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Foreword

A recent survey article described economic demography as "an offshoot of
modern labor economics," which is a strange idea indeed. But it is certain-
ly true that much of the best work in economic demography in recent
decades has been carried out by labor economists, particularly under the
seminal influence of Gary Becker. This literature has focused on aspects of
individual and family behavior such as fertility, female labor supply, mar-
riage, divorce, investment in children's health and education, and related
micro topics.

Yet much of the substantive interest in economic demography derives
from quite different questions, pertaining to population at the macro level.
Does rapid population growth in the Third World lead to poverty and
prevent development? Does it worsen income distributions? Has high child
dependency forestalled growth and depressed saving? Will the costs of sup-
porting growing proportions of elderly, following the demographic transi-
tion, impoverish workers and lead to economic stagnation? Is the current
global economic-demographic growth trajectory sustainable, or will it
encounter natural limits and do lasting damage to the environment? Do
industrial populations oscillate about their equilibrium growth paths, as
firtility overcompensates for labor market imbalances? Has population
growth in the past fueled human progress, stimulating technical progress
and facilitating massive investments in social infrastructure?

Many demographers and economic demographers since Malthus have
studied these and similar questions. This tradition of research has paid rel-
atively little attention to behavior at the individual level, and instead has
developed the macro-economic and macro-demographic sides of the analy-
sis. However, these core questions in economic demography have received
less attention in recent decades from micro-oriented economic demogra-
phers. This division in substance and methods between the micro and macro
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vi Foreword

orientations may reflect a dichotomy in backgrounds: very few economists
actually have deep backgrounds in analytic demography, and very few
demographers have deep backgrounds in economics.

Cyrus Chu is an excellent economist who has also mastered some of
the most distant reaches of mathematical demography. He gives us here a
brilliant and highly original volume with the stated purpose "to fill the gap
between the classical supply-side population theory of Malthus and the
modern demand-side theory of economic demography." He successfully
joins the micro-economic approach to demographic behavior with the
macro-demographic study of population dynamics. While it would be
impossible to develop every theme, he does provide us with a fresh and
original approach to many important problems, focusing particularly on
aspects of individual or family behavior which, when aggregated, have inter-
esting consequences for population dynamics or composition.

He typically begins an analysis by developing a model of individual
behavior, often reflecting some kind of heterogeneity; and then aggregates
to populations, and studies the resulting dynamics and composition, taking
account of economic feedback. But he is not content to develop the classi-
cal demographic dynamics based on the synchrony of the flow of age and
the flow of time. Indeed, he gently chastises demographers for succumbing
to the convenience of age-time correspondence, and devoting too much
attention to it, while avoiding the more difficult and equally important
dynamic analysis of other relevant quantities.

In this volume, he expands the scope of economic demography and
mathematical demography in some novel directions, analyzing the dynam-
ics of income distribution, cultural patterns of behavior, occupation, and
other variables. As an example of his approach, in one chapter he discuss-
es the classical literature on the extinction of family lines. This is a mathe-
matical literature, which takes the distributions of fertility and mortality as
given, and investigates their implications. Chu takes the analysis to another
level by considering how families might behaviorally respond to the likeli-
hood of extinction by changing strategies. He views primogeniture as one
adaptation to the risk of extinction in a context in which families have mul-
tiple goals. He then derives new results for probabilities of extinction under
a behavioral regime.

In addition to the original material in this volume, there are also some
very clearly organized synthetic and expository chapters, presenting mate-
rial that will be unfamiliar to most readers. Sometimes these are just start-
ing points for Chu's extensions and clarifications, and sometimes they stand
on their own. There are illuminating chapters or sections of this sort on the
"two sex problem," self generating population cycles, age in economic
growth, age distribution and the politics of public pension systems, and a
collection of other topics related to the consequences of the demographic
transition.
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This fascinating volume is fresh, original, and clearly written, and it
breaks important new ground in economic demography and population
dynamics. The approach it takes should stimulate work by others along
similar lines.

Ronald D. Lee
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Preface

The standard new household model of fertility, pioneered by Gary Becker,
studied parental demand decisions on the quantity and quality of children.
This demand-side approach to family fertility decisions has expanded in
scope over the years as people have begun to realize that the decisions in
question are usually related to such considerations as female labor supply,
timing of marriage, amount of investment in children's education, and size
of intergenerational transfers. But as Paul Schultz pointed out, the above-
mentioned micro economic model of household behavior has not been
extended to a framework suitable for analyzing any aggregate general equi-
librium behavior of a population. The purpose of this book is to fill this gap
and, more specifically, to find the dynamic macro implications of the various
static micro family economic decisions.

The early research focused on the fertility-related decisions of the
family, but as the characteristic composition of the macro population is
always an aggregate result of some corresponding micro decisions of indi-
viduals, the analysis can naturally be extended to other economic decisions.
Thus, it is in this framework that I studied the income distribution, attitude
composition, occupation structure, and aggregate savings and pensions of
the population. I hope that this book will be useful not only to researchers
of demography and economics but also to all those who seek to integrate
population issues more fully into the science of rational decisions.

I am grateful to many people who have made important contributions
to the successful completion of this book. I would especially like to
acknowledge the help of Noel Bonneuil, Gregory Chow, Chin-wen Chu,
Yaw-Tsong Lee, John Fei, Hui-wen Koo, John Laitner, Ron Lee, Marc
Nerlove, Kelly Olds, Hal Varian, Ken Watcher, and Tsong-min Wu, who
assisted either at the early stage, when the ideas for some chapters were first
developed, or later, when the scattered ideas were compiled into this book.



X Preface

The research for this volume was partly supported by the National
Science Council of Taiwan, the Foundation for the Advancement of Out-
standing Scholarship, the Rockefeller Foundation, and the Population
Council, to whom I express my sincere gratitude.

This volume integrates and extends work of mine that previously
appeared in various journals. I am indebted to the publishers for agreeing
to the use of the following:

"An Existence Theorem on the Stationary State of Income Distri-
bution and Population Growth," International Economic
Review 31 (1990): 171-185, published by the Economics
Department of the University of Pennsylvania and the
Osaka University Institute of Social & Economic Research
Association.

"Intcrgencrational Income Group Mobility and Differential
Fertility," American Economic Review 80 (1990): 1125-1138,
published by the American Economic Association.

"Primogeniture," Journal of Political Economy 99 (1991): 78-99,
published by the University of Chicago Press.

"Oscillatory vs. Stationary Enforcement of Law," International
Review of Law and Economics 13 (1993): 303-315, published
by Elsevier Science.

"Famine, Revolt and the Dynastic Cycle: Population Dynamics in
Historic China," Journal of Population Economics 1 (1994):
351-378, published by Springer-Verlag.

"Toward a General Analysis of Endogenous Easterlin Cycles,"
Journal of Population Economics 8 (1995): 35-57, published by
Springer-Verlag.

"Age Distribution Dynamics During Demographic Transition,"
Demography 34 (1997): 551-563, published by the Population
Association of America.

Finally, I owe a great debt to my wife Shiaolee, my son John, and my
daughter Efan. I have always believed that the perseverance and concen-
tration of a researcher are in general positively correlated with the love and
support of his or her family. This is a proposition that has not been (and
cannot be) proven, but is nevertheless true in my case.

Taipei, Taiwan C. Y. Cyrus Chu
August 1997
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CHAPTER 1

Introduction

1.1 CLASSICAL AND MODERN POPULATION THEORY

The classical model of Malthus ([1783] 1970) can be described as a supply-
side, dynamic, macro theory of population. It is a supply-side theory
because Malthus did not emphasize the role of individual demand decisions
on population-related variables. Individuals in ancient times certainly had
their preferences for children and marriage; but Malthus assumed that
such preferences would by and large be checked by natural constraints and
that only when families had sufficient incomes would their preferences for
children and marriage be effectively revealed (Schultz, 1981). In ancient
times, when the hygienic environment and medical technology were prim-
itive, and when production technology and administrative capacity changed
relatively slowly, the natural checks on human growth and fertility almost
always dominated the dynamics of population; the demand-side scenario,
which originates from individual preferences, never played a significant
role.1

The Malthusian theory is mainly a dynamic one because it describes
why a population would have an equilibrium size that corresponds to the
subsistence level of income and why a population would converge to such
an equilibrium. Malthus argued that when a population size is larger than
the equilibrium size, the per capita income will fall because of diminishing
returns. This fall will be followed by an increase in mortality and a reduc-
tion in population growth rate, which in turn will drive the population size
down to the equilibrium. When a population size is smaller than the equi-
librium, the adjustment mechanism works in the opposite way, and the size
increases toward the equilibrium.

The conventional Malthusian model also largely ignores differ-
ences in decisions made by individual families; hence a set of macro
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4 Chapter 1: Introduction

variables becomes the only focus, thereby making a simple dynamic analy-
sis possible.

As Samuelson (1976) pointed out, although most classical economists,
such as Adam Smith, David Ricardo, and John Stuart Mill, considered pop-
ulation analysis part of economics, by the early twentieth century most
economists had decided that demographic movements were largely exoge-
nous to the economic system and should be left to sociologists and other
noncconomists for discussion.

A more active alternative for economists is to modify the convention-
al Malthusian theory to allow it to be compatible with contemporary pop-
ulation practices and issues. The continuous advancement of technology in
the twentieth century has made the "law" of diminishing returns rather
questionable (at least in many developed countries). The ever-improving
standard of living, together with continuous advances in hygiene and
medical knowledge, has also diminished the role of the previously preva-
lent natural checks on population. Furthermore, as the role of exogenous
environmental checks on fertility supply diminishes, the fertility demand
decisions made possible by widespread and effective contraception tech-
niques become more and more important in explaining modern fertility
behavior, as well as population changes. It was this background that pro-
pelled the so-called demand-side approach to demographic behavior. The
most important contribution to the theory of fertility demand was made by
Becker (1960) and subsequent followers.

1.2 GAPS BETWEEN MAI.THUS AND BECKER

The standard new household model of fertility, pioneered by Becker
(1960), Becker and Lewis (1973), and Willis (1973) emphasized that par-
ental demand decisions about the quantity and quality of children are the
key to understanding current fertility behavior, as well as demographic
patterns. Research on this demand-side approach to family fertility deci-
sions has gradually expanded with the realization that the female fertility
decision within a family is usually related to factors such as female labor
supply, timing of marriage, decision to divorce, amount of child-education
investment, and size of intergenerational and within-family transfers
of income. These ramifications have attracted the attention of most
researchers in the area of new household economics and have been devel-
oped into the main framework of the demand-side theory of economic
demography.2

Yet the development of the above-mentioned demand-side theory of
economic demography does not constitute a complete counterpart to clas-
sical Malthusian theory. One weakness of this literature, as Dasgupta (1995)
noted, is that it has mainly focused on decisions made by a single house-
hold and has not studied how individual household decisions might lead to
outcomes of a collective failure.
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Although Dasgupta's criticism is valid, the problem with the demand-
side theory of demographic behavior seems to be more than its inability to
explain collective failure. In fact, Schultz (1988) pointed out that the micro
economic model of household behavior has not been extended to a frame-
work suitable for analyzing any aggregate general equilibrium behavior of
a population. From this point of view, the micro static demand-side theory
of economic demography seems to contrast significantly with the macro
dynamic supply-side Malthusian theory.

There is one exception in the literature that makes possible an accom-
modation between the micro behavior of individual households and the
macro constraints of the society. The welfare analysis of fertility, summa-
rized in Nerlove et al. (1987) and in Razin and Sadka (1995), studied the
possible differences between the social and private costs of having children
and how the economy as a whole should react to such differences to attain
Pareto efficiency. In this way the micro incentives and the macro efficiency
can be analyzed together. But outside of this special branch, there are
indeed gaps between classical Malthusian theory and modern household-
decision models.

1.3 RESTRICTIONS OF AGE-SPECIFIC MODELS

The demand-side theory of economic demography is also weak in that it is
very much detached from mainstream (mathematical) demography theory.
This traditional demography theory, pioneered by Lotka (1939), Leslie
(1945,1948), Keyfitz (1968), and Coale (1972), segregated the human pop-
ulation into discrete or continuous age groups and discussed the steady
state and dynamics of the population growth rate or the distribution of ages.
Mathematical biologists called such models age-classified or age-specific
models. In an age-specific model, vital rates arc functions of ages only. But
since human age is never a decision variable of individuals, very often it is
difficult to reconcile the demand-side decision theory of the family with the
age-specific demographic models.

In order to combine various family economic decisions with demo-
graphic variables, in most cases the researcher has to either search for
models other than the Lotka-Leslie age-specific one or find a natural rela-
tionship between a household decision and the age of the household deci-
sion maker. For decision variables that have a life-cycle context (such as
consumption, saving, labor supply, pension payments, and benefits), the age-
specific model is clearly suitable for analysis, because the life cycle of an
individual is, by definition, related to his or her age profile. But, very often,
constructing a connection between age and decision is either unlikely or
tortuous. For instance, there is hardly any relation between parents' age and
their bequest division decisions. The female fertility decision used to be very
age-specific, but once that decision is made in conjunction with the variable
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of female labor supply, the age-specific connection is weakened. Further-
more, the demand theory of fertility often emphasizes that fertility is affect-
ed by the opportunity cost (wage or income) to the female, so fertility is at
minimum a function of wage or income, and hence the pure age-specific
model cannot be applied directly.

Despite its restrictions in the applications just mentioned, the age-
specific demographic model has one unique mathematical feature that is
convenient for analysis. When we classify people by their ages, people aged
a this year, if they survive, will always be aged (a + 1) next year. Thus, treat-
ing age as the state variable, the flow of the state space synchronizes with
that of the time space, so that the dynamic state-transition rule across
periods is relatively simple, and hence relevant dynamic properties are easy
to derive. Conversely, when people are classified according to variables
other than age, almost any dynamic transition rule is possible, and hence
the analysis will generally be rather difficult. Perhaps we demographic econ-
omists arc more or less spoiled by the convenience of the age-specific
Lotka-Lcslie models and hesitate to face the importance of other variables
which may be highly relevant to economic decisions. Difficult as it is, the
analysis of general demographic models is a research area into which we
have to proceed.

1.4 OUTLINE OF THIS BOOK

The purpose of this book is to fill the gap between the classical supply-side
population theory of Malthus and the modern demand-side theory of eco-
nomic demography. Specifically, in most chapters of this book I want to
investigate the dynamic macro implications of the various static micro
family economic decisions. The general approach to summarizing individ-
ual micro decisions into a macro demographic state variable is to apply the
Markov branching process. Therefore, in many chapters the mathematical
tool of branching processes will be applied, although there are also cases in
which the micro-macro connection can be easily established under regular
behavioral assumptions.

As to the focus of this research, of course one cannot study all the deci-
sions that a family makes. My approach is rather demographic: I focus on
only family decisions that, when aggregated to the macro level, have inter-
esting implications in population growth or population composition. Other
family decisions that are not evidently connected with the macro popula-
tion structure, such as the within-household division of labor or the effi-
ciency argument of family joint decisions, will not be discussed. To the
extent possible, I try to provide a balanced discussion of background moti-
vation, theoretical characterization, and empirical evidence. I hope that this
effort can help the reader understand my proposed synthesis of microcco-
nomic and macro approaches.
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This book is separated into three parts: I, Steady States; II, Cycles and
Transitions; and III, Population Dynamics in the Past and in the Future.
These are typical topics in demography, and to each part I add the subjec-
tivity of economic decisions. The steady state of a population branching
process always has a constant (positive or negative) population growth rate
that, as Samuelson (1972) pointed out, is not a very interesting case. There--
fore; in various chapters of part I, the steady-state case is just a cornerstone
of the analysis, and to the extent possible I broaden the discussion to include
the comparative dynamics of the population structure.

The organization of the book is as follows. In chapter 2 I first formu-
late population dynamics as a multitype Galton-AVatson branching process,
where the state space (type) may be age or any economic variables. I
provide a general analysis for the existence of the steady state. The condi-
tion for the existence theorem may have a natural economic interpretation
that can be applied to some economically interesting cases.

Chapter 3 analyzes the steady-state and comparative statics of age-
specific models with which most demographers are familiar. We summarize
the results of Coale (1972), Arthur and McNicoll (1978), and others, which
contain interesting economic implications. Chapter 4 changes the type space
to general economic variables, which were treated by the new household
economists as the critical factors in determining modern fertility behavior.
1 show how the micro static fertility decision of families can be combined
to form a general type-specific stable population theory. When the above-
mentioned economic variable refers to family income, 1 demonstrate how
to estimate the state-transition probability matrix empirically. To study
comparative dynamics, I review the work of Kalmykov (1962) for the case
of Markov processes and extend it to the case of Markov branching pro-
cesses. I explain the economic implications and applications of the revised
Kalmykov condition.

Chapter 5 analyzes the case of a degenerated steady state. The origin
of branching process research was the study by an English engineer (Agner
Krarup Erlang), who intended to calculate the extinction probability of his
mother's rare surname (Krarup). When lineage extinction was a worrisome
threat in ancient periods, I show how people could make economic deci-
sions to reduce the extinction probability of their lineage and how these
decisions have affected the development of some institutions. I also study
how the probability of minimum lineage extinction is affected by exoge-
nous changes.

In chapter 6,1 classify people by sex and study the equilibrium of the
two-sex model. I analyze how the steady-state sex ratio is affected by
parental preference for boys, a preference prevalent in many Oriental coun-
tries. The existence of the steady state in macro two-sex models was ana-
lyzed by Pollak (1990), and micro parental preferences for boys or girls were
studied by Leung (1991). Although traditional wisdom tells us that there is
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no connection between the equilibrium sex ratio and parents' attempts to
have boys, our analysis demonstrates that under reasonable assumptions
such a connection does exist.

Part II of this book concerns population cycles and demographic tran-
sitions. Chapter 7 starts with a short summary discussion of the cyclical
movement of population structure. Chapter 8 considers a simplified 2-type
population model. The macro pattern of individual type distribution forms
the "custom" of the society, while each micro individual chooses his or her
type, taking into account the influence of the existing custom. I derive the
formula for dynamic custom evolution and study why there are cyclical
movements in such an evolution process.

I follow the classification of Chesnais (1992) and separate the popula-
tion cycles in human history into pre- and posttransition ones. In chapter
9 I study population waves that respond to natural checks (or natural
catastrophes) in pretransitional periods. Human beings react to these
checks rationally, but it turns out that the economic decisions of human
beings may cither weaken or strengthen the original natural cycles. Chapter
10 moves into the discussion of the posttransitional Easterlin cycles that
occur in many developed countries. These cycles arc connected to an eco-
nomic institution, the labor market. It is this connection that makes the
Easterlin cycle unique. I analyze the existence, amplitude, and stability of
these cycles and how these properties relate to the specificities of the labor
market.

Chapter 11 deals with demographic transition, which refers to a shift in
reproductive behavior from a state of high birth rate-high death rate to a
state of low birth rate-low death rate. I analyze how individual decisions
on fertility, child-education investment, saving, and voting change during
the transition period and how these decisions affect the path of economic
growth, the appearance of social security in democratic countries, the deficit
of intergenerational transfer account, and the pattern of family income
inequality. Because individual reproductive differences do not play a sig-
nificant role in these macro phenomena, I do not use branching processes
to proceed with my analysis in this chapter. In chapter 12 I characterize the
formal dynamics of the age structure during the demographic transition
process. The age dynamics derived can be viewed as an extension of the
comparative static result of Coale (1972) to comparative dynamics. I also
propose several indexes related to the tail composition of the age distribu-
tion, which have both interesting dynamic contexts and rich economic
implications.

Part III is about the general relationship between environmental
checks and human responses. I first review the well-known work of previ-
ous researchers and discuss whether population size has really "spurred"
innovations and the spread of new technology in early human history and
whether technological change caused by population pressure could really
relieve this pressure. However, it is noted that modern economic growth
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and technological change have quite a different pattern from the prein-
dustrial world. From Romer (1990) we know that modern technologies are
mostly related to the extent of research and development (R&D) activities.
In chapter 13 I show what the exact role of population is in the history of
economic development.

Chapter 14 studies the relationship between population and environ-
ment from a broader perspective. The dynamic interaction between popu-
lation and environment is in fact the main theme of Malthus's classic work.
Currently, however, the Malthusian theory of environmental pressure has
to be interpreted differently. In ancient times, fertility was not a decision
variable, whereas it is today. In Malthus's time, environmental pressure
mainly referred to a scarcity of food in large populations, whereas envi-
ronmental pressure today refers to the general deterioration of air quality,
the degradation of rain forests and the ozone layer, pollution, global
warming, and so on. In this chapter I provide a modern version of the
Malthusian dynamics on population, taking into account the endogenous
changes in environmental deterioration.

The last chapter contains conclusions.

1.5 READERSHIP BACKGROUND

Readers are expected to have some background in elementary calculus and
linear algebra, which are normally prerequisites for graduate programs in
economics and demography. Although detailed analysis of some topics, such
as the comparative dynamics presented in chapter 4, may be intrinsically
mathematical, I try to make it accessible for readers with the above-
mentioned background. Except in particularly intriguing cases, I do not
provide proofs for theorems stated in this book. However, clear and
detailed references are always given so that readers can easily refer to any
literature that interests them for further reading. Beyond the restatement
of pure mathematical results, I try to make all analyses and presentations
heuristic and intuitive.

This book can be treated either as a research monograph or as a (sup-
plementary) textbook for a graduate course in economic demography. In
the latter case, I believe that parts I and II may be more appropriate topics
for one or two semesters. Part III contains idiosyncratic topics and needs
to be accompanied by related essays to make the coverage comprehensive.

When treated as a research monograph, almost no book can claim to
be truly comprehensive. I hope my economic approach to population dy-
namics will inspire readers to pursue the ideas that have been illuminated
by the various chapters of this book. Clearly, the research on population
economics would benefit by any further work supplementing this effort.
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PART I

Steady States
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CHAPTER 2

Demographic Models and
Branching Processes

2.1 BACKGROUND

All models describing the dynamic pattern of human population have two
common features. First, the human population is usually divided into
several types, and second, each type has a type-specific stochastic repro-
duction rate. The traditional literature of demography has been dominated
by the age-specific models of Lotka (1939) and Leslie (1945,1948), where
the type refers to the age of an individual and the type-specific reproduc-
tion rates refer to the age-specific vital rates in a life table, It has been shown
that, mathematically, these age-specific models can be analyzed in a more
general framework, namely, the multitype branching process. Most demog-
raphy researchers, however, do not bother to pursue properties of the
general branching process. They prefer to follow Lotka's (1939) age-
specific renewal equation approach in proceeding with their analysis
because that renewal equation is technically convenient, whereas the
steady-state and dynamic properties of a general branching process are
usually much more difficult to derive.

Although the analytical convenience of the age-specific models has
facilitated the research on age-related topics, it also tends to obscure the
fact that the age-specific model is merely a special kind of branching
process. When female fertility becomes a decision variable of the family and
the fertility-related family decision problems expand, these age-specific
models are often unworkable. Despite the difficulties inherent in applying
the traditional age-specific models to these decision dimensions, researchers
still hesitate to go back to the general, but more difficult, branching process
for solutions. This is perhaps why, as we mentioned in chapter 1, the

13
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demand-side theory of demography has not made much progress in describ-
ing the macro aggregate pattern of the population.

In this chapter, I separate the discussion into the age-specific branch-
ing process and general branching processes. I show that the steady
states and ergodic properties of these models can both be established
under some regularity conditions. Although the material in this chapter
is mostly a reorganization of previously established mathematical results,
I believe that my summary is systematic and will be helpful to most
readers. All the results summarized will be used in later chapters, but
aspects of branching processes that are irrelevant to our purposes will
not be discussed. Interested readers can go to Harris (1963), Mode (1971),
and Asmussen and Hering (1983) for a more detailed and thorough
analysis.

Readers who are not interested in the rigorous foundation of demo-
graphic models can skip this chapter and move on to chapter 3. Thus, for
non-technical readers, this chapter can be treated as an appendix which pro-
vides the (optional) mathenatical background for most of the following
chapters.

2.2 PRELIMINARIES

2.2.1 Type Transition and Reproduction

A multitype branching process is characterized by the condition that
each individual in the population produces a random number of offspring
of the various types (Mode, .1971). It is important to note that, in the above
sentence, the verb "produce" should not be understood literally as "repro-
duce." It could refer to females reproducing children; it could also refer to
across-period mobility. Specifically, an individual of type i at period t could
"move" to type j at period t + 1. In this case we say that between period /
and period t + 1, individual i "produces" one unit of himself in the type-/
group.

2.2.2 Time Space and Type Space

The time span for the verb "produce" may either be discrete or continuous.
In the former case, we say that the time space is discrete, and in the latter
case that the time space is continuous. Similarly, the space measuring
people's type, called type space, may also be discrete (e.g., sex, age, occu-
pation, rural/urban location) or continuous (e.g., wealth, income, age, phys-
ical size, weight). Some type criteria, such as income or wealth, may be
measured continuously or in discrete units (dollars), depending on its ana-
lytical convenience to the researcher. One should also note that, because
age and time have the same measurement, when age is the type for classi-
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lying people, the state space is usually assumed to be the same as the time
space. For the remainder of this book, except in the situation of age-
specific models, I will concentrate upon the analysis of discrete time space
and type space.1

2.3 EVOLUTION OF THE TYPE DISTRIBUTION

As mentioned above, we classify people by types, and the space of people's
possible types belongs to a bounded subset B in the Euclidean /-space 9JI'.
Let N be the set of nonnegative integers, and let

where n can be any nonnegative integer. We shall interpret Z as a set of
TV, people of type ft,, • • • , and N,, people of type ft,,, n = 0 corresponds to
the absence of any object. Z defined above is called a point distribution on
B.

The development of a branching process can be described by a
sequence of point distributions Z,, t e {0,1, 2, • • •}, where Z, represents the
objects in the rth period; Z, =•- (ft,, NL]', • • •; ft,,, /V,.n) means that there are Afu

people of type ft,, • • • , and /V,.n people of type ft,, in the rth period. We let
Z,(A) be the total number of people belonging to the set A in the rth period:
Z,(A) = Z»flA NSJ.

For an individual of type ft in period 0, there are two kinds of uncer-
tainties involved in the evolution of the point distribution of his offspring.
First, the number of offspring an individual can produce in future periods
is random, and second, his offspring may transit to become other types in
the future. These uncertainties make the evolution of the sequence Z,, t e
JO, 1, 2, - • •}, a stochastic process.

We shall suppose that (i) the information contained in Z, is complete
enough so that if we know the point distribution Z,, then the knowledge of
previous generations adds nothing to our ability to predict the future; and
(ii) the decision of a person lo procreate is not affected by the presence of
other people. Supposition (i) corresponds to the mathematical assumption
that the sequence Z,, te {0,1,2, • • •}, is a Markov process of which the state
space is a point distribution. Supposition (ii) makes our Markov process a
branching process, or a Galton-Watson process.2 These two suppositions are
assumed to be satisfied unless otherwise specified.

2.4 PROJECTION MATRICES AND FUNCTIONS

Let Q(A, ft) = Q\(A, ft) = E,,Z,(A), which is the expected number of period-
1 offspring in the set A produced by a person of type ft at period 0, where
E,, denotes the conditional expectation operator given ft. Let Q,(A, ft) be
the expected number of period-t offspring in the set A produced by a
period-0 person of type ft. Evidently, a person with type ft at period 0 will
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have a type-a period-t offspring if and only if he produces some descen-
dants in period 1, who in turn produce a type-a offspring after t — 1 periods.
Thus, if the type space B is discrete, we have

where a e B.
If the type space is continuous, then (2.1) should be rewritten as

with an interpretation very much the same as that of (2.1). In the case of
continuous state space, it is convenient to define a density function q,(a, b)
corresponding to Q,(A, b). Specifically, let qt(.,.) = q(.,.) be such that

and q,(a, b) be defined iteratively as follows:

In the case with discrete state space, we assume that there are n pos-
sible types.3 We can write Q(i,j) as Q,/, and the Q(.,.) function can be rep-
resented by the following projection matrix:

The reason Q is called a projection matrix is that it can be used to
project the future distribution of population types, given the current popu-
lation composition. Because the expected number of offspring is never neg-
ative, <2,., > 0 must hold, and hence Q is a nonnegative matrix. Iterating
equation (2.1), we see that the Q, matrix is actually raising Q to the rth
power:

For the remainder of this book, unless otherwise specified, I shall dis-
tinguish the notation in cases with discrete and continuous spaces. If a vari-
able x is a function of f, I write it as x, when the space of t is discrete and
as x(t) when it is continuous.
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2.5 STEADY STATES OF BRANCHING PROCESSES

2.5.1 Discrete State Space

In the previous section, I have described the evolution of the offspring of
a single individual of type b. I now proceed with the discussion of all indi-
viduals in the society. The analysis begins with the case of discrete state
space.

At period 0, suppose the number of people of all types is represented
by a column vector Nn:

Then, by the definition of Q, the period-? population will become

Let A,, A,, • • •, /!„ be the eigenvalues of Q, and w,, • • •, w,, be the corre-
sponding right (column) eigenvectors. To avoid cumbersome discussion of
degenerated cases, I assume throughout this book that the eigenvalues
of Q are distinct, so that the eigenvectors are independent. By definition,
Qw, = A,w, Vi = 1, • • •, n.The independence of the eigenvectors guarantees
that we can write any given N() as

for some set of constants c,, • • • , c,,.
The above equation, together with (2.4), gives us

And, in general,

It is evident from (2.5) that, because c, and w, are time-invariant, as t is large,
the dynamics of N, will be dominated by the term associated with the largest
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of UJ's.The specific results are characterized by a theorem proved by Harris
(1963) and Mode (1971). Before introducing this theorem, we need one
more definition.

DEFINITION (D2.1) (Mode 1971, p. 11): A nonnegative matrix Q is said to
be irreducible if and only if for every pair of (i, j) there exists a posi-
tive integer s such that the (i,j)th element of the matrix Qs, denoted Q,_p

is positive. Ifs does not depend on the pair of types (i,j), then Q is said
to be positively regular.

Readers who are familiar with matrix algebra might have noticed that
the above positive regularity condition is essentially the same as the term
primitivity used by some researchers.1

Now we are ready to introduce the major crgodie result in the theory
of branching processes. This result, due to Harris (1963), is an application
of the well-known Frobenius-Perron theorem.

THEOREM 2.1 (Mode 1971, pp. 14-19)
If Q is positively regular, then Q has a positive dominant eigenvalue Q of
multiplicity one; that is, if A. is any other eigenvalue of Q, then l/ll < Q. Cor-
responding to the eigenvalue Q, there is a right eigenvector \' — (v,, • • •, v,,)
such that Qv = QV, and a left eigenvector u = (u,, • • •, «„) such that uQ =
Q\I. Both v and u have strictly positive elements with the property uv = 1.
Furthermore, ifg > 1, then V/ e B, the random variable jV,.,-/Z"_, N,/ converges
to v,/Z" i v, and Q' converges to Q'(V-U) almost surely as t —> °°.

The almost-sure convergence of /V,,/E"-, /V,., to v ,-/£"-, v, can be under-
stood intuitively. Equation (2.5) can be explicitly written as

If we order the size of the n eigenvalues of Q in decreasing order as
AI > A2 > • • • > A,i, then /I, is denoted the dominant eigenvalue /I, = Q,
and W[ is the dominant right eigenvector w, = v. As t —> °°, all elements
of the N, vector will grow at the rate of o,' therefore the relative size of
group i will be proportional to the relative size of the ith clement of the v
vector.

When NU/'L"- , /V,, converges to a constant as t ~» °°, it means that
the composition of types of the population converges to a time-invariant
structure. This is the typical ergodic result of the general branching
process.

2.5.2 Continuous State Space

As shown in section 2.4, with continuous state space, the across-period
projection mechanism is characterized not by a projection matrix but by a

2
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distribution function Q(., .) with density q(., .). The ^-duplicate version of
the transition density, denoted q,, is given by the formula in (2.3). For the
case of continuous state space, the condition of positive regularity is to
require that:

CONDITION (C2.1): There exists a positive integer t() such that 0 < q,a(x, y)
< oo Vx e B, y e B.

As one can see, C2.1 is very much the same as D2.1. Harris (1963)
showed that in the case of continuous state space other than C2.1 above,
we also require an additional regularity condition:

CONDITION (C2.2): Q(B, b) and £,,(Z,(B)2) are both bounded functions
ofb.

C2.2 is to warrant the boundedness of the first and second moments of
the projection function Q. As to human population, so long as there is an
upper bound for human reproduction, C2.2 will always be satisfied. Given
C2.1 and C2.2, Harris proved the following theorem:

THEOREM 2.2 (Harris, 1963, pp. 77-80; Mode, 1971, p. 236)
If C2.1 and C2.2 are satisfied, then Q(.,.) has a dominant eigenvalue Q, with
corresponding right and left eigenfunctions v(.) and u(.) such that

Let N,(A) be the number of people in the set A at period t. If Q > 1, then as
t —» °°, (i) q,(a, b) —> Q'v(d)u(b), and (ii) V/V,, A2 c B, the random variable
Ni(A,)/N,(A2) converges almost surely:

As one can see, theorem 2.2 is similar to theorem 2.1; thus, its inter-
pretation is also the same and, hence, is omitted.

2.6 VERIFYING POSITIVE REGULARITY

It should be clear that the ergodicity property of types hinges upon whether
the positive regularity conditions of theorems 2.1 and 2.2 hold true. For age-
specific models, there is a special way to verify such a regularity condition,
which will be demonstrated below.

ye

)
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2.6.1 Age-Specific Branching Processes

When age is counted by discrete units, the projection matrix of the general
branching process becomes the well-known n X n Leslie matrix:

where 0 is an («- /?) X («- /i) zero matrix, A is /3 X /?, D is («- /?) X /?,
and C is /3 X (n - /?). Such a block decomposition implies that females older
than /3 can never produce any offspring of type (age) a < /3 in the future.
This obviously violates the condition of irreducibility, so that theorem 2.1
cannot be applied directly.

We know from (2.4) that the dynamics of N, will be determined by the
rth power of Q: Q'. But as we raise Q to the fth power, it is not difficult to
verify that

where D, = Z; (',ODA'' '. Furthermore, since C is a matrix with nonnegative
elements only in terms below the diagonal, we have C' —»0 as t -» °°. Finally,
since D, involves linear combinations of powers of A less than t, D, should
behave like A', but less dramatically.

The above discussion tells us that all the relevant information about Q
is contained in A and that the age group beyond the upper bound of repro-
duction,/], does not contribute to the intrinsic growth rate of the whole pop-
ulation. Formally, Parlett (1970) proved the following theorem.

THEOREM 2.3 (Parlett 1970, p. 194)
(i) The eigenvalues of A and the eigenvalues of C constitute the eigenvalues
o/Q. (ii) No eigenvalue of A is zero, and all eigenvalues ofC are zeros. (Hi)

In the above matrix, F, is the probability that a person aged / will bear a
baby, a and /3 refer to the youngest and the oldest ages of possible female
reproduction,/?, refers to the probability that a person aged i can survive to
age / + 1, and n is assumed to be the upper bound of human age. The pop-
ulation dynamics are as described in (2.4).

It is easy to see that such a Leslie matrix can be decomposed into the
following four blocks:
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For any eigenvalue 1 of A, let v and u be the right and left eigenvectors; that
is, Av = Av, uA = Aw. The right and left eigenvectors of Q are determined
by

where v{ = D^v/A, and v, = Cu ,v,-i/A,/ = 2, • • •, n ~ /3; uk = 0, k = 1, • • •,
n-fl.

Theorem 2.3 tells us that, to understand the ergodic properties of an
age-specific branching process, it is sufficient to concentrate upon the block
matrix A./,*/,. Parlett (1970) showed that A is nonnegative and positively
regular. Intuitively, people who are still reproductive can produce children
of age 1, who in turn have a positive probability to move to any age equal
to or younger than /3\ so A is irreducible. For the irreducible A matrix to
be primitive, Sykes (1969) showed that it is sufficient to have two adjacent
age classes with a positive expected fertility. This is certainly true for
human populations. So A is indeed positively regular, and theorem 2.1 can
apply.

Restricting our attention to the subset [0, /3], theorem 2.1 tells us that
the age structure for ages younger than /3 will be proportional to elements
of v as t —> °°. Then we can use theorem 2.3 to calculate v and use (2.8) to
infer the time-invariance of the overall age structure in [0, n].

When the age space is continuous, the discussion is very much the same
and will not be repeated here.

2.6.2 General Branching Processes

For general branching processes, there is no easy way to check the positive
regularity condition; we have to verify whether Q is positively regular case
by case. Although there is no general rule, there are some useful insights
we can follow.

The reducibility of Q means that there is a proper subset C c B
such that Vc e C, the offspring of c can never move out of C; that is, C is
an absorbing subset. Irreducibility rules out the possibility of such an
absorbing subset and requires that each element of B has at least some
chance to move to any other part of B. In other words, irreducibility
requires that there is perfect mobility across types when the period (of
"moving") in question is long enough. For example, if we classify people by
their income, then, according to theorem 2.1, a sufficient condition for the
existence of a steady-state income distribution is that we have perfect
income mobility.

)

b
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If Q has been proven to be irreducible, then primitivity is easy to check.
Essentially, an irreducible matrix Q will be imprimitive if it is cyclic (Caswell
1990). To rule out cyclicity, it is sufficient to have at least one positive diag-
onal element. The intuition is as follows. A positive diagonal element Q,,
means that an agent of type / has some chance to produce offspring of the
same type. This result, together with the irreducibility of Q, means that there
is no definite number of periods for which the offspring of any type of agent
will become the same type.6 Thus, cyclicity can be ruled out.

For the case of continuous state space, we have to check whether C2.1
and C2.2 are satisfied. As I mentioned in section 2.5.2, as long as there is
an upper bound for human reproduction, C2.2 would always be satisfied.
C2.1 essentially requires that the projection density q(., .) is positively
regular. Again, this requires that there is perfect mobility across all
measure-nonzero subsets of B and that there is no definite number of
periods Cor the offspring of any agent to reenter the original type class of
the agent. In the next few chapters I will provide some important applica-
tions of the general branching process.

2.7 MEANING or THE DOMINANT EIGENVALUE

I showed in theorems 2.1 and 2.2 that the size of the dominant eigenvalue
is very important for determining the steady-state pattern of the popula-
tion. I now provide a formal interpretation of the meaning of Q.

We learned from our discussion in the previous sections that for a given
projection matrix, the following equation is true for the steady state:

Because the size distribution of the population in the steady state is pro-
portional to v by theorem 2.1, as t is sufficiently large, we can replace v by
N, and rewrite the above expression as

or equivalently

Summing the above equation over /', we have

Dividing both sides of the above equation by £;'_, N:j yields
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Note that !;•'=, QLi NLj equals TV,.,.,-, the total number of type-/' people in period
t + 1; hence,

Thus, Q is the gross population growth rate in the steady state.
Intuitively, when the gross population growth rate Q is greater than I,

the size of population will expand; whereas when Q is less than one, the pop-
ulation size will contract. I will discuss this further in chapter 5.

2.8 GENERAL POPULATION MODELS IN PREVIOUS LITERATURE

As mentioned, separating people by their ages is the most natural division.
It is also, however, the most passive classification, for age is clearly not a
variable that any individual can actively choose or change. Previous litera-
ture contains very little discussion on general type-specific branching
processes. Preston (1974) analyzed the interaction of occupational mobility
and occupational differential fertility. Caswell (1990) presented a system-
atic mathematical analysis on general type-specific population models. But
their approaches merely addressed other passive characteristics, such as
occupation, physical size, or maturity stages, of human and other (animal
or plant) populations. There has been no discussion on the role of active
human decision.

In this chapter I have argued that the dynamics of a general type-
specific population model can be characterized by a rnultitype branching
process. In the next four chapters, I will show that the projection matrix of
the macro branching process is actually formed by, or related to, individual
micro decisions. Such a micro-macro connection enables us to analyze how
a change in exogenous parameters can affect individual decisions, which in
turn change the aggregate population pattern. These comparative statics or
dynamics with behavioral background will be the emphasis of my later
discussion.



CHAPTER 3

Age-Specific Population Models

Steady States and Companative Statics

Mainstream demographers studying the pattern of human population
are used to classifying people by their ages. In the terminology of
branching processes, the type space of the stochastic process is a subset of
positive real numbers that characterize human ages. This chapter deals with
this case and studies the corresponding steady states and comparative
statics.

3.1 STEADY-STATE AGE DISTRIBUTION

I showed in chapter 2 that the dynamics of any type-specific population
structure can be described by the equation N, = QN, , and that Q is block-
decomposable in the age-specific case. The fact that the northeast block of
Q being a zero matrix not only helps us derive the eigenvalues and eigen-
vectors of Q but also helps us characterize the dynamic evolution of the
birth size. Let B, be the size of birth at period t, /„ = p\ X • • • X pa be the
probability that a person can survive to age a, and ma be the average number
of births per surviving member aged a. We see that the following account-
ing identity must hold:1

which is Lotka's (1939) well-known renewal equation. Equation (3.1) is
useful for deriving the steady-state age distribution.

Given the assumption of a time-invariant fertility function mu, the total
size of birth B,, which is a linear combination of birth sizes of all fertile age
groups, naturally grows at a constant rate in the steady state. Specifically, as

24
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t —> °°, we can use (2.5') to replace the B,-JLa in (3.1) by c^/v,, and rewrite
(3.1) as

where fc = 2"=0C] vama is a constant. Therefore B, will grow at the rate g in
the steady state.2 Substituting B, = BOQ' into (3.1) yields

From the above equation, Q can be solved.3

An advantage of expressing the population dynamics in terms of the
birth size is that the steady-state age structure is easy to derive from (3.1):
because at period t there are B, ,,la of people aged a, the proportion of aged-
a people, denoted g,,,, is

In the steady state, substituting in B, = Bag', we have

So the age structure in the steady state is indeed time-invariant, as theorem
2.3 described.

When the age group is classified continuously, the positive regularity
condition Cl and the boundedness condition C2 in theorem 2.2 evidently
hold in the subset [0, /?]. All the insight of the analysis in the previous dis-
cussion remains, and we only have to change the notations accordingly. For
instance, the continuous version of the renewal equation in (3.1) becomes

and the corresponding intrinsic growth rate, which is denoted r in the con-
tinuous case,4 can be solved from the following equation:

The steady-state age structure becomes5

In order to make this presentation compatible with most related analyses
in previous literature, in the rest of this chapter T will consider the case of
continuous age space.
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3.2 CALCULATING VARIABLE MEANS

The key variable in an age-specific model is, of course, age. The mean age
of a stable population, denoted a, is the integral of ages weighted by the
corresponding population density:

However, we are very often interested in variables other than age. As men-
tioned in chapter 1. in order to connect an economic variable, say x, with a
population structure, we have to either classify people by the variable in
question or, if we decide to classify people by ages, find some relationship
between x and age. In economics, this latter approach will be the most
appropriate for life-cycle models, because, by definition, every economic
variable within a life cycle is age-specific.

Suppose x(a) is an age-specific life-cycle variable. By definition the
mean value of x(a) is:

The proportion of the total quantity of x attributable to people aged a is

We can define the mean age of x as

For instance, if x(a), a e [65, n], refers to a social security benefit profile,
then a, is the mean age of social security beneficiaries.

In view of (3.2), it is clear that the steady-state age structure is a func-
tion of r only. We can differentiate the logarithm of x with respect to r and
get

or equivalently,

With the above background, I introduce below some well-received com-
parative static results.
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3.3. WELFARE IMPACT OF POPULATION GROWTH: CONSUMPTION-
LOAN MODEL

It is a well-known result of Samuelson's (1958) overlapping-generation
consumption-loan model that the per capita welfare is an increasing
function of population growth rate. The inference is quite simple: in
Samuelson's model, considering neither production nor durable goods,
we can imagine that people live in an infinite orchard. With a larger
population growth rate, the older generation will have more children
to pick apples for them, thereby having higher per capita welfare.
Thus, higher population growth produces an intergenerational transfer
effect.

Arthur and McNicoll (1977, 1978), however, found that such a result
was sensitive to the neglected process of production. In general, human
beings have a long period of childhood before they become productive.
A higher population growth rate increases the proportion of young,
and hence increases the number of dependents of the society, who have to
be supported by the fewer, older productive people. This certainly shakes
the robustness of Samuelson's original result. The formal argument is as
follows.

Let us modify the two-period overlapping-generation setup to a
scenario with continuous-age life cycle. Let c(a), y(a), a e [0, n], be the
life-cycle profile of consumption and income. If the population age
structure is stable, the societal balanced-budget (or no-saving) constraint
is

Differentiating the logarithm of both sides of the above equation yields

where a, and a, are the mean ages of consumption and income.
In Samuelson's consumption-loan model, since a change in r will never

change the life-cycle production profile, we have 3y(a)/3r = 0 Va e [0, n].
For demonstration purposes, suppose the proportional change in c(a) is
independent of a; then 3c(a)/3r = fic(a). Thus, equation (3.5) can be reduced
to
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This leads to the following theorem:

THEOREM 3.1 (Lee 1980, p. 1134)
In a consumption-loan economy with an age-specific stable population, con-
sumption at all ages can be increased in proportion to the change in the pop-
ulation growth rate times the difference between the mean ages of
consumption and, production.

Theorem 3.1 provides us with a simple formula for evaluating the
welfare impact of a change in population growth rate. Leaving aside the
size of the change, its "sign" only hinges upon the relative scales of the two
mean ages. Lee (1980) showed that, if there is no population growth, and
if the working age range is 20-65 and the consumption age range is 0-75,
then a, — 37.5 and a, = 42.5. Thus, an increase in population growth
rate will not increase the steady-state per capita consumption, in contrast
to Samuelson's original result. This is the case because a higher population
growth means more children being supported by relatively fewer
productive people.

3.4 WELFARE IMPACT OF POPULATION GROWTH:
NEOCLASSICAL GROWTH MODEL

The model in the above section has not taken into account individual
savings, and hence there is no capital accumulation. Arthur and McNicoll
(1978) studied the impact of a change in r on the steady-state per capita
consumption in a neoclassical growth model. As before, the population
structure is assumed to be stable: B(t) = BQe", and the total population size
is

With an age-specific labor-force participation function h(a), the total size
of labor is

Let K(t) be the size of period-r capital. Total output is determined by a
production function F: F(K(t), L(t)) = Y(t), which is to be spent on con-
sumption C(f) and capital accumulation K(t):

The usual assumption in neoclassical growth models is that F is homoge-
neous of degree one. Thus, for k(t) = K(t)lL(f) and c(t) = C(t)/L(t), we have

ec
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In a steady state in the sense of Solow (1956), K(f), L(t), and C(t) all
grow at the same rate, which is r. Thus, dropping the time subscript t in
the steady state, we have K = rK, and hence (3.6) becomes c = f(k) — rk,
or

If the economy follows Samuelson's (1965) "golden rule" path, then/'(/c)
= r.

The left-hand side of (3.6') is the societal total consumption, whereas
the right-hand side is the total net output. Substituting in the formula of
L(f) under a stable population, we see that the societal budget constraint
(3.6') can be rewritten as

Differentiating the logarithm of both sides of the above equation with
respect to r, and noting that (dk/dr) • (f'(k) — r) = 0 by the golden-rule
assumption, we have

where a, is the mean age of the participation-weighted labor. The reader
should have noticed the similarity between (3.5) and (3.7).

Suppose, for demonstration purposes, that the labor-force participation
rate h(.) is not affected by the change in r; then the right-hand side of (3.7)
has only two terms. The first term is the difference of mean ages a, - a,,
which is the same as in (3.5). The new term, —k/c, was called by Arthur and
McNicoll (1978) the capital-widening effect. There, is such a capital widen-
ing because an increase in population growth rate calls for greater invest-
ment to maintain the steady-state level of capital per head, and this would
divert resources from capital deepening. Lee summarized the result as
follows.

THEOREM 3.2 (Lee 1980, p. 1146)
Along a neoclassical golden-rule path with an age-specific stable population
structure, the proportional change of per capita consumption equals the
change in population growth rate times the difference between the mean ages
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of consumption and earning, minus the capital widening effect, plus the pro-
portional induced change in the labor-force size.

3.5 WELFARE IMPACT OF POPULATION GROWTH: INCOME INEQUALITY

Lam (1984) extended the age-specific comparative statics introduced in the
above two sections to higher moments and studied the impact of a change
in population growth rate on income inequality. For the variable y, Lam
defined the steady-state proportion of the Ath (central) moment of y attrib-
utable to age group a to be

Lam's focus was the variance of (age-specific) incomes, denoted V(y),
which is Mk for the case of k = 2. For this case, we see that the last term on
the right-hand side of (3.9) vanishes, since the first central moment M\(y)
is zero. Thus, Lam arrived at the following conclusion.

In the above expression, a2 is the weighted mean age in (3.8) with k =
2. This is one line of extension of the work of Lee (1980).

THEOREM 3.3 (Lam 1984, p. 120):

Differentiating the logarithm of Mk(y} with respect to r and simplifying, we
have

The corresponding weighted mean age is therefore

The /cth moment of v in the steady slate is
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3.6 EXTENSIONS AND COMMHNTS

Another line of comparative static analysis is to consider a more complex
life-cycle resource transfer problem, such as the contributions by Willis
(1988), Lee and Lapkoff (1988), and Lee (1994). In these papers, transfers
among individuals are extended to include expenses of child rearing and
other intergenerational transfers, such as bequests and old-age support, the
aggregate demand and supply of credits, and taxes and transfers to and from
the government sector. Comparative static analyses along these lines also
generate results that are related to the difference between mean ages of
various sorts. Because such analysis is related to topics of demographic tran-
sition, details will be provided in chapter 11.

One advantage of the analysis presented in sections 3.3-3.5 is that the
comparative static formulas are neat and can be easily evaluated using
empirical data. For instance, Lam (1984) and Lee and Lapkoff (1988) have
used the data of Brazil and the United States to evaluate the sign of expres-
sions similar to those in (3.7) and (3.10). A major criticism of the compar-
ative static analysis presented above has to do with the difficulty of
interpreting the results. As I pointed out in the previous sections, we have
to find a connection between economic variables and the individual age
profile so that the economic phenomenon can be analyzed within an age-
specific model. But even if we find such a connection in the context of life-
cycle models, it may still be difficult to understand the meaning of terms
such as the mean age of income variance, shown in (3.10). Furthermore,
ideally, we hope to discover comparative static results that hinge upon
exogenous behavioral assumptions or patterns. Mean ages arc, however, cal-
culated purely from nonbehavioral age accounting, and hence economists
can say relatively little about the results. Finally, the intrinsic growth rate
(r) of all branching processes is endogenously determined in the model; so
differentiation with respect to r is slightly different from the general idea
of comparative statics in economics.



CHAPTER 4

Income-Specific Population Models

Steady States and Comparative Dynamics

4.1 BACKGROUND

I mentioned in chapter 1 that the standard new household economics
model of fertility, derived and modified by Becker (1960), DeTray (1973),
Willis (1973), and later followers, emphasized the parental choices and
tradeoffs between the quantity and the quality of their children. As Becker
(1960) pointed out, one motivation for the new household economics
approach to fertility decisions is to construct a demand-side household-
decision structure to replace Malthus's out-of-date supply-side population
theory. The fertility decision theory along these lines has been called by
Schultz (1981, 1988) and Dasgupta (1995) the demand-side demography
theory.

One difference between the demand-side demography theory and the
classical Malthusian theory is that the former approach emphasized the
static decision of a micro agent, whereas the Malthusian theory described
the macro dynamic pattern of the population. Thus, from a theoretical point
of view, the development of the demand-side demography lacks a macro
dynamic counterpart. In this chapter I shall establish a macro dynamic
population theory based on a fairly general version of Becker's and others'
static setup of fertility demand.

Once we shift our focus to the household fertility decision, it is natural
that the household economic variables that affect female fertility decisions,
such as her wages, family income, or the opportunity cost of babysitting, will
become important explanatory variables of aggregate demographic pat-
terns. Given that the fluctuation of mortality is no longer significant in
recent years and that human fertility decisions are largely affected by the
above-mentioned household economic variables, then in order to explain
the aggregate pattern of population movement, it is natural to classify
people by these economic variables rather than by ages. This is another
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motivation for the derivation of a non-age-specilic stable population
theory.

4.2 HOUSEHOLD FERTILITY DECISION

4.2.1 Suppressing the Age Structure

As we focus upon the macro dynamic implications of Becker's micro static
fertility decision model, it is convenient to ignore sex differences and
suppress the age structure of a person by assuming that everyone lives
two periods, young and old. This is very much the same as the one-sex
Samuelsonian (1958) overlapping-generation model: individuals who
remain in the parental household are called young; they become old when
they form their own families. Within each family, decisions are made by the
family head. Observe that in this overlapping-generation setup, the across-
period transition of types actually refers to the change of types between
parents and children. This is different from the age transition across periods
for the same individual. The household decision will be explained in detail
in this chapter, and similar structures in later chapters will be introduced
only briefly.

4.2.2 Quantity-Quality Tradeoff

Given the family head's initial endowment b, at the beginning of the second
period one has to determine the number of children one plans to have
(denoted m). Besides the parent's planned fertility, there are some
reproductive uncertainties, denoted by a random variable sm which may
represent contraception, fecundity, child mortality uncertainty, or parental
taste parameters. Thus, the actual number of offspring of a parent is m +
£,,,.The subscript m on fertility uncertainty means that the realized number
of children is correlated with the planned size, which is reasonable in
practice.

After the fertility size is realized, the family head has to divide the
family income y into current consumption c and child-quality investment
(or bequest savings) s = y — c. If a family has m children, then each child
receives an equal share, slm. Using this bequest, the child can then produce
his or her own income and form his or her own family. If a child receives b
dollars of human capital investment or bequest when he or she is young, it
is assumed that his or her old-age income is determined by y = /(£>, r\),
where rj is a random variable characterizing the luck or ability uncertainty
of the child. This is a setup similar to that in Loury (1981) and Chu (1988).
The luck variable is assumed to be independently and identically distrib-
uted for all individuals.

All agents are assumed to be expected-utility maximizers. The utility of
a family head is assumed to depend on family consumption during his
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tenure and on the quantity and quality of his children. If family bequest is
the factor that determines children's quality, then bequests enter as an argu-
ment in parents' utility function. For demonstration purposes, suppose, as
adopted in Chu (1990), that the head's objective function can be written
as

The above maximization problem gives rise to two optimal solution func-
tions: m* = m(b), s* = s(f(b, rf), m(b) + £,„(/,)). Therefore the endowment
of each child will be s*/\m* + £,„,]. If the endowment of the parent is
appended with a subscript t and that of a child with a subscript t + 1, then
we have the following dynamic endowment transition rule:

4.2.3 Combining Individual Decisions

Equation (4.1), together with the endowment-specific reproductive rule,
that a parent with endowment b will have m*(b) + £„,*(/,) children, consti-
tutes an endowment-specific branching process. Specifically, let

be the transition probability for a child of a parent having endowment b to
move to a point a e B, given that the parent has i children. Then the dis-
crete version projection matrix Q in equation (2.2) can be specified as

where m is the upper bound of human reproduction.

where u represents the utility flow of family happiness, 0 < d < 1 is a dis-
count factor, /,(.) characterizes the family head's perceived quality satis-
faction from a child with initial endowment (y - c)/m, and mdL is the total
quality satisfaction a parent perceives.

With the assumption that the parent's fertility decision is made before
the realization of his lifetime income,1 the parent's utility maximization
problem can be written as follows.
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So far we have seen that a typical Becker-Willis micro level family
fertility decision model will generate a macro level branching process. The
state (type) variables for classifying individuals are those that affect the
parents' fertility decision. In the framework given above, the type variable
is chosen to be b, the economic endowment of a person. In general, the
type variable may contain other information related to the family fertility
decision.

Given that (4.2) constitutes the element of the projection matrix of
a branching process, our job now is to check whether the projection
matrix Q given in (4.2) satisfies the positive regularity condition. If it does,
then we can apply theorem 2.1 to infer the ergodic properties in the steady
state.

4.3 VERIFYING POSITIVE REGULARITY

Our discussion in section 2.6 tells us that the essence of the positive regu-
larity condition is the perfect mobility throughout the type space. So we
have to check whether a parent with any endowment b e B has some pos-
itive probability of having offspring with possible endowments in any rele-
vant subset of B after some transitional periods. We will show that such a
condition can be satisfied under very weak technical and economic assump-
tions. Specifically, we suppose that (i) w(., .) and /(., .) are increasing and
concave in their first argument and L(.) is also increasing and concave; (ii)
«(.,.) and/(.,.) satisfy the Inada condition with respect to their first argu-
ment and L(.) also satisfies the Inada condition;2 (iii) the random variable
r\ is continuously distributed in \y_, fj\ and /,(., r\] > 0; (iv) f ( b , ij) < b.

Assumptions (i)-(iii) are quite regular in almost all related economic
analyses. Assumption (iv) says that a parent who experiences the worst pos-
sible luck will deteriorate the endowment background of his children. These
assumptions all appear to be reasonable. Given (i)-(iv), Chu (1990) proved
the following theorem:

THEOREM 4.1 (Chu 1990, pp. 178-179)
Given assumptions (i)-(iv), the positive regularity condition corresponding
to the endowment transition rule in (4.2) will be satisfied.

Detailed proofs can be found in Chu (1985); here we only provide a
sketch. To verify the positive regularity condition under assumptions
(i)-(iv), it is only necessary to check whether Q' will be a positive matrix
for some large enough t; the size of its arguments does not matter. Thus, so
long as the reproductive uncertainty E is such that everyone has a positive
probability of having one reali/cd child, without loss of generality, we can
concentrate upon the event that every person has one child.This can greatly
simplify the evolution rule of b. If we can show that the Q matrix derived



36 Part I: Steady States

under such a one-child event is positively regular, it is certainly true that Q
is positively regular in general.

Given that m + £„, = 1, the transition rulof b becomes

First, let us look at two specific paths of the realization of r/. From assump-
tion (iv) above, we see that the sequence generated by b,,\ = g(bt, rf] is
decreasing in t. On the other hand, the sequence bn] = g(b,, rj) is bounded
above by b*, where b* is (see figure 4.1):

Thus, for any endowment b() within the interval [0, b*) = B*, it is impos-
sible that b, will ever diverge from B*. Since B* is an absorbing set, in reality
it is also unlikely that we would ever find a person with b t B*. Thus, the
range of endowment [b*,cc) is not relevant to our analysis.

Next, we shall argue that, starting with any ba e 5*, there is a positive
probability that b, will fall in any measure-nonzero subset of B*.The rea-
soning is as follows. Suppose we measure incomes in dollars or cents, which
have small enough units. The analysis can be approximated as if we assume
a continuous state space. The concavity of u , f , and L guarantees that s has
a unique interior solution. The theorem of the maximum (Varian, 1992) says
that s* is a continuous function of/. Because f(b,, .) is continuous in b,, so
is g(bt,.) = s(f(bt,.), l).Thus, for any given fe0, the possible range of endow-
ments of the rth generation, t = 2, 3, • • •, will cover the interval \L,(b^,
U,(b0)] (see figure 4.2), where

F I G U R E 4.1 The upper bound of b is b*.
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As t increases, U, and L, approach b* and 0; hence, any subset of B*
can indeed be approached by future offspring of a person with endowment
b0. Thus, for all b e [0, b*],A c [0, b*], the positive regularity condition of
Q(A, b) is indeed satisfied.

4.4 INCOME-SPECIFIC STABLE POPULATION

The analysis in the previous section allows us to apply theorem 2.1 and con-
clude that the population dynamics governed by the transition rule (4.2)
will converge to a steady state. In the steady state the population will grow
at a constant rate, which is the dominant eigenvalue of the Q matrix, and
the societal distribution of endowment b will be time-invariant. Since the
lifetime income y is a stochastic function of b: y = f ( b , n), the convergence
of the distribution of b also implies the convergence of the distribution of
income (y).Thus, the dynamic implication of a Becker-Willis static fertili-
ty demand theory is an income-specific stable population theory, in contrast
to the popular Lotka-Leslie age-specific stable population model that
demographers are familiar with.

Alternatively, since our dynamic implications are derived from a
Becker-Willis static fertility demand model, our results can also be viewed
as a dynamic macro counterpart of the static micro demand-side demog-
raphy. As I mentioned in chapter 1, this is a theoretical extension expected
by Schultz (1988) and Dasgupta (1995).

The analysis presented above is just one example of establishing a
general stable population theory on the basis of individual economic deci-
sions. When the decision scenario changes, one can establish other kinds of
stable population theories analogously. We should remind the readers that
the crucial step is always to verify the positive regularity condition, and the
key idea is the long-run perfect mobility in the type space.

F I G U R E 4.2 As t -» <*, L,(ba) -> 0, U,(bn) -> b*.
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4.5 COMPARATIVE DYNAMICS OF INCOME DISTRIBUTION

I show in chapter 2 that the steady-state distribution of types will be pro-
portional to the arguments of the dominant eigenvector, which in turn will
be affected by the entries of the projection matrix. When exogenous vari-
ables or policies change, entries of the projection matrix will be different,
thereby affecting the steady-state type distribution. In this section I shall
demonstrate the comparative static analysis for the income-specific popu-
lation model.

4.5.1 Theoretical Background

We can partition the projection matrix Q into two product parts:

where the (i, j)th clement of M, denoted Mi,j, is the transition probability
that a child of income class j becomes a member of class i, and F is a diag-
onal matrix with type-specific reproduction rates as the diagonal elements.
Population dynamics are characterized by N, = QN,_1. I showed in theorem
2.1 that if v is the dominant right eigenvector of Q, the steady-state pro-
portion of type-i population will converge to K-{ = vi/Y,'j-]vi. Comparative
static analyses of the general branching processes refer to the study of the
change in the TT vector when exogenous variables, such as elements of M or
F, change.

According to theorem 2.1, the steady-state type distribution of general
Markov branching processes is always characterized by the equation

Summing both sides of the above equation and using the property 'L/M^ =
1 = Z,7r,, we have

There are n + 1 variables in (4.3), but in view of (4.4) we sec that only
n of them are independent. We can use (4.3) to solve for Q and the n 1
independent proportions n\, 7T2, • • •, nn-\. Traditional comparative static
analysis starts by totally differentiating the n equations of (4.3) with respect
to an exogenous variable, say F1, and then cheeks the sign of terms such as
dnjdl\.

The above-mentioned comparative static problem is indeed a difficult
one. A simplified case is when Fi = 1 Vz' e {1,...,n}, which makes the
Markov branching process of N, degenerate to a Markov process. But even
in this simplified case, comparative statics are not straightforward. In a



If the type space refers to income, and we order income in ascending order,
with income type j having more income than type k < j, then the SM con-
dition says that a child in a poor family is more likely than a child in a rich
family to fall into the poorest / income classes for any /.

Suppose n,j is the proportion of type-i individuals at period t, and
suppose there is an exogenous parameter change in 6 that affects the size
of the Mi,j element. To establish a comparative static result, Daley (1968)
showed that one has to establish a comparative dynamic argument as
follows.The first step is to show that dnLi/30 has a particular sign.The second
step is to show that if the SM condition holds, when dn,Jd0is positive (or
negative), d7t,+Li/d6wi\l also be positive (or negative). The third step is to
use mathematical induction to infer the sign of dn-,:JdO, which is the steady-
state result. But Futia (1982) also revealed that it is unlikely that we can
get results in any general sense along these lines; we can only probe into
the problems on a case-by-case basis.4

Other than the survey by Futia, the only effort that we know con-
cerning the research of comparative statics of branching processes was done
by Caswell (1990). Starting from the characteristic equation Qv = Q\,
Caswell (1990) solved the exact formulas of comparative statics of n,_ with
respect to a change in Qi,j. Those formulas, however, involve all the eigen-
values of Q, which are themselves endogenous and difficult to interpret. So
far as we can see, Caswell's formulas are only useful for computer simula-
tions or very simple age-structured models.

4.5.2 Application: Family Planning and Income Inequality

In the past two decades, considerable attention has been given to the inves-
tigation of the relationship between population growth and the distribution
of income. Many researchers have found, based on empirical evidence, that
population growth rate is positively related to income inequality.5 Besides
the econometric problems involved in this empirical research that Boulier
(1982) criticized, there are also some conceptual difficulties. When referring
to income distribution, it goes without saying that we are thinking about an
economy that comprises various income groups. As long as the reproduc-
tion rates or the crude fertility rates are different across income groups, as
is especially obvious in most developing countries, the property of income-

Chapter 4: Income-Specific Population Models 39

survey article, Futia (1982) argued that the only known results along these
lines appeared in Daley (1968),3 which required strong restriction upon the
transition probability matrix M. Specifically, Daley's (1968) and Kalmykov's
(1962) analysis required that the transition probability satisfy the condition
of stochastic monotonicity (SM):



A4.1 characterizes a stylized fact in developing countries that was
referred to by Ahluwalia (1976) in the above quote. A4.2 requires that the
transition probability matrix obey the property of conditional stochastic
monotonicity (CSM), which is a variant form of Kalmykov's stochastic
monotonicity condition (SM). Notice that CSM implies SM (by letting J =
n in CSM) but not vice versa, and hence CSM is a stronger assumption. In
our context of income-specific models, A4.2 means that, conditional on the
event that a child from a poor family and a child from a rich family both
fall into the poorest J classes, it is more likely that the poor child will be
poorer than the rich child. This seems to be an intuitively appealing assump-
tion. With A4.1 and A4.2, Chu and Koo (1990) proved the following
theorem.6

T H e O r e M 4.2 (Chu and Koo, 1990, p. 1130)
Suppose M and F are the original transition probability and fertility matri-
ces, with re,, the initial distribution of incomes. At period 0 there is a family-
planning policy which reduces F1 by o. After such a reduction in F1, let n\,
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specific differential fertility has to be included in the model. With differen-
tial fertility, population growth rate by definition becomes the weighted
average of reproduction rates of all income groups, and this suggests that
the causal relationship between income inequality and population growth
as a whole is not a very meaningful topic. The key question that needs to
be addressed instead is the relationship between income distribution and
the reproduction behavior of some particular income groups.

Such a question is also highly policy-relevant. As pointed out by
Ahluwalia (1976), the most important link between population growth and
income inequality is provided by the fact that "different income groups
grow at different rates, with the low-income groups typically experiencing
a faster rate of natural increase" (p. 326). For many developing countries,
family-planning policies are targeted at low-income families with a high fer-
tility rate. The inequality impact of such policies is an interesting subject of
investigation.

The income-specific branching process introduced in section 4.4 serves
as a perfect framework to study the impact of changing the fertility rate of
low-income people on income inequality. Along this line, Chu and Koo
(1990) proposed two assumptions:

ASSUMPTION A4.1:

ASSUMPTION A4.2:
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TTj, • • •, n, • • • be the series of distribution vectors that evolves. If A4.1 and
A4.2 hold, then

4.5.3 Further Results

The above-mentioned analysis has not taken into account the possible
change in the M matrix when F, changes. Presumably, as poor parents have
fewer children, each of their children can share more per capita human
capital investment, and hence their upward mobility will be further
improved. Suppose such an improvement in upward mobility makes the
first column of the transition matrix change from Ml,j, j = 1, • • • , n, to M\,-,
j = 1,...,n. Suppose further the following assumption holds.

ASSUMPTION A4.3:

THEOREM 4.3 (Chu and Koo, 1990, p. 1133)
If the upward mobility of the poor family improves in such a way that A4.3
holds, and if M and F satisfy A4.1 and A4.2, then as F1 increases, the CSD
and FSD relation characterized in theorem 4.2 must also hold.

When J = n in particular,

Expression FSD is the conventional first-degree stochastic dominance
relation, and expression CSD is a conditional stochastic dominance relation
which is stronger than FSD. This is the reward of the stronger CSM assump-
tion imposed. The FSD relation established is particularly helpful for
inequality analysis. For the class of Benthamite social welfare functions W1
= EjU(yj)n,j with monotonically increasing U(•), it has long been understood
(see Hadar and Russell, 1969) that n, exhibiting FSD to 7T0 implies

Therefore, one can conclude that, if A4.1 and A4.2 are satisfied, then a
reduction in F, can increase welfare for a very large class of social welfare
functions.7

The interpretation of A4.3 is similar to that of (CSM) and is therefore
omitted. Chu and Koo (1990) proved the following theorem.



where 0/71=Z/C&G,>
The almost-sure convergence property of the branching process char-

acterized in theorem 2.1 tells us that Q and n will eventually converge to a
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4.6 COMPARATIVE STATICS OF GROWTH RATE

In the income-specific models specified in the above sections, it is also
important to evaluate the impact of a family-planning project (usually
targeted at the low-income families in developing countries) on aggregate
population growth. The population growth rate Q is the dominant eigen-
value of the income-specific projection matrix. Clearly, as fr\ changes, Q
will also change. Our purpose is to evaluate the size of dQ/dFk. Again,
if we adopt (4.3) and (4.4) and go through the ordinary comparative
static analysis, it is unlikely to produce a neat result. The following is an
alternative.

Let us consider a change in the reproduction rate of a particular type
Fk, k e[1,...,n]. Suppose at period zero Fk increases from F* to F* + 6,
and suppose further that at period zero the steady state corresponding to
6 = 0 has been achieved. Let n,(6) denote the dynamic path of the type dis-
tribution at period t for a certain 6. By the definition of the steady state, we
have 7TU-(0) = nfMt and Q,(0) = Q* Vt. The dynamic version of (4.3) can be
written as

where we let the 5's that follow all variables remind us that the dynamic
system (4.5) is affected by the variable 6.

Differentiating (4.5) with respect to 6 and evaluating the result at d —
0 yields

One can iteratively lag (4.6) one period and substitute the lagged result in
the last term on the right-hand side of (4.6) to obtain



where u, and v, are the ilh element of the left and right dominant
eigenvectors.

Theorem 4.4 is a simple formula that enables us to easily predict the
steady-slate change of population growth as a result of changes in the repro-
duction rate for any type group. Notice that this theorem does not depend
on A4.1 or A4.2 and is true for all branching processes. Moreover, since uv
= 1 by theorem 2.1 and u and v are vectors with positive elements, it is clear
that ukvk < 1 for k = 1, • • •, n. Thus, theorem 4.4 signifies that a reduction
in Fk will entail a corresponding decrease in the steady-state population
growth rate, but the elasticity of changes is less than one.

4.7 EMPIRICAL ESTIMATION OF THE TRANSITION MATRIX

Vital rates in a Leslie matrix are easy to estimate and are available in almost
all countries in the world. But for an income-specific population model, esti-
mating the parameters in the projection matrix Q = [M X F] is not a
straightforward job. In an overlapping-generation model with suppressed
age structure, an element in the transition matrix, say Mi,j, denotes the cross-
generational transition probability that a child from a family of income class
j becomes a member of income class i. Since a specific parent-child line has
to be traced in order to calculate a meaningful transitional probability, in
general we have to have family-based panel data to estimate elements of
the M matrix. Moreover, even if family-based panel data are available,
the sample period has to be very long in order to calculate the across-gen-
eration Mi,j. Besides the NLS and the PSID of the United States, there are
not any panel surveys that cover such a long period of time.8 The existing
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new steady state, and therefore the changes in Q and n will also converge
to constants: d,Q,ldFk —> dg*ldFk and dn,JdFk —> dnfldFk. Furthermore,
theorem 2.1 tells us that as t —»oo, Q^ _> (£*)'ujvi, which implies that the last
two terms of (4.7) cancel each other out. With the above information, (4.7)
can be further simplified as

Because nf = v,/Z;v; V, by theorem 2.1, the above equation can be
rearranged to get the following theorem:

THEOREM 4.4:
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literature has some discussion on the estimation of across-period income
mobility, but that is different from the across-gcneration mobility that we
are interested in.9

Because most countries in the world do not have panel data that covers
a long enough period, Cheng and Chu (1997) proposed to use pseudo-panel
data to estimate the M matrix. Pseudo-panel data refers to the panel data
set constructed by aggregating cross-sectional sample points over various
cohorts. Specifically, people belonging to the same cohort are pooled and
treated as one observation. The state variable of this pooled observation is
the average value of all members of this cohort. Since the size of each cohort
is large, by averaging the state variable values over each cohort, we can treat
an observation of a cohort aged b + s in period t0 + s as a 'descendant' of
the cohort aged a in period t(), given that the age-a cohort has children aged
b in period t0. Thus, at each period we have several cohort observations 'con-
nected' with various other cohorts in other periods, and a pseudo-panel data
set is therefore constructed. For instance, for the data period 1976-1995 and
the cohort range aged 31-55, the pseudo-panel data set is shown in table
4.1. The boldface X's indicate the trace of one particular cohort.

Cheng and Chu (1997) divided the observations of the same cohort into
n income groups and obtained n cohort-income observation pairs in each
period. Let rf',j be the proportion of observations of income group i in period
t (among all observations of cohort group aged a). In each period we
observe the proportion vector II" = [TT?,,. . ., n"t,n} for all a. Following our
previously adopted notations, let F-, be the completed fertility of income
group i, F be the corresponding fertility matrix, s be the length of a gen-
eration, and M = [Mi,j] be the across-generation transition probability
matrix. For parents having a child aged b in period t, our analysis in chapter
2 tells us that the following equation is true:

TABLE 4.1. Representative Individuals in Pseudo-Panel Data

Data Period

1976
1977
1978

1994
1995

31

x31.36
X3 1.77

X31.78

X31.94

X31.95

32

X32.76

X32.77

X32.7S

X32.94

X32.95

49

• • X49.76

X49.77

X49.78

X49.94

X49.95

50

X50.76
X50.77

X50.78

X50.94

X50.95

55

X55.76

x55.77

X55.78

X55.94

. . X55.95

Because cross-sectional household surveys are quite common in many
countries over fairly long periods of time, observations of IT arc usually
abundant. Given the income-specific fertility matrix F, we can then search

6
7
8

4
5
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for an estimate of M, denoted M, which maximizes the likelihood function
corresponding to (4.8).10

For the case of n = 3 (three income classes), the estimated transition
matrix is

All estimates in the above matrix are statistically significant at the .01 level.
This estimated matrix can be used to calculate the steady-state income dis-
tribution of the society. Details can be found in Cheng and Chu (1997) and
will not be repeated here.



CHAPTER 5

Lineage Extinction and

Inheritance Patterns

5.1 BACKGROUND

Perhaps the most basic biological instincts of all creatures are to survive
and to produce offspring. In ancient times, poor hygienic environment and
occasional widespread epidemics obviously gave people strong reasons to
worry about the possible extinction of their own lineage. But to transform
such a worry into a mathematical problem, it is helpful if the upper class of
the society, which has the ability and the leisure to think about the problem
on an abstract level, also feels the possibility of such an extinction. Indeed,
this was the case in eighteenth-century western Europe.

The development of the theory of branching processes in fact started
with the calculation of the probability of family surname extinction. Mode
(1971) argued that one of the reasons for the decay of family names was
that "physical comfort and intellectual capacity were necessarily accom-
panied by a diminution in fertility." This statement, that parents choose to
have fewer children because they want increase their enjoyment of life,
seems to be a more suitable characterization of the argument of Becker's
(1991) contemporary household economics. Others, such as Chu and
Lee (1994), argued that it was the scourges of war and famine that were
responsible for the major rises of mortality in ancient history.

Whatever the cause of lineage extinction, as a large proportion of
family surnames continued to die out, Francis Galton (1873), one of the
founders of the theory of branching processes, presented his concern with
lineage extinction on an abstract level:

Problem 4001: A large country, of whom we will only concern ourselves
with adult males, N in number, and who each bear separate surnames,
colonize a district. Their law of population is such that, in each generation,
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Erlang realized that the above equation will have a root in [0,1] other than
the root £ = 1 if and only if the average number of sons of the parent
I/k^0kpk is greater than 1.

Erlang's analysis was very close to the correct solution, but a rigorous
and complete answer was provided only after his death. Furthermore, the
original problem 4001 concerned the extinction probability of a particular
surname, where offspring of the family were assumed to have the same
surname and the same reproductive vital rates. Mathematically, this corre-
sponds to the study of a single-type branching process, where the type is the
surname in question. The general case occurs when people have more than
one type, and each type of individual has a different reproduction rate. For
instance, people with different social status may have different reproduction
rates and survival probabilities, and the status of a person may change over
time. Modifying problem 4001 accordingly will change the problem to one
of studying extinction, which is clearly a degenerated steady state, of a mul-
titype branching process. Because extinction refers to the situation of nonex-
istence for any type of individuals, naturally the focus of extinction-related
research is not on the degenerated steady-state type distribution but on the
probability of becoming extinct. This is what we will study in section 5.3.
Before moving on to such an analysis, I shall persuade the readers in the next
section that lineage extinction is related to economic decisions.

5.2 ECONOMIC DECISIONS TO REDUCE EXTINCTION PROBABILITY

One drawback of the discussion along the lines of problem 4001 is that the
family head was assumed to react very passively to the pressure of lineage
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Po percent of the adult names have no male children who reach adult
life; p\ have one such child; p2 have two, and so on up to p5, who have
five.

Find (i) what proportion of the surnames will have become extinct after r
generations; and (ii) how many instances will there be of the same surname
being held by m person.

The problem of family surname extinction concerns part (i) of problem
4001; part (ii) is about the distribution of surnames (types), which was the
focus of chapter 4 of this book.

Problem 4001 did not attract much attention until Agner Krarup Erlang
became interested in this problem because his mother's surname, Krarup,
was about to become extinct. Erlang arrived at the solution below.

First, we remove the restriction in problem 4001 that a man can have
at most five sons, and let pk be the probability of having k surviving male
children. Erlang argued that the probability of surname extinction is the
solution to the equation
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extinction. Although it may be true that in ancient times the extension
of a family line mainly hinged upon the exogenously determined risk of
mortality, family members do have some choices in reducing such a risk.
For instance, Chu and Lee (1994) pointed out that when ancient Chinese
peasants could not tolerate the pressure of famine and high taxes that
threatened the survival of their families, many peasants chose to become
bandits. This is a job transition choice in response to outside mortality
pressure.1

Another more conventional choice by which the parent could reduce
the probability of family line extinction in ancient times was through a divi-
sion of bequests within the family. For example, in their study of the rule of
bequest division in historic southern Tirol, Cole and Wolf (1974) gave the
following explanation for the emergence of primogeniture:

He would like to see every daughter well married and every son with land
enough to support a family. Then too, he would like to see the holding that
he has maintained against the world for a lifetime remain essentially intact
to provide a material basis for perpetuation of the family line. However,
the meager resources at his disposal are, more often than not, insufficient
to fulfill both these goals. He must balance his desire to perpetuate his
name against the future of his children, (p. 176)

Adam Smith ([1776] 1937) also provided a similar argument for the
emergence of unequal sharing, with more emphasis on the economy-of-
scale property of land. He stated that in ancient western Europe "when land
was considered as the means, not of subsistence merely, but of power and
protection, it was thought better that it should descend undivided to one.
• • • The security of a landed estate • • • depended upon its greatness. To
divide it was to ruin it" (pp. 361-362). Smith concluded by saying that pri-
mogeniture was "introduced to preserve a certain lineal succession" (p.
362). Although in his discussion the property to be inherited is restricted to
land, the reason he gave for the choice of unequal division of bequests,
namely, the preservation of the lineal succession, is indeed not unlike Cole
and Wolf's argument of perpetuation of the family line.

Similar and more detailed observations of unequal human and physi-
cal investment among children can also be found in the East. Ho (1959,
1962) and Freedman (1966) pointed out that in imperial China not only
family members but also whole clans often pooled their money together to
subsidize just one child in a family for his human capital investment (edu-
cation fund). The anticipated result is that the particular child who gets the
extra help would pass the civil service examination and move up the social
ladder by becoming an "official" with guaranteed sizable income and
immense power. It was hoped that this civil service position would also
bring honor and prestige to the family and the clan and broaden the
prospects for the future lineage as well.
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After studying kinship relations in historic Japan, Nakane (1967) con-
cluded that "in order to keep the succession line firm, there is a tendency
to earlier appointment of successor, and thus to primogeniture" and that
"succession by primogeniture also tends to appear in the wealthy sector of
the family. The degree of institutionalization of the household becomes
greater, and the line of succession becomes more important" (pp. 10-11).
Nakane believes that the primogeniture rule has the advantage of estab-
lishing the line of control within the family, which is deemed important for
rich and large families, and the purpose of primogeniture is to keep the suc-
cession line firm.

There are many other anthropological discussions on the decision
of bequest division against other cultural backgrounds, but the above
examples provide the clearest explanation as to why such a phenomenon
existed. Because of the high mortality rate in ancient times, family heads
cared not only about their own well-being but also about the firmness of
their lineage succession. Indeed, as Freedman (1966) and Nakane (1967)
pointed out, family-line succession was viewed as a duty of the family head
in traditional societies in both China and Japan. This notion of lineal suc-
cession seems to be consistent with Smith's "preserving the lineal succes-
sion" or Cole and Wolf's "perpetuation of the family line" in ancient
Europe. Although Cole and Wolf, Nakane, and Smith all argued that the
choice of the division of bequests might be an effective way to achieve the
objective of preserving lineal succession, none of them made any clear
expositions of it.

The discussion above clearly does not present the whole picture of the
historical social structure of various countries, but it does provide strong
evidence showing how people choose their division of bequests to reduce
the probability of lineage extinction. In the next section, I will first derive
the probability of lineage extinction without parental choices. This is the
case analyzed by most probability theorists. In section 5.4,1 will modify the
formula of the lineage extinction probability in cases when parents can
make their bequest division decision to minimize, such a probability. Finally,
I will analyze when the primogeniture rule will become a parent's optimal
decision.

5.3 PROBABILITY OF LINEAGE EXTINCTION

5.3.1 Role of the Dominant Eigenvalue

I showed in chapter 2 that the dominant eigenvalue is the population
growth rate in the steady state. Intuitively, population extinction is less
likely if the steady-state growth rate is larger. In this subsection I will derive
the exact formula for lineage extinction probability and demonstrate that
the above intuition is by and large correct.
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The evolution of N,, characterized in chapter 2 as N, = QNt-1 can be
started from any initial vector N0. if we consider a vector NO = (0,. . ., 0,
1,0, • • • , 0) = (5,, where 1 is the ith element of this vector, then the N, evolved
will be the distribution of period-f offspring of a type- i person at period
zero. Let £t,i be the probability that the offspring of a period-0 type-i agent
will become extinct at period t:

So the probability of eventual extinction corresponds to

Because the event [N, = 0] implies the event [Nt+l = 0, we have £,.,• < £,M ,
^ 1. Because every increasing bounded sequence has a limit, the limit of
the above expression certainly exists.

The formal relationship between the probability of lineage extinction
and Q, the dominant eigenvalue of Q, is given in the following theorem:

THEOREM 5.1 (Mode, 1971, p. 16)
Suppose the population projection matrix Q is positively regular, and Q is its
dominant eigenvalue, (i) If Q < 1, then £,• = 1 V; = 1, 2, • • •, n. (ii) If Q >1,
then £,•< 1 Mi = 1, 2, • • • ', n.

So far I have only characterized the definition of lineage extinction
probability and its relationship with the dominant eigenvalue. I now show
how to calculate this probability.

5.3.2 Deriving the Extinction Probability

Let r = (r1, • • • , r,,) be an n-vector of nonncgative integers. Let p,(r) be the
probability that a person of type i will have r\ children of type 1, • • • , and
rn children of type n. For all n-dimensional vectors of real numbers s =
(S1, • • •, sn) such that l l s l l < 1, we define a generating function as follows:

We note that if person i has r, surviving children of type 1, • • • , and r,,
surviving children of type n in the first period, the lineage following person
i will become extinct after t periods if and only if all the lineages of these
(r1, • • • , rn) children become extinct after t — 1 periods. This event will
happen with probability

But the event that person i has r surviving children of the various types and
the event that person /' has r(r •£ r) surviving children arc mutually exclu-
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sive, so person i's overall probabilities of extinction after t periods need to
be added together:

Let £, denote the vector (£M, • • •, £,„) and h denote (h1, • • •, hn). We see
that (5.2) can be rewritten as 'C,tj = /z,-(£, ,), or in vector form

Since L,,J is increasing in t tor any i, in view of figure 5.1, we see from
theorem 5.2 that the h,(.) function must first intersect the 45° line from
above.2 So starting with £u = p?i;(0), i = 1, • • • , n , we will eventually get the
true extinction probability £.

FIGURE 5.1 The shape of h(.).

Given £,, equation (5.2') gives us a way to calculate £, through iteration. In
fact, Mode (1971) tells us that through (5.2') we can eventually get the
correct value of extinction probability. Specifically, we have

THEOREM 5.2 (Mode, 1971, p. 16)
Regardless the value of Q, the probability of lineage extinction is always the
smallest nonnegative solution to the vector equation

It is easy to see that the probability of extinction after one period is
simply
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5.4 LINEAGE PRESERVATION DECISIONS

The discussion in section 5.3 is of the case without endogenous parental
decisions. When parents are aware of, and also care about, the probability
of lineage extinction, they will want to do something to avoid this eventu-
ality. As I mentioned in section 5.2 above, one popular way in ancient times
was to choose a rule of bequest division so that the overall probability of
lineage extinction could be minimized. Below I will establish an economic
model of bequest division compatible with the historical observations made
in section 5.2. We want to investigate under what circumstances a parent
will choose to divide bequests unevenly and what kinds of implications we
can derive from this behavioral model.

5.4.1 An Overlapping-Generation Model

In order to concentrate on the parental decision on bequest division, as
in chapter 4, we suppress the age structure and consider a variant version
of Samuelson's (1958) overlapping-generation model. Each individual in
the society lives for either one or two periods. People who die in the first
period of life (childhood) will not be able to produce any children. People
who survive to the second period (adulthood) will be able to reproduce m*
children; among those children, some may die before they reach adulthood
from causes such as malnutrition, disease, or poor hygiene. More gen-
erally, one can say that people make m* reproduction attempts, and
instances of miscarriage or sterility can be interpreted as failures to raise
children to adulthood. To avoid deliberations on the impact of different
mating systems and on the sex preferences of bequests, I shall not differ-
entiate sexes in this chapter. For analyses of phenomena at a time when
women were not allowed to play important roles in most societies, this
assumption seems to be a reasonable one. Thus, in this chapter there is no
difference between "primogeniture" and "one child receives most or all the
bequests." 'The situation here is the same as in Pryor (1973).

5.4.2 Family Incomes and Bequests

Assume that the factors affecting child mortality can be summarized by a
single variable: family income (y), with a high- (low-) income family having
better (worse) nutrition and better (worse) hygiene and, hence, a low (high)
probability of child mortality. For 0 < w s m*, let p(m\y) denote the prob-
ability that m out of the m* children survive to adulthood in a family with
income y. Clearly, I,",l*0p(m\y) = 1. Because child mortality rates are related
to family incomes, it is therefore analytically convenient to classify people
by their incomes rather than by their ages.

As in chapter 4, we assume that the income of a family depends on the
family head's productivity, which in turn depends on both his endowed
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bequests (b) and luck. A person's luck is characterized by a random vari-
able nb, which may represent his fortune in operating his business. Here the
subscript on n implies that its distribution may be affected by b. The rela-
tionships among income, bequests, and luck is summarized by a production
function

5.4.3 Parental Preferences and Bequest Division

Given the above simplified setup, the only decision that is left to the family
head is the division of his bequests among his m surviving children. How
the family head is going to divide his bequests will certainly depend on the
objective function he carries. Following the evidence presented in section
5.2, we assume that the parent tries to avoid, to the greatest extent possi-
ble, lineage extinction.

Consider a family head A with total bequests B(y, m) to be divided.
Suppose m ± 0, and let the bequest received by the ith child be bi. Then
according to (5.3), the ith child will have yi = f(bi, r/h) as his income to start
with. The number of surviving offspring the ith child will have will be deter-
mined by the probability distribution p(m\yf). The problem A faces is the
division of B(y, m) into bt's, i = 1, • • • , m, in such a way that the probabil-
ity of extinction of his lineage can be minimized. Now we want to derive
the corresponding version of the iterative equations in (5.2) with endoge-
nous bequest division decision.

Let Euv be the expectation operator of u conditional on v, b =
( £ > ! , • • • , bm), and fi be the feasible set of allowable bequest division:

THEOREM 5.3 (Chu, 1991, p. 84)
Suppose the stochastic event that one child has no surviving offspring at time
t + 1 is independent of the event that any other child has no surviving off-
spring? The solution to the problem of minimizing lineage extinction prob-
ability is characterized by the following iterative functional equation:

Within each family, let e be the total expenses of consumption and child
rearing. Then clearly e will be a function of y and m:e = e(y, m). The total
bequests left will therefore be

The determination of the B(.,.) function is assumed to be exogenous and
is beyond the scope of our analysis in this chapter.

Chu (1991) proved the following theorem:
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Equation (5.4) is in fact a variation of (5.2); its meaning will become
clear as we proceed. Suppose the current time is zero. The term £rj!. is the
probability that a child with income y, in period 1 has no surviving offspring
t periods later, which will be in period t + I. Let G(yl\bi) be the condition-
al probability mass of y, given b,. Then

will be the ith child's conditional expected probability of having no surviv-
ing offspring t periods later, given that i receives b,. Then the product of m
terms in the curly brackets of (5.4) will be the probability that all the m suc-
cession lines vanish at t + 1. Note that this product term is similar to the
power product term in (5.2).

Since the parent can choose his desired bequest division rule within the
domain Q, with the assumed preferences of minimizing extinction proba-
bility, he will choose a division rule that minimizes the terms in the curly
brackets in (5.4). Because the events of bringing up different numbers of
children to adulthood are mutually exclusive, the probability of each should
be summed together, with the respective probability values as weights. The
meaning of (5.4) is now clear. Furthermore, since the extinction pro-
bability after one period is

we have an initial value for starting the iteration, and £, Vf > 1 can be easily
obtained.

5.5 SOME ANALYTICAL EXAMPLES

For demonstration purposes, let us consider some simple examples from
which one can see how comparative static analysis can be executed.
Suppose that (i) there are only three income groups in the society: H, M,
and L (indicating, respectively, high, medium, and low) and that (ii) each
parent rears either zero or two surviving children—that is, for y e {y11, yM,
y i } , p ( m \ y ) > 0 only when m = 0 or m = 2. Let pHO = p(Q\y/i) be the prob-
ability that a high-income person fails to secure an heir; then clearly p(2\yll)
= 1 ~ /?«(>The terms pm i\ndp/0 are similarly defined. Let the total bequests
left by family heads of various income groups be bL, bM, and b,,, respec-
tively. Assume that (i) b,: cannot be further divided and can be left to only
one child; (ii) bM = 2b/., that is, it can be either left to one child or divided
into two equal shares, with each child receiving bL ;and (iii) bH = 2bM, inter-
pretated similarly to (ii).4
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If the head of a middle-income family decides to divide the bequests
into two equal parts, each child will receive ft/., and the division of bequests
will be denoted as (bL, bL). If the same family head decides to let one child
receive all the bequests, this division will be denoted (BM, 0). Let Q,v be the
feasible division set of a middle-income family; then QM = {(bL, bL), (bM,
0)}. With similar notations, we have QH = {(bM, ftM), (ft//, 0)j. Finally, Q/, =
{(ft/,, 0)} by assumption.

Suppose the bequest-income functional relation y = /(ft, r/h) is charac-
terized by the following transformation matrix:

In the above table, for instance, TMH is the probability that a child with bM

endowment turns out to have y,, income. It goes without saying that I/f,7 =
1 Vz. There are some assumed zero-probability items because we want to
simplify the presentation of the calculation later.

To calculate the probability of lineage extinction, we have to write
down the steady-state equation (5.2") for our example. First, let us con-
sider the case under the rule of equal bequest division. It turns out that the
corresponding equations of (5.2") are as follows.

Solving (£*, £w, £*/) jointly from the above three equations, we get the
respective values of the extinction probability of the three income groups.

If the middle-income parents decide to divide their bequests unevenly,
then (5.6) will become



One can clearly see that if the bequest division rule is changed from
equal sharing to unequal sharing, the extinction probability should be
solved from (5.5), (5.8), and (5.9). We denote the extinction probability
vector solved out in this case (£,,, £M, £,/). If the (£/., £M, £//) values solved
out in the latter case are smaller than (£*, £jji, £*/) in the former case, high-
and middle-income parents will choose to divide their bequest unevenly,
provided that their objectives are to minimize the probability of lineage
extinction. Of course, this is an extreme case; it is also possible that the
optimal solution involves equal bequest sharing for some income classes
and unequal bequest division for some other classes.

5.6 EMPIRICAL OBSERVATIONS IN HISTORY

5.6.7 Population Growth and Lineage Extinction

As Habakkuk (1955) pointed out, many French demographers believed
that the provision for mandatory equal division of bequests in the
Napoleonic Code tended to retard population growth in that period. He
argued that "the peasant who worked to keep his property intact had a pow-
erful incentive to limit the number of children between whom his pro-
perty would be divided" (p. 5). Here I can provide an alternative explana-
tion to the negative correlation between mandatory equal division of
bequests and the low population growth rate that Habakkuk mentioned.

I believe that with lineal prosperity as the family's objective, as assumed
by many anthropologists who were mentioned in section 5.2, if an unequal
division policy appears to be optimal, this optimal policy is more efficient
in achieving such an objective. If, however, all kinds of unequal division are
prohibited by law, the degree of lineal prosperity that the family head can
manage to achieve will also be restricted. Thus, other things being equal, it
does not seem astonishing to observe a negative relationship between pop-
ulation growth and the degree of equal division that turned up in the period
in which the Napoleonic Code was enacted.

5.6.2 Population Growth and Social Mobility

Another interesting historical study of the interaction between primogeni-
ture and population growth is Ho's (1962) analysis of imperial China. Ho
discovered that China experienced almost continuous population growth
from the late fourteenth century through 1850, despite the ceaseless wars
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If the high-income parents decide to choose an unequal division, equation
(5.7) will have to be rewritten as
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in this period. According to Ho, the civil service examination, which was
instituted in 1371 and lasted until 1904, had opened up the opportunity for
children of low- and middle-income families to move upward socially. Most
poor or middle-income parents could afford to send only one of their chil-
dren to try the civil service examination. The designated child received a
larger share of educational investment from his parents. Thus, the civil
service examination contributed to the unequal distribution of parental
investment in children. The fact that it was a popular method of investment
division during the period revealed in turn that unequal division was indeed
a more efficient way of attaining the objectives all parents had in mind. If
parents' objectives in imperial China were to make family lines prosperous,
as Freedman (1966) described, then Ho's finding concerning the continu-
ous population growth during the period in which civil service examinations
were in force should not come as a surprise.

5.6.3 Why Was There Widespread Primogeniture
In Ancient Times?

Having characterized the problem of minimizing the probability of lineage
extinction, one natural question is, Uunder what circumstance will an
unequal division of bequests be the solution to this problem? If we have no
reason to believe that parents are concerned more about the extinction of
a particular line of their offspring, why would there be prevalent institu-
tions of unequal bequest division in ancient times, as described in section
5.2? This question is difficult to answer analytically, but I can provide some
conjectures.

I believe that the structure of the capital market is an important factor
influencing the parents' decision. If the capital market is nearly perfect,
parents' incentive to choose an unequal sharing rule will be weakened for
two reasons. First, with a perfect capital market, funds can be easily bor-
rowed, and hence the role of bequests (private fund) is less important.
Second, a perfect capital market also implies high intergenerational mobil-
ity of income groups, and hence the long-term benefit of enabling one child
to move to a higher income group will not look attractive because any hard-
won family fortune does not matter much in the long run.

When the capital market is imperfect, and hence income mobility of
the society is rigid, a family head may be more amenable to an unequal divi-
sion of his bequests because he knows that once the best-endowed child
becomes rich, it is more likely that the offspring of this child are going to
stay rich for some time to come. Furthermore, with rigid income mobility,
family heads of the poor- or middle-income group may resort to the tried-
and-true wisdom of unequal bequest division to break the intrinsic rigidity
so that some of their offspring, who would most probably stay poor if
bequests were divided evenly, may now stand a better chance of joining
the rich. As such, although primogeniture does cause atemporal income
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inequality, it can break the intertemporal rigid upward mobility and may
eventually help to equalize the steady-state income distribution. The rea-
soning given above is clearly different from that of Pryor (1973) and Blinder
(1976), who in essence argued that primogeniture would cause more income
inequality. Instead, I argue that primogeniture may be caused by the intrin-
sic rigid structure of income mobility.

It is not my purpose here to provide an analytical answer to the ques-
tion of when parents will divide their bequests unevenly. But equation (5.5)
clearly shows that parents can reduce the chance of surname extinction by
appropriately allocating the size of bequests to children, even if all children
are ex ante equal. This gives a theoretical foundation to the historical obser-
vations given in section 5.2. A numerical example and some extensive analy-
sis were given by Chu (1991). He showed that when the intrinsic social
mobility is rigid, parents will indeed choose to divide their bequests uneven-
ly, which increases the intergenerational upward mobility of the low-income
class and eventually improves the income inequality in the steady state. This
is consistent with the argument presented above.



CHAPTER 6

Sex Preferences and Two-Sex Models

6.1 BACKGROUND

The demographic models I reviewed in previous chapters are all one-
sex models, in which the sex referred to is usually the female. This setting
can be justified if we assume either that the life-cycle vital rates (as func-
tions of state variables) for both sexes are the same or that the population
dynamics are determined by one sex alone, independent of the possibly
relative abundance of the other sex. However, at least for human
population, neither assumption is valid. The ratio of newborn girls and
newborn boys is close to one, but is less than one for almost all countries
in the world. The age-specific mortality rates of women are also lower than
those of men worldwide. This is called sexual dimorphism in the demogra-
phy literature.1 Such a dimorphism makes the study of two-sex models
indispensable.

If we look at the male and female vital rates, we find that the differ-
ences are small. Despite this small difference, population dynamics derived
solely from male vital rates and those derived solely from female vital rates
will show ever-increasing differences with the passage of time. Furthermore,
because the intrinsic growth rates derived from male and female lines,
respectively, are distinct, we cannot avoid the undesirable conclusion that,
if we do not incorporate males and females in a unified model, eventually
the sex ratio will become either zero or infinity, which is never the case in
reality. This is the inconsistency we have to overcome while dealing with
population models with two sexes.

Another technical difficulty with two-sex modeling has to do with the
irreducibility of the state-transition matrix. I mentioned in chapters 2 and
3 that in an age-specific one-sex model, because people older than a par-
ticular age, say /3, are not fertile anymore, the age group older than /3 is an
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absorbing set; hence, our focus of population dynamics can be restricted to
the age set [0, /3]. This is why we can transform the n X n Leslie matrix to
a Lolka renewal equation. In a two-sex model, however, there does not exist
a common upper bound for the reproduction of both sexes, for a male older
than /3 can marry a female younger than /3 and become fertile again. Thus,
as Pollak (1990) pointed out, in a two-sex model we cannot simplify our
analysis by dropping some age groups; hence the convenient Lotka equa-
tion does not apply.

The problem of sexual dimorphism is more serious in the present than
in the past, particularly in areas with prevalent sex preferences. Sex-based
abortions made possible by modern medical technology have enlarged the
gap between the sizes of male and female newborns. This would certainly
affect the population sex ratio in the long run. Furthermore, given assarta-
tive mating, parents' uneven resource allocation to boys and girls would cer-
tainly affect the matching in the marriage market, which in turn would
change the equilibrium distribution of wealth in the economy. This chapter
will devote to the discussion of the two-sex models, with more emphasis on
the role of parental sex preferences.

6.2 Two-SEX MODELS

In his series of publications, Robert Pollak (1986, 1987, 1990) made a sig-
nificant contribution to solving the two-sex problem. Pollak's discussion
contains two parts: the case with permanent marriage (or permanent union
more generally), and the case with one-period "southern California"
marriage. In this subsection I introduce the simpler one-period marriage
analysis.

6.2.1 The BMMR Model

Pollak (1990) proposed a Birth Matrix-Mating Rule (BMMR) model to
deal with the problem of sexual dimorphism in the one-sex setup. Specifi-
cally, a BMMR model contains the following elements:

(i) An age-specific birth matrix {mLj}, where m^ is the expected
number of female offspring born in a period to a couple with
female and male aged i and j, respectively.

(ii) A union or marriage function that maps the societal age-
specific female-male vectors, denoted N and N ', respective-
ly, into an age-specific number of unions uLj. Thus, M;./N~, N+)
gives the total number of next-period unions with female aged
i and male aged j, given that there are N females and N'
males in the society in this period. We require that u,j(x,y~) be
nonnegative for any x and y, and that ui:,(x. y) < x and u,j(x,
y) ^ y-2



where CD = (a*0 • • •, to,, _ i) and w'1 ^ (cod", • • • , &>n i)- it is clear from (6.3)
and (6.4) that for a > 1, <x>; and <y,t are linear functions of (N,~, N,+). But
because ui,j is in general a nonlinear function of N,~ and N,+ , u>0 and &>(} are
nonlinear. So what we have in (6.1)~(6.4) is essentially a nonlinear branch-
ing process with expanded (age-sex) state variables.

6.2.2 The Steady State

Notice that if a steady state of the two-sex model exists, it must be such that
N, and N,1 grow at the same rate, otherwise the sex ratio will eventually be
either zero or infinity. Thus, Pollak (1990) proposed the following definition
of steady state for the two-sex model: a steady state is a triplet (N~, N+, Q)
such that

Equations (6.1)-(6.4) together constitute the dynamics of all age
classes. The state space can be written as (N,~, N,+), and the dynamics can
be expressed as

As to other age groups, the state-transition rule is even simpler. Let A/7,,, and
N^a, respectively, be the number of females and males aged a at period t.
h

If the ratio of male-to-female newborns is a, then
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(iii) A sex-specific survival schedule (p'^p-'), where pi (pi ) is the
female (male) survival probability from age i to age i + 1,
similar to the schedule in any one-sex age-specific model.

It is believed that this BMMR model contains the most heuristic approach
to analyzing the two-sex problems of human population, and I shall provide
a preliminary introduction below.

Given the BMMR setup, it is straightforward to derive the dynamic
state-transition rule of this sex/age-specific model. It is important to
note that the state space in Pollak's model is age-sex rather than age
alone.

The total number of newborn females in period t + 1, denoted A^+u,
is

hen



We say that a population structure is g-productive if there exists a value of
Q for which o)u"(N~(g>), N * ~ ( Q ) > Q. That is, there are some p's such that the
number of females born by the normalized population is at least gi.This is
essentially a technical condition, and Pollak (1986) showed that it is likely
to be satisfied for human populations.

We notice that the intrinsic growth rate Q is the key parameter of the
model, for once Q is determined, the relative size of each age-sex compo-
sition can be calculated from the sex-specific mortality schedule. Thus,
Pollak concentrated upon the determination of the equilibrium (3, Pollak
(1986) proved the following theorem:

THEOREM 6.1 (Pollak, 1986, pp. 251-253)
Suppose (i) uLJ(x,y) is well defined for all pairs of (x, y); (ii) u^(x, y) is con-
tinuous in (x, y); (in) M//JC, y) is homogeneous of degree one in (x, y); and
(iv) the population is Q-productive. Then there exists a steady state satisfying
(6.5).

6.2.3 BMMR with Persistent Union (RMMRPU)

The above discussion refers to the case with one-period unions, which is
somewhat restrictive. Because the family decision period for a complete
fertility is quite long, a multipcriod setup with persistent marriage is evi-
dently necessary. Pollak (1987) extended his analysis to this case and
derived a similar result, which is shown below.
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In view of (6.3) and (6.4), we see that Ma > 1, if (N',.,, N^) is doubled,
( W M I , « - . I > ^<+i ,«+i ) will also double. Thus, because ui,j is the only source of
nonlinearity, in order to sustain a steady state as defined in (6.5), unavoid-
ably we must assume ui,j to be homogeneous of degree one in (N, N").3

This assumption means that doubling the number of males and females will
double the pairs of unions formed and precludes the possible influence of
population density on the formation of unions.

The last technical assumption needed to establish the steady state of a
two-sex model is that the reproduction rate of the society is not terribly
low; otherwise, the population will certainly become extinct. This assump-
tion can be explicitly specified using the idea of a Q-normalized population.
To construct a Q-normalized population, we divide N, by Q'\

Thus, a steady state can be characterized by a Q such that
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Because we are going to separate each family union into several dimen-
sions, to simplify the notations I shall list them as elements in parentheses
instead of in the subscript. Let us denote u,(i,j, n', n ), m ~(Lj, n h , n " ) , and
m*(i, I, n\ «~), respectively, the number, the probability of bearing a girl,
and the probability of bearing a boy associated with unions of females
aged i and males aged j, having n ' boys and n girls at period t. The fertil-
ity rates m~ and m~ are assumed to be time-invariant, and hence do not
have a time subscript. The total number of newborn babies of each sex is
then

Summing u,(i,j,n' ,n) over n1 and n yields the total number of fema
/-male/ unions at period t. Thus, the available number of aged i females fo
possible period-(t +1) union is

where the superscript a refers to availability. Similarly, the number of aged
j available males for possible period-(t +1) union is

The number of new unions at period / + 1 is a linear homogeneous func-
tion of N,y and N,y:4

Besides this new union, there is a probability d ( i , j, nH, n:~) of determining
whether an old union will persist in the next period:

where w^, and h,t+1, are the random numbers of boys and girls at period t
+ 1, depending on how many sex-specific children are born in that period.
Equations (6.7) and (6.8) provide a full characterization of the unions at
period t + 1.

Let N,~ and N,1 be vectors of females and males of all ages and U, be
the vector of all types of unions. The state variables now become (N, ,
N,f,U,), and equations (6.3)-(6.4) and (6.6)-(6.8) can be treated as a trans-
formation from (N,~, N,", U,) to (N,~. b N7M U,M ) - A steady state of this
BMMRPU model can be similarly defined, Pollak (1987) proved that such
a steady state exists as long as the union function /u is homogeneous of
degree one.5



64 Part I: Steady States

6.2.4 Applications to Other Type Spaces

Pollak's formulation of the two-sex problem is neat and can be applied
to other type-specific population models as well. All we have to do is to
specify an expanded type-sex space, a type-type union function, and
a union-specific reproduction function. Then we can apply Pollak's
theorem almost directly and establish the corresponding type-sex steady
state. An application will be briefly mentioned in the last section of this
chapter.

6.3 FERTILITY DECISIONS AND SEX PREFERENCES

6.3.7 Two Types of Sex Preferences

Economists have mentioned two types of sex preferences in the literature.
In the first type, parents have a desired sex composition planned for their
children; and when the existing sex ratio of children is inconsistent with
their desired composition, they either have more children (Ben-Porath and
Welch, 1976,1980; DeTray, 1984) or shorten the birth interval (Rosenzweig,
1986) so as to facilitate the realization of their desired ratio. The second
type of sex preference is related not to the birth decision but to the resource
allocation among children (Behrman et al., 1986; Chu, 1991). Parents with
son preferences would give more resources to sons than to daughters.
Although there are cases of daughter preferences or one-of-each-sex pref-
erences, the prevailing type in most societies is son preference. The ques-
tion is: How would these prevailing micro household preferences affect the
macro population characteristics in the equilibrium?

The first type of sex-preference behavior has been rigorously studied
by Leung (1991), and the discussion of the second type of sex preference
will be left to the last section of this chapter. The background of Leung's
study was based on the premise that no techniques such as amniocentesis-
based abortion or sex-based selective implantation are allowed to be used.
If these techniques that have high probability of success are available and
legal, then sex selection will involve little risk, and there is no need at all
for parents to bear more or to shorten the birth interval. Because amnio-
centesis and selective implantation for sex selection were not widespread
even in the 1990s and are still illegal in many places around the world,6

Leung's analysis is still relevant.
Leung assumed that a typical couple faces the following '/"-period deci-

sion problem:
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where ht+1 is the probability of birth in period t + 1, which is a variable
chosen by the parents at period t; W(h,+1) is the cost associated with choos-
ing ht+ 1; n,' and n,~ are the number of boys and girls the parents have at
period t; p, and q, arc the costs associated with rearing a boy and a girl,
respectively; d is the discount rate; y, and c, are the household income and
consumption, respectively, at period t; E0 is the expectation operator;
U(.,.) - W(.) characterizes the utility flow at period t, and V(.,.) is the value
function at period t + l.The derivation of v will be specified below.

6.3.2 The Optimal Stopping Rule of Birth

In the above maximization problem, the state variables are n,1' and n, , and
the parents have to determine the "optimal stopping rule" of childbearing.
Of course, if the parents intend to have one more child in period t + 1 by
raising h,±\, whether they will have one more boy or girl is a random event.
It is assumed that women would become infertile in period T + 1 so that,
other than incidence of mortality, the stock of children will become
unchanged after period T + L

Let a be the probability of giving birth to a boy. Standard analysis of
dynamic programming tells us that the solution to the above problem can
be characterized by the following Bellman equation:7

Substituting VT,\ into (6.9) and iterating, we can derive V, for every t.
Suppose p, = p and q,— q for all t, and parental utility function has the fol-
lowing specification:

Notice that the functional form of V, is derived instead of assumed.

6.3.3 A Testable Hypothesis

After period T + 1, the time of becoming infertile, h, = 0. and the size of
(«,', n,) will not change V t > T + 1. By definition, V-r\ \(n\ -, i, nr+\) is the
discounted sum of all future utility flow:8



6.4 MICRO SEX PREFERENCES AND MACRO SEX RATIOS

The sex preferences presented above are characterized by the parents'
attempt to change the boy/girl ratio within their family. Our question is
whether these (widespread) micro attempts would affect the macro char-
acteristics of the population. Specifically, if parents with son preferences
have an "at least one boy" fertility decision rule, how would the steady-state
sex ratio be affected? The question was raised by Ben-Porath and Welch
(1976), and there has been much biological research trying to answer this
question in the past ten years.

6.4,1 Comparative Statics of the Sex Ratio

The sex ratio of males to females older than 2 years will certainly be
affected by the age-specific mortality schedule. So the number of age-
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where /3 and y are time-invariant parameters. Since T + 1 is the time of
becoming infertile, given (6.10), we sec that VT + l will be a function of (a / , \
+ / faf+i + y«7-+i). Substituting this back to (6.10) and iterating, we see that
V, is also a function of (/3n,+ + y«,~) Vr. Given this result, Leung proved the
following theorem:9

Theorem 6.2 (Leung, 1991, p. 1082)
Let the optimal h, , chosen at period t + 1 be hf[{. If (6.10) holds and p, =
p and q, = q for all t, then

For any two families with the same number of children, the above
theorem provides us with a testable prediction: the family with more boys
tends to have a smaller probability of having one more birth. Or in a cross-
sectional context, theorem 6.2 predicts that in a society with stronger son
preferences, the fertility rate of all periods (certainly including the steady
state) should be higher. This is the first implication of son preferences, which
has induced extensive research. Repetto (1972), Ben-Porath and Welch
(1976,1980), and Leung (1994) all used micro data about family decisions
to test whether the existing male/female composition of children has any
(significantly) negative impact on parents' decision to have more children.
The empirical evidence by and large does support such a negative impact.

The premise of theorem 6.2 is equation (6.10), which means that there
is a fixed tradeoff between sons and daughters. If son preferences originate
from productivity differences between men and women, then (6.10) essen-
tially assumes that such a productivity difference is roughly constant.
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specific newborn babies (/V7, A'O should be more appropriate for us to use
to study the impact of parental sex preferences.

If the relative schedules of m (.) and m'(.) are independent of parental
sex preferences, then the resulting aggregate sex ratio will not be affected
by the prevalence of sex preferences. The reasoning is simple: if the prob-
ability of bearing a boy or a girl is o: (1 — a), then the intention of parents
with son preference to bear more children will only make them face more
o: (1 - a) chances; the realized societal sex ratio outcome of newborn
babies, by the law of large numbers, however, must always be a: (1 — a).

But recent biological studies have come up with strong evidence that
points in a different direction. According to James (1990, 1992, 1995a,
1995b) and Williams and Gloster (1992), bearing a male or female baby is
not a totally random event. They pointed out that factors such as follicular
phase length, parental hormone level, race, parental coital rates, and caloric
intakes all have influence on the newborn sex ratio of humans and other
mammals.10 Among these factors that influence the sex ratio, some (such as
the hormone level or the parental coital rates) are not society-based but
indeed individual-specific. For instance, if a mother has a lower-than-normal
hormone level, according to the scries of research by James, she is more
likely to bear girl babies. In general, there are certain parents with low
hormone level or other characteristics who have larger probability than
others to bear female babies, and they are called girl producers by Ben-
Poralh and Welch (1976). Similarly, parents who have larger probability
than others to bear male babies are called boy producers.11 I will show that
this finding has helped in establishing the relationship between parental sex
preferences at the micro level and population sex ratio at the macro level,
a relationship strongly related to the main focus of this volume.

If parents have strong son preferences, then the boy producers are
likely to be satisfied to keep the family size relatively low, whereas the girl
producers will have to bear many girls before they finally have enough
boys. As such, we would predict that for regions without sex preferences
or with even-handed sex preferences, the aggregate sex (male/female)
ratio of newborn babies should be nearly uncorrelated with the fertility rate;
whereas for regions with strong son preferences, the male/female
ratio of newborn babies should show a pattern negatively correlated
with the fertility rate. Conversely, the existence of a significantly negative
correlation coefficient in some countries provides objective evidence of
their son preferences. This is a relationship against which one can lest the
data.

The above negative-correlation prediction is in fact robust even for
regions known for prevalent (albeit illegal) sex-based abortion. In these
regions, parents do not have to have a lot of births to achieve the number
of sons they desire. They can keep on aborting until a boy is on its way,
so that the resulting male/female ratio of newborns may be high but
the fertility rate will remain low. Thus, even with prevalent sex-based
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abortions, there is still a negative correlation between the fertility rate and
the male/female ratio of newborn babies in areas with strong son
preferences.

In summary, we have

THEOREM 6.3
Suppose the probability of having a male or female baby is individual-
specific. Then, other things being equal, for areas without sex preferences or
with one-of-each-sex preferences, the aggregate sex (male/female) ratio of
newborn babies should be uncorrelated with the fertility rate; whereas for
areas with strong son preferences, the male/female ratio of newborn babies
should have a pattern negatively correlated with the fertility rate.

6.4.2 An Empirical Test

Let the fertility rate and the sex ratio (boys/girls) of newborn babies of
country i at period t be, respectively, m,,, and r,,. The above analysis clearly
predicts that, other things being equal, ru and mu should be more negatively
correlated in areas with stronger son preferences. Chu and Yu (1996) tested
this hypothesis using the United Nations data, which will be discussed
below. For countries lacking reliable micro data of fertility, such a macro
estimation and testing may be an interesting alternative.

Based on extensive review of the literature, Williamson (1976) pro-
vided a summary of rank orderings of parental sex preferences for differ-
ent societies. Because there arc some "areas" (instead of countries) in
Williamson's study for which fertility rate data are not available, Chu and
Yu (1996) chose 15 countries from Williamson's summary for their statisti-
cal analysis.

A premise of the negative-correlation prediction in the previous sub-
section is that fertility is an active control variable of parents. If parents
have very high fertility rates and continue to give birth, then they will not
stop bearing children even after they have several boys. So in countries with
a high fertility rate, son preferences will not be revealed in birth decisions
and will not have anything to do with the fertility rate. Thus, sample points
that, for religion or other reasons, have persistently high or increasing fer-
tility rates and appear not to practice birth control should be ruled out. Fur-
thermore, because in the postwar baby-boom periods there are high fertility
rates that are not related to sex preferences, those observations should also
be ruled out.

Sometimes men and women in the same region were found by
Williamson to have different intensities of son preferences, but usually the
difference is not large. In their empirical analysis, Chu and Yu used women's
(mother's) son-preference index.12 As shown in table 6.1, among the sample
countries, Tunisia and Egypt are ranked +4 by Williamson, meaning that
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TABLE 6.1. Data Period and Son-Preference Index of 16 Countries

Group Country

1 Egypt
Tunisia
Korea
Taiwan

2 Denmark
Finland
Norway
Sweden
United States
Israel
Chile
Cuba
Mexico

Puerto Rico
Uruguay
Venezuela

Data Period

71-74,77-89,91
74, 78-80, 85-89
78-89,91,93
71-94
71-92
71-90
71-92
71-93
71-88,91,
82-85, 87-93
71,73,77-91,93
71,76-88,91
74, 76, 78, 80,

83, 88, 93
71-85,87-92
71-79, 83-88
71-79,81-89

Son Preference Index

+4
+4
+ 3
+3
+ 1
+ 1
+ 1
+ 1
+ 1

0
-I
-1
-1

-1
-1
-1

Sources: mi,t and ri,t are from the United Nations Demographic. Yearbooks and Taiwan Population
Statistics Yearbooks. Son-preference indexes for all countries are provided by Williamson (1976).

there are "very strong son preferences" in these two countries. Women in
Taiwan and South Korea also share "strong son preferences," receiving an
index of +3. All other countries have son-preference indexes equal to or
less than 1 or negative (daughter preferences).

The data needed for the empirical analysis are yearly time series of fer-
tility rates and newborn male/female sex ratios for 16 countries. So essen-
tially we have a panel data set of ri,t and mi,t. Because observations of any
single country may be too narrow in scope, Chu and Yu (1996) decided to
separate the observations into two diverse groups and test whether there
is any distinction between these two groups. The first group includes Korea,
Taiwan, Tunisia, and Egypt, which, according to table 6.1, have strong (>
+ 3) son preferences. The other group includes Latin America and the
Caribbean countries, the United States, Israel, and Nordic countries. These
12 countries have weak sex preferences. The analysis in the previous section
tells us that there should be a (significantly) negative correlation between
ri,t and mi,t, for countries in group 1 and almost no correlation for countries
in group 2.

In order to obtain an estimation of the correlation coefficient between
ri,t and m,-,,, we have to control the countrywise difference in fertility rates.
There is also a trend toward a general decline in fertility pattern for almost
all our sample countries. To take into account the above cross-section and
time-trend effects, Chu and Yu (1996) considered the following two-factor
fixed-effect model:13



where E, , is the error term associated with the (i, t)th observation. There are
also two constraints, L,a, = £,y, = 0, which are imposed to normalize the
total country effect and time effect to zero.

Given that the country effect and the time effect are controlled, the
sign of the coefficient of rit tells us whether there is any correlation between
r/j and m,_,.14 Chu and Yu's estimation result shows that while £ is not sig-
nificantly different from zero for group 2 countries, it is significantly nega-
tive for group 1 countries. They also carry out an F test: the null hypothesis
is that the £ coefficients for the two groups of countries are equal, and the
alternative hypothesis is that the £ coefficients for group 1 countries should
be significantly smaller. The result shows that the null hypothesis is
rejected in a one-tailed test at the .01 level.

6.5 UNEQUAL RESOURCE DIVISION

Besides having ex ante preferences for a particular sex ratio of children
before they are born, ex post parents may allocate resources differently
among children that are already born. Boys and girls may receive different
resources from their parents and then mate with someone from another
family. The wealth of the new family may be affected by the size of both
the dowry from the female side and the gift from the male side. Because
sex preferences are revealed by the difference of resource allocation sizes,
it seems more appropriate to classify people by income rather than by age.
The analysis in this section is similar to the one in chapters 4 and 5, and I
will provide only a brief discussion here. The difference is that, since the
evolution of family incomes involves a union of two sexes, the state space
of the branching process we study in this section is income/sex.

Let us suppress the age structure and consider an overlapping-
generation model in which everyone lives two periods. The first period is
childhood and the second is adulthood. Male and female adults with
resources i and j from different families can form a new union with new
family income /(/,/, w) = w + r • (i + /), where w is the random wage income,
characterizing parents' overall ability, and r - ( i + j) is the property income.
Each unmarried adult has his or her own income, which is assumed to be
consumed by this adult before death. Married couples will save a propor-
tion of their income and leave it as bequests to children. The bequests will
be divided among female and male children and become their resources i
and j, respectively, in their adulthood.

There are two general types of mating environments to be discussed.
The first is random mating, where for any male with endowment i, the real-
ization of j is independent of (.The second type is assortative mating, where
the realization of the mate's resource j is (imperfectly) correlated with that
of i.15 There are also two broad types of bequest division rules to be studied.
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The first is to divide all bequests equally among all boys and girls. And the
second, which characterizes some kinds of son preferences, is to leave a
larger (smaller) share to boys (girls) and divide the bequests evenly among
children of the same sex.

Suppose the mating environment is random. Then parents' decision to
leave a larger bequest to boys will shift the ex ante endowment distribution
of boys to the right and that of girls to the left. Intuitively, compared with
the case of no son preferences, a scenario with son preferences in a society
that has random mating will result in a steady-state distribution of endow-
ments with an equal mean but a larger variance and a larger endowment
inequality. This can be seen as we compare figures 6.1 and 6.2. Without son
preferences, the endowment distribution among all children is the same, and
a random mating is a random selection of two points from the same
compact pool. But with son preferences, the endowment pools of boys and
girls are separated, and a random selection of two points will evidently have
a more variable result.

Now consider assortative mating. Suppose the positive correlation
between i and; is strong; then rich (poor) boys will be more likely to male
with rich (poor) girls, so that intergenerational mobility is weak. In this case,

FIGURE 6.1 Without sex preferences, a random mating is a probabilistic
matching of two points (a, b) from the same bequest distribution.

FIGURE 6.2 With son preferences, a random mating is a probabilistic matching of
two points (a, b) from two dispersed bequest distributions.
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the analysis in chapter 5 tells us that an unequal division of bequests in the
poor group may be an effective way to improve the upward mobility of the
poor class, and the steady-state inequality may be reduced by such sex pref-
erences. Here we have only provided the above sketch; a detailed analysis
would be similar to that in Chu (1991).
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CHAPTER 7

Cyclical Patterns of Human Population
Summary of Previous Research

7.1 BACKGROUND

According to Chesnais (1992), the fluctuation of human populations can be
summarized into three broad categories: the pretransitional, transitional,
and posttransitional cycles. In the pretransitional period before the Indus-
trial Revolution, population fluctuations appear to reflect natural con-
straints of the environment. In more recent centuries, there were changes
of the vital rates from high fertility-high mortality to low fertility-low mor-
tality, which are referred to as demographic transitions. In this transitional
period, because the decline of mortality usually leads that of fertility, fluctu-
ations in the population age structure are a natural consequence of such a
transition. After this transitional period, in many developed countries the
mortality rate is stabilized, and female fertility becomes a typical family
decision. Since family fertility decisions are related to other market insti-
tutions, the posttransitional population cycles have close interactions with
these institutional elements.

Although the population cycles can be separated into the three above-
mentioned types, these cyclical movements share one common feature: the
Malthusian environmental check always plays a direct or indirect role. In
the next few chapters, I will discuss how the environmental checks interact
with human decisions and institutions and how these interactions affect the
cyclical movement of the population.

Thomas Malthus argued that all populations are subject to environ-
mental constraints and that these constraints operate through a variety of
checks to population growth. If there are no such checks, we have a sta-
tionary branching process as described in chapters 2-6. In that case, the
population will converge to a steady state under weak assumptions, and
there are fluctuations only in the process of convergence. When there are
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environmental checks, the strength of the checks determines the speed with
which the system tends toward equilibrium; this speed, relative to response
lags that are intrinsic to the process, heavily influences the dynamic behav-
ior of the economic-demographic system. When checks are weak, shocked
populations tend to converge slowly without overshooting and to move in
cycles one generation long (Lee, 1974). If checks arc stronger, overshoot-
ing may occur, and longer cycles of periodicity spanning two generations or
more are possible, as population size and growth rates oscillate about their
equilibrium values. If checks arc sufficiently sensitive, then the amplitude
of these oscillations will grow rather than damp, and limit cycles and chaotic
cycles can in principle occur (Tuljapurkar, 1987; Wachter and Lee, 1989).
This chapter presents a summary of the major mathematical results on pop-
ulation cycles, which will serve as the basis for our later discussion. The first
section is about cycles in stationary branching processes, and subsequent
sections are about cycles in time-variant branching processes. Readers who
are not interested in the mathematical foundation of demographic cycles
can skip this chapter and move on to chapter 8.

7.2 STATIONARY BRANCHING PROCESSES

I showed in chapter 2 that the dynamics of a general branching process can
be characterized by

where Q is a time-invariant projection matrix. Let/Ib/l2, • • •, A,, be the eigen-
values of Q and wt, • • • w,, be the corresponding right (column) eigenvec-
tors. We also showed that the population vector in period t can be written
as

for some set of constants (c,, • • •, c,,). In chapter 2 I use Q to denote the
dominant eigenvalue AI; here I shall use /I] instead to distinguish it from the
other eigenvalues.

Dividing both sides of (2.5) by A, yields

If we list the A's in descending order with UJ > U2I > • • • > U,,l, then we see
from (7.1) that

where d = /Vl/y is called the damping ratio of convergence. Thus,



where 9j = tan l(a>j/Oj). The period of oscillation is therefore P/ = 2n/0j.
Although all complex eigenvalues of Q may contribute to the cyclical
pattern of the converging path, the most important and longest lasting of
these is of course associated with X2. Coale (1972) showed that for the age-
specific human population model, P-, is approximately equal to the mean
age of childbearing in the steady state, roughly 25-30 years.

This single-generation cycle of human population found by Coale was
also compatible with some historical evidence. Using a long series of data
on baptisms, burials, and marriages, Goubert (1965) and Lee (1977) verified
a 30-year wave in baptisms in several parishes. Although there were some
small density-dependent feedbacks, the generation cycle was virtually
unaffected.

7.3 TIME-VARIANT BRANCHING PROCESSES

7.3.1 General Discussion

The general formulation of a time-variant branching process is character-
ized by the following equation:
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for some constant k. The above equation says that the convergence of N, to
a stable population structure is asymptotically geometric, at a rate as fast
as d.

In the process of convergence, the path may well be cyclical. In partic-
ular, A; may be a complex number and may be written as A, = a] + i(or In
terms of polar coordinates, we have

When the projection matrix Q is time-variant, it is not surprising that the
population structure will have fluctuations. Therefore, the focus of previous
research is not about the cyclicity of N,, but rather the question of when
the intrinsically fluctuating series N, will have an ergodic (time-invariant)
property.

There are two subcases to be considered, depending on whether Q, is
stochastic. When Q, is nonstochastic, the ergodicity of N, hinges upon the
question of when the N, sequence will forget its initial state (Tuljapurkar,
1990). Specifically, let the Hilbert metric distance between x and y be1
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and let a contraction coefficient of Q be defined as

THEOREM 7.1
//

Let Hu denote the series product of Q's:

Caswell (1990) summarized the conclusion of Cohen (1979) and provided
the following theorem.

then the population structure N, will be weakly ergodic in the sense that any
two initial populations exposed to the same sequence of environments Q,, t
e JO, 1, • • •}, will converge to the same population type distribution.

The second case is when the Q, matrix is stochastic. The general for-
mulation is to assume that Q, follows a Markov process, that is, the real-
i/ation probability of Q, only depends on Q, ,. Cohen (1976) showed that,
because Q, depends on Q, .\ and N, depends on Q, 1 and N,. 1, we see that
Q, and N, jointly form a Markov process. The ergodicity of (Q,, N,) means
that two populations with different initial N0 and different realization of
Q,'s will eventually have the same type distribution.

7.3.2 Density-Dependent Models

In the above discussion, the analysis is less about cycles and more about the
steady state of the type distribution, which is irrelevant to the focus of this
chapter. The most relevant time-varying branching process that can gener-
ate various forms of cycles is the density-dependent model characterized
by

Evidently, (7.3) says that the projection matrix Q depends on the previous-
period population composition N,.

There are many different ways to model density dependency in the lit-
erature. Usher (1972) and others assumed that elements of Q are all
inversely related to the total population size. Cushing (1989) proposed a
weaker assumption, supposing that density, not necessarily represented by
the total population size, affects all the vital rates equally, so that QN =
MN,)Q. Lee (1974) assumed that fertility rates are functions of the size of

nt
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cohorts or the size of total labor force. Hasting (1978) considered the case
when the net reproduction rate, instead of the individual vital rate, is a func-
tion of population size. In Samuelson's (1976) model, reproduction is
assumed to depend on the ratio of the birth sizes of the previous two gen-
erations. In a regular predator-prey mode (Volterra, 1931), the reproduc-
tion of each species also depends on the relative abundance of the two
species in question.

For any kind of specification of the density-dependent model, its local
stability can be analyzed as follows. The derivation is due to Beddington
(1974). Let us first detrend the population vector so that the steady-state
growth rate is 1 and the steady-state vector is N*. Let A, =- N, - N*; then
(7.3) can be rewritten as

Expanding the Q matrix in a Taylor series around N* yields

Since QN
sN* = N* by definition, the first terms on both sides of (7.4)

can be canceled out. When A, is sufficiently small, we can eliminate the third
term on the right-hand side, which is of order Aj, and get

Thus, the local stability of the population hinges upon the first-order terms
on the right-hand side of (7.5).

We derive (7.5) not to study the local stability of N, but to analyze its
possible sources of instability. If there is no density dependency, then the
second term on the right-hand side of (7.5) drops out, and the dynamics of
N, will be stable, as described in chapter 2. The second term of (7.5) actu-
ally characterizes the sensitivity (elasticity) of vital rates with respect to
density pressure. When this elasticity is small, the dynamic system of N, will
remain stable. When the elasticity is larger, the density feedback effect is
strong, which in turn generates a momentum of cyclical (and perhaps unsta-
ble) movement of N,. When this elasticity is even larger, the N, series may
have a more volatile cyclical movement, even limit cycles or chaos. Such a
feedback effect is called homeostasis.
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7.4 AGE-SPECIFIC DENSITY DEPENDENCY

To study the age-specific density-dependency model, Lee (1974) started
with Lotka's renewal equation (3.1), which is restated below:

Without loss of generality, we can detrend the birth series by its growth
rate and consider a steady-state B, series with zero growth. Let B* be the
steady-state birth vector with all its entries equal to B*; then in the steady
state we have

where l„ and ma are, respectively, age-specific surviving probability and fer-
tility rate. Let 0,, = lama be the age-specific net maternity function, and R
= £fl0a be the net reproduction rate. Then (3.1) above can be rewritten as

7.4.1 General Settings

Density dependency is characterized by the assumption that the age-specific
fertility rate at period lisa function of the vector of previous birth numbers

where n is the upper bound of human survival. We use a boldface B, to
denote the vector (/?,_[, #,_2, • • • , 5,..,,). Then we have maj = ma(B,) and 0,,,,
= lamaCBt) = 00(B,). Thus, (7.6) now becomes

In the steady state, since the net maternity function is time-invariant, we
denote 0,,,, = 0a(B*) = 0,,. Let

be the elasticity of the net reproduction rate with respect to the number of
births a years earlier, evaluated at the steady-state birth (i.e., B, a = B*
V,-a). Expanding the right-hand side of (7.6) in a Taylor series around B*
and using (7.7), Lee (1974) showed that (7.6) can be approximated by
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Let b, = (B, - B*)/B* be the proportional deviation of B, then the above
equation can be rewritten as follows:

7.4.2 Cohort and Period Models

In equation (7.8), na characterizes the sensitivity of fertility with respect to
deviations of B, „ relative to the steady-state size. Lee (1974) proposed two
alternative hypotheses that can further simplify (7.8') to a testable form.
The first simplification is the cohort hypothesis, which assumes that age-
specific fertility is affected by the number of births at that age: maj =
ma(B t - a) . In this case, dRt/dB t -a is equal to d<pajdB,-a. Let a,, denote the elas-
ticity of 0n with respect to B, „, then (7.8') becomes

7.5 HOPF BIFURCATION AND CYCLES

This section summarizes major theorems of Hopf bifurcation. More details
are available in Golubitsky and Schaeffer (1985) and Tuljapurkar (1987).
The theorems presented are important for studying existence and stability
of population cycles.

If all age-specific elasticities equal the same value a, then the above equa-
tion can be further simplified as

Another formulation of the cohort model was proposed by Frauenthal
and Swick (1983), who assumed that ma,t = ma-M(B,-a). With this special
assumption, equation (7.8) can be written analogously as

where y is the elasticity of M(.) with respect to B, evaluated at B, = B*.
An alternative hypothesis is to assume that fertility is affected not by

the cohort size but by the total labor force, more in the spirit of Easterlin
(1961). In this case, maj = ma(L,) = /•«„(£//,#,/), where L,= S/^B, y is the
total labor force and rt is the age-specific labor-force participation rale. The
model so specified is called the period model. Let the elasticity of R, with
respect to L, be —/3 and the elasticity of L, with respect to B, .„ be k,,. Then,
for the period model, (7.8) becomes
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7.51 General Results

Consider the following nonlinear dynamic system:

where F: R" X R -» R", and y is a bifurcation parameter. Assuming that
u = 0 is a fixed point of (7.9) at y = y*, then F(0, y*) = 0. By the implicit
function theorem, we know that in the neighborhood of y* the solution to
(7.9) can be expressed as u(y). For a dynamic system such as (7.9), we say
that y = y* is a bifurcation point if a small change of y around y* causes a
significant change in the solution path u(y). There are several kinds of bifur-
cation, and the one related to our later discussion is Hopf bifurcation.

Applying the first-order Taylor approximation to (7.9) around u = 0
yields

where A(y) is the n X n Jacobian matrix of F evaluated at u = 0. Suppose
the characteristic roots of A(y) can be written as r/(y) ± iw(y).

We make the following two assumptions.

ASSUMPTION A7.1: A(y*} has only one pair of purely imaginary eigen-
values, that is, a(y) = 0.

ASSUMPTION A7.2: a'(y*) ¥= 0.

A7.1 and A7.2 say that y = y* is a Hopf bifurcation point. Now we intro-
duce Hopf's first theorem:

THIiOREM 7.2

If A7.1 and A7.2 hold, then there exists a periodic solution to (7.9).

Given assumptions A7.1 and A7.2, theorem 7.2 says that at y = y*,
there is a unique pair of purely imaginary roots for the characteristic equa-
tion l A ( y ) I = 0. In this case the solution u = 0, which forms either a limit
cycle or a closed-orbit solution, is called neutrally stable. Specifically, for any
given initial value uO, a solution or trajectory to (7.9) is denoted u(t) —
O,(MO). An attractor is a set to which trajectories starling at initial points in
a neighborhood of the set will eventually converge. A point is said to be in
a closed orbit if there exists a t =£ 0 such that O;(M) = u. If a closed orbit is
an attractor, then it will be called a limit cycle (for a two-dimensional case,
see figures 7.1 and 7.2).2

Without loss of generality, we assume that for y < y*, the steady state
u — 0 is stable (i.e., orbits spiral into the origin), and for y > y*, the steady
state u = 0 is unstable (i.e., orbits spiral away from the origin).
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FIGURE 7.1 Closed orbit.

F IGURE 7.2 Limit cycle.

where O(if) is the higher order term. In equation (7.11), periodic solutions
may exist not just at the point y - y*. The concrete result is Hopf's second
theorem. Before we introduce this theorem, we need another definition.

Suppose at some y there exists a periodic solution u*(t) to the system
(7.11). Around u*(t) we can consider a "nearby" solution u*(t) + v(f).Tul-
japurkar (1987) showed that, for the case of population renewal equations,
the stability of u*(t) in fact depends on the sign of the exponent of a

When we take into account the higher order terms of the Taylor expan-
sion, the situation becomes more complicated, but more information con-
cerning the stability of the limit cycles will appear. We can write the
nonlinear version of equation (7.9) as
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linearized expression of v(t).Thal is, the stability of (7.11) hinges on the sign
of qp, where qp is such that v(t) = w(r)exp(qpr) for some a>(t). Here cp is called
the Floquet exponent.3 Now we introduce the following stability theorems.

THEOREM 7.3
If the stability condition corresponding to (7.11) is satisfied, then the system
will (i) converge to the assumed fixed point u = 0 when y < y*; (ii) converge
to a limit cycle when y > y*. In the latter case, the amplitude of the limit cycle
will increase in y.

For the case of population renewal equations, the stability condition in
Theorem 7.3 refers to the requirement that the Floquet exponent is nega-
tive. I will skip the general expression of the Floquet exponent for now and
come back to it when I discuss the special model of population dynamics.
I shall now introduce the theorem of exchange of stability.

THEOREM 7.4
If the Floquet exponent is negative, then the periodic solution on one side of
y* and the fixed-point solution on the other side of y* are both stable (this
case is called supercritical). If the Floquet exponent is positive, then the peri-
odic and fixed-point solutions on both sides of y* are unstable (this case is
called subcritical; see figure 7.3).

A subcritical case means that a periodic solution with a positive ampli-
tude is never stable.

7.5.2 Testing and Estimation

For all the density-dependent models, the sensitivity of density dependen-
cy always hinges upon the elasticities of the birth function with respect to
previous births, and the size of previous births characterizes the pressure of
population density. These elasticities can all be estimated from empirical
data. The usual approach is to put the age-specific fertility rate on the left-
hand side of the regression equation and the numbers of previous-period

F I G U R E 7.3 Super- and subcritical cases. Dashed lines indicate unstable
solutions.
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births (or the weighted average of previous births) on the right-hand side.
The estimated elasticity, denoted y, can be obtained from the regression
result. Tuljapurkar (1987) applied the general Hopf bifurcation theory to
age-specific density-dependent renewal equations and showed that there is
a "critical" elasticity beyond which there will be limit cycles or chaotic
movements. Then the estimated elasticities can be compared with the
theoretical critical elasticities to see whether our real-world birth data
sequence will generate persistent cycles.

Lee's (1974) estimation showed that the U.S. data cannot generate a
strong enough elasticity that is consistent with limit cycles. Guckenheimer,
Ostcr, and Ipakchi (1977) even concluded that "most populations operate
in the parameter region corresponding to a stable equilibrium." Frauenthal
and Swick (1983) and Swick (1981), however, argued that they could derive
from the U.S. population data an elasticity strong enough to generate a limit
cycle. But their analysis was later shown by Wachter and Lee (1989) to be
incorrect.

Notice that all the above empirical analysis only concerns the existence
of a limit cycle or closed-orbit solution. To study whether such a solution is
stable is another, more complicated, matter.

7.6 PREDATOR-PREY MODELS

As was shown in section 7.2, a density-dependent model can be written as
follows: N,-i = QN,N,. Another way to interpret this expression is that N, M
is a nonlinear function of N,. Such a nonlinearity property of the density-
dependent model is in fact a key factor in creating erratic cycles. One par-
ticular example of the density-dependent model to which biologists have
paid much attention is the predator-prey model, introduced by Lotka
(1925) and Volterra (1931).

The simplest formulation of the predator-prey model, following the
notations in the literature, is characterized by the following (continuous
time) differential equations:

where Nt,l is the total prey population and NL2 is the predator population.
The prey are considered the only food resource available to the predator.
Thus, if NIj = 0, the predator population decreases exponentially at the rate
c. The prey population does not need the predator to survive, and with the
nonexistence of predators, the prey population grows exponentially at the
rate a.

In the steady state of (7.12) with Nt,l = Nt,2 = 0, there are two solutions:
(Nt, Nf) = (eld, alb); and the trivial solution (Nf, Nf) = (0, 0). The Jaco-
bian matrix of (7.12) around the nontrivial solution is



which characterizes some kind of increasing return in reproduction. It can
be shown that system (7.14) becomes unstable. The point here is that the
predator-prey scenario is not a concept independent of economic institu-
tions; it can be combined with a density-dependent model or an increasing-
return model to generate qualitatively different results. Chu and Lee (1994)
gave an example of combining the predator-prey setup with the density-
dependent model; this scenario will be discussed in detail in chapter 9.

7.7 REMARKS

Lee (1987) distinguished the variations in human populations into two cat-
egories: those related to resource availability, such as variations in carrying
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Since 1J1 = ac > 0 and the trace of 7 is zero, we know that the eigenvalues
of 7 are purely imaginary. The equilibrium is therefore neutrally stable,
meaning that no stability conclusion about (N*, /V*) can be drawn. That is,
besides the equilibrium (eld, alb), the solution trajectories of (7.12) are
closed orbits, but none of them is a limit cycle. This was formally proved by
Hirsch and Smale (1974).

Such a closed-orbit solution derived from the reasonable model in
(7.12) was called by Samuelson (1972) a "universal cycle." Samuelson also
proposed several other alternatives to (7.12). The first is a predator-prey
model with density dependency:

Samuelson added the —xN,t,1 term to characterize the diminishing-return
effect of the prey population, and the — y N t , 2 term is to characterize the
crowding effect among the predator group. These two effects may both be
related to density pressure. By checking the Jacobian matrix of the local
approximation of (7.13), it is easy to see that the two eigenvalues become
negative and the solution becomes locally stable. This demonstrates the
power of the density-dependency effect.

Samuelson also tried another setup:
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capacity or in incomes, which are density-dependent; and those unrelated to
resource availability, reflecting wars, epidemics, cultural, political and social
changes, and medical advances, which are density-independent. But when
we take into account the role of human economic decisions, the distinction
between density dependency and density independency is not an unam-
biguous one.

In human history, very often famines or food deficiencies, which are
density-dependent themselves, might cause conflicts and wars between two
tribes, events which we classify as density-independent. Density pressure or
food deficiency may also induce peasants to become bandits, who (as preda-
tors) rob and deprive peasants of food (preys). Thus, human economic deci-
sions often transform a density-dependent pressure on human reproduction
into a density-independent one. It is therefore important to investigate the
role of human decision on population cyclicity, instead of restricting our-
selves to the abstract classification of density-dependence or independence.
We are interested in how human decisions interact with density pressure;
only with this question answered are we able to provide a more accurate
prediction of the pattern of population cycles.4

Lee (1987) also pointed out that density-dependency is a prevalent
phenomenon for all animals and that it is more or less "biological." It is
expected that rational human decisions may be able to weaken the biolog-
ical response of fertility and mortality to density while strengthening the
nonbiological response of fertility through institutional and rational regu-
lation. But this conjecture can only be accurately analyzed within a model
which explicitly concerns human decisions. 1 will present such an analysis
in the chapters that follow. Chapter 8 provides a general characterization
of behavioral interactions in individual attitudes, of which the combination
forms the custom of the society. In chapter 9,I study a case in ancient that
human history. In that period, there were several decisions that humans
could make to change the vital rates. I will show that the institutions they
generate in response to density pressure, although rational individually, may
not be able to relieve the overall density pressure. In chapter 10,I study the
most popular type of modern birth cycles, the Easterlin cycles. I analyze
how the labor market, a human institutional design, interacts with the fer-
tility behavior of individual family heads.



CHAPTER 8

Attitude-Specific Population Models
Dynamic Custom Evolution

8.1 BACKGROUND

In the predator-prey model introduced in chapter 7, two types of individ-
uals interact with each other. The key features are that the reproduc-
tion rate of each type depends on the size of both types and that each
individual's welfare depends on his or her interaction with other individ-
uals. Besides the predator-prey interaction described above, there are
several other well-known two-type interactions in economic literature.
Hardin's (1968) classic paper on "tragedy of the commons" is a typical
example.

The scenario of decision interaction Hardin considered is as follows:
there is a pasture open to all, and each herdsman considers whether to add
an animal to his herd. The benefit of adding an animal goes to each indi-
vidual, but the social (overgrazing) cost is born by all herdsmen. Thus, it is
a dominant strategy for each herdsman to add more cattle, which, however,
leads to a Pareto-inferior overgrazing result, If we consider the interaction
between any two herdsmen as a 2 X 2 game, then the game Hardin had in
mind is similar to the "prisoners' dilemma." When the concern with herd
size is replaced by the concern with population size, the problem becomes
one of population/environment interaction. This kind of decision interac-
tion will be discussed in chapter 14.

In this chapter we will study another kind of two-type population inter-
action, the critical-mass model proposed by Schelling (1978). In the critical-
mass setup, people can choose different behavior types in different periods,
and their choice depends on the overall behavioral pattern in the previous
period. The key idea is described in the following example.

Suppose we use the [0,1 ] interval to characterize the behavioral pattern
of the population. When the behavioral pattern is close to 0, then the ratio-

88
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nal decisions of most people will sustain 0 as a stable equilibrium. When
the overall pattern exceeds a certain critical mass, the tide turns; as people
gradually change their micro decisions, the macro behavioral pattern even-
tually changes to 1, which is another stable equilibrium. Schelling (1978)
proposed many empirical examples that have the above-mentioned critical-
mass property. For instance, in universities we often observe that one's deci-
sion whether or not to attend a seminar depends on the attitude of other
colleagues. If most other people go, then I go; if most other people do not
go, then I decide to do likewise. In the former case, the seminar can con-
tinue; in the latter case, the seminar will have to be canceled. Both are
equilibria with stable population composition.

Besides Schelling's classic example, economists found that many other
phenomena in society have the same properties. Jones (1976) showed that
if most people use a certain commodity as a medium of exchange, then that
commodity will be more readily acceptable to general exchangers, which in
turn will attract more people to use it. Eventually it will become the only
commodity money. Lui (1986) and Chu (1990) argued that if most officials
take bribes, in general it is more difficult to collect evidence from the col-
leagues of an official suspected of corruption. As a result, the probability of
conviction and the deterrence perception will be low, leading to further cor-
ruption. Benjamini and Maital (1985) and Schlicht (1985) noted that if most
of one's neighbors evade taxes, the perception that the expected peer-group
condemnation will be low if one does the same facilitates the decision
of tax evasion. Chu (1993) showed that if most drivers drive rudely (or
politely), then it is also optimal for others to do the same, so that overall
traffic patterns will become different. In daily life, one double-parks if many
others do; one surges to the ticket window if most other people do; and one
crosses the lawn if plenty of others do. So in short, what the critical-mass
model involves is some macro population activity that is self-sustaining
once the magnitude of that activity crosses a certain threshold.

The above examples refer to different aspects of macro population
behavior, but they share a common property: micro individual decisions
combine to form the macro behavior pattern of the population. Put differ-
ently, suppose we classify people by their attitude in an environment; then
the social custom is simply the aggregate characterization of such an atti-
tude. This aggregate attitude will become the custom in the next period,
which in turn will affect individual decisions in that period. In order to
analyze the evolution of a population's custom, it is certainly convenient to
classify people by their attitudes instead of by their ages. In the next few
sections I will set up a two-attitude population model, demonstrate how the
macro social custom is affected by the micro decision, and show when the
population dynamics will be of cyclical patterns.

There arc various ways to model the decision interdependency among
rational individuals; here we propose a framework consistent with the spirit
of Schelling (1978). To make the following scenario more practical, it may
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be helpful to think of the macro index of custom as the proportion of rude
drivers in a country or a city and of people's attitudes as reflected by the
way they drive. It goes without saying that the model here also applies to
many other interpretations in Schelling (1978).

8.2 THE CRITICAL-MASS MODEL

8.2.1 Individual Decision Making

We shall consider a population with a very large size Nt at period t. Each
member of the population randomly meets (one by one, say, at a crossroads)
n others in each period. Because no one is in a position to know in advance
whom he is going to come across, any ex ante cooperative negotiation is out
of the question. The interactions between any two individuals will be char-
acterized by the following symmetric 2 X 2 game. There are two choices in
everyone's pure strategy space: 1 and 2. Let us interpret strategy 1 as driving
rudely and strategy 2 as driving courteously.

The magnitude of payoffs is assumed to be as follows. w = r.n is the
expected penalty of adopting strategy 1, where n is the size of penalty on
all detected rude drivers and r is the probability of detection. Now let us
consider the situation without enforcement and penalty (w = 0) and explain
the relative magnitude of a, b, c, and d. The ideal situation is for both sides
to drive courteously (max{a, b, c, d} = d). If one expects the other driver to
drive rudely, he would be inclined to requite like for like (a > c). Con-
versely, if one drives rudely but the driver he comes across happens to be
courteous, he would be mortified for what he has done (d > b).

In the above payoff expression, row chooser's payoffs are listed first.
Let 0r. (#c) be the probability that the row (column) player takes strat-

egy 1. There are three obvious Nash equilibria in this symmetric 2 x 2 game:
(9r, 0c) = ( 1 , 1 ) , (6r 9,} = (0, 0), and (8r, 0,) = (x, x), where
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8.2.2 Decision Interdependency

Because one does not know in advance what strategies the others are going
to adopt, he or she can only draw on experience and make an educated
guess. This, as we will see, gives rise to the mutual interactions among
drivers. Suppose there are p, proportion of the population taking strategy
1 (and hence 1 -p,% taking strategy 2) at period t. One may come across n
<<Nt people on the street randomly, where Nt denotes the population size
of the city. Thus, the number of people taking strategy 1 (denoted k) in this
n-person sample will follow a binomial distribution:

where x* is the largest integer no greater than nx. Clearly, when pt = 0, the
event Zn > x never happens, and hence h(0;x*) = 0. Similarly, h ( l ; x * ) = 1.

Let us suppose, as did Schelling (1978), that people are myopic in the
sense that they use the sample mean they observe at period t to predict the
proportion of strategy-1 choosers in period t + I.1 Given pt, it is shown in
(8.1) that a particular individual i will have probability h (p i , x*) to observe
a sample mean (denoted Z,') larger than x. Let

8.2.3 Macro State-Transition Rules

Suppose we pick a city of population si/e N, and calculate the correspond-
ing sample mean £w, = S^i £'/W,; then clearly £lViwill have a sampling dis-
tribution with mean h(pi,x*). By Khinchine's law of large numbers (see
Theil, 1971), as N, —> °°, £,v, converges to h(p,\x*) in probability. Thus, in a
city with a very large number of drivers, there will be h(p,\x*) proportion
of them who have £' = 1 (or who observe Z'n > x). Under Schelling's
myopic-prediction assumption, person i with £' = 1 would expect to meet
more than x proportion of strategy-1 takers in period t + 1, and therefore,
according to the specification of the 2 X 2 traffic interaction game, i's best
response is to adopt strategy 1 in period t + 1. As such, we have

Let Zn be the sample mean of this n-sample; then we have
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THEOREM 8.1
Suppose the total size of population in period t, denoted Nh is a very large
number. Given that pt is the proportion of strategy-1 adopters in period t, the
number of people who will choose strategy 1 in period t + 1 is h(pt; x*),
which is independent of Nt.

Notice that here the dynamics of population composition is indepen-
dent of population size. The key reason for such independence is the law
of large numbers. Although each individual may observe different £"s, the
societal mean, which is the common reference variable for individual deci-
sion in the next period, is always independent of the absolute size of various
types.

8.2.4 Extensions

The above analysis applies to all individuals in general and has not taken
into account the reproduction and possible decision difference between
people with different attitudes. Let Ni, i = 1,2, be the total number of
strategy-i takers in period t, and let Q: be their corresponding gross repro-
duction rate. Clearly we have Nt = Nt,1 + Nt,2.

People with different attitudes may be accustomed to their current
behavior. For instance, rude drivers in New York may be accustomed to
their style of driving. We assume that each type of people may have their
own payoff matrix, so that they may have different critical values in (8.1).
Let xi, i = 1,2, be the critical value of type i; then the dynamics of the pop-
ulation can be written as

Notice that in the above expression it is x*, not xi, that enters the h func-
tion. Suppose both types of people are fairly similar in the sense that the
possible difference between x\ and x2 can still sustain the equality xf = x'2.
Then we can divide both sides of (8.3) by the total number of period-(t +
1) population, N,..tt = QiN,A + Q2N,2, and get the following dynamic evolu-
tion equation of population composition: pH , = h(p,\ x*'), where x* = x'-f =
r* 2X 2-

8.3 DYNAMIC CUSTOM EVOLUTION

8.3.1 Endogenous Nonconvexity ofp,

The function h(p,\ x*) in (8.2) may have several possible shapes. First, if 0
< nx < 1, then x* = 0, and h(p,;x*) = !-(!- p,)".This implies that dhldp,
= «(1 - p,)"'1 > 0 and d^hldp] = -n(n - I)(l - p,)" 2 < 0. The second
possibility occurs when n \ < nx < n and the h function becomes h(pl\
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jc*) = p". Both these cases are depicted in figure 8.1. As we shall see in the
next section, the value of x* will be determined by government policy, and
the above-mentioned two cases will stand only if that policy is extreme. In
what follows, we shall set aside these two extremes and concentrate on the
third possibility: 1 =£ nx ^ n — 1, where we can rewrite h(p,',x*) as

The picture of h for the case 1< nx < n - 1 is also drawn in figure 8.1.
Differentiating the h(p,, x*) in (8.2') with respect to p, yields

by expanding the terms in the square bracket of (8.4) we see that most of
them cancel with each other, and dh/dp, can be further simplified as

Differentiating the above expression with respect to p, once more yields

F I G U R E 8.1 The shape of h (p,; x).

Since
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which will be positive (negative) if. p, is smaller (larger) than x*l(n — 1).
Equations (8.4) and (8.5) allow us to arrive at the following theorem.

THEOREM 8.2
When 1 < nx < n — 1, the h curve is uniformly increasing in p, and has a
unique inflection point at x*/(n — I).

8.3.2 Multiple Equilibria in Population Composition

I mentioned in the previous section that h((), x*) = 0 and /z(l, x*) = 1. In
view of figure 8.1, we see that when 1 < nx ^ n — 1, there are clearly three
steady states for/7,: 0, 1, and the one that corresponds to point A.p, = 0 is
clearly a Pareto optimum, and it is also locally stable. The situation is dif-
ferent from the one corresponding to the prisoners' dilemma game, where
individual rational decisions always lead to a Pareto-infcrior outcome.

Although there have been several models that explain the interdepen-
dency of individuals' choices, as reviewed in section 8.1, our analysis is nev-
ertheless unique. By assuming that people make decisions on the basis of
their previous binomial sampling, we were able to derive the exact formula
and the exact inflection point of the state-transition rule. Thus, instead of
proposing vaguely that there may be multiple equilibria, as in Arthur (1989),
David (1988), or Gordon (1989), we can conclude that as long as 1 < nx <
n — 1 holds, there are exactly three equilibria, as shown in figure 8.1. This
property, together with the interior inflection point derived, is very helpful
in developing our understanding of the shape of the custom transition path
and our later discussion of government policies.

Figure 8.1 shows that the dynamic evolution of population composition
satisfies the four properties of a complex system characterized in Arthur
(1989): namely, possible multiple equilibria, possible inefficiency, lock-in,
and path dependence. These properties can be explained from figure 8.1: in
the case of 1 < nx < n - 1, the three equilibria are /I, B, and C, and only
B and C are stable. As long as B and C involve different social costs,
one of them is inevitably inefficient. The population composition is path-
dependent because different initial points (starting from (A, B) or (C, A))
lead to different steady states. A government policy can change the value
of x, and hence the shape of h, but a stable equilibrium will not be respon-
sive to any marginal change in x. This means that a stable equilibrium is
"locked in," and the government has to make some significant change in
order to extricate itself from a stable but inefficient situation.

To make the model more realistic for policy analysis, let us assume that
there are q} proportion of (well-mannered) people who never drive rudely.
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and q2 proportion of (rash) people who always drive rudely. With these
modifications, the population custom transition rule becomes:

which is shown in figure 8.2, with the number of steady states being possi-
bly one, two, or three.

8.4 TRYING TO CHANGE THE CUSTOM

Now we consider government enforcement policies that try to change the
custom by penalizing rude drivers. Let us assume that law enforcement rev-
enues collected by the government are paid back to the public in a lump
sum, so that they are private but not social costs. Thus, if we normalize the
population size to one, the expected social return of traffic interaction in
period t, given the payoff values in the 2x2 game, will be

where the relationship between r, and p, is as described in (8.6). With 6 the
social discount rate, the present value of total social welfare is Z7-o d'W,.

F I G U R E 8.2 Points between Pf and Pf cannot be sustained by stationary policies.

Enforcement cost C, is assumed to be a linear function of detection prob-
ability: C, = a • r,, and hence the net social welfare would be
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8.4.1 Stationary Policies

In most law enforcement cases, the penalty size cannot be frequently
altered, but the detection probability can be changed by adjusting police
forces or inspecting probabilities. So in our later analysis, we shall study the
impact caused by changing r. It is easy to see from (8.1) that tightened
enforcement (increasing r) would decrease x. If such a decrease is significant
enough to cause the threshold integer x* to go downward, then individuals
would be more likely to adopt strategy 2 (to drive courteously), the curve
g(pi,x) would shift down, and the corresponding steady state would also
change. Let W(p*(r),r) denote the total social welfare associated with r and
its corresponding steady-state traffic order p*(r). Clearly, whether a change
in r is worth implementing depends upon the sign of dW/dr.

Suppose we are now at point A of figure 8.2, which is sustained by very
strict traffic law enforcement at a very high enforcement cost. Suppose the
government is trying to relax enforcement in order to cut cost. When r falls,
x will decrease, as we can see from (8.1). If the critical integer x* also
decreases, the curve g(pi;x) shifts up, and the steady-state value p* increas-
es to B. As the g(.,.) curve shifts upward, a greater percentage of people are
adopting strategy 1, and the traffic order is gradually worsening. However,
the nonconvexity of g implies that as r falls there may be a jump in p*(r),
and hence a jump in social costs. This can be seen in figure 8.2, where a
slight reduction of r at the point C would make the steady-state p value
change from pf- to p*. Similarly, there will also be a jump if one tries to
increase r at the point E. In fact, no p value between p* and p'f: could ever
be sustained as a steady state. Thus, for stationary policies, the government
is faced with only two choices: a good custom with a low percentage of
traffic violators, sustained by strict enforcement (ACarea), or a high per-
centage of traffic violators as a result of lax enforcement (EFarea). More
generally, we have the following theorem.

THEOREM 8.3
Suppose 1 < nx < n - 1, and suppose there are q{ > 0 proportion of (well-
mannered) people who never adopt strategy I and q2 proportion of (rash)
people who always adopt strategy 1. There exists a subset K E [0,1] such that
all customs p E K cannot be sustained by stationary policies.

8.4.2 Oscillatory Policies

Now consider the following oscillatory policy, which shuttles between tough
(say r1) and lax (say r°) enforcement. Suppose at period zero p0 = p*(0)
may be very large because there is essentially no enforcement. Suppose the
government decides that starting from period one, r will be increased to r1,
a very strict enforcement. Then p, will follow the path pt+1 = g(p,; jc1), the
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traffic order will gradually improve, and the social benefit in each period
will be Wt = W(pt, r l ) .

The population composition pt eventually converges to p*(1) (see figure
8.3). After staying at P*(1) for a while, suppose at period T1 the government
decides to relax enforcement to r0 from period T1 + 1 onward. The p, will
then follow the path g(pi ,x°) , and the social benefit in each period will be
Wt, = W(pt, r°).The government can repeat the above-mentioned cycles once
pt, converges to p*(0). This cyclical enforcement policy will generate a
sequence of Wt's, and the discounted total social benefit will be denoted
TW°cycle, where the superscript "0" specifies the cycle's starting point p*(0).

Similarly, if at period zero p0 = P*(1), which is very small, we assume
that the government starts the cyclical policy by first reducing r to r0, then,
as pt, converges to p*(0), increasing r to r1,and so on. Discounted total social
benefits so obtained will be denoted as TW1cycle. For other starting points,
the oscillatory policies can be described similarly.

Intuitively, oscillatory policies such as the ones presented in the para-
graph above can never be efficient if the law enforcement agency is typi-
cally assumed to maximize a concave objective function over a convex
feasible set.3 As the convexity refers to a set of variables indexed by time,
cycles cannot be optimal, because the average of two points of a cycle will
exploit the convexity of the function and therefore increase the objective
value achieved. However, as we explained in section 8.3, the mutual inter-
action of individual decisions has created a natural nonconvexity in the
macro index of population composition. This in turn makes an oscillatory
policy possibly better, because now the average of two points in a cycle may
end up at a point which cannot be sustained by any stationary policy but
can only be attained by an oscillatory one. Chu (1993) presents a set of

FIGURE 8.3 Cyclical policies—shuttling between r0 and rl.
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examples that demonstrate when an oscillatory enforcement policy will be
more socially efficient.

8.5 INDIVIDUAL INTERACTIONS AND CUSTOM CYCLES

As Cooter and Ulen (1988) and Wilson (1983) pointed out, crime statistics
for the United States over the last fifty years show that the number of a
wide variety of crimes declined from a peak in the mid-1930s to a trough
in the early 1960s; rose rapidly from the early 1960s until the mid-or late
1970s; and finally began to fall slowly in the 1980s. There are two often-
mentioned explanations for these crime cycles: the first relates the peak of
the crime rate to the possibly unfair distribution of income in a period of
rapid economic growth; the second hypothesis suggests that crime cycles
are related to the cyclical age structure caused by fertility cycles. But a
closer examination shows that these two explanations do not seem to be
sufficient to account for the crime waves we observe.4 What was rarely
stressed in previous discussion of this topic was the interaction between
crime waves and individual decisions.

As we mentioned in section 8.1, when the social order is weak, there
usually exists public pressure for the tightening of law enforcement in order
to improve order. Thus, because the crime rate is very high, there is a natural
tendency for it to go down. Furthermore, since the dynamic time path of
crime rates is nonconvex, a tightened law enforcement may cause a gradual,
persistent fall of crime rates, as shown by the zigzag curve from F to A in
figure 8.3. Similarly, when the crime rate is low, people may also propose to
relax law enforcement in order to reduce the seemingly unnecessary
enforcement costs, and this proposal could also cause a persistent increase
in crime rates, as curve A to F illustrates. The movement between A and F
cannot stop, for no point in the middle range can be sustained as a steady
state. As such, aside from the exogenous demographic or economic shocks,
the above-mentioned public pressures, together with the nonconvexity of
dynamic path, form an endogenous force of prolonging crime cycles. This
mutual interaction between social order and enforcement policy seems to
be an important factor in interpreting crime cycles and perhaps other
behavioral patterns of population composition as well.



CHAPTER 9

Occupation-Specific Population Models
Population and Dynastic Cycles

9.1 BACKGROUND

As Lee (1987) pointed out, vital rates of the human population are often
determined by forces such as culture, institutions, technology, and individ-
ual rationality, forces that have little to do with density pressure or prior
growth. Perhaps most people also expect "rational" human practice to
weaken the biological responses of both fertility and mortality to density
pressure, while strengthening the nonbiological response through institu-
tional regulations. But can human institutional designs and rational
responses really reduce the impact of natural checks? As we study the
pattern of population dynamics in ancient China, we can provide some
viewpoints different from the general opinion. The long-term relationship
between human institutional designs and natural checks is discussed in
chapter 14.

9.1.1 Population Dynamics in Ancient China:
Some Stylized Facts

The books by Ho (1959) and Chao and Hsieh (1988; hereinafter C&H)
contain the most thorough research on the history of Chinese population.'
The data summarized in C&H have presented us with a time-population
diagram, shown in figure 9.1. From this figure, as well as other related lit-
erature, the following "styli/ed facts" of population dynamics in Chinese
history can be summarized:

1. Population declines often coincided with dynasty changes
(C&H; Ho, 1959).

99
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F I G U R E 9.1 Chinese dynasties and population dynamics, original data are from
Chao and Hsieh (1988); interpolations are done by the author.

2. Population declines were often drastic in a rather short period
of time.2

3. Natural checks such as famine and epidemics did not indepen-
dently reduce the population surplus (Ho, 1959); rather, popu-
lation declines were often the direct and indirect results of
internecine wars.

4. There are obvious peaks and troughs in the population data, but
no regular cyclical patterns (C&H).

The fact that no serious population decline appears to have been inde-
pendently due to famines and epidemics seems to suggest a weak pattern
of density-dependency for ancient Chinese populations, a pattern consis-
tent with the observation of Lee mentioned in the beginning of this chapter.
However, as noted by many historians (see, e.g., Ho, 1959, and C&H 1988),
the frequent clashes between soldiers and rebellious peasants in Chinese
history were often initiated by famine or density pressure. As such, the orig-
inally weak natural checks on population were often magnified by war,
and such magnified "institutional checks" caused very drastic population
changes. It seems therefore that density pressure was indirectly responsible
for the large and rapid historical population declines. Finally, this synchro-
nized pattern of significant population decline and dynasty transition is not
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common in other countries in human history. These patterns clearly deserve
further investigation.

9.7.2 Density Pressure and Peasant Revolt

The key factor that links the above-mentioned stylized facts of Chinese
population data is what historians call the "peasant revolt." Here a brief
background introduction to Chinese history seems to be in order.The 4,100-
year history of China can be roughly divided into 23 dynasties (plus or
minus two, depending on how dynasties are counted). They vary in length,
with the longest being 644 years and the shortest four years. Wright (1965)
and Usher (1989) both argued that major dynasties in China ended because
of "peasant revolutions," although some of these uprisings were also accom-
panied by foreign invasions toward the end of a dynasty. When the popu-
lation size was so large and/or taxes were so high that peasants' per capita
income plummeted, even the traditionally obedient peasants were driven
to rebellion by switching (or choosing) their "occupation" and becoming
bandits, which was essentially an uprising or a revolution. This explains the
interaction between density pressure and revolutionary wars. Rampant
banditry seriously disrupted the farming environment and resulted in
drastic population declines.

9.1.3 An Occupation-Specific Population Structure

The crucial element in the above scenario of peasant revolution is that
people can switch or choose their occupations (remain peasants or join the
revolt), and therefore we shall consider an occupation-specific population
model. In the rest of this chapter, we separate people in ancient China into
three groups: peasants, bandits, and rulers. Peasants grow and harvest crops
and pay taxes, rulers collect taxes and hunt for bandits, and bandits rob and
steal food and clash with peasants and rulers. We assume that people are
making rational decisions when switching occupations; they choose to be
bandits because the new occupation generates higher expected utility. By
switching or choosing their occupations, people try to avoid the original
pressure of high population density.

But the density pressure may be weakened or strengthened by people's
occupation decisions, depending on whether the paradox of aggregation
applies. If many peasants decide to become bandits, the war between
bandits and soldiers may become devastating, which could lead to a popu-
lation decline sharper than it would have been if these peasants did not
make that occupation choice. When the relative power of bandits vis-a-vis
soldiers exceeds some critical value, the peasant revolution succeeds, result-
ing in dynasty changes. These occasional internal changes in population
compositions form the so-called dynastic cycles, which could be very erratic.
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9.2 OCCUPATION SWITCHING AND POPULATION DYNAMICS

In order to focus attention on the occupational choice of the ancient
Chinese, here as in chapters 4 and 5 I suppress the age structure of the pop-
ulation and consider a one-sex two-period model along the lines of Samuel-
son (1958). Each person in the society lives either one or two periods. The
first period is called childhood; a person's childbcaring occurs in the second
period of life, which is adulthood. We assume that each surviving adult bears
m children, where m refers to the "natural" level of fertility, and that
only some of these children can survive to their second life period.' It is
widely believed that natural fertility prevailed generally in preindustrial
populations.

9.2.7 The Population Composition

As I mentioned briefly in the previous subsection, we shall consider a
model with three population groups: rulers, peasants, and bandits. It goes
without saying that this occupational classification only refers to adults.
Rulers are the group of people who have the authority to tax peasants and
go after the bandits. Rather than going into the complex theory of how a
political authority comes into being, we shall concentrate on the forces
behind the political regime—soldiers. Suppose there are Nt-1\ surviving chil-
dren in the society at the end of period t — 1, who will become adults at
period t. The government drafts d proportion of them to be soldiers, and
the remaining (1 — d) proportion will start to ponder their peasant/bandit
occupation decision at period t. By assumption the service of soldiers is
mandatory once they are drafted; hence, for them there is no occupation
choice.

A civilian can choose to be a peasant and toil in the field or join the
bandits and rob and steal. To protect their crops, the peasants fight the
bandits. We assume there is a fighting "technology" that determines the final
share of food and the survival probability of the two fighting parties. Let Nf
be the number of adult peasants (farmers) at time t before clashing with
the bandits, and NBtbe the number of bandits at time t; then (1 — d)Nt-1 =
(NFi + NBi) is the total number of adult civilians, and

is the ratio of bandits to civilians. We denote rit as the survival probability
of group i (i = F, B) in the peasant/bandit clashes and st, as the share of food
peasants saved after bandits' strikes. (Thus 1 - st, will be the share bandits
got off with.) In general, we expect both s, and yi to be functions of bt,.
Finally, each peasant is required to pay v amount of food as head tax to the
government to feed the soldiers and support the bureaucracy.

J
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9.2.2 Individual Peasant/Bandit Occupation Decision

The choice between occupations is based on comparison of the expected
utility of bandits and peasants. Suppose surviving adults all have the same
utility function u = u(x), where x is the per-adult food received. We also
assume that the utility associated with a person's death state is zero. Let x','
be the food received by the surviving peasant at period t, and suppose there
is no saving. Then his expected utility, denoted Eu'i, will be

Similarly, a bandit's expected utility is

Let/be the aggregate production function that transfers the labor input
/„ which is an increasing function of Nt-1, to crop output yt:

Here Dt-1 characterizes the damage to agriculture at the end of period t -
1. In particular, we expect that cultivated land would be destroyed and
farmers' capital goods damaged during skirmishes and wars, e, is an exoge-
nous random variable representing the output shocks in agriculture due to
droughts, floods, or other natural calamities. We also assume that yjl, is
decreasing in /„ in compliance with the law of diminishing return.

To simplify our presentation, we assume the following:

(i) Because of the unpredictable nature of bandits' activities, sol-
diers can only hunt for bandits after the bandits strike. This ex
post hunting increases the mortality probability of bandits, and
therefore deters people from being bandits ex ante.

(ii) Surviving peasants divide evenly the food they saved from the
bandits.

(iii) The amount of food taken by bandits and the tax collected by
government do not affect the fighting efficiency of the two
parties.

Given the above assumptions, Chu and Lee (1994) showed that the ratio of
Euf to Eu'i will be a function of b,, Af,_i and D, ,:

Notice that for any given b,, an increase in Dt-1 , will cause a reduction in yt,
and hence an increase in W. Thus, a deteriorating farming environment as
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a result of wars would make the occupation of farmer less attractive. This
explains the effect of turmoil on occupation selection (C&H 1988; Ho,
1959). Furthermore, since yJN,..\ is decreasing in N,-\ by diminishing
returns, we see from (9.1) that a larger population size (higher density)
would also make people consider favorably the option of becoming an
outlaw.

We assume that a person with attitude characteristic k will choose to
be a bandit if

Thus, a person with larger k is interpreted as "more law-abiding" or "more
disciplined" and is less likely to become a bandit.

9.2.3 Density Pressure, Bandit Ratio, and
Population Growth

At period t, suppose the natural fertility of a surviving parent of group i (i
= F, B, S) is m', and the survival rate of children is y\. Because only surviv-
ing adults can bear children, at period t the net reproduction rate for an
adult of group i is y\-m\. In our later analysis, we assume that natural fer-
tility is negatively influenced by the population size (in1, — m'(N,-[)), char-
acterizing the Malthusian density pressure, and that the survival rate is
negatively influenced by the bandit ratio (y1, = y(b,)), characterizing the
casualty impact of the turmoil. Because bandits usually were all males who
operated in general areas but rarely settled down, their reproduction rate
is assumed to be insignificant relative to the other two groups.

Suppose people in the same society have different values of k, and the
distribution function for a child brought up by a parent of group i is G'(.),
implying that children brought up in different environments may have dif-
ferent attitudes toward occupations. According to the decision-making
process given above, the number of peasants and bandits at period t + 1
should be

Adding the above two equations together, we have the following formula
of gross population growth of N,:
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where af= (1 - d)(\ - b,), af = (1 - d)b,, and as, = d. Equations (9.2)-(9.4)
characterize the standard formulation of a two-occupation branching
process, where the state variables are NFt and NBt,or, or, equivalently, b, and Nt,.

Normally we expect the population growth rate to slow down as the
ratio of bandits b, increases. We also expect the density pressure (A7,,,) to
have a negative impact on population growth, an orthodox Malthusian view
in the literature.

9.2.4 The Steady State

Without clear evidence as to how intergenerational occupation choices arc
correlated in ancient China, we assume that the decision of occupation
selection is independent of the parent, so that C"(.) ~ G(.) Vi = F, S, B in
(9.2X9.3).4 With this assumption, we replace G' by G Vi in (9.2), divide
both sides of the equation by (1 - d)N,, and use (9.4) to simplify it; we get
the following simple equilibrium condition of b,+\:

The interpretation of the above equation is as follows: the right-hand side
of (9.5) gives the proportion of people who will choose to be bandits when
the expected proportion of bandits is b H I , and the left-hand side of (9.5) is
the actual proportion of bandits in the society. In equilibrium, people's
expectations are fulfilled, and hence (9.5) holds. That is, no one wishes to
change his profession when (9.5) holds.

From (9.5) we can solve for the equilibrium bt+1 as

where R, is the revolt variable I use to indicate the extent of war damage
to agriculture in my later analysis.5 As mentioned in section 9.1, many his-
torians hypothesized that the ratio of bandits bt+1 should increase when the
population size (Nt) was large or when the damage (Dt) to agricultural
capital was significant.

As the sequence (bt, Nt) evolves, the generated relative soldier/bandit
force ratio z(bt) may sometimes be smaller than a critical value z. When this
happens, it means that the bandits have defeated the soldiers (the fighting
arm of the rulers), and the old dynasty is thus overthrown. The bandits will
then become soldiers of the new ruler, and most of the soldiers of the pre-
vious regime will be demobilized, some going back to farming, some hiding
out and becoming bandits. In economic theory, we do not know exactly how
the old regime disintegrates. Accordingly, in my later empirical analysis, I
will not stress phenomena associated with these power-transitional periods;
rather I let the error term capture the variations in the initial value of bt of
a new dynasty.
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My primary purpose is to estimate the population growth equation
(9.4) and see if the occupation-switching hypothesis tits well with the
ancient Chinese data. In the estimation process, I also want to emphasize
the importance of the population composition equation (9.6).

9.3 EMPIRICAL ANALYSIS

9.3.1 Econometric Setting

The yearly data that Chu and Lee (1994) present are the population time
series {Nt} from C&H, the normalized winter temperature data {zt} from
Chu (1973), and a warring dummy variable {Wt}. Detailed explanation of
the data set is provided in later subsections. In (9.4), we expect that
Nt-1 has a negative impact on AW,, characterizing the Malthusian density
pressure, and, more important, that the ratio of bandits bt also has a nega-
tive impact on AN,, characterizing the impact of revolt warfare on popula-
tion decline. Because we do not have historical records of bandit ratio over
lime, we have to find a proxy variable for bt, denoted b,. From the discus-
sion in the previous section, we know that the ratio of bandits is itself
endogcnously determined, and from equation (9.6) we get some idea how
to derive b,.

Previous historians did keep written records of peasant revolts, which
more or less correspond to the periods with high realizations of bt.Thus we
can observe a sequence of index variables \R,} in Chinese history:

f 1, if a peasant revolt occurred at t;
K> = u ,[0, otherwise.

There has been much discussion about the history of Chinese peasants'
revolts; in my later empirical analysis, 1 adopt the data summarized in
Chang (1983), which is listed in table 9.1.

Summarizing the preceding discussion, we propose the following three
models for estimation, where et represents the error term.

MODEL A

Model A is the same as that in Lee and Galloway (1985), who use the pop-
ulation size in the previous period to characterize the density pressure and
the temperature data to capture the random shocks to agriculture. The
effect of population composition (bandit ratio) is not reflected in this
model. Notice that in our notation AN, is the population growth rate instead
of the change in population size (see [9.4]), and regressing AN, on N,-t is a
standard estimation of the density-pressure effect.

MODEL B:

Model B uses the revolt index {R,} proxy variable to characterize negative
impact of a large bandit ratio on population growth. Here R, is treated as
an exogenous variable; therefore, Ho's (1959) conjecture that population
pressure might be the source of the peasant uprising is ignored.



Source'. Constructed by the author, based on description in Chang (1983) and C&I I (1988) .

MODEL C:

where the bandit ratio proxy b, is the probit probability derived in the fol-
lowing manner.

By (9.6), historians at period t would observe b, = %(A',.1. /? ,_i) pro-
portion of bandits. They would record
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TABLE 9.1. Farmers'

Farmers' Revolutions
(«, ;- 0

B.C.

A.D.

209-202
17-27

184-193

301-315
399-41 1
432-439
485-486

505
510

523-530
611-624
874-901

920
942-943
993-995

1120-1122
1130-1135

1204-1231

1351-1368
1445-1450
1465- -1471
1510-1512
1627-1646
1721-1723

1774
1781-1784
1786-1788
1795-1804

1813
1851-1873

Revolutions and Political Wars

Wars Between Political Power Centers
(W, = 1)

A.D. 190-589
Wars between several power centers toward the end of E. Han,
Three Kingdoms, Wei, Gin, and North and South dynasties.

A.D. 755-975
Wars Between military cliques toward the end of Fang dynasty
(starting with the Ann-Shih rebel); wars between Five
Dynasties and Ten Kingdoms.

A.D. 1125-1130
Large-scale invasion wars by Gin, which ended the North Sung
dynasty
A.D. 1210-1279
Invasion wars by Yuan, which ended Sha, Gin, and Ihe South
Sung dynasties



where C is the critical bandit ratio above which historians would record it
as a revolt. In this model, the revolution variable is endogenized. We can
test Ho's hypothesis by investigating the statistical significance of N,. \ in
the probit equation.

9.3.2 Variable Specification

The peasant-revolt dummy variable data {/?,} are summarized from Chang
(1983) (see table 9.1). The population data (N,} for the period 221 B.C.
to 1911 A.D. arc taken from pages 536-543 of C&H, together with their
interpolations for periods without data. The total number of data points
is 2,133. Such data interpolations are necessary for our later probit
estimation.

We also construct a dummy variable W, (see table 9.1), which equals
1 when t is in the A.D year range (190-589), (755-975), (1125-1130),
(1210-1279) and 0 otherwise. This was done to accommodate the fact that
during these four time spans, China was either divided into many political
centers or invaded by its powerful neighbors. In these periods, there was no
central dynastic authority but rather countless conflicts and wars, and such
conflicts were mostly among established political powers, different from the
wars between imperial soldiers and the uprising peasants. Finally, the winter
temperature data, characterizing the general weather conditions, arc
adopted from Chu (1975).

We first linear-dctrend the log population data in three-ladder periods
according to the division by C&H.6 We keep the points at the intersection
of two consecutive ladders connected by applying the Spline-regres-
sion technique (Maddala. 1977). The log trend in each ladder represents
its equilibrium-carrying capacity of population, and the detrended log
residuals scries is therefore the (positive or negative) excessive popula-
tion pressure. This residual series corresponds to the N, variable in (9.4),
and the difference of the log residual will be the AW, defined in (9.4).
The above procedure is standard in the empirical literature on density
dependency.

9.3.3 Estimation Results

The estimation result is listed in table 9.2. In model A, where we follow the
approach of Lee and Galloway (1985) and ignore the factor of peasant
revolts, it can be seen that the density-dependency factor, the warring-
period dummy, and the temperature variable are all significant. From the
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Variable

Const.

N, i

W,

z,

R,

R,-i

Model
A

.0027
(4.41)
-.0050

(-3.96)
-.0060

(-6.75)
.0010

(1.92)

Model
B

.0042
(7.15)
-.0040

(-3.32)
-.0047

(-5.63)
.0007

(1.73)
-.0178

(- 16.06)

Model
C

.0044
(7.47)
-.0040

(-3.33)
-.0048

(-5.73)
.0007

(1.39)

Model C
with AR- 1

.0040
(2.84)
-.0122

(-4.19)
- .0077

(-4.03)
-.0010

(-0.80)

Model C
Prohit

-2.1859
(-28.90)

.3387
(1.77)

(3.4144)
(26.25)

b,

i,(k)
R>
D.W.

.0211

.5560
.1265
.6365

-.0193
(-15.16)

.1162

.6422

-.0067
(-3.37)

.5345
2.4588

Q - .71

.7647

Note: R2 is the adjusted R square; numbers in the parentheses are I statistics.

statistics in table 9.2, it is clear that this model cannot capture the basic
pattern of population dynamics in ancient China.

In model B, we add the variable R,. Even before the F test, the addi-
tional explanatory power provided by this variable is obvious in table 9.2.
However, since the coefficient of R, conveys only the "average" respon-
siveness, our fitted curve does not match well the extreme population
declines, such as the ones that occurred at the end of the East and West
Han dynasties. We will discuss this phenomenon later.

Model C seems to be a satisfactory combination of equations (9.4) and
(9.6). It contains a structural equation of revolution, and it explicitly char-
acterizes the interactions between density pressure, bandit ratio, and pop-
ulation growth. Our estimation shows that all variables except temperature
have significant coefficients with expected signs. The combination of the fact
that db,ldN, i > 0 in the probit equation and d£±N, Idb, < 0 in the popula-
tion growth equation suggests that the density pressure was interacting with
the institutional factor (revolt wars) and that the former might be magnified
by peasant revolts in Chinese history. This phenomenon is not covered by
Lee's general observation, mentioned in section 9.1, and is lost in the
Lee-Galloway model A. A positive coefficient of R, \ in the probit equa-
tion supports the "self-enforcing" hypothesis of the revolution proposed by
Ho (1959). Furthermore, a positive coefficient of JV,_! in the probit equa-

TABLE 9.2. Regression Results on Estimation Models
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tion also supports the hypothesis of Ho (1959) and C&H (1988) that density
pressure causes or prolongs peasant revolts. Finally, one notices that the R2

is increased by approximately five times from model A to model C as we
include peasant revolts in our consideration.

As mentioned previously, the coefficient of b, in the AyV, regression rep-
resents only the overtime "average" impact of the bandit ratio on popula-
tion growth, which explains the failure of model C to capture the extreme
declines in population in the East and West Han dynasties. A by-product of
this phenomenon is that the D.W. statistic for this model is very small, indi-
cating serially correlated prediction errors. Specifically, by underestimating
the population decline, say, at the end of the East Han dynasty, we auto-
matically are going to overestimate the population size in the following
period, and with d&Ni/dN, , < 0, this will cause a consecutive underesti-
mation of the population change.

It is intuitively clear that one reason for such a serial correlation comes
from our {Rt} data: we have a dummy charactcrization for revolt, but we do
not know the "scale" of the uprising, on which the magnitude of population
decline depends. Thus, by not distinguishing small uprisings, such as the one
in 942 A.D., from the large ones, such as the widespread revolt toward the
end of East Han, the regression coefficient inevitably underestimates the
impact of the latter and overestimates that of the former. There is nothing
we can do with the data, so we apply the Cochranc-Orcutt AR-1 adjust-
ment to modify the serially correlated residuals. We also list the result in
table 9.2. As can be seen from these statistics, an ad hoc AR-1 adjustment
can significantly improve our estimation (see figure 9.2).

F I G U R E 9.2 Fitted value ol' AN, in Model C with AR-1 adjustment.
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9.4 DYNAMICS OF POPULATION COMPOSITION UNDER ANARCHY

9.4.1 Cycles Without Density Pressure

As C&H pointed out, although many dynasties went through the same
phases, there were no regular patterns for China's dynastic cycles. This
observation in terms of population composition means that the dynamics
of b, may be very irregular. There are two reasons for the fluctuation of b,
in our model in section 9.2: one is the exogenous influence of agricultural
uncertainty and the other is the endogenous self-enforcing mechanism in
the population composition structure. The following paragraph by Ho
(1959) is a typical description of such a self-enforcing impact: "as the com-
bined effect of war. devastation, famine, and epidemics began to be felt,
even larger numbers of poor peasants voluntarily swarmed into the Taiping
war (a peasant revolution in the Ching Dynasty)" (p. 238). Ho's observa-
tion suggested that b, may be affected by bt-1, which is more or less char-
acterized in model C above. But there the special linear AR-1 form might
have restricted our econometric estimation.

To explore the nonlinear dynamics of population composition, we are
going to study an interesting special case of population composition under
anarchy. In this anarchical situation, there are no taxes or military draft (d
= v = 0), and we assume that surviving adults all have the Bergson-class
utility function: u(x) = x°, 0 > 0.

One possibility for why b, may be affected by bt-1 is that people's expec-
tations of b, do not always conform to reality. In what follows, we shall con-
sider a very simple adaptive-expectations model for demonstration
purposes. Suppose people use the realized bt-1 to predict bt in period t. It
can be easily shown that equation (9.1) then becomes

and equation (9.5) is reduced to

Notice that with our special setup, the dynamics of the population compo-
sition is totally independent of the population size or the density elasticity.
This is similar to the situation in chapter 8, but the reasoning is different.
In the critical-mass model of chapter 8, it is the law of large numbers that
helps us establish the simple dynamic relationship of population composi-
tion. In this chapter, the simple relationship between b, and bt+1 stems from
the specific production technology and utility function assumed.
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In equation (9.8), since G'(.) is always positive, we can envisage the law
of motion between b, and b,¥\ by inspecting (9.7). We notice that in (9.7),
both [1 — s(b,)]/x(bt) and yn(b^)ly''(bl) are increasing in b,, whereas (1 —
b,)/b, is decreasing in b,. Intuitively, when the proportion of bandits b, is very
large, bandits' mortality rate may be low, and their loot may also be on the
high side. But as b, is large, then spoils are shared by a larger number of
bandits. Thus, as b, increases, there are two conflicting forces that drive the
ratio of expected utilities between bandits and peasants, and this renders
the possibility of alternating signs of *V'(b,) for b, in the range of [0,1 ]. For
demonstration purposes, we assume the following simple survival function:

9.4.2 Erratic Composition Dynamics

Now I am going to demonstrate the possible erratic fluctuation of popula-
tion composition and to show that such fluctuations may evolve cndoge-
nously, even without biological checks or the density pressure. In our
pcasant-bandit-ruler discussion, it has been affirmed that a high
bandit-peasant ratio indicates a high probability that the rulers would be
defeated and replaced by bandits. The above-mentioned irregular pattern
of the bandit-peasant ratio can therefore be interpreted as to foretell (or
facilitate) the appearance of irregular patterns of dynastic cycles. We
assume

ASSUMPTION A9.1: s(b) is symmetric about b = 1/2, ,v(l) - 0 - 1 - s(Q),
linv,, s(b)/(\ - b) < °°, lim,,.^, [1 - s(b)]/b < °°,s"(b) > (<)0 as b <
(>)\/2,and\s'(\/2)\ < 1.

The parameters in y7' and y" are assumed equal, meaning that peasants and
bandits have the same lighting skill.

The s(.) function in (9.7) characterizes the peasants' "battle achieve-
ment" or "war results" in their fight against the bandits. We assume that $(0)
= 1, L v(l ) = 0, and s'(.) < 0. It is also fair to believe that s ( . ) is symmetric,
meaning that the two fighting parlies are equally efficient, and that when
the size of one fighting party is about the same as (significantly larger than)
the other side, the share of war result should be about equal to (significantly
greater than) one half. Therefore, there must be a turning point at which
the "superiority of numbers" becomes the dominant factor.7 Thus, we expect
to see a convex (concave) region for the s(.) function when b is smaller
(larger) than 1/2. In our numerical analysis, we adopt the specification:
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ASSUMPTION A9.2: 0 < yB, f < ],and yr <0 < y8'.

In A9.1, the assumption lim/, >o[l ~ s(h)]/h < °° says that when bandits are
few in number, their per capita share is not infinitely large. The meaning of
lim/, ^s(b}/(\ — b) < oo is the same. All other parts of A9.1 and A9.2 are
self-explanatory. With the above assumptions, Chu and Lee (1994, 1997)
proved the following theorems.

THEOREM 9.1
Under A9.I and A9.2, if 6 is sufficiently dose to /, V(fe,) in (9.7) has at least
two critical points for b, e (0, 1).

THEOREM 9.2
Under A9.1 and A9.2, if 0 is sufficiently close to 1, there exists a G(.) func-
tion with G'(.) > 0 such that (9.8) generates chaotic dynamics (in the sense
of Li-Yorke period-3 cycle) for b,.K

Theorem 9.1 says that under some minor assumptions, vF(i>) will
fluctuate for b in some subset of [0, 1]. As we can see, the fluctuation of
*V(b) is necessary to generate more interesting dynamics of b,. Indeed, when
we differentiate (9.8) with respect to bh we have

Since G'(.) > 0, a monotone increasing or decreasing ^(q) will also make
%(b) a monotone function, which leads us to conclude that b, will always
converge to or diverge away from a steady state. This is not an interesting
case to study. From equation (9.9), we see that the critical points of ^(b,)
will also be those of %(£>,) in (9.8). Because the critical points of W are deter-
mined independently of the distribution function G(.), rich dynamics of b,
are possible as the specification of G(.) varies.

One should note that the dynamic pattern of b, in equation (9.8) may
be sensitive to variations of many variables. For demonstration purposes, in
theorem 9.2 we study only the impact of changing the cumulative distribu-
tion function of people's attitude characteristics. The setup in (9.8) resem-
bles the critical-mass model in chapter 8. Thus, we showed that with fairly
reasonable assumptions about the war-result function and the survival func-
tion (A9.1 and A9.2), it is always possible to observe the most exotic
dynamic pattern of b,—chaos.

The key step in constructing a period-3 cycle in theorem 9.2 is to let
the slope of the G(.) function be sufficiently steep in the region where
XF fluctuates. Making G(.) steep in this region implies that a large propor-
tion of people are moving together or interactively, so that the aggregate
index of composition becomes very sensitive to small changes. Such an
interaction of decision making in the background also seems to match
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the behavior of ancient Chinese people described by Ho (1959) and C&H
(1988).

9.5 REMARKS ON I N D I V I D U A L CHOICES AND
INSTITUTIONAL CHANGRS

Unlike animals, human beings are expected to think of sophisticated ways
to ease population pressure. There are abundant examples other than the
peasant-revolt scenario studied above: first, Chao (1986) pointed out that
China's traditional economy was very resilient in its institutions and that its
redistributive mechanisms managed to absorb the population pressure. In
chapter 5, I further specified such a redistributive mechanism within the
clan and argued that ancient families often reallocate their incomes or
resources to reduce the probability of lineage extinction. Here the inter-
esting feature of human population is its resulting income distribution.
Second, as Ranis and Fei (1961) pointed out, the excess of laborers in the
rural areas of developing countries often try to migrate to urban areas and
find work under a different economic regime; thus, the two regimes inter-
act wilh each other to achieve a rural-urban "dual" equilibrium. This kind
of economic equilibrium is clearly more complicated and perhaps more
effective in mitigating the population pressure (under the rural regime)
than the equilibria that can be achieved by animal migrations. In this
context, the human population is grouped under different economic
regimes. Third, we know from the labor economics literature that people
who were born in the baby-boom period can lessen the negative impact of
population pressure by lengthening the period of their human capital
investment or by changing their labor-force participation decisions. In this
case, we are interested in the impact of density pressure on labor markets
and on people's education decisions.

The above examples show that human beings can indeed resort to
various institutional devices to relieve the density pressure. Unlike animals,
people have a tremendous reserve of ingenuity that is not reflected in the
traditional variables of population analysis such as age, sex, and location.
Very often it is the composition dimension of population that is most
interesting. Age and sex are the variables common to all populations and
are not subject to change by any individual member of the population;
whereas occupation, religion, and education are variables meaningful
perhaps only to human populations and are subject to change (at some
costs). In time of pressure, if rational people believe that a change in their
social situation can ease the pressure to a certain degree, we would surely
see a change in the population composition structure. This change may
result in the lessening or worsening of the density pressure, depending on
whether the paradox of aggregation applies. Thus, the observed "strength
of feedback" in terms of population si/e covers two effects: one connects
density pressure with population size directly and the other l inks popula-
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tion size with human institution designs, which in turn arc affected by den-
sity pressure.

To some extent, our model in this chapter is not very different from the
predator-prey dynamics of animal populations introduced in chapter 7,
Indeed, when an animal population faces a situation of insufficient
resources, its members often light and kill each other until the meager
resources available are enough for the smaller group of survivors in the
equilibrium. So in a sense, animals can choose to be or not to be the ini-
tiator of fights. The former could be likened to bandits and the latter to
peasants. It may well be that animal population growth would be more sen
sitivc to resource pressure if they could not take the initiative to fight and
were forced to share the insufficient food with others. Of course, animals
do not make sophisticated utility comparisons, and human beings presum-
ably do. But this does not constitute a significant difference; our main inter-
est in the composition dynamics of human populations is that such
dynamics correspond to meaningful and interesting interpretations. The
interesting interpretation in this chapter is the interaction of population
composition and the rise and fall of dynasties.



CHAPTER 10

Easterlin Cycles
Fertility and the Labor Market

10.1 BACKGROUND

I mentioned in chapter 7 that the fluctuation of human population can be
summarized into three broad categories: the prctransitional, transitional,
and posttransitional cycles. Among these three categories, the last one has
caught the attention of most demographic economists in the past thirty
years. The main reason for this unbalanced research attention is that the
posttransitional cycles appear only in developed countries, where high-
quality data arc available for empirical research, 'line recent development
of advanced mathematical tools also facilitates the analysis of posttransi-
tional density-dependent population dynamics. In this chapter we will
provide a summary of the theoretical and empirical analyses of the most
typical population fluctuations in the posttransitional period: the so-called
Easterlin cycles.

The well-known P^asterlin cycles, named after the pioneer work by
Richard Easterlin (1961, 1980), describe the observed two-generation-long
birth cycles in the twentieth-century United States and in several other
developed countries. Easterlin believed that there were two features asso-
ciated with the observed cycles: they are related to the labor market, and
they are more or less "self-generating" (Easterlin, 1961). The first feature
implies that a complete theoretical framework should characterize how
people's fertility behavior is affected by the labor market and how the labor
market is affected by the fertility pattern. The second feature addresses
whether the theoretical framework can generate a persistent fertility fluctu-
ation. An ideal theoretical framework should embody both of these fea-
tures, and an ideal empirical analysis should also be compatible with these
features.

116
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10.1.1 Three Previous Lines of Research

We start the background introduction by studying a Malthusian model pre-
sented by Lee (1974). Let us consider an overlapping-generation frame-
work in which each individual lives one or two periods. The first period is
childhood, the second period is adulthood, and all surviving adults will be
in the labor force. Lee wrote down the following two equations:

where W(t) is the wage rate (at time t), L is the size of the adult age group,
b is the crude birth rate, andf(.) and g(.) are functions with/'(.) < 0 and
g'(.) > 0. Because the current adult labor force is related to the previous
birth rate, equation (10.1) characterizes how previous fertility patterns
affect the current labor market. Equation (10.2) says that people's labor-
market reward will influence their fertility.

Since the pioneer work of Easterlin, follow-up research was pursued
along three distinct lines, (i) Some labor economists (such as Freeman, 1979;
Berger, 1983; and Connelly, 1986) studied the impact of fertility variations
on labor-market equilibrium (equation [10.1]). (ii) Several demographic
economists (such as Ward and Butz, 1980) analyzed the impact of the chang-
ing economic environment on female fertility decisions (equation [10.2]).
The above two approaches provided only partial analyses because they did
not touch upon the self-generating cyclicity of birth, which, as we men-
tioned, is a key feature of the Easterlin hypothesis, (iii) The most relevant
line of research has been pursued by demographic economists and mathe-
matical biologists (such as Lee, 1974; Samuelson, 1976; Frauenthal and
Swick, 1983;Tuljapurkar, 1987; Wachter and Lee, 1989; and Wachter, 1991)
who took into account both features of the Easterlin hypothesis and ana-
lyzed equation (10.3) below.

Suppose that the number of children born in period t is B(t) and that
the mortality rate is a constant (1 - ,y).Then L(t) - s- B(t — 1), and (10.1)
and (10.2) can be written in the following reduced form:

where h(x] = sg(f(sx)). From (10.3) the dynamic pattern of birth can be
analyzed, and the possible existence of cyclicity can be studied. Although
by combining structural equations (10.1) and (10.2) the third approach has
the advantage of being more comprehensive, it is not satisfactory in that
some important information in (10.1) and (10.2) is lost in the reduced form
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(10.3). This drawback, as we will show, has a significant impact on the analy-
sis of Easterlin cycles.

Equation (10.3). if extended to a more refined age structure, can be
written as

where B(f) = (B(l - 1), • • • ,B(t - ri)) is a vector of previous births, <ps(E(t))
is the age-i- net maternity function, and 0.V(B(?)) = </)(s, t). Although equa-
tion (10.4) is general enough to characterize any lagged influence of previ-
ous birth sizes (B(/)) on present fertility, it is too general for analytical
purposes. So Lee (1974) proposed two simple and useful alternatives. The
first is to assume that </;, is a function of B(t — ,v), the age-s cohort (birth)
size. This was referred to as the cohort model in the literature, meaning that
the age-5 maternity is only affected by its own cohort size. The second is to
assume that (j>s is a function of //w/B(/ - j)dj, the weighted (by Wj) total
labor force in period t. This was referred to as the period model in the lit-
erature. For the past two decades, these two approaches have exerted a
dominant influence on the direction taken by the research on endogenous
Easterlin cycles. However, empirical evidence has so far failed to back up
either the cohort model or the period model in producing persistent birth
cycles that fit all characteristics (such as amplitude and period).

10.1.2 Motivating a New Approach

Given that both the cohort model and the period model are simplified ver-
sions of equation (10.4), it is natural to ask the following questions: Exactly
what are the simplifying assumptions (restrictions) behind cohort and
period models? What is the economic interpretation of these restrictions?
Is it possible that these restrictions on the model can be rejected by statis-
tical tests? If persistent cyclicity is not compatible with the restricted cohort
or period models, would it be compatible with an unrestricted framework?
I will try to answer these questions later in my discussion.

Most existing research concerning Kastcrlin cycles focuses on deriving
a threshold parametric value of bifurcation and checking whether the
model in question can generate a corresponding parameter value larger
than that threshold value. Technically speaking, these analyses can only
confirm or deny the existence of limit-cycle solutions. The only exceptions
are the studies by Feichtinger and Sorger (1989) and by Wachtcr (1991),
where the period and/or the amplitude of limit cycles were also analyzed.
Wachter concluded that it is unlikely that one could set up a framework
that happens to generate birth cycles with aspects compatible with the real
data. However, since the observed data period for the United Slates is still
rather short, we are not convinced that the steady-state cycles (if they exist
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and will be converged to) should have an amplitude and a period similar
to what we have observed in our short sample period. To answer the ques-
tion of whether there will be persistent Easterlin cycles, it is necessary to
check the stability of the dynamic system.

The organization of this chapter is as follows. First, I shall propose a
behavior model compatible with the Easterlin hypothesis. The setup to be
presented is so general that both the period hypothesis and the cohort
hypothesis in the previous literature can be treated as special cases. 1 then
use statistical methods to test which hypothesis best fits the U.S. data.
Finally, the estimated parameters of the best-fitted model are adopted to
check the existence and stability of the (Easterlin) periodic solution to the
population renewal equation.

10.2 THEORETICAL MODELING

10.2.1 The Relative-Income Hypothesis

Easterlin (1980) believed that people's fertility decisions would be
affected by their "relative income," by which he meant the "potential
earning power relative to material aspiration" (p. 42). The aspiration of a
family head of childbearing age may have been formed when she was
young. Therefore, the concept of relative income is in fact a childbearing
family head's intertemporal comparison of the economic condition she cur-
rently faces with a "norm" she has in mind.

As to detailed specifications, there are two popular approaches in the
literature. The first is to assume that the fertility rate is affected by the size
of cohorts relative to one another, as do Keyfitz (1972), Samuelson (1976),
and Wachter (1991); the other is to assume that the fertility rate is a func-
tion of the present cohort sizes relative to those in the population steady
state.'Yhe latter approach was proposed in Lee (1974) and became the main-
stream approach. One advantage of comparing the current cohort size with
that of the steady state is that the steady state is related to the concept of
"carrying capacity"; therefore, one can connect Lee's specification of rela-
tive income with the classical Malthusian hypothesis. In what follows, we
will use the steady-state value to normalize the birth-size variable.

10.2.2 Density-Dependent Renewal Equations

Following the conventional approach in the literature, we assume that the
equilibrium (steady-state) birth trajectory grows at an exponential rate:
B*(i) = B*e". Substituting this in equation (10.4) and simplifying, we get

where /v is the proportion of births surviving to age s and ra(.v, /) is the
average number of births per surviving member aged s at time t. We shall
focus upon the detrended series B*(t) ^ B(t}/e" and rewrite (10.4) as
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The trend B*(i) specifies the carrying capacity of the economy, and there-
fore the normalized B*(f) is the "excess" population, which will form a (plus
or minus) density pressure.

The next step is to specify the relationship between the age-specific fer-
tility rate and the parents' perception of relative income. Generally speak-
ing, a typical family head's relative economic condition will be worse if the
overall unemployment rate is higher, or the wage rate is lower than her per-
ception. Because both the unemployment rate and the wage rate are deter-
mined in the labor market, it is natural for demographic economists to think
of using the age-specific potential labor force to characterize the relative
advantage of various age groups.

Following Lee (1974, 1978), we suppose that the age-s fertility rate is a
function of the agc-s welfare (or wage) relative to the steady-state level:

where W* is the steady-state agc-s welfare. Suppose Ws(t) is a function of
the sizes of various age-specific normalized potential labor forces at time t,
which are in turn proportional to previous age-specific births; then m(s, t)
in (10.6) can be written as a function of B'!(/):

where R*(t — u) and B"(t — v) are respectively the normalized sizes of the
youngest and oldest workers in the labor market at time t. Thus, equation
(10.5) can be rewritten as

10.2.3 The Unrestricted Settings

Suppose the age-specific fertility rate is a function of the relative welfare,
as specified in (10.6). Suppose further, as is typical in economic analysis, that
the age-specific welfare is determined by the marginal productivity of
workers of various ages. If there is an "aggregate production function"
which transforms inputs of workers of all ages into the output

where L''s(t) is the normalized age-s labor-force size at time t, then we have

Equation (10.7) is the density-dependent renewal equation, where the
density dependency is revealed in the mv(B*(A) term.
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where the subscript of f indicates partial differentiation. Because a key
feature of the Easterlin hypothesis is the specification of the relationship
between the cohort welfare and excess (relative to the steady state) cohort
labor-force sizes, researchers generally believe that it is better to use the
potential labor-force than the actual labor force to characterize such a
welfare impact.1 Thus, following the common practice of previous literature,
we will use the potential labor-force size /,S*(f — s) to replace L*(t) in the
Ws(t) equation, and rewrite it as

where 1 is the vector representation of /,.'s.
Now we have to specify the production functional form /(.) to proceed

with our analysis. Suppose /(.) has the form of the generalized Leontief
function (Diewerl, 1974):

As is well known, the generalized Leontief form is an approximation of any
production function, similar to the Translog form (Varian, 1984; Lau, 1986).2

If age-specific welfare reflects the age-specific workers' productivity, then
we can differentiate G(t) in (10.8) with respect to L*(t) to derive the welfare
function of each age i:

Substituting equations (10.6) and (10.9) into (10.7), we have the general
unrestricted version of the renewal equation.

10.2.4 Implicit Restrictions of Cohort and Period Models

Equation (10.7) is the starting point of most previous empirical and theo-
retical research on endogenous Easterlin cycles. For the cohort model, in,
is assumed to be affected by B#(t — s) alone:

For the period model, ms is assumed to be affected by the weighted total
labor force, or equivalently the weighted average of previous birth sizes:
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where o). is the age-z worker's efficiency weight. Note that in Lee's origi-
nal setting, there were no efficiency-weight differences, and therefore oj, =
1 Vy.

Because the original assumptions are that the fertility rate should be a
function of parental perception of relative welfare and that a parent's rela-
tive welfare perception is determined in the labor-market, it is logical to be
curious about the implicit labor-market assumptions behind (10.10) and
(10.11). Given (10.6), (10.9), and (10.10), the age-.v cohort welfare in the
cohort model is apparently independent of the labor-force sizes of all other
age groups, and hence the implicit assumption seems to be that among all
age groups there is no substitution in the production function G(.) in (10.8).
In the period model, it is the weighted average of labor force of all ages
that affects the age-specific welfare, which seems to imply that there is a
perfect substitution for (7(.) (with efficiency adjustment) among all age
groups. In what follows, we let H, and H/t, respectively, denote the cohorl-
and period-model null hypotheses, against which we can establish a statis-
tical test. Chu and Lu (1995) proved the following theorem:

THEORP.M 10.1
Given the generalized Leontief production function in (10.8), the implicit
restrictions for the cohort model are

and those for the period model are

for some constants A/, /I,, and k.

The interpretation of (10.12) is easy: a cohort model implies that there
is no cross-age interaction effect on age-specific fertility, which in turn
implies that the G function in (10.8) must be additively separable. Thus, y,,;
=• 0 Vz + j must hold. Equation (10.13) is less intuitive and more compli-
cated. Interested readers are referred to Chu and Lu (1995) for details.

10.3 ESTIMATION AND STATISTICAL TESTS

10.3.1 The Data Set

In the rest of this chapter, I use subscript a to denote a five-year cohort.
Our data set includes the U.S. birth number series B(t), five-year cohort
population sizes P,,(t), and five-year cohort fertility rates, all from 1917 to
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1987, totaling 71 points. The data source is summarized by the author from
the Vital Statistics of the United States? In our analysis, the childbearing age
is assumed to be in the range of 15 to 44, including six five-year cohorts,
with respective subscripts a = 1, 2, • • •, 6. The cohort-specific fertility rate
is defined to be the number of births divided by the number of females. To
facilitate our later analysis, we multiply these fertility rates by a sex-ratio
adjustment term and obtain sequences of birth and population that corre-
spond to the variable m(a, t) in our previous analysis. This 71-year average
adjustment term turns out to be .45944; calculation details are not pre-
sented here. The age range of the potential labor force is 15-64, including
ten five-year cohorts, with respective subscripts a == 1,2, ... , 10. Following
the previous analysis, we shall use the cohort population size as a proxy for
the potential labor force variable.

Let 1917 be time zero. First we fit an exponential trend for the total
birth series B(t) and obtain I n B ( t ) = 14.56 + .00944; + e(t), where e(t) is
the residual term. Then we calculate the normalized sequence B''(t) =
B(t)/e", where r = .00944.To normalize the P,,(i) series, we perform a similar
detrending procedure:

where a is the average age of age group a.4

10.3.2 Estimating the Fertility Equation

Suppose the cohort-specific fertility rate m(a, t) is a function of the relative
wage Wa(t)/W*, consistent with the spirit of Easterlin's relative-income
hypothesis. Lee (1978) adopted a log-linear functional specification
between m(a, t) and Wa(t)IW*. But since we are going to substitute the W,,(f)
in (10.9), which is highly nonlinear in B*(f), into equation (10.6), a linear
specification between m(a, t) and Wu(t)/W* in (10.6) is sufficiently compli-
cated to embody the potentially nonlinear relationship between m(a, t) and
B*(f). Thus, we suppose

where f>'a = filW*. Using (10.9) and replacing the potential labor force L*a(l)
by the population size P*a(l) as a proxy, we can rewrite the above equation
as
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where

Clearly, for each a = 1, • • • , 6, one of the coefficients in (10.14) (/:>", aa,
Ya.jJ ^ a) can be normalized to be 1 in the unrestricted version. In the rest
of this chapter, without loss of generality, we set fi" = 1. But when H, is true,
there is no overidentification, and hence the normalization is not needed.
Since age-specific welfare values are all determined by the same aggregate
production technology G(.), there are interrelated coefficients among
these equations (for instance, y,y will appear in all equations). Thus, we
have a nonlinear seemingly unrelated regression system with coefficient
constraints.

Equation (10.14) is the unrestricted version of the fertility model. When
we estimate the cohort model or the period model, the restrictions in //c or
Hp (see [10.12] and [10.13]) must be taken into account.

Because my focus is upon model selection, 1 did not list the detailed
coefficient estimates of each equation in table 10.1. One thing we notice is
that the unrestricted model has a much smaller MAE than does either the
period model or the cohort model. We also note that most estimates of /i",
a = 1, • • •, 6, are positive and significant, meaning that better age-specific
relative welfare will induce higher fertility rates.5

10.3.3 Nested and Non-Nested Tests

Because the period model and the cohort model are restricted versions of
equations (10.14), we use a nested test to investigate whether these restric-
tions are true. Because the statistic for the likelihood ratio test is much
easier to derive than that of the Wald test or the LM test in our analysis,
and because the dispersion among these test statistics is not significant for

TABLE 10.1. Estimation Results of (10.14) for Various Models

Age
Group

15-19
20-24
25-29
30-34
35-39
40-44

Model C'

.0047

.0126

.0126

.0091

.0074

.0036

MAP

Model Pd

.0038

.0071

.0040

.0036

.0058

.0036

Model U'1

.0015

.0029

.0025

.0016

.0010

.0003

/3;;b of
Model U

1
6.659
1.177

-3.835
1 .290
1.129

f-Statistic
of /%"-'

1 .633
7.427

- -2.048
3.935
2.084

1 MAE ^ £lv, - }'j\IT is the mean absolute error, where v, and v/ are the actual and the predicted values of
the dependent variables, respectively, and T is the sample si/c.
'/^ is the estimate of/^.
' ft'{ is normali/ed to be i, so tha t there is no associated /-statistic.
' C, P, and U, respectively, represent "cohort," "period,'' and "unrestricted."

and
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TABLE 10.2. Nested and Non-Nested Hypothesis
Testing

HA: Hu H, H

H». II,
H,

702.94*
788.66* 5.68-10 8**

0.038**

Notes: H<} represents the nul l hypothesis, HA represents the alternative
hypothesis, Hu represents the unrestricted version, and //,, and Hp are,
respectively, cohort- and period-model restrictions. * is the x" value for
the likelihood ratio test. **is the Cox-test / statistic.

large sample sizes (Berndt, 1991), we present the popular likelihood ratio
test result in table 10.2. We see from table 10.2 that both the period model
and the cohort model are rejected.

The relationship between the period model and the cohort model is a
non-nested one, and we perform a Pesaran-Deaton-Cox (Pesaren and
Deaton, 1978) non-nested test to discriminate between them. We see from
table 10.2 that neither model can be rejected. These results suggest that if
we are to choose a model to perform the dynamic analysis of endogenous
fertility cycles, we should adopt the unrestricted version.

10.4 ENDOGENOUS EASTERLIN CYCLES

JO.4.1 Calculating Various Parameters

Because there are six fertile cohorts (15-44) and ten labor-force cohorts
(15-64) in our model, 1 shall from now on specify the upper bounds of sum-
mation signs to avoid possible confusion. Given the survival probability /„
of age group a, and given that Pa(t) = la J|B(f - s)ds, we have

where a is the average age of group a and a (a) is the age lower (upper)
bound of group a. Let B*a(t) be the shorthand representation of J"B*(t —
s)e~ "ds. Substituting (10.14) into (10.7) and using the relationship between
P"a and B*a characterized above, we can rewrite (10.7) explicitly as:

where



126 Part II: Cycles and Transitions

Clearly equation (10.15) is a density-dependent renewal equation, and
we want to investigate whether the B"(/) sequence generated from (10.15)
will give rise to persistent Easterlin-type cycles. For that purpose, we should
substitute the estimated parametric values from (10.14) into (10.15) and
analy/.e the dynamic motion of B*(t) so derived. Note that previous esti-
mations of (10.14) were based mainly on cohort and period hypotheses,
which are statistically insignificant. Dynamic analyses of endogenous cycles
based on these insignificant parameter estimates are certainly questionable.

But even if we leave aside the problem of parameter estimation, pre-
vious analyses of the dynamic pattern of B*(t) are still incomplete. In
Fraucnthal (1975), Swick (1981a, 1981b), Frauenthal and Swick (1983), and
Wachter and Lee (1989), the common approach is to linearly approximate
(10.15) and see if the calculated density-dependent elasticity exceeds the
critical value of bifurcation. If it does, limit cycles are then considered as
"possible." In order to give a complete answer to the question of whether
there will be Easterlin cycles, we must go beyond the existence analysis and
study the stability of the B*(t) cycle generated from (10.15), the answer to
which is provided in theorem 7.4.

In chapter 7 I summarized the technical background for checking
whether there is a limit-cycle solution (existence) and whether the popula-
tion will converge to such a solution (stability). To analyze the existence
problem, we need to check whether the estimated bifurcation parameter is
larger than the endogenously determined critical value. To analyze the sta-
bility problem, we have to calculate the Floquet exponent and see if it is
negative. Detailed steps can be found in Chu and Lu (1995); here we only
provide a sketch. First, we use equations (10.14) to estimate the parame-
ters; second, we substitute these parametric estimates into (10.15) to calcu-
late the steady-state value B*; third, we apply Taylor expansion to (10.15)
around B*; fourth, we use the parametric estimates and the B* to calculate
the (various-order) Taylor coefficients or elasticities; and finally, we use
these values to calculate the various bifurcation parameters.

There are three threshold parameters that are particularly important.
The first is the threshold feedback response elasticity, denoted gu. If the esti-
mated feedback elasticity is larger than g(), then a limit-cycle solution exists.
The second is the critical polar coordinate of the imaginary part, denoted
£o- If there is a limit cycle, its period length will be p0 — 2;r/£0. The third
parameter is the Floquet exponent q. A limit-cycle solution will be con-
verged to only if q < 0. Using the U.S. data, we present below the various
parameter estimates.

10.4.2 Period Length and Limit Cycles

The U.S. data generate a threshold feedback elasticity gu = 1.205, and
the actual feedback strength turns out to be ge = 4.858, far larger than
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go- Therefore, we conclude that there exists a limit-cycle solution for
(10.15). However, the existence of a limit-cycle solution alone carries no
empirical implications, since only stable cyclical solutions are relevant and
interesting.

When g(] — 1.205, we find that the corresponding period length of the
limit cycle is p0 = 2n/a>a = 10.63 years, much shorter than previous analy-
ses had found (see table 10.3 for comparison). On this point, some expla-
nation is in order. In previous research by Frauenthal (1975), Swick (1981a,
1981b), Frauenthal and Swick (1983), and Wachter and Lee (1989), the
authors all adopted a special functional form for fertility: m(s, t) = m(s) •
M(B(?)). Given this special form, the elasticity m(s, t) with respect to any
element of the previous birth vector B(t) is independent of s. Thus, the
implicit restriction of the separable functional specification of m(s, t) is that
the feedback elasticity of all groups is the same, which in turn implies that
it is impossible for previous birth numbers to have conflicting age-specific
feedback effects on the fertility behavior of different age groups. This also
explains why all previous researchers only had to run a single regression
equation (normally NRR or TFR with respect to previous births).

Given that the elasticities of m(s, t) with respect to a birth size are
restricted to being the same for all s, we would normally expect this

TABLE 10.3. Previous Results on Easterlin Cycles (EC)

Source

Cohort Models
Lee (1974)
Frauenthal and Swick ( 1983)h

Wachter and Lee (1989)
Period Models

Lee (1974)
Wachter and Lee (1989*)c

Wachter and Lee (1989**)"
Wachter (1991)

Relative Size Model
Wachter (1991)

Cascade Model
Wachter (1991)

Threshold
Parameter

_."

2.30

2.30

4.0
2.64
2.58
2.4tc

2.3

1.2tu

Period
Length

—
52

52

38
106
98
95

52

42

Estimated
Parameter

0.954
3.376
2.795
1.72

7.724
8.05

9.567
3.5tc

1 .9-T

1.3r

Existence
of EC

No
Yes
Yes
No

Yes
Yes
Yes
Yes

No

Yes

''There was no threshold value in Lee's (1974) analysis because he used spectrum analysis instead of the
bifurcation approach.
bTwo sets of explanatory variables were used by Frauenthal and Swick, so two estimated parameters were
generated.
c* corresponds to the case where the 1930 data are assumed to be the steady-state values.
d** corresponds lo the case where the 1981 data are assumed to be Ihe steady-state values.
ct indicates approximation values obtained by observation.
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elasticity to be negative, denoting the Malthusian density-dependency (or
crowding) efi'ect. But in the labor market, workers of different age groups
sometimes complement each other. For instance, a large older and more
experienced labor cohort aged 65 may complement the young and inexpe-
rienced labor cohort aged 25; whereas a large cohort aged 35 may have
a crowding effect on the cohort aged 25. Thus, it is possible that a larger-
than-equilibrium cohort labor force may have a negative impact on total
fertility when the cohort labor force in question is aged 35 but a positive
impact when the cohort labor force in question is aged 65. None of the pre-
vious modeling is compatible with such mixed impacts of different age
cohorts.

When the above-mentioned cross-age substitute or complementary
effect in the labor force is taken into consideration, as in our general model
with an unrestricted aggregate production function, the overall feedback
strength of population density is the composite of all age-specific feedback
elasticities. It is difficult to derive an analytical relationship between period
length and the substitutability of age-specific labor force, but it is relative-
ly easy to understand that the period length we obtain may be quite dif-
ferent from the previous ones.

We should also note that, although our 10.63-year period length, like
many of the strange period lengths obtained in previous research (see table
10.3), is not compatible with the two-generation cycles observed in the
United States, there is no real conflict either. The period length obtained
corresponds to the limit-cycle solution in the steady state, which may not be
stable, and need not have anything to do with the current U.S. data.

After calculating p(h g(), and gn we need to calculate the Floquet expo-
nent q. It turns out that the U.S. data generate a positive q = 1.81 X 10~15.
Such a positive estimated Floquet exponent implies that the system is a sub-
critical one, and hence the corresponding limit-cycle solution is unstable.
This is a major distinction between the analysis here and the ones in the
previous literature. In all the analyses listed in table 10.3 and elsewhere,6

the focus was upon the existence or nonexistence of a limit cycle or a
complex solution for the models they analyzed. Although Tuljapurkar
(1987) proposed the method of checking stability for nonlinear population
models, so far as we know no one has applied it to the analysis of Easter-
lin cycles as we have. The Floquet exponent being positive tells us that
although there exists a limit-cycle solution, our real-world data will not con-
verge to it. This finding suggests that to discuss the limit-cycle solution
without knowing its stability is not meaningful, a conclusion similar to
Samuelson's correspondence principle.

But given that the limit-cycle solution is not stable, where will the U.S.
B"(t) series go? Indeed, the dynamic motion of a subcritical system is very
unpredictable. According to Lorenz (1989), given that gL, > g0 and q > u, the
equilibrium is not stable and no orbits exist. So all we can conclude is that
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the U.S. birth series will neither converge to the equilibrium B* nor plunge
into a limit cycle.

10.5 ALTERNATIVE EXPLANATIONS OF EASTERLIN CYCLES

A premise of our analysis in previous sections is that there is a unique equi-
librium or attractor for the dynamics of the population, and we test whether
the cyclical data we observe is consistent with the possible cyclicity of this
unique equilibrium. However, as Chesnais (1992) pointed out, the number
of cycles observed in various series for the Western countries is actually
only one, which makes the very existence of a cyclical attractor doubtful.
He argued that no tests of Easterlin's hypothesis have ever proved con-
vincing. Chesnais's comment has led mathematical demographers such as
Bonneuil (1989, 1990, 1992) to search for other possible explanations for
the so-called Easterlin cycles.

In fact, the possible misinterpretation of cyclical series also appears in
the study of other population data. As Bonneuil (1990) pointed out, because
of the noise inherent in biological as well as demographic systems, localiz-
ing attractors is usually difficult in many empirical studies. Very often,
observed fluctuations most likely represent an orbit which was at least twice
periodic with noise superimposed.The contribution of Bonneuil is to extend
the traditional definition of population attractors to the stochastic case and
to provide a different interpretation for the observed fertility fluctuations.

Let NtJI be the number of women aged a in period t, </>„ be the age-
specific fertility rate in the absence of any contraception, B, be the total
birth in period t, and /,' be the overall Coale index:

Bonneuil used the reconstructed data of Pays de Caux (for the years
1589-1700) to calculate the l{ time series and to draw the series in the I{ll{-\
two-dimensional space. It turns out that the evolution of I{ looks irregular
and nonlinear because of sudden bursts at irregular time epochs. The tra-
jectory looks as if it is confined alternatively in two given zones, looping in
each of them for a while but sometimes jumping between the two when
there is a sufficiently strong perturbation. Moreover, the jumps between the
two confining zones appear discontinuous, and if we look at these jumps
and returns alone, we may be misled into believing that the trajectory is
cyclical. Bonneuil's finding therefore provides us with an alternative idea
of equilibrium, which is totally different from the one proposed by Easter-
lin. Besides the numerical example given above, Bonneuil (1992) also pro-
vides a rigorous analysis of the extended notion of confiner and attractors.
This analytical definition can be applied to other data sets.
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If the U.S. fertility scries reveals a switching-confiners regime owing to
exogenous shocks, then the behavioral hypothesis proposed by Easterlin is
really redundant. In that case, economists should allow statisticians to
analyze the fertility time series. However, we need data for a longer time
series to be able to see which of the two competing hypotheses (Bonncuil
vs. Easterlin) is true.



CHAPTER 11

Demographic Transition and

Economic Development

11.1 BACKGROUND

Demographic transition refers to a shift in reproductive behavior from a
state of high birth and death rates to a state of low birth and death rates.
This transition takes place because of advances in agricultural technology
and medical science or improvement in hygiene environment, all of which
result in corresponding declines in the mortality rate.1 In this first phase of
the demographic transition, population growth rises because the decline in
mortality rate has not been coupled with any significant change in parents'
fertility decisions. Then, in the second phase of the transition, parents begin
to reduce their fertility as they realize that their ideal number of children
can be more easily achieved with fewer births. The widespread use of con-
traceptive techniques facilitates parents' attempts to reduce fertility, which
in turn causes a decline in the population growth rate. Eventually, the pop-
ulation growth rate converges to a new level, which may be higher or lower
than in the pretransitional stage.2

To facilitate comparison, we can use figure 11.1 to characterize the
time and process of the transition. In figure 11.1, Ta marks the apparent
starting point of a continuous decline in mortality. 7};, which normally
occurs later than Ta, refers to the time at which the fertility rate begins to
decline. 7',, is the point of lasting return, with an average rate of natural
increase equal to or less than that of the period preceding the date of T,,.
The convention is to define D = Tr - Tu as the duration of the transition
period.

Chesnais (1992) separated the observations of world demographic tran-
sition into several types. The first type includes developed countries in
Europe and Japan; the second type consists of countries with immigrant
European populations, such as the United States, Australia, and Argentina;
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F I G U R E 11 .1 The stages of demographic transition.

late-developing countries, such as India. South Korea, and Jamaica, belong
to the third type. For countries of the first type, the mortality decline process
is closely related to the development of medical technology, which was
gradual and spread out over time; hence, the demographic transition is also
long. Late-developing countries and those with large immigrant populations
were able to adopt the already-developed medical technology from the
advanced countries at one time. Therefore, their mortality rates could drop
sharply, thereby shrinking the duration of the demographic transition. As
Chesnais summarized it, the duration of the demographic transition for
Nordic countries can be as long as 150 years, whereas it is 64 years for the
United States and as short as 50 years for Taiwan. Of course, the duration
of the transition period also hinges upon how fast the fertility rate declines.
India is expected to have a very long transition period because its fertility
rate remains very high a long time after mortality rates declined.

Despite the fact that the natural growth rate of the population returns
to a low level after the time 7',,, the age structure may still undergo
significant changes after that time. At 7',,, the population usually contains a
large proportion of middle-aged individuals who were born when the fer-
tility rate was still high. As this large group of people grow older, the pop-
ulation age structure also gets older, which is called population aging. In
fact, this is a problem faced by many countries at the end of the twentieth
century.

Although the demographic transition is typically characterized by a
decline in the mortality rate followed by a decline in the fertility rate,
human economic decisions do make the impact of such a transition rather
complicated. First, the reduction in child mortality rates makes parents
more willing to invest in children (a quantity-quality tradeoff). This facili-
tates the overall accumulation of human capital, which in turn is believed
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to be the key reason for the positive correlation between demographic tran-
sition and economic development. Second, the transition also causes pop-
ulation aging. In a democratic society where intergenerational transfer
policies are determined by majority voting, we expect that all kinds of
unfunded pension systems that compensate the old at the expense of the
young are going to appear. We also expect that, given a pension system with
fixed tax and benefit rates, the pension deficit should increase as the popu-
lation ages.

Third, in the transition process, the relative proportion of all age groups
changes. If extended families are widespread, and if income inequality
differs for different age groups, then, along with the transition, the family
income inequality index will also change. Finally, at different stages of the
transition process, the proportion of dependent population (young and
old) is different, which may be a factor explaining the changing aggregate
savings rate of the economy. In later sections of this chapter, I shall provide
analyses of all these economic problems.

11.2 DEMOGRAPHIC TRANSITION AND ECONOMIC GROWTH

Ever since Kuznets (1965), economists have noticed the synchronized pace
of demographic transition and economic development. Early-developed
countries in western Europe, the United States, Canada, and Japan have all
experienced the transition stage from high fertility/mortality to low fertil-
ity/mortality. Recent development evidence has also shown that fast-
growing countries (Taiwan, Singapore) are those that went through the
demographic transition smoothly, whereas slow-growing countries (India,
Mexico) are those that could not get out of the high-fertility trap. There-
fore, a natural question to ask is whether there exists a theoretical rela-
tionship between demographic transition and economic development. But
research in this direction has not been successful under the neoclassical
growth model of Solow (1956), for it typically predicts a converging steady-
state growth rate of per capita income, which is incompatible with the
diverging development paths among countries we have observed over the
past 50 years.

Other than the above-mentioned unrealistic "converging growth path"
prediction, Solow's model is also weak in predicting the relationship
between income growth rate and population growth rate. It is well known
that in Solow's model, the steady-state level of per capita income is a
decreasing function of the population growth rate. The reasoning is that
higher population growth dilutes the accumulation of per capita capital,
which in turn reduces per capita income. Although this prediction gets some
empirical support in areas such as China and India, such a reasoning is nar-
rowly restricted to the dilution of physical capital, and is not broad enough
to be compatible with general development experience, which may be
related to the accumulation of human capital.
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Recent advancement in the new growth theory has provided an alter-
native possibility for explaining the correlation between economic devel-
opment and endogenous fertility decisions. In this section, I will introduce
two typical models in this area. Notice that here I emphasize the role of
population in the transitional stage (from primitive agricultural to advanced
industrial) of modern economic development. I am reluctant to put much
weight on the long-run analysis, which will be the focus of the discussion in
chapter 14.

11.2.1 The Becker-Murphy-Tamura Model

The key idea of a paper by Becker, Murphy, and Tamura (1990, hereafter
BMT) is that there is an increasing return in the human-capital production
technology, so that when the human-capital stock is abundant, the rate of
return on human-capital investments in children (quality) is high relative
to the rate of return on the number (quantity) of children. As a result, a
society with low (high) human-capital stock tends to have more (less) births
and less (more) human-capital investment. These two scenarios will gener-
ate two extreme stable steady states, which correspond to the advanced and
underdeveloped economies in the world.

Specifically, BMT considered a young/old overlapping-generation
model and assumed that at period t a representative parent has the fol-
lowing utility function:

where //" is the initial endowment of H. A is a constant, and h, is the amount
of time spent to teach one child at period /.

Let /, be the time spent by every adult producing consumption goods
at period t and D be the productivity of this sector; then the total output is
D/,(//° + //,), which is to be spent on adult consumption and child rearing.
This constitutes the second constraint of the parent:

vherc V, and V,, i are the utilities of parents and each child, u(c) is parental
ilility flow from consumption c,, and m, is the number of children. 6(m) is
he between-generation discount rate determined by parental altruism
oward each child. BMT assumed that d' < 0, meaning that the discount
•ate declines as the number of children increases.

Besides the preference specification, parents face three technological
)r budget constraints. The first has to do with the production technology of
luman capital for each child:
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where/is the unit of goods needed for rearing each child.
Finally, suppose rearing a child also requires v amount of time and that

the parent has total time T\ then the parent's time constraint is

Faced with the constraints in (11.2)-(11.4), the parent chooses m, and h, to
maximize (11.1).

BMT then adopted the following functional specification:

Given the above specification, they showed that there are two possible solu-
tion paths. The first is the "underdevelopment trap" case, where the parent
voluntarily chooses a corner solution h, — 0 V?, and hence H, = 0 Vf. This
will be the case when producing children is inexpensive, and the children
are well endowed with earning power.Thus, a sufficiently high rate of return
from bearing children induces parents to have many children and discour-
ages any investments in children's human capital. This may be a character-
ization of the situation of some less developed countries.

The second possible solution path is an interior solution for both m,
and h,. It turns out that the optimal solution for h, in this case is stationary:

and the solution for m, is implicitly defined by

where g* is the steady-state growth rate of c, and H, defined by3

From equations (11.6) and (11.7), we see that the fertility and the
steady-state rate of growth in per capita income may be positively or neg-
atively correlated across countries. If g* differed because the productivity
of human capital investments (A) differed, then the fertility rate and the
growth rate would be positively related. If g* differed mainly because the
cost of children (v) differed, then the fertility rate and the growth rate
would be negatively related. This is a theoretical prediction about the rela-
tionship between fertility rate and economic growth rate, which is quite
different from the prediction of a neoclassical growth model. BMT also
showed that the fertility rate should be negatively related to the level of
the current stock of human capital, which is believed to be consistent with
reality.

The BMT model uses the hypothesis of increasing return on human
capital to characterize the tradeoffs between the quantity andPARENTAL
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quality of children. One phenomenon not explained by the BMT model is
the relationship between economic growth and the demographic transition,
initiated by the decline of mortality rates.4 This gap was filled by Ehrlich
and Lui (1991), as explained below.

11.2.2 The Ehrlich-Lui Model

Instead of assuming that parents are altruistic, as in the case of the BMT
model, Ehrlich and Lui (1991) considered the case of selfish parents who
raise children just to provide support for their own old-age expenditure.
This kind of "child-as-old-age-support" argument is more compatible with
much of the literature in development economics.

Ehrlich and Lui (1991) assumed a human-capital production function
similar to (11.2) and a time constraint similar to (11.4), except that T was
assumed to be 1. The key difference is their setting of the parental utility
function. Individuals are assumed to live one or two or three periods,
depending on the realization of the mortality uncertainty. The first life
period is called childhood; children have p1 probability of surviving to the
middle life period, becoming a young parent. A young parent has p2 prob-
ability of surviving to the third life period, called old parent. It is assumed
that children accumulate human capital and do not consume, and a person's
lifetime utility is specified to be

where c1 and c2 are young and old parents' consumptions, respectively, and
c3 is the "companionship" enjoyed by the old parent.

Ehrlich and Lui (1991) argued that a young parent will form an implic-
it contract with each child, which states that the parent should receive from
a grown-up child an amount of old-age support proportional to that portion
of the child's future income that is associated with //,. This proportion is
denoted wt at period t. Similarly, the current young parents will be willing
to support the old parents with a proportion of the young generation's
income. Ehrlich and Lui argued that such a contract will be voluntarily
honored by each person, and is therefore time-consistent.

Suppose a young parent at period t decides to have m1 children and to
spend h1 amount of time in educating each child and that the period-t stock
of human capital is Ht + H0. Then the parent's income available for con-
sumption is
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where p2WtHt is the expenditure supporting the old parent.5 The old parent
cannot work anymore, and his or her old-age consumption comes com-
pletely from the transfer of their children: c2(t + 1) = mtp1wt+1Ht+1. Finally,
the companionship function is assumed to be6 c3(t + 1) = C(p1mt)bHa

t+1,
where C, a, and b are three constants.

The parents' decision is divided into two stages by Ehrlich and Lui
(1991). In the first stage, they take Ht, wt, and wt+ 1 as given and choose
the optimal mt and ht. In the second stage, parents choose the optimal con-
tract wt+1. Ehrlich and Lui proved the following demographic transition
theorem:

THEOREM 11.1 (Ehrlich and Lui, 199], p. 1043)
If the economy is initially in a stagnant equilibrium and if0 < a,b < 1 holds,
then a once-and-for-all increase in p1 will cause the human-capital stock to
increase over time, either converge to a higher steady state or grow without
bound. In the initial phase following the increase in p1, mt may increase or
fall, although it will eventually start to decline to its minimum level. An
increase in p2 has a qualitatively similar impact except that mt must increase
in the initial phase.

The intuition behind the above theorem is as follows. An increase in p1
increases the return on the parent's investment on both m, and ht, and hence
initially it is not clear whether parents will decide to increase mt or to
increase ht. But as the stock of human capital gradually accumulates, the
increasing return property associated with the production of Ht+1 (see
[11.2]) eventually makes the return to ht dominate that of mt. In contrast,
because by assumption old parents have to rely on support from their chil-
dren, an increase in p2 will increase the young parent's incentive to have
more children to increase his own expected old-age support. Thus, m, will
increase in the initial phase after p2 increases.

Theorem 11.1 is a nice characterization of the economic impact of a
reduction in mortality rate, with the corresponding reduction in fertility rate
as a result of the parent's decision. In the scenario posited by Ehrlich and
Lui (1991), parents will try to increase their offspring's income, because they
know that a fixed proportion of this income will be transferred to them-
selves. Ehrlich and Lui argued that although people are selfish, such trans-
fers will be prevalent as an implicit contract between the parent and the
children.

The BMT (1990) and Ehrlich and Lui (1991) models have different
specifications about parental preferences, but they share the common
feature that the increasing return property of human-capital production is
the key factor that induces parents to reduce the quantity and increase the
quality of their children. This is a crucial element that connects individual
fertility decision with aggregate economic development.
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11.3 DEMOGRAPHIC TRANSITION AND PUBLIC PENSION

Although the 100-year transition stage was relatively short in human
history, the institutional changes during this period have been quite
significant. In the preindustrial economy, the family was a tighter unit than
it is now, and most parents could expect to receive old-age support from
their children. But along with the demographic transition, the fertility size
of each family decreases (as we showed in the previous section); the finer
division of labor and improved transportation facilitate some children
moving out of their families; and the children, who have abundant human
capital, are also more independent than before, when their parents con-
trolled most of the physical capital. All these changes have made parents
realize that children are no longer reliable sources of their old-age support.
Of course, parents can save when they are young and spend their savings
when they are old, and the financial market could certainly absorb some of
the demand for such cross-generation self-support saving plans. But some-
times the demand for old-age support has been revealed in the political
market rather than in the economic market, and that often causes significant
changes in government policies. This situation is what we want to study
below.

11.3.1 The Majority-Voting Model

Many government policies, including the presently prevalent pay-as-you-go
pension system, involve transfers of resources across generations. Because
in a democratic society government policies are made by the public, in many
cases by the rule of majority voting, the rise of pension systems is itself
endogenous. Along with the demographic transition, the age structure of
the economy changes, and hence the relative number of beneficiaries in an
across-generation transfer scenario also changes. Thus, the majority-voting
rule may favor generating a particular transfer scenario in the economy.
This is the research focus of Browning (1975), Hu (1982), Boadway and
Wildasin (1989), and Tabellini (1990). This subsection will concentrate on
the model of Boadway and Wildasin, which is itself a modification of the
work of Hu and Browning.

Boadway and Wildasin considered a continuous-time overlapping-
generation model with perfect certainty. Each person works from period 0
to R, which represents retirement, and dies at n. Suppose the benefit and
tax flow of a pension are respectively B and r. Given a constant discount
rate 8, the government's balanced-budget constraint can be written as

where n = (e SR — e~rt")/(l — e SR). Given the above balanced-budget con-
straint, there is only one free policy variable for the government, which is
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assumed to be ft. In a democratic society, ft is not exogenous hut to be deter-
mined by majority voting. A key assumption made by Boadway and
Wildasin is that they consider a situation which is either in the steady state
or has infrequent voting, so that each voter chooses a scalar value ft (instead
of all future Bts) for the rest of his remaining life.

Suppose the current time is t, and suppose the preexisting ft is ft(). An
individual wants to solve the following problem:

In the above expression, As is the stock of assets and is assumed to be non-
negative with an initial value depending on ft0, and w, is the exogenous wage
flow. fts = ft is positive for s > R and is 0 for f < s < R, and TV is positive
for t < s < R and is 0 for 5 > R. For any given ft and ft0, we can form a
Hamiltonian, calculate the first-order condition, and derive the optimal
solution for cs and As. Substituting these optimal solutions into the original
objective function, we have the indirect utility function as a function of ft
and ft0, denoted V,(ft; ff}.

Boadway and Wildasin then considered several cases, depending upon
whether the benefit constraint or the liquidity constraint is binding. The
former case refers to the situation in which individuals cannot borrow
against future social security benefits, and the latter case refers to the situ-
ation in which individuals cannot borrow against future wages. In an
economy with public pensions and mature financial markets, it is normally
the case that the benefit constraint is indeed binding, but the liquidity con-
straint is not necessarily so.

Boadway and Wildasin then showed that Vt, is concave in ft, and hence
is single-peaked over B. Therefore, a majority-voting scenario will generate
a well-known "median-voter" equilibrium (Black, 1958). Let d be the
median age and B*d be the median-age person's corresponding optimal
social security. Boadway and Wildasin proved the following theorem:

THEOREM 11.2 (Boadway and Wildasin, 1989, p. 324)
Suppose the benefit constraint is binding but the liquidity constraint is not.
If B*>= (3°, then the median-age voter's optimal B*d will he the majority-voting
equilibrium level of B. If ft* < ft0, then the median voter in general is not
the median-age voter, and the majority-voting equilibrium level of ft is less
than B0.

As we argued in the previous paragraph, the condition of a binding
benefit constraint and a slacking liquidity constraint (in theorem 11.2) is
roughly compatible with reality. I will show in the next chapter that, as the
fertility rate declines along with the demographic transition, the age struc-
ture of the economy will undergo a first-order stochastic dominance shift,
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so that the median age of the society will decline as the fertility rate in-
creases. But because most social security schemes have an age-invariant tax
rate and benefit schedule, as a person ages, his tax payment period shrinks
and the benefit receiving period remains the same. This fact certainly
increases his preference for higher B. Thus, theorem 11.2 predicts that, along
with the demographic transition, an older population age structure tends to
generate a higher level of social security, which seems to be an intuitively
appealing result.

11.3.2 Tabellini's Approach

One obvious drawback of the Boadway and Wildasin model is their assump-
tion of infrequent voting; that is, in their voting scenario, they rule out the
possibility that future generations can "revote" to change the previous
voting result. This is certainly an unreasonable assumption, for future voters
can never be counted on not to repeal the original social security system.
In terms of game theory, the majority-voting result should at least be
renegotiation-proof. Moreover, most social security programs have both the
function of intergenerational transfers and intragenerational redistribution.
The latter redistributive function will affect the attitudes of rich and poor
voters differently, thereby affecting the majority-voting equilibrium. The
model by Tabellini (1990) is an effort to adapt to these two considerations.
The formal model Tabellini considered is as follows.

Consider a 2-period ovcrlapping-generation structure. Suppose every
parent has (1 + m) children, where m is the rate of population growth.
There is mutual altruism between parents and children in the following
sense. The utility function of the ith child in period t is assumed to be:

where c', is the consumption of the ith child in period t, with u(cj,) the cor-
responding utility flow; Et is the expectation operator; Hit is the indirect
utility function of the period-t parent in the ith household; and y charac-
terizes the degree of the child's altruism. The utility of the period-t parent
in the ith household is:

where dit is the consumption of the ith parent in period t and 6 is the degree
of the parent's altruism.

The ith child receives an endowment w,(l + e) at the beginning of his
life, where e\ is an individual-specific, mean-zero random variable charac-
terizing the child's ability and w, is the aggregate endowment random vari-
able. Each child pays r, proportion of his income as social security tax and
saves si amount. So his budget constraint can be written as



Taking the tax rate r, as given, the government budget constraint is gt = (1
+ m)catT,, which determines gt.

Each person treats r, as given and maximizes his or her utility function,
taking into account the budget constraint. Since there are no outside assets,
the aggregate savings of all people must sum to zero in an economic equi-
librium (Ed = 0), which determines the equilibrium interest rate R,. Then
each person can derive his or her indirect utility function as a function of
T, and vote for the most preferred tax rate through the majority-voting rule.
Tabellini (1990) showed that since the social security tax is proportional to
earnings, the higher the child's earnings, the lower is the preferred social
security tax rate for both children and parents. But parents always prefer a
larger social security tax than their children do because it would benefit the
older generations. Thus, in a voting scenario, it is the old group and the poor
young group that prefer a larger social security tax. Tabellini then formu-
lated the condition of a majority voting political equilibrium. For my pur-
poses, I only list his most relevant result:

THEOREM 11.3 (Tabellini, 1990, p. 12)
The social security tax rate under a majority-voting political equilibrium is a
decreasing function of m.

The above theorem, together with the Boadway and Wildasin result,
tells us that during the demographic transition process, when the age struc-
ture becomes older or when the fertility rate declines, a general voting
democracy indeed tends to provide more social security than would have
been the case in a stable population structure. In fact, in an aging economy,
the social security transfer is just one kind of transfer from the young to
the old; other institutional designs also have the same kind of impact. In
the next section, we will discuss the measurement of such wealth transfers
during the demographic transition.

11.4 INTERGENERATIONAL TRANSFERS AND
LIFE-CYCLE CONSUMPTION

Aggregate wealth can be separated into two broad categories: real wealth
and transfer wealth.7 The transfer wealth can be further separated into
family transfers (bequests, education, and other child-rearing expenses),
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For the tth-period parent, his or her income comes from the old-age endow-
ment k, saving returns R,-\s\-\, and social security benefit g,. This income is
to be spent on consumption. So the budget constraint becomes



where r' is the size of the average transfer flow and (Ar, - A r _) is the mean
age difference of receiving and making transfers.

Lee then estimated the respective mean age and flow size of different
kinds of transfers in the family and in the government sector. Applying the
above formulas, we can get an estimate of the effect of population aging
on steady-state consumption. Using the data from the United States. Lee
showed that with a 1% reduction in the population growth rate (r), the U.S.
social security transfer has caused an annual loss of $910 per household to
be made up in reduced transfers or increased taxes.

Lee's calculation can serve as an estimate of the impact of a public
transfer system. As one may already see, however, there are several assump-
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public sector transfers (pension and health care), and market transfers
(individual borrowing and lending). Although the sums of transfers made
and received at any moment of time must be zero, many (especially public)
transfers can obligate future generations to make transfers to members of
the current generation. Therefore, the sum of transfers across all living
generations may be negative or positive.

Lee (1994a, 1994b) studied the impact of fertility decline on inter-
generational transfers. Specifically, he wanted to analyze how a change in
population growth rate affects the present value of life-cycle consumption
across golden-rule steady states. Lee's analysis presents three major results.
First, he showed that in an economy with golden-rule capital accumulation
and stable population growth, the proportional effect on the present value
of life-cycle consumption can be written as:

where n is the upper bound of human life, r is the steady-state population
growth rate, c(x) and y(x) are per capita consumption and earning profiles,
c is the original steady-state level of per capita consumption, Af and Av are
the mean ages of consumption and earnings, m is the crude birth rate, and
K is the original capital size. The interpretation of (11.10) is very much the
same as that in chapter 3: the first term on the right-hand side is the age-
structure effect, and the second term is the capital-dilution effect.

Lee's second result uses transfer accounting to show that the right-hand
side of (11.10) can be rewritten as

where T is the size of total transfer wealth. The third of Lee's results shows
that the stock of transfer wealth can be estimated through a multiplication
of flow and the difference of transfer ages:
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tions behind such a calculation that we should keep in mind. The first is the
stable population assumption. Demographic transition almost by definition
is about the transitional stage instead of the steady state of a population.
Hence Lee's calculation may be described more accurately as a compara-
tive static result, rather than an estimate of the impact of aging, which is
itself a phenomenon in the transitional stage. Second, the golden-rule
assumption of capital accumulation is a rather strong one. This assumption
is necessary for calculation, for otherwise the interest rate will not equal
the population growth rate, and the analysis will be rather messy. But unfor-
tunately it is difficult to appraise how far away we are from the golden rule.
Finally, the impact of a social security transfer is not independent of the
attitude of the household. If the Barro (1974) assumption is right, then fam-
ilies will make efforts to offset what the government has been doing. But if
the Feldstein (1974) assumption is right, social security will reduce the size
of capital significantly, which in turn will reduce labor productivity and
earnings.

11.5 Composition Distortion of Inequality Measurement

So far our discussion has been focused upon either the institution or the
size of resource transfers during the demographic transition. In this section,
we will study the measurement problems associated with the demographic
transition period. Our focus, of course, is restricted to topics with econom-
ic interpretation or implications.

Because a demographic transition process typically starts with a large
proportion of young people and ends when these people are old, one way
to view the transition process is to think of this changing population age
structure as a "migration" process from the young age group to the old one.
Thus, if we randomly draw a family sample in a society with widespread
extended families, we are likely to have one with more young members
at the beginning and more old members at the end of the demographic
transition. For variables with family-based measurements (such as family
incomes, savings, and assets), since the variable dispersion is usually differ-
ent for different age-specific groups, the "age migration" process during the
demographic transition certainly implies distinct family inequality measures
of the variables in question during various stages of the transition. In this
section, I will focus upon the inequality measurement of a typical family
variable, family income', but the analysis certainly applies to other variables
as well.

11.5.1 Decomposing Family Income

To study the impact of the demographic transition on income inequality, I
separate the income earners of an extended family into age groups and treat
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each age-specific earner as an income-generating "source".8 Following the
general practice of national income accounting, I divide family incomes into
four categories: 1) wage earnings. 2) property income, 3) owner-operator
income, and 4) other incomes. In practice, only wage earnings can be accu-
rately affiliated with age-specific family members, and family income
inequality in many countries can be largely attributed to wage dispersion.
In the analysis of this section, therefore, I shall decompose the family wage
income into age-specific parts.

Suppose our economy is composed of N families, each with total
income Y',j = 1,2, ..., TV. Each family's income is composed of the above-
mentioned four sources. We shall denote Yj, i = 1,2,3,4, the source-i income
of the jth family, y' the share of family j's total income in the society, and y
the share of family j's source-i income in the society. These N families in
the economy can be ranked according to its y in ascending order. We denote
r(yj) the rank of family j. The rank function r(yji) according to yji can be
defined similarly. We shall let a variable without a superscript denote the TV
vector of all families. For instance, (yti . . . , yf) is denoted yi.

Let G(Y) and G, be, respectively, the Gini coefficient of Y and yi. Let
Si = 'ZjY'i/'ZjY' be the share of source-i income in total income in the society
and Ri = cov(y,, r(y))/cov(yh /"(y,)) be the rank correlation between y, and
y. Since family income is composed of four sources, by applying the decom-
position technique of Fei et al. (1979), we can write the Gini coefficient of
total income as G(Y) = 2?_|S,Y?,-G;. Similarly, the family wage income can
be further decomposed into A age groups: G1 = G(yi) = ^=iSlaRlaG(Yia),
where G(y lu) is the Gini index of age-a wage income, and R\a and S\a are
similarly defined.

11.5.2 Marginal Comparison

Suppose that at some point in time during demographic transition process,
the number of age-m earners increases from b]

m to b',(\ + Um) for each
family j. This, according to Stark et al. (1986), is a reasonable approxima-
tion for small changes in age structure. Under some regularity conditions,
Stark et al. showed that the change in bjm will cause a marginal change in
the source-m wage income of each family by the same percentage Um. Stark
et al. proved the following theorem:

THEOREM 11.4
The elasticity change of G(Y1) with respect to Um is as follows:

According to the above theorem, whether an increase in the size of the m-
age group will increase or reduce the Gini coefficient of aggregate earnings
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will be determined by the relative size of the two terms on the right-hand
side of (11.11). The first term is the contribution of age-m wage to total
wage inequality, and the second term measures the share of age-m wage in
total wages. Analogously, one can derive the impact of changing bm on
G(Y), the Gini index of total income. The interpretation is similar and can
be found in Chu and Jiang (1997).

11.5.3 Global Comparison

Besides the above-mentioned marginal analysis, one can also examine
whether the changing population structure during the demographic transi-
tion has any overall impact on the Lorenz curve. Using the data of Taiwan,
Chu and Jiang (1997) compared the actual Lorenz curve with one adjust-
ed by a base-year population and tested whether the demographic transi-
tion had caused any significant shift in the Lorenz curve. Their idea was
adapted from Bishop et al. (1994), and the comparison process is as follows.
First, they calculate the yearly growth rate of aggregate age-specific family
members relative to the numbers of a base year. Then they construct a series
of adjusted family earnings by dividing the age-specific earnings of each
family in each year by the age-specific member growth rate. Finally, they
add other incomes to these adjusted earnings to obtain a series of adjust-
ed family incomes.

Let {Ik I k = 1, . . ., K] be the set of target incomes corresponding to
the population quintiles of Y. Let us denote the actual income Y\ and the
adjusted income Y2. For each year, we can construct a series of actual
Lorenz ordinates, denoted {O\(Ik; Y}) I k = 1, • • •, K}, and a series of adjust-
ed Lorenz ordinates, denoted {O 2 ( Ik ; Y2) I k = 1, • • •, K}. O\(I; Y\) repre-
sents the accumulated share of actual income received by families with
income less than I, and O2(I; Y2) is the accumulated share of adjusted
income received by these families. The vector of the difference between O\
and O2, denoted (A(I,), • • • ,A(IK)), characterizes the impact of the chang-
ing age composition on the Lorenz curve. According to Bishop et al. (1994),
the difference vector (A(I1), • • •, A(IK)) is asymptotically normal. The test
statistic for the difference at any ordinate is Zk = A(I)/(Vkk/N)1/2, k = 1,2,
• • •, K, where Vkk is the variance of A(4) and N is the sample size. To test
whether O1, and O2 arc different, Bishop et al. showed that we should
compare Zk with the critical value in the Student Maximum Modules
(SMM) table.

The null hypothesis to be tested is that the actual and the adjusted ordi-
nates are equal. It if turns out that each of the adjusted Lorenz ordinates
is significantly smaller (larger) than its corresponding actual Lorenz ordi-
nates, then we can conclude that the demographic transition has a
significantly advantageous (disadvantageous) effect on measured income
inequality. Using the data from Taiwan, Chu and Jiang (1997) performed
the above-mentioned test. 'They showed that between 1978 and 1993 the
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adjusted Lorenz curve lies below the actual Lorenz curve of the respective
year except during the 1979-1980 subperiod. The increase of inequality is
particularly significant at the end of the observation period. This result is
reasonable, since the effect of the changing age structure has been accu-
mulating throughout the whole period of the demographic transition. The
evidence tells us that the changing population structure in Taiwan has
significantly hidden the seriousness of its increase of income inequality in
the past several years. In 1992, for instance, the actual G, is .292 and the
adjusted G, is .318, so that the changing age structure has caused a
superficial 8.77% undervaluation of Taiwan's Gini coefficient, revealing a
strong composition effect due to changes in the age structure.

11.6 DEMOGRAPHIC TRANSITION AND THE SAVINGS RATE

In the neoclassical growth model of Solow (1956), capital accumulation is
the engine of economic growth. Because capital accumulation comes from
individual savings, it is interesting to investigate whether the fertility deci-
sion of the parents has any direct impact on household savings behavior.
The answer to this question is also crucial to understanding whether a slow
pace of development in countries such as India has anything to do with a
fast population growth rate. We put the discussion of this issue in the last
section of this chapter because the evidence, as Mason (1987) puts it, "is far
from universally accepted."

There are three major hypotheses that l ink aggregate savings with
changing population growth rates. The first is the dependency-rate hypoth-
esis proposed by Leff (1969), who argued that when the youth or old de-
pendency ratio is high, the working generation has a heavier family
consumption burden, and therefore the family savings rate will be low.
Although Leff's conjecture was appealing, his cmpirical formulation and
estimation drew so much criticism that no definite conclusions could be
obtained.

The second is the old-age security hypothesis proposed in Neher (1971)
and Lewis (1983). They believe that children, particularly in developing
countries, are substitutes for savings or alternative ways that parents
prepare for their retirement. In countries where parents are willing to have
more children, their old-age support is quite sufficient so that it is not nec-
essary for them to save much. There is also some rough empirical evidence
that supports this conjecture.

The third is the life-cycle hypothesis, which emphasizes the composition
effect of population age structure on aggregate savings. Although each
person does not accumulate net savings over his life cycle, with savings in
productive years offset by lack of savings in childhood and old age, aggre-
gate savings in the economy need not be zero because the age-specific com-
position in a society is usually uneven. When the age structure reaches a
peak in the productive years, the positive savings of these productive people



where a is a constant, Ay and Ac are the mean ages of earning and con-
sumption, and g is the rate of growth of the national income. Mason used
international cross-sectional data to estimate the above equation and derive
different results in different areas.

Although Mason concluded that his evidence supports the proposition
that a higher dependency ratio leads to lower savings, we are not strongly
persuaded by the empirical evidence so far. One weakness of Mason's
analysis, as in the analysis in section 11.4 above, is that he assumed a golden-
rule steady-state per capita income growth rate and a stable population age
structure; this is clearly inconsistent with the real-world situation in all
developing countries, which his data points cover. Deaton and Paxson
(1997) recently used pseudo-panel data (the time series of cross-sectional
data) to analyze savings behavior in Taiwan, Thailand, Britain, and the
United States. They found that the data can support a life-cycle interpreta-
tion of consumption and savings but cannot support a significant rela-
tionship between savings and the population growth rate. Higgins and
Williamson (1997), however, showed that falling mortality and lagging
declines in fertility have had a profound impact on Asian savings over the
half-century pince 1950.

In fact, the existing literature has not provided a formal characteriza-
tion of the demographic transition, and most analyses confuse comparative
statics with comparative dynamics. In the next chapter, we will provide a
formal demography for population aging, distinguish comparative statics
and aging dynamics, and analyze some related issues.
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will more than offset the negative ones of the children and old people, hence
generating positive savings purely because of the age-composition effect.
Mason (1987) applied the techniques we introduced in section 11.4 and
showed that, under some technical assumptions, the logarithm of one minus
the saving ratio can be written as:



CHAPTER 12

Age-Distribution Dynamics During

Demographic Transitions

12.1 BACKGROUND

Everyone knows that population aging refers to the phenomenon of a
growing proportion of old people. This may happen 60 years after a "baby
boom", as the "baby boomers" begin to reach their old age. Population
aging may also be a natural consequence of demographic transitions, for we
know that the proportion of old people will increase as the fertility rale
declines.

Although there have been numerous economics research papers on
topics related to population aging, the focus of most of these research pro-
jects has not been on the process and dynamics of population aging but
rather on the various problems of the elderly (such as housing, pension,
medical care, savings, and retirement) that will grow as the population ages.
The typical example is the series of research projects on the economics of
aging undertaken by the National Bureau of Economic Research. These
research reports were edited by David Wise into several books on aging. In
order to make some policy suggestions, however, we must be able to derive
the future dynamic pattern of the age distribution, so that the macro level
prediction of some age-related variables can be arrived at analytically
instead of numerically. Unfortunately, little analytical work has been done
along these lines.

The purpose of this chapter is to derive the analytical pattern of
the age distribution dynamics, which not only helps us calculate the aggre-
gate value of age-related variables but also gives us some insight into
finding reasonable aging indexes. Previous researchers often adopted
the common measure of population aging, "the proportion of the popula-
tion older than a critical age,"1 which is called the "head-count ratio" of the
aged. As the head-count ratio of the aged rises above 10%, by instinct one

148
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may realize the seriousness of the aging problem. But since we know
little about either the formal dynamics or the economic implications of
population aging, we do not even know whether the head-count ratio
is an appropriate index for characterizing the seriousness of the aging
problem. We will show in later sections how information on age dis-
tribution dynamics helps us identify reasonable indexes of population
aging.

12.2 COMPARATIVE DYNAMICS OF POPULATION AGING

Population aging by definition is a dynamic phenomenon, which has
had various causes in the past and also shows a somewhat predictable
pattern for the future. As is well known, the aging problem today is a
natural result of a fertility or mortality decline in the past. Furthermore,
for many countries in the world, population aging will be a more worrisome
problem in the future than it is today. Indeed, many researchers have to
rely on simulation or population forecasting to predict the pension
deficit or the old-age housing shortage in the future.2 Because in most
countries aging is caused by declines in fertility or mortality rates,
any simulation or forecasting basically involves multiplying the current
population figures by some life-table parameters. Instead of comparing
the year-by-year aging indexes numerically, it would be helpful if we
can formally derive the changing pattern of future population age
structures.

72.2. / Previous Research

Adopting the notation from chapter 3, let B(t) be the births at instant t, l(a)
be the proportion of those born surviving to age a, and m(a) be the average
number of births per surviving member aged a. We have the following well-
known accounting identity:

The density of age group a at time t, denoted g(a, t), is therefore

with the corresponding distribution function



Lee (1980, 1994), Mason (1988), Willis (1988), and Lee and Lapkoff (1988)
analyzed the sign of dD(r)ldr, dS(r)/dr, and studied other slightly variant
problems.

12.2.2 Consequences of Changing Fertility Rate

Let the age-specific fertility function be characterized by m(a, 0).m is affect-
ed by 0 in such a way that dm(a,6)/d9 2 0 Va, with strict inequality for
a positive measure of a. Without loss of generality, suppose 0 = 0 when
t< 0 and that the population is stable at t = 0. If there is no change in the
parameters, B(t) = B0e" Vt > 0. Suppose from time 0 on, 9 increases per-
manently from 0 to 0 > 0. Then the population will eventually converge to
another stable structure with a larger growth rate r' > r. But during the
transitional stage, the changing pattern of the age structure may be pre-
dictable. This is what we are trying to find out: we want to study how such
an increase in 9 changes the dynamic evolution of the age distribution.

Let us rewrite the birth function in (12.1) as
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When the population reaches a steady state, which is called the stable pop-
ulation structure in chapter 3, B(f) = B(}e", where r, the growth rate of the
stable population birth size, is such that

Under a stable population structure, the age density and distribution func-
tions are lime-invariant but will depend on r. We denote them, respec-
tively, g(a; r) and G(a; r).

In general, there are several age-related economic variables associated
with a person's life cycle. For instance, each person has a life-cycle income
path {r(a)}ne[o./,|; a life-cycle consumption path {t'(a)}ne[o.,,|; a pension-tax
payment path {r(a)}flE [v,«|, where y and R are the time in and out of the labor
market; and a pension benefit path {/Xfl)}ne[«.„]• A simple definition of
pension deficit at time t is

In the steady state, replacing g(a, t) by g(a; r), the deficit can be rewritten as

Similarly, if we define an age-specific savings function as s(a) — i(a) — c(a),
then the aggregate saving in the steady state is
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in which we characterize the influence of 6. Chu (1997) proved the follow-
ing lemma:

LEMMA

The above lemma says that after 6 increases, the growth rate of birth
increases with time and is always higher than r.

Next we use the results in (12.4) and (12.5) to derive the comparative
dynamic result of the age structure. Let g(a, 0, t) be the population density
of people aged exactly a at time t, given that the parameter in the fertility
function is 9. For any age b, dividing both the numerator and the denomi-
nator of g(b, 9, t) in (12.2) by B(t - b, 6), we have

Differentiating g(b, 0, t) with respect to 6 yields

In the square brackets above, the first integral term is positive and the
second integral term is negative by (12.4). When b increases, by (12.5) the
absolute value of the integrand in the first (second) integral term increas-
es (decreases). Furthermore, the range of the first (second) integral increas-
es (decreases) as b increases. Thus, if dg(b, 0, t)/dQ > (<) 0 for some b, it
must be true that dg(a, 9, t)/d6 > (<) 0 for a < (>) b.

Besides the above information, we also know that when b = 0, the first,
integral term vanishes, so that dg(b, 0, f ) / d 9 > 0. Similarly, when b = n, the
second integral term vanishes, and hence dg(b, 0, t)/d9 < 0. Combining
these results, we see that dg(b, 0, t)/d6 changes sign only once, and there-
fore we have
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THEOREM 12.1
There exists a critical age a*(t) such that (see figure 12.1)

Theorem 12.1 is a comparative it dynamic result; it holds for every t >
0 after the parameter 0 increases at time t = O. The demographic transition
period after Tp (when the fertility rate starts to decline; see figure 11.1) in
fact corresponds to a reduction in 0 in the above analysis. Theorem 12.1
provides a complete prediction about the dynamic pattern of population
age density for t > Tp. As t -> <», the population converges to another stable
age structure, and our result certainly remains true. Thus, theorem 12.1 is
clearly an extension of the previous comparative statics on stable popula-
tion structure. This can be shown as follows.

In the steady state, B(t, 9) = Bne'(li)!, so

Thus,

where

F I G U R E 12.1 The change of £ (a, 0), ()' > 0.
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is the mean age of the population. This is consistent with the conventional
result of the mathematical population in Coale (1972).

Unless otherwise specified, in the rest of this chapter 1 shall skip the
time variable t in the age density and distribution functions, with the under-
standing that a change in g(a, 0) or G(a, 9) refers to a change in the whole
path of g(a, 6, t) or G(a, 9, t).

12.2.3 Extensions

As we can see from figure 12.1, theorem 12.1 essentially predicts a "pivot-
ing" of the population age density for all t. As t —> °°, we have a compara-
tive static result exactly the same as the one in Arthur (1984). In the steady
state, Arthur proved that the pivotal point is the mean age of the popula-
tion; however, this result cannot be established in the transitional period
between two steady states. Arthur's (1984) analysis was a comparative static
one; but the change in fertility he considered is a functional change, more
general than the conventional partial differentiation considered in Coale
(1972). In fact, theorem 12.1 can also be extended to functional changes in
m. To shorten my presentation, here I provide only a sketch.

Consider a general change in the m function from m(a, 0) to m(a, 9) =
m(a, 0) + 9k(a) along an arbitrary direction k(a). We denote the differen-
tial dm. It can be shown that, with such a functional change in m, the fol-
lowing inequality is crucial to reestablishing our lemma (and hence theorem
12.1):

The above inequality, similar to the one given in Arthur (1984), provides a
condition for sustaining the result of density pivoting for more general shifts
in the fertility function. It says that as long as the weighted average change
in fertility is positive, the density-pivoting result remains true. In reality,
there are widespread intertemporal substitutions in female fertility decision
making when women's opportunities in the labor market change through
time. Such intertemporal substitution concerns may increase the female fer-
tility of some age groups while the overall trend of fertility is declining. In
this case, the fertility change is not monotonic, and the above inequality is
helpful in checking whether the density-pivoting result remains true.

It is particularly important to note that the range of a was not specified
in theorem 12.1. Specifically, in the proof of theorem 12.1, all we have used
is the changing pattern of the relative number of births (B(t — a, 0)/B(t —
b, 9)) with respect to a change in 0; the range of [0, n\ is arbitrarily given.
Thus, if we restrict our attention to a subregion of age [a1, a2] C [0, n], then
we are looking at an age distribution that is conditional on [a1 , a?]. For
instance, for the social security system, a\ refers to the age of entrance into
the labor market (when the person starts to pay some social security taxes),



of dg(a, y)/dy involves terms such as d, /dy, the sign of which

cannot be assured. But there is one important class of examples where the
changing pattern of the age density is predictable. Suppose there is a pro-
portionally equal reduction in I (a), that is, dlog[/(«, y ) ] / d y is constant. Such
a mortality decline is called a neutral mortality change, similar to the one
denned in Preston (1982). In this case, l(a, y ) / l ( b , y) remains unchanged as
y changes. Then, applying the same analysis, it is easy to establish the fol-
lowing result.

THEOREM 12.3
Let g(a, y) be the age density when the mortality parameter is y. Suppose the
mortality decline is it neutral, in the sense that d log[/(a, y)\/dy is constant;
then there exists a critical age a such that
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and a2 is the time when all benefits cease. It is easy to see that the follow-
ing theorem must also hold.

THEOREM 12.2
Within any age range [a1, a2] C [(), n], let the conditional age density he

There exists a critical age a e [a1,a2] such that

Since g(a, 0) is a density function,

theorem 12.1 implies that when 9 increases, the new population age distri-
bution first-order stochastically dominates (FSD) the original one, that is,

Thus, (12.6) is stronger than (12.7), and the former can be called a condi-
tional stochastic dominance relation, similar to the one proposed in Chu and
Koo (1990).

12.2.4 Consequences of Changing Mortality Rale

If y is a parameter in the mortality function (/ = l(a, y)), then the formula

da =  0 must hold. Thus,



Chapter 12: Age-Distribution Dynamics 155

Although the above-mentioned neutral pattern of mortality change is
analytically convenient, it may not work out empirically for gradual declines
in mortality, particularly in developed countries. As Lee (1994) argued,
when mortality is high, it is more likely that reductions in death rates are
greatest for the youngest ages; when the mortality rate becomes low, reduc-
tions in mortality are greatest for the oldest ages. Consequently, in coun-
tries that have experienced gradual declines in mortality, the initial declines
led to an increase in the youth of their populations, rather than to the
monotonic aging effect suggested here. Thus, our analysis of the case of mor-
tality declines is a qualified one. For developing countries that experienced
a sudden inflow of modern medicine and hygienic knowledge, mortality
decline was more likely to fit the neutrality assumption of Preston (1982).
In those cases, theorem 12.3 provides a prediction about the changing
pattern of the age density during the demographic transition period after
Tu (see figure 11.1).

Notice that all the comparative dynamic results listed in the above the-
orems are derived from a comparison of the time path of age distributions
before and after the parameter change. Specifically, we are comparing g(a,
01, t) with g(a, 02, t) for t > O.The dynamics are not comparing g(a, 0, f) with
g(a, 9, t + s), which refers to analyzing the converging path of a new regime.
Readers who are familiar with mathematical population theory should
know that the birth renewal equation in (12.1) can easily have a complex
eigenvalue, so that the converging path will be cyclic.This tells us that there
will be no definite pattern of changes between g(a, 9, t) and g(a, 9, t + s).

12.3 APPLICATIONS OF THE DENSITY-PIVOTING RESULTS

In the beginning of section 12.2, I mentioned several theoretical analyses
that compare the economic variables of two stable population structures
with different growth rates. With the help of our theoretical analysis in
section 12.2, we are able to provide alternative answers to the previously
raised questions in the literature.

12.3.1 Pay-As-You-Go Pension Deficit

Consider an intergenerational transfer system similar to the one studied in
Lee (1980, 1994) and Keyfitz (1988). Let y be the age of entering the labor
market and R be the age of retirement. Suppose there is a mandatory social
security system that requires every working person aged a, a e [y, R], to pay
T(A) dollars at age a as a social security tax payment and that pays the
person b(a) dollars in return after retirement, that is, when his or her age
is in the range (R, n\. At time /, the total tax revenue is $'yi(a)B(t — a,
9)l(a)da, and the total outlet is /«fo(a)B(f - a, 0)l(d)da. Before the change
in 9, the social security budget is assumed to be balanced, that is,
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For the social security example examined above, the taxes are all collected
before the payment of the benefit; therefore, without having to proceed with
any calculation, it should be clear that ah > ST must hold. So, applying Lee's
theorem (1 980), we know that as 0 decreases there will be a budget deficit
in the steady state.

For the transitional period in which population aging really takes place,
however, the stable population mean age is not relevant. It is our analysis
in section 12.2 that should apply. Below we shall demonstrate the serious-
ness of the case where the budget deficit worsens while the process of pop-
ulation aging is occuring.

Dividing A(0) by B(t - R, (•)), we have

Differentiating the above equation with respect to 9 yields

Within such a simple social security scenario, we want to study whether the
societal budget would improve or deteriorate after 0 increases.

As far as the comparison of the stable population is concerned, Lee
(1980) showed that the sign of dA(9)/d() hinges upon the difference
between the mean age of tax payment ar and the mean age of benefit receipt
ah. The definitions of these mean ages are, respectively,
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Because the budget was originally balanced, we have A(0) = 0, so the first
term in the square bracket is zero. Furthermore, equation (12.4) tells us that
d[B(t - a, 0)IB(t - b, 0)] > (<) 0 as a < (>) b. Thus, the second term in
the square bracket is positive. Therefore, the above expression is positive,
and hence A(6)/B(t — R, 0) is increasing in 0. Since

A(0) must be increasing in 9 at a rate faster than B(t - R, 0). In summary,
we have the following:

THEOREM 12.4
Suppose the social security budget is balanced originally. If the fertility func-
tion is shifted down at time 0, then there will be a budget deficit Vt > 0. More-
over, such a deficit grows at a rate (with respect to 6) faster than B(t — R, 6).

12.3.2 Age-Specific Income Inequality

Lam (1984) considered an age-specific distribution of income and discussed
the impact of changing the steady-state population growth rale on the
income inequality index. The particular inequality index he studied was the
coefficient of variation. It turns out that, as the population growth rate
changes, the sign of the resulting change in the coefficient of variation
depends on the "mean age of the variance of income," which is not easy to
interpret. We will now propose another approach to evaluate the change in
age-specific income inequality when the fertility rate increases.

Let y be the age when a person's income becomes positive, and let the
age density conditional on a > y be h(a, 6), where 6 is the parameter in the
fertility function. According to theorem 12.2, we know that for any subrange
of [0,n] and for 6 > 0, there is an a such that

The usual age-specific income profile is as shown in figure 12.2, where R is
usually the age of retirement. For the time being, suppose we are studying
the income inequality of the working group, that is, a e [y, R]. Then the
income i(a) is likely to be increasing in a for the full range of [y, R]: i'(a)
> 0 Va e [y,R]. One can interpret the inequality studied for the age range
of [y,R] as the inequality of earnings.

Atkinson (1970) argued that every inequality measure has a particular
social welfare function imbedded in it and that it would be better to make
an inequality comparison without any restrictive welfare specification.
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y R n

FIGURE 12.2 Lifetime income before and after retirement.

Atkinson also showed us that societal income stochastic dominance is
useful for inequality comparison. In our context, we can write the social
welfare function on the age domain [y, R] as:

where u(i) is the indirect utility function of a person with income i. It is well
known (see Hadar and Russell, 1969, theorem 1) that, as long as u'(.) > 0
(so that du( i (a ) ) /da = u'-i' > 0), if H(a, 0) first-degree stochastically dom-
inates H(a, 0), then W(0) > W(0). In this sense, we can establish the inequal-
ity impact of increasing 0. In summary, we have:

THEOREM 12.5
If the age-specific social welfare function is as shown in (12.8) with «'(.) >
Q, then population aging caused by a reduction in 8 increases W(9).

When we are considering the income inequality of the whole range of
ages [y, n], then there will be definite analytical results only in qualified
situations. The following analysis is an example. Suppose the before-
retirement income is i(a) for a < R, which increases with age at a constant
rate. Let the after-retirement income be a fixed pension payment r(a) = r
for a > R. Then the social welfare is

we get

Differentiating W with respect to 0, integrating by parts, and using the
identity3
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Since i'(.) > 0, we know that the second term of the above equation is neg-
ative. Furthermore, i(R) > r is likely to be true (see figure 12.2). So the sign
of W depends on the relative sizes of these two terms. In the above expres-
sion, u(.) is specified by the researcher, i(z) and i'(.) can be estimated, and
H0 (., 6} can be calculated from the life table. Making such a comparison
seems to be a more intuitive job than checking the mean age of income
variance, as was done in the previous literature.

In reality, if elderly people have during their working lives made good
investment plans which ensure that their pension income does not shrink
much after retirement, then the difference between i(R) and r is likely to
be small, and hence W'(8) < 0 will hold.

12.4 ALTERNATIVE AGING INDEXES

12.4.1 Problems with the Head-Count Ratio

Most demographers seem to have been used to the usual measure of pop-
ulation aging: the proportion of the population older than some critical age,
which, as we mentioned at the beginning of this chapter, is referred to as
the "head-count ratio" of the aged. But as Sen (1976) pointed out in a dif-
ferent context, the head-count ratio is in general a very crude index for cap-
turing the information in the right tail of a distribution. Sen's original focus
was the measurement of poverty, corresponding to the left-tail population
of an income distribution. In this section I shall show that the issues and
methods used for the measure of poverty can be applied to the study of age
structure and can help us improve the measurement and characterization
of population aging.

Sen's main criticism of the head-count ratio index is that this index is
completely insensitive to the information within the tail distribution.Taking
the measurement of aging as an example, the head-count ratio index cannot
reveal the "distance" between particular groups of the elderly and the crit-
ical age point. Specifically, a 15% head-count ratio (over 65) may corre-
spond to either a population with 15% of people mostly in the range [65,69],
or a population with 15% mostly in the range [75,79]. Moreover, the head-
count ratio is also insensitive to the relative proportions of various age
groups among the old, and any change in the age density within the right
tail cannot affect the head-count aging index.

12.4.2 Some Desirable Axioms

The research of Sen (1976), Foster and Shorrocks (1988), and Foster et al.
(1984) gives us some insight into finding a better aging index. Sen and Foster
et al. proposed several axioms to motivate their generation of the poverty
index. We adapt the relevant interpretation to our context and restate them
below.



160 Part II: Cycles and Transitions

• Monotonicity Axiom (MA): Other things being equal, an
increase in age of a person older than the critical age (say 65)
must increase the aging index.

• Transfer Axiom (TA): Other things being equal, a pure margin-
al transfer of age from a person older than the critical age to
anyone younger than the critical age must reduce the aging
index.

• Transfer Sensitivity Axiom (TSA): If a marginal transfer t > 0 of
age takes place from an aged person with age a, to another aged
person aged ai — d (d > 0), then the magnitude of the reduction
in the aging index must be smaller for smaller ar

One should keep in mind that the above-mentioned "transfer" of age
cannot be understood literally. A transfer of age from a person in the age-
fl group to a person in the age-b group is essentially a small variation in the
age density around point a and a corresponding variation in the age density
around point b. Intuitively this is not so different from our usual under-
standing of the transfer of incomes. In the monotonicity axiom, there is no
transfer of ages, and so only the density around the old-age region in ques-
tion is changed.

The head-count ratio index does not satisfy any of the above three
axioms. It violated MA because it cannot characterize the "distance"
between a particular old age group and the critical age (65). Nor does the
head-count ratio satisfy TA or TSA, for it is completely insensitive to the
"transfer" of ages above 65.

12.4.3 Theoretical Structure

Let G~ '(p) = inff.v > Ol(7(s) ^ p] for p e [0, 1]. Given an age distribution
function G(.) and a critical age z, with the same insight as that in Foster and
Shorrocks (1988), we define the following aging indexes:

As one can see, I1 is the conventional head-count ratio. I2 is a weight-
ed proportion of the old, which weights the proportion older than the
critical age z by the difference between z and their corresponding ages. In
other words, I2 is a normalized sum of the proportion of the old group. Ia,
a s 3, is a similar weighted sum except that we give more weight to the
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group that is particularly aged (those with age much larger than z). Evi-
dently, I1,I2, and I are all in the [0,1] range. Furthermore, Foster et al. (1984)
proved

THEOREM 12.6 (Foster et al. 1984, p.763)
I„ satisfies the monotonicity axiom for any a > 0, the transfer axiom for any
a > 1, and the transfer sensitivity axiom for a > 2.

Thus, the /„ index defined above is closely connected with the desirable
axioms.

For an arbitrary age distribution function G(a), let G1(a) = G(a), and
for a = 2, 3, • • • , let Ga be defined iteratively by

Similarly, we can define Fu for another age distribution F(.). We then char-
acterize the a-degrce stochastic dominance relation as follows. We say that
F(a) a-degree stochastically dominates G(a) if and only if

Foster and Shorrocks (1988) proved a slightly different version of the fol-
lowing theorem which applies to all positive integers a.

THEOREM 12.7
F a-degree stochastically dominates G if and only if

Theorem 12.7 says that there is a one-to-one correspondence between
stochastic dominance and the ranking of aging indexes. It is well known
from Fishburn (1980) that an a-degree stochastic dominance implies an
a + 1 degree stochastic dominance. We have shown in equation (12.7) that
the age distribution G(a, 9\) first-degree stochastically dominates G(a, 6>2)
for 0, < 62. Thus G(a, 9\) also a-degree stochastically dominates G(a, 62)
for a = 2, 3 , . . . . Applying theorem 12.7, we know that

must hold, with strict inequality for some z. Thus, applying the Foster and
Shorrocks result to our aging discussion, we establish the theorem below.
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THEOREM 12.8
Suppose population aging is caused by a reduction in 9 in the fertility func-
tion m(a, 0). Suppose 0 starts to decrease at time t = (}. Then for any given
z, the aging index lu (., z) increases for all a > 0 for all t > 0.

If the population aging is caused by a downward shift in the mortality
function, and if such a shift is neutral, as defined in the previous section,
then by theorem 12.3 we still have a first-degree stochastic dominance
change in the age distribution, and hence the changing pattern of the aging
indexes I, can still be predicted.

Theorem 12.8 is important and useful for the following reasons. The I„
indexes give us some refined aging measures which describe with finer
detail the right tail of the age distribution. As a increases, I, assigns more
weight to the oldest old, and this information is useful for some purposes.
For instance, if the societal resource demand for old-age medical care is a
high-degree polynomial function of the old people's age, then I with a
larger a clearly carries more information than /,. Second, as long as the
aging phenomenon is caused by a decline in the fertility or mortality func-
tion, theorem 12.8 tells us that the changing pattern of the aging index I„ is
predictable, along with the demographic transition. Whena = 1, theorem
12.8 is a formal characterization of Coale's (1957) proposition about the
relation between fertility levels and the proportion of young and old pop-
ulation. Finally, for different application purposes, the critical age z, may be
chosen differently; but theorem 12.8 also tells us that as 9 changes, the
dynamic pattern of change of the I„ indexes would be mutually consistent
for any a and any choice of z.

12.4.4 Calculating the Aging Indexes

We proposed in the previous section several aging indexes other than the
head-count ratio to characterize the general phenomenon of population
aging. In table 12.1 we list three aging indexes for eight typically aging coun-
tries. The data set is from Sex and Age Distribution of the World Popula-
tion, published by the United Nations. The advantage of these indexes has
been discussed in the previous section; we now list a few interesting points.

If we look at the columns for Japan in 1990 and Italy in 1980, we see
that in terms of the I1 index, Italy is older; whereas in terms of the I3 index,
Japan is older. Evidently, Japan in the 1990s has more oldest old than did
Italy in 1980. If Japan is to refer to the policy experience of Italy in 1980,
the head-count ratio may carry misleading information. In another instance,
if we compare the I, indexes of Japan and Italy in 1970 and 1990, we see
that the lt index grew 33% in Italy and 69% in Japan. However, we see that
the I3 index grew 56% in Italy but 122% in Japan. This shows that the pop-
ulation size of the oldest old in Japan grows much faster than in Italy, and
hence these two countries are experiencing different patterns of aging.
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TABLE 12.1. Aging Indexes of Eight Countries

Country

United States
Canada
Italy
Netherlands
Japan
Taiwan
S. Korea

Singapore

I1

.1252

.1122

.1448

.1283

.1199

.0621

.0500

.0606

1990

I.

.0484

.0419

.0550

.0497

.0444

.0192

.0157

.0211

I,

.0274

.0232

.0311

.0282

.0244

.0093

.0077

.0111

I1

.1129

.0939

.1315

.1151

.0904

.0428

.0381

.0472

1980

12

.0418

.0338

.0462

.0430

.0307

.0124

.0113

.0141

1,

.0231

.0183

.0242

.0236

.0157

.0057

.0053

.0066

I,

.0981

.0786

.1089

.1016

.0707

.0292

.0330

.0337

1970

I?

.0355

.0285

.0379

.0357

.0225

.0283

.0100

.0095

I,

.0191

.0155

.0199

.0188

.0110

.0038

.0047

.0044

Source: Sex and Age Distribution of the World Population New York: United Nations (Department of Inter-
national Economic and Social Affairs), various years.

Finally, it is obvious from table 12.1 that the Newly Industrial Countries ail
had much faster aging processes than the developed ones. This is also con-
sistent with the faster speed of their demographic transition.

12.5 SUMMARY OF RESULTS

Readers are referred to figure 12.3 for a summary of the results we have
derived so far. In this figure, we see that, along with the aging process after
0 decreases, both the age density and the aging indexes satisfying desirable
axioms have predictable changing patterns. The stochastic dominance shift
in age densities can also help us make better welfare judgment on policies
that involve intergenerationai transfers.

F I G U R E 12.3 Consequences of a reduction in 0.



This page intentionally left blank 



PART III

Population Dynamics in the
Past and in the Future
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CHAPTER 13

Population Size and Early Development

13.1 BACKGROUND

13.1.1 Various Stages of Economic Growth

The Malthusian theory hypothesizes that the natural environment imposes
various capacity constraints on human population growth and that popula-
tion size has been and will be checked by these constraints. In such a
classical theory, which was presumably motivated by observations of the
ancient world, population might be the most important dynamic variable,
although its role is rather passive: population is a variable that would be
affected by, but would not affect, the environment. Boserup (1981),
however, sees the role of population in the development of human economy
as more consequential. She gave many persuasive examples that showed
that, at least for the period up to the mid-twentieth century, population size
might be a variable which actively spurred technological progress. This is
also the viewpoint held by Lee (1986) and Pryor and Maurer (1982).

After the Industrial Revolution, the role of population in economic
dynamics, along with the reduction of mortality fluctuations and the increas-
ing control of female fertility, evidently became secondary. The key variable
that dominates the analysis of economic dynamics in the neoclassical
growth theory along the lines of Solow (1956) is capital (or per capita
capital). In Solow's growth model, the role of population is minimal in the
steady state: neither the level nor the growth rate of the steady-state per
capita consumption has anything to do with the size of a population; only
the steady-state per capita income level will be affected by the population
growth rate.1

The growth pattern in the latter half of the twentieth century is mar-
kedly different. A key feature of our recent growth experience is the rapid
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innovation of new technologies. Modern growth theory has embraced the
concept of increasing returns to explain such a unique growth pattern.
However, various versions of the theory of increasing returns turn out to
be necessarily linked to population. The hypothesis of learning by doing
implies that growth in productivity is an increasing function of aggregate
production, which is itself positively related to the size of population. The
human capital approach to the theory of growth assumes that the total stock
of human capital has an external effect on production, which thereby causes
a positive relationship between population and aggregate output. Theories
that emphasize the nonrivalry property of knowledge suggest that larger
populations generate greater public access to knowledge and thus an
increasing return on technological growth.2

The three hypotheses to the theory of increasing returns discussed
above (learning by doing, human capital, and non rivalry production
factors) approach the problem of growth from different directions. They all
arrive at the same conclusion, however, which is that there is a scale effect
(Backus et al, 1992) in growth: quite simply, large countries grow faster.
Most economists have tried to preclude population as a scale variable, citing
the counterexamples of Bangladesh, China, and India. Many have dealt
with this problem by changing the variable that enters the equation of
increasing returns in such a way as to remove the influence of population.
Rivera-Batiz and Romer (1991), for example, showed that the steady-state
growth of income was an increasing function of population. A slightly dif-
ferent approach was taken by Romer (1990), in which the functional setting
of the technological-change equation is altered. In this way, the growth
of income depends not on population size but rather on human capital.
Similarly, Kremer (1993) showed that small changes in the setting of the
law-of-motion equation of technology generate widely different predic-
tions in the steady-slate relationship between population and economic
growth over the past "one million years."

13.1.2 Conflicts Between Theory and Evidence

But these attempts, for reasons given below, were never satisfactory. First,
although we might be able to generate some plausible implications by trying
out all possible analytical settings of the technological-change equation,
such a mechanical trial-and-error approach is obviously ad hoc, and even
the best-fit model will be hard to interpret. Second and more important,
empirical observations have not been motivating factors in the above-
mentioned mechanical changes in the functional relationship between
population and technology. For instance, the abundant persuasive evidence
contained in the well-received work of Boserup (1965, 1981), which covers
both the ancient period and the two most recent centuries after the Indus-
trial Revolution, has not received sufficient attention in previous modeling.
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Mechanically altering the setting of the technological-change equation, as
was done by many researchers, is unlikely to produce a model that is an
abstraction of reality. Third, although a scale effect might be established
empirically in specific industries over a certain period of time, casual obser-
vations (India vs. Belgium) and countrywise empirical work (Barro and
Sala-i-Martin, 1995) both deny any definite long-run relationship between
economic growth and population size or growth. But theories equipped
with a population-technology functional equation will always generate an
either (weakly) positive or negative relationship between population and
growth, as one can see from all the papers cited above. This kind of (either
positive or negative) one-way prediction is certainly not compatible with
the variations of the empirical evidence in different historical epochs.

Contemporary observations in India (high density/low growth) and
Belgium (high density/high growth) might tempt one to dismiss the hypo-
thetical relationship between population and economic growth mentioned
above and argue that population has no relation with economic growth.
However, the strong evidence provided by Boserup (1981) appears to imply
some relation between economic growth and population size in most areas
and most periods of human history. Given such conflicting viewpoints, a
compromise conjecture might be that there is some equivocal (not one-to-
one) relationship between population and technological growth. The ques-
tions then are, What is this equivocal relationship and how do we embody
such an equivocal relationship in an analytical model?

Lee (1986, 1988) and a few others have attempted to define such an
equivocal relationship by introducing population into the technological-
change equations in a nonlinear fashion, so as to generate multiple analyt-
ical "regimes" in the dynamic phase diagram. These regimes then
correspond either to the Malthusian case or to the Boserupian case, and
varying the initial values of parameters may lead to different dynamics
under different regimes. However, this method seems to have weak pre-
dictive power. Definite analytical solutions to the regime-separation border
on the phase diagram can be difficult to derive, making it problematic to
classify countries into various regimes.

Bonneuil (1994) argued that population size does not drive technolog-
ical changes in a mechanistic manner; it only gives an indirect pressure.
Assuming that technological changes need time and effort, Bonneuil
showed that a larger population size reduces the time left for human beings
to avoid an undesirable situation. My theory in this chapter provides a
macro prediction compatible with that of Bonneuil's; however, I put more
emphasis on the decision-theoretical foundations at the individual level.

13.1.3 Population as a Passive Support

I believe that there does not currently exist a unified theory that can explain
the relationship between economic growth and population size throughout
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all periods of human history. The roles of population in early primitive
development and in modern industrial development are in fact quite dif-
ferent. In a primitive economy, the size of population is important for the
development of cities and markets, which in turn facilitates a finer division
of labor. But for modern economies, the engine of economic growth is the
continuous advance of technological innovation, which has no direct rela-
tionship to population size.

I also believe that, even in ancient times, there is no one-to-one rela-
tionship between population size and economic growth. A detailed reading
of the evidence in Boserup tells us that population is never a variable that
actively enters the law of motion equation of technology; rather, it is a vari-
able that passively supports the technology advancement. Kuznets (1960),
Simon (1977, 1981), and Ng (1986) all argue that a large population size
spurs technological change because it increases the number of potential
inventors or because it reduces the per capita cost of invention. However,
this thinking is not entirely consistent with Boserup's (1981) evidence. In
her book, Boserup repeatedly argued that only with a large population
could an economy support the development of various infrastructures,
which are usually very labor-intensive. These infrastructures improve the
overall transaction efficiency, which in turn facilitates the division of labor
and economic growth. Any attempt that characterizes Boserup's idea
should not ignore the special feature of infrastructure that connects the size
of population with the finer division of labor.

Consider this hypothetical example, which illustrates the dependence
of technology on population. Suppose we reduce the population of the earth
to only half a million and consider the dramatic impact this would have on
existing transportation technologies: most transportation infrastructure
would become unnecessary. It is likely that there would be no more need
for mass-transit trains, for example. Not only would production be halted,
but related technological innovation would also cease. The extensive com-
puter reservation systems used by all kinds of transportation facilities would
no longer be needed to support the reduced number of passengers, and it
is doubtful that the tax base of such a small number of people could possi-
bly be sufficient to support the train system. It may even be argued that the
available labor force would be too small to maintain any advanced tech-
nology. Without a sufficiently large population, the economy is simply
insufficient to support and sustain, much less invent, modern transportation
infrastructure and related technology.

Notice that the implications in the above example are not the same as
those of the existing theories in which population size appears on the right-
hand side of the law-of-motion equation of technological change or human
capital accumulation. Those models imply that between technological
change and population size there is an active, if-and-only-if relationship. But
my hypothetical example above says that population is no more than a
passive support for technological changes.
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That a large population automatically generates advancements in
technology is an argument that is unsupported historically. It is obviously
undesirable for economic models to make predictions that are incompatible
with reality, but that is exactly what happens with models which
place population on the right-hand side of the technology law-of-motion
equation.

13.1.4 Transition Stages Versus Steady States

The above discussion also suggests that population does not play a role in
the steady slate: rather it is a key variable that facilitates either the static
division of labor or the transition of economic development. As Lee (1986)
noted when he summarized Boserup's theory, "The Smithian advantage to
a finer division of labor is a static nature, and not to be confused with the
present argument that the division of labor encourages technological
progress through learning by doing (italics added), and through other indi-
rect ways" (p. 102). Thus, to accurately characterize the role of population
on technological growth, in this chapter I ignore the continuous, dynamic
version of the model of division of labor and concentrate upon the static
case. I will establish models that connect population, infrastructure, and the
division of labor and discuss the transition from primitive to modern
economy. The model in section 13.3 discusses the transition from primitive
to modern technologies. Sections 13.4 and 13.5 are based on stylized facts
observed from Boserup (1981) and are intended to provide an explanation
for early economic development. The role of population in contemporary
and future economic growth will be discussed in the next chapter.

13.2 SOME STYUZED EVIDENCE

Every economist worth his or her salt can cite Ester Boserup's (1981) book
on population and technological change. In fact, in recent literature
on the subject, this book is referenced quite frequently. Often, the im-
plications obtained are not very compatible with empirical observations.
We believe that this is a result of a failure to appreciate many key but
abstract features of her work. This failure can be remedied by a careful
rereading of her text.

Boserup's observations span the globe: from America to Europe,
African and Arab countries, the Oceania islands, and Southern and Eastern
Asia. The levels of technologies she surveys range from hunter-gatherer
societies to the mid-twentieth-century industrial world. Even various types
of technology are studied in detail: agricultural, industrial, urbanization and
transportation technologies are all covered. She treats the relationship
between population and technological changes as being not dissimilar to
the relationship of population to economic growth.
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The stylized modern observations of Romer (1994) are very much in
accord with Boserup's research on technological change preceding the mid-
twentieth century. Romer (pp. 1.2-13) noted that "Technological advance
comes from things that people do. ... When more people start prospecting
for gold or experimenting with bacteria, more valuable discoveries will be
found." Boserup similarly finds (p. 4) that "there is a link between the moti-
vation for invention and the amount of invention . . . such a link existed
even before the time of organized scientific research." This motivation for
invention, Boserup conjectured, was strongly related to population, for
technology could never become widespread unless it was commercialized.
Research and development have always been stimulated by the possibility
of future returns on investment, which of course depends on commercial-
ization. It is less obvious, but no less true, that not only the dissemination
but also the invention of new technologies is a result of commercialization,
potential or realized. Jones and Wolf (1969) found that fertilizer, in one
example, could not possibly be utilized on a large scale until the develop-
ment of a railway network. Likewise, Boserup noted (p. 116) that "large
scale imports of food and fodder had to await the steamship." As we shall
see shortly, transportation technologies are particularly sensitive to popu-
lation dynamics.

Romer suggests that "Discoveries differ from other inputs in the sense
that many people can use them at the same time" (p. 12). Lee (1986) and
other demographic economists have reached similar conclusions. As previ-
ously stated, this property of technology can be thought of as nonrivalry in
general, although Boserup explicitly links this property to transportation
technologies. Before the Industrial Revolution, her argument goes, the main
advantage of a dense population was "the better possibilities to create infra-
structure" (p. 129). Irrigation technology, the building and maintenance of
roads, digging canals, and the development of a railway are all cited as
examples of projects that are quite impossible without a sufficiently large
population. She notes that the sixth-century A.D. construction of a canal
system in China required a labor force of more than a million dedicated
workers. The canals facilitated the convenient long-distance transportation
of large quantities of foodstuffs and other products. Such a labor-intensive
project could never have been undertaken by a sparse population. Lee
(1986) did not miss this point, as he said that "the larger the population
engaged in non-food producing activities, the greater the possible division
of labor, and the greater the possibilities for technological advance" (p. 102).

It is important to note that this is a passive advantage of a large popu-
lation, in contrast to the active role of population in the models developed
by Ng (1986) and Simon (1981). It is historically evident that large popula-
tions can support infrastructure innovations, but it does not follow that this
leads to the spontaneous generation of new inventions.

Peasant families before the Industrial Revolution did not toil in the
field from sunup until sundown. Indeed, Boserup asserts that family mem-
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bers must have spent a considerable amount of time producing tools
and other equipment, making clothing, and repairing dwellings. Agricul-
ture was almost certainly only a part-time occupation in light of these addi-
tional responsibilities. The Industrial Revolution resulted in these good
and services becoming widely available through specialized individuals or
factories. Such specialization is facilitated by a large population for three
primary reasons. First, mass production only becomes profitable when an
economy (market) is large enough. Second, as mentioned earlier, an exten-
sive transportation infrastructure is completely contingent upon population
size. This infrastructure obviously increases transaction efficiency and
encourages the increasing division of labor. Third, as noted by most eco-
nomic historians, the development of a transportation infrastructure is
crucial to urbanization. This is an important point when one considers that
most urban workers are not involved in the production of food, and that
food must therefore be transported, sometimes great distances, from the
source to the consumers. This point is illustrated throughout Boserup's
book in many examples. Because it is easily demonstrated that a large pop-
ulation is a precondition for an extensive transportation infrastructure, it
follows that it is also a requirement of urbanization.

Romer (1994) also includes one further observation that was not men-
tioned in Boserup's earlier work. This is the concept of ownership of inven-
tion, or, as Romer puts it, "Many individuals and firms have market power
and earn monopoly rents on discoveries" (p. 13). Although this may be
thought of as a counterexample to nonrivalry, the scope of Boserup's book,
extensive though it is, does not cover the most recent technological inno-
vations. Such a counterexample does not preclude the important link
between population and technology from being extended into modern
times, hoeever, as our mass-transit train example illustrated. Population size
is, at a minimum, an important variable in the transformation of a primi-
tive economy into one of advanced technology.

Summarizing the above discussion, there are three observations which
motivate our modeling in the next two sections.

1. The most important advantage of a large population size is its
greater potential to support more advanced infrastructure,
which has the nonrivalry property.

2. The most important infrastructure in early economic develop-
ment is transport technology. When this technology improves,
the transaction efficiency of food, fertilizer, clothing, and other
products is enhanced, which in turn facilitates the division of
labor.

3. An ever-finer division of labor enables some people to
specialize in agriculture and some in the industrial sector. The
economy of specialization fosters increases in output in both
sectors.3
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13.3 FROM PRIMITIVE TO MARKET ECONOMY: THE ROLE OF
POPULATION SIZE

Goodfriend and McDermott (1995, hereinafter GM) divided the history of
economic development into three epochs separated by two transitions: from
primitive economy to preindustrial market economy and from preindustri-
al to industrial economy. Their model provided a rough picture of the role
of population size in the transition of technologies in economic history.

GM assumed that each household is endowed with a primitive pro-
duction technology with diminishing returns:

where Yp is the output, e,, is the fraction of time that each household
member works in the primitive sector, and m is the number of family
members. From (13.1) we see that the marginal productivity of ep,

is decreasing and convex in e,,.
Besides the above primitive technology, there is a market-based pro-

duction technology that uses a large number of intermediate goods:

where 0 < a < 1; N is the number of workers (population) in the economy,
each of whom has human capital h and devotes ev fraction of his time to
the production of final goods; x(i) is the quantity of intermediate input
indexed by i; and M is the upper bound of the continuous index measure-
ment of i. If ek is an individual's total fraction of time spent in the market
sector, then given ey, ek — ey = e, is the fraction of time spent in the pro-
duction of the intermediate goods. Notice that equation (13.2) is the Ethier
(1982) production function that has an intrinsic increasing return in the
variety of intermediate goods.

GM solved their model as follows: Each final good producer chooses
labor hours and intermediate inputs to maximize profit, taking output prices
as given. This maximization generates a demand price function for labor

and choose the optimal output x(i). The market sector will be in equilib-
rium if the following conditions are satisfied: (i) all firms maximize their
profits; (ii) intermediate- and final-good producers all have zero profits; (iii)
labor supply and demand of all sectors are equal. It turns out that in equi-
librium the degree of specialization, denoted M, is determined by

and intermediate goods. The intermediate-good producers are monopolis-
tically competitive; they take the above-mentioned demand prices as given
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where a* is a constant related to a. As one can see from the above equa-
tion, the degree of specialization is an increasing function of ek, h, and N,
which are all variables related to the scale or efficiency of the market sector
but unrelated to the primitive sector (see [13.1]).

GM also showed that the reduced-form final output from the market
sector in equilibrium can be shown to be Y = A(ekhN)2 ". Since 2 — a
> 1, the above equation shows that the final-good production exhibits
increasing return to effective labor ekhN.The wage in the market sector can
be written as

which is increasing and concave in em.
As we compare the market-sector wage function in (13.4) with the mar-

ginal productivity of ep (3F/,/3e/)) from the primitive sector, we can see the
role of population size in economic transition. Notice that dYp/dep is inde-
pendent of N, but the market wage will decrease as N increases. If both the
primitive sector and the market sector exist, then in equilibrium w and
dYp/dep must be equal for some N. When N is small, w is longer than dYp/dep,
so the equilibrium is a primitive autarky.4 When N increases, the market
sector begins to appear, and eventually as N is sufficiently large, the prim-
itive sector shrinks to its minimum. In short, GM (1995) proved the fol-
lowing theorem:

THEOREM 13.1
The transformation from a primitive economy to a market economy is pos-
sible only when the population size is sufficiently large.

GM also discussed the increasing return property of the evolution of
human capital. As the economy develops to a certain stage, individuals find
it more profitable to spend some fraction of their time accumulating human
capital. The accumulation of human capital triggers the Industrial Revolu-
tion and continuous technological advancement later on. After the Indus-
trial Revolution, improved hygienic and medical knowledge increases the
size of population significantly. So the population size today far exceeds the
level necessary for support of most of the invented infrastructure or other
nonrivalry goods. It has been a consensus of modern growth theorists that
the size of population is not an important variable for explaining the
research and development oriented technological changes of recent years.
That is why the role of population diminishes.

13.4 INFRASTRUCTURE AND THE DIVISION OF LABOR

The model by Goodfriend and McDermott (1995) that I reviewed in the pre-
vious section has given us a rough idea of the role of population size in sup-
porting a market economy. But as far as the role of population size is
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concerned, their theory has several drawbacks. First. Boserup (1981) gave a
clear exposition in various places in her book of the idea that the connection
between population size and the finer division of labor was established
through the development of the infrastructure sector. Evidently, the G&M
model has not captured such a feature. Second, it is important to notice that
the macro size of labor specialized in the infrastructure sector is a result of
each individual's micro job decision. Furthermore, when an individual is
"specialized," his or her job decision is in fact a corner solution. The scenario
Boserup described is a process of an ever-finer division of labor, from the
nonexistence of the infrastructure sector to the existence and advancement
of this sector. Because such a process involves switches from one (job)
corner decision to another, it is natural to resort to the corner equilibrium
framework of Yang and Ng (1993) to proceed with our analysis.

In the following section, I will present a model that is compatible with
Boserup's observations. The model, developed by Chu and Tsai (1995),
posits that: (i) a publicly accessible transportation system exists; (ii) such
technology is more advanced when labor is more specialized; (iii) improved
transportation technology naturally leads to improved transaction effici-
ency, which in turn facilitates a finer division of labor; and (iv) because the
division of labor involves an economy of specialization, a finer division of
labor can lead to an increase in per capita income. Chu and Tsai's major
implication mirrors Boserup's main hypothesis: improvement in economic
welfare is only possible when a population is sufficiently large, but the
reverse of this may not be true.

13.4.1 Preferences and Technology

Chu and Tsai (1995) considered an economy with N identical individuals
and one commodity for consumption Yc. Without loss of generality, each
individual's utility function is assumed to be U(Y':) = Y'. One's net con-
sumption is composed of two parts: Y': = Y + kY'1, where Y is the quantity
one produces by oneself and Y'1 is the amount bought from the market.
There is 1 — k proportion of goods lost in the process of transaction, and
so we premultiply Yd by k. Thus, k t [0,1] can be treated as the transaction
efficiency coefficient of the consumption good.

We simplify the production process in the GM model and assume that
there is only one intermediate good Z. Each individual has one unit of labor
time available, which will be devoted to the production of either Y or Z.
Let ly and lz be the respective time inputs; then we have ly + Iz = 1. Chu
and Tsai suppose that only labor is used to produce Z, and the production
function is

In (13.5), it is assumed that a > 1, which means that there are "economies
of specialization."5 The prouced intermediate output will cither be sold in
the market (Zs) or used for one's productio (Z).



It is assumed that the infrastructure sector has positive but diminishing mar-
ginal productivity:

13.5 POPULATION SIZE AND THE DIVISION OF LABOR

There are three goods in the model we just introduced: Z, Y, and /. Indi-
viduals who are specialized in the production of i = Y, Z, I are called i-
specialisls. Yang and Ng (1993) showed that there are only three possible
equilibria in the above model: (i) an autarky equilibrium in which each
individual produces both Y and Z, and there is no infrastructure construc-
tion; (ii) an equilibrium with both y-specialists and Z-specialists, and there
is no infrastructure construction; (iii) an equilibrium with all three kinds of
specialists and infrastructure construction.

All producers of Y and Z are price takers, and their incomes come from
the sale of their production in the market. We assume that there is a benev-
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Let y be the self-provided amount of final goods, Y'J and Yx be the final
good bought and sold, respectively, and r be the transaction efficiency of
the intermediate good. Following Yang and Ng (1993), the production of
final output is assumed to be Cobb-Douglas:

where a G (0,1) is a parameter. Z + rZd in (13.6) is the total amount of
intermediate goods used, together with labor, to produce the total con-
sumption output y + y. This output is to be either self-consumed (Y) or
sold (y). In (13.5) and (13.6), if one chooses to have /z = 1 or /,, = 1, we
say that one is "specialized."

13.4.2 The Infrastructure Sector

To embody the influence of transportation technology on transaction
efficiency, which is Boserup's insight, it is assumed that the transaction
efficiency coefficient k is determined by k = k (I,0), where / is the level of
infrastructure construction. 0 in this £ function is a vector of other variables,
such as literacy ratio, cultural background, and government attitude
(Boserup, 1981). To simplify the analysis, the possible influence of / on r is
ignored in the analysis.

The level of infrastructure construction is assumed to be a function of
the amount of labor units devoted to this sector, denoted N1. Thus the trans-
action efficiency function can be explicitly written as



THEOREM 13.4
In an economy with a larger population size, it is more likely that scenario
three will appear.

Boscrup's idea that a larger population size can support a more
advanced infrastructure sector is formally characterized in theorem 13.2.
Several authors of previous research argued that a larger population size
can support more public infrastructure projects because the per capita cost
of supporting each public project is less. But such an argument is flawed. In
a market economy with the freedom to choose jobs, the number of people
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olent dictator who collects taxes from all users of the infrastructure and
uses this tax revenue to pay the wages of the I-specialists. In equilibrium,
the demand and supply of all produced goods must be equal. Furthermore,
since each individual is assumed to be identical ex ante, the freedom of
choosing jobs will impose the condition of equal indirect utilities in the
equilibrium.

Let a subscript A indicate the first equilibrium scenario (autarky), D
indicate the second scenario (division of labor without the infrastructure
sector), and / indicate the third scenario (division of labor with the infra-
structure sector). Chu and Tsai (1995) showed that the indirect utility of a
typical individual corresponding to each of these three scenarios is as
follows:

The number of i-specialists (/' = Y, Z, /) in these three scenarios can also
be calculated. Through straightforward comparative static analysis, Chu and
Tsai proved the following theorems:

THEOREM 13.2
In scenario three, the equilibrium number of individuals devoted to the
infrastructure sector, denoted N,, increases as the total population size (N)
increases.

THEOREM 13.3
U, is an increasing function of the total population size N.

By comparing the relative size of UA, UD, and U/, the following result
can also be derived:



Chapter 13: Population Size and Early Development 179

in the infrastructure sector is endogenously determined; it is each individ-
ual's job-choice micro decision that determines the overall size of each
sector. Without the result in theorem 13.2, the relationship between N and
N, cannot be predicted with certainty.

Theorem 13.3 says that the utility level under the third scenario is an
increasing function of N. We also notice that the utilities of the other two
scenarios ([//> and UA) are independent of N. That is why a larger popula-
tion size can possibly sustain a higher utility level and support a more
refined division of labor, as stated in theorem 13.4.

Theorem 13.3 above is consistent with most of the observations in
Boserup's book. Notice that the role of population is just a passive support
of possibly better welfare. When N is larger, it is more likely that the
maximum utility achievable is larger; but there is no definite mechanism
that can lead to such a maximum. For instance, if the change in population
size is not significant enough, then the economy may remain in the old sce-
nario with a primitive division of labor; hence, the utility level is insensitive
to the small change in population size. Furthermore, if there is a fixed area
of land, then the usual assumption of diminishing return to land may even
reduce individual welfare, which is what the Malthusian theory would
predict. To give another simple example, let us suppose that the dictator of
a country may not be at all "benevolent." In this case, even if the change in
population size is large enough, there is really no way for the economy to
move to a high-utility scenario.

13.6 DISCUSSION

In the previous sections we have shown how a large population size can
make possible the advancement of the infrastructure sector, improved
transaction efficiency, a finer division of labor and specialization of workers,
and the resulting enhancement of economic welfare. Chu (1997) extended
the above analysis to the case with many intermediate-good sectors and
found that the results are essentially the same as described in theorems
13.2-13.4. These results are also consistent with Boserup's analysis of why
Japan was a country more suitable for industrialization than China and
India in the nineteenth century, despite the fact that China, India, and Japan
all had fairly large population sizes. Boserup pointed out that government
attitude, as well as other natural and historical conditions, had dominated
the adaptation pattern of industrialization in these Asian countries. This
again shows that population size is merely a passive support for further eco-
nomic development.

The focus of this chapter is on the role of population size in the tran-
sition from primitive to market economy. As to the role of population in
modern research-and-development-generatcd technological changes, I
have no quarrel with the prevalent view that it is the size of human capital,
not the physical number of people, that matters. But I have reservations
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concerning the common prediction of the growth theory, which is that the
economy will converge to a steady-state balanced growth path with con-
tinuously improving welfare and possibly continuously growing population.
To many economists, the classical Malthusian capacity-constraint hypothe-
sis may have become out of date. But if we consider a wider perspective, it
is not at all clear that human beings can enjoy a growth path without threat.
In the next chapter we will provide a different viewpoint about long-term
environmental constraints.



CHAPTER 14

Population Dynamics

in the Very Long Run

14.1 BACKGROUND

In the last chapter we reviewed the role of population in early economic
development. In that ancient period, mortality was significantly affected by
exogenous shocks such as famines, epidemics, floods, droughts, and various
other direct or indirect environmental uncertainties, and parents' prefer-
ences for children were by and large checked by natural constraints. Not
until the last three centuries have human beings been able to make signif-
icant progress in hygiene and medical knowledge, progress which has facil-
itated the recent sharp increase in human population.

In the twentieth century, the life expectancy of human beings in many
areas of the world has more than doubled compared to the numbers two
hundred years ago. Moreover, advanced radar facilities have been able
to forecast extreme weather conditions, satellites are able to detect the
locations of natural resources accurately, advanced agricultural technology
makes barren land cultivable, and computers have also made possible many
complex jobs. All these technological advances have increased the wel-
fare of human beings and appear to have pushed back the exogenous
constraints we face. As I mentioned in chapter 13, with the support of a
sufficiently large population size, the division of labor becomes ever finer,
and more and more labor can be devoted to the research and develop-
ment sector, which in turn facilitates the various technological advances.
These advanced technologies are endogenously determined by entre-
preneurs, in sharp contrast to the situation in ancient times when the exist-
ing technology constituted the natural exogenous limit to population
growth.

As Romer (1990) pointed out, since knowledge has the nonrivalry
property, the societal production technology (which embodies the available

181



182 Part III: Population Dynamics in the Past and in the Future

knowledge frontier) may naturally have the property of increasing returns
with respect to physical resource inputs. As a result, the natural-resource
carrying capacity constraint becomes relatively inessential. Then it seems
that infinite economic growth can be compatible with any size of popula-
tion without ever being restricted by exogenous checks.

Some environmental economists have challenged the above optimistic
prediction. They argue that economic development in fact has gradually
damaged the environment and eventually will hurt the economy.1 Those
challenges, however, have never been serious enough to fully counter the
above-mentioned infinite-growth argument. As many economists have
argued, environmental changes are usually gradual, and therefore the price
mechanism should reveal the gradually rising costs associated with envi-
ronmental degradation, thereby causing adjustments in economic activities.
For instance, when a production activity causes environmental damage,
it is believed that an imposition of a Pigouvian tax or other government
intervention should induce research and development activities to invent
a damage-free substitute or damage-reducing machinery and shift the
original inefficient solution to an efficient one.

The above argument has two serious flaws: it oversimplifies the rela-
tionship between technological advances and environmental changes and
it also implicitly assumes away the costs associated with the process of
technology advances. These flaws will become obvious as we broaden our
perspective and consider the problem from the angle of biology and evo-
lutionary ecology.

In the next section, I first review the work of Nerlove (1991, 1993), who
studied the evolutionary relationship between population size and the envi-
ronment, and show under what circumstances there exists a steady-state
evolutionary path. Nerlove's definition of environment is different from
that in Arrow et al. (1995). The former model is more appropriate for area-
or country-specific environments, whereas the latter deals with global
ecology and is beyond the policy control of any particular government.
Furthermore, the interaction between population and ecology involves a
much longer time span and is subject to considerations very different from
those of ordinary economic decisions. In section 3, I move on to consider
the general interaction between population and ecology. Then, in section
4, I set up a mathematical model and briefly discuss the various possible
population dynamics in the long run.

14.2 NKRLOVE'S MODEL

Nerlove (1991, 1993) published two papers concerning the relationship
between population size and environmental quality. The central idea behind
his model, which was first put forward by Hardin (1968), was that the
unpriced or underpriced character of environment or natural resources
normally does not enter into parents' cost/benefit analysis of childbearing.
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Moreover, since life expectancy in environmentally adverse circumstances
is low, parents in such an adverse environment have stronger incentives to
bear more children in order to offset the expected high mortality rate. The
more children they bear, however, the worse environmental quality they
face, which induces an even worse life-expectancy rate. The environmental
quality and the population size may evolve in such a way that a vicious circle
develops, which evidently becomes a kind of "tragedy of the commons," as
mentioned in Hardin (1968).

14.2.1 Formulation

Let the population size and the environmental quality be two state vari-
ables in the dynamic system. Nerlove wanted to discover when there would
exist a stationary state for the population and environment and how gov-
ernment tax and subsidy policies could avoid the possible occurrence of the
tragedy of the commons and bring about Pareto-improving results.

Specifically, Nerlove (1991, 1993) considered a one-sex overlapping-
generation model in which people live either one or two periods. The first
period is childhood, and people who survive to their second period of life
all become parents. Let Z, denote the state of environmental degradation
and N, the number of children alive at the end of period t, who will instant-
ly become parents at that moment. Nerlove considered the following equa-
tion for the dynamic movement of Z,:

Nerlove believed that good environmental quality (i.e., smaller Z,) makes
parents willing to substitute child quality for quantity and reduces child-
birth, which represents the case of developed countries, and that poor envi-
ronmental quality (i.e., larger Z,) induces childbirth, which represents the
situation of developing countries. But as Z, gels even larger, it is likely that
the increasing environmental deterioration raises the death rate. As such,
Nerlove argued that h' should change sign just once, with h' being positive
(negative) when Z, is small (large). The shape of the h function is shown in
figure 14.1. _

A stationary population is characterized by N, = N,-i = N, which cor-
responds to a level of environmental degradation Z such that

where dgldZ,-\ > 0 and dg/dN,-i > 0 arc assumed. The inequality dg/dZ,.^
> 0 characterizes an autocorrelative property for environmental quality,
which appears reasonable. The inequality dgldN,.\ > 0 states that the pop-
ulation size affects the environment unfavorably.

The population-growth equation Nerlove proposed is:
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FIGURE 14.1 The shape of h(.).

A Z satisfying (14.3), however, is not necessarily a sustainable equilibrium;
the corresponding stationary population size N must also satisfy Z = g(Z,
N).

Specifically, equations (14.1) and (14.2) constitute a so-called planar
system, in which the trajectory of S, = (Z,, TV,) is determined given any
initial value Sa. Let (Z, N) be any stationary point, and let the various elas-
ticities evaluated at (Z, N) be defined as

Nerlove proved the following result: a stationary point (Z, N) satisfying
(14.1) and (14.2) is unstable if ?/z > 0, that is, the rate of change of popula-
tion responds positively to environmental degradation. If 77, < 0, then the
system (14.1)-(14.2) is stable if and only if |, - £,v?/z < 1.

The first part of the above result is intuitive: there can be a stable pop-
ulation only if the population size stops growing as the environment dete-
riorates. As to the second part of this result, given that rjz < 0 < £z, £,v, the
inequality '£,, — £,N1], < 1 will hold if all these elasticities are small in absolute
value. If one of these elasticities is large in absolute value, then the state
variable may become so sensitive that the restriction £, - ^Nt]z < 1 may be
violated. In such a case, an oscillatory spiral trajectory may occur. Since
the private and social marginal costs of reproduction are not the same,
Nerlove (1991) then showed how social interventions in the form of taxes
or subsidies can be used to induce a specific birth rate corresponding to a
socially desirable stationary state.

If we treat the environment as an organic "prey" population and human
beings as predators, then the model in (14.1) and (14.2) can also be viewed
as a nonlinear predator-prey model. On the one hand, the environment has
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its own recovery (from outside shocks) speed when there are no predato-
ry activities by human beings, and the speed of such recovery lessens as the
size of the predator population increases. On the other hand, since human
beings have to rely on the environment to survive, their reproduction rate
is in general a function of the environmental quality. In the predator-prey
framework, as we explained in chapter 7, various solutions are possible.
The attractor may well be a limit cycle, and there is no reason to expect an
equilibrium with a stationary population. The contribution of Nerlove is to
provide a reasonable specification of the relationship between environment
and population and to show that a desirable equilibrium with a stationary
population may be achieved through policy intervention.

14.2.2 Some Alternative Ideas

Nerlove's articles were the first rigorous attempts to study the analytical
dynamic interaction between population size and environmental quality. In
a sense, Nerlove's framework is a modern version of the Malthusian model:
the index of carrying capacity in the Malthusian theory is replaced by the
environmental quality variable, and human reproduction is assumed to be
related to environmental quality in a nonlinear way. The scope of environ-
ment with which Nerlove was concerned, however, has a relatively "local"
content. In modern times, tragedies of the commons remain a true concern,
but, as Arrow et al. (1995) pointed out, the so-called environmental prob-
lems have shifted from local land degradation to the global sustainability
of the "earth environment," the ecosystem. Furthermore, given the preva-
lence of medical services and food aid made possible by advanced trans-
portation and communication technology, local land degradation is unlikely
to cause a serious decline in population size. If population dynamics arc
affected by environmental factors, these factors are more likely tied to the
resilience of the global ecosystem rather than the sustainability of the local
environment.

According to Arrow et al. (1995), the loss of ecosystem resilience as
related to economic development has some special features. First, the loss
of ecological resistance because of economic development can seldom be
anticipated. Neither is it likely that the market or the State can respond to
such unexpected ecological shocks.2 For instance, the damage CFCs
(chlorofluorocarbons) and CO2 inflict on the atmosphere did not catch the
attention of scientists until the 1970s, many decades after various green-
house gases had been extensively emitted (Shaw and Stroup, 1990). But
since CFCs are highly stable and can remain in the atmosphere for as long
as fifty years, it is already very late now to remedy the economy's previous
faults even if we chose to do so.

The second feature of the loss of ecological resilience, also mentioned
by Arrow and his associates (1995), is that damage is usually discontinuous
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and irreversible. Such a discontinuous change in the ecological system may
cause a sharp decline in the size of the population. These two features of
environmental damage are clearly not in Ncrlove's model.

Another comment concerning Nerlove's analysis relates to the policy
proposals he made. For a local degradation problem, it is relatively easy
for the local government to tax or subsidize to overcome the discrepancy
between the public and private cost/benefit calculation. But global ecolog-
ical problems are by definition international problems; therefore, it is very
difficult for any single government to effect a remedy. The resolution of
such ecological problems requires international coordination. As long as
countries arc dominated by their individual concerns, there may be inter-
national tragedies of the commons.

Given the above observations, it seems necessary to set up an alterna-
tive analytical model that more closely reflects the dynamic relationship
between population and global environmental characteristics. In the next
section, I first review the relevant literature on ecology and ethnology to
identify the abstract elements that affect human population dynamics. In
the section which then follows I formulate the mathematical model and
describe its dynamic implications.

14.3 ECOLOGY, ETHNOLOGY, AND ECONOMIC ACTIVITIES

14.3.1 The Decline in Biodiversity

A basic principle of ecology, according to Harvey and Hallet (1977), is
that natural complex systems are generally stable and are able to return
to their equilibrium state after a disturbance. But it appears that this
basic principle may be ruined by massive human interventions of unprece-
dented scale.

As Smith (1996) pointed out, the internal complexity of an ecosystem
is positively related to its stability. If an ecosystem has experienced a large
shock that has eliminated many of its species, the remaining species are
critical to the system's integrity. A full complement of species can give the

ecosystem a "buffering capacity" against large random shocks. Smith argued
that the biodiversity of a region may be the best measure of ecological
resilience.3 When the ecological resilience is seriously damaged, an exoge-
nous random shock may create an irreversible ecological change. This
will cause human beings (and many other species) to find themselves in an
unfamiliar environment and seriously reduce the size of the human pop-
ulation (Arrow et al., 1995). The question is, will economic development
necessarily (or likely) cause biodiversity declines, and if so, why?

The first reason why human economic development may cause a
decline in biodiversity is that human beings are largely ignorant of the eco-
logical effects of their economic behavior until the damages are too great
to reverse. As we mentioned in the previous section, many industries have
been emitting CO2 for more than one hundred years and CFCs for several
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decades, but it was not until recently that the impact of greenhouse gases
on global warming could be confirmed by scientists. The impact of global
warming, according to Shaw and Stroup (1990), includes forests shifting
northward; sealevels rising, inundating wetlands, beaches, and coastal cities;
rainfall patterns changing; air pollution worsening; and catastrophes such
as fires, insect plagues, floods, and droughts. Evidently, these disasters will
significantly reduce the number of species that do not successfully adapt
themselves to these changes, and hence reduce biodiversity. Furthermore,
after several hundred years of industrial development, the emission of
CO2 seems to be unavoidable for many production activities and products
(such as cars). It is now difficult to alter all these technologies and products
to significantly lessen the emission of greenhouse gases, even if alternatives
exist. This is a special case of the lock-in effect mentioned in Arthur (1989).

The second reason why economic development may cause biodiversi-
ty decline has to do with the modern technology diffusion process involved
in many economic activities. As Swanson (1995) pointed out, human society
now relies upon only four forms of crops (maize, wheat, potato, rice) for
most of its subsistence needs, and only a very small number of high-
yielding varieties of these four plants are utilized. But it is estimated that
humans have used 100,000 edible plant species over their history. It is then
natural to ask what has caused such a decline in edible plants. The answer
to this question hinges upon the path-dependence property of the technol-
ogy diffusion process.

Swanson argued that there are three kinds of increasing returns in the
process of economic development. Take the development of agriculture as
an example. (1) Given automatic machinery, modern agriculture shows
increasing returns with respect to the land factor. Most modern agriculture
needs a large area of land and uniform plant size (i.e., single species) to
practice mechanical cultivation. To exhaust the advantage of this modern
machinery, on every piece of cultivated land, all forests, grassy plants, and
other species have to be removed. Swanson (1995) reviews many recent
examples of converting natural habitat to single-species agriculture. The
average percentage change of land from forest to cultivated area turned out
to be as high as 37% in the past two decades in many developing countries.
(2) When a limited number of crops happened to be grown in some early-
developed countries, the capital goods used in planting these species were
also invented and improved. With the help of these capital goods, these
species become the "successful" (high-yielding) ones. With the extensive
development of international transportation and trade, these capital goods
were exported to other developing countries and facilitated the growth of
these successful species in agricultural production there. (3) With more
experience of planting specific species, the corresponding phytopathology
is further developed, which in turn increases the incentive to grow these
disease-free species.

The latter two kinds of increasing returns in agricultural development
have the feature of path-dependence discussed in Arthur (1989) and again
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create a lock-in effect in a very few species. This lock-in path-dependence
effect, as Arthur forcefully emphasized, is not limited to agriculture and is
prevalent in other industries as well.

14.3.2 Genetic Specialization

The disadvantage of genetic specialization can be clearly seen in the fol-
lowing example, discussed in Gould (1977).

As is well known, the antlers and horns of elks are essentially visual-
dominance symbols. The most important function of antlers is not for
combat, but for conferring high status and for access to females. Because
elks with large antlers have a higher probability of mating with females,
the large-antler genes reproduce themselves more easily. In the long run,
natural selection leads to the flourishing of deer with larger and larger
antlers. In ethnology, this is called the "specialization" of adaptation.

The Irish elk, famous for their huge antlers, existed only in the period
from 12,000 to 11,000 years ago. The elk lived in a stable environment
without major challenges. Because the size of the antler was then the most
important criterion of genetic selection, after several hundred years, the
existing Irish elk all had very large antlers. It has been estimated that these
antlers could reach as much as ninety pounds in weight and twenty feet
in width. These Irish elk were very well adapted to the grassy, sparsely
wooded, open country of the Allerod epoch. However, after the final retreat
of the ice sheet, evidently the Irish elk could not adapt either to the tundra
or to the later heavy forestation. It is believed that many Irish elk were
easily trapped by low branches.The major reason was that their antlers were
too big to allow free movement.

The general message here, as Gould pointed out, is that "the Darwinian
evolution decrees that no animal shall actively develop a harmful structure,
but it offers no guarantee that useful structure will continue to be adaptive
in changed circumstances. The Irish elk was probably a victim of its previous
success" (p. 90). When a species is overadapted and specialized, it becomes
more and more dependent upon other factors or species in the environment.
When nature initiates a random shock that attacks one species of the mutu-
ally dependent specialized group in an originally stable environment, this
group may experience serious population decline. The disadvantage of
genetic specialization applies not only to the Irish elk but also to many other
species. Gould argued that this adaptation-specialization-extinction pattern
is "rather commonplace" in biological history.

14.3.3 Culture Adaptation versus Genetic Adaptation

One seldom-noticed problem faced by human beings in fact may precisely
be a product of our extreme success in adaptation. As most ethnologists
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have noted, the unique feature in the evolution of mankind is that its
biological evolution has transcended itself by replacing organic evolution
with cultural evolution.4 Most mammals have adapted to cold climates by
growing warm fur, but man alone has achieved the same end by wearing
fur coats. The former is organic evolution, while the latter is cultural evo-
lution. As Dobzhansky (1961) argued, culture is by far the most potent
adaptive mechanism that has emerged in the evolution of life. Its potency
is due to its being learned, taught, and changed much faster than genes can
evolve.

The general observation of species evolution is that well-adapted
species are able to respond to natural shocks if these shocks, whether fore-
seeable or not, are moderate. But just as in the case of the Irish elk, if the
natural environment significantly changes, it is often the best-adapted
species that will experience the toughest time. Would this observation be a
rule that applies to human beings as well?

In the previous subsection, we mentioned that species living in a stable
environment for a long period of time may become less adaptive to an
unexpected or unfamiliar environment. A recent article by Ng (1995)
suggested that the cultural evolution of human beings necessarily tends to
develop a stable environment. These two propositions combined imply
that human beings are inclined to adapt specialized lifestyles and may have
difficulties in facing erratic exogenous shocks that lead to an unfamiliar
environment.

Ng (1995) separated animals into two types: the impulse-response
hard-wired type that reacts mechanically to outside shocks and the
conscious rational soft-wired type that can make choices as they face
outside shocks. But because there are so many kinds of outside shocks,
even sophisticated species such as human beings are unable to program a
shock-response choice function with zillions of possible shocks in the
domain.

A simplified choice-function design, according to Ng (1995), is to
develop a hard-wired learning system that can generate soft-wired flexible
choice functions. For human beings in particular, the consciousness affects
the activities of the individual by influencing his or her choice through a
reward/punishment system. By and large, activities that benefit the survival
of our species will be rewarded with a sense of "happiness," and those that
hurt our survival will be punished with a sense of "sadness." With such a
reward/punishment mechanism design, human beings tend to improve upon
the environment surrounding them, so that they can receive more rewards
more often. For instance, our efforts to invent heaters, air conditioners,
cars, medicines, telephones, and so forth can all be attributed to a desire
to enhance the rewards. The reward/punishment system improves along
with the development of human civilization, and the environment be-
comes increasingly comfortable (stabilized), so that we are less vulnerable
to outside shocks. But as mentioned in the previous subsection, such a
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stabilized environment could make us less adaptive to an unexpected or
unfamiliar environment.

Let us consider the following simple example of human beings. We
are now almost sure that an asteroid in the Cretaceous period caused the
extinction of dinosaurs and the loss of many other species. If a meteorite
even one-tenth the size of that asteroid hit the earth today, it is very likely
that most public utilities, transportation, and other infrastructures would be
destroyed. It is doubtful how many days people living in a high-rise in a city
or metropolis, who are used to tap water, gas cooking, and electricity, could
survive with the malfunction of all these services. On the other hand rural
peasants or aborigines, who are less adapted to modern culture and live a
less "specialized" life, stand a better chance of survival. The adaptive spe-
cialization in human beings are certainly different from the genetic spe-
cialization of other species but the potential negative impact appears to be
similar.

Such crises of overspecialization, however, often escape the perception
of human beings. Again, the reason hinges on the fact that the disadvan-
tage of overspecialization is likely to become evident only after a very long
period of time and therefore is unlikely to be sensed by individuals in their
short lifespans.

The point here is that human economic development usually leads
to a stabilization of the environment and a specialization of individual
lifestyle, which in turn lead to a deterioration in the ability of human beings
to adapt to large random shocks. This is by no means an idle concern, for,
as we mentioned in the previous subsection, human economic development
has caused significant biodiversity declines, which in turn increase the prob-
ability of facing an major natural shock.

14.4 TOWARD A MATHEMATICAL FORMULATION

14.4.] Three Epochs of Economic Development

We follow Goodfriend and McDermott (1995) and divide the history of
economic development into three epochs. The first is the premarket period
that preceded the appearance of cities. In this primitive epoch, the family
was the production unit meeting most consumption needs, and there is no
formal, regular transaction of goods. This period started 5,000 to 6,000
years before the present and lasted until cities became important. The
second epoch is the period of preindustrial market development before
the Industrial Revolution. In this preindustrial epoch, the population
size gradually increased, which facilitated the ever-finer division of labor
(Chu, 1997; Chu and Tsai, 1995); however, the environment had not
yet reached the point where human capital accumulation was desirable.
The third epoch, called the modern epoch, starts with the Industrial
Revolution in the eighteenth century. In this period, various production

u,



Chapter 14: Population Dynamics in the Very Long Run 191

technologies, abstractly characterized as "knowledge," were invented,
accumulated, learned, and passed on. Because of the nonrivalry property
of knowledge, an increasing-return production technology became pos-
sible, which in turn rendered possible the rapid growth of output and
population.

Let Nt be the number of workers (or population), W, be the real wage,
H, be the stock of human capital, and M, be the number of intermediate
products, characterizing the degree of the division of labor. A discrete-time
version of the model of Goodfriend and McDermott (1995) can be written
as follows.5

where cL,A, K, a €E (0,1), 7 £ (0,1) are all constants and a> is the depre-
ciation rate of H,.

Equations (14.4)-(14.6) apply to all three epochs of economic devel-
opment; however, in the former two epochs, some of these equations have
a degenerated pattern. In the primitive epoch, the size of human capital is
fixed and assumed to be a constant: Ht = Ho. The real wage and the number
of intermediate goods are also constants: M, = M and Wt = W. In the prein-
dustrial epoch, Ht still remains constant H0, but the division of labor begins
to be refined and the real wage begins to rise. The dynamic system in the
second epoch becomes

In the third epoch, all three equations in (14.4)-(14.6) apply. In what
follows, I shall write the logarithm of Mt, Wt, and Nt, respectively, as m1, w1
and nt.

14.4.2 Human Reproduction and Survival Probability

The law of motion of Nt is assumed to be

where n is the human reproduction rate, f is the survival probability, and Xt
is a random variable characterizing the environmental state. The specifica-
tions of n, f, and X are further explained below.
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The familiar quantity-quality tradeoff argument tells us that the fertil-
ity rate will decline when the real wage and the opportunity costs are suf-
ficiently high. The discussion in Kremer (1993) showed us that there are two
critical values of the W's (say W* and W**) such that (i) r}'(Wt-1) is posi-
tive when W,.., < W*, and (ii) n'(Wt-1) = 0 when Wt-1 > W**. Case (i)
usually refers to earlier periods of human history, and case (ii) applies only
to the postindustrial epoch.6

We explained in the previous section that, in a modern economy, the
stablized environment and the over-adaptation of agents adversely affects
their adaptability to disadvantageous unexpected random shocks. Notice
that a finer division of labor in fact increases the survival probability of each
individual when the environmental state is "within a reasonable range";
people's survival probability will decrease only when the environmental
state is sufficiently poor. Suppose xt is the realization value of X,, and let x,
= 0 be the critical value of the environmental state. Specifically, x, > 0
means that the environmental state is favorable, or unfavorable but within
a reasonable range, for human survivorship; x, < 0 means that the envi-
ronment is disastrous. Assuming m, < m't, we adopt the following survival
probability function:

Equation (14.9) says that when the environment is tolerable (x, > 0), a
more advanced technology, characterized by the finer division of labor
(larger mt), increases the survival probability. When the environment is poor
(xt < 0), a highly refined division of labor, and hence a highly specialized
lifestyle, may suffer from the disadvantage of specialization, which causes
an exaggeration of the disastrous environmental state (see figure 14.2).

Finally, we also explained in the last section why economic develop-
ment reduces the biodiversity of the ecosystem, which in turn decreases the
resilience of the environment and hence changes the pattern of natural

FIGURE 14.2 The shape of f(m, x), m't > m,.
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random shocks. Thus, we expect that the mean of X,, denoted mt, and the
variance of Xt, denoted a,, are both increasing functions of the m,.

14.4.3 Potential Crisis of the Modern Epoch

From the discussion in chapter 13, we know that a large population size is
necessary for a finer division of labor; this is also revealed in equation
(14.4). From (14.6), we see that, because a higher level of knowledge can
be produced and sustained only when N, is sufficiently large, the popula-
tion size is also indispensable for knowledge accumulation. With the setup
in (14.4)-(14.6) and (14.8)-(14.9), Chu andTai (1997) calculate the survival
probabilities in the three epochs. These probabilities are evidently random
variables, and hence any comparison of these probabilities must be in a
stochastic sense. Under reasonable assumptions, Chu and Tai proved the
following results: Suppose the economy is as specified in equations
(14.4)-(14.6) and (14.8)-(14.9). Then (i) when the level of the division of
labor is sufficiently high, the variance of the survival probability is positively
related to the level of the division of labor; (ii) the probability of a drastic
decline in population size, in the sense that the survival probability is
smaller than a specific number, is higher when the level of the division of
labor is higher; (iii) the probability of shifting from the modern epoch to
the primitive epoch is higher than that of shifting from the preindustrial
epoch to the primitive epoch.

Notice that which epoch the economy belongs to is endogenously
determined. Economic agents compare the welfare level (W,) in each epoch
and decide the degree, as well as the extent, of the division of labor. If the
size of population drops drastically, people in the modern epoch may realize
that it is not efficient to maintain an extensive division of labor; neither is
it beneficial to accumulate human capital. Thus, a drastic drop in popula-
tion size may trigger a major setback in economic development, forcing us
to return to the primitive epoch. This is the intuition behind part (iii) of the
above result. In the process, there is no further accumulation of knowledge,
and the original stock of knowledge is gradually lost or forgotten (depre-
ciated). The process, if and when it happens, could be disastrous.

This scenario may have a low probability of occurring, but the point is
that the probability increases along with the development of the modern
economy. There are two aggravating factors. The first is that the expansion
of human activities unavoidably involves biodiversity decline, which
increases the probability of experiencing an irrecoverable environmental
change. The second factor is that modern economic development "stabi-
lizes" the environment, which makes human beings less adaptive to an unfa-
miliar environment. Specifically, the first factor decreases the ability of our
environment to absorb exogenous shocks, and the second factor decreases
the adaptability of individuals to exogenous shocks. These factors combined
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make human beings more vulnerable to natural ecologieal shocks, and
hence an increased probability of a drastic population decline.This explains
the intuition behind parts (i) and (ii) of Chu and Tai's result.

The above analysis is clearly sensitive to the mathematical formulation
specified. Indeed, our current knowledge of the ecological system does not
allow us to check whether our specification in (14.7)-(14.8) is reasonable.
What is presented here is the possible negative impact of biodiversity
decline and the cultural specialization of adaptation on population dynam-
ics, If our argument that the probability of a sharp population decline
increases with economic development is valid, then this argument appears
to be a modern Malthusian theory. In a sense, this theory says that even in
the modern economic epoch, there is still a "natural" constraint on human
development. This constraint is no longer characterized by the availability
of resources or the technological frontier; rather, the constraint is charac-
terized by the ecological balance of the universe.



CHAPTER 15

Epilogue

One of the most striking features of the topics analyzed in the previous
chapters is the breadth and depth of the economics involved in the analy-
sis of population dynamics. The conventional perception that "demograph-
ic movements were largely exogenous to the economic system, and were to
be left to sociologists and other non-economists" (Samuelson, 1976, p. 243)
may be based on a conventional understanding of demography itself. Once
we realize that modern individual fertility decisions may be affected by
many economic variables, we can understand why demographic movements
may be correlated with various economic indexes of the society. Once we
shift our focus from the size and growth rate of the population to its eco-
nomic characteristics, we realize that there is an abundance of topics for
research and analysis. Moreover, once we perceive that the characteristic
composition of the population is usually an aggregate result of various deci-
sions by individuals, we find that our analysis is not confined to fertility-
related economic variables. Thus, we are able to use the general framework
to study the income distribution (chapters 4, 5), the attitude composition
(chapter 8), the occupation structure (chapter 9), and the aggregate savings
and pensions (chapters 11,12) of the population.

The methodology adopted in this book is quite consistent: I emphasize
the impact of individual decisions on the aggregate dynamics of demo-
graphic characteristics. As far as the steady state or dynamic fluctuations
are concerned, the theory of stochastic processes is the basic tool necessary
for the analysis. Other than the possible technical difficulty, there is nothing
conceptually difficult in the modeling. But very often, the aggregate vari-
ables in question may feed back and influence individual decisions. In
chapters 8 and 9, we see how the aggregate custom or occupational com-
position in the previous period affects individual decisions in the current
period. These are in fact special cases and are easily dealt with. For many
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other economic variables, the micro-macro interaction involved is rather
complex. There are several variables that may affect and also be affected
by individual decisions. For instance, if fertility is a function of parental
income, then, as I showed in chapter 4, the societal income distribution, as
well as income mobility, will be affected by the specification of the income-
fertility function. But we also know from chapter 5 that income mobility
may induce poor parents to concentrate their resources on fewer children
in order to raise their social position. Thus, there is an obvious interaction
between individual fertility decisions and the existing mobility conditions.
A theoretical characterization of the above interaction, as we can imagine,
is rather difficult and deserves further research in the future.

For another instance, in section 11.3, I introduce the branch of the
literature that explains why the age composition of the economy during
demographic transition tends to induce a public pension system. Because
the demographic transition in many countries is a result of fertility decline,
the conclusion in section 11.3 can also be viewed as a theoretical influence
of the fertility rate on pension decisions. On the other hand, from the "child-
as-old-age-support" hypothesis, we also predict that parental fertility rates
should fall when their old-age support has already been provided by an
extensive public pension system. The long-run development of pension and
fertility patterns should therefore be dynamically interrelated, and an equi-
librium should embody the above two channels of influence. Modeling the
above interaction is a more involved task than is the analysis in chapters 8
or 9, although the job does not appear to be overly formidable.

Perhaps the most uncomfortable and uncertain result I present
concerns human population in our own future. I am not convinced by the
argument made by Simon (1981) on his cover page that "the primary con-
straint on our national and world economic growth is our capacity for the
creation of new ideas and contributions to knowledge. The more people
alive who can be trained to help solve the problems that confront us, the
faster we might remove the obstacles. . ." The question unavoidably
becomes a philosophical one: Are natural obstacles or constraints com-
pletely removable!

Even if we can continually progress in technological knowledge, even
if the knowledge is nonrivalrous and makes increasing returns in produc-
tion possible, and even if modern technologies can produce and transport
sufficient food to poorer developing countries, can an infinite growth path,
with a positive or even a stationary population growth rate, be sustained?
This seems to be a question that should be addressed simultaneously by
demographers, ecologists, economists, and biologists. Economists study how
technologies, which improve the environment for human development, are
invented, diffused, and improved by human beings. Ecologists analyze how
the environment changes in response to the activities of human beings.
Demographers figure out the changes in vital rates in response to environ-
mental and economic changes. And biologists study how human beings
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evolve in tandem with their environment in the long run. Ignoring the active
decisions of human beings will lead us to view human development as very
passive. Ignoring the biological or ecological angles will lead us into delu
sions of infinite growth. Obviously, neither prejudice is acceptable. It is not
the sole responsibility of economists to provide a long-run forecast of the
human population, but it seems to be rather irresponsible for economic the-
orists to ignore the environmental and ecological impact of economic devel-
opment and propagate the fantasy of unbounded economic and population
growth.

Our observations from the past two hundred years are in fact insuf-
ficient for us to have a general understanding of the pattern of knowl-
edge diffusion, the way new knowledge affects economic production, and,
more important, the cost and constraint of knowledge accumulation. Fogel
(1994) emphasized the need for economic theorists to study economic
history in order to understand the dynamic processes of social phenomena.
But so far much of the discussion on the future pattern of human popula-
tion growth or the relationship between population and technological
changes has often jumped to a "knowledge law-of-motion equation" and
launched into the dynamic analysis there, without paying much attention
to the generality or historical support of such a mechanical equation. As
Fogel pointed out at the end of his Nobel lecture (p. 389), "uncovering
what actually happened in the past requires an enormous investment in
time and effort. Fortunately for theorists, that burden is borne primarily by
economic historians." But still economic theorists "need to spend the time
necessary to comprehend what the historians have discovered. A superficial
knowledge of the work of economic historians is at least as dangerous as a
superficial knowledge of theory." This final remark by Fogel serves as the
best caveat to researchers in population dynamics.
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Notes

CHAPTER 1

1. As Schultz (1981) put it, one supposition of Malthus is that fertility rates
within marriage are essentially uncontrolled by conscious individual behavior.

2. Becker's (1991) reputable Treatise contains an excellent summary of various
kinds of family decisions. See also the review article by Bergstrom (1997).

CHAFFER 2

1. Analysis of the cases of continuous time and state spaces is similar but
involves more advanced probability theory. Interested readers can go to Mode
(1971, chapters 6 and 7) for further information.

2. When there is density-dependency or other kinds of decision interactions,
supposition (ii) will be violated. Density-dependent models will be discussed in
chapters 8 and 9,

3. Recall that we assumed in subsection 2.1.2 that B is a bounded subset, so n
is a finite number here.

4. See Parlett (1970).
5. The growth rate Q is called the intrinsic rate of population increase.
6. Because a type-i agent can remain the same type for an uncertain number

of periods.

CHAPTER 3

1. Recall that /J is assumed to be the upper bound of human population so
that ma = 0 Va > ft.

2. A simple and more heuristic proof can be found in Arthur (1982).
3. There may be more than one solution to the above equation. See Coale

(1972) for further analysis.
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4. r = In Q.
5. Equation (3.2) may hold without the steady-state presumption; it can be

obtained by making only the assumption that the population growth rate and the
age structure arc constant.

CHAPTER 4

1. This assumption is reasonable given our suppressed two-period life
structure.

2. The Inada condition requires that u '(x,.) —> 0 as x —> =° and u'(x, . ) — > < » as
x —> 0. The same definition applies to /(.,.) and L(.).

3. Daley's (1968) work is in fact an extension of Kalmykov (1962).
4. For economic examples of comparative static analysis of the Markov

processes, see Danthine and Donaldson (1981).
5. See Anand and Kanbur (1993) for a recent survey.
6. The reason Chu and Koo (1990) proposed an assumption stronger than

Kalmykov's SM condition is simple: there exist counterexamples that show that
the SM condition is not sufficient to warrant even the simplest comparative static
analysis.

7. As pointed out by Atkinson (1970), every inequality comparison has some
kind of implicit social welfare criterion behind it. The above-mentioned direct
ranking of income distribution, which does not rely on detailed functional specifi-
cations of social welfare, is a better alternative to conventional comparisons of
various inequality measures.

8. A static sample can also be used to estimate Mv if the person being inter-
viewed can specify detailed income status of his parents 25 years ago, which is quite
unlikely in reality.

9. For more details, see Atkinson (1981) and Adelman et al. (1994).
10. The estimation, of course, has to take into account the constraints such

as T\ _\Mij = 1 V/. There are also other behavioral assumptions needed to estimate
elements of M. For instance, since completed fertility is usually unavailable from
family survey data, Cheng and Chu (1997) had to assume some kind of age-
specific dynamic pattern for life-cycle fertility in order to calculate the completed
fertility rate from the survey data. Readers are referred to their article for further
details.

CHAPTER 5

1. Further analysis will be presented in chapter 9.
2. If h,(.) first intersects the 45° line from below, then the first intersection is

not a stable fixed point. This implies that starting with some £(w, the eventual extinc-
tion probability £»,, would not be the first intersection, contradicting Theorem 5.2
above.

3. This assumption is not necessary and is made purely to simplify our later
presentation.

4. When bequests are in the form of human capital investment fund, imagine
that bM is the resource needed to support one child through high school. By assump-
tion, this equals the amount needed to support two children through junior high
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school (bL). Similarly, b,, is the resource needed to support one child through college,
which by assumption equals two shares of bM.

CHAPTER 6

1. See Caswell (1990), chapter 10.
2. The inequality u,j(x, y) < x, y implies that the number of matings cannot

exceed the available number of males or females. This certainly rules out the pos-
sibility of polygamy or polyandry.

3. A function h(x) is homogeneous of degree r if h(kx) — X h(x) VA > 0.
4. When a divorced parent remarries, it is assumed that his or her original chil-

dren will not affect the fertility decision of the new union. Thus, all new unions are
assumed to have n+ = n' =0 for simplicity of presentation.

5. Together with a set of purely technical conditions.
6. See Bennett (1983) for discussion of the legal issues involved in the

common-law doctrine.
7. See Ross (1983) for details.
8. Here W(0) has been normalized to be zero.
9. Several other technical conditions needed to sustain this theorem are

omitted. Interested readers are referred to Leung's paper for detailed discussion.
10. The earliest discussion of the equilibrium sex ratio of a species goes back

to Fisher (1958). The research along that line, however, emphasized the mechanism
of genetic selection over a very long period of time. The focus of this chapter is
different.

11. Because some of the individual-specific characteristics of girl (or boy) pro-
ducers, such as hormone level or follicular phase length, are unlikely to go through
frequent changes, we do not expect a mother to switch frequently between being a
girl producer and a boy producer over her fertile period.

12. They also redo the regression by using the men's indexes, and the results
are essentially the same.

13. See Hsiao, 1986, chapters 3 and 8.
14. In general there is no one-to-one relationship between the multiple

regression coefficient (B) and the coefficient of correlation between mit and ri,t.
But in (6.11), the country effect and the time effect are essentially added to nor-
malize the birth-rate series, and hence B can be treated as the coefficient of a simple
regression m'i,t = aa + BrL, + ei,t, where m'i,t = mi,t, — ai — y, is the normalized birth
rate.

15. These two types were first mentioned by Blinder (1973). But since there
was no explicit two-sex structure in Blinder's setup, his analysis was confined to
some restrictive cases.

CHAPTER 7

1. The formula is well defined between vectors containing zero entries only if
the locations of the zeros coincide.

2. Detailed analysis of the above definition can be found in Lorenz (1989).
3. See Tuljapurkar (1987) for more details.
4. Some preliminary results can be found in Chu and Lu (1997).
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CHAPTER 8

1. In his discussion of the number of seminar participants, Schelling (1978)
assumes that people use the number who attended last week as an expectation of
attendance this week.

2. If x*i -yt xi. then the evolution of pt, will become slightly more complicated,
but the insight remains the same.

3. See Boldrin (1988) for more detailed explanations.
4. See Cooler and Ulen (1988), chapter 12, for explanations.

CHAPTER 9

1. Before Chao and Hsieh (1988), the most extensive study,by Ho, was limited
to the fourteenth to twentieth centuries. Durand (1960) made an effort to trace
Chinese population history back to the first century. Other related piecemeal
research includes Hartwell (1982) and Kuan (1980).

2. Sketchy evidence of this phenomenon can be seen in figure 9.1. More
precise numbers are to be found in C&H.

3. Natural fertility is the fertility level that occurs in the absence of conscious
effort to control completed family size.

4. This assumption is the same as the one made in section 8.3.
5. In Chinese history, there were numerous instances of severe disruptions of

agriculture as dikes were ruptured or bridges were burned during revolutionary
wars. But in general this happened only in "large-scale wars." On the other hand,
historians would record these instances only when their attendant political or eco-
nomic costs were high. Thus, it seems that {R,\ is a good proxy variable of the damage
to agriculture. I will discuss this further in the next section.

6. C&H provided detailed reasoning for such a three-ladder division, which
will not be repeated here.

7. See book 3, chapter 8, of the volume by the "father of war," Carl von
C1ausewitz(1976).

8. Here we skip the usual caveat that there may be stable period-3 cycles. More
detailed discussion can be found, for example, in David Kelsey (1988).

CHAPTER 10

1. See Lee, 1974, p. 579, for a detailed explanation.
2. The Translog form has the computational advantage when cost share is the

variable to be estimated. In our analysis, it turns out that the Translog form is too
cumbersome to program, and so the generalized Leontief formula is adopted in its
place.

3. The data are on a compact disk, which is available from the author on
request.

4. Observant readers may notice that Wachter and Lee (1989) applied a dif-
ferent growth equation to detrend their population data when they analyzed the
period model. They did so because the growth rate of the U.S. population may be
different from the birth rate due to immigration. Their approach is straightforward
because in their period model only the total population size is used as the explana-
tory variable in the fertility regression, whereas in my regression I use all age-
specific population sizes as explanatory variables.
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5. Since we normalize B" to be 1, the absolute value of B",, a •= 2,. .. , 6, is not
meaningful. Although it is not my purpose to explain the negative relationship
between Wa(t) and m(a, t) for the 30-34 age group, 1 suspect that this negative coef-
ficient may be related to the fertility timing decision of females. For instance, if the
opportunity cost of bearing a child is highest for a female aged 30-34, she would
probably prefer to postpone or give up childbearing if her economic perspective
looks good. This may create a negative relationship between relative economic
welfare and fertility rate for this group. See Ward and Butz (1980) for a more
detailed analysis.

6. See, for example, Day et al. (1989), Feichtinger and Dockner (1990), and
Feichtinger and Sorger (1989).

ChaPTER 11

1. A more detailed discussion of how the diffusion of new agricultural tech-
nology and new crops can set off a demographic transition can be found in Nerlove
(1996).

2. Because the focus of this chapter is upon the interaction between popula-
tion and the economy, [ ignore some details of the definition and characterization
of a demographic transition.

3. It is implicitly assumed that the right-hand side of (11.7) is greater than zero.
4. Other comments about the BMT model can be found in Nerlove and Raul

(1997).
5. It is assumed that there exists a perfect insurance market, so that each

person receives the expected value of the child's supporting fund, which equals the
product of surviving probability p2 and the size of transfer w,H,.

6. This setting is in fact problematic, for there is unlikely to be a "child
survival insurance" market for old-age companionship, and hence it should not
be the expected number of children that appears in the c, term in the utili ty
function.

7. There is also financial wealth in the form of debt and credit. But since tolal
debt or credit must sum to zero, we can ignore this part for our purposes.

8. Since the seminal work by Fei et al. (1979), most researchers have decom-
posed family-income inequality according to income sources, economic sectors, or
income-determining characteristics, while overlooking the role population compo-
sition might have played.

CHAPTER 12

1. In Stolnitz (1992), aging is measured by the proportion of people aged 60
and over. In Kart (1994), the critical age is 65. A similar definition has been adopted
by the World Health Organization (WHO).

2. See, for instance, Manton et al. (1994) and Keyfitz (1988).
3. This is because //(y, 0) = 0 = 1 - //(«, (9) V6».

CHAPTER 13

1. Solow's theory also predicts that unbounded economic growth is compatible
with an unbounded population growth, implying that the exogenous environment
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is no longer a constraint to human population. We will come back to this point in
the next chapter.

2. Romer (1990) and some other researchers have focused on the public access
to knowledge when it is used. Others, notably Arrow (1962) and Ng (1986), have
shown that the cost of inventing new technology is constant, and therefore the cost
per capita of creating knowledge is inversely related to population size. In any case,
the connection between technological growth and population size remains strong.

3. What Boserup described was just a general pattern; there arc certainly cases
in human history where improvement in infrastructure did not increase per capita
output significantly, as Fogel (1964) showed in his well-known example. Also notice
that, although our observation involves an outflow of labor from the agricultural
sector to the industrial sector, the scenario here is different from the traditional
"excess labor" argument of development.

4. To see this, notice that t)F()/3e,, is greater than the market wage for any ek s
0 (point E is higher than /<", say); hence, there is a tendency for market-sector workers
to transfer to the primitive sector.

5. See Yang and Ng (1993) for details.

CHAPTER 14

1. See Meadows et al. (1992).
2. Meadows et al. (1992, p. 184) argued that "the market is blind to the long

term and pays no attention to ultimate resources and sinks, u n t i l . . . it is too late to
act."

3. Biodiversity refers to the diversity of living organisms. More comprehensive
discussion can be found in Hammer et al. (1993).

4. Some ethnologists call human culture "the out-body organ".
5. My formulation is a discrete rewriting of Goodfriend and McDermott's

equations (10), (12), and (14). Their 1 - a is replaced by a here.
6. The Malthusian theory tells us that, in the ancient period, when the popu-

lation size is close to the carrying capacity, the food support may be less than suffi-
cient, and successful reproduction would be a decreasing function of the existing
population size. But this is not crucial to our analysis here.
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