can rest comfortably.  
 
While many authors credit the advances in the military in World War II to the 
birth of operations research, we believe that the groundwork was laid considerably 
earlier. F.W. Taylor is often called the “father of scientific management,” when he 
performed his time studies in 1881. His main question was “what is the best way 
to do a job,” which could very well be the motto of operations research. Henry L. 
Gantt introduced bar charts, “Gantt charts” in today’s parlance, for scheduling 
problems, and Agner Krarup Erlang introduced the discipline of queuing in 1909 
when working at the Copenhagen Telephone exchange. The final contribution in 
the early days was made by F.W. Harris in 1913, when he developed the “economic 
order quantity” for inventory management, a result that is so robust that it is,  
in one way or  another, used to this day. All of these  individuals  would today be 
 
 

When trying to find out where you are and where you are going, it is always a good
idea to determine where you come from. The next few paragraphs will highlight  

There are a number of obstacles that stand in the way of the extensive use of 

some of the main milestones to operations research. Clearly, space limitations 

What are usually considered to be early contributions, are usually advances in 

applied to a problem to a problem that presently requires a solution. This is the 

history of operations research by Gass and Assad (2005).  
require us to cut many corners. We would like to refer to the eminently readable 

were to be able to realize that a problem may possibly benefit from the use of a 
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referred to as industrial engineers, as their main concern was the smooth functioning 
of industrial processes.  
 
It is hardly surprising that these early contributions occurred at a time that saw 
more complex industrial processes (the assembly line is but one example), a 
tremendous increase in the division of labor, and with it the need for coordination 
of activities.  
 
Later notable work was performed by John von Neumann in the 1920s, when he 
introduced the theory of games to the world. Leontief’s input – output models and 
Kantorovich’s mathematical planning models for the Soviet economy were main 
contributions in the 1930s. The 1940s saw Hitchcock’s transportation problem, 
Stigler’s diet planning, and the aforementioned advances based on military 
applications.  
 
However, the main event occurred in August of 1947 when George Bernard 

Arguably, no other event has influenced the science of operations research more 

extended von Neumann’s results in game theory and proved some main theorems, 

optimality conditions for nonlinear optimization problems in 1951 (which was 
later discovered to be a reinvention of work by Karush in 1939). The year 1951 
saw not only the first full publication of Dantzig’s simplex method in the open 
literature, but also the first computer-based simplex method. As a matter of fact, 
the advances in computing hardware and software had a tremendous impact on the 
advances of operations research. Without the progress made in computer sciences, 
operations research would not have been able to gain the status it has today.  
 
New results keep pouring in. Starting in 1950, the Operational Research Quarterly 
(later renamed the Journal of the Operational Research Society) was the first 
journal in the field published in the United Kingdom. The first American journal 
followed in 1952 with the Journal of the Operations Research Society of America. 
Today, many countries have their own operations research journals. To name a 
few, there are the European Journal of Operational Research (the largest operations 
research journal by size, about 8,000 pages per year), INFOR (Canada), the OR 
Spectrum (Germany), TOP (Spain), the Central European Journal of Operations 
Research (Austria), the Yugoslav Journal of Operations Research, Opsearch 
(India), Pesquisa Operacional (Brazil), and many more. In addition, there are many 
specialist journals, such as Computers & Operations Research, Mathematical 
Programming, Management Science, Naval Research Logistics, and many others.  
 
And wherever there is a national journal, more often than not there is a national 
society behind  it. Each  of these societies  have an  annual meeting, where researchers  
 
 

Dantzig developed what is now called the simplex method for linear programming. 

than this development. Other main developments are due to John F. Nash, who 

Bellman’s dynamic programming principle in 1950, and Kuhn and Tucker’s 
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present their latest findings. Again, in addition to these national conferences, there 
are meetings devoted to special topics such as optimization, logistics, supply 
chains, location, transportation, scheduling, and many more. It should be apparent 
by now that the number of contributions can only be described as vast.  

1.2   The Main Elements of Operations Research 
This section will briefly explain the main elements of operations research. Essentially, 
operations research is concerned with quantitative models and their solution. This 
is actually, where some people make the distinction: they claim that while 
management science is mostly concerned with models, operations research deals 
mostly with solution methods. The model that we build for a given scenario is a 
(hopefully close) picture of reality. A model will never include all components a 
real situation does: features such as some of the choice criteria used by consumers 
are not fully observable and will have to be ignored, decision makers’ risk aversion, 
while it may be included to some degree in a decision making model, is not 
completely explainable and will have to be estimated or ignored. It is very important 
to distinguish between the original real-life problem, and the mathematical model 
that is built. The step from the problem to the model entails gains and losses: while 
we are losing some information, we gain solvability and gain insight into the 
structure of the problem. As one of the founders of the science once wrote “the 
purpose of mathematical programming [a subtopic of operations research, eds.] is 
insight, not numbers.”  
 
The next issue to be decided upon is the level of aggregation. In conjunction with 
the decision maker the modeler will have to decide what to include in the model 
and what to leave out. Comprehensive models are nice and avoid problems with 
suboptimal solutions, but they are large, labor-intensive, and thus expensive. It 
depends on the specific situation what level is appropriate. The aforementioned 
suboptimal solutions may occur, if we were to optimize for only one department 
of a firm. For instance, the manager of a shipping department or a large firm that 
manufactured construction equipment consistently hired employees through a 
temp agency, even though this was much more expensive than hiring people 
directly. However, temporary employees were paid by headquarters, while the pay 
for regular employees came directly out of the manager’s budget. Thus, hiring 
temporary employees was optimal for the manager, even though it cost the firm 
much more money.  
 
The usual way to describe situations for operations research models is to first list 
everything we want to do, and everything that we have to do and respect. What we 
want to achieve (high profit, high levels of customer satisfaction, a large market 
share, low production costs, or similar) is summarized in our objective(s). On the 
other hand, all requirements (such as budget limitations, limitations of a  firm’s 
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capabilities with respect to manpower, knowledge base, available machinery, and 
others) are summarized in the constraints. While in most operations research 
tools, objectives and constraints are clearly separated, this is not always true in 
reality. Consider, for instance, a simple budget constraint. It will state that the 
amount of money we can spend in, say, a month cannot exceed the amount of 
money that we have. We can write this as a formal constraint, as long as we are 
aware of the fact that a constraint in operations research is absolute. This means 
that whatever the solution technique is, it will not consider any solution that 
violates this constraint. In other words, it will consider the constraint as hard. In 
practice, however, the constraint may not be that hard. We could, for instance, 
take out a loan and temporarily spend more than we have. While this is necessarily 
a temporary measure and we would like to avoid it, it is possible in practice. 
Written as a constraint, however, it is not possible. There are techniques that 
address this problem by formulating the models differently, allowing short-term 
deficits, but trying to minimize this. Notice that all of a sudden what we used to 
clearly consider as a constraint has become part of the objective function.  
 
Another important issue to deal with is the issue of measurement. While many of 
the features of a model are easily measurable (take, for instance, profits, travel 
time, processing times, the length and width of a stretch of road to be paved), 
others may not be. Particularly in models regarding the public sector, it is not 
always clear how to measure features of the model. For instance, when locating a 
desirable public facility, how do we measure accessibility of the location? We 
may express this feature in terms of average distance to the potential clients of this 
facility, or we may want to locate the facility so as to have it located within a 
certain distance of a majority of potential customers, or any similar measure. A 
particular difficulty is presented when dealing with models that include such 
nebulous concepts as “fairness.” Take the issue of a simple speeding ticket. The 
penalty is supposed to hurt the speeder and thus make an impression. An obvious 
constraint is that the law must treat everybody equally. So whoever speeds will 
receive the same penalty, say $100. Such a penalty will, of course, hurt people 
with a small annual income a lot more than somebody who makes several hundred 
thousand dollars a year. Thus, while the penalty is equal, the pain is not. 
Alternatively, one could assess the penalty as, say 1% of the monthly net income, 
thus trying to distribute the pain evenly (it still does not, as a $10 penalty for 
somebody with a $1,000 monthly net income hurts more than $1,000 penalty for 
somebody with a $100,000 monthly income). This leads to ridiculous penalties, 
such as $50,000 for speeding and, in the final analysis, is nonsensical as it negates 
any incentive to earn more, as prices, fines, and other expenses are adjusted 
accordingly. What we want to address here is simply the difficult expressing some 
features of a model quantitatively.  
 
Typically in many problems, public and private, the objective is ill-defined or 
fuzzy. This will require the decision maker to formulate a surrogate or proxy 
expression instead. For instance, the measurable criterion   “profit” may be a proxy 
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for the “well-being of the company.” Again, moving from the true objective to a 
proxy involves gains and losses: we lose as the proxy expression does not do 
exactly what we want our objective to do, but we gain by obtaining something that 
is measurable and thus can be included in a quantitative model. The choice of a 
suitable proxy expression is crucial for the applicability of the model.  
 
Each operations research model will involve parameters and variables. While 
parameters are numbers that we know (or can determine), but that are not under 
our control, variables are numbers that we do not know (but would like to know), 
and which are under our direct jurisdiction. Consider a few examples. The 
estimated demand for a product is a parameter, while the number of units that we 
make is a variable. The amount of beef we put in each can of chili is under our 
jurisdiction and thus a variable, while the nutritional content of beans in the can is 
not under our control and thus a parameter. The type of truck we use for a 
shipment and the route the truck takes are variables, while the location of our 
customer’s warehouse is a parameter. The purpose of the solution method is then 
to determine the actual values of the variables, i.e., determine the production level, 
the quantity of beef in a can, and the type of truck and route that a truck takes.  
 
As far as solution techniques are concerned, we distinguish between exact and 
heuristic solution techniques. An exact technique will find a solution that respects 
all constraints included in the model and optimizes the objective specified by the 
decision maker. Note that the solution the exact solution method will determine is 
actually optimal for the model: if the model is only a very rough approximation of 
the problem, the solution that is labeled “optimal” will not be very useful to the 
decision maker, as it is optimal only for the model, not the problem. Solutions 
obtained by heuristic or approximation methods are typically much easier to find, 
but, as the name implies, are not necessarily the best (or even very good for that 
matter). For more details, readers are referred to Appendix A. Solution techniques 
come in two versions: they are either closed-form solutions or iterative algorithms. 
A closed form solution is essentially a formula or a set of formulas: we input the 
parameters and obtain values for our variables. Few models exist for which 
closed-form solutions exist. Most models require the use of iterative algorithms. 
(As an aside, the name algorithm derives from the Persian mathematician Al-
Khwarizmi, who worked and published in algebra around 820 AD). An iterative 
algorithm starts with a solution, possibly a guess, the solution that is presently 
employed, or some other solution, and then performs a test that checks whether or 
not the solution satisfies certain criteria (such as feasibility or optimality). If the 
solution passes the test, it is accepted and the algorithm terminates, otherwise, the 
present solution is modified by the algorithm, a new solution (typically an 
improved guess) is generated, which is then again tested, and further improved, if 
necessary. Each loop that involves the test and an improvement is an iteration. 
Many modern large-scale problems require thousands, if not millions, of iterations 
to find a solution. This explains why the use of high-speed digital computers is 

 
crucial for the solution of today’s models.  
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The above discussion has made frequent mention of the concept of solution. It is 
important to realize that a solution is a set of instructions. In production planning, 
it will tell the decision maker what quantities to produce, in diet planning it will 
tell the chefs what meals to prepare (e.g., in seniors’ residences), and in 
transportation planning it will tell the dispatcher which trucks and which drivers to 
dispatch where, and with what loads. Associated with each solution is a value of 
the objective function, a value that tells the planner how much money will be 
made if a certain production plan is adopted, how much it will cost, if a certain 
meal schedule is followed, and what the consequences are if we schedule trucks 
and drivers in a certain way.  
 
There are four major concerns when applying any operations research model. 
They are  
 
(1) feasibility (can we do this?),  
(2) optimality (is this the best we can do with what we have?) 
(3) sensitivity (what happens, if some of the input parameters or conditions 

beyond our control change), and  
(4) implementability (is the solution that we have obtained something that we can 

actually do?) 
 
We will explain the first three phases in a very simple numerical  
 
Example: A company faces a demand for its product. The magnitude of the 
demand is a function of the price, and both, the price p and the quantity q, are to 
be set by the company. It is known that the price-quantity relation is p = 10 − 
0.01q, meaning that starting at $10 per unit, each unit increase of the demand 
decreases the price all customers are willing to pay for the product by 1¢. It costs 
$5 to make one unit, and general quantity-independent costs of $500 also apply. 
The company wants to maximize its profit.  
 
In order to formulate the problem, we will employ a very simple version of what 
is known as the decomposition principle. Starting with a large component of the 
problem that we cannot model per se, it subdivides this component into smaller 
and smaller pieces, until we are able to find expressions for it. In this example, 
“profit” is such a component. We first decompose profit by using its definition as 
revenue minus costs. Now we have to deal with these two components separately. 
First take revenue. Again, we decompose the entity by using the definition 
“revenue equals price times quantity,” which leaves us with these two expressions. 
At this point, we are able to deal with them directly, as we know that the quantity 
is q and the price is p = 10 − 0.01q. Now consider costs. Decomposing costs, we 
obtain fixed and variable costs as its two components. The fixed costs in this 
example are known to be $500, while the variable costs are $5 per unit for a total 
of 5q. We can then put together the profit function (the composition phase) as  
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To facilitate our discussion, Figure 1.1 provides a plot of the profit function.  
 

 
 

Figure 1.1  
 

We can now explain the first three major concerns by using this example. First 
consider feasibility. Let us assume that the planner considers it mandatory that we 
are not making losses and that any solution that provides a loss is not feasible. 
(This is not generally true: losses obviously occur and are generally unrelated to 
conditions of feasibility). This leaves us with a break-even analysis, i.e., an 
analysis that determines the types of production plans that generate a nonnegative 
profit. This condition is   = 0, and in Figure 1.1 we are looking for the quantities 
at which the profit function intersects the abscissa. In our example, this occurs at 
the quantities q = 138.1966 (the lowest quantity that generates a nonnegative 
profit) and q = 361.8034, the highest quantity that generates nonnegative profits. 
The prices at these two points are p = 8.6180 and 6.3820, respectively.  
 
Next consider the issue of optimality. The quantity that generates the maximal 
profit is the highest point of the profit curve and it occurs at the quantity q = 250. 
The unit price of our product at that point equals p = $7.50 and the profit is $125.  
 
Finally, let us examine what happens if some of the input parameters change. 
What if the fixed costs are only $400? First we note that the optimal solution is 
still at  q   = 250. As a matter of fact, we are observing a general phenomenon: the 
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optimal solution will not change if we add or subtract and fixed amount to our 
from the objective function. The profit related to the optimal solution will, of 
course change: as the fixed costs have decreased by $100, the profit at optimum 
has increased by $100. The situation is different for the break-even points. They 
are now at q = 100 and 400 with the associated prices of p = 9 and 6, respectively. 
Another sensitivity analysis could ask what happens if the variable costs in the 
original model (we don’t consider compounded changes) were to increase from $5 
to $6. The new profit function will again be a parabola, but no point of it will be 
on or above the abscissa. In other words, no point with positive profit exists. The 
maximal profit is achieved at a quantity of q  = 200, where we sustain a loss of  

 = $100. As a matter of fact, this is a good example that the best possible 
solution (the maximal profit) is still not very good, as it does not provide a 
positive profit. (According to our definition of feasibility, it would not even be 
feasible. Actually, in this instance there are no feasible solutions).  
 
The last sensitivity analysis—again starting from the original situation—asks what 
happens if the price-quantity relation changes to p = 10 − .005q. Again, another 
parabola is the profit function, and the break-even points are now at the quantities 
q = 112.70 and 887.30, while optimality is achieved at a quantity of q  = 500 with 
an associated profit of  = $750. In this last case, we could have guessed what 
would happen: as the price decreases more slowly than in the original model, there 
are more chances to make a positive profit, so that the break-even points will be 
farther apart and the optimum of the function is higher. In general, it is always a good 
idea to compare the results provided by a mathematical solver with those the 
decision maker or analyst comes up with intuitively. If optimized solution and 
intuition do not match, it is important to carefully check the model, as one of them 
will be wrong. Which one depends on the experience of the person involved and 
the care with which the model was formulated.  

1.3   The Modeling Process  
This section will outline some of the major steps that will be followed when 
formulating, solving, and implementing an operations research model. Clearly, 
each situation has its own idiosyncrasies and difficulties, but some general ideas 
are common to all of them. We will present the main eight steps below.  
 
Step 1: Problem recognition. In order to build a successful model, the first step is 
for someone to realize that it is not “business as usual,” and that it is simply no 
longer good  enough to  follow the old “we have always done it like that” and, its 
 
 
 
 
 

P
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sister expression in crime, “we have never done it like that.” Problem recognition 
does not only include the realization that things are not what they were thought to 
be, but also what the potential for improvement actually is. The decision maker 
has to keep in mind that building a model is a lengthy and expensive process that 
is only worth undertaking if there appears to be significant potential for 
improvement. This step takes a manager who is fully familiar with the actual 
situation in the firm and, at the very least, somewhat familiar with what operations 
research can do.  
 
Step 2: Authorization to model. This step will require the analyst, who is in charge 
of model development to convince management of the need to produce a model 
for (a part of) the operation. This “sale” of potential benefits to those who 
eventually have to pay for it is obviously crucial. It requires very good 
communication skills on the part of the analyst. Often, analysts make the mistake 
to get lost in their technical lingo, which not only annoys decision makers, but 
greatly reduces the chances of obtaining permission to model. Avoiding this pitfall 
requires also that the analyst clearly understands the mindset and way of thinking 
of the decision makers.  
 
Step 3: Model building and data collection: This is a step, in which this book can 
help with the model building. The first step of the modeler has to decide on the 
scope and the level of aggregation. Is it necessary to get into small details of the 
operations, or it is sufficient to adopt a macro view? This decision will have to  
be made in conjunction with the decision maker(s) and maybe has already been 
done in the previous step before the model building idea was developed and 
presented. Finding out what is actually important may take quite a while, but 
spending some time on it is definitely no waste. Once the level of aggregation has 
been decided upon, the modeler will determine who the relevant stakeholders are 
and what their objectives are. This is the time to decide on appropriate surrogate 
criteria. In addition to find out about from management what their objectives are, 
it will be necessary to learn about the constraints from the shop floor. This type of 
information is typically unknown in the corner offices, and it will be of 
tremendous benefit to the modeler and his model if such information is collected 
directly at the source. Some analysts went to great lengths to accomplish this. 
Gene Woolsey wrote about his modeling and data collection adventures in the 
practice journal Interfaces with stories that involved him getting a job as a worker 
in the unit he was supposed to model and seeing first hand what the actual 
problems were. In addition to obtaining much better data than those are typically 
available in offices, he also got to know the workers and their concerns. This 
would come as a significant benefit later on when the results of his modeling 
efforts would be implemented: the suggested solution would take these concerns 
into consideration and greatly enhance chances of the adoption of the changes, 
rather than resistance and passive boycotts of any suggested change. Once the data 
have been collected, the formal model will be built. This typically starts with a 
listing of the  assumptions and  simplifications that are made.  This is important for 
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the decision maker later on, when the time comes to accept or reject the 
recommendations made by the model. It is a lot better for the decision maker to 
see right away that a model is not really applicable and not implement it, rather 
than to implement it and having to live with the (dire) consequences later, just 
because some assumptions did not apply in the given situation. Clearly, the 
assumptions should be checked periodically with the decision maker, so as to 
avoid wasting time. Then the decision variables are defined based on what the 
decision maker(s) would like to know.  
 
Step 4: Model solution. This is a step in which the modeler’s technical knowledge 
is required. Here, we use the appropriate computer software, and document the 
model properly so as to allow future users to more or less easily take over and use 
the model again without having to go through the entire process again. There are a 
few pitfalls. One of them is to use some software “just because we already have 
it.” If the software does what we need, then it is perfectly all right to use it, but 
changing the model to suit existing software is a highly questionable procedure. 
Analysts have to keep in mind that a few thousand dollars for needed software are 
very little compared to the costs incurred by the model-building team and the 
potential benefit. Another issue to keep in mind is that modeling and model 
solution nowadays—in contrast to the situation some decades ago—is an interactive 
process. In “the olden days,” computational power was severely limited and 
expensive. As a result, modelers tried to develop the entire model as well as 
possible, then had it solved and, when it came back with errors (which it always 
did), fixed the errors and were done. This required a lot of foresight, a lot of 
thought, and long and arduous searches for the errors. Nowadays, computing 
power is ubiquitous and cheap. A result is that modeling is typically done in an 
interactive fashion. A fairly small part of the model is developed first, then solved, 
and if there are any errors, they will be easy to find, as the model is still small. 
Once the analyst is happy with the modeled part, additional parts are added. The 
revised model is solved, and again, error detection is easy as anything wrong must 
be related to the new part. This process goes back and forth, until the entire model 
is developed.  
 
Step 5: Model validation. In this step, the analyst will determine whether or not 
the solution to the model that was obtained in the previous step does make sense 
in the context of the real problem. If this is not the case, the model is not (yet) a 
faithful representation of reality and it must be changed. In such a case, the 
process will shuttle between Steps 3-5. It is always a good idea to determine if the 
solution leads to a major change as compared to the present solution (if any). If 
this is the case, it is rather unlikely that the new solution will be adopted by the 
decision makers. It is also useful at this stage to include a number of sensitivity 
analyses in the package prepared for the next step.  
 
Step 6: Model presentation. In this step, the analyst(s) will “sell” the solution  
to  management.  In trying to convince them to do so, it helps a great deal if the  
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assumptions are clearly stated, the solution is clearly presented (and at least 
tentatively checked against reality in the previous step), and some alternative 
scenarios are also presented. As a matter of fact, in all cases other than the lowest 
operational level, on which solutions are more or less automatically implemented, 
there are decision makers, whose job is to make decisions, not to accept or reject 
decisions from analysts. This means that the main function of operations research 
is not so much decision making, but preparing the decision. Presenting some 
workable decision alternatives is usually a good idea. This is a crucial step, which 
does not only decide about the future of the model, but possibly the future of  
the modelers themselves: no firm will keep employees whom it does not see 
contributing to the benefit of the organization, and producing models that are not 
used is no benefit. As a matter of fact, among the models that decision makers 
actually asked to be built, only a surprisingly small portion were ever implemented. 
This is highly detrimental to the firm and their employees in particular and the 
profession as a whole.  
 
Step 7: Implementation. Given the acceptance by the decision makers (most likely 
with some modifications of the solution), the task is now to translate the model 
recommendations into practice. At this point it will help a great deal if those who 
have to live with the recommendation and the changes—the employees and 
workers—will accept the solution rather than sabotage it. If the modeler created 
goodwill in Step 3 of this procedure, listened to the concerns of those involved, 
and included them in the model as far as possible, chances of acceptance are much 
enhanced. In addition, as the solution of the model is implemented, it is crucial to 
monitor the implementation each step of the way, so that it is possible to adjust the 
solution in case some unexpected changes occur.  
 
Step 8: Monitoring and Control. This phase of the process is largely overlooked. 
It includes the timely comparison of the plan and reality. Reality changes, and the 
plan should be adjusted accordingly. As the famous saying in the United States 
Marine Corps goes, “improvise, adapt, overcome.” Furthermore, the more 
frequently adjustments can and are being made, the less dramatic they will have to 
be. As an example, assume that an individual has planned his budget for the 
upcoming year. Suppose that $1,200 have been set aside for the purpose of 
entertainment. If the individual monitors the situation monthly, he may find by the 
end of January that he has already spent $500 on entertainment purposes. This 
leaves $700 for the remainder of the year, or $63.64 for each of the remaining 
eleven months. This is considerably less than the $100 that were planned for each 
month, but is still not too dramatic. Monitoring only each second month, the 
individual has not noticed that he spends way too much money and behaves in 
February in the same way as in January by spending another $500. Checking the 
situation by the end of February, there are only $200 for each of the remaining 
months, or $20 for each months. This is a much more severe decrease from the 
originally planned $100 per month and will be much more difficult to adhere to.  
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2   Linear Programming 

This chapter will introduce linear programming, one of the most powerful tools in 
operations research. We first provide a short account of the history of the field, 
followed by a discussion of the main assumptions and some features of linear 
programming. Thus equipped, we then venture into some of the many applications 
that can be modeled with linear programming. This is followed by a discussion of 
the underlying graphical concepts and a discussion of the interpretation of the 
solution with many examples of sensitivity analyses. Each of the sections in this 
chapter is really a chapter in its own right. We have kept them under the umbrella 
of the chapter “Linear Programming” so as to emphasize that they belong together 
rather than being separate entities.  

2.1   Introduction to Linear Programming 
The purpose of this section is to provide a short introduction to linear programming 
problems. We first present a short historical account of the topic, followed by the 
main assumptions of linear programming problems, and finally some details about 
the optimization problems under discussion.  
 
As already discussed in Chapter 1, linear programming problems were first described 
by George Bernard Dantzig in 1947. His findings that included his “simplex method 
for linear programming” were presented in 1949 at a conference for research in 
economics, and some of the papers, including Dantzig’s work, were published in 
1951 in a volume edited by (later Nobel prize laureate) Tjalling C. Koopmans. 
Much work was done in the early years. The first programmed solution code based 
on Dantzig’s simplex method was already developed in 1951, many applications 
were first discussed, among them the blending of aviation gasolines and trim loss 
problems. The dual simplex method by Lemke and the Hungarian method for 
assignment problems were also described and published in the 1950s. In 1963, 
Dantzig’s book “Linear Programming and Extensions” was published, an “instant 
classic.” The year 1979 saw the publication of a paper by Khachian, whose “ellipsoid 
method” made quite a stir. However, while it has some remarkable theoretical 
properties, it failed to perform well in practice and is not in use nowadays. On the 
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other hand, Karmarkar’s interior point method, first described in 1984, has slowly 
made some inroads. To this day, though, Dantzig’s simplex method is the method 
of choice for the vast majority of all linear programming problems that are solved.  
 
In order to structure our discussion, first consider a general mathematical 
programming problem. It can be written as the problem  
 
 P: Max z = f(x) 
 s.t. g(x) R b,  
 
where P stands for problem (sometimes we have multiple problems under 
consideration, in which case we will write P1, P2, and so forth), f(x) is the 
objective function, which is to be maximized and z is the objective function value 
(e.g. profit, market share, sales, or cost) associated with the present solution x. 
This objective is to be optimized subject to (or s.t. for short) the constraints g(x) R 
b. We will come to them and their meaning again later.  
 
Linear programming problems are special cases of the above formulation. In 
particular, we have three fundamental assumptions in linear programming. They are:  
 
(1) Deterministic property,  
(2) divisibility, and  
(3) linearity.  
 
Consider first the deterministic property. Simply put, it requires that all 
parameters are assumed to be known with certainty. (By the way, the antonym 
of deterministic is probabilistic or stochastic). While this assumption appears 
reasonable in some instances, it is not in others. Consider these examples. While 
we know exactly how many machines we have for the processing of semi-finished 
products, these machines may fail unexpectedly, making their actual capacities 
probabilistic. Similarly, we know the magnitude of contracted sales, but we have 
only rough estimates concerning next month’s additional demand. Given that 
much of the world is probabilistic, how can we possibly apply linear programming 
without making simplifications that may be so major so as to render the results 
unusable? (Remember the old adage: “if a model does not fit the problem, don’t 
use it.”) In general, there are two ways to circumvent the problem. One would be 
to resort to techniques that do not make that assumption—such as stochastic 
programming, a very complex field for which the available software is much less 
powerful—or to circumvent the difficulty by using sensitivity analyses. This is the 
procedure of choice for many decision makers. Suppose we have estimated next 
month’s demand to be 500 units, but we are not sure about it. One way to handle 
this is to solve the problem with a demand of 500 units. Once the optimal solution 
is known, we attempt to find out what happens if the demand were to change  
to values other than 500. (Notice the words “what – if” that always indicates 
sensitivity analyses). For instance, we can change the demand to, say 490, resolve 
the problem and find out what happens to our solution. This process can be 
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repeated to the relevant values of the demand. Once this has been accomplished, 
the decision maker will have a clear idea what the effects on different levels of 
demand are on the solution of the problem. The limitations of this approach are 
obvious: the method is valid if only a small number of uncertain parameters exist, 
but it will drown the decision maker in massive amounts of data, if much of the 
information in the model is uncertain.  
 
Next consider the issue of divisibility. Divisibility is ensured, if we allow the 
variables in the model to be any real number (even though we will restrict 
ourselves to rational numbers most of the time). Most importantly, divisibility 
allows variables to be noninteger. While many instances do not allow it, this 
assumption is typically less of a problem that we may first think. Suppose that our 
model includes a variable that expresses the number of cans of corn that we make 
and sell. It is obvious that this number must be integer, as partial cans cannot be 
sold. The main question is, though: who cares if we make 1,345,827 or 1,345,826 
cans? Many of the numbers in our model will be approximations anyway, so that 
it is completely irrelevant if the number of cans in the optimal solution is integer 
or not. Simple rounding will solve the problem. On the other hand, suppose that 
the model under consideration includes a variable that expresses the number of 
houses to be built in a subdivision. Simply rounding a noninteger solution up or 
down may result in solutions that may not be as good as possible (or, depending 
on the constraints, not even feasible). If integrality of a variable is essential, users 
are well-advised to resort to techniques from integer programming, see Chapter 4 
of this volume.  
 
Finally the issue of linearity. (For a discussion of the issue of linearity, see 
Appendix C of this book). The assumption in linear programming is that all 
expressions, the objective function as well as all constraints, are linear. One of the 
underlying assumptions that leads to linearity is proportionality. As an example, if 
we purchase one pound of potatoes for, say, 50¢, then proportionality means that 
two lbs will cost me $1, three lbs will cost $1.50, and so forth. So far, our costs 
are proportional to the quantity and the cost function is 0.5x with $0.5 the per-unit 
price of the potatoes and x denoting the quantities of potatoes we purchase. This is 
part of a linear function. However, if the quantities we purchase become large, 
the merchant may offer us a rebate, which will make the function nonlinear (or 
piecewise linear).  
 
Having stated all of the main assumptions we can now focus on the individual 
components of linear programming problems. First consider the objective function. 
In all of mathematical programming, objective functions either maximize a 
function or they minimize it. Often, the objective expresses the wishes of the 
decision maker in monetary terms, but nonmonetary objectives are possible and 
common in applications in engineering and in the public sector. Note that if  
the objective is Max z = f(x), it can alternatively and equivalently be written as 
Min −z = −f(x). Suppose that originally, the idea was to maximize profit, then the 
alternative objective is to minimize losses. In other words, each maximization 
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function can be rewritten as a minimization function and vice versa. This eliminates 
the need for separate methods or treatment of problems with minimization and 
maximization objective.  
 
Consider now the constraints. Rather than writing them in the very general form 
g(x) R b that is often used in mathematical programming, we will write all 
constraints as LHS R RHS. What this means is that the left hand side LHS is  
in some desired relation to the right-hand side RHS. First, as relations linear 
programming accepts ≤, =, and ≥ relations. This relation compares a feature of the 
solution at hand with a proscribed standard. For instance, the number of pallets of 
corn shipped out of a warehouse (the reality, what “is”) on the left-hand side is 
compared to the quantity that our customers actually wanted (the stipulated target, 
the “should”) on the right-hand side. Similarly, we can compare our actual 
expenditures on the left-hand side with the targeted expenditures (i.e., our budget) 
on the right-hand side. Typically, constraints are formulated so as to have a linear 
function on the left-hand side and a single parameter on the right-hand side.  
 
We will defer our discussion of the many facets of constraints to Section 2.1 of 
this book, where a variety of applications of linear programming are discussed. At 
this point, we will only mention a few general principles that relate to constraints. 
As already discussed in Chapter 1, constraints are “hard” in the sense that the 
linear programming solver will return a “there exists no feasible solution” 
message in case the set of constraints does not allow a solution to be found. This 
means that constraints are absolute and must be satisfied exactly. In other words, 
given that we have $100, any plan that includes expenditures of say $100.01 will 
not be considered as feasible. In reality, often constraints are much softer. This 
will have to be considered in the formulation, for instance by formulating 
constraints more loosely, e.g., consider the possibility of taking out a loan to 
increase the budget, or by allowing solutions that do not fully satisfy a customer’s 
demand. Another important advice for modeling is to avoid equations whenever 
possible. Linear programming is well equipped to handle equations from a 
technical point of view, but equations are very restrictive and often lead to 
infeasibilities. We will return to this subject when we discuss applications and the 
graphical solution method.  
 
In order to more fully explain the structure and features of constraints, we 
consider a very small numerical example. Suppose that we can manufacture 
digital picture frames for the domestic market and frames for export. The 
assembly of a domestic frame takes ten seconds each, while an export frame takes 
12 seconds. The capacity of the machine on which both frames are assembled is 
20 hours (or 72,000 seconds). Our distributors has placed orders for 2,500 domestic 
frames and 3,000 export frames, but is prepared to take more. Each domestic 
frame nets us $40, while each export frame contributes $45 to our overall profit.  
 
Defining x1 and x2 as the number of domestic and export frames made and sold, 
respectively, we can formulate the linear programming problem as 
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 P: Max z = 40x1 + 45x2  
 s.t.              10x1 +  12x2  ≤ 72,000 
                  x1              ≥   2,500 
                              x2   ≥   3,000 
 
Whenever an inequality of either “≤” or “≥” type is inputted, the solver will 
automatically add an additional variable to the equation. These variables have an 
important interpretation, which is why we will explain them here. In particular, 
whenever we have a constraint of type LHS ≤ RHS, the solver automatically adds 
a slack variable S to the left-hand side of the constraint and then uses the 
constraint LHS + S = RHS with S ≥ 0. As an example of what a slack variable 
means and why this procedure is valid, consider a simple budget constraint. In 
such a constraint, the left-hand side expresses the amount of money we spend, 
while the right-hand side specifies the amount of money that is available, so that 
the constraint reads “the amount of money spent must be less or equal than the 
amount of money available.” The slack variable is then the difference between 
left- and right-hand side. In our budget constraint, the rewritten constraint then 
states that the amount of money used (the original LHS) plus the amount of money 
unused (the slack S) equals the amount of money available (the original RHS).  
 
A similar procedure is used for inequalities of the “≥” type. Here, the original 
constraint LHS ≥ RHS is transformed into an equation by subtracting a surplus or 
excess variable E from the left-hand side so as to arrive at the reformulated 
constraint LHS − E = RHS. For instance, in a production requirement, where the 
left-hand side expresses the actual production, while the right-hand side value 
specifies the smallest quantity that must be made, the excess variable specifies 
the amount by which the present solution exceeds the requirement.  
 
Consider now the above numerical example and suppose we have obtained the 
solution x1 = 2,800 and x2 = 3,200. First of all, this indicates that we have decided 
to manufacture 2,800 frames for the domestic and 3,200 frames for the export 
market. By plugging these values into the objective function, we can determine 
the profit level for this solution as z = 40(2,800) + 45(3,200) = $256,000. We can 
also check if this solution is feasible: the plan requires 10(2,800) + 12(3,200) = 
66,400 seconds to make, which is less than the available assembly time. As a 
matter of fact, given that we have 72,000 seconds on the assembly machine and 
this solution uses 66,400 seconds, there is a slack capacity of 72,000 − 66,400 = 
5,600 seconds. The next two demand constraints are also satisfied: since we make 
2,800, this is more than we need to (actually, an excess of 2,800 − 2,500 = 300 
units); similarly, 3,200 units for the export market are 3,200 − 3,00 = 200 units in 
excess of the requirement. 
 
As an aside, the solution discussed in the previous paragraph is not optimal. At 
optimum, we make 3,600 units for the domestic market and 3,000 units for the 
export market. This results in zero slack capacity for the assembly machine and a
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surplus of 1,100 units for the domestic market and a zero surplus for the export 
market. The profit at optimum is $279,000.  

2.2   Applications of Linear Programming 
This section presents a variety of linear programming applications. Each of these 
applications is a prototype, in the sense that “real” applications in practice will 
build upon these formulations by adding lots of “bells and whistles.” However, the 
major use of learning about these bare-bones formulations is to understand the 
type of formulations they present and the way the variables are defined, which is 
typical for the type of application.  
 
The following subsections describe in detail how some scenarios can be modeled. 
They may be simplistic, but the models presented here include the most important 
features of the application under consideration.  

2.2.1 Production Planning  

The formulation that we present in this section is a very basic prototype of 
production planning models. It is probably the simplest possible problem to be 
formulated, and the purpose to present it at this point is to introduce some of the 
basic ideas of modeling. In this context, suppose that there are three products we 
can manufacture. For simplicity, we will simply refer to them as P1, P2, and P3, 
respectively. The three products sell for $20, $15, and $17, respectively. These 
products are manufactured on two machines M1 and M2. Each of the two products 
has to be processed on both machines. At this level, the order in which to process 
the products on the machines is irrelevant. The two machines have capacities of 8 
and 9 hours, respectively. After that time, the machines will require regular 
maintenance, a task for which they have to be shut off and are no longer available. 
The processing times of the three products on the two machines (in minutes per 
quantity unit) are shown in Table 2.2.1.  
 

Table 2.2.1: Processing times of the products on the machines 
 

 P1 P2 P3 
M1 3 5 4 
M2 6 1 3 

 
It is important to understand that the machine capacities and their usage are meant 
in the following way. Suppose there is a clock attached to the machine that shows 
the amount of time that is still available on the machine before the next scheduled 
maintenance. Initially, the clock on the first machine shows 9 hours or 540 minutes. 
Suppose now that four units of P2 are processed on M1. Given that the processing 
time per unit is 5 minutes, the available time decreases by twenty minutes from 
540 to 520. This process continues until one of the machines has no capacity left. 
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This process is considered automatically in the formulation, we present it here so 
as to stress the way time is managed here. It is often misunderstood that a capacity 
of, say, 8 hours means a workday and the objective is to plan what product is 
processed at what time on which machine. This type of micro planning is 
discussed in detail in Chapter 8 of this volume.  
 
The production costs are $120 per hour of machine time on M1, and $90 per hour 
of machine time on M2. In other words, operating time costs $2 and $1.50 per 
minute on the two respective machines. Given the operating times, the processing 
costs of the three machines on M1 are $6, $10, and $8, respectively, while the 
operating costs on M2 are $9, $1.50, and $4.50, respectively. This results in overall 
unit processing costs of $15, $11.50, and $12.50 for each of the three products, 
respectively. Considering the selling prices, we have profit contributions of $5.00, 
$3.50, and $4.50 per unit of each of the three products.  
 
The problem can then formulated so as to maximize the overall profit, while 
respecting the capacity constraints of the two machines. In order to formulate the 
problem, we first need to define the variables. In this example, we would like to 
know the number of products that we will manufacture. How much time we will 
use on the two machines in the process does not have to be defined as a variable, it 
is a direct consequence of how many products we will make.  
 
Defining x1, x2, and x3 the respective numbers of P1, P2, and P3 that we will 
manufacture and sell, we can then start to formulate the objective function. 
Knowing that the objective will maximize the profit, which is the sum of profits 
that derive from the making and selling of products, we consider one such term 
at a time. For instance, making and selling one unit of P1 nets $5, and we have 

1
the making and selling of P1 will be 5x1, Similar expressions can be derived for 
the other two products, resulting in the objective function shown below in the 
formulation.  
 
Next, consider the constraints. We need to formulate one constraint for each 
machine. Each of these constraints will state that the actual usage of the resource 
called processing time does not exceed the processing time that is available. The 
time available is known, so the right-hand side of the constraints is easy. In order 
to be more specific, we will deal with the first machine and formulate the actual 
time that is used on M1. First, we note that the time will be consumed by the 
making of the three products. Consider one such product at a time, say P1. We 
know that it takes 3 minutes to process one unit of P1 on M1, and we have decided 
to make x1 units of P1. This means that the processing time on M1 that is used for 
the making of P1 is 3x1. Similarly, we will use a total of 5x2 minutes on M1 to 
make all the units of P2 that we will manufacture, and we need 4x3 minutes on M1 
to make all of P3. The sum of these processing times now must be less than or 

1
 
equal to the available time of 540 minutes. This is the capacity constraint for M .  

now decided to make x  units of it. This means that the profit that derives from 
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The capacity constraint for the second machine is formulated in similar fashion. 
Finally, we have to ensure that we are making nonnegative numbers of the 
products—after all, we are in the business of manufacturing and selling the 
products, rather than buying them (which is what negative values of the variables 
would indicate in this context). The formulation can then be written as the problem  
 

Max z =  5x1 + 3.5x2 + 4.5x3 
s.t.           3x1 +    5x2 +    4x3 ≤ 540 
               6x1 +    1x2 +    3x3 ≤ 480 
                 x1,        x2,         x3 ≥     0. 

 
After solving the problem, the optimal solution indicates that the decision maker 
should make and sell 20 units of P1, no units of P2, and 120 units of P3. The 
associated total profit is $640.  

2.2.2 Diet Problems 

The diet problem is not only among the first linear programming problems to be 
solved, but it is arguably also the most intuitive model. As a matter of fact, the 
problem was studied in 1939 by the (later Nobel laureate) George Stigler in the 
context of determining a cost-minimal nutritious food for the armed forces. 
Incidentally, he included 77 different foods in his model. His solution, while not 
optimized, was found to be quite close to the optimal solution for his data. An 
interesting account of the history of the diet problem is found in Garner Garille 
and Gass (1981).  
 
In general, two versions of the problem can be thought of. They are roughly 
equivalent to the fundamental economic principle, applied to the determination of 
a diet. The two criteria are cost and nutritional value, where cost is an input factor, 
while nutritional value is an output. Thus we can either try to minimize the cost 
(the input), while guaranteeing at least a certain and predetermined nutritional 
value (the output), or we can attempt to maximize the nutritional value (the 
output), while using no more than a prespecified dollar value (the input). In order 
to determine which of the two versions is more suitable, consider this. In the latter 
approach, the constraint is a simple resource constraint that states that the total 
amount of money spent on food cannot exceed the decision maker’s budget. 

nutritional value. The problem with this is that the measure “nutritional value”  
is not a simple number, it is what is usually referred to as multidimensional 
measure, as it comprises a large number of measures: protein, carbohydrates, fats, 
vitamins, minerals, etc. And it is obviously not meaningful to simply add those 

 
On the other hand, the former version of the problem is much easier to handle. The 

content” is relegated to the constraints. And this is where the requirements can be 
objective is a simple (one-dimensional) cost minimization, in which the “nutritional 

However, the objective function is more complex. It is stated to maximize the 

different units together so as to obtain a single one-dimensional measure.  
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handled quite easily: for each nutritional component, we can formulate one or two 
constraints, an upper and/or a lower bound. As a simple numerical example, 
consider three foodstuffs, e.g., hamburger, fries, and cheesecake (which indicates 
that we are using the term “diet” in the widest possible sense). As far as nutrients 
are concerned, we consider only calories and fat in our example. Table 2.2.2 
shows the nutritional contents of the foodstuffs, the nutritional requirements, and 
the prices per serving of the foods.  
 

 
 Hamburger 

3½ oz 
Medium fries 
4 oz 

Cheesecake 
2.8 oz 

Nutritional 
requirement 

Calories 250 380 257 [1,800; 2,200] 
Fat 13% 31% 28% ≤ 100% 
Cost per serving $1.59 $2.19 $2.99  

 
Note that our numerical example expresses the calories in terms of the usual kCal 
and we have an upper and a lower bound for it. (Note that in practice, the 
recommended caloric intake depends on gender and age of an individual as well as 
other factors). On the other hand, the fat content is expressed in terms of the 
recommended daily requirements and it is an upper bound.  
 
The problem in the cost minimization version can then be formulated as follows. 
First, we define the variables. As usual, the variables are defined depending on what 

the decision maker’s goal is to determine the quantities of the individual foods that 
are to be included in the daily diet, so that we will define variables x1, x2, and x3 as 
the quantities of hamburgers, medium fries, and cheesecakes in the diet. As long as 
we use well-defined “servings” as units, and stick to the same units for each food, 
there is no problem inadvertently adding apples and oranges, or hamburgers and 
fries. What we are adding are their nutritional contents, as we show in this example.  
 
First consider the objective function. The general idea is to minimize the costs of 
all foodstuffs in the diet. Consider one of these foods at a time. As shown in Table 
2.2.2, each hamburger costs $1.59. Since there will be x1 hamburgers in the diet, 
the total costs incurred by hamburgers in the diet are 1.59x1. Similarly, the costs 
that can be attributed to fries and cheesecake are 2.19x2 and 2.99x3, respectively, 
so that the objective function is the sum of these three terms.  
 
Let us now formulate the constraints. In doing so, we consider one requirement at a 
time. First, we focus on the lower bound of the constraints. What we would like to 
express is that the caloric content of the diet should be at least 1,800. The calories 
in the diet derive from the three foods. the number of calories in the diet that are 
from hamburgers are 250 x1, the number of calories from fries are 380x2, and the 
calories from cheesecake are 257x3.  Adding up these three expressions results in 
 

 
 

Table 2.2.2: Input data for the sample problem

the decision maker would like to know, but does not at the moment. In this model, 
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the total number of calories that we actually have in the diet. This number should not 
fall short of 1,800 (the first constraint), and it should also not exceed 2,200 (the 
second constraint). Note that both of these constraints have the same left-hand side.  
 
The constraint that regulates the fat content of the diet is constructed similarly. 
Overall, the constraint should state that the content of fat in the diet should not 
exceed 100% of the recommended daily value. Where does the fat in the diet 
come from? In this example, it derives from hamburgers (for a total of 13x1), fries 
(for a total of 31x2), and cheesecake (for a total of 28x3). This total fat content 
should then not exceed 100%.  
 
In summary, the problem can then be formulated as follows.  
 
 1 2 3
 
 s.t. 250x1 + 380x2 + 257x3 ≥ 1,800   (calories, lower bound) 
       250x1 + 380x2 + 257x3 ≤ 2,200   (calories, upper bound) 
         13x1 +   31x2 +   28x3 ≤    100   (fat, upper bound) 
             x1,         x2,          x3 ≥        0.    (nonnegativity constraints) 
 
In addition to the lower and upper bounds on the caloric intake and the upper 
bound on the fat content of the diet, we include the nonnegativity constraints on 
the quantities of foods included in the diet, as the idea is to eat rather than 
regurgitate. Incidentally, the solution to this formulation specifies that the planner 
eat 6⅓ hamburgers, ½ serving of fries, and no cheesecake. Doing so will provide 
100% of the allowable fat intake, generate 1,800 calories, and cost $11.32.  
 
While this solution may be optimal with respect to the problem as specified above, it 
is clearly riddled with a number of problems. The number of hamburgers in the diet 
is obviously much too high for all but the most determined junk food junkies. It will 
require additional constraints which are added in the loop that attempts to reconcile the 
solution of the model with the real problem of finding a cost-effective diet. In order 
to illustrate the modeling process, we use a somewhat larger problem with real data. 
The data of the eight foods included and the eleven nutrients is found in Table 2.2.3.  
 
As far as the daily nutritional requirements are concerned, we have identified the 
following parameters. The diet should include  
• between 1,800 and 2,200 calories,  
• no more than 65g of fat,  
• no more than 300mg of cholesterol,  
• no more than 2,400mg of sodium,  
• at least 300g of carbohydrates,  
• at least 25g of fiber,  
• at least 50g or protein, and  
• at least 100% of the recommended daily allowance of vitamins A and C, 

calcium, and iron. 

P: Min z = 1.59x  + 2.19x  + 2.99x   
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We first define variables x1, …, x8 for the number of servings of the eight foods 
outlined in Table 2.2.3. Following the ideas developed above for the small 
problem, we can now formulate the diet problem. the formulation is as follows.  
 
 P: Min z = .19x1 + .56x2 + .90x3 + .82x4 + .51x5 + .53x6 + .37x7 + .32x8  
 
 s.t. 300x1 + 60x2 + 220x3 + 259x4 + 110x5 + 132x6 + 55x7 + 152x8 ≥ 1,800 
  (Calories, lower bound) 
 300x1 + 60x2 + 220x3 + 259x4 + 110x5 + 132x6 + 55x7 + 152x8 ≤ 2,200  
  (Calories, upper bound) 
 1x1 + 13x3 + 16.3x4 + 2.5x5 + 0.22x7 + 9.8x8 ≤ 65       
  (Fat) 
 5x3 + 89x4 + 10x5 ≤ 300             
  (Cholesterol) 
 1x1 + 650x2 + 790x3 + 95x4 + 120x5 + 5x6 + 1.1x7 + 168.4x8 ≤ 2,400   
  (Sodium) 
 63x1 + 12x2 + 19x3 + 20x4 + 12x5 + 33.4x6 + 14.6x7 + 15x8 ≥ 300   
  (Carbohydrates) 
 3x1 + 3x2 + 2x3 + 2.5x7 + 1.3x8 ≥ 25          
  (Fiber) 
 11x1 + 2x2 + 5x3 + 26.1x4 + 9x5 + 0.5x6 + 0.3x7 + 2x8 ≥ 50     
  (Protein) 
 8x2 + 2x3 + 1x4 + 10x5 + 2x6 + 1x7 ≥ 100         
  (Vitamin A) 
 30x2 + 2x3 + 62x6 + 8x7 + 15x8 ≥ 100          
  (Vitamin C) 
 2x1 + 2x2 +2x3 + 1x4 + 30x5 + 1x7 + 1x8 ≥ 100        
  (Calcium) 
 20x1 + 15x2 + 8x3 + 17x4 + 2x6 + 1x7 + 3x8 ≥ 100       
  (Iron) 
 x1, x2, …, x8 ≥ 0               
  (Nonnegativity constraints) 
 
In the subsequent discussion, we will refer to the solutions and their respective 
nutritional contents shown in Table 2.2.4a and Table 2.2.4b (where entries in are 
shown in boldface, if the nutritional content of a diet has reached its bound). 
Solving the above model results in the original solution “0.” The most prominent 
features of the solution is that other than a modest amount of pasta, the diet 
includes only liquids, most prominently in excess of 9 servings of milk. The 
decision maker may want to limit the milk intake to more reasonable levels, so 
that an upper bound of four servings of milk is added, i.e., the constraint x5 ≤ 4. It 
turns out that this constraint is so strong that the model has no more feasible 
solution. In order to restore feasibility, the decision maker has now decided to 
add additional foods, most prominently yoghurt, bread, and margarine (whose 
quantities are denoted by the new variables x9, x10, and x11, respectively). The 
prices and  nutritional contents of the foods are  shown in Table 2.2.5. Solving  the  
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problem with the new foods results in solution “1,” shown again in Tables 2.2.4a 
and 2.2.4b.  
 

Table 2.2.4b: Nutritional achievements of the solutions 

 Original 
solution 
“0” 

Solution 
“1” 

Solution 
“2” 

Solution 
“3” 

Solution 
“4” 

Solution 
“4a” 

Solution 
“4b” 

Calories  
∈ [1,800; 
2,200] 

1,800 2,200 2.200 2,200 2,200 2,000 2,000 

Fat                
≤ 65 

28 65 65 52 57 58 56 

Cholesterol   
≤ 300 

101 39 35 74 300 300 250 

Sodium         
≤ 2,400 

2,400 2,400 2,400 1,097 1,674 1,358 1,231 

Carbs            
≥ 300 

369 340 340 401 366 324 332 

Fiber             
≥ 25 

25 25 25 25 25 25 25 

Protein          
≥ 50 

120 75 74 58 72 67 64 

Vitamin A    
≥ 100% 

100 100 100 100 100 100 100 

Vitamin C    
≥ 100% 

100 100 100 409 263 232 264 

Calcium        
≥ 100% 

293 118 111 129 130 131 131 

Iron               
≥ 100% 

100 103 107 100 100 100 100 

 
We first notice that the price of the diet has decreased dramatically, a result of 
new inexpensive foods that have been introduced into the problem. (As usual, 
while added constraints limit the choices and increase the cost of the solution, 
added variables represent added opportunities that may reduce the price). The 
solution now includes significant amounts of the new foods bread and margarine. 

that of the previous solution: the caloric content is now at the upper rather than the 
lower bound, the fat content is also at the upper bound, while sodium is still at the 
upper bound, and the nutrients fiber, vitamin A and vitamin C are at the lower 
bounds.  
 
The decision maker may feel that the present solution includes too much bread, so 
that a constraint is added that limits the bread content of the diet to no more than 
six slices, i.e., x10 ≤ 6. The result is Solution “2.” This solution is marginally more 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

expensive than its predecessor, it features significantly more pasta, and in general 

The nutritional content of the new solution also differs quite dramatically from 
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appears more palatable. however, the margarine content is quite high, so that in 
the next step, the decision maker adds a requirement that limits the margarine 
content to no more than four servings, i.e., x11 ≤ 4. The result is Solution “3.” This 
requirement causes the price of the diet to almost double (which poses the 
question whether or not the requirement is really that crucial). Furthermore, the 
diet now consists mostly of milk, orange juice, and apples. It is hardly surprising 
that the vitamin C content of the diet has quadrupled as compared to the previous 
solution. Also, fat is no longer a binding constraint and the sodium content is cut 
in half. However, the diet is still barely satisfying the fiber content, and its vitamin 

 
Table 2.2.5: Additional foods 

 
 Yoghurt Bread Becel Eggs 
Calories 160 110 70 78 
Fat 2.5g 1g 8g 5.3g 
Cholesterol 10mg 0mg 0mg 212mg 
Sodium 75mg 160mg 70mg 62mg 
Carbs 20g 22g 0 0.6g 
Fiber 0g 2g 0 0g 
Protein 6g 4g 0g 6.3g 
Vitamin A 2% 0% 10% 6% 
Vitamin C 2% 0% 0% 0% 
Calcium 20% 0% 0% 3% 
Iron 2% 10% 0% 3% 
Price per 
serving  

56¢ per ¾ 
cup  

8.6¢ per 
slice 

5¢ per 2 
teaspoons 

20¢ each 

 
In order to address some of the nutritional issues, the decision maker has decided 
to add eggs as an additional food. Their price and nutritional content are shown 
in Figure 4. Solving the expanded model results in Solution “4.” Now the diet 
includes again more bread and margarine, and more moderate amounts of milk, 

 
In principle, the decision maker is happy with the diet as it has been determined at 
this point. However, it may be desirable to find out the effects that result from the 
changes of some of the requirements. For instance, what happens if the caloric 

model results in Solution 4a. We notice a very modest price increase, of a diet that 
now includes less orange juice, more apples, and significantly less bread. We are 
now at the upper allowable limit for cholesterol, while fiber, vitamin A and iron 
are stubbornly clinging to their respective lower bounds. (A good idea at this point 
would be to introduce additional foods that are rich in these nutrients).  
 
Instead, the decision maker may wish to reduce the cholesterol in the diet from its 
present upper bound of 300 to 250. Resolving the problem results again in a fairly 
modest price increase and a solution that is similar to the previous diet, except that 

 

 
 
 
 
 
 
 
 

A content is also at its lower bound.  

orange juice, and apples. Also, the price has dropped to $7.12.  

intake is restricted to no more than 2,000 rather than 2,200? Solving the revised 
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now the quantity of apples has reached again unreasonable levels. We terminate our 
discussion at this point, which is not to suggest that the present diet is reasonable: 
the purpose of this section was to introduce the reader to the modeling process that 
repeatedly revises the model based on the present solution.  

2.2.3 Allocation Problems 

Allocation problems are one of the most prominent areas of application in linear 
programming. All models in this class have in common that they deal with the 
allocation of scarce resources to (economic) activities. At times, more than one 
scarce resource exists, in which case the modeler can choose any one of them as 
the basis for the mathematical formulation. This will be further elaborated upon 
below. Due to the many different types of allocation problems, we will present 
two such scenarios below.  
 
First consider an investment allocation problem. Problems of this nature were first 
formulated by Markowitz in the early 1950s as nonlinear optimization problems. 
Here, we will discuss a linear version of the problem. In this problem, the decision 
maker has to decide how much of the scarce resource (money) to allocate to 
different types of investments. As we will see below, this observation already 
indicates how to define the variables.  
 
In our numerical example, the investor has $300,000 that can be invested. In 
addition to the money at hand, it is possible to borrow up to $100,000 at 12% 
interest. This money can be used for leveraging (borrow to invest). The investor has 
narrowed down the choices to six alternatives, shown in Table 2.2.6. The table 
also shows the expected annual interest or dividend for the investment alternatives, 
the expected annual increase of the value of the investment, and an indication of 
the risk of the investment (per dollar).  
 

Table 2.2.6: Types of investments and their features 
 

Investment type Expected annual 
interest/dividend 

Expected annual 
increase in value 

Average risk per 
dollar 

Real estate 0% 18% 20 
Silver 0% 10% 12 
Savings 
account 

2% 0 1 

Blue chip 
stocks 

3% 6% 7 

Bonds 4% 0% 3 
Hi-tech stocks 0% 20% 30 

 
We will consider two versions of the problem: the first version attempts to 
maximize the expected value of the assets at the end of the planning period (one 
year), while the second version minimizes the total risk of the investment.  
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First consider version 1. The value of the assets after one year equals today’s 
value of the investment plus the expected interest or dividend plus the expected 
change in value within a year minus the amount of money that was borrowed 
(principal and interest). In addition to the restricted availability of money already 
mentioned above, the decision maker faces the following constraints:  
 
• The expected value of assets (exclusive interest) at the end of the planning 

period should be at least 7% higher than at the beginning,  
• invest at least 50% of all the money invested in stocks and bonds combined,  
• invest no more than 20% of total amount available (excluding the amount 

borrowed) in real estate and silver combined, and 
• the average risk of the portfolio should not exceed 10.  
 
In order to formulate the appropriate model, we first must define the problem 
variables. The scarce resource in this application is money, so that we define xj as 
the dollar amount invested in the j-th alternative. Here, x1 will denote the money 
invested in real estate, x2 the money invested in silver, and so forth.  
 
We can then formulate the objective function. Each dollar invested in real estate 
will produce no interest or dividend, but will gain an expected 18%, so that the 
investment of 1x1 will have appreciated to 1.18x1. A dollar invested in silver and a 
savings account will appreciate to $1.10 and $1.02, respectively. A $1 investment 
in blue chip stocks is expected to be worth $1.06 after a year plus a dividend of 
3¢, making it worth $1.09). The remaining investments are dealt with in a similar 
fashion. From our revenue we must deduct the amount borrowed (x7) plus the 
interest to be paid on the borrowed amount (0.12x7), making it 1.12x7.  
 
Consider now the constraints. An obvious restriction is that the investor cannot 
invest more money than is available. The amount invested is nothing but the sum 
of all individual investments, i.e., x1 + x2 + x3 + x4 + x5 + x6, while the amount that 
is available is the sum of the $300,000 at hand plus the amount that is borrowed, 
viz., x7. This is the budget constraint (1). Another straightforward restriction limits 
the amount that can be borrowed to $100,000. This constraint is shown in (2).  
 
The constraint that requires the invested money to show a growth of at least 7% 
can now be formulated as follows. The actual value of the assets at the end of the 
planning period uses the expected annual gains from Table 2.2.6, resulting in 
1.18x1, 1.10x2, etc. The required increase of the invested money by at least 7% is 
the product of 1.07 (the principal plus the required increase) and the invested 
amount, which is the sum of the first six variables. This is shown in Constraint (3).  
 
The constraints (4) and (5) model the requirements that at least 50% of the money 
invested must be invested in stocks and bonds combined, and that no more than 
20% of the money available can be invested in real estate and silver combined. 
Note the difference between the two constraints:  while in (4), we are  dealing with 
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a portion of the amount actually invested (the sum of the first six variables), 
constraint (5) refers to the total amount available to the investor (exclusive the 
amount that may be borrowed), which equals $300,000.  
 
The average risk of the portfolio equals the total risk divided by the amount 

invested, i.e., 
654321

654321 30371220
 x  x  x  x  x x

x  x  x   x x  x
+++++
+++++

, which is not to 

exceed a value of 10. Multiplying the inequality by the (nonzero) denominator 
results in relation (6). The nonnegativity constraints (7) conclude the formulation. 
Version 1 of the model can then be summarized as follows.  
 
 P: Max z = 1.18x1 + 1.10x2 + 1.02x3 + 1.09x4 + 1.04x5 + 1.20x6 − 1.12x7  
 s.t. x1 + x2 + x3 + x4 + x5 + x6 ≤ 300,000 + x7        (1) 
 x7 ≤ 100,000               (2)  

1 2 3 4 5 6

1 2 3 4 5 6
 x4 + x5 + x6 ≥ 0.5(x1 + x2 + x3 + x4 + x5 + x6)       (4) 
 x1 + x2 ≤ 0.2(300,000)            (5) 
 20x1 + 12x2 + x3 + 7x4 + 3x5 + 30x6 ≤ 10(x1 + x2 + x3 + x4 + x5 + x6)  (6) 

1 2 7
 
Table 2.2.7 below shows the solution of this model with a 12% interest on 
borrowed money (as formulated above), and a slight modification with 10% 
interest on the amount we borrow.  
 

Table 2.2.7: Optimal solutions to the different versions of the investment  
allocation model 

 
Investment 
type 

Version 1 with 
12% interest on 

borrowed money 

Version 1 with 
10% interest on 

borrowed money 

Version 2 

Real estate 60,000 60,000 0 
Silver 0 0 0 
Savings 
account 

0 0 160,500 

Blue chip 
stocks 

234,782.61 321,739.13 0 

Bonds 0 0 160,500 
Hi-tech stocks 5,217.39 18,260.87 0 
Amount 
borrowed 

0 100,000 21,000 

 
Version 2 of the investment model is very similar. It deletes constraint (6) from 
the formulation and uses its left-hand side (the actual risk of the portfolio) in a 
minimization objective. Furthermore, we require an appreciation of at least 7% on 

 
 
 

 

 

 

 

1.18x  + 1.10x  + 1.00x  + 1.06x  + 1.00x  + 1.20x  
≥ 1.07(x  + x  +

 

 x , x , …, x  ≥ 0.               (7) 

x  + x  + x  + x )              (3)  
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the available money (exclusive the borrowed amount), i.e., $321,000 at the end of 
the planning period. A summary of the optimal solutions is shown in Table 2.2.7.  
 
Note the jump that occurs in the amount of money borrowed: apparently, given an 
interest of 10% on borrowed money, it is still worthwhile to borrow and invest, 
while an increase to 12% is prohibitive, so that no more money is borrowed and 
no leveraging occurs. Also note the very different solution provided by Version 2 
of the model.  
 
Another allocation problem is found in the allocation of manpower—the scarce 
resource in this context—to tasks. In this specific application, we deal with 
allocating police officers to districts. Clearly, not all districts in a city are created 
equal, so that the impact a single policeman provides to a district will be different 
for different areas. In the numerical illustration below, we have a total of 67 
police officers to distribute among five districts A, B, …, and E. Table 2.2.8 shows 
the degree of protection offered to a district for each officer assigned to the 
district. 
 
Table 2.2.8: Protection provided by police officers and smallest allowable protection 
 

 A B C D E 
Additional marginal 
protection per officer 

3 7 10 5 4 

Lowest acceptable 
protection 

40 50 70 60 40 

 
For example, if six police officers are assigned to district A, then the degree of 
protection is 6(3) = 18. Suppose that due to the intricacies of the job, it is not 
possible to hire additional police officers in the short run. Actually, each police 
officer who is not assigned to one of the districts can be hired out to a private 
security company for a fee of $100 per officer and day. Other than the house taxes 
(a flat fee for our purposes that does not have to be included in the problem), 
hiring out police officers is the council’s only income. Council wants to set up a 
linear programming problem that maximizes the department’s income (due to 
hiring out police officers). The following restrictions have to be observed:  
 
• It must be ensured that each district has at least the minimum protection as 

specified in the table above,  
• the average protection is at least 50, and  
• we have to allocate at least 50% more officers to districts A, B, and C 

combined than to districts D and E combined.  
 
Formulating the problem, we have to define the variables first. The scare resource in 
this context are police officers, so that we can define xj as the number of police 
officers assigned to district j. For simplicity, we use xA, xB, xC, xD, and xE for the 
five districts under consideration. The objective function then maximizes the product 
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of the revenue for a police offers hired out for a day ($100) and the number of 
police offers hired out. The number of police officers hired out for private security 
work equals the number of police officers available (67) and the number of 
officers assigned to the five districts (the sum of all five variables).  
 
The first constraint simply requires that we cannot assign more police officers 
than we have. Constraints (2) – (6) ensure that each district receives at least the 
minimum protection required in Table 2.2.7. Constraint (7) requires that the average 
protection in the five distracts is at least 50, and constraint (8) ensures that the first 
three districts have at least twice as many police officers allocated to them as have 
the last two. As usual, the nonnegativity constraints complete the formulation. The 
model can then be written as follows.  
 
 P: Max z = 100[67 − (xA +   xB +    xC + xD + xE )] 
 s.t.                               xA +   xB +     xC +  xD +    xE     ≤ 67    (1) 
                                   3xA                                              ≥ 40    (2) 
                                            7xB                                     ≥ 50    (3) 
                                                      10xC                         ≥ 70    (4) 
                                                                 5xD                ≥ 60    (5) 
                                                                            4xE     ≥ 40    (6) 
                                  (3xA + 7xB + 10xC + 5xD + 4xE)/5 ≥ 50    (7) 
                                     xA +   xB +     xC                         ≥ 1.5(xD + xE)  (8) 
 A B  C D E
 
Solving the problem reveals that the number of police officers allocated to the five 
districts are 13⅓, 12⅔, 7, 12, and 10, respectively (for now, we will disregard the 
nonintegralities). This means that a total of 55 police officers are allocated, 
leaving 12 police officers to be hired out, so that city council’s daily income from 
this allocation is $1,200. Furthermore, this allocation results in protection levels of 
40, 88⅔, 70, 60, and 40. In other words, all districts except the second receive the 
minimal protection required, while district B receives 88⅔/50 ≈ 1.77 times the 
protection that is minimally needed.  

2.2.4 Employee Scheduling  

The model in this section is, in some sense, also an allocation problem. However, 
it has its own character, so that it justifies its own section. Consider a recurring 
situation in which employees have to be assigned to shifts. The number of 
employees required to be on the job varies throughout the day during a variety of 
time slots. For instance, a bus route will require significant service during the 
early morning and afternoon rush hours, while there will not be much service 
during lunch hour or late at night. Similar requirements exist for nurses, pilots, 
cashiers in grocery stores, and similar scenarios.  
 
The difficulty with this problem is that we are typically not able to hire casual 
labor whenever needed, but we will have to use permanent employees. So the 

                                    x ,     x ,       x ,     x ,      x      ≥ 0.    (9) 
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objective of the problem is to use the smallest number of employees and still be 
able to staff the position(s) throughout the day.  
 
In our numerical example, assume that a regular shift is 8 hours and assume that 
there are 4-hour time segments during which personnel requirements have been 
observed. The personnel requirements during the 4-hour time slots are shown in 
Table 2.2.9 using a 24-hour clock.  
 

Table 2.2.9: Personnel requirements during 4-hour time slots 
 

Shift 0600−1000 1000−1400 1400−1800 1800−2200 2200–0200 0200−0600 
Required 
number of 
employees 

 
17 

 
9 

 
19 

 
12 

 
5 

 
8 

 
Assume that shift work can start every four hours at 6 a.m., 10 a.m., and so forth. 
Our decision is then how many employees to hire at each of these points in time. 
This means that we can define variables x06, x10, x14, x18, x22 and x02 as the number 
of employees who start their shift at 6 a.m., 10 a.m., 2 p.m., and so forth. The total 
number of employees required is then the sum of all of these variables. As far as 
the constraints go, we have to require that a sufficient number of employees is 
present during each time slot. Consider, for instance, the time slot between 1400 
and 1800 hours, during which at least 19 employees are needed. The employees 
working during this time slot are those whose shift starts at 1000 hours plus those 
who start working at 1400 hours. This means that during this time slot x10 + x14 
employees will be working, a number that must be at least 19. Similar constraints 
have to be formulated for all six time slots. The formulation can then be written as 
follows, where we ignore the integrality requirements for reasons of simplicity.  
 

P: Min z = x06 + x10 + x14 + x18 + x22 + x02  
  s.t.             x06                                   + x02  ≥ 17 
                   x06 + x10                                    ≥ 9 
                           x10 + x14                            ≥ 19 
                                    x14 + x18                   ≥ 12 
                                             x18 + x22          ≥ 5 
                                                      x22 + x02 ≥ 8 
                  x06,    x10,    x14,    x18,   x22,    x02
 
Problems of this type typically have multiple solutions. The problem as formulated 
has an optimal solution that requires a total of 41 employees. The starting times of 
their shifts are shown in Table 2.2.10.  
 
Table 2.2.10: Starting times of employees in optimal solution for 4-hour time slots 

 
Start of shift 0600 1000 1400 1800 2200 0200 
Number of 
employees 14 7 12 0 5 3 

 

 

 ≥ 0. 
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Note that this solution has the exact number of required employees during all time 
slots, except for the time 1000-1400, where only 9 employees are needed, while 
21 employees are available. In other words, there are 12 employees idle between 
10 a.m. and 2 p.m.  
 
As an extension of the above model, assume that it is now possible to start the 
employees’ shifts each two hours rather than each four hours. Similarly, the time 
requirements are known for 2-hour rather than four-hour segments throughout 
the day. For instance, the 17 employees that were needed between 6 a.m. and 10 a.m. 
in the above problem, are required between 6 a.m. and 8 a.m., while between 8 a.m. 
and 10 a.m. only 11 employees are required. The personnel requirements during 
the 2-hour time slots are shown in Table 2.2.11. Note that the larger requirement 
of each two adjacent time slots that correspond to a 4-hour time slot in the above 
example equals the requirement of that 4-hour slot. In that sense, we are using the 
same example, just a finer grid.  
 

Table 2.2.11: Personnel requirements during 2-hour time slots 
 

Shift 0600−0800  0800−1000 1000−1200 1200−1400 1400-1600 1600−1800 
Required 
number of 
employees 

 
17 

 
11 

 
9 

 
7 

 
13 

 
19 

 
Shift 1800−2000  2000−2200 2200−2400 2400−0200 0200–0400 0400−0600 
Required 
number of 
employees 

 
12 

 
8 

 
5 

 
3 

 
3 

 
8 

 
The problem can then be formulated as follows.  
 

P: Min z = x06 + x08 + x10 + x12 + x14 + x16 + x18 + x20 + x22 + x24 + x02 + x04 
s.t.             x06                                                                          x24 + x02 + x04  ≥ 17 
                  x06 + x08                                                                          x02 + x04  ≥ 11 
                  x06 + x08 + x10                                                                          x04  ≥   9 
                  x06 + x08 + x10 + x12                                                                       ≥   7 
                           x08 + x10 + x12 + x14                                                              ≥ 13 
                                    x10 + x12 + x14 + x16                                                     ≥ 19 
                                            x12 + x14 + x16 + x18                                             ≥ 12 
                                                     x14 + x16 + x18 + x20                                    ≥   8 
                                                            x16 + x18 + x20 + x22                            ≥   5 
                                                                     x18 + x20 + x22 + x24                    ≥   3 
                                                                              x20 + x22 + x24 + x02           ≥   3 
                                                                                       x22 + x24 + x02 + x04  ≥   8 
                x06,   x08    x10,    x12,   x14,   x16,    x18,    x20,    x22,   x24,    x02,   x04

 
The optimal solution of this problem requires now only 36 employees, and the 
starting times are shown in Table 2.2.12.  

 

 
 

  ≥   0.  



2.2  Applications of Linear Programming 35 

Table 2.2.12: Starting times of employees in optimal solution for 2-hour time slots 
 

Start of shift 06 08 10 12 14 16 18 20 22 24 02 04 
Number of 
employees 0 0 7 4 3 5 0 0 0 3 0 14 

 
Particularly noteworthy are the more than 12% savings in the number of employees 
that must be hired. In general, it is not surprising that the finer grid used here 
provides a solution that is at least as good as that with 4-hour time slots. The 
reason is that the previous solution can still be implemented and it would still 
provide a feasible solution. However, with the additional possible starting times 
there are additional possibilities which may—and in this case do—allow us to find 
a better solution.  

2.2.5 Dynamic Production – Inventory Models 

This section describes models, in which decision makers do not only have to 
answer the “how many” question as we have seen in many of the previous 
applications, but they also require an answer to the question “when” to produce. In 
the simplest case, assume we only consider a single product. Furthermore, suppose 
that the time frame of interest has been subdivided into small time units, in which 
production occurs. Throughout this section, we will refer to these units as “months.” 
Within each month, production occurs and customers take out products based on 
their demand.  
 
Based on the production capacities, it may now not be possible to satisfy the 
demand in each month. In order to avoid undersupplying our customers, we can 
produce more than the demand indicates during the earlier months of the planning 
period and keep the surplus in stock. This will, of course, cause inventory holding 
costs to be incurred. Given that the production costs may vary between the 
months, it may actually be preferable to manufacture goods earlier in the planning 
period rather than later, but the decision will depend on the relation between the 
production costs and the inventory holding costs. We will leave these decisions to 
the optimizer and our model.  
 
Before presenting a numerical example, it is important to discuss the exact 
sequence of events within each month. At the beginning of each month, we take 
stock. Since nothing has happened to the inventory between this point in time and 
the previous month, the inventory level at the beginning of the month will denote 
the number of units carried over from the previous month, which, in turn, will 
determine the inventory holding costs. Then production occurs. After the desired 
production quantity is made, customers take products out of our warehouse 
according to the estimated demand. Whatever is left after that will be carried over 
to the next month, and the process begins anew.  
 
As a numerical illustration, consider the following scenario. The planning period 
ranges from the beginning of January of some year and ends at the end of April. 

 

 



2  Linear Programming 36 

The estimated demand, production capacity, and unit production costs are shown 
in Table 2.2.13.  
 

Table 2.2.13: Parameters for the dynamic production – inventory model 
 

 Month 1 
(January) 

Month 2 
(February) 

Month 3 
(March) 

Month 4 
(April) 

Estimated demand 80 70 130 150 
Production capacity 120 140 150 140 
Unit production cost $1.00 $1.10 $1.20 $1.25 

 
In addition, it costs 5¢ to carry over one unit from the end of January to the 
beginning of February, 15¢ to carry over one unit from the end of February to the 
beginning of March, and another 15¢ to hold one unit in stock between the end of 
March and the beginning of April. The decision maker has an opening inventory 
of 20 units in the beginning of the planning period and desires to have nothing left 
at the end of the planning period.  
 
In order to formulate the model, we quite naturally need two types of variables, 
one for production and the other for inventory. Denote the production variables by 
x1, x2, x3, and x4, which are defined as the quantities to be manufactured in months 
1, 2, 3, and 4, respectively. Similarly, we define the parameters d1, d2, d3, and d4 as 
the demand in periods 1, 2, 3, and 4, respectively. Before defining the inventory 
variables, we have to decide at which point to measure the inventory level. Given 
our problem description above, we may decide to count inventory at the beginning 
of each period. Alternatively, it is possible to determine the inventory level at the 
end of a period, which we leave as exercise in Problem 3 at the end of this section. 
Here, the we denote by I1, I2, I3, I4, and I5 the inventory levels at the beginning of 
the periods 1 to 5. Note that the inventory levels I1 and I5 are not variables, but 
parameters whose numbers we know: as outlined above, the opening inventory  
I1 = 20, and the closing inventory I5 = 0.  
 
The objective function is then a simple cost minimization function that consists of 
two main components, the production costs and the inventory costs. As far as 
constraints go, there are two types. First, there are the simple production capacity 
constraints that specify that in no period can we produce more than our capacity 
allows. Secondly, there are the inventory balancing constraints. They state that the 
inventory level at the beginning of period t equals the inventory level at the 
beginning of the previous period t−1 plus our production in the previous period 
minus the demand in the previous period. Formally, we can write It = It−1 + xt−1 − dt−1 
for t = 2 to n+1, where n is the last month within the time frame. These constraints 
are the same as the usual balancing constraints in accounting that state that what 
you have in your account today equals what you had yesterday plus the deposits 
yesterday minus yesterday’s withdrawals. Our model can then be formulated as 
follows.  
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 Min z = 1x1 + 1.1x2 + 1.2x3 + 1.25x4 + .05I2 + .15I3 + .15I4 
 
 s.t. x1           ≤ 120 
 x2                 ≤ 140 
 x3                 ≤ 150 
 x4                 ≤ 140 
                 I2  = I1 +x1 − 80 (or, as I1 = 20, x1 − I2 = 60) 
 −I3 + I2 + x2 = 70 
 −I4 + I3 + x3 = 130 
 −I5 + I4 + x4 = 150 (or, as I5 = 0, x4 + I4 = 150) 
 x1, x2, x3, x4, I2, I3, I4 ≥ 0.  
 
The optimal production schedule has us manufacture 120, 10, 140 and 140 units of 
the product in the four months, and the inventories carried over between months 1 
and 2, 2 and 3, and 3 and 4 are 60, 0, and 10, respectively. The sum of the 
production and inventory costs is $478.50.  
 
The solution makes intuitive sense, as the low production level in February is a 
result of the lower production costs in January and the low inventory costs between 
January and February. On the other hand, the inventory carrying costs are significant 
after February, so that inventories only occur between March and April, and these 
are necessary as the April demand exceeds the production capacity in that month.  
 
A potential extension of the model may consider warehouse capacities. In other 
words, we may impose limits on the number of units we can keep in stock. Such 
constraints are easily incorporated in this formulation. If in our numerical example 
the largest possible inventory levels between months 1 and 2, months 2 and 3, and 
months 3 and 4 are 40, 50, and 50, respectively, we add the constraints  
 
 I2 ≤ 40 
 I3 ≤ 50 
 I4 ≤ 50.  
 
With these additional constraints, the production levels in the four periods are 
revised to 100, 30, 140, and 140, respectively, so that the inventory levels between 
the periods are 40, 0 and 10, respectively. The total costs for this system then 
(marginally) increase to $479.50.  
 
This problem can also be formulated in an alternative fashion. Rather than using 
separate variables for production and inventory, we can define double-subscripted 
variables xij that indicate how many units of the product were manufactured in 
month i for use in month j. Such a formulation will require some additional 
preprocessing. For instance, in order to determine the objective function coefficient 
for the variable x14 in the numerical example in this section, we need to add the 
production costs in month 1 (when the product is made) and the inventory holding 
costs from month 1 to 2, those from month 2 to 3, and those from month 3 to 4 for 
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function are determined similarly.  
 
In addition, there will be two sets of constraints. The first are again the constraints 

production in Month 1 will be x11 + x12 + x13 + x14, the production in Month 2 will 
be x22 + x23 + x24, and similar for the remaining two months. The second set of 
constraints that are needed are then the demand constraints. The number of units 
available in, say, Month 3 is x13 + x23 + x33
as large as the demand in that month. The problem can then be formulated as 
follows. 
 
 P: Min z = 1x11 + 1.05x12 + 1.2x13 + 1.35x14 + 1.1x22 + 1.25x23 + 1.4x24  
  + 1.2x33 + 1.35x34 + 1.25x44 
 
 s.t. x11 + x12 + x13 + x14 ≤ 120 
 x22 + x23 + x24 ≤ 140 
 x33 + x34 ≤ 150 
 x44 ≤ 140 
 x11 ≥ 60 (January’s is reduced by the available opening inventory of 20 units) 
 x12 + x22 ≥ 70 
 x13 + x23 + x33 ≥ 130 
 x14 + x24 + x34 + x44 ≥ 150 
 x11, x12, x13, x14, x22, x23, x24, x33, x34, x44 ≥ 0.  
 
The optimal solution can best be summarized in a table such as that shown in 
Table 2.2.14.  
 

Table 2.2.14: Optimal solution of the production-inventory problem 
 

 Month 1 Month 2 Month 3 Month 4 
Month 1 60 60 0 0 
Month 2 − 10 0 0 
Month 3 − − 130 10 
Month 4 − − − 140 

 
The cost at optimum are $478.50, obviously the same as in the other formulation. 
The actual production levels in the four months can be determined by adding the 
values of the variables in the rows, while the sums in the columns result in  
the months’ demand. It is also a good idea to plot the inventory changes on a time 
line that lists the opening inventory of each month, adds the production within 
the month, and then subtracts the demand later that month. This is shown in 
Figure 2.2.1.  
 
 
 

 

that require the production capacities to be respected. For instance, the total 

a total of 1 + .05 + .15 + .15 = $1.35. The other coefficients in the objective 

 and this number must be at least  
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       Period 1                 Period 2                  Period 3           Period 4 
20 + 120 − 80 =  60                             0 + 140 − 130 = 10  
                            60  +  10  −  70   =   0                         10 + 140 − 150   = 0 
 

Figure 2.2.1 
 
Hence, the inventory levels at the beginning of the periods 2, 3, and 4 are 60, 0, 
and 10, respectively; again, reflecting the same result obtained earlier.  
 
Incorporating limits on the warehouse capacity is also easy in this formulation. 
The number of units put in stock between January and February is x12 + x13 + x14, 
the level of stock between February and March is x23 + x24, and the level between 
March and April is x34. All that needs to be done is to require these expressions 
not to exceed 40, 50, and 50, respectively, and we will again obtain the same 
result computed earlier for the formulation with explicit inventory variables.  
 
Which of the formulations is used depends on the preferences of the user. The 
former model with the explicit inventory variables has the advantage of having 2n 
variables, given again n months within the planning period, while the latter model 
with the double-subscripted variables requires ½n2 variables. However, since the 
value of n is typically quite small and modern linear programming solvers can 
easily deal with formulations that have hundreds of thousands of variables, this 
should not be a problem.  

2.2.6 Blending Problems 

All blending problems have in common that they take a number of given 
ingredients or raw materials and blend them in certain proportions to the final 
products. In other words, in the process we are creating something new by mixing 
existing materials. Typical examples for blending are coffees, teas, whiskeys, 
tobaccos, and similar products. Clearly, there are some rules for the blending 
process. For instance, in order to ensure a specific taste, it may be required that a 
blend includes at least a certain proportion of a raw material.  
 
The process is shown in Figure 2.2.2. On the left, there are m buckets with given 
quantities of raw materials, while on the right, there are n empty buckets that are 
to be filled with known quantities of the blends. In the blending process we take, 
one at a time, a certain number of scoops from each of the raw materials and 
transfer them into the buckets on the right. Once sufficient quantities have been 
transferred to the “Product” buckets on the right, all that is left to do is stir, 
package, and sell.  
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Figure 2.2.2 
 
This figure not only demonstrates the actual process, but it also allows us to see 
how the variables in blending problems are to be defined. What we need to know 
in any specific blending problem is how many “scoops” of each raw material goes 
into each of the “Product” buckets. In more general terms, we define xij as the 
quantity of raw material i that goes into product j.  
 
As a numerical example, suppose that we are to blend two table wines from the 
Moselle region in Germany. The two blends are the Filzener Hexenhammer and 
the Leiwener Hosenscheisser. Both products are blends of wines from three 
grapes, viz., Riesling, Müller-Thurgau, and Silvaner. The original wines are available 
in quantities of 10,000, 5,000, and 6,000 gallons at a cost of $8, $6, and $5 per 
gallon. The estimated demands for the two blends are 7,000 and 8,000 gallons and 
the estimated sales prices are $16 and $18 per gallon.  
 
The rules that have to be followed when blending the two wines are summarized 
in Table 2.2.15. The meaning of these figures is best explaind by some of the 
numbers. For instance, the interval [.45; .55] in the Riesling row and the Filzener 
Hexenhammer column of the table indicates that at least 45% and at most 55% of 
the Filzener Hexenhammer blend must be Riesling. Note that the Silvaner content 
of the Hexenhammer must be exactly 35%. It is also noteworthy that while the 
ranges for the Hexenhammer blend are quite tight (which usually indicates a well-
controlled and high-quality product), the ranges for the Hosenscheisser are very 
wide, clearly indicating a cheap product that consists of, loosely speaking, more or 
less whatever happens to be available.  
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Table 2.2.15: Blending rules for the wines 
 

                 Blends 
 
Basic wines 

     Filzener                Leiwener 
Hexenhammer      Hosenscheisser 

Riesling 
Müller-Thurgau 
Silvaner 

[.45; .55]                        [.20; .50] 
[.10; .15]                        [.10; .60] 
[.35; .35]                        [.30; .40] 

 
As discussed above, we need six variables in this example. They are x11 (the quantity 
of Riesling in the Hexenhammer), x12 (the quantity of Riesling in the Hosenscheisser), 
x21 (the quantity of Müller-Thurgau in the Hexenhammer), and x22, x31, and x32 
which are defined analogously. Before formulating the objective, it is beneficial to 
first determine the quantities of the basic wines that are used in the blending process 
and the quantities of the blends that are made in the process. For the time being, let 
us assume that there are no losses in the process (e.g., spillage or thirsty employees).  
 
Consider the basic wines and their uses first. Each of those wines is either put into 
the Hexenhammer or the Hosenscheisser blend—that is all we can do with them in 
this context. Thus the quantity of Riesling that we use is x11 + x12, the quantity of 
Müller-Thurgau used in the process is x21 + x22, and the quantity of Silvaner that 
is used is x31 + x32. Similarly we determine the quantities of the blends that are 
produced. The quantity of each blend that is made in the process is nothing but 
the sum of its ingredients. In our example, the quantity of Hexenhammer that we 
blend equals x11 + x21 + x31, and the quantity of Hosenscheisser we make is x12 + 
x22 +x32. The objective function is then to maximize profit, which, in turn equals 
the difference between revenues from the two blends and the costs of the three 
basic wines. It is shown as relation (1) below.  
 
As far as constraints go, we have three different types of constraints. First there 
are the supply constraints that require not to use more of the basic wines than we 
can get, secondly there are the demand constraints that state that we have to make 
at least as many gallons of the blends as our customers are estimated to demand, 
and thirdly and finally, there are the blending constraints.  
 
Since the quantities of the ingredients (the basic wines) and the products (the 
blends) have already been determined above, the first two types of constraints are 
easy to formulate. They are shown as constraints (2) and (3) in the formulation 
below. The blending constraints (4) are formulated as follows. Consider the content 
of Riesling in Hexenhammer. One of the blending constraints will state that the 
quantity of Riesling in Hexenhammer (which is x11) must be at least 45% of the 
total quantity of Hexenhammer, which has already been determined as x11 + x21 + 
x31. In other words, we can write x11 ≥ .45(x11 + x21 + x31). This is the lower bound 
of this combination of basic wine and blend. The upper bound is formulated in 
similar fashion as x11 ≤ .55(x11 + x21 + x31). This is repeated for all combinations of 
basic wines and blends. The complete formulation is then 
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Max z = [16(x11 + x21 + x31) + 18(x12 + x22 + x32)]  
 − [8(x11 + x12) + 6(x21 + x22) + 5(x31 + x32)]       (1) 
 

000,6
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 x11 ≥ .45(x11 + x21 + x31) 
 x21 ≥ .1(x11 + x21 + x31) 
 x31 ≥ .35(x11 + x21 + x31) 
 
 x12 ≥ .2(x12 + x22 + x32) 
 x22 ≥ .1(x12 + x22 + x32) 
 x32 ≥ .3(x12 + x22 + x32) 
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          (4) 

 
 x11, x12, x21, x22, x31, x32 ≥ 0.  
 
The optimal solution of the problem uses 3,850 gallons of Riesling, 700 gallons of 
Müller-Thurgau, and 2,450 gallons of Silvaner in the Hexenhammer, so that a 
total of 7,000 gallons of that blend are made. Note that this is exactly the quantity 
that is desired. Similarly, we use 3,983.33 gallons of Riesling, 4,300 gallons of 
Müller-Thurgau, and 3,550 gallons of Silvaner in the Hosenscheisser blend, making 
it a total of 11,833.33 gallons of that blend. This is considerably more than the 
minimum of 8,000 gallons that were required. Also note that in the process we use 
a total of 7,833.33 gallons of Riesling (with 2,166.67 gallons left over), we use all 
of the 5,000 gallons of Müller-Thurgau and all of the 6,000 gallons of Silvaner 
that are available to us. The overall profit is $202,333.33.  
 
It is easy to add other relevant constraints. Suppose that we need to control  
the alcoholic content of the blends as well. For that purpose, assume that the 
Riesling has an alcohol content of 8%, Müller-Thurgau has 7.5%, and Silvaner 
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has 6%, and it is desired that the Hexenhammer has at least 7.3% alcohol content. 
Note that the present solution contains .08(3,850) + .075(700) + .06(2,450) = 
507.5 gallons of alcohol. Given that we are making 7,000 gallons of the blend, this 
means that the present alcohol content of Hexenhammer is 507.5/7,000 = 7.25%, 
which is not sufficient. The constraint requiring at least 7.3% can be written  
as .08x11 + .075x21 + .06x31 ≥ .073(x11 + x21 + x31). The new optimal solution does 
not change the quantity or composition of Hosenscheisser, but dramatically changes 
the composition of Hexenhammer. It now contains 5,916.67 gallons Riesling, 
2,366.67 gallons of Müller-Thurgau, and 3,350 gallons of Silvaner. The profit has 
decreased to $198,466.7, roughly a 2% decrease.  

2.2.7 Transportation and Assignment Problems 

Transportation problems have been introduced into the discussion by Hitchcock 
in 1941, thus predating the advent of linear programming by half a dozen years. It 
must be understood that there is not a single model that encompasses all, or even 
most, transportation scenarios. What we call “the” transportation problem in this 
context is a very simple prototype that exhibits some basic structures that are 
typically inherent in transportation problems. The structure has three essential 
components. On the one hand, there are origins, where certain quantities of a 
single homogeneous good are available (so that one unit of the good is exactly the 
same, regardless from which origin it is taken). We can think of the origins as 
warehouses at which goods are stored. For simplicity, we will use the terms 
warehouse and origin interchangeably. Given that there is a total of m origins, we 
assume that there is a known supply of si at origin i.  
 
The second set of components are the destinations. This is where certain quantities 
of the good are needed. We will refer to them as either destinations or customers. 
We assume that there are n destinations, and suppose that there is a known 
demand for our product at a magnitude of dj at destination j. So far, we have 
existing goods on one side, and the need for goods (or, equivalently, existing 
demand, on the other. The task is now to ship the existing goods from the origins 
to the destinations, so as to respect the existing quantities at the origins, satisfy the 
demand at the destinations, and organize the shipments as efficiently as possible. 
As a matter of fact, we can visualize the structure of the problem by considering 
the graph used in our discussion of blending problems (Figure 2.2.2). Rather than 
input factors on the left and blended products on the right, we have origins and 
destinations, and instead of taking a number of ladles full of raw materials and 
put them into a bucket for a blended product, we ship a number of units from  
a warehouse to a customer. The visuals and the story are very different, but the 
mathematical structure is the same.  
 
When requiring efficiency of the shipments, we will need a criterion by which to 
measure efficiency. As usual, we will employ a monetary criterion. Here, an obvious 
choice are the costs of transportation. In order to introduce cost components, we 
assume that there is a cost of cij to ship a single unit of the good from origin i to 
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destination j. Fixed unit cost of transportation mean a linear transportation cost 
function, as one unit shipped from i to j costs cij, two units costs 2cij, and so forth. 
The assumption of linearity of the cost function is crucial to our model. Assume that 
we are shipping pallets of bottles from regional distribution centers to supermarkets. 
Suppose now that the capacity of a truck is forty pallets. Then the transportation 
cost for one pallet is one trip, the costs for two pallets are one trip (except for the 
cost of loading and unloading the same as the cost for a single pallet), the costs for 
three pallets are still mainly the costs of a single trip, etc. In other words, its costs 
about the same to ship one pallet or up to forty pallets. Shipping pallet number 41, 
though, requires a second trip, causing the costs to jump to the equivalent of two 
trips. The result is a step function with break points at the truck capacities. One 
way to “restore” the linearity assumption in this model is to measure the number 
of units shipped in terms of truckloads. Disregarding the differences in loading 
and unloading costs for different numbers of pallets, the cost function is now 
linear. It is very important to note that the transportation network in this basic 
problem allows only direct transportation from an origin to a destination. It is not 
permitted to first ship from one origin to another to consolidate the load, to use 
round trips (similar to multi-stop shopping), or similar non-direct routes.  
 
Before formulating a small example, it is necessary to distinguish between balanced 
and unbalanced transportation problems. A transportation is called balanced, if the 
sum of all supplies equals the sum of all demands. In balanced transportation 
problems, it will be possible to empty all the warehouses and satisfy all demands 
of our customers. In unbalanced transportation problems, we either have more 
units than customers want (the total supply exceeds the total demand), or we need 
more units than we have (the total demand exceeds the total supply). In the former 
case we will be able to satisfy all demand, but some units will be left over, while 
in the latter case, we will empty all the warehouses, but some demand will remain 
unsatisfied. We will discuss the balanced case first, and then offer modifications 
that deal with unbalanced problems.  
 
Consider a transportation problem with two origins and three destinations. The 
supplies at the origins are 30 and 20 units, respectively, while at the destinations, 
there are demands of 15, 25, and 10, respectively. Clearly, the total supply and the 
total demand both equal 50, making the problem balanced. The unit transportation 
costs are shown in the matrix C below, where an element in row i and column j 
shows the value cij. For instance, shipping one unit from origin 1 to destination 3 
costs $4. 
 

 C = ⎥
⎦

⎤
⎢
⎣

⎡
532
471

 

 
The three types of parameters—the supplies, the demands, and the unit transportation 
costs—completely describe the transportation problem. The model will minimize the 
total transportation costs, while ensuring that supplies and demands are respected. 
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In order to formulate the problem, we define decision variables xij that denote the 
quantity that is shipped (directly) from origin i to destination j. The objective function 
is then composed as follows. First of all, we compute the total transportation costs 
along each origin – destination connection. As an example, in our numerical 
illustration the link between origin 2 and destination 1 carries unit transportation 
costs of $2 and the quantity we ship on that link is x21, making the total 
transportation cost on that connection 2x21. Adding such expressions on all links 
results in the overall total cost, which are then to be minimized in the objective 
function of the model as shown below.  
 
Next, consider the constraints of the problem. Generally speaking, there will be 
two sets of constraints: the first set ensures (for balanced problems such as this 
example) that the flow of goods out of each origin equals exactly the quantity that 
is available at that origin. The second set of constraints requires that the flow of 
goods that is received at a customer site equals the demand of that customer. As 
an example for the first set of constraints, consider the second origin. From this 
origin, goods can be shipped (directly) to destination 1 (the quantity shipped on 
this link is x21), to destination 2 (the quantity is x22), and to destination 3 (with a 
quantity of x23). Consequently, the total quantity shipped out of origin 2 is x21 + x22 
+ x23 which is supposed to equal 20 units, the quantity available at origin 2. The 
remaining supply constraints are formulated similarly.  
 
We are now able to formulate the demand constraints. As a numerical example, 
consider customer (or destination) 3. The goods that the customer receives either 
come from origin 1 (a quantity of x13) and from origin 2 (a quantity of x23). As a 
result the total quantity received at destination 3 is x13 + x23, which should equal 
the demand of 10 at that point. Again, the other demand constraints are formulated 
in similar fashion. The complete formulation is then as follows:  
 
 P: Min z = 1x11 + 7x12 + 4x13 + 2x21 + 3x22 + 5x23 
 
 s.t.               x11 +   x12 +   x13                                 = 30 
                                                     x21 +   x22 +   x23 = 20 
 
                     x11                      +   x21                       = 15 
                               x12                        +  x22            = 25 
                                          x13                        +  x23 = 10 
 
                     x11,     x12,      x13,     x21,     x22,      x23  ≥  0.  
 
The problem above is written in a way that makes the underlying structure clearly 
visible. It is apparent that each variable appears exactly twice in the constraints, 
once in a supply constraint and once in a demand constraint. The structure is very 
special and it ensures that as long as all supplies and demands are integer, there 
will exist at least one optimal solution to the problem that is also integer. The 
special structure of the problem has given rise to specialized solution techniques, 
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power, their importance has diminished, so that we have chosen not to include 
them in this book, but instead include them on the website associated with this 
book. Another feature of the problem should be mentioned, even though we will 
not exploit it here. Given m origins and n destinations, the problem will have mn 
variables and (m + n) constraints. However, one constraint is redundant (more 
specifically: linearly dependent). This can be seen in the above formulation by 
adding all supply constraints and then subtracting the first two demand constraints. 

constraints to be considered. This number features prominently in the aforementioned 
special solution methods.  
 
The optimal solution to our example can be shown in the following transportation 
plan T. In row i and column j, it shows the optimal value of the variable xij.  
 

T = ⎥
⎦

⎤
⎢
⎣

⎡
0200

10515
.  

 
In other words, we ship 15 units from origin 1 to destination 1, 5 units from origin 
1 to destination 2, 10 units from origin 1 to destination 3, and all 20 units that are 
available at origin 2 directly to destination 2. It is easy to ascertain (by multiplying 
the elements of T with the corresponding elements of C and adding them up) that 
the total transportation cost at optimum is z  = 150. It is also worth mentioning 
that each nondegenerate solution to a transportation problem has exactly (m+n−1) 
variables at a strictly positive level. In case of degeneracy, there may be fewer 
positive variables.  
 
As far as extensions go, we will first look into unbalanced problems. First of all, 
given any unbalanced problem, we can no longer formulate the problem with all 
equations, as total supply and demand are no longer equal. In case of the total 
supply exceeding the total demand, we will not distribute the entire supply to our 
customers, so that some supply will be left over. This means that we can formulate 
the demand constraints as equations as we have in a balanced problem, while  
we write the supply constraints as less-or-equal-than constraints. That way, the 
customer demand is satisfied everywhere, while some units are left over in one or 
more of the origins. In the above example, let the supplies be 30 and 23 rather 
than 30 and 20. The optimal solution ships 27 units out of origin 1 and 23 out of 
origin 2, leaving three units unassigned at origin 1.  
 
The case, in which the total supply falls short of the total demand is dealt with 
similarly. Here, we will not be able to satisfy the entire demand, but in order to 
come as close as possible of doing so, we will use our entire supply. This means 
that we formulate the supply constraints as equations, while the demand constraints 
will be written as less-than-or-equal constraints. In that way, the total supply is 
shipped to customers, which will still leave some unsatisfied demand at one or 

The result will be the third demand constraint. As a result, we will have (m+n−1) 

such as the MODI (MOdified DIstribution) method. With increasing computational 
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more customers. In the above original example, suppose that the demands are now 
15, 25, and 12, respectively, rather than 15, 25, and 10. The optimal solution ships 
15 units to destination 1, 23 units to destination 2, and 12 units to destination 3, so 
that customer 2 will be left with an unsatisfied demand of 2 units. Extensions of 
the basic model may include penalties for unsatisfied customers (loss of goodwill) 
and units left over in a warehouse (inventory costs).  
 
Two interesting extensions are called reshipments and overshipments. Both 
modifications are some type of sensitivity analysis, in that we change some of the 
existing assumptions. In the case of reshipments, we use the same transportation 
network, but allow transportation on routes that are not direct. In other words, a 
reshipment would be given if we were not to send a unit from, say, origin 1 to 
destination 1 directly, but ship it from origin 1 to destination 3 (or some other 
destination) first, then back to, say, origin 2, and from there on to destination 1. 
Clearly, in order to use reshipments (or back-and-forth shipments), it must be 
advantageous to do so. Consider again our example above. At optimum, we ship 
five units from origin 1 to destination 2. To ship a single unit on that route, it costs 
$7. Instead, we could ship up to five units from origin 1 to destination 1 for $1, 
back to origin 2 for an additional $2, and from there to destination 2 for an 
additional $3. Hence, it costs $6 to ship a single unit on this somewhat circuitous 
route, $1 less than on the direct connection. Reshipping five units this way will 
save 5(1) = $5 for a total transportation costs of $145. While reshipping may use 
routes that go back and forth multiple times, it is unlikely that such routes will 
exist in practice. The mathematical formulations of reshipments uses absolute 
values of variables, as the value of a variable such as xij = −5 indicates that five 
units are shipped back from destination j to origin i. This is not really problematic, 
but it makes the formulation somewhat more unwieldy.  
 
Overshipments are another way of improving on the optimal solution to the basic 
problem by changing the assumptions somewhat. The idea is to allow additional 
flow through the transportation network, which, paradoxically, may actually reduce 
costs. Again, in our example consider the possibility to add one unit of supply to 
origin 2 (for a total of 21), and one unit of demand to destination 1 (for a total of 
16). The optimal solution to that problem will move 51, rather than 50, units 
through the transportation network at a cost of 147, a decrease of $3 from the 
original solution. Such a decrease is possible in this example, because we now 
ship one additional unit on the link from origin 1 to destination 1 (costing an 
additional $1), and on the connection from origin 2 to destination 2 (costing an 
extra $3), but we can now transport one less unit on the expensive link from origin 
1 to destination 2 (which saves $7). This explains the net savings of +1 + 3 − 7 = 
−$3. While reshipments were easy to implement (just modify the plan of what is 
shipped where), overshipments are considerably more difficult to apply. In order 
to benefit from overshipments, we need additional units at the right origin, and 
we have to convince at least one customer to accept more units than originally 
demanded.  
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Other extensions of the basic problem have been discussed as well. One such 
extension includes capacities applied to the transportation links. Another, quite 
natural, modification includes not only direct shipments as used here, but allows 
transshipment points, at which the goods may be unloaded, temporarily stored, 
and reloaded onto other trucks. In some practical applications, such transshipment 
points do not just allow the consolidation of the loads, but also permit changing 
transportation modes, e.g., from truck to rail. Capacity constraints on the 
transportation points are a further natural feature to be included in a model. While 
some of these extensions may be incorporated in network models (see Chapter 5 
of this volume), planners will generally resort to standard linear programming 
formulations to include all the desired features in the model.  
 
A variety of other applications of “transportation problems” exist, some having 
absolutely nothing to do with shipping units from one place to another. One such 
example are the dynamic production – inventory models in Section 2.2.5. Here, 
the “origins” represent the periods of productions, while the “destinations” are the 
periods of consumption (or demand). A link from origin i to destination j exists, if 
i ≤ j. The constraints then require that the outflows of the origins do not exceed the 
production capacities, while the inflows of the destinations must be at least as 
large as the known demand. Other applications assign groups of workers to shifts, 
or differently equipped military units to potential targets.  
 
While transportation problems have a specialized structure, assignment problems 
are even more specialized. Consider a set of n employees that are to be assigned to 
n tasks. We can use no more than 100% of an employee time in the allocation, and 
to each task we must assign 100% of one or more employees’ time. Each allocation 
bears a certain cost. As an example consider typists who, quite naturally, have 
different abilities. Suppose that one of the tasks involves technical typing. In 
order to perform the task, some typists may already know how to do it and can 
perform the type of task quite efficiently (meaning that there will be low costs of 
assigning this employee to the task), while other typists may have to be retrained, 
necessitating higher assignment costs. The problem is then to assign employees’ 
time to tasks, so as to minimize the overall assignment costs.  
 
In order to formulate the problem, we again first define the appropriate variables. 
Here, we define xij as the percentage of worker i’s time that is assigned to task j. 
In order to explain the way the model is formulated, suppose that we have  
three employees and three tasks. The assignment costs are shown in the cost 
matrix  
 

 C = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

262
358
134

.  
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If, for instance, we will use 20% of employee 1’s time for task 2, then the costs 
are .2(3) = .6. The objective function will then minimize the sum of all assignment 
costs.  
 
As far as the constraints of the model go, we have one set of constraints that 
specify that the sum of proportions of an employee’s time must add up to 100%. 
Similarly, the sum of proportions of employees’ time devoted to any one task 
must also add up to 100%. Given this structure, the problem can then be 
formulated as follows.  
 
 P: Min z = 4x11 + 3x12 + 1x13 + 8x21 + 5x22 + 3x23 + 2x31 + 6x32 + 2x33 
 
 s.t.               x11 +   x12 +   x13                                                                    = 1 
                                                    x21 +   x22 +   x23                                    = 1 
                                                                                    x31 +   x32 +   x33    = 1 
 
                    x11 +                        x21 +                         x31                         = 1 
                               x12 +                        x22 +                         x32              = 1 
                                          x13 +                        x23 +                        x33    = 1 
 
                    x11,      x12,     x13,     x21,     x22,      x23,      x31,     x32,      x33    ≥ 0.  
 
It becomes apparent that the assignment is a very close relative of the 
transportation problem discussed above. More specifically, since the constraints 
and the objective are exactly the same, we can view assignment problems as 
transportation problems with all supplies and demands equal to one. Given that, 
there will be at least one optimal solution to the problem that has all variables 
integer. It follows that at least one optimal solution has all variables either equal to 
zero or equal to one. In many publications, the variables are assumed to be one 
from the start, but this feature is really not an assumption of the general problem, 
but a consequence of the structure of the problem. It does, however, provide for an 
easier statement of the problem: the variables indicate whether or not an employee 
is assigned to a task (they equal one if he is and zero if not), and the constraints 
state that each employee is assigned to exactly one task, and each task is performed 
by exactly one employee.  
 
Similar to the transportation problem, specialized algorithms were developed for 
the assignment problem. Of particular mention is the “Hungarian Method,” a 
technique based upon a combinatorial theorem by the Hungarian mathematician 
Egerváry. Again, its importance as a solution method has diminished and we will 
not discuss it here, but relegate it to the website associated with this book.  
 
Assignment problems have a number of applications, some not obviously related 
to assignments. The earliest story reported by G.B. Dantzig in his 1963 book on 
linear programming refers to it as the “marriage problem.” The story is that a 
father has a number of daughters whom he wants to marry off. (It would work the 
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same way with sons, in case this is desired). There are a number of prospects for 
the matching, but each particular match requires a certain amount of dowry based 
on the (in-)compatibility of the couple. The thrifty father’s overall objective to 
minimize the total amount of dowry he will have to pay.  
 
The marriage story in its original form does not appear to be among the prime 
applications of assignment problems, though. Instead, decision makers may 
attempt to match items such as sports teams with the objective of maximizing the 
audience’s appeal (and with it revenue, as appealing games—those with long-
standing rivalries or those among teams with close standings—tend to attract 
larger crowds.)  
 
There are some well-known and well-documented extensions to assignment 
problems, such as generalized assignment problems and quadratic assignment 
problems. Both types of extensions are not only very difficult from a computational 
point of view, but also beyond the scope of this volume.  

Exercises 
Problem 1 (production planning): Solve a variant of the standard production 
planning problem. Three products P1, P2, and P3 are manufactured on two 
machines M1 and M2. Each of the products must be processed on both machines in 
arbitrary order. The unit profits of the products are $18, $12, and $6, respectively, 
and the machine capacities are 24 and 16 hours per planning period. Table 2.2.16 
indicates how many units of the products can be made each hour.  
 

Table 2.2.16: Hourly production capabilities of the two machines 
 

 P1 P2 P3 
M1 3 5 10 
M2 6 4 12 

 
In addition, it is required that at least ten units of the second product are made. 
Formulate a profit-maximizing linear programming problem.  
 
Solution: Defining x1, x2, and x3 as the quantities of the products to be made, the 
objective function below is formulated as usual. However, before we formulate 
the constraints, we have to adjust the units. The entries in Table 2.2.16 are 
expressed in terms of quantity units per hour. Multiplying them by the variables as 
usual would result in the meaningless units (quantity units)2 per hour. Instead, we 
need to convert the entries in the table to hours per quantity units or, more 
conveniently, minutes per quantity unit. Multiplying by the variables (measured in 
quantity units), we obtain minutes used in the production, which can then be 
related to the capacities. The formulation can then be written as follows.  
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 Max z = 18x1 + 12x2 + 6x3  
 s.t.          20x1 + 12x2 + 6x3 ≤ 1,440 
                10x1 + 15x2 + 5x3 ≤    960 
                               x2           ≥      10 
                    x1,       x2,     x3  ≥        0.  
 
Incidentally, the optimal solution prescribes that 43.5, 10, and 75 units of the 
respective products are made for a total profit of $1,353.  
 
Problem 2 (allocation of time to courses): A student is planning the coming 
semester. In particular, he is attempting to allocate the weekly number of hours of 
study to the individual courses he is taking. Each hour of study will increase his 
mark by a certain quantity (starting at zero). Table 2.2.17 shows the marginal 
improvements of the marks given each hour of study (per week) as well as the 
marks required for passing the course.  
 

 
 Marketing Organizational 

Behavior 
Accounting Operations 

Research 
Finance 

Marginal 
improvement 
of mark 

 
5 

 
4.5 

 
5.5 

 
3.5 

 
5.5 

 
Marks 
required for 
passing the 
course 

 
50 

 
55 

 
60 

 
50 

 
50 

 
For example, if our student were to allocate 15 hours (per week) to marketing, 
then his final mark is expected to be 15(5) = 75, which means passing the course.  
 
The student’s objective is to minimize the total number of hours studied. In 
addition, the following constraints have been identified:  
 
• A passing grade should be achieved in each course.  
• Obtain an average grade of at least 64.  
• Suppose that the student has the option to flip hamburgers at McDonalds in 

his spare time. This job pays $10 per hour. Assuming that the student has a 
total of 80 hours available for study and flipping, formulate that our student 
makes at least $100 per week.  

• The number of hours allocated to operations research should be at least 20 
percent of the number of hours allocated to the other four subjects combined.  

 
Solution: Given that time is the scarce resource, we define xj as the number of 
hours allocated to studying the j-th subject, j = 1, …, 5. The objective as well as 
the individual and overall passing requirements and the need to spend at least 20% 
of his studies on operations research are formulated in a straightforward fashion. 

 
 
 
 
 

 
 

Exercises

Table 2.2.17: Input data for Problem 2
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The need to make at least $100 in the hamburger shop is formulated by first 
determining the hours used for hamburger flipping, which is the number of hours 
available overall (here 80) minus the hours used for studying (the sum of 
variables). These hours are then multiplied by the hourly wage of $10, which is 
then the amount of money made. This amount is then required to be at least $100. 
Another important—and frequently forgotten—part of this type of problem is the 
inclusion of constraints that limit the grades to 100. As a matter of fact, if these 
constraints were omitted, our student would aim for passing grades in most 
courses and allocate a large number of hours to one course, in which good marks 
are easy to obtain, so that he receives in excess of 100 marks. Clearly, this is not 
possible, making the additional limitations necessary.  
 
 P: Min z = x1 + x2 + x3 + x4 + x5  
 
 s.t. 5x1                                            ≥ 50 
          4.5x2                                      ≥ 55 
                       5.5x3                         ≥ 60 
                                   3.5x4             ≥ 50 
                                               5.5x5 ≥ 50 
 
 5x1 ≤ 100 
          4.5x2                                      ≤ 100 
                      5.5x3                          ≤ 100 
                                   3.5x4             ≤  100 
                                               5.5x5 ≤ 100 
 
 5x1 + 4.5x2 + 5.5x3 + 3.5x4 + 5.5x5 ≥ 5(64) 
      10[80 − (x1 + x2 + x3 + x4 + x5)] ≥ 100 
                                                    x4 ≥ .2(x1 + x2 + x3 + x5) 
 1 2 3 4 5
 
If the problem were solved, we find that the student studies a total of about 66½ 
hours and obtains minimum passing grades in Marketing, Organizational Behavior, 
and Operations Research, while he can expect 63.63 marks in Accounting (slightly 
better than the passing requirement of 60), and a 65 marks in Finance, 
significantly better than the required 50 marks.  
 
Problem 3 (reformulation of the dynamic production-inventory problem): 
Formulate the problem in Section 2.2.5 with inventory variables that are defined at  
the end of the period.  
 
Solution: Define now I0, I1, I2, I3, and I4 as the inventory levels at the end of 
periods 0 (the beginning of the planning period), 1, 2, 3, and 4. We can then use 
the same formulation provided in Section 2.2.5, except that we need to replace It 
by It−1 for t = 1, 2, 3, and 4. Doing so results in the formulation  

                               x , x , x , x , x  ≥ 0. 
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 P: Min z = 1x1 + 1.1x2 + 1.2x3 + 1.25x4 + .05I1 + .15I2 + .15I3 
 
 s.t.           x1 ≤ 120 
                 x2 ≤ 140 
                 x3 ≤ 150 
                 x4 ≤ 140 
                 I1  = I0 +x1 − 80 (or, as I0 = 20, x1 − I1 = 60) 
 −I2 + I1 + x2 = 70 
 −I3 + I2 + x3 = 130 
 −I4 + I3 + x4 = 150 (or, as I4 = 0, x4 + I3 = 150) 
 x1, x2, x3, x4, I1, I2, I3 ≥ 0.  
 
Using an interpretation that reflects the inventory variables as defined here, the 
solution is again the same as before.  
 
Problem 4 (a two-product production–inventory model): A firm manufactures 
two products. Their production capacities for the two products, unit production 
costs, and estimated demands are shown in Table 2.2.18.  
 

 
 Month 1 Month 2 Month 3 

 Product 
A 

Product 
B 

Product 
A 

Product 
B 

Product 
A 

Product 
B 

Production 
capacity 70 40 80 30 80 10 

Unit 
production 

cost 

 
$3.10 

 
$10.50 

 
$3.20 

 
$10.80 

 
$3.80 

 
$12.00 

Estimated 
demand dA,dB 

50 30 60 10 100 40 

 
The opening inventories of the two products are 0 and 10 units, respectively. At 
the end of Month 3, we do not want any inventories left. The inventory carrying 
costs are 20¢ per unit of product A and 50¢ for each unit of product B. These costs 
are incurred whenever one unit of a product is carried over from one month to the 
next. The total inventory levels (for both products combined) from Month 1 to 
Month 2 should not exceed 40 units, while the total inventory level between 
Months 2 and 3 should not exceed 50 units. Find a cost-minimizing production 
plan.  
 
Solution: The decision variables are xA1, xA2, and xA3 as the production quantities 
of product A in months 1, 2, and 3, and xB1, xB2, and xB3 as the production 
quantities of product B in the three months. In addition, the inventory levels at the 
beginning of periods 1, 2, 3, and 4 (where the inventory level at the beginning of  
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period 4 equals the inventory level at the end of period 3) for the two products are 
defined as IA1, IA2, IA3, and IA4, and IB1, IB2, IB3, and IB4, respectively.  
 
The formulation of the problem is then 
 
 P: Min z = 3.1xA1 + 3.2xA2 + 3.8xA3 + 10.5xB1 + 10.8xB2 + 12xB3  
  + .2IA2 + .2IA3 + .5IB2 + .5IB3 
 s.t. xA1 ≤ 70 
 xA2 ≤ 80 
 xA3 ≤ 80 
 xB1 ≤ 40 
 xB2 ≤ 30 
 xB3 ≤ 10 
 IA1 = 0 
 IB1 = 10 
 IA2 = IA1 + xA1 − 50 
 IA3 = IA2 + xA2 − 60 
 IA4 = IA3 + xA3 − 100 
 IB2 = IB1 + xB1 − 30 
 IB3 = IB2 + xB2 − 10 
 IB4 = IB3 + xB3 − 40 
 IA4 = 0 
 IB4 = 0 
 IA2 + IB2 ≤ 40 
 IA3 + IB3 ≤ 50 
 xA1, xA2, xA3, xB1, xB2, xB3, IA1, IA2, IA3, IA4, IB1, IB2, IB3, IB4 ≥ 0.  
 
The optimal solution is shown in Table 2.2.19. The associated costs are $1,498.  
 

 
 Month 1 Month 2 Month 3 
P1 IA1     xA1      dA1  

0      +50    −50 
IA2    xA2      dA2  
=0 
   0   +80    −60 

IA3      xA3      dA3  
  20 + 80    −100 
=20 

IA4 
=0 

P2 IB1     xB1      dB1  
10   + 30   − 30 

IB2     xB2      dB2  
= 10 
    10 + 30 − 10 

IB3      xB3      dB3  
  30 + 10   −  40 
=30 

IB4 
= 0 

 
Problem 5 (blending of tobaccos): The buyer of a large tobacco manufacturer has 
the choice of four tobacco types Virginia, Burley, Latakia, and Kentucky. Once 
sufficient quantities have been purchased, they will make three blends of pipe 
tobacco, viz., Sweet Smell, Brown Lung, and Black Death. The following information 
is available.  
 

 

 

 
 
 

Table 2.2.19: Optimal solution of Prob l em 4
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• The four types of tobacco cost $3, $6, $5, and $2 per pound (in the order they 
were mentioned).  

• The final blends are sold by the 4 oz pouch, i.e. there are four pouches per 
pound. 

• The blends sell for $7, $9, and $12 per pouch (in the above order).  
• Sweet Smell consists of 20% Virginia, 50% Burley, and 30% Latakia, Brown 

Lung is blended from 40% Latakia and equal proportions of the remaining 
tobaccos, and Black Death is 80% Kentucky and 20% Latakia.  

• The four tobaccos are available in limited quantities. We may purchase up to 300 
lbs of Virginia, 500 lbs of Burley, 100 lbs of Latakia, and 50 lbs of Kentucky.  

• Our customers have placed orders for exactly 500 pouches of Sweet Smell and 
400 pouches of Brown Lung. There are no firm order for the expensive Black 
Death, but we expect to be able to sell between 80 and 120 pouches. 

 
(a) Formulate a linear programming problem for the above situation. Define the 

variables clearly. 
(b) Assume that there is a 5% loss in the blending process. Explain the changes in 

the formulation.  
 
Solution: (a) As usual, the variables are denoted by xij and defined as the quantity 
of i-th raw tobacco in j-th blend. The problem is very similar to that in Section 
2.2.6. The only major difference is that the raw materials are measured in pounds, 
while the products are sold by the pouch. As four pouches make a pound, we need 
to convert pouches to pounds by multiplying the quantities of the products by 4. 
The problem can then be formulated as:  
 
 P: Max z = 7(x11 + x21 + x31 + x41)4 + 9(x12 + x22 + x32 + x42)4  
     + 12(x13 + x23 + x33 + x43)4 − 3(x11 + x12 + x13) − 6(x21 + x22 + x23)  
     − 5(x31 + x32 + x33) − 2(x41 + x42 + x43) 
 
 s.t. x11 + x12 + x13 ≤ 300 
 x21 + x22 + x23 ≤ 500 
 x31 + x32 + x33 ≤ 100 
 x41 + x42 + x43 ≤ 50 
 
 4(x11 + x21 + x31 + x41) = 500 
 4(x12 + x22 + x32 + x42) = 400 
 4(x13 + x23 + x33 + x43) ≤ 120 
 4(x13 + x23 + x33 + x43) ≥ 80 
 
 x11 = 0.2(x11 + x21 + x31 + x41) 
 x21 = 0.5(x11 + x21 + x31 + x41) 
 x31 = 0.3(x11 + x21 + x31 + x41) 
 x12 = 0.2(x12 + x22 + x32 + x42) 
 x22 = 0.2(x12 + x22 + x32 + x42) 
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 x32 = 0.4(x12 + x22 + x32 + x42) 
 x42 = 0.2(x12 + x22 + x32 + x42) 
 x33 = 0.2(x13 + x23 + x33 + x43) 
 x43 = 0.8(x13 + x23 + x33 + x43) 
 
 x11, x12, x13, x21, x22, x23 , x31, x32, x33, x41, x42, x43 ≥ 0. 
 
(b) Suppose that there is a 5% loss in the blending process. This can easily be 
accounted for as follows. Everywhere the quantity of a product is referred to, it is 
replaced by the quantity multiplied by 1 − 5% = 0,95. In this formulation, we 
replace (x11 + x21 + x31 + x41) by (x11 + x21 + x31 + x41)(.95) and similar for (x12 + x22 
+ x32 + x42) and (x13 + x23 + x33 + x43) in the objective function, the second set of 
constraints, and the right-hand sides of the last set of constraints. It would also be 
easy to include different losses for different products.  
 
Problem 6 (blending of gasolines): Table 2.2.20 describes components in a 
petroleum refinery that can be used to blend gasoline. 
 

 
Component Availability 

(in barrels) 
Octane 
number 

Vapor 
pressure 

Cost per barrel  
 

Naphta 30,000 85 10 $53 
Hydrocrackate 45,000 79 4 $48 
Reformate  20,000 101 9 $62 
Alkylate 15,000 108 5 $69 

 
The purpose is to blend two types of gasoline, Regular and Premium, so as to 
minimize the overall costs required to satisfy the demand. The Regular brand 
consists of Naphta, Hydrocrackate, and Reformate, while Premium consists of 
Naphta, Hydrocrackate, and Alkylate. The total contracted demand for gasoline is 
80,000 barrels.  
 
• 

• 

 

blend linearly by quantity. 
 

Alkylate along with the two products Regular and Premium, we can define the 
variables xij as the quantity of raw material i in product j.  
 

 

 

Regular: The octane number must be at least 87 and the vapor pressure cannot 

Solution: Given the four “raw materials” Naphta, Hydrocrackate, Reformate, and 

exceed 7.2. 

exceed 6.8. 

Assume that there are no losses in the blending process and that all quantities 

Premium: The octane number must be at least 91 and the vapor pressure cannot 

Table 2.2.20: Input data for Problem 6
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Min z =  53(x11 + x12) + 48(x21 + x22) + 62x31 + 69x42 
 

s.t. x11 + x12 ≤ 30,000     (availability of Naphta) 
x21 + x22 ≤ 45,000      (availability Hydrocrackate) 
x31 ≤ 20,000        (availability of Reformate) 
x42 ≤ 15,000        (availability of Alkylate) 

 
x11 + x12 + x21 + x22 + x31 + x42 = 80,000  (demand) 

 
85x11 + 79x21 + 101x31 ≥ 87(x11 + x21 + x31) (octane Regular) 
10x11 + 4x21 + 9x31 ≤ 7.2(x11 + x21 + x31)   (vapor pressure Regular) 

 
85x12 + 79x22 + 108x42 ≥ 91(x12 + x22 + x42) (octane Premium) 
10x12 + 4x22 + 5x42 ≤ 6.8 (x12 + x22 + x42)  (vapor pressure Premium) 

 
x11, x21, x31, x12, x22, x42 ≥ 0.  

 
Problem 7 (blending with exact requirements): A fish processing plant makes 
two types of fish sticks, the Scrumptious Skipper and the Delicious Sailor. The 
Skipper consists of exactly 30% pollock, 40% haddock, and 30% sole, while  
the Sailor contains 30% pollock, 20% haddock, and 50% sole. A one-pound 
package of the Skipper sells for $2.50, while a one-pound pack of the Sailor retails 
for $3.50. There are 4,000 lbs of pollock, 3,000 lbs of haddock, and 3,000 lbs of 
sole available in the plant. Formulate a profit-maximizing linear program.  
 
Solution: The usual thought would be to define the variables xij as the quantity of 
the i-th type of fish in the j-th type of fish sticks. The formulation is then 
 
 P: Max z = 2.5(x11 + x21 + x31) + 3.5(x12 + x22 + x32) 
 s.t. x11 + x12 ≤ 4,000 
 x21 + x22 ≤ 3,000 
 x31 + x32 ≤ 3,000 
 x11 = .3(x11 + x21 + x31) 
 x21 = .4(x11 + x21 + x31) 
 x31 = .3(x11 + x21 + x31) 
 x12 = .3(x12 + x22 + x32) 
 x22 = .2(x12 + x22 + x32) 
 x32 = .5(x12 + x22 + x32) 
 x11, x12, x21, x22, x31, x32
 
While this is a correct formulation, it is too large for what it does. We could 
simply formulate variables x1 and x2 as the quantities of the two fish stick 
packages that we make, and formulate 
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 Max z = 2.5x1 + 3.5x2  
 s.t.           .3x1  +  .3x2 ≤ 4,000 
                 .4x1 +   .2x2 ≤ 3,000 
                 .3x1 +   .5x2 ≤ 3,000 
                    x1,         x2 ≥        0.  
 
In both cases, we make 6,428.57 packages of the Skipper and 2,142.86 packs of 
the Sailor for a profit of $23,571.43. This shorter formulation is possible as there 
is a fixed relation between the number of packages of the two products and the 
quantity of the fish input (e.g., the quantity of pollock in the packages of Skipper 
is exactly 0.3 times the quantity of Skipper packages). This was not the case in 
Problems 5 and 6.  
 
Problem 8 (a transportation problem): Consider a school district’s problem  
to assign student from different villages to central schools. Typically, with the 
closing of small neighborhood schools of the “little red schoolhouse” type and 
the establishment of larger centralized schools, it has become necessary to bus the 
students to the schools, (as these distances would even make Abe Lincoln take the 
bus). The objective is to ensure that all students must be able to take a bus, and 
school capacities cannot be violated.  
 
Suppose there are three villages with 30, 50, and 20 students each. The two 
centralized schools have capacities of 70 and 60 students, respectively. The 
distances between the villages and the schools are shown in the matrix C below.  

 C = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2060
3040
1520

.  

(a) Formulate the problem.  
(b) Suppose that the buses available to the district each have a capacity of 35 

students. Formulate constraints to ensure that there are no overfilled buses.  
(c) In addition to the constraints under (b), it is now required that each school is 

filled to at least 75% capacity.  
 
Solution: (a) We first define variables, so that xij denotes the number of students 
bused from village i to school j. The model can then be formulated as follows.  
 
 P: Min z = 20x11 + 15x12 + 40x21 + 30x22 + 60x31 + 20x32 
 
 s.t.                 x11 +     x12                                                   = 30 
                                               x21 +     x22                           = 50 
                                                                         x31 +     x32 = 20 
                      x11 +                  x21 +                  x31             ≤ 70 
                                   x12 +                 x22 +                  x32 ≤ 60 
                     x11,         x12,        x21,      x22,        x31,       x32 ≥ 0.  
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Incidentally, the solution is summarized in the optimal transportation plan  
 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

200
4010
030

T .  

 
The total mileage to bus all students to schools is 2,600, and while the second 
school is filled to capacity, the first students houses only 40 students, well shy of 
its capacity of 70.  
 
(b)  The most obvious way to formulate this constraint is to impose capacities on 

all routes, i.e., write six additional constraints x11 ≤ 35, x12 ≤ 35, …, x32 ≤ 35. 
This is, however, unnecessary, as only buses leading out of the second village 
could possibly have more students than the bus capacity allows. Hence it is 
sufficient to add the two constraints x21 ≤ 35 and x2 ≤ 35. The new solution 
has the transportation plan  

 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

200
3515
525

T  

 
requiring a total mileage of 2,625, a very minor increase from the original 2,600.  
 
(c)  Filling the schools to at least 75% of capacity requires the two schools to 

house at least 70(.75) = 52.5 and 60(.75) = 45 students. Since integrality is 
required and these are lower bounds on the number of students, we have to 
round up the first number to 53. We then add the constraints  

 
 x11 + x21 + x31 ≥ 53 
 x12 + x22 + x32 ≥ 45 
 
to the problem. The optimal solution is then shown in the transportation plan  
 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

200
2723
030

T  

 
with an associated total mileage of 2,730.  
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2.3   Graphical Representation and Solution 
Having discussed a variety of different applications of linear programming 
problems, this section will first demonstrate how linear programming problems 
can be represented graphically. We then discuss in some detail a graphical solution 
method. This is followed by a discussion of a number of special cases that may 
occur in the modeling and solution process, and how to react to them as an 
analyst.  
 
Throughout this chapter, we will restrict ourselves to the case of two variables 
in order to accommodate easy graphing. This does, of course, mean that the 
technique we describe in this section is not made for the solution of realistic 
problems that typically have tens of thousands of variables. Much rather, the 
purpose of this discussion is to create an understanding of what happens in the 
solution of linear programming problems and what the difficulties are, regardless 
of the size of the problem.  
 
The first subsection will demonstrate how constraints and objective functions 
can be graphed and how the problem can be solved graphically. Based on the 
understanding of this material, Section 2.3.2 will then discuss a number of special 
situations that may occur in the solution process and how to deal with the resulting 
messages from the solver.  

2.3.1 The Graphical Solution Method 

As discussed in the introduction to linear programming, each model consists of 
an objective function and a number of constraints. This subsection will first 
demonstrate how to plot constraints, then show how to deal with objective functions, 
and then put it all together in the graphical solution method.  
 
Assuming that we have two variables x1 and x2, a constraint could be a linear 
function such as 3x1 + 2x2 ≤ 6. In order to plot this constraint, it is easiest to first 
consider the associated equation 3x1 + 2x2 = 6. It is known that the line in two 
dimensions is uniquely determined by two points. In order to do so, we can simply 
set either of the variables to any value we like and solve for the other variable, 
resulting in one of the required points. Repeating this step with a different value 
will result in a second point. The straight line that leads through both of these 
points is then the set of all points that satisfy the equation.  
 
In our example, setting x1 = 0 leads to 2x2 = 6 or x2 = 3, so that the first point is 
(x1, x2) =  (0, 3). The second point can be obtained by setting x2 = 0, which leads 
directly to 3x1 = 6, or, equivalently, x1 = 2. As a result, our second point is  
(x1, x2) = (2, 0). The straight line in Figure 2.3.1 is the set of points that satisfy 
3x1 + 2x2 = 6.  
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Figure 2.3.1 
 
So far, we have determined that an equation is represented in two dimensions as a 
straight line. (Note that in a single dimension an equation is just a point). In three 
dimensions, an equation would be represented by a plane, so that in general, we 
speak about an equation in any number of dimensions being represented by a 
hyperplane.  
 
Back in our two-dimensional example, recall that the constraint in question is the 
inequality 3x1 + 2x2 ≤ 6, so that not only the set of points on the line are addresses. 
As a matter of fact, a ≤ or ≥ inequality will refer to the set of points on the line and 
all points in one of the two halfplanes generated by the line. The obvious question 
is then which of the two halfplanes is addressed by the constraint in question. 
Some people might believe that the halfplanes that belong to ≤ inequalities are 
below the line, while those of ≥ are above the line. This is not true, as each ≤ 
inequality can be rewritten as an equivalent ≥ inequality. In our example, the 
constraint 3x1 + 2x2 ≤ 6 is equivalent to its counterpart −3x1 − 2x2 ≥ −6. Both 
constraints define exactly the same set of points.  
 
A simple way to determine the proper halfplane is to choose any point that is not 
located on the line we have plotted and determine whether or not it satisfies the 
constraint in question. If so, then the point is located on the proper side of the line, 
otherwise the halfplane is on the other side. In our example, consider, for instance, 
the origin as a point. Its coordinates are (0, 0), so that the constraint 3x1 + 2x2 ≤ 6 
reduces to 0 ≤ 6, which is correct. This means that the origin is on the “correct” 
side of the line, which allows us to determine the halfplane as being on the lower 
left side of the line. Had we chosen the point, say, (4, 2) instead, our constraint 
would have been 3(4) + 2(2) ≤ 6 or 16 ≤ 6, which is wrong, meaning that the point 
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(4, 2) is located on the “wrong” side of the line. As a matter of fact, the set of 
points on the line and in the halfplane to the upper right of the line is determined 
by the constraint 3x1 + 2x2 ≥ 6. Figure 2.3.1 shows both the hyperplane and both 
halfplanes for all three types of constraints allowed in linear programming: =, ≤, 
and ≥.  
 
Given that an equation is represented by a straight line in two and a plane in three 
dimensions, an inequality is represented by a halfplane in two dimensions and half 
the space in three dimensions (the separating line is given by the associated 
equation and the other half of the space is defined by the same inequality but with 
inverted inequality sign). This has led to the term halfspace that, in contrast to 

an inequality of the ≤ or ≥ type in any number of dimensions.  
 
At this point, we are able to plot the hyperplane or halfspace for each constraint in 

satisfies all of the given constraints. This is not really a restriction, as if we do not 
want a constraint to be satisfied, why include it in the problem in the first place? 
Given that all constraints must be satisfied, the feasible set is then the intersection 

problem.  
 

 
 P: Max z = 2x1 +  3x2  
 s.t.                x1 +  4x2 ≤  12      (I) 
                    2x1 −    x2 ≥ −2      (II) 
                    5x1 +  3x2 ≤ 15      (III) 
                    4x1 +  6x2 ≥   6      (IV) 
                      x1            ≥   0      (V) 
                                 x2
 
The feasible set determined by the constraints of problem P, is shown as the 
shaded area in Figure 2.3.2.  

a given problem. In order to determine the feasible set (also called feasible region 

halfplane, which applies only to two dimensions, applies to the representation of 

or set of feasible solutions), we first need to define a solution as feasible, if it 

of the halfspaces and/or hyperplanes that correspond to all constraints of the 

(VI) 

As a numerical illustration, consider the following numerical example.  

 ≥    0.
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Figure 2.3.2 
 
In our two-dimensional space, the feasible set is a linearly bounded polygon (in 
general, referred to as a polytope). It consists of the boundary with its linear 
segments and corner points (frequently referred to as extreme points) A, B, …, F, 
as well as the interior. At each of the extreme points, at least two constraints are 
satisfied as equations. These constraints are usually referred to as binding (or 
tight) at this point. In our example, at point A, the constraints IV and V are 
satisfied as equations, at point B, constraints II and V are satisfied as equations, at 
point C, constraints I and II are satisfied as equations, and so forth.  
 
We can then determine the exact coordinates of all extreme points by solving a 
system of simultaneous linear equations. For instance, for point A, the system of 
simultaneous linear equations includes all constraints satisfied as equations at this 
point. Here, these are the equations based on constraints IV and V, so that the 
system is  
 
 4x1 + 6x2 = 6 and 
   x1          = 0.  
 
Replacing x1 = 0 in the first equation and solving for x2, we obtain x2 = 1, so that 
the coordinates are (x1, x2) = (0, 1).  
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Similarly, consider point C. At his point, the constraints I and II are binding, so 
that we have the set of simultaneous linear equations  
 
 x1 + 4x2 = 12 
 2x1 − x2 = −2.  
 
A system like this can be solved by any of the pertinent methods, see Appendix C 

1 1 2
We then replace x1 by this expression in the second equation, so that we obtain 
2(12 − 4x2) − x2 = −2. Solving this equation for x2 results in x2 = 9

26  ≈ 2.8889. 
Replacing x2 by this value in x1 = 12 − 4x2 and solving for x1 results in x1 = 9

4  ≈ 

at that point, and their exact coordinates.  
 

Table 2.3.1: Coordinates of extreme points of sample problem 
 

Point Constraints 
binding at point 

Coordinates (x1, x2) z-value 

A IV, V (0, 1) 3 
B II, V (0, 2) 6 
C I, II )2,( 9

8
9
4 ≈ (.4444, 2.8889) 9.5556 

D I, III )2,1( 17
11

17
7 ≈ (1.4118, 2.6471) 10.7649 

E III, VI (3, 0) 6 
F IV, VI (1½, 0) 3 

 
In n dimensions, each extreme point is determined by the intersection of n 
hyperplanes, so that we have to solve a system of simultaneous linear equations in 
n variables with n equations to determine the coordinates for each of these 
extreme points.  
 
Consider now the objective function. To simplify matters, we will at first ignore the 
constraints and deal exclusively with the objective function and its representation, 
before we combine objective function and constraints in the graphical solution 
method.  
 
For now, consider the objective function Max z = 2x1 + 5x2. Ignoring the 
maximization for a moment, we have 2x1 + 5x2 = z, which is nothing but a regular 
constraint with an unknown right-hand side value z. As discussed above, for any 
value of z, we have an equation that can be represented by a hyperplane in the 
space of variables, here the (x1, x2) space. Figure 2.3.3 shows these lines for values 
of z = 5, 10, 15, and 20.  
 

of this volume. One (albeit somewhat awkward) possibility is to use the substitution 

0.4444. Table 2.3.1 shows the points, the constraints that are satisfied as equations 

technique. Here, we solve the first equation for x , resulting in x  = 12 − 4x .  
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Figure 2.3.3 
 
Depending on the type of objective function under consideration, these lines are 
usually referred to as iso-profit lines, iso-cost lines, or simply contour lines. Their 
name derives from the fact that all points on any one of these lines have the same 
value of the objective function. In other words, given the objective function under 
consideration, all points on the line labeled z = 5 are considered equally good by 
the decision maker. Similar, a decision maker will consider all points on the line  
z = 10 as equally good―but better than those on the z = 5 line. The value of the 
objective function gets better in the northeasterly direction.  
 
It is then possible to construct a vector that points into the direction, in which the 
objective function improves. This is the so-called gradient of the objective function. 
Formally, a gradient is the vector of partial derivatives, but here it is sufficient to 
think of it as the direction in which the solutions get better. The gradient is 
constructed as follows, where we use gain our numerical example with the 
objective Max z = 2x1 + 5x2. Each term of the objective function can be thought of 
as the product of the step direction and the step length. Here, x1 means move to the 
right, and the coefficient 2 tells us to move two steps into that direction. The next 
term indicates that we should move 5 steps into the x2 direction. Starting at an 
arbitrary point, we first move 2 steps into the x1 direction, followed by 5 steps into 
the x2 direction. The starting point is then connected to the end point, resulting in 
the gradient. Usually, we start these moves at the origin, but this is not necessary.  
 
Observe that the gradient of the objective function is perpendicular to the iso-
profit lines. Once we have the gradient, it is not necessary to explicitly plot any of 
the iso-profit lines. (In more than two dimensions, the gradient is a ray that is 
orthogonal―the generalization of perpendicular to n dimensions―to the iso-profit 
hyperplanes). From a practical point of view, we can plot the gradient of the 
objective function and then push the perpendicular iso-profit lines as much into its 
direction as possible―the farther we push, the higher the profit.  
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Before putting it all together and describing the graphical solution technique, some 
properties of the objective function are worth mentioning. Suppose that in the 
above objective function each of the terms is measured in dollars. Assume now 
that we have decided to measure the profit in Indian rupees instead. Suppose that 
the exchange rate is 50 rupees per dollar, so that the objective function is now 
Max z' = 100x1 + 250x2. Plotting this objective, we find that while the gradient is 
much longer, the direction of the objective function is exactly the same. As we 
will see later, such a change of currency will result in exactly the same solution as 
the original objective function, only the objective value changes: z' will be 50 
times the value z.  
 
Another point of interest concerns minimization functions. What if the objective 
function minimizes some costs, e.g., Min z = 3x1 + 7x2? No special procedure is 
needed, as we can simply transform the minimization objective into an equivalent 
maximization objective by multiplying it by a negative number, e.g., (−1). This 
will result in the equivalent objective Max − z = −3x1 −7x2. As far as the gradient 
of this function is concerned, it leads from the origin −3 steps into the x1 direction 
(i.e., three steps to the left), followed by −7 steps into the x2 direction (i.e., 7 steps 
down). Everything else remains exactly the same, the value of the objective function 
improves (i.e., gets smaller in case of a minimization function) as we shift the iso-
cost lines more and more into the direction of the gradient. Figure 2.3.4 shows the 
gradients for the following objective functions:  
 
(a) Max z1 =   4x1 − 3x2  
(b) Max z2 =  −x1 + 3x2  
(c) Min z3 = −2x1 −   x2  
(d) Min z4 =   2x1 + 3x2  
 

 
 

Figure 2.3.4 
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It is worthwhile to notice that if we have one function such as z1 = 4x1 − 3x2 in the 
above example, maximizing the function leads to a gradient that points into a 
southeasterly direction. Minimizing the same function leads into the northwest, 
diametrically opposed to the maximization of the same function.  
 
We are now able to describe the complete graphical solution technique. After 
determining the feasible set, we plot the gradient of the objective function and 
move its iso-profit lines into the direction of the gradient, until we hit the last 
feasible point. While there are solutions with better objective function values 
beyond this point, none of them is feasible. Thus the last feasible point into the 
direction of the gradient is the optimal point.  
 
It is apparent that in this procedure, points in the interior of the feasible set cannot 
be optimal; any optimal solution will be on the boundary of the feasible set. In 

formally.  
 
Theorem (Corner point theorem, Dantzig): At least one optimal solution is 
located at an extreme point of the feasible set.  
 
The graphical solution method will identify such a corner point, whose exact 

this is done by way of solving a system of simultaneous linear equations. Once the 
exact coordinates of the optimal solution point have been determined, all that is 
left to do is to determine the quality of the solution, as measured by the objective 
function. This is accomplished by replacing the variables in the objective function 
by their optimal values and thus computing the z-value.  
 
We can summarize the procedure in the following steps:  
 
(1)  Graph the constraints and determine the set of feasible solutions.  
(2)  Plot the gradient of the objective function.  
(3)  Apply the graphical solution technique that pushes iso-profit lines into the 

direction of the gradient until the last feasible point is reached. This is the 
optimal solution x .  

(4)  Determine which constraints are satisfied as equations at x  = ),( 21 xx . Write 
them as equations and solve the resulting system of simultaneous linear equations 
for the exact coordinates of the optimal solution.  

(5)  Use the coordinates of the optimal point in the objective functions and compute 
the value of the objective function.  

 
Applying the first two steps of this procedure to the problem stated in the 
beginning of this subsection, we obtain the graph in Figure 2.3.5. Pushing now 
the iso-profit lines (some of which are shown) into the direction of the gradient, 
we find that the last feasible point on our way into a Northeasterly direction id the 
extreme point D. This is the optimal point. The constraints I and III are binding at 

fact, Dantzig has proved his famous corner point theorem, which we will state here 

coordinates we will have to determine next. As demonstrated earlier in this section, 
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this point, so that we solve the system of simultaneous linear equations that 
consists of relations I and III written as equations, i.e.,  
 
   x1 + 4x2 = 12 
 5x1 + 3x2 = 15.  
 
The optimal solution is =),( 21 xx  )2,1( 17

11
17
7 ≈ (1.4118, 2.6471), and the associated 

value of the objective function is z  = 17
1310  ≈ 10.7647. It can be shown that this 

solution is not only optimal, but is the unique optimal solution to the problem. 
Sometimes, an optimal point is found, such that at least one of its neighboring 
extreme points has the same value of the objective function, and as such is also 
optimal. This happens in our problem, if the same objective function were 
minimized rather than maximized. In this case, we would find the points A and F 
both as optimal solution points with 3=z . More about this issue can be found in 
the next subsection on special cases.  
 

 
Figure 2.3.5 

 
While the graphical method as demonstrated above is an exact method (no 
approximations were made in the process), its use is to explain the main concepts 
and difficulties involved in solving linear programming problems. The reason is 
that practical problems have not two or three, but tens of thousands of variables, 
making graphing impossible. Since the graphical solution technique uses the exact 
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pictorial knowledge of the feasible set, it will be necessary to find an algebraic 
technique that is independent of the graphical image. Dantzig’s simplex method is 
such a tool. Rather than moving through the feasible space directly to the optimal 
solution, the simplex method is an incremental technique that starts with a feasible 
solution (which can be determined by some technique), improves it, tests whether 
or not an optimal solution has been found, and if not, increases the solution 
further. It does so by moving on the boundary of the feasible set from one extreme 
point to an adjacent extreme point. The method also belongs to the class of feasible 
(and improving) direction methods. This means that a step from a (feasible) 
extreme point to an adjacent extreme point is only made, if the solution remains 
feasible, and the value of the objective function improves in the process. A feature 
of the feasible set, called convexity, guarantees that if a point is found none of 
whose neighbors has a better z-value than the one we are presently at, this is an 
overall (i.e., global) optimal solution.  
 
To demonstrate a simplex path, i.e., the sequence of extreme points generated and 
examined by the simplex method, consider again the example of Figure 2.3.5 and 
assume that we have “somehow” determined point A as a starting point. Point A 
has two neighboring extreme points F and B. Both are feasible, so that moves are 
possible. However, while the move from A to B improves the value of the 
objective function as B is on a higher iso-profit line, the move from A to F will 
leave the value of the objective function unchanged. (This is one of the special 
cases discussed in the next subsection). Since we are looking for improvements, 
the simplex method will move to point B. At that point, we have again two 
neighboring extreme points, viz., A and C. While a move from B to A retains 
feasibility of the solution, the z-value would decrease, disallowing such move. On 
the other hand, moving from B to C maintains feasibility and improves the value 
of the objective function, so that the simplex method makes this move. At point C, 
we have again two neighbors, which are B and D. Moving to B is not allowed, as 
this would decrease the z-value. On the other hand, a move to D not only 
maintains feasibility, but also increases the value of the objective function. The 
neighboring extreme points at point D are C and E. Moving either way will keep 
the solution feasible, but in both cases the value of the objective function will 
decrease. At this point, the method terminates with the message that point D is an 
optimal solution.  
 
While examples have been constructed in which the simplex algorithm performs 
very poorly, the average performance of the algorithm has been excellent. Given a 
problem with m constraints, there is consensus that on average, the simplex 
algorithm needs to examine only 1½m extreme points. In each step, we need to 
examine an extreme point, which means we must solve a system of simultaneous 
linear equations. Traditionally, computational details of this method, which is 
considered to be one of the ten top algorithms of the 20th century, have been 
included in texts such as this. Given the abundance of software (some of it  
even free) and the fact that users do not need to know details about how the 
method functions, we will not discuss the method in this book. Instead, for details 
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interested readers are referred to Eiselt and Sandblom (2007) and the website that 
accompanies this book.  
 
Finally, we would like to address the question why, given the tremendous 
computing power of today’s equipment, we do not simply enumerate all extreme 
points, determine their exact coordinates and their objective values, and then 
choose the one with the best objective value (meaning the highest value for 
maximization and lowest value for minimization problems), which then will be 
the optimal solution. Given Dantzig’s corner point theorem, the procedure is 
certainly valid in that it will find an optimal solution. However, as the example 
below will clearly demonstrate, it is of no practical value.  
 
As an example consider a problem whose constraints are 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 
and so forth for all n variables. With two variables, the feasible set is a square with 
the four corner points (x1, x2) = (0, 0), (1, 0), (1, 1), and (0, 1). With three 
variables, the set is a unit cube with eight corner points (x1, x2, x3) = (0, 0, 0), (0, 0, 1), 
(0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), and (1, 1, 1). Continuing in this 
fashion, we will have a feasible set in the shape of a hypercube with 2n extreme 
points. Given a very small practical problem with only n = 100 variables, there are 
2100 ≈ 1030 corner points. Given the fastest machines today that can deal with 1015 
floating point operations per second (called 1 petaflop), and assuming that one such 
operation can determine one extreme point (it cannot: we would need to solve a 
system of simultaneous linear equation with 100 variables and 100 equations), we 
would still need close to 670,000 years to solve the problem. This shows the 
uselessness of enumeration techniques for linear programming problems.  

2.3.2 Special Cases of Linear Programming Problems 

This subsection discusses incidents that can occur when a linear programming 
problem has been formulated and submitted for solution. The first two cases are 
really error messages to the modeler. They require immediate intervention, as the 

nature, it is good to know about them, but no user intervention is required. Below, 
we will discuss each of these issues separately and illustrate it with a numerical 
example.  
 

The nonexistence of a feasible solution is related by the solver to the analyst. 
Whenever that happens, this must be taken as an error message. This is also the 
time for the user to intervene, as the solver is not able to act any further. The 
error message indicates that constraints are too tight, meaning that there is a 
contradiction among the constraints. This message is very often―but by no means 
exclusively―received by inexperienced analysts, who include many constraints in 
their model, some of which refer to situations they wish to happen rather than 
those that must happen. It is very important to understand that constraints are 
absolute, meaning that they cannot be violated.  

(1) There exists no feasible solution.  

solver will not be able to continue. The last three cases are of a more technical 
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As an illustration, consider the following numerical example. Since this special 
case is caused exclusively by the constraints, we will not include an objective 
function in our model. Suppose that the feasible set is determined by the following 
set of constraints:  
 
 P: 2x1 + 3x2 ≤ 7     (I) 
     −x1 +   x2 ≥ 3     (II) 
       x1           ≥ 0     (III) 
                 x2 ≥ 0.      (IV) 
 
A graphical representation of the problem is shown in Figure 2.3.6. Clearly, there 
is a contradiction between the constraints. To see this algebraically, rewrite 
constraint II as x2 ≥ 3 + x1, which, as constraint III requires that x1 ≥ 0, implies that 
x2 ≥ 3. Similarly, constraint I can be rewritten as 3x2 ≤ 7 − 2x1. As x1 ≥ 0 per 
constraint III, this implies that 3x2 ≤ 7 or, equivalently, x2 ≤ 2⅓. This is an obvious 
contradiction to the requirement that x2 ≥ 3.  
 

 
Figure 2.3.6 

 
The question often arises as to which of the constraints actually causes the 
nonexistence of feasible solutions. To investigate this question, consider again the 
example in Figure 2.3.6. If constraint I were to be deleted, the feasible set would 
be the cone that is constructed by constraints II and III with the vertex at (0, 3). If 
constraint II were to be deleted, the feasible set is the triangle with vertices at (0, 
0), (3½, 0), and (0, 2⅓). If constraint III were to be deleted, the feasible set would 
be the set that is determined by the halfspaces of constraints I, II, and IV which 
has its vertices at the points (−.4, 2.6) and (3.5, 0). Finally, if constraint IV were to 
be deleted, there would still be no feasible solution.  
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In summary, we have seen that the deletion of any one of the constraints I, II, 
and III causes infeasibility to disappear. This means that the question “which 
constraint causes the infeasibility” is indeed the wrong question: it is not a single 
constraint that causes infeasibility, but the incompatibility of a number of 
constraints, here I, II, and III. Many solvers will not only provide the decision 
maker with the “There exists no feasible solution” message, but also offer further 
help. Typically, this help comes in the form of an identification of the set of 
constraints that causes the infeasibility. If we were to add the constraints x1 ≥ 2 
and x2 ≥ 2 to the region pictured in Figure 2.3.2 with constraints I – VI, there 
would be no feasible solution, and the solver would notify the analyst that the 
constraints 5x1 + 3x2 ≤ 15, x1 ≥ 2, and x2 ≥ 2 together cause the infeasibility.  
 
The next question is then how to deal with infeasibilities should they occur. The 
answer is that the planner has to decide which of the variables involved should be 
“loosened up.” As an example of a budget constraint, loosening up such a “≤” 
constraint would be accomplished by increasing the right-hand side value. In other 
words, allowing some additional expenditures makes the problem less stringent. 
Similarly, if a customer requires at least, say, 100 units, such a “≥” constraint 
would be made looser by reducing this number by convincing the customer to 
accept a somewhat smaller quantity. Even equations can be relaxed somewhat. As 
an example, consider the equation 2x1 + 5x2 = 6, in which the left-hand side 
indicates the quantity of certain critical nutrients or medicines that an individual 
consumes. Any equation can be expresses as two opposing inequality constraints, 
in our case as 2x1 + 5x2 ≤ 6 and 2x1 + 5x2 ≥ 6. Relaxing these two constraints 
means allowing a bit less than 6 and a bit more than 6 units of that nutrient in the 
diet, which can be achieved by changing the right-hand side values by some small 
value. For instance, instead of the original constraints we could use 2x1 + 5x2 ≤ 6.1 
and 2x1 + 5x2 ≥ 5.9, thus allowing a certain bandwidth within which there are 
feasible solutions. These are so-called interval constraints that marginally increase 
the size of the problem, but are much easier to deal with from a computational and 
modeling point of view.  
 
Often, however, it is not advisable to change the right-hand side value of a single 
constraint, as a very significant change may be required to achieve feasibility. It is 

side values. As an example, consider the example in Figure 2.3.6. Changing the 

Similarly, the right-hand side value of constraint I must be increased from its 

an increase of more than 28%. Alternatively, we could increase the right-hand side 
value of constraint I by 14% to 8 and simultaneously reduce the right-hand side 
value of constraint II by 11% down to 2.67, and obtain a feasible solution with 
these smaller changes that may be easier to implement.  
 
 

often much easier to make a number of smaller changes on multiple right-hand 

right-hand side of constraint II alone would require us to reduce the original value 

original value of 7 to at least 9 before a feasible solution can be obtained, that is 

of 3 by more than 22% down to 2⅓ before a feasible solution could be obtained. 
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The existence of unbounded “optimal” solutions is, in some sense, the opposite of 
nonexisting feasible solutions. This is true in the sense that in the previous case 

and require tightening. Most frequently, this case occurs if some constraints 
have been forgotten. Again, it is an error message that requires intervention from 
the analyst.  
 
As an illustration of this case, consider the following numerical example.  
 
 P: Max z = 2x1 + x2  
 s.t.                x1 − x2 ≤ 2    (I) 
                  −2x1 + x2 ≤ 1    (II) 
                      x1,    x2 ≥ 0.  
 

 
Figure 2.3.7 

 
The graphical representation of this problem is shown in Figure 2.3.7. Using  
the graphical solution method, we notice that we can increase the value of the 
objective function to arbitrary levels by following the direction pointed out by the 
gradient of the objective function. (In case you should encounter arbitrarily high 
profits in practice, remember that you learned it from us first. We are happy with 
10% of infinity). Clearly, this cannot occur in practice, which is why we use the 
word “optimal” in quotes. In order to resolve the issue, it helps if the analyst 
asks how such arbitrarily good solutions can be obtained. For instance, in a 
production problem we would determine that we make money by making and 
selling products: given that machine capacities and demand are limited, profits are 
limited, too. So it would benefit the modeler to investigate whether or not the 
appropriate constraints have been included.  
 

(2) Unbounded “optimal” solutions. 

the constraints were too tight and had to be loosened up, they are too loose here 
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At first glance, it appears that the reason for the existence of unbounded “optimal” 
solutions is the fact that the feasible set is not bounded in one direction (in our 
example, the northeast). However, if we leave the feasible set in our example 
unchanged, but modified the objective function from its original Max z = 2x1 + x2 
to Min z = 2x1 + x2, the graphical solution method would continue to use the same 
contour lines, but the gradient of the new objective function would point into a 
southwesterly direction, diametrically opposed to its previous direction. The (finite) 
optimal solution is then found at the origin.  
 
This small example illustrates that a feasible set that is unbounded in one direction 
is a necessary, but not sufficient, condition for the existence of unbounded 
“optimal” solutions. In addition, the gradient of the objective function must also 
point “towards that opening.” Here, we will leave this imprecise wording as it is; 
suffice it to mention that exact mathematical conditions for the existence of 
unbounded “optimal” solutions do exist.  
 

does not require intervention. Formally, dual degeneracy occurs if two adjacent 
extreme points of the feasible set have the same value of the objective function. 
An example is the problem shown in Figure 2.3.5. As already discussed in the 
context of simplex paths, the point A has the same value of the objective function 
as its neighboring point F. That in itself is not really noteworthy. The situation, 
however, changes if dual degeneracy occurs at optimum. By definition, if we have 
an optimal solution and another extreme point with the same z-value exists, that 
point must also be optimal.  
 
An example for this is again Figure 2.3.5, but with the original objective function 
changed from Max z = 2x1 + 3x2 to Min z = 2x1 + 3x2. this changes the gradient of 
the objective function by 180°, leaving us with the points A and F as optimal 
solutions. Whenever two neighboring extreme points are optimal, all points 
between them are also optimal, i.e., dual degeneracy at optimum means the 
existence of alternative optimal solutions. In this example, the optimal coordinates 
of the points A and F are (0, 1) and (1½, 0), respectively, both having an objective 
value of z = 3. Some points on the line segment between these two points are  
x  = (¾, ½), ( 4

1
8
9 , ), and ( 4

3
8
3 , ). These points have an objective value of z = 3 

and thus are optimal as well. However, none of them is an extreme point, and the 
simplex method will not generate them.  
 
Note that the fact that points that are not corner points of the feasible set are 
optimal does not invalidate Dantzig’s corner point theorem. All the theorem states 
is that at least one optimal solution is at an extreme point. This allows for the 
possibility of nonextreme points being optimal, but only if there is another optimal 
extreme point as well.  
 

(3) Dual degeneracy.  
This is the first of those special cases that an analyst should know about, but that 
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Redundancy is an issue that relates to individual constraints. In particular, a 
constraint is said to be redundant, if it can be deleted from the set of constraints 
without changing the feasible set. A more detailed definition will distinguish 
between constraints that exhibit strong redundancy and those that are weakly 

hyperplane shares at least one point with the feasible set, this is not the case for 
strongly redundant constraints.  
 
As an illustration, consider the following numerical example (without an objective 
function, as it does not play a role in the discussion of redundancy).  
 
 P: 3x1 +   x2 ≤ 8    (I) 
       x1          ≤ 2    (II) 
       x1 −   x2 ≤ 3    (III) 
       x1 + 2x2 ≤ 6    (IV) 
       x1,     x2 ≥ 0.  
 
Figure 2.3.8 depicts the feasible set of this problem.  
 

 
Figure 2.3.8 

 
Constraint III is obviously redundant as its removal does not change the shaded 
area that symbolizes the feasible set. As a matter of fact, it is strongly redundant as 
its bordering hyperplane does not touch the feasible set at any point. In contrast, 
consider constraint I. It is also redundant (but just about so), so that its removal 
likewise does not change the feasible set. However, it is only weakly redundant, as 
it touches the feasible set at the point (2, 2). Had constraint I be instead 3x1 + x2 ≤ 
8.1, it would have been strongly redundant, had it been 3x1 + x2 ≤ 7.95, it would 
not have been redundant at all, as it would have cut off the point (2, 2) and thus 
shaped the feasible set.  

(4) Redundancy.  

redundant. While a weakly redundant constraint belongs to a constraint whose 
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By their very definition, redundant constraints can be deleted from the problem 
formulation without changing anything. The problem is that there is no easy 
general way to recognize whether or not a constraint is redundant. Again, the 
graphical representation is deceiving as in it, redundancy can easily be detected. 
However, if all we have is a set of constraints that we cannot plot, detection of 
redundancy is a different, and much more complicated, matter. As a matter of fact, 
determining whether or not a constraint is redundant is as difficult as solving the 
existing linear programming in the first place. And this is why we can, and pretty 
much have to, ignore the issue and have the solver compute optimal solutions, 
regardless whether or not redundant constraints exist in the formulation.  
 

While the issue of primal degeneracy is of very little, if any, practical concern, it 

care of, the simplex method may “cycle,” meaning that it generates the same 

terms, primal degeneracy occurs in two dimensions, if more than two planes of 
constraint intersect at a single point. In Figure 2.3.8, the point (2, 2) exhibits 
degeneracy. As in two dimensions, the intersection of any two straight lines 

as “overdetermined.” In n dimensions, primal degeneracy occurs if the hyperplanes 
of more than n constraints intersect at one point. Any modern code will include a 
module that deals with degeneracy, so that this is of no concern to users.  

Exercises 
Problem 1 (graphing constraints and objective, graphical solution method): 
Consider the following linear programming problem.  
 

Max z = x1 +   x2  
s.t.        5x1 + 2x2 ≤ 10   (I) 
                        x2 ≥   1   (II) 

1 2
               x1,     x2 ≥

 
(a)  Graph the constraints, determine the feasible set, and use the graphical solution 

method to determine the optimal solution point. Which constraints are binding 

value of the objective function at optimum.  
(b)  What if the objective were Min z = −3x1 −x2? Plot the new objective, use the 

graphical solution method, determine the optimal solution point, its coordinates, 
and the value of the objective function at optimum.  

(c)  Repeat (b) with the objective function Min z = x1 − 2x2  
 

(5) (Primal) degeneracy.  

is a very important theoretical matter. If primal degeneracy is not properly taken 

point over and over again without ever reaching an optimal solution. In graphical 

uniquely determines a point, we can think of points with primal degeneracy  

             3x  + 5x  ≤ 15   (III) 
 0. 

at optimum? Compute the exact coordinates at optimum and calculate the 
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Figure 2.3.9 

 
Solution:  
The objective functions for (a), (b), and (c) are shown in Figure 2.3.9. The optimal 
solutions are indicated by the points ba , and cx , respectively. The exact 
coordinates are ax  = [1.0526, 2.3684] with az  = 3.4211, bx  = [1.6, 1] with bz  = 
−5.8, and cx  = [0, 3] with cz  = −6. The binding constraints at the three points are 
I and III, I and II, and III and the nonnegativity constraint x1 ≥ 0, respectively.  
 
Problem 2 (graphing constraints and objective, graphical solution method): 
Consider the following linear programming problem.  
 

Max z = 3x1 +   x2  
s.t.          6x1 + 5x2 ≥ 30   (I) 
               −x1 + 2x2 ≥   4   (II) 
                           x2 ≤   5   (III) 

1 2
 
(a)  Graph the constraints, determine the feasible set, and use the graphical solution 

method to determine the optimal solution point. Which constraints are binding 
at optimum? Compute the exact coordinates at optimum and calculate the value 
of the objective function at optimum.  

Exercises

x , x

                 x ,      x  ≥ 0. 
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(b)  Repeat (a) with the objective function Min z = x2.  
(c)  What happens if constraint I were of the type “≤” instead?  
 

 
 

Figure 2.3.10 
Solution: 
(a)  The feasible set is the shaded area in Figure 2.3.10, and the optimal solution 

point is ax  = [6, 5] with az  = 23. Constraints II and III are binding at 
optimum.  

(b)  The objective leads “straight down” as shown in the above figure. The optimal 
solution point is bx  = [2.3529, 3.1765] with the objective value bz  = 3.1765. 
At this point, the constraints I and II are binding.  

(c)  The feasible set would no longer be the shaded region but the quadrilateral 
indicated by (c). Given the objective in (a), the optimal solution is again bx .  

2.4   Postoptimality Analyses 
This section will investigate what can be thought of as the third phase in linear 
programming. In particular, it asks: “What happens, if…?” In simple words, we 
will examine what happens, if there is some change in some of the components of 
the linear programming problem that was formulated and solved earlier. The first 
subsection will explore what it means graphically when we make the proposed 
change, while the second subsection puts this knowledge to work and examines 
what managerial consequences the anticipated changes will have.  

2.4.1 Graphical Sensitivity Analyses 

Recall that one of the main assumptions of linear programming is the deterministic 
property. In other words, we assume that the structure of the problem as well as all 
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with assuming that the deterministic property holds, while it actually does not. As 
an example, suppose that we are facing an uncertain demand, which, as past 
experience indicates, ranges from, say, 80 to 130 units. Furthermore, suppose that 

demand were to increase (from 110) by 10 (to 120)?” “What if it increases by 20 

can be obtained either by setting the demand to 120, 130, or any of the other 
values the decision maker is interested in and actually resolving the problem, or by 
gleaning the information from the printout. This information will then indicate how 

are not sensitive at all, meaning that even significant changes in the original 

of the solution, others are very sensitive, so that even minor changes in the input 
parameters change the solution a great deal. There is nothing we can do about it, 
but it is very important information to the decision maker. If it is known that a 
model is very sensitive to changes, the decision maker will have to be very cautious 
and monitor the process closely, obtaining additional and updated information at 
many steps along the way. This is not as necessary in problems that are rather 
insensitive to changes.  
 
We distinguish between two different types of sensitivity analyses. The first type 
deals with structural changes, meaning the addition and deletion of variables and 
constraints. Changes of that nature are major and often dealt with by re-solving the 
problem altogether. The second type of sensitivity analyses involves parameter 
changes. In other words, in these cases numbers of the model change. Typically, 
we deal with ceteris paribus changes, i.e., we determine what happens if one 
number changes, while all other parameters remain unchanged. The advantage of 
such an analysis is that it separates the different changes and analyzes their effect. 
If we were to analyze simultaneous changes of a number of parameters, we would 
not be able to specify what actually causes, say, the increase or decrease in the 
total costs.  
 
We will first look at the changes that may occur when we either add or delete a 
variable or a constraint. The addition of variables and constraints is an issue 
during the modeling process when a model is built. Furthermore, it may occur 
after the problem has been solved when opportunities and requirements are added 

of the parameters of the problem are assumed to be known with certainty. In virtually 

temporarily fix the demand at the level of 110 and solve the problem. Once this 

all realistic cases, this is a troubling assumption: prices may or may not be known 

most of the time the demand is somewhere about 110 units. The idea is now to 

Using postoptimality analyses can be seen as a “trick” that allows us to get away 

has been done, we perform sensitivity analyses by asking: “What happens, if the 

in advance, demand may be uncertain, machine capacities may change (due to 
unforeseen breakdowns), employees may call in sick, thus changing the availability

sensitive the solution is to changes in the input parameters. While some problems 

demand, prices, or other parameters do not result in major (or even any) changes 

of manpower, and so forth. How then can we justify using linear programming at 

(to 130)?” “What if it decreases by 10, 20, or 30 units?” Information of this type 

all?  
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to the problem as time passes. Similarly, it may happen that over time some 
activities or possibilities no longer exist or constraints have become obsolete. 
Whenever possible, we will deal with these cases on an intuitive level, which is 
pretty much all that can be done short of re-solving the problem.  
 
Consider the addition of a variable. In graphical terms, the addition of a variable 
corresponds to the increase of the dimensionality of the problem. It is useful to 
understand a variable as an opportunity, i.e., an additional activity that we may or 
may not undertake. Having the variable allows us to choose the level at which we 
engage in the activity (i.e., the value the variable assumes), while not including the 
variable in the model is the same as setting its activity level or value equal to zero. 
In this sense, adding a variable is the same as adding an opportunity. Doing so 
allows us to increase the level of the new possible activity from a zero level to any 
value within the constraints. The immediate conclusion is that the addition of a 
variable can never result in a deterioration of the objective function value (a 
decrease in maximization functions or an increase in minimization functions), but 
possibly an improvement. Formally, defining the original problem as Porig with its 
optimal objective value origz  and the problem with the added variables as Paddvar 
and its optimal objective value as ,addvarz we know that origz ≤ addvarz in problems 
with maximization objective and origz ≤ addvarz in problems with minimization 
objective. Along similar lines, if Porig has unbounded “optimal” solutions, then so 
does the modified problem Paddvar. On the other hand, if the original problem Porig 
has no feasible solution, the added variable may (or may not) allow Paddvar to have 
feasible solutions.  
 
There is little than can be said beyond this. Often, if variables are added in the 
modeling process, it may be useful not to start solving the new problem from 
scratch but to start with the previous optimal solution, which usually only requires 
a few additional steps to reach the optimal solution of the new problem. However, 
with the advances of optimization software, it often takes only seconds to re-solve 
a problem, so that such considerations are no longer required.  
 
The deletion of a variable can be discussed in analogous fashion. Again, let the 
original problem be Porig, while the formulation without the now deleted variable 
is Pdelvar. The objective function values of the two problems are defined as origz  
and delvarz , respectively. Deleting a variable is now equivalent to deleting an 
opportunity, or, more formally, forcing the value of a variable to zero. If the 
value of the variable that is to be deleted equaled zero in Porig, then the variable 
can be deleted without any change of the solution and origz = delvarz  in both, 
maximization and minimization problems. The main reason for this result is that 
we are no longer allowing an activity that we did not engage in in the first place. 
On the other hand, if the value of the variable that is to be deleted was positive in 
the original problem Porig, the deletion of this variable will deprive us from a 
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worthwhile activity, which lets the objective value deteriorate. In other words, we 
have origz ≥ delvarz  for maximization and origz ≤ delvarz  for minimization problems. 
It is also straightforward that if Pdelvar has unbounded “optimal” solutions, then so 
does Porig, and if Porig has no feasible solution, then neither does Pdelvar.  
 
The addition of a constraint is an issue that we can much more easily analyze, 
as it allows us to visualize the situation in a graph. Again, we restrict ourselves 
to small problems with only two variables, but the conclusions are valid for  
any general formulation. Consider again some arbitrary original maximization 
problem Porig and assume that a constraint is added, resulting in Paddcon. By 
definition, adding a constraint means that the resulting problem Paddcon is more 
restricted, so that its objective value origaddcon zz ≤  in maximization problems and 

origaddcon zz ≥  in minimization problems. More specifically, if the new constraint 
is satisfied by the optimal solution of Porig, then this solution will also be optimal 
for the new problem Paddcon. (Note that this is the case if the new constraint is 
either redundant or essential, but not binding at optimum). On the other hand, if 
the old optimal solution violates the new constraint, then the optimal solution of 
Paddcon is different from the optimal solution of Porig and the objective value will be 
the same (in case of alternative optimal solutions) or be worse than before. 
Furthermore, if the original problem has unbounded “optimal” solutions, then the 
problem with the new constraint may or may not have bounded optimal solutions. 
If the original problem has no feasible solutions, then adding a variable and 
making it more constrained will not result in feasible solutions.  
 
Finally, consider the deletion of a constraint. Again, assume that the problem 
Porig has been solved, resulting in the objective value origz . The problem without 
one or more of the constraints will be referred to as Pdelcon and its optimal value 
of the objective function is delconz . It is apparent that the new problem Pdelcon  
is less restricted than the original problem Porig, so that delconz ≥ origz holds for 
maximization problems, while delconz ≤ origz holds for any minimization problem. 
As in the case of constraint additions, we can distinguish between two cases: 
either the constraint that is deleted was binding at optimum before it was deleted, 
or it was not. In case it was binding, then it was, generally speaking, a constraint 
that held back the solution and with its removal, better solutions may exist. On 
the other hand, if the constraint was not binding, then it did not hold back in the 
solution in the original problem, so that its removal cannot result in better 
solutions. Again, if unbounded “optimal” solutions existed in Porig, then the 
removal of a constraint cannot change that regardless if it is binding or not. If Porig 
did not have feasible solutions, the deletion of a constraint may or may not result 
in the problem Pdelcon having feasible solutions.  
 
Next consider parameter changes. In order to classify such changes, consider the 
following simple linear programming problem  
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 P: Max z = 5x1 + 6x2  
 s.t.                x1 − 2x2 ≥ 2 
                    3x1 + 4x2 ≤ 12 
                      x1,     x2 ≥ 0.  
 
This model, as well as any other linear programming problem, includes three 
different types of parameters. The first are the objective function coefficients 
(typically denoted by c1, c2, …), which are the numbers found in the objective 
function (here the numbers c1 = 5 and c2 = 6). Depending on the application, they 
may be referred to as unit profits, cost coefficients, or similar names. The second 
type of parameter are the right-hand side values (which we usually denote by b1, 
b2, …). In our example, these are the values b1 = 2 and b2 = 12. Again, depending 
on the specific applications, the right-hand side values may be referred to as 
resource availabilities, demands, inventory levels, or similar names. Finally, there 
are the left-hand side coefficients, which sometimes are called technological 
coefficients a11, a12, …, a21, a22, … with the first subscript denoting the number of 
the row or constraint and the second subscript standing for the number of the 
column or variable. In our example the technological coefficients are a11 = 1,  
a12 = −2, a21 = 3, and a22 = 4. Depending on the application, these values may 
symbolize the processing times of a product on a machine, the content of nutrients 
of a food item, the interest rate of a specific investment, or similar values. In this 
book, we will investigate changes of the objective function coefficients and changes 
of the right-hand side values. For changes of the left-hand side parameters, we 
suggest to simply re-solve the problem.  
 
First, consider changes of the objective function coefficients. In order to explore 
what these parameter changes cause, we first look at the objective function and 
ignore the constraints. To facilitate our arguments, consider the objective function 
Max z = 3x1 + 2x2. The gradient of the objective is shown in Figure 2.4.1 and is 
labeled (3, 2). Suppose now that we want to examine changes of c1, the value 
associated with the variable x1. If this number, whose original value is “3,” 
decreases to, say, “2,” the gradient tilts in a counterclockwise direction to a 
position shown as (2, 2). If, on the other hand, c1 were to increase to, say, “4,” 
then the gradient will tilt in a clockwise direction to the position shown as (4, 2). 
If c1 were to further increase to a value of “5,” the gradient further tilts in a 
clockwise direction to the position shown as (5, 2).  
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Figure 2.4.1 

 
We see that the increase of an objective function coefficient in a maximization 
function symbolizes the fact that the activity that corresponds to its associated 
variable has become more attractive or profitable. Thus the gradient of the 
objective function is drawn more into that direction. In our example, we see that 
as c1 increases from 3 to 4 and then to 5, the gradient is pulled further and further 
into the x1 direction, i.e., to the right.  
 
We note that since all the changes occur in the objective function, the feasible set 
will remain unaffected by these changes. This means that if there are no feasible 
solutions before the change, then there will be no feasible solutions after the 
change. On the other hand, the case of unbounded “optimal” solutions is different, 
as it does depend not only on the feasible set, but also on the gradient of the 
objective function. As a simple example, consider the following linear programming 
problem.  
 
 P: Max 2x1 + 1x2  
 s.t.          x1 −   x2 ≤ 2 
                x1,     x2 ≥ 0.  
 
This problem is shown in Figure 2.4.2, in which the gradient of the objective 
function is labeled by its coefficient as (2, 1). Clearly, there are unbounded 
“optimal” solutions to the problem. However, if c2 decreases from its present 
value of “1” to “−2” or even less (the gradient is shown as (2, −2)), the problem 
has a unique finite optimal solution at 21 =x  and 02 =x  with an objective 
function value of 4=z , clearly a finite value.  
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Figure 2.4.2 
 
We are now able to incorporate constraints in our discussion. In order to do so, 
consider the following linear programming problem:  
 
 P: Max z = 1x1 + 2x2  
 s.t.                         x2 ≤ 3 
                    3x1 + 2x2 ≤ 11 
                      x1 −   x2 ≤   2 
                      x1,     x2 ≥   0.  
 
The problem can be visualized in the graph in Figure 2.4.3.  
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Figure 2.4.3 

 
Using the graphical solution technique (or any solver), we determine that the point 
B is the unique optimal solution with coordinates (x1, x2) = (1⅔, 3). Suppose now 
that we want to examine the sensitivity of the solution with respect to c2, the 
objective function coefficient of x2. If we were to increase the value that presently 
equals 2 to some higher value, our previous discussion indicates that the gradient 
of the objective function tilts in a counterclockwise direction. This does not, 
however, have any effect on the solution, which stays at point B. As a matter of 
fact, no finite value of c2, regardless of how large, will change the solution, which 
remains at point B (meaning that the solution is very insensitive to increases of 
this coefficient). Clearly, since 2x  = 3 at optimum, the value of the objective 
function will change as the activity that the variable x2 symbolizes becomes more 
and more valuable.  
 
Consider now a decrease of c2. Graphically, this means that the gradient of the 
objective function tilts in a clockwise direction. For small changes, the optimal 
solution remains at point B. However, once c2 reaches the value of ⅔, point B is 
still optimal, but so is point C with coordinates (x1, x2) = (3, 1) (and all non-
extreme points on the line segment between these two points). This is clearly a 
case of dual degeneracy at optimum, i.e., alternative optimal solutions. Once c2 
decreases below the value of ⅔, point C is the unique optimal solution. Point C 
remains optimal c2 reaches the value of −1. At this point, points C and D are both 
optimal, again a case of alternative optimal solutions. If c2 drops below −1, point 
D with coordinates (x1, x2) = (2, 0) remains optimal, regardless how small the 
coefficient is.  
 
We summarize the effects of the changes c2 in Table 2.4. 1.  
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Table 2.4.1: Optimal solutions ( 21, xx ) and objective values z  for  
different values of c2 

 
Range of c2  ]−∞, −1[ −1 ]−1, ⅔[ ⅔ ]⅔, +∞[ 

Optimal solution 
point D D and C C C and B B 

Optimal 
coordinates 

( 21, xx ) 
(2, 0) 

(2, 0) 
and 

(3, 1) 
(3, 1) 

(3, 1) 
and 

(1⅔, 3) 
(1⅔, 3) 

Optimal objective 
value z  2 2 3 + c2 3⅔ 1⅔ + 3c2 

 
Similar analyses can be performed for each of the given objective function 
coefficients. Without further comments, Table 2.4.2 shows different ranges of c1 
and the resulting optimal solution points, their coordinates, and their values of the 
objective function.  
 

Table 2.4.2: Optimal solutions ( 21, xx ) and objective values z  for  
different values of c1 

 
Range of c1  ]−∞, 0[ 0 ]0, 3[ 3 ]3, ∞[ 
Optimal solution 
point 

A A and B B B and C C 

Optimal 
coordinates ( 21, xx ) 

(0, 3) (0, 3) and 
(1⅔, 3) 

(1⅔, 3) (1⅔, 3) 
and 

(3, 1) 

(3, 1) 

Optimal objective 
value z  

6 6 6 + 1⅔c1 11 2 + 3c1  

 
So far we have only looked at the effects of individual changes on the optimal 
solution. There is, however, an interesting result that considers the effects of 
simultaneous changes. The rule is called the 100 percent rule and it can be stated 
as follows.  
 
100% Rule: As long as the sum of the absolute values of the increases or 
decreases of the objective function coefficients is no more than 100%, the optimal 
solution point remains optimal.  
 
Formally, we denote the largest allowable increase of an objective function 
coefficient cj by jcΔ , while the largest allowable decrease of an objective 

function coefficient cj is denoted by jcΔ . In our example, the optimal solution for 

the original objective function Max z = 1x1 + 2x2 was ( 21, xx ) = (1⅔, 3). As shown 
in Table 2.4.2, this solution remains optimal as long as c1 (whose original value is 
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c1 = 1) does not increase by more than 1cΔ  = 2 to the upper limit of the range at  
c1 = 3. Similarly, the solution remains optimal as long as c1 does not decrease by 
more than 1cΔ  = 1 to the lower end of the range at c1 = 0. Similarly, we obtain 

the values 2cΔ  = +∞ and 2cΔ  = 1⅓. Suppose now that we want to investigate the 
effect of a simultaneous increase of the value of c1 by Δc1 and a decrease of the 
value of c2 by Δc2, the 100 percent rule then states that the optimal solution 
( 21, xx ) = (1⅔, 3) remains optimal, as long as the sum of actual increases in 
relation to their respective values jcΔ  plus the sum of actual decreases in relation 

to their respective values jcΔ  does not exceed 100% = 1. In our example, we 

obtain 
2

2

1

1 ||||
c
c

c
c

Δ
Δ

+
Δ
Δ  = 

3
1
21

1
||

2
|| cc Δ
+

Δ  ≤ 1. For instance, if we were to face a 

simultaneous increase of c1 by ½ and a decrease of c2 by ½, the condition tells us 

that 
3
11

½
2
½
+  = ¼ + ⅜ = 8

5  < 1, so that the optimal solution remains optimal. On 

the other hand, if the increase of c1 were ¾ and the decrease of c2 were 1, then we 

would have 
3
11
1

2
3/4

+  = ⅜ + ¾ = 8
9  > 1, so that the optimal solution will change.  

 
A similar argument can be applied to a simultaneous decrease of c1 and increase 
of c2, or simultaneous increases or decreases of both cost coefficients. Increasing 
both cost coefficients simultaneously presents an interesting special case. As there 
is no finite upper bound on c2, the 100% rule reduces to the regular limit on c1 and 
no limit on c2.  
 
Consider now changes of a single right-hand side value bi. Again, we will first 
examine the effects such a change on the constraint itself before investigating 
what happens to optimal solutions. As a numerical example, consider the constraint 
2x1 + 3x2 ≤ 6. The resulting hyperplane and halfspace is shown in Figure 2.4.4, 
labeled as b1 = 6.  
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Figure 2.4.4 

 
If we were to modify the right-hand side value to, say, b1 = 9, the hyperplane and 
halfspace would shift in parallel fashion to the position shown in Figure 2.4.4 by 
b1 = 9. A further increase to b1 = 12 is shown in the figure as well. Decreases of 
the right-hand side value in our example would again result in a hyperplane and/or 
halfspace shifting in parallel fashion, but now in a southwesterly direction.  
 
Given this result, we are now able to examine changes of right-hand side values in 
a linear programming problem. Before doing so, we note that such changes do in 
no way affect the objective function, but they may change the feasible set.  
 
As an illustration, consider again the numerical example that was used to discuss 
changes of the objective function. For convenience, we restate the model here.  
 
 P: Max z = 1x1 + 2x2  
 s.t. x2 ≤ 3    (I) 

 3x1 + 2x2 ≤ 11   (II) 
 x1  −  x2 ≤ 2    (III) 
 x1, x2 ≥ 0.  
 
Figure 2.4.5 shows the feasible set (the shaded area) and the gradient of the 
objective function. The extreme points of the feasible set are 0, A, B, C, and D. 
The optimal solution is again at the point B with coordinates ( 21, xx ) = (1⅔, 3) 
and value of the objective function z  = 7⅔.  
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Figure 2.4.5 
 
Consider now changes of the second right-hand side value b2. If b2 increases, then 
the hyperplane and halfspace of this constraint will move into a northeasterly 
direction. For instance, if b2 = 15, the feasible set is now enlarged by the set with 
the extreme points B, C, B1, and C1. This has a direct effect on the optimal 
solution point, which has moved from its original position at point B to its new 
position at point B1. Note that while the optimal coordinates of the optimal point 
have changed, one thing has not: the point is still determined by the intersection of 
the hyperplanes that belong to constraints I and II, the latter now with its new 
right-hand side value. Such a point is referred to as a basis point or simply a 
basis. We observe here that while the basis has not changed, the optimal solution 
has moved to a new location. A further increase of b2 has the effect of changing 
the feasible set to 0, A, B2, C2, and D, with an optimal solution at point B2. Again, 
the basis has not changed (the point is still determined as the intersection of 
hyperplanes I and II), but its location has moved further to the right. A further 
increase to b2 = 21 results in a feasible set with extreme points 0, A, B3 = C3, and 
D. The optimal solution is now at points B3 = C3. We observe that at this point, 
hyperplanes I, II, and III now intersect at the same point, causing primal 
degeneracy. Any further increase of b2 will not change the feasible set any further, 
constraint II is now redundant.  
 
Return now to the original value of b2 = 11 and slowly decrease this value. For  
b2 = 9, for instance, the feasible set has shrunk to 0, A, B4, C4, and D with an optimal 
solution at B4. A further decrease to b2 = 6 results in the feasible set with extreme 
points 0, A = B5, and D = C5, indicating that primal degeneracy now occurs at A = 
B5, and D = C5. The optimal solution is now at A = B5. A further decrease to b2 = 3 
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results in a feasible set with extreme points 0, A6, and D6 with an optimal solution 
at A6. A further decrease to b2 = 0 causes the feasible set to consist of only the 
origin, which, as it is the only feasible point, is now also optimal. Any further 
decrease of b2 will cause the problem not to have any feasible solutions. Our 
results are summarized in Table 2.4.4.  
 
In general, our discussion has revealed that changing a right-hand side value 
from −∞ to +∞ (or vice versa) causes the constraint to be redundant at first, then 
essential (shaping the feasible set, but possibly not changing the optimal solution), 
binding (shaping the feasible set and any change of the right-hand side value, 
regardless how small, changes the optimal solution), to so strong so as to cause the 
nonexistence of feasible solutions. Not each case has to go through all of these 
phases. For instance, changing the value of b2 will result in the constraint first 
being redundant, then essential and binding, and then infeasible.  
 
The ranges for changes of b1 and b3 are shown in Table 2.4.3 and Table 2.4.4, 
respectively. We must note, though, that the interpretation of these intervals is 
different from that in the case of changes in the objective function. While a range 
of cj of, say, [3, 7] indicates that as long as cj is anywhere between 3 and 7, the 
optimal solution will not change, the same interval for bi will indicate that as long 
as bi is within this range, the optimal basis will not change. In other words, for all 
changes within this range, the same constraints will be binding at optimum. The 
solution will, however change. This makes the ranges for right-hand side values 
less interesting to managers.  
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Finally in this section, we want to apply the 100% rule to right-hand side changes. 
The rule itself is the same as that used for changes of objective function 
coefficients. Here, with right-hand side values of b1 = 3, b2 = 11, and b3 = 2, we 
have obtained intervals of [1, 5½], [6, 21], and [−1⅓, ∞[, see Tables 2.4.3, 2.4.4, 
and 2.4.5. In other words, we have ½,2,2 11 =Δ=Δ bb 10,5 22 =Δ=Δ bb , 

=Δ 3b 3
13 , and .3 ∞=Δb  With anticipated changes of the right-hand side values 

from their present values to b1 = 4½, b2 = 7, and b3 unchanged at 2, we obtain 

Δb1 = 1½, Δb2 = −4, and Δb3 = 0. We can then compute 
2

2

1

1 ||||
b
b

b
b

Δ
Δ

+
Δ
Δ  = 

1
5
7

5
4

2½
½1

>=+ , so that these changes will not only cause the solution to change, 

but also the basis, i.e., different constraints will be binding after the change.  
 
As a different example, assume that b1 decreases from its present value of 3 to 2½ 
(meaning that Δb1 = −½), b2 increases by Δb2 = 2 to its new value of b2 = 13, 
and the third right-hand side value decreases by Δb3 = −1 from its present value of 

2 to its new value of b3 = 1. The condition is then 
3

3

2

2

1

1 ||||||
b
b

b
b

b
b

Δ
Δ

+
Δ
Δ

+
Δ
Δ  = 

1
4
31

10
2

2
½

3
10

<=++ , so that after this change, the same constraints will be 

binding. Again, the solution may (and most likely will) change.  

2.4.2 Economic Analysis of an Optimal Solution 

In this section, we will first provide a simulated printout that is typical for what 
analysts obtain from a computer upon solving a linear programming problem. We 
then explain the different features and the information provided by the printout. In 
the second part of this section, we use a linear programming problem, provide the 
printout, and answer a number of questions relevant to the decision maker.  
 
In order to do so, we consider the following linear programming problem:  
 
 P: Max z =3x1 − x2  
 s.t. x1 −  x2 = 2 

 2x1 + 3x2 ≤ 16 
 5x1 +  x2 ≥ 15 
 x ,  x2 ≥ 0.  

 
The standard printout for the problem is shown in Table 2.4.6, while information 
concerning sensitivity analyses is provided in Table 2.4.7.  
 
 
 

1
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Table 2.4.6: Summary of Results for sample problem 
 

SUMMARY OF RESULTS 
 
VALUE OF THE OBJECTIVE FUNCTION 10.8000 
 
 DECISION   VALUE AT   OPPORTUNITY 
 VARIABLE   OPTIMUM   COST 
 
 X1     4.4000   0.0000 
 X2     2.4000   0.0000 
 
 SLACK/EXCESS CONSTRAINT  OPTIMAL  SHADOW PRICE 
 VARIABLE    TYPE   VALUE 
 
 CONSTRAINT 1:  EQ    0.0000  2.2000 
 CONSTRAINT 2:  LE    0.0000  0.4000 
 CONSTRAINT 3:  GE    9.4000  0.0000 

 

part shows the optimal value of the objective function , in our example z  = 10.8. 
The second part shows the optimal values of the decision variables as well as 

optimum, 1x  = 4.4 and 2x
reduced cost) of a variable indicate how far the price or cost of a variable is away 
from being included in the optimal solution. In our example, both opportunity 
costs are zero, as both variables are included in the solution with a positive value. 
Suppose now that there is a variable in a problem, whose price is $5 and whose 
opportunity costs are 3. Furthermore, suppose that the variable equals zero at 
optimum, i.e., it is not included in the optimal solution with a positive value. The 
main reason for the variable not being part of the optimal solution is that it is not 
profitable enough. More specifically, its price is not high enough. The opportunity 
cost now indicates that the lowest price at which the variable would be included in 
the solution is its present price plus the opportunity cost, in our example $5 + $3 = 

variable in the solution. The interpretation of opportunity cost in cost minimization 
problems is similar. In those problems, it indicates by how much the cost of a 
variable has to decrease, before it will be part of a solution.  
 
Consider now the third and last part of the Summary of Results that is headed the 
words “slack or excess variable.” As discussed earlier in this book, the solver has 
automatically added a slack variable to the left-hand side of each ≤ inequality and 
subtracted an excess or surplus variable from the left-hand side of each ≥ inequality.  
 
The printout first provides the number of constraint these variables are added to, 
followed by a column that specifies the type of constraint (and with it the type of 

The Summary of Results shown in Table 2.4.6 subdivides in three parts. The first 

their opportunity costs. In our examples, the information provided indicates that at 
 = 2.4. The opportunity cost (sometimes also called 

$8. In other words, $8 is the lowest price at which we consider including the 
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additional variable) that was automatically added. Here, we use the abbreviations 
EQ for equation, LE for a “≤” constraint, and GE for a “≥” constraint. The optimal 
values of the slack, excess, and artificial variables are provided in the next column. 
In our example, they are 0, 0, and 9.4. These numbers indicate that the variable 
associated with the first constraint has an optimal value of 0. This is obvious, as 
the first constraint is an equation, which does not allow left- and right-hand sides to 
differ. The second constraint is of type “≤,” meaning that the system automatically 
added a slack variable to the left-hand side of the relation. The optimal value of this 
slack variable is 0, indicating that the constraint is actually satisfied as an equation at 
optimum, meaning that the constraint is binding at optimum. A constraints that is 
binding at optimum constitutes a bottleneck of the problems. Bottlenecks require 

immediately result in changes of the optimal solution. Finally, the third constraint is 
of type “≥” and thus had an excess variables subtracted from its left-hand side. The 
optimal value of this excess variable equals 9.4, indicating that at optimum, the left-
hand side exceeded the right-hand side value by 9.4. This is not a bottleneck, so that 
smaller changes of the third right-hand side value will leave the solution unchanged.  
 
The last column in Table 2.4.6 shows the shadow prices associated with the 
constraints. The shadow price associated with a constraint indicates the change of 
the value of the objective function, given that the right-hand side value of that 
constraint increases by one unit. It does not provide any information about how 
the solution would change, though.  
 
In our example, the shadow price of the first constraint (the equation) equals 2.2. 
This means that as the first right-hand side value b1 increases from its original 
value of 2 by one unit to 3, the value of the objective function increases from 10.8 

unit from its original value of 16 to 17 will result in a new optimal objective value 
that is 0.4 higher than the original objective value of 10.8, i.e., z  = 11.2. Finally, 
the third constraint has a shadow price of 0. This indicates that a change of the 

nor the value of the objective function at optimum.  
 

option. The simulated printout for our example is shown in Table 2.4.7.  
 

by 2.2 to 13. Similarly, the increase of the second right-hand side value by one 

special attention as any changes in the right-hand side value of such equations will 

third right-hand side value by one unit will neither change the optimal solution, 

Additional information is available when choosing the “Sensitivity Analyses” 

The Sensitivity Analyses option consists of two parts. The upper part headed  
by Coefficients of the Objective Function analyzes changes of the objective 
function coefficients cj, while the part headed by Right-Hand Side Values provides 
information concerning changes of the right-hand side values bi.  
 
In Table 2.4.7, the line headed by x1 specifies the original value of c1 = 3, and also 
the interval = [1, ∞[. This interval indicates that as long as the value of c1 is equal 
or larger than 1, the optimal solution shown in Table 2.4.6 will remain optimal. 
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Consider now the bottom part of Table 2.4.7. The row headed by “Constraint 1” 
specifies the original right-hand side value of the first constraint (which was b1 = 2), 
as well as the interval [−1.6154, 8.0000]. This interval indicates that as long as the 
first right-hand side value remains between these bounds, the optimal basis will 
remain unchanged. In other words, within this range the same constraints remain 
binding at optimum. The solution, however, may very well change, even within 
this range. The remaining rows for the other two constraints are interpreted in a 
similar fashion.  
 
The remainder of this section will present a linear programming problem, 
formulate it, and then interpret the results shown in a printout. The production 
planning model we will use throughout this section is as follows.  
 
Example: A footwear manufacturer is planning next year’s product line. Part of that 
line are three types of hiking boots, called “Walker,” “Hiker,” and “Backpacker.” 
Among the many raw materials used in the production are three particularly 
important and costly materials: NOwater (a lining that waterproofs the boots), 
Fabrinsula (fabric insulation for warmth), and Lugster (lug) soles. Currently, 10,000 

 
SENSITIVITY ANALYSES 

 
COEFFICIENTS OF THE OBJECTIVE FUNCTION 

 
VARIABLE  LOWEST   ORIGINAL   HIGHEST  
    ALLOWABLE  VALUE    ALLOWABLE 
    VALUE         VALUE 

 

 

 

Table 2.4.7: Sensitivity Analyses for sample problem 

 X1   1.0000   3.0000   INFINITY 
 X2   −3.0000   −1.0000   INFINITY 
 

RIGHT-HAND SIDE VALUES 
 
CONSTRAINT  LOWEST   ORIGINAL  HIGHEST 
NUMBER   ALLOWABLE  VALUE   ALLOWABLE 
     VALUE        VALUE 
 
CONSTRAINT 1 −1.6154   2.0000  8.0000 
CONSTRAINT 2 8.1667   16.0000  INFINITY 
CONSTRAINT 3 −INFINITY  15.0000  24.4000 

 

 

 

 

Similarly, we can interpret the numbers in the row headed by x2. The original 
value of the objective function coefficient of this variable is c2 = −1. The range 
specified here is = [−3, ∞[, and it indicates that as long as c2 is −3 or higher, the 
solution shown in Table 2.4.6 will remain optimal.  
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sq. ft. of NOwater are available at $20 per sq. ft. Similarly, the manufacturer has 
access to up to 5,000 oz. of Fabrinsula at $15 per ounce and up to 7,000 pairs of 
Lugster soles at $10 per pair. The requirements for manufacturing the different 
types of boots are given in the following table. 
 

Table 2.4.8: Data for shoe production problem 
 

  Products   
 Walker Hiker Backpacker  
NOwater 1/2 1 21/2 [sq. ft. per pair] 
Fabrinsula 1/2 2/3 4/3 [oz. per pair] 
Lugster 1 1 1 [pair of soles] 

 
Contracts have been signed for the delivery of at least 3,000 pairs of “Walkers,” 
at least 2,000 pairs of “Hikers,” and at least 1,000 pairs of “Backpackers.” 
Customers are prepared to purchase additional quantities should they become 

types. (Note: The unit profits in the objective function in the formulation below 

and Lugster).  
 
In order to formulate the problem, we first define variables xj as the quantity of the 

as follows.  
 
 P: Max z = 12.5x1 + 25x2 +  30x3  
 s.t.                  ½x1 +     x2 + 2½x3 ≤ 10,000  (NOwater availability) 
                        ½x1 +  ⅔x2 + 1⅓x3 ≤   5,000  (Fabrinsula availability) 
                           x1 +     x2 +      x3  ≤   7,000 (Lugster soles availability) 
                           x1                         ≥   3,000 (Walker requirement) 
                                      x2              ≥    2,000 (Hiker requirement) 
                                                   x3 ≥    1,000 (Backpacker requirement) 
                          x1,        x2,         x3 ≥           0.  
 
Before we provide the printout and continue with our interpretations, some comments 
regarding the formulation are in order. While the constraints are straightforward, 
the objective function coefficients have been obtained as follows. Consider the 
“Walker” boots. They sell for $40 a pair, from which we have to deduct the costs 
of ½ sq ft of NOwater ($10), ½ oz of Fabrinsula ($7.50) and one pair of soles 
($10), leaving us with a per-unit profit of $12.50. This is the coefficient found in 
the above formulation. The unit profits of the other two boots are computed in a 
similar fashion.  
 
Tables 2.4.9 and 2.4.10 provide the usual printouts with the sensitivity option.  

 

 

have been computed as the price minus the costs for the required NOwater, Fabrinsula, 

three types of boots that we made and sell. The formulation of the problem is then 

available. The agreed-upon prices are $40, $65, and $110 per pair of the respective 
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SUMMARY OF RESULTS 

 
VALUE OF THE OBJECTIVE FUNCTION 143,749.60 
 
 DECISION   VALUE AT   OPPORTUNITY 
 VARIABLE   OPTIMUM   COST 
 
 WALKER   3,000.0000  0.0000 
 HIKER    2,750.0750  0.0000 
 BACKPACKER  1,249.9249  0.0000 
 
 SLACK/EXCESS CONSTRAINT OPTIMAL  SHADOW PRICE 
 VARIABLE    TYPE  VALUE 
 
 NOWATER:    LE   2,625.1125  0.0000 
 FABRINSULA:   LE   0.0000   7.5008 
 LUGSTER:    LE   0.0000   19.9993 
 WALKER:    GE   0.0000   -11.2496 
 HIKER:    GE   750.0750   0.0000 
 BACKPACKER:   GE   249.9250   0.0000 

 

 
SENSITIVITY ANALYSES 

 
COEFFICIENTS OF THE OBJECTIVE FUNCTION 

 
VARIABLE  LOWEST   ORIGINAL   HIGHEST  
    ALLOWABLE  VALUE    ALLOWABLE 
    VALUE         VALUE 
 
WALKER  −INFINITY  12.50    23.75 
HIKER   16.00    25.00    30.00 
BACKPACKER 25.00    30.00    50.00 

 

 

 

 

 

 

 

 

 

 

Table 2.4.9: Summary of Results for shoe production problem 

Table 2.4.10: Sensitivity Analyses for shoe production problem 



2  Linear Programming 98 

LUGSTER:   6,625.00   7,000.00  7,249.89 
WALKER:   2,001.60   3,000.00  3,600.02 
HIKER:   −INFINITY  2,000.00  2,750.08 
BACKPACKER:  

 
The following is a simulated dialog between an analyst, who modeled the problem 
and provides the information from the printouts and the decision maker, who asks 
the questions that are of managerial interest.  
 
Q1: How many pairs of the boots should we manufacture and what will be the 

associated profit?  

A1: The solution suggests that we make 3,000 pairs of Walkers, 
2,750 pairs of Hikers, and 1,250 pairs of Backpackers. Given 
this production plan, we can expect a profit of $ 143,750.  

Q2: You are undoubtedly aware of the fact that NOwater, Fabrinsula, and Lugster 
are critical resources. How many of these do we use in the suggested plan and 
how much is left over?  

 
A2: The printout tells me that we will have 2,625 sq ft of NOwater 
left over, while Fabrinsula and Lugster soles are both completely 
used. The latter two are obvious bottlenecks in the process. In other 
words, we are using 7,375 sq ft of NOwater, the complete supply of 
5,000 oz of Fabrinsula, and all of the 7,000 pairs of Lugster soles.  

 
Q3: I just was informed by our marketing research group that the Hiker boots are 

very popular and just about all of our customers would be prepared to pay an 
additional $10 to get a pair of these. Would such a price hike change the 
optimal solution?  

 
A3 (aside to himself): Ahh, a sensitivity analysis on the objective 
function coefficient c2. The range within which the present 
optimal solution remains optimal is [16, 30]. A price increase 
by $10 leads to a price of $35 rather than the original $25, 
which is not in the interval, thus the solution will change. 
 (to the Decision Maker): If we hike the price by more than 
$5, our solution will change. 

 

Table 2.4.10 (continued) 

−INFINITY  1,000.00  1,249.93 

RIGHT-HAND SIDE VALUES 
 
CONSTRAINT  LOWEST   ORIGINAL  HIGHEST 
     ALLOWABLE  VALUE   ALLOWABLE 
     VALUE        VALUE 
 
NOWATER:   7,374.89   10,000.00 INFINITY 
FABRINSULA:  4,833.40   5,000.00  5,500.00 
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pair of Walkers, the Sensitivyity Analyses part of the printout 
indicates that as long as the unit profit remains in the interval 
]−∞, 23.75], the optimal solution will not change.  
 (to the Decision maker): It does not matter by how much you 
decrease the price of Walkers, we will not sell any more.  

 
Q5: All right then. An interesting thing happened the other day. I met a salesman 

who offered me an additional 100 oz of Fabrinsula for $8.50 per ounce. 
Should we purchase that? You told me that we used up all the Fabrinsula that 
we have. What if I squeeze the man a bit and get it for $5? Will we take it for 
that price? And what will happen to our profit?  

 
A5 (to himself): A sensitivity analysis on the second right-hand 
side value b2. The Summary of Results tells me that the shadow 
price of Fabrinsula is $7.50, so we should not purchase it for 
more than that. Also, the basis will not change if we buy up to 
500 ounces of Fabrinsula. 
 (to the Decision Maker): No, don’t buy it for $8.50. As a 
matter of fact, you should not pay more than $7.50 for an extra 
ounce of Fabrinsula. If you can get it for $5, you can buy up to  
500 oz of it. For each ounce that you get on top of what we 
have, our profit will increase by $2.50. Beyond 500 extra 
ounces, though, I will have to make additional calculations.  

 
Q6: Wonderful. I have also considered an alternative, though. In one of our trade 

magazines, I just read an offer for Lugster Soles that we could get for $19 a 
pair. Would you consider that?  

 
A6 (to himself): The shadow price for Lugster Soles is $20, and 
the Sensitivity Analyses tell me that this holds for an increase of 
up to 250 pairs. 
 (to the Decision Maker): If you can get a pair for $19, get 
them. They are worth $20 to us, so for each extra pair, we make 
$1 in addition to our usual profit. You can get up to 250 pairs.  

 
Q7: Thank you so much, Mr. Analyst. Your advice was very helpful. (Putters 

around with his cell phone). Wait a minute―stop the presses! Our production 
manager just texted me that 200 pairs of Lugster soles have been damaged in 
our warehouse and can no longer be used. What are we going to do? How 
much is that going to cost me?  

 

A4 (to himself): Another sensitivity analysis on an objective 
function coefficient. Given the present unit profit of $12.50 for a 

Q4: We are presently making 3,000 Walkers, just enough to satisfy one of our 
requirements. I wonder if it would be worthwhile to lower the price. Would 
that lead to increased sales?  
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The Decision Maker: I knew it. Why are they doing this to me? (Disappears into 
the bowels of the Administration Building).  

Exercises 
Problem 1 (a diet problem): A planner considers designing a diet that consists of 
Coke, garlic fingers, spring rolls, pita pockets, and apples. As far as nutrients go, 
the planner includes calories, riboflavin, and vitamin A, of which at most 1,500, at 
least 98, and at least 27 must be included in the diet. The cost minimization 
problem was subsequently formulated as follows:  
 
 Min z = .9x1 +   2.8x2 + 3.2x3 + 5.6x4 + 3.6x5  
 s.t.        80x1 + 310x2 + 340x3 + 460x4 + 20x5 ≤ 1,500 
                2x1 +     9x2 +   25x3 +   16x4 +   5x5 ≥      98 
                             5x2 +      4x3 +    3x4 +  10x5 ≥     27 
 1 2 3 4 5
 
The printout of the problem is shown in Table 2.4.11.  
 

 
SUMMARY OF RESULTS 

 
VALUE OF THE OBJECTIVE FUNCTION 16.18609 
 
 DECISION    VALUE AT   OPPORTUNITY 
 VARIABLE    OPTIMUM   COST 
 
 COKE     0.0000   0.7470 
 GARLIC FINGERS  0.0000   0.5026 
 SPRING ROLLS  3.6739   0.0000 
 PITA POCKETS  0.0000   3.4104 
 APPLES    1.2304   0.0000 

 

 

 

 

                 x ,         x ,          x ,        x ,         x  ≥       0. 

Table 2.4.11: Summary of Results for Problem 1 

A7 (to himself): The optimal basis remains unchanged as long 
as we have between 6,625 and 7,250 pairs of soles. So 200 pairs 
less will not change the basis, but it will change the solution. 
And since the shadow price for Lugster Soles is $19, our profit 
will decrease by 200(19) = $3,600.  

 
 SLACK/EXCESS CONSTRAINT  OPTIMAL  SHADOW PRICE 
 VARIABLE    TYPE   VALUE 
 
 CALORIES:   LE    226.2609  0.0000 
 RIBOFLAVIN:   GE    0.0000  −0.0765 
 VITAMIN A:   GE    0.0000  −0.3217 
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(c) How many calories does the diet include? How much riboflavin? How much 
vitamin A?  

(d) What is the highest price that will put Coke into the solution?  
(e) What is the effect of increasing the riboflavin requirement from 98 to 99?  
 
Solution:  
(a) The diet consists of no Coke, no garlic fingers, 3.67 spring rolls, no pita 

pockets, and 1.23 apples.  
(b) The cost of the diet is $16.19.  
(c) The diet includes 1,500 − 226.26 = 1,273.74 calories, 98 + 0 = 98 units of 

riboflavin, and 27 + 0 = 27 units of vitamin A.  
(d) Presently, Coke costs 90¢ which is apparently too much for it to be included 

in the solution. Its opportunity cost is 74.7¢, so that its price will have be 
decrease by at least that amount. In other words, Coke will be included in the 
diet if its price is no higher than 90 − 74.7 = 15.3¢.  

(e) The cost will increase by 7.65¢.  
 
Problem 2 (an investment problem): An investment agency has been asked to 
advise one of its clients how to invest all of his $100,000 among the 4 assets 
shown in Table 2.4.12.  
 

 
 Units of risk Expected rate 
Assets 
Northern Mines Shares 4 .15 
Bucklin Automobiles 3.5 .11 
Royal Bank of Commerce Shares 2 .07 
NB Savings Bonds 1 .05 

 
The client would like as high an annual return as is possible to receive while 
incurring of an average of no more than 2.5 risk units per dollar invested. The 
amount invested in Royal Bank cannot exceed $40,000. Furthermore, the 
investment in Automobiles and Banks combined must be at least $20,000.  
 
Defining x1, x2, x3, and x4 for the amount invested in the four alternatives, the 
problem can be formulated as follows.  

 

 

Exercises

Table 2.4.12: Risk and rate of return for Problem 2 

of return per dollar invested 

(a) What does the diet of the planner consist of? (Indicate type of food and quantity).  
(b) How much does the diet cost?  
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SUMMARY OF RESULTS 
 
VALUE OF THE OBJECTIVE FUNCTION 9,733.333 
 
 DECISION    VALUE AT   OPPORTUNITY 
 VARIABLE    OPTIMUM   COST 
 
 MINES     43,333.33  0.0000 
 BUCKLIN    0.0000   0.01 
 ROYAL BANK   20,000.00  0.0000 
 SAVINGS    36,666.67  0.0000 
 
 SLACK/EXCESS CONSTRAINT  OPTIMAL  SHADOW PRICE 
 VARIABLE    TYPE   VALUE 
 
 RISK     LE    0.0000  0.0333 
 INVESTMENT   LE    0.0000  0.1000 
 BANK LIMIT   LE    20,000.00 0.0000 
 BANK & AUTO   GE    0.0000  −0.0133 

 

SENSITIVITY ANALYSES 
 

COEFFICIENTS OF THE OBJECTIVE FUNCTION 
 
VARIABLE  LOWEST   ORIGINAL   HIGHEST  
    ALLOWABLE  VALUE    ALLOWABLE 
    VALUE         VALUE 
 
MINES   0.1300   0.1500   INFINITY 
BUCKLIN  −INFINITY  0.1100   0.1200 
ROYAL BANK 0.0600   0.0700   0.0833 
SAVINGS  0.0300   0.0500   0.0700 
 

 

 

 

 

 

 

 

 

 

 

 

Table 2.4.13: Summary of Results for Problem 2 

Table 2.4.14: Sensitivity Analyses for Problem 2 

 P: Max z = .15x1 + .11x2 + .07x3 + .05x4  
 s.t. 1.5x1 + x2 − .5x3 − 1.5x4 ≤ 0 
 x1 + x2 + x3 + x4 ≤ 100,000 
 x3 ≤ 40,000 
 x2 + x3 ≥ 20,000 
 x1, x2, x3, x4 ≥ 0.  

The printout is shown in Tables 2.4.13 and 2.4.14.  
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(a) How much is invested in each of the alternatives and what is the average rate 
of return?  

(b) Identify the bottlenecks in the investment plan.  
(c) If we could borrow some additional funds at 11%, would it be worth our 

while? Explain in one short sentence. 
(d) There is a rumor that the return of the Royal Bank will increase to 8%. Will 

this change the investor’s plans? What if it decreases to 5.5%? Explain in one 
short sentence. 

 
Solution: (a) The solution prescribes investments as follows: Mines: $43,333.33, 

Automobile: $0, Bank: $20,000, and NB Savings: $36,666.66. The average 
rate of return is 9.7333%.  

(b) Risk constraint (constraint 1), total investment level (constraint 2), and at 
least $20,000 in “Auto and Bank” (constraint 4) are all tight.  

(c) Shadow price of total investment (constraint 2) is 0.1, i.e., the benefit of an 
extra dollar is 10¢. Given the interest rate of 11% on loans, it is not 
worthwhile to borrow.  

(d) Sensitivity on objective function coefficients. The range for the bank shares 
extends from 6% to 8.33%, so an increase from 7% to 8% will not change the 
investment plan. A decrease to 5.5% will.  

 
Problem 3 (a transportation problem): Consider a transportation problem with 
two origins (warehouses) and three destinations (customers). The supplies at the 
warehouses are 60 and 80 units, respectively, while the demand is exactly 30, 50, 
and 40, respectively. The problem has been formulated as follows:  

 Min z = 3x11 + 7x12 + 4x13 + 9x21 + 2x22 + 5x23  
 s.t. x11 + x12 + x13 ≤ 60 
 x21 + x22 + x23 ≤ 80 
 x11 + x21 = 30 
 x12 + x22 = 50 
 x13 + x23 = 40 
 x11, x12, x13, x21, x22, x23 ≥ 0.  
 
The printout is shown in Tables 2.4.15 and 2.4.16.  

 

Exercises

RIGHT-HAND SIDE VALUES 
 
CONSTRAINT  LOWEST   ORIGINAL  HIGHEST 
     ALLOWABLE  VALUE   ALLOWABLE 
     VALUE        VALUE 
 
RISK    −130,000.00  0.0000  110,000.00 
INVESTMENT  26,666.67  100,000.00 INFINITY 
BANK LIMIT  20,000.00  40,000.00 INFINITY 
BANK & AUTO  0.00    20,000.00 40,000.00 

 

 

Table 2.4.14 (continued) 
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 X13     30.0000   0.0000 
 X21     0.0000   5.0000 
 X22     50.0000   0.0000 
 X23     10.0000   0.0000 
 
 SLACK/EXCESS CONSTRAINT  OPTIMAL  SHADOW PRICE 
 VARIABLE    TYPE   VALUE 
 
 ORIGIN 1    LE    0.0000  1.0000 
 ORIGIN 2    LE    20.0000  0.0000 
 DESTINATION 1  EQ    0.0000  -4.0000 
 DESTINATION 2  EQ    0.0000  -2.0000 
 DESTINATION 3  EQ    0.0000  -5.0000 

 

 
SENSITIVITY ANALYSES 

 
COEFFICIENTS OF THE OBJECTIVE FUNCTION 

 
VARIABLE  LOWEST   ORIGINAL   HIGHEST  
    ALLOWABLE  VALUE    ALLOWABLE 
    VALUE         VALUE 
 
11    −INFINITY  3.00    8.00 
X12   1.00    7.00    INFINITY 
X13   −1.00    4.00    5.00 
X21   4.00    9.00    INFINITY 
X22   -INFINITY  2.00    8.00 
X23   4.00    5.00    10.00 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 2.4.16: Sensitivity Analyses for the Problem 3 

 
SUMMARY OF RESULTS 

 
VALUE OF THE OBJECTIVE FUNCTION 360.0000 
 
 DECISION    VALUE AT   OPPORTUNITY 
 VARIABLE    OPTIMUM   COST 
 
 X11     30.0000   0.0000 
 X12     0.0000   6.0000 

 

 

 

 

 

Table 2.4.15: Summary of Results for Problem 3 
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(a)  What is the shipment plan and what are the associated costs?  
(b)  Which of the warehouses are fully used and which have still some units of the 

product in them (and how many)?  
(c)  What if the per-unit-cost of a shipment from origin 2 to destination 3 were to 

increase by $2, would that change the optimal solution? What if the cost were 
to decrease by $2?  

(d)  What would happen if the number of units available at the first warehouse 
were to be reduced by one unit? (Include cost considerations). 

(e)  What if we were offered extra units delivered to warehouse 2 at a rate of $2 
per unit?  

 
Solution: (a) The shipments from the first origin 1 to the three destinations are 30, 

0, and 30, while the shipments from Origin 2 to the three destinations are 0, 
50, and 10. The total transportation costs are $360.  

(b)  All units in warehouse 1 are shipped out, but 20 units are left over in 
warehouse 2.  

(c)  The range for the unit transportation costs c23 is [4, 10]. An increase by $2 
puts the unit transportation cost at 5 + 2 = $7, which is in the interval. As a 
result, there will be no change in the optimal transportation plan, but the costs 
will increase by 2x23 = 20. A decrease of $2 would put the unit transportation 
cost at 5 − 2 = 3, which is outside of the interval, so that the optimal 
transportation plan (and its costs) will change.  

(d)  As the constraint the belongs to Origin 1 has zero slack, the solution will 
change. As the shadow price is 1, the total cost will increase by $1.  

(e)  There are still 20 units left at Origin 2, so that no additional units are needed, 
and we decline the offer. 

2.5   Duality 
This section explores some aspects of duality theory, the theory behind linear 
programming that explores how and why solution methods work. Given the scope 
of this book, we will restrict ourselves to some of the relations and interpretations, 

 
RIGHT-HAND SIDE VALUES 

 
CONSTRAINT  LOWEST   ORIGINAL  HIGHEST 
     ALLOWABLE  VALUE   ALLOWABLE 
     VALUE        VALUE 
 
ORIGIN 1   40.00    60.00   70 
ORIGIN 2   60.00    80.00   INFINITY 
DESTINATION 1 20.00    30.00   50.00 
DESTINATION 2 0.00    50.00   70.00 
DESTINATION 3 30.00    40.00   60.00 

 

 

Table 2.4.16 (continued) 
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Defining variables x1 and x2 as the number of floor boards and spindles that we 
make and sell, respectively, we can formulate the problem as follows.  
 
 P: Max z = 1x1 +      4x2      (max profit) 
 s.t.              5x1 +      5x2 ≤   50,000  (saw) 
                  30x1 +    90x2 ≤ 450,000  (router) 
                  20x1 + 100x2  ≤ 600,000  (sander) 
                      x1,         x2  ≥            0.   (nonnegativity) 
 
To every linear programming problem, which we will call a primal problem, we 
can now assign another linear programming problem, called the dual problem. 
The variables in the primal problem are also referred to as the primal variables.  
 
In order to explain the dual problem, we will refer to the firm that has the primal 
problem as its planning model as the Manufacturer. Suppose now that there is 
another company that, for reasons to be come clear as we proceed, we will refer to 
as the Lessor. The Lessor actually owns the saws, routers, and sanders, which he 
can use to either manufacture floor boards and spindles himself or lease out the 
machine time to the Manufacturer or Lessee. The task for the Manufacturer is 
now to set up a pricing system that will minimize its own overall costs, while 
making it interesting to the Lessor to rent machine time to the Manufacturer rather 
than make the products himself. Note that the Lessor will not rent out an hour here 
or there, he either rents the entire time—50,000 seconds on the saw, 450,000 
seconds on the router, and 600,000 seconds on the sander—or not at all.  
 
In order to determine such a pricing system, the Manufacturer will set up a pricing 
system that defines u1 as the price per second on the saw, u2 as the price per 
second on the router, and u3 as the price per second on the sander. Clearly,  
the Manufacturer’s task is to minimize the total cost of leasing the equipment. 
Leasing the machine time on the saw will cost u1 dollars per second, and the time 
to lease is 50,000 seconds, and similar for the other two machines. Hence the 
objective is to minimize 50,000u1 + 450,000u2 + 600,000u3. The next task is to 

without getting into technical details. For more details, interested readers are 
referred to the standard advanced texts such as Dantzig (1963), Dantzig and Thapa 
(1997), or Eiselt and Sandblom (2007).  
 
In order to simplify our discussion, we will base our arguments on a production 
problem similar to that presented in Section 2.2.1 when we introduced linear 
programming. In this case, there are two products, floor boards and spindles, that 
are processed on three machines: a saw, a router, and a sander. The unit profits of 
the two products are $1 per floor board and $4 per spindle. The machines have 
capacities (in seconds) of 50,000, 450,000, and 600,000. It takes 5 seconds to saw 
the floor board or the spindle. Thirty seconds are needed to process a floor board 
on the router, while a spindle takes 90 seconds on this machine. One floor board 
requires 20 seconds on the sander, while a spindle needs 100 seconds for processing. 
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complete dual problem, which we will call PD. Below, we show the primal 
problem and the dual problem next to each other.  
 
 P: Max z = 1x1 + 4x2    PD: Min zD = 50,000u1 + 450,000u2 + 600,000u3 
 s.t. 5x1 + 5x2 ≤ 50,000  s.t. 5u1 + 30u2 + 20u3 ≥ 1 
 30x1 + 90x2 ≤ 450,000  5u1 + 90u2 + 100u3 ≥ 4 
 20x1 + 100x2 ≤ 600,000  u1, u2, u3 ≥ 0.  
 x1, x2 ≥ 0.     
 
Before we continue discussing the relations between a primal and its associated 
dual problem, we would like to point out that the roles of variables and constraints in 
the two problems are exchanged. The objective function coefficients of the primal 
are found on the right-hand sides of the dual, while the right-hand side values of 
the primal are in the objective function of the dual. Similarly, the technological 
coefficients on the left-hand sides are the same, but with rows and columns 
exchanged.  
 
Tables 2.5.1a and 2.5.1b show the optimal solutions of the primal and dual 
problem, respectively. While it is optimal for the Manufacturer to make no floor 
boards and 5,000 spindles (for a total profit of $20,000), the Lessor should charge 
nothing for the saw and the sander, but 4.44¢ for each second of the router. Given 
that he leases the machines to the Manufacturer rather than making floor boards 
and spindles himself, his profit from the leasing will be $20,000.  
 
Comparing the primal and dual solutions, we also note that the optimal values of 
the primal variables are found in the dual solution as shadow prices of resources, 
while the optimal values of the primal slack and excess variables are the opportunity 
costs of the dual variables. Similarly, the shadow prices of the primal resources 
equal the optimal values of the dual decision variables, and the opportunity costs 
of the primal variables equal the optimal values of the slack and excess variables 
in the dual. This means, of course, that we can solve either the primal or the dual 
solution and have both optimal solutions available in one Summary of Results.  
 

for the rental time that is required to make one unit of a product is at least as much 
as making and selling the product directly. In order to illustrate, consider the floor 
boards. It takes 5 seconds on the saw to make it, which, given the pricing system, 
is evaluated at 5u1. In addition, we also use time on the router and the sander, and 
these times are evaluated at 30u2 and 20u3, respectively. The sum of all of these 
times—the rental time equivalent to making one floor board—should be at least as 
much as the profit of making a floor board. If it were not, the Lessor might as well 
go into the manufacturing business himself. This means that we have to require 
that 5u1 + 30u2 + 20u3 ≥ 1. A similar constraint needs to be written for the 
spindles, again in order to make it as least as attractive for the Lessor to rent out 
time rather than manufacture himself. The constraint is 5u1 + 90u2 + 100u3 ≥ 4. 
Adding the fact that the prices must all be nonnegative, we now have formulated a 

make it interesting to the Lessor to rent out the machine time rather than 
manufacturing it himself. This can be achieved by ensuring that the price achieved 
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 5u1x1 + 30u2x1 + 20u3x1 ≥ 1x1    (the first dual constraint multiplied by x1) 
 5u1x2 + 90u2x2 + 100u3x2 ≥ 4x2    (the second dual constraint multiplied by x1) 
 zD = 50,000u1 + 450,000u2 + 600,000u3 (the dual objective function) 
 
 x1, x2 ≥ 0, u1, u2, u3 ≥ 0.      (nonnegativity constraints) 
 
Adding all primal constraints we obtain 5x1u1 + 5x2u1 + 30x1u2 + 90x2u2 + 20x1u3 
+ 100x2u3 ≤ 50,000u1 + 450,000u2 + 600,000u3, where we note that the right-hand 
side value equals zD. Similarly, adding all dual constraints, we obtain 5u1x1 + 
30u2x1 + 20u3x1 + 5u1x2 + 90u2x2 + 100u3x2 ≥ 1x1 + 4x2, where we note that the 
right-hand side value of the aggregate constraint equals the primal value of the 
objective function z. Putting the two expressions together, we obtain zD = 50,000u1 
+ 450,000u2 + 600,000u3 ≥ 1x1 + 4x2 = z, or simply zD ≥ z. This property is 
commonly referred to as weak duality. Given that the primal problem maximizes z 
and the dual problem minimizes zD, the two values will move towards each other 
and be equal when they reach an optimal solution. This situation is shown in 
Figure 2.5.1.  
 
 
 
                                        z                    zD                         z, zD for feasible solutions 

 
Figure 2.5.1 

 

In order to explain some further relations between the primal and its associated 
dual problem, multiply each primal constraint with its associated dual variable and 
each dual constraint with the primal variable it is associated with. (Note that due 
to the nonnegativity constraints on the variables, the inequalities do not change). 
We then obtain the following system:  
 
 z = 1x1 + 4x2 (the primal objective function) 
 
 5x1u1 + 5x2u1 ≤ 50,000u1   (the first primal constraint multiplied by u1) 
 30x1u2 + 90x2u2 ≤ 450,000u2  (the second primal constraint multiplied by u2) 
 20x1u3 + 100x2u3 ≤ 600,000u3   (the third primal constraint multiplied by u3) 
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In order for the two objective values to be equal at optimum, it is necessary that 
all of the primal inequalities multiplied by their respective dual variables and all 
dual constraints multiplied by their respective primal variables are satisfied as 
equations. In our example, this means that if 21, xx , 3x  is an optimal solution of 
the primal problem and 1u , 2u  is an optimal solution of the dual problem, then  
 
 11211 000,50305 uuxux =+ ,  
 22221 000,4509030 uuxux =+ , and 
 33231 000,60010020 uuxux =+  for the primal constraints, and  
 
 1131211 1203050 xxuxuxu =++ , and 
 2232221 4100905 xxuxuxu =++  for the dual constraints.  
 
If we were to define slack variables S1, S2, and S3 for the three primal constraints 
and excess variables DE1  and DE2  for the two dual constraints, and their optimal 
values are also indicated by a bar over the variables, we can rewrite the above 
equations as 011 =uS , 022 =uS , and 033 =uS  for the primal problem, and 

011 =xE D  and 022 =xE D  for the dual problem. These conditions are usually 
called (weak) complementary slackness conditions.  
 
These conditions mean that if an inequality constraint is not satisfied as an 
equation at optimum, then its dual variable must be equal to zero. If a constraint is 
satisfied as an equation, then its dual variable may be zero or positive. In terms of 
our example, this means that if we do not fully use a resource (here: machine 
capacities), then the dual variable (the shadow price of the resource) must equal 
zero. If, on the other hand, a resource is fully used, then the dual variable may be 
positive. Similarly, if a variable is positive, then its opportunity cost must be zero; 
if a variable is zero, then its opportunity cost may be positive. This corresponds 

 
It is worth noting that the dual of the dual problem is again the primal problem.  
 
The remainder of this section will demonstrate some further relations between a 
pair of primal and dual problems. In general, we have three possible cases:  
 
(1)  The primal problem and its dual both have finite optimal solutions with 

Dzz = . 
(2)  One of the two problems has no feasible solution, while the other has unbounded 

“optimal” solutions.  
(3)  Both problems have no feasible solutions.  
 
 

with the interpretation we provided in Section 2.4 on postoptimality analyses. 
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We already have an example of the first case: the numerical illustration used 
throughout this section belongs into that category.  
 
In order to demonstrate the second case, consider the following pair of dual 
problems:  
 
 P: Max z = 3x1 + 2x2      PD: Min zD = −u1 + 2u2  
 s.t.  x1 − x2 ≤ 1       s.t.  u1 − 2u2 ≥ 3 
 −2x1 + 1x2 ≤ 2       −u1  + u2 ≥ 2 
 x1, x2 ≥ 0        u1, u2 ≥ 0.  
 
The graphical representations are shown in Figure 2.5.2a and b. It is apparent that 
while the primal problem has unbounded “optimal” solutions, its dual problem has 
no feasible solution.  
 

 
                (a)            (b) 
 

Figure 2.5.2 
 
Finally the third case, in which neither problem has a feasible solution. As a 
numerical example, consider the following pair of dual problems:  
 
 P: Max z = x1 + 3x2     PD: Min zD = u1 − 2u2  
 s.t.  2x1 − 4x2 ≤ 1     s.t. 2u1 − u2 ≥ 1 
 −x1 + 2x2 ≤ −2     −4u1 + 2u2 ≥ 3 
 x1, x2 ≥ 0      u1, u2 ≥ 0.  
 
The graphical representation of the two problems is shown in Figure 2.5.3. It is 
apparent that the constraints in the primal and the dual problems are parallel to 
each other, so that the feasible set is empty.  
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                             (a)                                                                    (b) 
 

Figure 2.5.3 

Exercises 
Problem 1 (setting up the dual problem): Consider the following primal linear 
programming problem P:  
 
 P: Min z = −3x1 + 4x2  
 s.t. x1 + 2x2 = 5 

 5x1 − x2 ≥ 2 
 x1, x2 ≥ 0.  
 
Set up the dual problem PD.  
 
Solution: Since we have not provided any rules for the transformation other than 
for maximization problems with “≤” constraints, so we simply bring the problem 
P into that form. Changing a minimization problem to a maximization problem 
and changing the direction of an inequality is standard. As far as the equation x1 + 
2x2 = 5 is concerned, we replace it by two inequalities x1 + 2x2 ≤ 5 and x1 + 2x2 ≥ 
5. We can then define an equivalent version of the problem description P as  
 
 P': Max −z = 3x1 − 4x2  
 s.t.                   x1 + 2x2 ≤   5 
                       −x1 − 2x2 ≤ −5 
                     −5x1 +   x2 ≤ −2 
                         x1,     x2 ≥ 0.  
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The dual of this problem is then  
 
 :PD′  Min −zD = 5u1 − 5u2 − 2u3  
 s.t.                       u1 −   u2 − 5u3 ≥   3 
                           2u1 − 2u2 +   u3 ≥ −4 
                             u1,     u2           ≥   0.  
 
If desired, we can clean up this problem a bit and write it in its equivalent form  
 
 PD: Max zD = −5u1 + 5u2 + 2u3  
 s.t.                     u1 −   u2 −  5u3 ≥ 3 
                       −2u1 + 2u2 −    u3 ≤ 4 
                           u1,      u2            ≥ 0.  
 
Problem 2 (duality for a single-constraint primal problem): Consider the 
following single-constraint primal linear programming problem:  
 
 P: Max z = 2x1 + 3x2 + 8x3 + 7x4 + 6x5  
 s.t.                x1 + 6x2 + 4x3 + 3x4 + 3x5 ≤ 11 
                      x1,     x2,      x3,      x4,     x5 ≥   0.  
 
(a)  Formulate the dual problem PD. How many variables does it have?  
(b)  Show that PD can be solved by simple inspection. State the optimal solution 

and objective function value of PD. Explain why Dzz = .  
(c)  Using duality relationships, find the unique optimal solution to P.  
 
Solution: (a) The problem under consideration is a continuous knapsack problem 

similar to those discussed in Chapter 4 of this book. Since there is only a 
single constraint in the primal problem, the dual problem features only a 
single variable. The dual is  

 PD: Min zD = 11u 
 s.t.                    u ≥ 2 
                        6u ≥ 3 
                        4u ≥ 8 
                        3u ≥ 7 
                        3u ≥ 6 
                          u ≥ 0.  
 
(b)  With zD = 11u, the optimal value of the variable u must be as small as 

possible. Considering the lower bounds specified in the constraints, we 
determine that u = max { 0,,,,,2 3

6
3
7

4
8

6
3 }= 3

12 , so that uzD 11=  = 25.6667. 
Since P has feasible solutions (for instance x1 = x2 = …= x5 = 0), and 

Dz exists, z  must exist as well and 3
225== Dzz .  

Exercises
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(c)  Since 3u ≥ 7 is the only constraint in the dual problem PD that is tight 
(binding) at optimum, the excess variables of all other dual constraints are 
strictly positive at optimum. The complementary slackness conditions then 
require that 05321 ==== xxxx . Since 02 3

1 >=u , the slack variable of 
the corresponding primal constraint must be zero at optimum, again due to 
complementary slackness. The primal constraint is then binding at optimum, 
so that 113 4 =x  or 4x  = 3.6667.  
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3   Multiobjective Programming  

As diverse as the problems in the previous chapters have been, they share one 
common feature: they all have one single objective function and the result is an 
optimal solution (or multiple optima, in case of dual degeneracy). However, the 
concept of optimality applies only in case of a single objective. If we state that 
something is “the best” or optimal, we always have an objective in mind: the 
fastest car, the most comfortable vehicle, the automobile that is cheapest to 
operate, and so forth. Whenever a second or even more objectives are included in 
a problem, the concept of optimality no longer applies. For instance, if the top 
speed of a vehicle and its gas mileage are relevant concerns, then the comparison 
between a car, whose speed may go up to 110 miles per hour and which gives 20 
miles to the gallon (highway rating) and a vehicle that can go up to 90 miles per 
hour and which gives 25 miles to the gallon is no longer a simple one: the former 
car is faster at the expense of fuel efficiency. It will now depend on the decision 
maker which of the two criteria is considered more important. In other words, the 
decision maker will―sooner or later―have to specify a tradeoff between the 
criteria. This is the type of problems considered in this chapter.  
 
While the terminology in this field is not quite standardized, we typically refer to 
problems with multiple objectives or evaluation criteria as multicriteria decision 
making problems or MCDM. There are two major subclasses of these problems, 
one called multi-attribute decision making (MADM), and the other being 
multiobjective (linear) programming (MOLP). In simple words, MADM problems 
have a finite number of possible decisions among which the decision maker has to 
choose one, given a number of criteria. Multiobjective programming problems, on 
the other hand, are optimization problems like those discussed in the previous 
chapters, except that they have at least two objective functions. In this chapter we 
will exclusively deal with MOLP.  
 
Interestingly enough, MOLP have been around almost as long as linear programming 
problems. Similarly, the replacement of the concept of optimality by the (much 
weaker) concept of pareto-optimality has been known to economists for more than 
hundred years. (It is named after the Italian economist Vilfredo Pareto, 1848-1923). 
In the sections below, we discuss two of the main approaches to multiobjective 
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linear programming: the vector optimization problem, and goal programming 
problems. Their main distinction is rooted in the decision maker’s input. In vector 
optimization problems, the decision maker does not provide any input regarding 
the tradeoff between objectives. This means, of course, that many pareto-optimal 
solutions will be generated, which then must be compared manually by the 
decision maker―a process, in which he will have to use some (probably) implicit 
tradeoffs. Another possibility is to openly define tradeoffs, which then allows the 
analyst to reduce the problem to a standard linear programming problem. The 
problem with this approach is that it will be impossible for any decision maker to 
specify with any degree of certainty that one objective is, say, 2.7 times as important 
as another. Such an approach will have to rely very heavily on sensitivity analyses. 
Finally, we present goal programming, an approach that blurs the distinction between 
objectives and constraints.  

3.1   Vector Optimization 
The most logical way to introduce vector optimization problems starts with linear 
programming and then extends the analysis to multiple objectives. As usual, we 
will give preference to intuitive reasoning based on graphical arguments.  
 
As far as the formal statement of a vector optimization problem is concerned, 
consider the following example that we will use in this in the next section.  
 
 Max z1 =   3x1 + x2  
 Max z2 = −2x1 + x2 
 
 s.t.            −x1 +  x2 ≤ 3     (I) 
                            x2 ≤ 4     (II) 
                    x1 +  x2 ≤ 6     (III) 
                    x1         ≤ 5     (IV) 
 1 2
 
First of all, the name “vector optimization” stems from the fact that rather than a 
single objective, we have a “vector” of objectives.  
 
For now, consider a single objective , whose gradient of the objective function and 
iso-profit line through some point “x” are shown in Figure 3.1.  

                   x ,    x  ≥ 0. 
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Figure 3.1 
 
To recap from our discussion in linear programming, the “z” in Figure 3.1 
indicates the gradient of the objective function, while the line with flags “+++” 
and “---” is the iso-profit line through an arbitrary point X. This iso-profit line 
subdivides the space into two halfspaces: all points in the halfspace flagged with 
“+++” have objective function values better (i.e., higher for maximization 
problems and lower for minimization problems) than the point X.  
 
Consider now a problem with two objective functions. We can then take an 
arbitrary point X, anchor both objective functions at that point, and plot iso-profit 
lines through it. This is shown in Figure 3.2.  
 

 
Figure 3.2 

 
Figure 3.2 is based on a problem with two objectives, whose gradients are shown 
by the arrows marked with z1 and z1, respectively, and their two iso-profit lines. 
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The two iso-profit lines subdivide the plane into four parts, labeled with C++, C+−, 
C−+, and C− −. In the following analysis, we will compare points in these four parts 
of the plane with x.  
 
First consider any point in the set labeled C− −. As compared to x, this point will be 
worse than x with respective to the first objective and also worse with respect to 
the second objective, as it is located in the intersection of the two halfplanes 
flagged with “− − −. ” This means that if we had realized point x, there would be 
no reason to move to any point in the set C− −, as the new point will be worse than 
x with respect to both objectives. Next, consider a point in the set C−+. Here, 
things are a bit more difficult, as any point in that set will be worse than x with 
respect to the first objective but better than x with respect to the second objective. 
This means that points in C−+ are not comparable to x.  
 
A similar argument applies to all points in the set C+−. All points in this set are 
better than X with respect to the first objective but worse than X with respect to the 
second objective. So again, no comparison is possible. Finally, consider the set 
C++. Any point in this set is better than X with respect to both objectives, so that 
we would move out of the present solution X into C++ whenever possible. As all 
points in C++ are better than x, we will call C++ the improvement cone (rooted at x).  
 
Before using this concept to solve vector optimization problems, it is useful to 
discuss the relation between objectives. Suppose that two objectives are very 
similar, for example Max z1 = 2x1 + 5x2 and Max z2 = 2x1 + 6x2. It is apparent that 
there is only little conflict between the two. This is shown in Figure 3.3a, where 
the angle between the two gradients is very small. This results in an improvement 
cone with a very large angle. Actually, in the extreme case of two identical 
objectives (i.e., no conflict), the improvement cone is then the same as that shown 
in Figure 3.1 with the halfplane labeled “+++.”  

 
 
                                        (a)              (b) 

 

Figure 3.3 
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On the other hand, consider two objectives that show extensive conflict. This 
situation is depicted in Figure 3.3b. Here, the angle between the two gradients is 
large, and the angle of the improvement cone is very small, indicating that there is 
only limited potential for improvement. In the limiting case, one gradient would 
be diametrically opposed to the other, a case of total conflict. In such a case, the 
improvement cone is empty and there is no potential for any improvement.  
 

idea is to introduce additional criteria. As an example, consider a couple who is 
planning this year’s vacation. Suppose that the husband would like to maximize 
the amount of time the couple spends on the beach to relax (and watch other 
people), the wife would like to minimize the time on the beach and go boating 
instead, something the husband has absolutely no interest in. (A somewhat similar 
situation has been dealt with in game theory under the name “battle of the sexes”). 
This has escalated to a major fight, and as it is, there is no room for compromise. 
Suppose now that we introduce another activity, e.g., events, festivals, zoos, or 
museums, which we will call sites and events, something both are interested in, at 
least to some extent. The objective functions given two dimensions are shown in 
Figure 3.4, indicating that there is now an actual possibility for compromise. 
Similar situations occur in labor negotiations, in which management wants to 
minimize the amount spent on wages and salaries, while labor wants to maximize 
it. Issues added to the list of topics to be negotiated could include concerns such as 
work conditions, something both parties are interested in.  
 

 
 Figure 3.4 

 Back to the improvement cone. We stated above that whenever possible, we 
would try to move out of an existing point X into the improvement cone. The only 
thing that could prevent us from doing so are the constraints. In case it is possible 
to move out of a feasible point X to another feasible point in the improvement 
cone rooted at X, we should do so, indicating that the point X is not a point to be 

However, it may be possible in such a case to find a compromise after all. The main 
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considered further, as there are other points that are better than X with respect to 
all objectives. In other words, if the intersection of the improvement cone and the 
feasible set includes at least one more point other than X, then X does no longer 
have to be considered.  
 
On the other hand, if moving out of X into its improvement cone will always result 
in the loss of feasibility, then the point X is called nondominated (or, alternatively, 
noninferior, efficient, or pareto-optimal). We will use these terms interchangeably. 
The collection of all nondominated points is called the efficient frontier. It is 
apparent that points in the interior of the feasible set cannot be nondominated, as it 

some distance. This is shown in Figure 3.5, in which the feasible set is shaded, 
and the extreme points are 0, A, B, C, D, and E. The gradients of the two 
objectives are labeled z1 and z2, and improvement cones are shown anchored at all 
extreme points as well as at some interior point X. From any of these points, we 
will try to move into its improvement code and determine whether or not it is 
possible to do so and stay within the feasible region. Clearly, at the interior point 
X, this is feasible.  
 

 
Figure 3.5 

 
Consider now the extreme points of the feasible set. Starting with the origin 0, we 
see that it is possible to stay feasible by keeping to the right of the improvement 
cone, consequently the point 0 is dominated. The situation is different for the 
extreme points A, B, C, and D. All of these points have improvement cones whose 
intersections with the feasible set equal just the point itself, so that any improvement 

is possible to move out of them into any direction and stay feasible, at least for 
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will result in the loss of feasibility. All of these extreme points are nondominated. 
Point E is not nondominated, as keeping to the left in its improvement cone is still 
feasible, and all these points are better than E.  
 
It can now be proved that the nondominated set is connected. This means that if 
two neighboring extreme points are nondominated, then all points (on the border 
of the feasible set) between them are also nondominated. This is the nondominated 
frontier, which is shown in bold in Figure 3.5. All points on this frontier are of 
interest to the decision maker, whose task is now to determine which of these 
solutions to choose. The choice will depend on criteria other than those already 
included in the model.  

3.2   Solution Approaches to Vector Optimization Problems 
This section will examine techniques that can be used to approximate the efficient 
frontier. While it is possible to use a modified simplex method to determine all 
extreme points on the efficient frontier, this is not only a lengthy process, but also  
something that leaves the decision maker with tons of solutions to manually 
compare. This is clearly not feasible. As a result, analysts typically determine a 
few solutions, and, based on the decision maker’s response to those, will generate 
more solutions that attempt to reflect the decision maker’s comments.  
 
Two methods for this purpose stand out. One is the weighting method, and the 
other is called the constraint method. The basic idea of the weighting method is to 
first assign weights w1, w2, …, wp to the p given objectives, and then aggregate 
them into a single new composite objective. The result is then a linear 
programming problem that can easily be solved. The optimal solution to this 
linear programming problem can then shown to be a point on the nondominated 
frontier, at least as long as the weights are positive.  
 
As a numerical illustration, consider the example introduced in the previous 
section. Recall that the two objectives were Max z1 = 3x1 + x2 and Max z2 = −2x1 + 
x2. Suppose that we choose w1 = 5 and w2 = 1. This means that one unit of 
whatever the first objective measures is considered five times as important than 
one unit of what the second objective measures. Using these weights, the 
composite objective is then Max z = w1z1 + w2z2 = 5(3x1 + x2) + 1(−2x1 + x2) = 
13x1 + 6x2. Using this objective in conjunction with the constraints of the 
problems results in the optimal solution 121 =x , with an objective value of 
z  = 71. For our purposes, the value of the aggregated objective function is 
irrelevant, it is more useful to take the solution obtained in the optimization and 
insert the optimal values into the two individual objective functions, resulting in 

161 =z  and 92 −=z . As can be verified in Figure 3.5, the solution )1,5(=x  is  
a point on the nondominated frontier. Table 3.1 provides  a listing of  different 
 

= 5, x
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weight combinations and the nondominated points they generate. Note that all 
nondominated solutions that this technique generates are at extreme points.  
 

Table 3.1: Nondominated solutions generated by the weighting method 
 

(w1, w2) z = w1z1 + w2z2 ),( 21 xx  ),( 21 zz  
(5, 1) 13x1 + 6x2 D = (5, 1) (16, −9) 
(3, 1) 7x1 + 4x2  D = (5, 1) (16, −9) 
(1, 1) x1 + 2x2  C = (2, 4) (10, 0) 
(1, 3) −3x1 + 4x2  B = (1, 4) (7, 2) 
(1, 5) −7x1 + 6x2  A = (0, 3) (3, 3) 

 
 

 
 

Figure 3.6 
 
A graphical representation for our numerical problem is shown in Figure 3.6. 
Notice the objectives z1 and z2 as limits, the gradients of all of their combinations 
are between them. In particular, the gradients shown here are z1, those generated 
by the weight combinations (5, 1), (3, 1), (1, 1), (1, 3), (1, 5), and z2, in 
counterclockwise direction.  
 
The second approach to generate nondominated solutions is the constraint method. 
It can be described as a technique that keeps one of the objective functions, while 
using the others as constraints with variable right-hand side values. This is done 
by first designating one of the p objectives as objective, while all others are 
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reformulated as constraints. Each objective of the type “Max zk” will be rewritten 
as a constraint zk ≥ bk with a yet-to-be-determined value of bk, while each original 
objective of the type “Min zk” will be rewritten as a constraint of the type zk ≤ bk 
with variable values of bk. The resulting linear programming can then easily be 
solved. The solution process is repeated for a number of combinations of values 
bk, k=1, …, p. All solutions that are generated in this fashion are dominated. 
However, these solutions are not necessarily extreme points of the feasible set.  
 
As an illustration, consider again the example introduced in the previous section. 
We will (arbitrarily) retain the first objective as an objective and reformulate the 
second objective as a constraint. The problem can then be written as  
 
 Max z1 = 3x1 + x2  
 s.t.          −x1 +  x2 ≤ 3 
                          x2 ≤ 4 
                  x1 +  x2 ≤ 6 
                  x1         ≤ 5 
              −2x1 +  x2 ≥ b2 
                  x1,     x2 ≥ 0. 
 
At this point, we can solve the problem for a variety of values of b2. A summary 
of solutions for some chosen values is displayed in Table 3.2.  
 

Table 3.2: Nondominated solutions determined with the constraint method 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For b2 = 0, we obtain point C in Figure 3.5, and for b2 = −1, −2, …, −8, points 
between C and D are found, while b2 = −9 and b2 = −10 result in point D. Note 
that this selection of b2 values misses the nondominated solutions A and B. This is 
why both, the weighting method and the constraint methods, are called 
approximation methods. As a matter of fact, using b2 = 1 results in the solution 

),( 21 xx  = (1½, 4), which is the point halfway between B and C, a value of b2 = 2 

 
b2 ),( 21 xx  1z  
5 no feasible solution 
0 (2, 4) 10 
−1 (2⅓, 3⅔) 10⅔ 
−2 (2⅔, 3⅓) 11⅓ 
−3 (3, 3) 12 
−4 (3⅓, 2⅔) 12⅔ 
−5 (3⅔, 2⅓) 13⅓ 
−6 (4, 2) 14 
−7 (4⅓, 1⅔) 14⅔ 
−8 (4⅔, 1⅓) 15⅓ 
−9 (5, 1) 16 
−10 (5, 1) 16 
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generates the solution ),( 21 xx  = (1, 4), which is point B, a value of b2 = 3 results 
in a solution ),( 21 xx  = (0, 3), which is point A, and for values in excess of b4 = 4, 
the problem has no feasible solutions. Figure 3.7 shows the feasible set of the 
problem and the constraints based on the second objective for various values of b2. 
The bold points are the resulting optimal solutions.  
 

 
 

Figure 3.7 

3.3   Goal Programming 
When introducing goal programming, it is useful to return to the basic discussion 
in the first chapters of this book about constraints and objective functions. Recall 
that constraints express requirements that must be satisfied, while objective 
functions are for requirements that should be satisfied, if possible. While this 
distinction appears clear, the difference between “required” and “desired” is 
blurred in reality. Consider a simple budget constraint that expresses the condition 
that we cannot spend more than we have. While we should not do that, we could 
by borrowing money. All offices must fit into the space that we own―but we can 
rent some more. Don’t use more employees than are available―but that’s what 
temp agencies are for. Payments are due on a specific date―but we may be able 
to defer them. All of this is introduced into the discussion to demonstrate that 
many requirements are much softer than they appear. And this is why modelers 
should take precautions before formulating constraints, as they are absolute: if 
they cannot be satisfied by the given data, the solver will return a message 
indicating that there is no feasible solution.  
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Goal programming is one tool that attempts to deal with “soft constraints.” The 
general idea was developed by the later Nobel laureate Simon in 1957, who 
introduced the concept of satisficing, a composite word that joins the concepts of 
“satisfy” and “suffice.” The concept as applied to goal programming works as 
follows. The soft constraint is first formulated as a regular constraint. It is then 
reformulated as a goal constraint with the help of a target value (or aspiration 
level) and deviational variables. The target value is a number that expresses how 
many resources we have, what output we would like to achieve, or similar 
measures. We then introduce deviational variables +

ld and −
ld  which measure 

over- and underachievements, respectively. The easiest way to formulate goal 
constraints is to first write the requirement as a regular constraint, and then 
reformulate it as shown in Table 3.3.  
 

Table 3.3: Formulation of soft constraints as goal constraints 
 

Desired situation Formulation of goal 
constraint 

Contribution to the 
objective function 

LHS ≤ RHS 
 

LHS = RHS 
 

Min +
ld   

Min +− + ll dd   

LHS ≥ RHS 

RHSddLHS =−+ +−
ll  

0, ≥+−
ll dd  

Min −
ld  

 
The deviational variable −

ld  is similar to a slack variable, and the deviational 
variable +

ld  resembles an excess variable. While it appears counterintuitive that 
slack and excess variables should appear in the same constraint, it really is not. As 
an example, consider a budget constraint that states that the actual expenditures 
should not exceed the available amount. First of all, the appearance of slack and 
surplus in this constraint indicates that the actual expenditures may be smaller 
than the available budget (underspending) or may exceed the actual budget 
(overspending). Secondly, there are technical reasons that ensure that at most one 
of the deviational variables can be positive, so that we cannot have over- and 
underspending at the same time.  
 
As a numerical example, suppose that we have $100 that we can spend on two 
items, food and entertainment (panem et circensis, as the Romans would have it). 
The amounts spent on the two items are x1 and x2, respectively, and the budget 
constraint would be x1 + x2 ≤ 100. Reformulating it as a goal constraint leads to  
x1 + x2 + −

ld  − +
ld  = 100. Suppose now that we have decided to spend $60 of food 

and $30 on entertainment. This means that the goal constraint is then 90 + −
ld  − 

+
ld  = 100 or −

ld  − +
ld  = 10. Given that all variables, including the deviational 

variables,  must satisfy  the nonnegativity constraints, this implies that −
ld  = 10.  
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The meaning is that the present budget is “underachieved” by $10, or, in more 
standard terms, there are $10 left over.  
 
If, on the other hand, we spend a total of, say, $90 on food and $30 on entertainment, 
the goal constraint reads 120+ −

ld  − +
ld  = 100 or −

ld  − +
ld  = −20. Again, given the 

nonnegativity of the deviational variables, the result is that +
ld  = 20, indicating an 

“overachievement” (or, similarly, overspending) of the budget by $20.  
 
The last column in Table 3.3 then indicates the contribution to the overall 
objective made by the deviational variables introduced in a goal constraint. In the 
aforementioned budget constraint, the relation “actual amount spent ≤ amount 
available” was desired, so that goal programming, after rewriting the constraint as 
a goal constraint, will minimize the overachievement, i.e., overspending. Note that 
this approach does justice to the “softness” of the budget constraint by allowing 
overspending, but trying to minimize it. In practice, absolute or rigid constraints 
and soft constraints can often be distinguished by the way the requirements are 
worded. A telltale sign is the expression “if possible.” Whenever it is appended to 
a requirement, it clearly indicates that formulation as a goal constraint is in order.  
 
The next issue is then how to aggregate the deviational constraints into a single 
objective function. The original version of goal programming has multiple levels, 
each of them assumed to be infinitely more important than the next. This structure 
has been criticized profusely in the literature, even though the principle is 
common, even in linear programming: the absolute constraints are infinitely more 
important than the objective. This can be seen that if a constraint cannot be 
satisfied, we will obtain the signal “there exists no feasible solution” from the 
solver, regardless how good the objective function value is or can be.  
 
In this book, we will restrict ourselves to a single level, on which we aggregate the 
deviational variables similar to the way we aggregated objective functions in the 
weighting method in the previous section of this chapter. The problem with such a 
procedure is commensurability. In other words, if one deviational variable 
expresses the overexpenditure of the budget (measured in dollars), while another 
expresses the underuse of manpower (measured in the number of employees), we 
cannot simply add these two together. When using weights, then these weights must 
include a tradeoff between the units. In the aforementioned example, a weight that is 
multiplies by the overexpenditure of the budget will have to express the importance 
of one dollar overexpenditure in relation to the underuse of one employee.  
 
In order to illustrate the modeling process, consider the following numerical  
 
Example: The owner of a chain of jewelry stores has to decide how to distribute 
parts of a new shipment of diamonds to five stores in a region. The first three 
stores of the chain are located in shopping malls. The following conditions have to 
be observed.  
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Absolutely necessary: 
(a)  Allocate between 1,000 and 1,200 carats to the five stores.  
(b)  Store 5 must receive at least 300 carats of diamonds.  
 
Desired properties of the allocation:  
(c)  The stores in the malls should receive at least 80% of all the diamonds, if 

possible.  
(d)  The allocations to the stores in the mall should be equal to each other, if 

possible.  
(e)  The probabilities of theft in the stores have been estimated to be 0.1%, 0.1%, 

9%, 2% and 3%. The owner would like to minimize the expected loss.  
 
Requirement (e) takes priority in the list and is considered to be 25 times as 
important as requirement (d), which, in turn, is considered twice as important as 
(c).  
 
In order to formulate the problem, we first define decision variables x1, x2, …, x5  
as the quantity of diamonds allocated to stores 1, 2, 3, 4, and 5, respectively. The 
absolute constraints can then be written as  
 
 x1 + x2 + x3 + x4 + x5 ≥ 1,000          (1) 
 x1 + x2 + x3 + x4 + x5 ≤ 1,200          (2) 
 5
 
Consider now requirement (c). Written as a constraint, the requirement can be 
formulated as x1 + x2 + x3 ≥ 0.8(x1 + x2 + x3 + x4 + x5) or, equivalently, as  
 
 0.2x1 + 0.2x2 + 0.2x3 − 0.8x4 − 0.8x5 ≥ 0.  
 
Rewriting the requirement as a goal constraint with deviational variables, we 
obtain  
 
 0.2x1 + 0.2x2 + 0.2x3 − 0.8x4 − 0.8x5 + −

1d  − +
1d  = 0     (4) 

 
with Min −

1d  as the contribution to the objective function.  
 
Next consider requirement (d). The average allocation to a store in the mall is 

)( 3213
1 xxx ++ , so that we would like to see x1 = ),( 3213

1 xxx ++  x2 =  

)( 3213
1 xxx ++ , and x3 = )( 3213

1 xxx ++ . Rewriting the first of these constraints 

results in 033
1

23
1

13
2 =−− xxx . As a goal constraint, we write  

 
 

                             x  ≥    300.          (3) 
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 02233
1

23
1

13
2 =−+−− +− ddxxx          (5) 

 
With the objective function contribution Min +− + 22 dd . Similarly, we obtain the 
goal constraints  
 
 03333

1
23

2
13

1 =−+−+− +− ddxxx          (6) 
 
and 
 
 04433

2
23

1
13

1 =−++−− +− ddxxx          (7) 
 
with the objective function contributions Min +− + 33 dd  and Min +− + 44 dd , 
respectively.  
 
Finally, consider requirement (e). The original objective is written as  
 
 Min z = 0.001x1 + 0.001x2 + 0.09x3 + 0.02x4 + 0.03x5.  
 
Setting the expected loss at some unattainably low level, e.g., z = 0, we can then 
require that the expected loss is no larger than that level, if possible (which it is 
not, so that we minimize the overachievement). This is then written as  
 
 0.001x1 + 0.001x2 + 0.09x3 + 0.02x4 + 0.03x5 + +− − 55 dd  = 0   (8) 
 
with the objective function contribution Min +

5d .  
 
The problem can then be written as  
 
 Min z = 50 +

5d  + 2( +− + 22 dd ) + 2( +− + 33 dd ) + 2( +− + 44 dd ) + −
1d  

 
 

 

 

s.t. constraints (1) – (8) and the nonnegativity constraints for all variables.  

The optimal solution allocates 466.69 carats of diamonds to store 1, another 
233.31 carats of diamonds to store 2, no diamonds to stores 3 and 4, and the 
minimally required 300 carats to store 5. The expected loss is measured by the 
overachievement ,5

+d whose optimal value is 9.7. Due to the overriding impor-

 

 

tance of the expected loss, equality among the mall stores is no longer achieved. 
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Exercises 
Problem 1 (improvement cone): Consider the following two vector optimization 
problems (to simplify matters, the constraints have been ignored):  
 
 (a)  P1: Max z1 = 5x1 + 2x2, Max z2 = −2x1 − 2x2, Max z3 = 3x1, and  
 
 (b)  P2: Max z1 = x2, Max z2 = 4x1 − x2, Min z3 = x1 + x2.  
 
Plot each of these two problems individually and determine the improvement 
cone.  
 
 
Solution: The improvement cone for (a) is shown in Figure 3.8a, the improvement 
cone for (b) is empty as shown in Figure 3.8b.  

 
 

Figure 3.8 
 
Problem 2 (nondominated frontier and composite objective, graphical): Consider 
the following linear programming problem:  
 
 P: Max z1 = x1 + 2x2  
 s.t.           −2x1 +   x2 ≤ 2 
                     x1 +   x2 ≤ 5 
                     x1           ≤ 3 
                     x1,      x2 ≥ 0.  
 
(a)  Plot the constraints and determine the feasible set.  
(b)  Graph the gradient of the objective function and use the graphical solution 

technique to determine the optimal point. Compute the exact coordinates of 
the optimal point and its value of the objective function.  

(c)  Consider a second objective function Max z2 = 2x1 − x2. Ignoring the first 
objective, what is the optimal point? Compute its exact coordinates and its 
value of the objective function.  

 
 

Exercises
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(d)  Determine the nondominated frontier given the two objectives.  
(e)  Use the two objectives above to construct the composite objective function 

with weights w1 = ¾ and w2 = ¼. What is the optimal solution with this 
objective?  

 
Solution: (a) The solutions are based on Figure 3.9.  
 

 
 

Figure 3.9  
 

(b)  The exact coordinates of the optimal solution are x  = (1, 4) with value of the 
objective function .91 =z  

(c)  The optimal solution with the second objective is x  = (3, 0) with .62 =z  
(d)  Shown by the bold line in Figure 3.10. 
(e)  Shown in Figure 3.10.  
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Figure 3.10 

 
Problem 3 (vector optimization, nondominated frontier): Consider the following 
vector optimization problem:  
 
 P: Min z1 =   x1 + x2  
     Max z2 = 2x1 + x2  
 
                 s.t. x1          ≤ 3 
                               x2  ≤ 2 
                    −x1   + x2  ≤ 1 
                      x1,      x2 ≥ 0.  
 
(a)  Graph the constraints, clearly indicate the feasible set, and graph the directions 

of both objective functions.  
(b)  Determine the improvement cone in a separate graph.  
(c)  Plot the improvement cone at each extreme point of the feasible set and 

determine the efficient frontier. Clearly describe the efficient frontier.  
 
 
 
 
 
 
 
 
 
 

Exercises



3  Multiobjective Programming 

 

132 

Solution: 

 
 

Figure 3.11 
  

 
 

Problem 4 (weighting method): Consider again the vector optimization problem 
in Problem 3.  
(a)  Use the weighting method with weight combinations w = (5, 1), (3, 1), (1, 1), 

(1, 3), and (1, 5) to determine nondominated solutions.  
(b)  Use the constraint method by keeping the first objective and using the second 

objective as constraint with a variable right-hand side value b2. 
(c)  Repeat (b) by keeping the second objective and using the first objective as a 

constraint with variable right-hand side b1.  
 
 
 

Figure 3.12 
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Solution:  
(a)  The different weight combinations result in the solutions shown below.  
 

w x  
5, 1 0, 0 
3, 1 0, 0 
1, 1 3, 0 
1, 3 3, 2 
1, 5 3, 2 

 
(b) The method generates the noninferior solutions shown below for various 

values of b2 in the constraint 2x1 + x2≤ b2.  
 

b2 x  1z  
−10 0, 0 0 

0 0, 0 0 
5 2.5, 0 2.5 
6 3, 0 3 
7 3, 1 4 
8 3, 2 5 
9 no feasible solution 

 
(c) The method generates the noninferior solutions shown below for various 

values of b2 in the constraint x1 + x2 ≥ b1. 
 

b1 x  2z  
10 3, 2 8 
5 3, 2 8 
4 3, 1 7 
3 3, 0 6 
2 2, 0 4 
1 1, 0 2 
0 0, 0 0 
−1 no feasible solution 

 
Problem 5 (goal programming formulation): A product P is to be blended from 
three ingredients I1, I2, and I3. Firm requirements dictate that at least 100 lbs of P 
are to be blended, and that the average cost of the blend per pound do not exceed 
$2.80, given that one pound of the three ingredients costs $5, $3, and $2 for I1, I2, 
and I3, respectively. In addition, it would be desirable if 20% of P were to be I1. 
Similarly, the decision maker would like to have P consist of no more than 50% of 
the cheap ingredient I3, if possible. This desirable feature is about half as important 
as the former desirable feature. Formulate as a goal programming problem.  
 

Exercises
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Solution: As there is only a single product, we only need variables with a single 
subscript. Define variables x1, x2, and x3 as the quantities of the three respective 
ingredients in the product. The constraints can then be written as  
 
  x1 + x2 + x3 ≥ 100 and 
  5x1 + 3x2 + 2x3 ≤ 2.8(x1 + x2 + x3).  
 
The first of the two desirable properties, written as a constraint is  
 
  x1 ≥ 0.2(x1 + x2 + x3). Rewriting as a goal constraint, we obtain  
 
  x1 + +− − 11 dd  = .2(x1 + x2 + x3) 
 
with objective function contribution Min −

1d . The latter desirable property, 
written as a constraint, is  
 
  x3 ≤ .5(x1 + x2 + x3). Rewritten as a goal constraint, we obtain  
 
  x3 + +− − 22 dd 1 2 3

 
with objective function contribution Min +

2d . The objective function is 
 
  Min z = 2 −

1d  + +
2d .  

 
Solving the problem results in 15, 35, and 50 lbs of the three ingredients being 
used, so that exactly 100 lbs are blended, whose price is exactly equal to the 

1

3

 

= .5(x  + x  + x )  

required value of 2.8. It is apparent that the product includes 15% of I , 5% short of 
the desired target. On the other hand, the upper limit of 50% of I  is satisfied 
as an equation.  
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4   Integer Programming 

Not too long after more and more applications of linear programming were 
developed, it became apparent that in some of these applications, the variables 
would not be able to attain just any (nonnegative) value, but should be integers. 
As a simple applications, if a variable has been defined to denote the number of 
cans of beans manufactured in the planning period, then surely it would make no 
sense to make, say, 1,305,557.3 cans: the last 0.3 cans would have to be rounded 
up or down. While this may be an acceptable practice when dealing with this 
application (after all, it makes very little difference whether or not we make 0.3 
cans more or less), in other applications this may make a huge difference. For 
instance, assigning airplanes to routes or trucks to deliveries may very well make 
the difference between gain and loss. Furthermore, simply rounding up or down a 
noninteger (usually referred to as a continuous solution) will not necessarily result 
in an optimal integer solution. We will demonstrate this fact below.  
 
Even though the difference may be blurry, it may be useful to distinguish between 
variables that are naturally required to be integer (such as the number of trucks to 
be used for deliveries, the number of work crews dispatched to a construction site, 
or the number of drums of hazardous material shipped from one site to another), 
and so-called logical variables that also must be integer and are introduced for 
logical reasons. Below, we will provide a number of examples of the latter.  
 
Integer programming problems were first discussed by Gomory in the 1950s, who 
also devised a solution technique for them. Gomory’s class of techniques is called 
cutting plane techniques, and we will describe their basic idea below. A 
breakthrough is the 1961 contribution by Land and Doig, whose branch-and-
bound method remains the standard solution technique to this day.  

4.1   Definitions and Basic Concepts 
In order to define integer programming problem, we will start with a standard 
linear programming problem. As an example, consider the problem  
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 P1: Max z = x1 +   x2  
       s.t.       3x1 + 5x2 ≤ 15 
                   5x1 + 2x2 ≤ 10 
                     x1,     x2 ≥ 0.  
 
The only difference between the standard linear programming problem above and 
an integer programming problem is that some or all of the variables are, in 
addition to be required to be nonnegative, are also required to be integer. It is very 
helpful to think of the integrality condition as an additional requirement. All 
integer programming problems that require some, but not all, variables, to be 
integer, are called mixed-integer linear programming problems (or MILPs), while 
problems, in which all variables are required to assume integer values, are called 
all-integer linear programming (or AILP) problems.  
 
If we replace in the above example the two nonnegativity constraints by x1 ≥ 0, 
and x2 ≥ 0 and integer, then we have a mixed integer programming problem, 
which we may call P2. Similarly, if we replace the nonnegativity constraints in P1 
by the conditions x1 ≥ 0 and integer and x2 ≥ 0, we have another mixed-integer 
linear programming problem P3. Finally, if we replace in P1 both nonnegativity 
constraints by x1 ≥ 0 and integer as well as x2 ≥ 0 and integer, we then have the 
all-integer linear programming problem P4.  
 
The graphical representations of the feasible sets of the four problems P1, P2, P3, 
and P4 are shown in Figures 4.1a – 4.1d. Figure 4.1a shows the usual linear 
programming problem with the feasible set shaded. The mixed-integer linear 
programming problem P2 is shown in Figure 4.1b; here, only the bold horizontal 
bars are feasible, as only those guarantee that the variable x2 is integer, while in 
addition, respecting the given constraints. Similarly, only the bold vertical bars in 
Figure 4.1c are feasible for the mixed-integer linear programming problem P3. 
Finally, the feasible set of the all-integer linear programming problem P4 consists 
exclusively of the grid points shown in Figure 4.1d. Clearly, the feasible set of this 
problem is smallest, as it is the most constrained. Incidentally, the optimal 
solutions of the four problems are as follows:  
 
 P1: x = (1.0526, 2.3684)  with z  = 3.4211,  
 P2: x  = (1, 2.4)     with z  = 3.4,  
 P3: x  = (1.2, 2)    with z  = 3.2, and  
 P4: x  = (1, 2)    with z  = 3.  

Again, it is apparent that moving from the least restricted problem P1 on to the 
more restricted problems P2 and P3 to the most restricted problem P4, the values of 
the objective function are getting worse, i.e., they decrease in maximization 
problems, while they would increase in minimization problems.  
 
Furthermore, it is important to realize that none of the integer programming 
problems has its optimal solution at an extreme point, which is always the case in 
linear programming (recall Dantzig’s corner point theorem).  
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Figures 4.1a – d 
 
In the above example it appears as if integer programming problems could be 
solved by first solving the (simpler) linear programming problem and then 
rounding the solution up or down. This is, however, not the case. As an example, 
consider the following all-integer linear programming problem P5: 
 
  P5: Max z = 2x1 +     x2  
  s.t.               7x1 + 48x2 ≤ 84 
                      −x1 + 12x2 ≥   3 
                        x1,       x2 ≥   0 and integer.  
 
The two solid lines in Figure 4.2 show the two constraints (ignore the broken line 
for now), and the bold dots indicate the all-integer solutions. The optimal solution 
of the linear programming problem without the integrality requirements is x  = 
(6.5455, 0.7955) with z  = 13.8864, while the optimal solution of the all-integer 
programming problem is x  = (5, 1) with z  = 11. This is a solution that cannot be 
obtained by simple rounding.  
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Worse yet, if we were to change the right-hand side value of the second constraint 
from “3” to “13,” one of the constraints in Figure 4.2 moves in parallel fashion to 
the broken line. The feasible set for the linear programming problem without 
integrality conditions is the triangle with the vertices (0, 12

11 ), (0, 1¾), and the 

point marked with LPx ′ , which has coordinates (2.9091, 1.3258) and a value of 
the objective function of 7.1439. The all-integer linear programming problem 
does, however, hove no feasible solution (notice that there are no bold dots in the 
triangle described above).  
 

 
 

Figure 4.2 
 
Finally, consider the feasible set generated by the following constraints:  
 
    x1 +   x2 ≤ 10 
  5x1 + 3x2 ≥ 15 
    x1          ≤   6 
             x2 ≤   7 
    x1,     x2 ≥   0.  
 
The feasible set is shown in Figure 4.3.  
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Figure 4.3 
 
Inspection reveals that the feasible set has extreme points (3, 0), (6, 0), (6, 4),  
(3, 7), (0, 7), and (0, 5). In other words, all corner points of the feasible set are 
integer-valued. If we were to solve a linear programming problem with this 
feasible set and any objective function, the optimal solution would―as proved by 
Dantzig’s “corner point theorem”―be one of these points, and thus integer without 
us actually requiring it. There are some large classes of linear programming 
formulations that fall into this category, i.e., resulting in integer solutions without 
explicitly including integer requirements. This is a very appealing feature, since 
linear programming problems are generally much easier to solve than their integer 
programming counterparts. We will return to these problems in the chapter on 
network models.  
 
The remainder of this section will discuss the relations between the objective 
values of linear programming problems and integer linear programming problems. 
In order to facilitate the discussion, we need to introduce some terminology. 
Consider any mixed- or all-integer linear programming problem P. Its linear 
programming relaxation Prel is the very same problem P except with all of the 
integrality conditions deleted. Suppose that P is a maximization problem and its 
optimal value of the objective function is .IPz  Let now LPz  denote the optimal 
value of the objective function of its linear programming relaxation, then we find 
that  
 
 IPz ≤ LPz .  
 
The reason for this relation is easy to see. Starting with the relaxation, we obtain 
the integer programming problem by adding constraints, namely the integrality 
constraints. And whenever constraints are added to a  problem, the value of the 
objective function gets worse, i.e., lower in case of maximization problems and 
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higher in case of minimization problems. And that is exactly what is captured by 
the above relation. Note that the inequality is reversed in case of minimization 
problems. In other words, the linear programming relaxation provides an upper 
bound on the value of the objective function of the integer programming problem 
in case of maximization problems, while it is a lower bound in case of 
minimization problems.  
 
As a numerical example, consider the all-integer linear programming problem P5 
introduced earlier in this section. The value of the objective function of the all-
integer solution was found to be IPz  = 11, while the linear programming relaxation 
has an optimal objective value of LPz  = 13.8864.  
 
Not only does the numerical example satisfy the inequality shown above as 
expected, but it also allows us to define the gap between the objective values of an 
integer programming problem and its linear programming relaxation. Formally, 
the absolute integrality gap is defined as the difference IPLP zz − , while the 

relative integrality gap is defined as 
|}|,|{|max IPLP

IPLP
zz

zz −
. In the numerical 

example the absolute integrality gap is 13.8864 − 11 = 2.8864, while the relative 
integrality gap is 2.8864/13.8864 = .2079. The relative integrality gap is usually a 
good indicator of the degree of difficulty of the problem. Any problem with a 
relative integrality gap in excess of 0.1 or 10% is fairly difficult, while problems 
with integrality gaps in excess of 0.5 or 50% are typically really difficult. The 
integrality gap can, of course, only be computed after the problem and its 
relaxations have been solved, thus diminishing its usefulness. However, often 
good approximations for IPz  and LPz  are known.  

4.2   Applications of Integer Programming 
This section will introduce some classes and principles of applications of integer 
programming problems. The simplest integer programming problem are the so-
called knapsack problems. Formally, knapsack problems have an objective and a 
single constraint. The story behind the name can be told as follows. A backpacker 
wants to decide which items to take into the woods. Items to be considered 
include a tent, a sleeping bag, a stove, stove fuel, map, compass, and so forth. 
With each item, the backpacker associates two numbers: one that expresses the 
value of the item, and the other its weight. The problem is then to choose items, so 
as to maximize their total value to the backpacker, while the total weight should 
not exceed a prespecified limit.  
 
There are a number of different version of knapsack problems. One version only 
allows the backpacker to either pack an item or leave it home, while another 
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version permits the hiker to take any (integer) number of units of an item. The 
definition of variables is similar regardless of the application. In case we can only 
decide to either pack an item or not, we will define a variable for item j, such that 
yj = 1, if we include the item in our pack, and 0 otherwise. In contrast, if we are 
allowed to take any number of units of item j, we will definite variables that are 
defined as yj: the number of items of type j that we include in our pack, so that yj ≥ 
0 and integer. (As a matter of fact, in the former case we can also think of the 
variable in terms of the number of items taken, only that this number is restricted 
to no more than one). Note that in order to distinguish integer variables from those 
that do not have to satisfy integrality, we will use yj for integer variables and xj for 
continuous variables.  
 
Knapsack problems occur in a variety of guises. The “cargo loading” prototype 
problem is of this variety. For continuous knapsack problems (i.e., those, in which 
the variables do not have to be integers or even zeroes and ones), see Exercise 2 in 
Section 2.5. Another popular example of a knapsack problem is capital budgeting. 
As a numerical illustration, suppose that a developer can engage in five different 
projects, viz., a highrise building, a shopping mall, an amusement park, a warehouse, 
and an airport. The expected profit contributions and resource consumption (e.g., 
the number of construction workers needed for the respective projects) are shown 
in Table 4.1.  
 

Table 4.1: Profit contributions and resource consumption of projects 
 

 Highrise Shopping 
mall 

Amusement 
park 

Warehouses Airport 

Profit 
contribution 

 
10 

 
6 

 
12 

 
2 

 
7 

Resource 
consumption 4 2 5 1 3 

 
Assume now that the developer has seven work crews at his disposal, and suppose 
that it is not possible to hire additional work crews. We can then define variables 
yj = 1, if the developer is to engage in project j, and 0 otherwise (clearly, engaging 
in partial projects is not feasible and none of the projects can be performed more 
than once), so that the problem can be formulated as follows:  
 
 P: Max z = 10y1 + 6y2 + 12y3 + 2y4 + 7y5  

s.t.                4y1 + 2y2 +   5y3 + 1y4 + 3y5 ≤ 7  
                 y1,     y2,       y3,      y4,     y5 = 0 or 1.  

 
The linear programming relaxation that includes just the objective, the single 
constraint, and the nonnegativity constraints, has the optimal solution 2y  = 3.5, 

05431 ==== yyyy with the objective value 21=z . Adding upper bounds y1 ≤ 1, 

 

 
 

 (in $1M) 
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y2 ≤ 1, y3 ≤ 1, y4 ≤ 1, and y5 ≤ 1 results in 121 == yy , 8.03 =y , and 054 == yy  
with an objective value of 4.18=z . Finally, requiring integrality of all variables, 
we obtain the optimal solution 1421 === yyy , 053 == yy  with the objective 
value z  = 18.  
 
Many beginners think that knapsack problems―and particularly zero-one knapsack 
problems―are so simple that modern computational equipment must surely be 
able to solve such problems by simply enumerating all solutions, without having 
to resort to complicated algorithms. Nothing could be further from the truth. In 
order to demonstrate this, compute the number of different solutions of a zero-one 
integer programming problem. A problem with a single variable has two solutions, 
as the variable can assume the values of zero and one. With two variables, we 
have four solutions: (0, 0), (0, 1), (1, 0), and (1, 1). With three variables, we 
already have eight different solution, with four variables, there are sixteen 
different solutions, and so on. As a matter of fact, adding a single variable will 
double the number of solutions of the problem. The reason is this: the variable that 
we add can have a value of zero or one. If it were zero, together with all possible 
solution of the other variables, we have just as many solutions as before. The same 
applies if the new variable were equal to one, so that adding a variable doubles the 
number of solutions. This means that in case of n variables, we will have 2n 
different solutions that have to be examined. This means that for n = 10, we have 
1,024 solutions, for n = 20, there will be a million solutions, for n = 30 there is a 
billion, for n = 40 a trillion, and so forth. Clearly, even if a computer could 
examine a quadrillion solutions within a single second, (which is pretty much the 
limit by today’s standards), a problem with 100 variables (a tiny problem by 
today’s standards), would require more than 40 million years to examine all 
solutions. For business problems, that time frame appears excessive.  
 
It is no wonder that many users resort to heuristic algorithms for the solution of 
integer programming problems. We will discuss exact and heuristic solution 
techniques in Section 3 of this chapter.  

4.2.1 Cutting Stock Problems 

The first integer application we will discuss is a model, in which the variables 
quite naturally must assume integer values. Cutting stock problems (or, alternatively, 
stock cutting or trim loss problems) are among the early applications of integer 
linear programming. The first studies concerned paper rolls, whose width is fixed, 
but which can be cut to desired lengths. The decision maker then has a number of 
larger rolls of paper of given length, which he has to cut down to smaller rolls that 
are in demand. This is what is called a one-dimensional problem, as only the 
length of the rolls is cut.  
 
In order to explain the formulation, suppose that a home improvement store 
carries wooden rods in a standard profile and width. They presently have two 
lengths, 12 ft and 10 ft. In particular, they have twenty 12 ft rods and twenty-five 
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10 ft rods in their warehouse. Management anticipates a need for sixty 8 ft rods, 
forty 5 ft rods, and seventy-five 3 ft rods. In order to obtain the desired lengths, 
we can either cut existing rods at a cost of 50¢ per cut, or purchase new rods at a 
cost of $2, $1.50, and $1.10 for the 8 ft, 5 ft, and 3 ft rods, respectively.  
 
There are two common types of objectives. Management could either attempt to 
minimize the waste produced in the process, or could minimize the costs incurred 
in the process. Minimizing waste is a popular option, yet it is nontrivial from a 
conceptual point of view. A small piece, say a 2 ft rod, cannot be used and is 

the total cost incurred in the process.  
 
In order to formulate the problem, it is mandatory that we first devise a cutting 
plan. A cutting plan will include all meaningful cutting patterns. Patterns that are 
undesirable, either because they produce too much waste, are too difficult to cut, 
or for some other reason, are simply not included in the cutting plan.  
 
The cutting plan for this example is shown in Figure 4.4, where the meaningful 
cutting patters are numbered 1 to 8 from top to bottom.  
 

 
 

 
Figure 4.4 

 
We can now define the decision variable y1 as the number of times that pattern 1 is 
cut, and similarly for the remaining seven patterns. This takes care of the cutting 
we have to do. In addition, we also require variables v1, v2, and v3 that determine 
the number of 8 ft, 5 ft, and 3 ft rods that we purchase in addition to cutting longer 
rods to the required sizes. Consequently, the objective function consists of two 

12 ft 8 ft

5 ft 5 ft

5 ft 3 ft 3 ft

3 ft3 ft3 ft

8 ft

5 ft

5 ft

5 ft

3 ft

3 ft3 ft3 ft

3 ft

3 ft

10 ft

considered a complete waste. A larger piece, say a 4 ft rod, however, while formally

even if it is not used in this planning period. As a result, we will simply minimize 
twice the waste of a 2 ft rod, can still be used as to satisfy some future demand, 
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major components, the cost of cutting and the cost of purchasing. Consider first 
the cutting costs. Pattern 1 requires two cuts, so that each time pattern 1 is cut, it 
will cost $1. Given that pattern 1 is cut y1 times, the cost contribution of the first 
pattern is 1y1. Similarly, pattern 8 requires three cuts or $1.50 each time it is cut. 
Since pattern 8 is cut y8 times, its cost contribution is 1.5y8. Adding the purchasing 
costs for the rods that are not cut, the objective function can then be formulated as  
 
 Min z = 1y1 + 1y2 + 1.5y3 + 1.5y4 + 0.5y5 + 0.5y6 + 1y7 + 1.5y8  
  + 2v1 + 1.5v2 + 1.1v3.  
 
As far as the constraints are concerned, there will be two types, viz., supply and 
demand constraints.  
 
Consider first the supply constraints. In words, they state that the number of 
patterns cut from an existing length cannot exceed the number of rods that are 
available. Constraints of this type have to be formulated for each existing length. 
Consider first the 12 ft length. It is used in patterns 1, 2, 3, and 4, which, as we 
already know, are cut y1, y2, y3, and y4 times, respectively. Given that we have 
twenty 12 ft rods available, we can formulate the supply constraint for the 12 ft 
length as  
 
 y1 + y2 + y3 + y4 ≤ 20.             (1) 
 
Similarly, the supply constraint for the 10 ft rods is 
 
 y5 + y6 + y7 + y8 ≤ 25.            (2) 
 
The demand constraints are somewhat more difficult to formulate. As an example, 
consider the first required length of 8 ft. It is produced by patterns 1 and 5. Each 
time we cut pattern 1, we generate one 8 ft rod. Since we cut this pattern y1 times, 
the number of 8 ft rods produced by cutting pattern 1 is 1y1. Similarly, since each 
time pattern 5 is cut, we generate a single 8 ft rod, we make a total of 1y5 8 ft rods 
by cutting pattern 5. Since the only other way to obtain 8 ft rods is to purchase 
them (and we already have decided to buy v1 of them), the total number of 8 ft 
rods that we will have is 1y1 + 1y5 + v1, a number that must be large enough to 
satisfy the demand of 60 units. The demand constraint for the 8 ft rods can thus be 
written as  
 
 y1 + y5 + v1 ≥ 60.             (3) 
 
As far as 5 ft rods are concerned, the cutting plan reveals that they are generated 
by patterns 2, 3, 6 and 7. Since each time pattern 1 is cut, we produce two 5 ft 
rods, and as pattern 1 is cut y1 times, we will produce a total of 2y1 5 ft rods by 
cutting pattern 1. Applying similar arguments for the other three patterns that 
generate 5 ft rods, the constraint for these rods is 
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 2y2 + 1y3 + 2y6 + 1y7 + v2 ≥ 40.          (4)  
 
Finally, the 3 ft rods. They are generated by patterns 1, 3, 4, 7 and 8. Each time 
one of these patterns is cut, we generate 1, 2, 4, 1, and 3 of the required 3 ft rods. 
As a result, we can write the constraint for the 3 ft rods as 
 
 1y1 + 2y3 + 4y4 + 1y7 + 3y8 + v3 ≥ 75.         (5) 
 
The cutting stock problem can then be written as  
 
 Min z = 1y1 + 1y2 + 1.5y3 + 1.5y4 + 0.5y5 + 0.5y6 + 1y7 + 1.5y8  
   + 2v1 + 1.5v2 + 1.1v3.  
 
 s.t. constraints (1) – (5) 
 y1, y2, …, y8; v1, v2, v3 ≥ 0 and integer.  
 
Solving the problem results in 1y = 2, 2y = 0, 3y = 0, 4y = 18, 5y = 5, 

6y ,20= 7y = 0, and 8y = 0, as well as 1v = 53, 2v = 0, and 3v = 1. This 
leaves none of the existing rods left over, and the demand is exactly satisfied.  
 
Solving the same problems with demands of 20, 15, and 18 for the 8 ft, 5 ft, and  
3 ft rods results in 1y = 6, 2y = 0, 3y = 0, 4y = 3, 5y = 14, 6y = 8, 7y = 0, and 8y = 8, 
as well as 1v = 0, 2v = 0, and 3v = 0. In this case, nothing is purchased, we have 
eleven 12 ft rods and three of the existing 10 ft rods left over, and the demand is 
exactly satisfied for the 8 ft and 3 ft rods, while one 5 ft rod is cut but not used.  
 
As expected, things get more complicated when cutting is possible in two dimensions. 
However, it is not the formulation that becomes more difficult, but the cutting 
plan that may now include many patterns. Just imagine cutting an irregular piece 
of fabric that may be shifted and tilted by infinitesimally small amounts to any of 
its sides, resulting in infinitely many patterns. To simplify matters, assume that the 
patterns are regular. As a numerical example, consider a single board of plywood 
of size 5 ft by 8 ft, and assume that we need two types of boards, type T1 is of size 
2 ft × 4 ft, and type T2, which measures 3 ft square. Two of the many possible 

 

 
 

Figure 4.5 

patterns are then shown in Figure 4.5, where the shaded parts indicate waste.  
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When evaluating these patterns, we could resort to the amount of waste that is 
generated. The first pattern uses 34 sq ft out of the given 40 sq ft for a usage rate 
of 85%. Pattern 2, in contrast, uses only 32 sq ft for a usage rate of 80%, so it 
appears that pattern 1 is more efficient. This is, however, not necessarily the case. 
Pattern 2 is easy to cut: Adjust the saw once to a 1 ft width, cut off the shaded part 
at the bottom, readjust the machine to a 2 ft cutting width, and continue to cut the 
four desired T1 pieces. Things are much more complicated when cutting pattern 1. 
First of all, we should point out that only so-called guillotine cuts are feasible. 
These are cuts that the existing piece all the way through. This restriction is 
important, as non-guillotine cuts will result in many operator errors. Probably the 
best way to cut pattern 1 is to first adjust the machine to a 2 ft width, cut the T1 
piece on the right with the piece of waste at the bottom, then turn the remaining 
board and cut the T1 piece at the bottom (this way, we do not have to readjust the 
machine all the time), then readjust the machine to a 3 ft cutting width and cut the 
top left piece in the middle, generating the two T2 pieces. And then we have to 
readjust the machine again to cut off the waste at the bottom of the two T1 pieces. 
It should have become clear that while this pattern uses more of the existing 
board, it is much more complicated and thus costly to cut.  
 
In other problems, integrality does not occur naturally but is a result of the way we 
must formulate constraints. Some of these formulations use so-called logical 
variables, which are zero-one variables that are introduced to model logical 
implications that cannot be modeled in the usual variables. Recall that in a 
standard linear programming problem with, say, 100 constraints, it is obvious that 
all constraints must hold, otherwise there would be no reason to include them in 
the problem in the first place. There are, however, instances, that require a 
different treatment. For instance, if we have the choice of one of a number of 
different machines, each with its own capacity, then the actual capacity constraint 
is not given by all machines, but only by the one that is actually chosen. Such a 
requirement belongs to the class of so-called either-or constraints. Another class 
is that of conditional constraints. They can be spotted by their unique wording “if 
this, then that.” Examples of these conditions will follow.  

4.2.2 Diet Problems Revisited 

First recall the standard diet problem in linear programming. To simplify matters, 
consider only two foodstuffs and a single nutrient. The quantities of the two foods 
are defined as x1 and x2, respectively, and at least five units of the nutrient are 
required in the diet. We assume that the problem has been formulated as follows.  
 
 Min z = 3x1 +  4x2 
 s.t.          x1 +  2x2 ≥ 5 
                x1,      x2 ≥ 0.  
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Suppose now that the additional requirement is that if food 1 is included in the 
diet (in any quantity), then food 2 should not be. (One of the reason for this may 
be incompatibilities due to taste such as ice cream and mustard, or unfortunate 
side effects of incompatible foods, such as water and green apples, or, worse, 
yoghurt and yeast). This is a conditional constraint of the type “if food 1 is 
included, then food 2 should not be.” We first must define logical zero-one 
variables, one for each foodstuff. These new variables y1 (and y2) are defined as 
being one, if food 1 (food 2) is included in the diet, and zero otherwise. We will 
be needing these variables in addition to the variables x1 and x2 that denote the 
quantities of the two foods that are included in the diet.  
 
In order to model this situation, it is beneficial to use a small table that includes all 
relevant solutions. Table 4.2 includes not only all combinations of the two foods, 
but also a column that indicates whether or not the solution is acceptable. For 
instance, the first row includes neither of the two foods, and while it may leave us 
hungry, it does not violate the condition. Here, we find that only the solution that 
has y1 and y2 both equal to one (the case in which both foods are in the diet) is 
prohibited.  
 

Table 4.2: Decision table for the diet problem 
 

y1 y2 OK? 
0 0  
0 1  
1 0  
1 1 No 

 
Eliminating this solution from consideration (this is where operations research 
becomes a bit of an art, rather than a science) is to write the constraint 
 
 y1 + y2 ≤ 1.  
 
This surely excludes only the case of both foods in the diet, and adding this 
constraint to our formulation should do it. However, it does not. The reason is that 
by adding this constraint to the formulation, our new problem now has two sets of 
constraints; one that includes only the continuous variables x1 and x2, and another, 
completely separate part that includes only the variables y1 and y2. This would 
allow the two types of variables to change their values independent of each other, 
for instance allowing solutions that have y1 = 0 and x1 = 7. This does not make 
sense, as y1 = 0 states that “food 1 is not included in the diet,” while x1 = 7 says 
that “there are 7 units of food 1 in the diet.”  
 
The remedy is to include additional linking constraints, i.e., constraints that 
include the continuous variables x1 and x2 as well as the logical variables y1 and y2. 
In this problem, the linking constraints are  
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 x1 ≤ My1 and 
 x2 ≤ My2,  

where M is a “sufficiently large” constant. In order to understand the workings of 
these linking constraints, consider the first of these constraints and use the two 
possible solutions y1 = 1 and y1 = 0. If y1 = 1, then the constraint reads x1 ≤ M, 
which, with M being very large, is a redundant constraint that does not affect the 
solution. If, on the other hand, y1 = 0, then the constraint reads x1 ≤ 0, which, in 
conjunction with the nonnegativity constraint x1 ≥ 0, forces x1 to be equal to zero. 
This is exactly the desired effect, as if food 1 is not included in the diet (i.e., y1 = 0), 
then its quantity in the diet (x1) must be zero as well. And this is what these 
linking constraints guarantee.  
 
Consider now a few extensions of the model. If, for instance, it would not be 
acceptable to have a diet without any food (i.e., we were to consider the solution 
y1 = y2 = 0 unacceptable), then the constraint y1 + y2 = 1 would guarantee that 
while both foods cannot be together in the diet, at least one of them has to be.  
 
Consider now the diet problem with the conditional constraint “if food 1 is 
included in the diet, then food 2 must be included in the diet as well.” the decision 
table for this condition is shown in Table 4.3.  
 

Table 4.3: Decision table for the modified diet problem 
 

y1 y2 OK? 
0 0  
0 1  
1 0 No 
1 1  

For this scenario, the constraint 
 
 y1 ≤ y2  
 
must be included (together with the linking constraints). The only solution that 
this constraints excludes is y = (0, 1), which is the desired effect.  

4.2.3 Land Use 

The next example deals with land use. Suppose that a land owner owns a parcel of 
land that he has to decide what to do with. He has narrowed down his decisions to 
two: either sell stumpage, i.e., harvest the land, or build an animal sanctuary, but 
not both. Here, we will formulate only this aspect of the model and ignore all 
other considerations. We will need a decision variable for each possible decision, 
so that we define y1 = 1, if we decide to harvest the parcel, and 0 otherwise, and  
y2 = 1, if we decide to build an animal sanctuary, and 0 otherwise. The decision 
table for this problem is then shown in Table 4.4.  
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Table 4.4: Decision table for the simple land use problem 

 
y1 y2 OK? 
0 0  
0 1  
1 0  
1 1 No 

 
Once formalized as done here, we see that the situation is the same as in the diet 
problem by not allowing both options at the same time, which is modeled as y1 + 

2 2

 
Things may get much more complicated when more options exist. Suppose now 

1 2
building of a municipal well (decision variable y3). As in the previous land use 

parcel in questions. Furthermore, the parcel cannot be harvested if there is a 
municipal well on the parcel, while we could very well have a well and a 
sanctuary on the same parcel. The decision table for this extended problem is 
shown in Table 4.5.  
 

Table 4.5: Decision table for the extended land use problem 
 
 
 
 
 
 
 
 
 
 
 
 
The modeling of this situation is considerably more complicated than that in the 
previous examples. As a matter of fact, we need two constraints to ensure that the 
bottom three solutions in Table 4.5 are excluded from consideration. We first 
formulate the constraint y1 + y2 ≤ 1, which eliminates the solutions in the last two 
rows of the decision table, while, among the remaining six solutions, the 
constraint y1 + y3 ≤ 1 eliminates the solution (1, 0, 1). This leaves the first five 
solutions as options, which is what the decision maker had in mind.  

 
y1 y2 y3 OK? 
0 0 0  
0 0 1  
0 1 0  
1 0 0  
0 1 1  
1 0 1 No 
1 1 0 No 
1 1 1 No 

1 
the case in the diet problem, we do not need linking variables, as there is nothing 

(decision variable y ), build a sanctuary (decision variable y ), or allow the 

to link.  

that for the parcel in question, three choices have been identified: Harvest 

example, it is not possible to harvest and have a sanctuary at the same time in the 

y  ≤ 1. Since this problem does not require quantitative variables x  and x  as was  



4  Integer Programming 150 

4.2.4 Modeling Fixed Charges 

The purpose of this subsection is to introduce the reader to decision models that 
provide options regarding the choice of machines, so as to only apply the machine 
capacity constraints of those machines that are purchased or leased. In particular, 
consider a publishing company that intends to produce its annual lineup of 
operations research texts. This year, they have the books by Gabby and Blabby 
(GB), Huff, Fluff, and Stuff (HFS), and the “Real OR” (ROR) texts. As usual 
nowadays, authors are required to do everything except for the for the printing, 
binding (and the subsequent marketing). A number of different machines can be 
leased for the printing and binding. The three printing machines under 
consideration are P1, P2, and P3, while the two binding machines are B4 and B5. 
The processing times for the different books on the respective machines in 
minutes per book are shown in Table 4.6.  
 

Table 4.6: Processing times for printing and binding machines 
 

 P1  P2  P3  
GB 3 6 4 
HFS 2 3 3 
ROR 4 5 5 

 

 B4  B5  
GB 10 10 
HFS 12 11 
ROR 15 14 

The capacities of the three printing machines are 120 100, and 110 hours (7,200, 
6,000, and 6,600 minutes) in the planning period. Similarly, the capacities of the 
binding machines are 333⅓ and 300 hours, respectively (or 20,000 and 18,000 
minutes). The costs to lease the machines are independent of the number of books 
made with them. They are $10,000, $8,000, $9,000, $20,000, and $23,000, 
respectively. The profit contributions of the three books (other than the leasing 
costs) have been identified as $40, $60, and $70. It has also been determined that 
the publishing house should produce at least 500 copies of the landmark ROR 
book in order to maintain a good academic image.  
 
We can formulate the problem by first defining variables x1, x2 and x3 that indicate 
the number of books of the three types that are manufactured and sold. (As usual 
in single-period models, we assume that all units that are manufactured can also 
be sold). In addition, we also need zero-one variables that show whether or not a 
machine is leased. In particular, we define binary variables y1, y2, …, y5 that 
assume a value of one, if a machine is leased, and 0 otherwise. The objective 
function then consists of two parts: the sum of the profit contributions of the 
individual books (which are 40x1, 60x2, and 70x3), and the sum of the leasing 
costs, which are 10,000y1, 8,000y2, 9,000y3, 20,000y4, and 23,000y5, respectively.  
 
First the easy constraints: making at least 500 copies of ROR is modeled as x3 ≥ 
500, and the fact that we need at least one printing and one binding machine can 
be written as y1 + y2 + y3 ≥ 1 and y4 + y5 ≥ 1, respectively.  
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Consider now the capacity constraints of the machines. As usual, they are written 
as (machine usage) ≤ (machine capacity). For example, for the first printing 
machine, the capacity constraint is 3x1 + 2x2 + 4x3 ≤ 7,200. The problem here is 
that this constraint must hold only if the machine is actually leased. If it is not 
leased, the constraint can be ignored. The way to model this is the same technique 
that was applied in the diet problem to write the linking constraints. If the first 
machine is not leased, y1 = 0, and the capacity constraint is made redundant, by 
having a sufficiently large right-hand side value. (Again, we will use the very 
large value M as introduced in linear programming). However, if the first machine 
is leased, we have y1 = 1, and the right-hand side of the capacity constraint should 
be 7,200, the actual capacity of the first machine. We can formulate this by 
writing the right-hand side as 7,200 + M(1 – y1).  
 
To demonstrate the validity of this formulation, let y1 = 0. In this case the right-
hand side value is 7,200 + M(1 – y1) = 7,200 + M, so that the constraint has a very 
large right-hand side, making it redundant. On the other hand, if we do lease the 
first machine and y1 = 1, the right-hand side value equals 7,200 + M(1 – y1) = 7,200, 
which is the actual capacity of the first machine. The formulation can then be 
written as follows.  
 
 P: Max z = 40x1 + 60x2 + 70x3 − 10,000y1 − 8,000y2 − 9,000y3 − 20,000y4 
  − 23,000y5  
 s.t. 3x1 + 2x2 + 4x3 ≤ 7,200 + M(1−y1)  
 6x1 + 3x2 + 5x3 ≤ 6,000 + M(1−y2) 
 4x1 + 3x2 + 5x3 ≤ 6,600 + M(1−y3) 
 10x1 + 12x2 + 15x3 ≤ 20,000 + M(1−y4) 
 10x1 + 11x2 + 14x3 ≤ 18,000 + M(1−y5) 
 x3 ≥ 500 
 y1 + y2 + y3 ≥ 1 
 y4 + y5 ≥ 1 
 x1, x2, x3 ≥ 0 and integer 
 y1, y2, y3, y4, y5 = 0 or 1.  
 
Using a large value for the constant M (here, we use M = 1,000,000), multiplying 
the brackets and sorting the variables, we obtain constraints such as 3x1 + 2x2 + 
4x3 + 1,000,000y1 ≤ 1,007,200 for the first constraint, and similar for the other 
four capacity constraints. The solution of this all-integer programming problem is 

2y = 4y = 1 and 531 yyy == = 0 (i.e., we lease the second printing and the 
second binding machine), and make 1x = 0 GB books, 2x = 1,039 HFS books, and 

3x = 502 ROR books. The profit associated with this plan is $69,480. Note that 
the slack capacities on the printout will indicate huge (and meaningless) values for 
the machines that are not leased. This is due to the fact that their right-hand side 
values have the artificial value of M = 1,000,000, from which some nonexistant 
usage is subtracted.  
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4.2.5 Workload Balancing 

The problem presented in this subsection deals with the allocation of tasks to 
employees, so as to ensure that none of the employees is overworked, while others 
are partially idle. We assume that tasks cannot be split, meaning that once an 
employee starts a job, he will have to finish it. Due to their different backgrounds 
and training, a job will take different amounts of time if different employees 
perform it. There are three workers W1, W2, and W3, who will have to perform 
tasks T1, …, T5.  Table 4.7 shows the processing times (in hours) for all worker – 
task combinations.  
 

Table 4.7: Processing times for worker-task combinations 
 

 T1 T2 T3 T4 T5 
W1 5 1 9 4 9 
W2 4 3 8 3 8 
W3 7 5 6 4 7 

 
In order to formulate the problem, we need to introduce zero-one variables, which 
are defined as yij = 1, if employee Wi is assigned to task Tj, and zero otherwise. 
The only constraints of the model ensure that each task is assigned to exactly one 
employee. Formally, we can write  
 
 y1j + y2j + y3j = 1 for all j = 1, ..., 5. 
 
The more contentious issue concerns the objective function. First, we note that the 
actual working time of the employees can be written as 
 
 w1 = 5y11 + 1y12 + 9y13 + 4y14 + 9y15, 
 w2 = 4y21 + 3y22 + 8y23 + 3y24 + 8y25, and  
 w3 = 7y31 + 5y32 + 6y33 + 4y34 + 7y35,  
 
where the new variables w1, w2, and w3 denote that time that employees W1, W2, 
and W3 are busy working on the tasks. One possibility to ensure fairness in the 
solution is to attempt to make the longest working time as short as possible. In 
other words, the employee who works longest should have the shortest working 
hours possible. Formally for our problem, we can write this objective as  
 
 Min z = max {w1, w2, w3}.  
 
Clearly, this is not part of a linear programming problem the way we have defined 
it. However, minimax objective functions of this type can easily be reformulated, 
resulting in standard linear  (or integer)  programming problems. This is done by  
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introducing a single new variable, say z, that measures the highest workload of 
any employee, i.e., the maximum of the right-hand side of the above objective. 
We will then minimize this highest workload, but then we must ensure that none 
of the actual workloads is higher, which is done by introducing the three 
constraints z ≥ w1, z ≥ w2, and z ≥ w3. Replacing w1, w2, and w3 by the functions of 
yij, we can then write the model as  
 
 Min z 
 s.t. z ≥ 5y11 + 1y12 + 9y13 + 4y14 + 9y15 
 z ≥ 4y21 + 3y22 + 8y23 + 3y24 + 8y25 
 z ≥ 7y31 + 5y32 + 6y33 + 4y34 + 7y35 
 y11 + y21 + y31 = 1 
 y12 + y22 + y32 = 1 
 y13 + y23 + y33 = 1 
 y14 + y24 + y34 = 1 
 y15 + y25 + y35 = 1 
 ij
 
The solution will have worker W1 work on tasks T2 and T5, worker W2 works on 
tasks T1 and T4, while worker W3 is assigned task T3. The resulting workloads for 
the three employees are then 10, 7, and 6 hours, respectively (with the variable z = 10 
denoting the highest of the workloads).  
 
Other objective functions to ensure fairness have been used in the literature. For 
instance, we could define a variable w = w1 + w2 + w3 as the total workload by all 
of the employees, so that ideally, each employee would work ⅓w. We could not 
minimize the sum of deviations from this workload. Since positive and negative 
deviations will cancel out, we have to either minimize the sum of absolute values 
of the deviations or square the deviations (as done to derive the variance in 
statistics, which is the sum of squared deviations from the mean). This objective 
would then be  
 
 Min z = ((1/3)w − w1)2 + ((1/3)w − w2)2 + ((1/3)w − w3)2. 
 
Unfortunately, this objective is nonlinear and the resulting problem will then be 
nonlinear and integer, a very difficult combination. In general, fairness (or 
“equity”) objectives should normally be combined with efficiency objectives. If 
not, a solution such as workloads of 12, 12, and 12 for three employees would be 
preferred to workloads of 4, 9, and 8 hours, because the former solution is “more 
equal,” even though each employee would gain by moving from the former to the 
latter solution.  
 

y  = 0 or 1 for i = 1, 2, 3; j = 1, …, 5.  
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4.3   Solution Methods for Integer Programming Problems 

This section will examine some of the techniques that can and are used to solve 
integer programming problems. The first subsection will briefly describe the ideas 
behind cutting plane methods. The second subsection thoroughly discusses the 
basic features of branch-and-bound techniques, and the third subsection illustrates 
some heuristic methods and how they may apply to some integer programming 
problems.  

4.3.1 Cutting Plane Methods 

As mentioned in the introduction to this chapter, the first exact techniques for the 
solution of integer programming problems were so-called cutting plane 
techniques. Their general idea may be explained as follows. Recall that some 
problems always have optimal integer solutions, such as the assignment problem 
and the transportation problem (the latter only if all supplies and demands are 
integer-valued). Given Dantzig’s corner point theorem (see Section 2.3), this 
means that the feasible set of those two problems (and other like them) has corner 
points, all of which are integer-valued. Clearly, very few formulations have this 
property. If it were now feasible to find a restricted feasible set that includes all 
integer solutions of the original feasible set but has all of its extreme points 
integer-valued (something usually called a convex hull), then we could simply 
solve the linear programming relaxation of the problem with this restricted 
feasible set and then automatically obtain an integer solution. Unfortunately, 
obtaining the convex hull of a feasible set is very difficult and the suggested 
approach is not computationally viable.  
 
However, it is not necessary to have the entire convex hull at our disposal. And 
this is where cutting plane methods come in. The idea of cutting plane methods is 
to locally approximate the convex hull. This is done as follows. We first solve the 
linear programming relaxation of the given problem. If the optimal solution is 
integer, we are done. Suppose now that it is not. We then formulate a cutting 
plane, i.e. an additional constraint that does two things: (1) it must cut off (i.e., 
make infeasible) the present optimal solution, while (2) it cannot cut off any 
feasible integer point.  
 
As a numerical illustration, consider the following all-integer programming 
problem:  
 
 P: Max z = y1 +   y2  
 s.t.            3y1 + 2y2 ≤ 6 
                    y1 + 3y2 ≤ 3 
                    y1,      y2 ≥ 0 and integer.  
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Figure 4.6  

 
The shaded area in Figure 4.6 shows the feasible set of the linear programming 
relaxation, and the point shown as LPy  = (12/7, 3/7) is the optimal solution of the 
linear programming relaxation. The triangle shown by the broken lines that 
connect the points (0, 0), (2, 0), and (0, 1) is the convex hull of the feasible set. 
The dotted line shows the cutting plane 5y1 + 10y2 ≤ 12. Plugging in the 
coordinates of LPy , we see that this point violates the condition of the cutting 
plane, as 90/7 = 7

612   12. This is also apparent in the graph. On the other hand, 
all four feasible integer points satisfy the condition, so that the condition is indeed 
a cutting plane.  
 
While cutting planes appear to be a very good idea, their computational performance 
has been disappointing. In particular, the slices that are cut off tend to become 
tiny, requiring a very large number of additional constraints to be added in the 
process, which adds to the size of the problem and the degree of difficulty.  

4.3.2 Branch-and-Bound Methods 

In contrast to cutting plane methods, the concept of branch and bound in its many 
variations is nowadays accepted as the universal solver for mixed- and all-integer 
linear programming problems. The basic idea is simple. We first solve again the linear 
programming relaxation. Again, if its coordinates of the solution point satisfy the 
required integrality conditions, the process terminates. Suppose now that this is 
not the case. We then select any variable that is required to be integer but, at the 
present solution, is not. As an example, let the variable y7 = 3.4 at the present 
solution. Given that y7 is required to be integer, the present solution does not 
satisfy all integrality constraints. We will then subdivide the given problem (often 
called the “parent”) into two new problems (the “children”), a process usually 
referred to as “divide and conquer” (or, by some critics, “double your trouble”). 
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Each of the two children contains exactly the same constraints as its parent plus 
one single additional constraint. One child has the additional constraint y7 ≤ 3, 
while the other child has the additional constraint y7 ≥ 4. That way, we completely 
eliminate all solutions for which the variable 3 < y7 < 4. The reason that we can 
actually cut out such a “corridor” without deleting important parts of the feasible 
set is that none of the solutions that we eliminate from consideration are feasible, 
in that none of them contain any point that has an integer value for the variable y7.  
 
This way, we will build up what is known as a solution tree. Each “node” of the 
tree, shown as a small box, represents a problem formulation and a solution. Once 
we decide to work on a node or solution, we “branch” from it, meaning we generate 
its children by adding a constraint as explained above. Once we have branched 
from a node, it is no longer active. Also, nodes that represent integer solutions and 
those that represent problem formulations that do not have feasible solutions are 
also not active. This is best explained in terms of a small numerical example.  
 
Consider the following all-integer optimization problem: 
 
 Max z = 5y1 +   9y2 
 s.t.         5y1 + 11y2  ≤ 94      Constraint I 
         10y1 +   6y2  ≤ 87      Constraint II 
             y1 ,     y2  ≥ 0 and integer.  
 
The graphical representation of the problem is shown in Figure 4.7, where the 
feasible set of the linear programming relaxation is the shaded area. The optimal 
solution of the linear programming relaxation is depicted as the point LPy . The 
intermediate results of our computations will be displayed and collected in the 
solution tree shown in Figure 4.8. At present, only the top node, known as the root 
of the tree, is known. At this point, this is also the only active node.  
 
The first step is to examine the solution. In this example, both variables are 
supposed to be integer and neither of them is. This means that we can start 
working on either variable. Here, we choose to start working on y2. (Alternatively, 
we could have started working on y1. This will result in a completely different 
solution tree―which one is smaller and easier cannot be said in advance―which 
is shown in Figure 4.9). At present, y2 = 6.3125, so that we will eliminate the 
corridor 6 < y2 < 7, so that our first branching, shown in the solution tree in Figure 
4.8 branches from the root tree to the two children, the one on the left with the 
additional constraint y2 ≤ 6, and the one on the right with the additional constraint 
y2 ≥ 7. In Figure 4.7, the feasible set of the right child is now the triangle with 
vertices at (0, 7), (0, 8.5455), and 2y = (3.4, 7). Using the objective function, the 
optimal solution of this subproblem is 2y . On the other hand, the  feasible set of  
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the left child is the trapezoid with corner points (0, 0), (0, 6), 1y = (5.1, 6), and 

(8.7, 0). The optimal solution of this subproblem is 1y .  
 

 
 

Figure 4.7 
 
At this point we have two active nodes with solutions 1y 2y . Among all 
active nodes, we always choose the one with the best value of the objective 
function (i.e., highest for maximization problems and lowest for minimization 
problems). In this example, it is the node with the solution 2y . This is the node 
(now considered the parent) that we will examine and further work on, if 
necessary. The solution 2y  has values of 3.4 and 7 for the two variables, meaning 
that while the variable y2 is integer as required, the variable y1 is not and we will 
have to work on it. This means that from this solution, we will perform our second 
branching that adds the constraint y1 ≤ 3 to the left child, and y1 ≥ 4 to the right 
child. The additional constraints are shown in Figure 4.7 as small lines that will 
have to be considered in conjunction with the triangle (the feasible set of  
the parent) derived earlier. This results in a feasible set of the left child that is the 
trapezoid with corner points (0, 6), (0, 8.5455), 3y = (3, 7.1818), and (3, 6), the 
optimal solution of which is 3y . On the other hand, the right child has an empty 
feasible set, as the intersection of the triangle of its parent and the constraint y1 ≥ 4 
is empty. This is now indicated in the solution tree in Figure 4.8. At this point we 
have two active nodes: the nodes labeled with solutions 1y  and 3y . All other 

 and
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nodes developed so far have either already been branched from or have no feasible 
solution and thus need no longer to be considered.  
 

 
Figure 4.8 

 
The node with the best (here: highest) value of the objective functions value is 

,3y so that our work continues here. Now the variable y2 = 7.1818 is again 
noninteger and we will branch on it. Considering this node as the present parent, 
we branch to the children by using the additional constraints y2 ≤ 7 and y2 ≥ 8, 
respectively. The feasible set of the left child is the line segment with end points 
(0, 7) and (3, 7). The optimal solution of this child is 4y = (3, 7) with a value of 
the objective function of 78. This is our first integer solution so far in the tree. The 
feasible set of the right child is the triangle with vertices (0, 8), (0, 8.5455), and 

5y , with 5y  being its optimal solution, whose objective value is also 78.  
 
At this point, the active nodes are 1y , 4y , and 5y . Inspection reveals that 1y  has 
the highest value of the objective function, so that work will continue here, 
regardless of the fact that we have already found an integer solution (that solution 
may not be the best). This node is now temporarily considered the parent. In this 
solution, y1 = 5.1, which violates the required integrality condition.  
 
Recall that the feasible solution of this parent is the shaded area below y2 ≤ 6. 
Branching y1 ≤ 5 and y1 ≥ 6, we obtain the two crosshatched feasible sets: the 
rectangle with vertices (0, 0), (0, 6), 6y = (5, 6), and (5, 0) for the left child, and 
the triangle with vertices (6, 0), 7y = (6, 4.5), and (8.7, 0) for the right child. The 
respective optimal solutions are 6y  and 7y , whose values of the objective 
function are 79 and 70.5, respectively.  
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At this point, we have four active nodes with solutions 4y , 5y , 6y , and 7y . The 
node with the best value of the objective function is 6y , whose solution is 6y  = (5, 6) 
and objective value 79. Work will continue on this node. Inspection reveals that 
all integrality conditions are now satisfied, so that the 6y  represents an optimal 
solution. Since no other active node has an equal objective value, this optimal 
solution is unique, so that the problem is solved.  
 
We have seen that the branch-and-bound method solves integer programming 
problems by a sequence of linear programming problems. It is not at all 
uncommon that one integer programming problem requires the solution of 
hundreds of thousands of linear programming problems, all similar, but differing 
by a few constraints. Consider again the solution tree in Figure 4.8 for some 
additional considerations. For instance, the additional constraints to be considered 
at a node are the constraints at all branchings from the root of the tree to the node 
under consideration. For instance, the node with optimal solution 5y  represents a 
problem with the given objective function, all constraints of the linear 
programming relaxation (here: constraints I and II), as well as the additional 
constraints y2 ≥ 7, y1 ≤ 3, and y2 ≥ 8. An immediate consequence of this principle 
leads to the observation that as you move on some path down the tree, the values 
of the objective function of the problems either stay the same or get worse (i.e., go 
down for maximization problems and go up for minimization problems). This 
occurs as by adding constraints, the feasible set gets smaller, which cannot result 
in better objective values.  
 
It is also apparent that even a very small problem with only two variables can have 
sizeable solution trees. When using a computer with linear programming software 
installed, it is possible to practice by using the computer to solve the linear 
programming problems at the nodes of the solution tree, while constructing the 
solution tree manually. In order to solve the integer programming problem in such 
“computer-assisted” fashion, it is necessary to learn how to edit the linear 
programming problems. For instance, return from the problem with the solution 

5y  to 1y  requires moving up to the root of the tree (thus removing the constraints 
y2 ≥ 8, y1 ≤ 3, and y2 ≥ 7, and then moving down to the node labeled 1y  by adding 
the constraint y2 ≤ 6.  
 
For practice, readers may either use the graphical approach or the computer-
assisted approach to solve the same problem but start branching at the root node 
on the variable y1 rather than y2. This will result in the solution tree shown in 
Figure 4.9. Note that this tree requires six branchings and the optimal solution is 
found at the node labeled 9y .  
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It is also important to realize that the very same procedure can be used to solved 
mixed-integer linear programming problems. Whenever the best active node has 
been chosen, we have to compare what is required to be integer and what is. As an 
illustration, use the same example as above, except that y1 ≥ 0, while y2 ≥ 0 and 
integer. Again, we first solve the linear programming relaxation and find the root 
node of the solution tree. Now as y1 = 4.9125, it satisfies the nonnegativity 
constraint, which is all that is required of this variable. On the other hand, y2 = 
6.3125, which satisfies the nonnegativity constraint, but not the integrality 
constraint, so we must branch on y2 (there is no choice as in the all-integer 
problem). The branching is identical to the first branching shown in Figure 4.8. At 
this point, 2y  is the better solution with y1 = 3.4, y2 = 7 with an objective value of 
80. At this point, the procedure terminates, as y1 is nonnegative as required, and y2 
is also nonnegative and integer, as required; hence 2y  is the optimal solution for 
this problem.  
 
This is also the time to demonstrate what the term “bound” in branch-and-bound 
actually means. The idea is that during the procedure, the upper and lower bounds 
on the optimal objective value of the all- or mixed-integer programming problem 
are constantly tightened. Consider the process shown in Figure 4.9. Initially, as 
shown in the first section of this chapter, we only know that IPz ≤ LPz , i.e., the 
optimal objective value of the integer problem is no better than 81.375. For 
maximization problems, the upper bound is always the objective value of the best 
known active node, while the lower bound is the objective value of the best 
known integer solution. Hence, initially −∞ ≤ IPz  ≤ 81.375. After the first 
branching, the upper bound has decreased to 80.5455. After the second branching, 
the upper bound is reduced to 80.5, and the lower bound is now 74, as the integer 
solution 3y  is now known. Branching 3 further reduces the upper bound to 80, 
branching 4 reduces the upper bound to 79.6364, branching 5 reduces the upper 
bound to 79.5, while the lower bound is now increased to 78, as the integer 
solution 7y  has become known. Finally, after branching 6 the upper and lower 
bounds coincide at 79, which terminates the process.  
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Figure 4.9 

 
We will now demonstrate how to deal with cases in which the mixed- or all-
integer programming problem has no feasible solution. As an illustration, consider 
the all-integer programming problem  
 
 P: Max z =  y1 + 4y2  
 s.t.    28y1 + 7y2 ≤ 49 
                30y1 − 6y2 ≥ 36 
                    y1,      y2 ≥   0 and integer.  
 
The solution tree for this problem, given that branching commences with y2, is 
shown in Figure 4.10. Branching 1 results in one child of the root having no 
feasible solution, while the other has a noninteger solution. Branching on this sole 
active node, we obtain two children, both of whom have no feasible solutions. At 
this point, there are no further active nodes and no solution has been found. The 
tree that is obtained by start branching on y1 is even smaller: the two children of 
the root of the tree both have no feasible solution.  
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Figure 4.10 

4.3.3 Heuristic Methods 

It will have become clear in the above discussion that for very large problems, 
exact methods may not be able to solve a given integer linear programming 
problem within a reasonable time frame. Surely, whenever an exact method such 
as the branch-and-bound technique described in the previous section has found an 
integer solution, one could terminate computations, even though the integer 
solution may not be optimal. As a matter of fact, while such a procedure will 
result in a feasible solution, it may be far from optimal. Instead, users often use 
heuristic techniques to find (hopefully reasonably good) solutions quickly. This 
section will describe such a technique.  
 
In order to illustrate the technique, consider the following knapsack problem:  
 
 P: Max z = 12y1 + 20y2 + 31y3 + 17y4 + 24y5 + 29y6  
 s.t.                2y1 +   4y2 +   6y3 +   3y4 +   5y5 +   5y6 ≤ 19 
                        y1,       y2,       y3,       y4,       y5, …   y6 = 0 or 1.  
 
In order to employ the Greedy Method (sometimes colloquially referred to as 
“bang for the buck” method), we first need to rank the variables in nonincreasing 
order of their “value” to us. Rather than simply using the coefficients in the 
objective function to rank the variables, we compute the “value per weight” ratios 
for each product by dividing the contribution to the objective function by the 
coefficient in the constraint. We then rank the variables in nonincreasing order of 
these ratios as shown in Table 4.8.  
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Table 4.8: “Value per weight” of the individual items 
 

Variable y1 y2 y3 y4 y5 y6 
Value 

per 
weight 

12/2 = 6 20/4 = 5 31/6 = 
5.1667 

17/3 = 
5.6667 24/5 = 4.8 29/5 = 5.8 

Rank 1 5 4 3 6 2 
 
Starting with all variables set to zero, the Greedy algorithm will now increase the 
values of variables one by one, starting with the highest rank, as long as resources 
are available.  
 
In Step 1, we set y1 := 1, which consumes 2 resource units and contributes 12 units 

to the objective,  
in Step 2, we set y6 := 1, which consumes 5 resource units and contributes 29 units 

to the objective,  
in Step 3, we set y4 := 1, which consumes 3 resource units and contributes 17 units 

to the objective,  
in Step 4, we set y3 := 1, which consumes 6 resource units and contributes 31 units 

to the objective,  
in Step 5, we set y2 := 1, which consumes 4 resource units. Stop and backtrack, as 

this latest assignment exceeds the availability of resources.  
 
In summary, the solution at the termination of the Greedy algorithm is  
 
 y = [y1, y2, y3, y4, y5, y6] = [1, 0, 1, 1, 0, 1]  
 
which uses 16 resource units and has a value of the objective function of z(y) = 89.  
 
In the second phase, we use a simple improvement heuristic of the “interchange” 
or “swap” type. This heuristic method raises one arbitrarily chosen variable from a 
level of zero to one, while decreasing another also arbitrarily chosen variable from 
one to zero. Whenever such an exchange is feasible and increases the value of the 
objective function, it becomes our new starting point. The procedure is reapeated 
until no further improvements are possible. Note that given the present solution, 
we have an extra 3 resource units available. In the tables below, we list the 
variable that leaves the solution (i.e., the variable whose value is reduced from its 
present value of one to zero), the entering variable (i.e., the variable whose value 
is increased from its present value of zero to one), the resulting new solution, the 
marginal resource usage ΔR, and the change Δz of the objective function that 
results from the swap.  

Table 4.9: First swap move 

Leaving 
variable 

Entering 
variable 

New solution ΔR Δz 

y1 y2 0, 1, 1, 1, 0, 1 −2 + 4 = +2 −12 + 20 = + 8 
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It is apparent that the first swap move in Table 4.9 results in an improvement, so 
that the solution y = [0, 1, 1, 1, 0, 1] becomes the new basis with resource 
consumption of 18 (so that we could use one additional resource unit) and 
objective value of z(y) = 97. Starting with this solution, we perform again pairwise 
exchanges shown in Table 4.10.  
 

Leaving 
variable 

Entering 
variable 

New solution ΔR Δz 

y2 y1 1, 0, 1, 1, 0, 1 −4 + 2 = −2 −20 + 12 = −8 
y2 y5 0, 0, 1, 1, 1, 1 − 4 + 5 = 1 −20 + 24 = +4 

 

1, 1], which uses all 19 resource units that are available, and has a value of the 
objective function of z(y) = 101. With this new benchmark solution, we start 

 
Leaving 
variable 

Entering 
variable 

New solution ΔR Δz 

y3 y1 1, 0, 0, 1, 1, 1 − 6 + 2 = −4 −31 + 12 = −19 
y3 y2 0, 1, 0, 1, 1, 1 −6 + 4 = −2 −31 + 20 = −11 
y4 y1 1, 0, 1, 0, 1, 1 − 3 + 2 = − 1 −17 + 12 = −5 
y4 y2 0, 1, 1, 0, 1, 1 −3 + 4 = +1: 

infeasible 
 

y5 y1 1, 0, 1, 1, 0, 1 −5 + 2 = −3 −24 + 12 = −12 
Y5 y2 0, 1, 1, 1, 0, 1 −5 + 4 = −1 −24 + 20 = − 
y6 y1 1, 0, 1, 1, 1, 0 −5 + 2 = −3 −29 + 12 = −17 
y6 y2 0, 1, 1, 1, 1, 0 −5 + 4 = −1 −29 + 20 = −9 

 
At this point, all feasible pairwise exchanges result in decreases of the value of the 
objective function, so that the procedure terminates. Note that the fact that all 
resource units happen to be used is a coincidence.  
 
It is also worth pointing out that the Greedy procedure alone may result in very 
poor solutions. As an example, consider the problem   
 P: Max z = 10y1 +   8y2 +   7y3  
 s.t.              54y1 + 48y2 + 47y3 ≤ 100 
                        y1,       y2,       y3 = 0 or 1. 
 
The ranking of the variables is y1, y2, and y3 in that order. Setting the highest-
ranked variable y1 to 1 consumes 54 resource units and achieves an objective 
value of z = 10. No other variables can be set to one, as only 46 resource units 
remain. However, the solution y = [0, 1, 1] has an objective value of z = 15, much 

 

 

Table 4.10a: Second swap move 

Again, it was possible to improve the solution. The new solution is y = [0, 0, 1, 1, 

another series of potential improvements.   

Table 4.10b: Third swap move 
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superior to the solution obtained by the Greedy algorithm (without subsequent 
Swap procedure). To see that Greedy alone without any improvement follow-up 
may reach an objective value of only half the optimum, consider the problem  
 
 P: Max z = 1.01y1 + 2y2  
 s.t.            1.001y1 + 2y2 ≤ 2 
                           y1,     y2 = 0 or 1.  
 
The Greedy algorithm will find the solution y = [1, 0] with the objective value of  
z = 1.01, while the optimal solution is y = [0, 1] with the value of the objecive 
function z = 2.  

Exercises 
Problem 1 (a one-dimensional cutting stock problem): A home building store 
faces the following problem. Their customers demand half inch plywood in the 
sizes 4 ft ×3 ft, 4 ft × 5 ft, and 4 ft × 6 ft. Customer demand for these three sizes is 
estimated to be at least 20, 50, and 40 and customers are prepared to pay $7, $9, 
and $10 for each of these sheets, respectively. The store must generate these sizes 
by cutting up standard 4 ft × 8 ft sheets, each of which costs them $6. These sheets 
are in unlimited supply. Furthermore, each cut costs the store $1.50. Formulate a 
model that indicates to the decision maker how to cut up the 4 ft × 8 ft sheets so as 
to maximize their profit. Clearly show the cutting patterns and define your 
variables properly.  
 
Solution: Since the widths are all 4 ft, we only have to consider a single 
dimension. The cutting plan includes patterns with two 3 ft × 4 ft boards (and the 
resulting 2 ft × 4 ft piece of waste), one 3 ft × 4 ft board and a 5 ft × 4 ft board 
without any waste, and a single 6 ft × 4 ft board with the resulting 2 ft × 4 ft piece 
of waste. The number of cuts performed according to these three patterns are 
denoted by y1, y2, and y3, respectively. The problem can then be formulated as 
 
 P: Max z = [7(2y1 + y2) + 9(y2) + 10 (y3)] – 6[y1 + y2 + y3] – 1.5[2y1 + y2 + y3]  
    = 5y1 + 8.5y2 + 2.5y3 

 s.t. 2y1 + y2     ≥ 20   (generate at least twenty 4 ft × 3 ft sheets) 
                y2     ≥ 50   (generate at least fifty 4 ft × 5 ft sheets) 
                    y3 ≥ 40   (generate at least forty 4 ft × 6 ft sheets) 
 1 2 3
 
Problem 2 (a 2-dimensional cutting stock problem): A planner has 30 sheets of 
plywood of size 10 ft × 10 ft. They presently need 20 sheets in the shape of disks 
of diameter 5 ft as well as 15 sheets of plywood in the shape of 4 ft × 6 ft 
rectangles. The cutting patterns that are considered by the decision maker are 
shown in Figure 4.11. 

Exercises

       y ,   y , y  ≥ 0. 
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Figure 4.11 
 
It costs $2.00 to cut a disk and $1.50 to cut a rectangle. This price includes all 
required cuts and is independent of the pattern the shape is cut from. Alternatively, 
we could purchase a disk at $4.50 and a rectangle for $3.00 each.  
 
Formulate a linear programming problem that  
 
• minimizes the cost of obtaining the required shapes,  
• does not use more 10 ft × 10 ft sheets than are available 
• produces the required numbers of disks and rectangles, and  
• ensures that the cutting results in no more than 30% of waste.  
 
Define all variables clearly.  
 
Solution: Define yj, j = 1, 2, 3 as the number of times the j-th pattern is cut. In 
addition, define variables y4 and y5 as the number of disks and rectangles that are 
purchased.  
 
 Min z = 8 y1 +     6y2 +     5.5y3 + 4.5y4 +  3y5  
 s.t.            y1 +       y2 +          y3                         ≤ 30 
                4y1 +                    2y3 +       y4            ≥ 20 
                             4y2 +        1y3 +                 y5  ≥ 15 
         .2146y1 + .04y2 + .3673y3                         ≤ .3(y1 + y2 + y3) 
                  y1,        y2,             y3,         y4,       y5 ≥ 0.  
 
Problem 3 (neighborhood constraints in forestry modeling): This model 
concerns planning in forestry. In particular, suppose that a land owner has a 
number of parcels, which, for the sake of simplicity, can be thought of as a regular 
grid. The idea is now to plan which of the parcels should be harvested. Once it has 
been decided to harvest a certain parcel, it will be clearcut. One restriction is to 
ensure that neighboring parcels should not be harvested, so as to ensure avoiding 
huge clearcut areas that foster erosion and do not sustain wildlife. Suppose that the 
parcels are arranged and numbered as shown in Figure 4.12. 
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1 2 3 4 
5 6 7 8 
9 10 11 12 
13 14 15 16 

 
Figure 4.12 

 
Model the neighborhood constraints that ensure that neighboring parcels are not 
harvested.  
 
Solution: Define binary variables yj that assume a value of 1, if parcel j is 
harvested and 0 otherwise. The constraints we are interested in can then be 
expressed as conditional constraints of the type “if parcel j is harvested, then its 
neighbor k cannot be harvested,” which will then have to be expressed for all 
neighbors of each parcel. As an example, consider the neighboring parcels 1 and 2. 
Table 4.11 shows the four cases.  
 

Table 4.11: Decision table 
 

y1 y2 OK? 
0 0  
0 1  
1 0  
1 1 No 

 
It is apparent that the only case that is prohibited is when both neighboring parcels 
are harvested at the same time. As a result, the constraint that prevents the 
undesirable case from happening, we formulate y1 + y2 ≤ 1. This type of constraint 
has to be formulated for all pairs of neighbors, e.g., parcels 1 and 2, 1 and 5, 2 and 
3, 2 and 6, and so forth. For the above problem, there are no less than 24 such 
neighborhood constraints. If parcels that only share a corner are also considered 
neighbors (such as parcels 1 and 6 or parcels 8 and 11), that will add another 18 
constraints.  
 
Problem 4 (a warehouse distribution problem): A decision maker has presently 
three warehouses with capacities of 30, 10, and 50 units, respectively. Operating 
the three warehouses incurs fixed operating costs of $25, $50, and $45, 
respectively. The first warehouse could be expanded by up to 20 units for a cost of 
$1 per unit capacity. It is also possible to close any of the existing warehouses, in 
which case no operating costs are incurred at that site. Furthermore, two additional 
sites have been identified, where new warehouses might be opened. The costs to 
open the two new warehouses are $15 and $25, and their respective capacities are 
20 and 30 units.  
 
 

 

Exercises
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As far as demand goes, there are presently three customers with demands of 20, 
60, and 40 units. These demands have to be satisfied exactly. The unit transportation 
costs between the existing and potential warehouses and the customers are shown 
in Table 4.12, where the first three supply points refer to the existing warehouses, 
while the last two supply points symbolize the potential new warehouses. 
Formulate and solve an integer programming problem that minimizes the total 
costs.  
 

Table 4.12: Unit transportation costs 
 

 Customer 1 Customer 2 Customer 3 
Warehouse 1 3 7 4 
Warehouse 2 2 6 8 
Warehouse 3 9 3 4 
New warehouse 1 5 6 4 
New warehouse 2 7 3 9 

 
Solution: In order to formulate the problem, we need to define a number of 
variables. First of all, we define binary variables y1, y2, y3, y4, and y5, which 
assume a value of one, if the warehouse is kept open (for the first three existing 
warehouses), or is newly opened in case of the last two warehouses. Furthermore, 
we define the continuous variable w, which denotes the number of capacity units, 
by which the first warehouse is expanded. In addition, we will define the usual 
continuous variables xij as the quantity that is shipped from warehouse i to 
customer j.  
 
The objective function is then the sum of facility costs (operating costs for the 
existing warehouses and opening costs for the planned new warehouses), 
expansion costs for the first warehouse, and transportation costs. The facility costs 
are, of course, only incurred if the facilities are actually opened, so that we have 
25y1 + 50y2 + 45y3 for the existing warehouses and 15y4 + 25y5 for the new 
warehouses. The expansion costs for the first warehouse are 1w. Finally, the 
transportation costs are 3x11 + 7x12 + 4x13 + 2x21 + …+ 9x53.  
 
Consider now the constraints. First there are the capacity constraints of the 
warehouses. For instance, the second warehouse has a capacity of 10, provided we 
keep it open. The variable that determines this is y2, so that the constraint states 
that the flow out of warehouse 2 cannot exceed the capacity of the warehouse, or 
x21 + x22 + x23 ≤ 10y2. The constraints for the other existing or planned 
warehouses, except for the first, are similar. The capacity of the first warehouse 
equals 30y1 plus the capacity of the expansion (if any), which is w. We also have 
to specify that the expansion will only be undertaken if the warehouse is kept 
open, as it is meaningless to decide to close warehouse 1 and then expand its 
capacity. This is written as w ≤ 20y1. The reason is that if the warehouse is kept 
open, we have y1 = 1, so that the constraint states that we can expand its capacity 

1

 

of 20 units. On the other hand, if warehouse 1 is closed, y  = 0 and the constraint 
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states that w ≤ 0, meaning that no expansion is possible. The demand constraints 
then require the inflow into the customer sites to be equal to the demand at the 
site. The complete formulation is then as follows:  
 
 1 2 3 4 5
     + 3x11 + 7x12 + 4x13 + 2x21 + 6x22 + 8x23 + 9x31 + 3x32 + 4x33  
     + 5x41 + 6x42 + 4x43 + 7x51 + 3x52 + 9x53 
 
 s.t. x11 + x12 + x13 ≤ 30y1 + w 
 x21 + x22 + x23 ≤ 10y2  
 x31 + x32 + x33 ≤ 50y3  
 x41 + x42 + x43 ≤ 20y4  
 x51 + x52 + x53 ≤ 30y5  
 
 w ≤ 20y1  
 
 x11 + x21 + x31 + x41 + x51 = 20 
 x12 + x22 + x32 + x42 + x52 = 60 
 x13 + x23 + x33 + x43 + x53 = 40 
 
 xij ≥ 0 for all i, j; w ≥ 0 
 y1, …, y5 = 0 or 1.  
 
Solving the problem results in keeping warehouses 1 and 3 open, while closing 
warehouse 2. In addition, warehouse 5 will be opened, while warehouse 4 is not. It 
was also decided to expand the capacity of warehouse 1 by 10 units. The 
shipments are as follows: from warehouse 1, we send 20 units to the first and 20 
units to the third customer, from warehouse 3 we send 30 units to customer 2 and 
20 units to customer 3, and from the newly opened warehouse 5 we ship 30 units 
to customer 2. The total cost of the operations are $505.  
 
Problem 5 (choosing vehicles for a display): An impresario wants to put up an 
exhibit featuring some antique cars. The vehicles potentially available are a 
Bugatti, Cadillac, Cobra, Corvette, Pierce Arrow, and Studebaker. The impact of 
the individual vehicles has been estimated in terms of the number of people who 
would make a special trip to see a vehicle as 58, 37, 42, 40, 55, and 33. The 
budget of the organizer is $15,000, and the costs to transport the automobiles to 
the venue (they are presently located at different sites) and the costs of their 
insurance (depending on the vehicles’ estimated value) are $6,000, $4,000, 
$3,800, $4,200, $5,500, and $3,200. The obvious idea is to choose vehicles for the 
exhibit, so as to maximize the impact, while staying within the budget. In 
addition, there are some further requirements.  
 
• Choose at least three vehicles for the exhibit.  
• If a Corvette is included in the exhibit, then a Cobra must also be included.  
• If a Bugatti is not included in the show, then a Cadillac must be included.  

Exercises

P: Min z = 25y  + 50y  + 45y  + 15y  + 25y  + 1w  
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Solution: In order to formulate the problem, we first define binary variables y1, y2, 
y3, y4, y5, and y6 that assume a value of one, if the 1st, 2nd, …, 6th vehicle is 
included in the exhibit, and 0 otherwise. The formulation of the objective function 
and the budget constraint are straightforward. Consider now the additional 
requirements. The number of vehicles included in the exhibit is expressed as the 
sum of all variables, so that we can write y1 + y2 + y3 + y4 + y5 + y6 ≥ 3.  
 
The next step is the conditional constraint “if Corvette, then Cobra,” or, more 
formally, “if y4 = 1, then y3 = 1 as well.”  
 

y4  y3  OK? 
0 0  
0 1  
1 0 No 
1 1  

 
The undesirable solution y4 = 1 and y3 = 0 can be avoided by including the 
constraint y4 ≤ y3, which violates the undesirable solution, while it is valid in the 
other three solutions.  
 
Consider now the last requirement. The conditional constraint is “if not Bugatti, 
then Cadillac,” or, equivalently, “if y1 = 0, then y2 = 1.” Again, consider the 
decision table below.  
 

y1  y2  OK? 
0 0 No 
0 1  
1 0  
1 1  

The only solution that violates the condition is the one that has neither of the two 
vehicles in the exhibit. In other words, at least one of the two vehicles must be in 
the exhibit, so we can formulate y1 + y2 ≥ 1.  
 
The formulation of the entire problem is then  

 Max z = 58y1 +       37y2 +     42y3  +      40y4 +      55y5 +     33y6 

 s.t.     6,000y1 + 4,000y2 + 3,800y3 + 4,200y4 + 5,500y5 + 3,200y6  ≤ 15,000 
                    y1 +          y2 +          y3 +          y4 +          y5 +          y6 ≥ 3 
                                                                                                      y4 ≤ y3  
                                                                                               y1 + y2 ≥ 1 
                    y1,             y2,            y3,            y4,              y5…,       y6 = 0 or 1.  
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Table 4.13 displays solutions and objective values for a large variety of budgets. It 
is apparent that there is no feasible solution for any budget strictly less than 11, as 
we have to include at least three vehicles in the exhibit, and the three least 
expensive cars, the sixth, third, and second vehicle, cost 3,200 + 3,800 + 4,000 = 
$11,000. On the other hand, exhibiting all vehicles costs $26,700, so that any 
budget at or above this level will enable the organizer to exhibit all vehicles. Also 
notice the “granularity” of the solutions: an increase in the budget by $1,000 
results in an increase in the objective value by 7 (if increasing the budget from 
$11,000 to $12,000), by 14 (if the budget is increased from $12,000 to $13,000), 
by 7 if the budget is increased from $13,000 to $14,000, and so forth.  
 

Table 4.13: Solutions of the car exhibit problem for different budgets 
 

Budget 
(in 
$10,000) 

11 12 13 14 15 16 17 18 19 

Cars 
included 

2, 3, 
6 

2, 3, 
4 

1, 3, 
6 

1, 3, 
4 

1, 5, 
6 

1, 3, 
5 

1, 2, 
3, 6 

1, 2, 
3, 4 

1, 3, 
5, 6 

z-value 112 119 133 140 146 155 170 177 188 
 

Budget 20 21 22 23 24 25 26 27 
Cars 
included 

1, 3, 
4, 5 

2, 3, 
4, 5, 6 

1, 2, 
3, 4, 6 

1, 3, 
4, 5, 6 

1, 2, 
3, 4, 5 

1, 2, 
3, 4, 5 

1, 2, 
3, 4, 5 

1, 2, 
3, 4, 
5, 6 

z-value 195 207 210 228 232 232 232 265 
 
Problem 6 (solving a problem via branch-and-bound): Consider the following 
all-integer optimization problem: 
 
 P: Max   z = 7y1 +  7y2 
 s.t.         6y1 +  7y2  ≤ 34 
       10y1 +  6y2  ≤ 43 
     y1 ,     y2  ≥ 0 and integer.  
 
(a)  Produce the solution trees for branching starting with y1 and y2, respectively.  
(b)  What would the optimal solution be, if the integrality requirement for y2 had 

been dropped?  
(c)  What are the additional constraints that were introduced between the root of 

the tree and the last integer solution found in the tree, assuming that branching 
starts with y1?  

(d)  What would have happened, if the left child that resulted from the first branching 
had an objective value of 34.8?  

 
 
 
 

 

 
 

 

 

 

Exercises
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Solution: (a) The solution that starts branching on y1 is shown in Figure 4.13.  
 

 
 

Figure 4.13 
 
The solution tree that starts branching on y2 is shown in Figure 4.14.  
 

 
 

Figure 4.14 
 

The problem has actually three alternative optimal solutions. Note that in both 
trees, branching 4 is necessary to complete the solution tree. The optimal solutions 
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are: 1y = 3 and 2y = 2, 1y = 2 and 2y = 3, as well as 1y = 1 and 2y = 4, all with a 
value of the objective function of z  = 35.  
 
(b)  In this case we would have had to start branching with y1, so that Figure 4.13 

applies. The optimal solution would be the right child of the root of the tree, 
i.e., solution 2y , which has 1y = 3 and 2y = 2.1667 with an objective value 
of z = 36.1667.  

(c)  The additional constraints are y1 ≥ 3, y2 ≤ 2, and y1 ≤ 3.  
(d)  In both trees, we would never have branched from the left child of the first 

branching.  
 
Problem 7 (choosing the correct branch-and-bound tree): Consider the 
following all-integer programming problem:  
 
 P:  Max z =  2y1 +     y2 
 s.t.           −3y1 + 15y2 ≤ 45 
         3y1 −   4y2 ≤   9 

1 2
 
Four solution trees have been developed by four different individuals, each 
claiming that their tree is correct. The trees are shown in Figures 4.15a, b, c, and 
d. However, only one of the trees is correct. Which one? For each solution tree, 
write one sentence that explains why this is or is not the correct tree.  
 

 

Figure 4.15a  
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Exercises

           y ,       y  ≥   0 and integer. 
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Figure 4.15b 

 
 

 
Figure 4.15c 
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Figure 4.15d 

 
Solution:  
The solution tree in Figure 4.15a is false. The right child of the root of the tree is 

not feasible. If the solution there had been correct, branching should have 
continued at that node.  

The solution tree in Figure 4.15b is false. The branching on the second level 
should be y2 ≤ 4 (as is), but the branch to the right child should be y2 ≥ 5, not 
y2 ≥ 4.  

The solution tree in Figure 4.15c is false. The second branching leading to the left 
child has the objective value increase from z = 224/5 to z = 231/3, which cannot 
happen in a maximization problem.  

The solution tree in Figure 4.15d is correct.  
 

programming problem.  

 P: Max z = 21y1 + 11y2 + 65y3 +  58y4 + 122y5  
 s.t. 21y1 + 10y2 + 42y3 +  37y4  + 64y5 ≤ 640 
 y2 ≤ 2, y3 ≥ 1, 1 ≤ y4 ≤ 2, y5 ≤ 2 
 y1, y2, y3, y4, y5 ≥ 0 and integer.  
 
Use the Greedy algorithm and a Swap interchange to find a solution.  
 
Solution: Ordering the variables with respect to their objective function contribution 
per resource unit, the order is y5, followed by y4, y3, y2, and y1. Before we start 
increasing the values of the variables, we need to set the variables to their 
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Exercises

Problem 8 (heuristics: Greedy and Swap method): Consider the following integer 
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minimum values, i.e. y3 = 1 and y4 = 1, so that we do not have to worry about 
lower bounds anymore. This leaves us with 640 − 42 − 37 = 561 resource units.  
 
We now start the allocation with y5. The upper bound is 2, so we set y5 = 2, which 
leaves us with 561 − 2(64) = 433 resource units. The next best variable is y4. As its 
upper bound equals 2 and its value already equals 1, we can only increase y4 by 1. 
This leaves 433 − 1(37) = 396 resource units. The next valuable variable is y3. It 
does not have an upper bound, so that we increase its value as much as the 
remaining resource units allow. We have 396 units left, each unit of y3 requires 42 
units, so that the largest value of y3 = 9. Increasing y3 by that value leaves us 396 − 
9(42) = 18 resource units left. The next most valuable variable is y2, whose upper 
bound is 2. However, the remaining resource units are only good for an increase 
of 1. This leaves us 8 resource units, which are not sufficient for any other 
increase. In summary, we have the solution y = [0, 1, 10, 2, 2], for which the 
objective value z = 1,021 may be calculated.  
 
In the Swap procedure we will decrease the value of a variable by one, thus 
freeing some resources, which we then try to use by increasing the value of some 
other variable. For instance, decreasing the value of y2 by one frees 10 units for a 
total of 18, which is not sufficient to increase any other variable by an integer 
amount.  
 
Reducing the variable y3 by frees up 42 units, so that 42 + 8 = 50 resource units 
are now available. Note that it also reduces the objective value by 65. Those 
resource units may be used to increase the value of y1 by 2, which increases the 
objective value by 42, not enough to make up for the loss of 65. Alternatively, we 
may increase y4 by one, which increases the objective value by 58, also not 
sufficient to make up for the loss.  
 
We may now try to reduce the value of y4 by 1, freeing 37 resource units for a 
total of 45. Note that the objective value decreases by 58 in the process. The 
resource may now be used to increase y3 by one unit, which increases the value of 
the objective function by 65. This represents a net gain of +7, so that we make this 
change permanent. The new solution is now y = [0, 1, 11, 1, 2] with an objective 
value of z = 1,028. Three resource units remain available.  
 
The process would continue here. We terminate the procedure at this point. It so 
happens that the solution found here is optimal.  
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5   Network Models 

Graph theory, the subject at the root of this chapter, dates back to 1736, when the 
Swiss mathematician Leonard Euler considered the now famed “Königsberg 
bridge problem.” At that time, there were seven bridges across the River Pregel 
that ran through the city of Königsberg on the Baltic Sea, and Euler wondered 
whether or not it would be possible to start somewhere in the city, walk across 
each of the bridges exactly once, and return to where he came from. (It was not). 
We will return to Euler’s problem in Section 5.5 of this chapter. Two hundred 
years later in 1936, the Hungarian mathematician Denès König wrote the seminal 
book “The Theory of Finite and Infinite Graphs,” that laid the foundations of 
modern graph theory. The subject was first used by operations researchers in the 
1950s, most prominently by L.R. Ford and D.R. Fulkerson.  

5.1   Definitions and Conventions 
 
The models discussed in this section are optimization problems on a structure 
commonly known as a graph. A graph (for simplicity, we will refer to graphs also 
as networks, even though many graph-theorists will disagree) consists of nodes 
(sometimes referred to as vertices) and arcs (or edges). While many authors refer 
to undirected connections as edges and directed connections as arcs, we will make 
no such distinction here. The graph in Figure 5.1 is an example with the nodes n1, 
n2, n3, n4, and n5 represented by circles and the arcs represented by directed or 
undirected lines. Arcs are written as either aij or (ni, nj), whatever is more 
convenient. A graph that contains only undirected edges is called an undirected 
graph, one with only directed arcs is a directed graph (frequently referred to as a 
network), and a graph that includes directed and undirected arcs is called a mixed 
graph.  
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Figure 5.1 
 
A path is defined as a sequence of nodes and arcs that starts at a node and ends at 
some node (possibly, but not necessarily, where it started). In the graph in Figure 
5.1, the sequence n5 − a52 − n2 − a23 − n3 is a path. A cycle in a graph is defined as 
a path that begins and starts at the same node. In the graph in Figure 5.1, the 
sequence n1 − a14 − n4 − a43 − n3 − a31 − n1 is a cycle. A node ni is said to be 
reachable from another node ni, if there exists at least one path from ni to nj. A 
connected graph is a graph, in which each node is reachable from each other node. 
The graph in Figure 5.1 is connected. A tree (or tree graph) is defined as a 
connected undirected graph, with the property that the removal of any arc or edge 
from it will render the graph disconnected. In that sense, a tree graph is the 
minimalist connected structure. An example for a tree is shown in Figure 5.2. Also 
note that there exists exactly one path between any pair of nodes in a tree.  
 

 
 

Figure 5.2  
 
Any other problem-specific notation will be introduced whenever it is needed. We 
should mention that while all problems discussed in this chapter can be formulated 
as integer programming problems and solved with any of the pertinent solvers, 
such a process is typically inefficient and may hide internal structures that allow 
the user to gain insight into the problem. Typically, specific network-based algorithms 
are very efficient and outperform general-purpose integer programming solvers. 
However, such specific methods depend on the network structure. Even a single 
additional constraint may destroy the particular structure and will no longer allow 
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programming formulations.  

5.2   Network Flow Problems 
In its simplest form, a network flow problem can be described as follows. It starts 
with a graph, in which an unlimited (or, at least, sufficiently large) quantity of a 
homogeneous good is available at a node called the source, while as many units as 
possible are to be shipped from the source through the network to another node, 
named the sink, where these units are in demand. (Some authors call this an O – D 
flow, which refers to the flow from origin to destination). Units can be shipped 
through as many nodes as necessary, as long as they do not exceed the capacity 
specified at each of the arcs in the network. It is assumed that there are no losses 
anywhere in the network. Once the problem has been solved, the optimal flow 
pattern indicates how many units are shipped on which arcs, and the optimal flow 
value indicates how many flow units are shipped through the network.  
 
One of the many examples deals with the evacuation of people from buildings, 
convention halls, or even cities. As an example, consider the situation shown in 
Figure 5.3.  
 

Figure 5.3 
 
The floor plan depicts a large exhibition hall with the squares denoting kiosks. An 
escape plan is needed for the auditorium on the left that has only one entrance 
through the exhibit hall at the bottom left, labeled by ns at the bottom left of 
Figure 5.3. From ns, people have to be evacuated through the exhibit hall towards 
the door to the outside, marked by nt on the top right of Figure 5.3. The walkways 
along the walls of the exhibit hall are fairly wide, and each of their segments 
(from one corner to another) was shown to let up to 60 people per minute through 
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us to use the special algorithm, so that we have to return to standard integer 
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in an emergency situation. The walkways in the center are narrower, so that only 
40 people per minute can pass along each segment. The steps on some of the 
outside segments shown by lines across the walkway, present additional obstacles, 
so that these segments only allow 30 people per minute to pass through them. The 
question is now how many people can pass through the exhibition hall in each 
minute. Given the capacity of the auditorium, it can then be computed how long 
an evacuation of the auditorium through the exhibit hall (from ns to nt) will take. 
The graph in Figure 5.4 shows an image of the situation with the appropriate arc 
capacities. The quest is now to find the largest possible flow from ns to nt.  
 

 

Figure 5.4 
 
A number of additional applications of flow problems can be found in Eiselt and 
Sandblom (2000).  
 
In order to formulate the problem, we first need to define variables. Here, the 
continuous flow variables are xij, defined as the flow along the arc aij from ni 
directly to node nj. Consider the example of Figure 5.4. Since all edges are 
undirected, we need to define two variables for each edge, one for each direction. 
Given that there are 17 edges, we will need 34 variables. (Some of the variables 
can be ignored, though: we do not have to consider flows into the source, as the 
entire purpose is to get as much flow out of there as possible. In other words, we 
do not need to define x1s and x5s. Similarly, we do not need to consider flows out 
of the sink). The objective will then maximize the flow through the network. This 
flow can be expressed as the number of flow units that are sent out of the source. 
In the example of Figure 5.4, this is xs1 + xs5. Alternatively, we can consider the 
number of flow units that are sent into the sink, i.e., x6t + x9t.  
 
As far as constraints are concerned, we have to consider two types. The first set of 
constraints will have to ensure that no flow is lost at any of the nodes. Such 
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constraints are commonly called conservation equations, (flow) balancing equations, 
or Kirchhoff node equations in reference to their counterpart in electrical networks. 
They are formulated by requiring that the number of units that flow into a node 
equals the number of units that flow out of a node. In the above example, the 
conservation equation for the node n3 is x23 + x43 + x63 = x32 + x34 + x36. 
Conservation equations have to be formulated for each node except for the source 
and the sink. The second set of constraints are the capacity constraints that require 
that the flow along each segment does not exceed the upper limit. Again, in this 
example we have xs1 ≤ 60, xs5 ≤ 60, x12 ≤ 60, x21 ≤ 60, and so forth. Adding the 
nonegativity constraints, a mathematical formulation has been obtained and the 
problem could be solved with any off-the-shelf linear programming software. 
Whenever available, specialized algorithms are, however, much faster, as they can 
use the special structure of the problem.  
 
Ford and Fulkerson were the first to describe a method to solve the maximal flow 
problem. Their technique belongs to the large class of so-called labeling methods. 
Labeling methods have been developed for many network models, and they all 
have in common that they are very efficient. The idea of Ford and Fulkerson’s 
incremental method is to (incrementally) increase the flow in forward arcs, and to 
decrease the flow in backward arcs. Both of these steps are necessary in order to 
reach an optimal solution. In order to illustrate, consider a “forward arc,” in which 
we would like to increase the flow. If the capacity of such an arc is, say, 7, and the 
present flow in the arc is 4, then we are able to increase the flow on this arc by the 
present slack of 7 − 4 = 3 units. On the other hand, if a “backward arc” has a 
capacity of 7 and a present flow of 4, we can decrease the flow on this arc by no 
more than its present flow, i.e., by 4 units. This is the fundamental ideal of the 
labeling technique. Starting with the source, the method attempts to label nodes 
along arcs. The first part of a node’s label indicate the neighboring node it was 
labeled from, while the second part of the label indicates the possible flow change 
on the arc along which the labeling took place.  
 
As in all procedures based on dynamic programming, the objective value―the 
second part of the label―is determined by the objective value achieved so far plus 
whatever contribution to the objective function has to be accounted for in this 
step. More specifically, labeling a node nj from a node ni along an arc aij means 
that the incremental flow that can be squeezed from the source to nj equals the 
minimum of what incremental flow can be sent from the source to ni plus 
whatever slack capacity we have along the arc aij.  
 
Once all nodes that can be labeled have been labeled, the iteration comes to an end 
in one of two states. We either have been able to label the sink, in which case a 
breakthrough has occurred, or we were not able to label the sink, which is referred 
to as a nonbreakthrough. If a breakthrough has occurred, we are able to increase 
the flow through a network, while in case of a nonbreakthrough, the current flow 
is maximal and the procedure terminates.  
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The algorithm is best explained by means of a numerical  
 
Example: Consider the network in Figure 5.5, whose numbers next to the arcs 
indicate the capacity of the arc.  
 

 
 

Figure 5.5 
 
Suppose that the source ns is now labeled with (ns, ∞), indicating that we start at 
the node ns, and so far, we can change the flow by any amount we choose. At this 
point we could label either n1 and/or n2. Suppose we choose n1. Since we label the 
node n1 from ns, the arc (ns, n1) is a forward arc and we attempt to increase its 
flow. The capacity of the arc is 5, while its present flow is zero, meaning that we 
can increase the flow in this arc by 5 units. This is indicated in the label of n1, 
which is then (ns, 5). Now the nodes ns and n1 are labeled, and the process 
continues. At this point, we have a large number of choices: we can either label n2 
from the source ns, or label n2, n3 or nt from n1. Any technique that labels all nodes 
from one node before moving on is referred to as breadth-first-search, while a 
labeling strategy that attempts to move on a quickly as possible is called depth-
first-search. Suppose that we choose to label n2 from n1. Again, we are moving 
with the direction of the arrow, so that this is a forward labeling step. The label of 
the node n2 will then be (n1, min {5, 2−0}) = (n1, 2). The reason is that while we 
could increase the flow from the source on some path (we don’t have to know at 
this point which path) to n1 by 5 units, we can only ship two more units from n1 to 
n2. At this point, n2 has been labeled and one of the many choices to continue 
labeling is to label the sink nt from n2. The label of the sink nt is then (n2, min{2, 
3−0}) = (n2, 2). Now the sink has been labeled, and we have achieved a 
breakthrough.  
 
Whenever a breakthrough occurs, we are able to increase the flow through the 
network by at least one unit. In order to do so, we now have to retrieve the path on 
which the flow change is possible. This is where the first part of the labels comes 
in. In a backward recursion, we start at the sink nt. Its label indicates that its 
predecessor is n2. Now the label of n2 shows that its predecessor was n1, whose 
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predecessor, in turn, was ns. This means that we have successfully retrieved the 
path ns – n1 – n2 – nt. This is the path on which the flow will be increased by 2 
units, which is the second part of the label of the sink. The resulting flow pattern 
is shown in Figure 5.6, where the arcs have two values: its capacity, and its 
present flow.  
 

 
 

Figure 5.6 
 
We now delete all labels except the label of the source, and start anew. We can 
again label n1 from the source ns, this time the label of n1 is (ns, min{∞, 5−2}) = 
(ns, 3). From n1, it is possible to label the sink, whose label is then (n1, min{3, 
4−0}) = (n1, 3). Again, we have obtained a breakthrough and the flow can be 
increased by 3 units. The path on which this increase takes place is determined by 
following the labels backwards from the sinks, which results in ns – n1 – nt. The 
resulting flow pattern is shown in Figure 5.7.  
 

 
 

Figure 5.7 
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Again, resetting the labels, the process begins again. At this point, it is no longer 
possible to label the node n1 from the source, as the flow has reached the capacity. 
However, we can still label the node n2 with (ns, min{∞, 8−0}) = (ns, 8). From n2, we 
can label the sink nt with the label (n2, min{8, 3−2}) = (n2, 1), and we have achieved 
another breakthrough, on which the flow can be changed by one unit. The path 
can be retrieved as ns – n2 – nt. The flow pattern is then shown in Figure 5.8.  
 

 
 

Figure 5.8 
 
The next iteration again starts by labeling the node n2 from the sink, which is 
again our only choice. The label of the node n2 is now (ns, min{∞, 8−1}) = (ns, 7). 
We can now label n3 from n2, so that the label on node n3 is (n2, min {7, 3−0}) = 
(n2, 3). From n3, we can then label the sink with (n3, min {3, 5−0}) = (n3, 3), and 
another breakthrough has occurred. The path on which the flow is changed can be 
retrieved as ns – n2 – n3 – nt, and on all arcs along that path the flow is increased 
by 3 units. The resulting flow pattern is then shown in Figure 5.9.  
 

 
 

Figure 5.9 
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Notice that so far, we have only used the forward labeling in the incremental 
method. The next iteration commences by resetting the labels and restarting the 
process. Given that the source is labeled as usual with (ns, ∞), the only choice is 
now to label the node n2 with (ns, min{∞, 8−4}) = (ns, 4). From the node n2, no 
forward labeling is possible. However, we can follow the arc from n1 to n2 against 
the direction of the arc in a backward labeling step. This results in node n1 
receiving the label (n2, min {4, 2}) = (n2, 2). From node n1, we can then either 
label nt or n3. We choose n3, label it with (n1, min{2, 2−0}) = (n1, 2), and from n3, 
we can then label the sink nt with (n3, min {2, 5−3}) = (n3, 2). Another 
breakthrough has occurred, and the flow through the network can be increased by 
2 units. The flow along which the flow will be changed is retrieved through 
backward recursion as ns – n2 – n1 – n3 – nt, where the arc from n1 to n2 is used in 
reverse direction. the new flow pattern is determined by increasing the flow in all 
forward arcs on that path, while decreasing the flow in the solitary backward arc 
on the path. The resulting flow pattern is shown in Figure 5.10.  
 

 
 

Figure 5.10 
 
In the next step, we start again by labeling the node n2 from the source, which 
receives the label (ns, min {∞, 8−6}) = (ns, 2). At this point, further progress is 
blocked. The only unlabeled node adjacent to the source is n1, and the arc (ns, n1) 
is filled to capacity. From the node n2, further (forward) flow to n3 and nt cannot 
be sent, as both arc flows are at capacity. Also, labeling node n1 from n2 is not 
possible, as the arc flow on that (backward) arc is already at the lower bound of 
zero. At this point we have labeled all nodes that can be labeled, and we were not 
able to label the sink. This is a nonbreakthrough. This indicates that the present 
flow pattern is indeed a maximal flow with a total flow of 11 units, the number of 
flow units that leave the source and, since no flow is lost along the way, the 
number of units that arrive at the sink. We would like to point out that this 
maximal flow is not unique: sending one less unit from n1 to n3, and on to nt and 
shipping it instead directly from n1 to nt results in a different flow pattern with the 
same flow value.  
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Assessing the situation, we find that we now have the set Ns = {ns, n2} of labeled 
nodes, and its complement Nt = {n1, n3, nt} of unlabeled nodes. Observe that the 
flows of all arcs that lead from a node in Ns to a node in Nt (here: the arcs (ns, n1), 
(n2, n3), and (n2, nt)) are at capacity, while the flows of all arcs leading from a 
node in Nt to a node in Ns (here: the arc (n1, n2)) are at the zero level. All arcs that 
lead from a node in Ns to a node in Nt are said to be included in the minimal cut C. 
In our example, C = {(ns, n1), (n2, n3), (n2, nt)}. Adding the capacities (not flows) 
of all arcs in the minimal cut results in the value of the minimal cut, which, in or 
example, equals 5 + 3 + 3 = 11. This leads to the famous  
 
Theorem (Ford and Fulkerson): The value of a maximal flow equals the value 
of a minimal cut.  
 
The minimal cut constitutes a bottleneck in the network. If we want to increase the 
capacities of some arcs in the network so as to be able to increase the flow through 
the network, we have to increase the capacities of arcs that are in the minimal 
cut(s). (Note that the minimal cut is not necessarily unique. As an example, 
consider the network in Figure 5.11 with capacities next to the arcs. The broken 
lines refer to the cuts C1 = {(ns, n1), (ns, n2)}, C2 = {(ns, n1), (n2, nt)}, and C3 = 
{(n1, nt), (n2, nt)}. All cuts have a capacity equal to 5. Note that in case of multiple 
cuts, the method described above will find only the minimal cut that is closest to 
the source.  
 

 
 

Figure 5.11 
 
A variety of extensions of the maximal flow problem exists. One of the most 
popular generalization is the min-cost feasible flow problem. Again, the idea is 
very simple. In a network  with a designated  source and sink, each arc aij has a  
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lower bound λij and an upper bound κij on the flow. (Recall that in the above max 
flow problem all lower bounds were assumed to be zero). In addition, it is 
assumed to cost cij dollars to send one unit of flow on the arc aij. The problem is 
now to find a flow from source to sink that respects all lower and upper bounds on 
the flows and that minimizes the total shipping costs.  
 
As an example, consider the graph in Figure 5.12, where the numbers next to the 
arcs symbolize the lower bounds λij, the upper bounds κij, and the unit costs cij.  
 

 
 

Figure 5.12 
 
The cost-minimizing flow problem has three types of constraints: the usual conser-
vation equations, along with the lower and upper bounds on each arc flow. This 
specific problem can be formulated as follows.  
 

s1 + 6xs2 + 2x12 + 2x13 + 5x1t + 6x24 + 7x2t + 1x32 + 3x34 + 6x4t 
 
s.t. xs1 − x12 − x13 − x1t = 0 
xs2 + x12 + x32 − x24 − x2t = 0 
x13 − x32 − x34 = 0 
x34 + x24 − x4t = 0 
xs1

x32 ≥ 1 
x1t ≥ 1 
x2t ≥ 2 
x4t ≥ 1 
xs1 ≤ 7 
xs2 ≤ 5 
x12 ≤ 2 

x13 ≤ 4 
x32 ≤ 5 
x1t ≤ 4 
x34 ≤ 5 
x24 ≤ 7 
x2t ≤ 6 
x4t ≤ 8 

 
xij ≥ 0 for all arcs i, j.  
 

Min z = 3x

 ≥ 3       
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The solution can be obtained by any standard optimization package or specialized 
algorithm. The optimal flow pattern is shown in Figure 5.13, the total flow from 
source to sink is 4, and the associated total transportation costs are 47.  
 

 
 

Figure 5.13 
 
Further extensions are possible. One such extension has a required flow value f . 
A typical network modification that accomplishes this requirement will simply 
add an arc (nt, ns) with zero costs and lower and upper bound equal to f . The 
original flow problem has then be reformulated as a circulation, in which the 
conservation equations have to hold for all nodes, including the source and  
the sink. Working with the mathematical formulation, all we have to do is add a 
single constraint that requires that the flow value equals f . If f = 7 in the above 
example, we either add the constraint xs1 + xs2 = 7, or, alternatively, x1t + x2t + x4t = 7 
and re-solve. (In the above numerical example, the new solution will be the same 
as that shown in Figure 5.13, except that an additional 3 flow units are shipped 
from ns to n1 and on to nt).  
 
It is now also possible to demonstrate how to cast the standard transportation 
problem (see Section 2.2) into the mold of cost-minimal network flow problems. 
In terms of the network, we will make the following modifications. In addition to 
the existing origins and destinations, create an artificial source ns and artificial 
sink nt. Connect the source with all origins, and connect all destinations with the 
sink. (This type of problem reformulation can be used for all problems with 
multiple sources and sinks). The lower bounds of all (source, origin) connections 
are zero, while the upper bounds equal the supplies available at the respective 
origin. Similarly, all (destination, sink) arcs have a zero lower bound and an upper 
bound that equals the demand at the respective destination. Both types of arcs 
have zero costs. The existing arcs that connect the origins and the destinations 
have zero lower bounds and arbitrarily large upper bounds (except in cases, in 
which capacities need to be considered), and carry the costs specified for the 
original problem. Note that so far, the zero flow would be optimal, as none of the 
arcs requires a flow greater than zero, and any flow from source to sink costs 
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money. In order to force flow through the network, we connect the sink with the 
source by means of an artificial arc (nt, ns) that has zero costs, and an upper and 
lower bound that are both equal to the minimum of the total supply and the total 
demand at the sources and destinations, respectively. This way, the (sink, source) 
arc forces as many flow units through the network as are in demand or are needed, 
whatever is less.  
 
Another possible extension includes capacity constraints at the nodes. Two 
approaches are possible. The first uses the given network and modifies it so that it 
includes node capacities. This can be accomplished by “splitting” all of the nodes 
with node capacities. In particular, a node ni with node capacity κi is then replaced 
by an “in-node” in′  into which all arcs lead that led into the original node ni, an 
“out-node” in ′′ , out of which all arcs lead, that lead out of the original node ni. 
Finally, the two new nodes in′  and in ′′  are connected by an arc ( in′ , in ′′ ), whose 
arc capacity is the original node capacity κi. What we have done in this approach 
is simply to replace the node capacity by an arc capacity.  
 
An alternative approach simply uses a mathematical programming formulation. 
The number of flow units that flow through a node equals the number of units that 
enter (and, as nothing is lost, leave) a node, and an appropriate additional 
constraint is added. In the min-cost flow example of Figure 5.12 a capacity of, 
say, 5 units through node n2 can be written as xs2 + x12 + x32 ≤ 5, or, equivalently, 
by using the outflow, as x24 + x2t ≤ 5.  

5.3   Shortest Path Problems 
Similar to the maximum flow problem discussed in the previous section, shortest 
path problems are easily described. Given a network with a prespecified source 
and sink node as well as arc values cij that denote the cost (or distance, fuel, or any 
other disutility) of traveling from node ni directly to node nj along arc aij, the task 
is to find the shortest path from the source to the sink. The literature typically 
distinguishes between one-to-one shortest path problems (those that search the 
shortest path between source and sink), one-to-all shortest path problems (in 
which the task is to find the shortest paths between the source and all other nodes 
in the network), and the all-to-all shortest path problems (where the task is to 
determine the shortest paths between all pairs of nodes). Clearly, it would be 
possible―albeit inefficient―to use an algorithm for the one-to-one shortest path 
problem and apply it repeatedly so as to solve the one-to-all and all-to-all shortest 
path problems.  
 
This section first describes a way to reformulate the one-to-one shortest path 
problem, so that it fits into the mold of the cost-min feasible flow problem. It then 
describes the workings of an all-to-all shortest path algorithm that is not only very 
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efficient, but also needed in areas such as location models, where all shortest paths 
have to be known before any location algorithm can even start.  
 
First, we will discuss how to reformulate a shortest path problem as a min cost 
flow problem. The idea is to force one flow unit through the network, and let the 
optimizer find the cost-minimal, i.e., shortest, path. This is done by having lower 
bounds of zero and upper bounds of one for all arcs, coupled with the actual costs 
or distances specified for all arcs. So far, the optimal solution would be the zero 
flow, as it is feasible and no cheaper solution can exist (at least not as long as the 
arc distances are nonnegative). We then add the circulatory arc (nt, ns) with lower 
and upper bound equal to one. This forces a single unit through the network and 
will result in the desired solution. The graph transformation is shown in Figure 
5.14, where Figure 5.14a shows the original graph with the distances or costs next 
to the arcs, while Figure 5.14b has the lower bounds, the upper bounds, and the 
cost/distances at the arcs.  
 

 
 
                              (a) 

 
 
                           (b) 

 
Figure 5.14 

 
As far as the mathematical formulation is concerned, we can use the usual min-
cost objective function, coupled with two sets of constraints. The first single 
constraint ensures that exactly one unit leaves the source. The second set of 
constraint are the usual conservation equations, which ensure that the flow unit 
that leaves the source has only one place to go: the sink. In the example of Figure 
5.14, the formulation would be as follows:  
 
 Min z = 3xs1 + 7xs2 + 5x13 + 2x12 + 2x23 + 1x3t + 4x2t  
 s.t. xs1 + xs2 = 1 
 xs1 − x12 − x13 = 0 
 xs2 + x12 − x23 − x2t = 0 
 x13 + x23 − x3t = 0 
 xij ≥ 0 for all i, j.  
 

s1 + xs2 = 1  could be replaced by the constraint 
x2t + x3t = 1, representing the flow into the sink.  
Alternatively, the first constraint  x
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Shortest path problems have many real-world applications. In addition to the 
obvious applications, in which the shortest path in a road network is to be found 
(e.g., for GPS-based navigation systems), shortest path problems occur in 
scenarios that seemingly have nothing to do with shortest paths. Instead, a process 
has “discretized,” i.e., subdivided into a finite number of states that described the 
system at that point in time. Each node of the network symbolizes a state of  
the system, and an arc indicates a possible transition from one state to another. 
The arc values show the amount of resources, such as time, money, or fuel, that a 
transition takes.  
 
A good example of such a problem deals with the problem of getting an aircraft 

This problem is particularly relevant for fighter aircraft.  
 

numbers in each node indicate the state the aircraft is in: the first component is the 
ground speed in 100 mph, and the second number shows the aircraft’s altitude in 

nodes describes a state the aircraft can be in with respect to speed and altitude, and 
the arcs between these states indicate the possible transitions from one state to 
another. The values next to the arcs show the time (in seconds) that is required to 
make the transition from one node to another. For example, it takes five seconds 
to bring the aircraft from the standstill position at (0, 0) to (1, 0), i.e., a speed of 
100 mph at zero altitude (meaning on the runway). Suppose that it is desired to 
bring the aircraft from a standstill position to a speed of 500 mph and an altitude 
of 4,000 ft as quickly as possible.  
 

1,000 ft. Initially, the aircraft is at (0, 0), i.e., standing still on the ground. Each 

As a numerical example, consider the situation shown in Figure 5.15. The two 

from a standstill position to a certain speed and altitude in the fastest possible way. 
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Figure 5.15 
 
At each state in this example, the pilot has three options: either stay at the same 
altitude and speed up, remain at the same speed and climb, or speed up and climb 
simultaneously. The shortest path in the above example includes the nodes (0, 0), 
(1, 0), (2, 0), (2, 1), (2, 2), (3, 2), (4, 3), and (5, 4). In other words, the instructions 
to the pilot would state to bring the aircraft from a standstill position to a a speed 
of 200 mph, then remain at that speed and climb 2,000 ft, then stay at that altitude 
and speed up to 300 mph, and then accelerate and climb simultaneously to the 
desired speed of 500 mph and altitude of 4,000 ft. This way, it will take 39 
seconds, the length of the shortest path, to reach the desired state.  
 
One of the most popular techniques for the determination of shortest paths from 
one node to all other nodes is Dijkstra’s technique that was first published in the 
late 1950s. It is a highly efficient method that belongs to the class of so-called 
label setting techniques (as opposed to other label-correcting techniques). The 
main idea is to label the nodes ns, n1, …, with labels L(ns), L(n1), …, so that each 
label consists of two parts. The first is the immediate predecessor of the node on 
the shortest path known so far, and the second part is the length of the shortest 
path known so far. Throughout the procedure, we distinguish between nodes that 
have a temporary label and those with a permanent label. The label of a 
permanently labeled node indicates the actual length of the shortest path from the 
source to this node as well as the immediate predecessor on that path, while the 
temporary label comprises the presently shortest known path and the node’s 
immediate predecessor on it. In each step of the algorithm, one node with a 
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temporary label is chosen and its label made permanent. The upper bounds on the 
estimates of the shortest paths to all direct successors of this node are revised, and 
the process is repeated until the labels of all nodes are made permanent. It is 
important to realize that Dijkstra’s method is only applicable to networks with 
nonnegative arc lengths.  
 
To initialize the method, assume that the source ns is labeled L(ns) = (ns, 0), while 
all other nodes nj are labeled L(nj) = (nj, ∞). In the beginning, all nodes are 
assumed to be temporary. The method now proceeds as follows. We choose the 
temporarily labeled node whose (second part of the) label is minimal among all 
temporarily labeled nodes. Ties are broken arbitrarily. The label of this node is 
then made permanent. Suppose this node is ni. All of this node’s direct successors 
are then investigated by comparing their second part of the label with the label of 
ni plus the arc length of the arc aij. If the preset label of nj is smaller, we leave it 
unchanged; if it is larger, we replace it by setting L(nj) = (ni, L(ni) + cij), i.e., by the 
label of ni plus the length of the arc that connects ni and nj.  
 
As an example of the procedure, consider the network in Figure 5.16.  
 
 

 
 

Figure 5.16 
 
As indicated above, in the initialization step (“Step 0”), we label the source as 
L(ns) = (ns, 0) and all other nodes nj with L(nj) = (nj, ∞), and let all nodes be 
temporary. The node with the lowest temporary label is the sink, so that it is 
chosen and its label is made permanent. All computations discussed here are 
summarized in Table 5.1, where the first time a label has been made permanent, it 
receives a “*” and due to its permanent status, it is not listed again below. 
Choosing ns to receive a permanent label means that the labels of its direct 
successors n1, n2, and n3 may have to be revised (the labels of all other nodes 
remain unchanged). Their present labels are compared with the label from ns, 
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which is the source’s label (here: 0) plus the length of the arc from ns to the node 
in question. For n1, the comparison is between ∞ and 0 + 5, which is 5, so that n1 
is now labeled from ns, which is indicated in its new temporary label L(n1) = (ns, 5). 
Similarly, the labels of the nodes n2 and n3 are (ns, 4) and (ns, 2), respectively.  
 
We are now at the end of Step 1 in Table 5.1, where we choose the node with the 
lowest temporary label. In this example, the node is n3, as it has the smallest label 
with “2.” We now make this label permanent and revise the labels of its 
successors n1, n2, and n5 in Step 2. The present label of the node n1 indicates that a 
path of length 5 is already known from the source. If we were to label n1 from n3, 
its label would be 2 + 2 = 4, which is shorter, so that the new label of L(n1) = (n3, 4). 
For n2, we find that the presently shortest known path is of length 4 (its present 
label), while labeling the node from n3 would lead us to a path of length of 2 + 6 = 8. 
Since this new path is longer, we ignore it and leave the label of n2 unchanged. 
Finally in this step, the present label of n5 indicates a path of length ∞ is known, 
which is compared to the label the node would receive if labeled from n3, which is 
2 + 8 = 12. This new label is shorter, so that node n5 receives the new label L(n5) = 
(n3, 10).  
 
This process continues until all nodes have been permanently labeled. The inter-
mediate and final results are shown in Table 5.1.  
 

Table 5.1: Permanent and temporary labels during the Dijkstra method 
 

Step 
# 

L(ns) L(n1) L(n2) L(n3) L(n4) L(n5) L(nt) 

0 (ns, 0)* (n1, ∞) (n2, ∞) (n3, ∞) (n4, ∞) (n5, ∞) (nt, ∞) 
1  (ns, 5) (ns, 4) (ns, 2)* (n4, ∞) (n5, ∞) (nt, ∞) 
2  (n3, 4)* (ns, 4)  (n4, ∞) (n3, 10) (nt, ∞) 
3   (ns, 4)*  (n1, 9) (n3, 10) (nt, ∞) 
4     (n2, 5)* (n3, 10) (nt, ∞) 
5      (n4, 7)* (n4, 9) 
6       (n5, 8)* 

 
The results in Table 5.1 can now be used to determine the tree of shortest paths 
rooted at ns. This is done by choosing all permanent labels and connect the node 
with its direct predecessor as specified in the label. In our example, the node nt has 
n5 as its direct predecessor, so we introduce the arc a5t. The node n5 has n4 in its 
label, so we introduce the arc a45, and so forth. The resulting arborescence is 
shown in Figure 5.17.  
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Figure 5.17 
 
The numbers next to the nodes are the lengths of the shortest paths from the 
source ns to all nodes in the network.  
 
Sometimes (as for instance in location models), it is required to determine the 
paths between all pairs of nodes. Clearly, Dijkstra’s technique could be used by 
considering one node as a source, determine the arborescence of all shortest paths 
rooted at that node, and then repeat the process with all nodes as roots. This is 
somewhat tedious, and there is a very efficient technique, called the Floyd-
Warshall method, that performs this task directly. All it requires are some matrix 
operations. The method starts and works with the direct distance matrix C0, which 
includes all node-to-node distances of the original problem. An iterative step in 
iteration k can then be described as follows. In the first iteration, we use row and 
column 1 as the key row and column. We then compare the shortest presently 
known distance between node ni and node nj with a detour that uses node n1. The 
shorter of the two distances is then used as the new shortest known distance. This 
process is repeated for all pairs of nodes. That way, we reach the revised distance 
matrix C1. We now use the second row and column as key row and column, and 
compare all distances with the detour via n2. In the matrix, this is simply done by 
comparing each element with the sum of its corresponding element in the key row 
and key column. This process is repeated until all nodes have been used as detour 
node once. The resulting matrix Cn (given that there graph has n nodes) is then the 
matrix of shortest paths.  
 
We will illustrate this procedure by means of an example. The graph and its 
distances of the example are shown in Figure 5.18.  
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Figure 5.18 
 
The direct distance matrix of the mixed graph in the example is  
 

C0 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∞
∞∞

∞
∞

∞

05957
3084
50379
98037
547302
79720

 
Note that in case of undirected graphs, the direct distance matrix is symmetric. In 
the first iteration k = 1, we will consider the node n1 as a possible detour node. 
This is done by using the first row and column as the key row and column. This 
row and column is copied without a change into the next matrix. For all other 
elements, we compare the present distance with the one that uses n1 as a detour 
node. As an example, the lowest known distance from n2 to n3 that is presently 
known is c23 = 3. This is compared with the detour that uses node 1, i.e., the path 
that uses the arcs (n2, n1) and (n1, n3), whose lengths are 2 and 7, respectively. In 
other words, we now compare 3 with 2 + 7 = 9. Since the original length is 
shorter, we keep it and continue with the next pair of nodes. Next, we compare the 
distances from n2 to n4, without and with detour via n1. We find that c24 = 7 < 2 + 
9 = c21 + c14, so that again, we make no change. We continue this way and find no 
changes, until we reach the connection from n3 to n4. At present, c34 = ∞, i.e., there 
is no direct connection. We compare this distance with the detour that uses n1, i.e., 
the arcs (n3, n1) and (n1, n4). Those distances are 7 and 9, so that we are now able 
to reach n4 from n3 on a path of length 7 + 9 = 16. This turns out to be the only 
change from matrix C0 to matrix C1, which is indicated in C1 by an asterisk.  
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C1 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∞
∞∞

∞

∞

05957
3084
50379
98*16037
547302
79720

 

 
Starting now with C1, the process is repeated by using the second row and column 
as key row(column) and comparing all known distances in C1 with the detour that 
uses n2 as detour node. Again, we copy the key row and column without any 
changes to C2. Here are some of the computations. For the connection from n1 to 
n3, we presently have a length of 7, which we compare with the detour via node 
n2, which has a length of 2 + 3 = 5, so that the new distance is shorter. Similarly, 
the distance from n1 to n4 without the detour via n2 is 9, with the detour it is 2 + 7 
= 9, a tie. The distance from n1 to n5 without the detour is ∞, with the detour, it is 
2 + 4 = 6. The results are shown in the matrix C2, again with all changes indicated 
by an asterisk.  

C2 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0*95*857
30*11*74*6
5*110379
*8*7*1003*5

547302
7*69*520

 

 
The remaining iterations are shown without further comment.  
 

C3 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

095857
3011746
5*1003*6*8
8710035
547302
769520

, C4 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

095857
3011746
5100368
8710035
547302
769520

, 
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C5 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

095857
3011746
5100368
8710035
547302
769520

, and C6 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

095857
30*8746
5*80368
8710035
547302
769520

 

 
The matrix C6 now includes the lengths of the shortest paths between all pairs of 
nodes. We should note that it is also possible to construct a second set of matrices 
parallel to the computations made above, so as to keep track not only of the 
lengths of the shortest paths, but also the paths themselves. This is, however, 
beyond the scope of this volume. Interested readers are referred to books, such as 
Eiselt and Sandblom (2000).  

5.4   Spanning Tree Problems  
Similar to the models in the previous sections in this chapter, the problem behind 
spanning trees is easily explained. Suppose there is an undirected graph that 
includes the potential edges that connect the nodes of the graph. The values 
associated with the edges indicate their costs. The problem is now to choose some 
of the edges and include them in the solution, so that the costs are minimized, 
while the network remains connected. This may result in a graph, in which the 
path from one node to another leads through many intermediate nodes.  
 
It is apparent that what we are looking for is a tree, as any graph with less edges 
than a tree has will no longer be connected, while any graph that has one or more 
edges than a tree will include at least one cycle, which is unnecessary.  
 
Problems of this nature occur whenever it is very expensive to establish edges. 
Typical examples are road networks, networks of power lines, or networks of 
sewer tunnels. The example shown in Figure 5.19 shows all possible connections 
that may be established, coupled with their respective costs.  
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Figure 5.19 

 
The task is now to find a subset of existing edges (the edges that belong to 
connections that will actually be built), so as to minimize the total amount of 
money necessary to connect all nodes with each other. The resulting connected 
subgraph of the original graph with n nodes is a minimal spanning tree of the 
given graph. Given that the result will be a tree, one can show that the optimal 
solution will include exactly (n−1)edges.  
 
A variety of solution methods exist for this type of problem. Here, we describe the 
Kruskal technique, which was first published in 1956. Actually, the method is 
nothing but a Greedy technique. However, while the Greedy heuristic typically 
finds only approximate solutions, it is guaranteed to find an optimal solution for 
this problem. It can be described as follows. We first sort the edges in order of 
nondecreasing arc values, where ties are broken arbitrarily. Starting with the edge 
that has the lowest arc value, we introduce one arc at a time, provided it does not 
form a cycle with the already existing edges. The procedure continues until (n−1) 
arcs are included in the solution.  
 
In the example of Figure 5.19, we order the edges, which results in Table 5.2. The 
table shows the edges and their costs in nondecreasing order.  

 
Table 5.2: Edges of Figure 5.19 in order of their value 

Arc a48 a6,12 a23 a78 a8,14 a12 a34 a6,11 a9,14 a24 a67 

Cost 1 1 2 2 2 3 3 3 3 4 4 
Inserted?          No  

 
Arc a38 a49 a5,14 a11,12 a26 a7,12 a8,12 a9,15 a16 a10,15 a27 

Cost 5 5 5 5 6 6 6 6 7 7 8 
Inserted? No No  No No No No  No  No 
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Table 5.2 (continued) 
 
 
 
 
 
 
Table 5.2 indicates which edges are introduced and which are not. In order to 
visualize the process, consider Figure 5.20. The solid lines are edges that are 
introduced in the first nine steps, the broken-and-dotted lines are edges that are 
introduced in the next two steps, and the dotted lines are edges introduced after 
that. Note that after edge a13,14 is introduced, we have introduced 14 edges, and the 
process terminates.  
 

 
 

Figure 5.20 

5.5   Routing Problems  
Routing problems are among the most frequently used network models in practice. 
We distinguish between two classes of routing models: arc routing and node 
routing models. The first example of arc routing was provided by Euler and his 
“Königsberg Bridge Problem” described at the beginning of this chapter. The idea 
common to all arc routing problems is to find a tour in a given graph, so that each 
arc is used on the tour exactly or at least once. Similarly, in node routing 
problems, the idea is to find a tour that starts at some node and returns to it, while 
using each node exactly or at least once in the process. Combinations of the two 
classes are vehicle routing problems, which belong to the most difficult routing 
problems.  
 

Arc a13,14 a45 a12,13 
Cost 8 9 9 
Inserted?  No No 
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The best-known arc routing problem is the Chinese Postman Problem. The name 
is due to Meigu Guan, who in the course of the “cultural” revolution in China was 
assigned to the position of a postal worker in the early 1960s. There, he 
considered the problem of a letter carrier, who would pick up the mail at some 
point (a node in the street network), and deliver it to the individual households by 
walking along each street at least once. The objective of the model is to minimize 
total distance, and the constraints ensure that mail is delivered to the houses on all 
streets of the network. While some version of the model are easy to solve, others 
remain difficult. There are many important and popular applications of Chinese 
Postman Problems, including street cleaning and snow removal. Clearly, those 
problems are more difficult, as they will include hierarchies of streets, e.g., 
highways are typically plowed after a snowstorm before small neighborhood 
streets.  
 
Similar to arc routing, the field of node routing has a long history. It starts with 
Hamilton’s “trip around the world” developed in 1856, a game in which players 
have to find a tour that visits all desirable places (the nodes in a graph) at least 
once. The best-known version of node routing is the famed traveling salesman 
problem, surely one of the most popular models in all of operations research. The 
story (not a real application, but a scenario that give the model its name) is that a 
traveling salesman attempts to sell his goods in a number of cities in his region. 
He must visit each city once and must return to the place he started from. In order 
to have as much time as possible with the customers, the objective is to minimize 
the total time (or distance) of the tour. Applications of traveling salesman 
problems abound, many of them seemingly unrelated. One such example is the 
drilling of holes into sheet metal with the use of an automated drill press. Drilling 
the hole takes the same amount of time regardless of the sequence, in which the 
holes are drilled, so that the objective is to minimize the amount of time it takes to 
move the metal into the position, in which the next hole is to be drilled. This is 
nothing but a traveling salesman problem.  
 
Due to space limitations, we will only deal with traveling salesman problems in 
this section. Good algorithms for some versions of the Chinese postman problem 
exist, while the traveling salesman problem is notoriously difficult to solve.  
 
At first glance, formulating a traveling salesman problem appears easy. We need 
to formulate zero-one variables xij that assume a value of one, if the arc aij is part 
of the tour, and 0 otherwise. The objective function is then simply to minimize the 
sum of arc values, each multiplied with their respective binary variable. As far as 
constraints go, we have to ensure that the traveling salesman tour enters each node 
exactly once and that it leaves each node exactly once. In order to explain the 
formulation, consider as an example the graph in Figure 5.21.  
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Figure 5.21 
 
The formulation as described above is then as follows:  
 
Min z = 2x12 + 5x16 + 3x21 + 8x25 + 4x26 + 7x32 + 7x34 + 5x36 + 4x35 + 1x43 + 6x45 + 

5x53 + 2x54 + 3x61 + 4x63 + 3x65  

s.t. x12 + x16 = 1 

x21 + x25 + x26 = 1 

x32 + x34 + x35 + x36 = 1 

x43 + x45 = 1 

x53 + x54 = 1 

x61 + x63 + x65 = 1 

 

x21 + x61 = 1 

x12 + x32 = 1 

x43 + x53 + x63 = 1 

x34 + x54 = 1 

x25 + x35 + x45 + x65 = 1 

x16 + x26 + x36 = 1 

xij = 0 or 1 for all i, j. 

 

The first six constraints in the above formulation force the outflow of each node to 
be equal to one (meaning that the traveling salesman tour will leave each node 
exactly once), while the second set of six constraints requires that the inflow into 
each node equals one (meaning that the tour enters each node exactly once). If the 
original graph would have direct connections between all pairs of nodes, the 
above formulation would actually be identical to that of an assignment problem. 
We know that for this type of problem, the zero-one constraints are satisfied 
without us requiring them, so that the problem can be solved as a standard linear 
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programming problem. The result we find includes the following nonzero 
variables: 1655443362112 ====== xxxxxx , and all other variables equal zero. 
The value of the objective function for this solution equals z  = 16.  
 
It is easily apparent that this solution does satisfy the constraints, but is not what 
we were looking for: rather than one tour, the solution includes two subtours (n1 – 
n2 – n1) and (n3 – n6 – n5 – n4 – n3). What we will have to add are so-called subtour 
elimination constraints. There are different ways of doing this, but the most 
efficient sets of such constraints require a huge number of constraints. To be 
precise, for a graph of n nodes, there are 2n such subtour elimination constraints. 
As a result, the modeler will refrain from including all of these constraints from 
the beginning, but rather solve the problem without them. Then, if the solution has 
no subtours, we are done. Otherwise, a single relevant subtour elimination 
constraint is introduced. This is the process we follow here.  
 
The idea is now this. First, we define Ns as the set of nodes in the chosen subtour, 
and let sN  denote the complement of this set. Note that the present solution has 
no arc leading out of Ns to any node in sN . Therefore, we define a constraint that 
requires at least one arc in the solution to lead out of a node in Ns to a node in sN . 
In our example, choose the subtour (n1 – n2 – n1), so that Ns = {n1, n2} and sN  = 
{n3, n4, n5, n6}. The set {a16, a25, a26} includes all arcs that lead from Ns to sN , so 
that we can formulate the constraint  
 
  x16 + x25 + x26 ≥ 1.  
 
We now solve the problem again with this additional constraint. Note that now 
due to the additional constraint the “assignment structure” of the problem is lost 
and it is necessary to include the zero-one requirements for all variables, which 
makes the problem considerably more difficult. The optimal solution of the 
problem is 1615443352612 ====== xxxxxx  with an objective value of z  = 16 
(so apparently, there were alternative optimal solutions to the problem in the first 
step). This means that our tour is (n1 – n2 – n6 – n1) and (n3 – n5 – n4 – n3), 
meaning that we have successfully eliminated the previous subtour, but now have 
a solution with another subtour, so that another subtour elimination constraint 
must be added.  
 
Given the subtour (n1 – n2 – n6 – n1), our sets are Ns = {n1, n2, n6} and sN  = {n3, 
n4, n5}, so that the set of arcs from Ns to sN  is {a25, a63, a65}. The additional 
constraint can then be written as  
 
  x25 + x63 + x65 ≥ 1.  
 



5  Network Models 204 

Solving the problem again results in the solution == 2116 xx 4332 xx = 54x= 165 == x  
with a value of the objective function z  = 21. This solution includes the tour (n1 – 
n6 – n5 – n4 – n3 – n2 – n1), which no longer includes a subtour. Thus this is the 
optimal solution.  
 
While this procedure may be feasible for small and medium-sized problems, it is 
not for large-scale applications. Here, we may resort to heuristic algorithms. In the 
simplest case, we may use the Greedy algorithm to find a tour. In this application, 
we would start the Greedy algorithm with some node, find the nearest neighbor 
(provided it does not result in a subtour), move on to the next neighbor, again 
avoiding, subtours, and so forth. Note that the number of degrees of freedom is 
constantly decreasing while we make choices. (Not that there is anything new in 
that: Whenever you make a choice such as spending money on some item, you 
will have less choices, i.e., money, for future decisions).  
 
In order to explain the procedure, consider the distance matrix  
 

 D = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

049478
403271
520386
438045
869403
623740

 
Arbitrarily starting with the node n1, the nearest neighbor, i.e., the smallest 
element in the first row of D (other than the element d11 = 0, which would just 
lead from n1 back to itself), is the connection to n5 at a distance of 2. From n5, i.e., 
in row 5 of the matrix, the nearest neighbor is n1 at a distance of 1. However, this 
connection would create a subtour, so we look for the next-shortest distance. It is 
the link from n5 to n3 with a distance of 2. From n3, the nearest neighbor is n5 with 
a distance of 3, but going back to n5 would create a subtour. The next shortest 
distances are those to n2 and n6, both with a distance of 4. Any tie-breaking rule 
can be used, here, we choose n2. From n2, the nearest neighbor is n1, which cannot 
be chosen, as it would create a subtour. The next-nearest neighbor is n3, which 
cannot be chosen for the same reason. The next-nearest neighbor is n5, which is 
also not eligible. The next-nearest neighbor is n6 at a distance of 8, which must be 
chosen. Note how the lack of degrees of freedom forces us to choose undesirable 
links at the later stages of the algorithm. Actually, at this point there is no degree 
of freedom left, and we have to continue on to n4, the last remaining node, and 
from there return to n1. The two distances are 9 and 6, respectively, so that the 
entire tour is of length l = 31. In summary, the tour is n1 – n5 – n3 – n2 – n6 – n4 − n1.  
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In a “Phase 2” procedure, we can now attempt to improve the solution found 
earlier. One way to do this is a “pairwise exchange” or “swap” method. It very 
simply exchanges two (usually, but not necessarily, adjacent) nodes on the tour.  
In the above tour, we may try to avoid the long distance from n6 to n4 by switching 
the order, in which these two nodes are visited on the tour. Doing so results in the 
tour n1 – n5 – n3 – n2 – n4 – n6 − n1, which has length l = 30, which is better,  
so that this new tour becomes the starting point for further improvements.  
 
Starting with the new tour, we may now attempt to avoid the direct connection 
from n2 to n4, which is also a very long leg of the tour. Switching the order of 
these two nodes results in the tour n1 – n5 – n3 – n4 – n2 – n6 − n1, which is of 
length l = 36. This is higher than the previous (best known) solution, so that the 
switch is not made. This swap process can be continued, until no swap change is 
able to further decrease the length of the tour.  
 
It is sometimes useful to use what is known as a multistart procedure. This means 
that rather than starting with some random node (n1 in the above example), finding 
a solution and then trying to improve it, we may try out all different nodes as 
potential starting points. With each such node, we obtain a tour. We would then 
choose the best tour, and try to find improvements from there.  
 
In the above example, we could use the Greedy algorithm to find tours starting 
with each of the six nodes. In addition to the tour that starts with n1, which has 
already been determined above, we obtain the tours n2 – n1 – n5 – n3 – n6 – n4 − n2 

of length l = 28, n3 – n5 – n1 – n4 – n6 – n2 − n3 of length l = 23, n4 – n5 – n1 – n2 – 
n3 – n6 − n4 of length l = 24, n5 – n1 – n4 – n3 – n2 – n6 − n5 of length l = 23, and  
n6 – n3 – n5 – n1 – n4 – n2 − n6 of length l = 27. The tours that start with n3 and n5 are 
best, and the swap process would start with them. Any of these heuristic procedures 
is computationally cheap and, once some tour has been obtained, the process can 
be terminated at any point in time.  

Exercises 
Problem 1 (maximal flow algorithm, minimal cut): Consider the network in 
Figure 5.22, in which the numbers next to the directed arcs denote the capacity of 
the arcs.  

Exercises
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Figure 5.22 
 
Use the method by Ford and Fulkerson to determine a maximal flow. Show the 
flow pattern. What is the value of the maximal flow? Which arcs are in the 
minimal cut you have found?  
 
Solution: Starting with a flow of zero at all arcs, we first increase the flow on the 
following paths:  
 path (ns, n1, nt): 6 units,  
 path (ns, n2, n4, nt): 6 units,  
 path (ns, n3, n5, nt): 6 units, and  
 path (ns, n5, nt): 3 units.  
The flow pattern is then shown in the network in Figure 5.23, where the two 
numbers next to the arcs indicate the arc’s capacity and its present flow, 
respectively.  
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Figure 5.23 
 
The next step consists of an increase the flow on the following two paths:  
 path (ns, n3, n2, n1, nt): 2 units, and  
 path (ns, n2, n1, n4, nt): 1 unit.  
The resulting flow pattern is shown in Figure 5.24.  
 

 
 

 
Figure 5.24 

 
At this point, there are no more degrees of freedom, and labeling can only be done 
on the path (ns, n5, n3 (backward labeling at this point), n2, n1, n4, nt). The flow on 
this path can be changed by one unit, resulting in the flow pattern shown in the 
network in Figure 5.25.  

Exercises
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Figure 5.25 
 
Starting with the pattern in Figure 5.25, we can label the nodes ns, n3, and n5. At 
this point, a nonbreakthrough occurs, and we can conclude that the flow pattern in 
Figure 5.25 is maximal. The corresponding flow value is 25. The minimal cut 
include the capacities of all arcs that lead from labeled to unlabeled nodes. Here 
the minimal cut includes the arcs (ns, n1), (ns, n2), (n3, n2), and (n5, nt). Note that 
the Ford and Fulkerson method only finds the cut that is closest to the source. In 
this example, another minimal cut exists with arcs (ns, n1), (n2, n1), (n2, n4), and 
(n5, nt); yet another cut is (n1, nt), (n4, nt), (n5, nt).  
 

Problem 2 (formulation of a feasible flow problem with node constraints): 
Consider the network shown in Figure 5.26, where the numbers next to the arcs 
consists of the lower and upper bound on the flow in the arc, while the double-
digit numbers next to the arcs indicate the per-unit cost of the flow through the 
arc.  
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Figure 5.26 

 
In addition, we want to ensure that a total of 5 units flow from the source to the 
sink and exactly two units flow through the node n3. Formulate.  
 
Solution: Defining variables xij as the flow from node i to node j on the arc 
connecting the two nodes, we can formulate the problem as follows.  
 

P: Min z = 20xst + 50xs1 + 40xs2 + 20x12 + 50x13 + 60x1t + 20x21 + 50x23 + 40x2t + 
30x3t 

 
 s.t. xst + xs1 + xs2 = 5 (forcing 5 units through the network) 
 xs1 + x21 − x12 − x13 − x1t = 0 (conservation equation for node n1) 
 xs2 + x12 − x21 − x23 − x2t = 0 (conservation equation for node n2)  
 x13 + x23 − x3t = 0 (conservation equation for node n3)  
 x13 + x23 = 2 (or, equivalently, x3t = 2: forces a flow of 2 through node n3) 
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 xij ≥ 0 for all variables.  
 
The optimal flow pattern is shown in Figure 5.27, where the numbers next to the 
arcs are the arc flows. The total cost for the flow pattern are $480.  
 

 
 

Figure 5.27 
 
Changing the requirement regarding the throughput of node n3 from “exactly 2 
units” to “at most 2 units” results in a flow of 3 units on the arc from ns to nt, and 
2 units on the path from ns to n1 and nt. The total costs of this solution are $280.  
 
 
Problem 3 (shortest path, Dijkstra method): Consider the network in Figure 
5.28 and determine all shortest paths from ns to all other nodes.  
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Figure 5.28 
 
Solution: Table 5.3 shows the labeling process.  
 

Table 5.3: Labels of the nodes in the shortest path example 
 

Step 
# 

L(ns) L(n1) L(n2) L(n3) L(n4) L(nt) 

0 (ns, 0)* (n1, ∞) (n2, ∞) (n3, ∞) (n4, ∞) (nt, ∞) 
1  (ns, 6) (ns, 2)* (n3, ∞) (n4, ∞) (nt, ∞) 
2  (n2, 5)*  (n2, 9) (n2, 11) (nt, ∞) 
3    (n1, 8)* (n2, 11) (n1, 14) 
4     (n3, 10)* (n1, 14), or 

(n3, 14) 
5      (n4, 13) 

 
The tree with the shortest distances is shown in Figure 5.29. Note that in this 
example, the tree is a simple path.  
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Figure 5.29 
 
Problem 4 (shortest path, Floyd-Warshall method): Consider the network shown 
in Figure 5.30.  
 

 
 

Figure 5.30 
 
Use the Floyd-Warshall algorithm to determine the shortest paths between all 
pairs of nodes.  
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Solution: The direct distance matrix is  
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⎢
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⎣

⎡

∞
∞

∞

07924
0836
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23302
4620

 
The first two steps result in the following approximations (where the elements 
with a “*” indicate changes and elements with a “=” indicate a tie in the step that 
led to the new solution):  
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⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0*5*524
*50*63*5
*5*603*5

23302
4*5*520

 
 
After this, there are no further changes, so that the last matrix is indeed the 
shortest path matrix.  
 

Problem 5 (minimal spanning tree): A manufacturing firm wants to connect its 
nine plants by rail. The cost of establishing the line segments are shown in the 
table below, where a number in row i and column j indicates the fixed costs to 
connect plant i with plant j.  
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02632476788483793
26051435461729184
32510259574332918
47432504222456366
67549542038625639
88617422380962715
48723345629603564
37912963562735023
93841866391564230

 

 
Solution: Putting the costs in nondecreasing order (ties are broken arbitrarily) 
results in the sequence 15, 18, 22, 23, 25, 26, 27, 29, 32, 33, 35, 37, 38, 39, 42, 43, 
45, 47, 48, 51, 54, 56, 61, 62, 63, 64, 66, 67, 72, 74, 84, 88, 91, 93, 95, and 96. 
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Starting at the beginning, we introduce connections (1, 4), (1, 7), (4, 6), and (1, 2) 
with costs of 15, 18, 22, and 23. The next cheapest connection is (6, 7) with costs 
of 25. However, plants 6 and 7 are already connected. the next connection is (8, 9) 
with costs of 26, which we introduce. The next connection on the list is (2, 4) with 
costs of 27. Plants 2 and 4 are already connected, so that we reject this connection 
and continue. The next connection is (2, 7) with costs of 29, which is also 
rejected. The next connection is (7, 9) with costs of 32, which is introduced. This 
is followed by connection (3, 7) with costs of 33, which is introduced. This is 
followed by the connections (2, 3) with costs of 35 and (2, 9) with costs of 37; 
both of which are rejected. The connection (4, 5) with costs 38 connects two 
previously unconnected nodes, and thus it is introduced. At this point, eight arcs 
have been introduced and all plants are connected. Thus, an optimal solution has 
been determined. Its costs are 207.  
 
Problem 6 (heuristics applied to a traveling salesman problem): A pharma-
ceutical company uses glass containers to store their chemicals. Over time, they 
reuse the containers, but if they do, they are required to clean them. The cleaning 
costs depend on what was stored in the container before, and what will be stored 
next. The cleaning costs of the six chemicals A, B, C, D, E, and F are shown in the 
following matrix:  
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703469
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839702
453560

 
For example, if chemical C is stored in a glass that was used for F before, then the 
cleaning costs are 8 (from F to C, i.e., element (F, C), in the 6th row and 3rd 
column.).  
 
(a)  Assume that presently, chemical D is stored in a container. Use the Greedy 

algorithm to determine a sequence that has each of the six chemicals stored in 
a container exactly once. (Ties are broken arbitrarily). Clearly specify the 
sequence that results from the application of the Greedy algorithm. What are 
the costs associated with the sequence? 

(b)  Use the pairwise exchange method to improve the solution determined under 
(a). Examine all pairs until an exchange results in an improvement. Make this 
improvement and stop (even though additional improvements may be possible).  
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Solution:  
(a)  Starting with D, we obtain the sequence D – E – C – F – A – B – D. The 

length of the tour (here: the cost) is l = 1 + 4 + 2 + 2 + 6 + 9 = 24.  
(b)  In this application, the starting point at D is fixed. The following swap steps 

can be made:  
 Swap E and C. Result: D – C – E – F – A – B – D, length l = 31, reject.  
 Swap C and F. Result: D – E – F – C – A – B – D, length l = 36, reject.  
 Swap F and A. Result: D – E – C – A – F – B – D, length l = 26, reject.  
 Swap A and B. Result: D – E – C – F – B – A – D, length l = 15, accept. This 

solution becomes the new benchmark from which the swap steps continue.  
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6   Location Models 

This chapter introduces the basic ideas of location models. We first provide a 
short introduction to the subject and enumerate some of its major components. 
This is followed by a detailed discussion of the major classes of location models.  

6.1   The Major Elements of Location Problems 
The origins of location theory are shrouded in history. The first to discuss location 
models (and here, we use the term in the widest possible sense), were mathe-
maticians. One of the famous location-based puzzles (regarding the point in the 

were investigated and solved by Torricelli and Fermat in the 17th century. The 
geographer von Thünen wrote about his famed “von Thünen circles” regarding the 
location of economic activities around a central place, and the German geographer 
Weber wrote a treatise concerning location models early in the 20th century. 
Hakimi (1964) introduced location models to the field of operations research. We 
will encounter his famous theorem below. Since then, thousands of contributions 
have been made by researchers from fields as diverse as mathematics, computer 
science, geography, business administration, and economics.  
 
While many of us have a pretty good idea what location problems are, let us take a 
step back and examine its major components. The three main components of 
every location model are space, customers and facilities. Supplies exist at the 
facilities, demand occurs at the customer sites, and the goods are “somehow” 
transported from the facilities to the customers. Let us now look at these 
components in some detail.  
 
We distinguish between two major classes of location models, those that occur in 
the plane (or sometimes in three-dimensional space), and those that occur in 
transportation networks. While not altogether correct, location models in the plane 
tend to look at the problem from a macro point of view, while those models in 
transportation networks investigate the scenario from a micro perspective. Location 
problems in the plane are called continuous location models (as the facilities that 
are to be located can be sited anywhere in the space under consideration) in 

triangle from which the sum of distances to the triangle’s vertices is minimal) 
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contrast to discrete location models, many of which occur in networks. In discrete 
location models facilities can be located only at a finite number of points.  
 
These two classes of problems are also different from the way the variables are 
defined: determining the location of the variables in continuous models in the two-
dimensional plane requires the definition of variables (x1, y1), (x2, y2), … that 
symbolize the coordinates of the facilities 1, 2, … . On the other hand, in network 
models, we need a variable yj for each potential location that will assume a value 
of one, if we actually do locate at site j, and 0 if we do not. This places continuous 
location models into the field of linear or nonlinear optimization, while network 
location models are typically formulated and solved as integer programming 
problems.  
 
As far as parameters go, we assume that the locations of our customers are known, 
and so are their demands, which are commonly referred to as weights. Formally, 
customer i (or, equivalently, customers at demand point i) are assumed to have a 
weight of wi. In the 2-dimensional (Euclidean) plane, customer i is assumed to be 
located at a point with coordinates (ai, bi), while in a network, customer i can be 
found at node ni. Note that the points at which customers are located typically 
represent either census units, towns, or other customer agglomerations.  
 
Assume now that transportation takes place in the plane. While there exist many 
different metrics and gauges, most authors use either rectilinear (or Manhattan) 
distances, Euclidean or straight-line distances, or, sometimes, squared Euclidean 
distances. Suppose that a customer is located at a point with coordinates (a, b), 
while the facility is located at (x, y). The rectilinear or Manhattan distance 
between the customer and the facility is then defined as |a – x| + |b – y|, i.e., it is 
assumed that all movements take place parallel to the axes of the system of 
coordinates. The Euclidean distance between the customer and the facility is 
defined as 22 )()( ybxa −+− , and the squared Euclidean distance between 
these two points is 22 )()( ybxa −+− . As an example, the Manhattan, Euclidean, 
and squared Euclidean distances between the points (2, 3) and (7, 1) are 7, 29 ≈ 
5.3852, and 29, respectively.  
 
In network models, it is common practice to assume that movements take place on 
the shortest path between the customer and the facility. This means that the 
shortest path algorithms (see Section 5.3 of this book) will typically have to be 
applied before approaching a location model. In general, we will use the term 
“distance,” by which we may mean the actual mileage between points or any other 
disutility such as time or costs.  
 
Other components of location problems include the following:  
 
• the number of facilities (which may be fixed by the decision maker or may be 

endogenous to the model),  
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• the magnitude of the demand (which may be fixed, e.g., for essential goods, 
or may depend on the proximity of the facility to the customer),  

• the way customers are assigned to facilities (they either choose themselves, as 
is the case in the context of retail facilities, which are customer choice 
models, or firms allocate customers to their facilities in allocation models, as is 
the case in deliveries from warehouses), 

• the type of deterministic or probabilistic parameter we are dealing with,  
• the single-level or hierarchical model (hierarchical models often exist in the 

context of health care, with levels such as doctor, local clinic, and regional 
hospital), where a higher-level facility can accomplish all tasks a lower-level 
facility can. A clearly defined referral system is crucial in multi-level models,  

• competitive or noncompetitive models (most competitive scenarios use game 
theory as a tool and have firms compete in location, prices, and quantities). 

 
One main component of any location model is the objective function pursued by 
the decision maker. Until the mid-1970s, location models assumed that the 
facilities to be located by the decision maker would be “attractive” to the 
customers in some sense. That way, proximity to the customers was the main part 
of the objective. Many facilities, however, do not fall into that mold. Consider, for 
instance, a grocery store, a facility customers normally would consider desirable 
to have in their proximity. However, as deliveries are made very early in the 
morning, the same facility may very well be considered (at least partially) 
undesirable. Clearly, power plants and landfills will be considered undesirable by 
most customers. While a customer would attempt to “pull” a desirable facility 
towards himself, he will attempt to “push” away an undesirable facility. In 
addition to push and pull models, there are also “balancing” models, in which the 
decision maker attempts to locate facilities so as to balance the business the 
individual facilities have. This is often the case in the location of automobile 
dealerships, motels of a chain, and fast food franchises, which are located so as to 
avoid cannibalizing demand from its own (other) facilities.  
 
Among the pull objectives, three classes have received most of the attention. The 
first of these classes of models deals with covering objectives. The main idea is to 
locate facilities, so that as many customers as possible are covered, i.e., within a 
given distance of any of the facilities. Such objectives are often used for the 
location of emergency equipment, i.e., ambulances, police stations, and fire 
stations. The other two classes are center and median locations. In both of them, 
the decision maker locates facilities so as to minimize a measure of distance. In 
center problems, the planner will attempt to locate facilities, so that the largest 
distance to customers is as small as possible. This objective was justified (in some 
sense) by Rawls’s “Theory of Justice,” according to which the quality of a 
solution is determined by the lowest quality of any of its components. While such  
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objectives may be justified in the context of reliability systems, it takes an extreme 
view and is strongly biased towards outliers. Median problems, on the other hand, 
are probably the largest class in location models. Their objective is the minimization 
of the weighted total distance. In other words, the distance between a customer 
and his closest facility is determined (this can be considered a proxy for costs), 
which is then multiplied by the magnitude of the customer’s demand. Considering 
the distance as a proxy for the cost of shipping one truckload from the facility to 
the customer (or vice versa), the customer’s demand then denotes the number of 
truckloads to be shipped. The sum of all of these weighted distances is then a 
proxy expression for the costs of the transportation of the goods to all customers.  
 
Applications of location problems range from the location of schools to warehouses 
and church camps, equipment for the removal of oil spills, warning sirens in towns in 
case of floods, hurricanes, or tsunamis; bottling plants, landfills, newspaper transfer 
points, sewage treatment plants, and many other facilities. Other applications include 
nonphysical spaces. An example are brand positioning models, in which each 
dimension of the space represents a feature that is deemed relevant to customers. 
The features of each product will then determine its location in this feature space. 
Similarly, each (potential) customer can be represented in the same space by his ideal 
point, i.e., the point that has the features most preferred by the customer. Assuming 
that each customer purchases the brand closest to his ideal point, it is then possible 
to determine the estimated sales of each product. then it is also possible to relocate, 
i.e., redesign, a brand so as to maximize the amount of demand it captures.  

6.2   Covering Problems 
The idea behind covering models is to locate facilities that provide some service 
required by customers. If customers are positioned within a certain predefined 
critical distance D from any of the facilities, then they are considered served or 
“covered.” Two objectives for the location of facilities are to either cover all 
customers in the network with the smallest number of facilities or, alternatively, to 
cover as many customers as possible with a given number of facilities. Typical 
examples of applications of covering models are found when emergency facilities 
are to be located. Whether the facilities in question are fire stations, ambulances, 
police cruisers, or any similar “facilities,” the objective is to maximize protection. 
However, measuring protection is very difficult. In order to find an expression for 
“protection,” we would need to know the value of responding to an emergency 
from different distances or times. We can safely assume that an increase in the 
time to respond to an area for fire protection will mean that the fire has a greater 
chance to spread and it may reduce the chance to save property or a life if one is in 
jeopardy. A similar argument applies to other types of protection. Unfortunately, 
measurements of the value of protection are nearly impossible to make. In the case 
of fire protection, standards of service have been suggested by the Insurance 
Services Office that, when met, virtually guarantee an adequate level of protection 
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or, at least, the lowest premiums for fire protection. For fire services the most 
commonly used surrogate measure of performance is whether service can be 
provided to areas within a prespecified distance or time. Here, we restrict 
ourselves to covering problems on networks.  

6.2.1 The Location Set Covering Problem  

One of the first models that was developed to site emergency service facilities that 
incorporates a maximum service distance standard is the Location Set Covering 
Problem (LSCP) introduced in the early 1970s. The objective of the LSCP is to 
locate the smallest number of facilities such that each demand node is “covered” 
by one or more facilities. A demand node is said to be covered, if there is a facility 
within a prespecified distance from the demand node. In the context of the 
location of a fire hall, the decision maker could specify that a building is covered 
(or sufficiently protected), if it is within 5 miles (or 7 minutes or some similar 
measure) of the fire hall.  
 
If we assume that the cost to purchase land and build a facility is roughly the same 
for all nodes (or is small in comparison to maintaining each of the needed fire 
crews), then the objective of using the least number of facilities is equivalent to 
minimizing the cost of providing service to all demand.  
 
Throughout this chapter, we will use the subscript i to denote customers, while the 
subscript j is employed to denote facilities. For simplicity, we also assume that all 

define dij as the shortest distance (or time, cost, or any other disutility) between 
the demand node ni and the facility site at node nj. In addition, let the service 
standard D denote the maximal service distance or time as specified by the 

ij ij
if customers at node ni can be covered from a facility located at node nj, and 0 
otherwise.  
 
While it is possible to solve location set covering problems as integer programming 
problems by using one of the standard commercial codes, it is usually a good idea 
to apply a set of reduction rules that typically allow the user to dramatically 
reduce the size of the problem and accelerate its solution. In quite a few cases, the 
reduction rules actually solve the problem without us having to resort to an integer 
programming problem at all.  
 
The principles of the reduction technique are easily described, assuming that a 

 
 
 
 

covering matrix C(D) is available.  

decision maker. We can then define a covering matrix C(D) = (c ), so that c  = 1, 

customers and facilities will be located at the nodes of the network. We can then 
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• Essential Column. A column j is essential, if there exists a unit row (i.e., a 
row with all zeroes and only a single “1”) with the “1” in column j. If an 
essential column exists, then a facility must be located at the node nj.  

 
• Dominated Column. A column j dominates a column k, if all elements in 

column j are at least as large as those in column k. If a column is dominated, 
it can be deleted.  

 
• Dominated Row. A row i is said to dominate a row l, if all elements in row i 

are less than or equal to those in row l. If a row is dominated, it can be 
deleted. 

 
The rationale behind the three rules is as follows.  
 
In case of a unit row in, say, row i, with the “1” in position “j,” customer i can 
only be covered by locating a facility at node nj. Since it is required to cover all 
customers, we must locate a facility at node nj. Given that, we can then delete 
column j (there is no need to locate another facility at the same node) and all 
customers that have a “1” in column j, as the facility at node nj covers them and 
we are not concerned with them anymore.  
 
In case one column (i.e., potential facility location), say column j, has ones 
wherever another column, say column k, does, and possibly a few more, then a 
facility located at node nj will cover all customers that a facility at node nk could, 
and possibly a few more. As a result, we would never locate a facility at node nk, 
and hence it can be deleted.  
 
Finally, we say that row i dominates row l, if all entries of row i are less than or 
equal to those of row l. This means that if a facility covers customer i, then it also 
covers customer l, but not necessarily vice versa. Loosely speaking, this implies 
that customer i is more difficult to cover, so that we can delete the customer who 
is easier to cover.  
 
The individual rules can be applied repeatedly and in random order. If the 
reduction terminates with no matrix remaining, an optimal solution has been 
identified, and the problem is solved. If this is not the case, the reduced problem 
will then have to be solved by integer programming. 
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As an example, consider the network in Figure 6.1. 

 
Figure 6.1 

The matrix of shortest distances is  

 n1 n2 n3 n4 n5 n6 n7 n8 n9 
n1 0 5 11 14 6 12 14 20 18 
n2 5 0 6 9 7 11 15 19 13 
n3 11 6 0 9 11 5 16 13 7 
n4 14 9 9 0 8 4 16 12 16 
n5 6 7 11 8 0 6 8 14 17 
n6 12 11 5 4 6 0 14 8 12 
n7 14 15 16 16 8 14 0 7 9 
n8 20 19 13 12 14 8 7 0 16 
n9 18 13 7 16 17 12 9 16 0 

Given a covering distance of D = 10, the covering matrix is then 
 

 n1 n2 n3 n4 n5 n6 n7 n8 n9 
n1 1 1 0 0 1 0 0  0  0 
n2 1 1 1 1 1 0 0  0  0 
n3 0 1 1 1 0 1 0  0  1 
n4 0 1 1 1 1 1 0  0  0  
n5 1 1 0 1 1 1 1  0  0 
n6 0 0 1 1 1 1 0  1  0 
n7 0 0 0 0 1 0 1  1  1 
n8 0 0 0 0 0 1 1  1  0 
n9 0 0 1 0 0 0 1  0  1 
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It is apparent that there are no essential columns. As far as columns are concerned, 
column 2 dominates column 1 which, in turn, can be deleted. Considering the 
reduced matrix (i.e., the matrix after deleting column 1), we note that row 1 
dominates rows 2, 4, and 5, so that rows 2, 4, and 5 can be deleted as well. The 
reduced matrix is then 
 

 n2 n3 n4 n5 n6 n7 n8 n9 
n1 1 0 0 1 0 0 0 0 
n3 1 1 1 0 1 0 0 1 
n6 0 1 1 1 1 0 1 0 
n7 0 0 0 1 0 1 1 1 
n8 0 0 0 0 1 1 1 0 
n9 0 1 0 0 0 1 0 1 

 
We now repeat the procedure. First, there are still no essential columns. As far as 
dominated columns are concerned, we find that column 3 dominates column 4, but 
after the dominated column is deleted, there are no more dominated rows. The 
next reduced matrix is thus  
 

 n2 n3 n5 n6 n7 n8 n9 
n1 1 0 1 0 0 0 0 
n3 1 1 0 1 0 0 1 
n6 0 1 1 1 0 1 0 
n7 0 0 1 0 1 1 1 
n8 0 0 0 1 1 1 0 
n9 0 1 0 0 1 0 1 

 
We are now unable to find any further essential columns, dominated rows or 
columns. This means that we now have to solve this reduced problem by way of 
integer programming. In order to do so, we define binary variables yj which 
assume a value of 1, if a facility is located at node nj, and 0 otherwise. We are then 
able to formulate the (reduced) LSCP as the following integer programming 
problem. 
 
 LSCP: Min z = y2 + y3 + y5 + y6 + y7 + y8 + y9  
  s.t. y2 + y5 ≥ 1 
  y2 + y3 + y6 + y9 ≥ 1 
  y3 + y5 + y6 + y8 ≥ 1 
  y5 + y7 + y8 + y9 ≥ 1 
  y6 + y7 + y8 ≥ 1 
  y3 + y7 + y9 ≥ 1 
  y1, y2, …, y9 ≥ 0.  
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The objective function minimizes the number of facilities that are located, and the 
constraints ensure that at least one facility is located within reach of the 
(remaining) customers 1, 3, 6, 7, 8 and 9.  
 
First, we solve the problem as a linear programming problem, as often the solution 
is integer without us requiring it, a property sometimes referred to as “integer 
friendly.” In this example, the solution of the linear programming problem is  

2y = ½, 3y = ¼, 5y  = ½, 6y = ¼, 7y = ¾, and 098 == yy . The value of the 
objective function for this solution is z = 2¼. Including zero-one conditions for all 
variables results in the optimal solution 765 yyy == = 1 and all other variables 
zero, i.e., facilities should be located at the nodes 5, 6, and 7. However, this 
solution is not unique: other optimal solutions with three facilities locate them at 
2, 3, and 7, or at 3, 5 and 8, or at 2, 3 and 8.  
 
In order to further explore the problem, assume now that the distance standard is 
changed to D = 9. The covering matrix is actually identical to that found for  
D = 10. Suppose now that D = 8. The coverage matrix is then  
 

 n1 n2 n3 n4 n5 n6 n7 n8 n9 
n1 1 1 0 0 1 0 0  0  0 
n2 1 1 1 0 1 0 0  0  0 
n3 0 1 1 0 0 1 0  0  1 
n4 0 0 0 1 1 1 0  0  0  
n5 1 1 0 1 1 1 1  0  0 
n6 0 0 1 1 1 1 0  1  0 
n7 0 0 0 0 1 0 1  1  0 
n8 0 0 0 0 0 1 1  1  0 
n9 0 0 1 0 0 0 0  0  1 

 
There is no essential column. However, column 2 dominates column 1, and 
column 3 dominates column 9. As far as rows are concerned, row 1 dominates 
rows 2 and 5, row 9 dominates row 3, and row 4 dominates row 6. Column 3 is 
essential as it is the only facility location that can cover customers at node n9, so 
that we must locate a facility at n3. Column 3 and row 9 can then be deleted. This 
leaves us with the reduced matrix  
 

 n2 n4 n5 n6 n7 n8 
n1 1 0 1 0 0 0 
n4 0 1 1 1 0 0 
n7 0 0 1 0 1 1 
n8 0 0 0 1 1 1 
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Again, there is no essential column. However, column 5 dominates column 1 and 
4, and columns 7 and 8 are equal, so that we retain either one. Row 1 dominates 
rows 4 and 7, leaving us with 
 

 n5 n6 n7 
n1 1 0 0 
n8 0 1 1 

 
Now row 1 is a unit row, so that column 5 is essential. After removing it, columns 
6 and 7 are identical, so that a facility can be located at either site. In summary, we 
have now located facilities at n3, n5, and one of n6, n7, or n8. In other words, even 
with a distance standard of D = 8, three facilities are sufficient to cover all 
customers. Notice that it was not necessary to solve an explicit integer 
programming problem at all, the reduction rules alone were sufficient to solve the 
problem.  
 
If the distance standard is reduced further to D = 7, four facilities are necessary to 
cover all customers. These facilities will have to be located at n2, n3, n6, and n7, or 
at n3, n5, n6, n7, or at n2, n3, n6, n8, or at n3, n5, n6, n8.  
 
A further reduction of the distance to D = 6 results in five facilities being required 
to cover all customers. The facilities will be located at n6, n7, n8, n9, and either n1 
or n2.  
 
In case the distance standard is set to D = 5, we need six facilities to cover all 
customers. The facilities will be located at n1, n5, n6, n7, n8, and n9.  
 
For a distance standard of D = 4, we need no less than eight facilities. In 
particular, there will be a facility at each node, except for either node n4 or n6.  
 
Once the distance standard is D < 4, there must be a facility at each node.  
 
On the other hand, increasing the distance standard from the original D = 10 to  
D = 11, we can determine that only two facilities are needed to cover all 
customers. These facilities will be located at n5 and n7.  
 
Finally, for any distance standard D ≥ 14, only a single facility is needed to cover 
all customers. This facility will have to be located at the node n6. Note that this 
solution is unique.  
 
The results are summarized in Figure 6.2, which has the distance standard on the 
ordinate and the number of facilities required to cover all nodes at the abscissa.  
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Figure 6.2 

6.2.2 The Maximal Covering Location Problem  

In contrast to the location set covering problem discussed above, the Maximal 
Covering Location Problem (MCLP) does not attempt the task to cover all 
customers. Given a fixed number of p facilities, the task is to locate these facilities 
so as to cover the largest possible number of customers. In addition to the 
parameters defined in the previous section, we also need wi, which denotes the 
number of customers (or the magnitude of the demand) at node ni.  
 
As an illustration, consider again the example of the previous section with the 
assumption that exactly two facilities are to be located. Furthermore, let the 
covering distance be D = 10. The weights (i.e., the number of customers at a node) 
are given as follows:  
 

n1 n2 n3 n4 n5 n6 n7 n8 n9 
120 160 100 110 130 140 190 220 200 

 
In order to formulate the problem, we not only need the binary location variables 

j i i
assumes a value of one, if a customer at node ni is covered by at least one facility, 
and zero otherwise. The main reason for these additional variables is to avoid 
double counting. The formulation of our problem is then 
 
Max z = 120x1 + 160x2 + 100x3 + 110x4 + 130x5 + 140x6 + 190x7 + 220x8 + 200x9 
 
 s.t. y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 = 2 
 x1 ≤ y1 + y2 +y5  
 x2 ≤ y1 + y2 + y3 + y4 + y5  
 x3 ≤ y2 + y3 + y4 + y6 + y9  
 x4 ≤ y2 + y3 + y4 + y5 + y6  

y , but we also need coverage variables x , i = 1, …, n. A coverage variable x  
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 x5 ≤ y1 + y2 + y4 + y5 + y6 + y7  
 x6 ≤ y3 + y4 + y5 + y6 + y8  
 x7 ≤ y5 + y7 + y8 + y9  
 x8 ≤ y6 + y7 + y8  
 x9 ≤ y3 + y7 + y9  
 yj = 0 or 1 for all j and xi = 0 or 1 for all i. 
 
Each term in the objective function will count all customers at a node being 
covered, if and only if the node is covered by a facility. The main reason for the 
use of the covering variables xi is to ensure that customers who are covered by 
more than one facility will not be counted more than once. The first constraint 
ensures that exactly 2 facilities will be located. The remaining constraints define 
the coverage of a node. In particular, a node is considered covered, if there is at 
least one facility within covering distance. In this example, consider the node n1. 
This node could potentially be covered from a facility at node n1, n2, or n5. Its 
covering constraint is x1 ≤ y1 + y2 + y5, which ensures that if there is no facility at 
either n1, n2, or n5, then the right-hand side value of the constraint equals zero, 
which forces the variable x1 to assume a value of zero as well. On the other hand, 
if there exists at least one variable at any one of the three nodes, the right-hand 
side value of the inequality is at least one, which renders it redundant, as x1 is 
defined as a zero-one variable anyway. However, while x1 could assume a value of 
either zero or one in such a case, the objective function includes the term 120x1 
which is part of what is to be maximized. This pushes the value of x1 to as large a 
value as possible, so that it will assume a value of “1,” whenever possible.  
 
The optimal solution of the problem is 75 yy = = 1, meaning that we will locate 
facilities at the nodes n5 and n7. All coverage variables except x3 equal one, and 
the value of the objective function equals 270,1=z . This approach is viable for 
smaller problems, but may fail for large problems due to the large number of 
variables (which equals twice the number of nodes in the underlying network). So, 
rather than solving the problem exactly, we may resort to a heuristic algorithm 
that may, of course, not necessarily find an optimal solution. The heuristic we use 
below is of the Greedy type in that it locates one facility at a time and in each step 
it does so by locating the next facility, so as to maximize the number of additional 
customers that are covered in that step. Being a heuristic, the myopic Greedy 
procedure may not necessarily find an optimal solution.  
 
The number of customers that are covered by a single facility located at one of the 
nodes can then be determined by multiplying the coverage matrix by the vector of 
weights from the left, i.e., compute wC(D). The j-th component of the resulting 
vector indicates the number of customers that will be covered if a facility were to 
be located at the node nj. In our example, we obtain  
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= [410, 620, 710, 640, 850, 700, 740, 550, 490]. The facility that serves most 
customers is one that is located at n5, from where it covers 850 customers. Since 
these customers are covered, we can most easily avoid double counting by 
deleting the rows that belong to nodes, which are already covered by a facility at 
n5. In our example, these are the nodes n1, n2, n4, n5, n6, n7. Deleting column n5 as 
well (as we have already located a facility there), the reduced coverage matrix is  
 

 n1 n2 n3 n4 n6 n7 n8 n9 
n3 0 1 1 1 1 0  0  1 
n8 0 0 0 0 1 1  1  0 
n9 0 0 1 0 0 1  0  1 

 
Multiplying this matrix with the remaining vector of weights [100, 220, 200] from 
the left, we obtain [0, 100, 300, 100, 320, 420, 220, 300], whose unique maximum 
is in the position that belongs to n7. That way, we cover an additional 420 
customers and we can now delete the rows that belong to nodes n8 and n9 as well 
as the column of n7. Since we have now exhausted our resources in the form of 
two facilities, customers at n3 will remain unserved and we have succeeded 
covering a total of 850 + 420 = 1,270 customers by locating the two facilities at 
nodes n5 and n7. This, as we happen to know, is the optimal solution.  
 
Typically, a construction heuristic such as Greedy will be followed by an 
improvement heuristic. One such improvement heuristic is the swap-interchange 
improvement heuristic. The idea is simple: in each step one facility is removed 
from its present location and it is relocated to a site, at which there presently is no 
facility. If such a move increases coverage, it is accepted, otherwise the search for 
better solution continues until some stop criterion is satisfied.  
 
We will illustrate this procedure by using again the example shown above. However, 
since the Greedy heuristic already found an optimal solution, start with some other 
nonoptimal solution. Suppose that we locate facilities at nodes n3 and n6. The two 
facilities cover customers at the nodes n2, n3, n4, n6, and n9 and n3, n4, n5, n6, and 
n8, respectively, so that all customers except those at nodes n1 and n7 are covered.  
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We first try to remove a facility from its present location at n3 and move it to n1 
instead. Such a move means that we lose coverage of customers at n2 and n9 for a 
loss of 360 demand units, while the facility at the new location will cover 
customers at n1, n2, and n5 (of whom customers at n5 were already covered by the 
facility at n6), so that we gain 280 new customers. This indicates that our move 
results in a net loss of 80 customers, so that the move is rejected.  
 
Instead, we may try to relocate a facility from n3 to n2. A similar argument will 
reveal the same loss of 80 customers, so this move is also rejected.  
 
Yet another possibility is to relocate the facility from n3 to n4. This move results in 
a net loss of 200 customers, so again, the move is rejected.  
 
Consider now the relocation of a facility from n3 to n5. Again, the loss of 
customers due to the removal of a facility from n3 equals 360 customers, while the 
relocation of the facility at n5 will cover the previously uncovered customers at n1, 
n2, and n7 for a gain of 470 customers, so that there is a total net gain of 110 
customers. This means that the move is accepted, so that the new solution has 
facilities located at n5 and n6. This process is repeated until no further 
improvements are possible. Again, the swap method is a heuristic and as such is 
not guaranteed to find an optimal solution.  
 
We would like to conclude this section with a number of extensions of the basic 
covering models discussed above. One possibility to deal with outliers (whose 
coverage is very expensive) is to attempt to cover at least a certain proportion of 
the population within a prespecified distance or time. For instance, one could 
attempt to locate fire stations that has 90% of the potential customers within 8 
minutes of the station.  
 
Another important issue concerns congestion. Especially when resources are 
scarce (e.g., ambulances), an important issue is what happens if a service call 
arrives while the unit is presently busy. A possible way to deal with such 
situations is the introduction of backup coverage. In other words, the decision 
maker may try not just to cover each potential customer once, but try to cover a 
certain proportion of customers more than once. The obvious question then 
concerns the tradeoff between primary coverage for some people versus backup 
coverage for others.  

6.3   Center Problems 
Another classical problem type comprises the so-called center problems. The 
basic idea of all center problems is that they locate facilities so as to minimize the 
longest distance between a customer and his closest facility. The underlying logic 
of center problems is based on Rawls’s “Theory of Justice,” according to which 
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the quality of a solution depends on the least well-served entity. One of the problems 
associated with the concept of centers is their exclusive focus on the customer 
with the longest facility–customer distance. This can lead to highly undesirable 
outcomes.  
 
All center problems have an objective that minimizes the maximal (i.e., longest) 
distance between the facility and any customer. In case of problems that involve 
multiple facilities, the center objective minimizes the maximal distance between 
any customer and its nearest facility.  
 
Throughout this section, we assume again that all demand is clustered at the nodes 
of the network (or at given points in the plane). We can then distinguish between 
node centers, which are facility locations for which only the nodes are considered, 
and absolute centers, in which case facilities may be located anywhere on the 
network (including on arcs) or in the plane.  
 
The need for this distinction is apparent by considering a graph with only a single 
arc, at whose edges we have the nodes n1 and n2. Either node would serve as a 
single node center (whose critical distance, i.e., the distance from the facility to 
the farthest customer) equals the length of the arc. However, the point on the 
graph that minimizes the maximal distance is at the center of the arc, from where 
the longest distance to either customer is only half the length of the arc.  

6.3.1 1-Center Problems 

The simplest center problem is the 1-node center problem on a network. The 
problem is to find a facility location, so as to minimize the maximal distance 
between the facility and any of the customers. As an illustration, consider again 
the graph in Figure 6.1 in the previous section.  
 
Recall that the matrix of shortest distances was  
 

 n1 n2 n3 n4 n5 n6 n7 n8 n9 
n1 0 5 11 14 6 12 14 20 18 
n2 5 0 6 9 7 11 15 19 13 
n3 11 6 0 9 11 5 16 13 7 
n4 14 9 9 0 8 4 16 12 16 
n5 6 7 11 8 0 6 8 14 17 
n6 12 11 5 4 6 0 14 8 12 
n7 14 15 16 16 8 14 0 7 9 
n8 20 19 13 12 14 8 7 0 16 
n9 18 13 7 16 17 12 9 16 0 

 
Again, the rows symbolize the customers, while the columns stand for the 
facilities. If we were to position a facility at node n1, then the distances between 
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the customers and the facility would be found in the first column. The longest 
such distance is then the largest number in the first column, in our case 20.  
 
A simple brute-force enumeration procedure now suggests itself for the determination 
of a 1-node center on graphs: tentatively locate a facility at a node, determine the 
distance to the farthest customers, repeat for all potential facility locations, and 
choose the shortest distance. In other words, determine all column maxima in the 
matrix, and chose the 1-center facility location as the column with the shortest 
such distance. In our example, the column maxima are [20, 19, 16, 16, 17, 14, 16, 
19, 18], so that the 1-node center is located at node n6 and the longest facility–
customer distance is 14.  
 
Consider now the 1-absolute center problem in the plane with Manhattan 
distances. This problem has a very simple closed-form solution. Assume that the n 
customers are located at the points P1, P2, …, Pn with coordinates (a1, b1), (a2, b2), 
…, (an, bn), and that the facility will be located at a point with the coordinates  
(x, y). Note that regardless of the number of customers, the problem has only two 
variables, viz., x and y.  
 
In order to solve the problem, we need to define five auxiliary variables. They are  
 

α1 = }{max ii
i

ba +  

α2 = }{max ii
i

ba +−  

α3 = }{max iii
ba −  

α4 = }{max iii
ba −−  

α5 = max {(α1 + α4), (α2 + α3)}. 
 
The 1-absolute center is then located at (x, y) with coordinates 
 
 x = ½(α3−α4) and y = ½(−α3−α4+α5) with longest distance z = ½α5, 
 
and, alternatively, 
 
 x = ½(α1−α2) and y = ½(α1+α2−α5) with longest distance z = ½α5.  
 
As a numerical example, consider a problem with six customers, who are located 
at the points P1: (0, 0), P2: (0, 3), P3: (1, 6), P4: (4, 5), P5: (4, 2), P6: (5, 0). We can 
then calculate  
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 α1 = max {0+0, 0+3, 1+6, 4+5, 4+2, 5+0} = 9,  
 α2 = max {−0+0, −0+3, −1+6, −4+5, −4+2, −5+0} = 5,  
 α3 = max {0−0, 0−3, 1−6, 4−5, 4−2, 5−0} = 5,  
 α4 = max {−0−0, −0−3, −1−6, −4−5, −4−2, −5−0} = 0, and  
 α5 = max {(9 + 0), (5+5)} = 10.  
 
The 1-absolute center facility location is then at  
 
 x = 2½ and y = 2½ with z = 5, or, alternatively, x = 2, y = 2, with z = 5.  
 
The Manhattan distances between the individual customers and the facility are 5, 
3, 5, 4, 2, and 5 in case the facility is located at (2½, 2½), and they are 4, 3, 5, 5, 2, 
5 in case the facility is located at (2, 2). It is apparent that the longest customer-
facility distance equals 5 in both cases.  

6.3.2 p-Center Problems  

This subsection considers node p-center problems in networks. The objective of  
p-center problems is to locate a given number p of facilities, so that the longest 
distance between any customer and its closest facility is as small as possible. 
While, from a theoretical point of view, p-center problems are difficult, a simple 
bisection method can be employed to solve p-center problems as a sequence of 
covering problems.  
 
The method commences with an initial guess of the covering distance D. We then 
determine the smallest number of facilities required to cover all nodes given D. 
The model to do so is, of course, the location set covering problem. Suppose that 
the number of facilities required to cover all customers is p(D). If p(D) > p, then D 
has to be revised upward; if p(D) ≤ p, then D can be decreased. This process 
continues until a covering distance is found that cannot be reduced any further 
without requiring additional facilities.  
 
The initial interval ];[ DD  must be sufficiently large to include the optimal 

solution. An obvious choice of the lower bound is 0=D , while }max{)1( ijdnD −=
 

with the maximum taken over all edges in the network, is an upper bound on the 
length of the longest path in the network. The reason is that no path in the network 
can have more than (n−1) edges, and the length of each arc is no more than that  
of the longest arc. Once lower and upper bounds on the covering distance are 
determined, we apply a bisection search. This process can be described as follows.  
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First we bisect the present interval ],[ DD  and choose a covering distance D in the 
center of this interval. In particular, we choose  We then solve a 
location set covering problem with the service standard D. The resulting number 
of facilities required to cover all nodes is denoted by p(D). If p(D) ≤ p, then we 
reduce the upper bound of the interval ],[ DD  to DD = , otherwise we move up 
the lower part of the interval to 1+= DD . Whenever the lower and upper bounds 
of the interval are equal, we have found the optimal solution, in which case the 
last-solved covering problem provides the location pattern of the facilities. As 
long as DD ≠ , we determine a new covering distance D on the basis of the 
interval ],[ DD  with a new lower or upper bound. Then a new covering distance D 
is computed as the center point of this interval and the procedure is repeated.  
 
As a numerical illustration, consider the network in Figure 6.3 and assume that  
p = 3 facilities are to be located.  
 

 
 

Figure 6.3 
 
We initialize the computations with a lower bound of D  = 0 and an upper bound 
of D = 7(9) = 63. Bisecting the interval results in the trial value of D = 31, for 
which the set covering problem has a solution of p(D) = p(31) = 1, i.e., a single 
facility, located anywhere, will cover all the nodes. As p(31) = 1 < 3 = p, we set 
D := 31.  
 
The results of the subsequent iterations are summarized in Table 6.1.  

⎣ ⎦DD +(½D:=
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Table 6.1: Bisection search to find a p-center solution in the example 
 

Iteration 
# 

D          D         D         p(D) Location 

1 0 63 31 1 anywhere 
2 0 31 15 1 anywhere  
3 0 15   7 2 1 8 2 7 3 6
4 0   7   3 5 n1, n3, n4, then n7, and one of n1 

and n6 
5 4   7   5 2 (n1, n5), or (n1, n ) 
6 4   5   4 3 e.g., n1 and n5, and one of n3 and 

n8  
7 4   4   4  Stop, optimal.  

6.4   Median Problems 
As opposed to the center problems with their minimax objective discussed in the 
previous section, this section is devoted to median problems which have minisum 
objectives. In other words, they will locate facilities, so as to minimize the sum of 
distances to the customers. This feature makes this type of objective amenable to 
applications in the public and the private sector. Consider, for instance, the 
location of a public facility such as a library. The municipal planner will attempt 
to make the library as accessible as possible to all of its potential patrons. This 
may be done by minimizing the average distance between the library and its 
customers. It is not difficult to demonstrate that as long as the magnitude of the 
demand remains constant, minimizing the sum of facility-customer distances is 
the same as minimizing the average facility-customer distance.  

6.4.1 Minisum Problems in the Plane 

Throughout this section, we assume that the task is to locate a single new facility 
anywhere in the plane. The n customers are assumed to be located at points P1, P2, 
…, Pn with coordinates (ai, bi) and their demand is denoted by the weight wi. The 
task at hand is now to locate a facility, whose coordinates are the variables (x, y). 
Note that regardless of the number of customers in the problem, the model has no 
more than two variables. As discussed above, the objective is to minimize the 
weighted sum of customer-facility distances, a proxy of the total cost of the 
transportation. This type of problems (in the plane) is frequently referred to as 
Weber problem in reference to the work by the German economist-turned sociologist 
Weber (1868 – 1958) that culminated in the publication of his book in 1909. 
 
The simplest problem occurs when rectilinear distances are used. The objective 
function is then separable, meaning that it is possible to optimize one variable at a 
time. It turns out that the actual distances are irrelevant, it is only important how 
the customers are located in relation to each other, but not how far from each 

 

 

 

 
8

e.g., (n , n ), or (n , n ), or (n , n ) 
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other. Actually, the procedure is very simple. We first scan the customers from 
left to right (or right to left) along the abscissa and add their weights, until the sum 
of weights for the first time matches or exceeds half of the total weight. We then 
repeat the process by scanning the facilities and adding their weights from top to 
bottom (or bottom to top), until again the reach or exceed half the total weight for 
the first time. The combination of the two coordinates is the location that 
minimizes the sum of weighted rectilinear distances.  
 
In order to illustrate the procedure, consider twelve customers P1, P2, …, P12, 
whose locations are (a1, b1), (a2, b2), …, (a12, b12) and their weights are w1, w2, .., 
w12. The numerical values of the coordinates and weights are shown in Table 6.2.  
 

Table 6.2: Locations and weights of customers in the example 
 

Point Pj P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 

ai 2 1 2 4 5 4 3 5 8 10 9 7 
bi 1 4 5 2 4 6 7 9 9 10 5 2 
wi 20 20 10 10 50 30 40 60 70 80 50 60 

 
The arrangement of customers can be visualized in Figure 6.4.  
 

 
Figure 6.4 

 
First scan the abscissa. From left to right, customers can be rearranged as P2, then 
P1 and P3, then P7, followed by P4 and P6, then P5 and P8, and so forth. Adding up 
weights in that order results in 20 + (20 + 10) + 40 + (10 + 30) + (50 + 60) + … + 
80. Given that the total weight, i.e., the total demand of all customers, equals 500, 
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we need to add up these values until, for the first time, they reach or exceed the 
value of 500/2 = 250. This happens for customer P12 at the value x = 7. (The same 
result is achieved if we were to add up values starting from the right). This 
procedure is now repeated for the ordinate by adding up weights from either 
bottom to top or top to bottom. From the bottom, we add 20 + (10 + 60) + (20 + 
50) + (10 + 50) + 30, at which point we have reached the value of 250. This 
occurs for customer P6 at y = 6, so that this is the optimal coordinate.  
 
However, since the critical value of 250 was achieved exactly, there are alternative 
optimal solutions. If we had added up weights from top to bottom, we would have 
achieved the value of 250 for customer P7 at the coordinate y = 7, which is also 
optimal. As a matter of fact, not only are the two points (x, y) = (7, 6) and (7, 7) 
optimal, all points with x = 7 and y between 6 and 7 are optimal. The value of the 
objective function can then be determined by computing the customer-facility 
distances for all customers, multiplying them by the appropriate weights, and 
adding them up. In our example, for the optimal location at (7, 6) we obtain the 
total weighted distance 20(10) + 20(8) + 10(6) + 10(7) + 50(4) + 30(3) + 40(3) + 
60(1) + 70(4) + 80(7) + 50(1) + 60(4) = 2,090.  
 
Consider now the same example as before, but with the weights of P5 and P12 
interchanged, i.e., w5 = 60 and w12 = 50. Now the optimized location is between  
5 and 7 on the abscissa, and between 6 and 7 on the ordinate, so that all locations 
in the rectangle with the corners at (5, 6), (5, 7), (7, 7), and (7, 6) are optimal.  
 
Another model works with the same scenario and also minimizes the sum of 
weighted distances. However, it uses squared Euclidean distances instead of 
rectilinear distances. Again, the objective function turns out to be separable, so 
that we are able to optimize for our variables x and y separately. Since these 
variables are continuous, we can take partial derivatives, set them equal to zero, 
and solve for the variables x and y. This process results in an optimal solution in 
which the x-coordinate of the facility equals the sum of weighted x-coordinates of 
the customers divided by the total weight, and similar for the y-coordinates. The 
solution obtained by using squared Euclidean distances is the center-of-gravity of 
the given points. As a numerical illustration, consider again the above example 
with data shown in Table 6.1. Here, we obtain the optimal facility location at x  = 

602020
)60(7)20(1)20(2

++
+++

L

L = 3,140/500 = 6.28. The optimal y-coordinate is determined 

in a similar fashion as y  = 3,170/500 = 6.34. Note the difference between this 
solution and that obtained by using rectilinear distances: despite the strong pull of 
the customers with large weights in the Northeast corner, the solution that uses 
squared Euclidean distances locates the facility more towards the Southeast than 
the solution that uses rectilinear distances. This is due to the fact that by squaring 
distances, long distances receive a heavy emphasis and the minimization function 
will try to avoid them. In that sense, a minisum objective with squared Euclidean 
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those of the minimax objective.  
 
Using Euclidean distances, we can apply a similar approach. However, the objective 
function is no longer separable. Setting partial derivatives to zero, we obtain the 
optimality conditions 
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Notice that in these two relations, the variables x and y appear on the left-hand 
sides as well as on the right-hand sides. A “trick” first devised by Weiszfeld in 
1937 is to use these relations in an iterative procedure. It starts with a guess (x, y), 
inserts it on the right-hand side of the equations, computes new values for x and y 
on the left-hand side, uses these values on the right-hand side to compute new 
values on the left, and so forth.  
 
As a starting point, it may be a good idea to use the center-of-gravity or the 
solution given rectilinear distance. In order to demonstrate the Weiszfeld method, 
consider the following numerical  
 
Example: There are three customers at the points P1, P2, and P3 with coordinates 
(0, 0), (3, 0), and (0, 5), respectively. The demands of the customers are w1 = 30, 
w2 = 20, and w3 = 40. As a starting point, we use (x, y) = (5, 5), even though this is 
quite an unreasonable initial point. The reason is that the optimal solution will 
always be located in the triangle formed by the customers, and our starting point is 
not. We have chosen this point to demonstrate that normally—there are 
counterexamples, though—this technique converges very quickly. Before starting, 
note that using rectilinear distances in this example results in an optimal facility 
location at (0, 0), while squared Euclidean distances will locate the facility at  
(⅔, 9

22 ).  
 
Given a starting point with coordinates x = 5 and y = 5, we compute the next trial 
point at  
 

222222

222222

)55()50(

40

)50()53(

20

)50()50(

30
)55()50(

)40(0

)50()53(

)20(3

)50()50(

)30(0

−+−
+

−+−
+

−+−

−+−
+

−+−
+

−+−
=x  ≈ .6982,  

distances will find a solution that includes features of the usual minisum, and also 
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and  
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=y ≈ 2.5068.  

 
Given the new trial point (x, y) = (.6982, 2.5068)—which, incidentally, is quite 
similar to the center-of-gravity determined earlier—we can then compute the next 
trial point in similar fashion. It turns out to be (x, y) = (.5366, 2.3512), which is 
quite close to the previous solution. This procedure terminates whenever some 
stop criterion is satisfied, e.g., there is only a small change in the solution or the 
value of the objective function.  
 
A good tool that allows us envisage the forces that determine the solution is the 
Varignon frame named after the French mathematician Varignon, 1654-1722. 
Imagine a board, in which holes have been drilled at the points at which customers 
are located. One string is fed through each hole and all strings are tied together in 
one knot. Below the board, weights are attached to the strings, such that the 
weights are proportional to the demand of the respective customer. Given only 
gravity and in the absence of friction, the knot will then settle at the optimal point. 
A graph of the Varignon frame is shown in Figure 6.5.  
 

 
 

Figure 6.5 
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6.4.2 Minisum Problems in Networks 

Consider now the location of a single new facility on a network. The facility 
location that minimizes the sum of weighted customer–facility distances is usually 
referred to as a 1-median. An obvious extension of the 1-median problem is the p-
median problem that locates p facilities so as to minimize the sum of distances 
between all customers and their respective closest facilities.  
 
The main result we will use is due to Hakimi (1964), who proved the following  
 
Theorem 6.1: At least one optimal solution of a p-median problem is located at a 
node.  
 
Given this result, we no longer have to search for an optimal solution anywhere on 
an arc, but can restrict ourselves to the nodes of the network. In that sense, this 
theorem is reminiscent of Dantzig’s corner point theorem that also restricted the 
set of possible locations from an infinite set to a finite set.  
 
First consider the case, in which the decision maker’s task is to determine a  
1-median in a network. We assume that the matrix of shortest paths has already been 
determined. Assuming that the matrix D = (dij) includes the lengths of the shortest 
paths between all pairs of nodes, and the vector w = (wi), we now use Hakimi’s 
theorem and compute the costs for all potential facility locations at the nodes of 
the network. This can be accomplished by vector-matrix multiplication. In other 
words, determine the vector wD, which includes in its j-th element the total 
transportation cost (i.e., weighted distance) from all customers to a facility located 
at node j. As an illustration consider the following  
 
Example: The graph in Figure 6.6 includes the single-digit node-to-node (direct) 
distances next to its edges and double-digit weights next to its nodes.  
 

 
Figure 6.6 
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The matrix of shortest path distances is then 
 

   n1  n2  n3  n4  n5 
 n1   0   5   3   5   5 
D: n2   5   0   8 10 10 
 n3   3   8   0   2   2 
 n4   5 10   2   0   4 
 n5   5 10   2   4   0 

 
while the vector of demands is w = [60, 40, 20, 50, 30]. Multiplying the vector 
and the matrix results in wD = [660; 1,260; 660; 860; 940]. This means that if we 
were to locate a facility at, say node n4, then our total transportation costs would 
be 860. Choosing the minimum in this cost vector reveals that we should either 
locate at node n1 or at node n3; in both cases the total transportation costs are 660. 
In order to choose between the two alternatives, the decision maker may use 
secondary criteria.  
 
Arguably, p-median problems are among the most researched location models in 
practice. Since they are difficult to solve, most large-scale problems will be solved 
by heuristic algorithms. This section will describe one construction heuristic and 
two improvement heuristics.  
 
As usual, the Greedy heuristic works in sequential fashion. In the first stage, it 
computes the weighted transportation costs for tentative locations at all nodes, and 
then permanently locates a facility at the node that allows the transportation at the 
lowest cost. This is exactly the same step as that in the exact method that locates a 
single facility, i.e., the 1-median on a network.  
 
Suppose now that a number of facilities have already been permanently located 
and the Greedy heuristic attempts to locate an additional facility. This is 
accomplished by tentatively locating a new facility at one (presently unoccupied) 
node at a time. Suppose we tentatively locate a new facility at node nj. The 
method will then compute the shortest distance between each customer at node ni 
and the closest facility that either exists already or is proposed (at nj). These 
distances will be collected in the column vector dj. The weighted distance is then 
computed by multiplying the weights and these distances, i.e., wdj. This number 
expresses the total transportation costs that are incurred if we, in addition to the 
already existing facilities, locate a new facility at node nj. This process is repeated 
for all possible tentative location, and the minimum is chosen. The location of the 
new facility is then made permanent and the process continues until the desired 
number of facilities has been located.  
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We will illustrate this procedure by a numerical  
 
Example: Consider again the network in Figure 6.6 and assume that the task is to 
locate p = 3 facilities, so as to minimize the total transportation costs. The matrix 
of shortest distances D was already determined in the previous section, and so 
were the vector of weights w and the cost vector wD = [660; 1,260; 660; 860; 
940]. Again, we choose to locate at either node n1 or at node n3. Arbitrarily choose 
node n1.  
 
We now tentatively locate the second facility at the nodes n2, n3, n4, and n5. For 
the trial location at the node n2, we now have facilities at n1 and n2, so that the 
distances between a customer and the closest of our facilities is found by taking 
the minima of columns 1 and 2 in the distance matrix. Here, we obtain d2 = [0, 0, 
3, 5, 5]T, so that wd2 = 460. For the trial location at n3, the shortest customer–
facility distances are found by computing the minimum among columns 1 and 3 in 
the distance matrix D, resulting in d3 = [0, 5, 0, 2, 2]T, so that wd3 = 360. 
Similarly, we compute d4 = [0, 5, 2, 0, 4]T with wd4 = 360, and d5 = [0, 5, 2, 4, 0]T 
with wd5 = 440. Among those trials, the lowest location costs are found at either 
node n3 or at node n4. Again, we arbitrarily break the tie and choose a facility 
location at n3.  
 
We now have facilities permanently located at the nodes n1 and n3. In this 
iteration, we tentatively locate facilities at n2, n4, and n5, one at a time. For a trial 
location at n2, we have locations at n1, n2, and n3, so that we determine the shortest 
customer-facility distances by computing the minima in the first three columns. 
This results in d2 = [0, 0, 0, 2, 2]T and wd2 = 160. Similarly, the trial facilities at n4 
and n5 result in distances and total transportation costs of d4 = [0, 5, 0, 0, 2]T with 
wd4 = 260 and d5 = [0, 5, 0, 2, 0]T with wd5 = 300. The lowest costs are found for 
the tentative location at n2, which is now made permanent. Since we have now 
located all available facilities, the process terminates with facilities located at n1, 
n2, and n3. The total transportation costs are then 160.  
 
If we had broken the tie for the first facility in the same way and located at n1, but 
chose n4 for the second facility, we would have ended up with facilities located at 
n1, n2, and n4 for total costs of 140. On the other hand, if we had broken the tie for 
the location of the first facility in favor of n3, we would have ended up with 
facilities located at n1, n2, and n3 with total transportation costs of 160, the same 
location pattern as that determined earlier. Notice that none of the tie-breaking 
rules has been proved superior.  
 
As usual, any construction heuristic should be followed by an application of an 
improvement heuristic. In this chapter, we will describe two techniques. The first 
heuristic we apply is the so-called location-allocation heuristic. Simply put,  
it alternates between  location and allocation steps. In particular, the technique is  
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initialized with any solution. The better the solution the procedure starts with, the 
better the solution may be expected to turn out (although not necessarily so). 
Suppose now that any facility location with the required p facilities has been 
determined by eyeballing, an application of the greedy method, or any other 
technique. The first step of the heuristic is then the allocation phase. In it, we 
simply assign each customer to its closest facility. This results in p clusters, each 
with a single facility. In the location phase, we then consider one cluster at a time, 
remove the facility from it, and determine an optimal facility location in it. This 
new facility location may or may not be equal to the previous location of the 
facility. This process is repeated for all clusters.  
 
If there has been any change regarding the facility locations in the last step, the 
procedure is repeated, until there are no further changes.  
 
Example: Consider again the above example and suppose that facilities have been 
located at n3, n4, and n5. The transportation costs for this location pattern are 500. 
Allocating each customer to its closes facility results in clusters {n1, n2, n3} for the 
facility at n3, {n4} for the facility at n4, and {n5} for the facility at n5. The location 
phase of the heuristic method begins by considering the first cluster. The weights 
of the customers at n1, n2, and n3 are w* = [60, 40, 20], and the partial distance 
matrix for the three nodes is  
 

  n1 n2 n3 

D*= n1 0 5 3 
 n2 5 0 8 
 n3 3 8 0 

 
Computing the total costs for all three potential facility locations in this cluster 
(i.e., determine a new single facility in this cluster as shown in the previous 
section), we obtain 260, 160, and 500, so that we choose the node n2 as the new 
facility location in this cluster. The other two clusters include only one node each, 
so that relocation is not possible. Thus the new location pattern includes facilities 
at the nodes n2, n4, and n5.  
 
Given these facility locations, the new clusters have {n1, n2} assigned to the 
facility at n2, {n3, n4} assigned to the facility at n4, and {n5} assigned to the facility 
at n5. The first cluster has weights w* = [w1, w2] = (60, 40) and with a distance 

matrix of D* = ⎥
⎦

⎤
⎢
⎣

⎡
05
50

, we obtain costs of w*D* = [200, 300], so that the facility 

will be relocated to n1 with a partial cost of 200. The weight and distance matrix 
for the second cluster are w* = [w3, w4] = [20, 50], and the distance matrix is D* = 

⎥
⎦

⎤
⎢
⎣

⎡
02
20

, so that the transportation costs for the two potential facility locations in 
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this cluster are w*D* = [100, 40], meaning that the facility is again located at 
node n4 with a partial cost of 40. The last cluster only includes a single node, so 
that the facility is located at n5 in that cluster with partial costs of 0. The total costs 
of this location arrangement are then 200 + 40 + 0 = 240.  
 
The next iteration starts with the present facility locations at n1, n4, and n5. The 
allocation phase results in the clusters {n1, n2}, {n3, n4}, and {n5}, which are the 
same clusters as in the previous iteration. This means that the procedure has 
terminated with facilities located at n1, n4, and n5 with total transportation costs of 
240. Notice again that this solution is not optimal.  
 
The second heuristic we describe in this chapter is the so-called vertex substitution 
method, a technique that employs a simple “swap” step. Again starting with any 
location arrangement of the required p facilities. In each iteration, the method 
tentatively moves one of the facilities from its present location to an unassigned 
location. If the swap reduces the total transportation costs, we have a new 
solution, and the process continues. Otherwise, we continue with another pair of 
locations. The process terminates, if no swap reduces the costs any further.  
 
Example: Consider again the above example and initialize the method with the 
facilities located at the nodes n3, n4, and n5. Moving a facility from n3 to n1 results 
in a cost reduction from 500 to 240, so the move is made and the new solution has 
facilities locate at n1, n4, and n5. Moving a facility from n1 to n2 raises the costs to 
340, so the move is not made. Moving a facility from n1 to n3 increases the costs 
to 500, and again, the move is not made. The move of a facility from n4 to n2 
leaves the cost at 240, so a tie-breaking rule must be used. Here, we keep the 
facilities at their present locations. Moving a facility from n4 to n3 increases  
the cost to 300, so the move is not made. Moving a facility from n5 to n2 decreases 
the costs to 160, so we make the move and have a new location arrangement with 
facilities located at nodes n1, n2, and n4. The procedure is repeated until no further 
improvements are possible.  

6.5   Other Location Problems  
This section is designed to introduce some additional types of location models that 
have been discussed in the literature. The first such models deals with undesirable 
facilities. While it appears apparent that facilities such as sewage treatment plants, 
landfills, power plants, or prisons are undesirable to have in the neighborhood of a 
residential area, things are more subtle than that. As a matter of fact, just about all 
facilities have desirable and undesirable features. Take, for instance, a hospital. 
Few people will argue that it would be great to have such a facility nearby, the 
wailing sirens of ambulances that can and will be turned on at any time of day or 
night will surely be considered a nuisance. A similar argument applies to facilities 
such as prisons: whereas few people would like to have them nearby (other than
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maybe to visit relatives), the many employees who work in these facilities would 
not appreciate having them at a great distance from their home.  
 
Modeling of the location of undesirable facilities can be done in two different 
ways. We either use the standard cost-minimizing objective and define “forbidden 
regions,” in which facilities cannot be located, or we use an objective function that 
pushes the facilities away from the customers, rather than pulling them towards 
them as cost-minimizing objectives do. There are a number of problems related to 
both approaches. Using forbidden regions in networks is easy: if it is not desirable 
or permitted to locate a facility at a node, we simply do not define a location 
variable yj for that node (or, equivalently, set the location variable to zero). The 
process is much more complicated in the plane, where the forbidden regions must 
be defined as system of linear or nonlinear inequalities. Using a “push” objective 
is not a straightforward process, either: first of all, if we optimize on an 
unconstrained set, such an objective would attempt to push the facilities towards 
infinity, which is obviously not reasonable. This means that it will be required to 
define a feasible set, in which all facilities must be located. Again, the objective 
that maximizes the weighted sum between customers and facilities will tend to 
have the facilities locate at the border of the feasible set. A good example of this 
behavior is the location of nuclear power plants in France, many of which have 
been sited along the Rhine river, i.e., the border with Germany. Another problem 
is that simply exchanging the “Min” for a “Max” in the objective function will not 
suffice. The reason is that the usual cost-minimizing objective will automatically 
assign a customer to his nearest facility, which is reasonable in almost all relevant 
contexts. Similarly, a maximization objective, the objective will automatically 
assign a customer to his farthest facility, which does not make sense in most 
cases: customers are most affected by the nearest undesirable facility (as its effects 
will be most pronounced on the customer), rather than the farthest facility. In 
order to ensure that the effects of the closest facility are measured and counted 
towards the objective (e.g., the overall pollution level on the population), 
additional constraints are required. They result in fairly large formulations for 
even small problems, thus necessitating the use of heuristic algorithms.  
 
Another strand of work deals with location models that have “equity” objectives. 
The idea is to locate facilities, so as to make them as equally accessible to all 
(potential) customers. Models of this nature have a variety of difficulties 
associated with them. First of all, it is not obvious what “equity” is. Dictionaries 
will define it as “fairness,” a concept just as vague. The location models in this 
category all deal with equality, rather than equity. More precisely, they attempt to 
locate facilities, so as to make the shortest customer-facility distances (i.e., the 
usual assignments) as equal as possible. Many measures for equality have been 
described: the range (i.e., the difference between the shortest and the longest of 
any customer-facility distances), the variance of these distances, the Lorenz curve 
(a tool that economists use to display income disparities), and the related Gini 
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index. It is important to realize that “equity” objectives should always be coupled 
with an efficiency objective, as otherwise, they tend to result in degenerate 
solutions. As an example, consider two customers located at the ends of a line 
segment, and a third customer who is just below the center of that line segment. 
The optimal solution for any single-facility location problem with equity objective 
has the facility located at the center of the circle, on whose circumference all three 
customers lie. This point can be very far away from the customers and, worse, as 
the facility moves closer all customers benefit (as all customers are now closer to 
the facility), but the solution is less equal. This is clearly undesirable and can only 
be avoided, if some efficiency objective is considered as well.  
 
Another active area of research concerns the location of hubs. Hubs are an 
essential concept in a number of industries, most prominently the airline industry. 
Typically, airline flights between an origin and a destination are routed through 
one or two hubs. The inconvenience of having change planes once or twice is 
acceptable due to the fact that without hubs, many origin-destination pairs would 
not permit any flights between them due to low traffic volume. The flight volumes 
to the hubs (or concentrators) is, however, often sufficient to justify flights to 
them. In addition, flights between (remote) origins or destinations and more 
central hubs are typically done by small commuter planes, whose costs per 
passenger-mile are typically considerably higher than the costs of larger airplane 
that operate between hubs. This is the reason for inter-hub discounts, i.e., lower 
costs between hubs. Hub location problems are difficult to solve exactly. The 
major reason for the difficulties is the size of the problem. Typically, the 
formulation will use binary variables of the type yiklj, which assume a value of 
one, if the traffic from origin i to destination j is routed through hubs k and l. For 
example, in a network with one hundred nodes, each of which is an origin, a 
destination, and a potential hub, there would be hundred million zero-one 
variables. Even considering today’s powerful computing equipment, this is a very 
large problem.  
 
Competitive location models were introduced by Hotelling in 1929. A mathematical 
statistician by trade, he considered the simplest competitive location problem one 
can think of: two profit-maximizing duopolists locate one facility each on a line 
segment. They offer a homogeneous good and compete in locations and prices. 
Hotelling concluded that a situation, in which the duopolists would cluster 
together at the center of the market, is stable. It took fifty years to prove him 
wrong, and it is known today that there exists no stable solution in his original 
version of the problem. Today, we consider two versions of competitive location 
models. In the first class of problems, the main quest is to find, as Hotelling did, 
stable solutions. These are called Nash equilibria. A Nash equilibrium is said to 
exist, if none of the participants in the game has an incentive to unilaterally move 
out of the current situation, which in this case means to change his location or 
price. The second class of problem concerns von Stackelberg solutions. The 
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economist von Stackelberg considered two groups of participants: leaders and 
followers. The leader will choose his actions (here: his location) first, knowing 
that a follower will locate later. Note that the leader’s planning will require 
assumptions concerning the follower’s objectives and perception. This is typically 
summarized in a reaction function, which delineates the follower’s reaction to 
each of the leader’s courses of action. In contrast, once the leader has made his 
decision, the follower only has to observe what the leader has done, and make his 
own decisions accordingly. It is apparent that the follower’s problem is a conditional 
optimization problem (finding an optional location for the follower’s facilities, 
given the leader’s facility locations), while the leader’s problem is very difficult, 
as even the determination of the reaction function requires the solution of a zero-
one integer programming problem for each of the leader’s possible courses of action.  
 
Finally, consider extensive facilities and facility layout problems. In both areas, 
the facilities can no longer be represented as points on a map, so that the sizes of 
the facilities are no longer negligible in relation to the space they are located in. 
Problems of this nature are much more difficult than “simple” location problem. 
The main reason is that the shape of the facilities must now also be considered. 
Typical example of layout problems are the arrangements of work stations in an 
office, the placement of rooms in a hospital (operating rooms, supply rooms, 
recovery rooms, etc.), and the allocation of spaces in a shopping mall to stores. 
The best-known facility layout model is the quadratic assignment problem. 
Generally speaking, the purpose of this problem is to assign items to empty slots. 
Depending on the specific application, this may mean work functions to stations, 
offices to empty rooms, or drill bits to slots on a drill. One way to formulate 
quadratic assignment problems is to define binary variables yijkl, which assume a 
value of one, if item i is assigned to slot j and item k is assigned to slot l, and zero 
otherwise. The advantage of this formulation is its linear objective function, while 
the disadvantage is the very large number of variables. Another formulation uses 
double-subscripted binary variables yij, which equal one, if item i is assigned to 
slot j, and zero otherwise. This formulation has much fewer variables, but its 
disadvantage is its quadratic objective function (hence the name of the formulation). 
To this day, exact solutions for quadratic assignment problems with more than 
about thirty items and slots remain elusive.  

Exercises 
Problem 1 (a location set covering problem): An administrative district includes 
18 small villages. One of the functions of the district officer is to ensure that each 
community is reasonably well served in case of a fire. It was established that no 
village should be farther than 8 minutes from its closest fire hall. The graph with 
the villages and the distances between them is shown in the Figure 6.7. All 
villages must be covered.  

Exercises
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Figure 6.7 
 
Use the reduction algorithm for the location set covering problem to reduce the 
problem as much as possible. First eliminate unit rows, then dominated columns, 
then dominated rows, then repeat as often as possible. Is it possible to obtain a 
solution with just the reduction rules? If so, where should the facilities be located 

determined in the reduction process. How many facilities will be needed to cover 

 

2 6 4 6 4 

6 4 5 3 7 

6 2 2 5 6 

5 4 3 3 4 7 

2 7 8 6 2 4 

n1 n2 n3 n4 n5 n6 

n8 n7 n9 n10 n11 n12 

n15 n13 n14 n16 n17 n18 

and how many facilities are required to cover all customers? If not, try to eyeball 

all customers? The covering matrix is then shown in Table 6.2.  

solutions in the remaining, smaller, system and put them together with locations 
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Solution: 
Repeatedly applying the three reduction rules results in one facility located at 
node n11. Applying the reduction rules again leaves us with the irreducible matrix: 
 

  n8 n9 n13 

n1 1 0 1 

n3 1 1 0 

n15 0 1 1 
 
Locate facilities at 2 of the 3 columns, i.e. the solutions are (8, 9, 11) or (8, 11, 13) 
or (9, 11, 13). In all cases, 3 facilities are sufficient to cover all customers.  
 
Problem 2 (a maximal covering location problem): A smaller rural district has 

is said to be covered, if it is within ten miles of the health post. The district 
administration can pay for no more than two health posts. The geographical layout 
of the villages is shown in Figure 6.8, in which the single-digit numbers indicate 
the distances between the villages, and the double-digit numbers are the 
populations of the villages:  

 

 
Figure 6.8 

 
 
 
 
 

3 5 6 

4 7 3 

5 6 4 

5 6 8 4 

6 9 2 5 

n1 n2 n3 n4 

n6 n5 n7 n8 

n11 n9 n10 n12 

20 60 80 50 

80 20 60 50 

90 50 40 90 

the task of locating health posts in the country to serve remote villages. A village 
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 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 
n1 1 1 1 0 1 1 0 0 0 0 0 0 
n2 1 1 1 0 1 1 1 0 0 0 0 0 
n3 1 1 1 1 0 0 1 1 0 0 1 0 
n4 0 0 1 1 0 0 1 1 0 0 0 0 
n5 1 1 0 0 1 1 0 0 1 0 0 0 
n6 1 1 0 0 1 1 1 1 1 1 1 0 
n7 0 1 1 1 0 1 1 1 0 1 1 1 
n8 0 0 1 1 0 1 1 1 0 0 1 1 
n9 0 0 0 0 1 1 0 0 1 1 0 0 
n10 0 0 0 0 0 1 1 0 1 1 1 1 
n11 0 0 1 0 0 1 1 1 0 1 1 1 
n12 0 0 1 0 0 0 1 1 0 1 1 1 

 
(a)  Use the Greedy heuristic to locate the two health posts, so as to maximize the 

benefit of the health posts to the people.  
(b)  Demonstrate the Swap technique by exchanging the facility that was located 

first with two other facilities, one at a time. (Choose the facilities with the 
smallest subscripts). What are the new coverages and would you make either 
of the swaps permanent?  

 
Solution: (a) 

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 
260 320 450 240 270 470 500 390 240 330 390 290 

 
      

 
max      

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 
100 100 20 0 190 190 − 0 170 90 0 0 

 
    

 
max 

 
max       

Therefore, locate facilities at n5 and n7 or n6 and n7. Total coverage is 690. 

(b) Temporarily swap n7 and n1. The new solution has then facilities at n1, n5 (or 
n1, n6) and it will cover 350 (or 550) customers, so that there will be no 
permanent swap.  

Temporarily swap n7 and n2, and the new solution has facilities at  n2 and n5 (or n2 and 
n6). It covers 410 (or 550) customers, so again, there will be no permanent swap.  

 
Problem 3 (1-median and 1-center on a network): Industrial customers have 
contracted demands for heat pumps. These units are to be delivered from the 
warehouse of a central supplier to the companies. The supplier is now attempting 
to locate the warehouse, so as to minimize the transportation cost of the pumps to 

Exercises

The covering matrix is then as follows:  
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its customers. The demand is fairly constant throughout the year. The delivery is 
per pickup truck, one heat pump at a time, resulting in a linear cost function. 
Figure 6.9 shows the supplier’s customers, their double-digit demands, and the 
single-digit distances between the customers.  
 

 
Figure 6.9 

 
A consultant of the supplier had suggested to locate the warehouse between the 
nodes n2 and n3 at a distance of 5.4 from n2. They have based their argument on 
the large weights of the adjacent nodes n2 and n3 that provide a strong pull to 
locate the warehouse there.  
 
(a)  Without any calculations, do you agree with the consultant’s recommendation?  
(b)  Find a location on the network that minimizes the total delivery cost. How 

much more expensive was the consultant’s recommendation?  
(c)  Ignore now the weights at the nodes, and assume that the same graph were to 

be used by some planner to locate a vertex 1-center. Where would this center 
be located?  

 
Solution: (a) No. This is a 1-median problem and there is more to a solution than 
just weight.  
 

(b) w = [40, 60, 90, 30, 20], 
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Then wD = [1,550; 1,210; 1,390; 1,330; 1,450], so that node n2 is the optimal 

location and the total transportation costs are 1,210. The consultant’s 
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recommendation is [40, 60, 90, 30, 20] [8.4, 5.4, 3.6, 8.6, 7.4] = 1,390. The 
costs are about 15% higher than optimal.  

(c)  The question is to determine a 1-node center. The column maxima are [12, 9, 
12, 8, 11] with 8 being the minimum, so that node 4 will be optimal.  

 
Problem 4 (1-node center in the plane with Manhattan distances): A rural 
district is planning the location of its fire station. The station will have to serve 
seven villages. The coordinates of the villages are (0, 0), (6, 1), (2, 3), (8, 3),  
(0, 4), (4, 5), and (3, 7). As the people in the district are fierce defenders of 
property rights, the roads were constructed parallel to the rectangular fields.  
 
(a)  What is the optimal minimax location of the fire station?  
(b)  Suppose that it takes the fire truck and its crew 3 minutes to get ready after an 

emergency call, 2 minutes to drive one distance unit, and another 3 minutes to 
get the hoses and pumps going. Given the solution determined under(a), how 
much time elapses between the phone call and the beginning of the fire 
fighting action at the site of the most distant customer? How long does it take 
on average?  

 
Solution: 
(a) α1 = max {0, 7, 5, 11, 4, 9, 10} = 11,  
 α2 = max {0, −5, 1, −5, 4, 1, 4} = 4,  
 α3 = max {0, 5, −1, 5, −4, −1, −4} = 5, and  
 α4 = max {0, −7, −5, −11, −4, −9, −10} = 0, so that  
 
 α5 = max {11, 9} = 11.  
 
Hence the optimal coordinates of the facility are  
 x = ½(5) = 2½ and y = ½(6) = 3, as well as  
 x = ½(7) = 3½ and y = ½(4) = 2, 
 both with z = ½(11) = 5½.  

 
Problem 5 (p-node center in a graph): Consider again Figure 6.9 and ignore the 
weights at the nodes. For p = 2, determine the vertex p-center with the bisection 
search algorithm.  
 
Solution:  

.0,36)9(4}max{)1( ===−= DdnD ij  

D = 18. Set cover: p(D) = 1, locate anywhere. D = 18.  
D = 9. Set cover: p(D) = 1 with facility at node n2. .9=D  
D = 4. Set cover: p(D) = 3 with facilities at nodes 4, 3, and one of 1, 2, 5. .5=D  
 
 

Exercises

(b) Worst case: 6 + 2(5½) = 17 minutes. Average case: 6 + (1/7)57 = 14.14 min.  
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D = 7. Set cover: p(D) = 2, with facilities at nodes 1 and 3. .7=D  
D = 6. Set cover: p(D) = 2, with facilities at nodes 1 and either 3 or 4. .6=D  
D = 5. Set cover: p(D) = 2 with facilities at 1 and either 3 or 4. .5=D  
Now DD == 5 , Stop.  
 
Problem 6 (1-median problem in the plane with Manhattan distances): 

with weights 20, 40, 30, 50, 10, 60, 70, and 80.  
 
Given Manhattan distances, determine the point that minimizes the sum of 
distances to a single new facility. What are the total weighted costs from the new 
facility to the customers?  
 
Solution: The sum of weights equals 360, so that the location of the facility 
should be at (5, 4), with distances to the customers of 9, 6, 2, 2, 3, 2, 3, and 7, so 
that the weighted sum (total costs) equals 1,500.  
 
Problem 7 (center-of-gravity and Weiszfeld method): Customers are located at 
(0, 0), (6, 0), and (10, 5) with weights 4, 7, and 2, respectively.  
 
(a)  Calculate the center-of-gravity, i.e., the optimal solution of the minisum 

location problem with squared Euclidean distances.  
(b)  Start with an initial guess of (1, 1) and perform one iteration with Weiszfeld’s 

method to determine the 1-median.  
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Problem 8 (p-median with Greedy and vertex substitution heuristics): Consider 
the undirected graph shown in Figure 6.10:  
 
 
 
 
 
 
 
 

Figure 6.10 
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Customers are located at (0, 0), (7, 0), (6, 3), (5, 2), (5, 7), (3, 4), (6, 6), and (2, 8) 

Solution: (a) center-of-gravity is at (62/13, 10/13) ≈ (4.77, 0.77).  
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Assume that the customers n1, n2, ..., n8 have demands of 38, 25, 13, 18, 15, 21, 
32, and 40, respectively. Suppose now that the coverage distance is D = 4.  
 

Where should the facilities be located and what is the total capture?  

 
Solution:  
(a)  

Potential facility 
location 

n1 n2 n3 n4 n5 n6 n7 n8 

Capture 38 124 88 88 61 61 128 72 
 
Locate one facility at n7.  
 

Potential facility 
location 

n1 n2 n3 n4 n5 n6 n8 

Capture 38 36 0 0 36 36 0 
 
Locate one facility at n1.  
 

Potential facility 
location 

n2 n3 n4 n5 n6 n8 

Capture 36 0 0 36 36 0 
 

2 5 6
either (n7, n1, n5) or at (n7, n1, n6) with a total capture of 202. The facilities 
capture everything, so there can be no better solution.  

(b)  Vertex substitution procedure: For example, start with facilities located at (n7, 
n1, n5). Exchange n1 and n2. The exchange leads to facilities located at (n7, n2, 
n5) that has a capture of 164 as opposed to the previous solution that has 202. 
Do not swap.  

 
Problem 9 (p-median in a network with Greedy, location-allocation heuristic): 

Consider the graph in Figure 6.11.  
 

Exercises

(a)  Set up the capture table and apply the Greedy heuristic to locate 3 facilities. 

(b)  Use the vertex substitution heuristic to improve the solution.  

Locate one facility at either n , n  or at n . Hence the solution locates facilities at 



6  Location Models 256 

 
Figure 6.11 

(a)  Determine the 2-median by using the Greedy heuristic.  
(b)  Improve the solution found under (a) by the location-allocation heuristic.  
(c)  Ignore the solution found in (b) and improve the solution in (a) by the vertex 

substitution method.  
 
Solution:  
(a)  The weights are w = [60, 20, 40, 70, 40, 10] and the distance matrix is 
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Locate the first facility: wD = [1,080, 1,290, 1,460, 1,190, 1,180, 1,230], so that 
the first facility is located at n1.  

For the second facility, we obtain costs of [−, 950, 820, 440, 530, 810], so that the 
second facility will be located at n4 for a total z-value of 440.  

(b)  Allocation: To the facility at n1, we allocated customers at nodes n1, n2, n3, 
and n6, and to the facility at n4, we allocate the customers at n4 and n5. The 
optimization on the two problems then results in costs vectors [320, 310, 460, 
380] with the minimum occurring at n2, and [120, 210] with the minimum at 
n4. The next step then allocates to the facility at n2 the customers at n1, n2, n3, 
and n5, to the facility at n4, the customers at n4 and n5, which is the same as 
before. Hence the method has converged with an optimal solution with 
facilities at n2 and n4  with a total cost of 310 + 120 = 430.  
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7   Project Networks 

Back in the days when projects were dealt with by a single individual or a group 
of workers working sequentially, there was no need for project networks. As an 
example, consider the construction of a house. Somewhat simplistically, assume 
that a single individual wants to build a log cabin. He will first dig a hole in the 
ground for the foundation, then pour the cement, then lay the logs one by one, and 
so forth. Each job is completely finished before the next task begins. This is a 
sequential plan, and there is very little that can be done as far as planning is 
concerned. Consider, however, some of the issues that have arisen as a result of 
the division of labor. Nowadays, the plumbers can work at the same time the 
electrician does, but not before the walls have been established, which is also 
required for the roof to be put up. Given these interdependencies, planning is 
necessary in case time is an issue. Clearly, while it is possible that, say, electrician 
and plumber can work in the building at the same time, it is not necessary to use 
this parallelism: we can still have the two contractors work one after the other, if 
we so wish. The project will take longer, but it is possible.  
 
Project networks were designed by a number of firms in the 1950s. The so-called 
critical path method (or CPM for short) was developed by du Pont de Nemours 
and the Remington Rand Univac corporations for construction projects. At 
roughly the same time, the United States Navy in conjunction with the Lockheed 
Aircraft Corporation and the consulting firm of Booz, Allen, and Hamilton 
devised the Program Evaluation and Review Technique (PERT) for their Polaris 
missile program. Even though CPM and PERT have completely independent 
backgrounds, today we can consider them very close brothers: their underlying 
ideas are identical, the resulting networks are identical, and the only difference is 
that CPM is a deterministic technique, PERT is (partially) stochastic.  
 
This chapter is organized as follows. The first section will introduce the elements 
of the critical path method, demonstrate its graphical representation, and describe 
basic planning with the critical path method. The remaining sections of this 
chapter deal with extensions of the basic concept: the second section allows the 
acceleration of the project (a process that introduces costs into the model), the 
third section allows resources to be used (which, with the obvious limitations, 
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results in an optimization model that allocates the scarce resources), and the final 
section of this chapter discusses the probabilistic PERT method.  

7.1   The Critical Path Method 
Before getting in to details, the planner will have to decide on what level the 
planning will take place. We may be interested in planning on the macro level in 
order to get the “bigger picture.” As an example, when building a house, we may 
have “foundation work” as a single task, another one is “electrical work,” another 
is “plumbing,” another is “roofing,” and so forth. Zooming in closer, we may look 
at each such task as a project in itself. For instance, plumbing may include 
subtasks such as the installation of pipes, connections to outside lines or septic 
systems, etc. Zooming in even further, the installation of lavatories may be further 
subdivided into the mountain of the washbasin, the connection of the faucet to the 
pipes, and so forth. We can construct project networks on each of these levels.  
 
Once the level has been decided upon, the task in its entirety—the building of 
the house, design and planting of a public or private garden, an individual’s 
University studies—will be referred to as a project. Each project can now be 

installing the flashing on the roof, or taking a specific course in a University 
program are typical examples of such activities. Associated with each activity is 
a duration that indicates how long it takes to complete the activity. In CPM,  

only distinction to PERT, where the durations have underlying probability 
distributions).  
 
In addition to the activities and their durations, we also need to have precedence 
relations. Such relations indicate which activities must be completely finished 
before another activity can take place. For example, in order to start the activity 
“drive with the car to grandmother,” the activities “gas up the car,” “pack the gifts 
(wine and cheese) for grandmother,” and “lock the house” must be completely 
finished. A complete set of precedence relations will specify the (immediate) 
predecessors of each activity.  
 
In the analysis in this section, we are only concerned about time. There is no 
optimization that takes place here, all we want to know what the earliest time is by 
which the project can be completed. And while making these calculations, we can 
also find out when each task can and must be started and finished. That allows us 
to determine bottleneck activities in the project, whose delay will delay the entire 
project. In subsequent sections, we will include other components in the basic 
network, including money and other resources.  
 
One of the huge advantages of project networks and one of the reasons for their 
popularity among users is the ease with which they can be understood and 

subdivided into individual tasks or activities. Planting a bed of grape hyacinths, 

the durations of all activities are assumed to be known with certainty (which is the 
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visualized. Following the old adage that “a manager would much rather live 

managers have adopted project networks as a standard tool in their toolkit. This 
was helped tremendously be a change in the representation that was made some 
time during the 1990s. Traditionally, each activity was represented by an arc in a 
network, while nodes represented events (which are no more than the beginning 

they are rather difficult to construct and may require a lot of artificial activities 
(called dummy activities). A more modern way to visualize relations between 
activities is the activity-on-node (AON) representation. In it, each node represents 
an activity, while the arcs represent the precedence relations. In addition to the 
given activities, each project network contains two artificial nodes ns and nt, which 
are the starting node (the source) and the terminal node (the sink), which symbolize 
the beginning and the end of the project. The project start has arcs leading out of it 
to all activities that do not have any predecessors, while all nodes that represent 
activities without successors will have arcs leading directly to the terminal node 
“Project End.” For all other activities j, we introduce an arc from node i to node j, 
if activity i is an immediate predecessor of j.  
 
As a numerical illustration, consider the precedence relations shown in Table 7.1.  
 

Table 7.1: Precedence relations for sample network 
 

Activity Immediate 
predecessor 

Duration 
(in weeks) 

A − 5 
B A 3 
C A, B 7 
D B 4 
E B, C 6 
F C, D, E 4 
G D 2 
H F, G 9 
I F, G 6 
J I 2 

 
The network that includes all of the activities and precedence relations is shown in 
Figure 7.1. Like each project network, it has a unique start ns, a unique end nt, all 
arcs are directed, and no cycles can possibly exist, as they would require an 
activity to be completely finished before it can actually start, which is obviously 
impossible.  
 

arc (AOA) representation. While AOA networks have some obvious advantages, 
and/or the end of activities). Such a representation is referred to as an activity-on-

with a problem he cannot solve than with a solution he cannot understand,” many 
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Figure 7.1 

 
As an example for (nested) precedence relations, consider activity F. It is clear 
from the project network that the activities C, D, and E must be completely 
finished before activity F can commence. However, activity C requires that A and 
B are completely finished, activity D requires that B is finished, and activity E 
requires that B and C are completely finished. So, in reality activity F cannot 
commence before the activities A, B, C, D, and E are all finished. This does  
not present a difficulty, but users should be aware of this. Incidentally, it is not 
necessary to specify that activity C is a direct predecessor of F since E must 
precede F anyway, and C precedes E.  
 
We are now interested in finding the earliest possible time at which the entire 
project can be completed. For computational convenience, we assume that the 
project start occurs at time t = 0 and the end of the project occurs at time T, which 
will be determined in the process. Consider now one of the many (14, to be 
precise) paths of the network that lead from ns to nt, say ns – A – C – E – F – H – nt. 
Starting at the end and moving back towards the beginning one step at a time, 
we notice that nt can only finish if H is completely finished, which, in turn, 
requires that F is completely done, which, in turn, requires that E is fully done, etc. 
The length of any path from source to sink is defined as the sum of durations of all 
of its activities. In this example, the path we are presently looking at has the length 
of 5 + 7 + 6 + 4 + 9 = 31. This also means that while there are other precedence 
relations, the ones on this path result in a project duration of 31, which is thus a 
lower bound on the project duration. From this, we can conclude that the project 
duration is equal to the length of the longest path in the network.  
 
While it would certainly be possible to determine the longest path in a network 
by enumeration (even though there will be a lot of paths), a different type of 
computation is preferred as it will provide decision makers with additional and 
very valuable information. This procedure will be described in the following.  
 
The first part of the procedure uses what is commonly known as a forward pass, a 
forward sweep, or a forward recursion. In the forward recursion, we compute the 
earliest possible starting times (ES) of all activities, as well as their earliest 
possible finishing times (EF). We start labeling the nodes in the forward pass with 
the source node. The earliest starting time of the source node is arbitrarily set to 
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ES(ns) = 0. For any node the earliest possible finishing time EF equals the earliest 
possible starting time ES plus the duration of the activity t. As a result, EF(ns) = 0. 
In order to continue labeling (which in the forward pass means assigning a value 
ES to a node), we will use the following  
 
Rule 1: In the forward pass, a node can only be labeled if all of its predecessors 
have been labeled.  
 
If more than one node satisfies the condition in Rule 1, labeling continues with 
any of the nodes that satisfy the condition. The label ES of a node is then the 
maximum among all EF labels of its direct predecessors. The reason for this 
calculation is easily explained. Suppose that an activity has three direct 
predecessors with earliest possible finishing times of 4, 7, and 9, respectively. It is 
apparent that we cannot start before 4, as none of the predecessors has been 
finished. Between time 4 and 7, the first predecessor is finished, but we will have 
to wait until all predecessors have been finished, which is the case at time 9.  
 
Applying this rule to our example means that, once ns has been labeled, we can 
now label node A. Node A has only one predecessor, so that ES(A) = EF(ns). 
Given that, we can calculate EF(A) = ES(A) + tA = 0 + 5 = 5. Now that node A is 
labeled, we can continue labeling with nodes B and C. Arbitrarily choose node B. 
Activity B also has only one predecessor, which is A. Consequently, ES(B) = 
EF(A) = 5, and EF(B) = ES(B) + tB = 5 + 3 = 8. Now that activity B has been 
labeled, we can continue labeling node C. As activity C has activities A and B as 
predecessors, we have ES(C) = max {(EF(A), EF(B)} = max {5, 8} = 8, so that 
EF(C) = ES(C) + tC = 8 + 7 = 15. Labeling can now continue with nodes D and E. 
The results of the forward labeling phase are summarized in Table 7.2.  
 

Table 7.2: The earliest possible starting and finishing times 
 

Activity    ns A B C D E F G H I J nt 

Earliest possible  
   starting time ES  0 0 5   8   8 15 21 12 25 25 31 34 
Earliest possible  
   finishing time EF 0 5 8 15 12 21 25 14 34 31 33 34 

 
At this point, the sink nt has been labeled, and the ES and EF labels of the sink 
(which are necessary equal, as the artificial activity nt has zero duration), indicate 
the total duration of the project. In other words, we now know that the project can 
be completed in T = 34 weeks. This terminates the forward sweep.  
 

allowable,” we refer to the time we can start or finish an activity, given that  
the project has to be completed by time T (in our example T = 34). As the  forward  
 

 

 

In the backward sweep, we will compute the latest allowable finishing times LF 
and the latest allowable starting times LS of all activities (in that order). By “latest 
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sweep started with the source being labeled first, the backward sweep commences 
by labeling the sink. Now we consider a node labeled, if we have computed its LF 
and LS values. As the project duration T is now known, we will label the sink 
node LF(nt) = LS(nt) = T. The rule for labeling other nodes is now  
 
Rule 2: In the backward pass, a node can only be labeled if all of its successors 
have been labeled.  
 
With the sink as the only labeled node, only the activities H and J can be labeled. 
Arbitrarily choose node H. This node has only one successor, so that LF(H) = 
LS(nt) = 34. Given that activity H must be finished no later than 34 and its 
duration is tH = 9, we determine that LS(H) = LF(H) − tH = 34 − 9 = 25. The 
process for node J is similar, and we obtain LF(J) = LS(nt) = 34, and LS(J) = LF(J) − 
tJ = 34 − 2 = 32. At this point, the nodes nt, H and J are labeled, so that we can 
continue labeling only with node I (as node G has node I as a successor which is 
not yet labeled). Node I has again only one successor, so that its label can easily 
be calculated as LF(I) = LS(J) = 32 and LS(I) = LF(I) − tI = 32 − 6 = 26. At this 
point, we can continue labeling the nodes G and F. Arbitrarily choose F. Node F 
has activities H and I as successors. In order to determine its latest finishing time, 
consider this. As we have just computed, its two successors H and I cannot start 
any later than 25 and 26, respectively. If activity F were to finish any later than, 
say, 25½, activity H could not start on time. In other words, in order to avoid 
delaying the entire project it is necessary that all activities can start on time, so 
that LF(F) = min{LS(H), LS(I)} = min{25, 26} = 25. The resulting latest 
allowable starting time is then LS(F) = LF(F) − tF = 25 − 4 = 21. The next node to 
be labeled is G. Since its successors are I and H, we have LF(G) = min{LS(I), 
LS(H)} = min {26, 25} = 25, and LS(G) = LF(G) − tG = 25 − 2 = 23. The 
procedure continues in this fashion until the source is labeled. The labels of all 
nodes are shown in Table 7.3.  
 

Table 7.3: The latest allowable starting and finishing times 
 

Activity    ns A B C D E F G H I J nt 

Latest allowable  
   starting time LS  0 0 5 8 17 15 21 23 25 26 32 34 
Latest allowable  
   finishing time LF 0 5 8 15 21 21 25 25 34 32 34 34 

 
A good test for correctness is to examine LF(ns) in the backward sweep, this value 
must be zero. If it is not, an error has been made. However, the converse is not 

s

 
Now that all earliest possible and latest allowable starting and finishing times have 

 

 

done correctly.  

been computed, we are able to determine which of the activities are critical when 

 

true: even if LF(n ) = 0, it does not mean that the backward recursion has been 
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scheduled and which are not. As an example, consider activity G. So far, we have 
determined that the earliest possible time that we can schedule the activity is at 
ES(G) = 12, while the latest possible finishing time of G is LF(G) = 25. This gives 
us a time window of 25 − 12 = 13 weeks during which the activity has to be 
scheduled. That is not problem, since the duration of the activity is only 2 weeks, 
so that there is plenty of leeway. An expression of the magnitude of this leeway is 
the total float of the activity G, which we will abbreviate here as TF(G). The total 
float of an activity is the magnitude of the time window for its schedule minus the 
duration of the activity. Formally for activity G, we have TF(G) = LF(G) − ES(G) − 
tG = 25 − 12 − 2 = 11. Decision makers can use the information provided by the 
total float as the amount of time by which the duration of an activity can increase 
without delaying the entire project. Thus, activities with a large float are safe in 
that their duration can increase significantly without delaying the entire project. 
On the other hand, an activity with a large float indicates that there are too many 
resources allocated to this activity. Redirecting these resources elsewhere may 
result in possible decreases of the durations of other activities.  
 
As another example, consider activity H. Its time window ranges from ES(H) = 25 
to LF(H) = 34. With its duration of tH = 9, we can compute the activity’s total float 
as TF(H) = LF(H) − ES(H) − tH = 34 − 25 − 9 = 0. This indicates that there is 
absolutely no leeway when scheduling activity H. Activities that have no leeway 
in the schedule are referred to as critical activities. A critical activity has the 
property that as soon as its duration increases, the project will be delayed, 
regardless how small the time increase actually is.  
 
Critical activities are very similar to those resources in optimization problems that 
are satisfied as equations at optimum and thus represent bottlenecks in the 
problem. On the other hand, noncritical activities in project networks can be 
compared to resources or constraints that have positive slacks or excess variables 
at optimum. Note that for the ease of computations, we can calculate the total float 
also as TF = LF − EF = LS − ES.  
 
In order to have all information available at a glance, it is useful to draw the 
network in a slightly different way. Rather than representing each node by a circle 
with its name in it, we suggest to represent a node by a box with nine different 
fields as shown in Figure 7.2. We will refer to the different fields by the 
geographic directions they are found in, e.g., the field in the North, the Southwest, 
etc. The center of the node is reserved for the name of the activity (here activity 
D). The fields in the North and in the South both show the duration tD of the 
activity.  
 
Recall that during the forward sweep, we compute the earliest possible starting 
time ES(D) and the earliest possible finishing time EF(D) of the activity under 
consideration. They are found in the Northwest and the Northeastern fields, 
respectively. In the backward sweep, we determine the latest allowable starting 
time LS(D) and the latest allowable finishing time LF(D) of the activity. This 
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information is put into the fields in the Southwest and Southeast, respectively. 
Finally, the field in the East will include the total float TF, which is computed 
after the forward and backward passes have been completed. The field in the West 
will remain empty for now. It is designed for the resource consumption of the 
activity, which is not considered in the basic model.  
 

Figure 7.2  
 

The three fields in the top row of each node read from left to right symbolize the 
relation ES + t = EF, while the three fields at the bottom of a node read from right 
to left show the relation LF − t = LS. This is why we have chosen to include the 
duration of the activity twice, once in the field in the North and again in the South.  
 
Rather than using tables for the display of the information, we can work directly 
on the graph, which is much easier, as it provides all required information at a 
glance. The project network for our example is shown in Figure 7.3.  
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Having all of this information at hand, we are now able to determine what gave 
the method its name, viz., the critical path. Formally, the critical path is a path 
from the source ns to the sink nt that includes only critical activities, such that 
node j can directly succeed node i on the critical path, only if ES(j) = LF(i). The 
critical path in our example is shown in bold lines and it includes the activities 
ns – A − B − C − E − F − H − nt. Clearly, the length of that path, obtained by 
adding its activity durations, equals T = 34. Note that the critical path does not 
include the link from node B to node E, even though E directly follows B, but 
ES(E) = 15 > 8 = LF(B). This clearly indicates that it is not sufficient to simply 
connect all neighboring nodes that have zero total float. Furthermore, it may 
happen that a project network has multiple critical paths. The next section will 
have examples of that case.  
 
We conclude this section by summarizing the procedure that determines the 
critical path:  
 
(1) Use the forward pass to calculate the earliest possible starting and finishing 

times of all activities.  
(2) Use the backward pass to calculate the latest allowable starting and finishing 

times of all activities.  
(3) Calculate the total floats of all activities.  
(4) Determine the critical path.  

7.2   Project Acceleration  
So far, we have considered time as the only criterion in project networks. Also 
note that the technique described in the previous section did not involve any 
optimization, all we have done is determined when the project can be finished and 
which of the activities are bottlenecks in the system. In this section, we will return 
to the basic model, but allow the possibility to accelerate individual activities, so 
as to be able to finish the project earlier. The result will be a list that shows 
possible finishing times of the project and the amounts that will have to be paid to 
reach them. This will enable the planner to decide what combination of money 
spent and project duration best fits the specific situation.  
 
In order to describe the situation, consider a single activity. As before, the activity 
will have what we now call a normal duration. Since we will engage in a marginal 
analysis, the cost of the activity at its normal duration are immaterial (we will 
have to engage in the activity in any case), and the only costs we consider are 
those that are incurred due to the acceleration of the activity. Suppose that the 
normal duration of our activity is 7 hours. It is now possible to use more resources 
(e.g., more manpower, more tools, contracting out part of the activity, or any 
similar measure) to accelerate this activity. Suppose that it costs $20 to reduce the 
duration of the activity to 6 hours. Using more resources still, additional money 
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can reduce the duration of the activity further. For simplicity, we assume that the 
cost function of the acceleration is linear, meaning that reducing the duration by 
another hour to 5 hours costs another $20 for a total of $40. Note that normally the 
cost function is increasing, meaning that reducing the duration by one hour costs, 
say $x, reducing it by another hours costs more than $x, another reduction is more 
expensive still, and so forth.  
 
It is quite apparent that the reduction has some limitations, below which we 
cannot reduce the duration of the activity any further. The shortest activity 
duration of an activity that can be achieved is customarily referred to as crash 
time, and the process of acceleration is sometimes called crashing. Our task is 
now to determine which activities should be accelerated or crashed, so as to 
achieve the desired result at the lowest possible cost.  
 
As an illustration of the concept, consider the numerical example shown in  
Figure 7.4.  

 
 

Figure 7.4 
 
The project has four activities A, B, C, and D, whose normal times, crash times, 
and unit acceleration costs are shown next to the nodes. For example, activity D 
normally takes 8 hours (there are no costs incurred at this duration), but we can 
reduce the duration down to 7, 6, or 5 hours. Each hour of acceleration costs $200. 
Note that activity B cannot be accelerated.  
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Figure 7.5 

 
Figure 7.5 shows the project network under consideration along with the normal 
durations of the activities (in hours) and the critical path, which is shown in bold 
arcs. (Note that we normally have to use the forward sweep/backward sweep 
procedure in each step, but since the project network here is so small, we may 
enumerate the four paths A−C, A−D, B−C, and B−D, determine their respective 
lengths and choose the longest path; it is the critical path). The present duration of 
the project is 13 hours.  
 
We now have to determine which activities to accelerate. Recall that the project 
duration is determined by the length of the longest path in the network. This 
means that as long as we are not accelerating an activity on the longest, i.e., the 
critical path, the project duration will not be reduced. This leads to the important 
realization that we must accelerate an activity on the critical path. And, among 
those activities, we will choose the one that minimizes our marginal, i.e., additional 
costs. In our example we have a choice between either accelerating activity A at a 
cost of $600, or activity D at a cost of $200. Since it is less expensive to accelerate 
activity D, we reduce its duration by a single hour to 7 hours. We now have a 
new network (even though the networks structure has not changed and never will 
during the computations, only one activity duration has changed) and we have to 
determine the critical path and the project duration anew. The result is shown in 
Figure 7.6.  
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Figure 7.6 

 
We notice that there are now two critical, i.e., longest paths in the network. They 
are ns − A − C − nt and ns − A − D − nt, both having a length of 12. Accelerating 
the project further will pose some additional difficulties. In order to demonstrate 
these problems, suppose that we were to again accelerate activity D. this would 
cause the path ns − A − D − nt to be only 11 hours long, while the path ns − A − C − 
nt would still be 12 hours long and as such, would now be the only critical path. In 
other words, we would have spent another $200 and still would have to wait 12 
hours to finish the project. This means that we have to refine the rule somewhat 
that tells us which activities must be accelerated in order to speed up the project. 
In fact, we will have to accelerate a set of activities, so that at least one of the 
activities in this set is on each of the critical paths. For commercial uses, this can 
be accomplished by network techniques; for our purpose we examine the network 
and enumerate the possibilities. In the network in Figure 7.6, we can either 
accelerate activity A (at a cost of $600), or the activities C and D (at a cost of $300 
+ $200 = $500). Before making the actual decision, we have to ascertain that all of 
these accelerations are actually possible, i.e., that the present durations are all 
above the crash times. In our case, the activities A, C, and D have present 
durations of 5, 7, and 7, while their crash times are 3, 4, and 5, so that all activities 
can actually be accelerated. Since the cheapest option is to accelerate activities C 
and D, we accelerate each of these activities by one unit each. Based on the new 
activity durations, we also determine the new critical path(s). The results are 
shown in Figure 7.7.  
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Figure 7.7 

 
If any further accelerations is required, the options are the same as before. 
Checking the possibility to accelerate, few find that the present activity durations 
of the nodes on the critical path A, C, and D are 5, 6, and 6, while their crash 
times are 3, 4, and 5, so durations of all of these activities can be reduced further. 
The least expensive option again involves accelerating activities C and D by one 
hour each, resulting in the situation shown in Figure 7.8.  
 

 
 

Figure 7.8 
 
While the critical paths are still the same, the situation has changed. Activity D 
has now reached its crash time and no longer can be accelerated. This means that 
the only way to accelerate both critical paths simultaneously is to speed up activity 
A at a cost of $600. The resulting situation is shown in Figure 7.9.  
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Figure 7.9 

 
Notice that at this point in time, all four paths from the source to the sink are 
critical. This means that the next acceleration will have to ensure that at least one 
activity on each path in the network is accelerated. However, in this case at least 
one path, viz., the path ns − B − D − nt can no longer be accelerated at all: both 
activities B and D are at their respective crash times. This means that the shortest 
possible project duration is T = 9 and it can be achieved at a cost of $1,800. The 
results achieved in the above computations are shown in Table 7.4.  
 

Table 7.4: Summary of the project acceleration process 
 

Accelerate 
activity 

Total acceleration 
costs 

Critical path Project 
duration 

— 0 A−D 13 
D 0 + 200 = 200 A−C and A−D 12 

C and D 200 + 500 = 700 A−C and A−D 11 
C and D 700 + 500 = 1,200 A−C and A−D 10 
C and D 1,200 + 600 = 1,800 A−C, A−D, B−C, 

and A−D 
9 

 
This is where the decision maker comes in. He can now determine what it costs to 
accelerate the project and whether or not it is worth it. This is a good example of 
what operations research does best: prepare decisions (rather than actually make 
them).  
 
A few concluding comments are in order. It became clear that as the process 
moved forward, more and more paths became critical, implying that more and 
more activities had to be accelerated in order to reduce the project duration further. 
This does, of course, imply increasing costs from each unit of acceleration. This 
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was to be expected, of course: at first it is easy to accelerate a project, but as the 
timeframe becomes tighter and tighter, the costs skyrocket.  
 
If it appears too cumbersome to go through the entire process, a quick idea of how 
short the project duration can actually be is to crash all activities and determine 
the critical path on that basis. While this will certainly result in the shortest 
possible project duration, it is usually not necessary to crash all activities to reach 
the same overall duration. A good illustration is the above example. The optimized 
durations of 4, 5, 4, and 5 of the activities A, B, C, and D were sufficient to reduce 
the project duration to 9, while the crash durations of the activities are 3, 4, 4,  
and 5. Their use would result in the same overall project duration of 9.  

7.3   Project Planning with Resources 
So far, our discussion has centered around time planning. In the process, we have 
assumed that sufficient resources are available to perform the activities in the time 
specified for the individual activities. In this chapter we will extend the basic 
model by adding a resource requirement. For simplicity, we will use only a single 
resource, such as manpower, backhoes, machinery, or any other resource relevant to 
the project. For simplicity, we will refer to the resource as employees throughout 
this section. When we associate a resource requirement of, say, 30 units to an 
activity, then that means that we will need those 30 resource units throughout the 
duration of the activity. As an illustration, consider again the project network in 
Figure 7.3 in Section 7.1.  
 
Furthermore, assume that the resource consumptions of the individual activities 
are shown in Table 7.5.  
 

Table 7.5: Resource consumption of the activities in the example 
 

Activity    A        B        C        D        E        F        G        H        I       J 
Resource 

consumption 10      20       40       20      25       30       10      25       20    25 

 
In order to schedule the activities of the project network, it is useful to employ a 
so-called Gantt chart. In essence, it is a horizontal bar chart, which features the 
individual activities on the ordinate, while the abscissa is a time axis. Clearly, the 
activities on the critical path are scheduled from their earliest possible (or, equally, 
latest allowable) start times, so that they form a non-overlapping sequence of bars 

position in the graph cannot be changed.  

 

 

that has no gaps. The black bars in Figure 7.10 belong to critical activities and their 
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Figure 7.10 

 
The matter is different with the noncritical activities, which have some leeway for 
their schedule. Suppose now that we use a heuristic method for scheduling them, 
which includes a rule that states that all noncritical activities should be scheduled 
a early as possible. The regular bars that belong to the activities D, G, I, and J in 
Figure 7.10 show how these activities are scheduled. This schedule now has very 
clear resource implications. From time t = 0 to t = 5, we only perform activity A, 
so that we need 10 employees. From t = 5 to t = 8, we perform only activity B, 
which requires 20 employees. Starting at t = 8 to time t = 12, we perform the 
activities C and D simultaneously. This requires 40 + 20 = 60 employees. At time 

G is also scheduled, so that 40 employees for C and 10 employees for activity G 
are needed. This process continues until the project is finished. The resource 

 
requirements are shown in the resource requirement graph in Figure 7.11.  

t = 12, activity D is finished, while C is still going on. However, at t = 12, activity 
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Figure 7.11 

 
It is apparent that the resource requirement is very low in the beginning, then 
peaks, drops and increases again towards the end. If we were to be able to employ 
only casual labor that we need to pay only when needed, then the total resource 
requirement is the shaded area in Figure 7.11. Calculating the size of the area from 
the beginning we have 10 employees needed for 5 weeks, 20 employees needed 
for 3 weeks, 60 employees needed for 4 weeks, and so forth, for a total of 1,155 
employee weeks. Assuming that we pay employees $15 per hour for 8 hours a 
day and 5 days a week, each employee will cost us $600 (plus fringe benefits, 
which we ignore here for simplicity). This means that the resource costs will be 
$693,000 for the entire project.  
 
The situation changes dramatically if we have to hire all needed employees for the 
entire duration of the project. As the highest manpower requirement at any point 
in time is 60, this is the smallest number of permanent employees required for the 
duration of the project. Employing 60 employees for the total of 34 weeks at a 
cost of $600 per week costs $1,224,000, more than 76% more than the costs for 
casual labor. This is caused by the fact that more than 43% of the time the 
employees are paid, they are actually idle.  
 
This calls for a different schedule whose maximal resource requirement is as low 
as possible. This type of objective is of the minimax type, where we search to 
minimize the maximum resource required at any point in time. Rather than using 
the heuristic that schedules all activities as early as possible (not a bad choice in 
general, as it allows for some noncritical activities to increase in duration without 
jeopardizing the finishing of the project on time), we will use another heuristic 
that schedules all activities as late as possible. The Gantt diagram that belongs 
to that schedule and the associated resource consumption graph are shown in 
Figure 7.12.  
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Figure 7.12 
 
It turns out that while this schedule uses the exact same number of employee 
weeks of casual labor—1,155—the highest employee requirement at any one point 
is only 50. This means that the costs for employees working throughout the 
project is $1,020,000, which is 16.67% less than with the “earliest possible” 
schedule. The idle time here is still 32%, though.  
 
Other heuristics exist for the scheduling of noncritical activities. Depending on the 
problem, they may be able to reduce the number of required resources further. 
The problem can also be solved by exact methods, but the integer programming 
problem that must be formulated for that purpose, is quite difficult. For details, 
see, e.g., Eiselt and Sandblom (2004).  

7.4   The PERT Method 
All project planning models discussed so far have in common that they are 
deterministic. More specifically, they have assumed that all components of the 
network—the activities, their durations, and the precedence structure—are known 
with certainty. This section will change that. In particular, we assume here that the 
activity durations are no longer known with certainty. It is important to realize that 
this is only one component that can be probabilistic: fully stochastic networks are 
dealt with by very sophisticated project network tools such as GERT (graphical 
review and evaluation technique), which are beyond the scope of this book.  
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The PERT method discussed in this section assumes that the duration of the 
activities are random variables with known underlying probability distributions. 
We do assume that the durations of activities are independent of each other. this 
is a fairly strong assumption, not justified in cases such as construction, where 
occurrences such as bad weather will affect many of the activities to take longer than 
they normally would. As usual in all of operations research, check the assumptions 
carefully, and if the assumptions do not fit the scenario under consideration, don’t 
use the model.  
 
Traditionally, it has been assumed that the duration of a single activity follows 
Euler’s beta distribution. This assumption has been much criticized in the literature. 
However, we can derive the same formulas without making such a strict and 
controversial assumption. Our assumption is that the activity durations follow some 
bell-shaped distribution. For bell-shaped distributions, the empirical rule in statistics 
is known to apply; see Appendix D. It states that about all observations are within 
three standard deviations about the mean, while about two thirds of all observations 
are within one standard deviation about the mean. This leaves 1/6 of the total mass 
for each of the two tails of the distribution. This situation is shown in Figure 7.13.  
 

 
 

Figure 7.13 
 
We can then define three time estimates for the duration of each activity: a most 
likely time estimate tm (the mode of the distribution), a pessimistic estimate tp, 
and an optimistic estimate to. The most likely time is associated with the central 
part of the distribution, the pessimistic estimate belongs to the right tail of the 
distribution, and the optimistic estimate is on the left tail of the distributions. 
Their weights are 2/3, 1/6, and 1/6 as shown in Figure 7.13. Based on these 
estimates, we can than compute a (weighted) mean for the duration of an activity 

as t = pmo ttt 6
1

3
2

6
1 ++  = 

6
4 pmo ttt ++

, which is exactly what was obtained by 

using the much stronger assumption of the beta distribution. Similarly, with tp = 
μ + 3σ and to = μ – 3σ, we can determine the variance of the activity duration as 
σ2 = .)( 2

36
1

op tt −  

µ µ+1σ µ–1σ µ–3σ µ+3σ 

3
2  

6
1

6
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Armed with this information, we can then determine the mean duration and its 
variance for all of the given activities from the three time estimates, specified for 
each of them. Given the mean activity durations, we can use them in exactly the 
same way we dealt with time estimates in the critical path method. Going through 
the regular procedure—forward sweep, backward sweep, computation of floats, 
critical path—we can determine the critical path on the basis of the mean durations 
of the activities. In addition to the usual information about project duration, 
critical and noncritical activities, and sensitivity analyses on the basis of floats, we 
can use the variances of the durations on the critical path to make probability 
statements. In particular, we can provide the decision maker with an estimate 
concerning the probability with which the project can be completed within a 
certain time.  
 
In order to explain the concept, consider a numerical example, whose numerical 
information is provided in Table 7.6. The graph for this project is the same as that 
for the examples in the previous two sections, but the time estimates are obviously 
different. 
 

Table 7.6: Numerical information for example 
 

Activity Immediate 
predecessor 

Time estimates (in hours) 

  optimistic most likely pessimistic 
A − 5 6 7 
B A 3 3 3 
C A, B 5 7 9 
D B 3 4 11 
E B, C 3 6 9 
F C, D, E 4 4 4 
G D 1 2 3 
H F, G 6 9 12 
I F, G 4 6 8 
J I 2 2 2 

 
Our first task is to calculate the mean activity durations for the ten activities. They 
are 6, 3, 7, 5, 6, 4, 2, 9, 6, and 2, respectively. Those time estimates are then used 
in the standard procedure discussed in the first section of this chapter. The results 
are shown in Figure 7.14.  
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Consider now the critical path ns − A − B – C – E – F – H − nt. The mean project 
duration of μ = 35 has already been computed in the procedure. We now have to 
calculate the variance on this path. The variances of the individual activities on the 

path (in order of their appearance) are ,0,,,0, 36
36

36
16

36
4  and 36

16 . The sum of these 

variances equals σ2 = 36
92 , so that the standard deviation equals σ = 36

92  ≅ 
1.5986. Furthermore, the central limit theorem states that the project duration is 
approximately normal with mean μ and standard deviation σ.  
 
Given this information, we are now able to provide the decision maker with some 
rough estimate about the probability with which the project can be finished within a 
prespecified time frame T. Suppose that the decision maker wants to know what 
the probability is that the project is finished within T = 36 hours. In order to be 
able to use the standard normal distribution (see Appendix D in this book) we 

calculate the z-score as 
σ
μ−

=
Tz  = 

5986.1
3536−  ≅ 0.6255, we find that the probability 

P(X ≤ 36) = 73.42%. When calculating these probabilities, it is always useful to draw 
the normal distribution function and indicate which area we are looking for. The area 
relevant to this question is shown in Figure 7.15a, where it constitutes the shaded 
area plus the entire mass to the left of the mean which, by definition, equals 0.5.  
 
Similarly, we could compute the probability that the project takes more than  
37 hours. Such information may be needed by the decision maker, as the late 
completion of the project may carry a penalty with it. The z-score for the 

completion time of 37 is z = 
5986.1

3537 −  ≅ 1.2511, from which we obtain a 

probability of P(X ≥ 37) = 10.58%. The area of interest under the normal 
distribution function is shown in Figure 7.15b.  
 
Finally, we compute the probability that the project is completed between 33 and 
37 hours. The area of interest is shown in Figure 7.15c, and it can be computed as 
P(33 ≤ X ≤ 37) = P(33 ≤ X ≤ 35) + P(35 ≤ X ≤ 37) = 0.7884. In other words, 
chances are about 80% that our project will be completed within the specified time 
window.  
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Figure 7.15 

 
A few comments are in order. First of all, much care should be taken with the 
probability statements. They have been derived with a lot of assumptions, so that 
it makes absolutely no sense to report them to the decision maker with two, four, 
or even more digits to the right of the decimal point, implying great accuracy. These 
probabilities are rough estimates, and this should be emphasized throughout.  
 
Secondly, what we have used is what is called the time-critical path. In other 
words, we have determined the critical path on the basis of estimated activity 
durations only, and then computed the probabilities. This does not necessarily 
provide the planner with the true critical path. As an example, consider two paths 
in some network, one with a mean duration μ = 100 and a standard deviation of 
σ = 10, while a second, obviously noncritical, path exists in the network with μ = 99 
and σ = 100. Note that the noncritical path is shorter, but has a much higher standard 

critical path as we do, is then 84.13%. However, computing the same probability 
on the basis of the noncritical path is only 54.38%, meaning that the former result 
(that we would obtain with our procedure), grossly overestimates the likelihood to 
finish the project within the specified time frame. This problem persists in a 
somewhat different guise even in our example: all probability statements assume 
that the critical path remains critical. Note, however, that the noncritical activities 
I and J have a very small float, making them almost critical. If their durations 
were to increase by fairly small, insignificant amounts, they would become critical, 
and their standard deviations, which have been completely ignored so far, would 

statements we have calculated with the utmost caution.  

Exercises 
Problem 1 (acceleration of a project): Consider a project network with four 
activities, their normal durations, their shortest possible durations (which can be 
achieved at extra cost), & the acceleration cost per time unit. Details are shown in 
Table 7.7.  
 

 35 37 33

(c) 

35 37

(b) 
35 36 

.5 

(a) 

suddenly have to be counted. This is yet another reason to treat the probability 

deviation. The probability to finish the project, computed on the basis of the 
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Table 7.7: Details of the network in Problem 1 
 
Activity Immediate 

predecessor(s) 
Normal duration 

(in days) 
Shortest possible 
duration (in days) 

Unit cost of 
acceleration 

A − 4 3 80 
B A 5 3 30 
C A 3 2 50 
D A, C 2 1 40 

 
(a)  Draw the project network.  

determine the critical path(s). What is the duration of the project?  
(c)  Accelerate the project by one day. Clearly indicate which (combinations of) 

(d)  What if the decision maker needs some further project acceleration? What is 
the shortest project duration and what are the associated costs?  

 
Solution:  
 

Figure 7.16 
 
(d) After the first acceleration (c), the activity durations are 4, 4, 3, and 1, and 
the project duration is T = 8. At this time, we either accelerate A (cost $80) or 
activities B and C (cost $80). Arbitrarily choose activity A. the activity durations 
are then 3, 4, 3, and 1, and the project length is T = 7. The two critical paths are 
still the only critical paths in the network. At this point, we can only accelerate 
activities B and C, as A and D are both at their respective crash times. Accelerating 
B and C costs $80. This leads to a project duration of T = 6, which cannot be 
accelerated any further. The cost to get to this point is $230. 
 
Problem 2 (scheduling with resources, Gantt chart and resource consumption 
graph): A project has been subdivided into five activities. Their immediate 
predecessors, activity durations, and resource consumption are shown in Table 7.8.  

 

 

ns

D

BA

nt

3,2; 50 2,1; 40

4,3; 80 5,3; 30

C

Exercises

(b)  Use the forward recursion, the backward recursion, calculate the floats, and 

activities could be accelerated in order to speed up the project, and which 
activity or activities should be accelerated. What are the associated costs? 
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Activity Immediate 

Predecessor 
Duration 
(in days) 

Resource 
consumption 

A − 3 40 
B − 7 40 
C A 5 30 
D A, B, C 2 60 
E B, D 5 70 

 
(a)  Draw the project network.  

that all activities are scheduled as early as possible. What is the largest 
resource consumption at any point in time?  

 
Solution: (a) 
 

Figure 7.17 
 

 
 
 
 
 

 

 

0 3 3

0 3 3

0A

0 0 0

0 7 7

1 7 8

0 0 0

0

3 5 8

8 2 10

10 5 15

10 5 15

15 0 15

15 0 15

3 5 8

8 2 10

0C

0D

0E

1B

ns 0nt

Table 7.8: Details of the network in Problem 2 

of all activities. What is the critical path? What is its duration?  
(b)  Calculate all earliest and latest starting and finishing times and the total floats  

(c)  Draw the Gantt chart and the associated resource consumption graph, assuming 

(b) The critical path includes the activities A, C, D, and E. Its length is 15.  
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(c) 

 
Figure 7.18 

The largest resource consumption at any point in time is 80. 
 
Problem 3 (PERT network): A project has been subdivided into five activities. 
Their immediate predecessors and the estimated activity durations (optimistic, 
most likely, and pessimistic) are shown in Table 7.9.  

 
Activity Immediate 

Predecessor 
Estimated duration 

(in days) 
A − 1, 2, 3 
B − 1, 3, 5 
C A, B 3, 4, 5 
D A, C 2, 2, 2 
E C, D 1, 2, 21 

 
(a)  Draw the project network. Based on the mean activity durations, calculate all 

earliest and latest starting and finishing times, and the total floats of all 
activities. What is the critical path? What is its duration?  

(b)  Calculate the variance and standard deviation on the critical path.  
(c)  Calculate the probability that the project will be finished between 11 and 15 

days.  

 

 

Exercises

Table 7.9: Details of the network in Problem 3 
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(d)  What is the probability that the project will be finished within 14 days? What 
is the probability that the project will be finished in exactly 14 days?  

 
Solution: (a) 

 
Figure 7.19 

 
The critical path is ns – B – C – D – E – nt. Its duration is 14 days.  
(b) σ2 = ]4000416[36

1 +++  = 36
420 , σ = 3.4157.  

(c)  P(11 ≤ X ≤ 15) = P(11 ≤ X ≤ 14) + P(14 ≤ X ≤ 15). Finding z-scores z1 and z2 

for the two ranges results in z1 = 
4157.3

1114 −  = .8783, leading to 31.06%, and  z2 

= 
4157.3

1415 −  = .2928, leading to 11.41%, for a total of 42.47%.  

(d)  P(X ≤ 14) = 0.5. P(X = 14) = 0.  
 
Problem 4 (GANTT chart, resource requirement graph, and PERT network): 
A project has been subdivided into five activities. Their immediate predecessors 
and the estimated activity durations (optimistic, most likely, and pessimistic) are 
shown in Table 7.10.  
 

 
Activity Immediate 

Predecessor 
Estimated duration 

(in days) 
A − 2, 6, 16 
B − 2, 2, 8 
C A 6, 8, 10 
D B 5, 6, 7 
E A, B 9, 9, 9 

 

 
 

0 2 2

1 2 3

1A

0 0C

0B 0E

743000 14 0 14

14 0 14
3 4 70 0 0

0 3 3

4159330

9 5 14

0

7 2 9

7 2 9

0D

ns
nt

Table 7.10: Details of the network in Problem 4 
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(a)  Draw the project network. On the basis of the expected durations, calculate 
all earliest and latest starting and finishing times, and the total floats of all 
activities. What is the critical path? What is its duration?  

(b)  Calculate the variance and standard deviation on the critical path.  
(c)  Calculate the probability that the project will be finished between 14 and 18 

days.  
(d)  What would happen to the result under (c), if the time estimates of activity D 

were to be revised to 3, 6, and 9? Explain in one short sentence.  
(e)  Consider the starting and finishing times calculated in (a) as well as resource 

requirements of 20, 50, 30, 40, and 60, respectively. On that basis, draw a 
GANTT diagram given that all activities are scheduled as early as possible. 
What is the highest resource requirement at any one time during the project? 

 
Solution: (a) 

Figure 7.20 
 
The critical path is ns − A – E − nt, and its length is 16.  

(b)  and (c) σ2 = ≈+ )0196(36
1  5.4444 and σ ≈ 2,3333. Then z = 8572.

3333.2
1618

=
−

, 

and P(14 ≤ X ≤ 18) = 2 (.3043) = 60.86%.  
(d)  Since activity D is not on the critical path, there will be no changes.  
 
 
 
 
 
 
 

0 0 0

0 0 0

0ns

0 7 7

0 7 7

0A

0 3 3

4 3 7

4B
3 6 9

10 6 16

7D

7 8 15

8 8 16

1C

7 9 16

7 9 16

0E

16 0 16

16 0 16

0nt

(f)   Repeat question (e) for the “Latest possible” scheduling rule.  

Exercises
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(e) 

 
Figure 7.21 

The highest resource requirement at any point in time during the project is 130. 

(f) 

 
Figure 7.22 
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8   Machine Scheduling 

The subject of this chapter is the allocation of jobs (or tasks) to processors (or 
machines). These terms should be understood in the widest possible sense: in the 
case of a doctor treating patients the doctor is the processor and the patients 
represent the tasks, in the case of a tax auditor the auditor is the processor (or the 
“machine”), while the individual cases are the tasks to be processed. This 
allocation is to be made so as to optimize some objective. We will discuss a 
number of these objectives below.  
 
This problem is somewhat reminiscent of the production scheduling problem 
introduced in Chapter 2 of this volume, and the project planning problems 
discussed in Chapter 7. The main feature of the machine scheduling problems in 
this chapter is that they include a sequencing component, which determines the 
order in which tasks are processed on a machine, and a scheduling component that 
determines at what time the processing of a task begins and ends on a machine. 
Often, the term scheduling is meant to include both the sequencing and scheduling 
parts of the allocation problem.  
 
This chapter will deal exclusively with deterministic scheduling problems, i.e., 
situations in which all parameters are assumed to be known with certainty. This is 
not to mean that these are the only relevant scheduling problems: on the contrary, 
in many important real-world applications, some of the parameters involved in the 
problem are uncertain. However, the structure of probabilistic problems is no 
different from that of deterministic problems (other than the fact that probabilistic 
problems are typically much more difficult than their deterministic counterparts), 
and what we attempt to convey in this chapter is a general idea of scheduling 
models, their applications, and degree of difficulty.  
 
The first section of this chapter will introduce the basic concepts of scheduling 
models. The remaining three sections of this chapter deal with different scheduling 
scenarios with increasing degree of difficulty.  
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8.1   Basic Concepts of Machine Scheduling 
As mentioned above, each machine scheduling problem features n tasks (jobs) T1, 
T2, …, Tn that are to be performed on m machines (processors) P1, P2, …, Pm. 
Processing a task on a machine will take a certain (and known) amount of time, 
which is referred to as the processing time. In particular, we define pij as the 
processing time of task Tj on machine Pi for all combinations of tasks and 
machines. In case there is only a single machine or all machines have the same 
processing time for a job, we simplify the notation to pj.  
 
We can then distinguish between three broad categories of models. The first 
category assumes that there is only a single machine, we refer to this as single 
machine scheduling. The second category has multiple machines working in 
parallel, all able to perform the same function. This type of model is called a 
parallel machine scheduling problem. There are two subcategories of parallel 
machine scheduling. In the first, parallel machines are identical (meaning that all 
machines take the same amount of time to process any given task), or they are 
unrelated, which indicates that it takes different amounts of time to process any 
given task on different machines.  
 
The third broad category of models includes dedicated machine scheduling 
models. The main characteristic of these models is that not all machines have the 

machines. In particular, we distinguish between three subcategories. The first 
category is an open shop. In an open shop, each task must be processed by all 

 
In addition to the processing time pj introduced above, we may also have a 

j

j j j

j j

agreed upon. If the task is not completed by that time, then there may be a penalty 
for the delay. 
 
Once all jobs have been scheduled on the machines, we can use a number of 
different properties inherent in any given schedule. The first is the completion time 
cj of job Tj, which is the time at which task Tj is completely finished. The second 
property is the flow time fj of task Tj. The flow time is formally defined as fj = cj − 
rj, and it can be thought of as the time that a job is in the system, either waiting to 

capability to process all jobs, and not all jobs need to be processed on all 

task T  is ready for processing. In the simplest case, r  = 0 for all tasks T , meaning 

machines, but there is no specific order in which the processing must take place. 

referred to as arrival time or release time) r , which indicates the time at which 

The second category are flow shops, in which each job is to be processed on all 

This could be a time specified in a contract or some other delivery time that was 

number of additional parameters. The first such parameter is the ready time (also 

machines, and each task is processed by the machines in the same specified order.  

that all jobs are ready when the scheduling process starts. The second additional 

set of machines, and the processing order is also job-specific.  

parameter is the due time d , which is the time at which task T  should be finished. 

Finally, there are job shops, in which each job needs to be processed on a specific 
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be processed or being processed. (This time is reminiscent as the “time in the 
system” Ws in the analysis of waiting lines, see Chapter 12 of this book). Finally, 
there is the lateness of a task Tj, which is defined as lj = cj − dj and tardiness, 
which is expressed as tj = max{lj, 0}. The lateness of a task is the time that elapses 
after the due date and the actual completion date of a task. For late jobs, lateness 
and tardiness are the same. For jobs that are completed before their due date, the 
lateness becomes negative, while their tardiness equals zero.  
 
There are many different criteria that may be used to optimize scheduling systems. 
Three of the most popular such criteria are introduced here. First, there is the 
makespan (or schedule length) Cmax. It is formally defined as Cmax = }{max j

j
c , 

and it expresses the time at which the last of the tasks has been completed. Such a 
measure is meaningful if a project can only be considered completed, if all of its 
individual tasks have been completed (similar to project networks, see Chapter 7 
of this volume). A typical example is the processing of machine parts that have 
been ordered by a customer. All of them will be shipped in a box, and the box can 
only be released for transportation, once all of the individual machine parts are 
included.  
 
The second criterion is the mean flow time F. The mean flow time is formally 
defined as the unweighted average F = )...( 21

1
nn fff +++ . (As a matter of fact, 

by virtue of the definition of flow time, it is easy to demonstrate that the mean 
flow time differs from the mean completion time )...( 21

1
nn ccc +++  only by the 

constant )...( 21
1

nn rrr +++ ). The mean flow time refers to the average time that a 
job is in the system either waiting to be processed or being processed. The mean 
flow time is a meaningful measure in instances such as a maintenance or repair 
system, in which a machine is not available if it is waiting for repair or being 
repaired.  
 
The third and last criterion in this context is the maximal lateness Lmax. The 
maximal lateness is defined as Lmax = }{max j

j
l , and it expresses the longest 

lateness among any of the jobs. This criterion is applicable in case some lateness 
is unavoidable or deemed acceptable, but the decision maker attempts to ensure 
that very long delays beyond the due date are avoided.  
 
Before discussing any details of specific scheduling models, we should point out 
some general features inherent in scheduling problems. In this type of model there 
is a fairly fine line that separates models that are rather easy to solve (some of 
which are represented in this chapter), while others, seemingly straightforward 
extensions, are very difficult. In those cases, exact methods that find optimal 
solutions will take a very long time, which may—depending on the individual 
circumstances—render them impractical. In such cases, decision makers will 
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resort to heuristic methods that have the advantage of providing (hopefully good) 
solutions quickly, but the obvious disadvantage of not necessarily resulting in an 
optimal solution. If a difficult problem has to be solved in real time, the use of a 
heuristic is imperative; if some time is available, an exact algorithm may be 
employed.  

8.2   Single Machine Scheduling 
The models in this section deal with the simplest of scheduling problems: there is 
only a single machine on which tasks are to be processed. Before investigating the 
solutions that result from the use of the three criteria introduced in the introduction 
above, we may introduce another wrinkle in this seemingly primitive scenario. In 
particular, we may consider modes that allow the preemption of a task, while 
others do not. In case preemption is permitted, this means that each task has 
associated with it a priority, and if a task with a higher priority becomes available 
at a time, when a task with a lower priority is being processed, then processing on 
the lower-level task stops, and the higher-level task is processed first. Examples of 
preemption abound: consider the case of a surgeon who is dealing with a broken 
leg as another patient with a heart attack arrives. Rather than referring to the usual 
“first come, first served” rule (inviting juicy lawsuits), most surgeons would probably 
stabilize the broken leg and deal with the heart patient first. Similar preemptions 
are found for police officers, who would interrupt a routine investigation to attend 
to a robbery in progress, or a plumber, who will interrupt the installation of a 
water pump in a residence to attend to a broken main. In this section, we restrict 
ourselves to cases, in which preemption is not permitted.  
 
Minimizing the makespan in case of a single machine is not meaningful, as each 
sequence of tasks will result in the very same value of Cmax. More specifically, 
Cmax equals the sum of processing times of all tasks.  
 
The objective that minimizes the mean flow time is not as straightforward. 
However, it is not difficult either, as it has been shown that the simple Shortest 
Processing Time (STP) Algorithm solves the problem optimally. The algorithm 
can be summarized by a simple rule.  
 

SPT Algorithm: Schedule the task with the shortest processing 
time first. Delete the task and repeat the procedure until all tasks 
have been scheduled.  
 

Rather than illustrate the SPT algorithm by an example, we will first introduce a 
minor extension of the rule. In particular, suppose that the decision maker has not 
only processing times pj to consider, but there are also weights wj associated with 
the tasks. The objective is then to minimize the average weighted flow time, 
defined for task Tj as wjfj. The weighted generalization of the SPT algorithm can 
than be stated as  
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WSPT Algorithm (Smith’s Ratio Rule): Schedule the task with 
the shortest weighted processing time pj/wj first. Delete the task 
and repeat the procedure until all tasks have been scheduled.  
 

As a numerical illustration, consider  
 
Example 1: There are seven machines in a manufacturing unit. Scheduled 
maintenance has to be performed on these machines once in a while. The 
repairman has identified the processing times required for the maintenance. Costs 
are incurred for downtime, regardless if the machine waits for service or is being 
served. These costs differ between the machines. The estimated processing times 
of the machines, the downtime costs, and the weighted processing times are 
summarized in Table 8.1.  

 
Table 8.1: Processing times and downtime cost for Example 1 

 
Job # T1 T2 T3 T4 T5 T6 T7 

Service time 
(minutes) 30 25 40 50 45 60 35 

Downtime cost 
($ per minute) 2 3 6 9 4 8 3 

Weighted processing 
time pj/wj 

15 8⅓ 6⅔ 9
55  11¼ 7½ 11⅔ 

 
Applying the WSPT algorithm, we first schedule task T4 (which has the lowest 
weighted processing time of 9

55 ), followed by T3 with the next-lowest weighted 
processing time of 6⅔, followed by T6, T2, T5, T7, and T1. The schedule is shown 
in the Gantt chart (named after the American engineer Henry L. Gantt (1861 – 
1919), who developed these charts in 1917) in Figure 8.1.  
 

 
Figure 8.1 

 
The tasks T4, T3, T6, …, T1 now have idle times of 0, 50, 90, 150, 175, 220, and 
255, respectively. Adding the processing time to them results in 50, 90, 150, 175, 
220, 255, and 285, respectively. Multiplying these by the individual per-minute 
costs and adding them up results in a total of $4,930.  
 
Consider now the objective that minimizes maximal lateness Lmax. Again,  
this  problem turns  out to be easy  from a computational point of view. A  simple  
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method was developed in the mid-1950s by Jackson, which is now commonly 
referred to as the earliest due date algorithm (or EDD algorithm or Jackson’s 
rule). It finds an optimal solution and can be stated as follows.  
 

EDD Algorithm: Schedule the task with the earliest due date 
first. Delete the task and repeat the procedure until all tasks have 
been scheduled. 

 
We will explain this rule by means of  
 
Example 2: The accounting department of a large firm processes book-keeping 
jobs for various divisions of the firm. At present, they have identified eleven tasks, 
which are to be completed by a single team, one after another. The processing 
times and the due dates for the individual jobs are shown in Table 8.2.  
 

Table 8.2: Data for Example 2 
 

Job # T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 
Processing time 
(hours) 

6 9 4 11 7 5 5 3 14 8 4 

Due dates 25 15 32 70 55 10 45 30 30 80 58 
 
The EDD rule starts by scheduling task T6 first (its due date is 10, the earliest of 
all due dates), followed by T2, T1, and so forth. The Gantt chart for the schedule 
obtained by the EDD rule is shown in Figure 8.3 (where the tie between tasks T8 
and T9 that have the same due dates, is broken arbitrarily).  
 

Figure 8.2 
 
Simple inspection reveals that the tasks T6, T2, T1, and T8 are finished before the 
due date. Task T9 is late by 7 hours, T3 is late by 9 hours, T7 is late by 1 hour, T5, 
T11, T4, and T10 are again finished before their due dates. This means that the 
maximal lateness occurs for job T3, so that Lmax = 9. Had we broken the tie in 
favor of T9 rather than T8, task T9 would have been completed at time 34 (4 hours 
late), task T8 would have been finished at time 37 (7 hours late). Otherwise, the 
schedule would have been identical to that shown in Figure 8.2, with Lmax = 9 
being still defined by job T3.  
 
The discussion in this chapter may leave readers with the impression that single-
machine scheduling problems are easy. This is, however, not the case. Consider 
again  Example 2, but as an objective, we now  use the total tardiness rather than 
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sum = t1 + t2 + …+ t11 
rather than Lmax = },..., 1121 l . We can find an optimal solution to the 
problem by formulating an integer programming problem. In order to do so, we 
first use variables t1, t2, …, t11 for the tardiness of the individual tasks. We then 
define variables x1, x2, …, x11 for the actual starting times of the eleven tasks. 
Furthermore, we need to define zero-one variables yij as  
 

 
⎩
⎨
⎧

=
                      

jobif,1 ji
ij

T
y ,  

 

resulting in 112 = 121 zero-one variables yij in addition to the eleven continuous 
variables t1, …, t11 and the eleven continuous variables x1, …, x11 for a total of 143 
variables.  
 
The objective simply minimizes the sum of tardinesses t1 + t2 + … + t11. As far as 
constraints are concerned, we first must define tardiness, which is done by stating 
that tardiness of a job can be expressed as its starting time plus its processing time 
(resulting in its finishing time) minus the due date, assuming that the resulting 
figure is positive. As an example, consider job T1, whose lateness can be written 
as t1 = x1 + p1 − d1, provided that t1 ≥ 0, otherwise t1 is set to zero. This can be 
achieved by writing x1 + p1 − d1 ≤ t1, as whatever value the left-hand side of this 
inequality assumes, the objective function will ensure that the value of t1 is chosen 
as small as possible. This constraint is written for each of the eleven tasks 
separately.  
 
We then have to ensure that a job must be completely finished before the next job 
in line can begin being processed. Suppose that we have scheduled job T1 directly 
before job T2. The pertinent constraint will then be x1 + p1 ≤ x2 + M(1−y12), where 
M >> 0 is a suitably chosen large number. This constraint can be explained as 
follows. The left-hand side expresses the finishing time of job T1, while the right-
hand side shows the starting time of job T2 plus M, if T1 is not scheduled before T2 
and 0 if it is. In other words, if T1 is scheduled before T2, then this constraint 
requires that the starting time of T2 is at least as large as the finishing time of T1 
(i.e., T2 cannot start before T1 is finished), while in case that T1 is not scheduled 
before T2, then the right-hand side of the inequality is very large, ensuring that it is 
satisfied regardless of the values of the variables. The problem can then be written 
as follows:  
 
 P: Min z = t1 + t2 + …+ t11 
 s.t. x1 + p1 − d1 ≤ t1  
  M  
 x11 + p11 − d11 ≤ t11 
  x1 + p1 − x1 ≤ M(1−y11) 

the maximal lateness. In other words, our objective is now L
max{l ,l

directly precedes job T
0, otherwise  

where the subscripts i and j each can assume any value between 1 and 11, 
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 x1 + p1 − x2 ≤ M(1−y12) 
  M  
 x1 + p1 − x11 ≤ M(1−y1,11) 
 x2 + p2 − x1 ≤ M(1−y21) 
  M  
 x11 + p11 − x11 ≤ M(1−y11,11) 

 x1, x2, …, x1 ≥ 0 
 t1, t2, …, t11 ≥ 0 
 y11, y12, …, y1,11, y21, y22, …y11,11 = 0 or 1.  
 
Note that the size of the integer programming problem for a scheduling model 
with n tasks includes n2 zero-one variables, 2n continuous variables, and n+n2 
structural constraints plus nonnegativity and zero-one conditions. It is apparent 
that the formulation becomes unwieldy for large numbers of tasks, thus possibly 
requiring the use of heuristic algorithms.  

8.3   Parallel Machine Scheduling 
All scheduling models in this section have in common that the tasks can now be 
processed on more than one machine. In general, we assume that a given number 
m of machines are available. We further assume that these machines are identical 
in the sense that not only can all machines process each of the tasks, but it takes 
the same amount of time to process a task, regardless of the machine it is 
processed on.  
 
First consider the objective of minimizing makespan Cmax. It can be demonstrated 
that this problem is very difficult from a computational point of view, even for 
just two machines. This means that we typically have to resort to heuristics to 
solve the problem (except in cases, in which there is ample time to find exact 
solutions). The most popular heuristic method for this type of problem is the 
longest processing time first (or LPT) algorithm. This heuristic method belongs to 
the class of list scheduling methods. All list scheduling methods first produce a 
priority list of tasks, starting with the job that is assigned the highest priority. 
Using this list and starting with the task that has the highest priority, jobs are then 
assigned one at a time to the first available machine. In particular, the longest 
processing time first algorithm can be described by the following rule:  
 

LPT Algorithm: Put the tasks in order of nonincreasing 
processing times. Starting at the top, assign the first available 
task to the first available machine. Repeat the procedure until all 
tasks have been scheduled. 

 
In order to demonstrate the way the algorithm works, consider again Example 1 
above, but assume that now we have three servicemen available to perform the 
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maintenance tasks. Putting the seven tasks in order of their processing time, 
starting with the longest, we obtain the sequence T6, T4, T5, T3, T7, T1, and T2 with 
processing times of 60, 50, 45, 40, 35, 30, and 25 minutes. In the beginning, all 
three machines are available, so we first assign the longest task T6 to machine P1. 
(Note that this machine will become available again at time 60, when T6 is 

4 2
which is available now. (This machine will become available again at time 50, 
when T4 is completely processed). The next task in line is T5 and it is assigned to 
machine P3. This machine will become available again at time 45. The next task to 

3
45, so that assigning T3 to the next available machine means that it is scheduled on 
P3. This process continues until all jobs are scheduled. The actual schedule is 
shown in the Gantt chart in Figure 8.3, where the shaded areas indicate the idle 
time on the machines.  
 

 
Figure 8.3 

 
Note that the schedule length is Cmax = 110. It is worth mentioning that this 
schedule is not optimal, which is not surprising, since the LPT algorithm, which it 
was determined with, is not an exact algorithm but a heuristic. Incidentally, the 
optimal solution schedules T6 and T7 on machine P1, jobs T4 and T5 are processed 
on machine P2, and tasks T3, T1, and T2 are processed on P3. This schedule has no 
idle time at all and all machines finish at time 95. Note that the optimality of a 
schedule does not necessarily require that there is no idle time. On the other hand, 
if there is no idle time, the schedule must obviously optimal.  
 
Consider now the second of our objectives, which is to minimize mean flow time. 
It has been demonstrated that this problem can be solved to optimality by means 
of a fairly simple technique. The algorithm is frequently referred to as McNaughton’s 
rule. It assumes that all tasks are ready at the beginning of the process, meaning 
that the mean flow time reduces to the mean completion time.  
 
Recall that there are n jobs and m machines. We can then formulate the following 
method:  
 

McNaughton’s Algorithm: First sort the jobs in order of 
nondecreasing processing time (ties are broken arbitrarily). 
Renumber them as .,...,, 21 nTTT ′′′ Then assign tasks ,, 11 mTT +′′  

,...21 mT +′  to machine P1, tasks ,...,, 2222 mm TTT ++ ′′′  to machine P2, 

completely processed). The next task in line is T , which is assigned to machine P , 

be scheduled is now T . The three machines become available again at 60, 50, and 
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tasks ,...,, 2333 mm TTT ++ ′′′  to machine P3, and so forth. The tasks 
are processed in the order that they are assigned in.  
 

In order to illustrate this algorithm, consider again Example 1 above. Recall that 
the reordered sequence of tasks is ( 7654321 ,,,,,, TTTTTTT ′′′′′′′ ) = (T2, T1, T7, T3, T5, 
T4, T6) with the processing times (25, 30, 35, 40, 45, 50, 60). Given that we have 
three machines, we assign to machine P1 the tasks 1T ′ , 4T ′ , and 7T ′  (or, 
renumbering them again, T2, T3, and T6), machine P2 is assigned the jobs 2T ′  and 

5T ′  (i.e., T1 and T5), and machine P3 will process jobs 3T ′  and 6T ′ , i.e., T7 and T4. 
The resulting optimal schedule is shown in Figure 8.4.  
 

 
Figure 8.4 

 
The mean completion time of the solution in Figure 8.5 is F = 7

1 [25 + 65 + 125 + 
30 + 75 + 35 + 85] = 440/7 ≅ 62.8571. The seemingly straightforward extension to 
the model with nonidentical ready times renders the problem very difficult from a 
computation point of view. This is yet another indication how fine a line there is 

 
Finally, the minimization of the maximal lateness in case of parallel machines 
turns out to be difficult, and we leave its discussion to specialized books, such as 
Eiselt and Sandblom (2004).  

between (sometimes very) easy and (sometimes very) difficult models.  
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8.4   Dedicated Machine Scheduling 
This section deals with different types of dedicated machine scheduling models. 
The first such model includes an open shop. Recall that in an open shop, each task 
must be processed on each of a number of different machines, performing 
different operations. The sequence of machines, in which the jobs are processed, is 
immaterial. Here, we will deal only with the case of two machines, which happens 
to be easy, while problems with three or more machines are difficult. Minimizing 
the schedule length (makespan) Cmax is easy. Optimal schedules can be found by 
means of the Longest Alternate Processing Time (LAPT) Algorithm. It can be 
described as follows.  
 

LAPT Algorithm: Whenever a machine becomes idle, schedule 
the task on it that has the longest processing time on the other 
machine, provided the task has not yet been processed on that 
machine and is available at that time. If a task is not available, 
the task with the next-longest processing time on the other 
machine is scheduled. Ties are broken arbitrarily.  

 
In order to illustrate the method, consider  
 
Example 3: In an automotive assembly shop, each semi-finished product goes 
through two phases, assembly of individual components, and checking of the 
components. The sequence in which these tasks are performed is immaterial. The 
times (in minutes) that it takes to assemble and check the six products are shown 
in Table 8.3.  
 

Table 8.3: Data for Example 3 
 

Job # T1 T2 T3 T4 T5 T6 
Processing time on P1 30 15 40 30 10 25 
Processing time on P2 35 20 40 20 5 30 

 
Using the LAPT algorithm, we begin by scheduling a task on machine P1. The task 
with the longest processing time on P2 is T3, so this job is scheduled first on P1. 
The next step is to schedule a task on P2 which now (we are still at time zero) idle. 
The task with the longest processing time on P1 is again T3, which is not available 
at this time, so that we schedule the task with the next-longest processing time on 

1 1 4 1 3 1
scheduled on the two machines, T1 is the first task whose processing is finished at 
time 35, and machine P2 becomes idle again. At this time, the available task with 
the next longest processing time on P1 is T4, which is then scheduled next on P2. 
The process continues in this fashion, and the resulting optimal schedule is shown 

times on the machines. The total schedule length is Cmax = 155 minutes.  
 

in Figure 8.5, where the shaded areas towards the end again indicate idle times 

P  next. This is either T  or T . Arbitrarily choose T . With tasks T  and T  being 
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Figure 8.5 

 
There are no simple extensions of this model that are computationally easy. The 
other two objectives (i.e., those that minimize mean completion time and maximal 
lateness) are both very difficult from a computational point of view, even for two 
machines. For their discussion, we refer to the advanced literature on the subject.  
 
The second dedicated machine scheduling model is a flow shop model, i.e., a model 
in which each task has to be processed by all machines, but in the same, prespecified 
order. The schedule in Figure 8.5 does not satisfy this condition, note that for 
instance job T3 is processed on P1 first and later on P2, while task T1 is processed 
on P2 first and then on P1. Similar to the case of open shops, there are very few 
cases that are easy to solve. Among them is the case of two machines, for which 
the makespan is to be minimized. The solution algorithm is the famed Johnson’s 
rule that was first described in the early 1950s. Assuming that all jobs have to be 
processed on P1 first and then on P2, and the processing time of task Tj is p1j on 
machine P1 and p2j on machine P2, the algorithm can be summarized as follows. 
 

Johnson’s Algorithm: For all jobs whose processing time on P1 
is the same or less than their processing time on P2 (i.e., p1j ≤ 
p2j), determine the subschedule S1 with the tasks in nondecreasing 
order of their p1j values. For all other jobs (i.e., tasks for which 
p1j > p2j), determine the subschedule S2 with all tasks in 
nonincreasing order of their p2j values. The sequence of jobs is 
then (S1, S2).  

 
As a numerical example for Johnson’s rule, consider again Example 3, but with 
the proviso that each job has to be assembled first and then it is checked, i.e., it is 
processed on machine P1 first before it can be processed on P2. The tasks for 
which the condition p1j ≤ p2j holds are T1, T2, T3, and T6, while the jobs with  
p1j > p2j are T4 and T5. Putting the former four tasks in nondecreasing order of 
the processing times on P1 results in the subsequence S1 = (T2, T6, T1, T3), while 
the latter two jobs in nonincreasing order of their processing time on P2 are put 
in the sequence S2 = (T4, T5). The resulting sequence is (T2, T6, T1, T3, T4, T5), and 
the corresponding schedule is shown in the Gantt chart in Figure 8.6.  
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Figure 8.6 

 
It is apparent that the schedule length is Cmax = 175. Note the increase in the 
schedule length in comparison to the same example, in which the sequence of 
processing in the machines is not fixed (i.e., the open shop) shown in Figure 8.5. 
Given that a flow shop is more restrictive than an open shop (it has the additional 
constraint that all tasks have to be performed in the same order on the machines), 
the increase of the schedule length from 155 to 175 minutes is not surprising.  
 
Simple extensions of the problem to more than two machines as well as the applic-
ation of the mean flow time and the minimization of tardiness are computationally 
much more difficult. Again, we refer readers to the specialized literature.  
 
The last model in this chapter deals with a job shop. Recall that by definition of a 
job shop, not all tasks need to be performed on all machines, and the sequence 
in which a job is processed on the machines is job-specific. Again, due to the 
inherent complexity of the problem at hand, we will restrict ourselves to the problem 
with two machines and the objective that minimizes the makespan. For this type 
of problem, Jackson described an exact algorithm in 1955. Note that Jackson’s 
method uses Johnson’s (flow shop) algorithm as a subroutine. The method can be 
described as follows.  

Jackson’s Job Shop Algorithm: Subdivide the set of jobs into 
four subcategories:  
 J1 includes all jobs that require processing only on machine  
  P1,  
 J2 includes all jobs that require processing only on machine  
  P2,  
 J12 is the set of jobs that require processing on machine P1 
  first and then on P2, and  
 J21 is the set of jobs that need to be processed on P2 first and 
  then on P1.  
 
Apply Johnson’s rule to the jobs in the set J12, resulting in the 
sequence S12. Then apply Johnson’s rule to the jobs in the set 
J21, but with the processing times p1j and p2j exchanged. The 
result is the subsequence S21. All jobs in the two sets J1 and J2 
are sequenced in arbitrary order (e.g., with those jobs that have 
smaller subscripts scheduled first). We denote their sequences 
by S1 and S2, respectively. The jobs are then sequenced as 
follows: the job order on machine P1 is (S12, S1, S21), while the 
job order on machine P2 is (S21, S2, S12).  

8.4  Dedicated Machine Scheduling 
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As a numerical illustration, we will use a modification of Example 3. The 
pertinent information is found in Table 8.4.  
 

Table 8.4: Data for Example 4 
 

Job # T1 T2 T3 T4 T5 T6 
Processing time p1j  30 15 − 30 10 25 
Processing time p2j  35 20 40 − 5 30 
Processing sequence P2, P1 P1, P2 P2 P1 P1, P2 P2, P1 

 
First defining the sets, we have J1 = {T4}, J2 = {T3}, J12 = {T2, T5}, and J21 = {T1, 
T6}. Since J1 and J2 include only a single task each, their respective subsequences 
are S1 = (T4) and S2 = (T3). Applying Johnson’s algorithm to the tasks in the set 
J12, we obtain the sequence S12 = (T2, T5). Consider now the set J21. Applying 
Johnson’s rule to the two tasks in the set, viz., T1 and T6, with their processing times 
p1j and p2j switched, we obtain the subsequence S21 = (T1, T6). Following Jackson’s 
job shop algorithm, the overall sequence on machine P1 is then (S12, S1, S21) = (T2, 
T5, T4, T1, T6), while the overall sequence on machine P2 is (S21, S2, S12) = (T1, T6, 
T3, T2, T5). The appropriate Gantt chart is shown in Figure 8.7. It turns out that the 
overall schedule length Cmax = 130 minutes. We also note that processor P1 is idle 
for twenty minutes at the end of the schedule. 
 

 
 

Figure 8.7 
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Exercises 

problem has ten jobs with given processing times of 3, 1, 4, 1, 5, 9, 2, 6, 5, and 3 
hours, respectively.  
 

objective is to minimize mean flow time, find an optimal schedule and draw 
the corresponding Gantt chart.  

(b)  Assume that there are two parallel machine to process the jobs. Trying to 
minimize the schedule length, schedule the jobs using the LPT algorithm. 
Display the corresponding Gantt chart.  

(c)  Given two parallel machines as under (b), what is the schedule that minimizes 
the mean flow time? Display the corresponding Gantt chart.  

(d)  Reconsider questions (b) and (c) given that there are now three rather than 
two parallel machines.  

 
 
Solution:  
(a)  Assuming ready times rj = 0, the mean flow time is F is minimized by the 

shortest processing time (SPT) algorithm. The sequence of jobs is T2, T4, T7, 
T1, T10, T3, T5, T9, T8, and T6. The corresponding Gantt chart is shown in 
Figure 8.8.  

 

 
 

Figure 8.8 
 
 The minimal mean flow time for this schedule is then F = 

.15)3930...7421(10
1 =++++++  Since T1 and T10 both have processing 

times of 3 hours, they may be swapped in the optimal schedule, thus creating 
alternative optimal solutions. A similar argument applies to the pairs T2 and 
T4, and T5 and T9.  

(b)  With two machines P1 and P2, the longest processing time (LPT) minimizes 
the makespan Cmax.  

 

Exercises

Problem 1 (single and parallel machine scheduling): A machine scheduling 

(a)  Assume that the jobs are to be performed on a single machine and that the 
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Figure 8.9 
 
 The makespan is 20 hours. In the schedule shown in Figure 8.9, one of the 

machines is idle for one hour.  
(c)  With two machines, use McNaughton’s rule to minimize the mean flow time. 

The Gantt chart is shown in Figure 8.10.  
 

 
 

Figure 8.10 
 
 The schedule length is 22 hours and the mean flow time is F = 

6.8)2217...4311(10
1 =++++++ , and one processor is idle for five hours.  

(d)  With three machines, we use the LPT rule as a heuristic to minimize Cmax. the 
Gantt chart is shown in Figure 8.11.  

 

 
 

Figure 8.11 
 

 The schedule has a makespan of 13 hours. Since there is no idle time, the 
schedule must be optimal. Minimizing the mean flow time is done by using 
McNaughton’s rule. The schedule is shown in Figure 8.12.  

 

 
Figure 8.12 
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 The schedule length is 18 hours and the mean flow time is F = 6.6. Note that 
there is significant idle time.  

 
Problem 2 (open shop and flow shop scheduling): In a hospital laboratory, there 
are two machines testing patient blood samples. Table 8.5 shows the number of 
minutes required on each machine to process the samples.  
 

Table 8.5: Data for Problem 2 
 

Blood sample T1  T2  T3  T4  T5  
Processing time on P1  8 9 7 9 3 
Processing time on P2  2 3 8 4 6 

 
(a)  Assume that the order of processing the blood samples on the two machines is 

arbitrary. Schedule the testing on the two machines so as to minimize the 
schedule length. Display the optimal schedule in a Gantt chart. Indicate the 
schedule length as well as the idle time.  

(b)  Assume now that all blood samples must be processed on P1 before they can 
be processed on P2. Redo part (a) with these new assumptions.  

(c)  Are the optimal schedules in (a) and (b) unique? Discuss. There is no need to 
display Gantt charts.  

 
Solution: (a) The LAPT algorithm is used to obtain the optimal schedule shown in 

Figure 8.13.  
 

 
Figure 8.13 

 
The minimal schedule length is Cmax = 36 minutes. There is no idle time on P1, 
 while P2 is idle at the end for 13 minutes. This is an open shop model.  
(b)  Johnson’s rule is used to obtain the optimal schedule shown in Figure 8.14.  
 

 
Figure 8.14 

 
The minimal schedule length is now Cmax = 38 minutes. Processor P1 has an idle 
time of 2 minutes at the very end of the schedule, whereas P2 has five separate idle 
time periods, totaling 15 minutes. This is a flow shop model.  
 
 
 

 

Exercises
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(c)  In (a), tasks T2 and T4 could swap positions in the schedule of P1 (and on P2 
for that matter) without consequences regarding the schedule length. There 
are several other changes that would not destroy optimality. In (b), tasks T2

 

and T4 could also swap positions on P1, necessitating modifications on 
processor P2.  
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9   Decision Analysis 

Everywhere in the world, at each moment, millions of people make their own 
decentralized decisions: when to get up in the morning, what tie to wear, what to 
eat for lunch or dinner, what to do in the evening (go to the theater or watch 
television), where to vacation, and many more. Similarly, firms will decide which 
mode of transportation to use when routing their products to customers, where to 
locate regional distribution centers, what new product lines to develop, etc. This 
chapter will first introduce the main elements of decision analysis, and then offer 
some visualizations of decision analysis problem. This is followed by a discussion 
of some simple decision rules, sensitivity analyses, and a discussion of the value 
of information. The chapter wraps up the discussion by some thoughts on utility 
theory.  

9.1   Introduction to Decision Analysis 
In order to put the decision making into a general framework, we must first 
distinguish between the two major elements of decision making: the decision 
made by the decision maker (whom we will think of as “us”) and the outcome that 
results from our decision. Typically, the outcome is given in monetary terms, and 
it is usually referred to as the payoff.  
 
The type of problem under consideration in this chapter is not a philosophical 
investigation into decisions; instead, it refers to a very specific scenario that is 
prevalent in decision making circumstances. In particular, we assume that there 
are a finite number of decisions at our disposal. Among these choices, the decision 
maker’s task is to choose exactly one. This type of situation is often referred to as 
a selection problem. Returning to the capital budgeting decision in the introduction to 
integer programming in Chapter 4, we can define a binary variable yj for each 
decision, such that the variable assumes a value of one if we make decision j, and 
0 otherwise. A selection problem with n possible decisions will then feature the 
constraint y1 + y2 + …+ yn = 1.  
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However, in contrast to problems that can simply be formulated as integer 
programming problems, there are two possible extensions that typically arise. The 
first extension involves the evaluation of a decision on more than a single 
criterion. As an example, consider a department store that considers changing the 
layout of its store. There are, of course, the costs of such a decision. But there is 
more: there is the changed customer flow that may result in higher exposure of 
some goods to customers and resulting potential higher sales of these products 
(the main reason for a change in layout), the (temporary) confusion of customers 
who may refrain from purchasing at the store, the potential retraining of 
employees if the layout change was in conjunction with new products added to the 
goods available at the store, and so forth. Similarly, consider the construction of a 
new office highrise building in an urban area. Concerns will include costs, safety 
(e.g., evacuation routes in case of emergencies), reimbursement of nearby 
apartment renters for the loss of view and sunlight that may be blocked by the new 
building, parking for employees and customers, and many more. Selection 
problems in which multiple criteria are considered are called multicriteria 
decision making problems (or MCDM). On the other hand, suppose that we only 
consider a single criterion, but the outcome of our decision is no longer certain. 
This is the standard scenario in decision analysis or, as it is frequently called, 
games against nature. The name stems from game theory and can be explained as 
follows. Consider a standard two-person-game with two players, one decision 
maker (us), and the other being our opponent (nature). Each of the two players has 
a number of possible actions at his disposal: the decision maker has the decisions, 
while nature controls the “states of nature,” nature’s equivalent of the decision 
maker’s decision choices. This is the scenario examined in this chapter.  
 
There is, however, a fundamental asymmetry in games against nature. First of all, 
the combination of the decision maker’s choice and nature’s state of nature will 
determine the outcome for the decision maker (nature will face no outcome). 
Secondly, the decision maker will examine the possible outcomes of his decisions 
before choosing one, while nature does not consider the outcomes, but chooses her 
strategies according to some probability distribution. This is the reason why the 
decision maker is usually called “intelligent” (we prefer to think of it as 
“rational”), while nature is referred as a “random player.”  
 
As an illustration, consider the following numerical example with three decisions 
d1, d2, and d3, and four states of nature s1, s2, s3, and s4. The payoffs are shown in 
Table 9.1.  
 

Table 9.1: Payoffs 
 

 s1  s2  s3  s4  
d1  3 −2 4 6 
d2  2 0 −4 1 
d3  5 2 0 −3 
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The decision maker could argue that d1 is best, as under three states of nature there 
is a reasonable payoff, while its largest possible loss is −2 and as such not as bad 
as the losses that can occur with the other two decisions. If the decision maker 
were to choose d1, while nature would randomly choose s3, then the decision 
maker would obtain a payoff of 4.  
 
It is important to realize that nature’s decision is either made simultaneously with 
that of the decision maker without cooperation, or, equivalently, the decision 
maker chooses first, followed by nature’s choice. As in all game-theoretic 
situations, it is crucial to specify which player knows what and when. This also 
marks the distinction concerning the level of certainty the decision maker has 
about nature’s choice. As usual, consider the extremes first. If the decision maker 
knows with certainty what nature is going to do, we face a decision problem under 
certainty. Given the scenario of selection problems, this means that the decision 
maker knows which column of the payoff matrix will apply. In the example of 
Table 9.1, suppose that the decision maker knows that nature will choose s1. This 
means that the consequences of the decisions are known with certainty: choosing 
d1 will result in a payoff of 3, choosing d2 will result in a payoff of 2, and 
choosing decision d3 will yield a payoff of 5. Clearly, the decision maker’s payoff 
is maximized by the payoff of 5, which we arrive at by choosing d3. This is the 
optimal solution and the problem is solved. (Before we continue with different 
levels of knowledge, note that the decision maker has jurisdiction only over his 
choices, e.g., d3, but he cannot choose the payoff directly).  
 
On the other extreme is uncertainty. In decision making under uncertainty, the 
decision maker has absolutely no idea about nature’s choice. Uncertainty is quite 
rare, it may occur in the performance of new and untried products, behavior of 
customers in new and untested markets, and other situations, in which no 
information is provided. As in all decision-making situations, if the level of input 
into the problem is low, the output will have to make do with simplistic rules. This 
is precisely what happens in this situation as will be seen below.  
 
Clearly, there is much territory between certainty and uncertainty. One milestone 
in between is decision making under risk. In decision making under risk, the 
decision maker is assumed to know the probability distribution. Examples would 
include past weather observations for farmers, predictions concerning customer 
behavior based on similar situations, and so forth. Rules for decision making 
under risk are described below.  

9.2   Visualizations of Decision Problems 
Before getting into specific rules for different situations, we would like to describe 
some ways to visualize decision making scenarios. Different visualization on 
different levels are available. For the macro view, there are influence diagrams. 
The idea is to show the basic interdependencies between decision and outcome, 
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while ignoring details. Their biggest strength is clarity, which is achieved by their 
concentration of fundamental relations and their resulting small size. On the other 
hand, decision trees are used for the micro view. They include specific decision 
rules at each step of the way. Consequently, they tend to be large and cumbersome 
to deal with.  
 
In order to demonstrate influence diagrams, we first make a list with three 
columns. The first column includes the decision maker’s possible decisions, the 
second column represents the random events that somehow influence the 
decisions and the outcomes, and the last column includes the consequences that 
are a result of the decisions and the random events. As an illustration, consider a 
department store that contemplates adding an electronics department to its 
services. In case the introduction is accepted by the public, management considers 
relocating that department into a separate building. The aforementioned listing is 
shown in Table 9.2.  
 

 
Decision Random event Consequence 
Add electronics department General economic 

conditions 
Profit 

Relocate department into a 
separate building 

Local acceptance of 
services 

 

 
In order to visualize the problem, we can create an influence diagram, in which 
our decisions are shown by rectangles, random events are shown as circles, and 
consequences are shown by triangles. We then add directed arcs, so that an arc 
from some node i to another node j exists, if it is believed that i influences j. The 
influence diagram for our problem could look as shown in Figure 9.1.  

 

 

 

 

Table 9.2: Decision, Events, and Consequences for Influence Diagram
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Figure 9.1 
 
The broken arcs in the figure are somewhat tenuous: they indicate the belief that 
local acceptance of an electronics department or store is influenced by the existence 
of an electronics department in our department store and our competitors’ reaction 
to our introduction of the department.  
 
On the other hand, we could zoom in and outline our decisions, our competitors’ 
decisions, and economic conditions in a decision tree. Decision trees have 
decisions and events listed next to arcs. A square node indicates that we will make 
a decision, a round node means that a decision is made not within our control (i.e., 
a random event), and a triangular node denotes the end of this branch of the tree. 
Normally, there will be an indication next to a triangular node what the payoff is 
to us at that point. For now, we will concentrate on the structure of the tree and 
return to the numerical aspects of decision trees in a detailed discussion in Section 
9.5 of this chapter. A possible decision tree for our sample problem is shown in 
Figure 9.2.  

Econ
conditions

Comp
reactions

Profit

Add electronics
department

Separate
building for
electronics
dept.

Local
acceptance
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Figure 9.2 

 
It indicates that after we have decided to expand, our competitor(s) could either 
not react, also expand their stores accordingly, or build a superstore. While these 
are not random events, they are shown here as such as these decisions are not 
within our control. In case our competitors do not react, our profit will depend on 
the state of the economy, which is shown in the Figure simply as “up” or “down.” 
(This exceedingly simplistic notion has been used so as to save space―it should 
have become clear by now that decision trees tend to get very large even if the 
players do not have very many options). In case our competitor(s) expand, we can 
either do not react ourselves or build the planned new building. Each of our 
decisions will be followed by a random event, at which nature decides which turn 
the economy takes. Finally, if the competitors have decided to build a superstore, 
we may either withdraw due to limited options to raise capital, or build the 
planned addition. Again, each decision is followed by the economy going up or 
down.  

9.3   Decision Rules Under Uncertainty and Risk 
Our discussion below will be based on a numerical example with the payoff 
matrix  
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 s1  s2  s3  
d1  2 −2 5 
d2  0 −1 7 
d3  2 1 1 
d4  2 −3 4 

 
Before performing any calculations, it is useful to first examine the payoff matrix 
regarding dominances. A decision i (meaning row) dominates a decision k (row)  
if all elements in row i are at least as large as the corresponding payoffs in row k. 
In other words, for each state of nature, decision i is at least as good as decision k. 
If this is the case, then decision k can be deleted from consideration. The 
determination whether or not dominances exist in a problem requires pairwise 
comparisons. In our example, let us first compare decisions d1 and d2. Given the 
first state of nature s1, decision d1 results in a payoff of 2, while d2 nets us only 0, 
so d1 is preferred. However, given s2, decision d1 results in a loss of 2, while d2 
results in a loss of only 1, so that d2 is preferred. This means that neither decision 
is consistently better than the other. Comparing d2 and d3 also results in no 
dominance (d3 is preferred in case s1 or s2 occurs), while d2 is preferred to d3 in 
case s3 comes up. However, the picture changes when comparing d1 and d4. Here, 
it is apparent that d1 and d4 are equally good given s1, while d1 is better than d4 in 
case of s2 and s3, so that d1 dominates d4; thus d4 can be deleted. The examination 
would have to continue comparing d1 and d3.  
 
Given m decisions, ½m(m−1) pairs of decisions will have to be compared. If any 
dominances are missed by accident, no harm is done: the model will be a bit 
bigger than it has to be, but no “reasonable” rule will choose a dominated 
decision. Note that we cannot apply the concept of dominance to the states of 
nature (i.e., the columns of the payoff matrix). The reason is that the concept of 
dominances is based on a comparison of the payoffs, i.e., a rational decision 
maker, and nature is no such player.  
 
Consider now a decision making problem under uncertainty. One simple decision 
rule will attempt to guard against the worst case. It has a variety of names, Wald’s 
rule named after its inventor, the pessimistic rule based on the mindset of the 
decision maker, and the maximin rule based on the way the rule works. First of all, 
we will determine the anticipated payoffs associated with our decisions. In our 
example, a pessimist choosing d1 would assume that the worst case applies and the 
payoff will be −2. Similarly, decision d2 would result in a payoff of −1, and so 
forth. The vector of anticipated payoffs would then be a = [−2, −1, 1, −3]T. 
Formally, these are the row minima of the payoff matrix. Choosing the best 
among these decisions will then be d3 as it leads to the maximum payoff among 
the anticipated payoffs. This is the reason for calling the rule a “maximin” rule.  
 
While the rule surely protects against the worst case, it has a number of shortcomings. 
The most predominant problem with it is its exclusive focus on the worst case. For 
instance, if someone had to pick up his multimillion dollar winnings from the 
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lottery office, the worst-case rule would suggest that he not do that: while walking 
or driving to the office, he might get hit by a truck and die, the worst case that has 
to be avoided. Since it is unknown how likely (or, in this case, how unlikely) such 
an incident would be, a decision made on the basis of Wald’s rule would try to 
prevent it.  
 
Another, very similar, rule is the optimist’s rule. An optimist’s anticipated payoff 
would include the best possible payoff for each decision, i.e., the row maxima. In 
our example they would be a = [5, 7, 2, 4]. The optimist would then choose the 
decision with the highest anticipated payoff, leading to a maximax rule. In our 
illustration, d2 would be the optimist’s choice. This Polyanna-inspired rule suffers 
from the same limitations as Wald’s rule, except that it has replaced guarding 
against the worst case by anticipation of the best case.  
 
A third rule for making decisions under uncertainty was independently developed 
by Savage and Niehans. It is called the minimax regret criterion and it has become 
the basis of what is often referred to as robust optimization. The idea is to 
compare for each state of nature the payoff the decision maker gains with a 
decision and the best possible payoff that could have been obtained given the 
same state of nature. In our numerical example, we compute the regret of decision 
d2 given the second state of nature s2. The payoff to the decision maker is −1. 
However, if the decision maker had just known in advance which state of nature 
would occur (the second), he could have his best response d3, which would have 
led to a payoff of 1, the highest payoff given s2. The difference between the actual 
payoff and the best possible payoff under that state of nature gives a regret of  
1 − (−1) = 2. These regrets are calculated for all pairs of decisions and states of 
nature, and they form the regret matrix. In our example, the regret matrix is  
 

  R = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

340
600
022
230

 

 
Note that regrets are never negative. Furthermore, there is always at least one zero 
in each column of the regret matrix (belonging to the element that determines the 
column maximum). The decision maker can then apply any rule on the regret 
matrix rather than the original payoff matrix. If we were to use the pessimist’s rule 
onto the regret matrix R, we would anticipate regrets of r = [3, 2, 6, 4]. Note that 
these are the row maxima, not the row minima as used above. The reason is that a 
payoff matrix includes payoffs that the decision maker would like to maximize, 
whereas the regret matrix features regrets that, similar to costs, the decision maker 
would like to minimize. Among the anticipated regrets, the decision maker will 
then choose the lowest, which in our example is d2, a decision leading to an 
anticipated regret of 2. Applied to the regret matrix, Wald’s rule is a minimax rule 
in contrast to the maximin version that is used in case a payoff matrix is given.  



9.3  Decision Rules Under Uncertainty and Risk 313 

Consider now decision making under risk. In this scenario, we can associate with 
each state of nature a probability pj, which has been determined by past observations. 
Bayes’s rule is then used to compute the expected values and choose the decision 
that leads to the maximum expected payoff, making Bayes’s criterion a weighted 
maxisum rule. In our example, suppose that the probabilities of the three states of 
nature have been determined as p = [.5, .3, .2]. The expected payoffs (or expected 
monetary values EMV) are then as follows:  
 
 EMV(d1) = 2(.5) − 2(.3) + 5(.2) = 1.4,  
 EMV(d2) = 0(.5) − 1(.3) + 7(.2) = 1.1,  
 EMV(d3) = 2(.5) + 1(.3) + 1(.2) = 1.5, and  
 EMV(d4) = 2(.5) − 3(.3) + 4(.2) = .9.  
 
Thus the anticipated payoffs are 1.4, 1.1, 1.5, and 0.9, so that the decision maker 
will choose d3, a decision that has the highest expected payoff of 1.5. In case of a 
tie, it is possible to use secondary criteria.  
 
Bayes’s rule has been popularized by what is known as the Newspaper Boy 
Problem. The decision of the newspaper boy concerns the number of newspapers 
he will purchase in the presence of demand uncertainty. The probabilities of the 
demand are based on past experience. If the boy buys too many papers on a slow 
day, he will have papers left over, which will have to be disposed of for their very 
low salvage value. On the other hand, if he purchases to few and the paper turns 
out to have some interesting stories, he will not have enough papers to sell, so that 
not only does he lose business today, but may irritate customers who may 
purchase their papers elsewhere in the future.  
 
As an illustration, consider the following numerical 
 
Example: A newspaper boy knows that he can sell either 10, 20, 30, or 40 newspaper 
on any given day (barring days with major headlines, such as assassinations, wars, 
or the latest replacements of body parts of some actress). The boy will purchase a 
newspaper for 20¢ and they sell for 90¢. The salvage value of an unsold newspaper 
is 5¢, while the opportunity cost for newspapers has been estimated to be 15¢ for 
each newspaper that could have been sold but was not due to the lack of supply. 
The payoff matrix for the newsboy problem is then  
 
                                   s1          s2         s3          s4 

 A =    

4

3

2

1

d
d
d
d
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⎥
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⎢

⎣
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where the decisions d1, d2, d3, and d4 refer to the newspaper boy buying 10, 20, 30, 
and 40 newspapers, while the states of nature s1, s2, s3, and s4 refer to a demand of 
10, 20, 30, and 40, respectively. Note that all entries on the main diagonal refer to 
cases, in which the sale equals the number of newspapers that were purchased, 
while all entries above the main diagonal involve some unsatisfied demand with 
its opportunity costs, while the entries below the main diagonal involve a surplus 
of newspapers, so that salvage values have to be applied. Given probabilities of 
p = [.6, .2, .1, .1] for the four states of nature, the four decisions have expected 
payoffs of $5.95, $8.45, $8.95, and $8.45, so that the newspaper boy will buy  
30 newspapers and expect a daily payoff of $8.95.  
 
Applications of this type occur in many circumstances, in which we are dealing 
with perishable goods. An excellent example is the airline industry. Seats in an 
airplane are a perishable commodity, as, once the airplane door closes, an empty 
seat is worthless. The airline’s decision problem is then to choose among their 
aircraft the type that best fits the expected demand on each of the routes.  
 
Back to our discussion of different approaches to decision making. In decision 
making under risk, there is also the possibility to use target values. The idea with 
this approach is to choose the decision that provides the highest probability that 
the payoff does not fall short of a predetermined target value. To illustrate, use 
again the example introduced earlier in this section. Suppose that a target value  
T = 1 has been chosen. Decision d1 will then achieve this target value only if 
nature chooses either s1 or s3 as her strategy, which will happen with a probability 
of 0.5 and 0.2, respectively. This means that when using d1, there is a probability 
of 0.7 that the target value is reached or exceeded.  
 
When using decision d2, the target value T = 1 will be achieved only if s3 comes 
up, which happens with a probability of 0.2. Similarly, decision d3 reaches the 
target value in case nature plays s2 or s3, so that the probability of a payoff of at 
least T equals 0.5, and for d4 the probability is 0.7. The decision maker will then 
choose the decision that maximizes the probability of getting at least T = 1, which 
is done by choosing either d1 or d4. Note that one of those optimal choices is the 
dominated decision d4. This is possible; however, a dominated decision can never 
be the unique optimum for any “reasonable” decision rule.  
 
In order to derive a simple decision tool, we plot the probability that a decision 
achieves at least a prespecified target value T against the full range of target 
values T. For our example, Figure 9.3 provides the graph in question. In particular, 
the solid line shows the achievements of decision d1, the broken line is for d2, and 
the dotted line shows the results for d3. For clarity, we ignore the dominated 
decision d4.  
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Figure 9.3 
 
Given the graph in Figure 9.3, we can very simply determine which decision has 
the highest probability of reaching a target value. For instance, if the target value 
were T = −1.5, then decisions d2 and d3 both have a probability of “1” to achieve 
this value, while decision d1 has only a probability of .7 of achieving this payoff. 
In other words, we are interested in the “upper envelope,” i.e., the highest of all of 
the functions. Given that, we can determine which function is highest and 
summarized it in the following decision rule:  
 
 If T < −2, any decision will achieve the target.  

If T ∈ [−2, −1], d2 and d3 are best. Both will reach the target with a probability 
of 1.  

 If T ∈ [−1, 1], d3 is best. It reaches the target with a probability of 1.  
 If T ∈ [1, 2], d1 is best. It reaches the target with a probability of .7.  
 If T ∈ [2, 5], d1 and d2 are best. Both achieve the target with a probability of  
  0.2.  
 If T ∈ [5, 7], d2 is best. It achieves the target with a probability of .2.  
 If T > 7, none of the decisions will be able to reach the target.  
 
A loose summary will indicate that d3 is best for low target values, d1 is best for 
intermediate target values, while d2 is best for high target values. This is, of 
course, not surprising: decision d3 has no extremes on the low end, while d2 does 
have an extreme possible payoff on the high end.  
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9.4   Sensitivity Analyses 
This section will examine two types of sensitivity analyses. The first (simpler) case 
assumes that a payoff, i.e., one element of the payoff matrix, is no longer known 
with certainty. The idea is to develop simple decision rules that provide guidance to 
the decision maker in case the payoff changes. Again, we will base our arguments 
on the example introduced at the beginning of this chapter, which is shown again 
here for convenience.  
 

 s1  s2  s3  
d1  2 −2 5 
d2  0 −1 7 
d3  2 1 1 
d4  2 −3 4 
p .5 .3 .2 

 
Suppose now that there is some uncertainty concerning the payoff of the second 
decision in case of the third state of nature. We can then write the payoff as a23 = 7 
+ ε with an unknown ε ∈ [−2, 3]. In other words, we expect the actual payoff to be 
somewhere between 5 and 10. The expected payoffs can then be computed as 

  EMV = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎢

⎣

⎡
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.  

Here, we can ignore decisions d1 and d4 as, regardless of the value of ε, decision 
d3 is better than those. This leaves us with the comparison between d2 and d3. 
Figure 9.4 plots the expected monetary values of the two decisions as a function 
of the change ε.  

 

 
 

Figure 9.4 
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The two payoff curves EMV(d2) and EMV(d3) intersect at ε = 2. To the left of ε = 2, 
the payoff is higher for decision d3, while to the right of ε = 2, the payoff with d2 
is higher. This leads us to the following decision rule:  
 
 If ε  2 (or, alternatively, a23  9), then decision d2 is best, and  
 if ε ≤ 2 (or, alternatively, a23 ≤ 9), decision d3 is best.  
 
Next, consider the possibility that there is some uncertainty surrounding a probability 
estimate. This case is somewhat more difficult conceptually, as the increase or 
decrease of a single probability will necessarily imply that other probabilities 
change as well, based on the simple fact that the sum of probabilities equals one. 
Back in our numerical example with the original payoffs, we are now no longer 
certain about the probability of s1.  
 
We may assume that an increase of p1 by some unknown value ε may reduce the 

a decrease of p1. If this assumption were reasonable, we then have probabilities  
[p1 + ε, p2 − ½ε, p3 − ½ε], or, with the values of p1, p2, and p3, we have [.5 + ε, .3 − ½ε, 
.2 − ½ε]. Given these probabilities, we can then again compute the expected 
monetary values, which are  
 

  EMV(ε) = 
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as functions of ε. This is shown in Figure 9.5.  
 

 
 

Figure 9.5 

≤ ≤

Suppose now that it has been estimated that p  will assume a value somewhere 

probabilities of all other states of nature by the same amount, and similar for  

ε ∈
 

       [−.2, +.1]. We can now again plot the expected monetary values of the decisions 
between .3 and .6. In other words, starting with its present value of p  =  .5, the change  
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For any value of ε we are interested in the highest expected payoff, i.e., in the 
point on the highest curve (something called the upper envelope, shown here by 
the broken line). We observe in Figure 9.5 that the decisions d1 and d4 are 
dominated by d3, leaving d2 and d3 as the only decisions of interest. The two 
functions intersect where their payoffs are equal, i.e., at the point at which 1.1 − 
3ε = 1.5 + 1ε. Solving for ε, we obtain ε = −.1 This leads to the following decision 
rule:  
 
 If ε ≤ −.1 (or, alternatively, p1 ≤ .4), then decision d2 is best, and  
 if ε −.1 (or, alternatively, p1  .4), then decision d3 is best.  
 
Note that it is not generally true that decision rules such as this consist of only two 
parts. It is possible that any number of the existing decisions may be best for some 
range of changes.  
 
It is, of course, possible that a change of p1 does not affect the remaining 
probabilities equally. For instance, it could be estimated that an increase of p1 by 

2 3
The expected payoffs are then  
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The payoff functions (as functions of ε) are shown in Figure 9.6.  

Figure 9.6 
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some unknown value ε will decrease p  by ⅔ε, while p  will decrease by ⅓ε. 
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As above, we assume that ε ∈ [−.2, +.1]. A similar analysis to that provided above 
reveals that decision d3 dominates d 4

2 3

  If ε −.15 (or, equivalently, p1  .35), then decision d2 is optimal, while  
1 3

addition to the decision rules discussed in the previous section, we will determine 
the value of information that goes beyond the probabilities for the states of nature 
that we continue to assume to be known. We will commence our discussion with 
an extreme case known as the expected value of perfect information (EVPI). 
Clearly, no information is perfect, but this value provides an upper bound for the 
value of any information, as no information can be worth more than perfect 
information. Since it is easy to compute, it provides the decision maker with a 
ballpark figure. In simple words, the EVPI is the difference of the payoff with 
perfect information and the best we can do without any information beyond what 
is included in the standard setting. As an illustration, consider again our example. 
Recall that with the probabilities of 0.5, 0.3, and 0.2 of the three states of nature, 
the highest expected monetary value was EMV* = 1.5, which was achieved by 
choosing decision d3, where we use an asterisk to indicate optimality. This is the 
best the decision maker can do without additional information. Consider now 
perfect information. It means that the decision maker will know in advance which 
state of nature will occur. It is important to realize that this does not mean that the 
decision maker can change the probabilities of the states of nature—all we assume 
that the decision maker knows which state of nature occurs before he makes his 
own decision.  
 
In our numerical example, the best response to the first state of nature s1 is to use 
d1, d3, or d4; each of these responses will result in a payoff of 2 to the decision 
maker. Similarly, if the decision maker knows that s2 occurs, his best response is 
to choose d3, which results in a payoff of 1. Finally, if nature chooses s3 and the 
decision maker knows about it beforehand, the best response is d2, netting 7. The 
payoff matrix A is shown again below with the starred element indicating those 
payoffs that result from the decision makes best response to nature’s action.  
 

1  and  d , leaving the decision maker with 
d  and d . Again, we are interested in the upper envelope, shown here by the 

 if ε ≥ .15 (or, equivalently, p  ≥ .35), then decision d  is optimal.  

broken line. The expected monetary values of the two decisions are equal if 

In this section we will again consider decision making problems under risk. In 
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1.1 − 5/3ε = 1.5 + ε, i.e., for ε = −.15. This leads to the following decision rule:  

≤≤
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A = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

43*2
1*1*2
*710

52*2

 

 
Given the known probability distribution p = [.5, .3, .2], we can state that 50% of 
the time, nature chooses s1 and the decision maker obtains a payoff of 2 (the first 
column), 30% of the time, nature chooses s2 and the decision maker’s best 
reaction results in a payoff of 1, and finally, 10% of the time nature chooses s3 and 
the decision maker’s response is d2, resulting in a payoff of 7. Hence, the expected 
payoff with perfect information is EPPI = 2(.5) + 1(.3) + 7(.2) = 2.7. The expected 
value of perfect information is then EVPI = EPPI − EMV* = 2.7 − 1.5 = 1.2. As 
indicated above, this is an upper bound on the amount of money that the decision 
maker should be prepared for any type of additional information.  
 
Consider now a situation, in which the information provided to the decision maker 
is imperfect. Imperfect information is usually provided by indicators. As an 
example, consider the price of an individual stock. It is usually not possible to get 
any direct information, so that we must rely on a proxy, such as demand for 
products of firms in that industry or manufacturers’ receipts. Clearly, such proxies 
are only of value if there is a links between them and the state of nature we want 
to forecast. For instance, it would be meaningless to forecast the probability of 
sales of a new camera by using the demand for potatoes. The stronger the links 
between a proxy and the state of nature it is used to forecast, the closer we will be 
to perfect information. The strength of the link between indicator and state of 
nature is typically provided by a table of conditional probabilities. For our 
example, assume there are two indicators I1 and I2, whose links to the three states 
of nature is shown in Table 9.3.  
 

Table 9.3: Conditional probabilities P(I|s) 
 

 s1  s2  s3  
I1  .6 .9 .2 
I2  .4 .1 .8 

 
In other words, given that the first state of nature s1 will eventually occur, indicator 
I1 has a 60% chance of coming up, and similar for the other values. It is apparent 
that the probabilities in each column add to one. (In the extreme case, there would 
be three indicators and the probabilities P(I1|s1) = P(I2|s2) = P(I3|s3) = 1 and all 
other conditional probabilities equal to zero. Then the three indicators are sure 
predictors of the states of nature, and we have again perfect information. This is 
the limiting case).  
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Before performing any computation, we will first depict the structure of the 
decision-making process in the form of a decision tree. The general structure of 
such a tree is shown in Figure 9.7.  

 
 

Figure 9.7 
 
In Figure 9.7, we start on the left with the square node (the root of the tree), 
indicating that we have to make a decision first. Our decision is whether or not to 
solicit additional information. The lower branch shows that no additional 
indication is sought, and it will end up with what we have already done earlier 
when applying Bayes’s rule. Often, this part of the tree is deleted and its outcome 
at the end of the first branch is shown as EMV* (= 1.5 in our example).  
 
Consider now the upper branch that indicates that we ask for additional information. 
This will be followed by a random event according to which some indicator comes 
up. this is shown by the circular node, followed by branches for all indicators I1, 
…, Ip. Once we have received an indicator (meaning we now have additional 
information), we must make one of our decisions d1, …, dm. This is shown again 
as a decision node, followed by arcs, one for each of our decisions. Finally, once 
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we have made a decision, a random event, i.e., one of the states of nature will 
occur. The end of the sequence of decisions and events is marked by a triangle, 
next to which we will place the outcome for that particular scenario. It is 
important to realize that each endpoint marked with a triangle actually symbolizes 
a scenario that includes the entire sequence of decisions and events from the root 
of the tree to that triangle. For instance, the topmost triangle on the right of the 
tree indicates that we asked for additional information, received the indicator I1, 
made decision d1, and then state of nature s1 occurred.  
 
Once the structure of the tree has been determined, we need to put some numbers 
into the tree. As already mentioned above, the payoffs are taken directly from the 
payoff matrix and put next to the triangles on the right side of the decision tree. 
What are now needed are probabilities. More specifically, we need two types of 
probabilities. The first types are associated with the random events that govern 
which of the indicators comes up. They are called indicator probabilities P(Ik). So 
far, we do not have these probabilities. The second type of probabilities are 
associated with the states of nature occurring at the very end of the decision tree, 
just before the payoffs are due. At first glance, it would appear that the probabilities 
that we used in Bayes’s rule (so-called prior probabilities) P(s) should be used. 
This is, however not the case. The reason is that a state of nature occurs after an 
indicator has come up. And the whole point of indicators is that they are not 
independent from the states of nature.  
 
So what we need are the so-called posterior probabilities P(s|I). In other words, 
these are conditional probabilities that specify the likelihood that a state of nature 
occurs, given that an indicator has come up earlier. And while it may appear that 
we are given the posterior probabilities in a table such as Table 9.3, this is not the 
case: while both are conditional probabilities, Table 9.3 includes probabilities of 
the type P(I|s), posterior probabilities are P(s|I). In other words, the probabilities 
will have to be inverted, which is done by what is known as Bayes’s theorem. This 
theorem (or rather conversion rule) is explained in Appendix D of this book. We 
will used it here in a very convenient computational scheme shown below. And a 
byproduct of the conversion are the indicator probabilities that we also need to put 
numbers on our decision tree.  
 
The computational scheme that determines indicator probabilities and posterior 
probabilities deals with each of the indicators separately. Consider again our 
numerical example and use only the first indicator I1. Table 9.4 shows the 
computational scheme we use as it applies to the indicator I1. The first column 
lists the states of nature, and the second column includes their prior probabilities. 
The third column includes the conditional variables that relate to the indicator 
under consideration (here I1) and all states of nature. In other words, the third 
column is nothing but the first row in Table 9.3. Following Bayes’s rule, we then 
multiply the elements in the second and third columns and put them in the fourth 
column. Their sum, shown at the bottom of column four, is then the indicator 
probability for the indicator under consideration, here P(I1). Finally, the posterior 
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probabilities in the last column are obtained by dividing each element of column 
four by the indicator probability, i.e., P(si|I1) = P(I1|si)P(si)/P(I1).  

 
Table 9.4: Computation of P(I1) and P(s|I1) 

 
s P(s) P(I1|s) P(I1|s)P(s) P(s|I1) 
s1  .5 .6 .30 .4918 
s2 .3 .9 .27 .4426 
s3 .2 .2 .04 .0656 
   P(I1) = .61  

 
This procedure provides us with both, the indicator probabilities and the posterior 
probabilities needed to complete the numerical information required in the 
decision tree. Similar computations are then performed for the second indicator. 
The results are shown in Table 9.5. Note that the sum of indicator probabilities 
must equal one. The same applies to the posterior probabilities in the rightmost 
columns of Tables 9.4 and 9.5.  
 

Table 9.5: Computation of P(I2) and P(s|I2) 
 

s P(s) P(I2|s) P(I2|s)P(s) P(s|I2) 
s1  .5 .4 .20 .5128 
s2 .3 .1 .03 .0769 
s3 .2 .8 .16 .4103 
   P(I2) = .39  

 
The decision tree with all numerical information is then shown in Figure 9.8.  
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Figure 9.8 

 
At this point, all numerical information is available and we need to discuss a 
technique that determines the EPSI.  
 
The general idea to deal with decision trees is to use a recursive procedure. This 

two rules in doing so:  
 
 Rule 1: Moving back into an event node, we take expected values, and  
 Rule 2: Moving back into a decision node, we choose the decision with the  
        highest expected payoff.  
 
Applying the two rules to our example, we start in the northeast corner of Figure 
9.8. Following the top three branches with the payoffs of 2, −2, and 5 at their 

the posterior probabilities of the branches to calculate expected payoffs at the 
event node at the beginning of the branches. In this case, we compute 2(.4918) − 
2(.4426) + 5(.0656) = .4264. A similar process is used for the other branches.  

respective ends, backwards, we reach an event node. This means that we use 

procedure starts from the leaves of the tree and works back to the root. There are 
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have just been computed. Starting again from the top with the three event nodes 
labeled with .4264, .0166, and 1.4918, we will follow the arcs that lead into these 

highest payoff is 1.4918 and the decision that leads to this payoff is d3. Similarly, 
comparing the expected payoff in the lower part of the diagram (2.9233, 2.7952, 

payoff is d1. The arcs of the two decisions chosen in this step are bolded.  
 
We now have two decision nodes labeled with 1.4918 and 2.9233, respectively. 
Moving back another step means going into an event node, which is done by 

This results in the expected payoff with imperfect information EPII = 2.05. 
Similar to the definition of the expected value of perfect information (the 
difference between the expected payoff with and without this information), we can 
now define the expected value of imperfect information, most frequently called 
expected value of sample information EVSI. The EVSI is defined as the difference 

information. Formally, we obtain EVSI = EPII − EMV* = 2.05 − 1.5 = 0.55. This 
is the highest amount that we should be prepared to pay for this information.  
 
The final step consists of the computation of the efficiency E. The efficiency 
measures how close the sample information is in comparison with perfect 
information, i.e., E = EVSI/EVPI. In our example, we obtain E = .55/1.2 = .4583. 
Loosely speaking, this means that the sample information is about 45% perfect. 
Note that the value of sample information depends on the strength of the link 
between the indicators and the state of nature. If the indicators are very strong, the 
efficiency will be close to one, if they are very weak, it will be close (or equal to) 
zero. Since EVSI is never negative and it can never exceed the value of EVPI, the 
efficiency is always a number between 0 and 1. Loosely speaking, it indicates the 
value of sample information as a proportion of perfection.  
 
Consider now the same example with two different indicators, whose strengths are 
shown in Table 9.6.  
 

Table 9.6: Conditional probabilities P(I|s) 
 

 s1  s2  s3  
I1  .9 .6 .2 
I2  .1 .4 .8 

 
The indicator probabilities and posterior probabilities for this example are calculated 
and shown in Tables 9.7 and 9.8 for the indicators I1 and I2, respectively.  
 
 

computing the expected payoff by using the indicator probabilities 0.61 and 0.39. 

The next step starts from the (total of six) event nodes whose expected payoffs 

choose the decision that results in the highest expected payoff. In this case, the 

between the expected payoff to the decision maker with and without sample 

nodes one step backwards. Since these arcs lead into a decision node, we will 

and 1.5128), the highest expected payoff is 2.9233 and the decision leading to this 



9  Decision Analysis 326 

Table 9.7: Computation of P(I1) and P(s|I1) 
 

s P(s) P(I1|s) P(I1|s) P(s) P(s|I1) 
s1  .5 .9 .45 .6716 
s2 .3 .6 .18 .2687 
s3 .2 .2 .04 .0597 
   P(I1) = .67  

 
Table 9.8: Computation of P(I2) and P(s|I2) 

 
s P(s) P(I2|s) P(I2|s) P(s) P(s|I2) 
s1  .5 .1 .05 .1515 
s2 .3 .4 .12 .3636 
s3 .2 .8 .16 .4848 
   P(I2) = .33  

 
Constructing a decision tree similar to that in Figure 9.8 and performing the 
backward recursion results in EPII = 2.12, so that EVSI = 2.12 − 1.5 = .62 and  
E = .62/1.2 = .5167, slightly more efficient than in the original example.  
 
In case the indicators are totally random, we would expect the value of this 
information to be zero. It can be readily seen that this is indeed the case. To 
illustrate this, consider again the above example and suppose now that there are 
three indicators. The conditional probabilities P(Ik|s) all equal ⅓. This results in all 
indicator probabilities equaling ⅓ as well, while the posterior probabilities equal 
the prior probabilities. Inserting them into the decision tree, we find that in the 
first step of the backward recursion, we obtain the same expected payoffs we 
would as if Bayes’s rule were used and, in the next step when making the 
decision, we will choose the best Bayesian decision with a payoff of EMV* in 
each of the three cases. The next step will multiply this value by the indicator 
variables by ⅓, resulting again in EMV*, so that EPII = EMV* and EVSI = 0.  
 
An interesting case occurs in the other extreme. It is apparent that if we were to 
use a forecasting institute whose forecast is always correct the value of this 
information equals the value of perfect information. On the other hand, imagine an 
institute whose advice is always wrong. At first glance it would appear that the 
value of such advice equals zero. This is, however, not correct. As a matter of fact, 
such information is also perfect, as we can rely on it: whenever they say one thing, 
we know that the opposite applies. It is the consistency between what is predicted 
and what actually happens that really counts.  
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9.6   Utility Theory 
Utilities have been used for a long time by economists. Particularly noteworthy 
are the analyses by the psychologists Kahnemann and Tversky in the 1970s. The 
main idea is to express the usefulness of a product or a service to the individual 
decision maker. In order to illustrate the concept, consider the following argument. If 
the expected value were to apply, then a decision maker would be indifferent to 
the choice of either a certain $50,000 gift and a lottery that pays $100,000 with a 50% 
chance and a zero payoff with a 50% chance. The expected value in both cases is the 
same: $50,000. However, most decision makers would prefer the certain $50,000.  
 
Let us then take this argument a step further. Suppose we were to offer the 
aforementioned lottery—a $50,000 payoff with a 50% chance and a zero payoff 
with a 50% chance—to a decision maker and inquire what amount of money 
received with certainty he were to consider equivalent to playing the lottery. this 
value is called the certainty equivalent. The certainty equivalent is typically 
determined by a string of questions that narrow down the value. For instance, we 
would describe the lottery to the decision maker and offer, say, $45,000 for 
certain. Would he take the $45,000? If so, we renege on our offer and offer only 
$40,000 instead. This process continues until the certainty equivalent is found. For 
many people, the certainty equivalent is quite low, some go as low as $20,000. 
This shows a behavioral trait referred to as risk aversion. As a rule, if a decision 
maker’s certainty equivalent is less than the expected value of the lottery, the 
decision maker is risk averse. If the certainty equivalent is higher than the 
expected value of the lottery, the decision maker is risk seeking (gamblers are a 
typical example), while if a decision maker’s certainty equivalent equals the 
expected value of a lottery, he is called risk neutral. The graph in Figure 9.9 plots 
a dollar value against the decision maker’s certainty equivalent of the lottery.  

 

 
Figure 9.9 
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Note that it is important to realize when asking these questions, that many times 
people who claim they would rather take a risk and gamble than accept a fairly 
small certainty equivalent, these people would change their mind once the actual 
amount is put in front of them, taking the decision out of a purely “theoretical” 
realm into the hands-on practical world. Also note that the certainty equivalents 
are specific to a decision maker and are not transferable, as individuals differ in 
their acceptance of risk.  
 
Once the certainty equivalents have been determined, they can be used to replace 
the actual payoffs, so that the problem is then to maximize the expected utility. 
This concept is also able to deal with cases, in which information concerning the 
likelihood of states of nature is known, but may be ignored by the decision maker. 
As an example, consider the case of a patient, whose physician has the choice of a 
number of drugs. Assume that one drug may be able to reduce the pain somewhat 
without known side effects, while another may not only eliminate the pain, but 
also the cause―with the possibility of major side effects that include death. If the 
latter event has only a tiny probability of occurring, the expected “payoff ” to the 

the physician may choose to either ignore the probabilities and use Wald’s rule so 

or, similarly, may assign a very high negative “payoff ” to the possibility of major 
side effects, resulting also in the former drug being chosen. Assigning very high 

linear programming under the name penalty costs, whenever options or situations 

Exercises 

Problem 1 (influence diagram): Consider the following situation. Jill lives presently 
in Missoula, Montana, where she has a fairly boring job. She has heard that there 

 
Develop an influence diagram and a decision tree for the problem.  
 

possible set of interdependencies of the decisions and events.  
 
Decision Random event Consequence 
Travel to Denver and look 

for a job 
Resettle in Denver 
Purchase a house in Denver 

Get job offer 
Salary (or net worth) 

patient may be such that the second and more effective drug may be chosen. However, 

costs (typically shown as M >> 0) to options is a technique that is also used in 

as to minimize the worst-case damage and choose the former less effective drug, 

are to be avoided, while still using objectives that maximize the sum of benefits.  

Solution: The list of potential events and the two graphs below indicate just some 

are many opportunities in Denver, Colorado, and she plans to go there, possibly 

Economic situation 

to look things over in Denver.  
resettle there, and buy a small house for herself. She plans to use her annual vacation 
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The influence diagram for this list is shown in Figure 9.10.  
 

 
 

Figure 9.10 
 
A possible decision tree that describes the sequence of events is shown in Figure 
9.11.  

Exercises
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Figure 9.11 

 
Problem 2 (single-stage decision-making under uncertainty and risk): Consider 
the payoff matrix of a game against nature. 
 

 s1 s2 s3 s4 s5 s6 
d1 5 –2 7 1 0 –6 
d2 6 0 3 –5 8 1 
d3 1 4 0 0 –1 0 
d4 4 –2 3 –5 6 0 

 
(a)  Explain in one short sentence the concept of a dominated decision. Are there 

any dominated decisions in this example? 
(b)  How would an optimist decide? 
(c)  How would a pessimist decide? 
(d)  Find an optimal strategy using the minimax regret criterion. 
(e)  Suppose that the decision maker has been informed that the states of nature 

occur with probabilities of .3, .2, .1, .1, .05, .25. How would a risk-neutral 
decision maker decide?  

(f)  Construct the graph that plots the probabilities that a decision achieves a target 
value T for all target values between −10 and 10 for all decisions. What is the 
optimal decision for T = 3½? For T = 5½? 

 
Solutions:  
(a)  A decision dominates another if it is better or the same for all states of nature. 

2 4In this example, decision d  dominates d .  
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(b)  An optimist anticipates payoffs of 7, 8, 4, and 6, so that d2 would be chosen.  
(c)  A pessimist anticipates payoffs of 6, –5, –1, –5, so that d3 would be chosen.  

(d)  The regret matrix is R = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

126462
191705
006440
780061

 
 2 4
(e)  The anticipated payoffs in Bayes’s model are 0.4, 2.25, 1.05, and 0.9, so that 

the decision maker will choose d2.  
1 2 3 4

deleted for clarity.  
 

 
 

Figure 9.12 
 
For T = 3½, decision d1 is best, followed by d2 and d3. For T = 5½, d2 is best, then 
d1 and d2. 
 
Problem 3 (sensitivity analysis): Consider a decision problem with three decisions 
and four states of nature. The payoff matrix is as follows:  
 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−

1232
3211

4202

 
Furthermore, suppose that the probabilities of the four states of nature are .4, .1, 
.3, and .2.  
 
(a)  Perform a sensitivity analysis on a34, the payoff that results from decision d3 

coupled with the fourth state of nature. It has been estimated at a34 ∈ [0, 4].  
 

Exercises

(f)  d : solid line, d : broken line, d : dotted line, the dominated decision d  is 

of 8, 6, 9, 6, so that the (pessimistic) choice is d  or d  with regret of 6.  

 with anticipated maximal regrets 
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(b)  Back to the original situation, perform a sensitivity analysis on p2. It is 
assumed that (i) for each unit of increase of p2, the probability p1 decreases 
twice as much as each of p3 and p4, and (ii) that p2 may decrease by as much 
as .05, while it may increase by at most .2.  

 
Solution: (a) Given the payoff a34 = 1 + ε, we obtain expected monetary values of 

1.0, 0.5, and 0.7 + 2ε for the three decisions. Given that a34 ∈ [0, 4], or, 
equivalently, ε ∈ [−1, 3], Figure 9.13 shows the expected monetary values of 
the three decisions as functions of ε and the upper envelope in form of the 
broken line.  

 

 
Figure 9.13 

 
This leads to the following decision rule:  
 if a34  2.5, (or, equivalently, ε  1.5), choose d1,  
 if a34 ≥ 2.5 (or, equivalently, ε ≥ 1.5), choose d3.  
 
(b)  The updated probabilities are p = [.4 − ½ε, .1 + ε, .3 − ¼ε, .2 − ¼ε], and the 

.7 + 2.25ε for the three decisions. Figure 9.14 shows the expected monetary 
values of the three decisions as functions of ε and the upper envelope is 
shown by the broken line.  

 

resulting expected monetary values are EMV(ε) = 1.0 − 1.5ε, .5 + .75ε, and 

≤≤
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Figure 9.14 
 
This results in the following decision rule:  
 if p2  .18 (or, equivalently, ε  .08), then choose d1,  
 if p2 ≥ .18 (or, equivalently, ε ≥ .08), then choose d3.  
 
Problem 4 (expected values of perfect and sample information): The Canadian 
McMoose chain of fast-food outlets is deciding how to keep up with the changing 
tastes of its customer base. They have narrowed down their choices to the 
following three decisions: d1 = completely redecorate the existing franchises, d2 = 
rebuild the outlets, and d3 = modify the existing decor slightly to emphasize the 
“mooseyness” of the outlet. The chain faces different states of the economy s1, s2, 
and s3: level, a slight upturn, a significant upturn. The payoffs for all combinations 
of decisions and states of the economy is shown in the following table:  
 

 s1 s2 s3 
d1 5 4 2 
d2 −4 2 9 
d3 3 8 1 

 
The probabilities for the three states of the economy have been determined as .3, 
.2, and .5.  
 
(a)  Determine the expected payoffs for the three decisions and choose the most 

preferred decision on that basis.  
(b)  What is the expected value of perfect information?  
(c)  The McMoose management considers hiring a research institute to obtain more 

detailed information about the state of the economy. They use two indicators 
I1 and I2 for their forecast. These two indicators are linked to the state of the 
economy as shown in the following table of conditional probabilities P(I|s):  

Exercises

≥ ≥
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 s1 s2 s3 
I1 .5 .1 .8 
I2 .5 .9 .2 

 
 Construct the decision tree for this problem and determine the expected value 

of sample (imperfect) information. If the research institute charges 1.4 for 
their services, should they be hired? Explain in one very short sentence.  

(d)  What is the efficiency of the sample information?  
 
Solution:  
(a)  The expected payoffs are 3.3, 3.7, and 3.0, so that they would choose d2 and 

get 3.7.  
(b)  EVPI = 7.6 − 3.7 = 3.9.  
(c) 
 For I1:  

s P(s) P(I1|s) P(I1|s)P(s) P(s|I1) 
s1 .3 .5 .15 .2632 
s2 .2 .1 .02 .0351 
s3 .5 .8 .40 .7018 

                 P(I1) = .57 
 For I2:  

s P(s) P(I2|s) P(I2|s)P(s) P(s|I2) 
s1 .3 .5 .15 .3488 
s2 .2 .9 .18 .4186 
s3 .5 .2 .10 .2326 

                 P(I2) = .43 
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Figure 9.15 

 
EVSI = 5.0301 − 3.7 = 1.3301, which is less than the amount requested by the 
institute, so do not hire them.  
 
(d)  The efficiency is E = 1.3301/3.9 = .3411.  
 
Problem 5 (expected value of perfect and sample information): The Australian 
automobile manufacturer Australomobil must decide whether or not to manufacture 
the transmissions of their “Piticus” model in-house (d1) or to subcontract them out 
(d2). The company faces different levels of demand for the Piticus that are defined 
as s1, s2, s3, and s4. The payoffs for all combinations of decisions and levels of 
demand are shown in the following table:  
 

 s1 s2 s3 s4 
d1 4 −1 −2 4 
d2 −4 2 1 3 

 

Exercises
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(a)  Are there any dominances in the payoff matrix? Explain in one short sentence.  
(b)  How would a pessimist decide? What is the optimal decision under the regret 

criterion? In both cases, what are the anticipated payoffs?  
(c)  Given prior probabilities of .2, .3, .4, and .1 for the states of nature, what is 

the optimal decision with Bayes’s criterion? What is the expected payoff?  
(d)  What is the expected value of perfect information?  
(e)  The Australomobil management considers hiring a research institute to obtain 

more detailed information about the future level of demand. They use two 
indicators I1 and I2 for their forecast. These two indicators are linked to the level 
of demand as shown in the following table of conditional probabilities P(I|s):  

 
 s1 s2 s3 s4 
I1 .4 .8 .9 .5 
I2 .6 .2 .1 .5 

 
 Construct the decision tree for this problem & determine the expected value 

of sample (imperfect) information. If the research institute charges 0.7 for 
their services, should they be hired? Explain in one very short sentence.  

(f)  What is the efficiency of the sample information?  
 
Solution:  
(a)  There are no dominances. For s1, d1 is better than d2, but for s2, d2 is preferred 

over d1.  
(b)  A pessimist will anticipate payoffs of −2 and −4, respectively. He will choose 

d1 and anticipate a payoff of −2. For the regret criterion, we set up the regret 
matrix  

 R = ⎥
⎦

⎤
⎢
⎣

⎡
1008
0330

, so that the (anticipated) maximal regrets are 3 and 8. The 

decision maker will then choose d1 and anticipate a regret of 3.  
(c)  The expected payoffs are .1 and .5, so that they would choose d2 and get .5.  
(d)  EVPI = 2.2 − .5 = 1.7.  
(e)  

s P(s) P(I1|s) P(I1|s)P(s) P(s|I1) 
s1 .2 .4 .08 .1096 
s2 .3 .8 .24 .3288 
s3 .4 .9 .36 .4932 
s4 .1 .5 .05 .0685 

                P(I1) =  .73 
 

s P(s) P(I2|s) P(I2|s)P(s) P(s|I2) 
s1 .2 .6 .12 .4444 
s2 .3 .2 .06 .2222 
s3 .4 .1 .04 .1481 
s4 .1 .5 .05 .1852 

                P(I2) =  .27 
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Figure 9.16 

 
EVSI = 1.21 − .5 = .71, which is slightly more than the amount requested by the 
institute, so they should hire them.  
(f)   The efficiency is E = .71/1.7 = .4176.  
 
 
 

Exercises
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10   Inventory Models 

Worldwide, companies hold billions of dollars in inventories. The main reason is 
to create a buffer that balances the differences between the inflow and outflow of 
goods. Inventories can be thought of as water tanks: there may be a constant 
inflow of water that is pumped into the tank by a pump, while the outflow is low 
at night, high in the morning (when people get up, take a shower, etc), it then 
decreases significantly until the demand again increases in the evening (when 
people come home, do laundry, etc), just to fall off again for the night. Other, 
popular, examples include grocery stores whose inventories consist of various 
foodstuffs awaiting sale to its customers. Here, the delivery of the goods is in bulk 
whenever a delivery truck arrives, while the demand is unknown and erratic. In 
the case of hospitals, they have in stock medical supplies, bed linen and blood 
plasma. Again, the demand for these items is uncertain and may differ widely 
from one day to the next.  
 
All these instances have a few basic features in common. They have a supply, a 
demand, and some costs to obtain, keep, and dispose of inventories. The next 
section will introduce a number of parameters and variables that are typically 
found in inventory models. Section 10.2 describes a basic inventory model, and 
the subsequent sections deal with a variety of extensions of the basic model.  

10.1   Basic Concepts in Inventory Planning 
For many organizations, inventories represent a major capital cost, in some cases 
the dominant cost, so that the management of this capital becomes of the utmost 
importance. When considering the inventories, we need to distinguish different 
classes of items that are kept in stock. In practice, it turns out that about 10% of 
the items that are kept in stock usually account for something in the order of 60% 
of the value of all inventories. Such items are therefore of prime concern to the 
company, and the stock of these items will need close attention. These most 
important items are usually referred to as “A items” in the ABC classification 
system developed by the General Electric Company in the 1950s. The items next 
in line are the B items, which are of intermediate importance. They typically 
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represent 30% of the items, corresponding to about 30% of the total inventory 
value. Clearly, B items do require some attention, but obviously less than A items. 
Finally, the bottom 60% of the items are the C items. They usually represent 
maybe 10% of the monetary value of the total inventory. The control of C items in 
inventory planning is less crucial than that of the A and B items. The models in 
this chapter are mostly aimed at A items.  
 
Due to the economic importance of the management of inventories, a considerable 
body of knowledge has developed as a specialty of operations research. We may 
mention just-in-time (JIT) systems that attempt to keep inventory levels in a 
production system at an absolute minimum, and put to work in Toyota’s so-called 
kanban system. There is also material requirements planning (MRP) aimed at 
using the estimated demand for a final product in order to determine the need for 
materials and components that are part of a final product. Multi-echelon and 
supply-chain management systems also consider similar aspects of production-
inventory control systems. Such topics are beyond the scope of this text, in which 
we can only cover some basic inventory models.  
 
Throughout this chapter, we will deal with inventory models that concern just a 
single item. Consider an item for which the demand per period (typically a year, 
but other time frames can easily be accommodated) is known or estimated to be D 
units. Unless otherwise specified, the parameter D is assumed to be constant over 
time; if it is not, we will denote it by Dt with the subscript t indicating the time 
period.  
 
The number of items in stock is depleted over time by the demand. On the other 
hand, the stock is also increased from time to time by additions caused by 
deliveries, referred to as orders. Typically, replenishments are assumed to be 
instantaneous (such as the arrival of goods by the truckload), resulting in sudden 
jumps in the inventory level, whereas deliveries to satisfy demand are typically 
assumed to be gradual. The order quantity is denoted by Q. In the models 
presented in this book, Q turns out to be constant over time, given that the 
parameters of the model do not change.  
 
Related to the order quantity is also the lead time tL. The lead time is defined as 
the time that elapses between the placement of an order and the moment that the 
shipment actually arrives and is available on the shelf.  
 
It is useful to distinguish between three types of inventory/stock levels:  
 
IO denotes the inventory on hand. By this we mean stock that is physically on the 

shelf and immediately available to satisfy demand. Clearly, IO must be 
nonnegative, i.e., IO ≥ 0.  

 
IN denotes the net inventory on hand, which is the inventory on hand minus 

backorders, the latter being unsatisfied amounts of demand due to insufficient 
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inventory on hand. The backordered demand will be instantly delivered 
whenever the stock is replenished and a sufficient number of items is on hand. 
The relation IN = IO − (backorders) may be negative in case the backorders 
exceed the inventory on hand. If there are no backorders, then IN = IO.  

 
IP, denotes the inventory position, which is defined as IP = IN + (outstanding 

orders).  
 
Figure 10.1 may be used to visualize the differences between the different types of 
inventories. The inventory on hand IO is shown by a solid line, the net inventory IN 
by a broken line, and the inventory position IP is shown by a dotted line.  
 

 
Figure 10.1 

 
To the left of t1, the inventory level IO decreases until we place an order of 
magnitude Q1 at time t1. (The lead time is t2 − t1). At this point, IO decreases 
further, while IP jumps up by Q1 and decreases parallel to IO. At t2, the shipment 
arrives, the inventory on hand jumps up and reunites with IP. From this point on, 
the inventory on hand decreases until we place another order at t3. The order is of 
magnitude Q2, and the lead time is t5 − t3. The inventory position jumps up by Q2 
and decreases then parallel to the inventory on hand until t4 occurs, when we run 
out of stock. From this point on, IO equals zero, while IN continues with negative 
inventory levels, while the inventory position is parallel to IN. When the shipment 
arrives at t5, the inventory level jumps up and all inventory curves are again 
united. From this point on, IO decreases and reaches the zero level at t6. The  
net inventory then continues in the negative inventory levels, while IO remains at 
the zero level. At t7, we place an  order of magnitude Q3 which  we assume  arrives 
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instantaneously, i.e., we have zero lead time. The inventory level then continues to 
rise and fall in similar fashion.  
 
We then have the following IO, IN, and IP values:  
 
 To the left of t1: IO = IN = IP, 
 between t1 and t2: IO = IN, IP = IO + Q1,  
 between t2 and t3: IO = IN = IP,  
 between t3 and t4: IO = IN, IP = IO + Q2,  
 between t4 and t5: IO = 0, IP = IN + Q2,  
 between t5 and t6: IO = IN = IP, 
 between t6 and t7: IO = 0, IP = IN, and finally  
 to the right of t7: IO = IN = IP.  
 
In the models we discuss below, the order size will usually be the same for all 
orders, and the lead time will also be the same for all orders, if not zero. The cost 
for carrying one unit of the good in inventory for one period is called the unit 
carrying or holding cost. We will denote this cost by the parameter ch. Occasionally, 
the carrying cost ch will be specified as a proportion of the inventory value rather 
than per unit of inventory. This will be clearly indicated whenever it applies. The 
total carrying cost is therefore related to the amount IO of inventory actually on 
hand and will be zero for those time periods when IO = 0. For some inventory 
models, backorders are not allowed, which implies that IN ≥ 0, whereas models 
with backorders (i.e., planned shortages) include the unit shortage cost cs which is 
the cost charged to be out of stock by one unit for one period of time. The carrying 
costs ch derive from capital cost, i.e., the cost of capital tied up in inventory, 
insurance, storage, security, heating/cooling, as well as costs for theft, damage, 
and obsolescence. In practice, the major component is the capital cost.  
 
In contrast, the ordering costs co are defined as the cost of placing an order and 
having it delivered. It includes administrative costs as well as transportation costs. 
Ordering costs are usually considered to be independent of the size of the order, 
but since transportation costs are involved, one may question this assumption. 
However, we may argue that transportation costs may not be directly related to the 
size of the order: if the order is delivered by container or truck, the rate charged is 
usually not much dependent on whether the container is one-quarter or three-
quarters full; a similar argument applied to truckloads. Additionally, if the transport-
ation costs were to relate to each item, then―assuming that the demand must be 
satisfied―the total ordering cost for a period with a given demand D would be the 
same, regardless of whether there are many small or few large orders. Being a 
constant, this factor would then not affect the optimization. 
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10.2   The Economic Order Quantity (EOQ) Model 
The most basic inventory model, the economic order quantity or EOQ model, has 
an interesting history. Although the EOQ formula was first published in 1913 by 
Ford Whitman Harris, it has been known under other names such as Camp’s 
formula and Wilson’s lot size formula in the 1920s and 1930s. An interesting 
historical account is provided in an article by Erlenkotter, indicating deliberate 
attempts in the past to deny Ford Whitman Harris the credit of originating the 
EOQ.  
 
The assumptions of the basic economic order quantity are:  
 
• The inventory consists of one single unperishable good held in one location,  
• the demand rate for the item is constant over time and demand must be 

satisfied exactly,  
• the item is ordered from a single supplier in the same amount each time. For 

now, we assume that replenishment is instantaneous, even though that is not 
really necessary as we will show later,  

• there are no quantity discounts,  
• stockouts are not allowed and the demand must be satisfied completely, and 
• the planning horizon is infinite and all model parameters are stationary, i.e., 

they do not change over time.  
 
It is apparent that the problem has two components: how much to order and when. 
The question of when to order is simply resolved in case of instantaneous 
replenishments: since the net inventory is not allowed to become negative, and 
since it does not make sense for a replenishment to occur while net inventory is 
positive, it must be optimal to place an order (and immediately receive the 
shipment),  when the inventory level reaches zero. Instead of looking at the time 
when to reorder, we use the inventory level as a proxy for the time clock. The 
three inventory levels IO, IN, and IP are all equal and can be denoted by I.  
 
Since the order size was assumed to be the same each time, the inventory levels 
over time will have the characteristic sawtooth pattern shown in Figure 10.2, 
where the time between two consecutive replenishment times is referred to as the 
inventory cycle length tc, while the order quantity is Q.  
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inventory level 
 
 
 
 
 
 
 
 
 
 
                                                                                                                          time 
 

Figure 10.2 
 
We now wish to minimize the total inventory-related costs TC per period (year), 
which is the sum of total ordering costs for the period and the total holding costs 
for the period. We could add the purchasing costs as well, but since we have 
assumed that the demand must be completely satisfied and there are no price 
discounts, the purchasing costs would be a term pD with p denoting the unit price 
of the good. This is a constant, and as such it will not affect the optimization and 
can thus be deleted in the process.  
 
First, consider the ordering costs. If we were to place N orders, each of size Q, 
within the planning period, then the total amount ordered is NQ, which must equal 
the demand D: since stockouts are not allowed, NQ cannot be less than D, and 
with NQ > D we would be carrying more inventory than needed, incurring 
unnecessary costs. With NQ = D, we find that N = D/Q equals the number of 
orders per period. Incidentally, since tc is the length of one inventory cycle, of 
which there are N in one period, tcN = 1 period, so that tc = 1/N = Q/D. Recalling 
that the cost for one order is co, we conclude that total annual ordering costs are 
coN = coD/q.  
 
Since holding costs are charged per unit in inventory (the vertical axis in the 

curve, which can be seen to be ½Q. In other words, the average inventory level is 
h

inventory costs per period are  
 
 TC = coD/Q + ½chQ. 
 
This expression makes intuitive sense: the larger the order quantity Q, the lower 
the total ordering costs, since larger, but fewer, orders are being placed. However, 
the holding costs will be higher, since more inventory is being kept in stock (on 
average). This is illustrated in Figure 10.3, where the abscissa measures the order 

tc 

Q 

quantity, the ordinate measure the costs. The broken line (a rational function 

½Q, implying that the total annual holding costs are c (½Q). Hence, the total 

diagram in Figure 10.2), we will need to compute the total area under the sawtooth 
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while the linear function (the broken line) represents the inventory holding costs. 
the solid line is then the sum of the two components.  
 

 
 

 
Figure 10.3 

 

derivative with respect to Q, which results in  
 
 TC ' = −coD/Q2 + ½ch.  
 
Setting it equal to zero results in the optimum order quantity  
 

 Q*
h

o

c
Dc2

=  

 
(Technically, we also have to check the second derivative in order to ensure that 
the optimal order quantity results in minimal, rather than maximal, inventory 
costs. It does.) The expression for Q* is referred to as the economic order quantity 
EOQ. Inserting this order quantity into the cost function, we obtain the inventory 
costs at optimum, which are  
 
 TC(Q*) = hohh cDccDccDc 2½½ oo =+ .  
 

costs 

order quantity Q 

of type “constant divided by the order quantity Q”) represents the ordering costs, 

To determine the value Q* that minimizes total inventory cost TC, we find the 
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o h

 

inventory cycle length *
ct  = 1/N* = Q*/D.  

 

year. The cost of placing an order for the chargers is co = $100 and the holding 
cost is ch = $4 per charger per year. The economic order quantity is therefore 

200
4

)100)(800(2* ==Q chargers and the total cost is )4)(100)(800(2* =TC  = 

$800. The optimal number of orders to be placed throughout the year is N* = 
*
c  = Q*/D = 

200/800 = ¼ year = 3 months. The total ordering costs are then 4(100) = $400, 
which is half of the total cost, the other half is made up by the total holding costs.  
 
A useful feature of the economic order quantity is its insensitivity to errors in 
the input data (i.e., the parameters). In our example, assume that the annual 
demand was erroneously estimated to be 920 chargers, instead of the correct 
amount of 800 chargers, i.e., a 15% overstatement. Using the EOQ formula we 
obtain the nonoptimal and erroneous value Q* from the expression 

5.214
4

)100)(920(2* ≅=Q , which is an overstatement by slightly more than 7%, 

only about half of the original relative error. One can show that due to the square 
root of the formula, relative input data errors result in relative EOQ errors of only 
about half the size, for reasonable errors (say, 30% or less). Checking the total 
inventory costs that result from the wrong data, we find (using the true value of  
D = 800 and the erroneous order quantity Q* = 214.5) that TC(Q* = 214.5) = 

5.214
)800(100  )½(4)(214.5+  = $801.96, which deviates only very marginally from 

the true value of $800.  

10.3   The Economic Order Quantity with Positive Lead Time 
We will now carry our discussion further and extend the model to the situation 
where a positive lead time tL elapses from the moment an order is placed and until 
the time the quantity ordered has arrived and been added to the inventory.  
 
It is apparent that the decision when to order will in no way affect the decision 
how much to order. In other words, the optimum order quantity Q* still applies. 
Instead of looking at the clock time for the point at which to place an order, we 

Example: A retail store faces a demand of D = 800 car battery chargers per  

optimum regardless of the value of the parameters D, c , and c ; however, the solution   

Given Q*, we can then determine the related variables N* = D/Q* and the optimal 

Q* is

D/Q* = 800/200 = 4 orders, and the optimal inventory cycle length is t

not optimal because holding and ordering costs are equal.  

Note that it just so happens that holding and ordering costs are always equal at 
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will observe the inventory level and determine the order time in terms of the 
reorder point R: when the on-hand inventory level IO decreases to the level R, an 
order is placed, which will arrive after a delay of tL time units; at this point, the 
inventory level, for optimal performance, should have reached zero. We will 
consider two different cases, depending on the length of the lead time tL, which 
differ on the basis of the relation between lead time and cycle time.  
 
Case 1: *

cL tt ≤ , i.e., the lead time is less than or equal to the optimal inventory 
cycle length. The demand during the lead time is then tLD, and it follows that if an 
order of size Q* is placed when the inventory level reaches R* = tLD, then the 
replenishment will arrive exactly at the time when the inventory on hand has been 
depleted, which is neither too soon, nor too late. This situation is depicted in 
Figure 10.4.  
 

 
Figure 10.4 

 
Case 2: *

cL tt > , i.e., the lead time is greater than the optimal inventory cycle 

length. The demand during the lead time is still tLD, but since *
cL tt > , it follows 

that tLD > ** QDtc = , which is the highest level of inventory on hand that we will 
ever reach. The arrival of an order will therefore occur during a subsequent 
inventory cycle and not during the cycle in which it was ordered. This situation is 
illustrated in Figure 10.5, where ** 2 cLc ttt << .  
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Figure 10.5 
 
In general, there could be several replenishments occurring during the lead time. 

This number is actually 
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
*
c

L

t
t  (the “floor of the number”), i.e., the ratio 

*
c

L

t
t rounded down to the nearest integer. In Figure 10.5, the floor

 
 equals 1, so that 

the replenishment arrives in the inventory cycle following immediately after the 
one during which it was ordered. In general, we obtain the relation  
 

 ** * Q
t
tDtR
c

L
L

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
−= . 

 
It can easily be demonstrated that this expression will cover both cases above. 

Since for tL < *
ct  (as in Case 1), 

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
*
c

L

t
t  = 0, so that R*= tLD, which is the 

expression derived for that case.  
 
Example: Consider the battery charger example above with D = 800, co = $100, 
and ch = $4, for which we have obtained an optimal order quantity of Q* = 200 at 
an annual cost of TC* = 800. Given now a lead time of 2 months, i.e., 1/6 of a 
year, we have tL = 1/6 < ¼ = *

ct , so that Case 1 applies. Here, we find the optimal 
reorder point as 
 
 R* = tLD = 1/6(800) = 133⅓ units.  
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On the other hand, with a lead time of tL = 4 months, i.e., ⅓ of a year, we have  
tL = ⅓ > ¼ = *

ct , so that Case 2 applies, and we find that 
 

 R*= ⅓(800) – )200(
4

1
3

1

⎥
⎦

⎥
⎢
⎣

⎢
 = 66⅔ units.  

 
As mentioned earlier, these shipments will not arrive in the inventory cycle they 
are ordered in, but in the next cycle.  
 
A practical way to implement the reordering in Case 1 above where *

cL tt ≤  is the 
two-bin system. Upon replenishment, the order quantity Q* is physically separated 
and put into two storage bins. The first bin has a capacity of Q* − R* units, while 
the second bin holds R* units. The demand for items in stock is then satisfied 
exclusively from the first bin until it is empty. At that time, only the R* items in 
the second bin remain and the inventory manager will reorder the item. From this 
point onwards, all subsequent demand is now satisfied from the second bin. Given 
the assumptions made in this section, the second bin will be depleted exactly at 
the time when the next shipment arrives and the process is repeated.  
 
A similar argument allows the two-bin system to be implemented in Case 2 with 

*
cL tt > . Supermarkets use a “virtual” version of the two-bin system by electronically 

monitoring inventory levels by counting items that pass through the checkout 
counters. Orders are then automatically triggered when the appropriate reorder 
point has been reached.  

10.4   The Economic Order Quantity with Backorders 
Assume now that we allow backorders, so that the net inventory level IN may 
become negative, in the sense that unsatisfied demand is recorded or “backordered,” 
to be satisfied immediately upon replenishment of the inventory. Such planned 
shortages are considered to incur a shortage cost per unit and per period. These 
unit shortage costs will be denoted by cs. These costs consist of the inconvenience 
to the customer of the unsatisfied demand and they will be difficult to estimate in 
practice. The costs could also include special handling costs that are incurred due 
to the preferential delivery to the customer of the backordered units when they 
become available. This will also imply that net inventory IN and inventory position 
IP are the same, i.e., IN = IP. Assuming a repetitive situation, the net inventory 
level will be as in Figure 10.6, where S denotes the amount of the maximal shortage. 
Note in the figure that the maximal inventory directly after replenishment is no 
longer Q as in the standard model, but Q − S, as the stockouts are satisfied first 
before new inventory is built up.  
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Figure10.6 
 
In Figure 10.6, the parameter t1 denotes the length of time during an inventory 
cycle during which the net inventory IN is nonnegative, i.e., when there is no 
stockout. On the other hand, the parameter t2 denotes the length of time during 
which there is no stock at hand. Clearly, t1 + t2 = tc. Using the geometric 
relationship of the two similar (shaded) triangles in Figure 10.6, we find that  
t1/t2 = (Q − S)/S. We will use this expression below.  
 
We will now determine optimal levels of the order size Q and the optimal largest 
shortage level S simultaneously by minimizing total inventory costs. These costs 
now include not only ordering and holding costs as before, but also shortage costs. 
As in the standard economic order quantity, the annual ordering costs are coD/Q. 
As far as the carrying costs are concerned, we find that the average inventory level 
is obtained by averaging the inventory level during the time that no stockouts 
occur. This weighted average is ½(Q−S) during the time t1, while the inventory 
level during the time stockouts occur is zero for the duration t2. After some 

calculations, this leads to inventory holding costs of 
Q
SQch 2

)( 2− .  

 
We can now deal with the average shortage in a similar fashion. The average 
annual shortage is ½S during the time t2, which is when we have shortages. This 

leads to total shortage costs of 
Q

Scs 2

2
. The total inventory costs are therefore 

 

 TC(Q, S) = 
Q

Sc
Q
SQc

Q
Dc sho 22

)( 22
+

−
+ .  

 

timeS
−S

Q − S

Q − SQ

IN

tc

t2
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Using partial derivatives, we can show that the total inventory costs are minimized 
for  
 

 
s

sh

h

o

c
cc

c
DcQ +

=
2*  and  

sh

h

s

o

cc
c

c
DcS

+
=

2*  = *Q
cc

c

sh

h
+

. 

 
Example: Using the basic EOQ example above with its parameters D = 800, co = 
$100, and ch = $4 to which we add unit shortage costs of cs = $6 per unit and year, 

we can then determine the optimal order quantity as Q* =
6

64
4

)100)(800(2 +  ≅  

258.20 units. The optimal shortage can then be determined as ** Q
cc

cS
sh

h

+
=  ≅  

103.28. The total costs are then TC(Q*, S*) = 309.84 + 185.90 + 123.94 = 
$619.68.  
 
Note that while this model includes more cost items than the basic EOQ model, 
the same demand and cost parameters cost less in this model. The reason is that 

Nobody says that we have to have shortages (this model certainly allows not 
having any), but here it is cost-effective to plan some shortages. As a matter of 
fact, the relation between the unit shortage cost and the unit holding cost will 

s h
are expensive and the solution will include only minor shortages. If, on the other 
hand, cs/ch is small, then shortages are comparably cheap, and the model will 
prescribe large shortages.  
 
To push that argument even further, suppose that shortage costs would increase 

beyond all reasonable limits, i.e., cs → ∞. Then the “correction factor” 
s

sh

c
cc +

 in 

the order quantity root will approach 1, so that the order quantity Q* will assume 
the same value as in the basic EOQ model. At the same time, the magnitude of the 
planned shortage will tend to zero, as the shortage cost appear only in the 
denominator of the formula. Thus it becomes clear that the basic model is just a 
special case of the model with shortages, given that shortage costs are infinitely 
high. This result is nothing but an application of the usual principle of penalty 
costs: if there is something that we do not want, assign a very high penalty to it, 
and as a result, the optimizer will not include the very expensive option in the 
solution.  
 
 

this model allows the decision maker an added possibility, viz. to run shortages. 

determine the magnitude of the planned shortage: if c /c  is large, then shortages 
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10.5   The Economic Order Quantity with Quantity Discounts 
So far we have assumed that the unit purchasing cost p is constant and independent 
of the order size Q. Recall that in the original economic order quantity model, the 
costs actually were the sum of ordering, holding, and purchasing costs, viz.,  
 
 TC(Q, p) = coD/Q + ½chQ + pD. 
 
However, we argued, for a fixed price p, the purchasing costs during the period 
under consideration are pD, which is a constant, which does not influence the 
solution, so that we could (and did) ignore the purchasing costs. In practice, 
however, many suppliers will offer incentives for purchases of larger quantities in 
the form of lower unit costs. The basic economic order quantity model described 
in Section 10.2 can easily be modified to take such quantity discounts into 
consideration. For simplicity, we will restrict ourselves to the standard model with 
no shortages allowed. To simplify our discussion, we assume that there are three 
price levels, the original non-discounted price and two discount levels. It is 
straightforward to extend the model to any number of discount levels.  
 
Before we proceed, though, we have to make a minor modification. Recall that we 
said earlier that the main component of the holding costs are the cost for tied-up 
capital. Given that we paid a fixed price for the good so far, this cost could simply 
be expressed as a dollar amount for each unit in stock. Given that we now are 
paying a price that is no longer fixed but does depend on the discount level that 
we choose, the unit holding costs have to be redefined. This is most easily done by 
defining ch as a proportion of the unit purchasing price p. Given that, the 
economic order quantity is redefined as  
 

 
pc

DcQ
h

o2* = . 

 
We will denote the given (non-discounted) price level as p0, the price with the 
small discount as p1, and the price given the large discount as p2. Clearly, p0 > p1 > 
p2. The rationale behind this scenario is simple. For the regular price of p0, we can 
obtain any quantity we desire. In order to convince our supplier to sell the goods 
for us at the lower price of p1, we have to purchase at least a certain quantity of 
goods. This quantity will be called Q1. Going one step further, we can ask our 
supplier to let us have the goods even cheaper at a price of p2, which he may agree 
to, but only if we order at least Q2 units with the obvious condition that Q2 > Q1.  
 
At this point, we have a cost function for each of the price levels. This situation is 
shown in Figure 10.7.  
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Figure 10.7 
 
The three cost functions are shown as TC(p0), TC(p1), and TC(p2), respectively. 
The dots on the cost functions denote their respective optimal points, at which the 
costs are minimized. The minimal quantity levels that allow for the discounts are 
also shown.  
 
Consider now the actual costs that we incur as the order quantity gradually 
increases. For very low order quantities, we must be on the highest cost curve, as 
we do not qualify for a discount. As we increase the value of Q, the costs decrease 
and reach their minimum at the dot on the TC(p0) curve. As Q increases further, 
the costs increase as well until we reach Q1. At this point, we do qualify for the 
small discount, so that our actual costs jump down onto the cost curve TC(p1). As 
this point happens to be to the right of the minimum on this function, the costs 
increase as Q increases. This process continues until we reach Q2, the value that 
allows us to obtain the second (larger) discount. Again, the costs drop at this point 
onto the third and lowest cost function TC(p2). Increasing the value of Q further, 
increases the total costs.  
 
The piecewise nonlinear cost function is shown as a bold line in Figure 10.7. In 
order to determine the order quantity with the overall minimal costs, we have to 
examine each cost curve separately. More specifically, we determine the optimal 
order quantity at each price level, and then compare them and choose the option 
with the lowest costs.  
 
First consider the highest cost curve without a price discount. We simply determine 
the point of lowest cost with the EOQ and record the associated cost. This is the 
optimal solution given the option of paying the regular price p0.  
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We then continue to examine the costs incurred when paying the price p1. Again, 
we determine the optimal quantity at this price by solving the economic order 
quantity with this price. (Note that with decreasing prices, the optimal order 
quantity increases slightly, as the expression in the denominator chp increases). 
We then have to determine whether or not this quantity permits us to obtain the 
discount. If so, we have found our optimal order quantity at this level. If this is not 
the case, we have to move out of the optimum, but, as the function is increasing 
the farther we move out of the optimum, just as much as required to qualify for the 
discount.  
 
In our illustration in Figure 10.7, the optimal order quantity is less than Q1, the 
lowest quantity that qualifies for the price p1. We thus increase the order quantity 
to Q1 and determine the costs at that point. This is the optimal order quantity given 
the price p1.  
 
This process is repeated for all discount levels. Once this has been accomplished, 
we simply compare the best known costs at each price level and choose the overall 
minimum. This is our optimal solution.  
 
This process can be illustrated by the following numerical  
 
Example: A company faces an annual demand for 10,000 footballs. The purchasing 
costs are $2 per football, the holding cost are 5% of the purchasing price per 
football and year, while the costs of placing one order are $80. The supplier now 
offers a ½% discount in case the company orders at least 6,000 units. As an 
alternative, the supplier also offers a 1% discount, if the company orders at least 
15,000 units. Consider all alternatives, compute the total costs in each case and 
make a recommendation.  
 
The parameters of the problem include D = 10,000, ch =5% of p, and co = $80. 
 
Case 1: No discount, so that p0 = $2. Then ch = $0.10, and we use the EOQ to 
compute the order quantity as Q* = 4,000 with costs of TC* = 200 + 200 + 20,000 
= $20,400.  
 
Case 2: Small discount, so that p1 = $1.99. Then ch = $0.0995, and the solution of 
the EOQ is Q* = 4,010.038. This quantity does not qualify for the discount, so 
that we have to move out of the optimum just as much as necessary to qualify for 
the discount. Hence we set Q := 6,000, for which we then obtain costs of TC(6,000) 
= 133.33 + 298.50 + 19,900 = $20,331.83. 
 
Case 3: Large discount, so that p2 = $1.98. Then ch = $0.099, and the solution of 
the EOQ is Q* = 4,020.15. This quantity does not qualify for the discount, so that 
we have to move out of the optimum just as much as necessary to qualify for the 
discount. Hence we set Q := 15,000, for which we then obtain costs of TC(15,000) 
= 53.33 + 742.50 + 19,800 = $20,595.83.  
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Comparing the three options, Case 2 offers the lowest total costs, so that we should 
order 6,000 footballs, obtain a ½% discount, and incur total costs of $20,331.83.  

10.6   The Production Lot Size Model 
As an alternative to ordering models of the type discussed so far in this chapter, 
we may produce the desired items ourselves. In such a case, the items will not 
arrive in one bulk as they do in case of orders, but they arrive one piece at a time 
from our machines. Assume for the time being that we cannot regulate the speed 
with which our machines produce the units: we either turn the machine on, in 
which they churn out r units per day (this is our production rate), or we turn off 
the machine, in which case we make nothing. Recall that our annual demand was 
assumed to be of magnitude D, from which we can easily compute the daily 
demand d, which is D/365, D/360, or D/250 (working days), depending on the 
decision maker’s specifications. Before engaging in any computations, it is 
necessary to determine whether or not the system has any feasible solutions. The 
simple regularity condition is that r ≥ d. If this condition is not satisfied, then it 
will not be possible to satisfy the total demand, and we have to find ways that 
allows us to do so. The following arguments assume that the regularity condition 
is satisfied.  
 
Batch or intermittent production as described above occurs in many vertically 
integrated companies, where the ordered items are produced internally. A production 
run can then be considered an order, with the production run size corresponding  
to the order size Q, and the production setup cost corresponding to the ordering 
costs co.  
 
Using an argument similar to that in Section 10.2, we note that D/Q is the number 
of setups or production runs per period, so that the total setup costs are co(D/Q). 
As far as the carrying costs are concerned, we will consider the production phase 
tr (the phase during with production and demand occur) and the demand phase td 
(the phase during which production does not occur, while demand occurs as usual) 
separately. In the production phase, inventory accumulates at the rate of (r−d). We 
notice that the duration of the production phase is tr = Q/r, so that the maximal 
level of inventory at the end of each production run will by (r−d)Q/r. During the 
demand phase, the inventory, that starts with a level of (r−d)Q/r, decreases to zero 
in linear fashion at a rate of d, so that the slope of the function in Figure 10.8 
during that phase is –d). The average inventory level during the entire cycle of 
duration tc = tr + td is then ½ (r−d)q/r. Therefore, the total carrying cost per period 
are ½ch(r−d)Q/r. As a result, the total production- and inventory-related costs are  
 
 TC = coD/Q + ½ch(r−d)Q/r  
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Figure 10.8 

 
Following the same procedure applied to the standard economic order quantity in 
Section 10.2, we find the derivative with respect to the single variable Q, which 
results in TC ' = −coD/Q2 + ½ch(r−d)/r. Setting the derivative equal to zero results 
in the unique optimal lot size of  
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(Again, we have to check the second derivative so as to ensure that the lot size 
actually minimizes the costs. It does).  
 
We can now illustrate the economic lot size by means of a numerical  
 
Example: A bottling plant faces an annual demand of 200,000 bottles of a certain 
type. It can produce these bottles at a rate of 1,000 bottles per day during each of 
the 300 working days in a year. Setup costs for a production run are $1,000, and 
each bottle has a carrying cost of 10¢ per bottle and year.  
 
We first check whether or not the regularity conditions holds. Here, we have r = 
1,000 > 666.67 = 200,000/300 = d, so that the condition is indeed satisfied. Thus 
we can compute the optimal quantity made during one production run as Q* = 

67.666000,1
000,1

10.0
)000,1)(000,200(2

−
≅ 109,545 bottles. The corresponding costs 

are TC(Q*) = $3,651.50.  
 
An interesting observation concerns the relation between the optimal lot size 
developed above and the economic order quantity. Given that we can equate the 
production setup cost and the unit order cost in the two respective models, we find 

time 

inventory 
on hand 

maximum 
inventory 
level 

tr td 
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that the optimal value of Q in the lot size model is never smaller than the order 
quantity in the economic order quantity, and that the costs in the lot sizing model 
are never larger than those of the EOQ. As a matter of fact, the economic order 
quantity can be seen as a special case of the lot sizing model with an infinite 
production capacity (as exemplified by the fact that an order in the EOQ arrives 
with infinite speed). Increasing r to arbitrarily high values has the expression 
r/(r−d) approach one, so that the lot size formula reduces to the standard economic 
order quantity. Applying this argument to our numerical example, we find that the 
economic order quantity with the same parameters as those used in the example 
equals Q* = 63,245.55, a policy that costs TC(Q*) = $6,324.56.  
 
Along similar lines, it is also interesting to note that more capable machines, i.e., 
those with higher production rates, incur higher costs. As a matter of fact, the 
machine with the “optimal” production rate has r = d, so that inventories are 
unnecessary, as customers satisfy their demand at the same rate the machine 
produces the goods. This is yet another example for optimal solution that fitting 
the production to the demand results in solutions with the lowest cost (for another 
example, see the “technology choice” example in the linear programming 
formulations).  
 
In conclusion, just like the economic order quantity, the production lot sizing 
model has the attractive property of being robust, i.e., quite insensitive to changes 
of the parameters (input data).  

10.7   The Economic Order Quantity with Stochastic Lead Time 
Demand 

So far in this chapter we have assumed a deterministic environment, in which all 
relevant data are known with certainty, and in which the consequences of our 
actions are completely predictable. We will now extend our analysis to situations 
involving uncertainty and begin with the simple but important case, in which the 
demand during the lead time is a random variable. However, we assume that the 
demand during the lead time follows a discrete probability distribution that is 
known to us. The random behavior of the demand may cause undesired and 
unplanned stockouts and surpluses, which is shown in Figure 10.9. From the 
figure it is apparent that while the demand is irregular throughout, we are only 
concerned about the irregularity that occurs between the time that we have placed 
an order (i.e., after the reorder point has been reached), and the time that the next 
shipment arrives.  
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Figure 10.9 

 
In Figure 10.9, inventory replenishment occurs at the time points t1, t2, t3, and t4, 
points in time that are not necessarily evenly spaced, as a consequence of the 
reorder point R having been reached at the points in time t1 − tL, t2 − tL, t3 − tL, and 
t4 − tL. At t1, there is neither a stockout nor a surplus (a rather unlikely event); at t2 
and t4 we have a surplus inventory when the next shipment arrives, while at t3, 
there is an unplanned shortage. Whenever a surplus occurs, we have in fact carried 
more inventory than was actually needed, thus incurring unnecessary carrying 
costs, while in case of a stockout, there will be a penalty cost cp charged for each 
unit we are out of stock. Note that cp is assumed to be independent of the length of 
time that we are out of stock. This is in contrast to the shortage costs cs for the 
backorder model of Section 10.4, where the shortage cost was defined per quantity 
unit and per time unit. The difference between cp and cs in the backorder model 
and this model is that the shortages in Section 10.4 were planned deliberately, 
while the shortages in this section occur because there is a higher-than-expected 

 
tL 

 
Formally, we define cp as the penalty cost per unit and stockout. Furthermore, we 
have )(DED =  as the expected valued of demand per year, the lead time demand 

dL (a random variable), and the expected value of dL is )( LL dEd = . The 
(discrete) probability distribution of the lead time demand dL is p(dL), while F(dL) 
is the cumulative probability distribution of dL. We will restrict our discussion to 
the case, in which dL is a discrete random variable. Furthermore, in this simple 
model, the length of the lead time tL is still deterministic, i.e., fixed and known to 
the decision maker. We also assume that R − Ld  ≥ 0, i.e., on average, there is still 
a positive inventory level when replenishment occurs. If this condition were not to 
be required, we would, on average, run out of stock at the end of each cycle. 
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Therefore, we may regard the quantity R − Ld  as the amount of stock that is kept 
at all times. For this reason, this quantity is usually referred to as the expected 
safety stock or buffer stock.  

10.7.1 A Model that Optimizes the Reorder Point 

The objective in this section is to minimize the sum of the carrying costs for the 
expected safety stock plus the expected penalty costs for stockouts. This sum will 
be denoted by TC1(R, Q), since it depends on the reorder point R as well as on the 
order quantity Q. To start, we will simply use the order quantity QEOQ, which was 
obtained independently of the reorder point by way of the economic order 
quantity. This can be justified because of the robustness of the economic order 
quantity formula. We then obtain the partial cost function  
 

 TC1(R, QEOQ) = ch( )LdR −  + ∑
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, and where the first part of the relation is the cost for 

carrying the safety stock. The summation in the second part of relation is taken 
over all instances, in which shortages occur, so that we compute the expected 
shortage level. Differentiating TC1(R, QEOQ) with respect to R and setting the 
resulting expression to zero yields the condition for the optimal reorder point R*, 
which is 
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As *][ RdP L >  = 1 − *][ RdP L ≤  = 1 − F( *R ), we obtain  
 

 F( *R ) = 1 − 
Dc

Qc

p

EOQh .  

Since we have assumed that dL is a discrete random variable, its cumulative 
distribution function F will be a step function that assumes only discrete values in 
the interval [0, 1]. Therefore, it is unlikely that the right-hand side of the above 
equation will equal one of these discrete values. As a way out of this dilemma, we 
let R* denote the smallest value that satisfies the inequality  
 

 F( *R ) ≥ 1 − 
Dc

Qc

p

EOQh . 

 
 
Note that we only have to consider the possible values of dL for R*.  
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In order to illustrate the above discussion, consider the following numerical  
 
Example: Consider again the battery charger example of Section 10.2 with a 
demand of D = 800, ordering costs of co = $100 , and holding costs of ch = $4 per 
charger per year. Furthermore, assume that the penalty costs are cp = $5 per 
charger and stockout. Suppose that the expected annual demand is D  = 800. Suppose 
that the demand during lead time has the following probability distribution.  
 

dL (units) p(dL) F(dL) 
70 .1 .1 
75 .2 .3 
80 .2 .5 
85 .3 .8 
90 .2 1.0 

 
The economic order quantity in this example equals QEOQ = 200 units, so that 1 − 

Dc
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EOQh  = 1 − 
)800(5
)200(4  = 0.8, and since the smallest value of dL with F(dL) ≥ 0.8 

equals 85, we have *R  = 85. As the expected demand ∑==
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81.5, the expected safety stock will equal LdR −*  = 85 − 81.5 = 3.5 units. The 

carrying cost for the expected safety stock is then ch ( LdR −* ) = 4(85 − 81.5) = 

$14, and the expected penalty cost is ∑
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8005 −  = $20. Note that stockouts occur only if dL > *R  = 85, 

which happens only in case dL = 90, an occurrence that has a probability of 0.2.  

10.7.2 A Stochastic Model with Simultaneous Computation of Order Quantity 
and Reorder Point 

We can now refine the above model and determine the order quantity Q and the 
reorder point R simultaneously. For that purpose, we consider the expected total 
cost of ordering, carrying, and penalty, i.e,  
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Using partial differentiation with respect to Q and to R and setting the result to 
zero yields 
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Again, it is understood that *R is taken to be the smallest value that satisfies the 
inequality. The above two relations should be solved simultaneously, which is 
difficult, since Q* and R* appear in both. Instead, we will use an iterative 
procedure that shuttles between these two relations. It commences with an order 
quantity Q*, uses the second of the two relations to determine a reorder point R*, 
it uses this reorder point in the first relation to compute a revised value of Q*, and 
so forth until the process converges and the numbers do not change anymore. As 
an aside, note again that if the penalty costs get very large, the order quantity 
reduces again to the standard economic order quantity of the basic model.  
 
This process will be illustrated in the following numerical  
 
Example: Consider again the situation of the example in the previous section with 
a demand of D = 800, ordering costs of co = $100, holding costs of ch = $4 per 
charger per year, penalty costs cp = $5 per charger and stockout, and the above 
probability distribution of the demand.  
 
Again, we obtain *Q  = 200, so that R* = 85, just as in the previous procedure. 
Using the modified economic order quantity, we then find a revised value of Q* as  
 

  )]2.0)(5(5100[
4

)800(2* +=Q  ≈ 204.94 units.  

 
Using this revised order quantity in the latter of the two relations, we find that  
 

  *)(RF  ≥ 1 − 
)800(5

)94.204)(4(  ≈ .795, so that R* = 85 again, and thus the 

procedure terminates.  
 
Comparing the results for Q* and R* of the simple model in the previous 
subsection and the refined approach in this subsection, we notice that in both cases 
the reorder point is  R* =  85 units, whereas the order quantity is Q* = 200 units in  
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the simple model (obtained by using the standard economic order quantity), while 
it is not very different at 204.95 ≈ 205 units in the refined model. Again, this 
demonstrates the robustness of the economic order quantity formula.  

10.8   Extensions of the Basic Inventory Models  
This section will offer an outlook on some inventory policies. Following the 
standard terminology (which is in some conflict of the symbols that we have used 
so far), we define s as the reorder level (what we have referred to so far as the 
reorder point, i.e., the inventory level at which an order is placed), R as the 
intervals at which the inventory level is checked, and S as the inventory level we 
have directly after a replenishment.  
 
We now distinguish between periodic and continuous review systems. In a 
periodic review system, we check the inventory levels at regular intervals R (e.g., 
hourly, daily, or weekly), while in a continuous review system, we continuously 
watch the inventory level.  
 
An order-point, order-quantity, or (s, Q) policy involves continuous review (i.e., 
R = 0) at which time an order of a given magnitude Q is placed whenever the 
inventory reaches a prespecified reorder level s. An example of an (s, Q) policy is 
the two-bin system described in Section 10.3.  
 
An order-point, order-up-to-level, or (s, S) policy is another continuous review 
policy. Its key is an inventory level S that is specified by the inventory manager. 
This is an inventory level to be attained directly after a shipment is received. So, 
once the reorder point s is reached, an order of size S − s is placed, which then 
increases the inventory position level I p to S. This may be a reasonable policy in 
case the demand is irregular, so that at the time that an order is placed the 
inventory level may suddenly dip below s, at which time the regular order quantity 
may then not be sufficiently large.  
 
A periodic review, order-up-to-level, replenishment cycle policy, or (R, S) policy 
is a periodic review policy. At each review instant (which occurs at intervals of 
length R time units) an order is placed of a size that raises the inventory position 
level I p to S.  
 
In addition, there are hybrid policies such as the (R, s, S) policy, where at review 
time nothing is done, if the inventory level is above s, whereas if it is at or below 
the level s, an order is placed to increase the inventory level to the magnitude S.  
 
Each of the above policies has its own advantages and drawbacks, and it depends 
on the practical situation at hand which one is the most appropriate choice. 
Typically, continuous review policies such as the (s, Q) and (s, S) policies are 
suitable for the A items in the ABC classification introduced at the beginning of 



363 

this chapter. For B and C items, the cost of continuous review of the inventory 
level may not be justified, so that periodic review policies may make more sense. 
For C items, the review interval length R may be set, so that the review is done 
less frequently for these items of minor value. Modern computerized inventory 
control systems are of great help with any inventory system.  

Exercises 
Problem 1 (EOQ with positive lead time, shortages, production lot size): A 
retailer faces an annual demand for 2,400,000 shirts with the “Mumbo Jumbo 
Man−Savior of the Universe” logo. It costs $450 to place a single order and the 
costs for keeping a single shirt in stock for an entire year are 60¢.  
 
(a)  How many units should the retailer order each time an order is placed and 

what are the associated costs?  
(b)  Given the result under (a), how many orders should be placed and what is the 

time between two consecutive orders (given a 360-day year)? What is the 
reorder point if the lead time were 20 days?  

(c)  Assume now that it is possible to allow shortages, given that the portion of 
the demand that cannot immediately be satisfied will be satisfied immediately 
after the next shipment arrives. It has been estimated that the associated loss 
of goodwill equals costs of 80¢ per shirt and year. Compute the order 
quantity, the maximum shortage, and the associated costs.  

(d)  What would happen to the results in (c) if the unit shortage costs were to 
increase by, say, 10¢? Explain in one short sentence, indicating the reason 
why. Calculations are not required.  

(e)  Suppose now that the retailer were to purchase the equipment to make the 
shirts in-house. The machine is capable of making 10,000 shirts per day 
(again based on a 360-day year). What is the number of shirts made in each 
production run? What are the total costs?  

(f)  How would the results under (e) change if the capacity of the machine under 
(e) were not 10,000 units per day but only 6,000? Explain in one short sentence.  

 
Solution: (a) D=2,400,000, Co = 450, Ch = 0.6, so that Q* = 60,000 & TC* = 

$36,000.  
 
(b)  Then N* = 40 & *

ct  = 1/40 [years] = 9 [days]. Reorder point R = 

20(2,400,000/360) - 000,60
9
20

⎥⎦
⎥

⎢⎣
⎢  = $13,333.33.  

(c)  Q* = 79,372.54 and S* = 34,016.80. Costs TC = (holding costs) + (ordering 
costs) + (shortage costs) = 7,775.27 + 13,606.72 + 5,831.45 = $27,213.44.  

(d)  If cs increases, shortages become more expensive, so that the order quantity 
Q* and the maximum shortage S* both decrease, while the total costs will 
increase.  

Exercises
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(e)  The regularity condition is satisfied. Q* = 103,923.05 and TC* = 10,392.30 + 
10,392.30 = $20,784.60.  

(f)  The regularity condition is violated, i.e., the machine capacity is insufficient 
to satisfy the demand.  

 
Problem 2 (EOQ, positive lead time, shortages, production lot sizing): A 
retailer faces an annual demand for 4,000,000 pairs of sneakers with the “King 
Bong” logo. It costs $100 to place a single order and the costs for keeping a single 
pair of sneakers in stock for an entire year are 50¢.  
 
(a)  How many pairs of sneakers should the retailer order each time an order is 

placed and what are the associated costs?  
(b)  Given the result under (a), how many orders should be placed and what is the 

time between two consecutive orders (given a 250-day year)? What is the 
reorder point if the lead time were 8 days?  

(c)  Assume now that it is possible to allow shortages, given that the portion of 
the demand that cannot immediately be satisfied will be satisfied immediately 
after the next shipment arrives. It has been estimated that the associated loss 
of goodwill equals costs of 20¢ per pair of sneakers and year. Compute the 
order quantity, the maximum shortage, and the associated costs.  

(d)  What would happen to the results in (c) if the unit shortage costs were to 
decrease by, say, 5¢? Explain in one short sentence, indicating the reason 
why. Calculations are not required.  

(e)  Suppose now that the retailer were to purchase the equipment to make the 
sneakers in-house. The machine is capable of making 20,000 pairs per day 
(again based on a 250-day year). How many pairs of sneakers are made in 
each production run? What are the total costs?  

(f)  How would the results under (e) change if the capacity of the machine under 
(e) were not 20,000 units per day but 25,000? Explain in one short sentence. 
No calculations are necessary.  

 
Solution: (a) D = 4,000,000, Co = 100, Ch = 0.5, so that Q* = 40,000 and TC* = 

$20,000.  

(b)  Then N* = 100 and *
ct  = 1/100 [years] = 2.5 [days]. Reorder point R* = 

8(4,000,000/250) − 000,40
5.2

8
⎥⎦
⎥

⎢⎣
⎢  = 8,000.  

(c)  Q* = 74,833.15 and S* = 53,452.25. Costs TC = (holding costs) + (ordering 
costs) + (shortage costs) = 1,527.21 + 5,345.22 + 3,818.02 = $10,690.45.  

(d)  If cs decreases, shortages become even cheaper, so that the order quantity Q* 
and the maximum shortage S* both increase, while the total costs will 
decrease.  

(e)  The regularity condition is satisfied. Q* = 89,442.72 and TC* = 4,472.14 + 
4,472.14 = $8,944.28.  

(f)  The order quantity will decrease and the inventory-related costs will increase.  
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Problem 3 (quantity discounts): The annual demand for a product is 9,000, and 
the unit price of the product is $5. The holding costs are estimated to be 10% of 
the price of the product, and the costs of placing a single order are $1,000. 
 
(a)  Calculate the optimal order quantity and the associated costs.  
(b)  The supplier now offers a discounted price of $4.80 if we order at least 8,000 

units at a time. Should we take the offer? What are the associated costs?  
(c)  Our supplier adds another offer: a price of $4.75, if we purchase at least 

18,000 units ( so that we have to order only every other year). Should we take 
this offer?  

 

Solution: (a) With a unit price of p0 = $5, we obtain 000,6
)5)(1(.

)000,1)(000,9(2* ==Q  

with TC* = 1,500 + 1,500 + 45,000 = $48,000.  
(b)  The discounted price of p1 = $4.80 leads to an optimal quantity of Q* = 

6,123.72. This quantity does not qualify for a discount, so that we set Q := Q1 
= 8,000. The associated costs are TC(Q1) = 1,125 + 1,920 + 43,200 = 
$46,245. As the total costs are lower at this price level, we should take the 
discount, order 8,000 units at a time, which will cost us $46,245.  

(c)  The deeply discounted price of p2 = $4.75 leads to an optimal order quantity 
of Q* = 6,155.87, not enough to qualify for the price level. As a result, we 
must increase the order quantity to the smallest level that allows the discount, 
i.e., Q = Q2 = 18,000. At this level, the total costs are TC(Q2) = 500 + 4,275 + 
42,750 = $47,525, less than paying the full price, but not as good as the 
smaller discount determined under (b). Hence, the overall best option is to 
order 8,000 units each time we place an order, a policy that will cost us 
$46,245 in each cycle.  

 
Problem 4 (EOQ with stochastic lead time demand): Let the annual demand for 
a certain item be 1,000 units in the planning period. The holding costs are $5 per 
unit, and the cost of placing an order is $36 per order. The penalty cost for 
stockouts is $3 per unit and stockout. There is a demand for 55 units during the 
lead time with a probability of 20%. The demand is 60 with a probability of 0.4, it 
is 65 with a probability of 0.30, and it is 70 with a probability of 0.10.  
 
(a)  Calculate the expected demand during lead time.  
(b)  Determine the economic order quantity and the resulting reorder point.  
(c)  Find the order quantity and the reorder point by simultaneous computation.  
(d)  What is the buffer stock?  
(e)  What is the minimal expected total or ordering, holding, and penalty costs?  
 
 
 
 
 

Exercises
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Solution: (a) E(dL) = (55)(0.2) + (60)(0.4) + (65)(0.3) + (70)(0.1) = 61.5.  

(b)  QEOQ  = 
5

36)000,1(2  = 120 units, and with F(R*) ≥ 1 − 
)000,1(3

)120(5  = 1 − 0.2 = 

 0.8, so that R* = 65.  

(c)  Revising Q* = ]1.0)5(336[
5

)000,1(2
+  ≈ 122.47 units, F(R*) ≥ 1 − 

 
)000,1(3
)47.122(5  ≈ 0.7959, so that R* = 65 units.  

(d)  The buffer stock is R* − Ld  = 65 − 61.5 = 3.5 units.  
(e)  Costs TC2 = (ordering costs) + (holding costs) + (penalty costs) = 293.95 + 

323.68 + 12.25 = $629.87.  
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11   Stochastic Processes and Markov Chains 

Some of the previous chapter have dealt with random events. This chapter will 
deal with such events in a systematic way. In general, in stochastic processes, 
events occur over time. Time can be dealt with either in continuous fashion, or  
in discrete fashion. In the continuous case, we may look at the speed of an 
automobile at any given point in time or at the inventory level of a product in a 
supermarket at any time. In the discrete case, speed or inventory level are observed 
only during specific points in time, e.g., each minute, once a week or at similar 
intervals. In this chapter, we only deal with discrete-time models. The following 
three sections will introduce some of the basic ideas of stochastic processes and 
Markov chains.  

11.1   Basic Ideas and Concepts 
Consider first the random events that take place. Using the same examples as 
above, there is an infinite number of different speeds that a vehicle could be 
moving at, while the demand for a product may be very large, but is hardly 
infinite. Some types of events are much more restrictive: as an example, consider 
a light bulb. It will always be in exactly one of two “states of nature,” in that it 
either works, or it does not. This is referred to as the state space, i.e., the number 
of different states the “system” can possibly be in. As already hinted at, the 
individual states are similar to the states of nature in decision analysis, see Chapter 9 
in this volume. This chapter deals only with processes that have a finite state 
space.  
 
Each event in this discrete-time, finite state space process is then a random 
variable Xt that depends on the time t at which it is observed. As an illustrative 
example, consider a used car. Lately, the vehicle has displayed the warning 
message “service engine soon” and it is known that this means that the vehicle is 
in one of four states: it either runs well (state s1), it runs with minor problems 
(state s2), it runs with major problems (state s3), or it fails altogether (state s4). At 
any point in time, the vehicle is in exactly one of these four states. It stands to 
reason that the state that the vehicle is in one year does depend on the state the car 
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was in the year before. More specifically, we can define transition probabilities pij 
that indicate that the vehicle is in state j, given that it was in state i in the previous 
year. (We assume that no repairs are performed). It is apparent that the transition 
probabilities are conditional probabilities of the type pij = P(Xt+1 = j| Xt = i), or in 
simple words, the probability that the random variable is in state sj in year t+1, 
given that it was in state si in year t. As a numerical illustration, consider the 
matrix P = (pij) of transition probabilities 
 

 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

00.1000
25.075.000
05.010.085.00
01.003.006.090.0

P

 
For example, if the vehicle has been running well in the previous year, then there 
is a 90% chance that it will be running smoothly in this year as well, as shown by 
the element p11. Or, if the vehicle experiences minor problems this year, then there 
is a 5% chance that it will fail altogether next year, as shown by the element p24.  
 
A few features of this transition matrix are noteworthy. First of all, note that all 
elements below the main diagonal (i.e., in the lower left corner) are zero. This 
simply means that, given that no repairs are performed, the vehicle will never 
improve. Secondly, we can observe that the sum of probabilities in each row of the 
transition matrix equals one. This is always the case, as the transition probabilities 
are conditional probabilities, and as such, given that we are in a row at time t, we 
must choose a successor state for time t+1. Thirdly, notice that once the car is in 
state s4 (i.e., the vehicle fails), then it will never get out of it again. Thus, the state 
s4 is referred to as an absorbing state. The example presented here is a stochastic 
process with the Markovian property that holds, if the present state of the process 
depends only on the state of the system immediately prior to this and the transition 
probabilities. (As a historical aside, Andrey Andreyevitch Markov, 1856-1922, 
was a Russian mathematician who made important contributions to the field of 
probability and statistics).  
 
A nice visual representation is the transition diagram. In this diagram, the nodes 
represent the states of the process, and the arcs represent transitions with a 
positive probability. The transition diagram for our automobile example is shown 
in Figure 11.1.  
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Figure 11.1 

 
Note that absorbing states have only arcs leading into them, but not out (at least 
not to other states). Here, we also assume that the process is stationary, meaning 
that the transition probabilities do not change over time.  
 
An obvious question to be asked is what happens, if we go through more than one 
transition. In other words, the transition probabilities tell us what the likelihood is 
to be in one state one period after the process starts. But what about two or more 
periods? This is the question we discuss in the next paragraphs. In order to 
facilitate the discussion, consider a simple example involving stock prices. In 
particular, we only allow an upward movement of the price and a downward 
movement. The transition probabilities are shown in the matrix  
 

 P = ⎥
⎦

⎤
⎢
⎣

⎡
3.07.0
8.02.0

.  

 
In other words, if the stock went up today, then there is a 20% chance that it will 
go up again tomorrow, while there is an 80% chance that the stock’s price will 
decline. Similarly, if the price of the stock decreased today, then there is a 70% 
chance that it will increase tomorrow and a 30% chance that it will decrease 
tomorrow. When analyzing changes after multiple periods, we could use a time-
state graph as shown in Figure 11.2, where the nodes t

is  indicate the state of 
nature i at the end of period t, the arcs denote the possible transitions, and their 
values are the transition probabilities. As the transition probabilities are stationary, 
an arc from, say, t

is  to 1+t
js will have the same value as, say an arc from 2+t

is  to 
3+t

js .  
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Figure 11.2 
 
Considering Figure 11.2, assume now that we are presently in an upswing of the 
stock price, i.e., in state 0

1s . The probability that there will be an increase in stock 
prices two days later will have to examine all paths from the present state 0

1s  to 
the state 2

1s . Here, there are exactly two paths: the first path leads from 0
1s  to 1

1s  

and on to 2
1s , while the second path leads from 0

1s  first to 1
2s  and then to 2

1s . 
Note that the first path considers a price increase on the first day, while the second 
has a decrease on the first day. The probability is then calculated as the sum of 
probabilities along each path, which, in turn, are computed as the product of all 
transition probabilities along the path. In this example, the probability on the 
former path 0

1s , 1
1s , 2

1s  is (.2)(.2) = .04 (meaning that there is only a 4% chance 
of two price increases in a row), while the latter path 0

1s , 1
2s , 2

1s  has a probability 
of (.8)(.7) = .56, meaning that the probability of a price decrease on day one, 
followed by a price increase on day two has a probability of 56%. This means that 
we obtain the transition probability that that state changes from a price increase on 
day t to a price increase on day t+2 as 0.04 + 0.56 = 0.60. Similarly, we compute 
the remaining probabilities, resulting in the matrix P2, which indicates the 
transition probabilities from day t to day t+2. It is  
 

 P2 = ⎥
⎦

⎤
⎢
⎣

⎡
65.035.0
4.06.0

.  

 
This procedure can be repeated for any number of days. While this is possible, the 
procedure is extremely awkward. We can achieve the same results by simple 
matrix multiplication. In particular, we can obtain P2 = PP, P3 = P2P = PPP, and 
so forth, so that we obtain Pr = PPP…P, i.e., the matrix P multiplied itself r times. 
For instance, in the stock example we obtain  
 

 P3 = P2P = ⎥
⎦

⎤
⎢
⎣

⎡
65.035.0
4.06.0

⎥
⎦

⎤
⎢
⎣

⎡
3.07.0
8.02.0

 = ⎥
⎦

⎤
⎢
⎣

⎡
475.0525.0
6.04.0

.  
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This means that given that there has been an increase in prices on day one, then 
there is a 40% chance that there will be a rise in prices again two days later, and 
similar for the other elements of the matrix.  
 
So far, we have only dealt with conditional probabilities, i.e., given that a certain 
state of nature prevails in the beginning, we computed the probability that some 
(other) state of nature occurs after a given number of periods. Below, we start the 
process with an initial probability distribution that assigns an unconditional 
probability 0

iu  to each state of nature si. These probabilities are then collected in 

the initial probability row vector u0 = ],...,,[ 00
2

0
1 muuu , assuming that there is a total 

of m states of nature. The unconditional probabilities that describes the likelihood 
that the system is in of the states of nature after one week is u1, which can be 
computed by simple vector-matrix multiplication as u1 = u0P. In general, we have 
 
 ur = ur−1P = u0Pr. 
 
As an illustration, consider again the car example. Recall that its single-stage 
transition matrix was  
 

 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

00.1000
25.075.000
05.010.085.00
01.003.006.090.0

P   

 
with the states of nature being s1: running well, s2: running with minor problems, 
s3: running with major problems, and s4: not running. Suppose now that the car is 
initially running with minor problems, i.e., u0 = [0, 1, 0, 0]. After one year, we 
have the probabilities 
 

 u1 = u0P = [0, 1, 0, 0] 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

00.1000
25.075.000
05.010.085.00
01.003.006.090.0

 = [0, 0.85, 0.10, 0.05], 

 
i.e., there is no possibility that the vehicle with perform perfectly, there is an 85% 
chance that it will continue to run with minor problems, there is a 10% chance that 
the problems are now major, and there is a 5% chance that the vehicle will fail 
altogether. For the second year, we obtain  
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 u2 = u1P = [0, 0.85, 0.10, 0.05] 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

00.1000
25.075.000
05.010.085.00
01.003.006.090.0

 = [0, 0.7225, 0.16, 

0.1175], 
 
indicating that there is now a 72.25% chance that the minor problems will persist, 
a 16% chance that the problems are now major, and an 11.75% chance that the 
vehicle will fail.  

11.2   Steady-State Solutions 
One question is what will happen, if the process will somehow converge after a 
large number of transitions. If it does, we will call the resulting solution a steady-
state solution. Clearly, a steady-state solution is an ideal concept that is not very 
likely going to be realized in practice: take, for instance the used car example. 
While we may keep the vehicle for a long time, the time will be finite, while a 
steady state, a state that no longer depends on the initial conditions, it is typically 
reached only after an infinite number of transitions. Still, the steady-state is an 
important concept that will tell us to what a process converges, provided that it 
converges at all. A sufficient condition for the existence of a steady state is given 
if each state can be reached from each other state on a path that has positive 
probability, and if there exists at least one state that leads to itself with a positive 
probability.  
 
We showed in the previous section that un = u0P = un−1P, and if n tends to infinity, 
we obtain u∞ = u∞P. To distinguish the steady-state solutions from all others, it is 
customary to replace u∞ by ππππ, so that the steady-state solutions will satisfy ππππ = ππππP. 
In addition, we have to ensure that the sum of all elements in ππππ equals 1, as all 
components of ππππ are probabilities that are mutually exclusive and collectively 
exhaustive.  
 
In the used car example, the system of simultaneous linear equations is  
 
 π1 = 0.9π1 
 π2 = 0.06π1 + 0.85π2 
 π3 = 0.03π1 + 0.10π2 + 0.75π3  
 π4 = 0.01π1 + 0.05π2 + 0.25π3 + π4 
 π1 + π2 + π3 + π4 = 1 
 
The first equation requires that π1 = 0, inserting this result in the second equation 
leads to π2 = 0, and using this result in the third equation leads to π3 = 0. The 
fourth equation then reduces to the tautological identity π4 = π4, but the last 
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equation then helps to solve the system with π4 = 1. This is the obvious result 
mentioned earlier in this section.  
 
The stock example provides another illustration of the concept. It is easily seen 
that the Markov chain is ergodic, so that a steady-state is certain to exist. In order 
to determine the (unconditional) steady-state probabilities, we solve the system  
 

 [π1, π2] = [π1, π2] ⎥
⎦

⎤
⎢
⎣

⎡
3.07.0
8.02.0

,  

which can be written as  
 
 π1 = 0.2π1 + 0.7π2 
 π2 = 0.8π1 + 0.3π2, coupled with 
 π1 + π2 = 1.  
 
The system has steady-state probabilities π1 = 15

7  and π2 = 15
8 , or π ≅ [0.4667, 

0.5333]. In other words, in the long run we can expect stock prices to rise about 
47% of the time, while we can expect them to drop about 53% of the time.  

11.3   Decision Making with Markov Chains 
This section demonstrates how we can use the results obtained in the previous two 
sections in the context of decision making. To explain, consider again the used car 
example of the previous sections. Suppose now that there are three automobiles 
for sale . They are of the same make and model and the transition probabilities in 
the matrix P above apply to all of them. One vehicle is in perfect running order, 
and it sells for $5,000. The second vehicle runs with minor problems and it sells 
for $4,000, while the third vehicle has major problems and it costs $2,000. After 
two years we want to sell the vehicle again. Its price then (as it does now) will 
depend on its state. In particular, it has been estimated that a vehicle in perfect 
condition will sell for $3,500, one with minor problems sells for $2,500, and a car 
with major problems sells for $500. We assume that there is no difference 
between the cars in maintenance costs and that no repairs are made (which is not 
really realistic). Which car should we purchase?  
 
We can address the problem by considering each option, one at a time. If we 
purchase the vehicle that is in perfect condition, then we decide that u0 = [1, 0, 0, 0]. 
After one year, we obtain u1 = [0.9, 0.06, 0.03, 0.01] and after two years we have 
u2 = [0.81, 0.105, 0.0555, 0.0295]. In other words, when we attempt to sell the 
vehicle, it will still be in perfect shape with a probability of 81%, it will have 
minor problems with a probability of 10.5%, and so forth. The expected price we 
can sell the vehicle for is then 3,500(0.81) + 2,500(0.105) + 500(0.0555) + 
0(0.0295) = $3,125.25, resulting in a loss of 5,000 − 3,125.25 = $1,874.75.  



11  Stochastic Processes and Markov Chains 374 

The other two vehicles are dealt with similarly. If we purchase the car with minor 
flaws, we decide to choose u0 = [0, 1, 0, 0] and obtain the probability vectors u1 = 
[0, 0.85, 0.10, 0.05] after one year and u2 = [0, 0.7225, 0.16, 0.1175] after two 
years of ownership, so that the expected price of the car at the time of sale is 
$1,886.25, which means a loss of $2,113.75.  
 
Finally, consider the car with major flaws. Deciding to purchase it in the beginning 
means to set u0 = [0, 0, 1, 0], so that by the end of year 1, we have u1 = [0, 0, 0.75, 
0.25], and by the end of the second year (or, equivalently, at the beginning of year 
3), we have probabilities u2 = [0, 0, 0.5625, 0.4375], so that the expected price of 
sale is $281.25 for an expected loss of $1,718.75. Given our assumptions, our best 
bet would be to purchase the car with the major flaws.  
 
Consider now the possibility of either purchasing a warranty repair policy for 
$100 per month or pay the $1,800 repair bill, whenever state s4 occurs. In either 
case, whenever the system enters state s4, (the car fails), it stays in this state for 
one period during which it is repaired and, at the end of this period, returns to s1 
(runs without problems). The transition matrix then changes to  
 

 P = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0001
25.075.000
05.010.085.00
01.003.006.090.0

 
As opposed to the previous case without repairs, this transition matrix does not 
have an absorbing state. Finding the steady-state probabilities for this case, we 
obtain π = [π1, π2, π3, π4] = ],,,[ 89

5
89
14

89
20

89
50  ≈ [.5618, .2247, .1573, .0562]. As 

above, we can purchase a vehicle in state s1, s2, and s3 for $5,000, $4,000, and 
$2,000, respectively, while we now add that a failed vehicle can be purchased for 
$1,000. (Earlier, it made no sense to purchase a vehicle in state s4, as there were 
no repairs). This means that in the long run, the annual expected cost of repairing 
the vehicle is 0.0562(1,800) = $101.16 if we pay ourselves, or $100 for the policy, 
which makes the purchase of the policy slightly superior.  
 
Consider now again the case, in which four vehicles of the same make and model 
are offered, one in each of the four states. The purchase prices and the repair costs 
are the same as above. The idea is to purchase the vehicle at the end of year 0 (or, 
equivalently, the beginning of year 1) and sell it again at the end of year 3 (the 
beginning of year 4). The price for which the vehicle can be sold at that time has 
been estimated to be $2,500 if it is running perfectly (state s1), $1,500 if it runs 
with minor problems (state s2), $800 in case it has major problems (state s3), and 
$100  if it fails (state s4).  Analyzing this case  necessitates the use of solution  trees  
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rather than the computation of the states u0, u1, u2, and u3. The reason is that we 
can, for instance, purchase a vehicle with major flaws today and sell it at the end 
of year 3 with major flaws. However, it may happen that this vehicle simply 
stayed in this state, or it failed, we repaired it and it was perfect for one year, and 
then it degenerated again to the state with major problems. The two cases have the 
same initial state and the same state at the end of the planning period, but they 
incur very different costs.  
 
In particular, we will need four probability trees, one for each vehicle we can 
purchase. For reasons of limitations of space, we display only the solution tree for 
the vehicle that is initially running with major problems. The different states are 
abbreviated as P (perfect running condition, state s1) Mi (state s2, minor problems), 
Ma (state s3, major problems) and F (state s4, fail). All possible sequences of states 
that may occur are shown in Figure 11.3. The two numbers next to the last set of 
nodes when we sell the vehicle denote the probability that this string of events 
occurs, and the costs occurred throughout the time that we own the vehicle. The 
latter includes the purchase price plus repairs, if any, minus the price we obtain 
when we sell the car. As an example, consider the string of events that can be 
described as P – F – P – Mi. In other words, the car runs perfectly when we 
purchase it, it then fails in the next year, after which it runs perfectly again, and it 
exhibits minor problems after that. The probability for such a sequence of events 
is (0.01)(1)(0.06) = 0.0006, and the costs include the purchase price of $5,000, the 
repair bill of $1,800, and the sales price of $1,500, resulting in overall costs of 
$5,300. The expected costs for purchasing a vehicle in perfect condition and 
keeping it for three years are then $2,888.42.  
 
We can then perform a similar analysis with a vehicle that is initially in state s2 
(running with minor problems). The tree is a bit smaller, and the expected costs 
are $3,650.21. Purchasing a car that has major problems will cost $1,375.92, while 
buying a vehicle that fails and must be repaired right away will have expected 
costs of $564.15, making this the preferred strategy of the buyer.  
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Figure 11.3 

Exercises 
Problem 1 (brand switching, computation of steady-state probabilities): Three 
major motel chains compete for the lucrative economy market: Sunny 6, Cloudy 7, 
and Rainy 8. It has been observed that customers who stay in one of the motels 
usually patronize the same chain again, except if they perceive the service to be poor. 
In particular, in case of Sunny 6, 10 percent of the time the service is perceived to be 
poor in which case customers change to one of the other two chains with equal 
probability. In case of Cloudy 7, service is perceived to be satisfactory 80 percent of 
the time; if it is not, customers switch to one of the other two chains with equal 
probability. Finally, 90 percent of the time service at Rainy 8 is deemed to be ok; if it 
is not, customers always switch to Sunny 6. 
 
(a)  Set up the transition matrix P. 
(b)  In the long run, what percentage of customers patronize the three motels?  
(c)  Management of the Cloudy 7 chain perceives that its customer loyalty is not as 

good as one could wish. By using of better management techniques, they may be 
able to reduce the proportion of poor service to ten percent (again, in case of 
poor service, customers switch to the other chains with equal likelihood). What 
are the new steady-state proportions?  

(d)  Given that one percent of business is worth $500,000, what is the maximum 
amount that the management of Cloudy 7 should be prepared to pay to 
implement the new management techniques that result in the improved service? 
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Solution: (a) The transition matrix is  
 

 P = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

9.01.
1.8.1.

05.05.9.
.  

 
(b)  The steady-state probabilities are π = [ ]8

3
8

1
8

4 ,,  = [0.5000, 0.1250, 0.3750].  
(c)  The revised transition matrix is  
 

 P = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

9.01.
05.9.05.
05.05.9.

.  

 
The steady-state probabilities are π = [ ]9

3
9

2
9

4 ,,  = [0.4444, 0.2222, 0.3333].  
(d)  The market share of the Cloudy 7 chain has increased by 9.7222%, which is 

 
Problem 2 (criminal recidivism, value of a policy): Consider a city of 500,000 

“misdemeanor,” or “felon.” Long-term studies indicate that the transition of an 
individual from one state to another from one year to the next is shown in the 
transition matrix  
 

 P = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

60.030.010.0
10.040.050.0
01.004.095.0

.  

 
City council contemplates a new program that costs $70,000,000 and changes the 
transition probabilities to 
 

 P' = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

40.040.020.0
05.025.070.0
01.004.095.0

.  

 
Assume that an individual in the “misdemeanor” category costs about $1,000 
annually, while the cost of a felon are $10,000 each year.  
 
(a)  What is the probability that a felon does not commit any crime in the next two 

years with and without the crime prevention initiative?  
 

worth $4,861,100, which is the maximal amount the management of Cloudy 7 

people, which have been classified by the authorities as either “not criminal,” 

should pay for the change.  

Exercises
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(b)  What is the probability that an individual in the “misdemeanor” category does 
not commit any crime in the next three years with and without the crime 
prevention initiative?  

(c)  What are the steady state probabilities with and without the initiative? Compare 
the long-term costs with and without the initiative.  

 
Solution: (a) The probability of the string “felon” − “no crime” − “no crime” is 

(0.1)(0.95) = 0.095 without the initiative and (0.2)(0.95) = 0.19 with it.  
(b)  The probability of the string “misdemeanor” − “no crime” − “no crime” − “no 

crime” is (0.5)(0.95)(0.95) = 0.45125 without and (0.7)(0.95)(0.95) = 0.63175 
with it.  

(c)  The steady-state probabilities are ππππ = [π1, π2, π3] = [ ]239
10

239
19

239
210 ,,  ≈ 

[0.87866, 0.07950, 0.04184] without the initiative and [π1, π2, π3] = 
[ ]935

19
935

56
935

860 ,,  ≈ [0.91979, 0.05989, 0.02032]. Without the initiative, 
the expected costs per individual are $497.908, while they are $263.102 with 
it. For the city of 500,000, this means costs of $248,954,000 without the 
initiative and $131,551,000 with it, a savings of $117,403,000. Since the 
savings exceed the costs of $70,000,000, the initiative should be introduced.  
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12   Waiting Line Models 

Waiting line or queuing system are pervasive. Many of us remember the long 
lineups in front of stores in the Soviet Union and Vietnam, and we have all 
experienced lineups in banks and supermarkets, but there are many more instances 
with waiting lines: think, for instance, about traffic lights, where drivers line up 
and wait, files that wait for processing in the inbox at a clerk’s workstation, or 
telephone calls that are put in a queue. Queuing system were first examined by 

worked for the Copenhagen Telephone Company. One of the questions he faced 

required to provide an acceptable level of service.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A.K. Erlang 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Phone switchboard operator 
 

 

Agner Krarup Erlang (1878–1929). Erlang was a Danish mathematician, who 

during this time was to determine the number of telephone circuits that are 
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12.1   Basic Queuing Models 
In order to avoid discussing only special cases, we will formalize queuing systems 
as follows. All entities that are in need of service of some kind will be referred to 
as customers, while the service is performed at service stations. The process can 
then be thought of as follows. Customers are in a calling population. Once they 
are in need of service (here, for simplicity, we will consider only a single type of 
service customers are interested in), they will approach the service system, where 
they will line up. When it is the customer’s turn, he will be served, after which the 
customer will leave the service system and rejoin the calling population. The 
structure of this process can be visualized in Figure 12.1.  
 

 
 

Figure 12.1 
 
The service system will require some further specifications. First of all, each 
service system has only a single waiting line. A service system typically consists 
of a number of c parallel service stations, each assumed to perform the same type 
of service. Parallel service stations are usually referred to as channels. In some 
instances, one channel consists of a series of service stations: imagine entering a 
building, where a potential customer first have to be cleared by security, then 
being directed to a general secretary, from where the service continues to the 
department director’s secretary, and finally on to the department director. At each 
station, the customer may be asked to leave the system, e.g., for not clearing 
security, the unavailability of a service station, and for other reasons. Multi-phase 
systems can be very complex and will not be discussed here.  
 
In order to categorize queuing systems, Kendall (1918-2007) devised a taxonomy 
in 1953  that, in a variety  of versions, is the standard to this day. The original system 
consists of three  descriptors, and it  has been extended to at most six components.  
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In order to be as general as possible, we introduce the complete six-component 
system first, but then use only the more compact 3-component system later on. 
The notation is  
 
 A/B/C   K/N/D, 
 
where each letter is a placeholder for one component of waiting lines. These 
components are now described in some detail.  
 
The symbol A describes the arrival process. We will use the symbol “M,” if 
arrivals are random and follow a so-called Poisson process (where the “M ” stands 
for “Markovian).” The Poisson distribution (see Appendix D in this book) 
describes such a process. Other popular processes include “D” or deterministic 
arrivals (in which the time between arrivals is known with certainty, as is the case 
on an assembly line) or “G,” where arrivals follow some general distribution, for 
which only some key parameters are known, e.g., mean and variance.  
 
The second component “B” symbolizes the service process. Again, the letter “M ” 
symbolizes Markovian, i.e., exponential service time, while “D” and “G” (or, 
more precisely, “GI ”) symbolize deterministic and general (general independent) 
service times, respectively.  
 
The letter C indicates the number of parallel service stations.  
 
The letter K in the extended version of the taxonomy describes the number of 
customers that can be accommodated in the entire system. This includes the 
number of customers who wait as well as those that can be served. In case this 
descriptor is not used, it is assumed that K is infinite. While no real-life system 
has infinite capacity, assuming an infinite K simplifies the analysis tremendously 
and is usually very close to the true results as soon as K exceeds 30 or 40.  
 
The symbol N denotes the size of the calling population. As in the case of the 
capacity of the system, N will assumed to approach infinity if it is not specified. 
Again, for reasonably large values of N, we may assume its value to be sufficiently 
close to infinity so as to simplify the computations.  
 
Finally, the symbol D denotes the queuing discipline. Typical disciplines are 
FCFS or FIFO (first-come, first-served or first in, first out), LCFS or LIFO (last 
come, first served or last in, first out), or SIRO (service in random order). An 
important category are priority queues, in which some customers receive 
preferential treatment. The most prominent example of priority queues occurs in 
health care, where more serious cases will be treated first. In case no queuing 
discipline is specified, it is assumed that the FCFS discipline applies.  
 
In general, it will be useful to think about waiting lines as buffers between arrival 
and service. A good  image would be one of a water tank.  While a waiting line  
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(similar to an inventory) grows with the inflow, it shrinks whenever service is 
provided and customers leave the system.  
 
In queuing theory, we distinguish between transient states and steady states. While 
a steady state occurs if the system has been running for a very long time, transient 
states are still, at least to some degree, dependent on the initial state of the system. 
A simple example is the opening of a new cash register in a store. Initially, no one 
is in the system and waiting times will be short. However, as the cash register 
operates for some time, the service system becomes more congested and is no 
longer dependent on the opening conditions.  
 
The key task of queuing theory is to compute measures of interest from some key 
input factors or queue characteristics. The key characteristics of a queue are those 
described in the taxonomy. Measures of interest include average waiting times, the 
probability that a newly arriving customer will have to wait, the average length of 
a queue, and others. In order to formalize our discussion, we use the following 
conventions about notation (which, incidentally are almost all standard in the 
pertinent literature):  
 
λ denotes the mean arrival rate, measured in [customers/hour]. It is the average 

number of customers who actually arrive at the system in the specified 
amount of time.  

 
μ is the mean service rate, measured in [customers/hour]. It is the average number 

of customers who can be served by a single service station.  
 
It is worth noting that while λ expresses an actual observable fact, μ indicates a 

 

service station can deal with μ = 12 customers per hour, then the inverse value is 
1/μ = 1/12 [hours/customer] = 5 [minutes/customer]. This is the average service 
time. The inverse value of the arrival rate can be interpreted similarly. If the 
average arrival rate is λ = 10 [customers/hour], then 1/λ = 1/10 [hours/customer] = 
6 [minutes/customer], meaning that on average, six minutes elapse between two 
successive arrivals. This is referred to as the (average) interarrival time.  
 
It is apparent that, in case of a single service station, the arrival rate cannot exceed 
the service rate. If it would, then there are more arrivals than can be handled by 
the service station, so that—given infinite patience of the customers—the waiting 
line will grow towards infinity. This gives rise to a regularity condition. In  
order to  express it in a compact form, we define the traffic intensity (sometimes  also 
 

capability. The actual number of customers served does not only depend on the 
service station’s capabilities, but also on the number of customers who desire 

The inverse values of λ and μ also have important interpretations. Suppose that a 

service (which depends on λ).  
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referred to as utilization rate) ρ = λ/μ. A feasible system (i.e., a system that has a 
steady state) must then have ρ < c, where c denotes the number of parallel service 
stations. As an example, consider a system with a single service station that faces 
an arrival rate of λ = 24 customers per hour. For it to be feasible, the service rate 
must be μ > 24, or, equivalently, the average service time cannot exceed 150 
seconds.  
 
On the output side are the measures that we are interested and that we can 
compute. They include:  
 
 Pn: the probability that there are n customers in the system (with the 

 important special case of n = 0 and P0, i.e., the probability that the system 
 is idle),  

 Ws: the average waiting time per customer,  
 Wq: the average time a customer spends in the queue,  
 Ls: the average number of customers in the system, and  
 Lq: the average number of customers in the queue.  
 
Before stating formulas for these measures, there are some general relations that 
hold in queuing, regardless of the specific system under consideration. The first 
such relation is  
 
 Ws = Wq + 1/μ.              (1) 
 
Simply stated, the relation expresses that the total time a customer spends in the 
system equals the waiting time plus the service time. Another relation is known as 
Little’s formula (based on the work by J.D.C. Little who published the formula in 
1961), which states that  
 
 •• λ= WL ,               (2) 
 
where the “•” stand for either the subscript “s” or the subscript “q”. This formula 
provides a convenient way to compute the number of customers in the queue and 
in the system from the average time customers spends in the queue or in the 
system, respectively (or vice versa).  
 
The simplest queuing model is the M/M/1 model, in which the number of customer 
arrivals are random and follow a Poisson process (making the interarrival times 
exponentially distributed), and the service time is exponential (so that the service 
rate again follows a Poisson distribution). The key queuing formulas for this 
model are shown in Table 12.1.  
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Table 12.1: Steady-state formulas for the M/M/1 queuing model 
 

P0 = 1 − ρ 
λ−μ

λ
=sL  

λ−μ
=

1
sW  

Pn = P0ρn 
ρ−

ρ
=

λ−μ
ρλ

=
1

2

qL  
λ−μ

ρ
=qW  

 
As an illustration, consider the following 
 
Example: Customers arrive at the counter of a bank at a rate of 30 per hour. 
Arrivals are random and service time is exponential, so that we are dealing with an 
M/M/1 model. The clerk’s average service time is 90 seconds. Putting the parameters 
in their required form, we glean λ = 30 and μ = 45 from this information. As  
ρ = λ/μ = 30/45 = ⅔ < 1, the system does have a steady state. The probability that 
the bank teller is idle is P0 = 1 − ρ = ⅓. The probability that at least two customers 
are waiting equals the probability that there are at least three customers in the 
bank or, formally, P3 + P4 + P5 + … = 1 − P0 − P1 − P2 = 1 − ⅓ − ⅓(⅔)1 − ⅓(⅔)2 
≅ 2963.27

8 ≈ or slightly less than one third. On average, there are Lq = 1.3333 
customers waiting in line and the average time a customer spends in the system is 
Ws = 1/15 {hour] = 4 minutes.  
 
An interesting case arises when the decision maker specifies the service level and 
determines bounds for the capabilities of the servers. Suppose that in an M/M/1 
system with λ = 20, the decision maker specifies that the probability that there are 
three or more customers in the system should not exceed 95%. The probability of 
three or more customers in the system is again 1 − P0 − P1 − P2 = 1 − (1−ρ) − 
ρ(1−ρ) − ρ2(1−ρ) = 1 − 1 + ρ − ρ + ρ2 − ρ2 + ρ3 = ρ3. As this probability should 

not exceed 95%, we obtain the condition ρ3 = 95.3

3
≤

μ
λ , or, as λ = 20, μ3 > 

8,000/.95 or μ > 20.3449. The reason that it is sufficient that the service rate 
barely exceeds the arrival rate is that the probability of three or more customers in 
the system is very small.  
 
Suppose now that the service rate is no longer random but that it follows some 
general distribution. All we know about this distribution is that the mean service 
time is 1/μ and the variance of the distribution equals σ2. This means that we are 
dealing with an M/G/1 model, for which some rather elegant formulas are 
available. Again, as in all single channel systems in a steady state, P0 = 1 − ρ. 
Furthermore, the Pollaczek-Khintchine formula developed in 1930 is  
 

 
)1(2

222

ρ−
ρ+σλ

=qL .              (3) 
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The values of Ls, Wq, and Ws can then be computed based on the general relations 
(1) and (2). Before demonstrating this model on a numerical example, note that 
the M/M/1 model is a special case of the M/G/1 model with σ2 = 1/μ2. Replacing 

σ2 in the above expression results in 
ρ−

ρ
=

1

2

qL , which is the standard formula of 

the M/M/1 model. Similarly, we observe that in the case of the M/D/1 model, i.e., 
the queuing model with deterministic service time, the variance σ2 = 0, so that the 

Pollaczek-Khintchine formula reduces in this case to 
)1(2

2

ρ−
ρ

=qL . Observe that 

the number of customers waiting in the case of the deterministic model is exactly 
half of that of the standard model with exponential service time. In other words, 
the performance of the queuing system can be improved quite dramatically by 
reducing the variance of the service time.  
 
Example: Arrivals of customers at a single service desk follow a Poisson 
distribution, while the service time follows a general distribution. There is an 
average of λ = 15 arrivals, while the service time is 3 minutes on average with a 
standard deviation of 6 minutes. This means that 1/μ = 1/20 [hours] and σ2 = 
1/(10)2 = 1/100, so that the average number of customers waiting in line is then  
Lq = 5.625 and the average waiting time is Wq = .375 hours = 22.5 minutes. If the 
service time were exponential, we obtain the standard M/M/1 system and the 
performance measures Lq = 2.25 and Wq = 9 minutes, while the deterministic 
model has Lq = 1.125 and Wq = 4.5 minutes.  
 
Consider now the case of multiple service stations. Here, we have to make the 
distinction between one multi-station service center and a number of parallel 
single-service centers. The general rule is that each service center has only a 
single waiting line. As an example, consider what we may refer to as a “bank 
system” and a “supermarket system.” In a bank system, there is a single queue and 
thus a single multi-server system. In contrast, a supermarket features multiple 
waiting lines, hence we deal with multiple single-server systems.  
 
Let us deal with multiple single-server systems first as they are a straightforward 
extension of the concepts discussed earlier. The usual assumptions include no 
balking (i.e., customers in need of service will join the queue regardless of its 
length) and no jockeying (i.e., customers do not change queues if they perceive 
that another queue may result in shorter waiting times). As an example, suppose 
again that arrivals follow a Poisson distribution with a mean arrival rate of λ = 45 
customers per hour, while service time is exponentially distributed with an 
average service time of 1/μ = 2 minutes (or, equivalently, μ = 30 customers per 
hour). Before performing any computations, feasibility requires that ρ = λ/μ = 
45/30 = 1½ does not exceed the number of service stations c, requiring at least 
two service stations in this instance. Suppose now that c = 3 service stations are 
available. As a result, we now deal with three separate single-service systems, or, 
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in terms of the taxonomy, 3 × M/M/1 systems. Consider now the customers. While 
an average of λ = 45 customers are in need of service, each of the three systems 
receives only about one third of this number, as customers may be assumed to 
randomly choose the system they want to be served by. Hence, for each of the 
three systems, we have an effective arrival rate of λ' = 15. The value λ' will then 
replace λ in all of the formulas. In our example, feasibility is guaranteed as ρ' = 
λ'/μ = 15/30 = ½ < 1 for each of the systems. We can then apply the usual steady-
state formulas for M/M/1 models shown in Table 1. For instance, the average time 

a customer spends in the system is Ws = 
'

1
λ−μ

 = 1/(30−15) = 1/15 hours = 4 

minutes. On the other hand, the average number of customers waiting is Lq = 

ρ−
ρ

1

2
 = (½)2/(1−½) = ½, meaning that on average half a customer is waiting in 

line in each of the three subsystems. In other words, on average in all of our three 
service systems combined, 1.5 customers will be waiting for service.  
 
Next, consider a single M/M/3 system such as the one we encounter in a bank with 
three tellers. Some of the relevant formulas are summarized in Table 12.2, where 
the values of the waiting times W• can be computed by using Little’s formula (2).  
 

Table 12.2: Formulas for M/M/c systems 
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In our example, first compute the probability that there are no customers in the 

system. Here, 
19
4

)1(!3
)2/3(]1[

1

3
2/3

3

8
9

2
3

0 =

−
+++

=P . This allows us to compute Lq = 

9/38 ≅ .2368, Ls = 9/38 + 3/2 ≅ 1.7368 and, applying Little’s formula (2), we 
obtain Wq = Lq /λ = .3158 minutes and Ws = Ls /λ = 2.3158 minutes.  
 
The differences between the two models arise from the fact that in the former 
model with separate queues, it is possible that at least one customer is still 
waiting, while a service station is idle. This is based on the aforementioned 
assumption that jockeying is prohibited.  

A simple extension is a model with self-service. It is easily derived from the 
standard M/M/c model by letting the number of service stations c tend to infinity. 
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Such a model will not include any waiting time, so that Lq = Wq = 0 and Ws = 1/μ, 

so that Ls = ρ. It can also be shown that in this case, n
n n

eP ρ=
ρ−

!
 for any n ≥ 0.  

 
For more complex queuing models, it is useful to have either tables or figures at 
hand that provide the decision maker with a quick idea of what to expect without 
engaging in complex computations. Entire books with queuing graphs and 
queuing tables exist. Figure 12.2 shows a typical example of such queuing graphs. 
This particular graph depicts the situation of a c × M/M/1 graph, where the 
abscissa shows the utilization rate ρ', while the ordinate is related to the total 
number of customers in all systems . The steep solid line relates to the case of 
a single facility (i.e., c = 1), the broken, broken-and-dotted, broken-and-twice-
dotted, and dotted lines are for c = 2, 3, 5, and 10 service stations, respectively.  

 
 

 
 

Figure 12.2 
 
Finally, we would like to have a look at multiple-server problems from a slightly 
different angle. Suppose that the decision maker specifies a certain service level 
and inquires how many service stations are needed in order to provide a 
prespecified level of service. Questions of this nature frequently arise in the public 
service, e.g., how many police officers are needed so as to adequately protect an 
area. As an illustration, consider the following  

sLc ′ 
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Example: An average of twenty customers per hour randomly arrive at a hospital. 
The system uses a subsystem for each doctor on duty, and there will be an 
unknown number of c doctors available. Given that each doctor can deal with an 
average of ten patients per hour, hospital administrators want to ensure that the 
average waiting time for any patient does not exceed 10 minutes. What is the 
smallest number of doctors that allows this?  
 
Solution: The system described above is a set of c parallel M/M/1 systems, and the 
effective arrival rate at each of these systems is then λ' = λ/c. Following the results 

in Table 12.1, the average waiting time is defined as 
λ−μ

ρ
=qW , which, with 

cc /' ' ρ===ρ μ
λ

μ
λ , can be rewritten as 

c
cWq /

/
λ−μ

ρ
=  = 

c
c

/2010
/2

−
. The condition 

is now that the average waiting time is no higher than 1/6 [hour], which can be 
written as 
 

 
c

c
/2010

/2
−

 ≤ 1/6.  

 

This inequality can be rewritten as 6
1

2010
2

≤
−c

, so that c ≥ 3.2. In other words, 

at least four doctors are needed to provide the desired service.  
 
It may also be interesting to note that with three doctors, the average waiting time 
is 12 minutes, while four doctors result in an average waiting time of only 6 
minutes.  

12.2   Optimization in Queuing 
While queuing models are primarily designed to compute performance measures, 
they can also be applied in the context of optimization. As an example, consider a 
retail establishment. The owner of the store has to decide how many clerks to 
employ for the cash registers at the checkout counter. Clearly, increasing the 
number of clerks will increase the costs. However, at the same time more clerks 
will result in less waiting time for customers, which, in turn, results in less ill will, 
lost sales, and other customer behavior detrimental to sales. One of the main 
problems applying these models is the quantification of the loss due to customer 
ill will.  
 
The example of a tool crib is much easier to justify. A tool crib is a place in which 
expensive tools are kept that are not in constant use by the workers. Due to cost 
considerations, it would not be feasible to provide each worker  with one tool, so 
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that a service desk is established, where workers can sign out the tool whenever it 
is needed. The costs of the system include the costs of the clerks as well as the 
costs for the lost time of the workers. If c is the number of clerks and $c and $w 
denote the hourly wage of a clerk and a worker, respectively, the costs can then be 
written as  
 
 C = (cost of clerks) + (costs of workers’ lost time) = c$c + $wLs.  
 
The idea is now to determine the optimal number of clerks so as to minimize the 
overall costs. As an illustration, consider the following  
 
Example: The demand for a specialized tool occurs randomly at a rate of about 
100 times per hour. Whenever the need arises, workers walk over to the tool crib, 
sign out the tool, use it, and then return it to the tool crib. All clerks are equally 
efficient with a service time of 3 minutes. For simplicity, we assume that the 
organization of the signing out follows c × M/M/1 systems. Assume that the 
hourly wage of a clerk is $c = 10, while a worker’s lost hour costs $w = 25.  
 
Solution: With the given parameters of λ = 100 and μ = 20 (and thus ρ = 5), we 
first note that due to the feasibility condition ρ ≤ c, we will need at least six clerks. 
The optimal number of clerks can then be determined as follows. Consider the two 
cost curves that determined the total costs. The costs for the clerks increases 
linearly with the number of clerks. On the other hand, the cost for the workers’ 
lost time decreases hyperbolically with an increasing number of clerks. This is 
shown in Figure 12.3. Note that while only integer values of c are relevant, we 
display the costs for all real values of c so as to better show the shapes of the 
curves.  
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Figure 12.3 
 
For a very small number of clerks (e.g., c = 6), waiting time for the workers will 
be very long, resulting in high costs. As the number of clerks increases, waiting 
times decrease and with them the costs. The reduction of workers’ waiting times 
due to adding clerks to the system is very significant at first, but less and less so as 
the number of clerks decreases, Eventually, the benefit of an additional clerk is 
outweighed by his costs, so that the total costs start increasing again. This 
suggests a brute force search procedure, in which the total costs are computed for 
c = 6, 7, 8, … clerks until the costs that were initially decreasing, start increasing 
again. At that point, the optimal number of clerks has been found. Detailed 
computations are shown below.  
 
c = 6: λ = 100/6 = 16.6667, ρ = 16.6667/20 = .8333, Ls = 5 in each system,  
 Cost = 6(10) + 5(6)(25) = 810.  
c = 7: λ = 100/7 = 14.2857, ρ = .7143, Ls = 2.5 in each system,  
 Cost = 7(10) + 2.5(7)(25) = 507.5.  
c = 8: λ = 100/8 = 12.5, ρ = .6250, Ls = 1.6667 in each system,  
 Cost = 8(10) + 1.6667(8)(25) = 413.34.  
c = 9: λ = 100/9 = 11.1111, ρ = .5556, Ls = 1.25 in each system,  
 Cost = 9(10) + 1.25(9)(25) = 371.25.  
c = 10: λ = 100/10 = 10, ρ = .5, Ls = 1 in each system,  
 Cost = 10(10) + 1(10)(25) = 350.  
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c = 11: λ = 100/11 = 9.0909, ρ = .4545, Ls = .8333 in each system,  
 Cost = 11(10) + (.8333)7(25) = 339.16.  

s
 Cost = 12(10) + (.7143)12(25) = 334.29.  
c = 13: λ = 100/13 = 7.6923, ρ = .3846, Ls = .625 in each system,  
 Cost = 13(10) + .625(13)(25) = 333.13.  
c = 14: λ = 100/14 = 7.1429, ρ = .3571, Ls = .5556 in each system,  
 Cost = 14(10) + .5556(14)25 = 334.43.  
 
At this point, the costs start increasing again, so that it is optimal to have c = 13 
parallel service stations.  
 
Another possibility to incorporate optimization in queuing systems occurs, when 
retraining of clerks is considered. The basic setting is similar to that of the tool 
crib above (with the firm paying for service as well as wasted time). The 
retraining time for the clerks includes the actual (recurrent) retraining as well as 
costs for the time that the clerk is absent during training, at which time the 
position must be staffed by other clerks. It is typical that the costs to increase a 
clerk’s service rate increase at an increasing rate. A numerical illustration is 
provided in the following  
 
Example: Customers arrive at a system at a rate of λ = 30 per hour. Keeping them 
waiting is estimated to cost $20 per hour. At present, the service rate is μ = 40, but 
with some additional training, this rate can be increased up to 60. Training to 
achieve a service rate of μ ∈ [40, 60] costs 2(μ − 40)2. For simplicity, we assume 
that an M/M/1 system is used. To what service rate should the clerk be trained so 
as to minimize the training and the service costs? 
 
Solution: The cost function under consideration includes again two components. 
They are the training costs of the clerk and the cost for waiting customers. 
Following the results in Table 12.1, the average waiting costs in an M/M/1 system 

are 
λ−μ

ρλ
=qL  = 

)(

2

λ−μμ
λ .  

 
Then the cost function is then  
 

 C = (retraining costs) + (waiting costs) = 2(μ − 40)2 + 20 
)30(

900
−μμ

.  

 
The graph in Figure 12.4 shows the total costs in this example. In particular, the 
function reaches a minimum at μ = 41.12358 with costs C = 41.8742. 
 

c = 12: λ = 100/12 = 8.3333, ρ =.4167, L  = .7143 in each system,  
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Figure 12.4 
 
Total costs for a number of other service rates have also been computed. They are 
shown in Table 12.3.  
 

Table 12.3: Queuing costs for differently trained clerks 
 

µ 40 41 42 50 60 
C 45 41.9113 43.7143 218 810 

 
In other words, leaving the clerk essentially un(re-)trained will cost $45, less than 
10% off optimum, where as training the clerk up to capacity will cost 18 times in 
total as much as leaving him untrained.  

Exercises 
Problem 1 (optimization of the number of channels and the service rate): 
Customers arrive at a retail outlet a rate of 12 per hour. The total time that customers 
spend in the store contributes to their dissatisfaction. A wasted customer hour has 
been estimated to cost $20. A clerk at the checkout counter typically earns $8 and 
can serve up to 10 customers per hour.  
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(a)  What is the cost-minimal number of checkout counters?  
(b)  Suppose now that an alternative to the system under (a) is to employ two 

clerks who have been retrained. Their retraining enables them to serve up to 
15 customers per hour and they will earn $10 per hour. Is it worth considering 
this option?  

 
Solution: 
(a) 
 s 

s 
 c = 4, λ = 5 each, ρ = 3/10 = 0.3, Ls = .4286, so that TC = 20(4)(.4286)+4(8)  
  = 66.29 
 This implies that the optimal solution is to have 3 clerks. At optimum, the 
 system will cost $64 per hour.  
(b)  With μ = 15, we obtain ρ = .4 and Ls = ⅔. Then cost = 20(2)(⅔) + 2(10) = 
 $46.67, which is cheaper than the 3-clerk option in (a).  
 

Joe plans to open his own gas station “Joe’s Place.” He has planned to open from 
7 a.m. to 11 p.m. He estimates that fifteen customers will arrive each hour during 
the day to fill up their tanks. Doing so takes typically four minutes plus one 
minute for paying the bill. Joe now has to decide how many pumps to install. He 
has read in the industry magazine “Full of Gas” that each hour that a customer 
waits in line costs $15 in terms of loss of goodwill (i.e., patronizing a different gas 
station in the future, buying smokes and other emergency items elsewhere, etc.). 
Also, he has determined that installing a pump costs $100 per day.  
 
(a)  Determine the optimal number of pumps Joe should install.  
(b)  Joe has also heard that there may be a possible gasoline shortage―or at least 

the perception of one―in the near future. Joe read that in the past, this meant 
that customers do not really change their driving habits, but fill up their tanks 
twice as often. Would that change his plans?  

 
Solution: (a) Arrival rate per hour λ = 15, service time 1/µ = 4 + 1 = 5 minutes, or 

µ = 12 customers per hour. Thus, we need at least c = 2 pumps for a steady 
state to exist.  

 c = 2: λ′ = 7.5 each, ρ = .625, Lq = 1.0417, so that TC(c=2) = 2(100) + 
 16(2)15(1.0417) = 700,  

 c = 3: λ′ = 5 each, ρ = .4167, Lq = .2976, so that TC(c=3) = 3(100) + 
 16(3)15(.2976) = 514,  

 c = 4: λ′ = 3.75 each, ρ = .3125, Lq = .1420, so that TC(c=4) = 4(100) + 
 16(4)15(.1420) = 536,  

 so that it is optimal to install c = 3 pumps.  
(b)  Arrival rate per hour λ = 30, service time 1/µ = 2 + 1 = 3 minutes (as the fill-

up time is now only 2 minutes, since the customers fill up when the tank is 
half full), or µ = 20 customers per hour. Again, at least c = 2 pumps are needed.  

 c = 3, λ = 4 each, ρ = 4/10 = 0.4, L = 2/3, so that TC = 20(3)(2/3)+3(8) = 64 

Problem 2 (optimization of the number of channels and sensitivity analysis): 

c = 2, λ = 6 each, ρ = 6/10 = 0.6, L = 1.5, so that TC = 20(2)(1.5)+2(8) = 76 

Exercises
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 c = 2: λ′ = 15 each, ρ = .75, Lq = 2.25,  
  so that TC(c = 2) = 2(100) + 16(2)15(2.25) = 1,280,  
 c = 3: λ′ = 10 each, ρ = .5, Lq = .5,  
  so that TC(c = 3) = 3(100) + 16(3)15(.5) = 660,  
 c = 4: λ′ = 7.5 each, ρ = .375, Lq = .225,  
  so that TC(c = 4) = 4(100) + 16(4)15(.225) = 562,  
 c = 5: λ′ = 6 each, ρ = .3, Lq = .1286,  
  so that TC(c = 5) = 5(100) + 16(5)15(.1286) = 592.59.  
Under these circumstances, it would be best for Joe to have c = 4 pumps. This 
represents a 9.34% cost increase over the case without the perception of a 
shortage.  
 
Problem 3 (comparing queuing systems with fast and slow service): Customers 
arrive at a retail outlet at a rate of 30 customers per hour. The total time that 
customers spend in the store contributes to their dissatisfaction. A wasted 
customer hour has been estimated to cost $10. Management now has two options: 
either employ one fully trained fast clerk, who is able to serve up to 50 customers 
per hour, or two less trained slower clerks, who can handle up to 30 customers per 
hour each. Each of the two clerks would have his own waiting line (the 
supermarket system). Each of the slow clerks earn $6 per hour, while the fast clerk 
is fully aware of his availability, and asks for $16 per hour.  
 
(a)  Should we hire the two slower clerks or the one fast clerk?  
(b)  A new applicant for the job offers his services. The company tried him out 

and it turned out that he is able to handle no less than 75 customers per hour. 
Based on the result under (a), what is the maximal amount that we would we 
pay him?  

 
Solution: (a) The arrival rate is λ = 30. The fast clerk offers µ = 50, so that  

ρ = 30/50 = 0.6 and Ls = λ/(µ − λ) = 30/20 = 1.5. The hourly costs are then 
(cost for clerk) + (costs for customers) = 16 + 1.5(10) = $31.  
In case of the two clerks, there are two M/M/1 systems, each with an effective 
arrival rate of λ′ = 15. With a service rate of µ = 30 each, we obtain ρ = 15/30 
= 0.5 each, so that Ls = 15/(30 − 15) = 1 each. The hourly costs are then (costs 
for two clerks) + 2(costs for customers in each system) = 2(6) + 2(1)(10) = 32. 
As a result, we should hire the fast clerk, even though he charges more than 
the two slow clerks together and can handle less customer than the two slower 
clerks combined.  

(b)  Given a service rate of µ = 75, we obtain ρ = 0.4 and Ls = ⅔. With an unknown 
wage w, this results in costs of w + ⅔(10) = 6⅔ + w. This amount should not 
exceed the costs of the best-known solution (a single fast clerk with hourly 
costs of $31), so that the bound on the superfast clerk’s wage is 6⅔ + w ≤ 31 
or w ≤ $24.33.  
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13   Simulation 

Simulation is one of the major devices in an operations researcher’s toolkit, and 
there is little doubt that it is among the most flexible and commonly used 
techniques. In the words of Budnick et al. (1988),  
 

“Simulation is primarily concerned with experimentally predicting 
the behavior of a real system for the purpose of designing the 
system or modifying behavior.” 

 
In other words, simulation is a tool that builds a model of a real operation that is to 
be investigated, and then feeds the system with externally generated data. We 
generally distinguish between deterministic and stochastic simulation. The difference 
is that the data that are fed into the system are either deterministic or stochastic. 
This chapter will deal only with stochastic simulation, which is sometimes also 
referred to as Monte Carlo simulation in reference to the Monte Carlo Casinos and 
the (hopefully) random outcome of their games of chance.  
 
Another distinction is between continuous and discrete event simulation. Continuous 
simulation deals with processes that are continuous and that are modeled as 
continuous. Typical examples include the growth of plants, movement of vehicles, 
and temperatures. In contrast, discrete event simulation (the only kind of 
simulation discussed in this chapter) has a finite number of points of time, during 
which events occur. This could be the demand for a product during a specific day, 
the number of times a website is visited, or the number of incidents of a specific 
disease at a regional hospital.  

13.1   Introduction to Simulation 
The main reason for a researcher to resort to simulation is twofold. First of all, 
simulation is probably the most flexible tool imaginable. Take queuing as an 
example. While it is very difficult to incorporate reneging, jumping queues, and 
other types of customer behavior in the usual analytical models (see, e.g., Chapter 
12 of this volume), this presents no problem for simulation. Similarly, recall that 
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the queuing formulas that have been derived refer to steady-state solutions. A 
system may have to run for a very long time to reach a steady state, assuming that 
one exists. As a result, a modeler may be more interest in transient states, which 
are easily available in a simulation.  
 
The second reason is that simulation is very cheap. Building a model that simulates 
the opening of a new restaurant will most certainly be a lot less expensive than 
trying it out. Even if costs are no subject, the time frame can be compressed in a 
simulation. For instance, if we were to observe the demand structure of a product, 
a long time would be required, so that results would probably be available when 
the product has become technologically obsolete anyway.  
 
The main steps of a discrete-event simulation include  
 
(1) Building of the model, 
(2) Assigning numbers to uncertain events according to their likelihoods, 
(3) Generation of uncertain events,  
(4) Application of the predetermined policies, and 
(5) Evaluation of the results including verification of the model.  
 
The generation of random numbers will be explained in some detail in the next 
section. The generation of uncertain events and the application of policies to them 
uses an accounting procedure that is demonstrated on a queuing example and an 
inventory system in Section 13.3.  
 
Before starting to discuss the generation of random numbers, we would like to 
discuss their assignment to random events. This is best explained by way of an 
example. Suppose that the owner of a store has observed the demand for a specific 
item and has determined that there is a 10% chance that the demand is 20, there is 
a 30% chance that the demand is 35, a 50% chance that the demand is 50, and a 
10% chance that the demand is 60. The task is now to assign random numbers to 
these random events, so that the likelihood of choosing a random number that is 
assigned to an event equals the observed probability of the event. In our example, 
we could use single-digit random numbers. If we generate uniformly distributed 
random numbers, then all digits are equally likely to come up, i.e., the probability 
of each digit’s appearance is 0.1. We could then assign the digit 3 to the demand 
of 20, the digits 0, 5, and 8 to a demand of 35, the digits 1, 2, 6, 7, and 9 to a 
demand of 50, and the digit 2 to the demand of 60. Since each digit has a 10% 
chance of appearing, randomly generated events will have the different demands 
come up with the observed probabilities. Alternatively, we could make the assign-
ments of double-digit random numbers (in a somewhat more orderly fashion) as 
shown in Table 13.1. Again, the numbers assigned to the discrete events reflect 
the observed probabilities. 
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Table 13.1: Assignment of random numbers to demands 
 

Demand 20 35 50 60 
Probability .1 .3 .5 .1 
Numbers assigned to event 01-10 11-40 41-90 91-00 

 
For the assignment shown in Table 13.1, if the random numbers 15, 27, 81 are 
drawn, they refer to demands of 35, 35, and 50, respectively. It is apparent that 
assigning different random numbers to random events―even while preserving 
their probabilities―will result in different demands being generated. In order to 
overcome the effects that are due the specific assignment, the process should be 
repeated very often. For example, if the decision maker is interested in the demands 
for a product during a 12-month period, we would not generate demands for one 
year, but for thousands of years, so that differences due to different random 
number assignments will vanish.  
 
Given the size (more so than the complexity) of the task, it is of little surprise that 
all simulations are computer-based. While it is possible to write simulations in any 
all-purpose programming language such as C++, special simulation languages have 
been around sind the 1960s. Among them are simulation languages such as 
Simscript, Simula, GPSS (General Purpose System Simulation) and others. There 
are even specialized simulation languages for specific classes of problems, such as 
Simfactory.  
 
Whenever a simulation has been performed, the validation of the results is 
mandatory. Often this means checking the computer code and performing statistical 
tests. However, the validation of some of the behavioral assumptions and the 
structure of the model are at least as important. For instance, if it was assumed that 
customers make a special trip to a gas station, this assumption has to be validated. 
While this is a task that is typically performed before the simulation takes place, it 
is sometimes necessary to validate an assumption after the fact. As an example, 
consider a fast-food chain that attempts to locate a new branch. In addition to 
behavioral studies before the simulation, it may be very useful to apply the model 
with all of its assumption to an already existing branch and see whether or not it 
recreates a known situation. If it does not, the discrepancies will allow the modeler 
to pinpoint the aspects of the model, in which erroneous assumptions may have 
been made.  

13.2   Random Numbers and their Generation 
Random numbers have been around for a long time. Among the earlier systematic 
efforts to generate random numbers is the work by statistician Tippet, who 
produces tens of thousands of random numbers derived from the measurements of 
churches in England. In the mid-1950s the Rand Corporation published a tome “A 
Million Random Numbers.” Today, we distinguish between true random numbers 
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and pseudo-random numbers. Roughly speaking, true random numbers are generated 
by way of a random process, while pseudo-random numbers are machine-
generated by means of a deterministic process. An obvious way to generate true 
random numbers is to roll dice. Assuming that we have a usual six-sided die 
which is not loaded or skewed, each side has a chance of 1/6 of coming up, i.e., 
the probability of each number is 16⅔%. It is not difficult to devise differently-
shaped dice that have ten sides, once for each possible digit. Note that for the time 
being we only deal with uniformly distributed random numbers, i.e., those in 
which all possible numbers have the same chance of appearing. If two-digit random 
numbers are sought, use multiple dice, roll them all, and add their numbers. Note, 
however, that care must be taken: taking, for instance, two standard six-sided dice, 
rolling them and adding up their numbers, will not result in uniformly distributed 
results. As an example, the outcome of “2” is only possible, if both dice show a 
“1,” which has a probability of 1/36. On the other hand, an outcome of “8” has a 
probability of 5/36, as it can be realized from 2 and 6, 3 and 5, 4 and 4, 5 and 3, 
and 6 and 2.  
 
However, changing the numbers on the faces enables us to use the same process. 
If the first die has the numbers 0, 1, 2, 3, 4 and 5 on its side, the second has 0, 6, 
12, 18, 24, 30, and 36 on its sides, the third has 0, 36, 72, 108, 144, and 180, the 
fourth die has numbers 0, 216, 432, 648, 864, and 1,080, then the number that 
results from adding the face values of the four dice is a random number between  
1 and 1,295.  
 
Generating random numbers by way of rolling dice may be fun, but it certainly is 
not a viable method for industrial applications. This is when we resort to machine-
generated sequences of random numbers. The basic idea of all of these generators 
is the same: given a seed, i.e., an initial user-determined value, we put this number 
into a “black box,” which uses our input and its internal parameters to generate 
another number, which is used twofold, as the first random number, and also as 
the next input into the black box, which uses it to generate the next random 
number.  
 
Among the first random number generators is the Midsquare method, which is 
said to date back to Nobel Prize laureate John von Neumann. The idea is to start 
with a seed, square it, retain the middle digits as random number and next input, 
and continue in this fashion. The main reasoning behind choosing the center part 
of a number and delete its first last parts is this. The last digit(s) of a number is/are 
not necessarily random. For instance, if the last digit is 5, the square of the 
number, regardless what the number is, will have a last digit of 5 as well. 
Similarly, if the last digit is an even number, then the square of the number will 
also have an even last digit. As far as the leading digit is concerned, there is much 
less of a chance of getting an 8 or a 9 than getting a smaller first digit.  
 
As an example of the midsquare method, consider the seed x0 = 107364 and 
assume that we are interested in five-digit pseudo-random numbers. Squaring this 
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number results in 115 27028 496, so that our first random number is x1 = 27028, 
the center of the number shown by the appropriate spacing. Using x1 as input and 
squaring it results in 73 05127 84, so that x2 = 05127. Squaring x2 results in  
2 62861 29 and x3 = 62861. The process continues with x4 = 51505, x5 = 52765, 
and so forth.  
 
The midsquare method is plagued by a multitude of problems, though. Take, for 
instance, the seed x0 = 41 and generate a sequence of random numbers by deleting 
the first and last digit after squaring. This results in the sequence x1 = 68, x2 = 62, 
x3 = 84, x4 = 05, x5 = 02, and x6 = 00, at which time the series has degenerated and 
will never generate anything but zeroes.  
 
A much better choice are so-called linear congruence methods. They work with 
the function  
 
 xi = (a + bxi−1) mod c,  
 
where a, b, and c are integer parameters, while xi is the i-th random number as 
usual. The “mod” function returns the remainder as the result of the division. As 
an example, consider a number of examples. In case 17 mod 5, we divide 17 by 5, 
which equals 3 and a remainder of 2, thus 17 mod 5 ≡ 2. Similarly, consider 31 
mod 9. Dividing 31 by 9 equals 3 and a remainder of 4, so 31 mod 9 ≡ 4.  
 
Suppose now that we use the parameters a = 17, b = 3, c = 101, and x0 = 53. We 
can then compute  
 
 x1 = [17 + 3(53)] mod 101 ≡ 75,  
 x2 = [17 + 3(75)] mod 101 ≡ 40,  
 x3 = [17 + 3(40)] mod 101 ≡ 36,  
 x4 = [17 + 3(36)] mod 101 ≡ 24,  
 x5 = [17 + 3(24)] mod 101 ≡ 89,  
 
and so forth. It is apparent that the largest number that can be generated in this 
example will be c − 1 = 100. This means that after at most 100 generated numbers, 
the sequence generated with our parameters will reach a number that has been 
generated before. And, since the parameters have not changed, the same sequence 
will be generated over and over again. The number of different random numbers 
that can be generated before the sequence repeats itself is called the cycle length 
or the period of the generator. Typically, the idea is to choose the parameters, so 
that the period is as long as possible. However, that is not the only criterion for a 
good set of random numbers. Consider a generator with a = b = 1, c = 10, and a 
seed x0 = 0. The generator determines x1 = 1, x2 = 2, x3 = 3, and so forth, until we 
obtain x9 = 9, and x10 = x0 = 0. Thus the cycle length equals 10, but the sequence 
looks anything but random.  
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Another obvious criterion a sequence of uniformly distributed random numbers 
has to satisfy is that each digit will come up about 10% of the time. The above 
sequence 0, 1, 2, …, 9, 0, … does exactly that. However, the conditional 
probability of, say, a 5 coming up directly following a 2, is zero, while the 
probability of a 3 directly following a 2 is 1. This is an obvious test that this 
particular sequence fails. And that makes it a pseudo-random number. In contrast, 
remember the roll of a single die. Suppose that a 2 came up on one roll, and a 5 on 
the next. We keep on rolling, until another 2 comes up. What is then the 
probability that the next roll will show a 5? With a perfect die, it will be 1/6. With 
any pseudo-random number, it will be 1, as whenever the same number comes up 
again, we are in a cycle, which repeats itself.  
 
There is a variety of other tests that random number generators have to pass in 
order to be reasonable. The parameter c is particularly critical and it is often 
chosen as a large prime number. Overall, each sequence of numbers generated in 
this way has a finite period. 
 
Part of the importance of random numbers is not so much that they are used for 
simulations, but they are also crucial for internet security by way of encryptions, 
and internet gambling. Given the amount of money involved in these ventures, 
much is at stake. And the general idea is that random numbers can only truly be 
generated by a process that involves random elements. Some fairly unusual 
methods have been included, among others seeds that depend on the number of 
particles emitted from radioactive elements, atmospheric noise from resistors, and, 
a patented method, a seed based on random movements observed in lava lamps.  
 
So far, we have discussed random numbers that are uniformly distributed. This is 
not always desirable. However, fairly simple procedures can be employed to 
transform uniformly distributed random numbers into random numbers that follow 
other distributions. The easiest case is to determine random variables that are 
uniformly distributed on [0, 1[. If numbers with k digits to the right of the decimal 
point are sought, then each k-digit random number needs to be divided by the 
largest k-digit number that can be generated, viz., 10k − 1. Random numbers that 
are uniformly distributed on [0, 1[ are very useful to generate random numbers 
that follow other distributions.  
 
Consider now Poisson-distributed random numbers. The cumulative density function 
F(x) of a random variable x that follows a (discrete) Poisson distribution with 
parameter λ can be found in many works with mathematical tables, e.g., Råde and 
Westergren (2002). Table 13.2 shows the cumulative functional values for the 
Poisson distribution with parameter λ = 2.5.  
 
Table 13.2: Cumulative distribution values for a Poisson distribution with λ = 2.5 

 
x 0 1 2 3 4 5 
F(x) .0821 .2873 .5438 .7576 .8912 .9580 
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Table 13.2 (continued) 
 
 
 

We can now generate Poisson-distributed random numbers by starting with uniformly 
distributed random numbers. If such a random number falls into an interval F(x1) 
and F(x2), then the Poisson-distributed random number is x2. As a numerical 
example, consider the following uniformly distributed random numbers: 
 
 .0537 .7406 .5926 .8807 .6603 .7126 .8016 .7973 .9584 .6570 .8457  
 
The first random number is between 0 and F(x = 0), so that a random number of 0 
results. The next random number 0.7406 is in the interval [.5438, .7576], so that 
the next random number equals the x-value of the upper end of the interval, viz., 3. 
Similarly, the next uniformly distributed random number .5926 is also located in 
the interval [.5438, .7576], so that again the x-value of the upper bound x = 3 
results as the next Poisson-distributed random number. Continuing in similar 
fashion results in the ten random numbers 0, 3, 3, 4, 3, 3, 4, 4, 6, 3, and 4.  
 
Consider now random numbers that follow an exponential distribution with parameter 
λ. Denoting again uniformly distributed random numbers in [0, 1[ by ui, we can 
then compute exponentially distributed random numbers xi by using the formula xi 
= −ln ui/λ. Given again the above eleven uniformly distributed random numbers, 
we can compute exponentially distributed random numbers with parameter λ = 2.5 
as  
 
1.1697, 1.2012, .2093, .0508, .1660, .1355, .0885, .0906, .0170, .1680, and .0670.  
 
On the other hand, random variables that follow a standard normal distribution can 
be generated from uniformly distributed numbers in the [0, 1[ interval in pairs. 
Letting ui and ui+1 denote the i-th pair of uniformly distributed random variables, 
we can obtain a pair of related standard normally distributed random variables xi, 
xi+1 by using the relations 
 
  xi = )2sin(ln2 1+π− ii uu  and xi+1 = )2cos(ln2 1+π− ii uu .  
 
The sequence of standard normally distributed random numbers derived from the 
first ten uniformly distributed random numbers is  
 
 .1962, 2.4104, .0986, 1.0278, .0711, .9083, .0581, .6625, .0298, and .2908.  
 
Random numbers that follow other distributions can be computed as well. In the 
next section we will demonstrate how these random numbers can be used to 
model practical situations. 

x 6 7 8 9 10 
F(x) .9858 .9958 .9989 .9997 .9999 
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13.3   Examples of Simulations 

This section will present two numerical examples of simple simulations. While 
they focus only on very specific aspects, they should be able to convey some of 
the fundamental ideas used in real-world simulations.  

13.3.1 Simulation of a Waiting Line System 

The main goal of simulation is to evaluate existing solutions and policies. In other 
words, we start with a policy (or a solution), and test how this policy or solution 
will fare in an uncertain environment. And this uncertain environment is recreated 
by generating scenarios, given the states of nature and their probabilities that have 
been observed.  
 
This may best be explained by a few examples. First consider a waiting line 
system. For simplicity, we will work with a single-channel system. Customers 
arrive at the service station, so that the interarrival times are uniformly distributed 
on the integers between 4 and 9. The service times are also uniformly distributed, 
but on the integers between 5 and 7 (i.e., a service time of 5 minutes has a 
probability of ⅓, the same as a service time of 6 minutes and one of 7 minutes. 
The purpose is now to evaluate the performance of the system. The criteria used 
for that purpose can be manifold. On the customers’ side, we could use the 
probability that a customer will have to wait, the average waiting time, and the 
average number of customers in the system (really a proxy for the congestion of 
the system). On the server’s side, we could be interested in the average idle time 
during a workday, and, of course, the cost of the system.  
 
First, we will have to assign events to random numbers. For simplicity, we will 
use single digits for the interarrival times. A random digit of 4 means an interarrival 
time of four minutes, a random number of 5 means an interarrival time of five 
minutes, and so forth. In case a random digit 1, 2, 3, or 0 comes up, we will reject 
the digit and move on to the next random number.  
 
A similar procedure will be used for service times. Here, the random numbers 5, 
6, and 7 denote the actual service times in minutes, all other random numbers will 
be rejected. A set of uniformly distributed random numbers is shown in Table 
13.3. Tables of random numbers can be read from left to right and top to bottom, 
or right to left bottoms up, or in any other more or less organized way. Here, we 
scan them row by row from left to right, starting with the first row.  
 
 

 
2049 9135 6601 5112 5266 6728 2188 3846 3734 4017 
7087 2825 8667 8831 1617 7239 9622 1622 0409 5822 
6187 0189 5748 0380 8820 3606 7316 4297 2160 8973 

 
Table 13.3: Random Digits 
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The scenarios for the first 15 customers are generated in Table 13.4. The first 
column of the Table 13.4 is the customer number. Column 2 lists the interarrival 
times that are generated with the random numbers from Table 13.3. The first two 
digits are 2 and 0, and neither of them are assigned to actual interarrival times 
(only digits between 4 and 9 are), so that these digits are rejected. The next two 
digits are 4 and 9. They are assigned to interarrival times of 4 and 9, which are 
now the interarrival times of the first two customers. The next four digits are 9, 1, 
3, and 5. Here, 1 and 3 are unassigned and are rejected, so that only the digits 9 
and 5 are usable, they are the interarrival times of the next two customers. This 
process continues, until we have assigned interarrival times for the first 15 
customers. So far we have used random numbers of the first seven of the ten 
blocks of four digits each in the first row of Table 13.3.  
 
We now use the same process to generate the service times for the first 15 customers. 
Starting with the second row of random numbers in Table 13.3 (alternatively, we 
could have simply continued where we left off with the interarrival times and 
started with the eighth block in the first row), we use only random numbers 
between 5 and 7 as service times, while rejecting all other digits. In the first block, 
we keep the first and fourth digit (both 7s), while rejecting the second and third 
digit (0 and 8), as they are unassigned. In the second block, the first three digits 
are unassigned, leaving on the fourth digit (with a value of 5). The third block has 
the first digit unassigned, but the remaining three digits (6, 6, and 7) are usable. 
The fourth block has all digits unassigned, and so forth. The service times for the 
first 15 customers are displayed in column 8 of Table 13.4.  
 
We are now ready to perform the simulation. We start with customer 1, meaning 
the first row of Table 13.4. Given that the system starts operating at, say, 9 a.m., 
and the interarrival time is 4 minutes, the first customer will arrive at 9:04 (column 3). 
Since no other customer is presently in the system, service for customer 1 will start 
immediately (column 7). This means that there was no waiting time (column 5), 
while there was a 4 minute idle time before this customer’s arrival (column 6). 
Given the service time of 7 minutes (column 8), service on customer 1 will be 
finished at 9:11 (column 4). For simplicity, we compute the aggregate waiting 
times (column 9) and the aggregate idle times (column 10) for each customer, so 
that they are easily available for our evaluations later on.  
 
The computations for customer 2 are similar. Given the interarrival time of 9 minutes, 
this customer will arrive 9 minutes after customer 1 arrived, meaning at 9:13. Since 
customer 1 has left the service station at 9:11, there was a 2-minute idle time 
(column 6), but no waiting time for customer 2 (column 5). As a result, service 
begins immediately at 9:13 (column 7). Given that the service takes 7 minutes 
(column 8), customer 2 is done and leaves at 9:20.  
 
This process continues in the same fashion until customer 6 leaves. Consider now 
customer 7. When the customer arrives at 9:44, customer 6 is still in the system, 
so that customer 7 will have to wait. More specifically, since customer is finished 
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at 9:46, customer 7 will wait for 2 minutes (which is recorded in column 5). 
Service for customer 7 starts at 9:46 (reported in column 7). Also note that so that 
there is no idle time for the system, which is shown in column 6. Customer 7 will 
leave the system after 6 minute service time (column 8) at 9:52 (column 4). The 
process continues in similar fashion for the remaining eight customers.  
 
This is also the point, at which other behavioral aspects could easily be incorporated. 
Take, for instance, the possibility that a customer reneges, i.e., considers the 
lineup too long (as a proxy for the expected waiting time) and decides not to wait 
but go elsewhere instead or return at some other time. While such a behavior 
would be rather difficult to incorporate in an analytical method, it is easy to do so 
in a simulation. Here, if customer 7 will only enter the system, if there is no other 
customer in the system, we would record at this time that one potential customer 
was not served and continue with the next customer. The number of customers 
who leave the system unserved is another criterion in the evaluation of the 
performance of the system.  
 

Table 13.4: Simulation of a queuing system 
 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
1 4 9:04 9:11 0 4 9:04 7 0 4 
2 9 9:13 9:20 0 2 9:13 7 0 6 
3 9 9:22 9:27 0 2 9:22 5 0 8 
4 5 9:27 9:33 0 0 9:27 6 0 8 
5 6 9:33 9:39 0 0 9:33 6 0 8 
6 6 9:39 9:46 0 0 9:39 7 0 8 
7 5 9:44 9:52 2 0 9:46 6 2 8 
8 5 9:49 9:59 3 0 9:52 7 5 8 
9 6 9:55 10:06 4 0 9:59 7 9 8 
10 6 10:01 10:12 5 0 10:06 6 14 8 
11 6 10:07 10:18 5 0 10:12 6 19 8 
12 7 10:14 10:23 4 0 10:18 5 23 8 
13 8 10:22 10:29 1 0 10:23 6 24 8 
14 8 10:30 10:37 0 1 10:30 7 24 9 
15 8 10:38 10:43 0 1 10:38 5 24 10 

 
Legend:  
(1)  Customer number 
(2)  Interarrival time (a random number from the list) 
(3)  The arrival time of the customer 
(4)  The time at which service performed for the customer is finished and the 

customer leaves 
(5)  The time the customer had to wait (not including service time) 
(6)  The time that the service station is idle before the customer arrives 
(7)  Starting time of service for the customer 
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(8)  Service time for the customer (a random number from the list) 
(9)  The cumulative waiting time, and  
(10)  The cumulative idle time.  
 
Suppose this very small simulation is to be evaluated. We first observe that 
there is some idle time in the beginning, while later on the system is very busy. 
This is hardly surprising: after all, the average interarrival time is 6.5 minutes, 
while the average service time is 6 minutes, leading to an average traffic intensity 
of ρ = .9231, a clear sign of a very busy system.  
 
We also observe that the total waiting time for all the 15 customers that we have 
observed (column 9) is 24 minutes. In other words, there is an average waiting 
time of 24/15 = 1.6 minutes per customer. This information will have to be 
evaluated by the decision maker, who will have to decide whether or not this time 
is too long. Note again that the waiting times are not even distributed throughout 
the day, but get longer later in the day.  
 
Another issue is the idle time of the system. The system has been operating from 
its opening at 9:00 until the last customer left at 10:43, i.e., for a total of 103 
minutes. The total idle time (row 15 of column 10) is ten minutes. This means that 
the total idle time is 10/103 ≈ 10% of the time. Again, this time is clustered during 
the early stages of the operation.  
 
These, and potentially other, criteria can then be used by the decision maker to 
evaluate and, if deemed necessary, improve the performance of the system by 
using appropriate measures.  

13.3.2 Simulation of an Inventory System 

Another popular area, in which Monte Carlo simulation is applied, deals with 
inventory management. Again, we first have to observe and quantify all system 
parameters, and then decide on a policy, meaning assign values to the variables 
under our jurisdiction. In this example, we distribute a single product, for which 
there is a daily demand that is uniformly distributed between 0 and 99 units. The 
lead time is assumed to be 3 days. Note that in more realistic applications, the lead 
time will also be a random variable. Furthermore, we assume that we have an 
opening inventory of 200 units. The unit costs are $100 to place an order and 
receive the shipment, the daily holding costs are 10¢ per unit that is held 
overnight, and the shortage costs are 30¢ for each unit that is not available and for 
which a customer has to wait overnight. Unit holding costs and shortage costs are 
linear in time, meaning that if a customer has to wait for 5 days to obtain the 
desired good, the shortage costs will be 5(0.3) = $1.50. The present inventory 
policy does not place a new order, if another order is still outstanding, even if the 
inventory level is below the reorder point. Also, in case of shortages, we assume 
that units are backordered and there are no lost sales. Other than that, management 
has formulated the following  
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Policy 1: Place an order of size Q = 300, whenever the inventory level observed at 
the end of a day falls below the reorder point R = 150.  
 
In order to perform the simulation, we first need random numbers. Table 13.5 
provides the needed numbers, and we will assign a double-digit random number to 
a demand of the same magnitude, i.e., a random number 67 will symbolize a 
demand of 67.  
 

Table 13.5: Random numbers 
 

89 91 72 26 10 83 90 30 76 40 
 
Table 13.6 shows the simulation for ten days. Some details of the computations 
will be elaborated upon below.  
 

Table 13.6: Simulation for Inventory Policy 1 
 

Day 
# 

Inventory level 
before opening 

Demand Inventory level  
after closing 

Costs: Co, Ch, Cs  

1 200 89 111 → order 100, 11.10,   0 
2 111 91 20 0,       2.00,   0 
3 20 72 –52 0,       0,      15.60 
4 –52 + 300 = 248 26 222 0,     22.20,   0 
5 222 10 212 0,     21.20,   0 
6 212 83 129 → order 100, 12.90,   0 
7 129 90 39 0,       3.90,   0 
8 39 30 9 0,       0.90,   0 
9 9 + 300 = 309 76 233 0,     23.30,   0 
10 233 40 193 0,     19.30,   0 

 
Before opening on Day 1, our inventory is 200 units as stated in the assumptions. 
The demand on this day (the first two random digits from the list) is 89, so that by 
the end of the day, our inventory level has decreased to 111. Comparing this value 
to our reorder point, we realize that the present inventory level has fallen below 
the reorder point of R = 150, so that we place an order. Given the (deterministic) 
lead rime of 3 days, the shipment that relates to this order will arrive on Day 4 
before we open the store. The costs on that day are: $100 for placing an order, 
111(0.10) = $11.10 in terms of inventory holding costs (the 111 units to be carried 
over to Day 2 multiplied by the unit holding costs), and zero shortage costs, as no 
shortages were encountered.  
 
Day 2 is dealt with similarly. Note that even though by the end of the day, only 20 
units remain in stock which is much less than the reorder point, a new order will 
not be placed according to the policy that  prohibits placing a new order  if another  
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order is still outstanding. During Day 3, we encounter a shortage. Similar to 
carrying costs, shortages are assessed for the number of units we are short by the 
end of the day (here: 52 units short at 30¢ each for $15.60).  
 
This brings us to the morning of Day 4, at which time a shipment with 300 n 
ew units comes in. This shipment belongs to the order placed on the evening of 
Day 1. From this shipment, the demand of all customers whose items were on 
backorder will be satisfied, before the regular demand takes over.  
 
That way, we simulate the process for ten days. At this point, we can evaluate 
Policy 1. We note that the ordering costs are $200, the carrying costs are $116.80, 
and the shortage costs are $15.60, for total inventory costs of $332.40. Other 
characteristics of the system can also be evaluated, for instance the service level, 
which may be expressed as the proportion of the demand that can be satisfied 
immediately rather than having to be backordered. For simplicity, we will 
concentrate on cost considerations. In the simulation of Policy 1, we note that the 
ordering costs dominate, while shortage costs are very low. This may lead to a 
revised policy, in which we place larger orders. In particular, we formulate 
 
Policy 2: Place an order of size Q = 600, whenever the inventory level observed at 
the end of a day falls below the reorder point R = 150.  
 
Using the same random numbers (and thus the same demand throughout the ten days), 
the workings of this policy are shown in Table 13.7. Since the calculations are very 
similar to those in Table 13.6, we just produce the results without further comments.  

Table 13.7: Simulation for Inventory Policy 2 
 

Day 
# 

Inventory level 
before opening 

Demand Inventory level  
after closing 

Costs: Co, Ch, Cs  

1 200 89 111 → order 100, 11.10,   0 
2 111 91 20     0,   2.00,   0 
3 20 72 –52     0,   0,      15.60 
4 –52 + 600 = 548 26 522     0, 52.20,   0 
5 522 10 512     0, 51.20,   0 
6 512 83 429     0, 42.90,   0 
7 429 90 339     0, 33.90,   0 
8 339 30 309     0, 30.90,   0 
9 309 76 233     0, 23.30,   0 
10 233 40 193     0, 19.30,   0 

 
The individual total costs associated with Policy 2 are Co = 100, Ch = 266.80, and 
Cs = 15.60 for total inventory costs of $382.40, a 15% increase over Policy 1. We 
note that the holding costs are now very high, while shortage costs are still at  their  
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previous, low level. A (hopefully improved) new policy may be defined as having 
a reorder point of, say, R = 100, and an order quantity of Q = 450. We leave 
further experimentation to the reader.  
 
In general, we would like to emphasize that the decision rule that is to be 
evaluated with simulation does not have to be a fixed rule that is determined once 
in the beginning and then left unchanged throughout the process. Instead, the rule 
can include periodic updates. For instance, a diet planner could optimize the food 
plan for a senior citizens’ home and, once one or more of the parameters change, 
reoptimize and implement the new plan. Similarly, we could periodically update 
the reorder point and order quantity in an inventory system.  
 
In our example, we could formulate the following policy that features dynamic 
readjustments of order quantity and reorder point:  
 
Policy 3: (1) Starting with an order quantity of Q = 300, readjust the order 

quantity whenever an order is placed, so that it is 3 times the average daily 
demand since the last time an order was placed (i.e., 3 times the average daily 
demand in the last cycle).  

(2)  Starting with a reorder point of R = 150, update the reorder point whenever an 
order comes in, so that R:=R ±½(shortage/inventory level just before the new 
order comes in). In other words, if there is a shortage just before the arrival of 
the new order, the new reorder point equals the previous value of R plus half 
the shortage. If, on the other hand, there is still some inventory left, half of 
that amount is subtracted from the previous reorder point to obtain the new 
value of R.  

 
This somewhat more elaborate policy requires some additional explanations. 
Again, we will use the same random numbers and thus the same demand as in the 
previous policies. Initially, we have a reorder point of R = 150 and an order 
quantity of Q = 300 as in Policy 1. As in Policy 1, the demand on Day 1 equals 89, 
so that our inventory level has fallen to 111 by the end of the day. The order 
quantity is now recalculated as three times the average daily demand since the last 
order was placed. Since this is the first order that we place, the average is 
computed for the time between the beginning of the simulation and the end of 
Day 1. Since only one daily demand has occurred, the order quantity is computed 
as Q = 3(89) = 267. Again, the shipment that relates to this order will arrive in the 
morning of Day 4.  
 
The computations are the same as for Policy 1 until the morning of Day 4 when 
the shipment arrives. After deducting the backordered demand, we recomputed the 
reorder point. Since we had a shortage of 52 units before the shipment arrived, the 
new reorder point is R = 150 + ½(52) = 176.  
 
The process continues again until Day 6. In the evening of Day 6, the inventory 
level has fallen below the new reorder point of R = 176, and we place another 
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order, which will arrive in the morning of Day 9. The order quantity is now 
computed on the basis of the average demand since the last order was placed. 
Here, the previous order was placed on Day 1, and the demand since then was 91 
units on Day 2, 72 units on Day 3, 26 units on Day 4, 10 units on Day 5, and 83 
units on Day 6 for an average of 282/5 = 56.4 units. According to the policy, the 
order quantity is three times this amount, i.e., 169.2 units, which we round to the 
nearest integer, so that Q = 169.  
 
From here, the inventory system continues without interruption until Day 9, when 
the shipment arrives that was ordered at the end of Day 6. After satisfying the 
demand with the backordered items, we still have 145 units in stock. Since there 
was a shortage of 24 units just before opening on Day 9, the new reorder point is 
calculated as the previous reorder point of 176 plus half of the latest shortage for R 
= 176+ ½(24) = 188. Note that even though the opening inventory on Day 9 is 
below the reorder point, the policy allows orders to be placed only by the end of 
the day, which is done here at the end of Day 9. Since the last order on Day 6, the 
daily demand has been 90, 30, and 76 for an average of 196/3 = 65⅓, so that the 
new order quantity is computed as Q= 3(65⅓) = 196.  
 

Table 13.8: Simulation for Inventory Policy 3 
 

Day 
# 

Inventory level 
before opening 

Demand Inventory level  
after closing 

Costs: Co, Ch, Cs  

1 200 
(R = 150) 

89 111 → order  
Q = 267 

 100,  11.10,   0 

2 111 91 20      0,    2.00,   0 
3 20 72 −52      0,    0,      15.60 
4 −52 + 267 = 215 

(R = 176) 
26 189      0,  18.90,   0 

5 189 10 179      0,  17.90,   0 
6 179 83 96 → order 

Q = 169 
 100,    9.60,   0 

7 96 90 6      0,    0.60,   0 
8 6 30 −24      0,    0,        7.20 
9 −24 + 169 = 145 

(R = 188) 
76 69 → order 

Q = 196 
 100,    6.90,   0 

10 69 40 29      0,    2.90,   0 
 
In this policy, the total ordering costs are $300, the carrying costs are $69.90, and 
the shortage costs are $22.80 for a grand total of 392.70. Since these costs are 
about 18% higher than those for Policy 1, further refinements are needed. 
However, it is worth pointing out that the time frame of ten days is far too short to 
make any real recommendations. It was chosen here merely for illustrative purposes.  
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The above two examples were chosen for this book, as they deal with subject 
matter that was introduced in earlier chapters, and because they are very intuitive. 
Even these simple scenarios could be extended in a variety of directions so as to 
become quite involved. Still the basic ideas remain the same regardless of the 
complexity of the model.  

Exercises 
Problem 1 (simulation of a replacement problem): The lighting director of a 
theater is worried about the maintenance and replacement of five floodlights. They 
fail according to the number of weeks they have been installed and used. The 
probability that a bulb still functions after it has been used for t weeks (i.e., it is 
presently in its (t+1)-st week of use) is denoted by P(Y|t). The numerical values 
are shown in Table 13.9. In addition, the single-digit random numbers associated 
with the survival events are shown in the last row of the table.  
 

Table 13.9: Conditional survival probabilities and associated random digits 
 

 P(Y|0) P(Y|1) P(Y|2) P(Y|3) P(Y|≥ 4) 
Probability 0.9 0.7 0.5 0.3 0.2 
Random numbers 1 − 9 1 − 7 1 − 5 1 − 3 1 − 2 

 
Whenever a bulb fails, it has to be replaced immediately, as “the show must go 
on.” Changing a bulb individually is expensive, as scaffolding must be put up. The 
entire process costs $350. On the other hand, changing all five bulbs once 
regardless if they still work or not costs $800.  
 
The director ponders two replacement policies: either replace the bulbs only when 
they actually fail, or, alternatively, in addition to failures during the week which 
have to be attended to immediately, change all bulbs every three weeks regardless 
if they still work or not. It should be pointed out that even if multiple bulbs fail 
during the same week, they may do so at different times, so that this case has to be 
treated and paid for as individual failures.  
 
Solution: Use the following random numbers to generate specific instances of 
survival and failure:  
 
83638   51597   70322   35984   03933   30948   36142   72865   63348   28024 
 
Table 13.10 and Table 13.11 then display for each light its age in a given week, 
the random number, and an indication, if a bulb works during any given week (W), 
or if it fails (F). Consider, for instance, Light 4. In week 1, its age is 0 as the bulb 
is new. According to Table 13.9, the random digits associated with not failing are 
1 – 9, and since the random digit is 3, it will symbolize proper functioning. This 
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means that in the beginning of week 2, Light 4 is of age 2. The next random digit 
is 9, which, for a bulb in week 2, means failure. This means that during week 2, 
bulb 4 will be replaced and its age in week 3 will again be 0. The process 
continues in this fashion for all bulbs. The result of this replacement policy is that 
16 bulb replacements are necessary for a total cost of $5,600.  
 
The simulation for the second policy is shown in Table 13.11. Here, we use the 
same random digits as before. As an explanation of the numbers in the table, 
consider Light 1. It works during weeks 1 and 2, but fails during week 3, when it 
has to be replaced during the week. At the beginning of week 4 (indicated by a “*” 
in the leftmost column), a group replacement is made, at what time the bulb of 
Light 1 is replaced again, even though it was just replaced individually during the 
previous week.  
 
It turns out that this policy requires only 12 individual replacements for a total of 
$4,200, plus three total replacements for $2,400 for a grand total of $6,600. This is 
more than the costs of individual replacement alone, making the former strategy 
preferable.  

Exercises
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Problem 2 (evaluation of investment strategies via simulation of stock prices): 
The manager of an investment company manages a specific fund. There are 
$1,000,000 available for investment and three stocks, currently priced at $17, $59, 
and $103 per share, respectively, are considered for that fund. Planning is made on 
a weekly basis and any amounts that are not invested will be kept in a short-term 
money-market account that pays 0.01% per week.  
 
The manager considers three investment strategies. The first strategy would be to 
keep all of the money in the short-term account. This is the benchmark strategy. 
The second strategy will invest 50% of the available money at the end of any 
week that has seen at least a 2% increase in value, and will sell at the end of any 
week that has seen a decline in stock price, provided that a gain can be realized. 
Otherwise, the stock is held until a gain can be made. The third strategy is to 
invest 50% of the available money in a stock whenever its price declines, and it 
will be sold as soon as a gain can be realized. The manager will not purchase new 
shares of a stock that is still held.  
 
Stock prices are thought to follow two overlapping trends. On the one hand, their 
value will be determined by the “state of the economy,” (measured by the relative 
value of the currency, unemployment figures, manufacturers’ receipts, and similar 
factors), and, on the other hand, by stock-specific factors. The change of the state 
of the economy is denoted by Δ, while the changes of the standings of the three 
industries are Δ1, Δ2, and Δ3, respectively. The stock prices are then thought to  
be the sum of Δ and Δj for stock j, j = 1, 2, 3. The probabilities of these changes are 
denoted by P(Δ), P(Δ1), P(Δ2), and P(Δ3). These probabilities have been observed 
and are displayed in Table 13.12 for changes in the overall economy, Table 13.13 
for the specific case of the first industry, and Table 13.14 for the second and third 
industry. In each table, double-digit random numbers # are listed that are associated 
with the individual changes Δ and Δj.  
 

Table 13.12: Probabilities P(Δ) and random numbers # 
 

Δ +2% +1% ±0 −1% −2% 
P(Δ) 0.05 0.15 0.60 0.15 0.05 

# 01-05 06-20 21-80 81-95 96-00 
 
 

Table 13.13: Probabilities P(Δ1) and random numbers # 
 

Δ1 +3% +1% ±0 −1% −3% 
P(Δ) 0.03 0.15 0.70 0.10 0.02 

# 01-02 03-12 13-82 83-97 98-00 
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Table 13.14: Probabilities P(Δ2) and P(Δ3) and random numbers # 
 

Δ2, Δ3 +3% +1% ±0 −1% −4% 
P(Δ2), PΔ3) 0.04 0.12 0.60 0.21 0.03 

# 01-04 05-16 17-76 77-97 98-00 
 
In addition, we will use the random numbers shown in Table 13.15. They are read 
row by row from left to right.  
 

Table 13.15: Random numbers 
 

6959915528 3270108890 4539882224 7576293709 
1302727211 7576371930 9295108634 6867423785 

 
The task is to evaluate the different investment strategies of the investment 
manager.  
 
Solution: We first use the random numbers to simulate the states of the economy 
Δ, followed by the simulation of the states of the three different industries Δ1, Δ2, 
and Δ3. This allows us to compute the stock prices. All of these computations are 
shown in Table 13.16.  
 
Strategy 1: Leaving the entire amount of $1,000,000 in the short-term account for 

ten weeks will net us $1,001,000.45, or a 0.1% gain.  
Strategy 2: In week 1, none of the stocks has increased by at least 2%, so that we 

keep our entire amount in the short-term account. By the end of week 2, we 
have $1,000,200.01. Since Stock 2 increases by 3% in week 2, we purchase it 
with half of the available money, i.e., $500,100. At the price of $61.38 a 
share, we obtain 8,147.6051 shares. The first time we can realize a gain is at 
the end of week 8, at which point we sell the shares at $61.99 a share for a 
total of $505,070.04. This money is kept in the short-term account for two 
weeks, resulting in a payoff at the end of week 10 in $505,171.06. The 
remaining $500,100 that were not invested in week 2 will remain in the short-
term account, resulting in $504,114.83 for a total of $1,009,285.89 or an 
increase of 0.929%.  

Strategy 3: By the end of week 1, Stock 3 has declined in value, which leads the 
investor to invest half of the available money in that stock. The $1,000,000 
has appreciated due to its investment in the short-term account for one week, 
so that 1,000,100 are available, half of which ($500,050) are invested in Stock 
3. Each share costs $101.97, so that 4,903.8933 shares are purchased. Since 
the shares will never exceed that value again during the ten weeks, they will 
not be sold.  

The remaining $500,050 are left in the short-term account for two weeks 
until the end of Week 3, when they have appreciated to $500,150.02. As 
Stocks 1 and 2 decreased in value in Week 3, half of the available amount is 
invested in each. (Note, by the way, that Stock 3 decreased in Week 2, but 
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since we still hold shares of that stock, we do not invest in it again). The sum 
of $250,075.01 is invested in Stock 1, which costs $16.66 per share, so that 
we obtain 15,010.5048 shares. We hold them until the end of Week 8, when 
their price increases to $16.83, which gives us $252,626.80.  

Back to the end of Week 3, when we invested $250,075.01 in Stock 2 at 
$60.77 a share, so that we obtain 4,115.1063 shares. We sell these shares at 
the end of week 5 for $61.38 each, resulting in $252,585.22. We hold this 
money in the short-term account until the end of Week 8, when the 
investment in Stock 1 is liquidated. By that time, we have $505,212.02. Since 
none of the stocks declined in Week 8, we hold the amount in the short-term 
account for a week, resulting in $505,262.54. We are now at the end of Week 
9. During Week 9, we observed all stocks declining. As we still hold Stock 3, 
we cannot invest in it, so that we invest the entire remaining money in Stocks 
1 and 2 in equal parts. For the 252,631.27 invested in Stock 1, we obtain 
15,163.9418 shares, while for the same amount invested in Stock 2, we obtain 
4,116.5271 shares of Stock 2.  

Since none of the stock prices increases during Week 10, the account by 
the end of the planning period consists of 15,163.9418 shares of Stock 1, 
4,116.5271 shares of Stock 2, and 4,903.8933 shares of Stock 3. The total 
value of the portfolio is thus $982,989.70, for a loss of 1.7%.  

 
Comparing the three strategies, it appears that the second investment strategy is 
best.  
 
 

Exercises
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Appendix A   Heuristic Algorithms 

In this book, you will hear about or even directly encounter a number of solution 
algorithms. All of these algorithms fall into two broad categories: exact algorithms 
(sometimes also somewhat misleadingly referred to as optimal algorithms) and 
heuristic methods usually simply called heuristics. Exact algorithms have the 
obvious advantage of providing the best possible solution there is, given the 
user-defined constraints, whereas heuristics do not. Some heuristics do have error 
bounds, some actually proven, while others are empirical, i.e., they state that a 
certain heuristic usually (typically on average) finds solutions that have a certain 
quality. On the other hand, there is computing speed. Some models are such that it 
takes an exact algorithm exceedingly long to find the optimal solution. Is this 
relevant? Well, it depends. If the task at hand is to, say, locate a landfill for 
millions of dollars, you will not care if it takes a laptop two or three weeks to run, 
so that it can find a solution that may potentially save hundreds of thousands of 
dollars. There are limits to this argument, of course: if it takes years or even longer 
to find a solution, most problems have either solved themselves or have become 
irrelevant by that time. So, this is not acceptable.  
 
In order to make the case for heuristics, consider the situation of automated guided 
vehicles (AGVs). Suppose you have a number of individual work stations on the 
shop floor, each of which processes a given piece from a semi-finished product to 
the finished good. For that purpose, it will be necessary to move pieces, on which 
work has been finished at one station to the next station. Note that it is not 
necessarily the case that all goods are running through the same sequence of jobs, 
not all tasks have to be performed at all work stations, and different levels of 
customization are possible. The movement of goods may be accomplished by 
automated guided vehicles that receive a message from a workstation whenever a 
piece is ready for pickup, and the machine knows where the piece has to go next. 
However, temporarily there may be more pieces to be transported than the 
machine can handle, so that it will put the tasks in a list. Whenever it is ready it 
will work on that list, depending on where it is at any point in time, how far it is 
to the destination for that particular transportation job, how many work stations 
will be idle if they have to wait for the next job, and many other considerations. 
It is apparent that solutions to that problem have to be found in real time, i.e., 
immediately. This is where heuristic algorithms come in.  
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Heuristic algorithms typically have two phases. The first phase is the construction 
phase, in which a solution is established. This phase starts with nothing, and by 
the end of the phase, we have a solution. Phase 1 should be followed by Phase 2, 
which is an improvement phase, in which the method uses simple modifications of 
the present solution that improve the quality of the solution. The best known 
heuristics are the Greedy Method (a construction method), and the Swap (or 
pairwise exchange) method, which is an improvement method.  
 
In order to illustrate the Greedy technique, consider the following example. 
Suppose that a hiker is lost in the woods. In order to be visible from the air for a 
rescue mission, he decides to climb as high as possible. Since he has neither a 
map, nor an idea of where he really is (and it is very foggy, so that visibility is 
very limited, making his vision myopic), he can only determine the shape of the 
land in close vicinity. At any point, he can examine the terrain to his North, 
Northwest, West, Southwest, South, Southeast, East, and Northeast. If there are 
higher points in any of these directions, he will go into that direction that features 
the highest nearby point (i.e., the best possible improvement, hence the name 
“Greedy”). If the points in all eight directions are lower than where he is right 
now, he will conclude that he is standing on top of a hill and stay there, assuming 
that he has arrived.  
 

 
 

Figure A.1 © Department of Natural Resources Canada. All rights reserved.  
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As an example, consider the situation shown in Figure A.1. In order to simplify 
matters, we have determined the altitudes of the points shown as big black dots 
and have them displayed again in Figure A.2.  

 

 
 

Altitudes (in feet) 
 

Figure A.2 
 
Suppose now that the hiker is presently at the Northeasterly point in Figure A.2 
at an altitude of 2,160 ft. There are only three surrounding points, those to the 
West, the Southwest, and the South, with altitudes of 2,210, 2,230, and 2,050, 
respectively. The highest of these is the point to the Southwest, which is then 
where the hiker walks to. This point now has eight neighbors, the highest of which 
is located directly to the West of the hiker’s present position at an altitude of 
2,340. Consequently, the hiker relocates to this point. Repeating the procedure, the 
hiker notices that all points in the vicinity of his present location are lower. So, he 
concludes that he is standing on top of a hill. From the topographic map we know 
that he is, but we also know that this is not the highest hill in the area of interest.  
 
Formally, a point all of whose neighbors are lower (higher), is called a local 
maximum (local minimum). If a local maximum (local minimum) is also the 
highest (lowest) point overall, it is referred to as a global maximum (global 
minimum). As an illustration, consider the function y = sin x + 0.05x2. For values 
of x between −10 and +10, the function is shown in Figure A.3.  
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Figure A.3  

The function has three minima on the domain shown, they are at x = −7.0689 
(with y = 1.7911), at x = −1.4755 (with y = −.8879), and at x = 4.2711 (with y = 
.0079). (Myopic) heuristics (as well as derivatives) will readily find local optima, 
but not necessarily global optima. The reason for this is apparent: if any myopic 
method arrives at, say, the rightmost of the three local minima in Figure A.3, how 
is the method to know whether or not there are better points located to the left? If 
a graph such as this were available, it is easy to see, but typically it is not, as 
almost all problem are multidimensional, and thus cannot be graphed in three or 
less dimensions.  
 
The hiker’s plight described above might now be considered his own problem and 
of little general interest, if it were not for the fact that each point on the map may 
represent a course of action (determined by the values of its coordinates), and the 
contour lines may represent their profit. So the search for the highest hill has now 
become a search for the point of maximal profit, which is of considerable general 
interest.  
 
To make the problem even more interesting, had the hiker been in the extreme 
Southeast and had used the Greedy method for his progress, he would actually 
ended up at Mount Edward, the overall highest point in the region of interest. As a 
matter of fact, the line that divides Figure A.2 indicates what is usually referred to 
as catchment areas: if the hiker starts at any point to the Northeast of the line, he 
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ends up at the local optimum at altitude 2,340 ft, if he starts at any point to the 
Southwest of the line, he ends up on Mount Edward at the global maximum.  
A similar situation applies to the function in Figure A.3. Starting a Greedy 
minimization method any point to the left of x = −5.2671 (a local maximum), will 
end up at the local minimum at x = −7.0689. Starting at any point between  
x = −5.2671 and x = 1.7463 will end at the global minimum at x = −1.4276,  
and starting anywhere to the right of x = 1.7463 will lead to the local minimum at 
x = 4.2711.  
 
This immediately suggests a technique that is called a multistart method. The idea 
is simply to apply a Greedy technique starting at a number of different points, 
compare the results, and choose the best (highest or lowest, depending on whether 
a minimum or a maximum is sought).  
 
Next we will discuss an improvement method. The Swap method is easy to 
describe. Given a solution that has been obtained “somehow,” it takes two 
components and exchanges them. Depending on the specific application, this may 
mean exchange their sequence, their inclusion/exclusion status, or whatever the 
problem commands. The method then computes the change of the value of the 
objective function. If the value has improved (i.e., has increased in case of a 
maximization problem or decreased in case of a minimization problem), the 
modified solution becomes the new starting point and the previous solution is 
discarded. This step is repeated until no further Swap step can improve the 
solution any further.  
 
As an example, consider the map in Figure A.4 and assume that the task at hand is 
to determine the shortest route from Memphis, Tennessee, to Reno, Nevada. The 
traveler has outlined the tour in layers, so that a drive from a city in one layer to a 
city in the next is about a day’s drive.  



Appendix A  Heuristic Algorithms 422 

Figure A.4 
 
The distances are as follows: From Memphis to Omaha, Wichita, Oklahoma City, 
and Dallas we have 650, 555, 460, and 460 miles, respectively. From Omaha to 
Denver and Albuquerque there are 540 and 860 miles. The distances from Wichita 
to Denver and Albuquerque are 510 and 585 miles, from Oklahoma City to 
Denver and Albuquerque are 630 and 550 miles, and from Dallas to Denver and 
Albuquerque are 780 and 640 miles, respectively. The distances from Denver to 

the distance from Salt Lake City to Reno is 525 miles and from Phoenix to Reno 
there are 735 miles.  
 
In order to obtain some solution, we use the Greedy algorithm, starting at the origin 

choose Dallas. The nearest neighbor of Dallas is Albuquerque, which is 640 miles 
away (as opposed to Denver, which is 780 miles from Dallas). From Albuquerque, 
we take the closest connection to Phoenix (460 miles), and from there we have no 
choice but take the last long trip to Reno (735 miles). The trip leads us on the 
route Memphis – Dallas – Albuquerque – Phoenix – Reno, and its total length is 
2,295 miles.  
 
At this point we start to swap. One possibility is to swap Phoenix and Salt Lake 
City. This means that we have to add the connections from Albuquerque to Salt 
Lake (610 miles) and from Salt Lake to Reno (525 miles), and subtract the 
connections from Albuquerque to Phoenix (460 miles) and from Phoenix to Reno 
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there are 610 and 460 miles to Salt Lake City and Phoenix, respectively. Finally, 

which is either Dallas or Oklahoma City, both 460 miles away. We arbitrarily 

Salt Lake City and Phoenix are 505 and 835 miles, while from Albuquerque, 

of our trip in Memphis. From here, Greedy will choose the nearest neighbor, 
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(735 miles), for net savings of 60 miles. This is an improvement, and so our new 
route is Memphis – Dallas – Albuquerque – Salt Lake City – Reno, and its total 
length is 2,235 miles.  
 
We can now use the new solution and try other Swap moves. For instance, we 
could attempt to swap Albuquerque and Denver. The net change of such a swap 
move is +35 miles, so we will not make this change. Another possibility is to 

change and obtain the route Memphis – Oklahoma City – Albuquerque – Salt 
Lake City – Reno, whose length is 2,145 miles.  
 
At this time we may examine again the pair Albuquerque and Denver. This swap 
did not improve the solution the last time we tried it, but since then the solution 

of +630 + 505 − 550 − 610 = −25, so that the change is made. this results in the 
new route Memphis – Oklahoma City – Denver – Salt Lake City – Reno, which is 
2,120 miles long.  
 
We may now try to exchange Oklahoma City and Wichita, which leads to a net 
change of +555 + 510 − 460 − 630 = −25, for another reduction in terms of the 
total distance, which is now 2,095 miles. The route leads from Memphis – 
Oklahoma City – Denver – Salt Lake City – Reno. At this point we may try to 
further reduce the length of the tour, which is no longer possible with swap 
moves. As a matter of fact (unbeknownst to us when we are just using heuristics), 
the tour is actually optimal.  
 
Our final example of a heuristic method deals with a much-studied field called bin 
packing. We have an unspecified number of bins, all of which are of the same 
prespecified length. We also have a number of rods that are to be placed into the 
bins. The problem is one-dimensional, in that the bins and the rods have the same 
height and width, so that only the length of the bins and the rods that are placed 
into them will decide whether or not they actually fit. For instance, if the bin is 20 
ft and there are one 6 ft rod, one 3 ft rod, and one 5 ft rod, then these three rods 
will occupy 14 ft of the bin and leave 6 ft unoccupied. The task at hand is now to 
put the existing rods into the smallest number of bins possible. 
 
Despite its apparent simplicity, the problem has been proven to be very difficult 
from a computational point of view. A Greedy-like heuristic is the so-called First 
Fit (FF) Algorithm. In order to implement the method, we first assume that a 
sufficiently large number of bins is available. These bins are numbered 1, 2, … . 
The First Fit Algorithm that can be described as follows:  
 

FF Algorithm: Put the next rod into the bin with the smallest 
number into which it will fit.  

 
 

has changed. In fact, swapping the two cities at this point results in a net change 

swap Dallas and Oklahoma City. The net change is −90 miles, so we make the 
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As an example, suppose that all bins are 19 ft long. In addition, we have six 11 ft 
rods, six 6 ft rods, and twelve 4 ft rods. In this type of situation, we can actually 
compute a very simple bound for the number of bins that will be needed. Here, the 
total length of the rods is 6(11) + 6(6) + 12(4) = 150 ft. Given that each bin is 19 ft 
long, we will need at least 150/19 ≅ 7.89 bins. Since the number of bins must be 
integer, we will need at least 8 bins. This also means that if we were to find a 
solution to the problem that requires 8 bins, this solution must be optimal.  
 
Apply now the First Fit Algorithm. Assigning the rods in order of their lengths 
(i.e., the 11 ft rods first, then the 6 ft rods, and finally the 4 ft rods), we notice that 
only a single 11 ft rod fits into each bin. This means that we have to put each of 
the 11 ft rods into one bin each, so that we now have dealt with all 11 ft rods and 
have used parts of six bins. Next, we assign the six 6 ft rods. Since each of them 
fits into one of the already partially used bins, we now have six bins with one 11 ft 
and one 6 ft rod each, leaving 2 ft of free space in each of the six bins. This is not 
sufficient for any of the remaining 4 ft bins, so that we have to use additional bins. 
We can place four 4 ft rods in each bin, leaving an empty (and unusable for us) 
space of 3 ft each, which requires another three bins. We now have assigned all 
rods to the bins. This solution requires a total of nine bins. There is no apparent 
pairwise exchange (swap) step able to improve the solution.  
 
On the other hand, if we were to put one 11 ft and two 4 ft rods into each of six 
bins, this would leave no empty space at all. The remaining six 6 ft rods can be 
put into two bins. Having again assigned all rods, this solution requires only eight 
bins and, given the bound computed above, must be optimal.  
 
A variety of other heuristics exists for this problem. An excellent (albeit difficult) 
pertinent reference is the book by Garey and Johnson (1979). An interesting 
extension of the problem makes available the different rods over time. This is 
reminiscent of ready times in machine scheduling. The solution obtained in such a 
case will be no better than the one found in the case in which all rods are available 
at the beginning of the process (simply because the problem that makes rods only 
available over time is more restrictive than the problem discussed here.  
 
The efficiency of the heuristics and their performance may be evaluated in 
different ways. An obvious evaluation is to use simulation (see Chapter 13 of this 
book). This will enable users to specify an average or expected error bound of the 
algorithm. For instance, in the above example the heuristic method uses 9 instead 
of the optimal 8 bins, i.e., 12.5% more than optimal.  
 
However, in some cases it is possible to determine theoretical error bounds, i.e., 
bounds that cannot be violated. For instance, it has been shown that the solution 
found by the First Fit Heuristic cannot be worse than about 70% higher than the 
optimal solution. One problem associated with the theoretical bounds is that while 
they represent a reliable, provable property, they tend to be very high.  
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Many other heuristics have been presented in the literature. Many improvement 
algorithms are neighborhood searches, whose main distinguishing feature is that 
they start with a given solution and search for better solutions in the neighborhood 
of the present solution. The Swap Method described above belongs to this class. 
Another very successful heuristic in this class is tabu search. The idea of this 
method is to get out of a local optimum by temporarily allowing the current 
solution to deteriorate. In order to avoid cycling between solutions that are better 
and those that are worse, a list of prohibited moves (a tabu list) is set up that is 
updated as the algorithm progresses. This procedure allows to “get over the hump” 
from the present point to other solutions that are hopefully better than the best 
solution known at this point. For example, in Figure A.3, if the best known 
minimum is x = −7.0689, we may allow worse solutions (i.e., those with higher 
functional values) in our move to the left. This may allow us to find the global 
minimum at x = −1.4755. 
 
Other techniques are based on observations made in the technical or the natural 
world. Examples are simulated annealing, a technique modeled after the way 
molten metal cools. Similar to tabu search, it allows moves to solutions worse 
than the best presently known solution. Such moves are allowed with a certain 
probability that decreases during the course of the algorithm. The formulas ensure 
that the probability to accept a move to a very bad solution is very small. Other 
methods follow some behavioral patterns of ant colonies or bees.  
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Appendix B   Vectors and Matrices 

as a mere quick reference for some material used in this book.  
 
Definition B1: An [m × n]-dimensional matrix  
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⎥
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ij
m = n, the matrix is said to be square, if m = 1, it is called a row vector, if n = 1, it 
is a column vector, and if m = n = 1, it is a scalar.  
 
It is common practice to denote scalars by italicized letters, vectors by lower-case 
bold letters, and matrices by capitalized letters in boldface.  
 
Definition B2: Given an [m × n]-dimensional matrix A and an [n × p]-
dimensional matrix B, the product C = AB is an [m × p]-dimensional matrix  
C = (cij), such that  
 
 cij = ai1b1j + ai2b2j + …+ ainbnj, for i=1, …, m and j=1, …, n.  
 
Example B1: With a = [3, 2 , −6] and  
 

Appendices B and C   are is intended to provide the reader with some basic refresher 

is a two-dimensional array of elements a  arranged in m horizontal rows and  
n vertical columns, so that the element a  is positioned in row i and column j. If  

regrding some basic operations that involve matrices and vectors and the solution 
of systems of simultaneous linear equations. It is not designed to replace a text, but 
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we obtain aB = [ ,3627 −  ,2681−  6223 −+π ], and  
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Definition B3: Given an [m × n]-dimensional matrix A, the transpose AT = )( T

ija  

is the [n × m]-dimensional matrix with T
ija  = aji for i = 1, …, m and j = 1, …, n.  

 
Example B2: Use the vector a and the matrix B of Example 1, we then obtain  
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Appendix C   Systems of Simultaneous Linear 
Equations 

Definition C1: A mathematical relation is written as  
 
 LHS R RHS, 
 
where LHS denotes the left-hand side, R is the relation, and RHS is the right-hand 
side of the relation.  
 
Typically (but not necessarily), LHS is a function f(x1, x2, …, xn) of n variables x1, 
x2, …, xn, R is a relation of type <, ≤, = ≥, >, or ≠, and RHS is a scalar.  
 
Definition C2: A relation f(x1, x2, …, xn) R b is said to be linear, if the function f 
can be written as f(x1, x2, …, xn) = a1x1 + a2x2 + …+ anxn. We will refer to f(x1, x2, 
…, xn) as LHS, while b is the RHS.  
 
Example C1: The relation 2x1 − .7x2 + 11 x3 ≤ 59 is linear, whereas the relations 
2 1x  − 0.7x2 + 11 x3 ≤ 59, 2x1 − 0.7x1x2 + 11 x3 ≤ 59, and 2x1 − 0.7x2 + 

11 3
3x  ≤ 59 are not, due to the appearance of the square root 1x , the product 

x1x2, and the cubic 3
3x , respectively.  

 
We will first deal with the case when the relation R is an equation. Assume now 
that we have a system of m linear equations with n unknowns, and that we want to 
find a solution, i.e., an assignment of values to the variables, that satisfies all 
equations. It is now possible to prove the following 
 
Theorem C1: Consider a system of m simultaneous linear equations in n 
variables:  
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 a11x1 + a12x2 + … + a1nxn = b1  
 a21x1 + a22x2 + … + a2nxn = b2  
    M                                M        M  
 am1x1 + am2x2 + … +amnxn = bm  
 
The system has either no solution, exactly one solution, or an infinite number of 
solutions.  
 
Example C2: Consider the system  
 
 2x1 + 3x2 = 7 
 4x1 + 6x2 = 10.  
 
It is known that if we simultaneously multiply right-hand side and left-hand side 
of an equation, we do not change its content. Multiplying the first equation by 2, 
we obtain 4x1 + 6x2 = 14. Now the left-hand side of this equation and that of the 
second equation are equal, but its right-hand side differs, indicating that there is an 
inherent contradiction in the system. Thus it is no surprise that the system has no 
solution.  
 
On the other hand, consider the system  
 
 2x1 + 3x2 = 7 
 4x1 + 6x2 = 14.  
 
Multiplying both sides of the first equation by 2 results in the second equation. In 
other words, the two relations have exactly the same informational content. This 
means that we really have only a single equation, and since we need one equation 
to specify the value of each unknown. Hence this system has an infinite number of 
solutions x1 and x2 = ⅓(7−2x1).  
 
Consider now the case that has exactly one solution. Here, we are not concerned 
with conditions in which a system has exactly one solution, but our focus is on 
how to actually obtain such a solution, given that it exists. There are many 
different versions of the Gaussian elimination technique (named after the German 
mathematician Carl Friedrich Gauss, 1777-1855). In order to illustrate the technique, 
consider the system of simultaneous linear equations  
 
 2x1 + 3x2 − 5x3 =   1    (I) 
   x1 − 2x2 + 4x3 = −3    (II) 
 4x1 +   x2 + 6x3 =   2    (III) 
 
The idea is to first eliminate one variable, say x3, from all equations but one. The 
system has then one equation in all (here: three) variables, whereas two equations 
include only the remaining variables (here: x1 and x2).Among these remaining 
variables, we now choose another variable to be eliminated (here: x2), and the 
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procedure is repeated. In the end, we have a single equation in just one variable, 
which is then replaced by its value in all of the remaining equations, resulting in 
another system, in which again one of the equations is just a function of a single 
variable, which is replaced by its value everywhere, and so forth, until the system 
is solved.  
 
Applying this idea to our example, we fist eliminate the variable x3 from equation 
(II) by multiplying (I) by 4 and multiplying (II) by 5, adding them, and then 
replacing equation (II) by 4×(I) + 5×(II). The revised system can then be written as  
 
   2x1 + 3x2 − 5x3 =      1   (I) 
 13x1 + 2x2           = −11   (II') = 4×(I) + 5×(II) 
   4x1 +   x2 + 6x3  =     2   (III) 
 
Next, we eliminate x3 from equation (III) and replace equation (III) by 6×(I) + 
5×(III). This results in the system 
 
   2x1 +   3x2 − 5x3  =     1   (I) 
 13x1 +   2x2           = −11   (II')  
 32x1 + 23x2           =   16   (III') = 6×(I) + 5×(III) 
 
Since the equations (II') and (III') now contain only the two variables x1 and x2, we 
can eliminate x2 from (III') by replacing (III') by 23×(II') − 2×(III'). This process 
results in  
 
     2x1 + 3x2 − 5x3 =       1   (I) 
   13x1 + 2x2          =   −11   (II')  
 235x1                   = −285   (III'') = 23×(II') − 2×(III').  
 
We say that the system is now in triangular form, due to the pattern of coefficients 
on the left hand side. This allows us to obtain the values of the variables in a 
recursive procedure. First we can determine the value of x1 from equation (III''). 
Clearly, x1 = 235

285−  = 47
57− . Inserting the value of x1 into equation (II') allows us 

to solve for the variable x2. In particular, we have 13( 47
57− ) + 2x2 = −11 results in 

x2 = 47
112 . Finally, inserting the values of x1 and x2 into equation (I), we can solve 

for x3. The relation reads 2( 47
57− ) + 3( 47

112 ) − 5x3 = 1, which results in x3 = 47
35 . 

The system has now been completely solved. The solution is [x1, x2, x3] = 
[ 47

57− , 47
112 , 47

35 ] ≅ [−1.2128, 2.3830, 0.7447]. Inserting the values of the unknowns 

into the original equations (I), (II), and (III), we can verify that the solution is 
indeed correct. In analogous fashion, we can determine the solution of any system 
of linear equations. For further details, see any pertinent introductory text on 
linear algebra or the short summaries in Eiselt and Sandblom (2007) or (2004).  



433 

Appendix D   Probability and Statistics  

While most chapters in this book deal with deterministic models, some include 
probabilistic models, in which concepts of probability are needed. This appendix 
is intended to briefly cover those probabilistic concepts needed in this book. It is 
by no means intended to replace a thorough knowledge of statistics.  
 
Definition D1: The probability of an event (or outcome) of a random experiment 
is a number p between 0 and 1, which measures the likelihood that the event will 
occur.  
 
A value of p close to 0 indicates that the event is unlikely to happen, while a value 
of p close to 1 means that the event is very likely. We can interpret the probability 
as the proportion of times that the even or outcome will occur, if the experiment is 
repeated a large number of times.  
 
Suppose now that the events are mutually exclusive (i.e., the events are distinct 
and do not overlap) and collectively exhaustive (meaning that exactly one of them 
will occur). We then obtain the following result 
 
Theorem D1: If p1, p2, …, pn denote the probabilities of the mutually exclusive 
and collectively exhaustive outcomes of an experiment, then p1 + p2 + …+ pn = 1.  
 
Example D1: Consider an experiment that involves tossing a fair coin three times. 
suppose that each outcome is either head or tail, standing on edge does not occur. 
Denote H for “head” and T for tail, the outcome “first tail, then head, then tail” is 
written as THT. Then there are eight possible outcomes: HHH, HHT, HTH, HTT, 
THH, THT, TTH, and TTT. Given a fair coin, all outcomes are equally likely, and 
since p1 + p2 + …+ p8 = 1, we obtain the result that each outcome has a probability 
of P(HHH) = P(HHT) = …= P(TTT) = 8

1 .  
 
The probability of a composite event that consists of several outcomes is the sum 
of probabilities of the outcome of the event. For instance, the event “obtain exactly 
one tail in three flips of a fair coin” refers to the event {HHT, HTH, THH}, so that 
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the probability of such an event is P({HHT, HTH, THH}) = 8
1  + 8

1  + 8
1  = 8

3 . The 
event space is defined as the set of all possible events of an experiment.  
 
Definition D2: A random variable X is a function defined on the event space of 
an experiment.  
 
Example D2: Given the above coin tossing experiment, let X denote the number of 
heads that come up in the three tosses. There are four possibilities: X = 0 (which 
occurs only in the event {TTT}, so that the probability of this event is P(X=0) = 

8
1 ), X = 1 (which happens if one of the events {HTT, THT, TTH} occurs, so that 

the probability P(X=1) = 8
3 ), X = 2 (an event that occurs if one of {HHT, HTH, 

THH} occurs, so that P(X=2) = 8
3 ), and finally X = 3 (which occurs only if 

{HHH} happens, so that P(X=3) = 8
1 ). Again, the sums of all possible events add 

op to 1.  
 
In general, we distinguish between two different types of random variables, discrete 
and continuous random variables.  
 
Definition D3: A random variable X is called discrete, if it can assume only one 
of (countably many) values a1, a2, …. The function P(aj) = P(X=aj) = p(aj) is 
called the discrete probability distribution (function) of X. The function F(aj) = 
P(X ≤ aj) is called the cumulative probability distribution (function) of X.  
 
Example D3: Again, define the random variable X as the number of heads in three 
tosses of a fair coin. Table D1 shows the probability distribution function for this 
event.  
 

Table D1: Probability distribution for the coin toss example 
 

X P F 

0 8
1  8

1  

1 8
3  8

4  

2 8
3  8

7  

3 8
1  8

8  

 
We note that F(aj) is an increasing function of aj that eventually reaches the 
value of 1 for the largest value of aj (in case of finitely many outcomes, and  
that converges towards 1 for infinitely many outcomes aj. Since P and F are 
probabilities, we must have 0 ≤ P(aj) ≤ 1 and 0 ≤ F(aj) ≤ 1 for all events aj.  
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Definition D4: A discrete random variable X with a probability distribution 

function p(x) = P(X=x) = 
!x

e
xλλ− , x=0, 1, 2, … is called Poisson-distributed 

with parameter λ. In case a random variable follows this distribution, we will 
write X ~ Po(λ), where Po stands for Poisson.  
 
The Poisson distribution is named in honor of Siméon Denis Poisson, a French 
mathematician, 1781 – 1840. The distribution is of major importance in queuing 
(Chapter 12 of this book) and will be extensively used in that context.  
 
Example D4: If the random variable X ~ Po(λ=1.3), then P(X=2) = p(2) = 

!2
)3.1( 2

3.1−e  = 0.2303, and F(X≤1) = p(0) + p(1) = 0.6268.  

 
Definition D5: A random variable X is called continuous, if there exists a function 
f(x), such that the cumulative distribution function F(x) for X can be written as 

F(x) = ∫
∞−

t

dttf )( . The function f(x) is called the (probability) density function of X.  

 
There are two different continuous distributions that are used in this book, the 
exponential and the normal distribution.  
 
Definition D6: A continuous random variable X with the density function f(x) = 
λe−λx with x ≥ 0 is said to exponentially distributed with parameter λ ( a positive 
constant). If X is exponentially distributed, we write X ~ Ex(λ).  
 
It is not difficult to demonstrate that the cumulative distribution function of an 
exponentially distributed variable with parameter λ is F(x) = 1 − e−λx.  
 
Definition D7: A continuous random variable X with density function 

22

2)(

2
1)( σ

μ−−

πσ
=

x

exf  is said to follow a normal distribution (or, alternatively, 

Gaussian distribution) with parameters μ and σ > 0. In such a case, we write X ~ 
N(μ, σ). The distribution N(0, 1), i.e., the normal distribution with μ = 0 and σ = 1 
is called the standard normal distribution and is usually denoted by Z. Its density 
function is called the normal curve (or bell curve), given by the function 

2½
2
1)( xexf −
π

= .  

 
Definition D8: The expected value (or mean or expectation) E(X) or µ of a 
discrete random variable X is given by E(X) = μ = a1P(X=a1) + a2P(X=a2) + …, 
meaning we multiply each outcome by its associated probability and add them up. 
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For a continuous random variable X, the expected value is given by E(X) =  

μ = ∫
∞

∞−

dtttf )( .  

There are discrete and continuous random variables for which there exists no 
expected value.  
 
Example D5: For the random variable X of Examples D2 and D3 where X denotes 
the number of heads in three tosses of a fair coin, we obtain the expected value 
E(X) = 0( 8

1 ) + 1 ( 8
3 ) + 2( 8

3 ) + 3( 8
1 ) = 1½.  

 

Theorem D2: If X ~ Po(λ), then E(X) = λ, if X ~ Ex(λ), then E(X) = 
λ
1

, and if  

X ~ N(μ, σ), then E(X) = μ.  
 
Definition D9: The variance V(X) = σ2 of a random variable X with mean μ is 
defined as E((X − μ)2). We call σ = )(XV  the standard deviation of X.  
 
There are discrete and continuous variables for which the mean exists, but the 
variance does not. One can show that V(X) = E(X2) − μ2 and that V(X) ≥ 0 for all 
random variables X, as long as E(X2), E(X), and V(X) exist.  
 
Example D6: For the random variable X of Examples D.2 and D.3 where X 
denotes the number of heads in three tosses of a fair coin, we obtain the variance 
V(X) = E(X2) − μ2 = 3 − 2.25 = 0.75.  
 
Theorem D3: If the random variable X ~ Po(λ), then V(X) = λ, if X ~ Ex(λ), then 
V(X) = 2

1
λ

, and if X ~ N(μ, σ), then V(X) = σ2.  

Theorem D4: If the random variable X ~ N(µ, σ), then Z = [(X − µ)/σ] ~ N(0, 1).  
 
Theorem D5: For any random variable X and for any given numbers a < b, we 
have P(a < X ≤ b) = F(b) − F(a). For any continuous random variable X, P(a ≤ X ≤ 
b) = P(a ≤ X < b) = P(a < X < b) = F(b) − F(a) as well as P(X = a) = P(X = b) = 0.  
 
Example D7: Let the random variable X ~ N(2.3, 0.9) and compute the probability 
P(1.7 ≤ X ≤ 2.6). We find that P(1.7 ≤ X ≤ 2.6) = ( )90.0

3.26.2
9.0

3.2
9.0

3.27.1 −−− ≤≤ XP  = 

P(−0.6667 ≤ Z ≤ 0.3333) = F(0.3333) − F(−0.6667). The function F(x) = 

dte t
x

2½
2
1 −

∞−
π∫  is called area under the normal curve and it is tabulated at the end 
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of this section for values x ≥ 0. By virtue of symmetry of the normal curve, we 
find that F(−x) = 1 − F(x), therefore F(0.3333) − F(−0.6667) = F(0.3333) − 1 + 
F(0.6667) = 0.6306 + 1 − 0.7475 = 0.3781 by reading the table and interpolating 
as necessary.  
 
It has been observed in practice that empirical data that are bell-shaped and 
symmetric share some common properties. In particular, the empirical rule holds, 
according to which, about 68% of all observations lie within one standard 
deviation about the mean, about 95% of the observations are within two 
standard deviations about the mean, and virtually all observations are within three 
standard deviations about the mean. It is worth mentioning that this is not a 
provable property, but an observed rule that often occurs in practice.  
 
Making now stronger assumptions about the distribution in particular that it is not 
only bell-shaped and symmetric, but normal, we are able to confirm the assertion 
of the empirical rule. In particular, for a standard normal variable Z ~ N(0, 1) we 
have F(0) = 0.5, F(1) = 0.8413, F(2) = 0.9773, and F(3) = 0.9987. Then P(−1≤ Z 
≤ 1) = 2(0.8413 – 0.5) = 0.6826, P(−2≤ Z ≤ 2) = 2(0.9773 – 0.5) = 0.9546, and 
P(−3 ≤ Z ≤ 3) = 2(0.9987 – 0.5) = 0.9974.  
 
We will now consider events A, B, C, …, which are sets of outcomes of 
experiments.  
 
Definition D10: Given the events A and B, the union A ∪ B is the event consisting 
of outcomes that are in A or in B or both. In contrast, the intersection A ∩ B is the 
event that consists of outcomes that are in both A and B.  
 
Theorem D6 (The addition law for probabilities): For any events A and B, we 
have P(A ∪ B) = P(A) + P(B) − P(A ∩ B).  
 
Example D8: Recall Example D4, in which X ~ Po(λ=1.3). Furthermore, let A = 
{X = 0 or 1} and B = {1 or 2}. Then A ∪ B = {X = 0, 1, or 2}, while A ∩ B =  
{X = 1}. We then find P(A) = p(0) + p(1) = 0.6268, P(B) = p(1) + p(2) = 0.5846, 
P(A ∪ B) p(0) + p(1) + p(2) = 0.8571, P(A ∩ B) = p(1) = 0.3543. In accordance 
with the theorem, we find that P(A) + P(B) − P(A ∩ B) = 0.6268 + 0.5846 − 
0.8571 = P(A ∪ B). 
 
Definition D11: The sets A and B are said to be collectively exhaustive, if their 
union A ∪ B includes all possible outcomes of an experiment. The two sets are 
called mutually exclusive, if their intersection is empty. The complement A  of a 
set A (sometimes also written as ¬A) is the set of all possible outcomes not in A.  
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As far as probabilities are concerned, P( A ) = 1 − P(A).  
 
The addition low for probabilities can be generalized. For instance, for mutually 
exclusive sets A1, A2, … Am, we obtain P(A1 ∪ A2 ∪ …∪ Am) = P(A1) + P(A2) + … 
+ P(Am). To establish a multiplication law for probabilities, we need the following 
 
Definition D12: For any events A and B with P(B) ≠ 0, the conditional probability 
of A given B is  

 P(A|B) = 
)(

)(
BP

BAP ∩ .  

 
Example D9: Consider an experiment, in which the random variable X denotes 
that at most two heads come up in three tosses of a fair coin, i.e., X ≤ 2, and define 
B as an event that sees at least one head in three tosses of a fair coin, i.e. X ≥ 1. 
Then A ∩ B = {X = 1 or 2}, so that P(A ∩ B) = 4

3
8
3

8
3 =+  and P(B) = 

8
7

4
1

8
3

8
3 =++ . Therefore, P(A|B) = 

8
7

4
3

 = 7
6 ≈ 0.8571.  

 
Theorem D7 (The multiplication law for probabilities): For any events A and B, 
P(A ∩ B) = P(A|B) P(B).  
 
Note that if P(B) = 0, then P(A|B) is not defined, but in this case the right-hand 
side is interpreted as being zero.  
 
Definition D13: The events A and B are said to be statistically independent, if 
P(A ∩ B) = P(A) P(B).  
 
Theorem D8 (Bayes’s theorem): Let the events A1, A2, …Am be mutually 
exclusive and collectively exhaustive. Then for any event B with P(B) ≠ 0, we have  
 

)()|(...)()|()()|(
)()|()|(

2211 mm

ii
i APABPAPABPAPABP

APABPBAP
+++

= , i=1,…, m 

 
The theorem of Bayes (Thomas Bayes, English clergyman, 1702-1761) will be used 
in Chapter 9 of this book. In the context of Bayes’s theorem, the unconditional 
probabilities P(Ai) are called prior probabilities, while the conditional probabilities 
P(Ai|B) are referred to as posterior probabilities.  
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Area under the normal curve 
 
 

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 
.00 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 
.10 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5754 
.20 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 
.30 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 
.40 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 
.50 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 
.60 .7258 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7518 .7549 
.70 .7580 .7612 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 
.80 .7881 .7910 .7939 .7967 .7996 .8023 .8051 .8079 .8106 .8133 
.90 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 
1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9430 .9441 
1.6 .9452 .9463 .9474 .9485 .9495 .9505 .9515 .9525 .9535 .9545 
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9700 .9706 
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9762 .9767 
2.0 .9773 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 
2.2 .9861 .9865 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9978 .9980 .9980 .9981 
2.9 .9981 .9982 .9983 .9983 .9984 .9984 .9985 .9985 .9986 .9986 
3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 
3.5  .999767         
4.0  .9999683         
4.5  .99999660         
5.0  .999999713         

x
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SUBJECT INDEX 

A 
 
ABC classification, 339–340 
Active node, 156 
Activity  

critical, 263 
duration, 258 

Activity-on-arc representation. See AOA 
representation 

Activity-on-node representation. See AON 
representation 

AILP, 136 
Algorithms, exact and heuristic, 417 
All-integer linear programming problem. See 

Allocation problem, 28–32 
Anticipated payoffs, 311 
AOA representation, 259 
AON representation, 259–260 
Arc, 177 
Arrival rate, 382 
Arrival time, 288 
Aspiration level, 125 
Assignment problems, 48–50 
 
B 
 
Backorders, 349–351 
Backward pass, sweep, or recursion, 261–263 
Basis point, 89 
Bayes’s rule, 313 
Bayes’s theorem, 322–323 
Bin packing, 423 
Bisection search, 234–235 
Blending problems, 39–43 
Bottleneck, 94 
Branch-and-bound methods, 155–162 
Breadth-first-search, 182 
Break-even analysis, 8 
Breakthrough, 181 
Budget constraint, 29 

C 
 
Calling population, 380 
Catchment areas, 420–421 
Center-of-gravity, 237 
Center problems, 230–235 
Certainty equivalent, 327 
Changes  

objective function coefficients, 82–87 
right-hand side values, 87–92 
structural and parameter, 79 

Channel, 380 
Chinese postman problem, 201 
Column 

essential, 222 
dominated, 222 

Competitive location, 246 
Complementary slackness conditions, 110 
Conservation equations, 181 
Constraint method, 122–124 
Constraints, 5, 16 

addition and deletion of, 81 
binding, 63 
conditional, 146 
tight, 63 

Contour lines, 65 
Convex hull, 154 
Convexity, 69 
Corner point, 63 

theorem, 67 
Cost, holding or carrying, 342 

ordering, 342 
shortage, 342 

Covering matrix, 221 
Covering problems, 220–230 

project acceleration, 266–272 
Crashing, 267–272 
Crash time, 267–272 
Critical path, 266 
Critical path method. See CPM 
 

AILP 

CPM, 258–266, 268–272, 277 
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Cut, minimal, 186 
Cutting plane method, 154–155 
Cutting stock problems, 142–146 
Cycle, 178 
Cycle length, 343, 399 
 
D 
 
Decision analysis, 305–328 
Decision trees, 309–310, 321–324 
Decomposition principle, 7 
Degeneracy  

dual, 74 
primal, 76 

Density function, 435 
Depth-first search, 182 
Destination, 43 
Diet problem, 20–28, 146–148 
Dijkstra method, 192–195 
Discrete event simulation, 395 
Distribution 

exponential, 435 
Gaussian, 435 
normal, 435 
Poisson, 435 

Divisibility, 14–15 
Duality, 105–112 
Dual problem 

setting up, 106–107 
relations to primal problem, 107–112 

Due time, 288 
Dynamic programming, 3 
 
E 
 

Earliest possible finishing times. See EF 
Earliest possible starting times. See ES 
Economic order quantity. See EOQ 
EDD algorithm, 292 
Edge, 177 
EF, 260–261 
Efficiency, 325 
Efficient point, 120 
Either-or constraints, 146 
Empirical rule, 437 
Employee scheduling, 32–35 
EMV, 313–319 
EOQ, 343–346 
EPII, 325 
EPPI, 320 
“Equity” objectives, 245 
ES, 260–261 
Euler, 177, 200 
Euclidean distance, 218 
Event, 433 
EVPI, 319–320 

EVSI, 325 
Excess variable, 17 
Expected monetary value. See EMV  
Expected payoff with imperfect information. 

See EPII 
Expected payoff with perfect information. See 

EPPI 
Expected value, definition, 435 
Expected value of imperfect (or sample) 

information. See EVSI 
Expected value of perfect information. See 

EVPI 
Extreme points, 63 

number of, 69 
 
F 
 
Facilities, extensive, 247 

undesirable, 244–245 
Feasible direction methods, 69 
Feasible  

set, 62 
solution, nonexistence, of 70–72 

Feasibility, 7 
First fit algorithm, 423–424 
Fixed charges, 150–151 
Flow, pattern and value, 179 

balancing equations, 181 
Flow shop, 288, 298 
Flow time, 288 

mean, 289 
Floyd-Warshall method, 195–198 
Forward pass, sweep, or recursion, 260 
 
G 
 
Games against nature, 306 
Gantt chart, 272–275, 291 
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Gini index, 245–246 
Goal programming, 124–128 
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177 
connected, 178 

Graphical solution method, 60–70 
Greedy method, 162–163, 204–205, 228–229, 

241–242, 418 
Guillotine cuts, 146 
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Halfplane, 61 
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Heuristic methods, 162–165, 417–425 
Hub location, 246 
100% rule, 86–87, 92 
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Earliest due date algorithm. See EDD algorithm  
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Integer programming, 135–165 
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Interarrival time, 382 
Interchange heuristic, 163–165 
Interval constraints, 72 
Inventory models, 339–363 
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Investment allocation, 28 
Iso-profit lines, 65, 117–118 
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Jackson’s rule, 292 
Jackson’s job shop algorithm, 299–300 
Job shop, 288, 299 
Johnson’s algorithm, 298–299 
Just-in-time inventory system, 340 
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Kendall’s notation, 380–381 
Kirchhoff node equations, 181 
Knapsack problems, 140–142 
Königsberg bridge problem, 2 
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Land use problem, 148–149 
LAPT algorithm, 297–298 
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Lead time, 340, 346–349 

stochastic, 357–362 
Linear congruence methods, 399 
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Linear programming, 13ff 
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List scheduling methods, 294 
Little’s formula, 383 
Location-allocation heuristic, 242–244 
Location models, 217–247 
Location 

continuous, 217 
discrete, 218 

Location set covering problem. See LSCP 
Logical variables, 146 
Longest alternate processing time algorithm. 

See LAPT algorithm 

Longest processing time first algorithm. See 
LPT algorithm 

Lorenz curve, 245 
LPT algorithm, 294–295 
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Machine scheduling, 287–300 

single, parallel, dedicated, 288 
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Markov chains, 367–376 
Markovian property, 368  
Marriage problem, 49 
Material requirements planning, 340 
Matrix, 427–428 
Maximal covering location problem. See MCLP 
Maximal flow problem, 179–186 
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Mixed integer linear programming problem. 
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Modeling process, 9ff 
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alternative, 74 
economic analysis of, 92–100 
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Optimist’s rule, 312 
Origin, 43 
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Parameters, 6 
Pareto-optimal point, 120 
Path, 178 
Payoff table, 306 

Pessimistic rule, 311 

Pollaczek-Khintchine formula, 384 
Polytope, 63 
Postoptimality analyses, 78–100 
Precedence relations, 258 
Preemption, 290 
Probabilistic, 14 
Probability 

conditional, 438 
definition, 433 
distribution, 434 
posterior, 322 
prior, 322 

Process, stationary, 369 
Processing time, 288 
Production–inventory models, 35–39 
Production-lot size model, 355–357 
Production planning, 18–20  
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Project networks, 257–280 
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Quantity discounts, 352–355 
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Random numbers, true and pseudo, 397–398 
Random variables, 434 
Ready time, 288 
Rectilinear distance, 218 
Reduced costs, 93 
Redundancy, 75–76 
Regret criterion, 312 
Release time, 288 
Reorder point, 347–349 
Reshipments, 47 
Resource requirement graph, 273–274 
Resources, scarce, 28 
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Risk, 28ff, 307, 313–315 

aversion, neutral, seeking, 327 
Robust optimization, 312 
Routing, arc and node, 200 
Row, dominated, 222 
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Satisficing, 125 
Scalar, 427 
Schedule length, 289 
Selection problem, 305 
Sensitivity analyses, 7, 78, 316–319 

graphical, 78–92  
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rate, 382 
station, 380 
time, 382 

Shadow prices, 93, 94 
Shop, open, flow, job, 288 
Shortest path problems, 189–198 
Shortest processing time algorithm. See SPT 

algorithm 
Simplex method, 69 
Simulated annealing, 425 
Simulation, deterministic and stochastic, 395 
Simultaneous linear equations, 429–431 
Sink, 179, 259 
Smith’s ratio rule, 291 
Solution  

definition, 7 
efficient, 120 
nondominated, 120 
noninferior, 120 
pareto-optimal, 120 

Source, 179, 259 
Spanning tree, 198–200 

minimal, 199–200 
SPT algorithm, 290 
 
 
 

Phase, construction and improvement,
 418  

Program evaluation and review technique. See

PERT, 275–280 
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space, 367 
absorbing, 368 

Statistical independence, 438 
Steady state solution, 372, 382 
Stochastic processes, 367–376 
Subtour elimination constraints, 203 
Supply chain management, 340 
Swap heuristic, 163–165, 229–230, 418 
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Tabu search, 425 
Tardiness, 289 
Target value, 125, 314–315 
Tool crib, 388–389 
Tradeoffs, 115 
Traffic intensity, 382 
Transient states, 382 
Transition probabilities, 368 
Transportation problems, 43–48 
Transportation problem, (un-)balanced, 44 
Traveling salesman problem, 201–205 
Tree (graph), 178 
 
U 
 
Uncertainty, 307, 310–313 
Undesirable facilities, 244–245 
Utility theory, 327–328 
Utilization rate. See traffic intensity 
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Variables, 6 

addition and deletion of, 80–81 
deviational, 125 
excess, 17 
slack, 17 
surplus, 17 

Variance, 436 
Varignon frame, 239 
Vector, 427–428 
Vector optimization, 116–124 
Vertex, 177 
Vertex substitution method, 244 
von Stackelberg solutions, 246–247 
 
W 
 
Wald’s rule, 311 
Weighted shortest processing time algorithm. 

Weighting method, 121–122 
Weiszfeld method, 238–239 
Workload balancing, 152–153 
WSPT algorithm, 291 

See WSPT algorithm 
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