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Preface

When writing a graduate level mathematics book during the last decade of
the twentieth century, one probably ought not inquire too closely into one’s
motivation. In fact, if one’s own pleasure from the exercise is not sufficient
to justify the effort, then one should seriously consider dropping the project.
Thus, to those who (either before or shortly after opening it) ask for whom
was this book written, my pale answer is me; and, for this reason, I thought
that I should preface this preface with an explanation of who I am and what
were the peculiar educational circumstances which eventually gave rise to
this somewhat peculiar book.

My own introduction to probability theory began with a private lecture
from H.P. McKean, Jr. At the time, I was a (more accurately, the) graduate
student of mathematics at what was then called The Rockefeller Institute
for Biological Sciences. My official mentor there was M. Kac, whom I had
cajoled into becoming my advisor after a year during which I had failed to
insert even one micro-electrode into the optic nerves of innumerable limuli.
However, as I soon came to realize, Kac had accepted his réle on the condi-
tion that it would not become a burden. In particular, he had no intention
of wasting much of his own time on a reject from the neurophysiology de-
partment. On the other hand, he was most generous with the time of his
younger associates, and that is how I wound up in McKean’s office. Never
one to bore his listeners with a lot of dull preliminaries, McKean launched
right into a wonderfully lucid explanation of P. Lévy’s interpretation of the
infinitely divisible laws. I have to admit that my appreciation of the lucidity
of his lecture arrived nearly a decade after its delivery, and I can only hope
that my reader will reserve judgment of my own presentation for an equal
length of time.

In spite of my perplexed state at the end of McKean’s lecture, I was suffi-
ciently intrigued to delve into the readings which he suggested at its conclu-
sion. Knowing that the only formal mathematics courses which I would be
taking during my graduate studies would be given at N.Y.U. and guessing
that those courses would be oriented toward partial differential equations,
McKean directed me to material which would help me understand the con-
nections between partial differential equations and probability theory. In
Particular, he suggested that I start with the, then recently translated, two
articles by E.B. Dynkin which had appeared originally in the famous 1956
volume of Teoriya Veroyatnostei i ee Primeneniya. Dynkin’s articles turned

ix



X Preface

out to be a godsend. They were beautifully crafted to tell the reader enough
so that he could understand the ideas and not so much that he would be-
come bored by them. In addition, they gave me an introduction to a host of
ideas and techniques (e.g., stopping times and the strong Markov property),
all of which Kac himself consigned to the category of over-elaborated mea-
sure theory. In fact, it would be reasonable to say that my thesis was simply
the application of techniques which I picked up from Dynkin to a problem
which I picked up by reading some notes by Kac. Of course, along the
way I profited immeasurably from continued contact with McKean, a large
number of courses at N.Y.U. (particularly one’s taught by M. Donsker, F.
John, and L. Nirenberg), and my increasingly animated conversations with
S.R.S. Varadhan.

As I trust the preceding description makes clear, my graduate education
was anything but deprived; I had ready access to some of the very best
analysts of the day. On the other hand, I never had a proper introduction to
my field, probability theory. The first time that I ever summed independent
random variables was when I was summing them in front of a class at N.Y.U.
Thus, although I now admire the magnificent body of mathematics created
by A.N. Kolmogorov, P. Lévy, and the other twentieth-century heroes of the
field, I am not a dyed-in-the-wool probabilist (i.e., what Donsker would have
called a true coin-tosser). In particular, I have never been able to develop
sufficient sensitivity to the distinction between a proof and a probabilistic
proof. To me, a proof is clearly probabilistic only if its punch-line comes
down to an argument like P(A) < P(B) because A C B; and there are
breathtaking examples of such arguments. However, in order to base an
entire book on these examples would require a level of genius which I do not
possess. In fact, I myself enjoy probability theory best when it is inextricably
interwoven with other branches of mathematics and not when it is presented
as an entity unto itself. For this reason, the reader should not be surprised
to discover that he finds some of the material presented in this book does
not belong here; but I hope that he will make an effort to figure out why 1
disagree with him. Be that as it may, I will devote the rest of this preface
to a summary of what lies ahead.

Summary

I: Chapter I contains a sampling of the standard, point-wise convergence
theorems dealing with partial sums of independent random variables. These
include the Weak and Strong Laws of Large Numbers as well as Hartman—
Wintner’s Law of the Iterated Logarithm. In preparation for the law of the
iterated logarithm, Cramér’s theory of large deviations from the law of large
numbers is developed in §1.4. Everything here is very standard, although
I feel that the passage from the bounded to the general case of the law of
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the iterated logarithm has been considerably smoothed by the ideas which
I learned in conversation with M. Ledoux.

IL: The whole of Chapter II is devoted to the classical Central Limit The-
orem. After an initial (and slightly flawed) derivation of the basic result
via moment considerations, first Lindeberg’s general version and then the
Berry-Esseen estimate are derived in Section 2.1. Although Lindeberg’s
result has become a sine qua non in the writing of probability texts, the
Berry-Esseen estimate has not. Indeed, until recently, the Berry-Esseen
estimate required a good many somewhat tedious calculations with charac-
teristic functions (i.e., Fourier transforms), and most recent authors seem
to have decided that the rewards did not justify the effort. I was inclined to
agree with them until P. Diaconis brought to my attention E. Bolthausen’s
adaptation of C. Stein’s techniques (the so-called Stein’s method) to give
a proof which is not only brief but also, to me, aesthetically pleasing. In
any case, no use of Fourier methods is made in Section 2.1. On the other
hand, Fourier techniques are introduced in Section 2.2, where it is shown
that even elementary Fourier analytic tools lead to important extensions of
the basic Central Limit Theorem to more than one dimension. Finally, in
Section 2.3, the Central Limit Theorem is applied to the study of Hermite
multipliers and (following Wm. Beckner) is used to derive both E. Nelson’s
hypercontraction estimate for the Mehler kernel as well as Beckner’s own
estimate for the Fourier transform. I am afraid that, with this flagrant ex-
ample of the sort of thing that does not belong here, I may be trying the
patience of my purist colleagues. However, I hope that their indignation
will be somewhat assuaged by the fact that rest of the book is essentially
independent of the material in Section 2.3.

III: In preparation for the analysis of probability measures on function
spaces, the general theory of weak convergence on Polish spaces is presented
in Section 3.1. Although the main reason for my covering this material is
to construct Wiener’s measure and derive Donsker’s Invariance Principle, I
have postponed these applications until Section 3.4 in order to first develop a
context in which to fit them. For this reason, I have devoted Section 3.2 to a
proof of the Lévy-Khinchine formula, and Section 3.3 to Lévy’s explanation
of this formula in terms of the path structure of the associated independent
increment processes. That is, in Section 3.3, I construct all the Gaussian-free
independent increment processes so that, when it is constructed in Section
3.4, Wiener’s measure completes Lévy’s program.

IV: Because Wiener’s measure is quite possibly the single most important
object in all of modern probability theory, I have decided that even an intro-
ductory text should contain at least one chapter devoted to an exposition
of its marvelous and many-faceted nature. Hence, in Section 4.1, I have
touched on a few of its elementary properties, namely: scaling invariance
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and basic continuity properties of Wiener paths. Following the Segel school,
Wiener’s measure is presented in Section 4.2 from the Gaussian point of
view. This discussion includes a brief excursion into the concept of abstract
Wiener spaces, introduces pinned Wiener paths, and concludes with one of
Wiener’s own constructions of his measure via random trigonometric series.
The final section of Chapter IV, Section 4.3, takes up the Markov aspects of
Wiener's measure. Specifically, after proving the strong Markov property,
I have devoted the rest of this section to an exposition of the Feynman—
Kac formula, and, following Kac, have used their formula to derive Lévy’s
arcsine law.

V: Because they are not needed earlier, conditional expectations do not
appear until Chapter V. The advantage gained by this postponement is
that, by the time it is introduced, I have an ample supply of examples to
which conditioning can be applied; the disadvantage is that, with consider-
able justice, many probabilists feel that one is not doing probability theory
until one is conditioning. In any case, Kolmogorov’s definition is given
in Section 5.1 and is shown to extend naturally both to o-finite measure
spaces as well as random variables with values in a Banach space. Section
5.2 develops Doob’s basic theory of real-valued, discrete parameter martin-
gales: Doob’s inequality and his martingale convergence theorem; and, in
Section 5.3, I have first pointed out that, without any particular difficulty,
a good deal of martingale theory extends to o-finite measure spaces and
some of it applies to Banach space-valued random variables. I have tried to
justify the consideration of martingales in the o-finite context by showing
that both the Hardy-Littlewood Inequality and the Calderén—Zygmund de-
composition lemma can be obtained as rather easy applications of Doob’s
inequality.

VI: This chapter is a hodgepodge of results tied together (at least in my
mind) by the ideas in Section 5.3. Section 6.1 is devoted to Birkhoft’s
famous Individual Ergodic Theorem, which is presented in the multidimen-
sional context. The connection between this material and that in §5.3 comes
in my derivation of the Maximal Ergodic Lemma, which I have given as an
application of the Hardy-Littlewood Inequality (more precisely, Hardy’s In-
equality). For those who previously objected to the contents of Section 2.3,
Section 6.2 is going to be a real affront. Indeed, even I find it difficult to
justify the inclusion of Section 6.2 in an introduction to probability theory.
On the other hand, once one knows both subjects, the similarity between
the cancellations underlying both the theories of martingales and singular
integral operators is too compelling to ignore. In fact, there is considerable
evidence that, on the analytic side, J. Marcinkiewicz, A. Zygmund, E.M.
Stein, and C. Fefferman were all guided at times by this similarity; and,
on the probabilistic side, certainly both D. Burkholder and S. Gundy owe
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a great deal to the analytic antecedents of what they were doing. For this
reason, in Section 6.2 I have provided the reader with a brief survey of a
few of those analytic antecedents. In particular, I (borrowing heavily from
E. Stein’s masterful treatise’) have developed the elements of Calderén and
Zygmund’s theory of singular integrals, based on the use of their decompo-
sition lemma; and, because my goal was, in part, to prepare the reader for
Burkholder’s inequality, I end Section 6.2 with an application of their theory
to the analysis of the Littlewood-Paley square function. Armed with the
packground developed in Section 6.2, I give two derivations of Burkholder’s
inequality in Section 6.3. The first of these is, more or less, a reproduction
of Burkholder’s original proof and very much resembles the sort of reason-
ing used in Section 6.2. The second proof is entirely different and, in some
ways, more elementary. Once again, it is taken, with nearly no alteration,
from Burkholder, only this time it is based on the line of reasoning which
he has been perfecting over the past decade.

VII: I return once more to the probabilistic fold in Chapter VII and begin
by transferring to the continuous parameter setting only those parts of mar-
tingale theory which lend themselves best to the transition. In particular,
except that in Exercise 7.1.32 I have outlined its proof in the simplest case,
I have assiduously avoided Meyer’s continuous parameter version of Doob’s
decomposition for submartingales. Instead, I have emphasized from the out-
set the important réle which martingales can play in the characterization
and analysis of diffusions. Thus, in Section 7.2, martingales are used first to
prove some of the basic facts about the long-time behavior of Wiener paths
and then to see how similar considerations apply to give recurrence and
transience criteria for more general Markov processes. Section 7.3 begins
with an introduction to the class of diffusions which are obtained by sub-
jecting Wiener paths to a drift and ends with an application of the results
in Section 7.2 to an analysis of the effect which the drift has on transience
and recurrence properties. This program is continued in Section 7.4, where
the ergodic theory developed in Section 6.1 is adapted to the Markov set-
ting and then applied to the diffusions discussed in Section 7.3. Finally, in
Section 7.5, I have specialized to drifts which are gradient fields, in which
case the analysis becomes much easier and the results much more complete.

VIIL: The final chapter is a piece of self-indulgence, pure and simple.
Namely, I turn there to the miraculous connections between Wiener paths
and classical potential theory. At one time, these connections were touted
as the archetypical example of the way in which probability theory could
enter mainstream analysis; and, in spite of occasional excesses by its prac-
titioners, the subject has had a beneficial effect on potential theory as well

T See E. Stein’s Singular Integrals, publ. by Princeton Univ. Press.
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as probability theory. Furthermore, it remains the single most startling ex-
ample I know of a perfect fit between a branch of classical analysis and a
topic in probability theory: here the connection is simultaneously complete
and useful. Thus, I have been able to rationalize that there may be some
purpose, in addition to self-gratification, served by its inclusion in an in-
troductory text. I begin with a little parabolic theory and, in Section 8.1,
construct the heat kernel with Dirichlet boundary conditions for an arbi-
trary region. The complete description of the sense in which this kernel
solves the problem (in particular, satisfies the boundary data) forces me to
introduce the notion of a regular point. In the first edition of this book, the
discussion of regular points contained a serious error (cf. Exercise 8.2.14),
which was pointed out, in the gentlest possible way, by Frank Knight in his
review for the Mathematical Reviews. The correction of this error is now
the content of Section 8.2. The contents of Sections 8.1 & 8.2 lead natu-
rally to the Dirichlet problem, which is taken up in Section 8.3. In Section
8.4, I introduce the Green’s function for regions in RY. Perhaps the most
interesting aspect of this analysis is the role played here by dimension. In
particular, when N = 2 and the region is unbounded, more care is required
than one might expect. Finally, in Section 8.5, I present Riesz’s Decompo-
sition Theorem for excessive (i.e., nonnegative, superharmonic) functions,
give K.L. Chung’s beautiful interpretation of the capacitory distribution,
derive Wiener’s test for regularity, and conclude with two beautiful compu-
tations which confirm that the relation between probability and potential
theories can lead to results of remarkable beauty.

Suggestions

As anyone who attempts to base a course on it will soon discover, this book
presents some real challenges and should not be adopted whole. On the
other hand, both I and my friend Persi Diaconis have found that, if one is
willing to do some judicious editing, one can carve either a one semester or
a full year course out of it. For instance, assuming that the students have
already had a thorough introduction to measure theory, a first semester of
graduate level probability theory can be extracted out of §§1.1-1.5, §§2.1-
2.2, and §§3.1-3.3. The major objection to this selection is that it does not
include anything about conditioning and is therefore completely inappro-
priate for students who will not be taking a second semester of the subject.
To avoid this objection, one can replace any or all of §1.4, §1.5, the Berry—
Esseen Theorem in §2.1, and §3.2 with §85.1-5.2. The choices of topics for
a second semester course will, of course, be more or less dictated by those
which were covered in the first semester. If one is attempting to get to
diffusion theory as quickly as possible, then one should start with Chap-
ter IV, cover §85.1-5.2, skip to §§7.1-7.2, and do as much of Chapter VII
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as time permits. Unfortunately, the ergodic theory in §§7.3-7.4 relies on
§6.1, which, in turn uses results from §5.3. However, the route which I have
adopted to the ergodic theorem is, by no means, the most efficient one and
§6.1 can be replaced by any one of the many standard treatments of basic
ergodic theory.

Whatever route one takes through this book, it will be a great favor to
your students to suggest that they consult other texts. Indeed, out of re-
spect for the adage that the third book one reads on a subject is always
the most lucid, one should suggest at least two other books. Among the
many excellent choices available, I mention: Wm. Feller's An Introduction
to Probability Theory and Its Applications, Vol. II and M. Loéve’s classic
Probability Theory. In addition, for background, precision (including accu-
racy of attribution), and supplementary material, R. Dudley’s recent Real
Analysis and Probability is superb. Finally, because it would be a shame to
waste I S-TEX’s diagram-making facility on a subject with no commuta-
tive diagrams, I have provided a (not entirely accurate) table of dependence
on the following page. In this table, an arrow indicates that the sections at
its point depend on material in the sections at its tail.

Acknowledgments
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metamorphoses of this book, there are several friends whom I now thank for
the trouble they took in reading portions of the text and making suggestions
on what they read. These include Mark Pinsky, whose question prompted
me to write Exercise 2.1.18, and Bob Fefferman, who issued the Calderén—
Zygmund-Stein school’s stamp of approval on my treatment of the material
covered in Section 6.2. However, of the many comments, encouraging and
otherwise, which I have received about this manuscript, only those made by
my friend Persi Diaconis have resulted in my making significant alterations.
To paraphrase the sentiment expressed by former President Bush, Persi
lobbied for a kinder, gentler book; and for this, my readers owe him a
considerable debt of gratitude. After all, Bush’s success was nothing to
rave about either.



Table of Dependence

§§7.4-7.5 §58.1-8.5

~N S

§§7.1-7.3

N

§63.2-3.3  §§4.1-4.3  §§6.1&6.3  §6.2

/

AN
§63.1&3.4  §85.1&5.3  §l.5
S e

§62.1&2.2  §§1.1-1.4

§2.3




Chapter I:

Sums of Independent Random Variables

§1.1 Independence

In one way or another, most probabilistic analysis entails the study of large
families of random variables. The key to such analysis is an understanding of
the relations among the family members; and of all the possible ways in which
members of a family can be related, by far the simplest is when the relationship
does not exist at all! For this reason, we will begin by looking at families of
independent random variables.

Let (Q,F,P) be a probability space (i.e., { is a nonempty set, F is a
o-algebra over , and P is a measure on the measurable space (€2, F) hav-
ing total mass 1); and, for each ¢ from the (nonempty) index set Z, let F; be
a sub o-algebra of F. We say that the o-algebras F;, i € I, are mutually
P-independent or, less precisely, P-independent, if, for every finite subset
{i1,...,in} of distinct elements of T and every choice of 4; , € F; , 1 <m <n,

(1.1.1) P(A,'lﬂ"-ﬂAin) :P(A“)P(A,n)

In particular, if {A; : i € Z} is a family of sets from F, we say that A;, i €
T, are P-independent if the associated o-algebras F; = {0, A;, AL, Q},i e,
are. To gain an appreciation for the intuition on which this definition is based,
it is important to notice that independence of the pair A; and A in the present
sense is equivalent to

P(A1NAy) = P(4)P(A2),

the classical definition which one encounters in elementary treatments. Thus, the
notion of independence just introduced is no more than a simple generalization
of the classical notion of independent pairs of sets encountered in non-measure
theoretic presentations; and therefore, the intuition which underlies the elemen-
tary notion applies equally well to the definition given here. (See Exercise 1.1.10
below for more information about the connection between the present definition
and the classical one.)

As will become increasing evident as we proceed, infinite families of indepen-
dent objects possess surprising and beautiful properties. In particular, mutually
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Obviously, the preceding lemma gives no information unless the function u €
(0,T] —> &' (22) turns out to be p-integrable at 0. Thus, for example, when
®(&) = € and p(t) = t” with some positive r and v, one needs to have y >
in order to get a meaningful estimate. In particular, one cannot take v =
and r = 2; which is the reason why we cannot use the Besov norm which arose
in our earlier considerations. On the other hand, Lemma 3.4.13 does yield the
following important criterion for checking when (3.4.7) holds.

N =3 N

3.4.16 Theorem (Kolmogorov’s' Criterion). Letr € [1,00) and a € (0, 00)
be given, and suppose that p € M; (P(RY)) satisfies

(3.4.17) E"[lw(t) - ¢(3)|"] <Clt—s|'te, 0<s<t<T,

for some C < oo and T € (0,00). Then, for each 8 € (0,%), there exists a
K =K(r,a,8,T) € (0,00) such that

(3.4.18)  p ({w: sup 1) = (o)l > R}) < KC  pe (0, 0).

o<s<t<T  (t—8)P R’

In particular, if A C M, (‘B(]RN )) satisfies

sup B [[(t) — (s)|"| < Crlt —s'**, 0<s<i<T,
peEA

for each T € (0, 00) and some Cr < 0o, then A satisfies (3.4.7).
PRrooF: Set v = ;2; + . By Fubini’s Theorem, (3.4.17) implies

r _ o1t a—nr
/qB o B ) <C [[ 1= sirer dsde < o,

(0,72
where .
B(y) = // (@%@) ds dt
0,7]?
Since, by Lemma 3.4.19,
w0 - < 2B sy, v<sces,

(3.4.18) is now an easy application of Markov’s inequality. [J

¥ There is no question that this attribution is correct. However, Kolmogorov’s own derivation
obscures the fact that the result is really an application of basic real-variable theory and has
nearly no probabilistic component. Indeed, Garsia, Rodemich, and Rumsey appear to have

g S e S

been the first ones to observe that, in this connection, probabilists were following the wrong :

Russian.
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Before applying Kolmogorov’s Criterion to the sequence { un}clx, we must first

replace (3.4.11) with an estimate in which (¢ — s) is raised to a power strictly
larger than 1.

3.4.19 Lemma. Assume that

A44::

= sup IEP“XHP] < o0

neZt
Then there exists a C < oo such that

sup E#n ['d)(t)
nezZt

In particular, {pn}>

— ¢(3)|4] <Ct—s)? 0<s<t<oo.
is tight in M (P(RY)).

PrOOF: We proceed in very much the same way as we did in the derivation of
(3.4.11). Thus, when k —1<ns<nt <k

EP [lSn(t) - sn(3)|“] = n(t —

and, when k —1<ns<k<il<nt<{+1
E”[|Sn(t) - Sa(s)[*]

< 27" [|S, (1

$'E7 [|Xaf'] < Ma(t = )%

= Sa(&)[*] +27E" [[su (%) -
+27E" (|8, (%) = Su(s)[']

, NG 97 - £~k L[k 4
<2TMyn® (t—— ) +5E > Xiwj| | +27Myn ~ s
=1

1N? —k)?
< 54My(t — s)* + 8 Mg“ ) < 135N2My(t — 5)?,
n

where, in the passage to the final line, we have chosen an orthonormal basis
N .
{ei}l for RV and used the estimate

4 2\ 2

—k N [tk

P
Z Xeyj| | =E Z (e, Xktj)g
j=1 =1 j=1
4
ek

<N) EF (e Xkss)p

< 3N2My(¢ - k)?

—

]:

coming from the second inequality in (1.3.2). O
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Having described what it means for the o-algebras to be P-independent, we
can now transfer the notion to random variables on (Q, F, P). Namely, for each
i € T, let X; be a random variable (i.e., a measurable function on (£2, 7)) with
values in the measurable space (E;,B;). We will say that the random variables
X;, i € I, are (mutually) P-independent if the o-algebras

O'(Xi) = X-_l(Bi) = {Xz_l(Bz) : B; € Bi}, iel,

1

are P-independent. Using
B(E;R) = B((E,B);R)

to denote the space of bounded measurable R-valued functions on the measurable
space (E,B), notice that P-independence of {X; : ¢ € I} is equivalent to the
statement that

(1.17)  EP[fi 0 Xi -+ fin 0 Xi,] =EF [fiy 0 Xi,] - EP [fi, 0 X5,

for all finite subsets {iy,...,in} of distinct elements of Z and all choices of
fi, € B(Ei;R),...,and f;, € B(E;,;R). Finally, if we use 14 given by

1()_{1 if weAd
A=10 if wed

to denote the indicator function of the set A C €, notice that the family of
sets {A; : i € I} C F is P-independent if and only if the random variables
1a4,, ¢ € I, are P-independent.

Thus far we have discussed only the abstract notion of independence and have
yet to show that the concept is not vacuous. In the modern literature, the
standard way to construct lots of independent quantities is to take products of
probability spaces. Namely, if (Ei,Bi, pi) is a probability space for each i € T,
one sets {2 = HieI E;, defines m; :  — E; to be the natural projection map
for each i € Z, takes F; = m; '(B;), i € Z, and F = V,;¢7 Fi, and shows that
there is a unique probability measure P on (€2, F) with the properties that

P(r;'Ty) = pi(Ts) forall ie€ZandT;€ B;

and the o-algebras F;, i € Z, are P-independent. Although this procedure is
extremely powerful, it is rather mechanical. For this reason, we have chosen
to defer the details of the product construction to Exercise 1.1.14 below and
to, instead, spend the rest of this section developing a more hands-on approach
to constructing independent sequences of real-valued random variables. Indeed,
although the product method is more ubiquitous and has become the construc-
tion of choice, the one which we are about to present has the advantage that it
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shows independent random variables can arise “naturally” and even in a familiar
context.

Until further notice, we take (2, F) = ([0, 1), Bjo,1)) (When E is a metric space,
we use Bg to denote the Borel field over E) and P to be the restriction Aj 1) of
Lebesgue’s measure Ag to [0,1). We next define the Rademacher functions
R,, n € Z*, on Q as follows. Define the integer part [t] of t € R to be the
Jargest integer dominated by t and consider the function R: R — {1, 1} given

b
’ -1 if t—[t]e]0,3)
1 if t-[t) e [3,1)
The function R, is then defined on [0,1) by
R.(w) = R(2" 'w), n€ZY and w € [0,1).

We will now show that the Rademacher functions are P-independent. To this
end, first note that every real-valued function f on {—1,1} is of the form a +
Bz, z € {—1,1}, for some pair of real numbers o and . Thus, all that we have
to show is that

EP [(al +IBIR1) (an+,8an)] =01 Onp

for any n € Z* and (a1,51),-..,(@n,B,) € R2. Since this is obvious when
n = 1, we will assume that it holds for n and will deduce that it must also hold
for n 4+ 1; and clearly this comes down to checking that

E” [F(Ri,...,Rn) Rug1] =0
forany F: {—1,1}" — R. But (R,, ..., R,) is constant on each interval

m m+1
g’ 9n

Im,nz[ ), 0<m<2"®

whereas R,,,, integrates to 0 on each I, n. Hence, by writing the integral over
€ as the sum of integrals over the I, ,,’s, we get the desired result.

At this point we have produced a countably infinite sequence of independent
Bernoulli random variables (i.e., two-valued random variables whose range
is usually either {—1,1} or {0,1}) with mean-value 0. In order to get more
general random variables, we combine our Bernoulli random variables together
in a clever way.

Recall that a random variable U is said to be uniformly distributed on the
finite interval [q, ] if

P(U<t)= Z——:—% for t € [a, b).
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1.1.8 Lemma. Let {Y; : ¢ € Zt} be a sequence of P-independent {0,1}-
valued Bernoulli random variables with mean-value % on some probability space
(Q,F,P), and set

Then U is uniformly distributed on [0, 1].

PROOF: Because the assertion only involves properties of distributions, it will
be proved in general as soon as we prove it for a particular realization of inde-
pendent, mean-value %, {0,1}-valued Bernoulli random variables. In particular,
by the preceding discussion, we need only consider the random variables
14+ Ry(w
en(w) = +T"(), neZ" and w € [0,1),

on ([0, 1),3[0,1),)\[0,1)). But, as is easily checked, for each w € [0,1], w =
3> 2 ™€, (w). Hence, the desired conclusion is trivial in this case. [

Now let (k,£) € Zt x Z* > n(k,£) € Z' be any one-to-one mapping of
ZT x Z% onto Z*, and set

1+ Rok,e
Yie= —T(—)’
Clearly, each Y4 is a {0, 1}-valued Bernoulli random variable with mean-value

1, and the family {Yk,g : (k,0) € (Z+)2} is P-independent. Hence, by Lemma
1.1.8, each of the random variables

(k,0) € (ZW).

is uniformly distributed on [0,1). In addition, the Ug’s are obviously mutually
independent. Hence, we have now produced a sequence of mutually independent
random variables, each of which is uniformly distributed on [0,1). To complete
our program, we use the time-honored transformation which takes a uniform
random variable into an arbitrary one. Namely, given a distribution function
F on R (i.e., F is a right-continuous, nondecreasing function which tends to 0
at —oo and 1 at +00), define F~! on [0,1] to be the left-continuous inverse of
F. That is,
F7Yt)=inf{s€R: F(s) >t}, te[0,1]

(Throughout, the infimum over the empty set is taken to be +o0c.) It is then an
easy matter to check that when U is uniformly distributed on [0, 1) the random
variable X = F~! o U has distribution function F":

P(X<t)=F(t), teR

Hence, after combining this with what we already know, we have now completed
the proof of the following theorem.
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1.1.9 Theorem. Let 2 = [0,1), F = By 1), and P = Apy. Then for any
sequence {Fy : k € Z'} of distribution functions on R there exists a sequence
{Xr: k€ Z*} of P-independent random variables on (2, F, P) with the prop-
erty that P(Xk < t) = Fi(t), t € R, for each k € Z*.

Exercises

1.1.10 Exercise: As we pointed out, P(Al N A2) = P(AI)P(A2) if and only
if the o-algebra generated by A; is P-independent of the one generated by As.
Construct an example to show that the analogous statement is false when dealing
with three, instead of two, sets. That is, just because P(Al N A; N A3) =
P(AI)P (AQ)P(A:«;), it is not necessarily true that the three o-algebras generated
by A1, A2, and Az are P-independent.

1.1.11 Exercise: In this exercise we point out two elementary, but important,
properties of independent random variables. Throughout, (Q,F, P) is a given
probability space.

(i) Let X; and X, be a pair of P-independent random variables with values
in the measurable spaces (F1,B1) and (Es, By), respectively. Given a B; X Bs-
measurable function F' : E)} X E; — R which is either nonnegative or bounded,
use Tonelli’s or Fubini’s Theorem to show that

s € By —s f(za) = EP [F(Xl,zz)] eR
is By-measurable and that
E”[F (X1, X2)| = E7[£(Xz)).

(ii) Suppose that Xi,..., X, are P-independent, real-valued random variables.

If each of the X,,’s is P-integrable, show that X, - - - X, is also P-integrable and
that

EF (X1 Xn] =EF[X1] -+ EP [X,].

1.1.12 Exercise: Given a nonempty set €, recall’ that a collection C of subsets
of ) is called a n-system if C is closed under finite intersections. At the same

TS‘_?ey for example, §3.1 in the author’s A Concise Introduction to the Theory of Integration,
Third Edition publ. by Birkhauser (1998).
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time, recall that a collection £ is called a A-system if @ € £, AUB € £
whenever A and B are disjoint members of £, B\ A € £ whenever A and B are
members of £ with A C B, and |J;° An € £ whenever {A,}{° is a nondecreasing
sequence of members of £. Finally, recall (cf. Lemma 3.1.3 in ibid.) that if C is
a m-system, then the o-algebra o(C) is the smallest L-system £ 2 C.

Now, let (Q, F, P) be a probability space, and, for each element ¢ of the index
set Z, let C; C F be a m- system. Show that the o-algebras F; generated by
the C;’s are P-independent if and only if (1.1.1) holds for all choices of n > 2,
distinct 7y,...,i, € Z, and A;; € Cyy, ..., As, €C;,-

1.1.13 Exercise: In this exercise we discuss two criteria for determining when
random variables on the probability space (€2, F, P) are independent.

(i) Let X, ..., and X, be bounded, real-valued random variables. Using Weier-
strass’s approximation theorem, show that the X,,’s are P-independent if and
only if

B (X7 - Xn] = B [Xp] - B (X7

for all my,...,m, € N.

(i) Let X : @ — R™ and Y : @ — R" be random variables. Show that X
and Y are P-independent if and only if

E” [exp[x/—_l (0 X) g + (ﬂ,Y)Rn)H
—EP [exp V=1 (, x)R,,.]] E” [exp v=1(8,Y )Rn]]

for all « € R™ and B € R".

Hint: The only if assertion is obvious. To prove the if assertion, first check
that X and Y are independent if

E” [£(X) g(Y)] = E” [f(X)] E” [9(Y)]
for all f € C (Rm;(C) and g € C& (R"; (C). Second, given such f and g, apply

elementary Fourier analysis to write

[0 = | e TTEmpla)da and g(y)= [ eVTT O w(8)dB,

where ¢ and ¢ are smooth functions with rapidly decreasing (i.e., tending
to 0 as |x| — oo faster than any power of (1 + |x|)~!) derivatives of all orders.
Finally, apply Fubini’s Theorem.
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1.1.14 Exercise: Given a pair of measurable spaces (E;, B,) and (E2, Bs), recall
that their product is the measurable space (El X By, By X BQ), where B) x Bs is
the o-algebra over the Cartesian product space E;, x E» generated by the sets
I, x Iz, I; € B;. Further, recall that, for any probability measures p; on (E;, B;),
there is a unique probability measure p; X p2 on (El x Fa, By X B2) such that

(/J,l X /,42) (Fl X F2) = /,41(]._‘1)/,42(]._‘2) for I € B;.

More generally, for any n > 2 and measurable spaces {(Ei,Bi)}:L, one takes
[} Bi to be the g-algebra over []}" E; generated by the sets []; Ii, I'; € B;. In
particular, since [1;*! E; and [T} B; can be identified with (]} E;)x E,1; and
(T3 Bi) % Bn+1, respectively, one can use induction to show that, for every choice
of probability measures p; on (FE;, B;), there is a unique probability measure

H? i on (H? E;, H? Bz) such that

(HM) (H Fi) = HHi(Fi), I; € B;.

The purpose of this exercise is to generalize the preceding construction to
infinite collections. Thus, let J be an infinite index set, and, for each i € J, let
(E;, B;) be a measurable space. Given @) # A C J, we will use E, to denote the
Cartesian product space [];c, Ei and ma to denote the natural projection map
taking E5 onto E,. Further, we use By = Hiej B; to stand for the o-algebra
over E5 generated by the collection C of subsets

TFEI (H Fi> s Fi € Bi,

iEF

as F varies over nonempty, finite subsets of J (abbreviated by: @ # F cC J).
In the following steps, we will outline a proof that, for every choice of proba-
bility measures p; on (E;, B;), there is a unique probability measure [I;e5 1 on
(E3, By) with the property that

(1.1.15) (HM) (w;l (H F,-)) = [[m(T:), Ties,

i€J ieF ieF

for every § # F CC J. Not surprisingly, the probability space

penesin

i€3 €3 Q€D
is called the product over J of the spaces (Ei, B;, ui); and when all the factors

are the same space (E, B, ), it is customary to denote it by (E”,B%,u”), and
if, in addition, J = {1,..., N}, one uses (EN, BN, ul).
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(i) After noting that two probability measures which agree on a w-system agree
on the o-algebra generated by that m-system, show that there is at most one
probability measure on (Ej, B;,) which satisfies the condition in (1.1.15). Hence,
the problem is purely one of existence.

(ii) Let A be the algebra over E5 generated by C, and show that there is a finitely
additive p : A — [0, 1] with the property that

w(n () = (Hui) (Tr), Te € Bp.

i€EF

for all § # F CC J. Hence, all that we have to do is check that u admits a o-
additive extension to By, and, by Carathéodory’s Extension Theorem, this comes
down to checking that u(An) \y 0 whenever {A4,}$° C A and A, “\, 0. Thus,
let {A,}$° be a nonincreasing sequence from A, and assume that u(Ap) > € for
some € > 0 and all n € Z+. We must show that ()]~ An # 0.

(iii) Referring to the last part of (ii), show that there is no loss in generality
if we assume that A, = w;: (Tr, ), where, for each n € Z*, 0 #F, CC3Jand
[r, € Bp,. In addition, show that we may assume that F; = {i1} and that
F, = Fp_1 U {in}, n > 2, where {i,}{° is a sequence of distinct elements of J.
Now, make these assumptions and show that it suffices for us to find a4 € E;,,
¢ € 7, with the property, for each m € Z*, (a1,...,am) € I'r,,.

(iv) Continuing (iii), for each m, n € Z", define g » : Er,, — [0, 1] so that
gmn(XF,) = 1rp, (2, - - ,xi,) ifn<m

and

Gmn(XF,,) = /

Er,\Fpm

Irp, (XFp) YFo\F) ( H Hi,) (dYF\F,n)

£=m+1

if n > m. After noting that, for each m and 7, gmns1 < gm,n and

Im,n (me) = / Im+1,n (me ) yim+1) Hiia (dyim+1)7
Eim+1
set gm = limy,,_, 00 gm,» and conclude that

9m (me) = / Im+1 (me s yim+1) Hipia (dyim+1)'

Eim+1
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In addition, note that

/ 91(2,) pi, (dzi,) = lim 91.n(2i,) pi, (dzi,)

Ei n~300 E:,
= lim p(A,) >,

n~—roQ

and proceed by induction to produce a; € E;,, £ € Z*, so that
gm((a1,-..,am)) > € forallme Z*.

Finally, check that {am}{° is a sequence of the sort for which we were looking
at the end of part (iii).

1.1.16 Exercise: Recall that if ® is a measurable map from one measurable
space (E,B) into a second one (E’,B’), then the distribution of ® under a
measure i on (F, B) is the pushforward measure ®, 4 (also denoted by po®~1)
defined on (E’, B') by

®.u(l) =p(®'()) for TeB.

Given a nonempty index set J and, for each 7 € J, a measurable space (E;, B;)
and an F;-valued random variable X; on the probability space (2, F, P), define
X : Q — [l;e; Bi so that X(w); = X;(w) for each ¢ € J and w € Q. Show
that {Xi NS 3} is a family of P-independent random variables if and only if
X.P = [[;c5(X:)«P. In particular, given probability measures p; on (E;, B;),

set
o=1]E. #=[[8. P=]]m

i€ i€ i€
let X;: Q — E; be the natural projection map from Q onto F;, and show that

{Xi: i€ 3} is a family of mutually P-independent random variables such that,
for each ; ¢ J, X; has distribution ;.

1.1.17 Exercise: Although it does not entail infinite product spaces, an inter-
esting example of the way in which the preceding type of construction can be

effectively applied is provided by the following elementary version of a coupling
argument.

(i) Let (9, B, P) be a probability space and X and Y a pair of square P-integrable
R-valued random variables with the property that

(X(w) = X (") (Y(w) - Y(w)) >0 forall (w,w') € Q.
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Show that
EP [X Y] > EP[X]EP[Y].

Hint: Define X; and Y; on Q2% for i € {1,2} so that X;(w) = X(w;) and
Y;(w) = Y(w;) when w = (w1,w2), and integrate the inequality

0 < (X(w1) - X(w2)) (Y(w1) — Y(w2)) = (X1 (w) — Xa(w)) (Yri(w) — Ya(w))
with respect to P2.

(ii) Suppose that n € Z* and that f and g are R-valued, Borel measurable
functions on R" which are nondecreasing with respect to each coordinate (sep-
arately). Show that if X = (X 1ye-- ,Xn) is an R™-valued random variable on a
probability space (§2, B, P) whose coordinates are mutually P-independent, then

E”[f(X) g(X)] > EP [£(X)] EF [¢(X)]
so long as f(X) and g(X) are both square P-integrable.

Hint: First check that the case when n = 1 reduces to an application of (i).
Next, describe the general case in terms of a multiple integral, apply Fubini’s
Theorem, and make repeated use of the case when n = 1.

1.1.18 Exercise: A ¢-algebra is said to be countably generated if it contains
a countable collection of sets which generate it. In this exercise, we will show
that just because a g-algebra is itself countably generated does not mean that
all its sub-o-algebras are.

Let (Q, F, P) be a measurable space and {fn tnE Z+} be a sequence of P-
independent sub-o-algebras of F. Further, assume that, for each n € Z*, there
is an A, € F,, which satisfies a < P(An) < 1—a for some fixed a € (0, %) Show
that the tail o-algebra T determined by {fn :n € Z+} cannot be countably
generated.

Hint: First, reduce to the case when each F, is generated by the set A,. After
making this reduction, show that C is an atom in 7 (i.e., B = C whenever
B € T\ {0} is contained in C) only if one can write

c:n_mcnzfj ) Cn

n—00 m=1n>m

where, for each n € Z%, either C, equals A, or A,L. Conclude that every
atom in 7 must have P-measure 0. Now suppose that 7 were generated by
{Be¢ : £ € N}. By Kolmogorov’s 0-1 Law (cf. Theorem 1.1.2), P(B,) € {0,1}
for etery £ € N. Take

B, { B, if P(B)=

! d c=(\B
BgC i P(Bg)=0 and set —ﬂ e

£EN
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Note that, on the one hand, P(C') = 1, while, on the other hand, C is an atom
in 7.

1.1.19 Exercise: Here is an application of Kolmogorov’s 0-1 Law to Lebesgue’s
measure on [0,1).

(i) Referring to the discussion preceding Lemma 1.1.8, define the transformations
T, : [0,1) — [0,1) for n € Z* so that

14+ Rp(w)
Tn(W) =w — W, w e [O, 1),
and notice (cf. the proof of Lemma 1.1.8) that T, (w) simply flips the nth coeffi-
cient in the binary expansion w. Next, let I' € Bjg,1), and show that I' is measur-
able with respect of the o-algebra a(Rn n > m) generated by {R, : n > m}
if and only if T,,(I') = T for each 1 < n < m. In particular, conclude that

Ao,)(T) € {0,1} if T,I' =T for every n € Z*.

(ii) Let § denote the set of all finite subsets of Z*, and for each F € §, define
TF :{0,1) — [0,1) so that T? is the identity mapping and

TFA™ —TF o for each F € § and m € Z* \ F.

As an application of (i), show that for every I € Bjp,1) with A 1y(T) > 0,

Alo,1) (U TF(F)> =1

Feg

In particular, this means that if " has positive measure, then almost every
w € [0,1) can be moved to T by flipping a finite number of the coefficients in the
binary expansion of w.

§1.2: The Weak Law of Large Numbers

Starting with this section, and for the rest of this chapter, we will be studying
what happens when one averages P-independent, real-valued random variables.
The remarkable fact, which will be confirmed repeatedly, is that the limiting
behavior of such averages depends hardly at all on the variables involved. Intu-
1tively, one can explain this phenomenon by pretending that the random vari-
ables are building blocks which, in the averaging process, first get homothetically
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shrunk and then reassembled according to a regular pattern. Hence, by the time

that one passes to the limit, the peculiarities of the original blocks get lost.
Throughout our discussion, (2, F, P) will be a probability space on which we

have a sequence {X,}$° of real-valued random variables. Given n € Z*, we will
use S, to denote the partial sum X; +---+ X, and S, to denote the average

Sn 1
7—;;&.

Our first result is a very general one; in fact, it even applies to random variables
which are not necessarily independent and do not necessarily have mean 0.

1.2.1 Lemma. Assume that
(1.2.2) EP[X2] <ooforn € Z" and EF[Xp X =01if k#¢.

Then, for each € > 0,
123)  @P([Sa2¢) <E°[S] = 5 S EP[X}] fornezt,
=1

In particular, if

(1.2.4) M = sup EP [X?] < o0,
neZt
then
(1.2.5) € P(|§n| > e) <EP [?Z] < %, ne€Z" and e > 0;

and so S, — 0 in L?(P) and also in P-probability.
ProOF: To prove the equality in (1.2.3), note that, by (1.2.2),

E”[52] = 3 EP [X7].

=1

The rest is just an application of Chebyshev’s inequality, the estimate which
results after integrating the inequality

€11 00) ([Y]) S V21 00y ([Y]) < V2

for any random variable Y. O
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Obviously, Lemma 1.2.1 has less to do with the property of independence than
it does with Bessel’s inequality for general orthogonal functions. On the other
hand, independent random variables provide a ready source of orthogonal func-
tions. Indeed, recall that for any P-integrable random variable X, its variance
var(X) satisfies

(126) var(X)=E"[(X - EP(X]) ] = E” [X7] - (E”[x))* < BF [x7).

In particular, if the random variables X,,, n € Z*, are P-independent and satisfy
the first part of (1.2.2), then the random variables

X.=X,-E[X,]  nezt,

are still square P-integrable, now have mean-value 0, and therefore satisfy the
whole of (1.2.2). Hence, the following statement is an immediate consequence of
Lemma 1.2.1.

1.2.7 Theorem. Let {Xn tnmE Z+} be a sequence of P-independent, square
P-integrable random variables with mean-value m and variance dominated by
0. Then, for every n € Z* and € > 0:

(1.2.8) ¢ P(|§n —m| > e) <EP [(gn _ mf] <z

o
In particular, S,, — m in L*(P) and therefore in P-probability.

As yet we have only made minimal use of independence: all that we have done
is subtract off the mean of independent random variables and thereby made them
orthogonal. In order to bring the full force of independence into play, one has to
exploit the fact that one can compose independent random variables with any
(measurable) functions without destroying their independence; in particular,
truncating independent random variables does not destroy independence. To see
how such a property can be brought to bear, we will now consider the problem
of extending the last part of Theorem 1.2.7 to X,,’s which are less than square
P -integrable. In order to understand the statement, recall that a family {X,- :
t € I} of random variables is said to be uniformly P-integrable if

(1.2.9) Jim supEPUX,-L |X;| > R] =0.

S0 jeT

AS the proof of the following theorem illustrates, the importance of this condition
IISthat 1t allows one to simultaneously approximate the random variables X;, i €
» by bounded random variables.
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1.2.10 Theorem (The Weak Law of Large Numbers). Let {X,: n € Z*}
be a uniformly P-integrable sequence of P-independent random variables. Then

%Zn:(xm — EP[X,]) — 0in L'(P)

and, therefore, also in P-probability. In particular, if {X n € Z+} is a
sequence of P-independent, P- mtegrable random variables wh1ch are identically
distributed, then S, — EF[X;] in L'(P) and P-probability. (Cf. Exercise
1.2.15 below.)

ProoF: Without loss in generality, we will assume that EP[X,) = 0 for every
neZr.
For each R € (0,0), define fr(t) =t1_gg|(t), tER,

m® =EF [froX,], X =froX,—m{?, and Y® = x, - X(B,

and set "
<R _ (R) AR _ (R)
X, nd T, Y, .
S, ; an " Z f

=1
Since E[Xn] =0 = m{® = —E[X,, | Xal > R],
EP [ls |] <EP [IS(R)|] L EP UT(R)‘]

<EP 5] + 2 e 2l x> A

n LezZt

R
< — +2maxE" [ Xo|, 1Xe] > R];
2 X
and therefore, for each R > 0,

fim E” [[S,]] < 2supIEP[|Xg| Xe| > B.
n—oo
Hence, because the X,’s are uniformly P-integrable, we get the desired conver-
gence in L'(P) by letting R /' oo. O

The name of Theorem 1.2.10 comes from a somewhat invidious comparison
with the result in Theorem 1.4.11. The reason why the appellation weak is not -
entirely fair is that, although The Weak Law is indeed less refined than the result
in Theorem 1.4.11, it is every bit as useful as the one in Theorem 1.4.11 and .
maybe even more important when it comes to applications. Indeed, what The
Weak Law does is provide us with a ubiquitous technique for constructing an :
approximate identity (i.e., a sequence of measures which approximate a point
mass) and measuring how fast the approximation is taking place. To illustrate
how clever selection of the random variables entering The Weak Law can lead -
to interesting applications, we will spend the rest of this section discussing S.
Bernstein’s approach to Weierstrass’s approximation theorem.
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For a given p € [0,1], let {Xn : n € ZT} be a sequence of P-independent
{0, 1}-valued Bernoulli random variables with mean-value p. Then

P(Sn = 12) = (Z)p[(l — p)"‘l for 0<{<n.

Hence, for any f € C’([O, 1]; R), the nth Bernstein polynomial

(1.2.11) li() () f(1-p*

of f at pis equal to
EP [fOSn].

In particular,
|7(p) = Bu(p; )| = |EF [f(p) — f o Sa]| <E"[|f(p) — f o Snl]
< 2Hf||up(i§n —Pl > 6) + P(E; f)7

where || f||u is the uniform norm of f (i.e., the supremum of | f| over the domain

of f) and
ple; f) = sup{|f(t) — f(s)] : 0< s <t < 1witht—s< €}

is the modulus of continuity of f. Noting that var(Xn) =p(l-p) < % and
applying (1.2.8), we conclude that, for every € > 0,

< ISl

u = 9ne2

1£®) — Ba(p; f)||,, < + p(€; f)

In other words, for all n € Z*,

[1£1lu

(1.2.12) 1f = Bn(; Ol < B(n; f) = nf{ >+ ole f): 6>0}-

Obviously, (1.2.12) not only shows that, as n — oo, Bn(+; f) — f uniformly
on [0, 1], but it even provides a rate of convergence in terms of the modulus of
continuity of f. Thus, we have done more than simply prove Weierstrass’s theo-
fem; we have produced a rather explicit and tractable sequence of approximating
Polynomials, the sequence {By(-; f) : n € Z*}. Although this sequence is, by
nq means, the most efficient one,! as we are about to see, the Bernstein polyno-
mials have a lot to recommend them. In particular, they have the feature that

t
See G.G. Lorentz’s Bernstein Polynomials, Chelsea Publ. Co., New York (1986) for a lot
more information.
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they provide nonnegative polynomial approximants to nonnegative functions.
In fact, the following discussion reveals much deeper nonnegativity preservation -
properties possessed by the Bernstein approximation scheme. ‘
In order to bring out the virtues of the Bernstein polynomials, it is impor-
tant to replace (1.2.11) with an expression in which the coefficients of B,(-; f) |
(as polynomials) are clearly displayed. To this end, introduce the difference -
operator A, for h > 0 given by ;

fit+h) = £()

[Anf](t) = b

A straightforward inductive argument (using Pascal’s identity for the blnomlals
coefficients) shows that

m
(=)™ AT £ = D (-1 ( ) (t+¢h) for meZ",
£=0
where A( ™) denotes the mth iterate of the operator Aj. Taking h = =, we now

see that

where [A? f] = f. Hence, we have proved that

n

(1.2.13) B.(p; f) = Zm‘(?) [Ag)f} 0)pt for pe0,1].

£=0

The marked resemblance between the expression on the right-hand side of
(1.2.13) and a Taylor polynomial is more than coincidental. To demonstrate how
one can exploit the relationship between Bernstein and Taylor polynomials, say
that a function ¢ € C> ((a, b); R) is absolutely monotone if its mth derivative
D™ is nonnegative for every m € N. Also, say that ¢ € C=([0,1];[0,1]) is a



§1.2: The Weak Law of Large Numbers 19

probability generating function if there exists a {un:ne N} C [0,1] such
that oo oo
Zun =1 and ()= Zunt" for te]0,1].

n=0 n=0

Obviously, every probability generating function is absolutely monotone on (0,1).
The somewhat surprising (remember that most infinitely differentiable functions
do not admit power series expansions) fact which we are about to prove is that,
apart from a multiplicative constant, the converse is also true. In fact, we do
not need to know, a priori, that the function is smooth so long as it satisfies a
discrete version of absolute monotonicity.

1.2.14 Theorem. Let ¢ € C(]0, 1];R) with ¢(1) = 1 be given. Then the
following are equivalent:

(i) ¢ is a probability generating function,

(ii) the restriction of ¢ to (0,1) is absolutely monotone;

(iii) [A(lm)go](O) >0 forevery n € Nand 0 < m < n.

ProOF: The implication (i) = (i) is trivial. To see that (ii) implies (iii), first
observe that if ¢ is absolutely monotone on (a,b) and h € (0,b— a), then [Axy]
is absolutely monotone on (a,b — h). Indeed, because [D ° Ahw] = [Ah o Dw]
on (a,b— h), we see that

t+h
h[D™ o Apy](t) = / D™y (s)ds >0, te (ab—h),
t

for any m € N. Returning to the function ¢, we now know that [A;zm)go] is
absolutely monotone on (0,1 — mh) for all m € N and h > 0 with mh < 1. In
particular,

[A3"¢](0) = (Al 2 0 i mh <1,

and so [A;zm)go] (0) > 0 when h = 1 and 0 < m < n. Moreover, since
(n) — (n)
[AY7¢](0) = A [A37¢] (0)

we also know that [Aﬁgo] (0) > 0 when h = %, and this completes the proof that
(1) implies (i),

Finally, assume that (iii) holds and set ¢, = B,,(-;¢). Then, by (1.2.13) and
the equality ¢n(1) = (1) = 1, we see that each ¢, is a probability generating
unction. Thus, in order to complete the proof that (iii) implies (i), all that we
. 3Ve t0 do is check that a uniform lLimit of probability generating functions is
ltself a Probability generating function. To this end, write

Pn(t) = Z un ott, te|0, 1] for each n € Z™.
=0
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Because the u, ¢’s are all elements of [0, 1], we can use a diagonalization proce-
dure to choose {nt : k € Z*} so that

lim up, ¢ =ue €[0,1]
k—o0

exists for each £ € N. But, by Lebesgue’s Dominated Convergence Theorem,
this means that

o(t) = khm ©n, (t Zwtl for every t € [0,1).
=0

Finally, by the Monotone Convergence Theorem, the preceding extends imme- .
diately to t = 1, and so ¢ is a probability generating function. (Notice that '
the argument just given does not even use the assumed uniform convergence
and shows that the pointwise limit of probability generating functions is agam
a probability generating function.) O

The preceding is only one of many examples in which The Weak Law leadsf
to useful ways of forming an epprozimate identity. Our treatment of Bernstein’s
ideas is based the exposition by Wm. Feller,! who provides several other similar
applications of The Weak Law, including the ones in the following exercises.

Exercises

1.2.15 Exercise: Although, for historical reasons, The Weak Law is usually |
thought of as a theorem about convergence in P-probability, the forms in which
we have presented it are clearly results about convergence in either P-mean':
or even square P-mean. Thus, it is interesting to discover that one can re-’
place the uniform integrability assumption made in Theorem 1.2.10 with a weak:
uniform integrability assumption if one is willing to settle for convergence in
P-probability. Namely, let X;,...,X,,... be mutually P-independent random '
variables, assume that ‘

(1.2.16) F(R) = sup RP(|an > R) — 0 as R oo,

nez+

and set "

1
M = — Y BF [Xg, |1 Xl gn], nezt
£=1

t Wm. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, J. Wlley
Series in Probability and Math. Stat. (1968).
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Ghow that, for each € > 0,

P('En - mn| > 6) < (n16)2 ZZ:;IEP [Xf, .Xel < n] +P(1I££agxn|xe| > n)
2 n
< et |, F(t)dt + F(n);

and conclude that IE" - mn| — 0 in P-probability. (See part (ii) of Exercises
1.4.30 and 1.5.14 for a partial converse to this statement.)

Hint: Use the formula

wﬂY)SEWDﬂ]=2/‘ tP(|Y] > t) dt.

[0,00)

1.2.17 Exercise: Show that, for each T € [0,00) and t € (0, 00),

mwk_{l if T>t

1.2.18 lim e ™
(1.2.18) Jm kg% ! 0 if T<t.

Hint: Let X,,...,X,,... be P-independent Poisson random variables on
N with mean-value t. That is, the X,,’s are P-independent and

k

P(Xn = k) = e_t% for keN.

Show that S, is a Poisson random variable on N with mean-value nt, and con-
clude that, for each T € [0, 00) and t € (0, 0),

et Z (nt)k _ P(En < T).

k<nT

1.2.19 Exercise: Given a right-continuous function F : [0, 00) — R of bound-
ed variation with F(0) = 0, define its Laplace transform ¢()), A € [0, ), by
the Riemann-Stieltjes integral

wu)=1;)e*me.

Using Exercise 1.2.17, show that

—n)k
Z %[Dkgo](n) — F(T) as n— oo

k<nT
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for each T € [0, 00) at which F is continuous. Conclude, in particular, that F
can be recovered from its Laplace transform.

§1.3: Cramér’s Theory of Large Deviations

From Theorem 1.2.7, we know that if {Xn 1 n € Z+} is a sequence of P-
independent, _square P-integrable random variables with mean-value 0, and if
the averages S,,, n € Z*, are defined accordingly, then, for every € > 0,

max;<m<n var(Xy,)

P(|§n|26)§ , nezr.

ne?

Thus, so long as
var(X,)
n

— 0 as n — oo,

the S,’s are becoming more and more concentrated near 0, and the rate at
which this concentration is occurring can be estimated in terms of the variances
var(X,). In this section, we will show that, by placing more stringent integra-
bility requirements on the X,’s, one can gain more information about the rate
at which the S,,’s are concentrating.

In all of this analysis, the trick is to see how independence can be combined
with 0 mean-value to produce unexpected cancellations; and, as a preliminary
warm-up exercise, we begin with the following.

1.3.1 Theorem. Let {X, : n € Z'} be a sequence of P-independent, P-
integrable random variables with mean-value 0, and assume that

M, = sup EF [X,f] < o0.
nezLt

Then, for each € > 0,

(1.3.2) ¢P([Sa] > ) <BF[5,"] < nez

In particular, S,, — 0 P-almost surely.

PROOF: Obviously, in order to prove (1.3.2), it suffices to check the second
inequality. To this end, note that there is nothing to do when n = 1. Moreover,
for any n € Z+,

ST‘:—{—I = S,ril + 4ST?X7L+1 + 6S’r‘fX’r‘f+l + 4S71Xr?+1 + X’r?—{—l?
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which, because S, is independent of X1 and EP [Xn+l] =EF [Sn] = 0, means
that

E7[S,%] = E7 [S] + 6E"[S2)EP [X 2] + EP[X,1,,]

=E"[S;]+6 ) E"[X2]EP[X2,] +EP[X,]
m=1
<EP[S] + (6n +1)M,,
where, in passing to the final line, we have used Schwarz’s inequality. Hence,
assuming the result for n, we find that

E”[S41] <3My (n2 420+ 1) < 3(n +1)2M,.

Given (1.3.2), the proof of the last part becomes an easy application of the
Borel-Cantelli Lemma. Indeed, for any € > 0, we know from (1.3.2) that

S P(5u 2 ¢) <o

n=1

and therefore, by (1.1.5), that

P(lm [S.]>¢)=0. O

n—o0

1.3.3 Remark. The final assertion in Theorem 1.3.1 is a primitive version of
The Strong Law of Large Numbers and represents the first time that we have
actually used the simultaneous existence of infinitely many mutually independent
random variables (previously, and for the rest of this section, it will be enough
to know that there are, at any given moment, an arbitrary but finite number).
Although The Strong Law will be taken up again, and considerably refined, in
Section 1.4, the principle on which its proof here was based is an important
one: namely, control more moments and you will get better estimates; get better
estimates and you will reach more interesting conclusions.

With the preceding adage in mind, we will devote the rest of this section to
®Xamining what one can say when one has all moments at one’s disposal. In fact,
from now on, we will be assuming that X,,...,X,,... are independent random
Variables with common distribution ¢ having the property that the moment
generating function

(1.3.4) M, (&) = / et 7 u(dzr) < oo forall £ € R.
R
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Obviously, (1.3.4) is more than sufficient to guarantee that the X,’s have mo-
ments of all orders. In fact, as an application of Lebesgue’s Dominated Conver-
gence Theorem, one sees that £ € R — M (£) € (0,00) is infinitely differentiable
and that

M
dgn

EP [X]] = / z" p(dr) = (0) for all n € N.
i
In the discussion which follows, we will use m and o2 to denote, respectively,
the common mean-value and variance of the X,’s.
In order to develop some intuition for the considerations which follow, we
first consider an example, which, for many purposes, is the canonical example in
probability theory. Namely, let v : R — (0, 00) be the Gauss kernel

(1.35) Ay) =
and recall that a random variable X is standard normal if

P(Xel) = /F'y(y) dy, T € Bg.

In spite of their somewhat insultingly bland appellation, standard normal ran-
dom variables are the building blocks for the most honored family in all of
probability theory. Indeed, given m € R and o € [0, 00), the random variable ¥
is said to be normal (or Gaussian) with mean-value m and variance o°
(often this is abbreviated by saying that X is an ‘ﬂ(m, o?)-random variable)
if and only if the distribution of Y is the same as that of the random variable
o X +m, where X is standard normal. That is, Y is an 9(m, 0?) random variable
if, when 0 = 0, P(Y = m) =1 and, when o > 0,

(1.3.6) P(Yel") :/ 17 (y—m) dy forT € Bg.

ro ag
There are two obvious reasons for the honored position held by Gaussian

random variables. In the first place, they certainly have finite moment generating -
functions. In fact, since

52
/ e*¥y(y) dy = exp (7) , EeR,
R

it is clear that

(13.7) M, (€)= exp [am + “_2_] |
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gecondly, they add nicely. To be precise, it is a familiar fact from elemen-
tary probability theory that if X is an N(m,o %) random variable and X is
an N(m, 62) random variable which is independent of X, then X + X is an
m(m + 1, 0% + &2) random variable. In particular, if X;,..., X, are mutually
independent standard normal random variables, then S, is an N (0,%) random

variable. That is,
P(S.eT) _[n / [ n|y|2]

Thus (cf. Exercise 1.3.17 below), for any I' we see that

—o0o N

1 _ 2
(1.3.8) lim — log[P(Sn € F)] = —ess inf {% Tty € I‘} .
where the ess in (1.3.8) stands for essential and means that what follows is taken

modulo a set of measure 0. (Hence, apart from a minus sign, the right-hand side

of (1.3.8) is the greatest number dominated by |y| for Lebesgue-almost every
y €T.) In fact, because (after a little integration by parts) one sees that

(¢~ @) < [ ) dy S e (e) forall 2 € (0,00),

we have the rather precise estimates

— 2 2
P(|Sn| > e) < exp [——226—] for € > 0,
and, for 0 < € < |a| and sufficiently large n’s

P(|S,—al <€) > M]

me"p [_ 2

More generally, if the X,.’s are mutually independent 9%(m,o?)-random vari-
ables, then one finds that

— 2 ne?
P(|S, —m| > oe) < \ e exp | =5~ for € > 0,

and, for 0 < € < |a| and sufficiently large n’s

P(|§n—(m+a)| < ge) > M] )

1
. exp|-
(a2 — e2)V/2m P [ 2
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Of course, in general, one cannot hope to get such explicit expressions for the
distribution of S,. Nonetheless, on the basis of the preceding, one can start to
see what is going on. Namely, when the distribution y falls off rapidly outside
of compacts, averaging n independent random variables with distribution p has
the effect of building a well in which the mean-value m lies at the bottom. More
precisely, if one believes that the Gaussian random variables are normal in the
sense that they are typical, then one should conjecture that, even when the
random variables are not normal, the behavior of P(|§n - m| > e) for large
n’s should resemble that of Gaussians with the same variance; and it is in the
verification of this conjecture that the moment generating function M, plays a
central role. Indeed, although an expression in terms of p for the distribution of
S, is seldom readily available, the moment generating function for S, is easily
expressed in terms of M,. Namely, as a trivial application of independence, we
have:

EP [e85°] = M,(&), EeR

Hence, by Markov’s inequality applied to e | we see that, for any a € R,
P(En > a') < e—nfa Mu(é)n = exp[_n(éa - A”(é))], é € [O’ OO)’

where

(1.3.9) Au(€) = log(M,(€))

is the logarithmic moment generating function of p. The preceding re-
lation is one of those lovely situations in which a single quantity is dominated
by a whole family of quantities, with the result that one should optimize by
minimizing over the dominating quantities. Thus, we now have

(1.3.10) P(S, >a) <exp {—n Ees[gp )(ga - A“(g))} )

Notice that (1.3.10) is really very good. For instance, when the X,’s are
N(m, 0%)-random variables and o > 0, then (cf. (1.3.7)) the preceding leads
quickly to the estimate

202

2
P(Fn—mze) Sexp(—n6 ),

which is essentially the upper bound at which we arrived before.
Taking a hint from the preceding, we now introduce the Legendre transform

(1.3.11) I,(z) = sup{€x — Au(€) : £ € R}, zeR,

of A, and, before proceeding further, make some elementary observations about .
the structure of the functions A, and I,.
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1.3.12 Lemma. The function A, is infinitely differentiable. In addition, for
each £ € R, the probability measure v¢ on R given by

1

VE(F) = M—(é) ‘/1—‘ 651 u(d:v) forT € BR

tu

has moments of all orders,

/R:vug(d:v) = A, (§), and /R;ﬂ ve(dz) — (/R:EVE(d:v))2 = A} (8).

Next, the function I, is a [0, oo]-valued, lower semicontinuous, convex function
which vanishes at m . Moreover,

I(z) = sup{€x — Au(€): £>0} for « € [m,o0)

and
I,(x) =sup{éz — Au(§) : £ <0} for z € (—o0,m].
Finally, if
a=inf{z e R: p((-o0,z]) > 0}
and

B=sup{zr € R: p([z,00)) > 0},

then I, is smooth on (a,3) and identically 400 off of [a, B]. In fact, either
#{m}) = 1 and @ = m = B; or m € (,B3) and A), is a smooth, strictly
increasing mapping from R onto (a, ),

Li(z)=Z,(z)c — A, (E“(w)), r € (a,B8), where T, = (A'“)_1

,1'5 the inverse of Al,, p({a}) = e7 () if & > —o0, and p({B}) = e =) if
< 0.

PROOF: For notational convenience, we will drop the subscript “u” during the
Proof. Further, we remark that the smoothness of A follows immediately from
the positivity and smoothness of M, and the identification of A'(€) and A"(€)
With the mean and variance of ve is elementary calculus combined with the

Temark following (1.3.4). Thus, we will concentrate on the properties of the
function J.
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As the pointwise supremum of functions which are linear, I is certainly lower
semicontinuous and convex. Also, because A(0) = 0, it is obvious that 7 > 0.
Next, by Jensen’s inequality,

AE) zs/Rw(dw)zsm,

and, therefore, {r — A(§) < 0ifx <mand £ > 0orif x > m and £ <0. Hence,
because I is nonnegative, this proves the one-sided extremal characterization of
I,(z). ‘

Turning to the final part, note first that there is nothing more to do in the -
case when u({m}) = 1. Thus, we will assume that p({m}) < 1, in which case '
it is clear that m € (a,3) and that none of the measures v; is degenerate.
In particular, because A”(£) is the variance of the vg, we know that A” > 0
everywhere. Hence, A’ is strictly increasing and therefore admits a smooth
inverse = on its image. Furthermore, because A’(£) is the mean of v, it is
clear that the image of A’ is contained in (a,3). At the same time, given an
x € [m, B3), choose y € (z,3) and note that, for £ > 0,

A(§) >y — kK where /s:—log[u([y,oo))].

After combining this with the fact (already established) that £z — A(§) < 0 for .
£ < 0, we conclude that £ € R — &x — A(€) achieves its absolute maximum -

somewhere in the interval [O, y%m] and therefore that A’(§) = z for some £ in ‘l

that interval. Since an analogous argument applies when z € (&, m], we now
know that (a,[3) is precisely the image of A’. Finally, because (by convexity)
I(z) = &£&x — A(€) if and only if A’'(§) = z, we have also proved that I is given on
(a, B) by the asserted expression.

To complete the proof, suppose that 3 < co. Then

ePu({B}) < M), (eR

Thus, on the one hand, we have that u({3}) < e™’®). On the other hand, j
because :

e—I(B)S/eE(iE—B)H(d;v) for £ € [0,00)
R

and

/R €8 pu(dz) \, u({B}) as € Moo,

we also see that u({3}) > e~ ¥, Finally, if z € (8,0), then I(z) = oo follows
immediately from A(£) < £, £ € [0,00).
Since the same reasoning applies when o > —oo, we are done. O
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1.3.13 Theorem (Cramér’s Theorem). Let {Xn}cl>C be a sequence of P-
independent random variables with common distribution p, assume that the
associated moment generating function M, satisfies (1.3.4), set m = [, = p(dz),
and define I, accordingly, as in (1.3.11). Then,

P(S,>a) <e ™l foralla € [m,o0),
P(En < a) <e™uld forallac (=00, m].

Moreover, for a € (a,(3) (cf. Lemma 1.3.12), ¢ > 0, and n € Z*,

P(|§n —a| < 6) > (1 _ w> exp[—n([u(a) + e|5u(a)l)],

ne2

where A, is the function given in (1.3.9) and £, = (A“’)~1
Proor: To prove the first part, suppose that ¢ € [m, oc0) and apply the second
part of Lemma 1.3.12 to see that the exponent in (1.3.10) equals I,(a), and,
after replacing {Xn}c;o by { — Xn}c;o, also get the desired estimate when a < m.
To prove the lower bound, let a € [m,) be given and set £ = Z,(a) €
[0,00). Next, recall the probability measure v described in Lemma 1.3.12,
and remember that v¢ has mean a = A,(§) and variance AJ;(£). Further, if
{Yn :n € Z+} is a sequence of independent, identically distributed random
variables with common distribution ¢, then it is an easy matter to check that,
for any n € Z* and every Bg~-measurable F : R* — [0, 00),

EP[F(1, ... Y,)| = B [e£5 F (X0, Xn)]-

M€y
In particular, if

n

Tn:Zn and TnzTﬁ,

n
=1
then, because I,(a) = £a — A, (£),

P(|§" —al< 6) = M(¢)"EF [e“ET", T, —a| < e]
> ¢ nélate) M(§)"P(lTn - al < 6)

= exp[—n([u(a) + §6)]P([Tn —a| < 6).

B’l’lt, because the mean-value and variance of the Y,’s are, respectively, a and
AL(6), (1.2.8) leads to

P(|Tn - al > e) < A;ég)

The case when € (a,m] is handled in the same way. O
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Results like the ones obtained in Theorem 1.3.13 are examples of a class of
results known as large deviations estimates. They are large deviations be-
cause the probability of their occurrence is exponentially small. Although large
deviation estimates are available in a variety of circumstances,’ in general one |
has to settle for the cruder sort of information contained in the following.

1.3.14 Corollary. For any I' € Bg,

~ inf I(z) < lim l1og[P(§ner)]

zel” n—o0o

< lim llog[P(En € l")] < —inf I,(x).

n—oo 1 el

(We use I'° and T to denote the interior and closure of a set I'. Also, recall that
we take the infimum over the empty set to be +00.) :

ProoF: To prove the upper bound, let I be a closed set and define I'y = f
I'N[m,00) and ' =T N (—o0,m]. Clearly, "

P(S,€Tl) <2P(S,€T)VP(S,el).

Moreover, if ['; # @ and e, = min{z : = € 'y}, then, by Lemma 1.3.12 and
Theorem 1.3.13, f

I(ay) =inf{I,(z): ¢ €y} and P(S,el4) < e~ Mulat),
Similarly, if _ # @ and a— = max{z : z € I'_}, then
I(a.)=inf{I,(z): z€_} and P(S,el_) < e Mula),
Hence, either I' = @, and there is nothing to do anyhow, or
P(En €T) < 2exp [—ninf {Iu(:v) : T € F}] , neZr,

which certainly implies the asserted upper bound.
To prove the lower bound, assume that I' is a nonempty open set. What we -
have to show is that

1 =
n% —T;log[P(Sn € l")] > —1,(a)

for every a € I'. If a € T' N (a, B), choose § > 0 so that (a —d,a +6) C T and ,
use the second part of Theorem 1.3.13 to see that ‘

lim 1 log[P(?n € l")] > —I,(a) — elﬁu(a)|

n—oo n

¥ In fact, see, for example, J.-D. Deuschel and D. Stroock, Large Deviations, Academic Press -
Pure Math Series, 137 (1989); some people have written entire books on the subject.
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for every € € (0,0). If a ¢ [, 8], then I,(a) = oo, and so there is nothing to do.
Finally, if a € {a, 8}, then p({a}) = e~ 1u(@) and therefore

P(S,€T)>P(Sn=0a)>e @ O

1.3.15 Remark. The upper bound in Theorem 1.3.13 is often called Cher-
noff’s Inequality. The idea underlying this estimate is rather mundane by
comparison to the subtle one used in the proof of the lower bound. Indeed, it
may not be immediately obvious what that idea was! Thus, consider once again
the second part of the proof of Theorem 1.3.13. What we had to do is estimate
the probability that S, lies in a neighborhood of a. When a is the mean-value m,
such an estimate is provided by The Weak Law. On the other hand, when a # m,
The Weak Law for the X,,’s has very little to contribute. Thus, what we did is
replace the original X,’s by random variables Yy, n € Z*, whose mean-value is
a. Furthermore, the transformation from the X,,’s to the Y,,’s was sufficiently
simple that it was easy to estimate X,,-probabilities in terms of Y,,-probabilities.
Finally, The Weak Law applied to the Y,’s gave strong information about the
rate of approach of % > p-1 Ye to a.

We close this section by verifying the conjecture (cf. the discussion preceding
Lemma 1.3.12) that the Gaussian case is normal. In particular, we want to check
that the well around m in which the distribution of S, becomes concentrated
looks Gaussian, and, in view of Theorem 1.3.13, this comes down to the following.

1.3.16 Theorem. Let everything be as in Lemma 1.3.12 and assume that the
variance 2 > 0. There exists ad > 0 and a K € (0, 00) such that [m—34, m+4] C
(a, B) (cf. Lemma 1.3.12), |A(E(2))| < K,

(z —m)?

|E“(w)| < K|z —m|, and 552

I,(z) - < Kz —m’

for all z € [m — &, m + 68]. In particular, if 0 < € < §, then

— 62
P(]Sn —m| > e) < 2exp [—n (Fﬂ — Ke3)] ,

and if |a —m| < § and € > 0, then

P([S,-a| <€) > (1 - %) exp [—n (M + Kla—m|(e+]a —m|2))] .

202
Proop: Without loss in generality (cf. Exercise 1.3.19 below), we will assume

Fthat m =0 and 02 = 1. Since, in this case, A,(0) = A’,(0) = 0 and AZ(0) = 1,
1t follows that Eu(0) = 0 and =, (0) = 1. Hence, we can find an M € (0,00) and
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aa< —§ <6< pfor which |E,(z) — z| < M|z|* and |AL(E) - §;‘ < MgP
whenever |z| < § and |¢] < (M + 1)J, respectively. In particular, this leads
immediately to |E,(z)| < (M + 1)|z| for || < § A 1; and the estimate for

I, comes easily from the preceding combined with equation I,(z) = E(z)z —
AL(Eu(@). O

Exercises

1.3.17 Exercise: Let (E, F, u) be a measurable space and f a nonnegative,
F-measurable function. If either u(E) < oo or f is p-integrable, show that

I fller(uy — lIfllzoo(n)y a@s p— oo.

Hint: Handle the case p(FE) < oo first, and handle the case when f € L'(u) by
considering the measure v(dz) = f(z) p(dz).

1.3.18 Exercise: It is interesting to see how the proof of estimates like the one .
in (1.3.2) simplify if one uses moment generating functions. Thus, let X1,..., X, -
be independent, identically distributed random variables with mean-value 0 and :
common distribution p. Assuming that (1.3.4) holds, show that (1.3.2) is equiv- -
alent to the inequality |

d4

d*M
I (M. (™) 3n?——£

<
£=0 - d§4

(0),

and use elementary calculus followed by Schwarz’s inequality to check this. Fi- -
nally, argue that, by truncation (cf. the beginning of the proof of Theorem
1.2.10), one can remove the hypothesis in (1.3.4).

1.3.19 Exercise: Referring to the notation used in this section, assume that
i is a nondegenerate (i.e., it is not concentrated at a single point) probability :
measure on R for which (1.3.4) holds. Next, let m and o2 be the mean and -
variance of p, use v to denote the distribution of !

T —

m
z€eER— € R wunder g,

and define A, I,,, and E, accordingly. Show that

Ap(§) =&m+A,(0f), £€R,
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I.(z)=1, (:v—m), z €R,

g

Image(A!,) = m + o Image(A,),

Eu(z) = %E,, ( ) , = € Image(A},).

r—m

g

1.3.20 Exercise: Continue with the same notation.
(i) Show that I, < I, if M, <M,.

(ii) Show that
I(z) = ———, z € R,

when p is the 9(m, 02) distribution and show that

7 )_:v—alo z—a +b—:vlo b—«x
u(® T b—a g(l—p)(b—a) b—a gp(b—a)’

z € (a,b),

when a < b, p € (0,1), and p({a}) =1 — u({d}) = p.
(iif) When g is the centered Bernoulli distribution given by p({#1}) = 1,
show that M, (§) < exp [%i] , & € R, and conclude that I,(z) > %, r e R

More generally, given n € ZT, {Uk}:L C R, and independent random variables

X1,..., X, with this p as their common distribution, let v denote the distri-
. n 2 n
bution of § = Y 7 64 X) and show that I, (z) > 5%z, where £2 = 3 07. In
particular, conclude that
a2
P(|S|Zd) §2exp [_ﬁ]’ (ZE[0,00)

1.3.21 Exercise: Although it is not exactly the direction in which we have been
going, it seems appropriate to include here a derivation of Stirling’s formula.
Namely, recall Euler’s Gamma function

(1.3.22) I(t) = / 7 le™"dr,  te(-1,00).
[0,00)
What we want to prove is that

t
(1.3.23) L(t+1) ~V2nrt (E) as t /oo,
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where the tilde “~” means that the two sides are asymptotic to one another in
the sense that their ratio tends to 1. (See Exercise 2.1.44 for another approach.)

The first step is to make the problem look like one to which Exercise 1.3.17 is '
applicable. Thus, make the substitution x = ty and apply Exercise 1.3.17 to see

that

. 1
F(t+ 1) t t —t ' —1
<_tt+1 ) = </[000)y e Ydy — e .

This is, of course, far less than we need to know. However, it does show that all

the action is going to take place near y = 1 and that the principal factor in the .

T(t+1)

asymptotics of =72 is e*. In order to highlight these observations, make the |

substitution y = z + 1 and obtain

L(t+1) ¢ —t
W:/(_l’oo)(l—kz) e ¥ dz.

Next, show that for § € (0,1) and t € (1,00):

/—6(1 + z)te_tz dz < exp [—EZ—Q] ,

-1

/:0(1 +2) etrdz < 2| (14 5)e—‘5]t‘1 < 2¢% exp [—t (-52—2 - 3(1‘5—;))] ,

and

22
/ (1 + z)t et dz = / e tF tB(2) gy
|z1<é |2]<8

r4 r4 Z2
= / et gz + t/ e_thR(z) dz + / e 7 ey (tR(2)) dz,
|z<é |z|<é

|z1<8
where
R(z):log(l—kz)—z—k—zi =—i (=2)" and ey(é) =ef —1-¢
2 pr S 2

After noting that

2m

5
i

3
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|e2(§)| < é;etﬁl, and f|z|>r e~ dr < %e_%%, conclude that, for § € (0, £),

<4/ t (1+266)6_%+—1 / e T do
T Vr V2 Jig| 252
(1-

(1—52)_1/ 4 -z 5)_2/ 6,— =
+—— [z 2dr+—= | z°¢ 2 dx
427t R 1827t Jgr

1[ 1 S8 2 ) _sz2 19 -2]
< |l— (42 +—)e 2 +—(1-§ .
Tt [ 2m (( ) SVt 12( )
Finally, take 6(t) = (4t)‘%, and arrive at the estimate
r 1
L)t_l Sg, te(2,00),
Ve () |

for some C € (0,00).

Hint: Note that ¢ € (0,00) — (1 + z)e™® is decreasing and z € (—1,0)
> (1 4+ z)e™ 7 is increasing.

1.3.24 Exercise: Here is a rather different sort of application of large deviation
estimates. Namely, inspired by T.H. Carne,’ we will show that for each n € Z*

and 1 < m < n there exists an (m—1)st order polynomial p,, , with the property
that

2
(1.3.25) |£" — Pma(z)| < 2exp [—?—n] for z € [-1,1].

(i) Given a C-valued f on Z, define Af : Z — C by

Af(n) = f(n+1);f(n— 1)

Show that, for each z € C, there is a unique sequence {Q(m,z): meZ} CC
satistying Q(0, 2) =1,

Q(-m,2) = Q(m,z), and [AQ(-,z)](m)=2Q(m,z) for all m € Z.
In fact, show that, for each m € Z*: Q(m, -) is a polynomial of degree m and
Q(m,cosf) = cos(mf), 6¢€C.

In particular, this means that |Q(n,z)| <1 for all z € [-1,1]. (It also means
that Q(n, -) is the nth Chebychev polynomial.)

, new.

t
(l’li;H Carne, “A transformation formula for Markov chains,” Bull. Sc. Math., 109: 399-405
85). As Carne points out, what he is doing is the discrete analog of Hadamard’s represen-

tatj : X . . . .
thtlon’ Via the Weierstrass transform, of solutions to heat equations in terms of solutions to
€ Wave equations.
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(ii) Using induction on n € Z*, show that
[A”Q(-,2)](m) = 2"Q(m,z), m€EZandzE€C,
and conclude that

z":IE[Q(Sn,z)], n€Z and z€C,

where §,, is the sum of n mutually independent, standard, {—1,1}-valued Ber-
noulli random variables. In particular, if

Pmn(2) = E[Q(Sn,z), SR < m] =27" Z (Z)Q(% - n,z),

|28—n|<m
conclude that (cf. Exercise 1.3.20)

2
sup 2" — pmn(z)| < P(|Sn| > m) < 2exp [—T—n—] forall 1 <m < n.
z€[—1,1] 2n

(iii) Suppose that A is a self-adjoint contraction on the Hilbert space H (ie., -
(f,Ag)y = (g, Af) and || Afllzr < ||f|lz for all f, g € H). Next, assume that
(f, Aeg)H = 0 for some f, g € H and each 0 < ¢ < m. Show that

2
(5. 470) ] < 2N tlglexp [~ | for n > m.

(See Exercise 2.2.36 for an application.)

Hint: Note that (f, pm,n(A)g)H = 0, and use the Spectral Theorem to see that,
for any polynomial p, ;
Ip(A) flla < sup |p(@)l|Iflla, fe€H

z€[—1,1]

§1.4: The Strong Law of Large Numbers

In this section we will discuss a few almost sure convergence properties of partial -
sums of independent random variables. Thus, once again, {Xn}io will be a
sequence of independent random variables on a probability space (Q, F, P), and -
S, and S,, will be, respectively, the sum and average of X,,..., X,. Throughout f
this section, the reader should notice how much more immediately important a :
role independence (as opposed to orthogonality) plays than it did in Section 1.2.

To get started, we point out that, for both {Sn}io and {En}io, the set on
which convergence occurs has P-measure either 0 or 1. In fact, we have the
following simple application of Kolmogorov’s 0-1 Law (Theorem 1.1.2).
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1.4.1 Lemma. For any sequence {an :n € Z+} C R and any sequence {bn :
neZt} C(O, o) which converges to an element of (0,00], the set on which

Sp — an

n

lim existsin R
n—oo

has P-measure either 0 or 1. In fact, if b, —> 00 as n — 00, then both

-—Sn_ n . Sn_ n
Jim ==t and lim ==

are P-almost surely constant.

PROOF: Simply observe that all of the events and functions involved can be
expressed in terms of {Smin — S}, for each m € Z* and are therefore
tail-measurable. U

Our basic result about the almost sure convergence properties of both {Sn}cl’o

and {En}i’o is the following beautiful statement, which was proved originally by
Kolmogorov.

1.4.2 Theorem. Ifthe X, s are independent, square P-integrable random vari-
ables and if

(1.4.3) > var(X,) < oo,
n=1
then
Z (Xn —EP [Xn]) converges P-almost surely.
n=1

Note that, since

n

> (xe-E” [x2])

£=N

(1.4.4) sup P (

n>N

1 oo
> 6) < = Z V&I‘(Xg),

=N

(1.4.3) certainly implies that the series Zzozl (Xn - EF [Xn]) converges in P-
measure. Thus, all that we are trying to do here is replace a convergence in
gleaSl‘lr‘e statement with an almost sure one. Obviously, this replacement would

€ trivial if the “sup,»n” in (1.4.4) appeared on the other side of P. The

Eflmizrkable fact which we are about to prove is that, in the present situation,
€ "sup,,, v can be brought inside!
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1.4.5 Theorem (Kolmogorov’s Inequality). If the X,’s are independent
and square P-integrable, then :

n

Z( —EP[ Xg])

L=

(1.4.6) (sup

n>1

1 o0
6) < = Z Var(X
n=1
for each € > 0.

Proor: Without loss in generality, we will assume that each X,, has mean-value :
0.
Given 1 < n < N, note that
S% — §2 = (Sn — Sn)” +2(Sy = Sn)Sn > 2(Sy — 5n) Sns

and therefore, since Sy —S, has mean-value 0 and is independent of the o-algebra
U(Xl, e ,Xn),

(1.4.7) EP [512\,, An] > EF [Sf” An] for any A, € U(Xl,...,Xn).

In particular, if A, = {|S1| > €} and
Apgr = {|Sn+1| > € and lréllasxn|se| < e}, nezZt,

then, the A,’s are mutually disjoint,

N
By = {lénnast|Sn| > 6} = U A

n=1

and so (1.4.7) implies that

N N
P[S% Bn] = > EF[S}, An] > > _EP
n=1 n=1

In particular,

2P (sup]S | > e) = hm € P(BN)
n>1
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and so the result follows after one takes left limits with respect to e > 0. O

PROOF OF THEOREM 1.4.2: Again we assume that the X,,’s have mean-value
0. By (1.4.6) applied to {Xnin : n € ZT }, we see that (1.4.3) implies

P(sup|.5'n—.5'1\r|26)Si Z IEP[X,%]—+O as N =

2
€
n>N n=N+1

for every € > 0; and this is equivalent to the P-almost sure Cauchy convergence
o0
Of {Sn}l * D
In order to convert the conclusion in Theorem 1.4.2 into a statement about

{En};”, we will need the following elementary summability fact about sequences
of real numbers.

1.4.8 Lemma (Kronecker). Let {b, : n € Z'} be a nondecreasing sequence
of positive numbers which tends to oo, and set 3, = b, — b,_1, where by = 0. If
{sn};)o C R is a sequence which converges to s € R, then

1 n
b— Zﬂg.‘}g — S.
" o=1

In particular, if {:vn};)o C R, then

o0 n

z . 1
E converges in R — 7 E e — 0 asn — .
n=1

n n =1

B

o

PROOF: To prove the first part, assume that s = 0, and for given € > 0 choose
N € Z* so that |s¢| < € for £ > N. Then, with M = SUP,,>1 |Snl,

1 — Mb
b—Zﬂzb’e i
" oe=1

bn

< +e—¢€

as n — oo.

Turning to the second part, set Ye = ¥, 80 = 0, and s, = 37, ye. After
Summation by parts,

1 1 <
™ D we=sn— ™ > Besea;
™= ™ =1
:nd S0, since s, — s € R as n — oo, the first part gives the desired conclu-
on, [

. After combining Theorem 1.4.2 with Lemma 1.4.8, we arrive at the following
Mteresting statement.
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1.4.9 Corollary. Assume that {bn};’o C (0, 00) increases to infinity asn — 00,

and suppose that {Xn}io is a sequence of independent, square P-integrable
random variables. If

(1.4.10) 3 %@ < o0,
n=1 n
then .
blZ(Xg - EP [Xg]) — 0 P-almost surely.
™ =1

As an immediate consequence of the preceding, we see that S, — m P-
almost surely if the X,,’s are identically distributed and square P-integrable. In
fact, without very much additional effort, we can also prove the following much
more significant refinement of the last part of Theorem 1.3.1.

1.4.11 Theorem (Kolmogorov’s Strong Law). Let {Xn:n€ Z"} be a
sequence of P-independent, identically distributed random variables. If X, is
P-integrable and has mean-value m, then, as n — 00, S,, — m P-almost surely
and in L*(P). Conversely, if Sy, converges (in R) on a set of positive P-measure,
then X, is P-integrable.

PrRoOOF: Assume that X; is P-integrable and that EP [Xl] = 0. Next, set
Yo = Xaljom (|Xn|), and note that

3 P(Ya # Xn) = ) P(IXal>n)
n=1 n=1
1/n—1

n

Thus, by the first part of the Borel-Cantelli Lemma,
P((EneZ*) (YN 2 n)Yn = Xy) =1

In particular, if T, = %Z;‘:lYg for n € Z*, then, for P-almost every w € Q,
To(w) — 0 if and only if Sy(w) — 0. Finally, to see that T, — 0 P-almost
surely, first observe that, because EP[X,] = 0, by the first part of Lemma 1.4.8,

1y .
nll{&;;EP [v;] = lim E” [Xl, |X1| < n] =0,

and therefore, by Corollary 1.4.9, it suffices for us to check that
= EP [V

2—712—<00

n=1
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To this end, set

- 1
C = sup ZZ—Z,
n:ln

ezt

and note that

o0 P [y2 oo n
Z%: %ZEP[Xf,Z-1<|X1|§€]
n=1 n=1 =1
:iEP[Xf,Z—1< 1%, | ge]i%
£=1 n=~£
< Ci%EP[Xf, (-1<|X:| <] < CEP[IX]] < oo

=1

Thus, the P-almost sure convergence 1S now established, and the L'(P)-conver-
gence result was proved already in Theorem 1.2.10.

Turning to the converse assertion, first note that (by Lemma 1.4.1) if Sn
converges in R on a set of positive P-measure, then it converges P-almost surely
to some m € R. In particular,

— |

lim [Xn] = lim l?n - En_ll =( P-almost surely;
n—oo n n—oo

and so, if A, = {|X,| > n}, then P(limpo0 An) = 0. But the Ay’s are
mutually independent; and therefore, by the second part of the Borel-Cantelli
Lemma, we now know that > o | P(An) < 0. Hence,

IEPUXI\]:/O P(\X1|>t)dt§1+ZP(|Xn|>n)<oo. O
n=1

Although Theorem 1.4.11 is the centerpiece of this section, we still want to
give another approach to the study of the almost sure convergence properties of
{Sn}?o In fact, following P. Lévy, we are going to show that {Sn}fo converges
P-almost surely if it converges in P-measure. Hence, for example, Theorem 1.4.2
can be proved as a direct consequence of (1.4.4), without appeal to Kolmogorov’s
Inequality.

The key to Lévy’s analysis lies in a version of the reflection principle, whose
statement requires the introduction of a new concept. Namely, given an R-valued

‘r?ndom variable Y, we say that o € R is a median of Y and write o € med(Y),
1

(1.4.12) P(Y<a)AP(Y 2a)>

B | =
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Notice that (as distinguished from a mean-value) every Y admits a median; for
example, it is easy to check that

(1.4.13) med(8+Y)=08+med(Y) forall 3R

aEinf{tER: P(Y <t)>

N | =

is a median of Y. In addition, it is clear that

On the other hand, the notion of median is flawed by the fact that, in general,

a random variable will admit an entire nondegenerate interval of medians. In
addition, it is neither easy to compute the medians of a sum in terms of the k
medians of the summands nor to relate the medians of an integrable random .
variable to its mean-value. Nonetheless, at least if Y € LP(P) for some p €

[1,00), the following estimate provides some information. Namely, since, for
o € med(Y) and 8 € R,

0B <o~ gpP(Y > o) A P(Y < a) <EP[IY - P],

we see that, for any p € [1,00) and Y € LP(P),

1

la— 8] < (2IEP v - 51p]) "forall feR and o€ med(Y).

In particular, if Y € L?(P) and m is the mean-value of Y, then

(1.4.14) | — m| < /2var(Y).

1.4.15 Theorem (Lévy). Let {X,: n € Z'} be a sequence of P-independent
random variables, and, for k < ¢, choose oy € med (S[ — Sk). Then, for any -
N eZ" ande > 0,

(1.4.16) P ( max (Sn + aN,n) > 6) < 2P(SN > e);

1<n<N

and therefore

1<n<N

(1.4.17) P ( max |Sn + ann| > 6) <2P(|Sn| > ).

ProoF: Clearly (1.4.17) follows by applying (1.4.16) to both the sequences |
{Xn}(;o and {—Xn}cl><> and then adding the two results.
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To prove (1.4.16), set A; = {Sl +ay1 > e} and

Ant1 = {113?2( (Se+ ane) < eand Spi1 + anntr > 6}
ssn

for 1 <n < N. Obviously, the A,,’s are mutually disjoint and

N

U A, = { max (Sn + an,y) > e}.
1<n<N

n=1
In addition,
{Sn > e} QAnﬂ{SN—Sn > aN,n} for each 1 <n < N.

Hence,

M=

P(Sn2€)2 Y P(Ann{Sy—5p 2> ann})

1

3
I

IV
Do | =
M =

1
() = 37 (s, 50+ o) 2 ).

n=1

where, in the passage to the last line, we have used the independence of the sets
A, and {SN -5, > ann}. O

1.4.18 Corollary (Lévy). Let {Xn ne Z+} be a sequence of independent
random variables, and assume that {Sn tn € Z+} converges in P-measure to

an R-valued random variable S. Then S, — S P-almost surely. (Cf. Exercise
1.4.28 as well.)

PROOF: What we must show is that, for each € > 0, there is an M € Z* such
that

su P(max S ) >6)<6.
szl 15£§Nl e+M MI =

To this end, let 0 < € < 1 be given, and choose M € Z* so that

P(|Save =~ Suan| 2 5) < 5 forall 1<k <.

€
2
Next, for a given N € Z*, choose ann € med(Syin — Sm4n) for < n < N.
Then lan .| < %, and so, by (1.4.17) applied to {Xp1n}5%,,

P _ _ €
(1;nnanN|SM+n Sml| > e) <P <lénna<xN |Sr4n — Su + ann| > 2)

< 2P(‘SM+N — SM| > %) <e. 0O
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1.4.19 Remark. The most beautiful and startling feature of Lévy’s line of

reasoning is that it requires no integrability assumptions. Of course, in many |
applications of Corollary 1.4.18, integrability considerations enter into the proof
that {Sn};’o converges in P-measure. Finally, a word of caution may be in order. -
Namely, the result in Corollary 1.4.18 applies to the quantities S, themselves; it

does not apply to associated quantities like S,! Indeed, suppose that {X,}7° is a
sequence of independent random variables with common distribution satisfying :

1
2

P(Xn < —t) = P(Xa > 1) = ((1+£3) log(e* +£%)) * forallz>0.

On the one hand, by Exercise 1.2.15, we know that the associated averages Sn
tend to 0 in probability. On the other hand, by the second part of Theorem .
1.4.11, we know that the sequence {Sn};’o diverges almost surely. :

Exercises

1.4.20 Exercise: Let X and Y be nonnegative random variables, and suppose
that ,

(1.4.21) P(X>t) < %EP [Y, X > t], t € (0,00).
Show that
(1.4.22) (& [X”])% < p—f—l(E” [Y”])%, p e (1,00).

Hint: First, reduce to the case when X is bounded. Next, recall that, for any
measure space (E,]-' , u), any nonnegative, measurable f on (E,]-'), and any :
a € (0,00), ‘

(1.4.23) /Ef(:v)a p(de) = a/(o )to‘_1 p(f >t)dt.

Use this together with (1.4.21) to justify the relation

E” [X7] < p/

— _L _ .
(Ovoo)tp 2 gP [Y, X Zt] _ EP [Xp ly]’

p—1

and arrive at (1.4.22) after an application of Holder’s inequality.
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1.4.24 Exercise: Let {Xn}(:o be a sequence of mutually independent, square P-
integrable random variables with mean value 0, and assume that 33° E[X2] <
0. Let S denote the random variable (guaranteed by Theorem 1.4.2) to which
{Sn}:o converges P-almost surely, and, using elementary orthogonality consid-
erations, check that S, — S in L2(P) as well. Next, after examining the proof

of Kolmogorov’s inequality (cf. (1.4.6)), show that

1
(1.4.25) P(sup |Sn|2 > t) < =EF [52, sup |Sn|2 > t], t>0.

ne€Z+ ¢ n€Z+
Finally, by applying (1.4.22), show that
P
(1.4.26) EF [sup |Sn|2p] < (1—75) EP [|S|2P], p € (1,00);
ncz*

and conclude from this that, for each p € (2, o0), {Sn}(:o converges to S in LP(P)
if and only if § € LP(P).

1.4.27 Exercise: If X € L?(P), then it is easy to characterize its mean m as
the ¢ € R which minimizes EF [(X —¢)?]. Assuming that X € L'(P), show that
a € med(X) if and only if

EP[|X —of] = IcneiﬂgEP [1X =l
Hint: Show that, for any a, b € R,
b
EF[|X —b|] ~EP[|X —a|] = / [P(X <t)— P(X >1t)] dt.

a

1.4.28 Exercise: The following variant of (1.4.17) is sometimes useful and has
the advantage that it avoids the introduction of medians. Namely show that for
any t € (0,00) and n € Z*:
P(|Sa] > 1)
1— max P(|Sn - Sm| > t)'
1<m<n

1.4.
(1.4.29) P(l‘g%,?‘;‘ |Snl 22t) <

Note that (1.4.29) can be used in place of (1.4.17) when proving results like the
one in Corollary 1.4.18.

1.4.30 Exercise: A random variable X is said to by symmetric if —X has
the same distribution as X itself. Obviously, the most natural choice of median
for a symmetric random variable is 0; and thus, because sums of independent,
Symmetric random variables are again symmetric, (1.4.16) and (1.4.17) are par-
ticularly interesting when the X,,’s are symmetric, since the ag x’s can then be
taken to be 0. In this connection, we present the following interesting variation
on the theme of Theorem 1.4.15.
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(i) Let X1,...,Xy,... be independent, symmetric random variables, set M, (w)
= maxi<e<n | Xe(w)l, let Tn(w) be the smallest 1 < ¢ < n with the property that
\Xg(w)l = M, (w), and define

Yo(w) =X, (W) and S, = Sn — Ya.
Show that
weE N (Sp(w),Yy(w) €R? and weQ+— (—8n(w), Ya(w)) € R

have the same distribution, and conclude first that
P(Y, > t) gP(Ynzt&Snzo)+P(Ynzt&5‘ngo)

=2P(Yo2 t&n2 0) < 2P(Su 2 1),
for all t € R; and then that

(1.4.31) p (l??é‘an‘. > t) < 2P(|Sn| > t), t € [0,00).

(ii) Continuing in the same setting, add the assumption that the X’s are iden-
tically distributed, and use (1.4.31) to show that :
lim P(lgn. < C’) =1 for some C € (0,00)

n—oo

— lim nP(.XI. > n) =0.

n—oo

Hence, (cf. Exercise 1.2.15) if {Xn};)o is a sequence of independent, identically {

distributed symmetric random variables, then S,, — 0 in P-probability if and
only if lim, nP(lX1| > n) =0. :

1.4.32 Exercise: Let X,...,Xn,... be a sequence of mutually independent,
identically distributed, P-integrable random variables with mean-value m. As '
we already know, when m > 0, the partial sums S, tend, P-almost surely, to
+00 at an asymptotic linear rate m; and, of course, when m < 0 the situation is
similar at —oo. Moreover, when m = 0, we know that, if |Sn| tends to oo at all, -
then, P-almost surely, it does so at a strictly sublinear rate. In this exercise, we -
will sharpen this statement by proving that
m=0 = lim |S,| < oo P-almost surely.
n—oc

The beautiful argument given below is due to Y. Guivarc’h, but it’s full power
cannot be appreciated in the present context (cf. Exercise 6.1.34). Indeed, a
classic result (cf. Exercise 5.2.46 below) due to K.L. Chung and W.H. Fuchs .
shows that lim__,__|S,| =0 P-almost surely. ‘

In order to prove the assertion here, assume that lim, oo |Sn| = oo with
positive P-probability, use Kolmogorov's 0-1 Law to see that |S,| — oo P-
almost surely, and proceed as follows.
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(i) Show that there must exist an € > 0 with the property that
P(‘v’€>k|Sg—Sk‘ 26) > €
for some k € Zt and therefore that
P(A) > ¢ where A= {w VL e ZY |Se(w)] > e}.

(ii) For each w € 2 and n € 7T, set

2

Fn(w):{teR: 31§€§n|t—5’g(w)|<5}

and
Tiw)={teR: 3 <e<nt- Sw)| < 5h

where S, = 3", X¢41. Next, let R,(w) and R; (w) denote the Lebesgue mea-
sure of I, (w) and T’ (w), respectively; and, using the translation invariance of
Lebesgue’s measure, show that

Rn1(w) = Ry (w) 2 el (w),
where A’ = {w P V> 2 |Se(w) - S1(w)]| > e}.

On the other hand, show that
EP[R,] =E”[R,] and P(4')=P(A);
and conclude first that
eP(A) <EP[Rn41 — Rn], neZt,

and then that )
eP(A) < lim ~EP[R,].

(iil) In view of parts (i) and (ii), we will be done once we show that
1
m=0 = lim —-EF[R,] =0.
n—,oo N

But clearly, 0 < R,(w) < ne. Thus, it is enough for us to show that, when
m =0, % —3 0 P-almost surely; and, to this end, first check that

Sn(w)

n

— 0 =

Bn(w) — 0,
n

and, finally, apply The Strong Law of Large Numbers.



48 1: Sums of Independent Random Variables

1.4.33 Exercise: As we have already said, for many applications the Weak :
Law of Large Numbers is just as good as and even preferable to the Strong
Law. Nonetheless, here is an application in which the full strength of Strong
Law plays an essential role. Namely, we are going to use the Strong Law to
produce examples of continuous, strictly increasing functions F on [0, 1] with
the property that their derivative

F'(t) = lim Fly) - Flz)

=0 at Lebesgue almost every z € (0, 1).
yoe Yy —C

By familiar facts about functions of a real variable, one knows that such func-
tions F' are in one-to-one correspondence with non-atomic, Borel probability
measures p on [0, 1] which charge every non-empty open subset but are singular
to Lebesgue’s measure. Namely, F' is the distribution function determined by u: i

F(z) = p((~o0,2]).

(i) Set Q = {0,1}Z , and, for each p € (0,1), take M, = (ﬁp)w where 3, on;?
{0,1} is the Bernoulli measure with 3,({1}) = p =1 — 3,({0}). Next, define '

weRr—Y(w Z2”"wn [0,1],

and let p, denote the My-distribution of Y. Given n € Z* and 0 < m < 2%,
show that

i ([m2", (m +1)277]) = pmn (1 = p)fem,

where £ = Y7, wi and (wi,...,w,) € {0,1}" is determined by m2™" =
POHE 27Fwy. Conclude, in particular, that 1tp is non-atomic and charges every -
non-empty open subset of [0, 1].

(iii) Given z € [0,1) and n € Z*, define

en(z) =

{1 if 201 — [277 1] >
0 if2n 1z —[2""1z] <

N[ N[

3

where [s] denotes the integer part of s. If {¢, : n > 1} C {0,1} satisfies
r =312 "¢, show that €, = €,(z) for all m > 1 if and only if ¢,, = 0 for
infinitely many m > 1. In particular, conclude first that w, = €, (Y (w)), n € °
Zt, for M,-almost every w € (2 and second, by the Strong Law, that :

n
Z €n(z) — p for pp-almost every z € [0, 1].

m=1

S|

Thus, pp, L pp, whenever py # po.
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(iV) By Lemma 1.1.8, we know that p1 is Lebesgue measure Afg,1] on [0, 1].
Hence, we now know that p, L Ajp,1] when p # 3. In view of the introductory
remarks, this completes the proof that, for each p € (0,1) \ {3}, the function
Fp(iv) = up((—oo, :v]) is a strictly increasing, continuous function on (0, 1] whose
derivative vanishes at Lebesgue almost every point. Here, we can do better.
Namely, referring to part (iii), let A, denote the set of z € [0,1) such that

n

1
nlLII;O gEn(w) =p where X,(z) = mZ::I em(x).

We know that A 1 has Lebesgue measure 1. Show that, for each z € A 1 and
p€(0,1)\ {1}, F, is differentiable with derivative 0 at .
Hint: Given z € [0,1), define
L,(z)= Z 2 "¢, (z) and Rp(z)= Ln(z)+27"
m=1
Show that
Fy(Ru(2)) = Fp(Ln(z)) = My (Z 2" Wy = Ln(:v)> = p= ) (1 —p) .
m=1
When p € (0,1)\ {3} and z € A1, use this together with 4p(1 —p) < 1 to show

that
lim nlog (F” (Bn(2)) = F”(L"(w))> <0.

n—o0 Ry(z) — La(2)

To complete the proof, for given z € A% and n > 2 such that X,(z) > 2, let

M,,(x) denote the largest m < n such that em(z) = 1, and show that Mulz) 41

n
as n — oco. Hence, since 27 "1 < h < 27" implies that

Fp(w) _ Fp(w — h‘) < 2n-—Mn(:1:)+l FP((R"(:E)) - FP((L"(:E))
h - R,.(z) — Lp(x) '

one concludes that Fj, is left-differentiable at z and has left derivative equal to
0 there. To get the same conclusion about right derivatives, simply note that
Fp(w) =1- Flfp(l — CE)

(V) Again let p € (0,1) \ {3} be given, but this time choose z € Ap. Show that

h—o0 h

= +o0.
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The argument is similar to the one used to handle part (iv). However, this time -
the role played by the inequality 4pg < 1 is played here by (2p)?(2¢q)? > 1 when |
g=1-p.

§1.5: Law of the Iterated Logarithm

Let X,,...,X,,... be asequence of independent, identically distributed random
variables with mean-value 0 and variance 1. In this section, we will investigate -
exactly how large {Sn T on € Z+} can become as n — oo. To get a feeling
for what we should be expecting, first note that, by Corollary 1.4.9, for any |

. o0 !
nondecreasing {bn}1 C (0, 00),

S, =1

= — 0 P-almost surely if %) < 00.
n n=1 "

Thus, for example, S, grows more slowly than ns logn. On the other hand,

if the X,,’s are 91(0, 1)-random variables, then so are the random variables %; :

and therefore, for every R € (0, 00),

o Sn . Sn
1 — > = —_—

n>N

znmP(—i>R)>a

Hence, at least for normal random variables, we can use Lemma 1.4.1 to see that

T n _ .
nh_)n;o % = oo P-almost surely;

and so S, grows faster than n?.

If, as we did in Section 1.3, we proceed on the assumption that Gaussian
random variables are typical, we should expect the growth rate of the S,,’s to be
something between n? and n? logn. What, in fact, turns out to be the precise
growth rate is

(1.5.1) An = y/2nlogg,)(nV 3)
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where log(s) = = log(log ) (not the logarithm with base 2) for x € [e, 00). That
is. one has the Law of the Iterated Logarithm:

(1.5-2) n@c Sn =1 P-almost surely.
This remarkable fact was discovered first for Bernoulli random variables by Khin-
chine, was extended by Kolmogorov to random variables possessing 2 + € mo-
ments, and eventually achieved its final form in the work of Hartman and Wint-
ner. The approach which we will adopt here is based on ideas (taught to the
author by M. Ledoux) introduced originally to handle generalizations of (1.5.2)
to random variables with values in a Banach space.’ This approach consists of
two steps. The first establishes a preliminary version of (1.5.2) which, although
it is far cruder than (1.5.2) itself, will allow us to justify a reduction of the gen-
eral case to the case of bounded random variables. In the second step, we deal
with bounded random variables and more or less follow Khinchine’s strategy
for deriving (1.5.2) once one has estimates like the ones provided by Theorem
1.3.13.

In what follows, we will use [3] = max{n€Z: n <3 } to denote the integer
part of 3 € R and will define

. S
Ag=Ap and Sg= A[—Z] for B € [3,00).

1.5.3 Lemma. Let {Xn}(:c be a sequence of independent, identically distribut-
ed random variables with mean-value 0 and variance 1. Then, for any a € (0, 00)
and 3 € (1, 00),

E—— ~ 0 ~ 1
i < .S. i m| > T2 .
nlgr;olsn| <a (as.,P) if Z:IP(ISg | >af3 2) < 0
ProoF: Let 8 € (1,00) be given and, for each m € Nand 1 <n < 8™, let apmn
be a median (cf. (1.4.12)) of Sgm)—S,. Noting that, by (1.4.14), |amn| < vV2B™,
we see that

B[S, = m max |G|
n—oo m—00 [-}m—lgnggm
< B% hm max I—‘Sj—|
T mooe gmoi<n<fm Agm
[Sn + Qmn].

1L =
< B2 lim max ;
m—oc n<pm AB‘m

" See M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer—Verlag Ergebnisse
Series 3.Folge-Band 23 (1991).
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and therefore,

(hm |S |>a><P(l—iﬁ maXMZaﬁ_%>-

n—00 m—oo n<gm Aﬂm

But, by Theorem 1.4.15,

Sn+am,n _1 & -3
P(maxl—A—|2aﬁ 2) §2P(1ng|2aﬂ 2),

n<pgm am

and so the desired result follows from the Borel-Cantelli Lemma. U
1.5.4 Lemma. For any sequence {X,}$° of independent, identically distributed

random variables with mean-value 0 and variance o2,

(1.5.5) lim |S | <8 (as., P).

n—oo

PROOF: Without loss in generality, we assume throughout that ¢ = 1; and, :
for the moment, we will also assume that the X,’s are symmetric (cf. Exercise |
1.4.30). By Lemma 1.5.3, we will know that (1.5.5) holds with 8 replaced by 4
once we show that

= o 3
(1.5.6) goP(|52m| >2}) < .

In order to take maximal advantage of symmetry, let (2, F, P) be the probability
space on which the X,’s are defined, use {R,}{° to denote the sequence of !
Rademacher functions on [0, 1) introduced in Section 1.1, and set Q@ = Ajg,1) X P

([O, 1) x Q,Bpo1) x F ) It is then an easy matter to check that symmetry of
the X,’s is equivalent to the statement that :

weQ— (X1 Xn(w),...) € RE
has the same distribution under P as
(tw) € [0,1) x @ — (Ry()X1(w)s -, Ru(D) Xn(w),...) € RE'

does under Q. Next, using the last part of (iii) in Exercise 1.3.20 with o = :

Xi(w), note that:

)\[0,1) ({t 6 0 1

a2
< 2exp [—m], GG[0,00) and w € Q.
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Hence, if
2"1
1 2
= — m >
Am {weﬂ 2m;X (w) 2}
and -
Fm(W) = )\[071) ({t € [O, 1) . Z Rn(t)Xn(W) Z 2%A2m}> s
n=1

then, by Tonelli’s Theorem,
({wen: Smw)| 222 Asm }) | Fon(w) P(dw)

8AZ..
<2 exp|-————="——| P(dw) <2exp|—4lo 2m| 4+ 2P(An).
<2, p[ 2zizlxn(w>2] (@) 5 2exp|-4logy 27] + 2P ()

Thus, (1.5.6) comes down to proving that 3% oP(Am) < oo, and in order
to check this we argue in much the same way as we did when we proved the
converse statement in Kolmogorov’s Strong Law. Namely, set

2"1
Trni1 — Tm =  Tm
Tn=>_ X2, Bm:{—“L;—m—22}, and Tm =10
n=1

for m € N. Clearly, P(Am) = P(Bm). Moreover, the sets B,,, m € N, are
mutually independent; and therefore, by the Borel-Cantelli Lemma, we need
only check that

P(Eﬁ B,,Q:P(Eﬁ T—'”*;—"ﬂz2>:0.

m—oo m—o0 m

But, by The Strong Law, we know that T,. — 1 (as., P), and therefore it is
clear that

m - Tm
T—%— —1 (as.,P).

We have now proved (1.5.5) with 4 replacing 8 for symmetric random variables.
To eliminate the symmetry assumption, again let (2, F, P) be the probability
space on which the X,’s are defined, let (€, F’, P’) be a second copy of the
Same space, and consider the random variables

X, (w) — X, (w')
V2

(w,w) €EAX QY+ Yy (w,w') =
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under the measure Q = P x P’. Since the Y,’s are obviously symmetric, the
result which we have already proved says that
T |Sn(w) - Sn(w’)l
lim
n—oc

< 2% <8 for Q-almost every (w,w’) € 2 x .

n

Now suppose that limy,— 00 'i"' > 8 on a set of positive P-measure. Then, by

Kolmogorov’s 0-1 Law, there ‘Wwould exist an € > 0 such that
— IS,
lim ‘Aﬂ > 84 ¢ for P-almost every w € {;

n—o0 n

and so, by Fubini’s Theorem,! we would have that, for Q-almost every (w, W' e
Q1 x (V, there is a {nm(w) : m € Z*} C Z* such that ny,(w) /oo and

lim |Snm(w)(w’)‘
m—oo Anm(w)
> lim ISnm(w)(w)\ _ m ‘Snm(w)(w) ‘Snm(w)(w’)\ > e
m—oo o () m—o0 Anm(w)

But, again by Fubini’s Theorem, this would mean that there exists a {nm: me

Sy (@'
Z+} C Z+ such that nm /oo and lim, _,__ °met)
w' € §; and obviously this contradicts

2
, N 1
EP S =——0. O
An 2loggyn

We have now got the crude statement alluded to above. In order to get the
more precise statement contained in (1.5.2), we will need the following applica-
tion of the results in Section 3. ‘

> ¢ for P’-almost every

nm

1.5.7 Lemma. Let {Xn}jo be a sequence of independent random variables
with mean-value 0, variance 1, and common distribution p. Further, assume,
that (1.3.4) holds. Then, for each R € (0,00) there is an N(R) € Z* such that '

[8Rlog(q) n
1= Ky —22 2
( " R log(2) n

for n > N(R). In addition, for each € € (0, 1], there is an N(e) € Z* such that,
for all n > N(e) and |a| < 1, ;

(158)  P(|8:| > R) < 2exp

(1.5.9) P(‘S’n —a| < e) > %exp{_ (a2 + 4K|a|e) log ) n}

In both (1.5.8) and (1.5.9), the constant K € (0,00) is the one in Theorem;‘
1.3.16.

T This is Fubini at his best and subtlest. Namely, we are using Fubini to switch between
horizontal and vertical sets of measure 0. ‘
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PROOF: Set
A

n
n

An =

n

B (2log(2)(n v 3)) 3

To prove (1.5.8), simply apply the upper bound in the last part of Theorem
1.3.16 to see that, for sufficiently large n € Z7,

P(|8:] > R) = P([Sa] = RX.)
< 2exp [—n (% - K(R)\n)3)] .

To prove (1.5.9), first note that
P('S’n - a| < e) = P(‘En - ani < en),

where a, = a), and €, = €\,. Thus, by the lower bound in the last part of
Theorem 1.3.16,

P('S’n — a| < e)

K a 2
> (1 - E) exp [—n (——2— + Klan|(en + an))]

K 2 2
- (1 g [ (o 2Rl

for sufficiently large n’s. O

1.5.10 Theorem (Law of Iterated Logarithm). The equation (1.5.2) holds
for any sequence {Xn}(:o of independent, identically distributed random vari-
ables with mean-value 0 and variance 1. In fact, P-almost surely, the set of limit

oo
points of{i—"} coincides with the entire interval [—1,1]. Equivalently, for any
nJ1
feC®R),

(1.5.11) Ef(%): sup f(t) (as.,P).

n—oo n te[-1,1]

(Cf. Exercise 1.5.15 below for a converse statement.)

Proor: We begin with the observation that, because of (1.5.5), we may restrict
our attention to the case when the X,’s are bounded random variables. Indeed,
for any X,’s and any € > 0, an easy truncation procedure allows us to find an
Y€ Cy(R; R) such that Y;, = ¢ o X,, again has mean-value 0 and variance 1
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while Z,, = X,, — Y,, has variance less than €2. Hence, if the result is known "
when the random variables are bounded, then, by (1.5.5) applied to the Z,,’s:

<1+ 8¢,

n—oc n—oo

lim |S |<1+lim‘2%

and, for a € [-1,1],

lim ]gn —a| < lim

n—o00 n—oo

’E?nzl Zom(w)
An

for P-almost every w € €. ,
In view of the preceding, from now on we may and will assume that the X,,’s
are bounded. To prove that lim,_ e Sp < 1 (a.s., P), let B € (1,00) be given .
and use (1.5.8) to see that :

P(|8gm| > 8%) < 2exp[-B% log(y) [5™]]

for all sufficiently large m € Z*. Hence, by Lemma 1.5.3 with a = 3, we see
that lim,,_, . ISn‘ < B (a.s., P) for every 3 € (1,00). To complete the proof, we '
must still show that, for every a € (—1,1) and € > 0,

P(li_m |5'n—a| <e) =1.

n—oo
Because we want to get this conclusion as an application of the second part of
the Borel-Cantelli Lemma, it is important that we be dealing with independent

events; and for this purpose, we use the result just proved to see that, for every -
integer k > 2,

lim ]S —a] < hm lim lSkm —a]
m—o00

n—00 k—o0
w— . | Sgm — Sgm-
= lim lim |22 28" 4|  P-almost surely.
k—oo 7500 Akm
Thus, because the events
S m = S m—
Ak,mE{lw—a <e}, meZ",
Akm

are independent for each k > 2, all that we need to do is check that

Z P Ak m = oo for sufficiently large £ > 2.
m=1
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But A A
P A m f— P g m _ Lm— - k'"'a’ < kme 5
( k’ ) < k k ' Akmvkmfl Akm_km—l
and, because
) Agm

lim max |——— -1/ =0,

k—oo m€EZt Akm_km-l
everything reduces to showing that
(1.5.12) Z P(|5'km_km_1 —a| < 6) =00

m=1

foreach k > 2, a € (—1,1), and € > 0. Finally, referring to (1.5.9), choose €5 > 0
so small that p = a2 + 4Kegla| < 1, and conclude that, when 0 < € < €,

~ 1
P(|Sn — a| < 6) > iexp[—plog@) n]

for all sufficiently large n’s; from which (1.5.12) is easy. O

1.5.13 Remark. The reader should notice that the Law of the Iterated Log-
arithm provides a naturally occurring sequence of functions which converge in
measure but not almost everywhere. Indeed, it is obvigus that S, — 0 in
L?(P), but the Law of the Iterated Logarithm says that gn}fo is wildly diver-
gent when looked at in terms of P-almost sure convergence.

Exercises

1.5.14 Exercise: Let X and X’ be a pair of independent random variables
which have the same distribution, let & be a median of X, and set Y = X — X'.

(i) Show that Y is symmetric and that
P(IX -a|2t) <2P(|v|2t) forall te0,00),
and conclude that, for any p € [1,00),

1
3

1EP[y?]? < EP[X?]? < (2EP[Y7])7 + al.

In particular, X € LP(P) if and only if Y is.
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(ii) As an initial application of (i), we give our final refinement of The Weak Law |
of Large Numbers. Namely, let { X,,}]° be a sequence of independent, identically
distributed random variables. By combining Exercise 1.2.15, part (ii) in Exercise
1.4.30, and part (i) above, show that! '

lim P(I?n‘ < C’) =1 for some C € (0, 00)

n—oo

= lim nP(]X,|>n) =0
n—oo

= S, —E”[Xy, [X1] < n] — 0 in P-probability.

i

1.5.15 Exercise: Let X,,...,X,,... bea sequence of independent, identically
distributed random variables for which ‘

(1.5.16) P ( lim % < oo) > 0.

n—oo n

In this exercise we will show? that X, is square P-integrable, EF [X 1] =0, and :

— S . Sy 3
(1.5.17) lim = = — lim " =E”[X}]? (as.,P).

n—oo Ap n—oo fin
(i) Using Lemma 1.4.1, show that there is a o € [0, 00) such that

i 1S

n—oo A

(1.5.18) =0 (as.,P).

n

Next, assuming that X, is square P-integrable, use The Strong Law of Large
Numbers together with Theorem 1.5.10 to show that EP [X 1] = 0 and :

o=EP[X2 = Tm % = _ i 52 (a5 p)
n n—oo n

In other words, everything comes down to proving that (1.5.16) implies that X °
is square P-integrable. :

(ii) Assume that the X,,’s are symmetric. For t € (0,00), set

X5 = Xn 1o, (1Xnl) = Xn 1t,00) (| Xal),

T These ideas are taken from the book by Wm. Feller cited at the end of §1.2. They become '
even more elegant when combined with a theorem due to E.J.G. Pitman (cf. ibid.). :
$ We follow Wm. Feller “An extension of the law of the iterated logarithm,” J. Math. Mech. |
18, although V. Strassen was the first to prove the result.
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and show that
(X1, X5, ..) and  (Xi,...,Xn,...)
have the same distribution. Conclude first that, for all ¢ € [0, 1),

im IE:Ln:I X Lo, (‘Xnm

n—oc ATL

<o (as.,P),
where o is the number in (1.5.18), and second that
E”[X}] = lim E” [ X7, [X)] <] <o
t oo

Hint: Use the equation

X, + Xt
Xn 1[O,t] (|Xn!) e —

?

and apply part (i).

(iii) For general {Xn}fo, produce an independent copy {X;L}To (as in the proof
of Lemma 1.5.4), and set Y,, = X,, — X/,. After checking that

lim
n—o0

<20 (as.,P),

conclude first that EP [Yf] < 402 and then (cf. part (i) of Exercise 1.5.14) that
EP [Xf] < oo. Finally, apply (i) to arrive at EF [Xl] =0 and (1.5.17).

1.5.19 Exercise: Let {§n}fo be a sequence of real numbers which possess the
Properties that

lim 3, =1, lim §,=-1

, and  lim [§,41 — §,] =0.
n—co n—o0o

n—oo

Show that the set of sub-sequential limit points of {.§n}fo coincides with [—1,1].
Apply this observation to show that in order to get the final statement in
éheorem 1.5.8, we need only have proved (1.5.10) for the function f(z) =z, z €

Hint: 1n proving the last part, use the square integrability of X; to see that
E p (—" > 1) < 00,
n
n=1

and apply the Borel-Cantelli Lemma to conclude that Sn=8,.1—0 (a.s., P).



Chapter 11 :

The Central Limit Theorem

§2.1: The Theorems of Lindeberg and Berry—Esseen

Up to this point, the only reason for our believing that Gaussian random vari- ;
ables deserve the nickname normal is that on two occasions (cf. Sections 1.3 and
1.5) it turned out that their behavior led to accurate predictions about sums of
more general, independent, square integrable random variables. In this section,
we will provide a mathematically rigorous explanation why Gaussians are so
normal.

Given a sequence {X, : n € Z*} of mutually independent, identically dis-
tributed random variables with mean-value 0 and variance 1, set S, = Z;L X
In Chapter I we discussed the limit behavior, as n — oo, of S,, divided by vari- :
ous weights. In particular, we saw (cf. Theorem 1.5.10) that the precise rate at
which S, grows is given by the numbers A,, in (1.5.1). Hence, from the point °
of view of either almost sure convergence or even convergence in probability,
there is no hope of getting 3, = % to converge. On the other hand, the ran- -

dom variables S, do possess some basic stability: their mean-value is always 0 :
and their variance is always 1. In other words, for any quadratic function ©,

A~

E” [¢(Sn)] is independent of both n € Z* and the particular random variables
out of which S'n is built. At first sight, this stability may not appear to be very
significant. Nonetheless, the remarkable fact which emerges from the consid- X
erations below is that, together with independence, this stability for quadratic
functions leads to the existence, for a much larger class of functions ¢, of the limit °
lim,_, . EF [go(S'n)], where (and, perhaps, this is the most surprising part) the .
limit does not depend on the particular choice of the original random variables
X,.

Before getting down to serious business, it may be helpful to start with a rather
hands-on approach; namely, we suppose that X, has moments of all orders and
attempt to compute limy_,oc EX [S™] for integers m > 3. To this end, first note

o 60
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that

=3 (7)Er e )

=nmEP[S7 ] + 0} (T) E” [XIHEP [,

L

i=2
Thus, after dividing through by n e , one can use induction to prove that L,, =
limn— 00 EY [S7] not only exists for all m € N but also satisfies Ly =mL,,_,
for m € Z*. Therefore, since Ly = 1 and L, = 0, we have now proved that

. . il !
(2.1.1)  lim EP [S2*71 =0 and lim EP [$2m] = H(%_ 1) = @m)!

n—oo n—oo h 2mn !’

ot

for all m € Z*. In other words, at least when X 1 has moments of all orders and ¢
is a polynomial, lim,,_,., EX [cp(Sn)] exists and is independent of the particular
choice of random variables.

In order to carry our analysis to the next stage, 1t will be essential to find
another expression for what we expect the limit lim,_, . EX [cp(Sn)] to be; and,
because we expect the limit to be independent of the particular choice of X,,’s,
it is only reasonable to carry out this computation with X,,’s for which the
distribution of S‘n 1s as simple as possible. In particular, it is reasonable to guess

that, if such a random variable exists, one should take X, to have the property
that

E” [X7"] = lim EP[$§7], meN.

n—oo

That is, in view of (2.1.1), we are guessing (somewhat formally) that

00 9f 2
E” {eaxl] = ;Tg' = exp [%] , aeC.
£=0 )

But this is exactly the expression which one gets when X, is an 2N(0,1)-random
Variable, and so we are now led to take the X,,’s to be mutually independent
N0, 1)-random variables. Moreover, even though our route to this choice was
Somewhat suspect, once we make it there can be no doubt that it is precisely
the right one! Indeed, if the X,’s are mutually independent MN(0,1)-random
Variables, then S,, is an N(0, n)-random variable and so 3, is again an (0, 1)-
Tandom variable. In other words, we are guessing that the correct formulation
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of the result for which we are looking is that, for a large class of independent,
identically distributed random variables and a large class of functions ¢,

(2.1.2) lim EF [o(S,)] = /R’v?(y) v(dy),

n—oc

where we have allowed ourselves the nearly unforgivable abuse of notation in-
volved in letting v denote the probability measure on R whose density, the Gauss
kernel, we denoted by « in (1.3.5).

Because of the pivotal position that it occupies in probability theory, we will
devote the rest of this section to two quite different derivations of (2.1.2). In
fact, in order to indicate how amazingly robust a phenomenon underlies the
computation, we will, from now on, be dealing with the following more general
setting. Namely, (2, F, P) is a probability space on which {Xm};1 will be mutu-

ally independent square P-integrable random variables with mean-value 0 and
1

Om = (]EP [X;])E > 0. Also, we will use the notation

(2.1.3) Sn=) Xm, Zp= (Z afn) , and §, = %
1 1 n

Notice that when the X;’s are identically distributed and have variance 1, the

A~

Sy, in (2.1.3) is consistent with the notation used above. Finally, we set

_ Im _ 1 —~ P [y2
(2.1.4) Tn = énn?}g(nil_n and g,(e) = 53 Z_:IIE [Xm, ]Xm| > eEn]

[N

for € > 0. Clearly, in the identically distributed case, r,, = n~% and
gn(e) = o7 2EP [Xf, | X1| > néale] — 0 asn — oo for each € > 0.

2.1.5 Theorem (Lindeberg). Refer to the preceding, and let ¢ be an element
of C*(R;R) with bounded second and third order derivatives. Then, for each
e>0,

(2.1.6)

E”[p(50)] —/Rwh

In particular, because

€ Tn " "
< (z+3) 1"l + 9l

(2.1.7) r2 < e +gn(e), €>0,
(2.1.2) holds if gn(€) — 0 as n — oo for each € > 0.1

 The condition that g, (e) —» 0 for each € > 0 is often called Lindeberg’s condition, because it
was Lindeberg who introduced it and proved that it is a sufficient condition for (2.1.2). Later,
Feller proved that (2.1.2) plus r, — 0 imply that Lindeberg’s condition holds. Together, these
two results are known as the Lindeberg—Feller Theorem. For a proof of Feller’s part, see
Sec. 20 of M. Loéve’s Probability Theory, publ. originally in the University Series in Higher
Math. by van Norstrand, Inc. (1963), and now by Springer-Verlag.
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prooF: Choose (0, 1)-random variables Y1,...,Y, which are both mutually
independent and independent of the X,,’s. (After changing the probability
spaces, if necessary, this can be done as an application of Theorem 1.1.9 or
Exercise 1.1.14.) Next, set

- orYs
Y. =
N

and Tn = Zn:Yk,
1

and observe that T}, is again an 91(0, 1)-random variable and therefore that

(2.1.8) A= /chdv ‘EP (5n)] - [‘P(Tn)]‘ :
Further, set X b= , and define
m—1 ) n )
Um:ZXk+ Z Y, forl<m<n,
k=1 k=m+1

where the first sum is taken to be 0 if n = 1 and the second sum is 0 if m = n.
It is then clear, from (2.1.8), that

A<2Am where A = [ [0 (U + Xm)] ~ E [ (Um + ¥m)] |

Moreover, if

Ron(€) = @(Unm + &) = 0(Unm) — €0/ (Unm) = 56" (Um), E€R

then (because both X,, and Y, are independent of U, and have the same first
two moments)

o 8 ] - ] <3 ] o 1]
In order to complete the derivation of (2.1.6), note that, by Taylor’s Theorem,

R ® < (0" [L55) A ("l Je)

and therefore, for each € > 0,

iﬂ*f’ [\Rm<Xm>l]

III

L S E P Xl 1Xm] < €S0] + 19l ZEP[&, Xon| > €5,
1

EH(P”I 2": ///H
1

" elle™ |lu
©"[lugn(e) = 6

I|‘P”“ugn(€)§

:%\3“
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S &P [|Ra(i)]] < 127 g2 ) ]i E_m < M
1 n

Hence, (2.1.6) is now proved.
Given (2.1.6), all that remains is to prove (2.1.7). However, forany 1 <m < n
and € > 0,

0%, =" [ X2, | Xn| < ezn} +EP X2, | Xl > ezn} < 52( + gnle)). O

If one is not concerned about rates of convergence, then the differentiability -
requirement can be dropped from the last part of Theorem 2.1.5. In fact, with .
essentially no further effort, we have the following version of the famous Central
Limit Theorem.

2.1.9 Corollary (Central Limit Theorem). With the setting the same as it
was in Theorem 2.1.5, assume that g,(e) — 0 as n — oo for each € > 0. Then
(2.1.2) holds for every ¢ € C(R; C) satisfying

e(y)]
(2.1.10) sup l < 00
ver 1+ [yl?

In particular, for every pair —oo < a < b < o0,

R 1 b 2
1. ] < < = — - .
(2.1.11) nlLII;OP(a <85, < b) N exp[ ] dy

(See Exercise 2.1.38 below for more information in the identically distributed
case.)

Proor: To prove the first part, choose a function p € C°°(( 1,1); 10, oo)) with
Jg P(y) dy = 1. Then, for each k € Z*, the function ¢y given by

k
T) = k/_k p(k(z —y) o(y)dy, z€R,

is a smooth, compactly supported function. Furthermore, as k — oo, ¢, — ¢
uniformly on compacts; and, because of (2.1.10), there is a K € (0, 00) such that

sup |(<p <pk)(y)| < K(1+y2) forall yeR.
keZ+
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Thus, by Theorem 2.1.5 applied to oy,

fim |EP {@(Sn)] —/ch(y)v(dy)l

n-—oo
< Jm Fm B |Go - o) (8] + [ 10— o)) 2t
< K Tm BF [1+ 52, S, L>R]+K (1+9%)v(dy)
noroe lyl>R

for every R € (0,00). Obviously, the second term in the final line tends to 0 as
R  oo. To handle the first term, choose n € C¢° (R; [0, 1]) so that n = 0 on
[-3, 1] and n =1 off (—1,1); and define

Yr(y) = (1 +y2)77 (%) for yeR.

Then, by Theorem 2.1.5 applied to ¥r,

Tim EP[HSﬁ, ES |>R] < Tm ]EP wR /wR 50

n—oC

as R oo. Hence, we have now proved that (2.1.2) holds for every ¢ € C(R;R)
which satisfies (2.1.10).

Turning to the second assertion, let a < b be given. To prove (2.1.11), choose
{gok}cl’o C Cp(R;R) and {¥x}° C Cu(R;R) so that 0 < ¢ Lgp) and 1 >
Yk \¢ 1{q) as k — co. Then,

lim P(a < Sn < b) > lim EF [cpk(Sn)] = /Rtpk(y) y(dy) — 'y((a,b))

n—oc n—oC

as k — oo; and, similarly,

lim P(a < S, < b) < lim EP d)k /d)k v(dy) — 7(la,b]).

n—o0 n—oo

Hence, since v((a,b)) = ¥([a, b]), we are done. O

As we will see in the next section, the principles underlying the passage from
Theorem 2.1.5 to Corollary 2.1.9 are very general. In fact, as we will see in
Chapter 3, some of these principles can be formulated in such a way that they
extend to a very abstract setting. However, before we start delving into such
extensions, we will devote the rest of this section to a closer examination of
the situation at hand. In particular, we are going to see how to improve the
quantitative statements contained in Lindeberg’s Theorem.
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From (2.1.6), we get a rate of convergence in terms of the second and third
derivatives of ¢. In fact, if we assume that

(2.1.12) e = (EP[|IX4?])% <00, 1<k<n,
then (cf. the proof of Theorem 2.1.5) by using the estimates
" 3
@) < LEONED g g <,

one sees that (2.1.6) can be replaced by

< 2l 5 7

1.1
(2.1.13) s

E” [<P(S’n)} —/Rwdv

when the X;’s have third moments.

Although both (2.1.6) and (2.1.13) are interesting, neither one of them can
be used to give very much information about the rate at which the distribution
functions

(2.1.14) zeR+— Fo(z) = P(S, <z) €[0,1]

are tending to the error function
(2.1.15) Glo) = 1((~0yal) = = [ 5d
1. T)= —00,Z|) = —— e 7 dt.
7 V2r /_oo

To see how (2.1.6) and (2.1.13) must be modified in order to gain such informa-
tion, first observe that

/ ¢ (2)(G(z) - Fale)) de
R

= EP [p(5,)] - /R o) Y(dy), @< CLR:R).

(2.1.16)

(To see (2.1.16), reduce to the case in which ¢ € C}(R;R) and ¢(0) = 0; and
for this case apply integration by parts over the intervals (—ooc,0] and [0, 00)
separately.) Hence, in order to get information about the distance between
F, and G, we will have to learn how to replace the right-hand sides of (2.1.6)
and (2.1.13) with expressions which depend only on the first derivative of ©.
For example, if the dependence is on ||¢'||,,, then we get information about the
L'(R) distance between F,, and G; whereas if the dependence is on 1ol 1 (m) s
then the information will be about the uniform distance between F, and G.
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The basic idea which we will use to get our estimates in terms of ¢’ was
jntroduced by C. Stein and is an example of a procedure known as Stein’s
method.T In the case at hand, Stein’s method rests on the simple observa-
tion that if ¥» € C(R;R) has no more than linear growth at infinity, then the
only obstruction to finding a boundedly differentiable solution f to the equa-
tion f'(z) — xf(z) = ¢(x) is that [ dy = 0. More precisely, we will use the
following.

2.1.17 Lemma. Let ¢ € C}(R;R), assume that ||¢’||, < oo, set

S i,
= </RSO Y
and define
(2.1.18) zteER+— f(z) = e /Cﬂ gb(t)e_t‘;‘ dt.
Then f € CE(R;R),
2119) I <2 17 <3500 N0 17 < 6
and
(2.1.20) fl(z) —zf(z) = ¢(x), xR

PROOF: The facts that f € C(R;R) and that (2.1.20) holds are elementary
applications of the Fundamental Theorem of Calculus. Moreover, knowing that
f € CY(R;R) and using (2.1.20), we see that f € C*(R;R) and, in fact, that

(2.1.21) (@) —zf(z)=flx)+ ¢ (z), z€R

To prove the estimates in (2.1.19), first note that, because ¢ and therefore f
are unchanged when ¢ is replaced by ¢ — ¢(0), we may and will assume that
©(0) = 0 and therefore that |¢(t)] < ||¢'||u|t|. In particular, this means that

VR"”’” <1l [ 1e13(d0) = ' hy/2.

Next, observe that, because

t2
/ Ht)e % dt = 0,
R

' Stein provided an introduction, by way of examples, to his own method in Approzimate
Computation of Ezpectations, IMS Lec. Notes & Monograph Series 7 (1986).
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an alternative expression for f is

flz) =—e7 /00 c,ZJ(t)e_LZ‘zl dt, z€R

Thus, by using the original expression for f(z) when z € (—o0,0) and the
alternative one when z € [0, 00), we see first that

2

(2.1.22) lf(z)] < e /Ioo |<,5(—tsgn(:v)) |e_§ dt, z€eR,

z|

and then that

1£(@)] < @llue™ / (t+ \ﬁ) .

||

But, since

d z2 *© t2 z2 o0 t2
-—(eT/ e_Tdt> §eT/ te"zdt—1=0 forz €[0,00),
dr z z

we have that

22 [ 42 2 [ .2
(2.1.23) eT/ te” 7 dt =1 and eT/ e” 7 dt < \/g, reR;
I

z| lz|

which means that we have now proved the first estimate in (2.1.19). To prove
the other two estimates there, derive from (2.1.21) that

d_‘:iv (e_éf'(:v)) = 6-% (f(:v) + <p'(:v))

and therefore that

2 T

Flay=eT [ (fit)+/(®))e T dt

— 0o

= —e7 /oo(f(t) + <p’(t))e—§ dt, = eR

Thus, reasoning as we did above and using the first estimate in (2.1.19), the
estimates in (2.1.23), and equations (2.1.20) and (2.1.21), we arrive at the second
and third estimates in (2.1.19). O



§2.1: The Theorems of Lindeberg and Berry-FEsseen 69

9.1.24 Theorem. Continuing in the setting of Theorem 2.1.5, one has that for
all € > 0 (cf. (2.1.4), (2.1.14), and (2.1.15))

(2.1.25) || Fn - G”LI(R) < 6(rn + €) + 327 g, (26).

Moreover, if (cf. (2.1.12)) 7,, < oo for each 1 < m < n, then

3y TS 9Y 1 T
(2.1.26) || Fn — G”Ll(R) <6T" + E%l ) 4 ( E%I ) '

In particular, if 02, =1and 7, <7 < oo for each 1 <m < n, then

6 + 273 < 873
® = Vi T yn
PROOF: Let ¢ € C!(R;R) with bounded first derivative be given, and define f

accordingly, as in (2.1.18). Everything turns on the equality in (2.1.20). Indeed,
because of that equality, we know that the right-hand side of (2.1.16) is equal to

1 = G|

n

E”[/(52)] ~ EF [$uf(52)] = 3 (G2E" [£/(50)] — E” [Xnf(50]),

where we have set ., . Next, define

If
MISQ

o
5
N
b
3
|s

Trm(t) = Sn + (t — 1))2m for t € [0, 1],

note that Tn,m(O) is independent of Xm, and conclude that

EP[me(Sn)] /0 EP [XZf( nm(t))] dt
:&ntEP[f’(Tn,m(O))] /0 EP[X2 (£( nm(t))—f'(Tn,m(O))] dt

for each 1 < m < n. Hence, we now see that

(2.1.27) EF [¢(Sn)] - /W”_ZU Am Z/

where

and
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Obviously, by Taylor’s Theorem and Holder’s inequality, for each 1 <m < n, -

(2.1.28) A | < Gmllf e < (rn A —) [Faal™

while, for each t € [0,1] and € > 0,

| B (t)| < 2et62, || f"lu + 2”’;‘“11«:" [X2 | X| > 26Z,|.

Thus, after summing over 1 < m < n, integrating with respect to t € [0, 1], and
using (2.1.16), (2.1.27), and (2.1.28), we arrive at

< (rn Il + 200261 f Il

[ @) (Fate) = Gta) d
R

which, in conjunction with the estimates in (2.1.19), leads immediately to the
one in (2.1.25). In order to get (2.1.26), simply note that

1 R . 73
|Bm(t)ISt/0 EP [ X ] £ (Tom(s1)) s<t||f”||uz";,

and again use (2.1.27), (2.1.19), and (2.1.28). O

The preceding argument already displays the power of Stein’s method in that it
has allowed us to replace Lindeberg’s estimate in terms of ||¢'”|j, by an estimate :
in terms of |j¢'||,. However, it does not tell us how to replace ||¢'[|, by [l¢'l|z1(®);
and, in fact, this replacement will require us to use a clever inductive procedure
which was introduced into this context by E. Bolthausen.! But, before we can
use Bolthausen’s argument, we will need the following simple lemma.

2.1.29 Lemma. Let ¢ € C'(R;R), and define f accordingly, as in (2.1.18). °
Then || fllu < \/Fll¢'Ilh and [|f'lu < [l¢[h-

PROOF: We will assume, throughout, that [|¢'|}; = 1. Next, observe that, by .
the Fundamental Theorem of Calculus, :

(z) = — / 5,2 (y) dy, where gy = 1_ooy)
R

and so (cf. (2.1.15))

/1/1y y)dy, where ¥ (z) = \/ﬁeé (G(zAy)-G(z)G(y)) > 0.

f The Berry—Esseen Theorem appears as a warm-up exercise in Bolthausen’s “An estimate of :
the remainder term in a combinatorial central limit theorem,” Z. Wahr. Gebiete 66.
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At the same time, this, together with (2.1.20), gives

1@ = [ (evsfe)+ 24(0)) ¢ Gy

Hence, the desired estimates come down to checking that

22

% (Cle Ay) - G@OW) < 7

and 2
|Varee” (Gny) - G(2)G(W)) + (oo (®) - G(y)) <1

for all (z,y) € R x R. But
Gz Ay) - G(2)G(y) < G(z) - G(2)* = % (1 —4(G(z) - %)2)

and

2 1 2] g2 ?
(G)-3)" =5 ( e T d&)
/0 AN

1 £249? 1
> — // e~ dﬁdn:—(l—e
8w 4

£2+n?<z?

1_2)
2
b

which proves the first inequality. To get the second one, it suffices to do consider
each of the four cases 0 < 2 <y, z>0& y<z,y<z<0,andz<0&y>=
separately and note that, from the first part of (2.1.23),

20 = \/2_7—r:veﬁc23 (1-G(z)) <1 and z<0 = VerleleT G(z) <1. O

2.1.30 Theorem (Berry-Esseen). Let everything be as in Theorem 2.1.5,
and assume that (cf. (2.1.12)) Tm < oo for each 1 < m < n. Then (cf. (2.1.14)
and (2.1.15))

n_3

Tm
(2.1.31) | Fn — Gllu < 10 —53—

n

In particular, if o, = 1 for all 1 < m < n, then (2.1.31) can be replaced by

PR max,
1<m<n

(2.1.32 — <
) 1% = Gl < 10 =" i
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PROOF: For each n € Z* let 8, denote the smallest number 8 with the property

that
3
;L Tm

”Fn - G”u S B

n

for all choices of random variables satisfying the hypotheses under which (2.1.31)
is to be proved. Our goal is to give an inductive proof that 8, < 10 forall n € VAR
and, because ¥; < 7 and therefore 5, < 1, we need only be concerned w1th
n > 2.

Given n > 2 and X),...,X,,, define X,,, Om, and Tnm( )for 1 <m < nand
t € [0,1] as in the proof of Theorem 2.1.24. Next, for each 1 < m < n, set

n 3
2n,m = 2% - U?m 7A-m = ;_m’ Pn = Z%gw and Pn.m = Z ( T )
1

n 1<t<n n,m
£#£m

Finally, set

- S.

Sn,m = Z Xl and Sn,m = En,m,
1<¢<n mm
I#m

and let £ € R +— F, u(z) = P(Sn m < ) € [0,1] denote the distribution of

S, ,m- Notice that, by definition, ||F}, ;, — G|y < Bn— 1Pn,m for each 1 <m < n.
Furthermore, because (cf. (2.1.4))

»2 2 \°
;2'”:1—[75121—7“" and pn,m§<2"> Prs
we see first that
Prn
nom < 3 1<mc< )
SNTETE "
and therefore that
(2.1.33) max [|Fom = Gllu < LD
15 (1-r2)i

Now let ¢ € CZ(R;R) with l"llL1(®) < oo be given, define f accordingly as
n (2.1.18), and let

{Am:1<m<n} and {B,(t): 1<m<né&telo,1]}
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be the associated quantities appearing in (2.1.27). By (2.1.20), we have that
Aol < [EP [Xon (80| + [EF [Tom(0) (£(30) £ (Fom(@)))]|

+ 'EP [‘P(Sn) - W(Tn,m(o))] ’

< EP[|Xon| |1 + B [ |3 T (0)] ] 11

[ o )]

< (171 + Z2207) + ma, (67 (%! (Fum(©)]

£€[0,1]

< om (171l + 15'll) + mas [E7 [ () ]|
Similarly (from (2.1.20)), one sees that |Bm( )| is dominated by:
B [ X0 (L) + |E” [ X280 m(0) (£ (Faim(®) = £ (T () )|
B[22 (o (Fnim(®) = ¢(Tam(0))]|

< 6B ||l + 6P [| o] [T 0] 15

n /01 ]EP [X;w' (Tn,m(tg))] ‘ e
<t (I 1) + ¢ max. [EP (X3¢ (Fom(6))]

In order to handle the second term in the last line of each of these calculations
we introduce the function

%, Enm
(61) €D X R xR U ns) = (EXme) + 222y ).

K

Next, using the independence of X,, and Tn,m(O), note that

& (£ (@n©)] = [ Tt ([ w6 @) Pl

< /Q K () / $(Ew 1) 4Fnn) -~ [ w(a,w,y)da(y)[ P(dw)
= [ Pmo)* ~ Fam()) dy\ P(dw)

< Ba-1pn T Bl L wy P

~ k n
- Tg)gEPUX"J ]HW"HU(R) < Q- ke {1,3},
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where we have used ¢/(t,w,y) to denote the first derivative of y € R +—— -
Y(§,w,y), applied (2.1.16) and (2.1.33), and noted that, for all (¢,w) € [0,1]xQ, -
19" (&,w, Nlzrw = ll¢"llL1(r)- At the same time, because

z,
lv(€,w, )l w = 5 o llr@ for all (£,w) € [0,1] x ©,

we have that, for each £ € [0, 1],

< o'l (m) 7,
(2m(1 - r2))

[z ([ $(E ) (dy) ) Pdo)

1
2

Hence, by combining these estimates, we arrive at

!
Al < o [t 1+ NG Brcaon
(2n(1—r2))?  (1-r3)2

=

and

'l 1wy + Br-1pn

(2r(1—r2))?  (1—r2)3

1B ()] < t75 |1 Flla + 111l + 1"l r my

forall1 <m < n and t € [0,1]. Thus, after putting these together with (2.1.16)
and (2.1.27), we conclude that

[ ¢w(cw -Fw) dyl

3
2.1.34 < Sl 4+ 1w
2
+ 'l 21w + 5n—1||<P”||L1(R)Pn)p
1 3 n-
(2m(1 - r2))? (1-r3)2

We next apply (2.1.34) to a special class of ¢’s. Namely, set

1 it z<0
h(x)=¢ 1—z if z€]0,1]
0 if z>1,

and define

he(z) =¢! / n(e 'y)h(z —y)dy fore>0and z € R,
R
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where 7 € C(R; [0,00)) satisfies [, n(y)dy = 1. Finally, let a € R be given,

and set
per(®) = he (55

It is then an easy matter to check that ||o; ;|| () = 1 while ||} || 11w

“), z€Rande, L > 0.

(R - Lpn
Hence, by plugging the estimates from Lemma 2.1.29 into (2.1.34) and then

letting € \, 0, we find that, for each L > 0,

1 a+Lpn
su Gly) - F, d
sup | 7 /a (G(y) — Fa(y)) dy
(2.1.35)
<3y \/?+ ! -
<< - T 3 Pr-
2 8 (2m(1 —r,%))é (1—r2)3L
But ) /a ¥ . atLp,
Edy <R < [ R,
Lpn a—Lp, ( ) Lpn a ( ) v
while
1 a+Lpy 1 a+Lp, Lp
0< / G(y)dy — G(a) = / a+ Lp, — dy) < ==,
<t/ (y) dy — G(a) I ) ( pn = y)y(dy) < o
and, similarly,
0<Gla)— — / Gly) dy < Z2n
a) — )
- Lpn a—Lpn Y v= v 8
Thus, from (2.1.35), we first obtain, for each L € (0, 00),
3 9 3 36, — L
HFn_GHuS -+ _ﬂ-‘i‘ 1 + B lg + 1 Pns
2 32 (8m(1 —r2))® (L—r2)2L  (8m)2

and then, after minimizing with Tespect to L € (0, 00)

||Fn—G||us( Ty

+ 14 17? =) %)pn-

In order to complete the proof startlng from (2.1. 36) we have to consider the
tWo cases determined by whether p,, > 1—10 or p, < 7. Because |[F, — G|, <1,
it is 0bv10us that we can take 5, < 10 in the first case On the other hand, 1f
Pr S 15 and we assume that 3, ; < 10, then, because

l\.‘il»—l

(2.1.36)

3

pn= 53 ZE” Xnl*) 2 o ZE” (X2)E =363 >0,

1
says that ||Fn = Gllu < 10pg. Hence, in either case, 8,1 < 10 =
]
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2.1.37 Remark. It is clear from the preceding derivation (in particular, the
final step) that the constant 10 appearing in (2.1.31) and (2.1.32) can be replaced
by the smallest 3 > 1 which satisfies the equation ;

3 91 9 2 —% 418 % B _% _%
ﬂ=—2-+\/3:2+\/8:7r(1—ﬂ3) Ty

Numerical experimentation indicates that 10 is quite a good approximation to
the actual solution to this equation. However, it should be recognized that, with !
sufficient diligence and entirely different techniques, one can show that the 10 in
(2.1.31) can, in fact, be replaced by a number which is less than 1. Thus, we do
not claim that Stein’s method gives the best result, only that it gives whatever -
it gives with relatively little pain.

In this connection, it is important to remark that, at least qualitatively, one
cannot do better than Berry-Esseen. Indeed, consider independent, standard .
Bernoulli random variables, and define F;, accordingly. Next, observe that when
th=—(2n+1)"3,

Y
Fony1(tn) — G(tn) = \/—2—7r/ e T dr
ity

and therefore that )

fim n? F, -Gl, > —.
T ndIF -Gl >

In particular, since 7, = 1 for these Bernoulli random variables, we conclude
that the constant in the Berry—Esseen estimate cannot be smaller than (27r)_%. :

Exercises

2.1.38 Exercise: Let {Xn}:o be a sequence of independent, identically dis-
tributed random variables, define {S’n tn € Z+} accordingly, and assume that

lim E” [Si A R2] <1 forevery R € [0,00).

n—oo

In particular, this will certainly be the case whenever (2.1.2) holds for every f
¢ € C.(R;R). The purpose of this exercise is to show that the X,,’s are square
P-integrable, have mean-value 0, and variance no more than 1; and the method !

which we will use is based on the same line of reasoning as was given in Exercise
1.5.15.
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(i) Assuming that X, € L?*(P), show that EP[X;] = 0 and EP[X}] < 1. In
particular, use this together with the result in part (i) of Exercise 1.5.14 to see

that it suffices to handle the case when the X, ’s are symmetric.

(ii) In this, and the succeeding parts of this exercise, we will be assuming that
the X,’s are symmetric. Following the same route as we took in (ii) of Exercise
1.5.15, we set

XTtL :an[O,t](|an) “an(t,oo)(|XnI)a ne Z+,
and recall that

(Xf,...,Xfl,...) and (Xl,...,Xn,...)

have the same distribution for each t € (0, 00). Use this together with our basic
assumption to see that

lim sup P(An(t,R)):

R—oo nezt
t€(0,00)

=3

(iii) Continuing in the setting of part (ii), set

where

D=

n

[y

R}.

— 1 <&
St = . > Xilpog(1Xkl).
1

After noting that the Xnlo, (|X»])’s are symmetric, check that
P [|§?L|2] <t
?}?:t use this and induction on n € Z* to see (cf. the proof of Theorem 1.3.1)
IEP[|§?}4] < 3tt,
In Particular, conclude that, for each t € (0, 00), there is an R(t) € (0, 00) such

that

1

P[i?,gl?, o (t, R(t ))] 32 2P( n(t,R(t)))2 <1
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foralln € Z*.

(iv) Given t € (0,00), choose R(t) € (0,00) as in the preceding. Taking into
account the identity ) :
S YT X+ 200 X

" onz

¥

show that
E” X3, %] < t] = EP[|SE]"] < EP[|SE[%, An(t, R®)C] +1
<EF [S‘i A R(t)2] +1

for all n € Z* and t € (0,00). In particular, use this and our basic hypothesis

to conclude first that ;
E” (X3, x| <t] <2

for all t € (0,00) and then that X, is square P-integrable.

(v) After combining the preceding with the Central Limit Theorem, we see that,
in the case of independent, identically distributed random variables, X, is square *
P-integrable with E”[X,] = 0 and E” [X?] < ¢? if and only if ;

lim EP [Si A R2] < o¢? forall R e (0,00).

n—oo

2.1.39 Exercise: An interesting way in which to interpret The Central Limit
Theorem is as the solution to a certain fized point problem. Namely, let P denote ’;
the set of probability measures y on (]R; BR) with the properties that

/R:v2 p(dz) =1 and /R:vu(d:v) =0.

Next, define T'u for 4 € P to be the probability measure on (]R, BR) given by

Tu(l) = // 1r (%) p(dz)p(dy) for T € Bg.
"

After checking that T maps P into itself, use The Central Limit Theorem to
show that, for every p € P,

lim @dT’Lu:/god'y, ¢ € Cp(R; C).
R

n—oo R
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Conclude, in particular, that ~y is the one and only element p of P with the
property that Tu = p and that this fixed point is attracting.

2.1.40 Exercise: Here is another indication of the remarkable stability of nor-
mal random variables. Namely, we outline below a derivation' of the Lévy—
cramér Theorem which says that if X and Y are independent random vari-
ables whose sum is normal (with some mean and variance), then both X and Y
are normal.

(i) Assume that X +Y € M(a,q?), and, by subtracting a from X, reduce to
the case in which X +Y € (0, 0?). Next, show that there is nothing more to
do when o = 0 and that one can always reduce to the case ¢ = 1 when o > 0.
Thus, from now on, assume that X +Y € 90(0, 1).

(ii) Choose 7 € (0,00) so that P(|X|V|Y|>r) < 4, and conclude (cf. (2.1.23))
that

R2
P(|X|>r+R)VP(Y|>r+R) < 4dexp [—7] , Re(0,00).

In particular, show that the moment generating functions z € C — M(z) =
E [eZX] €Candz€ C—— N(z)=E [ezy] € C exist and are entire functions.

Further, note that M (z)N(z) = exp [%2}, and conclude that M and N never

vanish. Finally, from the fact that X + Y has mean 0, show that one can reduce

to the case in which both X and Y have mean 0. Thus, from now on, we assume
that M’(0) = 0 = N'(0).

(ili) Because M never vanishes and M (0) = 1, elementary complex analysis
guarantees that there is a unique entire function g : C — C such that g(0) = 0

and M(z) = e9%) for all z € C. Further, from M’(0) = 0, note that g'(0) = 0.
Thus,

[ o]

n dn x
g(z) = ;cnz where nlc, = o log (E [e**]) » eR

Finally, note that N{z) = exp [% —-g(z )}

(iv) As an application of Holder’s inequality, observe that z € R — g(z) € R

andz e R+ % — g(z) € R are both convex. Thus, since ¢’(0) = 0, both these
functions are nonincreasing on (—c0,0] and nondecreasing on [0,00). Use this
observation to first check that

2
g(z) >0< % —g(x) forallz eR.

t The . .
This derivation is based on a note by Z. Sasvari, who himself barrowed some of the ideas
from A. Rényi.
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Next, use the preceding in conjunction with the trivial remarks
exp|Re(9(2))] = B[] < o)
and
exp [‘ﬁe(é - g(z))] = |E[e*"]] < exp [%2- - g(:v)] ,

to arrive at

—y? < 2%e(g(z)) <z? forz=z4++v-1yeC.

In particular, this means that

B
‘%e(g(z))‘ < - ZE€ C. ‘
(v) To complete the program, observe that, for each n € Z* and r > 0, on the |

one hand
1 2m

Cpr™ = — g (re‘/__le) g~V-1né dg, r >0, ﬁ
2 Jo

while, on the other hand (since g(2) = g(i)),

2
0= / g (rev=19) e~ V=10 gp.
0

Hence,

1 27

cpr" = —/ Re (g (re‘/__w)) e~ V-1ne d9, neZ" andr>0.
m™Jo

Finally, in combination with the estimate obtained in (ii) and ¢y = ¢; = 0, this

leads to the conclusion that ¢, = 0 for n # 2 and therefore that g(z) = cy2?

with 0 < e; < 3.

2.1.41 Exercise: An important result which is closely related to The Central ;
Limit Theorem is the following observation, which occupies a central position 1n :
the development of classical statistical mechanics. ;

For each n € Z*1, let A, denote the normalized surface measure on the n — 1
dimensional sphere

S 1(vn) = {x € R" : |x| = nt},
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and denote by /\%1) the distribution of the coordinate x; under X,. Check that,
when n > 2, /an(dt) = fn(t) dt, where

n—3
W t2 2 a1
-2 (1-2) o,

1
nZwn_) n

and wi_1 denotes the surface area of the (k — 1)-dimensional unit sphere in R*.
Using polar coordinates to compute the right-hand side of

2
(2#)% :/ e dz,
Rk
A
first check that
73
Wr_1 = _FT

7

, and then apply Stirling’s formula

~— [ V]

where I'(t) is Euler’s I-function (cf. (1.3.22)
(cf. (1.3.23)) to see that

Wy 2 1
— as n — O0.

n%wn_l V2

Now, using v to denote the density for the standard Gauss distribution (i.e., the
Gauss kernel in (1.3.5)), apply these computations to show that

fn(t) falt)
ilég ilelﬂlg (D) < oo and that ~{0)

—> 1 uniformly on compacts.

In particular, conclude that, for any ¢ € L(v;R):

(2.1.42) o /dexgp _>/(pd%
R R

Where, this time, 7 is the Gauss distribution.?
A less computational approach to the same question is the following. Let
Xy, y Xn,... be a sequence of independent (0, 1) random variables, and set

TA.XlthOUgh E. Borel seems to have thought he was the first to discover this result in “Sur les

(I::nCiPES d'e la cinétique des gaz,” Ann. UEcole Norm. sup., 3° t. 28, and probably was the first

dieeéo sef'e its significance for statistical mechanics, it appears already in the 1866 article “Uber

.J tatwicklungen einer Funktion von beliebig vielen Variabeln nach Laplaceshen Funktionen

Ozlherer Ordnung,” J. Reine u. Angewandte Math. by F. Mehler. Actually, the preceding is
¥ a small part of what Mehler discovered.
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R, = /X{+---+ XZ. First note that P(R, = 0) = 0 and then that the
distribution of

n7 (X1,..., Xn)
R,

6, =

2
is Ap. Next, use the Strong Law of Large Numbers to see that Eni — 1 (a.s., P)
and conclude that, for any N e 7+,

n—oo

lim E” |p(6M)] = EP [o(X1,., Xn)], v € C(RY:R),

where, for n > N, 9£LN) € RV denotes the projection of 8, € R™ onto its first
N coordinates. Conclude that if A"Y) on (RN, Bgn) denotes the distribution of
x— xNV) = (:vl,...,:vN) € RV under \,, then

lim (pd)\(nN) :/ edy" forall e C’b(RN;(C).
RN RN

n—oo

In particular, by considering the case when N = 2, show that, for any ¢ €
Cb(Rv R)v

(2.1.43) nli_)n;io / <% th(wk) - / (pd7> An(dx) = 0.
k=1 R

STy

Notice that the noncomputational argument has the advantage that it immedi-
ately generalizes the earlier result to cover A" for all N € Z*, not just N =1
(cf. Exercise 2.2.25). On the other hand, the conclusion is weaker in the sense
that convergence of the densities has been replaced by convergence of integrals
with bounded continuous integrands and that no estimate on the rate of conver-
gence is provided. More work is required to restore the stronger statements.

When couched in terms of statistical mechanics, this result can be interpreted
as a derivation of the Maxwell distribution of velocities for an ideal gas of free
particles of mass 2 and having average energy 1.

2.1.44 Exercise: Because the derivation of Theorem 2.1.24 is so elegant and
simple, one cannot help wondering whether (2.1.26) cannot be used as the start-
ing point for a proof of the Berry—Esseen estimate in Theorem 2.1.30. Unfortu-
nately, the following naive idea falls considerably short of the mark.

Let Xi,..., X, satisfy the hypotheses of Theorem 2.1.30. Starting from
(2.1.26) and proceeding as we did in the passage from (2.1.35) to (2.1.36), show
that for every L > 0

63773 L
Fn_G u< l‘m ?
I | T3 Y =
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I AK
s (2) (57)

Obviously, this is unacceptably poor when X3 Y7 73

m

and conclude that

is small.

2.1.45 Exercise: The most frequently encountered applications of Stirling’s
formula (cf. (1.3.23)) are to cases when t € Z*. That is, one is usually interested
in the formula

(2.1.46) n! ~ V2mn (ﬁ) .

e
Here is a derivation of (2.1.46) as an application of the Central Limit Theorem.
Namely, take {X,}° to be a sequence of independent, random variables with
P(Xn > :v) = exp(—(:v + 1)+), z € R for all n € ZT. For n > 1, note that

) 1 1447 '/n+n
p (Sn+1 € [0, i]) == e T dr
N Ji14n
1
n+d _—n pn 245/ 14n"1
=2 / , (1+n77y) e V" dy
n! no %

By the Central Limit Theorem,

P(S’ne 0,1] \/27/

At the same time, an elementary computation shows that

n %+§ 1+n— L on 1 .2
/ (1 + n_fy) e VY dy — / e 7 dr,
n 0

1
2

and clearly (2.1.46) follows from these. In fact, if one applies the Berry—Esseen
estimate, one finds that

Vamn (2)"

n!

Nl»—-

=1+0(n”

)-

However, this last observation is not very interesting since we saw in Exercise
1.3.21 that the true correction term is of order ¢t ~!1.7

f For more information, see, for example, Wm. Feller’s discussion of Stirling’s formula in his
Introduction to Probability Theory and Its Applications, Vol. I, J. Wiley Series in Probability
and Math. Stat. (1968)
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§2.2: Some Extensions of The Central Limit Theorem

There are various directions in which The Central Limit Theorem can be ex-
tended, and in this section we will investigate two of these directions. In the
first place we will show that there is natural multidimensional analogue of The
Central Limit Theorem, and, secondly, we will show that as one increases the
integrability assumptions on the original X;’s one may reduce the growth re-
strictions on the s for which (2.1.2) can be shown to hold.

In carrying out both the extensions mentioned above, we will be using the same
general principle as the one on which the proof of Corollary 2.1.9 rests. Namely,
because we are dealing here with probability measures (and not arbitrary gener-
alized functions), weak convergence tested against compactly supported, smooth
functions is sufficient to imply weak convergence with respect to test functions
which are only continuous and reasonably bounded. To be more precise, we give
the following general formulation of this principle.

2.2.1 Lemma. Let {p,n 1 nE Z+} be a sequence of probability measures on
(]RN , BRN). Further, assume that there is a probability measure y on (]RN , BRN)
to which the p,’s converge in the sense that

lim pdn, — pdu  foreach ¢ e C° (RN;C).

n—o0 RN RN

Then, for any ¢ € C(RY;[0,0)),

(2.22) [ ewntan) < tim [ o) pma)
RV n—oo J RN
Moreover, if ¢ € C’(RN ; (C) satisfies
(2.2 Jm s [ o) wald) = 0
— o0 n€Z+
le(yw)|>R

then ¢ is p-integrable and

(2.2.4) lim (pdun:/ pdp.
RN

n—roo RN

In particular, (2.2.4) holds for any ¢ € C(R";C) which satisfies

(2.2.5) sup / lo|* T dpn, < 0o for some a € (0,00).
neZt JRN

PROOF: We begin by proving (2.2.4) for every ¢ € Cy (RN;C). To this end,
choose p € C(Bgn (0,1);[0,00)) so that [~ p(y)dy = 1, and set

o) =k [ plhtx-y))ply)dy for kezt.
i<k
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Clearly, each gy is an element of C'Z° (RN;C) and [l@kfla < llellu- In addition,
% uniformly on compacts as k — oo . Thus,

[ o= pan| < Jm T [l oul e
RN RN RN

k—oc n— o0

lim
n—od

< 2flpllu n—lzn_;c Hn (BRN (0, R)B)

for every R € (0,00). But, for any R € (0,00), we can choose a YR from
¢ (Bgn (0, R); [0,1]) so that g =1 on By (0, %); and therefore,

Tm o (Bgy (0,R)C) <1~ lim | Wrdun
n— 00 n—oo J RN

< u(Bg~ (0,2)0) — 0 as R 7oo.
Hence, we have now proved that (2.2.4) holds for every ¢ € Ch (]RN ;C).
Given the preceding, the proof of (2.2.2) is easy. Namely, if ¢ is a nonnegative,

continuous function on RV, set pr = pAR, R € (0,00). Then, by the Monotone
Convergence Theorem,

du = lim dpy = lim lim du, < lim diy,.
/RNcpu Jm | erdp Jim m | erdun < D i

Finally, to prove (2.2.4) for ¢ € C (RN ; C) satisfying (2.2.3), it suffices to handle
the case when ( is nonnegative. But then, by (2.2.2), we know that ¢ 15 p-
integrable. Hence, for any € > 0, we can choose an R € (0,00) so that

sup / lo(y) — pr(Y)] pn(dy) V / lo(y) — ()| u(dy) < &

neZt

and so (2.2.4) for ¢ follows easily from (2.2.4) for the pr’s. U

As Lemma 2.2.1 makes explicit, to test whether (2.2.4) holds for all p €
Cy (RN ; C) requires only that we test it for all ¢ € CZ° (RV;C); and, in con-
junction with elementary Fourier analysis, this means that we need only test it
for ¢’s which are imaginary exponential functions. To be precise, for a given
probability measure p on (RN ,Bgn ), the characteristic function 4 of p is its
Fourier transform given by

(2.2.6) ag) = /RN exp [\/——_1 (§,X)RN] pldx) for €€ RN .

Also, if ¢ € L' (RV;C), we will use

(2.2.7) p(&) = /RN exp[\/——_l (§,X)RN] o(x)dx for €€ RN

to denote its Fourier transform. Obviously, f is a continuous function which is
bounded by 1; and only slightly less obvious is the fact that, for ¢ € CZ° (RY; C),
$ € C=(RM;C) and that ¢ as well as all its derivatives are rapidly decreasing

(i.e., they tend to 0 at infinity faster than (1+ lx\Q)_l to any power).
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2.2.8 Lemma. Let pu be a probability measure on (RN, BRN). Then, for every
¢ € Cp(RN;C) N L' (RN C) with ¢ € L*(RY;C): “

(2.29) A Lol = [ o€ i) e

Moreover, given a sequence {un 1 n € Z‘*} of Borel probability measures on -
RM, (2.2.4) holds for every ¢ € C(RY,C) satisfying (2.2.3) if and only if ‘

fn(€) — A(€) forevery £eRY.

(Cf. Exercise 3.1.19 for more information on this subject.)

PROOF: Choose p € C(RY;[0,00)) to be an even function which satisfies '
Jan pdx =1, and set p.(x) = e Vp(e~'x) for € € (0,00). Next, define 1 for .
e € (0,00) to be the convolution of pe with p. That is,

Ye(x) = /RN pe(x —y)p(dy) for xeRY.

It is then an easy matter to check that ¢ € Cyp(RY;R) and ||[¢e]|prmv) = 1
for every € € (0,00). In addition, one sees (by Fubini’s Theorem) that t,(¢) =
pe€)f(€). Thus, for any ¢ € Cp(RN;C)NL! (RY; C), Fubini’s Theorem followed -
by the classical Parseval identity (cf. Exercise 2.3.36 below) yields :

1 R e -
[ ocn= [ etovixix= g [ ee) o) il-)de.

where p. = p.k is the convolution of p. with . Since, as € \, 0, 9 — @
while p(e£) — 1 boundedly and pointwise, (2.2.9) now follows from Lebesgue’s ;
Dominated Convergence Theorem. ;

Turning to the second part of the theorem, note that the only if assertion -
is trivial and that, by Lemma 2.2.1, we need only check (2.2.4) when ¢ €
Cx (RN;C). But, for such a ¢, ¢ is smooth and rapidly decreasing, and there- |
fore the result follows immediately from the first part of the present theorem '
together with Lebesgue’s Dominated Convergence Theorem. O

PR

The observation made in Lemma 2.2.8 enables one to capitalize on properties
of the u,’s which come from properties of Euclidian space. For example, here
is a simple proof of The Central Limit Theorem in the case when the random :
variables are identically distributed. Namely, if u,, is the distribution of Sn, then -

2

(@ = (1(5))" = (1- 5 +od)) —e ¥ =500
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for every & € R. Actually, as we are about to see, a slight variation on the
preceding will allow us to lift the results which we already have for real-valued
random variables to random variables with values in RY. However. before we
can state this result, we must introduce the analogs of the mean-value and
variance for vector-valued random variables. Thus, given a P-integrable, RV -
valued random variable X on the probability space (2, F, P), the mean-value
EP [X] of X is that m € RN which is determined by the property that

(& m)py =EF {(E,X)RN] for all & e RVM.

Similarly, if X is square P-integrable, then the covariance cov(X) of X is the
N x N-matrix C determined by

(€.Cmu =E°|[(6X-E"X])  (nX-B"(X]) | forg,nerY,
Notice that cov(X) is both symmetric and nonnegative: in fact, for each & €
RN, (&,cov(X)E)RN is nothing but the variance of (£, X)g~. Finally, given
m € RV and a symmetric, nonnegative C € RV @ RV, we use Ym,c to denote
the probability measure on RY which is determined by the property that

(2.2.10) / Y dym,c = / o(m + C%y) YN (dy), ¢ € Co(RY;R),
RN ¢ RN

where (cf. Exercise 1.1.14) vV is the N-fold product of the measure v with
itself. Clearly, an R"-valued random variable Y has distribution Ym,c if and
only if, for each £ € RV, (§,Y)g~ is a normal random variable with mean-value
(€, m)zv and variance (€, C&)g~ . For this reason, vm ¢ is called the normal
or Gaussian distribution with mean-value m and covariance C. For the same
reason, a random variable with vy, ¢ as its distribution is called a normal or
Gaussian random variable with mean-value m and covariance C, or, more
briefly, an MN(m, C)-random variable.

In the following statements, we will be assuming that {X, : n € Z*} is
a sequence of mutually independent, square P-integrable, R"-valued random
Variables on the probability space (Q,F, P). Further, we will assume that, for
€ach n € Z*, X,, has mean-value 0 and strictly positive covariance cov(X,,).
Finally, for n € Z+, we set

S, = Zi:l Xm, Cn=cov(S,)= Z:cov(xm),

1 ~
%, = (det(Co)) * and §, = 2.
, Xn
Nf)tice that when N = 1, the above use of the notation ¥,, and S, is consistent
With that of Section 2.1.
With these preparations, we are ready to prove the following multidimensional
8eneralization of Corollary 2.1.9.
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2.2.11 Theorem. Referring to the preceding, assume that the limit

. C,
(2.2.12) A= nh_)ngc 5z
exists and that
1 op 2
(2.2.13) nh_)n;o 5z Z_:l E []Xm} X > eEn] =0 for each e > 0.

Then, for every p € C(RY;R) which satisfies

lo(y)|
2.2.14 sup ———= < @
( ) yERN 1+ Iy‘2

one has that

(2.2.15) lim EP [go(sn)] - /RN v dyo.a.

n—oo

In particular, when the X,, are uniformly square P-integrable random variables -
with mean-value 0 and common covariance C, then :

S
lim EF =) = d
noo Mfﬂ /M To.c

for each ¢ € C(RV;R) satisfying (2.2.14).

PRrROOF: We begin by reducing to the case in which A is the identity I. To this :
end, observe that A is symmetric, nonnegative, and has determinant 1. Thus,
we can introduce the random variables Y, = A‘%Xm n € Z*; and, clearly,
when everything is defined with these Y.’s in place of the original X,.’s, the
only change in the hypotheses is that A gets replaced by I. Hence, without loss :
in generality, we will assume from now on that A — I. Equivalently, we are now
assuming that .

(2.2.16) i (& Cné)an

Jim SR S e, ge RV

Let p,, denote the distribution of §,,. Qur first step will be to show that

(2.2.17) lim f,(¢) =vN(g), €£eRV.
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Since there is nothing to do when £ = 0, let £ € RV \ {0} be given, and define

by
- £ _ n +
e= and &, = , meZr.
€] ¢ Vv (e, Cre)pn ¢

Then, by Corollary 2.1.9 applied to the real-valued random variables
{(e,xn)RN, n e Z+},
we know that

- vV-1l¢l <
n\&n ZEP ex ——— €, Am )N
i) o (Ll e, )

1¢]2

—re 2 =94N(¢) asn — oo.

At the same time, if 8, = &, — £, then, by (2.2.16), |6, — 0 and therefore

in(€n) — i1 (€)
_ .EP [exp[\/ji(Enasn)RN] — exp[\/jf(ﬁ,sn)RNH ’2
< B[t exp[ V7T (6,,8,) g ][]

‘ 2

= 2E" [1 - cos(8,, Sn)gn ]
asn — 0o. Hence, we have now proved (2.2.17); and therefore, by Lemma 2.2.8,
(2.2.15) holds for all ¢ € C(RM;R) which satisfy (2.2.3).

In view of the preceding paragraph, all that remains is to check that (2.2.3)
holds when ¢ satisfies (2.2.14), and clearly this comes down to showing that

lim sup / (1 + (e,y);\,) Un(dy) =0

R—oo nezZ+
I(ev)')]RN'ZR

for each e € SN~1. Thus let e € SV-1 be given, set

. (e,Sn)
Cn = (‘icne)n@r and S, = TRN,
e

and note (cf. (2.2.16)) that x~! < ‘é—c_" < kfor all n € Z* and some & € [1,00).

Thus, if n € C®(R;[0,1]) is chosen so that 1 equals 0 on [—1 1] and 1 off of
~1,1) and if

Yr(y) = (1+ (ky)?)y (%) for R € (0, 00),
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then Corollary 2.1.9 says that

n@ / (1 + (e,y)f@N) pin (dy)

1(e~Y)}NJZR

< lim EP [wR(S‘n)} = /wR(y)v(dy) —0

n—oc

as R — oo Hence, for each ¢ > 0, we can first choose R € (0,00) so that -
[ ¥r(y)~v(dy) < §, we can then choose m € Z* so that

o / (H (e’y)lfw)“n(dﬁ < /wﬂ(y)v(dy) + %

l(e.y)pw >R

and we can finally choose R’ > R so that

max / (1 + (e,y);N) pa(dy) <e. O

1<n<m
l(e.y)rn|>R'

Having obtained a reasonable multidimensional version of The Central Limit
Theorem, we will devote the remainder of this section to a proof that when the -
original random variables are as integrable as a Gaussian random variable, then |

(2.2.15) will hold as soon as log(1 + |¢|) has sub-quadratic growth at co. (See ;
Exercise 2.2.33 below for related results. ) ‘

2.2.18 Lemma. Suppose that Y is a P-integrable, RN -valued random variable
with mean-value 0. If :

EP {exp[alYF]} <M

for some o € (0,00) and M € (0, 00), then there is a § = B(a, M) € (0,00) with
the property that ‘

(2.2.19) EP [exp((E,Y)Rw)] < exp [M} , EeRY,

PROOF: First note that, because EP[Y] = 0

K

E” [eXP[(E,Y)RN]] <1+ gﬂi” (Y] + %EP [[Yl%lilﬁﬂ} _

Hence, since
P 2 1P | a|Y|? M
Y] < 2E [6 ]S—
o
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and 1€12

(EP [IY'36F£!1YI])2 < EP[|Y[*] EP [emsnvr] < %

we see that there is a § = §(a, M) > 0 such that

M|g|? < et

EP [exp[(E,Y)Rw]} <1+

a1

so long as [§[ < 4. On the other hand, for any £ € RV,

E” |exp((€, Vg~ ]|
= E”[exp[(€, Y)uw ], 6] < al V1] + B [exp[(€, Y)ar], ¢] > al Y]]

< EF [e“|Y|2J + e <M+ e

Hence, if we choose 8 = B(a, M,d) € (%, oo) so that
2 2
M+ < exp [BI%I:] for €| > 6,
then it is clear that (2.2.19) holds for this choice of g. O

2.2.20 Theorem. Let {Xn: n€Z'} be asequence of mutually independent,
P-integrable, RN -valued random variables with mean-value 0 and nondegenerate

covariance; and define S,,, C,,, Y., and S, accordingly, as in Theorem 2.2.11.
Next, set

1
o = (IEP [|xm|2]) ‘. mez
and assume that

(2.2.21) EP [eXp (U%pcm["')} <M, meZ*

m

for some o ¢ (0,00) and M € (0, 00). Then there exists an p=pla, M) € (0,00)
With the property that

(2.2.22) sup P('Sn, > t(Trace(Cn))%) < 2Nexp [_%:l
nez+

forall ¢ ¢ (0,00). Hence, if, in addition, (2.2.12) holds for some A and

(2.2.23) Tn = max ;—m ~—0 asn — oo,
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then (2.2.15) holds for all ¢ € C(RN;R) which satisfy the condition

log(1+ |o(y))

2.2.24
( ) ly|—o00 ly|?

= 0.
In particular, if the X,,’s all have covariance C, then (2.2.21) implies that

lim EP [so (\S/_%ﬂ = /RN ©(¥) 70,c(dy)

for each ¢ € C(RV;R) satisfying (2.2.24).

PROOF: Set

)
I foo [ (e 32), ]

< exp [BIEP Zafn} = exp [%} for all ¢ € RY.

Hence, for any e € SV~! and t ¢ (0, 00),
P((e,Sn)pn > tT,) < e MEP A S.) < a4 B
(e, njpy Ztin) S € €Xp T—n(ev nJpN S exXp | — +T
for every A € (0, 00); and so, after minimizing with respect to \, we arrive at
2

t
> _ N-1
P((e, Sp)ry > tTn) < exp [ 25} , t€(0,00) and eec SNV,

Finally, choose an orthonormal basis (e1,...,exn) in RY, and note that, by the ,
preceding,

P([Sn| > tTn) < ip(j(ejsn)my > N—%tTn)

2
< 2N exp [—ytvﬁJ .
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In other words, we can take p = 37! in (2.2.22).
We now add the assumptions made in the second part of the theorem and
begin by checking that (2.2.13) holds. But, by (2.2.21) and (2.2.23),

n n 4
1 P 2 1 4 oP
=5 DB X2, X > €T < 57 D OME

1 ~2Mot,  2Mr2
S 6224 Z a2 S
no
Finally, because (2.2.12) implies the existence of a & € (0,00) for which T}, <
KXn, m € ZT, (2.2.22) leads to

Xm

Om

— 0 asn — oo.

€22

2

N pt ]
ns€1121)+P([Sn| > t) < 2N exp [— 2N,‘12} , te€(0,00);

and therefore (2.2.3) certainly holds for any ¢ which satisfies (2.2.24). O

Exercises

2.2.25 Exercise: It is of some interest to note that the second moment as-
sumption can be removed from hypotheses in Exercise 2.1.39. To explain what
we have in mind, first use that exercise to see that if 02 = Jp % pu(dr) < oo,
then p = Ty = p € 7M(0,0?). What we want to do now is remove the a
priori assumption that fR z? p(dr) < oo. That is, we want to show that, for any
Probability measure p on R, pp = Ty <= p € M(0,02) for some o € [0, 00).
Since the “<=—" direction is obvious, and, by the above discussion, the “ = ”

direction is already covered when Jz #? p(dz) < oo, all that remains is to show
that

(2.2.26) p=Ty — / z? p(dz) < oo.
R

(i) We check (2.2.26) first under the condition that p is symmetric (i.e., u(—T)
= K(T) for all T € Bg). But, if p is symmetric, show that

(e) = [ coster)utde), €k
R
At the same time, show that

p=Tu = p(273) = p(e)}, ceRr
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Conclude from these two that i > 0 everywhere and that
/ cos(272¢z) u(de) = 4(€)* ", neNand£eR.
i
Finally, note that 1 —z < —logz for z € (0, 1], apply this to the preceding to
get
2"/ (1—cos(272z) p(de) < — log(f(1)) <00, neN, }
R A
and arrive at .
| utdz) < ~2108(a(n)

R
after an application of Fatou’s Lemma.

(ii) To complete the program, let p be any solution to @ =Tu, and define v by

v(l) = // Ir(z — y) p(dz)p(dy).
RZ

Check that v is symmetric and that v = Tv. Hence, by (i), Jer?v(dz) < oo (in |
fact, v is centered normal). Finally, use this and part (i) of Exercise 1.5.14 to °
deduce that [, z* p(dz) < oo. ’

2.2.27 Exercise: In connection with the preceding exercise, define Ton, for ¢
a € (0,00) and probability measures p on R, so that '

Top(T) = // 1r(27% (2 +y)) p(de)u(dy), T € Bs.
R2 ;

The problem under consideration here is that of determining for which a’s there
exist nontrivial (i.e., u # ) solutions to u = T,u. To this end, first repeat .
the argument given in part (ii) above to see that there is some solution if and ;
only if there is one which is symmetric. Next, assuming that u is a nontrivial,
symmetric solution, use the reasoning in part (i) there to see that

[uan = {5 Lo

In particular, when a € (2, 00), there are no nontrivial solutions to w = Typ-
(See Exercise 3.2.41 for more on this topic.)

2.2.28 Exercise: Return to the setting of Exercise 2.1.41. After noting that, >
so long as e € S* ! the distribution of .

X € S"‘l(\/ﬁ) — (e,x)gn € R
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is independent of e, use Lemma 2.2.8 to prove that the assertion in (2.1.43)
follows as a consequence of the one in (2.1.42).

2.2.29 Exercise: Let Y1,...,Y, be mutually independent, square P-integrable
random variables with mean-value 0 and variance 1. Given real numbers {a,,}7,

set .

Szzn:amYm and A= <Zn:afn)2.
1 1

Clearly, EF [52] = A%. The purpose of this exercise is to examine what can be
said about the relation between EF [|S|”] and AP for p # 2. (See Section 6.3 for
a significant generalization of these considerations.)

(i) If the Y,,’s are normal, note that S is then an (0, A?)-random variable and
conclude that
PlISIP] = pp4?,  p € [0,00),

up—/lyl” (dy) = /T (5).

(I'(t) is the quantity defined in (1.3.22).)

where

(ii) Next, suppose that the Y,,’s are sub-Gaussian in the sense that

(2.2.30) r;;ax EF [eEY’"] < exp [%52} , £eR,

1<m<n

for some 3 € (0,00). (In the case when the Y;,,’s are M(0, 02)-random variables,

(2.2.30) is an equality with 8 = o2, and other examples are provided by Lemma
2.2.18.) Show that

E” [655] < eﬁAzEz, £EeR,

and conclude that

(2.2.31) P(IS|>¢) < 2exp [—2;%} , telo,00).

(iii) Continuing in the setting of (ii), show that, for each p € (0,00),
(2.2.32) Ky pna (5%14)11 <E” [ISPF] < K, (ﬂ%A)p with K, = p2*T (%),
In the case when the Y,,’s are symmetric Bernoulli (i.e., PY,, = £1)

= 2 )
EXerc1se 1.3.20 says that 8 = 1; and in this special, but important, case, (2.2.32)
18 called Khinchine’s mequallty
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Hint: First, reduce to the case when 8 = 1. Next, starting from (2.2. 31)

with = 1, use (1.4.23) to show that the right-hand side of (2.2.32) holds
with the required choice of K,. To prove the left-hand side of (2.2.32) when :

p € [2,00), simply apply Jensen’s inequality. Finally, to get the left-hand side :

when p € (0,2), note that

4> =EP[$] < (EP[ISP])* (EP[IS17]) .

2.2.33 Exercise: Let Xi,...,X, be mutually independent random variables,
and set S, =3 T X

(i) Assuming that the X,,’s are symmetric (cf. Exercise 1.4.30), show that, for

each p € (0,00):

(2.334) K., ,EF (Z)ﬂ) gEP[\an’]gKPEP (i){fn) ,

where K, is the same as it is in (2.2.32).

(M)

Hint: Refer to the beginning of the proof of Lemma 1.5.4 and let Ry, ..., R, be |

the Rademacher functions on [0, 1), set Q = A1) x P on ([O, 1) x ©, Byg,1) X .7-'),
and observe that

w € Q— Sn( ZX

has the same distribution under P as
(t,w) €[0,1) X Q@ r— Tp(t,w) =Y Rn(t) X (w)

does under Q). Next, apply Khinchine’s inequality to see that, for each w € 2,

4

Ky pna <ZX )2 < /[0 ) | Ta(t,w)|” dt < K, (iXm(wF) 2 :

and complete the proof by taking the P-integral of this with respect to w.

(ii) Now drop the symmetry assumption made in part (i), but add the assump-

tion that the X,,’s are P-integrable and still have mean-value 0. Show that, for

each p € 2, 00):

(22.35)  EP[|S.["] < CEP [(Z Xi) } where C, = (4K +2%)7.
m=1

i
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Hint: After augmenting the underlying probability space, if necessary, construct

pew random variables X1,..., X, so that they are independent of the original

X.n's but (X{,...,X,’L) has the same distribution as (Xl,...,Xn). Next, set
= 37 X,,, and use part (i) of Exercise 1.5.14 to see that

o s < (i) ¢ ol

where @y, is a median of S,,. As an application of part (i) above plus Minkowski’s
inequality, show that

(M)
==

n

PlIS = sul)” < | KB (Z(Xm—XIn)Z>

-

m=1

1
P

P

n 2

<2 | K,EF (Z Xi)
m=1

Finally, note that, by (1.4.14),

k11N

|an| <2ZIEP [X2] < 2EP (ZX2>

m=1

2.2.39 Exercise: Suppose that {X, : n € Z*} is a sequence of mutually
independent, R"-valued, P-integrable random variables with mean-value 0, and
set S, = > _ X,,. Show that, for each p € 2, 0),

m=1

(2.2.37) E”[|S.]") < CN T E (zn:|xml2>2 ,
m=1

where (), is the same as it was in (2.2.35). Next, assume that ., = EP [|Xm|2] 2
€ (0, 00) for each 1 < m < n, and, starting from (2.2.37), show that

(2.2.38) IEP[lSnI”] <CN'T (Z 7 ) max E K%)”] '

Finally, add the assumptions that both (2.2.12) and (2.2.23) hold, and suppose

that
X\
sup EF [(u) ] < o0
mezZ+ Om



98 II: The Central Limit Theorem

for some p € (2,00). Show that (2.2.15) holds for every ¢ € C(RN;R) which
satisfies
le(¥)i
ly|—oo 14 |y[?

2.2.39 Exercise: Given h € L?(RY;C), recall that convolution power h*(7+2)
is a bounded continuous function for each n € N. Next, assume that h(—x) =

h(x) for almost every x € RY and that h = 0 off of Bg~ (0,1). As an application
of part (iii) in Exercise 1.3.24, show that

2
n n (x| —2)*)
|h*( +2)(x)| < 2Hh||2L2(RN)||h||L1(RN)eXP [—T .
Hint: Note that h € L'(RY;C), assume that M = iRl 1@~y > 0, and define
Af = M~ 'hif for f € L2(RV;C). Show that A is a self-adjoint contraction
on L?(RN;C), check that

h*(n+2)(x) =M™ (Txh, Anh)[}(RN‘@)v

where 7xh = h(- + x), and note that

(7xh, Ah) =0 ife<|x| -2

L2(RN;0)

§2.3: An Application to Hermite Multipliers

This section does not really belong here and should probably be skipped by those
readers who want to restrict their attention to purely probabilistic matters. On
the other hand, for those who want to see how probability theory interacts with
other aspects of mathematical analysis, the present section may prove to be
something of a revelation.

The topic of this section will be a class of linear operators called Hermite
multipliers, and what will be discussed are certain boundedness properties of
these operators. The setting is as follows. Once again, v will be the standard
Gauss measure whose density is given in (1.3.5). Next, for n € N, define

(2.3.1) Hy(e) = (~1)"eT — (6_7), z€eR
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Clearly, Hy, is an nth order, real, monic (i.e., 1 is the coefficient of the highest
order term) polynomial. Moreover, if we define the raising operator A, on

CY(R;C) by

22 d 2 _dp
[Are](2) = —eT — (7T o(e)) = ~ZE(@) + (@), ceR,
then
(232) Hn+1 = A+Hn for all n € N.

At the same time, if ¢ and ¥ are continuously differentiable functions whose first
derivatives are tempered (i.e., have at most polynomial growth at infinity), then

(233) (% A+¢) L2(y) — (A_(p, ¢) L2(v)’

where A_ is the lowering operator given by A_¢ = %f. After combining
(2.3.2) with (2.3.3), we see that, for all 0 <m < n,

(HmaHn)L2(,y) = (HmaA:L_HO) = (AT_LHmaHO)

L2(y) = ! S,

L?(y) —

where, at the last step, we have used the fact that H,, is a monic mth order
polynomial. Hence, the (normalized) Hermite polynomials

Hn(z) _ (=1)" 2 d" ¢ 22
\/H_\/HCZM_"(C 2), zeR
form an orthonormal set in L2(+; C). (Indeed, they are one choice of the orthog-

onal polynomials relative to the Gauss weight.)

2.3.4 Lemma. For each A € C, set

)\2
H(z;\) = exp [Aw—?], zeR
Then
(2.3.5) H(-/\)~i)‘—nH() eR
) €T; - — n! n\Z), T )

?Vhere the convergence is both uniform on compact subsets of Rx C and, for X’s
In compact subsets of C, uniform in L?(y; C). In particular, {H,, : n € N} is an
Orthonormal basis in L2(7; C).
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space, p € [1,00], X € LP(y; E), and Y a X-measurable element of L? (1 E) (p'
is the Holder conjugate of p). Show that

E# {(Y, X)E}E] = (Y,E" [X|E])E p-almost surely.
Hint: First observe that it suffices to check that
B [(Y,X) ;| =B [(v.E*[X]2]) |-

Next, choose an orthonormal basis {e,,}{° for E and justify the steps in

IE“[ ] ZE"[ (Y, en), (en, X),, ]
- iIE“[(Y,en)EIE“[(en,X)E‘EH =& [ (v B [x[5]) |.

§5.2: Discrete Parameter Martingales
In this section we will introduce an interesting and useful class of stochastic
processes which unifies and simplifies several branches of probability theory as
well as other branches of analysis. From the analytic point of view, what we will

be doing is developing an abstract version of differentiation theory (cf. Corollary
5.2.7 and Theorem 5.2.26).

Although we will want to make some extensions later (cf. Section 5.3), we start
with the following setting. (£, F,P) is a probability space and {F, : n € N}
is a nondecreasing sequence of sub-c-algebra’s of F. Given a measurable space
(E,B), we say that the family {Xn tn € N} of E-valued random variables is
{.7-'" i n € N} -progressively measurable if X,, is F,-measurable for each '
n € N. Next, a family {Xn T n € N} of (—o0, 00]-valued random variables
is said to be a P-submartingale with respect to {.7-'" 1 n € N} if it is
{.7-'" 1 nE N} -progressively measurable and

(5.2.1) EF[X;] <oo and X, <EP[X,..|F)] (as.,P)

for each n € N; and it is said to be a P-martingale with respect to {fn s
n e N} if {X in € N} is an {.7-' in € N} -progressively measurable family Of
R-valued, P-integrable random variables satisfying ;
(5.2.2) Xn =EP [Xpn1|Fn] (as.,P)

for each n € N. In the future, we will abbreviate these statements by saylng
that the triple (X ny Frs ) is a submartingale or martingale.
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5.2.3 Examples. The most trivial example of a submartingale is provided by a
nondecreasing sequence {a,}$°. That is, if X = @,, n € ZT, then (Xns Fnr P)
is a submartingale on any probability space (Q,}" , P) relative to any nonde-
creasing {F, : n € N}. More interesting examples are those given below.f

(i) Let {Y5}5° be a sequence of mutually independent (—00, ool-valued random
variables with EF [Y,] < oo, n € N, set Fo = {0,9Q}, Frn = o(%,...,Y,) for
n € Z7, and define

Xn:ZYm(EOifnZO) for n € N.

Then, because E [Yn+1|}"n] =EF [Yn+1] (a.s., P) and therefore
EP [Xoi1|Fn) = Xn + EF [Yan] (as., P)

for every n € N, we see that (Xn,]-"n,P) is a submartingale if and only if
EP [Yn] > 0 for all n € Z*. In fact, if the ¥;,’s are R-valued and P-integrable,
then the same line of reasoning shows that (Xn,]-"n,P) is a martingale if and
only if EP [Y,] = 0 for all n € Z*. Finally, if {¥,}3° C L*(P) and E”[Yo] =0
for each n € Z*, then

EP (X2, | Fn] = X2+ EP (V2 | Fu] > X5 (as, P),
and so (X2, F,, P) is a submartingale.

(ii) If X is an R-valued, P-integrable random variable and {Fn:ne N} is any
nondecreasing sequence of sub-o-algebras of F, then, by (5.1.9),

(IEP [X|7.), Fu, P)

is a martingale.

(ii) If (Xn,]-"n,P) is a martingale, then, by (5.1.8), (|Xn|,]-"n,P) is a sub-
martingale.

In view of (i) in the Examples 5.2.3, we see that partial sums of independent
random variables with mean-value 0 are a source of martingales and that their
Squares are a source of submartingales. Hence, it is reasonable to ask whether
some of the important facts about such partial sums will continue to be true
for all martingales; and perhaps the single most important indication that the
answer may be “yes” is contained in the following generalization of Kolmogorov’s
Inequality (cf. Theorem 1.4.5).

" For a much more interesting and complete list of examples, the reader might want to consult
J. Neveuw's Discrete-parameter Martingales, publ. in 1975 by North-Holland.
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At the same time, by symmetry, [ M(z,y;6) y(dz) = 1forall (6,y) € (0,1) xR,
and therefore

/I[Heso](:v)|p7(dw) S/ M(w,y;G)lw(y)l”v(dw)v(dy)=/lwl”dw-
R R

RxR

Hence, (2.3.8) is now proved for p € [1,00). The case when p = co is even easier
and is left to the reader. O

The consequences drawn in Lemma 2.3.7 from the Mehler representation in
(2.3.6) are interesting but not very deep (cf. Exercise 2.3.35 below). A deeper
fact is the relationship between Hermite multipliers and the Fourier transform.
For the purposes of this analysis, it is best to define the Fourier operator F
by

(2.3.9) [ff] &) = /Re‘/__””&” f(z)dz, €N,

for f € L'(R; C). The advantage of this choice is, that without the introduction
of any further factors of v/2m, the Parseval identity (cf. Exercise 2.3.36) becomes
the statement that F determines a unitary operator on L?(R;C). In order to
relate F to Hermite multipliers, observe that, after analytically continuing the
result of another simple Gaussian computation,

v e |0 v - Ll =[S0 v

for all p € (1,00) and all complex numbers \ and 7. Hence, after making the
change of variables y = /27pz and n = 27” &, we see from (2.3.5) that

X yn
Z:%/e‘/__l2"E‘A”Hn(\/27rp:v)e~"‘””2 dr
=0 * R

=€ exp [(p + V=1X/27p ] = e Z —gn (V2mp' €),

where p' = TziLl is the Holder conjugate of p and 6, = /-1 (p — 1)2. Thus,
we have now proved that, for each p € (1,00) and n € N,

—127 . n —ng?
(2.3.10) /R(e‘/_12 E‘”Hn(\/27rp:v)e *de = 6] Hy(\/2rp' z) e ™.
In particular, when p = 2, (2.3.10) says that

(2.3.11) Fhn=(V-1)"h,, neN,
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where h, is the nth (un-normalized) Hermite function given by
(2.3.12) hn(z) = H, (27r%:v)e_”2, neNand z e R

More generally, (2.3.10) leads to the following relationship between F and
Hermite multipliers. Namely, for each p € (1, 00), define U, on LP(v;C) by

1

o] (z) = pFp((2mp)x)e ™, zeR

It is then an easy matter to check that U, is an isometric surjection from LP(v; C)
onto LP(R; C). In addition, (2.3.10) can now be interpreted as the statement that,
for every p € (1,00) and every polynomial ¢,

1 2
(2.3.13) L[l;l oFolyp = ApHg,p where Ap = <—( p)L) :
P

(See Exercise 2.3.34 below for more information about A4,.)

Having completed this brief introduction to Hermite multipliers, we will now
address the problem to which The Central Limit Theorem has something to
contribute here. Namely, we want to get a handle on the set of (8,p,q) €
D x (0,00) x (0,00) with the property that H¢ determines a contraction from
LP(v;C) into LI(v;C). In view of the preceding discussion, when 6 € (0,1), a
solution to this problem has implications for the Mehler transform; and, when
g = p/, the solution tells us about the Fourier operator. The role that The
Central Limit Theorem plays in this analysis is hidden in the following beautiful
criterion, which was first discovered by Wm. Beckner.!

2.3.14 Theorem (Beckner). Let 6 € D and 1 < p < g < 0o be given. Then
(2.3.15) HH"@HLq(y) <lellzryy forall e L*(v;C)

if and only if

(2.3.16) <|1 —6¢lP+ 11 +9C|‘1)5 < (ll —0CIP+ |1+ HCIq)%

2 2
for every ¢ € C.

That (2.3.15) implies (2.3.16) is trivial: simply take

_f1-¢ if z € (—00,0)
80($)—{1+C if x€]l0,00).

" See Beckner’s “Inequalities in Fourier analysis,” Ann. Math. 102.
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On the other hand, the opposite implication is remarkable! Indeed, it takes a
problem in infinite dimensional analysis and reduces it to a calculus question
about functions on the complex plane. Even though, as we will see later, this
reduction leads to highly nontrivial problems in calculus, Theorem 2.3.14 has to
be considered a major step toward understanding the contraction properties of
Hermite multipliers.

The first step in the proof of Theorem 2.3.14 is to interpret (2.3.16) in oper-
ator theoretic language. For this purpose, let 5 denote the standard Bernoulli
probability measure on (R, BR). That is, 5({:!:1}) = % Next, use xp to denote
the function on R which is constantly equal to 1 and x4, to stand for the iden-
tity function on R (i.e., x{1}(z) = z, = € R). It is then clear that xp and X{1}
constitute an orthonormal basis in L?(3;C); in fact, they are the orthogonal
polynomials there. Hence, for each § € C, we can determine the Bernoulli
multiplier Ky to be the unique normal operator on L?(3;C) prescribed by

Xo if F=90
GX{I} if F= {1}

Furthermore, (2.3.16) is equivalent to the statement that

Kexr = {

(2.3.17) 1Kol agy < llellzrgsy forall € L2(8;C).

Indeed, it is obvious that (2.3.16) is equivalent to (2.3.17) restricted to ¢’s of
the form ¢ € R — 1 4 (z as ¢ runs over C; and from this, together with
the observation that every element of L?(3;C) can be represented in the form
axp + bx{1y as (a,b) runs over C?, one quickly concludes that (2.3.16) implies
(2.3.17) for general ¢ € L2(3;C).

We next want to show that (2.3.17) can be parlayed into a seemingly more
general statement. To this end, we define the n-fold tensor product operator
K2™ on L2(8™;C) as follows. For F C {1,...,n} set xr = 1 if F = 0 and define

xr(x) = H xpy(zj) for x=(zy,...,2,) €R"
JjEF

if F' # (. Note that {XF c FC{l,... ,n}} is an orthonormal basis for L?(8"; C),
and define K§™ to be the unique normal operator on L2(3"; C) for which

(2.3.18) K&"xr =60Fxp, FC{1,...,n},

where |F| is used to denote the number of elements in the set F. Alternatively,
one can describe IC(;@" inductively on n € Z* by saying that IC(;®1 = Kp and that,
for ® € C(R"*1;C) and (x,y) € R* x R,

[ (6 y) = [Ko®(x, )] () where ¥(x,y) = [K§"2(-,9)] ().
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It is this alternative description which makes it easiest to see the extension
of (2.3.17) alluded to above. Namely, what we will now show is that, for every
n e Z+7

(2:3.19) (23.17) = [[KE"®| o) < 1@llLoam, @ € L*(B™0).

Obviously, there is nothing to do when n = 1. Next, assume (2.3.19) for =,
let ® € C(R*"';C) be given, and define ¥ as in the second description of

]C(;g’("“)@. Then, by (2.3.17) applied to ¥(x, -) for each x € R" and by the
induction hypothesis applied to ®(-,y) for each y € R, we have that

5@y = [ (][9] Bl (0
< [ ([ oo san)’ s =] [ 1ecorsa|,

< ([ 1013 g 0000) = (180100

< ([ 1201 Lpﬂn)mdy)) 0 sy

where, in the passage to the fourth line, we have used the continuous form
of Minkowski’s equality (it is at this point that the only essential use of the
hypothesis p < ¢ is made).

We are now ready to take the main step in the proof of Theorem 2.3.14.

2.3.20 Lemma. Define A, : L%(3;C) — L?(8™;C) by

[Ang](x) = (E—%:_l—“> for x€R",

Then, for every pair of tempered ¢ and v from C(RR;C),

(2.3.21) lellLr@y) = HIEI;O ||Anapl|L,,(ﬁn) for every p € [l,00)
and

2.3,

(2.3.22) (’Hg(p,w)m( = Jlim (Ice o Anp, nw)L2 -

for every 6 € (0,1). Moreover, if, in addition, either ¢ or ¢ is a polynomial, then
(2.3.22) continues to hold for all § € C.
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PRroOF: Let ¢ and 1 be tempered elements of C(R;C), and define

£ 0) = (K§" 0 Aup, Anp) | and 1(6) = (Mo, )

L2(8™) L2(y)

for n € Z* and 8 € C. We begin by showing that
(2.3.23) lim £,(0) = £(6), 6 ¢€ (0,1).

Notice that (2.3.23) is (2.3.22) for 6 € (0,1) and therefore that (2.2.21) follows
immediately from (2.3.23) by replacing ¢ and 1, respectively, with 1 and |p|?. -

In order to prove (2.3.23), we will need to introduce other expressions for f(6) |
and the f,(6)’s. To this end, set :

1 6
C"_[e 1}’

and, using (2.3.6), observe (cf. (2.2.10)) that

16)= [ o) 0T 00,0z x dy).

Next, let By be the probability measure on R? determined by

Bo((+1,41)) = 142 and By({1,71)) = 132,
and note that, because

(Ko2.) oy, = [, ()00 B x ay),

one has that
(/c;@"qs, qz) ] :/ / &(x) U(y) Bo(dzy x dyy) - - Bo(den X dy,)
L2(8) R2 R2

+
for all ¢, ¥ € C(R™;C). Hence, if (cf. Exercise 1.1.14) Q = (R2)Z , F = Bq,
+
and Py = (ﬂe)z , then

o= [r (2]

where F(z) = p(z)9(y) for z = (z,y) € R? and Zp(w) = zn, n € Z*, for
w = (Z1,-++,2Zn,...) € 0. Note that, under P,, the Z,’s are mutually inde-
pendent, identically distributed R?-valued random variables with mean-value 0
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and covariance Cy. In addition, ”Zn||2L°°(P,,;R2) = 2, and therefore (2.2.21) is
certainly satisfied. Hence, (2.3.23) now follows as an application of the last part
of Theorem 2.2.20.

To complete the proof, suppose that ¢ is a polynomial of degree k. It is then
an easy matter to check that

(Ang, XF) p2(gny =0 i [F| > k,

and therefore (cf. (2.3.18)) 6 € C+— f() € C is also a polynomial of degree no
more than k. Moreover, because

Ifn(0)| = ZelFl(An(PvXF)Lz(Bn)(XFaAnw)Lz(Bn) )
F

this also means that
|£2(0)| < (6] v 1)kHAn<pHL2(Bn) [ Antl 2 ggnys € Z and 0 €C.

Hence, because of (2.3.21) with p = 2, {f, : n € Z*} is a family of entire
functions on C which are uniformly bounded on compact subsets. At the same
time, because (p, Hy)r2¢,) = 0 for m > k, f, is also a polynomial of degree
k An; and therefore (2.3.23) already implies that the convergence extends to the
whole of C and is uniform on compacts. Finally, in the case when 1, instead of
©, is a polynomial, si‘fnply note that

(K50 dup Au) | = (K5™ 0 A, Ang)

L2(87) L2(gn)’

and apply the preceding. [

Proof of Theorem 2.3.14: Assume that (2.3.16) holds for a given pair 1 <
P<g<ooandd e C. Wethen know that (2.3.19) holds for every n € Z7.
Hence, by Lemma 2.3.20, if ¢ and ¥ are tempered elements of C(R;C) and at
least one of them is a polynomial, then

| (0, %) | = Jim | (K5 0 A, Auv)

n—o0

Lz (gm™)

<l (] o Al o gy = 0050 9020
In other words, we now know that for all tempered ¢ and ¢ from C(R;C)

(2.3.24) | o, 0) | < ol o 1l
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so long as one or the other is a polynomial. #
We next complete the proof in the case when p € (1,2]. To this end, note that,
for any fixed polynomial ¢, (2.3.24) for every tempered ¥ € C(R; C) guarantees
that the inequality in (2.3.15) holds for that ¢. At the same time, because
p € (1,2] and the polynomials are dense in L%(; C), (2.3.15) follows immediately -
from its own restriction to polynomials.
Finally, assume that p € [2,00) and therefore that ¢’ € (1,2]. Then, again :
because the polynomials are dense in L?(-y; C), (2.3.24) for a fixed tempered ¢ € :
C(R; C) and all polynomials ¢ implies (2.3.15) first for all tempered continuous -
¢’s and thence for all ¢ € L*(y;C). O

We will now apply Theorem 2.3.14 to two important examples. The first ex-
ample involves the case when 6 € (0,1) and shows that the contraction property
proved in Lemma 2.3.7 can be improved to say that, for each p € (1,00) and
6 € (0,1), there is a ¢ = q(p,8) € (p,o0) such that Hy is a contraction on
L?(~;C) into LI(y; C). Such an operator is said to be hypercontractive, and
the fact that Hy is hypercontractive was first proved by E. Nelson in connection
with his renowned construction of a nontrivial, two-dimensional quantum field.t
The proof which we will give is entirely different from Nelson’s and is much closer
to the ideas introduced by L. Gross? as they were developed by Beckner.

2.3.25 Theorem (Nelson). Let § € (0,1) and p € (1,00) be given, and set

p—1

q(p,0) =1+ =753

Then
(2.3.26) 1Ho¢ll oy < lellioiyy, @ € L% 0),

for every 1 < q < q(p,0). Moreover, if ¢ > q(p,0), then
(2.3.27) sup{”?-lg(pHqu) c € L (v C)} = 00.

Proor: We will leave the proof of (2.3.27) as an exercise. (Try taking ¢’s of the
form e’\“’2.) Also, because « is a probability measure and therefore the left-hand
side of (2.3.26) is nondecreasing as a function of q, we will restrict our attention
to the proof of (2.3.26) for ¢ = q(p, 6). Hence, by Theorem 2.3.14, what we have

to do is prove (2.3.16) for every 1 < p < g < oo and 6 € (0,1) which are related
by

(23.28) o= (221) .

qg—1

t Nelson’s own proof appeared in his “The free Markov field,” J. Fnal. Anal. 12.
tSee Gross’s “Logarithmic Sobolev inequalities,” Amer. J. Math. 97. Also, have a look at
Exercise 2.3.37 below.
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We begin with the case when 1 < p < ¢ < 2; and we first consider ¢ € [0,1).
Introducing the generalized binomial coefficients

(r> Cr(r=1)(r—f+1)

/)= 7 for reRand¥{eN,

we can write

1-—6¢|9 1+ 6¢4
‘ C' ;' + C‘ :1+Z(2qk>(9<-)2k

k=1
L¢P+ +CP o (P 2k
; _1+;(2k>g2.

Noting that, because g < 2, (2qk) > ( for every k € Z*, and using the fact that,
because £ € (0,1), (1 + z)i <1+ 2z for all > 0, we see that

q
11— 6¢)7 + L +6¢]9\ 5 P\, o2k
(P ) ca s By (oo

Hence, we will have completed the case under consideration once we check that

S (< E @)

00
k=1

and

and clearly this will follow if we show that

(a2 p +
- < f h .
q(2k>9 < (2k> oreach keZ

But the choice of 6 in (2.3.28) makes the preceding an equality when k = 1; and,
when k£ > 2,

) 112«
(3%) ]1:[2]_1’

since 1 < p < g < 2.

At this point, we have proved (2.3.16) for 1 < p < ¢ < 2 and 6 given by
(2.3.28) when ¢ € (0,1). Continuing with this choice of p, g, and 6, note that
(2.3.16) extends immediately to ¢ € [~1, 1] by continuity and symmetry. Finally,
for general ¢ € C, set

Pl Sl L po 11 =¢l =1+

d b
5 5 , andc=—.
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Then,
1£6¢) =521+ + 521 FC)| < atob,

and therefore, by the preceding applied to ¢ € [-1, 1], we have that

2

<a(t1—c|f’+|1+c|f’> (,a_,p+|a+,,|p> (|1—|P+|1+<|P>
- 2 2 2

Hence, we have now completed the case when 1 < p < ¢ < 2 and 8 is given by
(2.3.28).

To handle the other cases, we use the equivalence of (2.3.16) and (2.3.17).
Thus, what we already know is that (2.3.17) holds for 1 < p < ¢ < 2 and the 6
n (2.3.28). Next, suppose that 2 < p < g < co. Then, since 1 < ¢’ < p’ < 2 and

(|1—9c|q+|1+9c|q> (|1—90|q+|1+9c|q>

an application to ¢’ and p’ of the result which we already have yields
1Kol ags) = sup {(’Co@,w) psy V€ L*(8;C) with [} 5) = 1}

= sup { (¢, Ko¥)) oyt € DABO) with [0l ) = 1)
<Ml s
where the 6 is the one given in (2.3.28). Thus, the only case which remains is the
one when 1 < p <2 < ¢ < co. But, in this case, set £ = (p— 1)%, n=(q— 1)—%,

and observe that, because the associated 8 in (2.3.28) is the product of £ with
n, K¢ = Ky, o K¢ and therefore

H’Cg‘P“Lq(g) < H’Cﬁ‘p”m(ﬁ) < llellzeg- O

As our second, and final, application of Theorem 2.3.14, we present the theo-
rem of Beckner for which Theorem 2.3.14 was concocted in the first place.

2.3.29 Theorem (Beckner). For eachp € [1,2],
(2.3.30) IFfllr @z < Aplifllzem), f € LY (R;C) NLA(R;C),

where F is the Fourier operator in (2.3.9) and A, is the constant in (2.3.13).
Moreover, if f is the Gauss kernel e~™", then (2.3.30) is an equality.
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PROOF: Because of (2.3.11), the second part is a straightforward computation
which we leave to the reader. Also, we will only consider (2.3.30) when p € (1,2),
the other cases being well-known (cf. Exercise 2.3.36).

Because of (2.3.13), the proof of (2.3.30) comes down to showing that

(2.3.31) 1#o,0l Lo () < Nellzoyy,  w € L2(3;0),

where 8, = v/—1(p — 1)2; and, by Theorem 2.3.14, (2.3.31) will follow as soon
as we prove (2.3.16) for 6,. For this purpose, write

(=¢+V=1(p—1)7%n where & neR
Then, proving (2.3.16) for 8, becomes the problem of checking that

+[(1+n)2+(p—1)§2]%’ .
2

’
4
2

[(1=n)*+ (- 1¢*]

(2.3.32)

[(1-¢)%+ - 1)r?]

<

forall ¢, n e R.

To prove (2.3.32), consider, for each a € (0, 00), the function g, : [0,00)% —
[0, 00) defined by g (z, y) = [:vi +y§]a. It is an easy matter to check that g, is
Concave or convex depending on whether a € [1,00) or a € (0,1). In particular,

since %' € (1,00), when we set a = %’, i =147/, and y = (p—1)T ([P, we
get

! e
2

e,

(=) + -] T +[1+0)"+ - 1€]

2
galz ,y) + ga (24, 9) < ga (:v_ +:v+’y)

2 2

:{(Il—n!”;ll+ni”) +(p_1)§2} |




112 II: The Central Limit Theorem

and similarly, because £ € (0,1),

e+ -]’
2

> |:<|1__§|p_;_|1+§|p)5+(p_1)772} .

Thus, (2.3.32) will be proved if we show that

2
1 _ pl + 1 + pl pl
<| 1141 ) -1

N

(-9 + - 1)7]

2

< (MY

(2.3.33)

- 2

But because (cf. Theorems 2.3.14 and 2.3.25) we know that (2.3.16) holds with |
K :
p replaced by 2, ¢ = p/, and 0 = (p’ - 1)2, the left-hand side of (2.3.33) is

dominated by
2 2
(o) (05
(r-1)2 (p'-1)2

: =1+ (p-1)(&+7n?).

(p—-1)€*+

At the same time, again by (2.3.16), only this time with p, 2, and 8 = (p— 1)_%,
we see that the right-hand side of (2.3.33) dominates ;

1.4,2 1,2

Exercises

2.3.34 Exercise: Because the Fourier operator F (cf. (2.3.9)) is a contraction .
from L'(R) to L>°(R) as well as from L2(R) into L?(R), the Riesz-Thorin In- .
terpolation Theorem guarantees that it is a contraction from LP(R) into LP (R)
for each p € (0,1). Hence, we know, from Theorem 2.3.29, that the number A,
in (2.3.13) must be less than or equal to 1. However, the preceding is a rather



§2.3: An Application to Hermite Multipliers 113

convoluted line of reasoning to what must be a far more elementary fact. Indeed,
show that
te (%,1) — logA% eR

is a strictly convex function which tends to 0 at both end points and is therefore
strictly negative. In other words, what Beckner’s result proves is that the Fourier
operator is one for which interpolation fails to give the best result.

2.3.35 Exercise: The inequality in (2.3.8) is an example of a general principle.
Namely, if (E,B) is any measurable space, then a map (z,I') € E x B —
I(z,T) € [0,1] is called a transition probability whenever z € E — II(z, I)
is B-measurable for each I' € Band I € B+ II(z,T) is a probability measure
on (E, B) for each « € E. Given a transition probability I(z, - ), we define the
linear operator IT on B(E;C) (the space of bounded, B-measurable ¢ : E — C)
by

(y](z) = /E<p(y) (z,dy), zeFE, for ¢e B(E;C).

Check that II takes B(F;C) into itself and that ||ITp||, < ||¢|l.. Next, given a
o-finite measure p on (F, B), we say that y is IT-invariant if

w(l) = /EH(:E,F)u(d:v) forall T € B.

Using Jensen’s inequality, first show that, for each p € [1,00),

M) (e)|” < [MlelP)(z), z€E,

and then that, for any I[I-invariant y,

IToll Loy < llollLe(uy, ¢ € B(E;C).

Finally, show that p is Il-invariant if it is IT-reversing in the sense that

/ I1(z,T3) p(dz) :/ I(y,T1) u(dy) forall Ty, TyeB.
Fl FZ

2.3.36 Exercise: Recall the Hermite functions h,, n € N, in (2.3.12) and define
the normalized Hermite functions h,, n € N by

_ 23
hn - _°4_1 h", n e N.

(n!)z
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By noting that (cf. the discussion following (2.3.12)) h,, = UsH,,, show that
{En i n € N} constitutes an orthonormal basis in L?(R;C); and from this -
together with (2.3.11), arrive at Parseval’s Identity

WFflzew = 1fllzew, f€L'(RC)nL*(R;C),

and conclude that F determines a unique unitary operator F on L?(R;C) such
that Ff = Ff for f € L}(R;C)NL?*(R;C). Finally, use this to verify the L?(R)- :
Fourier inversion formula F = = F, where [}:f](:v) = [}"f](—:v), z € R, for
fe LY(R;C)NL*(R; C). :

2.3.37 Exercise: L. Gross had a somewhat different approach to the proof -
of (2.3.26). As in the proof which we have given, he reduced everything to :
the checking (2.3.17). However, he did this in a different way. Namely, given
b e (0,1) he set f(z) =1+ bz and introduced the functions

fol@) = Koo fl(2) = 2 f @) + 222 f(—2),  (t,z) €[0,00) X R,

and g(t) = 1+ (p — 1)e?t, t € [0, 00), and proved that

(2.3.38) <0.

d
a—tHftHLq(t)(B) =

Following the steps below, see if you can reproduce Gross’s calculation.

(1) Set
F(t) = || fellLeor 3y,

and, by somewhat tedious but completely elementary differential calculus, show
that

F(t)1—-a() ()
0 = S o0 [ s ()" @

+ %/&ft(w)q““(ft(*w) ~ fi(2)) Bld)|.

Next, check that

/R f(@)7 O (f(~2) - fulz)) Blde)
=—3 /R (fe(@)1 O~ ~ fi(=2)1 1) (fi(z) — fe(-2)) Blde),
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and, after verifying that

=0T (E-n) =

¢
conclude that
F(p)1—a®) t

9) )< (2)@)2 [_Q(t) S e (#5)" a2

(2.3.3 : o
+ (a(t) - 1) /R(Mw)T) - 1% (~2))? Blda)
(ii) Prove the logarithmic Sobolev inequality
2

eat0) [ oog(pres) a8 <2 [ (ole) - ol-2) Blde)

for strictly positive ¢’s on R.

Hint: Reduce to the case when p(x) = 1+ bz for some b € (0,1), and, in this
case, check that (2.3.40) is the elementary calculus inequality

(1+b)2log(1 +b) + (1 — b)?log(1 — b) — (1 + b?)log(1 + b%) < 2b%, b€ (0,1).

(iii) By plugging (2.3.40) into (2.3.39), arrive at (2.3.38), and conclude that
(2.3.17) holds for 6 € (0,1) and ¢ = 1 + 231

2.3.41 Exercise: In this exercise we will use the Mehler kernel to solve two
famous evolution equations.

(1) Starting from (2.3.2), show that A_Hy = 0 and A_H, = nH,_1, n € ZT;
and conclude that

d*H, dH,
2 w—&w_ = —nH, foreach neN
In particular, if ¢ is a polynomial on R and u,(t,-) = Heryp, then u, is a
Smooth solution to the initial value Cauchy problem

ou  0%u Ou

(2.3.42 ge_ge 2t N = o
) 5t = 92 Yag te (0,00), and u(0,-)=¢

Next, using (2.3.6), re-express u, as

2343 uyftn) = [ Mlee Yo, (ta) € (0.00) xR

and show directly from (2.3.43) that, for any ¢ € Cp(R;R), the function u,
€Xtends to [0,00) x R as an element of C' 2((0,00 R;R) N Cp(R;R) which
. Solves (2.3.42).
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(ii) Define U : L?(v; C) — L%(R;C) so that

Ugl(x) =

and observe that U is unitary from L2(v;R) onto L(R;C). Next, define h, = ,’
U-'H,, n € N. Clearly {hn; n e N} is an orthonormal basis for L2 (R; (C). In‘f
addition, if Ay = U o Ay o U™}, check first that '~

A+7Ln:(n+1)%izn+1 and Ajzn:(n—l)%izn_l(EOifnzo)

and second that
d21~zn z? - 1)\ -
— —h, =— = | hy, N.
72 1 h (n + 2) h ne

Hence, if f = Uyp, where ¢ is a polynomial, then

(t,z) € [0,00) X R+— tg(t,z) = E e=(n+3 )L2]R)h (z)
is a smooth solution to the Cauchy 1n1t1a1 value problem
ou d*u z?

.3.44 —=——-—u, t ith @(0, -) = f.
(2 3 ) at a$2 4 u? 6 (07 OO), wi u(07 ) f
Finally, set

eTF 2 ey ¥
h(t,z,y) = e T M(z,y;e7 ) e 1
(ta) = = (e 95¢7)

for (t,z,y) € (0,00) x R2, and show by direct computation that, for each f €
Cyv(R;R), the function @y given by :

#(t, ) /f h(t,z,y)dy, (t,z)€ (0,00) x R,

extends as an element of C'?((0,00) x R;R) N Cy ([0, 00) x R;R) which solves :
(2.3.44).

2.3.45 Exercise: By the same reasoning as we used to prove Theorem 2.3.29,
show that, for any pair 1 < p < 2 < g < co and any complex number 6§ =
£ ++/—1n, (2.3.16), and therefore (2.3.15), holds if and only ift both (g —1)n* + -
€2 <1 and

(@=2)En*<[1-€-(@-Dn*]{lp-1)— (¢ —1)a? - 7.

t Recently, in his article “Gaussian kernels have only Gaussian maximizers,” Invent. Math.
12 (1990), E. Lieb has essentially killed this line of research. His argument, which is entirely *
different from the one discussed here, handles not only the Hermite multipliers but essentially °
every operator whose kernel can be represented as the exponential of a second order polynomial. :



Chapter III:

Convergence of Measures, Infinite Divisibility,

and Processes with Independent Increments

§3.1: Convergence of Probability Measures

In this section we are going to develop the convergence theory of probability
measures in what will, at first sight, appear to be an absurd degree of generality.
In particular, for reasons which will not become clear until Section 3.3, we want
a theory which does not rely on our underlying space being locally compact.
We hope that the reader will bear with us and, when he gets to Section 3.3,
will even forgive us for making this rather lengthy excursion into the realm of
abstract nonsense.

When discussing the convergence of probability measures on a measurable
space (E,B), one always has at least two senses in which the convergence may
take place, and (depending on additional structure the space may possess) one
may have more. To be more precise, let B(E;R) = B((E,B);R) be the space
of bounded, R-valued, B-measurable functions on E, use M;(E) = My (E, B) to
denote the space of all probability measures on (E,B), and define the duality
relation

<¢,0,u>:/b:godu for ¢ € B(E;R) and p € M, (E).

Next, again using ||¢|lu = sup,cg |¢()| to denote the uniform norm of ¢ €
B(E;R), set Bi(E) = {y € B(E;R) : |¢lla < 1}. Finally, given u € My(E),
consider the neighborhood basis at p determined by the sets

peB1(E)

U(p,d) = {V € M,(E): sup \<(,O,V> - <(,0,u>‘ < 5}

as § runs over (0, 00). For obvious reasons, the topology defined by these neigh-
borhoods U is called the uniform topology on M;(E). In order to develop
some feeling for the uniform topology, we will begin by examining a few of its
elementary properties.

3.1.1 Lemma. Define

“V—H‘“var = SUP{|<%H> - <(107V>I tpce BI(E)}
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for i and v from M, (E). Then (u,v) € My(E)? —s ||u - V||var Is a metric
on M, (E) which is compatible with the uniform topology. Moreover, if p, v €
M, (E) are two elements of M, (E) and  is any element of M (E) with respect
to which both p and v are absolutely continuous (e.g., “‘2“’), then :

du ov
(3.1.2) I = vllvar = llg = fllz1(n) where f= Py and g = %
In particular, ||t — v||var < 2, and equality holds precisely when v 1| p (ie., they
are singular). Finally, the metric (1,v) € M,(E)? — |t — v||var is complete.

PROOF: The first assertion needing comment is the one in (3.1.2). But, for every
¥ € Bi(E),

(o) = ()| = ‘/EsO(g —f)dx

<llg = fllzrcny,

and equality holds when ¢ =sgno (g— f). To prove the assertion which follows
(3.1.2), note that ]

lg = fllzry < If + gl =2

and that the inequality is strict if and only if fg > 0 on a set of strictly posi- ;
tive A-measure or, equivalently, u [ v. Thus, all that remains is to check the
completeness assertion. To this end, let { Hn}° € My (E) satisfying

lim sup ||p, — o |lvar =0
M—=00 45,

be given, and set

"&:
3

n "

[\

n=1

Clearly, A is an element of M, (E) with respect to which each p,, is absolutely
continuous. Moreover, if f, = d;‘/\", then, by (3.1.2), {f,}$° is a Cauchy conver-
gent sequence in L'()). Hence, since L'()) is complete, there is an feL'()to
which the f,,’s converge in LY()\). Moreover, we may choose f to be nonnegative,
and certainly it has A-integral 1. Thus, the measure i given by dp = fd) is an
element of M, (E), and, by (3.1.2), |[tn — ptllvar — 0. I

As a consequence of Lemma 3.1.1, we see that the uniform topology on M, (E)
admits a complete metric and that convergence in this topology is intimately
related to L'-convergence in the L'-space of an appropriate element of M, (E).
In fact, M;(E) looks in the uniform topology like a galazy which is broken
into many constellations, each constellation consisting of measures which are all
absolutely continuous with respect to some fixed measure. In particular, there
will usually be too many constellations for M, (E) in the uniform topology to be
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separable. For example, if E is uncountable and {z} € B for every = € E. then
the point masses §,, € E, (i.e., §;(I') = 1r(z)) form an uncountable subset
of M1(E) and ||6y — 6z var = 2 for y # z. Hence, in this case, M (E) cannot be
covered by a countable collection of open || - ||var-balls of radius 1.

As we said at the beginning of this section, the uniform topology is not the
only one available. Indeed, for many purposes and, in particular, for probability
theory, it is often too rigid a topology to be useful. For this reason, it is often
convenient to consider a more lenient topology on M;(E). The first one which
comes to mind is the one which results from eliminating the uniformity in the
uniform topology. That is, given a 4 € M, (E), define

(3.1.3)  S(m,801,...,0n) = {V e M(E): max. |{or,v) — {0k, )| < 5}
forn € ZT, ¢1,...,0n € B(E;R), and § > 0. Clearly these sets S determine a
Hausdorff topology on M, (E) in which the net {u, : a € A} converges to p if
and only if

lim (i, p1a) = (p,p) for every ¢ € B(E;R).

For historical reasons, in spite of the fact that it is obviously weaker than the uni-
form topology, this topology on M, (E) is usually called the strong topology;
although, in some of the statistics literature, it is also known as the 7-topology.

A good understanding of the relationship between the strong and uniform
topologies is most easily gained through functional analytic considerations and
will not be particularly important for what follows. Nonetheless, it will be useful
to recognize that, except in very special circumstances, the strong topology is
strictly weaker than the uniform topology. For example, take FE = [0,1] with its
Borel field and consider the probability measures u,(dt) = (1+ sin(2nnt)) dt for
n € Z*. Noting that, since |sin(2nnt) — sin(2mnt)| < 2 and therefore

1 .- .
| sin(2nnt) — sin(2mmt)|
%Hﬂn — pmlvar = ~/0 9 dt

1
1
> 3 /0 (sin(2nmt) — sin(2m7rtf))2 dt = 1

for m # n, one sees that {#n}1° not only fails to converge in the uniform topol-
0gy, it does not even have any limit points as n — oco. On the other hand,

because {2% sin(2n7rt)}:o is orthonormal in L?(\(o 1)), Bessel’s inequality says
that

> 2

=1

and therefore <30,,un> — <30,)\[0,1]> for every ¢ € B([0, 1];R). In other words,
Bn}5° converges to Ajo,1] in the strong topology, but it converges to nothing at
all in the uniform topology.
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Although the strong topology is weaker than the uniform and can be effectively
used in various applications, it is still not weak enough for most probabilistic
applications. Indeed, even when F possesses a good topological structure and
B = Bg is the Borel field over E, the strong topology on M;(E) shows no :
respect for the topology on E. For example, suppose that E is a metric space !
and, for each ¢ € E, consider the point mass §, on Bg. Then, no matter -
how close x gets to y in the metric topology on E, 6, is not getting close
to &, in the strong topology on M,(E). More generally (cf. Exercise 3.1.16 °
below), measures cannot be close in the strong topology unless their sets of
small measure are essentially the same. Thus, for example, the convergence
which is occurring in The Central Limit Theorem (cf. Corollary 2.1.9) cannot, .
in general, be taking place in the strong topology; and since The Central Limit
Theorem is an archetypical example of the sort of convergence result at which *
probabilists look, it is only sensible for us to take a hint from the result which .
we got there. That is, let £ be a metric space, set B = Bg, and consider the
neighborhood basis at € M, (FE) given by the sets in (3.1.3) when the @;’s are
restricted to be elements of Cy,(E; R). The topology which results is much weaker
than the strong topology, and is therefore justifiably called the weak topology *
on M;(E). (The reader who is familiar with the language of functional analysis
will, with considerable justice, complain about this terminology. Indeed, if one
thinks of Cy,(E;R) as a Banach space and of M;(E) as a subspace of its dual
space Cp(F;R)*, then the topology which we are calling the weak topology is
what a functional analyst would call the weak* topology. However, because it
is the most commonly accepted choice of probabilists, we will continue to use
the term weak instead of the more correct term weak*.) In particular, the weak
topology respects the topology on E: §, tends to §, in the weak topology on
M, (E) if and only if y — z in E. As another indication that the weak topology
is well adapted to the sort of analysis encountered in probability theory, let
{pn} U {u} C M (RY), and (cf. (2.2.6)) use Lemma 2.2.8 to see that

pn =>p if and only if fin(€) — i(€), € €RY,

where we have introduced the notation u, = p to indicate weak conver-
gence (i.e., convergence in the weak topology). (See Exercise 3.1.19 for more
information on this topic.)

Besides being well adapted to probabilistic analysis, the weak topology turns
out to have many intrinsic virtues which are not shared by either the uniform
or strong topologies. In particular, as we will see shortly, when E is a separable
metric space, the weak topology on M, (FE) is not only a metric topology, which
(cf. Exercise 3.1.16) the strong topology seldom is, but it is even separable, which
the uniform topology seldom is. In order to check these properties, we will first
have to review some elementary facts about separable metric spaces.

Given a metric p for a topological space E, we will use U{(E;R) to denote
the space of bounded, p-uniformly continuous R-valued functions on E and will
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endow U{(E;R) with the topology determined by the uniform metric. Thus,
Uf(E;R) becomes in this way a closed subspace of Cp(E;R).

3.1.4 Lemma. Let E be a separable metric space. Then E is homeomorphic
to a subset of [0, 1%, In particular:

(G) IfE is compact, then the space C(E;R) is separable with respect to the
yniform metric.

(ii) Even when E is not compact, it nonetheless admits a metric p with respect
to which it becomes a totally bounded metric space.

(iii) If p is a totally bounded metric on E, then U{j(E; R) is separable.

PrOOF: Let p be any metric on E and choose {pn}3° to be a countable, dense
subset of E. Next, define h : E — [0, 1]Z+ to be the mapping whose nth
coordinate is given by

_ p(T, pn)
hn(iv) = 1 —i—_p(:v,pn)’

It is then an easy matter to check that h is a homeomorphism.

To prove (i), we first check it for compact subsets K of E = [0, 1127, To
this end, denote by P the space of functions p : [0, 1]Z+ — R of the form
p(€) = [1%_, Pm(&n) as n runs over Z* and each of the factors py, is a poly-
nomial on [0, 1] with rational coefficients. Clearly P is a countable subalgebra
of C(0, 1]Z+;R). Furthermore, given distinct points & and 7 from [0, 1127, it
is an easy (in fact, a one dimensional) matter to see that there is a p € P
for which p(€) # p(n). Hence, by the famous Stone—Weierstrass Approxima-
tion Theorem, we know that {p | K : p € P} is dense in C(K;R) for ev-
ery K CcC [0, 1]Z+.' Finally, for an arbitrary compact metric space E, define
h: F — [0,1]Z+ as above, note that K = h(E) is compact, and conclude
that the map ¢ € C(K;R) — ¢ o h € C(E;R) is a homeomorphism between
the uniform topologies on these spaces. Since we already know that C(K;R) is
separable, this completes (i).

The proof of (ii) is easy. Namely, define

reFE.

D(gm) =) ‘5—21' for & n € [0,1".

n=1
Clearly, D is a metric for [0, 1]Z+, and therefore
(z,y) € E? — jp(z,y) = D(h(z), h(y))

Is a metric for E. At the same time, since [0, 1]Z+ is compact and therefore the
Testriction of I to any subset is totally bounded, it is clear that p is totally
bounded on E.
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To prove (iii), let E denote the completion of E with respect to the totally
bounded metric . Then, because E is dense in E, E is both complete and

totally bounded; and, therefore, it is compact. In addition, ¢ € C(E;R) —

pIEe€ U{j(E;]R) is a surjective homeomorphism; and so (iii) now follows from :

(). O

One of the main reasons why Lemma 3.1.4 will be important to us is that it
will enable us to show that, for separable metric spaces E, the weak topology
on M;(FE) is also a separable metric topology. However, thus far we do not
even know that the neighborhood bases are countably generated, and so, for a
moment longer, we must continue to consider nets when discussing convergence.

3.1.5 Theorem. Let E be any metric space and {1 : a € A} a net in M;(E).
Given any p € M;(E), the following statements are equivalent:

(i) pa = p.

(ii) If p is any metric for E, then (p, po) — <<p,u> for every ¢ € UL (E;R).
(iii) For every closed set F C E, lim uo(F) < p(F).

(iv) For every open set G C E, lim po(G) > u(G).

(v) For every upper semicontinuous function f : E — R which is bounded

above, lim (f, pta) < (f, ).

(vi) For every lower semicontinuous function f : E — R which is bounded

below, im (f, pa) > (f, 1)-

(vii) For every f € B(E;R) which is continuous at p-almost every z € E,

{fita) — (f.1)-

Next, assume that E is separable, and let p be a totally bounded metric for
E. Then there exists a countable subset {¢,}7° C U{f(E; [0,1]) whose span is
dense in U{E(E; R), and therefore the mapping H : M (E) — |0, 12" given by
H(py) = ((cpl, u>, e, <<pn, u>, ...) is a homeomorphism from the weak topology
on M;(E) into [0, 1]Z+. In particular, when E is separable, M;(E) with the
weak topology is itself a separable metric space and, in fact, one can take

wn,u («pn,VH

Mg

(p,v) € M1(E)? — R(p,v) =

n=1

to be a metric for M, (E).

e e 5 e B R
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prooF: The implications
(vii) = (i) = (ii), (iii) <= (iv), and (v) <= (vi)

are all trivial. Thus, the first part will be complete once we check that (ii) =
(iii)s (iv) == (vi), and that (v) together with (vi) imply (vii). To see the
first of these, let F' be a closed subset of E and set

F o
Yn(z) =1 (Ii(%(,:v,)?)) for ne€Z" and z € E.

It is then clear that ¥, € U (E;R) for each n € 7+ and that 1 > ¥, (z) \ 1r(z)
as n — oo for each ¢ € E. Thus, countable additivity followed by (ii) imply
that

H(F) = lim <wnaﬂ> = lim lim <wnaﬂa> > l—ir_n_ﬂa(F)'
n—oQ n—o0 o (04
In proving that (iv) = (vi), we may and will assume that f is a nonnega-
tive, lower semicontinuous function. For n € N, define

e 4™
I 1
fa= Y g o f=5:2 L. o,
£=0 £=0

¢ £+1 14
Ie,n = (2—n’ —27—] and J@,n = (27,00) .

It is then clear that 0 < f, , f and therefore that <fn,u> — <f,u> as n — 00.
At the same time, by lower semicontinuity and (iv) applied to the open sets

{f € Je,n}a

where

<fnaﬂ> < li__m<fnaﬂa> < m<faﬂa>

for each n € Z*: and so, after letting n — 0o, we have now shown that (iv) =
(vi).
Turning to the proof that (v)& (vi) = (vii), suppose that f € B(E;R) is
continuous at p-almost every « € E, and define
f(z) = lim f(y) and f(z)= lim f(y) forz e E.
- y—z Yy
It is then an easy matter to check that f < f < F everywhere and that equal-

ity holds p-almost surely. Furthermore, f is lower semicontinuous, f is upper
semicontinuous, and both are bounded. Hence, by (v) and (vi),

= (f, 1) <lm(f, pa) < Hm(f, ta);
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and so we have now completed the proof that conditions (i) through (vii) are
equivalent. !

Now assume that E is separable, and let p be a totally bounded metric for E.
By (iii) of Lemma 3.1.4, U{j(E; R) is separable. Hence, we can find a countable
set {©n}5° C UP (E;[0,1]) which spans a dense subset of Uf(E;R). In particular,
by the equivalence of (i) and (ii) above, we see that <gon,ua> — (cpn,u> for ¢
all n € Z* if and only if u, = p; which is to say that the corresponding map
H:E — |0, I]Z+ is a homeomorphism. Since [0, 1]Z+ is a compact metric space
and D (cf. the proof of (ii) in Lemma 3.1.4) is a metric for it, we also see that -
the R described is a totally bounded metric for M, (E). Finally, since, by (ii)
in Lemma 3.1.4, it is always possible to find a totally bounded metric for E, the
last assertion needs no further comment. [

The reader would do well to pay close attention to what (iii) and (iv) say
about the nature of weak convergence. Namely, even though p, = p, it is
possible that some or all of the mass which the p,’s assign to the interior of a
set may gravitate to the boundary in the limit. This phenomenon is most easily
understood by taking E = R, p, to be the unit point mass §, at o € [0, 1),
checking that u, = d;, and noting that 0 = 4, ((0,1)) <1 = pg ((0,1)) for
each a € [0,1).

3.1.6 Remark. Those who find nets distasteful will be pleased to learn that,
from now on, we will be restricting our attention to separable metric spaces £
and therefore need only discuss sequential convergence when working with the
weak topology on M, (E). Furthermore, unless the contrary is explicitly stated,
we will always be thinking of the weak topology when working with M, (E).

Given a separable metric space E, we next want to find conditions which guar-
antee that a subset of M, (E) is compact; and at this point it will be convenient
to have introduced the notation K CC FE to indicate that K is a compact subset
of E. Also, we will say that F is a Polish space if E is a separable metric space
which admits a complete metric.

The key here is the following variation on the renowned Riesz Representation
Theorem combined with an important observation made by Ulam."

3.1.7 Lemma. Let E be a separable metric space, p a metric for E, and A a
nonnegative linear functional on UL (E;R) (i.e., A is a linear map which assigns
nonnegative numbers to nonnegative ¢ € U (E;R)) with A(1) = 1. Then in
order for there to be a (necessarily unique) u € M, (E) satisfying A() = (¢, 1)

T It is no accident that Ulam was the first to make this observation. Indeed, the term Polish
space was coined by Bourbaki in recognition of the contribution made to this subject by the
Polish school in general and C. Kuratowski in particular (cf. Kuratowski’s Topologie, Vol. I,
Warszawa-Lwow, (1933)). Ulam had been Kuratowski’s student.
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for all p € UL(E;R), it is sufficient that, for every € > 0, there exist a K CC E
SUCh that

(3.1.8) |A(p)| < 52&\@(@\ +elle@)llu, v € UY(E;R).

Conversely, if E is a Polish space and p € M, (E), then for every € > 0 there is a
K cC E such that u(K) > 1—e€. In particular, if p € My(E) and A(y) = (o, 1)
for ¢ € Cv(E;R), then, for each € > 0 (3.1.8) holds for some KccE.

PrOOF: We begin with the trivial observation that, because A is nonnegative
and A(1) = 1, \A((p)\ < ||¢lla- Next, according to the Daniell theory of inte-
gration, the first statement will be proved as soon as we show that Alpn) \y 0
whenever {¢,}$° is a nonincreasing sequence of functions from U{ (E;[0,00))
which tend pointwise to 0 as n — oo. To this end, let € > 0 be given and choose

K CC E so that (3.1.8) holds. One then has that

Tim [A(pn)| < lim :ggl«pn(w)\ + ellerlla = €lleru,
since, by Dini’s Lemma, ¢n \, 0 uniformly on compact subsets of E.

Turning to the second part, assume that E is Polish and use Bg(z,r) to
denote the open ball of radius r > 0 around z € E, computed with respect to
the complete metric p for E. Next, let {px}5° be a countable dense subset of E,
and set Bin, = Be (pk, %) for k, n € Z*. Given p € M, (E) and € > 0, we can
choose, for each n € Z*, an £, € Z* so that

£n
€
(O)er-5

bn oo
U Ek,n and K = m Cn,
k=1

n=1

Hence, if

Cn

Il

then u(K) > 1 — €. At the same time, it is obvious that, on the one hand,
K is closed (and therefore p-complete) and that, on the other hand, K C
Ui":lBE (pk, %) for every n € Z". Hence, K is both complete and totally
bounded with respect to p and is, therefore, compact. U

As Lemma 3.1.7 makes clear, probability measures on a Polish space like to
be nearly concentrated on a compact set. Following Prohorov and Varadarajan,’

t See Yu. V. Prohorov’s article “Convergence of random processes and limit theorems in prob-
ability theory,” Theory of Prob. & Appl., which appeared in 1956. Independently, V.S.
Varadarajan developed essentially the same theory in “Weak convergence of measures on a
separable metric spaces,” Sankhya, which was published in 1958. Although Prohorov got into
Print first, subsequent expositions, including this one, rely heavily on Varadarajan.
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what we are about to show is that, for a Polish space E, relatively compact :
subsets of M (E) are those whose elements are nearly concentrated on the same
compact set of E. More precisely, given a separable metric space E, we will say '
that M C M;(E) is tight if, for every € > 0, there exists a K CC F such that
pu(K)y>1—eforall pe M.

3.1.9 Theorem. Let E be a separable metric space and M C M, (E). Then
M is compact if M is tight. Conversely, when E is Polish, M is tight if M is '
compact. ;

PROOF: Since it is clear, from (iii) in Theorem 3.1.5, that M is tight if and only |
if M is, we will assume throughout that M is closed in M, (E).

To prove the first statement, take p to be a totally bounded metric on E,
choose {¢n}$° C U{)3 (E;[0,1]) accordingly, as in the last part of Theorem 3.1.5,
and let o = 1. Given a sequence {u¢}5° C M, (FE), we can use a standard *
diagonalization procedure to extract a subsequence { e, }:ozl such that

A(pn) = Bm (@, e, )
exists for each n € N. Since

A((p) = kll)rgo <<P»H2k>
continues to exist for every ¢ in the uniform closure of the span of {¢,}°, we
now see that A determines a nonnegative linear functional on U{)3 (E;R) and that
A(1) = 1. Moreover, because M is tight, we can find, for any ¢ > 0,a K CC E
such that u(K) > 1 — €, p € M; and therefore (3.1.8) holds with this choice
of K. Hence, by Lemma 3.1.7, we know that there is a p € M;(F) for which
Alp) = (o, 1), p € U{j(E; R). Because this means that (i, pe, ) — (¢, p) for
every ¢ € U{j(E; R), the equivalence of (i) and (ii) in Theorem 3.1.5 allows us
to conclude that p,, = p.

Finally, suppose that E is Polish and that M is compact in M, (E). To see
that M must be tight, we repeat the argument used to prove the second part of
Lemma 3.1.7. Thus, choose By, k, n € Z' as in the proof there, and set

fen(p) = (UBkn) for ¢, n e Z".

t For the reader who wishes to investigate just how far these results can be pushed before
they start of break down, a good place to start is Appendix III in P. Billingsley's Convergence
of Probability Measures, publ. by J. Wiley, (1968) . In particular, although it is reasonably
clear that completeness is more or less essential for the necessity, the havoc which results from
dropping separability may come as a surprise.
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By (iv) in Theorem 3.1.5. p € M, (E) — fen(p) € [0,1] is lower semicontinu-
ous. Moreover, for each n € Z*, fen /1 as £ / oco. Thus, by Dini’s Lemma,
we can choose, for each n € Z*. one £, € ZF so that f¢, (1) > 1— 5% for all
p € M; and at this point the rest of the argument is precisely the same as the

one given at the end of the proof of Lemma 3.1.7. U

We have now seen that M (E) inherits properties from E. To be more specific,
if E is a metric space, then M, (E) is separable or compact if F itself is. What
we want to show next is that completeness also gets transferred. That is, we will
show that M (E) is Polish if E is. In order to see this, we will need a lemma
which is of considerable importance in its own right.

3.1.10 Lemma. Let E be a Polish space and ® a bounded subset of Cy(E;R)
which is equicontinuous at each € E. (That is, for eachz € E, sup,eq |9(y) —
plx)=0asy—z.) If {pn} U {p} € My(E) and pn = 1, then

(@, i) — <<p,u>l =0.

lim sup
n—oo <p€<1>
PROOF: Let € > 0 be given and use the second part of Theorem 3.1.8 to choose

K cc E so that

€
sup H‘P“u sup Hn(KE) < 1
ped neZ+t

By (iii) of Theorem 3.1.5, u(KC) satisfies the same estimate. Next, choose a
metric p for E and a countable dense set {pr}?° in K. Using equicontinuity
together with compactness, find £ € Z+ and 61,...,6¢ > 0 so that K C {:v :
p(z,py) < O for some 1 <k < ¢} and
sup |p(z) — <p(pk)l < i for 1 < k < £ and z € K with p(z,pk) < 20k
pED
Because
r € (0,00) — u({y eK: py,z) < r}) € [0,1]
is nondecreasing for each ¢ € K, we can find an 7 € (6k,26k) so that, when
By = {:v e K: p(:v,pk) < rk}, u(aBk) — 0 for each 1 < k < £. Finally, set
Ay = By and Agsy = Br \U5, Bj for 1 <k < £ Then, K C US_, A, the
Ap’s are disjoint, and, for each 1 < k <,
€
sup sup |p(z) — o(pe)| < 1 and p(0Ax) = 0.
wEd xC Ay

Hence, by (vii) in Theorem 3.1.5 applied to the 14,’s:

r_ l yHn/ — )
i sup (s n) = (po 1)

¢
<et nlLrEokz::lZ‘elg‘<P(Pk)‘ |in(Ak) — p(Ax)| =€ O
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3.1.11 Theorem. Let E be a Polish space and p a complete metric for E.
Given (u,v) € M (E)?2, define 4

L(p,v) = inf {5 cu(F) < V(F(‘S)) +6

(3.1.12) and v(F) < p(F®) 4§ for all closed F C E}

where we use F9) to denote the set of z € E which lie a p-distance less than §
from F. Then L is a complete metric for M (E), and therefore M, (E) is Polish.

PROOF: It is clear that L is symmetric and that it satisfies the triangle in-
equality. Thus, we will know that it is a metric for M (FE) as soon as we show
that L(un, u) — 0 if and only if y, = p. To this end, first suppose that
L(un,u) — 0. Then, for every closed F, u(F(‘S)) + 8 > limy, 00 ftn (F) for all
§ > 0; and therefore, by countable additivity, u(F) > lim,,— e pn(F) for every
closed F. Hence, by the equivalence of (i) and (iii) in Theorem 3.1.5, p, = p.
Next, suppose that u, =—> u and let § > 0 be given. Given a closed F in E,

define
p(z, FOL)
= f ek
It is then an easy matter to check that both
plz,y)

1p <¢p <1lps and |Pp(z) —Pr(y)| < 3

In particular, by Lemma 3.1.10, we can choose m € Z* so that

sup sup{.<wp,un> - <1,Z}F,p>l : F closed in E} < 4;

n>m
from which it is an easy matter to see that, for all n > m,
W(F) < pn(FO) 46 and  po(F) < u(FO) +6.

In other words, sup,,~,, L(un, u) < 4; and, since § > 0 was arbitrary, we have
shown that L(un, u) — 0.

In order to finish the proof, we must show that if {u,}3° C Mi(E) is L-
Cauchy convergent, then it is tight. Thus, let ¢ > 0 be given and choose, for
each £ € Zt, an my € Z* and a K; CC F so that

sup L(Hn’“mg) < ‘ .
n>me 2+ 1<n<m, 2¢+1
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Setting €¢ = 57, One then has that:

suZp+ fin (Kf‘)ﬂ) < ¢ foreach fe€ 7r.
ne

In particular, if

K,

Il
3

K

Y
1

1

then pn(K) > 1—¢eforalln € 7+ . Finally, because each K, is compact, 1t is
easy to see that K is both p-complete and totally bounded and therefore also
compact. [

When E = R, P. Lévy was the first one to construct a complete metric on
M, (E), and it is for this reason that we will call the metric L in (3.1.12) the Lévy
metric determined by p. Using an abstract argument, Varadarajan showed that
M, (E) must be Polish whenever E is, and the explicit construction which we
have used is essentially the one first produced by Prohorov.

Before closing this section, it seems appropriate to introduce and explain some
of the more classical terminology connected with the applications of weak con-
vergence to probability theory. For this purpose, let (2, F, P) be a probability
space and E a metric space. Given E-valued random variables {X,}3°U{X} on
(Q, F, P), one says that the sequence X, tends to X in law (or distribution)

and writes X, — X if (cf. Exercise 1.1.16) (X,)«P => X, P. The idea here
is that, when the measures under consideration are the distributions of random
variables, one wants to think of weak convergence of the distributions as deter-
mining a kind of convergence of the corresponding random variables. Thus, one
can add convergence in law to the list of possible ways in which random variables
might converge. In order to elucidate the relationship between convergence in
law, P-almost sure convergence, and convergence in P-measure, it will be useful
to have the following lemma.

3.1.13 Lemma. Let (Q,F,P) be a probability space and E a metric space.
Given any E-valued random variables {X,}3° U{X} on (2,7, P) and any pair
of topologically equivalent metrics p and o for E, p(Xn, X) — 0 in P-measure
if and only if U(Xn,X) — 0 in P-measure. In particular, convergence in P-
measure does not depend on the choice of metric; and so we can write Xn, — X
in P-measure without specifying a metric. Moreover, if X, — X in P-measure,
then X, - X.

Next, given any metric p for E, set

U(z,y)——m)—— for =,y € E,

T 1+p(z,y)
and define

[ME

R(X,Y) =EF [0(X,Y)]
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for E-valued random variables X and Y. Then o is again a metric for E, R is a
pseudo-metric for P-convergence in the space of all E-valued random variables
n (Q, F, P), and both o and R are complete if p is complete.
Finally, assume that E is Polish, let p be a complete metric for E, define o and
R from p as in the preceding, and let L be the Lévy metric determined by o.
Then
L(X,PY.,P) < R(X,Y)
for all E-valued random variables X and Y on (Q, F, P).
ProoF: To prove the first assertion, suppose that
p(Xy,X) — 0 in P-measure but that o(X,, X)— 0 in P-measure.

After passing to a subsequence if necessary, we could then arrange that p(X,, X)

— 0 (a.s., P) but P(o(Xn,X) >¢€) > eforalln € Z* and some e > 0. But this

is impossible, since then we would have that o(X,,, X) — 0 P-almost surely but

not in P-measure. Hence, we have now proved that convergence in P-measure

does not depend on the choice of metric. To complete the first part, suppose

that p(Xn,X) — 0 in P-measure. Then, for every ¢ € UY(E;R) and § > 0,
T [E [p(Xa)| - E7 [p(%)]] < Tm B [Je(Xn) - 0(X)]

< e(8) + gl Tm P(p(Xn, X) > 6) = e(6),
where

€(d) = sup {le(y) — w(z)| : p(z,y) <6} — 0 as §\,0.
Hence, by (ii) in Theorem 3.1.5, (X,,).P = X.P.

Turning to the second part, note that the only assertion about ¢ needing com-
ment is that it satisfies the triangle inequality. However, this is easily seen from
the triangle inequality for p together with the trivial facts that t € [0, 00) — 1L+t
by < 8-+ 2y for all a, b € [0,00). Once
one knows that o is a metric, it is immediate that (X,Y) — R(X,Y)? is a
pseudo-metric, and therefore the same conclusion for R itself follows from the
inequality va + b < \Ja+ Vb forall a, b € [0, 00). Furthermore, the equivalence
between R(X,,X) — 0 and X,, — X in P-measure is an easy application of
elementary measure theory.

To prove the final assertion, suppose that § = R(X,Y) > 0. Then, for any
closed F in E,

X.P(F)=P(X € F) < P(s(Y,F) <§) + P(¢(X,Y) > §)
R(X,Y)?
s

where F(®) is computed relative to the metric o. Since the same relation holds
when the roles of X and Y are reversed, it follows that, when L is defined relative
to o, L(X,P,Y,P) <4é. O

is strictly increasing and that

<Y.P(F¥) + =Y. P(F®) 4,
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As a demonstration of the sort of use to which one can put these ideas, we
present the following version of the principle of accompanying laws.

3.1.14 Theorem. Let E be a Polish space and, for eachk € Zt, let {Yin}o.,
be a sequence of E-valued random variables on the probability space (Q, F, P).
Further, assume that, for each k € 7%, there is a px € My (E) such that
Y, P = px as n — 0. Finally, let p be a complete metric for E and suppose
that {X,}$° is a sequence of E-valued random variables on (Q, F, P) with the
property that

(3.1.15) lim lim P(p(Xn,Yk,n) > e) =0 for every e > 0.

k—o00 Nn—00

Then there is a u € M (E) such that py = p as k — oo and (X,,)«P => p as
n — 00.

ProoF: Clearly, (3.1.15) continues to hold after p is replaced by o = TJ%I;. Thus,
with R and L as in Lemma 3.1.13, we see that, for any k € YA

sup L (pe, i) = sup lim L(Y;, P, Yy P)
0>k >k X ’ ’

< sup Iim (L(Y;np, X:P)+ L(X}P, Yk’fnP))

>k n—oo

< 2sup lim R(H,n,Xn) —0 as k— oo

>k n—o0

Hence, because L is complete, we know that ur = p for some p € M, (E). In
addition,

Em L(u, (X,).P) = lim lim L(Y P, (X0).P) < lim Tim R(Yien, Xn)

n—00 k—00 N—00 ~ k—oo n—o0

=

~ k—oo n—00

1
< Iim Iim (e% +P(U(kan,Xn) 26)2) =€

for every e > 0. O

Exercises

3.1.16 Exercise: Let (E,B) be a measurable space. In this exercise, we in-
vestigate the strong topology in a little more detail. In particular, in part (iv)
below, we will show that when p € Mi(E) is non-atomic (i.e., u({z}) =0 for
every ¢ € F), then there is no countable neighborhood basis of x in the strong
topology. Obviously, this means that the strong topology for My (E) admits no
metric whenever My (E) contains a non-atomic element.
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(i) Show that, in general,
lv = pillvar = 2max{v(A) — p(4) : A € B}
and that in the case when E is a metric space and p is a metric
v = pllvar = sup{{, v} — (¢, 1) : ¢ € U{(E;R) and [lp|lu < 1}.

(ii) Show that if {u,}$° is a sequence in M;(E) which tends in the strong
topology to 4 € M;(E), then

x0
Hn

A

n=1

[T

(iii) Given p € M, (F), show that p admits a countable neighborhood basis in
the strong topology if and only if there exists a countable {9} C B(E;R) such
that, for every net {ua tac€ A} C M, (F), po — p in the strong topology as
soon as

lim <<pk,ua> = <<pk,u> for every k€ Z".

(iv) Referring to Exercises 1.1.14 and 1.1.16, set Q@ = EZ' and F = B%+. Next,

let 4 € M;(FE) be given, and define P = uZ+ on (2, F). Show that, for any
¢ € B(E;R), the random variables

x € Q— X2 (x) = p(zn), nelZt,

are mutually P-independent and all have distribution ¢, u. In particular, use
the Strong Law of Large Numbers to conclude that

1
Jim mZ::l X7(x) = (o, 1)
for each x outside of a P-null set.

Now assume that p is non-atomic and suppose that p admitted a countable
neighborhood basis in the strong topology. Choose {¢x}3° C B(F;R) accord-
ingly, as in (ii), and (using the preceding) conclude that there exists at least one
x €  for which the measures p.,, given by

1 n
“"EEZ‘S%» n€Z+,
m=1

converge in the strong topology to p. Finally, apply (i) to see that this is
impossible.

3.1.17 Exercise: Throughout this exercise, E is a separable metric space.
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(i) We already know that M;(E) is separable; however our proof was noncon-
structive. Show that if {pk}c;o is a dense subset of E, then the set of all convex
combinations Y_%_, axdp, , wheren € Z* and {ak}? C [0,1)NQ with D7 o = 1,
form a countable dense set in M; (E).

(ii) We have seen that M;(E) is compact if E is. To see that the converse is

also true, show that z € E +— 6, € My(E) is a homeomorphism whose image
is closed.

(iii) Although it is a little off our track, it is amusing to show that E being

compact is equivalent to Cp(E;R) being separable; and, in view of (i) in Lemma
3.1.4, this comes down to checking that E is compact if C,(E; R) is separable.

Hint: Let 5 be a totally bounded metric on E and use E to denote the p-
completion of E. Show that if {,,}3° C E has the properties that z, — T € FE

and Lm0 (25 ) exists for every ¢ € Co(E;R), then Z € E. (Suppose not, set
1

Y(z) = ——=,

) ple, &)

and consider functions of the form f o4 for f € Cp(R;R).) Finally, assuming
that C,(E;R) is separable, and using a diagonalization procedure, show that
every sequence {z,}7 C E admits a subsequence {Zn.m }:no:l which converges to

some # € E and lim,, 00 ¢(2n,, ) exists for every ¢ € Cy(E;R).

(iv) Let {M,}$° be a sequence of finite measures on (E,B). Assuming that
{M,} is tight in the sense that {M,(E)}5° is bounded and that, for each
€ > 0, there is a K CC E such that sup, M, (KC) < €, show that there is a

subsequence {Mnk}:ozl and a finite measure M such that
/ pdM = lim @dM,,, forall p € Cp(E;R).
E k— o0 E

Conversely, if F is Polish and there is a finite measure M such that [, ¢ dM, —
[z ¢ dM for every ¢ € Cy(E;R), show that {M,}{° is tight.

3.1.18 Exercise: Let {E,}° be a sequence of Polish spaces, set E = Hcfo Ey,
and give E the product topology.

(i) For each £ € 7+, let pe be a complete metric for E¢, and define

1 pe(ze, o)
R _ P b S A S 3 € E.
(x,y) ZZ:; > Ttpeleny) Y

Show that R is a complete metric for E, and conclude that E is a Polish space.
In addition, check that Bg =[]} Be,.
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(ii) For £ € Z*, let m¢ be the natural projection map from E onto Fy¢, and show
that K cC E if and only if

K= ﬂ ’ﬂ';l(Kg) where Ky CcC E; for each £ € Z*.
A

Also, show that the span of the functions
¢
H ¢k o, where £ € Z" and ¢ € U (Eg;R), 1<k <Y,
k=1

is dense in UR(E;R). In particular, conclude from these that A C M, (E) is
tight if and only if {(m¢)ep : p € A} C M, (Ey) is tight for every £ € Z* and
that pn, = g in M (E) if and only if

¢ ¢
<H Pk oﬂ'ka#n> — <H Pk Oﬂk,ﬂ>
k=1 k=1

for every £ € Z*+ and choice of o € UP*(E;R), 1 <k <L

(iii) For each £ € Z1 , set E; = Hi:l E4, and let 7, denote the natural projection
map from E onto E,. Next, let u[; ¢ be an element of M, (Eg), and assume that
the p[) ¢'s are consistent in the sense that, for every £ € ZT,

o1y (T X Bega) = ppg(T)  for all T € B,

Show that there is a unique g € M,(E) such that pp g = (7¢)«p for every
LeZr.

Hint: Choose and fix an e € E, and define &, : E; — E so that

(‘I’l(wl,---,u)) :{xn if <t

n e, Otherwise.

Show that {(®¢)«pp,q : £ € ZT} € My(E) is tight and that any limit must be
the desired pu.

The conclusion drawn in (iii) is the renowned Kolmogorov Extension (or
Consistency) Theorem. Notice that, at least for Polish spaces, it represents
a vast generalization of the result obtained in Exercise 1.1.14.

3.1.19 Exercise: For u € M, (RY), recall the definition of the characteristic
function £ € RY +—— fi(€) € C given in (2.2.6). In this exercise we are going
to develop the intimate relationship which exists between weak convergence in
M, (RV) and convergence of characteristic functions. In particular, by the end,
we will have proved the famous Continuity Theorem of P. Lévy.
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(i) Let {/Ln}(;CU{/L} cM, (RN). Show that fi, tends to fi uniformly on compacts
if pin = M.

(ii) Show that if {[Ln}ic C M, (R") is tight and F(€) = limp o0 f1n(§) exists
for each € € RN, then there is a g € My (RV) such that 1, = p and f = ji.
(iii) Show that A C M, (RN) is tight if and only if the family {[L s pe A} C
Ch (RN;(C) is equicontinuous at the origin.

Hint: In proving the sufficiency of the equicontinuity condition, first use part
(i) in Exercise 3.1.18 to show that one need only handle the case when N = 1.

Working with p’s on R, note that, for any € > 0, equicontinuity implies that
there is a & > 0 such that

A(1 —~ cos(gz)) pldz) =1- K9] +2,1(_§) . %

After averaging the preceding with respect to & over (0,4), conclude that

sin(é:v) €
sup 1= P (de) < -
ueA/R\{O} ( oz ) pntde) 2

In particular, arrive at

for all |¢| < & and p € A.

sup p ({z e R: || > ) <e

ueA
(iv) Let {pn}jo C M;(R") be a sequence with the property that the limit
F(&) = limy o0 f1n(§) exists for each £ € RN . If the convergence of {pn}cl’o to
f is uniform in a neighborhood of the origin, show that there is a u € My (]RN )
with the properties that p, = and that f = fi.

3.1.20 Exercise: As we will see in the next section, Lévy’s Continuity Theorem
has a very important role to play in probability theory. However, to demonstrate
that its importance is not restricted to probabilistic applications, we will devote
the present exercise to a derivation of a purely analytic statement. Namely,
given a function f : RY —» C, we will outline the proof of Bochner’s Theo-
rem which states that f is the characteristic function i of a p € M, (RY) if and
only if f € C’(RN;(C), f(0)=1,and fis nonnegative definite in the sense

that, for each n € Z1 and (51, ..., &) € C", the matrix ((f (§g—§k))) is
nonnegative definite. 1<k, tsn

(i) The “only if” assertion is the easy direction. (Ironically, it is also the direction
used most in applications.) Check it by expressing

Z (& — €0) e

k,£=1

in terms of an integral with respect to .
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(ii) The first step in proving the “if” assertion is to use the nonnegative def-
initeness assumption to show that f(—¢) = f(€) and |f(§)] < f(0) for all
¢ € RY. In particular, this proves that [|f|ls < 1. Second, using an obvi-
ous Riemann approximation procedure, check that for any rapidly decreasing,
continuous 1[) RN — C,

/ £(6 — m)D(€)d(m) d€ dn > 0.

In particular, when f € L*(RV;C), set

m(x) = (2m)"N [ e VTE f(g) de,

RN

and use Parseval’s Identity, Fubini’s Theorem, and elementary manipulations to
arrive at

en [ mexue? = [[ 1€ miein dean >0

RN xRN

for all smooth ¢ : RY — R with rapidly decreasing derivatives of all orders.

Conclude that m is nonnegative, and use this to complete the proof in the case
when f € LI(RN;(C).

(iii) It remains only to pass from the case when f € L (RN ; (C) to the general
case; and it is at this point that Lévy’s result comes into play. Namely, for each

€ (0,00), set f1(&) = et f(¢). Clearly, f; is continuous and f;(0) = 1. In
addition, after checking the identity (cf. (2.2.10))

e Hel = eV~ EXeN g 1(dx), € €RY,
RN

show that

Z fi(&k — me) g = /R Z F(€x — &) ar(x) ae(x) | Yo,a(dx) >0,

kf=1 N\ k=1

where ay(x) = ageY 1 &%)z~ Hence, f; is also nonnegative definite; and so,
because f; € LI(RN ;(C), part (ii) applies and shows that f; = fi; for some
pt € My (RY). Finally, apply Lévy’s Continuity Theorem to show that there is
a p € M;(RV) such that s = p as t \, 0, and conclude that f = f.
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3.1.21 Exercise: In this exercise we will use the theory of weak convergence to
develop variations on The Strong Law of Large Numbers (cf. Theorem 1.4.11).
Thus, let E be a Polish space, (Q, F, P) a probability space, and {X,}7° a se-
quence of mutually independent E-valued random variables on (Q,F, P) with
common distribution p € M, (E). Next, define the empirical distribution func-
tional

1 n
(3.1.22) weQr— La(w) =~ Zl 8x,. () € Mi(E);

and observe that, for any ¢ € B(E;R),

<907Ln(w)> _ 1 Z @(Xm(w)), neZ" and w € Q.

n m=
As a consequence of The Strong Law in Theorem 1.4.11, show that
(3.1.23) L,(w) => p for P-almost every w &€ Q.
Now suppose that E is a real, separable, Banach space with dual space E*, and
set Sp(w) = 237 Xm(w) forn € 7+ and w € Q. What we want to do is prove

that The Strong Law for R-valued random variables extends, without change,
to the present setting.

(i) As a preliminary step, we begin with the case when
(3.1.24) u(BE(O,R)C) —(0 forsome R € (0,00).

Choose n € Cy(R;R) so that n(t) = t for t € [-R, R] and n(t) = 0 when
|t| > R+ 1, and define ¥ € Cy(E;R) for A € E* by
n

a(z) = (:v,A)), rz€E,

where (z,)) is used here to denote the action of A € E* on ¢ € E. Taking
(3.1.24) into account and applying (3.1.23) and Lemma 3.1.10, show that

lim  sup =0

O Ag- <1

(¥, L)) - /E<w, A u(dz)

for P-almost every w € §2; and conclude from this that

nll_)II;o ||Sn(w) - mHE — 0 for P-almost every w € (),
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where m € E is uniquely determined by the relation
(3.1.25) (m, \) = / (z,\)u(dz), X€E".
E

(ii) We next want to replace the boundedness assumption in (3.1.24) by the
hypothesis

(3.1.26) /E||:v||E p(dz) < oo.

Assuming (3.1.26), define, for R € (0,00), n € Z*, and w €

X if || X, R
= { ) Pl <
otherwise

and ¥, (w) = Xn(w) — X8 (w). Next, set E;R) =137 x¥® n ezt and,

from (i), note that {E;R) (w)}?o converges in E for P-almost every w € . In
particular, if € > 0 is given and R € (0, 00) is chosen so that

]l 2 p(dz) <
{lj2| s> R}

?

ool m

use the preceding and Theorem 1.4.11 to verify the computation
lim S,—-S >
A P (ggg\lSn Smllp 6)
< lim P (sup HE;R) —Eff)n > f)
m—co n>m 2
1 i (R) €
et Y, >
n Z k - 4)
1 E

— 1 — €
<2 Jm, P (s 2SI, 2 ;) -0

+2 lim P(sup

m—0C nzm

and from this, conclude that S, — m P-almost surely, with m € E satisfying
(3.1.25).

(iii) Finally, repeat the argument given in the proof of Theorem 1.4.11 to show
that (3.1.26) must hold if {Sn}(;o converges in E on a set of positive P-measure.
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The beautiful argument which we have just given is due to Ranga Rao." Notice
that. as a dividend, we have proved that for any p € M;(E) satisfying (3.1.26)
there is a mean-value m € E satisfying (3.1.25). In keeping with the real-
valued case, one uses [z u(dz) to denote this element of E. (See Lemma
5.1.20 for more information about integration of Banach space valued functions.
Also, entirely different proofs of The Strong Law for Banach spaces are given in
Exercise 5.3.38 and Exercise 6.1.34.)

§3.2: Infinitely Divisible Laws

Certainly the first truly significant, and perhaps still the most beautiful, appli-
cation of the theory of weak convergence to probability theory is the one which
led eventually to the Lévy-Khinchine (cf. (3.2.6)) formula. In this section, we
will first derive their formula and then examine what it says.

We begin by stating the problem to which the Lévy-Khinchine formula is the
solution. Namely, we want a description of all the random variables Y which can
be expressed, for everyn € 7+, as the sum of n mutually independent, identically
distributed random variables Xin,- -, Xn . Here, by the term description, we
mean that we want to characterize the distributions of such Y’s. Thus, an
alternative statement of the same problem can be given without any reference to
the random variables themselves. Indeed, introduce on M, (R) the convolution
product (u1,v) € Mi(R)? — pkv € M, (R) given by

pkev(I) = // 1r(x + y) p(dx) v(dy), T € Bg.
RxR

Clearly, this product turns M (R) into a semigroup in which the identity element
is the point-mass dg. Moreover, if X and Y are independent random variables
with distributions g and v, respectively, then X + Y has distribution p¥kv.
Hence, the preceding problem is equivalent to the problem of characterizing the
set 7 consisting of those p € M, (R) which are infinitely divisible in the sense
that, for each n € ZT, there exists a p1 € M, (R) with the property that

n-times
f-_/\-_-\
“ZIL%*HEH%**IL%

.

! Ranga Rao’s 1963 article “The law of large numbers for D0, 1}-valued random variables,”
Theory of Prob. & Appl. VIII, 1, shows that this method applies even outside the separable
context. His is not the first proof of the result given here. The Strong Law for separable
Banach spaces was proved first in 1953 by E. Mourier in «Fléments aléatoires dans un espace
de Banach,” Ann. Inst. Poincaré.
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Because the convolution product derives from the action of the translation group

on M, (RR), it should come as no surprise that both the statement as well as the
solution of this problem are greatly simplified when couched in Fourier language
(i.e., in terms of characteristic functions). For example, because (cf. (2.2.6))

pkv(€) = A(€) (), u, v € My(R) and £ € R,

another formulation of the problem is that of describing those characteristic
functions i which are infinitely divisible (i.e., for every n € ZT, can be written
as the nth-power of a characteristic function 1 ); and it is the solution to this
formulation which the Lévy-Khinchine formulanprovides.

Rather than simply writing down their formula, it may be best to see how
far one can get by guessing. Whether one looks at the problem directly or from
the characteristic function point of view, it is clear that what one is seeking is
a description of those probability measures which admit a logarithm. Thus, it is
reasonable to start by exponentiating measures. More precisely, let u € M, (R)
be given, and, for each a € [0, 00), consider the (compound) Poisson measure
given by

X n
(3.2.1) Moy =€ & Z %—'-u*", where p*° = §;.
n=0

(The factor e™* in front is simply a renormalization.) As it turns out, this is a
very good idea. In fact, what Lévy and Khinchine showed is that Z is the closure
of

P = {ﬂa“; a € (0,00) and p € M1(R)};

and our first goal will be to describe the elements of this closure in terms of their
characteristic functions and to check that they are infinitely divisible.

Obviously, we should begin by writing down the characteristic function of 7.
But clearly

) = e 3 (i(€)"
and so
Fon(€) =exp |a [ (/7T 1) ula)|
In particular, this expression shows that
Few = (r0) ™", nezt,

and therefore that ., € Z. In addition, it indicates that it is foolish for us
to continue separating the mass o from the distribution x and that we should

1
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simply write mas for the probability measure whose characteristic function is

given by
() = “18v 1) M(d ]
() = exp | [ (V71 = 1) M(a)

when M is a finite, Borel measure on R. This change in notation has more
than aesthetic benefits. Indeed, it points us in the right direction as we start
constructing the closure of P. More precisely, it shows that whatever mass M
may have at {0} does not contribute to my; and therefore that we should think
of M as a measure on R\ {0} and write

Ta(€) = exp [ /R o (eﬂ v — 1) M(dy)]

in place of the preceding. Secondly, it encourages us to abandon the assumption
that M is finite. For example, the expression for 7 ar makes perfectly good sense
so long as M satisfies the condition

(3.2.2) / ly| M(dy) + M((—1,1)C) < oco.
{o<lyi<1}

In fact, by considering the measures
M(T)=M (F N(-ee€l), TeBg, for ec (0,1]

and applying Lévy’s Continuity Theorem (cf. Exercise 3.1.19), we see that there
is a mp; € P whose characteristic function is

exp [/R\{O} (e*/‘_“fy - 1) M(dy)} :

The point here is, of course, that because (3.2.2) guarantees the uniform M-in-
tegrability of the functions

yeR\{0}+—>e‘/Tl£y—1€C

as £ varies over any compact, 7a7, (§) — 7ar(§) uniformly for £ in each compact.
Moreover, it is obvious that mas is not only in P but also in Z, since an nth root
is obtained by replacing M with %

The next step is a little more sophisticated and requires some preparations.
Namely, we want to replace the condition in (3.2.2) by the condition that

(3.2.3) / w12 M(dy) + M((~1,1)C) < co.

{0<]y|<1}
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However, before we can do this, we have to first squeeze the class of measures
M which satisfy (3.2.2) in order to get the translates mq pr = do%mar. To this
end, let a € R be given, and set

MS:(SS—G+]\I for € > 0.
€

Note that, although M. gets more singular as € \ 0, it does so in such a way
that the quantity in (3.2.2) is staying bounded. Moreover, as € \ 0,

737, (6) — i (€) = exp l%—_lsa o T M(dw]

{0}

uniformly fast as £ varies over compacts. Hence, by another application of
Lévy’s Continuity Theorem (or even just Lemma 2.2.8) we see that 7, p € P;
and clearly, for every n € Z", Ta,M = Ta M *7 which means that Ta,m 1S also
an element of 7. nT

We now have the possibility of subtracting off the next term in the Taylor’s
expansion of eV=18 in order to produce an integrand which vanishes to second
order as |y| N\, 0. Namely, having introduced translation, we now introduce the
notation

(3.2.4) m(ﬁ) = exp {\/—-_15(1 + /

e2(§,y) M(dy)} )
R\{0}

where

(3.2.5) ex(fy) = eVl 1 — fyiy

(The denominator in the third term is there to prevent possible integrability
problems at co. As is explained in Exercise 3.2.21, its choice is quite arbitrary.)

Clearly fr/aT/[ = 7z.a1 when M satisfies (3.2.2) and

a— / Y M(dy).

a 2
r\{0} 1+

Il

Thus, at least when M satisfies (3.2.2), we already know that there is a unique
TaM € P N T with characteristic function m Moreover, by exactly the same
limit argument which before allowed us to replace finite M’s by M’s satisfying
(3.2.2), we can now see that, for each @ € R and each Borel measure M on

R\ {0} satisfying (3.2.3), there is a unique 7, sy € P N T whose characteristic
function is given by (3.2.4).
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At this point one might think that the preceding scheme should continue
indefinitely. That is, the next step is to squeeze again, only this time instead of
squeezing in such a way that (3.2.2) remains bounded, we squeeze in such a way
that (3.2.3) stays bounded. Thus, given o € [0,00), @ € R, and an M satisfying
(3.2.3). set
_ 660 + 6_60

M,
2¢€2

+ M, €>0,

and conclude, that
’Fravj\/lf = Tra,a2,M7

where Tq 02 ar is the measure whose characteristic function is given by

2¢2
(326)  Tacru() =ew [\/—‘1 g5+ | e2<s,y>M(dy>] .
R\{0}

By construction, we know that 7, »2 pr € P, and once again it is clear that one
can get the nth-root of 74 o2 a1 by simply dividing a, 0%, and M by n.

So far so good. However, the scheme breaks down as soon as one attempts to
take the next step. That is, if one tries to produce an integrand which vanishes to
third order by repeating the same trick as we just used to go from first to second

order, one discovers that there is no expression having the form V—1&a - ”—2253
at 0 whose introduction into the integrand will compensate for the term which
we want to knock out. Indeed, although the desired term is quadratic in &, it
has the wrong sign; and, for this reason, our procedure comes to a screeching
halt. Actually, there is a far more compelling reason why our procedure breaks
down: namely, as we will see below (cf. Theorem 3.2.20), (3.2.6) is the Lévy—
Khinchine formula for the characteristic function of the most general infinitely
divisible probability measure on R, and, as such, it is also the expression for the
characteristic function of the most general element of P. However, we still have
work to do before we can justify these claims.

A measure M on R\ {0} which satisfies (3.2.3) is called a Lévy measure,
and we will use 9 to denote the set of all Lévy measures and £ to denote the
set R x [0, 00) x 9 of all Lévy systems. Thus, we can sumimarize our progress
so far by saying that

{ﬂ’a‘agM : (a,0,M) € S} CPnI.

In order to refine this statement, we will need a little more preparation. In
the first place, the preceding parameterization does not lend itself well to a
discussion of limits. For one thing, it is inconvenient to be dealing with infinite
measures. Secondly, although for each individual Lévy system the separation of
o from M is reasonably clear, these parameters have a disturbing propensity to
get mixed up when limits are involved; for example, as we have just seen, what
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starts as mass in the Lévy measure M can, after a limit is taken, turn into o.
For these reasons, we will now reorganize the parameterization in such a way
that o and M are represented by a single, finite measure on R. To be precise,
given ¢ € [0,00) and M € 9, define the finite measure M? on (R, Bg) so that

(3.2.7) / o(y) M? (dy) = 0?(0) + / oW)oly) M(dy), o € BRR),
R\{0}

where p is the bounded, smooth function given by

(3.2.8) p(y) =6 (1 - Silyly) for y € R\ {0} and p(0)=0.

Clearly, (o, M) € [0,00) x 9t — M?¢ is a one to one mapping onto the space of
finite, Borel measures on (R, BR). Also, observe that

(3.2.9) Tagrar(£) = exp [\/—_1 af + /R &2(&,y) M"(d&)] , EER,

where, for each £ € R, é2(¢, -) is the element of C,(R;C) determined by (cf.
(3.2.5))

~ — 62(£7y)
62(£7y) - p(y)

2
fory € R\ {0} and é;(§,0) = —%—.
Thus, if we write

(@n, 0n, My) N (a,0,M)

when {(an,an,Mn)}oo U{(a,0,M)} C £ and

1

a= lim a, and /cde": im [ pdMZ", ¢ e Cy(R;R),
R R

n—oo n—oo

then it is clear (cf. either Lemma 2.2.8 or Exercise 3.1.19) that

(3.2.10) (an,0n, My) N (a,0, M) implies that 7, 52 1, = Tq 02 M-

In order to get an appropriate converse to (3.2.10), we will need the following.
3.2.11 Lemma. For each f € C(R;C\ {0}) with f(0) = 1 there is a unique
£y € C(R;C) with the properties that ££(0) = 0 and f(£) = exp[€s(£)] for all
§ € R. Furthermore, if {f,}3° C C(R;C \ {0}), f»(0) =1 for each n € Z*,

inf inf |f, for al
nlenZ+i£1|I%Rtf(£)|>0 or all R € (0, 0),

and f, — f uniformly on compacts, then f € C(R;C \ {0}), f(0) = 1, and
{f., — €y uniformly on compacts.



§3.2: Infinitely Divisible Laws 145

PrROOF: Let f be given, set §y = 0, and define

£
f(gztn)

§ini1:inf{i§2i§ini l —1‘>1} for n € N.

-2
By continuity, it is clear that £+, — 00 as n — oo; and so we can determine
an {7 € C(R; C) inductively by setting £;(0) = 0 and, for n € N,

£(£E) = €5 (Exn) +log % if £¢€ [Fin, £ant],

where “log” denotes the principal branch of the logarithm function. Moreover,
it is clear (again by induction) that this is the one and only choice of £ € C(R; C)
with £(0) = 0 for which f(¢) = !®, £ e R

Now suppose that {f,}{° and f are as in the second part of the statement.
Obviously f € C(R;C \ {0}). Next, set A, = {5, — {5, n € Z*, and, given
R € (0,00), choose N € Z* so that

};?((5) -1 §% forn > N and || < R.
Then
A, (&) =log ];?((5)) mod vV—127Z forn> N and |¢| < R,

and therefore, since n > N implies A, — long" is continuous on [—R, R| and
vanishes at 0,

fn(§)
F¢)

—0

An(§) = log
uniformly on [-R, R]. O
Given (a,0,M), set fo o2 m = Tao?. 01, and observe that

barn 0(8) = 85, 2, (O = VTag + [ Ea(Eru) 317 ().

R

In order to see that (a,0, M) € £+ m, 52 11 € Mi(R) is one-to-one, we must

see how M?, and therefore a, can be recovered from a knowledge of fq o2 1 oI,
equivalently, of £, 52 5. To this end, let ¢ € CF(R;R) be given. Clearly,

/Rﬁp(y) M (dy) = a¢(0) + /R\{O} ¥(y) M(dy) where ¥ = pp.
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Since ¢ € C°(R;R) and therefore 1) is rapidly decreasing, the relation

0) == [ eil-ods

is an easy application of elementary Fourier analysis and the fact that ¢ (0)
2¢(0). At the same time, because ¥(0) = 0 = ¥'(0), an application of (2.2. ) :
can be used to verify the calculation:

/ (y) M(dy) = lim (y) M(dy)
R\ {0} N0 J{jy|>e)

—um 2 g Y
= tim 5 [ 90 {H/} v M(ay) | g
y|2e

~fim L / 0(-¢) | VTga+ / e2(€,y) M(dy) | de

eN0 27
{lylze}

/w €)a 0.1 (€) dE.

Hence, after combining these we arrive at the identity
- 1 . -
3212 [ @iy = o [ fpu@F(-0d oecEER)
R R

In particular, this, together with Lemma 3.2.11, means that M? and therefore
also a can be recovered from f, ,2 5s. In other words, we now know that the

map (a,0,M) € £ — 74,2 € P is one-to-one. What we are going to show
now is that it is also onto.

3.2.13 Lemma. Given {(an,0n, M,)}5° C £, there is a p € M;(R) such that

Ta,02,M, = i ifand only if thereis an (a,0, M) € £ such that (ay,0pn, M) N

(a,0,M); in which case y = Ta.02,M- In particular, the map
(3.2.14) (a,0,M) € £+ m, 52 31 € P is one-to-one and onto.
PROOF: Because of (3.2.10), it is sufficient for us to discuss the only if assertion.

Set fn = fa,,02, M0 In = Lo, 02 M, and f = fi. By part (i) of Exercise 3.1.19,
we know that f, — f uniformly on compacts. At the same time,

22
Re(£n(£)) = —% + /R\{O} (cos(Ey) — 1) M, (dy);

o
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and so (cf. (3.2.7) and (3.2.8)), for each §d>0,
1 [° 1 -
L[ meltate) de = =5 [ 5st) Mala),
0 R
where M, = an and 35 € Cy (R; (0, oo)) is defined by
Bs(y) = P90 hen y £ 0 and 85(0) = 8%

In particular, since f(0) = 1 and frn — f uniformly on compacts, we can
choose, for each € > 0, a §(¢e) > 0 so that

(3.2.15) €> / Bs(y) My (dy) forallmeZ" and 0 <4 < d(e).
&

As our first application of (3.2.15), we show that there is an £ € C(R;C)
to which {£,}° converges uniformly on compacts. Indeed, note that, for each
§ > 0, m(6) = infyer Bs(y) > 0, and therefore, by (3.2.15), that

sup MelB) < 6

But, by (3.2.9),

£2(©)] = exp [— [ 1= cosl&y) 1 ay)| > exp[—cMa(R)],

p(y)
where
1 —cos&y o
c=Sup ———— :
yER 52/7(?!)

£#0

and so we now know, first, that inf, |f,(&)| is uniformly positive on compact
subsets and then, by Lemma 3.2.11, that £, — £ uniformly on compacts, where
=Y

= f‘ .

Our next goal is to show that there is a finite measure M with the property
that

(3.2.16) /god]\;[n —+/¢le, ¢ € Cp(R;R).
® R

To this end, we first observe that, for some C € (0, c0),

[ e Mn(dm\ < C(1+8) ML (R)
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and

lan] < ea(1)] + \ [ ) ).

Hence, from what we already know, we can use (3.2.12) and Lebesgue’s Domi-
nated Convergence Theorem to see that

n—o0

tim [ Mo (dy) = o / UOFB(~£) de  for ¢ € C(R;R).
R T JRr

Thus, we will know that there is an M for which (3.2.16) holds as soon as we °
check that every subsequence of {Mn}fo admits a subsequence which converges
in the sense required in (3.2.16). But, by (iv) of Exercise 3.1.17, this reduces to !
checking that {Mn(R)}TO is bounded and that :

_5-1 s—10) —
‘%l\innseung 2 ([-071,671C) = 0.

However, the first of these has already been noted, and the second is an easy

application of (3.2.15).

To complete the proof, we must still show that {a,}{° converges to some a. :
But

VT an = (1) - /R &2(1,y) M (dy) — £(1) - /R £a(1,y) M(dy). O

We are now in a position to prove that Z = P. Thus, let 4 € T be given, and,
for each n € Z*, choose u1 € M;(R) so that g = p1*". The idea behind the
proof is based on the intuition that, for large n’s, p1 must be nearly concentrated
in a small neighborhood of 0; and therefore, A, = p1 — & ought to be small |
enough that the error in the approximation represente?i by

oo

*m
n)\ nmul
~ W MALn _ _—7n n
u% (50 + — ) ‘e =e E —

m=0

ought to become negligible as n — co. With this in mind, we attempt to prove
that

> . nm ;1,1
(3.2.17) Z :u as n — 0.

To this end, let ¢ € C}(R;R) be given, and define

ARy =e " Do ua*™) — (o)

meN
Im-n|<v7 R
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for n € Z* and R € (0,00). Clearly

[(.7) = (o )| < An(R) + 2lielluen ().

where m
n n
En(R) =€ Z -’n_”LT
meN
ln—m|>vn R
But o
1 n an™ 1
En(R) S W(’Z H;O(m — n) '—T Ei,

where the final equality involves an elementary computation. (In fact, when
looked at correctly, this estimate for e,(R) is just an application of Chebyshev’s
inequality.) Hence, we have now proved that

(<<p, Tn) — <<p,u>( < AL(R)+ 2”;;“", n € Z" and R € (0,00),

and so we will be done once we check that, for each R € (0, ), Ap(R) — 0 as
n — oo; and clearly this will follow once we show that

nh_)ngo Sup{‘<¢,#%*(m+l)> _ <¢,H%*m>(
(3.2.18)
:mENandogégﬁR}:O

for every R € (0,00). But, for each r € (0, 00),

(<¢’H%*(m+e)> _ <%“%*m>(

/R (/R(w(z +y) — o(z)) u%*l(dy)) pi*™(dz)

< 7l llu + 2lplhupes ¥ ((=r,7IC),

and so (3.2.18) will follow from

(3.2.19) lim sup pr*([-rrll) =0 forallre (0, 00).
n—00 gp< /R R n

Finally, to prove (3.2.19), choose § > 0 so that ) -1 < 3 for £ € [0, 4], and
note that, because both i1 and j are continuous functions on R which equal 1

at £ = 0 and satisfy 2" = i everywhere,

A1)t =ge(p(g), forlgl <4,

3=
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where, for o € (0,00), go(z) = €*'°8* and log is the principal branch of the
logarithm in the disk {z € C: |z — 1] < 1}. In particular, since

e

|1 - ga(2)] < 20|z 1| forac [0,1] and |z — 1] < 3,

we have that

sinéy) oy
1- L* (dy) =
/R( 5y ) M (dy)

Hence, if

then m(r) > 0 for each r > 0 and

2( 2R
m(r)y/n
which is more than enough to verify (3.2.19).

After combining the preceding with Lemma 3.2.13, we arrive at the following
statement of Lévy and Khinchine’s main result.

pi*¢([-r,r]0) < for 0 < ¢ <+/nR;

3.2.20 Theorem (Lévy—Khinchine). Let P and T be, respectively, the sets
of Poisson and infinitely divisible measures on R. Then P = I, and the map (cf.

(3.2.6))

(a,0,M) € £+ T, 52 0 € I is one-to-one and onto.
In fact, if p € T and p = p1*™ for each n € Z*, then (3.2.17) holds. Hence, if
a, € R and the finite measure M,, on R are defined by (cf. (3.2.8))

ap =N

y ~
Tt pi(dy) and Ma(dy) =np(y) p1(dy),

then there exists an a € R to which {a,}7° converges and a finite measure M
on R determined by

/ o(y) M(dy) = lim [ o(y) Ma(dy), ¢ € Cu(R;R),

R n—oc R

such that y = 74 o2 pr, where 0% = ({0}) and

M(dy) = 1—%—3} M(dy).



§3.2: Infinitely Divisible Laws 151

Although, with Theorem 3.2.20, we have reached the goal toward which we
have been heading, there is still a great deal more which ought and has' been said
about infinitely divisible laws. However, we will give only a cursory sampling in
the following exercises.

Exercises

3.2.21 Exercise: We have already alluded to the fact that there is nothing
sacrosanct, or even particularly compelling, about the way in which we corrected
¢V~16¥ — 1 in order to accommodate M’s for which (3.2.2) fails. Indeed, show
that we could have equally well taken (cf. (3.2.5)) ea(&,y) to be any function of

the form
eVt 1 — V=1E8(y),

where 1 : R — R\ {0} is any bounded measurable function with the prop-
erty that sup,_o )d’(?;y‘ < oo. Further, show that each such W leads to a

re-parameterization of 7 in which a is replaced by

a+ / <¢(y)- 1fy2> M(dy).
E\{0}

Finally, when M is symmetric (i.e. M(-T) = M(T) for all T € Bgo})> check
that

oo (€) = exp |V-1ag - / (1 — cos(y)) M(dy)| ;
R\{0}

thus partially alleviating some of the arbitrariness alluded to above.

3.2.22 Exercise: Refering to Exercise 2.2.27, consider again the problem of
finding nontrivial solutions to g = T.p. As we saw there, such solutions can
exist only when « € (0,2], and, by Exercise 2.2.25, when o = 2, the solutions are
precisely the centered (i.e., mean 0) normal distributions. Thus, we restrict our
attention to « € (0,2). Taking a hint from the case o = 2, we seek a solution f
whose characteristic function fi is given by

j(€) = exp[—clel®], z€R

S —
T The classic book on this topic is B.V. Gnedenko & A.N. Kolmogorov’s Limit Distributions
Jor Sums of Independent Random Variables, publ. by Addison-Wesley.



152 III: Convergence of Measures

for some ¢ € (0,00). Indeed, it is clear that

p=Tap = A(2756)° =€), £€R,

and therefore, if exp[—c|£|®] is the characteristic function of some p, then that
(1 is a nontrivial solution. Thus, we will know that solutions exist as soon as we .
show that exp[—c|£|®] is a characteristic function for some choice of c € (0,00). -

At first sight, one might hope that Bochner’s Theorem (cf. Exercise 3.1.20)
should provide the key here. However, as we warned there, the nontrivial di- {
rection in Bochner’s Theorem is seldom of practical value. To wit, it is very
difficult to test, directly, whether exp[—c|§ ]"] is nonnegative definite. On the !
other hand, one can try an indirect approach. Namely, note that any solution to
p = Tpp must be infinitely divisable. In fact, for each m € N, p = pX2™  where
pm(T) = (27 %T); and so, a look at the last step in the derivation of Theorem
3.2.20 shows that the argument used there applies here and proves u € Z(R).
Thus, one should first see if there is a Lévy measure M, with the property that

e = - / 2(€,y) Ma (dy).
R\{0}

But clearly, if such an M,, exists, then it must be symmetric. Thus (cf. Exercise
3.2.21), we are looking for an M, € M for which

(3.2.23) = [ (11— cos(ey) Ma(d).
R\{0}
(i) Given « € (0,2), check that (3.2.23) is satisfied by

1 dy
M, (dy) = calm oy |y| '~ dy where ——:‘/ 1—cosx)——;
[ (o1 \{ } Ca R\{O} ( ) \yll—i—a
and conclude that, for each t € (0,00), 7o,0,¢a,, is a nontrivial solution to p =
T, . In the liturature, the mg 0+, 's are called symmetric, stable laws.

(ii) The only case in which a closed expression for either c, or mo,0,0,, 18 readily
available is when a = 1. To compute c;, use integration by parts to obtain

siny

— = lim lim
C R, 00 e\0 Yy
e<|y|<R

dy,

and apply the residue calculus to see that ¢y = % To find g 0,1, , use the Fourier
inversion formula to see that mp o a7, is absolutely continuous with respect to
Lebesgue’s measure and has density f) given by
1 /= 1 1
— ~£ —
== e s dé = —— R.
hie) =1 [ teontende= L we

This special symmetric stable law is very famous and is called the Cauchy
distribution. An entirely different derivation can be found in Exercise 4.3.49.
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(iii) When a € (0,1), there is an obvious alternative source of solutions to
p = Tab- Namely, take M7 (dy) = l(ovoc)y'l‘“ dy, set

Y 1+
Gy = M (dy),
~/(vO.oo) 1+ y2

and show that, for eacht € (0,00), Ty o.M is a nontrivial solution to u = Ta .
Again, explicit expressions for these are rare, although (cf. Exercise 4.3.46) the
case & = % is tractible. Because they are all concentrated on the right half line,
these laws are called one-sided stable laws.

3.2.24 Exercise: In those rare situations when one has an explicit formula for
{Tiatortrm L E [0,00)}, notice that one can recover the Lévy system (a, %, M)
by using

— _0252 =Tty _ _\/——_iﬁy)
V=1¢a 5 +/R\{0} (e v—-1 T4 M (dy)

1 ~
= lim — (6 1z _ 1> Tta to? tM(d$)
t—>0 1 Jr T

As an example, consider the family {us - t € (0,00)} given by

wt—le—z

pe(dr) = 1(o,w)($)w de,

where T is Euler’s Gamma function (cf. (1.3.22)).
(i) Show by direct computation that

B(s,t s+t—1,—=z
) = (o0 ()27 e

where
Bz [ etn-o e
(6,1)
is Euler’s Beta function, and conclude that ps+¢ = psdfig. In particular, one

gets, as a dividend, the famous identity

L(s)I'(?)

B(S,t) = m

(ii) Using the comment with which this exercise began, show that the Lévy-
Khinchine representation for fi; is

f1:(§) = exp {t /(0700) (e\/jﬁy — 1) e Y Qyﬂ} )
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§3.3: Discontinuous Processes with Independent Increments

At the end of the §3.2, we admitted that Theorem 3.2.20 barely scratches the -
surface of the vast and beautiful theory which has been developed to understand
infinitely divisible laws. In particular, there are many profound convergence
results of which Theorem 3.2.20 is only the most rudimentary, none of which -
we reproduce here. Instead, we will devote this section as well as the next one :
to finding a probabilistic interpretation for Lévy and Khinchine’s description
of an infinitely divisible distribution. The starting point of our analysis is the
observation that, given their description, one knows that every infinitely divisible
distribution p is continuously divisible. That is, for every ¢ € (0, 1) (not just
rational ones), there is a p1 € M, (R) with the property that “p = p X

o

a o
t?t

in the sense that g = (ﬁ;)t Indeed, if g = 7q o2 a, then p1 = g o2 M.
Once this observation has been made, the obvious question is what it meails :
probabilistically. Hence, given a Lévy system (a,0, M), our goal will be to both
construct and, to some extent, understand a nice, continuously parameterized
family {a,a2, y) o te [0, oo)} of random variables on some probability space

(2, F, P) with the properties that Zao2,m(0) =0 and

Zao2m(s+1) = Za52 m(s) has P-distribution g 52, ¢

(3:3.1) and is independent of 0(Z, 2 m(§) : § € [0,5])
for all s € [0,00) and t € (0,00). For historical reasons, a continuously para-
meterized family of random variables is called a stochastic process or, more
briefly, a process. Furthermore, when a process {(t) : ¢ € [0,00)} has the
properties that, like {a,a'2,M(t) 1t e [0,00)}, each increment Z(t) — Z(s) is
independent of o(Z(¢) : € € [0,3]) and has a distribution depending only on
t — s, the process is said to have independent, identically distributed in-
crements. Finally, the ambiguous term nice will refer here to the quality of the
sample paths ¢t € [0,00) — Z(t,w) € R for each sample point w € (2. At the
very least, we will want these paths to be right-continuous and have a left-limit
at each t € (0,00). In particular, they should have no oscillatory discontinuities.
Before going any further, we should point out that, if one ignores the niceness
criterion as well as the desire to understand what is happening, it is possible
to make a relatively simple construction of {a,a'2,M: t e [0,00)}. Namely, set

Q = Rl and take F = o(w(t) : t € [0, 00)). Next, given § = {sn}5° C (0, 00),
set Tp = 0, Ty, = Y.} 8m for n € Z7, Fs = o(w(Tp) : n € N), and define
®5:RET —» Q so that ®g is constant on each of the intervals (Tn, Tns1) and

[@5(x)](Tn) = Z zm forn eN.

m=1



§3.3: Discontinuous Processes with Independent Increments 155

Now, define the probability measure Ps on (Q, Fs) by (cf. Exercise 1.1.16)

oC

PS =®Pgs, (60 X H Ws"a,snoz.snM> .
n=1

It is then an easy matter to check that Ps(A) = Ps/(A) for A € FsNFs. Hence,
since every element of F is an element of Fg for some sequence S, we can define
pactM . F — [0,1] so that pac®M | Fg = Ps. In fact, if {Am}T" €
F, then we can choose S so that {Am}® € Fs, and therefore pao’M s a
probability measure on F. Finally, if Z(t) is the random variable on (2, F) given
by Z(t,w) = w(t), w € €2, then process {(t): t e [0,00)} on (Q,]—",P“*"Z’M)
satisfies both parts of (3.3.1).

Unfortunately, like many constructions based entirely on general principles,
the preceding one reveals very little information about the nature of the object
constructed. In particular, we have no idea how, or even whether, the parameters
(a,0,M) are reflected in the paths t — Zao2,m(t) € R. For this reason, we
now adopt an entirely different approach. To begin with, we note that the
task can be broken naturally into steps corresponding to the decomposition
Tao? M = 70,02,0KTa,0,M - That is, if we can build versions of the processes
{070270(t) . t € [0,00)} and {a,O,M(t) . t € [0,00)}, then we get a version of
{a o2 M t € [0,00)} by making these independent of one another and taking
Za:[,z,M = Zgo2,0+ Za,0,M- For the rest of this section we will be constructing
a nice version of {a,O,M(t) . t € [0,00)}, and we postpone the construction of

{0 20): tE [0,00)} until the next section.
We start with the case when M(R\ {0}) € (0,00) and therefore (cf. (3.2.1))

(3.3.2) M = Tau Where @ = M(R\ {0}) and p= M.

In fact, we begin with o = 1 and M = 6. For this purpose, wé choose a sequence
T,...,Tn,--- Of mutually independent unit exponential random variables
on some probability space (£, F, P). That is,

n
P(T] >t1,.-9yTn >tn) = exp {_Ztm}
1

for n € Z" and (t1,.--,tn) € (0,00)";

and, for convenience, we will assume that Tn(w) >0 for all n € 7+ and w € €2
Next, we set To = 0, Tn = S Tm for n € 7+, and define the simple
Poisson process {N(t): t € [0,00)} by

N(t,w) =sup{n € N: To(w) <t}

(3.3.3 o
) =5 " 1ir,@e(t) for (t,w) € [0,00) X §2.
n=1
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Thinking of 7, as being the time that it takes alarm clock n to ring after it has |
been set, T, becomes the total time that has elapsed at the time when the nth
alarm sounds (assuming that the clocks are run in tandem: the nth being set at .
the instant when the (n — 1)st one sounds), and N(t) is the number of alarms
that have sounded by time t. In order to see what all this has to do with the :
Poisson measures, we apply an easy inductive argument to first check that

P(Ty, <

t n—1
t):/o (ns—_l)—!e'sds for n € Z* and t € [0,00),

and then that

P(N(t) =n) = P(T; <t) = P(Tny1 <Y)

t
=e ' for n € Nand ¢t € [0,00).
n!

In other words, for each t € [0, 00), the distribution of N(t) is precisely mss,. In
fact, we can say a great deal more.

3.3.4 Lemma. Forany /e Nand0 <ty <--- <lgt,

P(N(tgﬂ) _ N(te) = n & (N(to), ..., N(te)) = m)

_ e,(tHl—te)(_tHl_T;ﬂ P((N(to), .. ,N(tz)) = m)

for every n € N and m = (mo,...,mg) € N with mg <my < --- <my. In
other words, {N(t) : t € [0,00)} is an independent increment process for which
the increment N(s +t) — N(s) has distribution s, .

PROOF: Set

Ag(m) = {(N(to), ... N(t)) = m},
and define

{T s < to} if £=0

Bl(m) - { Ag_l((mo,. . ,mg_l)) N {Tml S tg} if (¢ Z+.

Clearly (cf. Exercise 1.1.11)

P(Ag(m)) = P({ng—{—l >ty — Tme} N Bg(m))

(3.3.5) _ P [e—m—Tw), Be(m)}-
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gimilarly, for any n € Z* and t > 0:

P({N(tt +1)—N(te) = n}0 Ag(l’ﬂ))
= P({Tml% Ty, <te+t =T b0 {Tmer1 > te = Ty, ) 0 Bg(l’ﬂ))

— [ (T,), Be(mm)].
where f(T) is equal to

P({Tngtﬂut—T}m{rl >tg'—T})

t[+t——T
—.:/ e”sP(Tn_lgtg-{—t—T—s)ds
te—T

t
= ¢~ T) / e'sP(Tn_l <t- 5) ds = e'(t"T)P(Tn < t).
0
Hence, after combining these with (3.3.5), we arrive at

P({N(t@+1) - N(tg) Z n} M Ag(l’ﬂ)) = P(Tn S tg+1 - tg)P(Ag(m)),
from which the desired conclusion is an easy step. O

Obviously, N(-,w) is always right-continuous and nondecreasing. In addition,
by the Strong Law, i, —1 (a.s. P), and therefore (cf. (3.3.3)) N(t,w) <
oo (a.s., P) for each t € [0,00). Thus, without loss in generality, we will assume
that N(t,w) < oo for all (t,w) € [0,00) X €.

In order to get the processes corresponding to general M’s with M(R\{0}) <
00, we write mas as in (3.3.2) and, after expanding the original probability space
(Q, F, P) if necessary, choose mutually independent random variables Xn, n €
Z*, which have common distribution u and are independent of the 7,,’s. Next,
we define the Poisson process Yu(-) by

N(at) 0
Yi(t) = Z X,, te€l0,00), where ZX" =0.
n=1 n=1
Notice that when M = &,, and therefore Xn = 1 almost surely, Yar(-) = N(+)
almost surely. In fact, what Y (+) is now modeling is a process which evolves by
jumping a random amount X, at the instant when the nth alarm clock sounds
and is at rest between alarms. Furthermore, if Sp= 01 Xms then

P(Yu(t) € )= i P(Sn el & N(at) = n)
= Z (—O%!)Zu*"(l") = mm (L)

n=0
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and

P(Yar(te) = Yar(tea) € T & (Yar(to).. -, Yar(ten)) € 4)

= io: Z P(Smt_l-i-n - Sm141 € I'& (Smo’ t ‘7Sm£—1) € A)

n=0 meN¢

x P(N(atg) ~ N(ate_1) = n & (N(ato),..., N(ate—1)) = m)

=Y P(S, € D)P(N(a(te — te-1)) =)

n=0

x 3 P((Smo,...,sm_l) = A)P((N(ato),...,N(ate_l)) - m)

meN¢
= P(YM(tg —ti_1) € 1“) P((YM(to),...,YM(te,l)) € A),

forall L€ 7+, 0<ty <--- <ty '€ Br,and A € Bye. Hence, {Yi(t): t €t
[0,00)} has independent increments and the increment Ya(s +1t) — Yas(s) has |
distribution . Finally, it is clear, from our construction, that the sample
paths ¢t € [0,00) — Ya(t) € R are right-continuous and piecewise constant,
and, as such, have finite total variation on bounded intervals and a left limit at
each t € (0,00). In fact, we have the following more quantitative statements
about their behavior.

3.3.6 Lemma. Let var [o,T](w) denote the total variation of the function ¥ :
[0,00) — R on the interval [0,T]. Then, for each T' € [0,00), w € Q —>
var (o7 (YM( . ,w)) is F-measurable and

(3.3.7) EP [Var[(,’T](YM)] :T/ ly| M (dy).
R\ {0}
Next, suppose that fR\{O} ly| M (dy) < oo, and set

b= / yM(dy) and Y(t,w)=Ya(t,w)—bt for (t,w) € [0,00) x Q.
R\{0}
Then, for each T € (0, ),

weN— Y(T) = sup |[Yu(t,w))
tef0,T]

is F-measurable and

(3.3.8) P(¥i(T) > ) < / 2 M(dy), € 0.

R\{0}
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PROOF: To prove the first assertion, simply note that

N(aT w)

Var[O.T](YJ\I('vw)): Z | Xn (W)l

n=1
and therefore both that var [O.T](YM) is F-measurable and that
EP [var 0,0 (Yar)| = B [N(oT)| E” (1]
=aTmeww=TAWMﬂ®)
To prove the second part, set
La(w) = max{ \YM (%%T-,w)l :0<m< 2"}

and

Amn(w) = Yum (ﬂ;‘nl",CU) —Yu ((m;nl)T,w) , 1<m<2n

By right-continuity, we know that Ly (w) 2 Y (T,w) as n — 00 and this clearly
proves measurability. Furthermore, for each n € N, the Ap s are mutually
independent, identically distributed random variables with mean-value 0 and

variance 27T [ y* M(dy). Hence, since
:1§m§T},

> Arn(w)
£=1

Kolmogorov’s inequality (cf. Theorem 1.4.5) says that

Lp(w) = max{

P(L.> ) ggfzf M(dy), n €T

and clearly this completes the proof of (3.3.8). U

In order to handle M € M for which M(R\ {0}) = oo, we will decompose
M into manageable parts, apply the preceding to each part, and reassemble
by super-position. For this purpose it will be useful to introduce the following
partition of R \ {0}. Namely, choose a decreasing sequence {ri}g° € (0,00) so
that ry, \, 0, ax = M(Ax) >0, k € N, and

f ly| M (dy) < 51;, k € Z+, when (3.2.2) holds

(3.3.9) Ak 1

/ y? M(dy) < ok k € Z*, when (3.2.2) fails,
Ay
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where Ag = {y : |yl > ro} and Ay = {y : 7 < |y| < o} for k € Z+

Then the preceding applies to each of the measures My € M, k € N, given by |
M (T) = M(F N Ak) for T' € B j0}; and so we can produce for each k£ € N a
process {Yar, (t) : t € [0,00)} built from the process {Ny(t) : t € [0,00)} and -
the random variables {X,, . : n € Z" }. Furthermore, we can use Exercise 1.1.16
to arrange for all these quantities to live on the same probability space (2, F, P)

and that the quantities corresponding to distinct k’s be mutually independent

there.

3.3.10 Lemma. Assume that M € 9 satisfies (3.2.2), and let wps denote the -

Poisson measure whose characteristic function is

() = exp [ /R o ) M(dy)} -

Then there is an independent increment process {Ya(t) : t € [0,00)} on a
probability space (Q,F,P) with the properties that Yar(s + t) — Yar(s) has -

distribution myps for each s € [0,00) and t € (0,00); and, for each w €
t € [0,00) — Yy (t,w) € R is a right-continuous path with bounded variation
on bounded intervals and Yy (0,w) = 0. In fact, for each (T,w) € [0,00) x

(3.3.11) Yu(T,w)= > (Yu(t,w) - Yu(t—w)),

t€(0,T]
where Yy (t—,w) = lim, ~ Y (s,w) for t € (0, 00).
ProOF: Referring to the preceding paragraph, set

¢
w) = ZYMk(t,w) for £ € N and (t,w) € [0,00) x Q.

By Lemma 3.3.6, we know that, for each £ € N and w € Q, S¢(-,w) is a right-
continuous, piecewise constant path. Moreover, by (3.3.7),

B [var (5 = Se-n)]| = [ i Motay) =T [ 1y1dr(a);
and therefore, by the first line of (3.3.9) and the Borel-Cantelli Lemma, there is

a A € F with P(A) = 0 such that

sup £?var o 7)(Se¢(-,w) — Se—1(-,w)) < oo for all T € (0,00) and w ¢ A.
LeZ+

Hence, for each w ¢ A there is a right-continuous Y (-, w) of bounded variation
on bounded intervals such that

)LHOIO var o7 (Yam (-, w) = Se(-,w)) =0

L o e e
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for all T € (0,00); and we complete the definition of Yy, by setting
Yu(-,w)=0 forwe A.

Notice that (3.3.11) is trivial for w € A, and that, because the convergence is in
variation, it follows from the analogous fact about the Sp(-,w)’s when w ¢ A.
Gimilarly, the fact that {Ya(t) : t € [0,00)} has independent increments comes
from the independence of the increments of each {Si(t) : t € [0,00)}; and the
gistribution of Yar(s +t) — Ya(s) is identified via the computation:

EP [exp(\/:—lﬁ(YM(S +t) - YM(S)))]
= BEOEP [exp(\/:_l_ﬁ(Sg(S +1t) — SZ(S)))]

£
= lim [[ 7oar (€) = Fem(§)- O

{—oo
k=0

As the preceding lemma shows, sO long as (3.2.2) holds, the sample paths of
the independent increment process determined by ms can be taken to be right-
continuous functions which are constant between simple jump discontinuities.
The point is, of course, that although M (R\ {0}) = co means that there will be
infinitely many jumps in each open time interval, (3.2.2) says that the frequency
and size of these jumps are balanced in such a way that the resulting path still
has finite arc-length over finite time intervals. For this reason, it is reasonable to
continue referring to such processes as a Poisson process. However, when (3.2.2)
fails, the situation changes radically.

3.3.12 Lemma. Assume that (3.2.2) fails but (3.2.3) holds. Then there is an
independent increment process {YM(t) it € [0,00)} on a probability space
(Q, F, P) with the properties that V(s +t) — Yar(s) has distribution 7o,0.tM
for each s € [0,00) and t € (0,00), and, for each w € Q, Yy (-,w) is a right-
continuous path with Y (0,w) =0 and a left limit at each t € (0,00). However,
for every T € (0, 00), varo, 7] (f’M( -, w)) = oo for P-almost every w € .

ProoF: Again referring to the paragraph preceding Lemma 3.3.10, set

b = / yM(dy) and Vag(t) = Yo () — it fork €27,
Ay

and



162 III: Convergence of Measures

Then, by (3.3.8) and (3.3.9),

_ T
P( sup |Sy(t) — Se_1(t)] > 6) < o5, (€Z7,
te[0,T] €

and, therefore, another application of Borel-Cantelli proves that there exists a .

A € F with P(A) = 0 and the property that

sup £ sup ISg (t,w) S_'g_l(t,w)| <oo, Te(0,00)andw ¢ A.
ezt tel0,T)

Thus, there is a measurable Yy, : [0, 00) x @ — R such that Yjs(-,w) = 0 when
w € A and S;(-,w) — Yy (-,w) uniformly on bounded time 1ntervals when
w ¢ A. In particular, this means that Yjs(-,w) is right-continuous and has a

left limit at every ¢t € (0,00). In addition, {¥»(t) : ¢ € [0,00)} inherits the
independent increment property from the S;’s; and

EP [exp(ms(YM(s +) = Ta(s) )]

= Teno (€ H AR TYA(3)
k=1

= exp [t (e‘/__lﬁy -1- \/jﬁyl[o,ro](ly’)) M(dy)‘l
R\{0}

where

y
a= -yl ,r(y))Mdy)-
/R\{o} <1+y2 oo} (19 (

Thus, if we take YM( t) = YM( ) —at, then {Yy(t) : t € [0,00)} has independent
increments and YM(s +1t) - YM(S) has distribution 7 o ¢ar; and obviously the
path regularity of Yj;(-,w) is the same as that of Yar(-,w).

In order to complete the proof, we must still show that ?M( -,w) has un-
bounded variation on [0, T'] for almost every w € €. To this end, note that, from

our construction, we know that
!YM t w) — YM(t— )1 € (T‘k,T‘k_l] =
Vi (t,w) — Y (t—,w)| = |Yag, (t,w) = Yoy, (t—,w)| > 0
for all t € (0,00) and w ¢ A. Hence, for w ¢ A,

var [o,7] (YM( Sw)) > Z var (o ) (Yar, (- ,w)).
k=1

G e

1 i s

gl
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Thus, all that we need to do is check that, for all T € (0, 00),

oS

Z Vi(T) =00 (as.,P), where Vi (T, w) = var o, (YMk(-,w)).
1

But, for each T € (0, o0), the Vi(T)’s are mutually independent random vari-
ables. Moreover, since (cf. the paragraph preceding Lemma 3.3.10)

Nk(akT)

Vie(T) = Z | Xn k),

n=1

one can easily check that

EP [V(T)] = Tmi  where my = / 1yl M(dy)
Ak

and that
EP [(Vk(T) - ka)2] =To; where o= / y? M(dy).
Ag

Hence, since, by (3.2.3),
Sai= [ #M) <

k=1 0<|yl<ro

Theorem 1.4.2 tells us that the sum

o0

Z(Vk(T) —Tmy) converges (a.s., P).
k=1

On the other hand, because (3.2.2) fails and therefore S o, Mk = 00, this
implies the required divergence of ST V(T). O

In order to formulate our findings as a single statement, we introduce the space
CL(R) of right-continuous paths ¥ : [0,00) — R which possess a left limit
at each t € (0,00) (the notation «CL” derives from the anglfrish expression
cadlag which, in turn, derives from continue & droite limites d gauche) and
set Form) equal to the o-algebra U(w(t) . t €0, oo)) generated by the maps
¥ € CL(R) — ¢(t) €R, t € [0,00). Note that, because of the right-continuity,
the space BV (R) of ¥ € CL(R) having bounded variation on each bounded
interval is an element of For(r)- In addition, observe that even those ¥ € CL(R)
which have unbounded variation nonetheless have the property that, for any
§ >0 and T € (0,00), there are at most a finite number of t € (0,T] with the
property that |9 (t) — ¥(t—)| > 4.
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3.3.13 Theorem. For each a € R and M € M there is a unique probability
measure

paoM o (CL(R),fCL(R))

with the properties that P*%M (4(0) = 0) = 1 and, for each s € [0,00) and t €
(0,00), ¥ € CL(R) — ¥(s+1t) —(s) € R is independent of o(y(r) : 7 €[0,s])
and has distribution mq 0 t0m. Moreover,

1 if (3.2.2) holds

0 otherwise.

(3.3.14) poM(BY(R)) = {

PROOF: The existence of P*%M as well as the equality in (3.3.14) are essentially
trivial consequences of Lemma 3.3.10 and Lemma 3.3.12. Namely, in the case
when (3.2.2) holds, define (cf. Lemma 3.3.10)

You(t,w) =Y (t,w) + (a —/ - M(dy)) t, (t,w) € [0,00) x €,
r\(0} 1 +¥?
and let P*%™ be the distribution of
w e Qr— Y, p(-,w) € BV(R)
under P. In the case when (3.2.2) fails, define (cf. Lemma 3.3.12)
Yo u(t,w) = Yu(t,w) +at, (t,w)€[0,00) x £,
and again take P*%™ to be the distribution of
we Q— Yo u(-,w) € CL(R)

under P.
To prove the uniqueness assertion, note that two probability measures defined
on (C’L(R), Fc L(R)) coincide if they are agree on the 7m-system of sets

A(ty, ... tn;T), n€eZT, 0=tog<ty<---<tn, andT € Bgni1,
of the form

{v: (¥(0),¥(t) — ¥(to),- -+, ¥(tn) = V(tn-1)) €T}

But, if P satisfies the prescribed conditions with respect to a and M, then

P(A(tl, ce ,tn;r)) = (50 X ﬁ Wsma,O,smM) (F)

m=1

where s = tm — tm-1, 1 < m < n; and therefore there is at most one such
P. O
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3.3.15 Remark. As the preceding sequence of results makes precise, the picture
of the sample paths becomes murkier and murkier as M becomes more and more
singular at 0. Thus, when o = M (R\ {0}) < oo, the sample paths, apart from
the trivial linear drift

w0y 1+

(3.3.16) t €[0,00) — Lam(t) = (a - / 4 M(dy)) t,

are piecewise constant functions in which the rate of jumping is determined
by « and the distribution of jump sizes is determined by % In the case when
o = oo but (3.2.2) holds, the only change 18 that the jumps come infinitely often,

although the sample paths still admit a clean decomposition into the linear drift
in (3.3.16) and jumps; that is:

o) = Low(® + 3 (@(s) ~0(s=) (s, PN

s€(0,t]

Finally, when (3.2.2) fails, the jumps start coming so fast that the clean separa-
tion of jumps from drift breaks down, and the net effect of the infinitely many
very small jumps gets smeared out and becomes indistinguishable from that of
the drift. In fact, as it turns out, this elision of the small jumps with the drift is
extremely important and, in the end, turns out to save the day by allowing us
to renormalize with the now infinite drift in (3.3.16). However, as the following
result makes clear, even when (3.2.2) fails, these complications occur only with
the small jumps and never with large ones.

3.3.17 Corollary. For A € Br\{0} and M € M, define MA(T) = M(ANT), I' €

By (o} Further, if A lies a positive distance from 0 (ie., AN (=4, §) = 0 for
some & > 0), define aa € 9 and ¢ € CL(R) — ¥a € CL(R) by

Y
= M(d
an /A1+y2 (y)

and

Palt) = Y, (¥(s) - W(s—))1a((s) —¥(s—)), tE [0, 00).

s€(0,t]

Then, for any (a,M) € R x M and A € Bg {0y lying a positive distance from 0,
the distribution of

¥ € CL(R) — (¥a, ¥ — ¥a) € CL(R) x CL(R)
under P*OM js paa0:Ma x pa-aa0.M=Ma_ Equivalently, the o-algebras
F(A)=o(¥alt): tE [0,00))

and
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F(AL) = o (w(t) - wa(t) : t € [0,00))
are independent under P»%M
Pa,O,M [f(A) _ PaA,O,]WA [f(A)

and

pOM  F(AC) = pr-ea0M-Ma 1 F(AD).

ProoOF: The proof turns on two simple observations. The first observation is
that, for any A € Br\{0}, @ € R, and M € M, M(AU) = 0 implies that

(33.18) P ({1 6(t) — w(t-) ¢ AU {0} for some ¢ € [0,00)}) = 0.

To prove (3.3.18), one notes that it suffices to handle A’s which lie a positive
distance from 0 and that, given such a A, (3.3.18) follows immediately from our
construction procedure. The second observation is that, for any pair (a, M) €
R x 9N, (b,N) eR x99, and A EJ:CL(R) :

Pa,O,M % Pb,O,N({((p’w) € CL(R)2 T+ 7,0 < A})

(3319) — Pa+b'0'M+N(A).

To see this, one need only note that, under P»%M x P®0N the increment

(s +1),9(s +1)) = (¢(s),9(s))
is independent of

o ((e(6),(6)) - €€ [0,5])

and that (¢ + v¥)(s+t) — (¢ + ¥)(s) has distribution 7yq4b),0,¢(m+n)- Indeed,
as soon as one checks these, (3.3.19) follows immediately from the uniqueness
part of Theorem 3.3.13.

Given (3.3.18) and (3.3.19), one proceeds as follows. Let A € B0y which
is a positive distance from 0 be given, and set Q = P3a%Ma x pa—aa0.M-Ma,
Starting from (3.3.18), it is easy to check

(0 +¥)a =wa+va = for Q-almost every (p,9) € CL(R)?.
Hence, by (3.3.19), if A € F(A) and B € F(AC), then

Pa,O,M(AﬂB) :PG,O,M({w; wA EA&w—wA EB})

=Q({(v¥): v€ A&y € B})
— PaA,O,MA(A) Pa_aA'O’MvMA(B). O
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Exercises

3.3.20 Exercise: Let (a,0, M) € ¢ be given, and assume that

y? M(dy) < oo.
R\ {0}
(i) Show that 74,02 M admits two finite moments, that

3

Ma,02,M = / wﬂ'a,cﬂ,M(dw) =a+ / Y M(dy)v
R

1+y?
R\{0}
and that
2 o? )
[ (2 = o) e i) = 5+ [ vy,
R
R\{0}
(ii) Assume that o = 0 and set $(t) = ¥(t) — tmaonm for t € [0,00) and

)
€ CL(R). Proceeding as in the derivation of (3.3.8), show that

poM ( sup |o(t)| > T) S% / y* M(dy)

t€[0,T)
R\{0}
for all € (0,00) and T € [0,00).

(iii) Referring to the simple Poisson process {N(t) : t € [0,00)} in (3.3.3), use
part (ii) to show that

lim P| sup
a0 t€[0,T]

(iv) Assume that

N(at)

(07

—t

> r) —0 forall T €[0,00)andr€ (0, 00).

e M(dy) < oo forall AeR,
R\{0}

and use analytic continuation to show that

242
/ €% 14 o2 M (dT) = €XP af + U—;— + / (eEy -1- ’ﬁy’) M (dy)
* R\{0}

for all £ € C.

3.3.21 Exercise: In this exercise, we will investigate when the paths are paoM.
almost surely non-decreasing.
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(i) Let I(R) denote the set of nondecreasing elements of CL(R) (cf. the paragraph
preceding Theorem 3.3.13), and note that I(R) € Fcr(r)- Referring to Theorem
3.3.13, show that P“%M (I(R)) = 1 if (3.2.2) holds, M((~00,0)) =0, and

Y
a> / —2— M(dy).
R0} 1 +¥°

Conversely, if either of these conditions fails, show that pa0OM (I (R)) =0.

(ii) Let (a,0,M) € L be given, and assume that wa,a,M((—oo,O)) = 0. First -
show that o = 0 and then show that P*%™ (Z(R)) = 1. Hence, :

oo ((=00,0)) =0 <= o =0& P*"M(I(R)) =1

Y
= g=0, M((—00,0)) =0, &aZ/ M(dy).
(( )) R\{0} 1+y2

3.3.22 Exercise: As an application of Exercise 3.3.21, show that if X € 91(0, 1),

then the distribution v of |X| is not infinitely divisible. (Hint: Note that
52

Re(9(€)) =e~7.)

§3.4: Wiener’s Measure and the Invariance Principle

In the preceding section we constructed the independent increment processes
corresponding to the Lévy systems (a,0, M) and found that, apart from a linear
drift, they all are, more or less easily, obtained by the superposition of Poisson
jump processes on top of one another. At first glance, a look at the way in
which we carried out the final step in the derivation of (3.2.6) might 1ead one
to hope that the same procedure ought to work for the Levy system (0, 0> 0)
Indeed, take M to be the standard Bernoulli measure 3 = 1+61 and {Z(t)
[0,00)} to be an independent increment process correspondlng to (0,0, M ) As
we have seen, we can represent the associated process as Z(t) = EN(t) X, where
{N(t) : t €[0,00)} (cf. (3.3.3)) is the simple Poisson process and {X,, : n € Z*}
is a sequence of mutually independent $-distributed random variables which are
independent of o (N(t) : t € [0,00)). Next, for € > 0, set

N(e 2 t)

Z(t) = €eZ(e7%t) = Z Xn,
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and observe that {Z(t) : t € [0,00)} 1s the independent increment process
corresponding to (0,0, M), where

6+
€T 22

In particular, the distribution of Z(t) is mo,0,tM. and therefore, as we saw in the
§3.2 via consideration of characteristic functions, the distribution of Z(t) tends
(weakly) to the Gauss measure -y, where

2

exp [—gﬁ} dr, o € (0,00).

’yaz(d:v) =

1
vV 2mo?
On the other hand, it cannot be true that the random variables Z(t) themselves

are converging as € “\ 0. Indeed, by part (iii) of Exercise 3.3.20, we know that

P >r| —0 ase\0

Z(1)—¢€ Z X,

1<n<e~2

for each r € (0,00), and therefore the only way that {Z.(1) : € > 0} could
be converging as random variables would be if the sequence n=% 31 X were
to converge as n — oo. However, we already know (cf. the discussion in the
second paragraph of Section 2.1), that this is not the case. Hence, unlike the
construction (cf. the proofs of Lemma 3.3.10 and Lemma 3.3.12) of the processes
corresponding to Lévy systems in which o = 0, convergence in probability is out
of the question here.

Although the discussion in the preceding paragraph may seem rather incon-
clusive, it does point us in the right direction. More specifically, it tells us
that we ought to be looking for convergence in distribution and that the setting
should be similar to the one in The Central Limit Theorem. In fact, what we
are seeking is a path-space version of The Central Limit Theorem. But which
path-space? In order to settle this question, notice that (cf. the preceding para-
graph) the path Z(-) almost surely never has a jump of size larger than €, and
so it is reasonably certain that the distribution of these processes must tend to a
measure which lives on continuous paths. As it turns out, this fact simplifies our
lives a great deal. Indeed, a path-space version of The Central Limit Theorem
entails weak convergence of measures on path-space, and so it will be important
for us to be working on a path-space which admits a natural Polish structure.
Thus, we are fortunate not to be forced to deal with the space CL(RY) (cf. the
paragraph preceding Theorem 3.3.13) which is rather difficult to interpret as a
Polish space (for instance, it fails to be separable when given the topology of
uniform convergence on compact intervals).
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Before getting down to serious business, we begin with a few general remarks
about spaces of continuous paths. Given a Polish space E, let B(FE) denote .
the space C([0,0); E) of continuous paths ¢ : [0, o) —3 E, and endow B(E) °
with the topology of uniform convergence on compact intervals. That
is, given a metric p for E, we take the topology on B(E) to be the one for which
sets of the form !

(3.4.1) B(y;T,e) = {go € B(E): sup p(e(t),v(t)) < e}

te[0,T)

constitute a neighborhood basis of 1 € P(E) as T and € vary over (0, 00). Notice
that, because {9 (t) : t € [0,T]} CC E, this topology depends only on that of £
and not on the particular choice of metric p. Next, define

SUP;¢(g,n) P(@(t)v w(t))
1+ sup, (o, P(2(1), ¥ (2))

Dlp )= 5
n=1

and (cf. Lemma 3.1.13) note that D is a metric for B(E) and that D is complete
if p itself is. Thus, we will know that P(E) is a Polish space once we check
that it is separable. To this end, recall (cf. part (ii) of Exercise 3.1.17) that
E can be embedded as a closed subset of M; (E) and therefore that B(E) can
be embedded as a closed subset of B(M,;(E)). In particular, since subsets of
second countable spaces are second countable in the induced topology, we need
only show that ‘B(MI(E)) is separable. But clearly, if C is a countable dense
subset of M;(E) and, for n € Z*, ,(C) denotes the space of ¥ € ‘B(MI(E))
with the properties that

Y (2)eC and YP(t)= (m+1—nt)y (&) + (nt —m)y (M)
fort € [%, mT“] and m € N, then |J,cz+ Bn(C) forms a countable dense subset

of B(Mi(E)). In other words, we have already proved the first part of the
following lemma.

3.4.2 Lemma. For any Polish space E, the path-space B(E) is again a Polish
space. Moreover, if C is any dense subset of [0,00), then By(gy coincides with
the smallest o-algebra over B(E) with respect to which all of the maps ¥ €
PB(E) —s ¥(t) € E, t € C, are measurable. In particular, if, for a finite subset
F of [0,00), 75 : B(E) — EF is defined by (7r(v)), = (), t € F, then two
elements p1 and v of M (B(E)) coincide if and only if (F)«pu = (7F).v for every
finite subset F of some dense subset of [0, 00).

ProOF: Clearly, the last assertion is an immediate consequence of the one
preceding it. Furthermore, in proving that By(g) is generated by the maps
¥ € P(E) — ¢(t), t € C, we may and will assume that C is countable and
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must show that every set B(y;T,e) in (3.4.1) can be expressed measurably in
terms of these maps. But, by path-continuity,

puma=U) O {eolere0) < 7

n=1 teC(T)
where C(T) =CN[0,T]. O

Given a p € M;(B(E)) and a finite F C [0,00), the measure (mF)spt €
MI(EF) is called the marginal distribution of u corresponding to the
times t € F, and the final statement in Lemma 3.4.2 says that u is uniquely
determined by its finite dimensional time marginals.

To conclude this brief introduction to the analysis of measures on P(E), we
give a criterion for determining when a subset of M, (‘IB(E)) is tight. Actually,
the criterion which we have in mind is no more than a trivial translation of
the famous Ascoli-Arzela criterion for compact subsets of P(E). Namely, their
criterion says that a subset ¥ of P(E) is relatively compact if and only if, for
each T € (0,00), the set {w(t) . t€[0,T)and ¥ € ¥} is relatively compact in
E and

lim sup sup p(¥(t),9¥(s)) =0
N0 pwed 0<s<t<T
t—s5<é

Hence, after combining this with Theorem 3.1.9, we have the following descrip-
tion of relatively compact subsets in M) (B(E))-

3.4.3 Lemma. Let E be a Polish space and p a complete metric for E. A
subset A of Ml(‘IB(E)) is tight, and therefore relatively compact, if and only
if, for each T € (0,00) and € > 0, there is a Kr. CC E and a function mr.e :
(0,00) —> (0, 00) satisfying mr.«(§) — 0 as § , 0 such that

(3.4.4) inf u({w € P(E) : v(t) € Kr forall t € [o,T]}) >1—¢

and

inf Y E): p(v(t),d(s)) <mrelft —$
i) inf,u({v € BE): (1), ¥(5) (It - s)

for all s,t € [O,T]}) >1-—e

In particular, if E = RY, then A is relatively compact if

Ny.
(3.4.6) sup u({w e BEY): (0| 2 R}) — 0
and, for some 3 > 0 and every T € (0,00),
vy o B0 = 90)l
o spu({eenen: u FIR 2 0p)

as R — oo.
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With these preliminaries in place, we are at last ready to confront the problem
of providing a P(RY )-version of the Central Limit Theorem. Thus, let {X,}
be a sequence of independent RN -valued random variables on a probability space
(Q, F, P), and assume that the X,,’s have mean-value 0, covariance I, and satisfy :

(3.4.8) lim sup EF [\an, X, | > R] = 0.
R "o nez+

Next, for n € Z*t, definew € Q— S, (-,w) € C([0,00);RY) s0 that S, (0,w) =
0 and, for each m € Z*, S,,(-,w) is linear on the interval [m_l m_] with slope
n?t X, (w). That is, k

n 'n

S,.(0,w)=0, S, (%,w) —n? Zxk, meZ", and
k=1
Sn(t,w) = (m - nt)Sn (m’1 ,w) + (nt —m+ 1)Sn (m w)

n n

(3.4.9)

fort € (m

-1
n

, %) Finally, let

fin = (Sn)« P € M1 (B(RY))
denote the distribution of

w € Qr— Sa(-,w) € BPRY)
under P. Our main goal in this section will be to prove that u, — w W)
where W™ = WV and W € M, (B(R)) (cf. Exercise 3.4.28) is the distribution
of the independent increment process associated with the Lévy system (0, 1,0);

and, as a first step in this direction, we now show that, if {pn,}3° converges at
all, it converges to the right thing.

3.4.10 Lemma. Given £ € Z* and 0 =tg < t) <--- <ty
(Sn(t1),Sn(t2) — Salt1),- .-, Snlte) — Sn(te_1)) P =77 X7y X X v,

where 7, = tp — tr—1, 1 <k <L

ProOOF: For1 <k <{andn> %, define

J=[nte_1]+1
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where we use the notation [t] to denote the largest n € Z dominated by t € R.
Noting that

S (1) — Sn(tk1) — Bnlh)|

-5 (E20)] - (5]

_ Xpn |+ Kl

<

nz

one sees that, for any € > 0,

p(fj

S (1) — Sa(ter) — Anlh)] 2 )

k=1
£ 2
<P (Z ‘X[ntk]+l‘2 > Qz—)
k=0
4 & 2¢+1)N
< — ;)EP Ux[ntk]+1l2] = L;gz— —0

asn — oo. Hence, by the Principle of Accompanying Laws (cf. Theorem 3.1.19),
we need only check that

(An(l), e ,An(ﬂ))*P == %11\! X eee X %1[\!‘
Moreover, since
(An(l), . ,An(ﬂ))*P = (An(l))*P X - X (An(ﬁ))*P

for all sufficiently large n’s, it is clear (cf. part (ii) of Exercise 3.1.18) that this
comes down to checking ((An(k))*P = v,V for each 1 < k < ¢. Finally, given
1< k < £ set Mu(k) = [nty] — [nte-1] and use Theorem 2.2.11 plus (i) of
Exercise 3.1.19 to see that, as n — 00,

, 1 35
EY lexp Z (§7X[ntk]+j)RN — exp | =75~
=1

[N

M (k)

uniformly for £ in compact subsets of RY. Hence, since Mnn(k) — Tk, W NOW
see that, for any fixed § € RN,

EP [exp(\/—_l(g,An(k))RN)] s exp [_Tkl2§l2] _ ﬁ(g);

and therefore, (An(k)) P = 7, follows from Lemma 2.2.8. O
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As we said just before its statement, Lemma 3.4.10 (in conjunction with
Lemma 3.4.2) shows that {y,}$° can have at most one limit and that this limit
would possess the independent increment properties for which we are looking. -
Thus, all that is missing is a proof that {u,}{° is relatively compact; and for
this proof we will use the criterion in (3.4.6) and (3.4.7). Notice that (3.4.6) | .
presents no difficulty: ;

pn (¥ : ¥(0)=0) =1 for all n ez, )
On the other hand, the verification of (3.4.7) has got to be hard. In fact, since

Sn(t) = n%Xk for te (%, %) ,
it is clear that control on the modulus of continuity of S,(-) must rely on
cancellation properties coming from the mean-value 0 property of the X,’s.
That is, we must learn how to take advantage of the fact that, although at any
given instant S,(-) has a speed proportional to n?, after each time interval of

1

length _ its velocity changes direction in such a way that its average velocity

over a time interval of length 1 will be quite moderate. With this in mind,
suppose that we start by looking at the expected value of ‘Sn(t) - Sn(s)f,
where 0 < s <t < 0o. If k—1 < ns < nt < k for some k € Z*, then

E” [|8.(1) ~ Su(s)[*] = nN(t - 5)* < N(t )
and, because we are dealing with such a short time interval, no cancellation is

involved. If, on the other hand, k — 1 < ns <k < £ <nt <£+1 for some
k, ¢ € Z*, then

EP [\sn(t) - sn(s)ﬂ
< 3E” [|84(1) - Su(£) '] + 3E7[|S4(2) - Su(4)[7]

+3E7[|Sa (%) - Sn(s)|’]

) 2 3 -k 2 k 2
<3nN (t - E) + ;NEP ;Xk-i—j + 3nN (—ﬁ - 3)
<3N(t—s)+3NEE £+ 3N(t —s) <IN(t - s);

and cancellation has been used to handle the time interval [£, £]. Thus, in any
case, we have now shown that

(3.4.11) sup EH+n [lw(t) - '/’(S)ﬂ <9N|t —s| forall s,te€[0,00).

neZt
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At first sight, (3.4.11) might appear to be all that is needed in order check
that {“"}1 satisfies (3.4.7) with 8 = % In fact, (3.4.11) can be rewritten as

2
cup supE" Klw(w - w(sn) } <N,

neZ+ s#t \t—S‘%

which, if one is sufficiently careless, looks quite close to

(3.4.12) sup E#" [sup (W)(t) — 'l’(S)\) } < 9N,

1
n€z+ st |t — 5|2

from which one would immediately derive

({50 s OS5 1)) <% o

nel+ 0<s<t<oo \t ‘3\%

as R A 0. Unfortunately, as soon as one stops being careless, it becomes
clear that there is a world of difference between (3.4.11) and (3.4.12): as distin-
guished from the one in Kolmogorov’s Inequality, the “sup” here simply cannot
be brought inside this integral!

At this point it looks as if we have made little progress toward our goal.
Nonetheless, as we are about to see, all is not lost, and, by being a little less naive,
we can rescue something from the preceding line of reasoning. Namely, although
one cannot commute “sup” with integration, one can commute integration with
integration. Thus, for example, from (3.4.11), one can certainly say that

sup FFn // (%:TT(S—NY dsdt| <9NT?, T € (0,00);

n€zZ+
[0,7]?
and so we would be in good shape if we knew how to estimate some Holder
modulus of continuity for ¥ [ [0,T] in terms of the integral Holder norm

2

[/ (WT?_;%L)‘) ds dt

(0,72

The preceding quantity is what analysts call a Besov norm, and the general
principles relating such integral quantities to pointwise estimates were developed
originally by Besov’s teacher Sobolev. As it turns out (cf. Exercise 3.4.27 below),
the preceding Besov norm is not sufficiently strong to control ¢’s modulus of
continuity. Nonetheless, as a special case of the following clever lemma due to

Garsia, Rodemich, and Rumsey, we will see that a closely related Besov norm is
sufficient.
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3.4.13 Lemma. Let p and ® be strictly increasing, continuous functions on
[0,00) satisfying p(0) = ®(0) = 0 and limg—oo ®(¢) = oo. If T € (0,00) and :
¥ € C([0,T);RN) satisfy

[0,7)?

then
s 4B
w vl <s [ o (4F) s, 0s<i<T
0
where p(du) is the measure on [0,00) determined by p([0,u]) = p(u) for all
u € [0, 00).

PROOF: We begin with the case when T =t =1 and s = 0. Set y

I(t):/()lti(M) ds for te[0,1].

p(|t - s[)

By assumption, fol I(t)dt = B, and so there must exist a to € (0,1) for which :
I(to) < B. We next show that there exist positive numbers t,, n € Z*, such
that, forn e N: t,,41 € (O,dn),

2B \w(tn) —¢(tn+l)‘ 2I(tn)
parg sy ma o (MEETERE) <50
where d,, is determined by
(3.4.15) p(dy) = p(;").

Indeed, given t,, define d, by (3.4.15), and observe that the set of t,41’s in
(0,d,,) for which one or the other of the conditions in (3.4.14) fails must have
measure strictly less than d—Q"—. Thus, there must exist at least one t,,11 € (O, dn)
for which they both hold. Notice that to > dg >t >dy > - >ty >dp > -

and that, since p(dn11) < 2p(dn), dn 0 and therefore ¢, *, 0. In addition,
because
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(3.4.14) leads to

[ (t0) = ¥ (tar)| < @7 (ﬁ(i—)) Dt — tns)
< 497! (dn4dB;_1) (P(dn) - P(dn+1)>

dn 4B
<4 / ! (—;) p(du),
dn+1 u

where, when n = 0, we have taken dn—1 = 1. By summing these inequalities
over n € N, we obtain the estimate

wie) -v0| <4 [ 07 (33) plewr

and, after repeating the preceding argument when t € [0,1] — %(¢) is replaced
by t € [0,1] — (1 — t), we also see that

\'l’(l) - 'l’(to)\ < 4/01 ! (%) p(du).
Hence, we have now proved that
v v <s [ o (5 ) paw

for al' functions p, ®, and ¥ which satisfy our hypotheses.
To complete the proof, let general 0 < s <1 < T < oo be given, and set

t—j)_(r) = t/)(s +(t— s)T) and p(7) = p((t —s)r) forTe€ [0,1].
By what we already know,

w0 vt = o s <8 [ o7 (5F) paw

/ / o (/\E(;();E;)@l) do dr

0,1]2

RSN (UGl P
’(t—s>2[/t]/f< pr—0) )d TE s
and therefore

fol o (%) B(du) < fot#s o1 (%3-) p(du). O

where

B=
[
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Obviously, the preceding lemma gives no information unless the function u €
(0,T) —> @} (%’2—) turns out to be p-integrable at 0. Thus, for example, when
®(¢) = £ and p(t) = t¥ with some positive r and <y, one needs to have vy > %
in order to get a meaningful estimate. In particular, one cannot take v = %
and r = 2; which is the reason why we cannot use the Besov norm which arose
‘n our earlier considerations. On the other hand, Lemma 3.4.13 does yield the '

following important criterion for checking when (3.4.7) holds.

3.4.16 Theorem (Kolmogorov’s' Criterion). Letr € [1,00) and a € (0, 00)
be given, and suppose that u € M, (B(RN)) satisfies

(3.417) B [lp(t) — w(o)[] < Cle—s'*e, 0<s<I<T,

for some C < oo and T € (0,00). Then, for each 8 e (0, %), there exists a
K = K(r,a,3,T) € (0,00) such that ‘

(3.4.18) 7 ({t/) : ogig)gT%éi)l > R}) < %, R € (0,00).

In particular, if A C M; (B(RY)) satisfies

sup B¥ [
peEA

$(t) = w(s)|'] < Crlt—s/"**, 0<s<t<T,

for each T € (0,00) and some Cr < oo, then A satisfies (3.4.7).
PROOF: Set v = % + 3. By Fubini’s Theorem, (3.4.17) implies

r _ oflta—or
/m Lo B (@) <C / / it — s|FT ds dt < oo,

[0,7)2

// (W(ltt)_—;lz;(s)l)'“ ds dt

0,72

where

B(y)

Since, by Lemma 3.4.19,

() — (s)] < 52—”—1;@@ _ &P 0<s<t<T

(3.4.18) is now an easy application of Markov’s inequality. (1

T There is no question that this attribution is correct. However, Kolmogorov’s own derivation
obscures the fact that the result is really an application of basic real-variable theory and has
nearly no probabilistic component. Indeed, Garsia, Rodemich, and Rumsey appear to have
been the first ones to observe that, in this connection, probabilists were following the wrong
Russian.



§3.4: Wiener’s Measure and the 1nuariance fryLitopst -

Before applying Kolmogorov’s Criterion to the sequence {un}?o, we must first
replace (3.4.11) with an estimate in which (t — s) is raised to a power strictly
Jarger than 1.

3.4.19 Lemma. Assume that

My= :élZp‘*'EP [\Xn\4] < 0.

Then there exists a C < 00 such that

sup E» Uw(t) - ¢(3)\“] <C(t-s)? 0<s<t<oo
n€Z+

In particular, {un}io is tight in M) (‘B(RN)).

ProOF: We proceed in very much the same way as we did 1n the derivation of
(3.4.11). Thus, when k — 1 < ns <nt <k,

EP USn(t) - sn(s)\“] = n?(t - s)*E" [\xk\“] < My(t - 5)%
and,whenk—1§n3§k§€§nt§£+1,
EP USn(t) - Sn(s)l4]
< 2787 (18 (6) ~ Sa(4)['] + 277 184(5) - Sa(4))']

+ 27EF Usn({g) . sn(s)\“]

. M , ¢ 4 27IEP l—kX , k 4
__27 4T t— +EE Z k+j +27M4n 5—3

n ,
j=1

SIN2M4(€ — k)?
< 5AM,(t — 5)* + _,%ZLL < 135N2My(t — 5)%,

where, in the passage to the final line, we have chosen an orthonormal basis
N .
{ei}l for RV and used the estimate

-k 4 N [tk 2
o |15 x| | =B || 20 (e X
j=1 i=1 \j=1

4
N -k
< NZIEP ( (ei,xkﬂ)RN) < 3N2M4(€ - k)

coming from the second inequality in (1.3.2). O
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At last, we have all the ingredients needed to complete our program. ;
3.4.20 Theorem (Wiener & Donsker). There is a unique Borel probability :
measure W) on B(RY) with the properties that ¥(0) = 0 for WM -almost
every ¥ € P(RY) and
W(N)({d) L p(ty) — Plto) € By, ¥(te) — P(te-1) € Bz})

=7 (B1) x % s, (Ba) - X Yer-te, (Be)s

(3.4.21)

forall £ € Z1,0 = tg < t1 < - < tyg, and By,...,Bs € Bgv. Moreover,'?
if {Xn}(:o is a sequence of independent, uniformly square P-integrable random
variables (i.e. (3.4.8) holds) with mean-value 0 and covariance I and ifw € Q —s
S,(-,w) € P(RY) is defined accordingly, as in (3.4.9), then pn = (5,):P =
WW) as n — oo.

Proor: Only the existence, not the uniqueness, of W) is in doubt. Moreover,
if we assume that the X,,’s satisfy the condition in Lemma 3.4.19, then we know
(by that lemma) that {un}?o is tight and (by Lemma 3.4.10) that every limit :
of {pn}(:o must satisfy (3.4.21). Thus, we not only know that W) exists, we
already know that p, = W (N) whenever the condition in Lemma 3.4.19 holds.

In order to complete the proof, we will apply the Principle of Accompanying !
Laws (cf. Theorem 3.1.14). Namely, because the X,’s are uniformly square P-
integrable, we can use a truncation procedure to find functions { frns 1 M E
Z+ and § > 0} C Cp(RY ,RV) with the properties that, for each 6 > 0, -
sup,ez+ || frsl, <00 <'

sup EF UX" ~ frnso an] < 6,

n€zZ+

and, for every n € 77, the random variable X, s = fn,5 0 X, has mean-value O
and covariance I. Next, for each § > 0, define the maps w € N+— S, 5(-,w) €
P(RY) relative to {X, 6}, and set p, 5 = (Sn,,;)*P. Then, by the preceding,
we know that pn,s =— W (™ for each § > 0. Hence, by Theorem 3.1.14, we will
have proved that p, = W (M) as soon as we show that

lim sup P( sup [Sn(t) - Sn.s(t)] > e) =0

N0 ezt 0<t<T

for every T € Z* and € > 0. To this end, first observe that

m

D Yis

k=1

sup lSn(t) - Sn,,;(t)l =

1
max —
t€[0,T] 1<m<nT n3

3
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where Yi s = Xk — X} 5. Next, note that

)

m
> Vs
k=1

1
P max -
1<m<nT n2

m 1
nze

<N max P| max E (e,Yk,é)RN > — |-
ecSN-1 1<m<nT |+=1 Nz

Finally, by Kolmogorov’s Inequality (cf. Theorem 1.4.5),

3 ) NT$
2 1 S 2
N3 €

m

Z(G,Yk,a)Rw

k=1

3
)

P max
1<m<nT

for every e € SV1. O

The probability measure W) discussed in Theorem 3.4.20 is the renowned
Wiener’s measure for RY -valued paths. The assertion in the second part of
Theorem 3.4.20 is a version of the Donsker’s invariance principle, the name
given to what we previously called The Central Limit Theorem in path-space. In
the chapters which follow, we will have a lot more to say about Wiener’s measure
and will see that it holds the same sort of distinguished position among measures
on P(RY) that Lebesgue’s measure holds among measures on RN . However, for
the moment, we will content ourselves with the observation that it provides us
with the missing ingredient in our program to construct independent increment
processes. In the following statement, as well as in everything which follows, we
use W to denote W1,

3.4.22 Corollary. Given a Lévy system (a,0,M) with ¢ > 0, let paOM be
the measure on CL(R) described in Theorem 3.3.13 and use pao”sM to denote
the measure on CL(R) which is the distribution of

(p,¥) € CL(R) x P(R) — ¢ + o) € CL(R)

under P*%M x W. Then pao®M jg the one and only probability measure Pon
CL(R) with the properties that P(y(0) = 0) =1 and, for each s € [0,00) and
t € (0,00), the increment W(s+1t) — ¢(s) under P is independent of a(¥(€)
€ €[0,s)) and has distribution Tyq to?,tM-

Before we close this section, it seems only right that we complete the line of
reasoning with which we started it. Actually, as the following statement shows,
we can do even better than we had hoped when we started.

3.4.23 Theorem. Let {7,,}3° be a sequence of mutually independent unit ex-
ponential random variables and {X,}{° a sequence of mutually independent
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RY -valued, uniformly square P-integrable random variables with mean-value 0 |
and covariance I on the probability space (2, F, P). (Note that the X,,’s are ;
not assumed to be independent of the ,’s.) Next, let {N(t) : t € [0,00)} be the
simple Poisson process in (3.3.3), and, for each € € (0,1], define

N.(t,w)
X (t,w) = Ve Z X, (tiw)e€[0,00) %€,

m=1

where
N.(t,w) =N (},w).

Then, for all 7 € (0,00) and T € [0, 00),

(3.4.24) im P | sup |Xe(t)—Sn.(t)|>r) =0
eNo te[0,7]

where n. = [e™}].

ProoF: Note that

X.(t) = Sn.(t0) = (Ve - 1S, (N0 )

Ne

N.(t,
+ (Sne (M,w) - Sne(t,w)) .
Ne
Hence, for every § > 0,
) ( sup |Xe(t) - Sne(t)l > T)
t€[0,T7]

<P ( sup |Sy,, (t)| > 21> +P ( sup
te[0,T+6] € t€[0,T

+P< sup  sup |Sp, (t) — Sn.(s)] >

N.(t)

e

-1

)
).

But, by the converse statement in Theorem 3.1.9 combined with (3.4.4) and
(3.4.5), we know that the first term tends to 0 as € N\, 0 uniformly in 6 € [0, 1]
and that the third term tends to 0 as 6 \, 0 uniformly in € € (0,1]. Finally, by
part (iii) of Exercise 3.3.20, the second term tends to 0 as € \, 0 for each § > 0;
and so (3.4.24) follows. O

N3

s€[0,T] |t—s|<6
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Although Theorem 3.4.23 certainly shows that one can obtain W as a limit
of independent increment processes corresponding to more and more jumps of
smaller and smaller size, this fact is not the most intuitively appealing applica-
tion of (3.4.24). To get a more intuitive statement, we introduce Rayleigh’s
random flight model. Namely, let {rn}3° and {N(t) : t € [0,00)} be as in
Theorem 3.4.23, and recall the random variables {T,}$ on which the defini-
tion of N(t) was based in (3.3.3). Next, suppose that {6,}3° is a sequence of
mutually independent RN _valued random variables which satisfy the conditions
that

M = sup EF {\Tn0n|4] < 00,
neZ+

EP [Tnen] =0, and EP [(Tnen) ® (Tnen)] =1, neZ'.

Finally, define w € @ — R(-,w) € PBRN) by

N(t,w
R(tvw) = (t - TN(t,w)(w))eN(t,w)-i—l(w) + Z Tm(w)em(w)‘

m=1

The process {R(t) : t € [0,00)} models the path of a bird which leaves the
origin at time 0 with the randomly chosen velocity 61 and travels in a straight
line until alarm 1 sounds, at which instant it switches to velocity 82 and travels
with this new velocity until alarm 2 sounds, etc. For example, a typical choice
of the 6,,’s would be to make them independent of the alarms (i.e., the 7,’s) and

to choose them to be uniformly distributed over the sphere V1 (\/JTI )

3.4.25 Corollary. Referring to the preceding, set
R (t,w) = \/ER(E,w) . (t,w) €[0,00) x Q.

Then (R.), P =W as e\, 0.

PROOF: Set X,, = 7n0,, and, using the same notation as in Theorem 3.4.23,
observe that

lRe(t) - XE(t)l < \/ElXNe(t)+l~'

Hence, by Theorem 3.4.20, (3.4.24), and the Principle of Accompanying Laws,
all that we have to do is check that

hmP( sup ~\/EXN€(t)+ll 2 T) =0

N0 t€{0,7)
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for every r € (0,00) and T € [0,00). To this end, set T. = % Then, by part -

(iii) of Exercise 3.3.20 and (1.3.2), we have that

r
limP | su eX >rl=limP( max |X,41|> —)
0 (te[OPT] l\/_ Ng(t)+1| 2 ) R <0§n§Ts 1Xnt1l NG

Me2+T
ctim Y [ 5 xoar)] | <om LD o
eNO T

Exercises

3.4.26 Exercise: Let E be a Polish space and {,}3° € M, (B(E)), and, for

each T € (0,00), let uZ € M;(C([0,T); E)) denote the distribution of

Y ePE)— Y [[0,T] € C([O,T];E’) under .

Starting from Lemma 3.4.3, show that there is a p € M, (B(E)) to which
{pn} converges in M;(P(E)) if and only if, for each T € (0,00), there is a

ul e M, (C([O,T]; E)) with the property that
pf = pT  in My (C([0,T}; B));
in which case, 7 is the distribution of
W € P(E) — 1 [ [0,T] € C([0,T}; E) under p.

In particular, weak convergence of measures on B(E) is really a local property.

3.4.27 Exercise: For r € [1,00) and v € (0,00), define the Besov norm

r

B, (¥) = // (W) dsdt | , v eC(0,1;R).

[0.1]?

(i) Using Lemma 3.4.13, show that

[ (t) —v(s)| < 23+%% B, ()]t —sl?, v eC(0,1;R),

3

}
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if3=7— % > 0. In particular, this means that
(1) - $(0)] < 23+%%Br,7(¢), b € C([0,1]; R),
if v > 2. Show that if r > 1 and yr < 2, then there is no C < oo for which
(1) = $(0)] < C Bey(®), ¥ € C(OILR).

Hint: First observe that B, A(¥) is & nondecreasing function of v € (0, 00) for
each r € (0,00). Next, take yr = 2, consider the paths
¥ (t) = log (—log (e + %)) , telo,1],
for € € (0, %], and show that
sup Bry (¢e) < 0.
SE(O,%]

(ii) Actually, there is another way of our seeing that Bs (1) cannot be used to

control the continuity of ¢ for any v € (0,1). Namely, let N(-) be the simple
Poisson process appearing in (3.3.3), set X(t) = N(t) — ¢, note that

IEPUX(t)—X(s)l2] =t-s for0<s<t <00,

and conclude that, for every v € (0,1), B2y (X(- )) < 0o P-almost surely. On
the other hand, we know that

P(Elt € 0,1 X(t) - X(t-) = 1) _P(n<l)=1-€e"'>0

3.4.28 Exercise: When we first mentioned Wiener’s measure, we somewhat
casually alluded to the fact that W) = WV, To make this assertion more
precise, let (e1,..-,€ ~) be an orthonormal basis for RY, define

b e BEY) s 3(0) = ((e1,W) g (e W) € (BE)

and show that &, (¥) = WN . That is, the random variables ¥ — (€i, %) x>

1 < i < N, are mutually independent, and each has distribution W under w),
In particular, this means that W) is rotation invariant in the sense that
if R is a rotation on RY and R : PRY) — B(RY) is given by Ry](t) =
R(d)(t)), t € [0,00), then wm™ =R WM.

3.4.29 Exercise: Show that for any T € (0, 00),

R?
3.4. (M) _ _
(3.4.30) W (tes[%?ﬂ ly(t)] > R) < 2Nexp[ 5 NT} ., Rel0,00)

(See Exercise 7.1.30 for another approach.)
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Hint: Using Exercise 3.4.28, reduce to the case when NV = 1. Next, for fixed
T € (0,00) and n € ZT, write

(&) -om=Ffe (2) o (4522 cem

and use Theorem 1.4.15 to see first that

W ( max |4 (%T)|) <2w(|$(T)| > R),

0<f<n

and then that

W B >R| <2 2/00 -5 da.
(t:[%Pﬂw()‘_ )_ Vi rie

Finally, apply the second estimate in (2.1.23).

3.4.31 Exercise: The purpose of this exercise is to prove The Strong Law of
Large Numbers for Wiener paths. That is, show that

(3.4.32) lim @ =0 for WN¥)-almost every ¥ € R(RY).

t—o0

Hint: First note that, because of Exercise 3.4.28, it suffices to treat the case
when N = 1. Second, observe that

(3.4.33) lim vln) =0 (a.s., W)

n—0o0 n

as an application of The Strong Law for random variables. Finally, note that,
forn € Z* and t € [n,n + 1],

ll/)(t) _ %(n)
t

n

[9(t) = w(n)| | |¥(n)]
< t + nt

and, by (3.4.33), the second term tends to 0 (a.s., W) as n — oo. At the same
time, as an application of (3.4.30), one sees that, for each r € (0, 00),

iW({w: sup MZT}) < 005

te[n,n+1] n
and therefore, by the Borel-Cantelli Lemma, it follows that
v(t) _ v(n)

lim  sup : "

N0 te[n,n+l]

=0 (as.,W).
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1n particular, this means that (3.4.32) follows from (3.4.33).

3.4.34 Exercise: Here is another version of Rayleigh’s random flight model.
Again let {7%}7°, {Tm}go, and {N(t): t > 0} be as in (3.3.3); and set

R(t)=/0t(—1)N<s>ds and R.(t) =vVeR(}).

Show that (Re)*P = Wase\,0.
Hint: Set Sz =0orl according to whether k € N is even or odd, and note that

n

Z(_l)ka = Zﬂk (Tk+l - Tk) — BnTa = Z (T2k - T2k—l) — BnTn+1;
k=1

k=1 1<k<2

and now proceed as in the derivations of Theorem 3.4.23 and Corollary 3.4.25.



Chapter IV :

A Celebration of Wiener’s Measure

§4.1: Preliminary Results

There are so many things that ought and have' to be said about Wiener’s mea-
sure that anything short of an entire book on the subject must be woefully
incomplete. Wiener’s measure is such a rich subject because it enjoys the best
of all worlds: its paths have independent increments, it is Gaussian, and it is
Markovian. In this chapter, we will attempt to give a brief introduction to each
of these aspects of Wiener’s measure, and we concentrate in the present section
on a few of its properties which follow more or less immediately from the fact that
it is a process with independent, identically distributed Gaussian increments.

i o P i e g i e
e g T e

We asserted after Theorem 3.4.20 that WW) is the Lebesque measure for -

P(RY). Perhaps the best reason for our making this assertion is that ww)

enjoys many invariance properties, one of the most important of which, namely,

rotation invariance, we already discussed in Exercise 3.4.28. We begin this sec-
tion with other invariance properties enjoyed by W) To state the first of
these, define, for each a € (0, c0), the scaling map S, : BRY) — PRY) by

(4.1.1) [Sat] (1) = o~ Fep(at), t€[0,00).

Clearly, under W (™), the process {Sqat(t) : t € [0,00)} again has independent,
identically distributed increments. Furthermore, because the distribution of x €
RN s a~3x € RV under v, is 4/, it follows that the distribution of ¥ €
P(RY) — Satp € P(RY) under WV ig again W), In other words,

(4.1.2) (Sa) WM =W for all a € (0,00).

This property is called Wiener scaling invariance.

We next turn to an invariance property of W (N) which is nothing more than
a useful restatement the independent, identical increment property. For this
purpose, let

(4.1.3) B, = a(w(t) .t €0, s]), s € [0,00),

t The classic account is K. Ité and H.P. McKean’s Diffusions and Their Sample Paths, publ. by
Springer—Verlag in 1965. A more recent account is given by D. Revuz and M. Yor in Continuou$
Martingales and Brownian Motion, which appeared in 1991 as 293 in the Grundlehren Series
of the same publisher.

1QQ
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be the o-algebra over B(R") generated by P e PRY) — P(t) € RV, ¢ €10, 5],
and define the time increment map 8, : PRY) — PRY) by

[6.0](t) = w(t+s) — () TE [0, 00).

4.1.4 Lemma. For every s € [0,00) and every bounded, Bs x B-measurable
F: ‘D(RN )2 - Ra

ais) [ F@.sn)w Ny = [[ Flopyw e )
P(RY) PRV )?

In other words, B, is independent of a(dsp(t) : t € [0,00)) and (85) W) =

w@.,

ProOF: Since, W () (zp (0) = 0) = 1, there is hardly anything to do when s = 0.
Tohandles>0,letO:30<31 <---<3k=3and0=t0<t1 < e <t <@
be given, and set 0; = 8 — Si—1» 1<i<k,and 7; =t; ti-1, 1<j< £. Next,
suppose that g and h are bounded, measurable functions on (RV)F and (RY ),
respectively, and set F’ (p, ) =G(p)H (1)), where

G() = g(w(s1) — $(s0)s---»¥(sK) = P(sk-1))
and
H(wp) = h((t) — (o), - J(te) — P(te-1))
for v € P(RY). Then

[ Fwsw) @)
BRY)

= / g(xl,...,xk) vﬁ(dxl)---vx(dxk)
(RN )*

x / h(yn,.oye )y dyn) - X3 (7)
(RV)¢

e V= [ oW M)
P(RV)?

To complete the proof at this point, one need only note that the set of bounded
B, x B-measurable F’s for which (4.1.5) holds is closed under both linear op-
erations and bounded pointwise convergence. Hence, since all bounded Bs x B-
measurable F’s can be obtained with these operations starting from the F’s for
which we have just proved (4.1.5), we are done. O
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The fact proved in Lemma 4.1.4 can be summarized by the statement that, un-
der W(N) future increments are independent of the past and have the same dis- ]
tribution as the initial increment; and, as we will see in Section 4.3 (cf. Theorem
4.3.3), the scope of this statement can be considerably expanded. !

We next turn our attention to a couple of properties having to do with the ¢
regularity of Wiener paths. In view of the development given in Sections 3.2 and
3.3, it is clear that as the governing Lévy measure becomes more singular the ¢
paths become less regular, at least when regularity is measured in the sense of 1,
bounded variation. On the other hand, when the Lévy measures become more
concentrated near the origin as they become more singular, then, as we saw in
Section 3.4, the loss of bounded variation is, in the limit, compensated by the .
emergence of continuity; thus, it is reasonable to ask just how continuous are
these paths. :

4.1.6 Theorem. Setw(d) = 4/28log 3 for § € (0,1). Then, for each T € [1,00),

4.1.7 ww) R AU Rl G| RPTY W Y "f
( ) v 50 O<s<It)§T w(lt—sl) —
t—s<

Moreover (cf. (1.5.1)), !

(4.1.8) i POl (a.s., W),

t—o0 A /2t lOg(2) t

ProoF: The first assertion is a straightforward application of Lemma 3.3.13 in
which we take

®(£) = exp [g] -1 and p(u) =V,

and observe that

1) = D) J0 V) gy — o )
/nww)@( (|t — s]) )W (dp) =27 -1, 0<s<t,

and

, VA :
B3 / u 2 (log(l + u_2)) du
0

< 16w(6) + 1653 (2 +log(l + 43)).

oo
S~
o
WH
L
TN
W
:w| -
N~
=
Qo
£
il
Nl

i
H

In order to prove the second assertion, we begin with the case when N = 1 %
and argue in much the same way as we suggested in the hint to Exercise 3.4.31.
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Thus, we first note that, by the Law of the Iterated Logarithm (cf. Theorem
1.5.10),

o lY(n)| _ s W
(4.1.9) nl—>oo A(n) 1 (as, WY

where A(t) = (/2tlogy(t Vv 3) for t € (0,00). Next, note that

w(t) pm)| _ |pE) —v@m)|  An+1)—AR) |9 (n)]|

A ~ Aln) Am) T AW A(n)

<

for 9<n<t<n+1and, by (4.1.9), the second term tends to 0 (a.s., W) as
n — 00. At the same time, as an application of (3.4.30) and the last part of
Lemma 4.1.4, one sees that

> B O R O B 0 A D
nZZQW({w‘tE[nJIL)-H] A(n) Zn% < 003

and therefore, by the Borel-Cantelli Lemma, it follows that
Y(t)  ¥(n)

A)  An)

lim  sup
n—=% tcin,n+l1]

=0 (as.,W).

In particular, this means that, when N = 1, (4.1.8) follows from (4.1.9). To
handle N € Z* \ {1}, we combine the preceding with Exercise 3.4.28 to see that
0, |

LA (V)
tll>rrolo A 1 (as, W'Y

for each e € SV~!1; and therefore that

_ Jp()]

> s, W,
Jim >1 (as, W)

n(e)

To prove the opposite inequality, let € > 0 be given, choose a finite set {em}l

from SV -1 so that

v < (1+4¢€) 1ggzlgi(e) ‘(v,em)RH forall veRY,

and conclude that
(t)| (N)
Jim _—_A(t) <l+e (as, W) O
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Lévy showed! that the result in (4.1.7) can be sharpened to give

lim  sup M:\@ (a.s., WM.

N0 0<t—s<s  w(t—s)

In particular, Lévy’s result proves, in a very definitive way, Wiener’s famous
conclusion that almost no Wiener path is anywhere differentiable. Rather than
go into the details of Lévy’s result (they are much the same as those required

to prove the Law of the Iterated Logarithm for Gaussian random variables), we

will content ourselves here with a statement which, although it is far cruder than
Lévy’s, is still more than enough to get Wiener’s conclusion.?

4.1.10 Theorem. For each ¢ > 0,

w ({'/’3 Js € [0,00) EM < oo}) =0.

N (t— 5)%“Le

In particular, W ™) -almost no v is anywhere differentiable.

ProoF: Clearly, it is sufficient to deal with the case when N = 1. To this end,
choose L € Z* so that ¢ L > 1, and note that

[ord] oo nM-—-1
{t/): 336[0,00)@'—M<00}_C_ U ﬂ A(M,n,m),
M=

s (t—s)3te

where

A(M,n,m) = {tj) : max

1<k<L

o(28) o ()

Hence, it suffices to show that

nM-—1
lim W( LJO A(M, n,m)) =0
for every M € Z*. But, by independence of increments and Wiener scaling,
nM-1 L M 1—eL

W< U A(M,n,m)) < aM(P(()] < Mn~))" < =7

m=0 (271-)% ’

and so we are done. O

t A straightforward derivation is given in H.P. McKean’s Stochastic Integrals, publ. in the
Academic Press Probability & Math. Stat. Series (1969).
! The simple argument given below was discovered by A. Dvoretsky.

i el Sl b
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Exercises

4.1.11 Exercise: As we saw in Theorem 4.1.10, almost no Wiener path is
anywhere differentiable. Of course, this means that almost no Wiener path has
bounded variation on any open interval. Another, and perhaps more interesting,
route to the same fact is the following. Assume that N = 1, define

[nt]

wio- 3 (0(@) (")

m=

for n € Z*+ and (t,9) € [0,00) x P(R), and show that

(4.1.12) lim sup |Va(t,w)—t|=0 for W-almost all ¢ € P(R)

n—=90 +¢10,T)

and every T € [0,00).

Hint: Set
ValM,v) = :Zj [(w (Z)-v (= HY - %] . mer,

use Kolmogorov’s Inequality to show that

_ 2T
W( max an(M)l26> < neZzb,
1<M<L<nT

and apply the Borel-Cantelli Lemma.

4.1.13 Exercise: As a further confirmation that Wiener paths have unbounded
variation, again let N =1 and consider the three Riemann sums

5w =Y (™ D () - (= H).

m=1

sw=3 () (@) -+ ("))

m=1

and
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Whenever 3 has bounded variation on the interval [0, 1], all three of these Rie-

mann sums tend to w(; . Asan application of (4.1.12), show that, for W-almost
every ¢ € P(R),

im Sw) = Y2 EL i tim s = P2

This observation can be taken as the starting point for It6’s theory of stochastic
integration.

§4.2: Gaussian Aspects of Wiener’s Measure

Having discussed Wiener’s measure on the basis of its independent increment
property, we (like Wiener himself) will now look at it as a Gaussian measure;

and the point of view which we will adopt is the one introduced by I. Segal and
developed further by L. Gross.

In order to get started, we begin with a somewhat fanciful presentation of
Wiener’s measure. Namely, given £ € ZT, 0 = t; < t; < --- < ty < 00, and

aset A€ (BRN)Z, suppose that we first rewrite the determining property (cf.
(3.3.21)) of WN) ag

W ({g: (), p(t) € 4}) = Cltr,.. . t)"

¢ 2
te — te—1 (ka—yk-1|)
X exp | — dyi---d
/A p{ Z 2 te — tk—1 ! e

k=1

where y; = 0, and then rename the variables y; as “4(tx)” so that the preceding
expression becomes

WO (L ((n),.. () € A}) = Clor, . st0)"

' 2
x/AexP —Ztk _;k_l (W(tk)_w(tk_l”) dp(ty) -« - dp(te)-

P tk —te—1

t See I.E. Segal’s “Distributions in Hilbert space and canonical systems of operators,” T.A.M.S.
88 (1958) and L. Gross’s “Abstract Wiener spaces,” Proc. 5th Berkeley Symp. on Prob. &
Stat., 2 (1965). A good exposition of this topic can be found in H.-H. Kuo’s Gaussian Measures
in Banach Spaces, publ. by Springer—Verlag Math. Lec. Notes., no. 463.

S s g
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Obviously nothing very significant has happened yet since nothing very exciting
has been done yet. However, if we now close our eyes, suspend our disbelief, and
pass to the limit as ¢ tends to infinity and the ti’s become dense, we arrive at
the Feynman’s pictureT of Wiener’s measure:

(4.2.1) w M (4) :cN/Aexp {—%/[0 )ltj)(t)lZdt} dap

for any A € Bygy). Of course, when we return to reality and take a look
at (4.2.1), we see that it is riddled with flaws. Indeed, not even one of the
ingredients on the right-hand side (4.2.1) makes sense! In the first place, the
constant C must be co. Secondly, since the image of the “measure dv” under

b € TRV ) — (Bltr) -, B(te) € RY)'

is Lebesgue’s measure for every £ € 7+ and 0 < tp--- < tg, “dip” must be
the nonexistent translation invariant measure On the infinite dimensional space
P(RY). Finally, if it has any rigorous meaning at all, (4.2.1) certainly seems to
be saying that w (H(RN )) =1 where

¢
HE") = {v e R v = [ B0t 0.0
0
with 9 € L2([O,oo);RN)}.
However, even this is entirely wrong, because

¥ € HRY) == varpo7 (v(-)) < Ti|[Yllagvy, T €[0,00),

where

Yllagy) = ll'j’lle([o,oo);RN)’

and yet (cf. Theorem 4.1.10 and Exercise 4.1.11) we know that W (M)-almost no
1) has bounded variation on any open interval. That is, although (4.2.1) would
seem to be predicting that H(R") should have full W M) _measure, H(RY ) is in
fact a set of W (V)-measure 0.

At this point it would appear that (4.2.1) does not have very much to rec-
ommend it. On the other hand, it is such an intuitively appealing formula that
one is reluctant to simply abandon it; and, for this reason, we are going to take
another look at it from a slightly different perspective. Namely, notice that

TIn truth, Feynman himself never dabbled with anything so mundane as expression which
follows.
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H(R™) becomes a separable, real Hilbert space under the norm Il - llE@®~); the
corresponding inner product being

(‘P’ '/’)H(RN) = (‘P’ 'j’)L2([o,oo);RN)'

Next, we rewrite (4.2.1) in the form

_ dim(H)

h 2

and thereby come to the conclusion that (4.2.1) is the statement that W) s
the standard Gaussian measure for H(RY). (It should be remarked that, in
the preceding statement, we have said for H(RY) instead of on H(RY) since we
already know that H(RY) is invisible to W (M) In order to give some substance
to this interpretation, suppose that we use it to guess what the characteristic
function of W) looks like. That is, we want to see whether (4.2.2) can be used
to guess the value of

e —

W (h) = / exp [V (1, b) gy | W ™ (09)
PRY)

for h € H(RY), where, at least for the moment, we ignore the problem of giving
a rigorous meaning to (w,h)H(RN) for 1’s which are not in H(RY). But, as
soon as one poses the problem in this way, the answer is immediate: namely, by

analogy with what we know about Gaussian measures in finite dimensions, we
are compelled to guess that

2
(4.2.3) W(N)(h) = exp [—%;ﬁ”—)] , heHRY).

With these heuristic preliminaries in place, we will now see what can be done
to make mathematics out of them. From the point of view adopted by Segal’s
school, this means that we want to find a separable Banach space © which, on
the one hand, is small enough that H(RY™) is embedded as a dense subspace
while, at the same time, it is large enough to support a measure for which
(4.2.3) (properly interpreted) holds. To make all this more precise, we will use
the following rather simple application of elementary Banach space theory.

4.2.4 Theorem. Let © with norm || - ||e be a separable, real Banach space,
and use

(0,A) e ® x ©* —> (0,X) €R

to denote the duality relation between © and its dual space ©*. Then Be
coincides with the o-algebra generated by the maps 6 € © — <0, )\> as A runs
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over ©*. In particular, if, for p € M;(0), we define its characteristic function
g0t — C by

B = [ exp[VT (0N ud), AEO

then f is a continuous function of weak* convergence on ©%, and fi uniquely
determines u in the sense that if v is a second element of M1(©) and fp = ¥ then
“==lA

Next, suppose that H is a separable Hilbert space which is continuously embed-
ded as a dense subspace of ©. Then, for each \ € ©*, there is a unique hy € H
with the property that

(hoha) g = (R A), R €H;

the mapping A € ©* — hy € H is continuous from the weak* topology on ©*
into the weak topology on H; and {hy: A €O} is dense in H. Moreover, there
is at most one Wy € M1(©) with the property that

(4.2.5) Wa(A) = exp {_n_m;\i,} , Aeor,

and in order for Wy to exist it is necessary that the inclusion mapping taking
H into © be compact. Finally, if Wy exists, then there is a unique isometric
mapping h € H — I(h)€ L?*(Wg; R) with the property that

[I(hA)] 6) = (0,)), 6 €O, for each \ € ©7.
In fact, each Z(h) is, under W, an (0, ||k||3;) random variable; and so, if
Fs=o(I(h): he S)  for nonempty S CH,

then Fg is independent of Fr under Wy if and only if § LT in H.

PROOF: Since it is clear that each of the maps 9c0— (b, Ay eRis contin-
wous and therefore Bg-measurable, the first assertion will follow as soon as W€
show that the norm || - |le can be expressed as a measurable function of these
maps. But, because © is separable, we know that ©* is separable with respect
to the weak* topology and therefore that we can find a sequence Dl € OF
so that

I8llo = sup (6,An), 0 €O-
nezZt

Turning to the properties of ji, note that its continuity with respect to weak™®
convergence is an immediate consequence of Lebesgue’s Dominated Convergence
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Theorem. Furthermore, in view of the preceding, we will know that i completely :

determines p as soon as we show that, for each n € Z+ and A = (Ay, ... JAn) €
(6*)", iu determines the marginal distribution pa € Mi(RY) of

§ec0— ((0,A1>,...,(0,>\n>) € R"

under p. But this is clear (cf. Lemma 2.2.8), since

NGRS (Z%M) for € € R
1

Next, suppose that H is given. Because H is continuously embedded in ©,
there exists a C € (0,00) such that

|(h, X)| < CliRll X

o, he H.

Hence, the Riesz Representation Theorem for Hilbert spaces guarantees both
the existence and the uniqueness of hy. In fact, lhallzr < ClIA||e+- Moreover, if
{A\o: @ €I}isanetin ©* which is weak* convergent to A, then

(hohay) g — (haX) = (hoha) g

for every h € H. Hence, {hy,} tends weakly to hx in H, which means that
we have the required continuity property of A\ € © — hy € H. As for the
density of L = {hx: A € ©*}, suppose that h L L. We would then know that
(h,X) =0 for all A € ©7, and so h would have to be 0, first as an element of ©
and therefore also as an element of H.

Now assume that Wy exists. To prove that the inclusion map must be com-
pact, note that, because Wy is continuous with respect to the weak* topology,
(4.2.5) implies that A € ©* +— ||hallzr € R must also be continuous with respect
to the weak* topology. But, after combining this with the continuity statement
derived in the preceding paragraph, this implies that A € ©* +— hy € H is
continuous from the weak* topology on ©* into the strong topology on H; and,
therefore, A = {hx : |[Mle- < 1} is compact with the respect to the strong
topology on H. In particular, this means that if {go : @ € I} C H converges
weakly to 0 in H, then

a = a7>\ = aah 0;
lgallo = sup  (gar ) ggg(g )y —

IMlex <1

and so we have now proved that the embedding is a compact map.
Turning to the map Z, recall that, under W, (-, Ay is an (0, ||hall%) random
variable for each A € ©*, and conclude that 7 is isometric on {h>\ A E @*}-
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Hence, because {h>\ : A E @*} is dense in H, the existence as well as the
aniqueness of Z are clear. In addition, if h is any element of H and we choose
{An}§° so that hy, — hin H, then

EWVH [exp(\/—T gz(h)ﬂ = lim Wi (¢ ha,) = €xp [_QH_;&} , EER,

and therefore Z(h) is an 7M(0, ||h||3;) random variable under Wg.

Given the preceding, the final assertion is based on a general fact about linear
families of Gaussian random variables (cf. Exercise 4.2.39 below). Namely, for
gr,---:9m € S and hy,...,hn €T, We have that

EWVH [exp (\/:_1 i & I(Qi)) exp (\/:_1 i M I(hj)ﬂ

2

m n m n
= Wa Zﬁz’gz’-*—Zﬂjhj = exp —% Zéz’gz’-*—Zﬂjhj
1=1 j:l =1 j:l H

2

i 1 m 2 1 n
=exp |—3 \\Z £ gi exp |~ 5 Z n; h;
\_ i=1 H j=1

_ W [exp (\/:_1 ?Z‘: & I(g,-))] EVH [exp (\/:_1 2::1 m I(hj)ﬂ

for all (£1,--- ,Em) € R™ and (m, - ) € RY if and only if (gi,hj)H = 0 for
al1<i<mand 1<j<n Hence, if Fs is independent of Fr, then certainly
S 1 T. On the other hand, if § L T, then the preceding in conjunction with
elementary Fourier analysis leads immediately to the statement that

EWH [F(I(gl), . I(gm)) G(Z(R), - ,I(hn))}

_ e [F(I(on), - Tlom) | B [G(Em), - T(w)]
for all bounded measurable F:R®" — Rand G: R — R O

If H is a separable Hilbert space which is embedded as a dense subspace of
the separable Banach space O and if Wi € M, (O) satisfies (4.2.5), the triple
(H,©, Wy) is called an abstract Wiener space. As we will see (cf. Remark
4.2.29), although the Hilbert space H is canonical, the Banach space © is not.
Nonetheless, L. Gross proved that every H admits a © on which there exists a
Wy for which (H ,©,Wy) is an abstract Wiener space. Finally, the isometry
he H— I(h)E€ L2(Wg) was introduced by Paley and Wiener and will be
called the Paley—Wiener map.

H
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4.2.6 Remark. The central issue being discussed in Theorem 4.2.4, as well ag
the paragraph which follows it, is that of understanding on what ©’s Wy can -
exist. In particular, when H is finite dimensional with dimension d, the whole
issue disappears since we can then identify H with R? and take Wg = 71¢. That
is, in this case there is no choice but to take © = H. However, when H is infinite
dimensional, the situation is entirely different. In fact, because bounded subsets
of H are relatively compact if and only if H is finite dimensional, we know from -
Theorem 4.2.4 that the only time when we can take © = H is when H is finite
dimensional. The problem is, of course, that although Wy always exists (cf. |
Exercise 4.2.30) on H as a finitely additive measure defined on the algebra of .
subsets generated by the maps h € H — (h,g)n € R as g runs over H, when
H is infinite dimensional, Wy cannot be extended to By as a countably additive
measure.

At first this sort of issue may look a little unfamiliar and might be written
off as the sort of pathology which one encounters only in infinite dimensional :
situations. However, this is not the case at all. Indeed, consider the problem of
putting a translation invariant probability measure on the countable set Q of
rational ¢ € [0,1). That is, suppose one attempts to construct a p € M, (@)
with the property that p is invariant with respect rational translation (i.e., ad-
dition) modulo 1. To this end, one might start by taking A to be the algebra
over Q; which is generated by the collection

{lp,9) N Qs : p, g € Q with p < g}.

It is then an elementary matter to see that u exists as the one and only finitely
additive measure on A such that u([p,q)) = ¢ —p for all p, ¢ € Qy with p <gq.
On the other hand, it is equally elementary to see that u cannot be extended to
o(A) (i.e., the set of all subsets of Q) as a countably additive measure. In fact,
because p would have to assign measure 0 to each point, countable additivity
would mean that 1 = u(Q;) = 0. Hence, in this very finite dimensional setting,
Q, plays the role of H, the interval [0, 1] plays that of ©, and Lebesgue’s measure
is Wy

The notion of an abstract Wiener space provides us with a context in which to
complete our interpretation of (4.2.3). However, we must first find an appropriate
separable Banach space ©(R"); and, because we already know that W (V) lives
on P(RY) (which is not itself a Banach space), we should look for a suitable

subspace of B(RY). Actually, because of Exercise 3.4.31, we need not look very
far. Namely, set

ORY) = {()e BEY): 00)=0 and Jim O :o},
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and define

llemvy = sup lwit)l €[0,00] forallyp e PBRY).
t€[0,00) 1+t

At the same time, let A(RN) be the space of RN -valued Borel measures A on
(0,00) satisfying

(4.2.7) Aag) = /( a L) |A|(de) < 0o,
4]

»

where |A| denotes the total variation measure determined by A. Finally we will
say that A € A(RM) is simple if there exist an n € Z¥, v1,...,Va € RY, and

0<ty < - <tn such that
n
A= Z Vm(stm.
m=1

4.2.8 Lemma. The map
P € PRY) — ([P lloEy) € [0,00]

is Iower semicontintous, and the pair (O(RY), || - lo@~)) is 2 separable Banach
space which is continuously embedded as a dense, measurable subset of B(RY).
In particular, Ben) coincides with Bm(RN)[G(]RN N ={4nN ORN) : A €
Byprvy }; and the dual space O(RN)" of ©(RY) can be identified with the A(RY)
via the duality relation given by

(0,\) = /(0 oo)B(t)-)\(dt), 0 € O(RY),

in which case (cf. (4.2.7)) | Mlagy) 18 the norm of X as an element of O(RN)".

In addition, H(RY) is continuously embedded as a dense, measurable subset of
O(RN); and, if X € A(RN), then, for all A € ARN):

t

(4.2.9) ha(t) = / A(s,00)) ds, ¢ € [0,%0),
0
is the unique element of H(RY) satisfying
(4.2.10) (h,A) = (b,hx) gy D€ H(R"Y).
Finally, for each A € A(RN), there is a sequence {An}§° of simple elements of

A(RN) with the properties that A, — X in the weak* topology andhy, — ha
(strongly) in H(RY).
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PrOOF: To see that || - ||ggn~) is lower semicontinuous on P(RY) and that
O(RN) € By gv), note that, for any s € [0,00) and R € (0,00),

C(s,R) = {w ePRY): |p(t)| <R(L+1) fort > s}

is closed in P(RY). Hence, since ||¢|lgrv) <R < 9 € C(0,R), || - llom~)

is lower semicontinuous. In addition, since {¢p € P(RY) : ¥(0) = 0} is also .

closed,

—N U {wecmi): 0 =0} €Bygx).

n=1m=1
Moreover, there can be no doubt that the inclusion map from O(R"M ) into P(RY)

is continuous or that ©(RY) is dense in P(RY).
In order to analyze the space (O(RY),]| - llo®~)), define

F:ORY) — Co(R;RY) = {feC(]R RY) : i1|1m 1f(s)| = }
—00
by
6 (e*)
F(o =
F@)()= 2,
As is well-known, Cy (]R; RN ) with the uniform norm is a separable Banach
space; and it is obvious that F is an isometry from ©(R"™) onto Cy (]R; RN )
Moreover, by the Riesz Representation Theorem for Co (R; RY ), one knows that
the dual of Co (R;R") is isometric to the space M(R;R") of totally finite, RN -
valued measures on (R; BR) with the norm given by total variation. Hence, the
identification of ®(RY)" with A(R") reduces to the obvious interpretation of
the adjoint map F” as a mapping from M(R;R"™) onto A(RY).
Finally, turning to the relationship between O(RV) and H(R"), first note
that

seR.

1

tz
IIhije®~y) < S[up P T4 [blla@y) < [bllagy), heHRY).

Hence H(RY) is certainly continuously embedded in ©(R"). Moreover, to see
that it is dense, simply use the obvious fact that C(?"((O,oo);]RN ) is already
dense in O(RY); and to see that it is measurable as a subset of O(R"), note
that the map 8 € O(RY) — ¥(8) € [0, 0o] given by

w(6) = sup{ /[ 00,90z

: ¢ € Cc((0,00); RY) and el L2 (j0,00)m8 ) < 1}
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ijs a lower-semicontinuous function with the property that H(RN ) = {9 €
O(RN): ¥(0) < oc}.

Finally, let A € A(RY) — hy € H(RY) be defined as in (4.2.9). It is then an
casy application of integration by parts to check that (4.2.10) holds. In addition,
if A € A(RV) is given and

2

S Az,

m=1

An forneZ",

33

1)¢

33

then it is clear that {A,}$° is weak® convergent to A while hy, — hy in
HRY). O

We now know that H(RY) is embedded in ©(RN) as a dense, measurable
subspace. At the same time, O(RV) is a measurable subset of P(RY), and,

by Exercise 3.4.31, it has W (V) _measure 1. Thus, all that remains is to check
(4.2.5).

4.2.11 Theorem. For any pu € M, (‘B(RN)), the following are equivalent:
(i) p=W.

(ii) For every n € Zt,vi,.--,Vn € RV, and0 <ty < <tp <00, the random
variable

W€ PRY) — Y (Vi Y(tm)) gy €R

m=1

under p is Gaussian with mean-value 0 and variance

n
Z te A tg(vk,Vg)RN .

k,£=1

(iii) £(©(RY)) =1 and, for every A € A(RY), the random variable 8 € O(RYN)
9, )\> € R under p is Gaussian with mean-value 0 and variance

/ s At X(ds) - Adt).

(0,00)?

In particular, if we restrict W) to O(RY), then

— hy |12
(4.2.12) W V) (A) = exp {—&A—“;{’@N—l} for all X € A(RY).
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Proor: We begin by showing that

(4.2.13) // s AtA(ds) - A(dt) = /(0 - A((5,00)) ” ds = |[ha |5y

(0,00)?

for every A € A(R"), and, from the definition of hy in (4.2.9), this comes down
to checking the first equality. But

//sAm(ds)-A(dt) =//sA(ds)-A(dt)+//t>\(ds)->\(dt)

(0,00)2 s<t t<s

- /(o,oo) (/Ot sA(ds)) - A(dt) + /(o,oo) tA((t,00)) - A(dt)

= /(o,oo) (/Ot)\((s,oo)) ds) - A(dt) = /(o,oo) |A(t,oo))|2dt,

where, in the middle and again at the end, we have integrated by parts.

To see that (i) = (ii), first observe (cf. Theorem 3.4.20) that p = w N if
and only if p(¥(0) = 0) = 1 and, for every n € Zt and 0 = tg < -+ < tp,
the functions ¥ € PRY) — P(tm) — Y(tm-1), 1 < m < n, under p are
mutually independent R" -valued, Gaussian random variables with mean-value
0 and covariance (t, — tm—1)I. Next, given vy,...,v, € RV, define V,,, =
> i vk for 1 <m < n, use summation by parts to check that

Z (Vm,w(tm))RN = (V1,¢(0))RN + Z (Vm,w(tm) - w(tm—l))RN,

m=1

and conclude that all the functions of the form

¥ e PRY)— > (Vi Y(tm)) g

m=1

under p are Gaussian with mean-value 0 and (cf. (4.2.13) with A = 377 vi6s,,)

variance
n

2 n
Z(tm - tm—l)|vml = Z tg A tl(vkvvl)RN
m=1 k,l:l
if and only if g =W W),

Knowing (4.2.13) and the implication (i) = (ii), we have (4.2.12) immedi-
ately for simple X’s and then, by the last part of Lemma 4.2.8, for all X € A(RN).
Finally, in order to complete the proof, we use (4.2.13) and (4.2.12) to check
that (iii) is equivalent to g = W& ), which, by Theorem 4.2.4, is equivalent to
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With Theorem 4.2.11, we have completed our interpretation of (4.2.3). Name-
ly, we have shown that

(HRY), 0(RY), W) with W) = W | Bo)

is an abstract Wiener space; and it is in this sense that we have given meaning
to (4.2.3). Moreover, because there can be no harm done by doing so, we will,
whenever convenient, think of W) as an element of M, (@(RN )) rather than
M, (‘B(RN)); thereby making the identification W M) = Wa®wy)-

As our first application of these considerations, we present the following gen-
eral procedure for deducing invariance properties of Wg.

4.2.14 Lemma. Let (H,©, W) be an abstract Wiener space, suppose that L is
a continuous linear mapping from O into itself, and use LT : © — ©* todenote
the corresponding adjoint map- Then Wy is L-invariant (ie, Wy = L.Wpg) if
and only if

HhLT/\HH = Hh,\HH for all A € ©™.

In particular, if L is a bounded linear operator on O(RYN), then W) s L-
invariant if and only if

sAtLTA(ds) - LT A(dt)

(0,00)2

- //sAtx\(ds)-x\(dt), A e ARY).

(0,00)?

PROOF: Because Wy is uniquely determined by (4.2.5), there is nothing to
do. O

It should be recognized that Lemma 4.2.14 represents a vast generalization of
the rotation invariance of W (N) which was developed in Exercise 3.4.28. Indeed,
both the rotation invariance presented there as well as the scaling and incremen-
tal time-shift invariance described at the beginning of Section 4.1 (cf. (4.1.1) and
Lemma 4.1.4) can all be seen as instances of the general result in the last part
of Lemma 4.2.14; and another (perhaps more intriguing) example is the sub-
ject of Exercise 4.2.31 below. However, rather than pursuing the consequences
of Lemma 4.2.14 further here, we will next apply Theorem 4.2.11 to obtain a
famous quasi-invariance result about the way in which W (V) transforms under
translation in the directions of H(RY). Since, like the one in Lemma 4.2.14, the
result applies equally well to an arbitrary abstract Wiener space, we will for-
mulate it in the abstract setting. Thus, let (H,0,Wg) be an abstract Wiener
space, and, for each h € H, define the translation operator T, : © — O by
T =0+h,0€O.
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4.2.15 Lemma (Cameron & Martin). Referring to the preceding, leth € H
be given, define Z(h) € L?(Wpg) as in the last part of Theorem 4.2.4, and set

(4.2.16) Ra(6) = exp [[:r(h)](e) - %] for 0 € ©.
Then, for all F € B(©;R),
EWH[FOTh]:EWH[FRh], he H.

In other words, for every h € H, (T,). W is absolutely continuous with respect -
to Wy, and Ry, is its Radon—-Nikodym derivative. (Cf. Exercise 5.2.38 for the
converse statement.)

PROOF: We first note that, because Z(h) is an (0, ||k||%) random variable
under Wy,

A€ Bgr— p(A)=E"* Ry, A] €R

determines an element of M, (©). Hence, all we have to do is check that i =

—

(Th)+«Wh. But, clearly,

—

(T War (V) = exp[V=T (b, 2) = dimlE |, Ae o

At the same time, for any g, h € H,

£ [oxp(c2lo) + =200)] = exp [ 1 ), + 3]

for all ¢, z € C. (When ( and z are pure imaginary, one uses linearity. One then
extends by analytic continuation.) In particular, by taking g = hx, ( = v—1,
and z = 1, we arrive at

i) = [ exp[VT(0.8) + [Z00)(0) Sl | w90

—

= exp[V=L(hA) - Hlimali%] = (@) We(¥). O

4.2.17 Remark. It is significant that the formula in (4.2.16) is exactly what
one would have to predict if one were to take the formula (cf. (4.2.2))

™) W (dh) = Cexp (—W%I%i) dh
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seriously. Indeed, suppose that h = hx for some A € ©*. Then,
lign?
/F(9 + h) Wi(d§) = c/ Flg+h)e " dg
) H
_llg—hii? . 9
~0 [ R T  ag=c [ Flg)exe|lo: M - 31kl | Wir(dg)
H

=/ F(H)exp[(e,)\)—%nhn%,] WH(dB)z/ F(6)Rn(0) Wi (d9).
o ©

Hence, since Z(h) is an extension to © of (-,\)g for h € H which cannot be
expressed as hy for any A € ©%, (4.2.16) can be viewed as confirmation that
(*) is correct even if it makes no sense. Actually, a useful metatheorem is that
formulae which are guessed on the basis of (*) are likely to be true if, like the
preceding, (*) enters only into intermediate steps and does not appear in the
final formula.

However one chooses to view the formula in (4.2.16), it was discovered first
(for W) by Cameron and Martin, and, for this reason, (4.2.16) is known as
the Cameron—Martin formula and H is called the Cameron—Martin sub-
space. In many ways, their discovery provides the single most compelling reason
for considering Wiener’s measure to be the Lebesgue measure on path-space. In-
deed, when applied to W) their result shows that Wiener’s measure is just
about as translation-invariant as a probability measure can be on an infinite
dimensional space. In fact, no probability measure on an infinite dimensional
space can be quasi-invariant under translation in all directions (we will see in
Exercise 5.2.38 that translation of W (M) in directions outside of H(RY ) results
in a measure which is singular to w ™), and so it is significant that w ) s
quasi-invariant in a dense set of directions. Furthermore, for the purpose of do-
ing calculus on path-space, it 1s extremely important that the Radon-Nikodym
derivative Ry, be as tractable an expression as it turns out to be. For example,
Ry, is much more than integrable. In fact, because Z(h) is N(0, I|hll%;), it is easy
to check that

B8 Loy = exP [B5+ lIRIE]  forall p€ 1, 00).

As yet, we have not taken advantage of the relationship, developed in Theorem
4.2.4, between orthogonality and independence. However, as the following dra-
matically demonstrates, this relationship can be exploited to prove highly non-
trivial results.

4.2.18 Theorem. Given T € (0, 00), define the pinned path ¢ € P(RYV) —
Pr € P(RV) so that

(4.2.19) Pr(t) = p(t) — LT(T), t€0,00).
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Then {4r(t) : t € [0,00)} is independent of $(T') under w W), In addition,
¥r | [0,T] is reversible under W™ in the sense that the processes ’

¥ € BRY) — gr(-) 10,7 € C([0, T];RY)
¥ € BRY) — (T — -) 10,7 € C([0, T|;RY) .

have the same distribution under W ™). Finally, if
try(t) = BTy, (t,y) € [0,00) xRV,

then for every bounded, Br-measurable (cf. (4.1.3)) function F' on P(RY) and
I'e BRN.'

F(p) W™ (dy)
(4.2.20) {#:9(T)er} *

:/ (/ F(¢T+£T,y)W(N)(dw)) o™ (dy).
r \Jp@y)

PROOF: In order to prove the independence statement, we think of W) as
Wygryy and define (cf. (4.2.7))

t€[0,00) —> A r = €xd; € ARYN), for 1<k <N,

where (el, .. ,eN) is an orthonormal basis for RV . It is then an easy matter to :
check that, for 1 <k <{¢ < N,

Mz

hA” = (O(T),ek)RN (a.s.,W(N)),
k:1

hap, L Sr= {hAW L tef0,00) &1<E< N} where

_ AT
ble T = Ao — “F- AT

and (cf. Theorem 4.2.4)

Fsp = U(B(t) —TYT): te [o,oo)).

Hence, the required independence is now an easy application of Theorem 4.2.4.
Moreover, given this independence result, (4.2.20) is derived by writing ;

$(t) = Pr(t) + FEH(T), te(0,00),
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then computing the left-hand side of (4.2.20) using the independence just estab-
lished, and finally remembering that the distribution of ¥ € PRY) — P(T) €
RY under W (M) is 4N,

We turn now to the proof of the reversibility statement, and for this purpose
we again work via characteristic functions. Thus, let ¢ and v on C’([O,T];]RN )
be the distributions under W (V) of the processes P — 'J’T I [0,7] and ¢ —
or(T — )1 [0,T]. What we must show is that (A) = () for every finite,
RV -valued measure X on [0,T]. To this end, let such a A be given, and note
that

N
(1, A) = (1, A7) where Ar =X = (07 00> A)ei0T-
k=1
Hence, by part (iii) of Theorem 4.2.11,

() = W) (Ar) =exp |- // (3 At — %—f) A(ds) - A(dt)
[

0,T)?
On the other hand, it is clear that #(X) = fi(X), where X is determined by

(. A) = ($,A), ¢ €C((0,THRY), with ¥() =T - )
Hence, the desired equality comes from the elementary fact that

SM__sI_f:(T_S)/\(T_t)—(_TL)T(T‘—”, (s,t) €[0,7). O

Before closing this section, we want to use the ideas developed here to explain
one of the methods which Wiener himself proposed’ for the construction of his
measure W) and, because of Exercise 3.4.28, we need only consider the case
when N = 1. Furthermore, as we will see in the following lemma, it suffices to
construct the restriction Wy of W to the ©; = {611[0,1]: 6 € O(R)} with the
usual uniform norm.

4.2.21 Lemma. Define ¥ : 0, — PB(R) by

o0

[w(p)](t) = > pe(Tu(®), (t:p) € [0,00) X e,",

k=0

where Ty,(t) = (t —k)* Al fork € Nandt € 0, 00). Then, for any p € Mi (©1),
the following are equivalent:

f Wiener’s 1923 article “Differential-space,” J. Math. € Phys. 2, contains at least three ap-
proaches to the construction of his measure. However, to the average mortal, none of these
three seems to be complete.
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(i) For every f € L*([0,1];R),

pe 61— (f, )L2[01 eR

under p is Gaussian with mean-value 0 and variance

//s/\tf t) dsdt.

(0,12

(ii) W = U, uN, and therefore p = W;.

PrOOF: Obviously, if W = ¥, uN, then 4 = W, and therefore the property in (i)
follows by taking A(dt) = 10 ()f(t) dt in part (iii) of Theorem 4.2.11. Thus, :
all that we have to do is check that (i) implies (ii). 7

Assume that p has the property in (i). In order to prove that it has the
property in (ii), we first check that, for 0 < t; < -+ <t, <landwvy,...,vm € R, -
pEBO, — S _ Ump(ty) under p is Gaussian with mean-value 0 and variance |
szzl ty A tmve Urm. To this end, set

n
f€ = 6_1 Z le(tm—Eytm] for 0<e< tl,
m=1

note that (fe,p)LZ([O w7 ST Ump(tm) for each p € ©; while V(fe) —
ST te Atm veum as € \, 0, and deduce

n n
/ exp [\/—1 > vm p(tm)} p(dp) = exp | =% Y teAtmvevm
61 m=1 ¢m=1

Next, set to = 0, apply the preceding to see that
/9 exp [\/—1 > Em(pltm) — p(tm_l))} 1(dp)
1 m=1
—exp |2 Xn:(t — tm-1)&;
2 m m—1/Sm

m=1

for all £1,...,&, € R, and conclude that the functions
p € O1+— p(tm) — P(tm-1), 1<m <,

are mutually independent, ‘ﬁ(O, tm — tm,l) random variables under .
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In order to complete the proof that (i) == (ii), we must still check that, for
Al 0=t <ty <-- <tp <00, the functions

p € 0N — [¥(p)](tm) — [¥(@)](tm-1), 1M ST

are mutually independent, Gaussian random variables under pN having mean-
value 0 and variance t,, — t;,—1. But,

]38

[2()](tm) — [¥(P)] (tm—1) = (pk (Tk(tm)) — Px (Tk(tm_l))),

E
i

0

and, by the preceding paragraph, the functions
p € 0" pr(T(tm)) — pk(Tk(tm_l)), 1<m<nandke€N,

are mutually independent, ‘J‘((O,Tk(tm) - Tk(tm_l)) random variables under p™.
Hence, since

tm — tmo1 = Z(Tk(tm) - Tk(tm_l)), for each 1 <m < m,
k=0

the required conclusion is obvious. O

We will now explain how Wiener went about constructing W, on Oy; and, in
order to understand Wiener’s idea, we will not only assume for the moment that
W), exists but will even pretend that it lives on

H, = {h][0,1]: he HR)}.

Next, we choose an orthonormal basis {hn}& for Hy and express the path p in
terms of this basis:

(4.2.22) p~ > (o hi) g b

k=0

Of course, because W, does not really even see Hj, we should be somewhat
wary about the interpretation of “u” in (4.2.22): it certainly cannot mean that
the convergence is taking place in Hy. On the other hand, the interpretation of
(p, hk)H1 is easy; namely, we adopt (cf. Theorem 4.2.4)

(0 1) g, = [Z(he)] (D)

as its meaning and therefore replace (4.2.22) by

o0

(4.2.23) p~ > [Z(h)}(p) bk

k=0
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In particular, if the convergence on the right-hand side of (4.2.23) were taking"
place in ©, for W;- almost every p € O, one would then have a representatlon !
of W, as the image of v,V.

Wiener’s idea is to turn the precedlng line of reasoning around. That is,
he started with the measure v;™ on RY and, by makmg a judicious choice of
orthonormal basis {h, }$°, he was able to show that, for v N_almost every x € RN :
the sequence of functions f

(4.2.24) [Sa(x)] () = > 2 ha(t)
k=0

converges in O; (not H;) to some X(x). In fact, Wiener chose to take

V2 sin(nm(t A 1))

nmw

forneZ*.

(42.25)  ho(t)=tAl and h,(t) =

That this constitutes an orthonormal basis in H; is equivalent to the well-known
fact that

{1} U{V2 cos(nm-): ne Z*}

is an orthonormal basis in L? ([O, 1); R). Moreover, this choice has the advantage
that it facilitates computations in L? ([O, 1]; R). Indeed, had Wiener been trying
to show that W, lives on L? ([O, 1}; R) instead of ©1, he would have nearly nothing
to do. More precisely, when the h,’s are given by (4.2.25), it is clear that

0 (2000~ B Er o = = >
SUD [[=niX m\ XN L2 (jo,1®) T 2 52’

and therefore that

/RN sggl || Zn(x) Em(x)”L2([0,l];R) 7 (dx) — 0 asm — oo.

In other words, there is no problem about convergence in L2([0,1};R): as ele- :

ments of L2([0,1);R), the £,(x)’s converge both v,"-almost surely as well as in i;

v1¥-square mean to a random variable x — X(x) € L?([0, 1};R). In particular,
2 :

forevery f € L ([O, 1],R), X —> (E(x),f)m([o’l];R)

mean-value 0 and (cf. part (i) of Lemma 4.2.21) variance

is Gaussian under v," with :

[ (960 )y () = Z(f, W) aon

n=
o0

= (hs,hn)g, = lbslils, = V()

n=0
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where hy is the element of H, determined by

he(t) = [ f(s)ds.

inl

Hence, if pt on L? ([O, 1];R) is the image L.y of 7Y under ¥, then p is very
pearly the measure described in (i) of Lemma 4.2.21; its only problem is that it
lives on L2([0,1];R) instead of ©,. Put into the language of the Segal school,
what we have already shown is that

(H1 ,L2([0,1; R), 2*711‘)

is an abstract Wiener space; and what we still need to show is that L(/0, 1];]R)
can be replaced by ©;. Equivalently, what remains is to improve the sense in
which £, (x) tends to ©(x) from a statement about L2([0,1]; R)-convergence to
one about uniform convergence.

As an harmonic analyst, Wiener viewed the problem just posed as a question
about the convergence of trigonometric series with random coefficients; and his
own solution to this problem remains one of the more baflling computations
of classical harmonic analysis! Fortunately, we have the machinery to greatly
simplify Wiener’s proof. Thus, choose the orthonormal basis {h,}§° described
in (4.2.25), and define x € RN +— %, (x) € Oy by (4.2.24). Because we already
know that there exists a measurable x € RY — %(x) € L*([0,1);R) to which
{En(x)}zo converges in L2 ([O, 1]; R) for v,"-almost every x € RY, it is sufficient
for us to show that

(4.2.26) sup  sup [[Ba (0] () [Eln(X)](S)l
nEN 0<s<t<1 (t—s)8

< o0

for 4,N-almost every x € RY. Indeed, we will then know that, for 1 N-almost
every x € RY, the sequence {Z,L(x)};o is equicontinuous and therefore (since we
already know £, (x) — E(x) in L*([0, 1]; R) for 1, "N-almost every x € RY) that

(t,x) € [0,1] x RN +— [E(x)](t) € R

can be modified in such a way that £,(x) — X(x) in ©, for 1 N-almost every
x € RY. But, by exactly the same reasoning as we used in the derivation
of Kolmogorov’s Criterion (Theorem 3.4.16) from Lemma 3.4.13, (4.2.26) will
follow as soon as we check that

(4.2.27) / sup
RN

nezZ+

[S0()) () — [Ba0)](5)] () < Gt = 9)2,
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for some C € (0,00) and all s, t € [0,1]. To this end, we use (1.4.26) to see that
N
[ s |Ea00)0 - [£a60)0)] @)
RN neZ+

<4 sup/
nez+ JRN

Furthermore, for each neZtand0<s<t<1l xeR+— [ER(X)] (t) —
[E,L(x)]( s) under 7Y is a Gaussian random variable with mean-value 0 and

variance
2 o
£ SWIVER DY
k=1

[£269] (1) — [Z2(0] ()] ()

where

(sin(kmt) — sin(ks)) 2 ‘

Ag(s,t) = 2

Hence, we now see that

/ sup
RN neZ+

Finally, by splitting the sum on the right according to whether

2006 - [Ba00)(0)[[ 3 (@) < 5 (Z Ak(s,t)> .

k<(t—s)' or k>(t—s)7",

it is easy to find a C € (0, 00) for which (4.2.27) holds.
In view of the preceding considerations, we have now proved the following
remarkable result.

4.2.28 Theorem (Wlener) For each n € N, define x € R +— £,(x) € 01
by (4.2.24), where the hy’s are given by (4.2.25). Then there is a measurable
x € RY — %(x) € ©, such that £,(x) — E(x) in ©, for m N_almost every
x € RY; and W, = ,m". (Cf. Theorem 5.3.32 and Remark 5.3.36 for more :
information. )

4.2.29 Remark. The preceding discussion brings out a point to which we al-
luded earlier: the Banach space © of an abstract Wiener space is not canonical.
Indeed, as we have just seen, when H = H, there is no a priori reason dic-
tated by the space H; itself to take the associated Banach space to be 9,; in
fact for technical reasons, it would have been more convenient to take it to be

([0 1;R). On the other hand, if we were to settle for L2([0,1); R) instead
of ©; we would have given up a great deal. For example, all sorts of functions
which are obviously measurable on ©; are not so clearly measurable (or even
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well-defined) on L?([0,1];R). Thus, as a general rule, it is best to take the
Banach space to be as close to the Hilbert space as possible. In this connec-
tion, there is no reason why we should have stopped at ©1, since, according
to Theorem 4.1.6, we could have taken the subspace of ©, consisting of those
paths whose modulus of continuity is dominated by a multiple of the function w
described in that theorem.

Exercises

4.2.30 Exercise: Let H be a separable Hilbert space, and, for each n € Zt and
subset {g1,- - - ,gn} C H,let A(g1,- - ,gn) denote the o-algebra over H generated
by the mapping

he H+— ((hvgl)Ha---a(hagn)H) ER”

Check that

AZU{A(gl,...,gn): neZt and g1,...,9n € H}

is an algebra which generates By.

(i) Show that there always exists a finitely additive Wg on A which is uniquely

determined by the properties that it is o-additive on A(g1,--->9n) for every
neZt and {g1,-.-.9n} € H and

/H eXp[xf—Jl(h,g)H] Wh(dh) = exp [— Hg|2|%{] , g€H.

(ii) Although Theorem 4.2.4 provides a proof that Wu admits no o-additive
extension to By unless H is finite dimensional (in which case no extension is
necessary), there is a far more direct route to the same conclusion. Namely, by
a simple computation with independent Gaussian random variables, show that
if Wy; admitted such an extension and if H is infinite dimensional, then

/H exp| |l u(dh) = lim, E /H exp [ (emsh) ) 1(dh)

— lim 3% =0,
n—,oo

where {e, : n € Z*} is an orthonormal basis for H. In other words, Wy would
have to be concentrated at the origin, which is utter nonsense.
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Obviously, what this argument is exploiting is the fact that in order to be invari-
ant under the entire rotation group on the infinite dimensional H, it is impossible
for Wy to be nearly concentrated on a compact subset of H. :

4.2. 31 ExerCISe In this exercise we will prove yet another invariance property
of W) Namely, define J: (RN ) — O(R") so that

to (1) if te(0,00)

B@ne = { 0 if t=0

Show that J is an isometry on both ©(RY ) and H(R" ), and use Lemma 4.2.14 to «
derive the Wiener time-inversion invariance property J, W W) =w®) .

4.2.32 Exercise: As an application of time-inversion invariance (cf. Exercise
4.2.31), prove that, for each s € [0, 00),

0(t) — (s
(4.2.33) h_}ms l—(—()‘ =1 for W™ -almost every 8 € O(RY),
50,5 Bt —s)
where

B(8) = 4/2[6|log s %I when |§] <

1
5
For the reader who is concerned with what might look like an inconsistency ;
between (4.2.33) and the Lévy’s modulus of continuity which was mentioned :
after the proof of Theorem 4.1.6, we point out that (4.2.33) deals with only a

single time s, whereas Lévy’s result is a statement about all s € [0, ). :

Hint: First note that, by (4.1.8) and time-inversion invariance,

lim —2' = lim =1

|[3(e)1(t)]
o0 B(8)  treo [atlogyt

for W V) _almost every € ©(R"); and therefore (4.2.22) has been proved when
s = 0. To handle general s € (0,00), one can first use scaling invariance (cf.
(4.1.2)) to see that it is sufficient to consider the case when s = 1. Second, using °
Lemma 4.1.4 and the result already proved for s = 0, check that ;

[6(t) —6(1)| _ 1 18:6(t)]

}l\ni ﬂ(t—l) = lm Bl
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for W)-almost every & ¢ O(RV). Finally, by another application of time-
jnversion invariance, conclude that
— ey —6(1 —|[3(0)](t) — te(1
i 100 —0)] _ = [BON) - o))
1 B(t—1) o~ tB(1- )
— Tim M =1
e B(t-1)

for W) _almost every 8 € O(RM).

4.2.34 Exercise: Take T = 1 in Theorem 4.2.18.
(i) Set
Ho([0,1;RY) = {h I ]: h e H(RY) and h(1) = 0}

and

00([0,1;RY) = {0 1[0,1) : 6 € O(R") and 6(1) = 0}

and note that each of these is a closed subspace of its parent space. Show that
the triple

(Ho (10,1, RY), 00 ([0, 1); RN)aWHO([O,I];RN))
is an abstract Wiener space when Wy, (jo,1;r~) is the distribution of (cf. (4.2.19))
W € PRY) — by 1 [0,1] € O([0, 1;RY)
under W (M),

(ii) Take N = 1, and show that Theorem 4.2.28 can be interpreted as the
statement that, for W-almost every 3 € PB(R),

(4.2.35) = —2Zan sin(nmt), t€[0,1],

where
an(¥) = ¥, (t) sin(nwt)dt, n € A
[0,1]
and the convergence is uniform. Note, in particular, that another proof of the

reversibility assertion in Theorem 4.2.18 can be based on the representation in
(4.2.35).

4.2.36 Exerc1se Use Theorem 4.2.28 to see that the distribution of ¥ €
BR) — fo )2 dt under W is the same as that of

xeRY —

:vo 22 + V8no
+;52—/—— € [0, o0]

3
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under '71 (the convergence on the right is both m N_almost everywhere and i in
LP(yN;R) for each p € [1,00).) In particular, for & € (0,00), conclude that

/13("%~ exp[ / vit dt] %)
= lim | (H /expl :;/§$mxo)] v(d:vm)) 7(dzo) %

=K,fl<l+£i2>> (oS emem)|

and, after recalling Euler’s product formula

o0 2
sinhzzzH(l—{-n—zp), zeC,

n=1

(S

deduce that, for all a € (0,

(4.2.37) /n(R exp[ / ¥(t) dt] = [cosh\/—] :

This is a famous calculation to which we will return in part (ii) of Exercise |
4.3.52.

Hint: Use Euler’s product formula to see that

4.2.38 Exercise: The reader might well have asked himself whether Wien- -
er could have simplified his and our lives by choosing a different basis from the :
one described in (4.2.25). Indeed, because the convergence for which Wiener was
looking is uniform and not L? convergence, it is not at all clear why trigonometric
functions make the best choice. That he would have been better off with a
cleverer basis was suggested by a construction made by P. Lévy and implemented
by Z. Ciesielski, whom we will follow in this exercise.

(i) Define the function  : R — {-1,0,1} so that
0 on (—o0,0)U(l,00)
n= 1 on [0, %)
-1 on [%,1) .
Next, set fo = 1jp,1) and
forsn(t) = 28n(2"t — k) for t€[0,00), n€N, and 0 < k < 2.
Show that { fm [ [0,1]}; is an orthonormal basis in L? ([0, 1; R).
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Hint: The orthonormality is similar to the argument given for the Radema-
cher functions in Section 1.1. To prove the completeness, first use a dimension
counting argument to show that, for each n € N, {fm :0<m< 2"} has the
same span as

{1 . k+1):ogk<2"}.

2nH> 2N

Once this has been done, suppose that f € L?([0,1];R) is perpendicular to the
span of the fn’s, and conclude that f L C([0,1); R).

(ii) For each m € N, let h,, be the element of H;, with hm = fm, where fm is
defined as in (i). Note that {hm}g° is an orthonormal basis in H;, and show
that

271 2m 1 3
sup ag hon k()| < 2% max |ag| < 2% ai
tc[o,1] ; 0<k<2n k‘z‘;

for all {ak}gn—l CR

(iii) Let (Q,F,P) be a probability space and {Xm}§® a sequence of random
variables for which

M = sup EF [X:l]% < o0.
meN

For n € N, define w € O +— Xy (w) € O1 by

2" —1

[Ea(@)](t) = Y Xm(@)hm(t), ¢ €[0,1);

m=0

where the h,,’s are those in (ii). Using the estimate in (ii), show that
oo

P -z .

E [:gguzn - Emilel] < M;:m: 27% — 0 asm — oo

and conclude that there is a measurable £ : & — O to which {En(w)}zo
converges in O (i.e., uniformly) for P-almost every w € 1.

(iv) Continuing in the setting of (iii), show that if the X,,’s are mutually inde-
pendent, 91(0, 1) random variables under P, then W, = X, P.

4.2.39 Exercise: As we mentioned in the proof of Theorem 4.2.4, the last
part of that theorem is a particular case of a general phenomenon. Namely, let
(Q, F, P) be a probability space. A subset & C L?(P;R) is called a centered
Gaussian family if ® is a linear subspace and all of its elements are Gaussian
random variables with mean-value 0.
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(i) Show that the closure & in L?(P;R) of a centered Gaussian family & is |
again a centered Gaussian family and that ® is closed under convergence in :
P-measure. Further, show that if L is a closed linear subspace of a centered (
Gaussian family & and IT; denotes the orthogonal projection operator onto L,
then, for every X € &, X —II; X is independent of L (i.e., of the o-algebra U(L)
over () generated by the elements of L).

(ii) Let @ = P(RY) and F = Bygn), and suppose that P is an element of 5
M, (P(RV)) with the properties that ¥(t) € L*(P; RM) and EP [9(t)] = 0

for every t € [0,00). Next, define the covariance function Cp : [0,00)> —
RN @ RN so that

[Cr (5,06 m) = B [(6,9(5)) g (1 %(0)) g |
for (s,t) € [0,00)% and (£,7) € (]RN)Q; and let &(RY) denote the span of

{(e,w(w)RN :t€[0,00) and £ € ]RN}.

One says that P is a centered Gaussian measure on P(RY) if B(RV) is a
centered Gaussian family under P. Show that P is a centered Gaussian measure
if and only if

]EP l:exp (Z(E'mvw(tm))RN>:| = €Xp —’;_ Z [CP(tla )] (Elv&'m)

m=1 £,m=1

forallneZt,0<t; <--- < typ, and &,...,&, € RN . In particular, conclude E
that if P and Q are centered Gaussian measures on P(RY), then P = Q if !
and only if Cp = Cg. In other words, if P is a centered Gaussian measure on
P(RN), then P is completely determined by its covariance function Cp.

(iii) Define F : O(RY) — C([0,1]; RY) by (
1-t)0 (L) ifte(o,1)
[F(0)](t) = { ( t) _
0 ift=1,
and use the preceding considerations to check that (cf. (i) in Exercise 4.2.34)

FEWV® = W o.11m)-

4.2.40 Exercise: In this exercise, we will discuss another famous example of ;
an abstract Wiener space which was introduced originally by Ornstein and Uh-
lenbeck.t

t In their article “On the theory of Brownian motion,” Phys. Reviews 36 (3), L.S. Ornstein &
G. Uhlenbeck introduced this process in an attempt to reconcile some of the more disturbing
properties of Wiener paths with physical reality.
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(i) Define the function U : Q(RY) — O(RN) so that

[(U(@)](t) = 6(t) - %/Ot e 6(s)ds for te[0,00),

and let U ™) € M, (B(RY)) denote the distribution of 8 € O(RN) — U(8) €
O(RY) under W (M), Referring to the notation in Theorem 4.2.11, show that

—

(1241)  UMA) =exp |~ // (s, ) A(ds) - A(dD)| . Ae ARY),
[0,00)2
where

u(s,t) = e e_lt;“, for (s,t) € [0,00)°.

Conclude that (cf. part (ii) of Exercise 4.2.39) U™ is a centered Gaussian
measure on ‘P(RY) with covariance C(s,t) = u(s,t)Igy; and, in particular,
that, for any ¢t € (0,00) and f € B(R;R)

B4 [100)] = [ 560 (ne=t)” (@)
Hint: Note that W(A) = W(j\), where

A(dt) = A(dt) — (% /[t )e—’—? A(dr)) dt;

and apply (4.2.12) and (4.2.13).
(ii) Define the Hilbert norm

sz ey = /Il + 31B0E2 0,000 2%)

on

HY (RV) = H(RV) N L* ([0, 00); RY).

Note that HY(R") is continuously embedded as a dense, measurable subspace
of O(RV), and show that, for each X € A(RY), the function (cf. the notation in
(4.2.41))

€ 0,00) — hi(t) E/ u(s,t) A(ds) € R
[0,00)
is the unique element of HY (RN ) with the property that

(h,A) = (h,hY) v, forallhe HY(RY).
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Finally, check that
ISy = [ 5,00 M) - M)
[0,00)?

and conclude that
(HY(RY), 0(RY),u™)

is an abstract Wiener space. The process {6(¢) : t € [0,00)} under UM i -

called the Ornstein—Uhlenbeck process, and it has played an important role k

in both the mathematical and the physical development of diffusion theory.
(iii) For each s € (0,00), define 87 : O(RY) — O(RY) by

[676](t) = O(s +1t) — e~ 28(s), te[0,00).
Show that the o-algebras
a(6Y6(t): t € [0,00)) and o(B(t): te(0,s])

are independent under & (™) and that U (™ is V-invariant (ie., (6V) UM =
UM ) !

4.2.42 Exercise: Referring to Exercise 4.2.40, notice that, as distinguished from :
what happens with W (V)| the distribution of @(T") under U (N) settles down as |
T — oo. In fact, it tends to m1"V. In this exercise will we see that the same
phenomenon can be seen at a path-space level. In order to explain what we have
in mind, we first have to introduce the two-sided path-space C(R; RY), which .
we turn into a Polish space by giving it the topology of uniform convergence on
compacts. Next, for each T € [0, c0), .

(x,0) € RN x ORY) — r(x,0) € C(R;RY)

is the mapping defined so that

a+mt

[Yr(x,0)](t) =e " = x+0((t+T)"), teR

Finally, define U7 : O(RY) — C(R;RY) by ¥7(8) = 47(0,0), and set pur =
(Or) UM € M, (C(R;RY)).
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(i) Let L € [0, 00) be given, and suppose that F': C(R;RY) — R is a bounded
function which is o (3(t) : t > —L)-measurable. After noting that

[©7(0))(t) = [ (8(T — L),6%_10)](t), te[-L,00)andT 21,
use part (iii) of Exercise 4.2.40 to see that
prir= [ F@ux6) (roen) @UM @) fr T2
RN xO(RN )
and (with the help of Lemma 3.3.3 and Exercise 3.3.26) conclude that pr =
Z,[S(N) in M, (C(R;R")) as T — oo, where
EY"[F] = / / F(ipr(x,0)) m™ (dx) U ™) (d6)
RN x©(RY)
for every bounded, o (¢ (t) : t > —L)-measurable F'.
(ii) For n € Z* and —oo <ty < -+ <ln < 00, show that the distribution of

¥ € C(R;RY) — ('l!)(tl),---a'd’(tn)) € (RN)n

N) . . . .
under Z/IS( ) is Gaussian with mean-value O and covariance

fti—tjl
() cosen®"
1<4,5<n

In particular, conclude that Z/IS(N) is stationary in the sense that it is invariant
under the time-shift ¥ € C(R;RY) —> (- +T) € C(; RY) for every T € R.
In fact, show that it is reversible in the sense that ¥ € C(R;RN) — ¥(—-) €
C(R;RV) has the same Z/IS(N)—distribution as 1 itself.

(iii) First show that

t
lim @%)—' =0 for Z/IS(N)—almost every ¥ € C(R; RM),

t—o0
and then, as an application of reversibility, that
t
| llim Lt%i-‘)—\ =0 for Z/IS(N)—almost every ¥ € C(R; RM).
t|—o0

Next, check that

0s(RY) = {0 € C(R;RY): lim 191 _ 0}

tloo  |2]
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is a Borel measurable subset of C(R;R") which becomes a separable Banach
space under the norm ;
[P()l

1+t ;
Finally, when Hg(RY) denotes the space of h € L*(R; RY) N ©g(RY) with the ‘

property that
t
=/ h(r)dr, s<t,
8

for some h € L?(R; RV) and Hg(R") is given the Hilbert norm

l0llos®y) = Sup

Illsrs ) = /10122 gpny + 210122 mp ),
show that

(HS(RN),@S(]RN),WHS(RN)) with Wizg vy = UV 1 05(RY)

is an abstract Wiener space.

§4.3: Markov Aspects of Wiener’s Measure

In the preceding section, we concentrated on properties of W which derive from
the fact that (cf. Exercise 4.2.39) {t(¢) : t € [0,00)} is a centered Gaussian
family in L2 (W; ]R). In this section, we will focus on the properties (cf. Lemma
4.1.4) which stem from equation (4.1.5).

We will begin by generalizing (4.1.5) to cover certain situations in which the
time displacement s depends nicely on the path . To be more precise, call the
function 7 : P(RY) — [0,00] a (cf. (4.1.3)) {B, : t > 0}-stopping time' if
{r < t} € B, for every t € [0,00). In other words, a stopping time is a time
which depends on the path in such a way that one can determine whether it
has occurred during the interval [0,t] by observing the path during that interval.
(That is, a knowledge of history is necessary but clairvoyance is not.) Thus, for

T A precise formulation of this notion evolved through several metamorphoses. The elegant
one given here seems to be due to E.B. Dynkin and is taken from his 1956 article “Infinitesimal
operators of Markov processes,” Theory of Prob. & Appl. 1.
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example, if F' is a closed subset of RN and one defines the first entrance time
into F' by

Tr(Y) =inf{t > 0: ¥(t) € F}, e BRY),

(we take inf @ = oo) then, because

{re>ty=J (N {w:|¥6)-Fl=3}€Bn t € [0, 00),

n=1 s€Qn|0,t]
7 is a stopping time. By contrast, the last exit time
tj)E‘B(RN)l—)inf{.sZO: tj)(t)¢Fforallt>3},

is not a stopping time!

Given a {B;: t € [0, 00) }-stopping time 7, we will use the notation
(4.3.1) B, = {A CP®RY): An{r<t}eB foralte [o,oo)}.

(Cf. Exercise 4.3.45 for an alternative description.) Check that this notation is
consistent in the sense that B, = By if 7 = t. More generally, it is an elementary
matter to check that B, is always a sub o-algebra of Byg~)- The following
lemma contains a few additional elementary facts about stopping times and
their associated o-algebras.

4.3.2 Lemma. If 7 is a {Bt bt € [O,oo)}—stopping time, then 7 itself is a
B.-measurable function. Moreover, if ¢ is a second {Bt . t € [0,00)}-stopping
time, then o + 7, 0V 7, and 0 A T are all {Bt : te |0, oo)}—stopping times, and
ANn{o < 7} € B, whenever A € B,. In particular, if ¢ < 7, then B, C B;.
Finally, if o is a {B¢ : t € [0, 00) }-stopping time, F' C RY is closed, and

TR(Y) =

_ { inf{t > o) : P(t) € F} ifo(i) <o

o0 otherwise,

then 7§ is again a {Bt : t €0, oo)}—stopping time.

PRrooF: It is obvious that 7 is B,-measurable and that both oV 7 and o AT are
stopping times. To see that o+ 7 is a stopping time, simply observe that

{o+7>t}= U {U>3}ﬂ{T>t—3}€Bt, t € [0,00).
s€QN[—1,¢]

To finish the proof of the first part, we next note that

{USTSt}Z{U/\tST/\t}ﬂ{UVTSt}EBta t € [0,00),
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because, as is easily checked, both o At and 7 At are B;-measurable. Hence, if

A € B, then
(Am{agr})m{rgt}:(Am{agt})m{agrgt}e&, t € [0,00),

and therefore AN{oc <7} € B,.

Finally let o, F, and 7% be as in the last part of the statement. When o is
constant, the argument given earlier for the case ¢ = 0 works again and shows
that 75 is a {B; : t € [0, 00) }-stopping time for every s € [0, 00). To handle the
general case, note that

{rp>t}={o>t}u{o<t<7i}
and

{o<t<rg}= U {5§U§t<T}}. O
s€[0,6)NQ

The generalization of (4.1.5) for which we are looking is contained in the
following.

4.3.3 Theorem. For any {Bt 1 te [O,m)}—stopping time 7 and any bounded
function F : ‘B(RN)2 — R which is B; X By g~ )-measurable:

[ F@swme) W)
{p:r(9p)<oc}

= / (/ F(so,w)w<N>(dw)) w M (dg).
BRY)

{p:7(p)<oc}

(4.3.4)

Proor: When 7 is identically equal to some s € [0,00), (4.3.4) is precisely
(4.1.5). More generally, if 7 takes only a finite number of finite values 0 < 53 <
.-+ 8, < 00, then, because {r = s;} € Bs,,

F (1,8, (%)) W (dyp)
{:7 () <0}

-y / F(th, 8., (1)) W™ (d)
F=1 fpir () =sk }

3

-/ ( A (RN)F(sca,w)w(N)(dw)) wM(dy)

k=1 pir (@) =51}

= / (/ F(%w)W(N)(dw)> W WM (dp).
PERY)

{p:7(p) <00}

e g Y AL
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Now let 7 be general, and define 7, for n € Z* so that

2n

Eogf kSl <r<gn <2t
T =
" o if T>2M

Note that, because 7, \, 7, B; C (7" Br, and 8 ) — S if T(¢) < o0.
Hence, if 1 € B(RY) —» F(ep, 1) is continuous for each ¢ € PB(RY), we then
have that

F (4, 8,y (1)) W M) (dyp)
{7 (¢)<c0}

= lim / F(4,08,, ) (¥) W (™) (dyp)

n—oo

{¢:7n () <o0}

= / (/ F(so,w)w<N>(dw)) w M (dp).
PRY)

{¥:7(p)<oo0}

Finally, since (again by a standard measure theoretic argument) it suffices to

prove (4.3.4) when F is a continuous function of its second variable, the proof is
now complete. U

In order to demonstrate as quickly as possible just how powerful a tool (4.3.4)
can be, let N =1 and, for a € (0, 00), set

To(y) = inf {t > 0: ¥(t) > a}.

As the first entrance time into [a,00), T, is @ {Bt it € [O,oo)}-stopping time.
Moreover, if

1 when t > 7.(p) and ¥(t — Ta(p)) > 0

0 otherwise,

then F satisfies the conditions of Theorem 4.3.3,

1o (Ta($)) F($, 8, %) = L) (¥ (1)
and, for each ¢ € P(RY),

/ Flo,$) W) = § 1o (7a(9)).
P(RY)

Thus, by (4.3.4), we conclude that

W(Ta < t) = 2W(1/J(t) > a) = \/—%/a,oo) exp [_%;] dy;
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and, after taking left limits with respect to a and right limits with respect to ¢,
we get the reflection principle :

s lfo a2 [

Notice that (4.3.5) represents a sharpening of the result predicted by Lévy’s
Inequality (1.4.16). To be precise, consider the partial sums Sy, of independent,
symmetric random variables on a probability space (2, F, P), and set

ng(w) =inf{n >1: S,(w) > a} for ae€ (0,00).
Then the reasoning in Theorem 1.4.15 can be summarized as:

P(Sn > a) = P({w : Sp(w) > a & ng(w) < n})

> / P81~ Suuur(@) 2 0) Pldw) > 1P({w: nalw) < n});

{wing(w)<n}

the origin of the first inequality being that we only know S, (.)(w) > a (not
necessarily = a) and the second that

P(Sn - Sna(w)(w) > 0) > -
(not necessarily = 7). Obviously, it is continuity of paths which accounts for
our ability to erase the first of these and continuity of the distribution function
which removes the second.

Although the precise reflection principle does not hold for partial sums of
random variables, the Invariance Principle shows that, in some sense, it holds
in the limit. Namely, we have from (4.3.5) and Theorem 3.4.20 the following
famous result due to Erdos and Kac, which (as was made manifest by Donsker’s
original proof') is equivalent to the Invariance Principle itself. Namely, given a
probability space (€2, F, P) and a sequence {Xn}io of independent, uniformly
square P-integrable random variables with mean-value 0 and variance 1, set

= 37 X¢, n € Z*, and define the polygonal paths t € [0,00) — S, (t,w) €
R for w € 0 as we did in Section 3.4 (cf. (3.4.9)). Then, because

Sm
max (lw) = sup Sp(t,w), we,
1<m<n p3 t€[0,1]

we have

4.3.6 lim P( sup 22 >a 0, 00),
ase) g e (o Fao) -7 [TeFan e

T See “Four papers in probability,” Mem. Am. Math. Soc. 6.
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as an essentially immediate consequence of Theorem 3.4.20, (vii) in Theorem
3.1.5, and (4.3.5).

As a second application of (4.3.5), note that, by Exercise 3.4.28, for e ¢ RY
and a € (0,00):

W(N)({t!): max (e, 9(s)) gy = @ )

s€[0,t]

o) y2
:\/g/ 1exp[——]dy——)l
at” 2 2

as t — oo. Thus, if G is an open subset of RY and G is the first exit time
from G (i.e., the first entrance time into GC), then

W(N)({tj): ¢ () < oo}) =1 if GC {y: (e,y)r~ _<_a}

for some e € RY and a € (0,00); in particular, this will be the case if G is
bounded.

Our next goal is to reformulate (4.3.4) as a Markov property, and for this
purpose it will be convenient to introduce two new families of transformations
on B(RY). The first of these is the family {Tx : x € RV} of translations
given by [Tx9](t) = x+ (i), t € [0,00). Clearly, (x,v) € RY x P(RY) —>
T, e € P(RY) is a continuous map, and therefore, if

WM = (T,) WY, xeRY,

then x € RY +— W,EN) € Ml(‘B(RN )) is also continuous. Hence, if F :
RN x P(RY) — R is a bounded measurable (continuous) function, then x €
RN s EWx [F(x, -)] €R is measurable (continuous). The second family of
transformations which we will want are the time-shifts ¥,, s € [0,00), given
by [Z.](t) = ¢(s+1),t € [0,00). Once again, it is an easy matter to check
that (s, ) € [0,00) x BRY) —> Bs1p € B(RY) is continuous.

The technical key to converting (4.3.4) into a Markov statement is contained
in the following lemma.

Caution: In the statement of this lemma, as well as in what follows, we use
¢(7) in place of the more precise but uglier (T(p))-

4.3.7 Lemma. If T isa {B; : t € [0,00) }-stopping time, then the function
P € PRV) — P(TAL) € RN is B, n;-measurable for each t € [0,00). Moreover,

if Fis a B, X Bm(RN)—measurable function on ‘.B(RN)2
space, then the function

(‘va) € m(RN)Z — 1[0,00) (T(‘P)) F(‘PaTtp(-r)d))

is also B; X Bm(Rw)—measurable.

into some measurable
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Proor: Clearly, everything comes down to showing that the map ¢ € P(RV) °
— (7 At) € RV is B, r-measurable. But, by Lemma 4.3.2, for any t € [0, 00),

y 2

¥ ~» 7(1¢) At is Bi-measurable and so ¢ ~ ¥(7 A t) is also. O

4.3.8 Theorem. Let 7 be a {B; : t € [0, oo)}—stopping time and F' : ‘B(RN)2
— R a B; X Bypgv)-measurable function which is either bounded or non-

negative. Then, for all x € RV,

F (4, 2 () WV (dep)
{¢:7(¥)<oo}

- (/ F(so,wWéi?)(dw)) Wi (de).
P(RN)

{7 () <0}

(4.3.9)

In particular, if f : RY — R is Bgv-measurable, F : B(RY) — R is B,-

measurable, and both are either bounded or non-negative, then

F)f((t + 7)) W (dep)
{9:7($) <00}

- / F(t) (/RN f(¢(r)+y)%N(dY)) WM (dyp)
{¢:7(¥) <0}

for all (t,x) € (0,00) x RV.

ProoF: By the Monotone Convergence Theorem, it suffices to handle the bound-
ed case. To the end, define

G(p,¥) = 119,00 (T(¢0)) F(Tx‘P»wa(r)'/’)-

Then G is B; x Bygv)-measurable, and (4.3.9) for F is equivalent to (4.3.4) for
G. O

Although, as its proof makes evident, (4.3.9) is really just another way of
writing (4.3.4), it is often the more useful of the two expressions. Indeed, (4.3.9)
brings out a slightly different intuitive picture. Namely, it says that, under
WX(N), for any stopping time 7, the distribution of the path Xy(r)¥ is unaffected
by the v ’s past prior to T(v) and depends only on the position () of ¥ at time
7(1p). Such a property is called a Markov property, and, because it holds for
stopping times (not just constant times), the one in Theorem 4.3.8 is called the
strong Markov property of Wiener’s measure (cf. Exercise 4.3.55).

g
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From an analytic point of view, the Markov property for Wiener's measure is
an expression of the fact that the Gauss measures {vV: s € (0,00)} form a
semigroup; that is 7Y, = v,V %y for all s,t € (0,00). To be more precise,
after further aggravating our abuse of notation by introducing

N
(4.3.10) N (x) = nys(:vk), s € (0,00) and x € RV,
1

to stand for the density of the Gauss measure vs~, we define the operators P :
B(RV;R) — B(RY;R) by Psf(x) = [vV 4 f](x). Clearly, the aforementioned
semigroup property for the measures ~s" becomes the statement that the family
{P; : s > 0} is a semigroup of operators: P,;; = P, o P;. Moreover,
P, tends to the identity operation I in the sense that, for f € Cp(RY;R),
P,f — f uniformly on compacts as s 0. In fact, if A is used to denote the
standard Laplacian ZIIV (—%2{ for RV, then «= — 1A in the sense that, for

f € CLRV;R),
P.f—
—L—f — %A f uniformly on compacts as s N\ 0.
s

(The most instructive derivation of this fact is to use Taylor’s Theorem and write

N

P60~ 100 =30 g [ wen(ay)

k=1

1 o f N
5 s d E )
&P ool [ N dy) 4 5B

= 2[Af)(x) + 5E(s,%),
where
1 & .| 82f 8% f N
E < — —_— — db~s" (d
Bonl< a3 [ WP gogm et %)~ gy 9| a0 )
k’lzl[O,l]xRN

tends to 0 uniformly on compacts as s Y\, 0.) Thus, since P, maps B(RY;R)
into C2(RV;R), we see that {P,: s > 0} is the heat flow semigroup in the
sense that, at least when f € Cb(RV;R), s € (0,00) —> Psf € B(RY;R) is the
unique (cf. Theorem 4.3.15) bounded mapping s € (0,00) —> u(s) € B(RV;R)
which is a classical (i.e., smooth) solution to the Cauchy initial value problem
for the heat equation

9u(s) = 3Au(s) with ;%u(s) = f pointwise.
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Alternatively, in the somewhat formal but suggestive notation of operator theory,
“Ps — e%A‘n

In the remainder of this section, we will use the Markov property to show how
Wiener’s measure can be made to represent solutions to certain perturbations
of the heat equation. Specifically, let V : RY —— R be a measurable function
which is bounded above, and consider the Cauchy initial value problem

(4.3.11) %u = 1Au+Vuin (0,T] x RY  with u(0, -) = f.

Following R. Feynman and M. Kac,! we will show that, under very general
circumstances, the reasonable solution to (4.3.11) is given at (t,x) by

(4.3.12) [P} f](x) = / F((t)) exp [/O V((s)) ds] W, (dv).
P(RY)
That is, “PY = et(zA+V)»

To make all this more precise, we begin by checking that {PY Tt > 0}
determines a semigroup on B(RV;R). But clearly, for each f € B(RY;R),
(t,x) € (0,00) x RN +— [P} f](x) € R is a measurable function which satisfies
the estimate

4313 [PEA), < fluesp ¢ sup Vi), t€ (0.50)
In addition, if

Miw =e [ [ V) s 69 €000 xpEY),
Then M(s +t,1) = M(s,v) M (t,E,1), and therefore, by (4.3.9),

PY,.f](x) = / M(s,%) £(Bew)(8)) M (¢, Bewp) Wi (dep)
P(RY)

= / M(s, ) (/ f(w(t>)M(t,w>W;ii§(dw>> WM (de)
P(RN) P(RN)

= [P} o P} f](x).

f More accurately, we will follow Kac, who himself followed Feynman. Indeed, this formula
grows out of Feynman’s path-integral approach to solving Schrédinger’s equation in terms of
integrals involving expressions like the one in (4.2.1), only with a /=1 in the exponent! After
hearing Feynman lecture on his method, Kac realized that one could transfer Feynman’s ideas
from the Schrédinger to the heat context and thereby arrive at a mathematically rigorous but
far less exciting theory.

5
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Hence, we have now proved the semigroup property.

What remains is to establish the connection with (4.3.11) by justifying the
equation “pY = et(38+V) » and the first step in this program is to eliminate
technical differentiability questions by converting (4.3.11) into an integral equa-
tion. To this end, let t € (0,T] be given, suppose that u is a bounded, classical
(i.e., smooth) solution to (4.3.11), consider

s € (0,8) — w(s) =i sku(s) € B(RM),
and note that

() =2 k(5 Au(s) + () =2k (Vuls)):

Hence, after integrating in s over (0,t), we arrive at

(4.3.14) u(t) = K f + /t N e (Vu(s))ds, tel0,T].
0

In other words, if u is a bounded, classical solution to (4.3.11), then it is a solution
to the integral equation in (4.3.14); and so (4.3.14) represents a generalized
statement of the problem in (4.3.11), one in which all smoothness requirements
can be ignored.

With these preliminaries, we are now ready to present the following version
of Feynman and Kac’s result.

4.3.15 Theorem (Feynman-Kac Formula). Let V : RN — R be a bound-
ed, measurable function. Then, for each f e BRV;R) and T € (0,00), t €
(0,T] — PY f € B(RV;R) is the unique bounded, measurable t € (0,T] —
u(t) € B(RV;R) which satisfies (4.3.14). In particular,

t
Ptvf_f:/0 PY (LAf +Vf) ds

fort € (0,00) and f € C2(RY;R).

Finally, let T € (0,00) be given, and suppose that {u,}$° is a sequence of
functions from CL*((0,T) x RY;R) N Cu([0,T] x RM;R) with the properties
that

(4.3.16)

Ou
__n. < w,
ot .

un(t,x) — u(t,x) for each (t,x) € [0,T] x RY,

sup ||unllu V — 3Au, — Vu,

nezZ*

and

[%’itﬂ — %Aun — Vun] (t,x) — 0
for Lebesgue-almost every (t,x) € [0,T] X RN . Then
(4.3.17) u(t,x) = [P} fl(x), (t,x)€ [0,T] x RY,

where f = u(0, -). Thus, (4.3.17) holds whenever u € CL2((0,T) x RY;R) N
Cy([0,T] x RV;R) is a solution to Cauchy initial value problem in (4.3.11).
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PROOF: We begin by noting that, for each f € B(RV;R) and T € (0, c0), there
is at most one bounded, measurable t € (0,T] — B(RY:R) satisfying (4.3.14); *
and, by linearity, this will follow as soon as we check that the only bounded
solution to (4.3.14) when f = 0 is u = 0. But if u satisfies (4.3.14) with f =0, °
then ‘

t
Ut) < ||Vl / U(s)ds, te[0,T],
0 i
where U(t) = sup,¢g 4 [|u(t)|lu for each t € [0,T). Thus, by induction, we see

that .
_ (Vi)

- n!

from which the conclusion U(T') = 0 is obvious.

Next, we show that t € (0,T) — P} f satisfies (4.3.14). For this purpose, set
w(t) = P} f, and note that, for each 0 < s < ¢ ‘

k(e = [ Vel - ) fu(a)]) (gt - 9) WiM dg)

PERN)

Ul(t) U(T), neNandte|[0,T],

= [ | [ Feanwil @ | WiV,
PERY) \PRY)
where

Fig.9) = 1) V{ele =) exp | [ V(6(2) do]

Hence, since F is Bi_ s X By(wn~)-measurable and

t

F($,Zi-st) = f($(1) V((t — 5)) exp [/t

—8

V (¢(0)) da] ,

(4.3.9) plus Fubini’s Theorem leads to

t

[yl ok (V(s))] (x) ds

= /MRN) f(w(t) (/Ot V (3(t — s))

X exp [/tt V(9(0) da] ds) W (dap)

-8

= /m - f(¥(®) (exp [ /0 v (%(9)) do] - 1) WM (dwp)
= [w(t)](x) — [+ *f] (%)

S~
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In other words, w satisfies (4.3.14).

To prove (4.3.16), let f € C (RN ;R) be given, and observe that the class of
v’s for which (4.3.16) holds must be closed under bounded, pointwise conver-
gence. Hence, it suffices to prove (4.3.16) for Vel (RN;]R). But, for 6 > 0,

P¥+5f—P¥f=PY(P<‘S/f_f)3
and

PYf—f _*f-f
56

1 8
+5/ Nk (VP f)ds.
0

As we already know (cf. the discussion about the heat equation given earlier)
the first term on the right tends boundedly and pointwise to %A fasd N0, and
clearly, when V € C,(RY;R), the second term tends boundedly and pointwise
to V f. In other words, at least when V is continuous, we have now shown that

dPY f

Py (BAS+V ), teoc)

and therefore that (4.3.16) holds first for continuous Vs and then for general
ones.
Finally, let T € (0,00), {un}3° U {u}, and f be as in the last assertion, and

set
Ouy,

un(t) = Un(t, - ), gn(s) = Bs %Aun(‘s) — Vun(s),

and f, = un(0). Then, for t € (0, T},

_S'Yt—s*un(s) = ’Yt]\is*gn(s) + 'ytj\is*(v Un(.‘j‘)), 5 € (O,t),

and therefore

t t
un(t) — %N*fn = / %Ais*gn(S) ds + / vﬁs*(V un(s)) ds.
0 0

Thus, after letting n — oo and using the assumptions about the convergence of

gn t0 0 and u,, to u, we conclude that u satisfies (4.3.14) during the time interval
(0,7]. O

Warning: In the future, we will seldom give such a detailed account of how
(4.3.9) applies. In particular, we will seldom provide the explicit expression
for the function F(p,) to which we are applying (4.3.9) and, instead, will
merely use a phrase like by the (strong) Markov property to indicate that such
an application has been made.
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In the terminology of functional analysis, the conclusion drawn in (4.3.16) says
that C2(RV;R) is contained in the domain of the generator of the semigroup -
{P} :te€[0,00)} and that 1A f+ Vf is what one gets by acting the generator

on an f € CZ(RV;R). Because in Schrédinger’s model of quantum mechanics
(cf. the footnote following (4.3.11)), A + V is the Hamiltonian corresponding
to the potential energy V, we will call {P} : t € (0,00)} the Feynman—Kac
semigroup with potential V.

4.3.18 Corollary. Assume that V < —e for some € > 0, and let {f,}{° C
CZ(RN;R) be a uniformly bounded sequence of functions for which

1A fa+V fo — —g € B(RY;R)
boundedly and (Lebesgue) almost everywhere. Then,

lim f,(x)= / [P/ g](x)dt foreachx € RV,
0

n—o0

PROOF: Set g, = —%Afn —V fn. Then, by (4.3.16),

T
fn—P¥fn=/ P)g,dt, T €(0,00).
0

Moreover, by (4.3.13), HnyHu < Me™€, t € [0,00), for some M < oo. Thus,
the desired conclusion is reached by first letting 77, oo and then sending
n—oo. U

The following application, which is due to Kac himself,’ of Corollary 4.3.18
gives dramatic evidence of the power that the Feynman-Kac formula has to com-
pute certain nontrivial (i.e., ones involving functionals which require sampling
the path at infinitely many times) Wiener integrals.

4.3.19 Theorem (The Arcsine Law).?* For every T € (0,00) and « € [0,1],

144 ({w € B(R) : %/0 1[0,w)(¢(t)) dt < a}) = %arcsin(\/a).

In fact, if (Q, F, P) is a probability space and {Xn};)o is a sequence of indepen-
dent, uniformly square P-integrable random variables with mean-value 0 and
variance 1, then, for every a € [0, 1],

(4.3.20) lim P ({w: Nalw) a}) = 2 sresin(va),

n—oo n s

where Ny, (w) is the number of m € Z* N [0, n] for which Spm(w) = 35—, Xe(w)
> 0.

T See Kac’s “On some connections between probability theory and differential and integral
equations,” Proc. 2nd Berkeley Symp. on Prob. & Stat. (1951), where he gives several other
intriguing applications as well.

I The first part of this theorem was discovered by P. Lévy

igine o
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PROOF: First note that, by Wiener scaling-invariance, it suffices to prove the
first part when T' = 1. Next, set

F(a) =W ({w € B(R) : /01 1{0,00) (¥(8)) ds < a}) , a€l0,00),

and let u denote the element of Ml([O, 00)) for which F is the distribution
function. We are going to compute F(a) by looking at the double Laplace
transform

G\ = / e Mg(t)dt, A€ (0,00),
(0,00)

where

g(t) = /[0 )e_ta p(da), t€(0,00);

and, by another application of the Wiener scaling property, we see that

G(A)z/ooo / exp [— /Ot(Hl[Om)(w(s)))ds] Widy) | dt

&P (R)
= / [PYA 1](0) dt where V) = —A — 1{p,c0)-
0
At this point, the idea is to calculate G(A) with the help of Corollary 4.3.18.
Thus, we seek as good a solution z € R — fa(z) € R as we can find to the
equation 2 f"(z) — (A + 1p,00)) f = —1. By considering this equation separately

on the left and right half lines and then matching, in so far as possible, at 0, we
find that the best choice of bounded f will be to take

A,\exp{—\/2(1+)\)w] + s if z € [0,00)
falz) =
By exp{mw] + % if =€ (—00,0),

where

1\ 1 1 \* 1
Ay e [——m ) - —— Bo= | -2 ) -~
g <,\(1+,\)) o 2d B <,\(1+,\)) )

(The choice of sign in the exponent is dictated by our desire to have f bounded.)
Notice that, although f) has a discontinuous second derivative at 0, fj is
nonetheless uniformly Lipschitz continuous everywhere. Hence, by taking p €
C (R;[0,00)) with Lebesgue integral 1 and setting

Fam(z) = n A{ (@ = y)p(ny) dy, n €TV,
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we see that: fi, € C°(R;R) for each n € Zt, fan — fx uniformly on R as
n — 00, SUPpcz+ HfA,ang(R;R) < oo, and, as n — 00, 4

1
5fin = (At Lpe) frn — =1 on R\{0};

and so, by Corollary 4.3.18, we know that

GO = £2(0) = (ﬁ) -

Given the preceding expression for G(A), the rest of the calculation is easy.

Indeed, since
e 1 s
t7ze Mdt =4/,
/o ) VX

the multiplication rule for Laplace transforms tells us that

and so we now find that

1 / 1 2
= — ——df = —arcsin(\/a/\ 1).
mJo  /B(1-5) m
Obviously, what we would like is to get the second assertion as a consequence

of the Invariance Principle (cf. Theorem 3.4.20). Indeed, thinking of I—V%w) as a
Riemann approximation to (cf. the notation in Section 3.4)

1
/ 1[0,00) (Sn(ta w)) dt,
0

it is reasonable to hope, on the basis of the Invariance Principle, that the distri-

bution of w — A, (w) = I—V—’%“’—) under P tends to that of

Y e PR — Fy) = /0 1(0,50) (1/)(t)) dt

under W. However, the argument here is a little less straightforward than it was
in the derivation of (4.3.6) because the functions with which we are dealing now
are somewhat rougher. To get around this difficulty, define

Ff(w)z/olf(w(t))dt and FY(y Zf( ) nezt
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for f € B(R;R) and ¢ € B(R). Then, so long as f € Cu(R;R), it is clear that
Fl — F ! uniformly fast on compact subsets of B(R); and therefore, by Lemma
3.1.10 and Theorem 3.4.20, the distribution of

£(5)

1
2
m=1 n

we Q— Al(w)

il

under P tends to that of ¢ € P(R) — F/(y) under W. Next, for each
§ € (0,00), choose continuous functions fis so that 1(se0) < fs < 1jp,00) and
Ljo.00) < f-6 < 1{-5,00), 2nd conclude that

lim P(gﬁ < a) gw(Fffs < a)

n—o0o n

and

lim P(% <a) 2)/\)(Ff“s <a>

n—o0

for every § > 0. Passing to the limit as § ™\, 0, we arrive at

H@OP (ﬁnﬁ < a) <W ({w : /01 1(0,00) (¥(t)) dt < a})
nli_%oP (ﬁnﬁ < a) >W ({w : /01 1j0,00) (¥/(1)) dt < a}) .

Finally, since

/p(R) (/01 1oy (¥(1)) dt) W(dy) = /01 W(y(t) = 0) dt =0,

and a € [0, 1] — aresin(y/a) is continuous, (4.3.20) follows. O

Remark: S. Sternberg pointed out that the arcsine distribution is familiar to
people studying iterated maps and is important to them because (cf. Exercise
4.3.61 below) it is the one and only absolutely continuous probability distri-
bution on [0,1] which is invariant under z € [0,1] — 4z(1 — z) € [0,1]. He
has asked whether a derivation of the preceding result about Wiener’s mea-
sure can be based on this observation. Taking T = fol 1[0,00)(11’(5)) ds and

S = fol sgn (1/)(5)) ds, what Sternberg is asking is whether there is a pure thought
way to check that T’y and S? have the same distribution under W. I have posed
this problem to several experts but, as yet, none of them has come up with a
satisfactory solution.

and
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The renown of the Arcsine Law stems, in large part, from the following coun- v
terintuitive deduction which can be drawn from it. Namely, given § € (0,1),
set

(e, 6) = {t€[0,1]: la —t| Al —a—t] <8} for ac|0,1],
and guess which a maximizes lim, o P (ﬂnIL € I{a, 6)) for a fixed §. Because of :
The Law of Large Numbers (in more common parlance, “The Law of Averages”), :
most people are inclined to guess that the maximum should occur at o = %
Thus, it is surprising that, since

aG[O,l]P—)—ﬁe[va]

is convex and has its minimum at %, the Arcsine Law makes the exact opposite
prediction! The point is, of course, that the sequence of partial sums {Sn(w)}:0
is most likely to make long excursions above and below 0, but tends to spend :
relatively little time in a neighborhood of 0. In other words, although one may !
be correct to feel that “my luck has got to change,” one had better be prepared
to wait a long time.

Before closing this discussion, we will develop some refinements of Feynman }
and Kac’s formula. The first of these refinements is the extension of their formula *
to semibounded V’s. Indeed, it was clear from the outset that at least the
semigroup {P} : t > 0} is well defined even if V' is only bounded above. Thus, b
one suspects that the Feynman—Kac formula should extend to such V’s. In fact, -
the only problem presented by V’s which are unbounded below comes when one *
wants to interpret the equation in (4.3.14). The author learned the argument
which follows from M. Nagasawa. ’

4.3.21 Theorem. Let W : RY — [0,00) be a given measurable function.
Then for each f € B(RY;[0, oo)) and U € B(]RN;R), the measurable function -
t e (0,00) — PVWfe B(RV; [0,00)) given by :

43.22) [PV"fl(x) = / f(w(t))mp[/0 (U = W)((s)) ds WiN)(d‘!’)i
PERY)

is the unique measurable t € (0,00) — u(t) € B(RN;[0,00)) satisfying

(4.3.23) u(t):P?f—/tP?As(Wu(s))ds, t € [0,00).
0

ProoF: First suppose that u is given by (4.3.22), and let u,, n € Z*, be the
function determined by the right-hand side of (4.3.22) after W has been replaced
by W An. Then, by exactly the same argument we used to show that the function



§4.3: Markov Aspects of Wiener’s Measure 241

given in (4.3.12) is a solution to (4.3.14), one sees that u, solves (4.3.23) with
W A n replacing W. Hence, because un N u > 0, (4.3.23) follows from the
Monotone Convergence Theorem.

Next, suppose that u is a nonnegative solution to (4.3.23). Our proof that u
is given by (4.3.22) will rely on our showing that for each W’ € B(RY;[0,00))
satisfying W’/ < W:

¢
(4.324)  ult) =PYWf - / PU-W' (W — W')u(s)) ds, € [0,00).
0
Indeed, once we know (4.3.24), we get (4.3.22) by taking W =W,=WAnin
(4.3.24), noting that

t t
/ PUVr (W — Wa))u(s)ds < / PY  (Wu(s))ds < ||P§ff\|u < 00
0 0
while

PYU-Wnf N\ PY"Wf and P (W - Wa))uls) N0 pointwise,

t—s
and then applying the Monotone Convergence Theorem.
In order to prove (4.3.24) from (4.3.23), first note that

t t
[ R v ato) ds = [P (WP S)d
0 0

_ /Ot pU-W’ (W' /0 PU (W u(0)) da) ds.

M) = exp - | "W (o)) o]

Next, set

and

13
N(&, %) = exp { /0 U(%(0)) da]

for £, € [0,00) and ¥ € PB(RN). Then, by the Markov property and Tonelli’s
Theorem:

[ e wrptp]ws
- _/ (/ f(w(t))N(taw)aﬁM(t—s,t,d)) W}C(N)(dw)) ds
0 B(RY) s

= [ SOOIV (1= MO0 W)
= [PYf](x) - [PV f] ().
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Similarly,

[ ey (w [Pt o] o) as
- // (/E(RN)[W“(U)] (¥t — o)) N(t - 0,%)

0<o<s<t

X aﬁM(o,t — s, )W (dw)) dods
S

- [( [ IFu] =) N o)

x (1= M(0,t - a,1p)) W) (dw)) do

¢
0
Thus, by combining these two with (4.3.23), we arrive at (4.3.24). O

:/ [ng_a(WU(U))](X) da—/ot [Pij_;w, (Wu(a))](x) do.

4.3.25 Corollary. Suppose that V : RY — R is a measurable function which :k
is bounded above, and define the semigroup {PY > 0} accordingly, as in |
(4.3.12). Then, for each f € B(RV;[0,00)) and T € (0,00), t € (0,T] —> :
P/fe B(RN; [0, oo)) is the unique measurable mapping "

t € (0,T] — u(t) € B(RY;[0,00))

which satisfies the relation
t
(4.3.26) ut) =PV f —/0 PV (V7u(s))ds, tel[0,T].

In particular, if u € C’é’2 ((0,T) x RY;R) N Cy([0,T] x R¥;[0,00)) solves the
Cauchy initial value problem (4.3.11), then u(t,x) = [P} f](x) for all (t,x) €
[0,T] x RY. :
ProoF: The characterization of t € [0,00) — PYf € B(RY;[0, 00)) for
nonnegative f € B(RV;R) in terms of (4.3.26) is an immediate application
of Theorem 4.3.21 when one takes U = V*+ and W = V~. Moreover, if
u € C’é’2((0, o0) x RV;R) is a nonnegative solution to the Cauchy initial value
problem in (4.3.17), then, by (4.3.16) with V' replacing V, ‘

t t
—/ PY (V- u(s)) ds = / P/ (2 —~ 1Au—-Vtu)(s)ds
0

0
t
d v+
= [ P (u(s) ds = ut) =P,

and so t € [0,00) —> u(t, -) is a nonnegative solution to (4.3.26). O
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The second refinement which we want to make concerns the operators PY for
s of the sort in Corollary 4.3.25. Obviously,

[PV f](x) = / f(5) P (t,x, dy),
RN

where PV (¢,x, -) is the finite Borel measure on RV given by

PY(t,x,T) = V=" [exp (/Ot V(¥(s)) ds) L (t) € r]

for I' € Bgn. Moreover, the measurability properties of the P} ’s translate
jmmediately into the measurability of

(t,x) € [0,00) x RY — PV (t,x,T) € [0,00)
for each T' € Bgv; and the semigroup property PV, = PY o P} becomes the
Chapman-Kolmogorov equation
(@3.27) P(s+txl) = [ Py DRV xdy) T b
RN

for all (s,t) € (0,00). Thus far, all this represents is an alternative formulation
of things which we already knew. However, the result which follows provides us
with significant new information.

4.3.28 Theorem. Let V : RY —— R be a measurable function which is
bounded above, and define (t,x) — PV(t,x, ) € M(R") as in the preced-
ing discussion. Next, set (cf. (4.2.19))

(4.3.29) PVt x,y) =BV [exp (/Ot V((1 — 2)x+Pu(s) + %y) ds)]

for (t,x,y) € (0,00) x RN x RN . Then, for each (t,x) € (0,00) X RV,

(4 3 30) Pv(t7x7 dy) = pv(t’x’y) dy
where p¥ (t,%,¥) = 7 (y = x)r’ (£, %,)-

Moreover,
PV (txy) =" (ty,%), (txy) € (0,00)x RY xRY;

and therefore
/ g9(x) [P} f](x) dx = / f(x) [PYg](x)dx
RN RN

for all nonnegative, measurable f and g on RN . Finally, when V is continuous
as well as bounded above, (t,x,y) € (0,00) x RY X RN — p¥(t,x,y) € (0,00)
Is continuous.
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Proor: To prove (4.3.30), let f € B(RV;R) be given and apply (4.2.20) to the

function F : P(RY) — R given by

F) = (i) 5] £00), b eREY)

in order to see that

N fy)PY(t,x,dy) = . F)rY (txy)v (y — x) dy.

As for the symmetry assertion, SImply note that, because 1 — r | [0, T

is reversible (cf. Theorem 4.2.18), rV(t,x,y) = rV(t,y,x). Finally, if V is "
continuous, then the continuity of rv on (0,00) x RN x RN becomes an easy *

application of Lebesgue’s Dominated Convergence Theorem. [

e

From a probabilistic standpoint, Feynman-Kac semigroups are flawed by their
failure to leave the function 1 invariant, with the consequence that the corre- -
sponding measures PV (t,x, - ) cannot be interpreted as the distribution of paths

at time ¢. From the Schrédinger standpoint, this failure is a reflection of the fact .

that 1 is not the ground-state of the quantum mechanical system with Hamilton- ;
ian A + V. On the other hand, from the physical standpoint (cf. the footnote
followmg (4.3.11)), there is nothing sacrosanct about any particular representa- :
tion of the Hamiltonian: any unitarily equivalent representation is just as good.

Thus, physicists will often force 1 to be the ground-state by performing what

they call a transformation to the ground-state representation, and, as a

consequence, they produce a situation which is amenable to a nice probabilistic
interpretation. In order to avoid difficulties, we will restrict our attention here to
Vs for which it is easy to find the ground-state. In fact, we will cheat by starting
with a candidate and producing the potential for which it is the ground-state. :

To be precise, let U € C?(RY;R) be given, set

(4.3.31) vU =1AU - L|VUP?,

and observe that e~V is the ground-state for % A+VU in the sense that Ae‘U+ i

VUe~U = 0. In particular, this means that the map taking a function <p to eV !

transforms a solution to (4.3.11) with initial condition e~V f into a solution to

(4.3.32) % — 1 Aw — VU - Vu in [0,00) x RY with w(0, -) = f.

As distinguished from the operator %A + VY, the operator %A — VU -V annihi- ,f
lates constants. Thus, there is reason to hope that the corresponding semigroup -

“et(FA=VU-V)» wil| preserve the function 1 and, if everything works out well,
will admit a nice probabilistic interpretation.
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In order to implement the program hinted at in the preceding, let U €

C%(RM;R) be given, take VU as in (4.3.31), and define RV : [0,00) x P(RY) —
[0,00) by

(4.3.33) RY(t,¢) = exp [U(¢(0)) - U(v(t) +/O VP ((s)) ds] )

Finally, define QV f for t € [0,00) and measurable f : RY — [0,00] to be the
function given by

(4.3.34) [QVf](x) = BV [f(tj)(t)) RU(t)], x €RV,

Obviously, (t,x) € [0,00) x RN +— [QY f](x) € [0, 00] is measurable for each
nonnegative, measurable f on RY.

4.3.35 Lemma. Assume that both —U and the associated function VY in
(4.3.31) are bounded above. Ifw € CL2((0,T) x RY;R) nC([0,T] x RY; [0, 00))
satisfies (4.3.32) and if e"Uw € Cy* ([0, T] x R";[0,00)), then

w(t,x) = [QY f](x), (t,x) €[0,T] x RV,

In particular, if e~V € CZ(RV;[0,00)), then QU1 =1 for all t € [0,00).

ProoF: Set u(t) = e"Yw(t, -) and observe that
% — LAu+VYu on(0,T)xR".

Hence, by the final part of Corollary 4.3.25,
w(t, ) = eYu(t) = eV PYU (u(0, ) = QVf forte[0,T]

In particular, when e™Y € C? (RV;R), we can apply this to w = 1. O

4.3.36 Theorem. Let U € C*(RV;R) be given, define VU and RY from U as
in (4.3.31) and (4.3.33), and assume that

(4.3.37) (-Ux) VVY(x) <C(+Ixl), xeRY,

for some C € (0,00). Then, for each x € RY, there is a unique QY €
M, (B(RV)) with the property that

(4.3.38) QU(A) = EW=""[RU(t), A] for all t € [0,00) and A € B;.
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Moreover, the map x € RN +— QY € M, (B(RY)) is continuous. Finally, for ;
every {B; : t € [0,00)}-stopping time T and every bounded F': PRV — R |
which is B, X Bywn)-measurable, {

{¥:7(4p)<oc}

= / (/ F(p, ) Qg(r)(d"/’)> Qg(d‘P)
PBERY)

{p:m(p)<oc}

(4.3.39)

PROOF: We begin with some preparations. Let T € (0,00) be given, and
suppose that 7 is a {Bt : t e o, oo)}—stopping time which is dominated by
T. Given a bounded, B, x Bgpgn~)-measurable F' for which ¢ € PBRY) —s
F(¢, 3, (4)¥) € R is Bp-measurable, set

F(p, %) = RV (r(¢), ) RV (T — 7(¢), %) F(o, %), (,%) € BRY)?,

and observe that F is B, x Bpr-measurable and that
RY(T, $)F (%, Zr gy %) = F (1, Zo()¥).
Hence, by (4.3.9),
[ P8 Ze0) BT )W a9)
(4.3.40) = /RU (7(#), )
x ( / F(p, ) R (T—rw),w)wgiiz(dw)) W (dep).
The first step in the proof that QU exists is to check that

(4.3.41) V" [RU(r)] =1, xeRY

for all bounded {B; : t € [0, oo)}—stopping times 7. To this end, take FF =1 1in
(4.3.40) and thereby obtain (cf. (4.3.34))

[QF1](x) = /RU(T(w),w) Q7 (1] ((7)) Wi (dp)
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for any 7 which is dominated by T. In particular, if U € CZ(RV;[0,00)), then
the last part of Lemma 4.3.35 says that QY1 =1, and therefore (4.3.41) holds
in this case. Next, to handle the general case, choose n € C*° (R; [0, 1]) so that

1 if x| <1
"("):{o x> 2,

and, for n € Z*, define U,, € CZ(RY;R) by Un(x) = n (%) U(x). At the same
time, given a 7 bounded by T', set

=7 ACBRNOM) where ¢Ban (@M () = inf {t : (t) ¢ Brv (0,n)}

is the first exit time from Bgw(0,n). Then, because U, and U coincide on
Bgn (0,7n), (4.3.41) for U = Un and 7 = 7 immediately implies (4.3.41) for U
and T = 7,,. Moreover, by (4.3.37), we know that, forall0 <t <T:

(4.3.42) RY(t, ) < exp [U(w(O)) +C(2+T) (1 + s[up | |¢(t)|>} :
te(0,T
and therefore (because (Ben(0) A 0), (4.3.41) for U and 7 follows easily from
(3.4.30) and Lebesgue’s Dominated Convergence Theorem.
With the preceding in hand, we can now prove the existence and uniqueness
of QU as an application of Exercise 3.4.26. Namely, define p, € M, (‘B(]RN ))
for n € Z* so that

un(4) = B [RU(n), A] for all A€ By~

GivenneZt and Ac B, wetake T =n+1,7=mn,and FF =14 in (4.3.40)
and conclude (from (4.3.41) with 7 = 1) that

) = [ R ( [ R (1, W3 ) Wi () = pnl4)

Hence, the hypotheses in Exercise 3.4.26 are trivially satisfied by {¢n}5°, and
therefore both the existence and uniqueness of QY are assured. Moreover, again
by (4.3.42), (3.4.30), and Lebesgue’s Dominated Convergence Theorem, the map
x € RN s EQx [F] € R is continuous for any F" € Co(PB(RY); R) which is Br-
measurable for some T € [0,00); and so the continuity of x € RN — QY €
M, (P(RY)) can also be seen as an application of Exercise 3.4.26.

To complete the proof, note that (4.3.39) and (4.3.40) coincide when 7 < T,
(p,p) ~ F(p,bq) is By x Br-measurable, and ¢ ~ F(t/),ET(,,,)t/)) is Br-
measurable; and starting from this case, the general result follows from elemen-
tary, measure theoretic considerations. O
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Put into the jargon of probability theory, the property expressed by (4.3. 39)
becomes the statement that the family {QY : x € RV }, like the family W
x € RY } has the strong Markov property (cf. Exercise 4.3.57).

4.3.43 Corollary. Let everything be as in Theorem 4.3.36, and define the ':
operators QY , t € [0,00), accordingly, as in (4.3.34). Then each Q! admits a
unique extension as a contraction on B(RV;R) and QY., = QY 0 QY for all ,

s, t € [0,00). Furthermore, there exists a continuous (t,x) € [0,00) X RY —
QY (t,x, -) € M (RY) with the property :

[Qf0x) = [ F) @ tx.dy), (%) € [0.00) x B
for each f € B(RY;R); and the Chapman—Kolmogorov equation
Q 5+t X, - / QU Ly, (SaxadY)

holds for all s, t € [0,00) and x € RV . Finally, ifrv” (t,x,y) denotes the right-
hand side of (4.3.29) with V = VY and ¢V : (0,00) x RV x RY — (0,00) is
defined by :

(4.3.44) Y (t,x,y) = V) N (y - x) rVU(t,x,y) V),

then ¢V is continuous, (x,y) € RV x RV +— qY (t,x,y) is symmetric for each .
€ (0,00), and

QU(t,x,dy) = ¢”(t.x,y) u¥ (dy) where u"(dy) = 7>V dy.
In particular,
V(s +t,x,y) = /RN ¢ (5,%,€) ¢V (t,€,y) u” (df).

PROOF: Seeing as
U
[QF () =E%= [f(w(1))],
the first assertion which requires any comment is the one about the semigroup -

property of the operators QY. But, by (4.3.39) with 7 = s and F(p,v) =
F(w(1)),

[QUf](x) = / £ (s + 1) QU (dw)
PRN)

B /B(RM (A?(RN) Fl(e) Qg@(dd’)) Q" (de)
= [Q = Q7] ().
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Next, let ¢V be defined on (0, 00) x RN x RN as in (4.3.44). To see that qv

is continuous, it suffices to check that #vY is continuous. But, by (4.3.37) and
(4.3.26),

sup /Ot vY ((1 — S)x+ Pu(s) + %y) ds

t€[0,T]

<CT (1 + |x| + |yl +2 sup l¢(3)|> ,
0,7

s€[

and so the desired continuity follows from (3.4.30) and Lebesgue’s Dominated
Convergence Theorem. Finally, both the symmetry of ¢V and the equation

QY fl(x) = / F) ¢V (4, %, y) u (dy)
RN

are easy corollaries of Theorem 4.2.18; and therefore all the remaining assertions
are immediate from what we have already proved. d

With Theorem 4.3.36 and Corollary 4.3.43, we have certainly shown that
transforming to the ground-state is, from a probabilistic standpoint, a good idea
which provides us with an interesting source of strong Markov processes. How-
ever, as yet, we do not know much about these processes. For example, we do
not know how properties of U are reflected in the distributional properties of
their paths. For this reason, we will return to the study of these processes In
Section 7.5, where we will interpret their paths as Wiener paths which have been
perturbed by a conservative force field.

Exercises

4.3.45 Exercise: As was mentioned in the footnote following their introduction,
our presentation of stopping times and their associated o-algebras is based on
definitions made originally by E.B. Dynkin. Although his definitions are very
elegant and have served us well, his description of the o-algebra B; is a little
opaque and does not fully capture the intuition on which it is based. For this
reason, it may be helpful to develop the following alternative description of B;
as the g-algebra a((t A7) : t € [0, )) over B(RY) generated by the maps
{(t A7), te[0,00)}. Since, by Lemma 4.3.7, it is clear that o (P(tAT): t €
[0, OO)) C B;, we will only deal with the opposite inclusion.

(i) Suppose that f : [0, 00] x PB(RN) — R is a Big,o0] X B,-measurable function
with the property that 1 € B(RY) —> f (t,1) € R is B;-measurable for each
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t € [0,00). Show that there exists a measurable Fy : [0, 00] X RZ" — R and a
sequence {s,}5° C [0, 00) such that

f(t,tj))=Ff(t,tj)(31/\t),...,t/)(sn/\t),...) ,

for all (t,7) € [0,00) x P(RN).

(ii) Apply part (i) to show that if f : P(RY) — R is B,-measurable, then there :
exists a measurable Fy and {s,}{° C [0, 00) such that ;

Ly (7(¥)) f() = Fy(t,9(s1 At), ... (s A ), ...).
First use this with f = 1 to see that 7(¥) =t € [0,00) and ¢(s) = ¥(s) for
s € [0,t] imply 7(¢) = t; and conclude that 7 itself is o(¢(t A7) : t € [0,00))-

measurable. Finally, complete the proof by letting f be any B,-measurable
function and noting that

F(ap) = Fr((2h), (s AT), . th(sn A L), ).

4.3.46 Exercise: For a € (0,00), let v, € M;(R) denote the distribution of
¥ — 7a(y) = inf {¢ € [0,00) : %(t) > o}

under W. From (4.3.5), we know that

al(O oo)( ) a2
o (dt ——| dt.
Vo(dt) = o Py

Noting that

Tatb(¥) = Ta(¥) + 7 (07, (p)¥) when (0) =
use Theorem 4.3.3 to see that
(4.3.47) Vatb = Vg KUy, a, b€ (0,00),

Next, use Wiener scaling invariance to see that 7, has the same distribution

under W as a®7, and combine this with the preceding to conclude that, for
A€ (0,00),

fa(N) = /(0 )e_)“t ve(dt) = exp[—-ca )\%} where ¢ = —log[fi1(1)] > 0.
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Finally, use
. 1
~o= Jim ~tog [ ()]

=l 1l o 1+t dt
= Jim Jon | [ e |5 t)|

together with Exercise 1.3.17 to see that ¢ = /2 and therefore that

(4.3.48) / e My, (dt) = exp [—a \/2)\], a, A € (0,00).
(0,00)

As a consequence of (4.3.47), we see that {Va 1 a € (0,00)} is a convolution
semigroup and therefore that each of the distributions v, is infinitely divisible in
the sense discussed in Section 3.2. Moreover, starting from (4.3.48), extending
both sides analytically to the open right half-plane in C, and passing to the limit
as Re(A) ©\, 0, come to

Uo(€) = exp \:\/(12__” /(O,oo) (e\/—_lﬁy - 1) g—g} ,

which is, of course, a special case of the Lévy-Khinchine formula derived in
Section 3.2. Because they are concentrated on a half-line and have the scaling
property represented in (4.3.48), the distributions v, are called the one-sided
stable laws of order 3.

4.3.49 Exercise: Given N € Z*\ {1}, let RY denote the open upper half-space
{x,y) eRV"I xR:y> 0} and denote by

% € PRY) s Cap) = int {t € [0.00) : w(0) ¢ BY }

the first exit time from RY . Clearly, for y € (0,00), the distribution of ¢ under

W((,fy)) is the probability measure v, in Exercise 4.3.46. Noting that the Nth

coordinate ({)n of ¥(() is W (M)_almost surely 0, think of the distribution

PNV of 4 — (() under W), as being an element of M, (RV-1), and

use the independence provided by Exercise 3.4.28 to see that P((gy_)l) admits

the density n € RV~! +— p@(/N_l)(n —x) € (0,00) with respect to Lebesgue’s

measure on RV !, where

_ - 2 y
(4.3.50) PV (x) :/( )va Hx)vy(dt) = ¥
0,00
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(The constant
orF

WN-1 = T n~<
T )

in (4.3.50) is the surface area of the unit sphere S¥~! in RV.) Next, by the
same sort of reasoning as was used to get (4.3.47), show that

p@(/ivgylz) = p@(/lv_l)*pgf_l) for all (y;,¥2) € (0,00).
Thus, once again, we are dealing with a convolution semigroup of infinitely
divisible distributions. In addition, these distributions also possess a scaling
property: the distribution of n € RY =1 —— y 7 under pIV-D g pN-1), Finally,

(0,1) (0,9)
use the first line of (4.3.50) together with (4.3.48) to see that

P D (€) = exp[-y€l], y € (0,00) and € € RV 1.

The measures P((fy_)l) are called Cauchy distributions by probabilists, and,

because they arise as the in connection with the harmonic analysis of RY , har-
monic analysts call the densities péN‘l) Poisson’s kernel (cf. Section 8.3, espe-
cially (8.3.19), for more information about the connection with harmonic analy-

sis). Finally, the first equality in (4.3.50) is a classic example of subordination.

4.3.51 Exercise: In this exercise, we will make a somewhat subtle application
of the fact that Wiener paths are continuous.
(i) For, r € (0, 00), set

or() = inf {t € [0,00) : [9(t) — (0)| > r},

and show that, for any z € RV, the distribution of ¢ € P(RY) — 4(7,.) under
W) is uniform on the sphere S¥N~1(z,7) = {n € RN : |5 —z| =r}.

Hint: Use the rotation invariance coming from Exercise 3.4.28 to show that the
distribution in question must be rotation invariant.

(ii) Consider the position of a point which evolves in RY (cf. Exercise 4.3.49)
according to the following random prescription. At time 0 the point is at Zg =
(Xo,Yy) = (0,1), where it remains for one time unit and then moves to a
randomly chosen point Z; = (X, Y1) on the sphere SV ~1(Zg, Yy), where it again
rests for a unit time before moving to a randomly chosen point Z, = (X5, Y2)
on S¥-1(Z,,Y}), etc. Interpreting this to mean that:

Zo=(0,1) and Z,=2Z,_,+Y, 10, n€EZ,

where {an}(:o are independent, uniformly distributed S ~!-valued random vari-
ables, the problem is to show that, with probability 1, Z,, — (X, 0), where
X has Cauchy distribution P((é\f 1_)1). The principle underlying this example is
sometimes called the method of balayage; see Exercise 8.3.37 for a general-
ization.
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Hint: Define 7o = 0 and, for n € Z*,
) = int {t € [r1,00) ¢ [b(6) = ()| 2 $lraa)i ]

if Tm—1(1h) < oo and 7, (1) = oo otherwise. Show (cf. Lemma 4.3.2) that the 7,,’s
are {B;: t € [0, ) }-stopping times and that, when ¥(0)n > 0, 7,.()) < ¢(e)
(cf. Exercise 4.3.49). In particular, conclude first that W((OJYI)) (tn < o0) =1 and

second that the distribution of {¥(7:) : n € N} under W(((fl)) is the same as
the distribution of the family {Zn : n € N} defined above. Finally, complete
the proof by showing that 7,(¢) ¢(y) if Y(0)y = 1 and ¢() < oo, since
otherwise there would exist an ry > 0, Ty € (0,00), and 0 =t < --- < t, <
..» < Ty such that

inf | fb(tn) ~ bltar)| 2 7

4.3.52 Exercise: Refer to the setting in Theorem 4.3.36 and Corollary 4.3.43.
There are only a few cases in which it is possible to write down a more tractable
expression for the quantity ¢ (t,x,y) (cf. (4.3.44)). In fact, among the only
ones for which such an expression is known are U’s of the form

_alx* N

2
Uy(x) = —— + —log EW and therefore VUe(x) = —a

21_)(\_2..*_&
4 4

8 4’
where a € (0,00). In what follows, ga will be used to denote the function qU-.

(i) To find an expression for ga, begin by observing that if

8y — 1Ay in (0,00) x RY

1—et _a
We(t,X) = u (——,e"%x)

«

and

then
ag’t" = %Awa — VU, - Vu,.

Next, as an application of Lemma 4.3.35, conclude that

N
2

2 a al \2
qa(tax)y) = (l) '7]1V,24at (y— C—TtX) [ )2,

(4.3.53) *

(o \E et 2 ooy + ey /”
T \1-—eot P13 1—e ot '

In particular, when N = 1 and a = 1, check that this is consistent with the
result obtained in part (i) of Exercise 2.3.41.
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that

— |w ()P ds| = e [ e (y—eba) e dy
e (

—(cosh—)_% ex [—Bﬁt hi]'
= 3 Y g vanhg g

(i) Take N = 1 and @ = 1 in the preceding, and starting from (4.3.53), show

NS e o

£ 4
-

and use this together with Wiener scaling to give another derivation of (4.2.37). *

4.3.54 Exercise: Given ¢ € B(R) and T € (0,00), set

V() = %/{O i <¢(t)—% R ds) at.

That is, Vr(v) is the variance of ¢ [ [0,7]. The purpose of this exercise is to :

show that

EW [e7?V7] = _ V2T A € (0,00).

4.3.55 )
( ) sinh v 2T

(i) Using Wiener scaling, show that Vz has the same distribution under W as =

TV;. Hence, from now on, we will take T'=1and V = V).
(ii) Show that

W = / exp[ / l(w(t)—(2)\)‘%x)2dt] de.

(iii) Starting from the result obtained in part (ii) of Exercise 4.3.52 and using

Wiener scaling, show that

/B(R) exp [—/\/01 (w(t) - (2)\)—%x)2dt] W(de)

_1 2 tanh /2
= (coshv2A) ? Jrves ,
( ) "o [ 2V28 ]

and combine this with (i) and (ii) above to arrive at (4.3.55).
(iv) Using (4.3.55), show that

T R : R
< — <
W(VT R)‘(l e—R) exp[ 8}’ R € (0,00),

In particular, this estimate is quantitative evidence that Wiener paths vary a
great deal.

4.3.56 Exercise: Take a = 1 in Exercise 4.3.52 and use Q, to denote Q{* €
M; (‘B(RN)) for each x € RV.
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(i) By combining (4.3.53) with the Markov property (cf. (4.3.40)) for {Qx: x€
RN }, show that, for each s € [0,00), t € (0,00), and x € RNV,

b€ PRY) — (s +1) — e~ sep(s) € RY

under Qx is an RN -valued random variable which is independent of Bs and is
Gaussian with mean-value 0 and covariance (1 —e )L

(ii) Using the result in part (i) and proceeding by induction on n € Z*, show
that for any n € Z*, 0 <t --- <y, and £1,..., &, €RY,

¥ € PRY) — D (m ¥(tm)) g €R

m=1

under Qo is Gaussian with mean-value 0 and variance

2"—: (e—'iuz”“—' —e“w"‘—i‘) (€ &)

k. £=1

In particular, conclude that (cf. part (ii) of Exercise 4.2.39) {(g,w(t)) : £ €

RV &t € [0,00) } under Qo is & centered Gaussian family with covariance func-
tion e
t—s

s 0)€m = (5 - e F) (M

Finally, after referring to Exercise 4.2.40, use this to identify Qo with the
image of the Ornstein—Uhlenbeck measure ™) under the trivial embedding
9 c ORY)+— 0 € PRY)

4.3.57 Exercise: In this exercise we will introduce and discuss the abstract
version of the (strong) Markov property. To this end, let E be a Polish space
and define the o-algebras Bs, s € [0,00), and the notion ofa {Bi:tE€ [O,oo)}-
stopping time 7 : P(E) — [0, 00] and the associated o-algebra B by analogy
with their definitions when E = RN (cf. (4.1.3) and (4.3.1)). Obviously, the
results in Lemma 4.3.2 and Exercise 4.3.45 are unaffected by the replacement of
RN with more general E. Next, given a collection of measures Py € My (‘ZB(E)),
we will say that {P, : ¢ € B} is a Markov family ifz € E+— Ps €
Ml(‘lB(E)) is measurable, P; (1/)(0) =) =1 for every z € E, and, for every
(s,z) € [0,00) x E and bounded, Bs X B;B(E)—measurable F:PBE)?—R,

/ F(l/J,Esl/J) Pm(dw) = / (/ F(‘P,IP) PLp(s)(dw)> Pm(d(p),
PB(E) P(E) PB(E)
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where X, : R(E) — PB(F) is the time-shift mapping defined by [Z0](t) i
=Y(t + ), t € [0,00). If, in addition, for every {Bt 1 te|o, oo)}—stopping time
7, every bounded B, X By g~ )-measurable F : P(F)? — R, and every = € E:

{#:7()<c0)}
(4.3.58)

= / (/ F(p,¥) P¢(T)(d¢)> P (dy),
P(E)

{p:7(p)<o0}

then we say that {Pz NS E} is a strong Markov family.

(i) Given a measurable map ¢ € B — P, € M, (‘B(E)) with the property that
P, (¥(0) = z) =1 for every z € E, set

P(t,z,T) =P ({v: v(t)eT}), (t,z,T)e€ (0,00) x E x Bg,

&
Jeog

check that transition probability function (t,z) € [0,00)x E +— P(t,z, -) €
M, (E) is measurable, and show that {Pz 1z € E} is a Markov family if and
only if, for every n € Z*, 0 < tg < --- < t, < 00, and Iy, ..., I}, € Bg:

Px({w . b(to) € Toy..., ¥(tn) € rn})

(4.3.59) _ / P(tn — tnor ¥(tno).Tn) Po(d®)), &

"

where
A(tO) s 7tn—l;r‘07 s 7Fn—l)

= {¢ : 77b(t0) € FO»-- -7w(tn—l) € Fn—l}-

In particular, if {Pz :rxel } is a Markov family, show that P(t,z, -) satisfies
the Chapman—Kolmogorov equation

(4.3.60) P(s+tz, ") = /EP(t,y,l") P(s,z,dy)

for all (s,t,z,T') € (0,00)? X E x Bg.

(ii) Suppose that (t,z) € [0,00) X E — P(s,z, -) € M;(E) is a measurable
map satisfying (4.3.60), and show that there is at most one Markov family {Pz :
z € E} for which (4.3.59) can hold.
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(iii) Following Dynkin and Yushkevich,! show that if {Pz T € E} is a Markov

family and = € E —s P, € M, (P(E)) is continuous, then {P,: z € E} isa
strong Markov family.

Hint: Note that one need only prove (4.3.58) when

Y e P(E) — Flp,¥) €R

is continuous for each ¢ € P(E), and apply the approximation procedure used
in the proof of Theorem 4.3.3.

4.3.61 Exercise: The purpose of this exercise is to examine the assertion made
in the remark following the proof Theorem 4.3.19. Namely, we want to show
that the arcsine distribution (i.e., the Borel probability measure on [0,1] with
distribution function z € [0,1] — F(z) = Zaresiny/z € [0, 1]) is the one
and only Borel probability measure on [0,1] which is absolutely continuous with
respect to Lebesgue’s measure and invariant under z € [0,1] — 4z(1 —z) €
[0,1].

(i) Define ¢ € [0,1] +— ®(x) = (sin ”—2”9)2 € [0,1], and show that a Borel
probability measure x on [0, 1] is invariant under z ~ 4z(1—z) if and only if ®.p
is invariant under ¢ ~» 2z mod 1. Conclude that the desired characterization
of the arcsine distribution is equivalent to showing that Lebesgue’s measure
A1) on [0,1] is the one and only Borel probability measure on [0,1] which is
absolutely continuous with respect to Lebesgue’s measure and invariant under
z ~ 2z mod 1.

(ii) Suppose that p is a Borel probability measure on [0, 1] which is invariant
under z ~ 2z mod 1, and let F(z) = p([0,]) denote its distribution function.
Use induction on n > 1 to show that

2" -1

Fe)= 3 (F(m2™"+227") - F(m2™))

m=0
for z € [0,1]. Now suppose that p < Ajo,1)» let f be the corresponding Radon—
Nikodym derivative, and extend f to R by taking f = 0 off of [0,1]. Given
0 <z <z+y<1,conclude that

|F(z +y) - Flz) ~F(y)| < /R\f(t—{-:vT") — f(t)|dt —0

as n — oo. In other words, F(z + y) = F(z) + F(y) whenever 0 < z <
T +y < 1. Finally, after combining this with the facts that F(0) =0, F(1) =1,
and F is continuous, conclude that F(z) = z for z € [0,1]. In view of part
(i), this completes the proof that the arcsine distribution admits the asserted
characterization.

tSee E.B. Dynkin & A.A. Yushkevich’s “Strong Markov processes,” Theory of Prob. & Appl.
1 (1956). In fact, see everything to which Dynkin’s name is attached in that volume.
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(iii) To see that absolute continuity is absolutely essential in the precedlng con- :

siderations, consider any Borel probability measure M on {0, 1}Z which is sta-
tionary in the sense that the M-distribution of ;

we {0,115 5 (way .oy wnity---) € {0,1)%7

is again M. Show that the M-distribution u of

0
we {0,135 — 3 27w, €0,1]

n=1 &

is invariant under z ~» 2mod 1. In particular, this means that, for each
p € (0,1)\ {3}, the p, described in Exercise 1.4.33 is a non-atomic, Borel prob-
ability measure on [0, 1] which is invariant under = ~~ 2z mod 1 but singular to
Lebesgue’s measure. !



Chapter V:

Conditioning and Martingales

§5.1: Conditioning

Up to this point we have been dealing with random variables which are either
themselves mutually independent or are built out of other random variables
which are. For this reason, it has not been necessary for us to make explicit use
of the concept of conditioning, although, as we will see shortly, this concept has
been lurking silently in the background.

Let (2, F, P) be a probability space, and suppose that A € F is a set having
positive P-measure. For reasons which are most easily understand when 2 is
finite and P is uniform, the ratio

P(ANB)

BeF,

is called the conditional probability of B given A. As one learns in an
elementary course, the introduction of conditional probabilities makes many
calculations much simpler; in particular, conditional probabilities help to clarify
dependence relations between the events represented by A and B. For example,
B is independent of A precisely when P(B|4) = P(B) or, in words, when the
condition that A occurs does not change the probability that B occurs. Thus, it is
unfortunate that the naive definition of conditioning as described in (5.1.1) does
not cover many important situations. For example, suppose that X and Y are
random variables and that one wants to talk about the conditional probability
that Y < b given that X = a. Obviously, unless one is very lucky and P(X =
a) > 0, (5.1.1) is not going to do the job. Hence, it is of great importance to
generalize the concept of conditional probability to include situations when the
event on which one is conditioning has P-measure 0, and in this section we will
present Kolmogorov’s elegant solution to this problem.

In order to appreciate the idea behind Kolmogorov’s solution, imagine some-
one told you the conditional probability that the event B occurs given that the
event A occurs. Obviously, since you have no way of saying anything about the
probability of B when A does not occur, she has provided you with incomplete
information about B. Thus, before you are satisfied, you should demand to know
what is the conditional probability of B given that A does not occur. Of course,

259
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this second piece of information is relevant only if A is not certain, in which
case P(A) < 1 and therefore P(B|AC) is well defined. More generally, suppose
that P = {A1,...,An} (N here may be either finite or countably infinite) is a
partition of € into elements of F of positive P-measure. Then, in order to have .
complete information about the probability of B € F relative to P, one has to
know the entire list of the numbers P(B.An), 1 < n < N. Next, suppose that -
we attempt to describe this list in a way which does not depend explicitly on
the positivity of the numbers P(A,). For this purpose, consider the function !

N
weQ— fw) = P(B|An) 14, (w).

n=1

Obviously, f is not only F-measurable, it is measurable with respect to the
o-algebra o(P) over  generated by P. In particular (because the only o(P)-
measurable set of P-measure 0 is empty), f is uniquely determined by its P-
integrals EP[f, A] over sets A € o(P). Moreover, because, for each A € o(P)
and n, either A, C Aor AN A, =0, we have that

EP[f, A] = XN:P(BM,L)P(ADA,L) = Y P(A.NB)=P(ANB).
n=1 {n:A,CA}

Hence, the function f is uniquely determined by the property that
E”[f, A] = P(ANB) for every A€ o(P).

The beauty of this description is that it makes perfectly good sense even if -
some of the A,,’s have P-measure 0, only in that case the description would not °
determine f pointwise but merely up to a o(P)-measurable P-null set (i.e., a
set of P-measure 0), which is the very least one should expect to pay for dividing
by 0. '

With the preceding discussion in mind, one ought to find the following formu-
lation reasonable. Namely, given a sub-g-algebra ¥ C F and a (—oc, 0c]-valued
random variable X for which X~ (= —(X A 0)) is P-integrable , we will say that
the random variable X is a conditional expectation of X given ¥ if X5 is
(—00, 00]-valued and L-measurable, (Xz) is P-integrable, and

(5.1.2) E” [Xs, A] = E”[X, A] for every A € Z.

Obviously, having made this definition, our first order of business is to show that
such an Xy, always exists and to discover in what sense it is uniquely determined.
The latter problem is dealt with by the following lemma.
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5.1.3 Lemma. Let ¥ be a sub-c-algebra of F, and suppose that Xs and Yy
are a pair of (—00, oc]-valued ¥-measurable random variables for which X5, and
Yy are both P-integrable. Then

EF [Xs, A] <EF [V, A] forevery A€ X,

if and only if X5 < Yy, (a.s., P).

PRrOOF: Without loss in generality, we may and will assume that ¥ = F and
will therefore drop the subscript I; and, since the “if” implication is completely
trivial, we will only discuss the minimally less trivial “only if” assertion. Thus,
suppose that P-integrals of Y dominate those of X and yet that X > Y on
a set of positive P-measure. We could then choose an M € [1,00) so that
P(A)V P(B) > 0 where

AE{XgMandYgX—ﬁ} and B={X=o00candY < M}.
But if P(A) > 0, then
EP [X, A] <EP[Y, A] <EP[X, 4] - 3;P(4),

which, because EF [X , A] is a finite number, is impossible. At the same time, if
P(B) > 0, then

o =EP [X, B] <E”[Y, B] < M < oo,

which is also impossible. [1

5.1.4 Theorem. Let ¥ be a sub-c-algebra of F and X a (—0o0, 0o]-valued ran-
dom variable for which X~ is P-integrable. Then there exists a conditional
expectation value Xx, of X. Moreover, if Y is a second (—00, o0]-valued random
variable and Y > X (a.s., P), then Y~ is P-integrable and Y5 > X» (a.s., P)
for any Ys, which is a conditional expectation value of Y’ given X. In particular,
ifX =Y (as., P), then {Ys # Xs} is a E-measurable, P-null set.t

ProOF: In view of Lemma 5.1.3, it suffices for us to handle the initial existence
statement. To this end, let G denote the class of X satisfying EP [X _] < 00
for which an Xs exists, and let G* denote the nonnegative elements of G. If
{X,}3° C G+ is nondecreasing and, for each n € Z%, (Xn)2 denotes a condi-
tional expectation of X,, given X, then 0 < (Xn)2 < (Xnﬂ)2 (a.s., P), and
therefore we can arrange that 0 < (Xn)2 < (Xn+1)2 everywhere. In particular,

TKolmogorov himself, and most authors ever since, have obtained the existence of conditional
expectation values as a consequence of the Radon-Nikodym Theorem. Because 1 find projec-
tions more intuitively appealing, 1 prefer the approach given here.
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if X and X, are the pointwise limits of the X,,’s and (Xy)y’s, respectively, then -
the Monotone Convergence Theorem guarantees that Xy is a conditional expec- ¢
tation of X given ¥. Hence, we now know that G* is closed under nondecreasing, |
pointwise limits, and therefore we will know that GT contains all nonnegative
random variables X as soon as we show that ® contains all bounded X’s. But if
X is bounded (and is therefore an element of L?(P;R)) and Ly = L*(Q,%, P;R)
is the subspace of L?(P;R) consisting of its £-measurable elements, then the or-
thogonal projection X5, of X onto Ly is a £-measurable random variable which
is square P-integrable and satisfies (5.1.2).

So far we have proved that Gt contains all nonnegative, F-measurable X’s.
Furthermore, if X is nonnegative, then (by Lemma 5.1.3) X5 > 0 (a.s., P) and
so X is P-integrable precisely when X itself is. In particular, we can arrange
to make X take its values in [0, 00) when X is nonnegative and P-integrable. -
Finally, to see that X € G for every X with EP [X‘] < 00, simply consider X+
and X~ separately, apply the preceding to show that (X i)2 > 0 (a.s., P) and
that (X —)2 is P-integrable, and check that the random variable ¢

X5 = { (X+)g - (X_)2 when (X:t)2 >0 and (X_)2 < 0

0 otherwise

is a conditional expectation of X given ¥£. U

5.1.5 Convention. Because it is determined only up to a X-measurable P-null |
set, one cannot, in general, talk about the conditional expectation of X as a
function. Instead, the best that one can do is say that the conditional ex-
pectation of X is the equivalence class of ¥-measurable Xx’s which satisfy
(5.1.2), and we will adopt the notation E” [X |2] to denote this equivalence
class. On the other hand, because one is usually interested only in P-integrals
of conditional expectations, it has become common practice to ignore, for the
most part, the distinction between the equivalence class EP [X lZ] and the mem-
bers of that equivalence class. Thus (just as one would when dealing with the
Lebesgue spaces) we will abuse notation by using EP [X lE] to denote a generic
element of the equivalence class E” [X lE], and will be more precise only when
EP [X lZ] contains some particularly distinguished member. For example, recall
the random variables T,, entering the definition of the simple Poisson process
{N(t): t € (0,00)} (cf. (3.3.3)). Then, by (3.3.5), it is clear that we can take

EP [1{n}(N(t)) ‘U(Tl, . .,Tn)] = 1jgq (T,) e~ =),

and we would be foolish to take any other representative. More generally, we will
always take nonnegative representatives of E” [X |£] when X itself is nonnega-
tive and R-valued representatives when X is P-integrable. Finally, for historical :
reasons, it is usual to distinguish the case when X is the indicator function 15 of
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a set B € F and to call EF [15|X] the conditional probability of B given %
and to write P(B|X) instead of EF [13!2] . Of course, representatives of P(B|X)
will always be assumed to take their values in [0, 1].

Once one has established the existence and uniqueness of conditional expecta-
tions, there is a long list of more or less obvious properties which one can easily
verify. The following theorem contains some of the more important items which
might appear on such a list.

5.1.6 Theorem. Let ¥ be a sub-c-algebra of F. If X is a P-integrable random
variable and C C ¥ is a m-system (cf. Exercise 1.1.12) which generates X, then

Y =EP[X|Z] (as,P) <

5.1.7
(5-1.7) Y € LY(Q,%, P) and EP [Y, A] = E” [X, A] for A€ CU{Q}.

Moreover, if X is any (—o0, oo]-valued random variable which satisfies EP [X~]
< 00, then each of the following relations holds P-almost surely:

(5.1.8) |EP [(X|z]] < E” [IX||Z];

(5.1.9) EP [X|T) = EP [E7 [X|5] |T]
when T is a sub-o-algebra of ¥; and, when X is R-valued and P-integrable,
(5.1.10) EF [-X|%] = —-E7 [X|Z].

Next, let Y be a second (—oo, oc]-valued random variable with EP [Y‘] < 00.
Then, P-almost surely:

(5.1.11) EP [oX + BY 5] = oE” [X|Z] + BET [Y|Z]
for each «, 3 € [0,00), and
(5.1.12) EP [V X|2] = Y EF [X|3]

if Y is $-measurable and (XY)~ is P-integrable.

Finally, suppose that {Xn}(:o is a sequence of (—00, oc]-valued random variables.
Then, P-almost surely:

(5.1.13) EF [X,|Z] /EP [X|%]

if EP [Xf] < oo and Xn, 7 X (a.s., P); and, more generally,

(5.1.14) EP [ lim X,

n—o0

z} < lim EF [X,|%]

n—oo

if X,, > 0 (a.s., P) for each n € Z*.
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PRrOOF: To prove (5.1.7), note that the set of A € ¥ for which EP[X, 4] =

EP[Y, 4] is (cf. Exercise 1.1.12) a A-system which contains C and therefore

¥. Next, clearly (5.1.8) is just an application of Lemma 5.1.3, while (5.1.9) :
through (5.1.11) are all expressions of uniqueness. (5.1.12) is also an expression
of uniqueness when Y is the indicator function of a element of %, follows for gen- °
eral nonnegative X’s and Y’s by taking monotone limits of the case when Y is |

simple, and is completed by considering (XY)* and (XY)~ separately. Finally, -

(5.1.13) is an immediate application of the Monotone Convergence Theorem; |

whereas (5.1.14) comes from the conjunction of

P [inf Xn
n>m

2] < inf EP[X.|Z] (as.,P), meZt,

with (5.1.13). O

It probably will have occurred to most readers that the properties expressed
by (5.1.8), (5.1.10), (5.1.11), and (5.1.13) give strong evidence that, for fixed !

weQ X — EP [X]E] (w) behaves like an integral (in the sense of Daniell)

and therefore ought to be expressible in terms of integration with respect to .

a probability measure P,. Indeed, if one could actually talk about X +—— .

EP [X IZ] (w) for a fixed (as opposed to P-almost every) w € €, then there

is no doubt that such a P, would have to exist. Thus, it is reasonable to ask

whether there are circumstances in which one can gain sufficient control over all
the P-null sets involved to really make sense out of X — EF [X IZ] ) for fixed

w € €. One answer to this question is contained in the following theorem.

5.1.15 Theorem. Suppose that €} is a Polish space and that F = Bg. Then,
for every sub-o-algebra ¥ of F, there is a P-almost surely unique ¥.-measurable

map w € Q —> P2 € M,(Q) with the property that
(5.1.16) P(ANB) = / PX(B)P(dw) forall Ac Y and B€ F.
A

In particular, for each (—oc, oo]-valued random variable X which is bounded
below,

w € Q— EPY [X]

is a conditional expectation value of X given X. Finally, if ¥ is countably
generated, then there is a P-null set N' € ¥ with the property that

(5.1.17) PZ(A)=14(w) foralwg¢ N and A€ .

PROOF: To prove the uniqueness, suppose w € Q — QZ ¢ M;(Q) were a
second such mapping. We would then know that, for each B € F, QZ(B) = |
PZ(B) for P-almost every w € ). Hence, since F (as the Borel field over a
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second countable topological space) is countably generated, we could find one
s-measurable P-null set off of which Q% = PZX. Similarly, to prove the final
assertion when X is countably generated, note (cf. (5.1.12)) that, for each A €
s, P2(A) = 1a(w) = §,(A) for P-almost every w € €. Hence, once again
countability allows us to choose one X-measurable P-null set N such that P> |
v =0, Zifwé¢N.

We next turn to the question of existence. For this purpose, first choose (cf. (ii)
of Lemma 3.1.4) p to be a totally bounded metric for €2, and let U = UL (S5 R) be
the space of bounded, p-uniformly continuous, R-valued functions on 2. Then
(cf. (iii) of Lemma 3.1.4) U is a separable Banach space with respect to the
uniform norm. In particular, we can choose a sequence {fn}§° € U so that
fo = 1, the functions fo, ..., fn are linearly independent for each n € Z*, and
the linear span S of {f, : n € N} is dense in U. Set go = 1, and, for each
n € ZT, let g, be some fixed representative of EP [ fnlE]. Next, set

%z{aeRN:ElmeNan=Oforalln2m}

and define
fa =) anfn and ga =) Qngn
n=0 n=0

for o € R. Because of the linear independence of the f,,’s, we know that fo = fg
if and only if & = B. Hence, for each w € €2, we can define the (not necessarily
continuous) linear functional A, : S — R so that

Aw(fa) = ga(w), ac R

Clearly, A,(1) = 1 for all w € . On the other hand, we cannot say that
A, is always nonnegative as a linear functional on S. In fact, the best we can
do is extract a Y-measurable P-null set A so that A, is a nonnegative linear
functional on S whenever w ¢ A. To this end, let Q denote the rational reals
and set

Q+:{a€%ﬂQN: f,,ZO}.
Since go > 0 (a.s., P) for every a € Q7 and Q7 is countable,
NE{wGQ: Ja €0t ga(w)<0}

is a ¥-measurable, P-null set. In addition, it is obvious that, for every w ¢ N,
Au(f) > 0 whenever f is a nonnegative element of S. In particular, for w ¢ N,

Hf”uj:Aw(f):Aw(“fnulif)207 fGS,
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and therefore A, admits a unique extension as a nonnegative, linear functional .
on U which takes 1 to 1. Furthermore, it is an easy matter to check that, for |

every f € U, the function

Au(f) for w¢N
g(w):{IEP[f] for weN

is a conditional expectation value of f given X.

At this point, all that remains is to show that, for P-almost every w ¢ N,
A, is given by integration with respect to a P,, € M;(f2). In particular, by the
Riesz Representation Theorem, there is nothing more to do in the case when €2 is

compact. To treat the case when € is not compact, we want to use Lemma 3.1.7.
For this purpose, first choose (cf. the last part of Lemma 3.1.7) a nondecreasing -

sequence of sets K,, CC Q, n € Z*, with the property that P(Knc) < QL,I Next,
define
mp(w, Kp,)

=——"" AR
T+ mp(w, Kn) orm,n ¢

Nmn(w)

Clearly, nm,n € U for each pair (m,n) and 0 < 9y, n 1 ¢ as m — oo for each !

n € Z*. Thus, by the Monotone Convergence Theorem, for each n € Z*,

/ sup Ay (m,n) P(dw) = lim Aw (m,n) P(dw)
NC mez+ m—=oo JAC

= lim EF [nm,n]

m—o0

< ons

S on

and so, by the Borel-Cantelli Lemma, we can find a Y-measurable P-null set
N’ D N such that

M(w) = sup n ( sup A, (nm,n)) < oo for every w ¢ N'.

nezZ+ mezZ+

Hence, if w ¢ A, then, for every f € Y and n € Z*,
[Au()] < A (1= 1) £)| + A (T £)]
M
<)@= 1) £+ L g,

n

for all m € Z*. But [[(1=7m,n) fllu — [|fllu,x, as m — oo, and so we now see

that the condition in (3.1.8) is satisfied by A, for every w ¢ A”. In other words,

we have shown that, for each w ¢ A, there is a unique PX¥ € M,;(f) such that

Au(f) = EPS [f] for all f € Y. Finally, if we complete the definition of the map

w € Q — P¥ by taking P¥ = P for w € N”, then this map is ¥-measurable
and

E” [f, A] :/IEPf [f] P(dw), A€X,
Q

first for all f € U and thence for all bounded F-measurable f’s. O

S



§5.1: Conditioning 267

Given a measurable space (Q, F) and a sub-g-algebra ¥, a Y-measurable
transition probability is a map (w,B) € Q@ x F — P(w,B) € [0,1] with
the properties that B € F —— P(w,B) € [0,1] is a probability measure
for each w € Q and w € Q > P(w,B) € [0,1] is E-measurable for each
B € F. In particular, if P is a probability measure on (2, F), then a condi-
tional probability distribution of P given X is a X-measurable transition
(w, B) — PZ(B) probability for which (5.1.16) holds. If, in addition, (5.1.17)
holds, then the conditional probability distribution is said to be regular. Notice
that, although they may not always exist, conditional probability distributions
are always unique up to a X-measurable P-null set so long as F is countably
generated. Moreover, Theorem 5.1.15 says that they will always exist if {2 is Pol-
ish and F = Bq. Finally, whenever a conditional probability distribution of P
given X exists, the argument leading to (5.1.17) when X is countably generated
is completely general and shows that a regular version can be found.

For various applications, it is convenient to have two extensions of the basic
theory developed above. In particular, as we will now show, the theory is not
restricted to probability (or even finite) measures and can be applied to random
variables which take their values in a separable Banach space. Thus, from now
on, 1 will be an arbitrary (nonnegative) measure on (€, F) and (E, |l - lg) will
be a separable Banach space; and we begin by reviewing a few elementary facts
about p-integration for E-valued random variables.

A function X : § — E is said to be u-simple if X is F-measurable, u(X #
0) < 00, and X takes on only a finite number of distinct values, in which case
its integral with respect to u is the element of E given by:

B+ [X] = / X(w) pldw) = Z xp(X =x).
@ x€E\{0}
Notice that another description of E# [X] is as the unique element of E with the
property that

(5.1.18) <]E“ [X],)\> — ¢ [(X, A)] for all A € E*

(we use E* to denote the dual of E and (x, )\> to denote the action of A € E* on
x € E), and therefore the mapping taking p-simple X to [E#X] is linear. Next,
because E is separable and therefore there exists a sequence {A,}7° from the
unit ball in E* with the property that
(5.1.19) sup (x,An) = [|x||p forall xe€FE,

neZ+

we know that w € Q — || X(w)||z € R is F-measurable if X : @ — E is
F-measurable. In particular, for F-measurable X :  — E, we can set

palb.fAs if pe(l,o00)
HXHLp(u;E)={ [|| ”E] [
inf {M : u(||X||E>M):O} if p=oc
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and will write X € LP(y; E) when || X||r(u5) < 00. Also, we will say the :
X : @ — E is p-integrable if X € L'(u; E); and we will say that X is
p-locally integrable if 1,4 X is u-integrable for every A € F with p(A) < oo. :

The definition of p-integration for E-valued X is completed in the following !
lemma.

5.1.20 Lemma. For each p-integrable X : @ — E there is a unique ele-

ment E*[X] € E for which (5.1.18) holds. In particular, the mapping X €
LY(u; E) — B#[X] € E is linear and satisfies :

(5.1.21) B (X]|| , < B [||X||E].

Finally, if X € L?(u; E) where p € [1,00), then there exists a sequence {X,}$°
of E-valued, p-simple functions with the property that || X, — X||r(u,m) — 0.

ProoF: Clearly uniqueness, linearity, and (5.1.21) all follow immediately from
the characterization of E#[X] given in (5.1.18). Thus, all that remains is to
prove existence and the final approximation assertion. In fact, once the ap- |
proximation assertion is proved, then existence will follow immediately from the !
observation that, by (5.1.21), E#[X] can be taken equal to limp_,cc E#[X,] if |
HX'_X'RHLI(;L;E) — 0.
To prove the approximation assertion, we begin with the case when p is finite :
and
M = sup || X(w)|lg < 0.
weN

Next, choose a dense sequence {x¢}{° in E, set Ag, = 0, and, for £ € Zt,
Apn = {w: IX(w) — xellp < %} for n € Z*.

Then, for each n € Z* there exists an L,, € Z* with the property that
o 1
p (Q\ U Ag,n) <—
=1
Hence, if X,, : @ — E is defined so that

-1
Xn(w) =%, when1</<Lpandwe Ag,\ ] Arn
k=0

and X, (w) = 0 when w ¢ UIL" Ag p, then X, is p-simple and

M
IX = XallLr(usp) < M+ E)
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In order to handle the general case, let X € LP(u; E) and n € Z* be given.
We can then find an r,, € (0, 1] with the property that

@) < [ IX@IE R <

Q(rn)C

where
Qr) = {w s r < I X(w)lle £ %} for r € (0,1].

Since, for any r € (0, 1], rPu(Q(r)) < ||X||’£,,(“,E), we can apply the preceding to
the restrictions of y and X to Q(r,,), we can find a p-simple X;, : Q(rp) — E
with the property

(/ IIX(w)—Xn(w)II’i;u(dw)> 5%.
Q(rn)

Hence, after extending X, to Q by taking it to be 0 off of Q(r,), we arrive at a
p-simple Xy, for which ||X — X, ||fe(um) < - O

Given an F-measurable X : @ — E and a B € F for which 15 X € L!(y; E),
we will use the notation

E*[X, B] or /BXdu or /BX(w)u(dw)

all to denote the quantity E* [1 B X]. Also, when discussing the spaces L?(u; E),
we will adopt the usual convention of blurring the distinction between a par-
ticular F-measurable X : @ — E belonging to LP(u; E) and the equivalence
class of those F-measurable Y’s which differ from X on a p-null set. Thus, with
this convention, || - ||z»(4;5) becomes a bona fide norm (not just a seminorm) on
L?(u; E) with respect to which LP(u; E') becomes a Banach space.

5.1.22 Theorem. Let (2, F,u) be a o-finite measure space and X : Q— F
a p-locally integrable function. Then

(5.1.23) p(X #£0) =0 <= E*[X, A] =0 for A € F with p(4) < 0.
Next, assume that ¥ is a sub-o-algebra for which p | ¥ is o-finite. Then for
each y-locally integrable X : Q —> E there is a pu-almost everywhere unique

b-locally integrable, ¥-measurable Xy :  — E such that

(5.1.24) B [Xs, A] = E*[X, A] for every A € T with p(A) < oo.
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In particular, if Y : Q — F is a second p-locally integrable function, then, for
all a, B € R,

(oX + ﬁY)2 =aoXs+8Ys (ae., p).
Finally,

(5.1.25) HXEHE <(IXllg)g (a-e., p).

Hence, not only does (5.1.24) continue to hold for any A € ¥ with 1,X €
LY(p; E); but also, for each p € [1,00], the mapping X € LP(y; E) — X5 € ¢
LP(u; E) is a linear contraction.

ProoF: Clearly, it is only necessary to prove the “«=" part of (5.1.23). Thus, ;
suppose that u(X # 0) > 0. Then (cf. (5.1.19)) there exists an ¢ > 0 and a
A € E* with the property that p((X,\) > €¢) > 0; from which it follows (by °
o-finiteness) that there is an A € F for which p(A4) < oo and

(Br[X, 4], 0) = B [(X, ), 4] #0.

We turn next to the uniqueness and other properties of Xg. But it is obvi-
ous that uniqueness is an immediate consequence of (5.1.23) and that linearity
follows from uniqueness. As for (5.1.25), notice that if A € E* and ||A||g~ < 1, ¢
then

B [(Xs,0), 4] = B4 [(X, ), 4] <B[IX]ls, 4] =B [(IXll£)s, 4]

for every A € ¥ with u(A) < oo. Hence, at least when p is a probability measure,
Theorem 5.1.4 implies that

(Xe W) < (IX[5)y (2 )

for each element ) from the unit ball in E*; and so, because E is separable,
(5.1.25) follows in this case from (5.1.19). To handle x’s which are not probability
measures, note that either u(Q) = 0, in which case everything is trivial, or
1(Q) € (0,00), in which case we can renormalize p to make it a probability
measure, or 4(Q) = oo, in which case we can use the o-finiteness of p | X to
reduce ourselves to the countable, disjoint union of the preceding cases.

Finally, to prove the existence of Xy, we proceed as in the last part of the
preceding paragraph to reduce ourselves to the case when p is a probability
measure P. Next, suppose that X is P-simple, let R denote its range, and note
that

Xz =Y xP(X=x|%)

x€ER
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has the required properties. In order to handle general X € L!(P; E), we use the
approximation result in Lemma 5.1.20 to find a sequence {X,}{° of P-simple
functions which tend to X in L!(P; E). Then, since

(Xn)Z - (Xm)y_; = (Xn - Xm)Z (a.s.,P)

and therefore, by (5.1.25),
|(Xn)s — (Xm)Z“Ll(P;E) < Xn — Xm“Ll(P;E)’

we know that there exists a ¥-measurable Xy, € L'(P; E) to which the sequence
{(Xn)y_]}fo converges; and clearly Xy has the required properties. [J

Referring to the setting in the second part of Theorem 5.1.22, we will extend
the convention introduced in Convention 5.1.5 and call the p-equivalence class
of Xx’s satisfying (5.1.24) the p-conditional expectation of X given %,
will use E#[X|%] to denote this p-equivalence class, and will, in general, ignore
the distinction between the equivalence class and a generic representative of that
class. In addition, if X : @ — E is p-locally integrable, then, just as in Theorem
5.1.6, the following are essentially immediate consequences of uniqueness:

(5.1.26) B YX|S] = YE*[X[Z] (ae,p) forY € L®(Q, %, 5 R),
and
(5.1.27) B [X[7) = B[R [X[5)|T] (e )

whenever T is a sub-o-algebra of ¥ for which u [ T is o-finite.

Exercises

5.1.28 Exercise: As the proof of existence in Theorem 5.1.6 makes clear, the
operation X € L?(P;R) — EP [X .2] is just the operation of orthogonal pro-
jection from L?(P;R) onto the space L2(9), %, P;R) of T-measurable elements
of L?(P;R). For this reason, one might be inclined to think that the concept of
conditional expectation is basically a Hilbert space notion. However, as we will
show in this exercise, that inclination is not entirely well-founded. The point
is that, although conditional expectation is definitely an orthogonal projection,
not every orthogonal projection is a conditional expectation!

(1) Let L be a closed linear subspace of L?(P;R) and let SL=0o(X:X¢€ L)

be the g-algebra over 2 generated by X € L. Show that L = L*(Q, %L, P;R) if
and only if 1 € L and X+ € L whenever X € L.
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Hint: To prove the “if” assertion, let X € L be given, and show that

X, = [n(X—al)Jr/\l] €L forevery a € Rand neZ.

Conclude that X, / 1(4,00) © X must be an element of L.

(i) Let II be an orthogonal projection operator on L?(P;R), set L = Range(II),
and let ¥ = X, where Iy, is defined as in part (i). Show that IIX = EP [X‘E] -
(a.s., P) for all X € L*(P;R) if and only if II1 =1 and

o b

(5.1.29) M(XTY) = (IX)(MY) forall X,Y € L>(P;R).

Hint: Assume that I11 = 1 and that (5.1.29) holds. Given X € L*(P;R), use
induction to show that

ITLX | 2n(py < I1X | 3mipy I X llp2py and  (I1X)" = I(X(TTX)")

for all n € Z*. Conclude that |[TIX|z=(py < || X|lz=(p) and that (IIX)" € ©
L, n € Z*, for every X € L*®(P;R). Next, using the preceding together with :
Weierstrass’s Approximation Theorem, show that (ILX)* € L, first for X € i
L®(P;R) and then for all X € L?*(P;R). Finally, apply (i) to arrive at L = T
L*(Q, %, P;R).

(iii) Just in case the situation is not completely clarified by part (ii), consider !
once again a closed linear subspace L of L?(P;R) and let Ily, be the orthogonal *
projection mapping onto L. Given X € L?(P;R), recall that I, X is charac-
terized as the unique element of L for which X — I X L L, and show that
EF [X lEL] is the unique element of L2(£2, Xy, P;R) with the property that

X -EP[X|2] L (%1, Ya)

for all n € Z*, f € Cv(R™%;R), and Y3,...,Y, € L. In particular, ILX = |
EF [X \EL] if and only if X —IIg, X is perpendicular not only to all linear functions *
of the Y’s in L but even to all nonlinear ones.

(iv) There is an important, nontrivial situation in which conditioning and pro- P
jecting turn out to be the same thing. Namely, let & C L?(P;R) be a centered -
Gaussian family (cf. Exercise 4.2.39), and show that for any closed linear sub-
space L of ® and any X € &, II X = EP [XIEL]. :

(v) Because most projections are not conditional expectations, it is an unfor-
tunate fact of life that, for the most part, partial sums of Fourier series cannot
be interpreted as conditional expectations. Be that as it may, there are special
cases in which such an interpretation is possible. To see this, take O = [0,1),
F = By,1), and P to be the restriction of Lebesgue’s measure to [0,1). Next, for
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n € N, take F, to be the g-algebra generated by those f € C([0,1); C) which are
periodic with period 27™. Finally, set ex(z) = exp[v—1k2rz] for k € Z, and
use elementary Fourier analysis to show that, for each n € N, {exon : k € Z} is

an orthonormal basis for L#(, Fp,, P;C). In particular, conclude that, for every
f € L*(P;C):

EP [f . ‘7:"] = EP [f] + Z(f’ek2n)L2([O,l);C)ek2"’
kEZL

where the convergence is in L?([0,1};C). (See part (iv) of Exercise 5.2.40 and
Exercise 6.3.29 for a continuation of this exercise.)

5.1.30 Exercise: In this exercise we will show how to formulate the (strong)
Markov property (cf. Exercise 4.3.57) in the language of conditional expectations.
For this purpose, suppose that E is a Polish space and that ¢ € E — P; €
M, (B(E)) is a measurable map for which P, (¢(0) =z) =1,z € E.

(i) If (t,x) € [0,00) X E — P(t,z,-) € M(E) is defined as in part (i) of
Exercise 4.3.57, show that {P‘T cx el } is a Markov family if and only if, for
every (s,z) € [0,00) x E, t € (0,00), and f € B(E;R),

o eB(B)— [ 1) P(to(s)d) € R
is a representative of the P, -conditional expectation of
Y € P(E)—> fl(s+ t)) € R given Bs.

More generally, recall the time-shift transformation X, and, under the assump-
tion that {Pr : = € E} is a Markov family, show that, for every (s,z) €
[0,00) x E and F € B(B(E);R),

¢ € P(E) — EP@ [F] e R
is a representative of the conditional expectation EP= [F o ZSIBS].
(ii) Given F € B(&B(E);R) and a {B;: t€ [0, 00) }-stopping time 7, define

F(Zryy) if 7(y) <oo
0 otherwise,

» € P(E) — Fo X (v) = {
and show that {P;: ¢ € F } is a strong Markov family if and only if, for every
reE Fe€ B(P(E);R), and {Bt : t € [0, 00)}-stopping time 7,

EPe [F] if 7(p) <0
0 otherwise

<P€‘I3(E)*——>{
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is a representative of the conditional expectation E'= [F o %, |B.]. ;

Notice that the preceding provides an extremely intuitive formulation of the :
Markov property. Indeed, it says that {P, : = € E} is a (strong) Markov family
if, given the history of the past up to any (stopping) time T, the distribution of ;
paths in the future of that time depends only on the position ¥(7) of the path at :
time 7 and will be the same as the distribution of paths which issue from 1/1(7-)
nztially.

5.1.31 Exercise: The abstract statement that conditional probability distri- \
butions may exist is less interesting than the fact that there are nontrivial cir-
cumstances in which they can be computed. In this and the next exercises we
will develop two important examples based on the results which we obtained in -
Sections 4.2 and 4.3. t

Let P € M, (C’([O, 1];]RN)) denote the distribution of ¥ € P(RY) l—)l
[ [0,1] under Wiener’s measure W) and let ¥ be the o-algebra over
C([0,1;RY) generated by v € C(]0, 1];]RN) — (1) € RY. Referring to
Theorem 4.2.18, define PyE eM; (C’([O, 1; ]RN)) for y € RY to be the distribu-
tion of :
¥ € C([0,00); RY) — (12)1 +b1y) 110,1]

under W V) and interpret (4.2.20) (with T' = 1) as the statement that
@ € C([0,00);RY) — PZ )

is a regular conditional probability distribution of P given ¥. In other words,
P} is the conditional distribution of ¢ € P(RY) — 2 | [0,1] under W(N)
given that (1) = y. In particular, P§ is the distribution of Wiener loops.

5.1.32 Exercise: Our second example comes from rephrasing the contents of :
Exercises 4.3.57 and 5.1.30 as a statement about regular conditional probabil- : 5:‘
ities. However, before we can do so, we will need to introduce a constructlon s
which enables us to splice measures together. To begin, define

o(t) if te]0,s)
(5.1.33) p@P(t) = ¢ ¢(s) if t>sand y(0) # p(s)
P(t—s) if t>sand ¥(0) = ¢(s)

for s € [0,00], t € [0,00), and (¢,%) € P(E)*, and check that (s,¢,) €
[0, 00] X P(E)? — ¢ ®1,b € P(E) is measurable.
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(i) Given a {B: : t € [0, 00) }-stopping time 7, show that

(@,9) €EPE) — ¢ QY = @T%)i/) € B(E)

is By X Bp(p)-measurable. Next, let z € E+— Pr € M, (PB(E)) be a measurable
map satisfying P, (¢(0) = z) =1, z € E, and, for ¢ € P(E), define §, ® P. €

Ml("p(E)) by

(5.1.34) 5, ® P.(A) = Pyiry ({¥: w8 ¥ € 4})

T

for A € By(g). Show that ¢ € P(E) — d,@P. € M (‘,B(E)) is B -measurable,
and check that, for P € M, (B(E)), the spliced measure

(5.1.35) P®P. = / 5, ® P. P(dy)
P(E)

is the unique Q € M, (B(E)) with the properties that Q | B- = P [ Br and

¢ € P(E) — 6, @ P.

is a regular conditional probability distribution of Q given B;.
(ii) Referring to part (i), show that the measure P ® P. is the unique @ €

M, (‘B(E)) with the property that, for every bounded, B x By p)-measurable
F:B(E)? — R,

/ / | F(S¥) Q@)
{y:7(¥) <00} BE

= / (/ F((p, 1/)) Pcp(‘r)(dl/})> P(d(p)
P(E)

{p:7(p)<oo}
(iii) As a consequence of (i) and (ii), show that {P; : = € E} is a Markov
family if and only if, for every (s,z) € [0,00) X E, P, = Px ® P. and that it
is a strong Markov family if and only if P, = P» ® P. for every z € E and
{B::te [0, 00) }-stopping time 7.

5.1.36 Exercise: Let (Q,F, 1) be a measure space and ¥ a sub-o-algebra of
F with the property that p | X is o-finite. Next, let E be a separable Hilbert
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%
%

space, p € [1,00], X € LP(y; E), and Y a I-measurable element of LP (1 E) (p'
is the Holder conjugate of p). Show that {

B [(Y,X) E‘z] - (Y,E“ [X|E])E ji-almost surely.
Hint: First observe that it suffices to check that
(Y, X) | =B [ (Y. B [X[5]) .

Next, choose an orthonormal basis {e, }{° for E and justify the steps in

B (Y, X),] = ZE“[Y en)p(ens X)g)
_ ilo:E“[(Y,en)EE“[(en,X)E‘EH =B [(v. B [x]]) |-

§5.2: Discrete Parameter Martingales ¢
In this section we will introduce an interesting and useful class of stochastic .
processes which unifies and simplifies several branches of probability theory as
well as other branches of analysis. From the analytic point of view, what we will

be doing is developing an abstract version of differentiation theory (cf. Corollary ;
5.2.7 and Theorem 5.2.26).

Although we will want to make some extensions later (cf. Section 5.3), we start
with the following setting. (2, F, P) is a probability space and {.7-' in € N}
is a nondecreasing sequence of sub-g-algebra’s of F. Given a measurable space |
(E,B), we say that the family {X nE N} of E-valued random variables is
{.7-' T n € N}-progresswely measurable if X, is F,-measurable for each
n € N. Next, a family {X,, : n € N} of (—o00,00]-valued random variables 5
is said to be a P-submartingale with respect to {fn 1 n € N} if it is
{fn in € N} -progressively measurable and é

(5.2.1) EF[X;] <oo and X, <EP[Xpu|F.] (as.,P)

for each n € N; and it is said to be a P-martingale with respect to {.7-'” :

n e N} if {X 1 n € N} is an {fn :n € N} progressively measurable family of
R-valued, P-integrable random variables satisfying |

(5.2.2) Xn = EP [Xni1|Fn] (as., P)

for each n € N. In the future, we will abbreviate these statements by saylng
that the triple (X,,F,, P) is a submartingale or martingale.

e Ao A et £
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5.2.3 Examples. The most trivial example of a submartingale is provided by a
nondecreasing sequence {a,,}$°. That is, if Xn = an, n € Z*, then (Xn, Fn, P)
ijs a submartingale on any probability space (Q,}" , P) relative to any nonde-
creasing {F, : n € N}. More interesting examples are those given below.f

(i) Let {Y5.}7° be a sequence of mutually independent (—o0, co]-valued random

variables with EP [¥;7] < o0, n € N, set Fo = {0,92}, Fr = o(Y1,...,Y,) for
n € ZT, and define

Xn=ZYm(EOifn:0) for n € N.
m=1

Then, because E” [Yn+1|}"n] =EF [Yn+1] (a.s., P) and therefore
EP [Xpi1|Fn] = Xn + EF [Yora] (as., P)

for every n € N, we see that (Xn,]-"n,P) is a submartingale if and only if
EP [Yn] > 0 for all n € Z*. In fact, if the Yy,’s are R-valued and P-integrable,
then the same line of reasoning shows that (Xn,]-"n,P) is a martingale if and
only if EP [Y,] = 0 for all n € Z*. Finally, if {¥o}7° € L?(P) and EF[Y,] =0
for each n € Z*, then

EP[X2,, | Fo] = X2+ EP [V, | F] 2 X0 (as., P),
and so (X2, Fy, P) is a submartingale.

(ii) If X is an R-valued, P-integrable random variable and {F, : n € N} is any
nondecreasing sequence of sub-c-algebras of F, then, by (5.1.9),

(IEP [X|Fn]s Fos P)

is a martingale.

(iii) If (X,,Fn,P) is a martingale, then, by (5.1.8), (|Xu|,Fn,P) is a sub-
martingale.

In view of (i) in the Examples 5.2.3, we see that partial sums of independent
random variables with mean-value 0 are a source of martingales and that their
squares are a source of submartingales. Hence, it is reasonable to ask whether
some of the important facts about such partial sums will continue to be true
for all martingales; and perhaps the single most important indication that the
answer may be “yes” is contained in the following generalization of Kolmogorov’s
Inequality (cf. Theorem 1.4.5).

t For a much more interesting and complete list of examples, the reader might want to consult
J. Nevews Discrete-parameter Martingales, publ. in 1975 by North-Holland.
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5.2.4 Theorem (Doob’s Inequality). Assume that (X,, Fy, P) is a submar- i
tingale. Then, for every N € Z+ and a € (0,00):

(5.2.5) P( max X, > a) < l]EP [XN, max X, > «af .
0<n<N « 0<n<N

In particular, if the X, ’s are nonnegative, then, for each p € (1,00),

=

(5.2.6) EF [sup Xg] "< P _supEP[X7)7.
neN P—1nen

g e

PRroOOF: To prove (5.2.5), set Ag = {XO > a} and

A, = {Xn > abut max X, < a} for neZ".
0<m<n

Then the A,’s are mutually disjoint and A, € F,, for each n € N. Thus,

N N )
P(max Xn2a)=ZP(An)<ZE [XnaAn] :

OsnshN n=0 n=0 @ ”
N OEP[Xy, An] 1 _p
Szi——-—ﬁﬂ Xy, max X, > af.

o o 0<n<N

n=0 3

Now assume that the X,,’s are nonnegative. Given (5.2.5), (5.2.6) becomes an
easy application of Exercise 1.4.20. [

Doob’s inequality is an example of what analysts call a weak-type inequal-
ity. To be more precise, it is a weak-type 1-1 inequality. The terminology :
derives from the fact that such an inequality follows immediately from an L!- :
norm, or strong-type 1-1, inequality between the objects under consideration;
but, in general, it is strictly weaker. (See Theorem 6.1.20 for more about the re- |
lationship between weak and strong type inequalities.) In order to demonstrate °
how powerful such a result can be, we will now present the following preliminary .
convergence result for martingales; and, because it is an argument to which we
will return several times, the reader would do well to become comfortable with
the line of reasoning which allows one to pass from a weak-type inequality, like
Doob’s, to almost sure convergence results. :

5.2.7 Corollary. Let X be an R-valued random variable and p € [1,00). If
X € LP(P;R), then for any nondecreasing sequence {F, : n € N} of sub-o- -
algebras of F:
an] (a.s., P) and in LP(P;R)

(5.2.8) EP [X|F.] — EF [X
0

as n — oo. In particular, if X is \/g Fn-measurable, then EF [X|F,] — X :
(a.s., P) and in LP(P;R). ‘
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PROOF: Without loss in generality, we will assume that F = /" Fy.
Given X € L'(P;R), set X, = EP[X|F,] for n € N. The key to our proof
will be the inequality

(529 P (sup|Xn| > a) < 1gp [1Xi,supan| > a] L e (0,00)
neN «x neN
and, since, by (5.1.8), |X,| < EF[|X]| \}"n] (a.s., P), while proving (5.2.9) we

may and will assume that X and all the X,’s are nonnegative. But then, by
(5.2.5),

A

1
~EF [XN, sup X, > a]
(8]

P ( sup X, > a)
0<n<N 0<n<N

= 1lgr [X, sup X, > a]
« 0<n<N
for all N € Zt; and therefore (5.2.9) follows when N — oo.
As our first application of (5.2.9), we note that {X,}§° is uniformly P-
integrable. Indeed, because |X,| < EF [|X] | Fn], we have from (5.2.9) that

sup EX [|Xn|, |Xn| > o] < supE” [|X|, |Xa] > o
neN neN

<E” [|X|, sup | Xy | > a] —0
neN

as a — oo. Thus, we will know that the convergence in (5.2.8) takes place in
L}(P;R) as soon as we show that it happens P-almost surely. In addition, if
X € LP(P;R) for some p € (1,00), then, by (5.2.6) and Exercise 1.4.20, we see
that {|X,P: n € N} is uniformly P-integrable and, therefore, that X, — X
in LP() as soon as it does (a.s., P). In other words, everything comes down to
checking the P-almost sure convergence.

To prove the P-almost sure convergence, let G be the set of X € L!(P;R) for
which X,, — X (a.s., P). Clearly, X € Gif X € L'(P;R) is F,-measurable for
some n € N; and, therefore, G is dense in L'(P;R). Thus, all that remains is
to prove that G is closed in L'(P;R). But if {X(k)}fo CGand X%*) — X in
L'(P;R), then, by (5.2.9),

P ( sup | X, — X| > 3a>
n>N
>

<P ( sup | X, — XV|

a) + P ( sup lX,(Lk) ~X®| > a)
n>N
>

n>N

2
'<_ EIIX - X(k)llLl(P) +P <:}211%‘X7(Lk) — X(k)l Z a)

+P(|X<k> ~ X|
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for every N € Z*, a € (0,00), and k € Z". Hence, by first letting N — oo anq '

then k& — oo, we see that

lim P ( sup an - Xl > 3a) =0 for every a € (0,00);

N—>o0 n>N
and this proves that X € G. [0

Before moving on to more sophisticated convergence results, we will spend a3 = '

little time showing that Corollary 5.2.7 is already interesting. In order to in- -
troduce our main application, recall our preliminary discussion of conditioning :

when we were attempting to explain Kolmogorov’s idea at the beginning of Sec-
tion 5.1. As we said there, the most easily understood situation occurs when one

conditions with respect to a sub-g-algebra ¥ which is generated by a countable

partition P. Indeed, in that case one can easily verify that

EP [X, A]
(5.2.10) E°[X|2] =) P 4
AEP
where it is understood that
EP [X, A] _

Unfortunately, even when F is countably generated, ¥ need not be (cf. Exercise ;
1.1.8). Furthermore, just because ¥ is countably generated, it will be seldom true

that its generators can be chosen to form a countable partition. (For example,

as soon as ¥ contains an uncountable number of atoms, such a partition cannot ;
exist.) Nonetheless, if ¥ is any countably generated o-algebra, then we can find :

a sequence {Pn}go of finite partitions with the properties that

(5.2.11) Y=¢ (DP"> and o(Pn_1) Co(Pn), neZt.

e

In fact, simply choose a countable generating sequence {A,}$° for ¥ and take
Pr. to be the collection of distinct sets of the form By N ---N B,,, where B,, €

{Am,AmE} for each 0 < m < n.
5.2.12 Theorem. Let ¥ be a countably generated sub-c-algebra of F and

choose {Pn}go to be a sequence of finite partitions satisfying (5.2.11). Next,
given p € [1,00) and a random variable X € LP(P;R), define X,, forn € N by the !
right-hand side of (5.2.10) with P = P,,. Then X,, — EF [X|%] both P-almost
surely and in LP(P;R). In particular, even if ¥ is not countably generated, for
each separable, closed subspace L of LP(P;R) there exists a sequence of finite

partitions P,,, n € N, such that

(5.2.13) Agn % 14 — EP[X|2] (as., P) and in LP(P;R)

for every X € L.

e
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prooF: To prove the first part, simply set Fn = o(Pr), then identify X, as
EP [X I]—"n], and finally apply Corollary 5.2.7. As for the second part, let ¥(L)
be the o-algebra generated by

{BP[x]5]: X €L},
note that £(L) is countably generated and that
EF [X|2] = EP [X|2(L)] (as.,P) foreach X € L,

and apply the first part with ¥ replaced by £(L). O

5.2.14 Corollary (Jensen’s Inequality). Let C be a closed, convex subset
of RV, X a C-valued, P-integrable random variable, and ¥ a sub-c-algebra of
F. Then there is a C-valued representative Xy, of

B [x,]5]
EXs)=|
P [Xn]5]

In addition, if g : C — [0, 00) is continuous and concave, then
(5.2.15) E” [¢(X)|Z] < ¢(Xz|E) (as., P).

PRrOOF: By the classical Jensen’s Inequality, Y = g(X) is P-integrable. Hence,
by the second part of Theorem 5.2.12, we can find finite partitions P,, n € N,

so that EP [X A]
X, = AZ Tf;)h — EP [X|%]
€Pn
nd
a Yoz 3 E7lo(X), 4] — EP [¢(X)[5)]
n = = P(A) A g

P-almost surely. Furthermore, again by the classical Jensen’s Inequality,

EP [X, 4] E” [¢(X), A] EP [X, 4]
Py ¢ ™ —hmy Sg( P(A)

for all A € F with P(A) > 0. Hence, if A € T denotes the set of w for which

A, [)15:((:))] eR™
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exists, v is a fixed element of C,

lim, oo Xp(w) if weA

XE(‘”)E{V it wé A,

and
lim, o Yn(w) if weA

Y(W)E{o it oW A,

then Xy is a C-valued representative of EF [XlE], Y is a representative of
EP [9(X)|%], and Y (w) < ¢(Xs(w)) for every w e Q. O

5.2.16 Corollary. Let I be a nontrivial, closed interval in RU{+o0} (i.e., either
I C R is bounded on the right or I NR is unbounded on the right and I includes
the point +00). Then every I-valued random variable X with P-integrable
negative part admits an I-valued representative of EF [X|X]. Furthermore, given
a continuous, convex function f : I — R U {400},

(5.2.17) 7 (EP[X|5]) <EP[f(X)|%] (as.,P)

if either f is bounded above and X is P-integrable or f is bounded below and
to the left (i.e., f is bounded on each interval of the form I N (—oo,a] with
a € INR). In particular, for each p € [1,00),

|E” [x |=]]

<||1X .
ooy < IXlesce
Finally, if (Xn, Fn, P) is an I-valued martingale and f is as above or if (Xn, Frs
P) is an I-valued submartingale and f is bounded below and nondecreasing (as
well as continuous and convex), then (f(Xn), Fn, P) is a submartingale.

Proor: In view of Corollary 5.2.14, we know that an I-valued representative
of EF [X IE] exists when X is P-integrable, and the general case follows after
a trivial truncation procedure. In order to prove (5.2.17), first assume that f
is bounded above by some M < oo and that X € L!(P). Then (5.2.17) is an
immediate consequence of (5.2.15) with ¢ = M — f. To handle the case when
f is bounded below and to the left, first observe that either f is nonincreasing
everywhere, or there is an @ € I NR with the property that f is nonincreasing to
the left of a and nondecreasing to the right of a. Next, let an I-valued X with
X~ € L*(P) be given, and set X,, = X A n. Then there exists an m € Z" such
that X, is I-valued for all n > m; and clearly, by the preceding, we know that

f(EP [Xn|2]) <EP[f(X,)|5] (as,P) foralln>m.

Moreover, in the case when f is nonincreasing, { f(X,): n > m} is bounded and
nonincreasing; and, in the other case, {f(Xn) tn>mV a} is bounded below
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and nondecreasing. Hence, in both cases, (5.2.17) follows from the preceding
after an application of the version of the Monotone Convergence Theorem in
(5.1.13).

To complete the proof, simply note that in either of the two cases given, the
results just proved justify:

EP [J(Xu)| Fac] 2 (B [XalFara]) 2 7 (Xan)

P-almost surely. 0O

Our next goal is to show that, even when they are not given in the form
covered by Corollary 5.2.7, martingales want to converge. If for no other reason,
such a result has got to be more difficult because one does not know ahead of
time what, if it exists, the limit ought to be. Thus, the reasoning will have to be
more subtle than that used in the proof of Corollary 5.2.7. We will follow Doob
and base our argument on the idea that, in some sense, a martingale has got to
be nearly constant and that a submartingale is the sum of a martingale and a
nondecreasing process. Although the first of these observations will take a little
time to develop, the second one is nearly trivial and is covered by the following
simple lemma.

5.2.18 Lemma (Doob’s Decomposition). Let (Xn, Fn, P) be a P-integr-
able submartingale. Then there is a P-almost surely unique sequence {In tne
N} of random variables with the properties that Iy = 0,

I, .<1I,€ LI(Q,fn_l,P; [O,oo)) for eachn € Z1,

and (X, — In, Fn, P) is a martingale.

Proor: To prove the existence, set o = 0 and
In =TIy +EP [Xp — Xn1|Faca] VO for neZ'.

To prove the uniqueness, suppose that {Jn 'n € N} is a second such sequence
and set A, = I, — Jp, n € N. Then Ag =0, Ay, is F.._1-measurable for each
n € Z*, and (An, Fn, P) is a martingale. Hence

An =EP [Ap|Fnoi] = Anoy (as, P) foreach n€Z,

and so, by induction, A, =0 (a.s., P) foralln e N. [

In order to make mathematics out of the idea that a martingale is nearly
constant, we will first adjust the notion of a stopping time to the present setting.
Namely, we will say that the function 7: @ — NU {oc}isan {Fp: n € N}-
stopping time if {w : 7(w) = n} € F, for each n € N. In addition, given
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an {-7:71 1 n e N}—Stopping time 7, let 7. be the o-algebra of A € F such:
that AN {r = n} € F,, n € ZT. Notice that these definitions are completely 3
consistent with the ones introduced earlier (at the beginning of Section 4.3) and ‘g
that the obvious variant of Lemma 4.3.2 holds equally well here. In addltlon
if {X,:neN}is {.7-' : n € N}-progressively measurable, then the random

variable X, given by X,(w) = X,(,)(w) is F,-measurable on {7 < co}.

5.2.19 Theorem (Hunt). Let (Xn,]-'n,P) be a P-integrable submartingale, ‘
Given bounded {.7-'” in e N} -stopping times o and T satisfying o < 7,

(5.2.20) X, <EP[X.|F,] (as.,P),

and the inequality can be replaced by equality when (X ny Frs P) is a martingale.
(Cf. Exercise 5.2.32 for unbounded stopping times.)

ProoF: Choose {In ne N} asin Lemma 5.2.18, and set Y,, = X,,—I,, n € N, ;
Then, because I, < I, and I, is F,-measurable: |

E® [Xrl}-a] 2 E” [YT + Iﬂl}-"] =E" [YTi}-‘T] + Lo,

and so it suffices to prove that equality holds in (5.2.20) when (Xn, Fu, P) is a
martingale. To this end, choose N € Z' to be an upper bound for 7, let A € F,
be given, and note that g

N
E” [Xn, A] =Y EF[Xy, An{o = n}]
;0
=Y EP[Xn, An{o =n}] = E7[X,, A];

n=0
and similarly (since 4 € F, C F,), EP [XN, A] =FEP [XT, A]. O

The following easy consequence of Hunt’s Theorem becomes more interesting 1
when it is interpreted from the point of view of a gambler who is trying to beat |
the system. Namely, let (Xn,]-'n,P) be a martingale with mean-value 0, and
think of X,, as the gambler’s fortune after n plays of a fair game. With this |
model in mind, it is natural to interpret an {.7-'” ' n € N} -stopping time 7 as '
a strategy. That is, 7 can be considered as a feasible (i.e., one which does not
require the power of prophesy) scheme which the gambler can use to determine |
when he should stop playing. When couched in these terms, the next result :

predicts that there is no strategy with which the gambler can alter his expected
take! :

5.2.21 Corollary (Doob’s Stopping Time Theorem). For any P-integr- .
able submartingale (martingale) (Xn,]-'n,P) and any {.7-'” tn € N} -stopping
time 7, (Xnnr, Fn, P) is again a P-integrable submartingale (martingale).
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PROOF: Let A € F, _;. Then, since AN{7T > n—1} € Fn_1)ar, (5.2.20) implies
that

E” [Xnnr, 4]
=E” [Xonr, AN {r <n—1}] + EP [Xnar, AN{7 >n~1}]
>EP[X,, An{r <n—-1}] +EF [Xpars AN {7 >n —1}]
=E" [X(n-n)ar, A5

and, in the case of martingales, the inequality in the preceding can be replaced
by an equality. [J

Given a sequence {z,}3° C R and —00 < a < b < 0o, we say that {z,}§°
upcrosses the interval [a, b] at least N times if there exist integers 0 < m) <
ny < --- < my < ny such that z,,, < a and x,, > bforeach 1 <1 < N and
that it upcrosses [a,b] precisely N times if it upcrosses [a,b] at least N but
does not upcross [a, b] at least N+1 times. Notice that hm _ _ zn, < limn— o0 Zn
if and only if there exist rational numbers a < b such that {z,} upcrosses [a, b]
at least N times for every N € Z7.

5.2.22 Doob’s Martingale Convergence Theorem.' Let (Xn,}'n,P) be a
P-integrable submartingale, and, for —oo < a < b < 00, let Ujg p)(w) denote the
precise number of times that {Xn(w)};o upcrosses [a,b]. Then

EP [(Xn = a)T]

5.2.23 EP [U, 4] <

(5.2.23) [Uta] < i A —
In particular, if

(5.2.24) sup EX [X;] < oo,

neN

then there exists a P-integrable random variable X to which {X,,}{° converges
P-almost surely. (See Exercises 5.2.27 and 5.2.31 for other derivations.)

PROOF: Set ¥, = ¥X2=9" and note that (by Corollary 5.2.16) (Yo, Fn, P) is a

P-integrable submartingale. Next, set 7o = 0, and, for k € Z*, define

o =inf {n > m_1: Xp <a} and 7 = inf {n > op : Xn > b}

T In the notes to Chapter VII of his Stochastic Processes, publ. by J. Wiley in 1953, Doob gives
a thorough account of the relationship between his convergence result and earlier attempts in
the same direction. In particular, he points out that, in 1946, S. Anderson and B. Jessen
formulated and proved a closely related convergence theorem.
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Proceeding by induction, it is an easy matter to check that all the o4’s and 7;’s

are {.7-'” : n € N}-stopping times. Moreover, if N € Z* and U[(a]?;)] (w) is the

o0

precise number of times { X, ,n(w)}, upcrosses [a, b], then

0

N
U[(a]?;))] S Z (YN/\Tk - YN/\O'k)
k=1

N
=Yy —-Y - Z(YVN/\O';c - YN/\kal)
k=1
N
<Yy -— Z(YVN/\O';c - YN/\Tkvl)'
k=1

Hence, since 7,1 < o} and therefore, by (5.2.20),
EP [Yvnow — Ynare_,] 20 forall keZ',

we see that EF [U[(a]?;)]] < EP [YN]; and, clearly (5.2.23) follows from this after
one lets N — co.

Given (5.2.23), the convergence result is easy. Namely, if (5.2.24) is satisfied,
then (5.2.23) implies that there is a set A of full P-measure such that Uy, 4 (w) <
oo for all rational @ < b and w € A; and so, by the remark preceding the
statement of this theorem, for each w € A, { X, (w)}zo converges to some X (w) € :

[~00,00]. Hence, we will be done as soon as we show that EP[|X], A] < oo.
But #

EP [|X.|] = 2EP[X}] - EP [X,] < 2BP[X}] -E"[Xo], neN,

and therefore Fatou’s Lemma plus (5.2.24) shows that X is P-integrable on
A. O

The inequality in (5.2.23) is quite famous and is known as Doob’s upcrossing
inequality. |
5.2.25 Corollary. Let (Xn,}'n,P) be a martingale. Then there exists an
X € LY(P;R) such that X,, = E” [X|F,] (as., P) for each n € N if and only if «
the sequence {Xn}zo is uniformly P-integrable. In addition, if p € (1,00, then -
there is an X € LP(P;R) such that X, = EF [X.]-'n] (a.s., P) for each n € N if
and only if {X,}, is a bounded subset of LP(P;R). ¢

PROOF: Because of Corollary 5.2.7 and (5.2.6), we need only check the “if”
statement in the first assertion. But, if {Xn}zo is uniformly P-integrable, then
(5.2.24) holds and therefore X,, — X (a.s., P) for some P-integrable X. More- :
over, uniform integrability together with almost sure convergence implies con-
vergence in L!(P;R), and therefore, by (5.1.8), for each m € N,

X = lim EP [Xp|Fm] =EF [X|Fn] (as,P). O

n—o0



§5.2: Discrete Parameter Martingales 287

Just as Corollary 5.2.7 led us to an intuitively appealing way to construct con-
ditional expectations, so Doob’s Theorem gives us an appealing approximation
procedure for Radon-Nikodym derivatives.

5.2.26 Theorem (Jessen). Let P and Q be a pair of probability measures on
the measurable space (0, F) and {F, : n € N} a nondecreasing sequence of
sub-c-algebras whose union generates F. For each n € N, let Q. and Qns
denote, respectively, the absolutely continuous and singular parts of Qn = Q |

F, with respect to P, = P | F,, and set X, = ddQ;:. Also, let ), be the

absolutely continuous part of @ with respect to P, and set Y = dﬁ;‘. Then
X, — Y (as., P). In particular, Q@ L P if and only if X, — 0 (a.s., P).
Moreover, if Qn, < P, for each n € N, then Q < P if and only if {Xn}E is
uniformly P-integrable, in which case X, — Y in LY(P;R) as well as P-almost
surely. Finally, if Qn ~ P, (i.e., P, < Qn as well as Q. < P,) foreachn € N
and B = {lim____ X, = 0}, then Q.(4) = Q(AN BL) for all A € F, and
therefore Q(B) =0 = Q < P.

PrROOF: Without loss in generality, we will assume throughout that all the X.n's
aswellas Y = % take values in [0, 00); and clearly, EP [Xn], n € N, and EP [Y]
are all dominated by 1.

We first note that

Qns(A) = sup {Q(A AB): B¢ F, and P(B) = o} for Ac F.
Hence, Qns [ Fno1 > Qn_1, for each n € 7t , and so
EP [X,, A] = Qna(4) < Qu-1a(4) = E7 [Xn1, 4]

for all n € Z* and A € F,_1. In other words, (—Xn,}"n,P) is a nonpositive
submartingale. Moreover, in the case when @, < P,, n € N, the same argument
shows that (Xn, Fns P) is a nonnegative martingale. Thus, in any case, there is
a nonnegative, P-integrable random variable X with the property that X, —
X (a.s., P). In order to identify X as Y, we use Fatou’s Lemma to see that, for
anym € Nand A € Fpu:

E” [X, A] < lim EP[X,, A] = lim Qn.a(4) < Q(A);

n—oo n—oo

and therefore EF [X , A] < Q(A) for every A € F. In particular, by choosing
B e Fsothat Q.(4) = Q(ANB), Ac F, and P(BE) =0, we arrive at

EF[X, A] <Q(ANB) = Q.(4) = EF[Y, A] forall A€ F;

which means that X < Y (as.,P). On the other hand, if ¥, = EF [Y|F,] for
n € N, then

EP [Y,, A] = Qa(4) < Qua(4) =E[Xn, 4] forall A€ Fn,
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and therefore Y, < X, (as.,P) for each n € N. But, since Y, — Y and
X, — X P-almost surely, this means that Y < X (a.s., P).

Next, assume that Q,, <« P, for each n € N and therefore that (Xn, Fn, P) is
a nonnegative martingale. If {X,,}$° is uniformly P-integrable, then X;, — Y
in L'(P;R) and therefore Q,(Q) = 1 - EF[Y] = 0. Hence, Q < P when {X,}§°
is uniformly P-integrable. Conversely, if @ <« P, then it is easy to see that
X, = EP[Y|F,] for each n € N, and therefore (by Corollary 5.2.7) that {X,,}§°
is uniformly P-integrable.

Finally, assume that @, ~ P, for each n € N. Then, the X,,’s can be chosen
to take their values in (0, 00) and

1 dp,

X, dQ,

Y,

I

Hence, if P, and P, are the absolutely continuous and singular parts of P relative

to Q and if Y = lim Y,, then Y = 2% and so P,(A) = EQ[Y, 4] for all
——n—00 dQ

A € F. Thus, when C € F is chosen so that Ps(C) =0 = Q(C’U), then, since
Y = % (a.s., P) on BC, it is becomes an easy step from the above to

Q(ANBL) =E™ [vy~!, AnBL] =E” [X, ANC] = Qa(ANC) = Qa(4)

forallAeF. O

Exercises

5.2.27 Exercise: In this exercise we will present a quite independent derivation
of the convergence assertion in Doob’s Martingale Convergence Theorem. The
key observations here are first that, given Doob’s Inequality (cf. (5.2.5)), the
result is nearly trivial for martingales having two bounded moments and, second,
that everything can be reduced to that case.

(i) Let (My, Fn, P) be a martingale for which
(5.2.28) sup EX [M,f] < 00.
neN

Note that

(5.2.20) EP[M2] ~EP[M_,] =EF [(My— Mny)?] for 1<m<m;

and starting from (5.2.28) and (5.2.29), show that there is an M € L?(P;R) such
that M, — M in L?(P;R). Next, by applying (5.2.9) to the submartingale
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((Man - Mm)2’]:n,P), show that, for every € > 0,

P(sule—M,L'Ze)S—IEIEP[(M—Mmf]—)O as m — o0,
€

n>m

and conclude that M,, — M (a.s., P).

(ii) Let (Xn,}'n,P) be a nonnegative submartingale with the property that
sup,en EX [Xfl] < 00, define the sequence {In :n € N} as in Lemma 5.2.18,
and set M,, = X,, — I,, n € N. Then (Mn,}'n,P) is a martingale, and clearly
both M,, and I,, are square P-integrable for each n € N. In fact, check that

EP (M2~ M2, | = EP | (M — Myo) (X + Xo1)]
—EP[X2- X2, | =B |(In = Inoa) (Xn + Xoa)]
<EP[X2- X7,
and therefore that
EP [M2] <EP[X2] and EF[I7] <4E"[X]] foreveryn €N

Finally, show that there exist M € L*(P;R) and I € L*(P; [0,00)) such that
M, — M, I, ~ I, and, therefore, X, — X = M + I both P-almost surely
and in L?(P;R).

(iii) Let (Xn,}'n,P) be a nonnegative martingale, set Y, = e~Xn n €N, use
Corollary 5.2.16 to see that (Yn,}'n,P) is a uniformly bounded, nonnegative,
submartingale, and apply part (ii) to conclude that {Xn}go converges P-almost
surely to a nonnegative X € L'(P;R).

(iv) Let (Xn,Fy, P) be a martingale for which

(5.2.30) supIEP[|Xn|] < 0.
neN

For each m € N, define
vE, =E° [Xf,fVm}fm] Vo, neN.

Show that Y%, . > Y, (as., P), define Y,¥ =lim Y5, check that both

n+l,m =

Y, Fm, P) and (Y, Fon, P) are nonnegative martingales with

EP [Yh +Yy ] < sup EP [|Xxl],
ne
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and note that X, = Y — Y.~ (a.s., P) for each m € N. In other words, every
martingale (Xp, Fr, P) satisfying (5.2.30) admits a Hahn decomposition! as
the difference of two nonnegative martingales whose sum has expectation value
dominated by the left-hand side of (5.2.30). Finally, use this observation together
with (iii) to see that every such martingale converges P-almost surely to some

X € L'(P;R).

(v) By combining the final assertion in (iv) together with Doob’s Decomposition
in Lemma 5.2.18, give another proof of the convergence assertion in Theorem
5.2.22.

5.2.31 Exercise: In this exercise we will develop yet another way to reduce
Doob’s Martingale Convergence Theorem to the case of L2-bounded martingales.
The technique here is due to R. Gundy and derives from the ideas introduced
by Calderén and Zygmund in connection with their famous work on weak-type
1-1 estimates for singular integrals (cf. Theorem 5.3.26).

(i) Let {Z, : n € N} be a {F, : n € N}-progressively measurable, [0, R]-valued
sequence with the property that (—Zn, Fus P) is a submartingale. Next, choose
{In ne N} for (—Zn,}'n,P) as in Lemma 5.2.18, note that I,,’s can be chosen
sothat 0 < I, - I, , < Rforalln € Z*, and set M,, = Z, + I,,n € N.
Check that (Mn,}'n,P) is a nonnegative martingale with M,, < (n 4+ 1)R for
each n € N. Next, show that

E” (M2 = M2_| =B [(Ma = Moos) (Za + Zo)|
=B[22 = 22| 4 BF [(In = Tnoa) (Za + Zo )]
<EP {Zﬁ - Zg_l] +2REP[I, - I4],
and conclude that
EF (1] < EP [M?] < 3RE"[Z], neN.
(ii) Let (Xn,Fn,P) be a nonnegative martingale. Show that, for each R €

(0,00),
Xop=MB IR L AR peN,

n

where (M,(LR),}',L, P) is a nonnegative martingale satisfying

EP[(M{®)’] <3RE"[Xo], neN,

 This useful observation was made by Klaus Krickeberg.
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{ I ne N} is a nondecreasing sequence of random variables with the prop-
erties that IéR) =0, I® is Frn_1-measurable and

EP [(I,(LR))z] < 3REP[X,] forneZt,

and {A%R) tne N} is a {fn ‘n¢€ N}—progressively measurable sequence with
the property that

P(E!n eNAP # 0) < %EP [Xo].

Hint: Set Z{® = Xn AR and AP = x, - 7 for n € N, apply part (i)
to {Z,(LR) :n € N}, and use Doob’s inequality to estimate the probability that

AR # 0 for some n € N.
(iii) Let (Xn,}'n,P) be any martingale. Show that, for each R € (0, 00),

X, =M®B 4 VB L ARy N,
where (M,(LR),}'H, P) is a martingale satisfying
EP [(M,(LR))2] < 12REP[|X..|],
{VTER) 'n € N} is a sequence of random variables satisfying

VO(R) =0 and V\® is F,_;-measurable

and

n 2
() e

1

for n € Z*, and {A, :€ N} is an {F, : n € N}-progressively measurable
sequence satisfying

P(aogmgnA$§>¢o) < %IEP[|XH|].

The preceding representation is called the Calderén—Zygmund decomposi-
tion of the martingale (X,, Fy, P).

Hint: Use part (iv) of Exercise 5.2.27 to reduce the present case to the one just
treated in (if).
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(iv) Let (X,, Fn, P) martingale which satisfies (5.2.30), and use part (iii) above
together with part (i) of Exercise 5.2.27 to show that, for each R € (0,0),
{Xn}go converges off of a set whose P-measure is no more than % times the

supremum over n € N of EF [IXn|] In particular, when combined with Lemma
5.2.18, the preceding line of reasoning leads to yet another proof of the conver-
gence result in Theorem 5.2.22.

5.2.32 Exercise: In this exercise we want to extend Hunt’s Theorem (cf.
Theorem 5.2.19) to allow for unbounded stopping times. To this end, let (Xn,
fn,P) be a uniformly P-integrable submartingale on the probability space
(Q,F,P), and set M,, = X,, — I,, n € N, where {In in € N} is the sequence
discussed in Lemma 5.2.18. After checking that (Mn,}'n,P) is a uniformly
P-integrable martingale, show that, for any {fn nE N} -stopping time 7:

X, =EF [Mo|F ] + I, (as.,P),

where, Xo, Moo, and I are, respectively, the P-almost sure limits of {X,,}°,
{M,}&°, and {I,}5°. In particular, if & and 7 are a pair of {fn i n € N}-
stopping times and o < 7, conclude that

(5.2.33) X, <E°[X.|F;] (as.,P).

5.2.34 Exercise: There are times when submartingales converge even though
they are not bounded in L!(P;R). For example, suppose that (X, F,,P) is a
submartingale for which there exists a non-decreasing function p : R — R with
the properties that p(R) > R for all R and X,41 < p(X,) (a.e.,P) for each
n e N

(i) Set 7Tr(w) =inf {n € N: X, (w) > R} for R € (0,00), and note that

sup Xn/\‘rn < XO V P(R) (a"e'v P)
neN

In particular, if Xy is P-integrable, show that {Xn(w)}z<> converges in R for
P-almost every w for which {X, (w)}z<> is bounded above.

Hint: After observing that

sup EP [ X}

Harn] <00 for every R e (0,00),
neN

conclude that, for each R € (0, 0), {Xn}zo converges P-almost everywhere on
{Tr = o0}.
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(ii) Let {Yn}c;o be a sequence of mutually independent, P-integrable random
variables, assume that

E”[Y,] >0forneN and sup||¥;|lL~(p) < o0,
neN

and set S, = 3.1 Y;,,. Show that {Sn(w) }TO is either P-almost surely unbounded
above or P-almost surely convergent in R.

(iii) Let {fn 1 n e N} be a nondecreasing sequence of sub-g-algebras and A,
an element of F,, for each n € N. Show that the set of w € € for which either

Z 14, (w) < oo but ZP(An |.7:n_1)(w) = 00

or
Z 14, (w) = oo but ZP(An ‘ Fr1)(w) < 00
n=0 n=1

has P-measure 0. In particular, note that this gives another derivation of the
Borel-Cantelli Lemma (cf. Lemma 1.1.4).

5.2.35 Exercise: For each n € N, let (E,,B,) be a measurable space and
i and vy, a pair of probability measures on (Ey,Bn) with the property that
Vn < pn. Prove Kakutani’s Theorem which says that (cf. Exercise 1.1.14)

either [],en¥n L [Tpentin OF [Lhenvn < [Tnen #n-
Hint: Set

Q=[] En F=1]Bs P=]]#n and Q = [] v

neN neN neN neN

Next, take F,, = ;! ([T Bm) . where 7, is the natural projection from {2 onto
15 En, set P, = P | Fn and Q, = Q [ Fr, and note that

dQn .
n = = m\Lm), Qa
X000 = G0 = [ mten). x
where f, = %:—". In particular, when v, ~ pn for each n € N, use Kol-

mogorov’s 0-1 Law (cf. Theorem 1.1.2) to see that Q(B) € {0,1}, where B =
{lim,___ X, = 0}, and combine this with the last part of Theorem 5.2.26 to
conclude that Q f P = Q < P. Finally, to remove the assumption that
Upn ~ pi, for all n’s, define &, on (En, Br) by

In=(1-2"""Yun+27"" i,
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check that 7, ~ pu, and Q < Q = [1,.en Pn> and use the preceding to complete
the proof.

5.2.36 Exercise: Let (2, F) be a measurable space and ¥ a sub-o-algebra of
F. Given a pair of probability measures P and Q on (2, F), let Xy and Yy
be nonnegative Radon—Nikodym derivatives of Pr = P [ ¥ and Qx = Q [ X,
respectively, with respect to (Pg + Qg), and define

(5.2.37) (P,Q)y = /X2 Yy d(P + Q).

(i) Show that if R is any o-finite measure on ({2,%) with the property that
Py < R and Qs < R, then the number (P, Q)z in (5.2.37) is equal to

dPs\? [dQs\?
/(dR) (dR) e
Also, check that Py L Qs if and only if (P,Q)y = 0.

(ii) Suppose that {.7-'” i n € N} is a nondecreasing sequence of sub-o-algebras
of F, and show that

(P’ Q)]—'n — (P’ Q)V;”]:n'

(iii) Referring to part (ii), assume that Q [ F, < P [ F,, for each n € N, let X,
be a nonnegative Radon-Nikodym derivative of Q [ F,, with respect to P [ Fp,
and show that Q | \/~ F, is singular to P [ \/g~ Fy if and only if

EP [\/Xn] 50 as n - oo

(iv) Let {6,}3 C (0,00), and, for each n € N, let p, and v, be Gaussian
measures on R with variance 2. If a,, and b,,, respectively, are the mean value
of u, and v, show that

HVRNH[J,R or HVnLHun
n€EN n€EN n€EN n€EN
depending on whether Yo" 0, 2(b, — a,)? converges or diverges.
5.2.38 Exercise: In this exercise we will complete the program! initiated in

Lemma 4.2.15. Namely, given an abstract Wiener space (cf. the discussion pre-
ceding Remark 4.2.6) (H,©, Wy), we will show here that the only directions in

t Although Cameron and Martin are justly credited for the contents of Lemma 4.2.15, the I.
Segal is responsible for the content of this exercise.
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which the Wiener’s measure Wy is translation quasi-invariant are those in the
Cameron—Martin subspace H. To be more precise, for each ¢ € O, define the
translation map T, : © — © by T,.0 = ¢ + 6. Then, what we will show now is
that T,Wnm L Wy if ¢ ¢ H. After combining this with Lemma 4.2.15, we will
have that, for each ¢ € ©:

(5.2.39) peH = T;WH <«<Wpg and ¢9¢ H — T:,WH 1 Wpg.

(i) Given p € ©, show that ¢ € H if and only if
suP{l(tp,/\>| : A€ ©F with ||ha||lg = 1} < 00.

Hint: Under the boundedness condition, use the Riesz representation theo-
rem for Hilbert spaces to check that there exists an h € H such that (p, A) =
(h,ha) g = (b, A) for all A € ©%.

(ii) Suppose that ¢ € © and that T;Wu Y Wh. Then, if Y is the Radon-
Nikodym derivative of the absolutely continuous part of T;Wpg with respect to

Wi, a = E# [Y3] € (0,1). Next, for A € ©* with (cf. Theorem 4.2.4) ||hx ||z =
1, use F to denote the o-algebra over © generated by 6 € ©+— (0,)\) € R and
define X : © — R by:

XA(8) = exp | (0, 1) (0, ) - éwf] .

Show that T;Wg [ Fa < Wpg | Fa and that X is the associated Radon-—
Nikodym derivative. In particular, conclude from this that

X, > BV [y | /] > BV [YE | A
and therefore that

]Za.

> ol

exp [_L%gﬁf] =EY7 [X

Hence, |{p,A)| < v—8loga for every A € ©F with ||hx||g = 1; which means, in
conjunction with (i), that we have now completed the proof of (5.2.39).

(iii) Suppose that {An}$° C ©* and that {h,,, }{° forms an orthonormal basis
in H. Set Xm(6) = (0, Am) and Fp, = 0({Xm}}). Using Theorem 4.2.4, show
that, for any A € ©*, 37 (ha, Am)Xm — (-,A) in L*(Wg), and conclude that
Be is contained in the Wg-completion of \/T° Fy. Finally, combine this with
part (ii) of Exercise 5.2.36 and (5.2.39) to see that, forany p € ©,p € H <
27 {0y Am)? < o0
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Hint: Show that

dT;Wh | Fn " 1
—f——— =R, = S {0 Am) Xm = 5 {0, Am)?
dWxg | Fn Ry eXPl: 1 ((‘Pa ) 2(%" ) )]

and that

EW# [RP] = exp [p(p; D i<<ﬂ,)\m>2]

for n € Z* and p € (0,00).

5.2.40 Exercise: Again let (2, F, P) be a probability space, only this time
suppose that {.7-'” :n € N} is a sequence of sub-o-algebras which is nonincreas-
ing. Given a sequence {Xn :n € N} of (—00,00]-valued random variables, we
say that the triple (Xn,}'n,P) is a reversed submartingale or a reversed

martingale according to whether (X NenANs FN—nAN, P) is a submartingale or
martingale for every N € N.

(i) Reproduce the result in Corollary 5.2.16 when (Xn,}'n,P) is either a re-
versed martingale or a reversed submartingale. In particular, conclude that
(|Xn|,.7-'n,P) is a reversed submartingale if (Xn,}'n,P) is a reversed martin-
gale.

(ii) Given a reversed submartingale (Xn,}'n, P), show that

1
(5.2.41) P (sup X, > a) < ZEF [Xo, sup X, > a] , a€(0,00).
neN 8 neN

In particular, if (Xn,}'n,P) is a nonnegative reversed submartingale and Xy €
L?(P;R) for some p € [1,00], conclude from (5.2.41) that {Xn:ne N} is
uniformly P-integrable and that

(5.2.42) sup X,

neEN

4
i < p—__lll‘XOHLP(P) when p € (1,00].

(iii) Given a reversed submartingale (Xn,}'n,P) with Xo € L'(P;R), show
that there is a P-almost surely unique, Foo = (g Fn-measurable X : Q@ —
[—00,00) such that X,, — X (a.s.,P). Further, show that X € L'(P;R)
if sup,enEF [X7] < oo. Finally, if Xo € LP(P;R) for some p € [1,00) and
(X ns Fno P) is either nonnegative or a reversed martingale, show that X, — X
in LP(P;R).

e e e SRt e .
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Hint: Given a < b, let D[a,b] be the precise number of times that {Xn ‘ne N}
downcrosses [a,b] (i.e., the precise number of times that {-X,: neN}
upcrosses [—b, —a]), and prove the downcrossing inequality

EP [(Xo — 0)*]
P
IE [D[avb]] S b —a :
(iv) Let (0, F,P), {Fn : n € N}, and {ex : k € Z} be as in part (v) of
Exercise 5.1.28. Next, take Sm, = {(2k +1)2™ : k € Z} for each m € N, and, for
fe L? ([O,l);C), set

Am(f) = Z (fa el)L2([0,l);C)el’

LESm

where the convergence is in L2(([0,1]; C). Note that, by Exercise 5.1.28,
f_EP[flfn—i-l] = Z Am(f)
m=0

After noting that {.7-'" ' nE N} is nonincreasing, use the result obtained in part
(iii) here to see that the expansion

f = (f? 1)L2([0,1);C) + Z Am(f)
m=0
converges both almost everywhere as well as in L%(]0, 1); C).t

5.2.43 Exercise: An important application of reversed martingales is provided
by De Finetti’s theory of exchangeability . To describe this theory, let X
denote the group of all finite permutations of Z*. That is, the elements o
of ¥ are isomorphisms of Z* which fix all but a finite number of elements.
Alternatively, £ = Joo_, T, where I, is the group of isomorphisms o of Z*
with the property that n = o(n) for all n > m. Next, let (E, B) be a measurable
space, and, for each o € X, define S, : EZ" — EZ" so that

Sox = (za(l),...,za(n),...) if x = (zl,...,zn,...).

T When f is a function with the property that (fred)r2(o,1y0) = O forall £ € Z\{2™ : m € N},
the preceding almost everywhere convergence result can be interpreted as saying that the
Fourier series of f converges almost everywhere, a result which was discovered originally by
Kolmogorov. The proof suggested here is based on fading memories of a conversation with
N. Varopolous. Of course, ever since L. Carleson’s definitive theorem on the almost every
convergence of the Fourier series of an arbitrary square integrable function, the interest in this
result of Kolmogorov is mostly historical.
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Obviously, each S, is a BZ" -measurable isomorphism of EZ". Also, if for m e s
7+, }
I,={BeB :B=S,BforalloeZn}, ‘\

then the Z,,’s form a non-increasing sequence of sub o-algebras of B~", and

)

In=Tw={BeB" :B=S,BforalloeX}
1

Now suppose that (2, F, P) is a probability space and that
weQr— Xw) = (Xi(w),..., Xn(w),...) € EZ"

is a measurable map which is P-ezchangeable in the sense that the distribution
ofweQr— S,0X(w) € EZ" under P is the same for all o € £.

(i) Given a measurable g : E — R satisfying go X; € L'(P;R), show that
EP[go X¢| X YZn)] = EP[go X; | X~ }(Zn)] for all 1 < £ < m, and conclude
first that

m

1
B [g0 X0 [ XN (Tn)] = - > g0 X
=1
and then that

1 m
B g X, X7 (T = fim 9o X

both P-almost surely and in L!(P;R).

(ii) Use T to denote the tail field ﬂzzlo({Xn tn > m}) determined by

{X, : n > 1}, and observe that T C X !(Z.). As a consequence of (i),
conclude that

1 & .
]EP[goXI'X‘l(IOO)]:mli_I}looEZl:gng:EP[goXliT]

P-almost surely. In particular, if 7 is P-trivial (i.e., all its elements have P-
probability 0 or 1), then one gets

m—oo 1M

1
lim — Z goXy= ]E[g o Xl} P-almost surely. !
1 ;

Note that a particular case is the one when the X,’s are mutually independent
and identically distributed. Because of Kolmogorov’s 0-1 Law (cf. Theorem
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1.1.2), T is P-trivial in this case, and so we have yet another derivation of the
strong Law of Large Numbers (cf. Theorem 1.4.11).F

5.2.44 Exercise: We continue in the setting of Exercise 5.2.43. The goal of this
exercise is to prove that for every F € L'(P;R),

(5.2.45) EP [F|X(Z.)] =EP[F|T] P-almost surely.

Equivalently, since we already know that 7 C T.., what we want to show is that
for every I € I, there is a T € T such that the symmetric difference TAT =
(INT)U(T\ ) is a P-null set. Thus, by Kolmogorov’s 0-1, when the X,,’s are
mutually independent, P(I) € {0,1} for every I € X1(Z), a statement which
is called the Hewitt—Savage 0—1 Law. Equivalently, independence implies
that every X 1(Z., )-measurable F :  — R is P-almost surely constant.

(i) Let N € Z* be given, set
¥ ={sex: o(mN + £) = o(mN) + £ for almeNand1<£< N},
and define .
I = {Be B : B=S,Bforallo e S},

Next, suppose that F € L'(P;R) is c({Xn:1<n< N})—measurable, and
observe that F = g o (X),...,Xn) for some measurable g : EN — R. After
replacing E by EV in Exercise 5.2.43, show that

EP [F|X~(Z{")] =EP[F|T] P-almost surely.

Hence, since 7 C X7Y( (™), (5.2.45) holds for every o({X, : 1 <n < N})-
measurable F' € L'(P;R).

(ii) To complete the proof of (5.2.45), first observe that, since 7 € X 1(Zs) C
o({X, : n € Z}), it suffices to handle F' € L*(P;R) which are o({Xn : 1 €
Z*})-measurable. Second, note that the class of F' € L!(P;R) for which (5.2.45)
holds is closed. Finally, use the fact that

B [Fo({X,: 1<n < N})] "0 BP [Flo({Xa: ne Z7))).

5.2.46 Exercise: Let {X, : n € Z*} be a sequence of identically distributed,
mutually independent, integrable, mean-value 0, R-valued random variables on

"1t turns out that exchangeable random variables whose tail field is trivial are necessarily
independent. Thus, the present line of reasoning does not really extend the Strong Law. On
the other hand, the present derivation extends without alteration to the Banach space setting
(cf. Exercise 5.3.39).
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the probability space (Q2, F, P), and set Sp = S 1 X, for n € Z*. In Exercise
1.4.32 we showed that lim . |Sn| < o0 P-almost surely. Here we will show
that

(5.2.47) lim |S,| =0 P-almost surely.

n—o0

As was mentioned before, this result was proved first by K.L. Chung and W.H.
Fuchs. The basic observation behind the present proof is due to A. Perlin, who
noticed that, by the Hewitt-Savage 0-1 Law, there is a L € [0, oo) such that

L= lim |S,| (as.,P).

n—o0
Thus, the problem is to show that L = 0, and we will do this by an simple
argument invented by A. Yushkevich.

(i) Assuming that L > 0, use the Hewitt-Savage 0-1 to show that
P(|Sn —zl< % i.o.) =0 foranyz €R,

where “i.0.” stands for “infinitely often” and means here “for infinitely many

n’s”.

Hint: Set p = %, and suppose that P(|Sm — z| < p) > 0 for some m €
Z*+. Observe that {Smin — Sm : n € Z'} has the same P-distribution as
{X, : n € Z*}, and therefore that P(|Smtn — Sm| < 3pio.) =0. Thus, since
|Smn—2| = |Smtn—Sm|—|Sm —zl, P(|S,—z| < pio.) < P(|Spm—z| > p) <L
But, by the Hewitt-Savage 0-1 Law, this means that P(|S, —z| < pio.)=0.

(ii) Still assuming that L > 0, deduce from (ii) that
P(|Sn —Li<i i.o.) v P(|Sn + L <k i.o.) =1,

which, in view of (i), is a contradiction.

(iii) Knowing (5.2.47), conclude that, for each x € R and € > 0, one has the
dichotomy

ZP(|Sn —z|<e)=0 or P(|S,—z|<e io) =1

n=1
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§5.3: Some Extensions

It turns out that many of the results obtained in Section 5.2 admit easy ex-
tensions to both infinite measures and Banach space valued random variables.
Furthermore, in many applications, these extensions play a useful, and occasion-
ally essential, role. Throughout the discussion which follows, (£, F,u) will be
a measure space and {}"n :mE N} will be a nondecreasing sequence of sub-o-
algebras with the property that p [ Fo 18 o-finite. In particular, this means that
the conditional expectation of a p-locally integrable random variable given F,
is well-defined (cf. Theorem 5.1.22) even if the random variable takes values ina
separable Banach space E. Thus, we will say that the sequence {Xn; ne N} of
E-valued random variables is a y-martingale with respect to {}"n :n€ N},
or, more briefly, that the triple (Xn, Fny ) is a martingale if {X, : n € N} is
{}"n T meE N} -progressively measurable, each X, is p-locally integrable, and

(5.3.1) X1 =E* [Xn|}"n_1] (ae., u) for each n € Z*.

Furthermore, when E = R, we will say that {X, : n € N} is a u-submartingale
with respect to {}"n :n € N} (equivalently, the triple (Xn, Fn, 1) is a sub-
martingale) if {X, : n€ N} is {Fn:ne€ N}-progressively measurable, each
X, is p-locally integrable, and

(5.3.2) Xno1 <EH [Xn\}"n_l] (ae., p) for each n € Z*.

Without any real effort, we can now prove the following variant of each of the
main results in Section 5.2.

5.3.3 Theorem. Let (Xn,]-"n,u) be a p-submartingale. Then, for each NeN
and A € Fo on which X is p-integrable:

1
(5.34) u ({ max X, > a} ﬂA) < —FE [XN, { max X, > a} DA]
0<n<N o 0<n<N

for all o« € (0,00). In particular, if the Xn 's are all nonnegative, then, for every
p € (1,00) and A € Fy:

1
(5.3.5) 03 [sup X al?, A] < P GupEr[|XalP, 4]
neN p—1 nen

Furthermore, for any bounded {}"n 1ne N} -stopping times o < T,

(5.3.6) X, <BF[X,|Fs] (ae,p);
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and, for any a < b and A € Fy,

]E“ Xn - +7 A
(5.3.7) E* [Uja,p), A] < sup I o). 4

ncEN b_‘a ’

where U, p)(w) denotes the precise number of times that {Xn(w)}zo upcrosses
[a,b] (cf. the discussion preceding Theorem 5.2.22). In particular, for each stop-
ping time T, (Xn/\r,}"n,u) is a submartingale; and, when (Xn,}"n,u) is itself
a martingale, then the inequality in (5.3.6) is an equality and (XnAT,fn,u) is
again a martingale. Finally,

supE* [X;F, A] < oo for every A € Fo with p(A) < oo
(5.3.8) neN
= X, — X (ae,p)

where X is \/y Fn-measurable and p-locally integrable; and, for each p € (1, 00),
the convergence is in LP(p) if and only if {X,}§° is bounded in LP(p). In fact,
in the case of martingales, there is a \/ Fn-measurable, u-locally integrable X
such that

(5.3.9) X, =F[X|F,] (ae,p) forallnel

if and only if {X,}§° is uniformly p-integrable on each A € Fo with pu(A) < oo;
the X in (5.3.9) is p-integrable if and only if X, — X in L'(p); and, for each
p € (1,00), X € LP(p) if and only if {X,, : n € N} is bounded in LP(u;R), in
which case, X,, — X in LP(p).

ProOF: Obviously, there is no problem unless () = co. However, even then,
each of these results follows immediately from its counterpart in Section 5.2

once one makes the following trivial observation. Namely, given Q' € Fy with
w(€Y') € (0,00), set

plF
pey)

Then (X, F,,P’) is a submartingale or martingale depending on whether the
original (X ny Fno u) was a submartingale or martingale. Hence, when p(€2) = oo,
we simply choose a sequence {Q;}$° of mutually disjoint, u-finite elements of
Fo so that Q = J® Qk, work on each Q2 separately, and, at the end, sum the
results. [J

F'=F[V], F.=FQ), X,=X,19, and P=

Before moving on to see what can be said about martingales with values in
a Banach space, we will spend a little time seeing how Theorem 5.3.3 can be
applied to give simple proofs of basic facts in real analysis; and we will begin
with the following derivation of a famous estimate proved originally by Hardy
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and Littlewood. In order to describe their result, define the Hardy—Littlewood
maximal function Mf for f € L*(RY;R) by

.3.10 Mf(x) = sup — dy, xeRY,
(o ) f( ) Sapx|Q|/ |f(y)‘ y

where @ is used to denote a generic cube

N
(5.3.11) Q = []laj,a; +r) withaeRY andr >0
j=1

and we have introduced the notation |T'| to denote the Lebesgue measure of
[ € RV. As is easily checked, Mf : RY — [0, c0] is lower semicontinuous and
therefore certainly Borel measurable. Furthermore, if we restrict our attention
to nicely meshed families of cubes, then it is easy to relate M f to martingales.
More precisely, for each n € Z, the nth standard diadic partition of RV is
the partition P, of RV into the cubes

N
ki ki+1
3.12 C,(k) = =, = keZN.

(5.3.12) W=I] |5 ). ke

i=1
These partitions are nicely meshed in the sense that the (n+1)st is a refinement
of the nth. Equivalently, if F,, denotes the o-algebra over RN generated by the
partition P, then F, C Fn41. Moreover, if f € L'(RY;R) and

(5.3.13) Xi(x)= 2"N/ \f(y)' dy for x € Cp(k) and k € Z"V,
Chn(k)

then

(5.3.14) X =E*P[|f||F.] (ae., Leb)

for each n € Z. In particular, for each m € Z,
(X,{Hn,]-'ern,Leb), neN,

is a nonnegative martingale; and so, by applying (5.3.4) for each m € Z and
then letting m \, —o0o, we see that

(5.3.15) I{x: M© f > a}] < / Fy)dy, o€ (0,00),

{M©® f>a}
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where

©) f(x) = sup 4 . x e
M f(x) p{|Q|/Qf(y)dy GQGUP}

nez

At first sight, one might hope that it should be possible to pass directly from °
(5.3.15) to analogous estimates on the level sets of Mf. However, the passage -
from (5.3.15) to control on Mf is not so easy as it might at first appear: the -
“sup” in (5.3.10) involves many more cubes than the one in the definition of -
M@ f; and it is for this reason we will have to introduce additional families of
meshed partitions. Namely, for each n € {0,1}? set

—1)r
Pn(n) = {(3% +Chk): ke ZN},
where C, (k) is the cube described in (5.3.12). It is then an easy matter to check
that, for each n € {0,1}%, {’Pn(n) ine Z} is a family of meshed partitions of
RY. Furthermore, if :

™ £1(x) = su 1 ' X N
(M £](x) p{|Q|/Qlf(y)ldy €Qe UPn(n)}, eRY,

neZ

then exactly the same argument which (when 7 = 0) led us to (5.3.15) can now
be used to get

(5.3.16) Hx eRY : [M™f](x) > a}| < 1£(y)| dy,

1
(]
{M™ f>a}

for each € {0,1}" and a € (0,00). Finally, if Q is given by (5.3.11) and k

r < 3=, then it is possible to find an 5 € {0,1}"¥ and a C € Pn(n) for which '
Q C C. (To see this, first reduce to the case when N = 1.) Hence, :

(5.3.17) max M f <Mf<6Y max My,
ne{0,1}V ne{0,1}N

and so, after combining (5.3.16) and (5.3.17), we arrive at the following version
of the Hardy-Littlewood inequality !

(5.3.18) Hx eRN : Mf(x) > a}' <127 /RN If(y)] dy.

o

At the same time, because (cf. Exercise 1.4.20) (1.5.16) implies that

(m _P_
neI?an.i{}N ||M f“LP(RN) S p— 1 Hf”LP(RN)a pE (1700]7



§5.9: Some Extensions 305

we can also use (5.3.17) to get the useful estimate

12)N
(5319) ”MfHLp(RN) < ( ) 1p ”fHLP(RN)v pe (1700]

In this connection, notice that there is no hope of getting this estimate when
p = 1, since it is clear that

lim |x|V Mf(x) > 0
|x|—o00
whenever f does not vanish Leb-almost everywhere.

The inequality in (5.3.18) plays the same réle in classical analysis as Doob’s
inequality plays in martingale theory. For example, by essentially the same
argument as we used to pass from Doob’s inequality to Corollary 5.2.7, we obtain
the following famous Lebesgue Differentiation Theorem.

5.3.20 Theorem. For each f € L'(RV;R),

1
lim — — f(x)|dy =0
Jim o [ 17w) = f00]dy

for Leb-almost every x € RN,

(5.3.21)
where, for each x € RN, the limit is taken over balls B which contain x and
tend to x in the sense that their radii shrink to 0. In particular,

1
5.3.22 f(x) = lim ——/ f(y)dy for Leb-almost every x € RYV.
6322 S0 = tm = [ 5w) y
PROOF: We begin with the observation that, for each f € L'(RV; R),

Mf(X)Ezggﬁ/lglf(y)ldySnNMf(X), xe RV

where k,, = % with Qn = [BRN (0,1)|. Second, we remark that (5.3.21) for
every x € RV is trivial when f € C.(RV;R). Hence, all that remains is to check
that if f, — fin L'(R™;R) and if (5.3.21) holds for each fn, then it holds for

f. To this end, let € > 0 be given and observe that, because of the preceding
and (5.3.18),

{xe g [ 150 - ooy = o)

< |{x: M- 1) 2 £}

M T, i -l £
+ '{x: |fn(x) - f(x)| 2 %}

3
S_
€

(L + (2)Nen)||f = FullLrwy)
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for every n € Z*. Hence, after letting n — 0o, we see that (5.3.21) also holdg ‘f
for f. O

Although applications like Lebesgue’s Differentiation Theorem incline one to
think that (5.3.18) is most interesting because of what it says about averages
over small cubes, its implications for large cubes are also significant. In fact,
as we will see in Section 6.1, it allows us to prove Birkhoff’s Individual Ergodic
Theorem (cf. Theorem 6.1.8), which may be viewed as differentiation at infinity.
The link between ergodic theory and the Hardy-Littlewood Inequality is found in
the following deterministic version of the Maximal Ergodic Lemma (cf. Lemma
6.1.2). Namely, let {ax : k € ZN '} be a summable subset of [0,00) and set

1
~ Zaj“" n € Nand k € ZV,

50907 W J€Qn

where Q,, = {j €eZVN: n<j<nfor1<i< N}. By applying (5.3.18) and
(5.3.19) to the function f given by (cf. (5.3.12))

f(x) =ax when x € Cy(k),

we see that

< (12)% Z ax, a € (0,00),

o
kezZN

(5.3.23) Hk eZV : sup S,(k) > a}

nezZ+t

(on the left-hand side of (5.3.23), we have used |I'| to denote the cardinality of

the set I') and
(5.3.24) (Z sup |§n(k)]”) (Z |akv’)
kEZNneZ+ kezZN

for each p € (1,00]. The inequality in (5.3.23) is called Hardy’s Inequality.
Actually, Hardy was drawn to this line of research by his passion for the game
of cricket. What Hardy wanted to find is the optimal order in which to arrange
batters to maximize the average score per inning. Thus, he worked with a
nonnegative sequence {a}5° in which a; represented the expected number of
runs scored by player k, and what he showed is that, for each a € (0, 00),

Hk €N: sup S,(k) > a}

nezZt

is maximized when {a, }$° is nonincreasing; from which it is an easy application
of Markov’s inequality to prove that

‘{keN sup Sy (k) }. Zak, a € (0,00).

n€zZt
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Although this sharpened result can also be obtained as a corollary the Sunrise
Lemma,T Hardy’s approach remains the most appealing.

The preceding development for the Hardy-Littlewood maximal function con-
tains all the ingredients which are required to introduce another basic tool of real
analysis: the Calderén-Zygmund decomposition of a function f € LY(RV;R).
Indeed, everything that one needs to carry out their decomposition is contained
in the following simple application of (5.3.15) and Theorem 5.3.20.

5.3.25 Lemma. Let f € L'(RV;R) be given. For each R € (0,00) there is an
at most countable collection Q(R) of mutually disjoint cubes with the properties
that

IfI<R (ae., Leb) off of | Q(R), \U Q(R)i < lfHL%N_)’

and

1 N
|Z2_|/Q|f(y)\dy§2 R for each Q € Q(R).

PROOF: Define X/ as in (5.3.14) and set

B, = {x . sup X/ (x) < R and X/ (x) > R} for n € Z.

m<n

Clearly B,nNBy, = 0 for m # n; and, because By, € 0(Pr), either B,, = (@ or there

is a subset Q,(R) C P, whose union is B,,. In particular, Q(R) = U, ¢z Qn(R) is

an at most countable set of mutually disjoint cubes whose union is B = |J,,cz Bn-
To see that Q(R) has the required properties, we first note that, because

sup X7 (x) <27™"N||fllp@yy — 0 asn— —oo,
xERN

B= {supX,{(x) > R} .
nez
In particular, by Theorem 5.3.20,

|7(x)] <supXf(x) <R for Leb-almost every x ¢ B.
nez

Furthermore, by (5.3.15), |B| < W”L%N). Finally, if Q € Q(R), x € @, and Q'
18 the element of P,_; which contains @, then

L ﬁ —9oNxf (x N
g L1y < o [ 1wy =2 X0 < 2" R O

tsee Lemma 3.4.5 in my A Concise Introduction to the Theory of Integration, 3rd edition,
bublished by Birkhauser in 1998.
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5.3.26 Theorem (Calderén—Zygmund Decomposition). Let E be a sepa~ ?
rable Banach space and f € L'(RV; E). Then, for each R € (0, 0c), there existg..

an at most countable collection Q(R) of mutually disjoint cubes @), a function g
g € L*(RV; E), and functions {hg : Q € Q(R)} C L'(RY; E) such that !

[F{FAY:%>
lUQ l # and ||gll72y 5y < 27 RIflL = m),
hg =0 off Q and /hQ(y)dy:() for each Q € Q(R),
Q

Z Ihgllzmyy < 2(|f]l L1 @y,

QEQ(R)
and
f=g+ > heg
QeQ(R) 4

PROOF: Choose Q(R) for ||f||z and R as in Lemma 5.3.25, set B = {J Q(R),
define ‘

f off of B

g =

|Q|fQ y)dy onQ € Q(R),

and take

1
hg = (f - /Qf(y) dy) 1o for Q € Q(R).

In view of Lemma 5.3.25, all that we have to do is check that the required esti-
mates hold for ||g|| 2 &~ ;5) and {“hQ“Ll(RN E)} But, obviously, ||g||z1 &~ ;5) < ’
”f“Ll(RN JE)» and so 4

> Ihglipiay ey = If — glloieye) < 20fll @y p)-
QeQ(R)

In addition, by Lemma 5.3.25, ||g||z= @~ ,z) < 2V R. Hence, since

Hg”iz(RN;E) < llgllz ;e |18l @5 £y,
we are done. [

Since they take us somewhat far afield, we will postpone the applications of
Theorem 5.3.26 until Section 6.2.

We turn next to Banach space valued martingales. Actually, everything except -
the easiest aspects of this topic becomes extremely complicated and technical '
very quickly, and, for this reason, we will restrict our attention to those results ’
which do not involve any deep properties of the geometry of Banach spaces. In
fact, the only general theory with which we will deal is contained in the following.
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5.3.27 Theorem. Let E be a separable Banach space and (Xn,]:mﬂ) an E-
valued martingale. Then (||X,| g, Fn,#) is a nonnegative submartingale and
therefore, for each N € 7t and all o € (0,00),

1
5328 (s IXlle2a) < 22 [1Xnle, s Xl >
0<n< o 0<n<N

In particular, for each p € (1, 00|,

(5.3.29) <

Lr(p)

sup “Xn”E
neN

p
[ Sup 1Xnllp (i)
— 1 neN

Finally, if X € LP(u; E) for some p € [1,00), then

o0

\/ } both (a.e., ) and in LP(u; E).

(5.3.30)  E*[X|F,] —E* [

ProoF: The fact (||Xn|g, Fn,p) is a submartingale is an easy application of
the inequality in (5.1.25); and, given this fact, the inequalities in (5.3.28) and
(5.3.29) follow from (5.3.4) and (5.3.5), respectively.

While proving the convergence statements, we may and will assume that F =
V& Fn. Now let X € LP(u; E) be given, and set X, = E[X|Fy], n € N.
Because of (5.3.28) and (5.3.29), we know (cf. the proofs of Corollary 5.2.7 and
Theorem 5.3.20) that the set of X for which X, — X (a.e., ) is a closed
subset of LP(u; E). Moreover, if X is p-simple, then the p-almost everywhere
convergence of X,, to X follows easily from the R-valued result. Hence, we
now know that X,, — X (a.s, ) for each X € L(p; F). In addition, because
of (5.3.29), when p € (1,00), the convergence in LP(y; E) follows by Lebesgue s
Dominated Convergence Theorem. Finally, to prove the convergence in LY(u; E)
when X € L'(u; E), note that, by Fatou’s Lemma,

Xt ;) < nli_}_n; 1XnllLt (usE)
whereas (5.1.25) guarantees that
X L1 (p;) > n@o 1Xnllz1(u;E)-
Hence, because
IXnllz = Xz = 1Xn = Xlle | < 2IX]8,

the convergence in L!(u; E) is again an application of Lebesgue’s Dominated
Convergence Theorem. O



310 V: Conditioning and Martingales

As an application of the preceding, we will close this section with a proof
that the sort of procedure discussed in Theorem 4.2.28 and Exercise 4.2.38 can
be carried out in complete generality (cf. Remark 5.3.36 below). That is, let
H be an infinite dimensional, separable, real Hilbert space, and suppose that
(6,H, Wr) is an abstract Wiener space (cf. the discussion preceding Remark
4.2.6) with the property that § € © — [|0]|§ € [0,00) is Wh-integrable for
every p € [1,00). Actually, by a beautiful result proved by X. Fernique, this
latter integrability assumption will always be satisfied, since his theorem says
that there will always exist an o € (0, 00) with the property that

/@ exp[al0]3] Wi (46) < .

Next, choose an orthonormal basis {h, }3° for H, and define (cf. the last part of "
Theorem 4.2.4)

3

(5.3.31) Xn(0) = Y [Z(hm)](0) hm, n€Nandbe€®.

m=0

5.3.32 Theorem. Referring to the preceding discussion, one has that

(5.3.33) X,.(0) 250  both (a.s.,Wg) and in LP(Wg; ©)

for every p € [1,00). In particular, there is a measurable function F' : RN —©
such that

Z T hm =N F(x) for y1N-almost every x € RY, and Wy = F. .

m=0

PRrRooOF: Let F, denote the o-algebra over © generated by the maps Z(hm),
0 < m < n, set Foo = Vo Fn, and, let X be a representative of the Wa-
conditional expectation of 6 given F,,. Our proof of (5.3.33) will involve two
steps: the identification of X,, as a representative of the Wy-conditional expecta-
tion of § given F,, and a proof that X(#) = 0 for Wir-almost every 6 € ©. Indeed,
in conjunction with Theorem 5.3.25, the first of these shows that X,, — X both
Wi-almost surely and in LP(Wg; ©) for every p € [1,00), and so (5.3.33) will
follow immediately after one combines these two steps.

Since X,, is obviously F,-measurable, to prove that X,, is a representative of
EWH [§]F,] it suffices to show that, for each A € O, (X,,A) is a representative
of EW# [(-, )\)I}'n]. But, by the last part of Theorem 4.2.4, for any A € ©7,

3

(- A) = (X, A = Z(ha) = D (has hm) 1 Z(Am)

m=0
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is independent of F, under Wy, and therefore (cf. (iv) of Exercise 5.1.28)
(Xn, A) is a Wy-conditional expectation of (-, A) given F,.

To see that X(#) = 6 for Wy-almost every 6 € ©, we need only check that
Be is contained in the Wg-completion of Foo. To this end, recall that Be is
generated by the maps 6 € © — (0, A) as A runs over ©*. Thus, we need only
show that each <-,)\> can be expressed as the Wpy-almost sure limit of Fo.-
measurable functions. But if A € ©*, then, again by the last part of Theorem
4.2.4,

n

B [[(-.A) = (K W] = Ihally = D (b2 b}y — 0.

Hence, because ((Xn,A), Fn, P) is a martingale, (X, A) — (-, A) Wy-almost
surely.

The second part of the theorem is a more or less immediate consequence of
the first part. Namely, define

F,(x) = Z Zmhm forneNand x € RY.
m=0

Then, the map

x € BY v— (Fo(x)y-- -, Fu(x),...) € OF
has the same distribution under 1" as

0c0r— (Xo(0),...,Xn(0),..-) € oV

has under Wg. In particular, by the preceding, this means that there is a
measurable F : RY — © such that

F(x) = nli_r};o F,(x) for v N-almost every X € RY,

and x € RY +— F(x) € © has the same distribution under 1" as 6 has under
Wyg. O

5.3.34 Corollary. Let H(R) be the Hilbert space described in (4.2.2) and O(R)
the Banach space in (4.2.12) when N = 1. Then, for every choice of orthonormal
basis {h,,}§° for H(R),

> [Z(hm)](0) by — 0

m=0

—+0 both (as., W) and in LP(W;R)
O(R)

for every p € [1,00). In particular, for each choice of {h,}§°, there is a measur-
able F : RN — O(R) such that W = F. 7Y and

30 both for 71" -almost every x € R
O(R)

Zn: Ty — F(X)
m=0

and in L?(yV;R) for every p € [1,00).
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ProoF: All that we have to do is verify that all powers of ||f|le® are W-
integrable; and we will do this by checking (in this case, by hand) the estimate
of Fernique alluded to above. But, by (3.3.30),

W(0llew > R) ZW< sup [6(t)| > nR)

te[0,n]
> R? e T
<2 exp [—n——] =2 ,
,; 2] T1-e%
and therefore
(5.3.35) /e . exp|a6l13 g | W(d6) < o0

for some a € (0,00). In particular, this certainly means that all powers of :
|6llex) are W-integrable. U

5.3.36 Remark: It should be pointed out that although Corollary 5.3.32 might
seem to say that Wiener’s task would have been essentially trivial had he had
Theorem 5.3.27 available to him, the fact is that Corollary 5.3.34 would have .
been no help to him. Indeed, Wiener was trying to prove that W exists at all, :
whereas Corollary 5.3.34 only says that, once one knows it exists, there are lots -
of ways to represent W as the image of ;.

S S e

Exercises

5.3.37 Exercise: In this exercise, we will develop Jensen’s inequality in the
Banach space setting. Thus, (€, F, P) will be a probability space, C will be a
closed, convex subset of the separable Banach space E, and X will be a C-valued
element of L'(P; E).

g i o SR N i

(i) Show that there exists a sequence {X,}{° of C-valued, P-simple functions
which tend to X both P-almost surely and in L'(P; E). Y

(ii) Show that EP[X] € C and that
EP [9(X)] < 9(E7[X])

for every continuous, concave g : C — [0, 00).
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(iii) Given a sub-g-algebra ¥ of F, follow the argument in Corollary 5.2.14 to
show that there exists a sequence {P, }§° of finite, ¥-measurable partitions with
the property that

EP[X, 4] p o1l
Z “PA) 14 — EP[X|X] both P-almost surely and in L (P;E).
AEPn

In particular, conclude that there is a representative Xs of E? [X|X] which is
C-valued and that

EF [¢(X)|2] < 9(Xs) (as., P)

for each continuous, convex g : C — [0, 00).

5.3.38 Exercise: Again let (2, F, P) be a probability space and E a separable,
real Banach space. Further, suppose that {F,}§° is a nonincreasing sequence of
sub-c-algebras of F, and set Foo = (g Fn- Finally, let X € LY(P;E).

(i) Show that
EF [X|F,] — E”[X|F] both P-almost surely and in LP(P; E)

for any p € [1,00) with X € LP(P; E).

Hint: Use (5.3.28) and the approximation result in Theorem 5.1.20 to reduce
to the case when X is P-simple. When X is P-simple, get the result as an
application of (iii) in Exercise 5.2.40.

(ii) Using part (i) and following the line of reasoning given in part (iv) of Exercise
5.2.40, give another proof of The Strong Law of Large Numbers for E-valued
random variables. (See Exercise 3.1.21 for an entirely different approach.)

5.3.39 Exercise: As we saw in the proof of Theorem 5.3.20, the Hardy-
Littlewood maximal function can be used to dominate other quantities of in-
terest. As further confirmation of its importance, we will use it in this exercise
to prove the analogue of Theorem 5.3.20 for a large class of approximate identi-
ties. That is, let ¥ € L}(RY;R) with [y 9 dx = 1 be given, and set

(5.3.40) de(x) =tV (X)), te(0,00)andx € RY.

Then {¢; : t > 0} forms an approximate identity in the sense that, as
tempered distributions, 1; — o as t \, 0. In fact, because

ek fllze@yy < Nllpiwey | flle@yy, € (0,00) and p € (1, 00},
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and

vk f(x)= [ ¥(y) f(x—ty)dy,

RN
it is easy to see that, for each p € [1,0),

Rﬁ%“%*f = Flloery =0

first for f € C.(RY;R) and then for all f € L?(R";R).
The purpose of this exercise is to sharpen the preceding under the assumption
that

P(x) =a(lx]), x€RY\{0} for some a € C*((0,00);R) with

3.41
(5:3.41) AE/ Vo (r)]| dr < .
(0,00)

Notice that when « is nonnegative and nonincreasing, integration by parts shows
that A = N.

(i) Let f € C’C(RN;]R) be given, and set

f(r,x) = / y)dy forr € (0,00) and x € RY.
|BRN | RN(xr

Using integration by parts and the hypotheses in (5.3.41), show that

ek f(x) = —ﬁ/(g) o (r) F(tr, %) dr

and conclude that

|9k f(x)] < & Mf(x),

where M is the quantity introduced at the beginning of the proof of Theorem
5.3.20. In particular, conclude that there is a constant Ky € (0, 00), depending
only on N € Z*, such that

(5.3.42) M, f(x) = sup |¢t*f )| < KnAMf(x), xe€RN.
te(0

OO

(ii) Starting from (5.3.42), show that

(I2)NKNA||fll L zv)

(5343)  |{x: Myf(x) > R}| < . ,

f e IMRY;R),
and that for p € (1, 00],

(12)N KNAP

(5344)  [|Myf s n) < ey, f € LP(RY;R).
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Finally, proceeding as in the proof of Theorem 5.3.20, use (5.3.43) to prove that,
for Leb-almost every x € RV .

i [k f(x) — ()]
(5.3.45) .
<hm [ ) (fx-y) - f(x))|dy = o0.
RN

Two of the most familiar examples to which the preceding applies are the
Gauss kernel (cf. (1.3.5)) ¥V (notice that the notation ; used previously corre-
sponds to 7, in the convention used here) and the Poisson kernel (cf. (4.3.50))
p(N). In both these cases, A = N.

5.3.46 Exercise: Let E be a separable Hilbert space and (X,,F,P) an E-
valued martingale on some probability space (€2, F, P) satisfying the condition

(5.3.47) sup EF [uxnug] < 0.
n€eZ+

Proceeding as in (i) of Exercise 5.2.27, first prove that there is a \/{° F,,-measur-
able X € L2(P; E) to which {X,}$° converges in L?(P; E), next check that

X, =EP[X|F,] (as.,P) for each n € Z*,

and finally apply the last part of Theorem 5.3.27 to see that X,, — X P-almost
surely.



Chapter VI:

Some Applications of Martingale Theory

§6.1: The Individual Ergodic Theorem

This chapter contains various applications of the ideas and results in Chapter 5,
the first being an application of Hardy’s Inequality (cf. (5.3.23)) to the derivation
of Birkhoff’s Individual Ergodic Theorem.'

The setting in which we will prove the Ergodic Theorem will be the following.
(Q,F,u) will be a o-finite measure space on which there exits a semigroup
{Zk : k e NV } of measurable, y-measure preserving transformations.
That is, for each k € NV, ¥¥ is an F-measurable map from  into itself, £° is
the identity map, Z¥+¢ = Xk o B¢ for all k, £ € NV and

w(l) = u((Z*)"YT)) foralke NandT € F.

Further, F will be a separable Banach space with norm || - ||g; and, given a
function F' :  — E, we will be considering the averages

. 1 k +
(6.1.1) AnF(w) = — Y Fox*w), nelZt,
keQy

where Q7 is the cube {k € NV : |k|| < n} and |/k|| = max,<j<n k;. Our goal
(cf. Theorem 6.1.8 below) is to show that for each p € [1,00) and F € LP(u; E),
{A,F}° converges p-almost everywhere. In fact, when either u is finite or
p € (1,00), we will show that the convergence is also in LP(u; E).

The key to proving this result is contained in the following weak-type inequal-
ity.
6.1.2 Lemma (Maximal Ergodic Lemma). For each n € Z*, A,, is a con-
traction on LP(u; E) for every p € [1,00). Moreover, for each F € LP(u; E):

24)N
(6.1.3) u(sggnAnFnsz)s( Pl A€ (0,09),

 The statement which we prove here is due to N. Wiener. The idea of using Hardy’s Inequality
was suggested to P. Hartman by J. von Neumann and appears for the first time in Hartman’s
“On the ergodic theorem,” Am. J. Math. 69: 193-199 (1947).

316
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or

(6.1.4) i

<
Lr(u)
depending on whether p =1 or p € (1,00).

Sl;li“AnF”E “F”L"(u E)s

PROOF: First observe that it suffices to prove all of these assertions in the case
when E = R and F is nonnegative. Thus, we will restrict ourselves to this case.
But then F o XX has the same distribution as F itself, and so the first assertion
is trivial. To prove (6.1.3) and (6.1.4), let n € Z be given, apply (5.3.23) and

(5.3.24) to
() = FoX¥(w) ifkeQF,
akw_{o 1fk¢Q-2’_n7
and conclude that
cutw =kt s antro 021
(12)¥ k
<5 > FoX¥w)
keQy,

and

Kk P (12)Vp\” Kk P
1I§nn?}g(n(Am(Foz )(w)) < ( Z (FOZ (w)) .
keQy keQ3,
Hence, by Tonelli’s Theorem,

Z @ (1?£§nAm(Fozk) > /\) = /Cn(w) p(dw)

keQy

IA

12)¥

(A) > /Fozkfdu
keQ;n

and, similarly,

p
> [ s (antrom) s (D) 2 [(ren) o
keQy keQy,

Finally, since the distributions of max)<m<n Am (F ) Zk) and F o X¥ do not
depend on k € NV, the preceding lead immediately to

(24)Y
> <
H (12173}5(71 Anf' 2 /\) - A ()
and
27 (12)
max AnF < ——”F||Lz’(u)
1<m<n LP(w) 1

for all n € Z*+. Thus, (6.1.3) and (6.1.4) follow after one lets n — oo. U
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Given (6.1.3) and (6.1.4), we adopt again the strategy used in the proof of
Corollary 5.2.7. That is, we must find a dense subset of each LP-space on which
the desired convergence results can be checked by hand, and for this purpose we
will have to introduce the notion of invariance.

A set T' € F is said to be invariant, and we write I' € J, if I' = (Ek)‘l(I‘)
for every k € NV, As is easily checked, J is a sub-c-algebra of F. In addition, it
is clear that I' € F is invariant if I' = (£ )~!(T') for each 1 < j < N. Finally,
if 7 is the p-completion of J relative to F in the sense that I' € J if and only if
' € F and there is I’ € J such that u(T'AT) = 0 (AAB = (A\B)U(B\ A) is .
the symmetric difference between the sets A and B), then an F-measurable f
F : Q — E is T' is J-measurable if and only if F = F o T (a.e., u) for each
k € NV. Indeed, one need only check this equivalence for indicator functions of
sets. But if I' € F and u(T'AT) = 0 for some T' € 3, then

p(TAES)™T)) < u((E9) 7 (TAD) +u(PAT) =0,
and so I’ € J. Conversely, if I' € J, set
r= U @9,
keNy
and check that T' € J and u(TAT) = 0.

6.1.5 Lemma. Let J(E) be the subspace of J-measurable elements of L(y; E). -
Then, 3(E) is a closed linear subspace of L?(u; E). Moreover, if Ilyx) denotes
orthogonal projection from L?(yu;R) onto J(R), then there exists a unique linear
contraction Iy gy : L?(u; E) — J(E) with the property that Iy gy(af) = v‘
allyg f fora € E and f € L?(u;R). Finally, for each F € L*(u; E), "‘

(6.1.6) A F — IIypF (ae., u) and in L*(u; E).

PROOF: We begin with the case when E = R. The first step is to identify the
orthogonal complement J(R)* of J(R). To this end, let ' denote the subspace
of L?(u;R) consisting of elements having the form g — g o £ for some g €
L2(;R) N L (w;R) and 1 < j < N. Given f € J(R), observe that

(f,g —go Eej)Lz(“) = (f’g)LZ(u) - (f Ozetho Eej)[?(“) =0.

Hence, N' C J(R)1. On the other hand, if f € L?(u;R) and f L N, then it is
clear that f L f — f o 3% for each 1 < j < N and therefore that

2
Hf - f o X% I|L2(u;R)
, 2
= 1132 (um — 2(f, F o EeJ)LZ(u;IR) +[fo Ee]l‘Lz(u;R)

_ 2(||f|12LZ(”) _ (f,fozej)LZ(“)) =2(f,f = fo%%) 5, = 0.
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Thus, for each 1 < j < N, f = f o £ p-almost everywhere; and, by induction
on ||k||, one concludes that f = f o X* p-almost everywhere for all k € NV,
In other words, we have now shown that J(R) = N L. or, equivalently, that
N = I(R).

Continuing with E = R, next note that if f € J(R) then A,f = f(ae., p)
for each n € Z*. Hence, (6.1.6) is completely trivial in this case. On the other
hand, if g € L?(u;R) N L®°(u;R) and f =g — g o ¥, then

nVA,.f = Z goEk— Z goEk+ej,

{k€Qy; :k;=0} {k€Qy k;=n}
and so, with p € {2, 00},

4|9l e (usr)
n

||Anf||Lp(H;R) S — 0 asn— .
Hence, in this case also, (6.1.6) is easy. Finally, to complete the proof for £ = R,
simply note that, by (6.1.4) with p =2 and E = R, the set of f € L?(u;R) for
which (6.1.6) holds is a closed linear subspace of L?(u;R) and that we have
already verified (6.1.6) for f € J(R) and f from a dense subspace of J(R)L.
Turning to general E’s, first note I3z F is well-defined for p-simple F’s.
Indeed, if F = Y% a;1r, for some {a;}{ C E and {I;}% of mutually disjoint
elements of F with finite y-measure, then

£
HJ(E)F = Z a,-H;,(R) lri
1

and so

2

¢
HHJ(E)F“iz(H;E) S/(Z “az'HEHJ(R)ID) dp
1
) 2
LIETE (Z ||az'||E1Fi>
1

¢
< Z llai||Eu(Ts) = ||F||2Lz(u;E)-
1

L2(u;R)

Thus, since the space of y-simple functions is dense in L?(u; E), it is clear that
H:;( £) not only exists but is also unique.

Finally, to check (6.1.6) for general E’s, note that (6.1.6) for E-valued, p-
simple F’s is an immediate consequence of (6.1.6) for E = R. Thus, we already
know (6.1.6) for a dense subspace of L?(u; E); and so the rest is another simple
application of (6.1.4). O
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For general p € [1,00), let 3P(E) denote the subspace of J-measurable elements
of LP(u; E). Clearly 37(E) is closed for every p € [1,00). Moreover, since

(617) H(Q) <0 = Hj(E)F =R+ [F.j]

whenever p is finite, II(p) extends automatically as a linear contraction from
LP(u; E) onto 37(E) for each p € [1,00), the extension being given by the right-
hand side of (6.1.7). However, when u(E) = oo, there is a problem. Namely,
because p | J will seldom be o-finite, it will not be possible to condition ¢ with
respect to J. Be that as it may, (6.1.6) provides an extension of II3(). Namely,
from (6.1.6) and Fatou’s Lemma, it is clear that, for each p € 1, 00),

Iy Fll o iy < WF v uimys  F € LP(s E) NL*(u; E);

and therefore the desired extension follows by continuity.
6.1.8 The Individual Ergodic Theorem. For each p € [l,00) and F €
LP(; E):

Moreover, if either p € (1,00) or u(Q) < oo, then the convergence in (6.1.8) is
also in LP(p; E). Finally, if u(T') € {0, u(Q)} for every T € 3, then (6.1.9) can
be replaced by

E+[F] . .
(6.1.10) lim A, F = 1(§2) if u(@) € (0,0) (ae., ),
0 if u(Q) = oo

and the convergence is in LP(u; E) when either p € (1,00) or p(€2) < oo.

PROOF: As we said above, the proof is now an easy application of the strategy
used to prove Corollary 5.2.7. Namely, by (6.1.3), the set of F € L'(u; E) for
which (6.1.9) holds is closed and, by (6.1.6), it includes L'(y; E) N L™ (u; E)-
Hence, (6.1.9) is proved for p = 1. On the other hand, when p € (1,00),
(6.1.4) applies and shows first that the set of ' € LP(u; E) for which (6.1.9)
holds is closed in LP(u; E) and second that p-almost everywhere convergence
already implies convergence in L?(u; E). Hence, (6.1.9) has been proved, and the
convergence is in LP(u; E) when p € (1, 00). In addition, when u(T') € {0, u()}
for all T' € 3, it is clear that the only elements of JP(E) are p-almost everywhere
constant, which, in the case when u(f2) < co means (cf. (6.1.7)) that

E+[F]
uw(Q)’

and, when u(Q) = oo, means that J?(E) = {0} for all p € [1, 00).

Oye F =
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In view of the preceding, all that remains is to discuss the L!(u; E)-conver-
gence in the case when p = 1 and p(f2) < oo. To this end, observe that,
pecause the A,’s are all contractions in L*(u; E), it suffices to prove L'(u; E)-
convergence for E-valued, p-simple F’s. But L'(p; E)-convergence for such
F’s reduces to showing that A,f — Iy®f In L'(u;R) for nonnegative f €
L>=(u;R). Finally, if f € L*(p; [0, 00)), then

Al = 1fllzig = M@ fllzrwr, n€ A

where, in the last equality we used (6.1.7); and this, together with (6.1.6), implies
convergence in L'(p). O

We say that semigroup {Ek : k € NV} is ergodic on (Q, F, p) if, in addition
to being p-measure preserving, u(T') € {0, u()} for every invariant I' € F.

6.1.11 Classic Example: In order to get a feeling for what the Ergodic The-
orem is saying, take i to be Lebesgue’s measure on the interval [0,1) and, for a
given a € (0, 1), define 3, : [0,1) — [0,1) so that

(6.1.12) Siw=wta—[wt+al =w+amodl.
If o is rational and m is the smallest element of Z*+ with the property that

ma € Z+, then it is clear that, for any F on [0,1), F o £, = F if and only if F
has period L. Hence, if F' € L2([0,1);C) and

(6.1.13) c(F) = / F(w)e_\/__”"e“’ dw, L€,
[0,1)

then elementary Fourier analysis leads to the conclusion that, in this case:

lim A, F(w) = Z Come(F)eY T 2mére

n—00
L€z

for Lebesgue-almost every w € [0,1).

On the other hand, if « is irrational, then {2’; : k € N} is p-ergodic on [0,1). To
see this, suppose that F' € J(C). Then (cf. (6.1.13) and use Parseval’s identity)

0= ||F ~ FoSaljaqone = 2 lce(F) —ce(Fo )|
L€Z

But, clearly,
ce(FoX,)= eV-12mtac, (F), L€,
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and so (because « is irrational) c(F) = 0 for each £ # 0. In other words, the only
elements of J(C) are p-almost everywhere constant. Thus, for each irrational
€ (0,1), p € [1,00), separable Banach space E, and F € L?([0,1); E):

lim A, F :/ F(w)dw
(6114) n—oo [0 1)

Lebesgue-almost everywhere and in LP(u; E).

Finally, notice that the situation changes radically when we replace [0,1) by
[0,00) and again take p to be Lebesgue’s measure. If we continue to define
3. (w) as in (6.1.12), only now for all w € [0,00), then it is clear that no choice
of a leads to ergodicity: [0,1) will always be a nontrivial invariant set. In
addition, for any p € [l,00) and F € LP(u; E), the limit behavior of A, F in
the present setting will be the same as the limit behavior of A, (I[O,I)F ) in the
preceding. On the other hand, if we define 3, (w) = w + a, then every invariant
set which has nonzero measure will have infinite measure, and so, now, every
choice of a € (0,1) will give rise to an ergodic system. In particular, we will
have, for each p € [1,00) and F € LP(u; E),

lim A,F =0 Lebesgue-almost everywhere;
n—o0

and the convergence is in L?(u; E) when p € (1, 00).

For applications to probability theory, it is useful to reformulate these consid-
erations in terms of stationary families of random variables. Thus, let (2, F, P)
be a probability space and (E, B) a measurable space (E need not be a Banach
space). Given a family § = {Xx : k € NV} of E-valued random variables on
(Q, F, P), we say that ¥ is P-stationary (or simply stationary) if, for each
£ € NV | the family

(6.1.15) Fe={Xiye: ke NV}

has the same (joint) distribution under P as § itself. Clearly, one can test for
stationarity by checking that distribution of §e; is the same as that of § for each
1 < j < N. In order to apply the considerations of this section to stationary
families, note that all questions about the properties of § can be phrased in
terms of the following canonical setting . Namely, set E = EN and define N
on (E, BY ) to be the image measure §*P. In other words, for each I' € BN
u(T) = P(F € ). Next, for each £ € NV, define £¢ : E — E to be the
natural shift transformation given by

(6.1.16) »¢(x)x = e for allk € NV and x € E.

Obviously, stationarity of § is equivalent to the statement that {X¥ : k € NV}
is p-measure preserving. Moreover, if J is the o-algebra of shift invariant
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elements T' € BY' (ie., T = (x) () for all k € NV), then, for any Banach
space B, any p € [1,00), and any F € LP(u; B):

(6.1.17) "132""_Nk§+FOSk -F [FOS‘& ]

(a.s., P) and in LP(P; B).

In particular, when {2“ : ke NV } is ergodic on (E BY ), we say that the
family § is ergodic and conclude that (6.1.17) can be replaced by

. 1 .
(6.1.18) nlgr;o ~ Z+ Fo3y=EP[FoJ| (as,P)andin LP(P;B).
keQn

So far we have discussed one-sided stationary families, that is families indexed
by NV. However, for various reasons (cf. Theorem 6.1.20 below) it is useful
to know that one can usually embed a one-sided stationary family into a two-
sided one. In terms of the semigroup of shifts, this corresponds to the trivial
observation that the semigroup {Ek k ¢ NV } on E = EN" can be viewed as
a sub-semigroup of the group of shifts {Ek kezZV } on E = EZ". With these
comments in mind, we have the following.

6.1.19 Lemma. Assume that E is a Polish space and that § = {Xi : k € NV}
is a stationary family of E-valued random variables on the probability space
(Q,F,P). Then there exists a probability space (Q F, P) and a family =
{Xx : k € ZV} with the property that, for each £ € VAR

Se = {X}H_g: k € NN}

has the same distribution under P as § has under P.

Proor: When formulated correctly, this theorem is an essentially trivial ap-
plication of Kolmogorov’s Extension Theorem (cf. part (iii) of Exercise 3.1.18).
Namely, for n € N, set

={keZV:k;>-nforl1 <j<N},
and take
Ey= E% and E,=E*\A-1 forneZt.

Clearly E,, = EA» =[] Em. Moreover, if n = (n,...,n) and p ) is defined
on E, by
pon (L) = P(EFel) for T € Bg,,
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then it is a trivial consequence of stationarity that
N[o,n+1](En+1 X F) = N[o,n](F) foralln e Nand I’ € Bg,,.

Hence, by Kolmogorov’s Extension Theorem, there is a unique Borel probability
measure P on Q = EZ" = [1° Er such that

P(E*"\A» x T) = g (T) forallneNandT € Bg,.

In other words, if we define Xy (&) = @y for k € ZV and & € €, then we are
done. O

As an example of the advantage which Lemma 6.1.19 affords, we present the
following beautiful observation made by M. Kac.

6.1.20 Theorem. Let (E,B) be a measurable space and {X} : k € N} a sta-
tionary sequence of E-valued random variables on the probability space (Q2, F, P).
Given I' € B, define the return time

pr(w) =inf{k > 1: Xx(w) €T}.
Then,
(6.1.21) E” [pr, Xo € T} = P(Xj €T for some k € N).
In particular, if {Xy : k € N} is ergodic, then
(6.1.22) P(Xo€l)>0 = EP[pr, XoeT| =1

PROOF: Set Uy = 1proXy for k € N. Then {Uy : k € N} is a stationary sequence
of {0, 1}-valued random variables. Hence, by Lemma 6.1.19, we can find a prob-
ability space (Q,}' , 13’) on which there is a family {Uy : k € Z} of {0,1}-valued
random variables with the property that, for every n € Z, (Un, .. .,Un+k, . )

has the same distribution under P as (Up,...,Ug,...) has under P. In particu-
lar,

P(per,XoEF):P(U():l)
Plor>n+1,X0el)=P(U_,=1,U_n41 =0,...,Up=0), neZ’.
Thus, if
Ar(@) =inf{k € N: U_¢(@) =1},

then A
P(pr 2 n, Xo €T) =P(Ar=n-1), neZt
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and so A
EP [pr, Xo € T] = P(Ar < 00).
Finally, note that
P(Ar>n)=P(0_,=0,....00=0)=P(Xo ¢T,....Xn ¢ 1),
from which it is clear that
P(Ar <o0) =P(BkeNX;eT).

To handle the case when {X}, : k € N} is ergodic and T' € B satisfies P(X, €
I') > 0, simply note that, by (6.1.18), 3o 1r (Xk) = oo P-almost surely and
therefore that the right-hand side of (6.1.21) is 1. U

We turn now to the setting of continuously parameterized semigroups of trans-
formations. Thus, again (Q,F,u) is a o-finite measure space and {E‘ tt €

[0, o)V } is a measurable semigroup of y-measure preserving transformations on
Q). That is, X° is the identity, 57t = X% o X,

(t,w) € [0,00) x Q+— BH(w) € Q  is Byg o)v X F-measurable,

and (Et)*u = u for every t € [0,00)". Next, given an F-measurable F' with
values in some separable Banach space E, let &(F) be the set of w € { with the
property that

/ |F o=t (w)||gdt < oo forall T € (0,00).
0.7~

Clearly,
(6.1.23) w € BF) = Ttw) € B(F) foreveryte [0,00)".
In addition, if F € LP(u; E) for some p € (1,00), then

/ (/ |F o =), dt) p(dw) = TN FII, ) < 00
Q 0,7~
and so

Fe |J IPWE) = u(QS(F)C) ~0.
p€fl,00)
Next, for each T € (0,00), define

TN FoXt(w)dt ifwe &F)
(6.1.24) ArF(w) = Joys

0 if w ¢ B(F).
Note that, as a consequence of (6.1.23),
(6.1.25) (ArF) o B¢ = Ap(Fo3*) for all t €[0,00)".

Finally, use 3 to denote the o-algebra of I' € F with the property that I' =
(2)=1(T) for each t € [0,00)", and say that {E*: t € [0,00)"} is ergodic if
() € {0,u()} for every I' € 3.
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6.1.26 Theorem. Let (0, F,u) be a o-finite measure space and {Z* : t ¢
[0,00)¥} be a measurable semigroup of p-measure preserving transformations -
on Q. Then, for each separable Banach space E, p € [1,00), and T € (0, 00),
Ar is a contraction on LP(u; E). Next, set Hj(E) = Iyg) o A1, where II:,(E)

is defined in terms of {¥¥ : k € NV} as in Theorem 6.1.8. Then, for each
p€[l,o0) and F € LP(; E):

(6127) Th—I>no<J ATF = Hj(E)F (a.e., /J,).

Moreover, if p € (1,00) or u(2) < oo, then the convergence is also in LP(u; E).
In fact, if u(2) < oo, then

(6.1.28) lim ArF =E¢[F|3] (ae., p) andin LP(u: E).
T—o0

Finally, if {2* : t € [0,00)"} is ergodic, then (6.1.27) can be replaced by

(6.1.29) lim A7F = ——

where it is understood that the ratio is 0 when the denominator is infinite.

PRrROOF: The first step is the observation that

24)N
6130 (s [rPlp =) < B 1P, Ae 0.0
and
24NV
(6.1.31) 211;1()) HATF“E < (pz 1pHFHLP(“;E) for p € (1,00).
LP(u;E)

Indeed (because of (6.1.25)), (6.1.30) is derived from (5.3.18) in precisely the
same way as we derived (6.1.3) from (5.2.23), and (6.1.31) comes from (5.3.19)
just as (6.1.4) came from (5.3.24).

Given (6.1.30) and (6.1.31), we know that it suffices to prove (6.1.27) in the
case when F is a uniformly bounded element of L!(u; E). But in that case, set
F= A, F and observe that

IT™ ArF(w) — 2™ AL F@)],, < / |IF o St(w)|z dt
[0,n+1)N\[0,n)N

for n <T < n+1, and conclude that

lim
n—o0

sup || ArF — A.F|

=0 for every p € [1,0].
n<T<n+1

Lr(p;E)
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Hence, (6.1.27) follows from (6.1.9). As for (6.1.28), all that we have to do is
check that

when u(2) < co. However, from (6.1.27), it is easy to see that II5 g F' is mea-

surable with respect to the p-completion of J; and so it suffices to show that
B [F,T] =E+[AF,T] forallT € 3.

But, if ' € 3, then

E* [A)F, T) =/ E*[Fo X%, T]dt

:/ E*[F o3, (T4) ()] dt = E*[F, T).
f0.1)

Finally, assume that {E* : t € [0,00)V} is p-ergodic. When p(Q) < oo,
(6.1.29) follows immediately from (6.1.28); and when 1(02) = oo, it follows from
the fact that Hj( E)F is measurable with respect to the py-completion of 3. 0O

Exercises

6.1.32 Exercise: Assume that () < oo and that {Z* : k € NV} is ergodic.
Given a nonnegative F-measurable function f, show that

lim A,f < oo on a set of positive y-measure = f € L' (i R)

= lim Anf:]E—u—[f]

Jlim. Q) (a.e., p).

6.1.33 Exercise: Let § = {Xk : ke NV } be a stationary family of random
variables on the probability space (€, F, P) with values in the measurable space
(E,B); and let J denote the g-algebra of shift invariant I' € BN
(1) Let

T = ﬂa(Xk: ijnforalllgjgN)

n>0

be the tail field determined by {Xy : k € NV}, Show that F~'(J) C 7, and
conclude that {Xi : k € NV} is ergodic if 7 is P-trivial (i.e., P(T) € {0,1} for
allT e T.)



328 VI: Some Applications of Martingale Theory

(ii) By combining (i), Kolmogorov’s 0-1 Law, and the Individual Ergodic The-
orem, give another derivation of the Strong Law of Large Numbers for inde-
pendent, identically distributed, integrable random variables with values in g
separable Banach space.

6.1.34 Exercise: Let {Xk ke N} be a stationary, ergodic sequence of R-
valued, integrable random variables on (2, F, P). Using the reasoning suggested
in Exercise 1.4.32, show that

n—1
> X
k=0

EP[X,] =0 = lim

n—oo

< 00.

6.1.35 Exercise: Given an irrational « € (0,1) and an € € (0,1), let Ny(o,€)
be the number of 1 < m < n with the property that

14
a_—
m

< £ for some ¢ € Z.
2m

As an application of the considerations in Example 6.1.11, show that

— Np(a,
lim _(a ¢)

n—oo n

> €.

Hint: Let § € (0, £) be given, take f equal to the indicator function of [0,d) U
(1 -4,1), and observe that

Nn(a,€) > fo Bk (w)

k=1

solongas 0 <w < 5 —4.
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§6.2: Singular Integrals & Square Functions in Analysis

The topic of this section is somewhat out of place in a book on probability theory.
However, the material here is not only interesting in its own right, it has been
included to indicate the kind of delicate cancellation properties which underlie
the most challenging applications of martingale theory. At the same time, the
considerations here serve as an introduction to the ones in Section 6.3.1

We will begin with singular integral operators. In general, an operator in-
volves singular integrals whenever its expression in terms of its kernel fails to
be Lebesgue integrable. Thus, for example, the Fourier transform on L2(RY;C)
involves singular integrals. However, ever since the ground-breaking work of
Calderén and Zygmund, the term singular integral operator has been reserved
for operators whose kernels have a very specific type of singularity and equally
special cancellation properties. The archetypical example of such an operator is
the Hilbert transform given by

“[Hf](;v):%/RwL(f—)gdﬁ, TER”

The reason for the quotation marks is obvious: the indicated integral cannot
be interpreted in the sense of Lebesgue. On the other hand, if one adopts the
Riemannian attitude that such integrals should be defined by first excising the
singularity and then passing to a limit, and if one assumes, for instance, that
f € CY(R; C) satisfies

lim |f(c) logle]| =0 and /lf’(:v)log]:vlld:v<oo,
R

|| =00

then one comes to the conclusion that
1
(11)(e) =~ [ tog(le - &1) 59 e

That is, in the language of L. Schwartz’s theory of tempered distributions, the
Hilbert transform acts on test functions by convolution with respect to the tem-
pered distribution -1 = X (log |:v|)’

However one chooses to describe the Hilbert transform, it should be empha-
sized that its kernel w—(m_l—f_) has two important properties: it fails to be integrable
because of logarithmic divergences at the diagonal and infinity and it has strong
cancellation properties. These two features are common to all the operators
studied by Calderén and Zygmund, and, as will we see, the damage done by the
first is balanced by the good done by the second in such a way that the result-
ing operator possesses unexpectedly good mapping properties on the Lebesgue

t Most of this material is a diluted version of material in E.M. Stein’s beautiful Singular
Integrals and Differentiability Properties of Functions, publ. by Princeton Univ. Press. (1970)
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spaces. However, before getting any further into their theory, we will first intro-
duce the Riesz transformations, which are the higher dimensional analogs of the
Hilbert transform. Namely, for N € ZT and 1 < j < N, set s

(V) 2z N

where wy is the surface area of the unit sphere SV in RV *!. We have already
seen that, as the distributional derivative of a tempered, locally integrable func-
tion, qi )is a tempered distribution; and a similar argument proves that q(N) is

a tempered distribution for each N > 2 and 1 < j < N. In fact, if we deﬁne

qglz) c C?(RN;R) N L2(RN;R) for y € (0,00)
by
2 r;
(6.2.2) gy (%) = ——— 5, xRV,
YN (g2 + x2) T

then it is an easy matter to check that

S'(BV;R)
(6.2.3) qﬁz) _ qg.N)

as y 0,

where the indicated convergence is meant in the sense of tempered distributions.
Thus, if we define the operators Q( ) LYRNC) — Cu(RY;C) by

(N) N) :
(6.2.4) QW s =Y kf, 1<j<Nandye (0,0)
(the convolution being defined here in the usual Lebesgue sense), then we know
that, for f from Schwartz’s test-function class S(RY;C) of infinitely differen-
tiable functions having rapidly decreasing derivatives of all orders,

(6.2.5) Q;Z)f — Q(N)f = q]N)*f uniformly on compacts,
where the convolution on the right is taken in the sense of tempered distributions
acting on S(RY;C). Obviously, le) is just the Hilbert transform H described
before; and, when NV > 2, the operators QEN) is called the jth Riesz transform.

The first step toward a better understanding of the Riesz transforms is to see
how they act on L?(RY;C); and, for this purpose, we begin by computing the

Fourier transform of qg-N
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6.2.6 Lemma. For each y € (0, ),

(6.2.7) qg)(g) = \/TE—IQ ~vlél ¢ e RV \ {0};

and therefore,
(6.2.8) qZ\N)(e) = _\/li_;liﬁ ¢ e RV \ {0},

is a representative of the Fourier transform (in the sense of tempered distribu-
tions) of q;N). In particular,

(6.2.9) ZqﬁN)*q(N) and qﬂlt = N)*q(N), s, t € (0,00),

where péN), y € (0,00), is the Poisson kernel defined in (4.3.50).

PROOF: Because of (6.2.3), (6.2.8) follows immediately from (6.2.7). In addition,
by taking Fourier transforms throughout, the first part of (6.2.9) follows from
(6.2.8); and to prove the second part, one again uses Fourier transforms together
with the computations in (6.2.7) and Exercise 4.3.49. Thus, all that remains is
to prove (6.2.7). To this end, note that

N

q;
3y y
and therefore, because
P ot t IV
z;u(€) = —v-1-(¢) forueS'(RY;C),

9&;
that (cf. Exercise 4.3.49)

V=1 apy"’ V1§ el

= O
v o5 &7 g

¢Ne) = -

As an immediate consequence of (6.2.8), we see that each of the operators QS—N)
determines a unique extension as a skew-adjoint contraction from L?(RY;C) to
itself. Moreover, because of (6.2.7), we know that Q;N) is the limit, in the strong

operator norm, of the operators ng) as y \, 0. In fact, by (6.2.9), we see that

QM = pM% Q™M f, ye(0,00),
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and therefore, by part (ii) of Exercise 5.3.39, we have that

sup Q") f

y>0

(6.2.10) <2N(12)N K| fllze@yy, f € L*(RY;C).

L2(RN)

Hence, since g, y)* f— Q(N) f pointwise for each f € S(RV;C), we see (cf.
the argument given in the proof of Theorem 5.3.20) that

(6.2.11) ¢Mxf—QWf asy\ 0 (ae, Leb)

for each f € L2(RY;C). On the other hand, the situation is not so clear when

it comes to the other Lebesgue spaces. Indeed, because p(lN) e LY(RV;R) n
Cp(RY;R) and yet, by (6.2.9),

we know that Q( ) cannot be extended as a bounded operator from the space

LY(RM;C) into itself. Thus, if we are going to give a meaning to Q( ) f for

every f € L'(RV;C), then we are going to have to use a line of reasoning
which is subtler than the one which worked in the case of L?(R";C); and that
subtler reasoning is contained in the following variation, due to L. Hérmander,
on Calderén and Zygmund’s basic application of their decomposition theorem
(cf. Theorem 5.3.26).

6.2.12 Theorem. Let E and F be a pair of separable Banach spaces, and use
Hom(FE; F) to denote the Banach space of all bounded, linear operators from E
into F'. Next, let

x € RY +— k(x) € Hom(E; F)

be a bounded, continuous mapping; and define
K:L'(RN;E) — Cy(RY; F)

so that, for each f € L'(RV; E),

KA = [ kx-©fE)d, xeR”.
RN
Finally, assume that there exist A, B € (0,00) with the properties that

(6213)  KfllL2@y.m) < Alfll 2wy, £ € LNRY E)n L(RY; B),
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and
Bla|
(6.2.14) Ik(x) —k(x — a)l|lz~F < XV
for all a € RN \ {0} and |x| > 2|a|.
(The norm || - ||[g—F is the operator norm on Hom(E; F').) Then
Clifli @~ ;)
(6.2.15) [{x e RY : |[KfI(x)| > R} < —Fp—

for R € (0,00) and f € L*(RY; E),

where the constant C € (0,00) depends only on A, B, and N.

PROOF: We begin by observing that, by (6.2.14) and a trivial change of vari-
ables, for each ¢ € RV and & € RV \ {c},

(6.2.16) / ||k(x — &) — k(x~c)

{x:|x—¢|>2|x—cl}

where B’ = BQy.

Now, let f € L'(RV; E) and R € (0,00) be given, and choose the cubes Q(R)
and the functions g and {hg : Q € Q(R)} accordingly, as in Theorem 5.3.26.
Next, for each Q € Q(R), choose ¢(Q) € RY and r(Q) > 0 so that

Q= ﬁ[ — 1R (@) + ).

and define
N
¢ = T1[e(@); - VR (@), <(@); + VN r(@)].

Finally, set B=J{Q: Q@ € Q(R)} and h = f — g. Then,
[{x: KA 5 2 2R}
< {x: [|Kel)|» > B} +[{x: KBGOz > R}

“Kg“m(RN-F) - 1
< ————" 2+ |Bl+ 5 Kh dx.
< EEEE 1Bl 5 [ KBGO dx

Because (cf. Theorem 5.3.26)

IKgl2san oy < A%llglZa vy < 2V APRIlL v
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while

(2v)" Ellzs e
- ,

B < (2vF)" Y lal<
QEQ(R)

all that remains is to estimate

/ IKh(x)[lpdx < > / |Kho(x)|| F dx

QeQ(R)

in terms of ||f]| g~ z). To this end, note that, because fQ hg(€)d€ =0,

/ Khg (x) || r dx

/QC “/ (x— &) —k(x - C(Q)))hQ(E)
< [ Inetell ( [, Itx €)= @ o) i

< B'l|hgllp1 @~ ;5)

dx
F

where, at the final step, we have used (6.2.16). Hence, because
> lholli@y .z < 2l @ ;E),
QeQ(R)
we are done. O

As our first application of Theorem 6.2.12, we will continue our analysis of :
the Riesz transforms. :

6.2.17 Theorem. Thereis a C € (0,00), depending only on N € Z", such that ;‘

< Ol Nl @)

(6.2.18) =

{XGRN : sup|[Q§y)f ]| >R}

for every 1 < j < N, f € LY(RV;C), and R € (0,00). Hence, for each f € 7
LY (RN C), there is a measurable function Q;N)f : RNV — C with the property -
that, for Leb-almost every x € R the mapping
@V A it y=0 _
QY f160) i y>0 "

is continuous and tends to 0 as y / oo.

ye[O,oo)r—>{
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PROOF: Given the estimate in (6.2.18), the second assertion follows easily from
the fact that it is true when f € S(RV;C). To prove the first assertion, let F
be the separable Banach space Co([O, o0); C) of continuous functions on [0, co)
which vanish at infinity, and, for each t € (0,00), define k; : RY — F by

[ke(x)) () = gje1y (%), ¥ € [0, 00).
Clearly, k; is a bounded, continuous function. Furthermore, a simple computa-
tion shows that there is a B € (0,00) for which

[|ke(x) — ke(x — a)|| < |B|a| € (0,00), a € RV \ {0}, and |x| > 2|a].

x|[V+1’
At the same time, by (6.2.10), we know that there is an A € (0, 00) for which
ke fll2@n . ry < Allflle@yy,  t € (0,00) and f € L2(RY;C).

Hence, by Theorem 6.2.12 (with E = C), we see that there is a C € (0, 00) with
the property that

Cllfll 2wy
[{x: kefllr 2 RY < =52, Re(0,00),
for all t € (0,00) and f € LY(RY;C); and clearly this leads directly to (6.2.18).

d

Before moving on, we want to show that Theorem 6.2.12 in conjunction with
elementary interpolation theory leads to estimates for K as a mapping from
LP(RN; E) to LP(RN; F) with p € (1,2). The interpolation theory which we will
need is due to Marcinkiewicz and is very closely related to Exercise 1.4.20, in
that they both turn on the familiar identity

1y = /( (] > 0

for p € [1,00) and m-integrable f.

6.2.19 Theorem (Marcinkiewicz). Let E and F be a pair of separable Ba-
nach spaces and (X, A, 1) and (Y, B,v) a pair of measure spaces. Further, sup-
pose that K is a linear operator which takes an f € L'(u; E) N L™= (p; E) into a
v-almost surely unique, B-measurable function Kf : Y — F. Finally, suppose
that there exist 1 < p; < pa < oo and My, Ms € (0,00) with the properties
that, for i € {1,2}, R € (0,00), and f € L'(y; E) N L (; E),

7 < M;||f|| Lrs (i)

(6.2.20) (u({y cY: |Kf)|F > R})) -
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where, when p2 = co and i = 2, the interpretation of (6.2.20) is given by the
convention that a= equals 0 or 1 according to whether a = 0 or a > 0. Then,
for each p € (p1,p2) and £ € L' (pu; E) N L>®(w; E):

(6.2.21) Kl Lo (im) < CoMT My ~° |Ifll o (i)

where

1 m |
Cp <2 (1 + p1 + 1, )(p2)p2)
p—n p2—p

is universal and 8 € (0, 1) is determined by the relation % = pil + 111;29.

PRrROOF: We begin with the case in which M; = My = 1. Define
=p({z: |fx)llFr >s}) and () =v({y: |Kf@)|F > t})
for s, t € (0,00). Next, for t € (0,00), set

fi =11 (2||f||E)’

and note that

Sy s -l > 1) < (e

At the same time,

211f, » i P2
Sy IkE@IE > $) < (TR )T hen pr < oo

and
v({y: |KE@)|Fr > %}) =0 whenp, =

Hence,

p12p1

s /0 spl_lq)(své) ds

p 2[72 % _
ey (p2) P [T () ds

w(t) <
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and so,

oo o
—IleHLp(,,F <p12”1/0 PPt </0 sPT B (s Vv L) d.s) dt

t

o0 2
+1[1,oo)(P2)P22p2/ tPmP21 (/ 3”““1’(3)d3> dt
0 0
0 0
:p12”/ PPl </ splsltI’(th) d.s) dt
0 0

oo t
+ 1[1,00)(132)1322’)/ gpp2l (/ 3”2’1<I>(S)d3) dt
0 0

0 2p 0
:21’/ tP*«I»(t)dHi/ sP~1 ®(s) ds
0 0

P— DN

2p *
+ 1[1,00) (P2) P2 / P71 ®(s)ds
P2—PJo

2P P p21),0 (P2))
==(1+ +
p ( p—p p2 — €Il s

which means that (6.2.21) holds with the required sort of C, when M, = M, = 1.
To complete the proof, we must still show how to reduce the general case to
the one when M; = M, = 1. To this end, replace v by ~v and K by %K, where

aﬁﬂ =M, and aiﬂ = M,.

(6.2.20) for p, v, and K then implies (6.2.20) with M; = M, =1 for p, v, and
%K; and therefore the result just proved implies (6.2.21). O

6.2.22 Corollary. Let everything be as in Theorem 6.2.12. Then for each
p € (1,2] there exists a C, € (0,00), which depends only on A, B, and N in
addition to p, such that limp;(p — 1)Cp < 0o and

(6.2.23) K| Loy .ry < CpllfllLe@y .y, f € L'(RY;E).

If, in addition, both E and F are reflexive, then sup,¢, 5 (p — )C < oo and
(6.2.23) continues to hold for all p € (2,00) with Cp, = Cp and p' = 2=, the
Hélder conjugate of p.

Proor: In view of Theorems 6.2.12 and 6.2.19, there is nothing to do when

€ (1,2]. Thus, we suppose that E and F are reflexive and consider p € (2, 00).
Next, let k(x)* : F* — E* be the adjoint of k(x) for each x € RV, and note
that the adjoint K* : L2(RV; F*) — L?(RY; E*) of K is given by

[K*g)(x) = | k(&—x)"g(¢)d¢, xeRY,

RN
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for g € L(RN; F*) N L2(RN; F*). Hence Theorems 6.2.12 and 6.2.19 apply to
K* with the same constants A and B; and so

K"l o v 5y < Cor I8l @ ipmyy 8 € LRV ).

Thus, by duality, (6.2.23) holds with Cp = Cp'- Finally, to see that (p — 1)Cp is
bounded for p € (1,2], it suffices to check that the Cp’s remain bounded for p’s
in an open interval around 2. But, because we know that C 1= C 1 < 00, this
follows by another application of Theorem 6.2.19. d

With the preceding at hand, we can now complete our analysis of the Riesz
transforms.

6.2.24 Theorem. For each p € (1,00) there is a constant Cy, € (0,00), satisfy-
ing suppe(lm)p”(p— 1)C, < oo, with the property that, foralll < j < N and
f e LP(RN;C):

(6.2.25)

)
sup @3y /|

< CPHf“LP(RN)-
Lr(RN)

In particular, for each p € (1,00) and f € LP(RY;C), there is a unique QS-N)f €
LP(RN;C) with the property that, as y 0,

QN f— Q™ both Leb-almost everywhere and in L? (RV;C).

Finally, for each p € (1,00), there exists a ¢p € [1,00) with the properties that
Cp = Cpr, SUP,e(1,2)(P — 1)¢p < 00, and, for all f € LP(RN;C):

1

(6.2.26) C_“fHLP(RN) < HQ(N)f“Lp(RN;(CN) < cpllfllr@ny,
P

where Q™) : LP(RN;C) — LP(RV;CV) is given by

Q(N)fE (Q(IN)f’”" 5\1{\’) )

ProoF: Because Cy([0, 00); C) is not reflexive, we cannot apply Corollary 6.2.22
directly to get (6.2.25) for p ¢ (1,2). On the other hand, by the second part of
(6.2.9) and part (ii) in Exercise 5.3.39, we know that, for each p € (1,00), there
is an A, < oo such that

(V)
sup | Q5 /|

< A1 QN | Lo v
LP(RN)
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Hence, (6.2.25) will follow, with C, = Apcp, once we prove the right hand
inequality in (6.2.26).

To prove the right hand inequality in (6.2.26), use Corollary 6.2.22 (with
E = C and F = CV) together with the estimates in (6.2.10) and (6.2.18) to
conclude that, for each p € (1,00), there is a ¢, € (0,00) such that ¢, = cpr,
suppe(1,2)(P — 1)ep < 00, and

HQ(N)f“LP(RN;CN) < S‘;% ”leN)f”LP(RN;(CN) < opllfllzemys
y
where
N N
QM f = (QUY -, Q).
In view of the preceding, all that remains is to prove the left-hand inequality in
(6.2.26). To this end, note that, by (6.2.8), Q™) is an isometry from L?(R";C)

into L>(RY;CV). In particular, (6.2.26) holds with ¢; = 1. Hence, for any
p € (1,00) and pair f, g € L*(RY;C), we have that

(f’g)L2(RN) = (Q(N)f’Q(N)g)LZ(RN;(CN) < “Q(N)fHLP(RN;(CN) “Q(N)g”LP'(RN;(C)
< CP'”Q(N)f“Lp(RN CV) 9!l Lo (mvys
which is equivalent to the left-hand side of (6.2.26). [

We turn now to a topic which may be viewed as a harmonic analytic precursor
of the results in the next section. Namely, given a function f € L2(RN;C), define
the Littlewood—Paley g-function of f to be the function

(6.2.27) x e RN v [g(H)](x) = (/(0 )yquf(x,y)fdy) € [0, o0],
where
(x,9) € RY ™! — up(x,9) = o)V Kk f(x) € C

is the harmonic extension of f to the upper half-space Rf 1 = RN x (0,00)
and V is the Euclidean gradient on Rf +1. Notice that the Fourier transform of
Vug(-,y) as a function of x € RV is

€ eRY r— —(V=T& [€]) e¥¥If(g) e V5
and therefore, by Fubini’s Theorem and Parseval’s identity:

oty = [, v ([ 1t ) dy

_ a2m) N /( v ( [, el ds) dy

x)~ N A
Y MG
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which means, after another application of Parseval, that

2
(6.2.28) ()| 1 f1132@n)

“L2(RN) = —2;7 f € L2(RN;C)'

Thus, once again, we have a situation in which Fourier analysis makes it clear
that everything is fine in L?, and, once again we will use Corollary 6.2.22 to get
information about p # 2. For this purpose, note that

Vug(x,y) = /RN py(x — &) f(£)dE, (x,y) € RYH,
where

(6.2.29) Py(x) = (g—if(x), ey Do (x), %(x))

N+3

= QN+1(?J +x?) (yzl,...,yzN,|x|2—Ny2)

and Q1 is the volume of the unit ball in RV *!. Next, define the Borel measure

v on (0,00) by v(dy) = ydy, let F be the separable Hilbert space (L2(v;©)) N+1,
and define

x € RY — k;(x) € F by [ke(x)](y) = Pe1y(x) forte (0,00).

Clearly
k; € Co(RY; F)n ﬂ LP(RN;, F

pE(l,00)

and, for f € U, (1,00 LP(RV;C) and x € RV,

Vus(x,t +y) = [Kef(x)](y) where Kef(x) = | ki(x— &) f(£) dE.

RN

In particular,
Vay(x,y) = lim K fG0] @), (oy) € R
and so, by Fatou’s Lemma,

[9(N](x) < lim ||th X)|| s

which, by another application of Fatou, means that
(6230) Hg(f)“LP(RN) < IITH?) HthHLp(RN;F)7 f S LP(RN;C)’
for each p € (1,00). With these preliminaries, we are now in a position to

prove the following estimates discovered originally (in the case when N = 1) by
Littlewood and Paley.
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6.2.31 Theorem. Foreach N € Z+ and p € (1,00) thereisa Cp € (0, 00) with
the properties that Cp = Cp, sup,e(1,2)(P — 1)Cp < o0, and

1
(6.2.32) ETem Iflize@ny < Nlg(Plir@y) < Collfllir@ny,  f € LP(RY;0).
p

PROOF: In view of (6.2.30), the right-hand side of (6.2.32) will follow as soon as
we check that the estimates in (6.2.13) and (6.2.14) (with E = C) are satisfied by
K; and its kernel k;, with constants A and B which do not depend on t € (0, 00).
But, as is easily checked, “th(x)“F < [g(f)] (x) for all t € (0,00) and x € RV
and therefore, by (6.2.28), K, satisfies (6.2.13) with A = 27 3. At the same time,
an elementary computation leads to the existence of a cy € (0, 00) for which

o 3 3
max Py il (y ha IXL25 > (x7 y) € RQH_I;
1<j<N | Oz; (y2 + |x|2)T

and from this it is easy to see that the k,'s satisfy (6.2.14) with a B € (0,00)
which is independent of ¢ € (0,00). Hence, by Corollary 6.2.22 and the remark
with which we started this proof, the right-hand side of (6.2.32) holds with Cp’s
which satisfy the required conditions.

To prove the left-hand side of (6.2.32), we use essentially the same line of
reasoning as we used in the derivation of the left-hand side of (6.2.26). Namely,
given p, ¢ € L' (RY;C) N L=(RY; C), observe that g(¢ +%) < g(¢) +g(¢) and
use this, (6.2.28), and the right-hand side of (6.2.32) to conclude that

I(‘va) LZ(RN)I < 2(9(90)7 g(¢))L2(RN) < 2Cp“g(90)“Lp(RN) ”"p“LP'(RN)‘

Hence,
el o) < 2C5]|a(@)]| poanys  © € L'(RY;C)NLZ(RY;0);

and so, again by the right-hand side of (6.2.32), we can conclude that the left-
hand side must hold for each f € LP(RY;C). O

6.2.33 Corollary. Given f € U,c(1,00) LP(RN;C), define

[90(£)](x) = ( / Ty |aaiyf<x,y> dy>

[an (D)) = /[9(N] ()2 = [90 ()] ()2

Then for each p € (1,00)

(6.2.34)

1
A P < P Allgy P
(6.2.35) 4C,,“f”L @) < lignllze@v) Allgo(Hllzr@v)

< |lgnlize@™y V go(All Lo @y < Coll fllze@y),
where the C,’s are the same as they were in Theorem 6.2.31.
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PROOF: Seeing as both g,(f) and gx(f) are dominated pointwise by 9(f), the
right-hand side of (6.2.35) is an immediate consequence of the right-hand side
of (6.2.32). To prove the left-hand side, note that the Fourier transform of
x € RN +— %”j’(x,y) eCis

EeRY —s —[¢|e V¥l f(g) e C,
and, proceeding as in the derivation of (6.2.28), conclude that

11172 g
(6.2:36) lo(NEageny = =7
which, since g(f)? = g,(f)? + gn(f)?, means that

11172 g

||gh(f)||2L2(RN) = 4

as well. Given these and the right-hand side of (6.2.35), the derivation of the ‘
left-hand side is now identical to the derivation of the left-hand side of (6.2.32)
from (6.2.28) and the right-hand side of (6.2.32). O

The quantities g(f), g»(f), and gn(f) are all examples of square functions,
and (6.2.32) and (6.2.35) are important examples of relations between the LP-
norm of a function and the LP-norm of related square functions. An indication,
of the power of such relations is given in Exercises 6.2.37 and 6.2.41 below.

Exercises

6.2.37 Exercise: As mentioned earlier, when N = 1, the Riesz transform (of
which there is only one) is called the Hilbert transform and has a beautiful
interpretation in terms of complex analysis on the complex upper half-plane

Cy={z+V-1y: (z,9) € Ri}
The origin of this interpretation comes from the easily verified relation

e

e

(6.2.38) :pél)(w)+\/—1qél)(w), z=xz+vV-1lyeCy.

(i) Let f € Upep o) LP(R;R) be given, and set up(z,y) = p K f(z) and
vp(z,y) = qél)*f for (z,y) € R2, and define Fy : C; — C by

(6.2.39) Fp(z) = us(z,y) +V—1vs(z,y), z=x+V-1yeCy.
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Show that F is the unique holomorphic function F on C, with the properties

that
lim sup |F(z + V-1y)| =0

and
flz) = li\rﬁ) Re (F(:v ++v-1 y)) for Leb-almost every x € R.
y

In particular, conclude that the Hilbert transform Hf of f is characterized as
the imaginary part of the boundary value of Fy in the sense that

li\rj}) Jm (Ff (z+ V-1 y)) = Hf(x) for Leb-almost every z € R.
Y

(ii) From part (i), we know that us and vy are conjugate harmonic functions.
Next, apply the Cauchy-Riemann equations to see (cf. (6.2.27)) that g(f) =
g(Hf). Finally, use this in conjunction with (6.2.32) to give another proof that
H is bounded as an operator on LP(R;R) into itself for each p € (1, 00).

(iii) The original proof that H is bounded on LP(R;R) was based on (6.2.39).
The approach taken went as follows. Given an m € Z1, use Cauchy’s integral
formula to justify

(6.2.40) / Ff(z+ \/:Ty)Zm dr=0, ye(0,00)and feSERC).
R

When m = 1, note that this leads immediately to

l.vf(ay).liZ R — lluf(ay)“izR — Re Ff ($+\/__1y)2 dz
®) (®) i
= lluf('vy)“ig(R) < Hf“iZ(]R)

More generally, show that for each m € ZT there exists a Cp,, € (0,00) with the
property that

(m(Q))*" < Chm (Re(¢P*™ + (~)"Re(¢*™) ) CeC
or, equivalently,

(sinf)*™ < C’fnm((cos 0)"" + (-1)™ cos(2m0)), g € R;
and use this together with (6.2.40) to prove that

l|vf("y)HL2'n(R) < CmH“f('»y)llem(R)» y € (0,00).
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To handle other p € [2,00), one proceeds via interpolation; and to handle p ¢
(1,2), one works by duality.

6.2.41 Exercise: Even when N > 1, the relation between the square func-
tions g,(f) and gn(f) can be used to give another proof that the Riesz trans-
forms are bounded on LP(RVN;C) for each p € (1,00). Indeed, given f, set
£f=(f1,...,fn) = QW) f and define

Us(x,y) = (ug (x,9), -, upy (X, y), (x9)¢€ RYTL.

Working via Fourier transform, check that

0V _ (0w Dug
dy \ 0z Ozn)’

which means that EJIV gu(£;)? = gn(f)?. Hence, by (6.2.35), we get (6.2.26) with
cp < 4C§.

6.2.42 Exercise: Perhaps the most useful fact that comes out of the consider-
ations in this section is the remarkable! observation that the right-hand side of -
(6.2.26) leads to

o f

2.4
(6.2.43) max 9oz,

1<i,j<N

< CI%HAf“LP(RN)’ fe CS(RN§C)§
Lp(RN)

where A is the Euclidean Laplacian on RY . To prove (6.2.43), recall that

—

2L(g) = —V-1¢f(€), 1<j<NandgeR",

and conclude that
0% f
8£E28:E 3§

=M oM (Af).

t The fact that (6.2.43) is false when N > 2 and p € {1, 00} has kept bread on the table of
many analysts.
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§6.3 Burkholder’s Inequality

In the preceding section, we adopted the Calderén—Zygmund point of view to-
ward operators like the Riesz transforms. That is, we took the attitude that
the kernel associated with these operators is the primary object. An alternative
approach to these operators is to present them as Fourier multipliers. Thus, for
example, we could have given

—

QM f(e) = V—_ll%f(e, ¢eRY and f € L*(RY;C),

as the primary description of QE.N). The reason why one might want the mul-
tiplier description is obvious: it is ideally suited for analysis in L2(RY;C). On
the other hand, it has the disadvantage that it provides little information about
the possibility for analysis in any of the other Lebesgue spaces. Indeed, given
m € L®(RV;C), Parseval’s identity makes it obvious that

f e SRY;C) — [Knf](x)
= (en) " [ e [T (x.8)y] mi©) flO)dE € ©

determines a unique, bounded, normal operator K, on L*(RN;C) with norm
equal to ||m||pe®v). On the other hand, it is not at all clear which m’s from
L>*(RN; C) determine operators K, that are bounded on LP(RY ; C) when p # 2.
In fact, even the trivial case when m = k for some k € L}(RY;C) and therefore

| K| Loy < Nl vy I flleyy, P €100

is not so easy to spot by simply staring at the multiplier m; and the problem
becomes only harder when the multiplier, like £ — v/ —1 %’ cannot possibly

be the Fourier transform of some k € L'(RY;C).

The problem of deciding which Fourier multipliers determine bounded op-
erations on which Lebesgue spaces has received a great deal of attention over
the years (Marcinkiewicz provided what remains one of the key results in this
topic); and a completely satisfactory answer has yet to be found. Be that as it
may, there are nontrivial multiplier problems in other contexts which turn out to
have simple solutions; and, as Burkholder was the first to discover, martingale
theory provides one such example. Before explaining what Burkholder did, it
may be helpful to abstract the procedure of defining an operation in terms of a
multiplier; and, for our purposes, the following description will do. Namely, let
(4, A, ) and (B, B, B) be a pair of o-finite measure spaces and E and F a pair
of separable Hilbert spaces. Further, assume that U/ is a unitary mapping from
L2(a;E) onto L?(3; F). Then, for each m € L>=(B;R) or, when F is complex,
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m € L>(8;C), we can define the bounded, normal (self-adjoint when m is real) -
operator K,,, on L%(a; E) by

Knf=U*(mUf), fe€Ll*(xE),

in which case K,, is said to be operator determined by the multiplier m
relative to Y. When A=B=R", E=F=C, a=Leb, § = 5w, and U is
the Fourier transform, we are in the setting discussed in the Section 6.2. When

A =R, B =N, a =~ is the standard Gauss measure, 3 is counting measure,
E=F=C, and

UF)(n) = ()73 (f,Ha) 1y, nEN,

with H,, the nth Hermite polynomial described in (2.3.1), we are in the setting
of Section 2.3. Finally, when (A, .A,a) and (B, B, ) are the same probability
space (Q,F,P), E =R, F = £*(N;R) (the sequence space of square summable,
real-valued sequences indexed by N), and U is defined by

EP [f|Fo] (w) if n=0
EP [f|Fn] (w) = EP [f|Fna](w) if ne€Zt,

me={

for some nondecreasing family {.7-'" : n € N} of o-algebras satisfying F =
Vo Fn, then we are in the setting studied by Burkholder.

As our first derivation of Burkholder’s result, we will give an argument which
parallels the one developed by Calderén and Zygmund’s to handle singular in-
tegral operators.

6.3.1 Theorem (Burkholder). Let (9, F,P) be a probability space, {Fn :
n € N} a nondecreasing sequence of o-algebras satisfying F = Vo Fn, and
{on : n € N} an {F, : n € N}-progressively measurable sequence of [-1,1]-
valued functions. Then, for each f € L*(P;R) there is a unique K f € L*(P;R)
with the property that

Kof =EP[Kf|Fa] =Xo+ ) om-1(Xm — Xm1), neEN,
m=1

where X,, = EP[f|F,], n € N. Moreover,

98
632 P(suwlKf|2R) < F Sl Re.0)
and
(6.3.3) sup | K f| <2||fllzzpy, f € L*(P;R).
neN L2(P)
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Finally, for each p € (1,00) there exists a universal (i.e., independent of every-
thing except p) constant C, € [1,00) with the property that

(6.3.4) sup | K, f|

up < Cpllfllzepy, £ € L*(P;R) N LP(P;R).

L?(P)

In fact, there is a universal C € (0, 00) such that Cp < C’I-,% for all p € (1, 00).

PROOF: Because, by an easy limit argument, it is possible to obtain the general
case from the one in which only finitely many F,,’s differ from F, we will assume
throughout that there is an N € Z* such that F = F, for all n > N. In
particular, the existence of K f presents no difficulty in this case.

We begin by observing that, because (K, f,Fn,P) is a martingale, the left-
hand side of (6.3.3) is dominated by 2||K f||12(p) and

1K 12 (p) = ||K0fuiz(P) + ) 1K S - K"“lfH2L?(P)

n€zZ+

< HXOHiZ(P) + Z “Xn - Xn—l“iz(P) = “f“iz(P)
n€zZ+

Hence, (6.3.3) presents no problem. To prove (6.3.2), let R € (0, 00) be given and,
referring to part (iii) of Exercise 5.2.31, use Gundy’s Calderén ~Zygmund decom-

position of martingales to write X, = M,SR) +VTER) + A%R) where: (M,SR), Fn, P)
is a martingale satisfying

EP [(M,SR))2] < 12R|fllpy nEN;
VO(R) =0, v.®) is F._,-measurable for each n € Z*, and

- 2
- (Z v _y®) ) < 12R||fll L2 py;

n=1

and {An :n € N} is an {fn :m € N}—progressively measurable sequence with
the property that

P(Eln eN AP # 0) < ENFllzzcpy-

We can then write K, f = N,ER) + W,ER) + E,SR), where

N =M+ Y s (M~ )

m=1

W = 3 o (VIR - VD)
m=1

and
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B o+ 30 s (A0 - )

In particular, since

P(H" eN ER # 0) < 2 fllvpys

the left-hand side of (6.3.2) is dominated by
2 R R
= flerp + P (sup NG| > —) +P (sup (WP > —) :
R n€N 2 neN 2
But (NT(LR),]-"H, P) is a martingale, and therefore, by Doob’s Inequality,

p (a2 §) < o e [0

neN neN
and
su EP[ N(B® 2] —EP [N(R) ]+ EP[ (NB) - N 2]
sup (V=) ( ; 1)
<E”[(M{®)?] + Z E7 (P - M)’
:supEP[(MT(LR)) ] < 12R || fliz ).
neN
Hence,

R 48
P (SUMN(R)‘ 2 ) <R [ Fllzrpy-
neN

At the same time,

sup W] < Y- WP - Wit | < 3w —viE,

n=1 n=1

and so

P (sup IW(R)I > %)

neN
2
[(Z Vi —V,Efil) ] < B lecey
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Thus, after combining these, we arrive at the estimate in (6.3.2).

Given (6.3.2) and (6.3.3), (6.3.4) becomes an application of the Marcinkiewicz
Interpolation Theorem (cf. Theorem 6.2.19). Indeed, because we have assumed
that F, = F forn > N,

sup | Ko f| = |[Kf | p
neN

where
f e L(P:R) — Kf = (Kof,.. . Knf) € L*(P;F)

and F = RV*! with the norm ||z||F = maxo<n<n |z,|. But, with this notation,
(6.3.2) and (6.3.3) become, respectively,

98
P(|Kfllr > R) < E“f”Ll(P) and “Kf“Lz(p;F) < 2|1 fllizzcpys

and therefore, by Theorem 6.2.19, we know that there exists a universal C €
(0, 00) such that

“KNf“LP(P) S ilé%lK"fl

C
Sp-DAE-p

(6.3.5) Lr(P)

) “fHLP(P)v pE (172)7
and this completes the proof of (6.3.4) for p € (1, 3). To handle large p’s, note
that K is self-adjoint on L2(P;R) and therefore that, by duality and (6.3.5),

C
“KNf“Lp'(P) < -1 A 2—-p) ”f“LP’(P) for p € (1,2).

But (K, f, Fn, P) is a martingale, and therefore, by (5.2.6), the preceding implies
that

“Kf“LP(P;F) = i‘ég~K"f| < p—_pi_i“KNf“LP(P)

L»(P)
2C

<
@ -DAR-P

Thus, we now have (6.3.4) for p € (3,00). Finally, to get (6.3.4) for p € 12,3],
5

note that, by the results already obtained for py = 2 and p2 =5,

) | fllzr(py, P € (2,00).

8C \flsmy \ 7
POkl > B) < (CLGEE)", e

and so another application of Theorem 6.2.19 completes the proof. Ul
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Theorem 6.3.1 contains the essence of Burkholder’s basic result: it says that
the multiplier problem associated with martingales is trivial in the sense that any
uniformly bounded multiplier preserves LP(P;R) for every p € (1, 00). However,
there are several more or less immediate reformulations which lend themselveg
better to applications.

6.3.6 Corollary. Let (X,, Fy, P) be a martingale which is bounded in L'(P),

let {Un :n € N} be an {fn :n € N}-progressively measurable sequence of
[-1,1]-valued functions, and set

(6.3.7) Yo=Xo+ Y om-1(Xm—Xm-1), n€N
m=1
Then
98 P
(6.3.8) P (sup Ya| > R) < — sup EP[|X4|], Re€(0,0),
neN R neN

and, with the same constants Cp, p € (1,00), as in (6.3.4),

1 1
(6.3.9) EP [sup [Ym[p} < Cpsup E [|Xn|”] ", pE€E(1,00).
neN neN

Finally, there exists a \/8o Frn-measurable Y : @ — R to which {Yn};0 con-

verges P-almost surely; and, when p € (1,00) and {Xn}zo is bounded in LP(P),
the convergence takes place in LP(P) as well.

PROOF: By taking f = Xy and applying (6.3.2) and (6.3.3), one gets (6.3.8)
and (6.3.9) first for the martingales

(XnansFn, P) and  (Yarw, Fn, P)

and then for the original martingales after letting N , oo. Moreover, once
one has (6.3.9), the only assertion which requires comment is the one about the
P-almost sure convergence of {¥,}°. To handle this problem, let R € (0, 00)
be given, use X, = MP 4 yB 4 AP to denote Gundy’s decomposition (cf.
Exercise 5.2.31) of (X,, Fn, P) at level R, and define {NT(LR)}EO, {WT(LR)}EO, and
{EﬁR)};o accordingly, as in the proof of Theorem 6.3.1. Because (N,(LR),}'H, P)
is an L?(P)-bounded martingale and

oo
Z ‘W,(LR) - W,(f_z)li <oo (as.,P),
1
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we know that lim,_, (N,(LR) + W,(LR)) € R exists P-almost surely. At the same
time, Y, = NP+ Wi neN, on A(R) = {w: EX (w) =0, n € N} and

2
P(AR)) < = ilég | Xnllzr(pP)-

Hence, we now know that {Yn}zo fails to converge in R on a set of arbitrarily
small P-measure. U

As we have already discussed, the preceding results are martingale analogs
of the singular integral results obtained in Section 6.2; and as we saw in part
(ii) of Exercise 6.2.37 and again in Exercise 6.2.41, such results are intimately
connected to inequalities involving square functions. In the context of martin-
gales, this relationship turns out to be an equivalence. To be precise, we have
the following.

6.3.10 Theorem (Burkholder). Let (Q,F, P) be a probability space, {Fn:

n € N} a nondecreasing sequence of sub-c-algebras of F, and (Xn,}'n,P) a
martingale. Then, for each p € (1,00),

1
P lgr [sup X, — X0|”] ’

Bpf neN
00 ak
(6311) S IEP (Z (Xn . Xﬂ_])?)
n=1
B 2 1
< p sup EP [an —Xolp]p,
p— 1 neN

where B € [1,00) is universal.

ProoF: Without loss in generality, we will assume that X, = 0 and that there
is an N € Z+ with the property that F, = F for all n > N. In particular, this
means that X,, = Xy whenever n > N; and so all extrema and sums in (6.3.11)
involve only N quantities.

Our proof of (6.3.11) will turn on a special choice of the sequence {Un : n € N}
in Corollary 6.3.6. To guarantee that this choice is possible, first augment the
underlying probability space by taking

Q:Qx{—l,l}N, F=FxB, and P = P x u,

where B is the Borel field over {—1,1}" and p is the standard Bernoulli measure

(2-1(6_; + 61))N on ({1, 13N, B). Next, we take F., = Fn x B for each n € N,
and define

Xn(@) = Xp(w) foro = (w,0) €0
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It is then an easy matter to check that

o€ (Xo@), ..., Xn(@),...) R
has the same distribution under P as

weNr— (Xg(w),...,Xn(w),...) e RY

has under P. At the same time, it is clear that (X'n,]:'n,f’) is a martingale;
and, obviously, if 0,(@) = o, for @ = (w, o), then the sequence {Un :n € N} is
{.7:'" in € N} -progressively measurable. Thus, if we define

Yn: Zam—l(im—Xm—l)a nGN,
m=1

then (6.3.9) holds and leads to

10

Z Om—1 (Xm(W) - Xm_l(w))

u(d0)> P(dW)]

< C,EP [ Xn?]?.

Hence, by left-hand side of Khinchine’s Inequality (2.2.29) (with 3 = 1) applied
to the p-integral for each w € 2, we obtain

o=

EP (i(xm—xm_l)2>2 < B,EP[|Xn )7,

m=1
with (cf. part (iii) of Exercise 2.2.29) B,’s which are bounded by a multiple of
the Cp’s in Theorem 6.3.1.

To prove the left-hand side of (6.3.11), note that (because o, € {—1,1} for
every n € N)

3

Xp=) om(Yn—Ypn1), nel

m=1

Hence, by (6.3.9) with the roles of the X,,’s and Yy’s reversed, we now get

i 1
" [l < o i)’

Q
{ 171}

< B,EP [(i (X — Xm_1)2> j :

1=

N p ?
Z Om—1 (Xm(w) - Xm—l(w)) [J,(dO') P(dw)

m=1

B

m=1
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where now (again see part (iii) of Exercise 2.2.29)

and we have used Stirling’s Formula (cf. (1.3.23)) to get the final estimate. [

The inequality in (6.3.11) is called Burkholder’s inequality, and it turns
out to be one of two or three most useful tools in any analysis which involves
martingales. Indeed, what it enables one to do is parlay local comparisons be-
tween two martingales into a global comparison. That is, although we derived it
on the basis of (6.3.9) (in which the relative sizes of martingales are compared
only if they are related by (6.3.7)), (6.3.11) itself enables one to compare the sizes
of any pair of martingales for which one can compare corresponding increments.
To be precise, we have the following.

6.3.12 Corollary. Let (Q,}', P) and {.7-'” :n € N} be as in Theorem 6.3.10,
and let (X,,Fn, P) and (Yo, Fn, P) be a pair of martingales. If
(6.3.13) |Xo| < |Yo| and |Xp— Xpoi| <|Ye—Yaou]|, neZt,

P-almost surely, then, with the same B € (0,00) as in (6.3.11),

3B? p
max

(6.3.14) “X 0Smen ‘Xml”Lp(P) (p 2 ”Y ”LP(P)

"“LP(P) <

for each p € (1,00) and n € N.
ProoF: When Xy = Yy = 0, one gets

B2 pz
= (p— 2 ”Y HLP(P)

o 1| <

as an immediate consequence of (6.3.11). In the general case, one combines this
special case with Minkowski’s inequality and thereby gets

o225, | Xom| L¥(P) < I¥ollorey + |28, 1Xom = o Ly (P)
< ||YollLe (P + (I,Bi—’i?HYn = Yol| o)
< | Yallzepy + (%3—2%“ "HLP(P)
< B Wl O
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The route which we have been following thus far is more or less the same one
as Burkholder mapped out when he first proved his inequality; and, for most
purposes, the results to which it has brought us are adequate. Nonetheless,
there are two directions in which one wants to improve these results. First,
and most important, one would like to obtain a statement of (6.3.11) for vector
valued martingales in such a way that the constants do not depend on dimension.
(Notice that it is Gundy’s version of the Calderén-Zygmund decomposition of
martingales which weds the argument given to R-valued martingales.) Secondly,
one suspects that the application of Khinchine’s inequality leads to less than
optimal constants. In addition to these two objections, one can also say, with
hindsight, that the problem here is essentially easier than the ones in Section 6.2
and should therefore yield to an essentially simpler argument. Quite recently,
Burkholder has discovered the right argument: it removes the two objections
mentioned and it is completely elementary. Unfortunately, it is also completely
opaque. Indeed, his new argument is nothing but an elementary verification that
he has got the right answer; it gives no hint about how he came to that answer.

The strategy of Burkholder’s new approach is to first derive a generalized
version of Corollary 6.3.12. Namely, the main step in his new strategy is to
prove the elegant statement which follows.

6.3.15 Theorem (Burkholder). Let (Q,F, P) be a probability space, {Fn:
n € N} a nondecreasing sequence of sub-o-algebras of F, and E and F' a pair
of (real or complex) separable Hilbert spaces. Next, suppose that (Xn,}'n, P)
and (Yn,}'n, P) are, respectively, E- and F-valued martingales. If

(6.3.16) IXollz < IYollr and [ Xn = Xnalle < 1Yn = Yaoullr, n€Z,
P-almost surely, then, for each p € (1,00),

< B,|lY

”X"“LP(P;E) = neN,

-
(6.3.17) 1 -
where B, = (p—1) V —
p_

Before giving the proof of Theorem 6.3.15, we will show that the conventional

form of Burkholder’s inequality is a trivial corollary.

6.3.18 Corollary (Burkholder). Let (Q,F,P) and {F, : n € N} be as in
Theorem 6.3.15, and let (X,,, F,,, P) be a martingale with values in the separable

T For those who want to know the secret behind this proof, Burkholder has written an ex-
planation in his article “Explorations in martingale theory and its applications” for the 1989
Saint-Flour Ecole d’Eté lectures published by Springer—Verlag, LNM 1464 (1991).



§6.3 Burkholder’s Inequality 355

Hilbert space E. Then, for each p € (1,0),

1
B—p i‘ég”xn - XO”LP(P;E)
1%

(6.3.19) <EP (Z X — Xn_1|12>
1

< By ilelg ”X" XOHLP(P;E)’

with B, as in (6.2.17).
PROOF: Let F = (2(N; E) be the separable Hilbert space of sequences
y = (X0,---yXn,...) € EN

satisfying

[V

lyllFr = (Z ”xn”2E) < 00;
and define
Y, (w) = (Xo(w), Xi(w) = Xo(w), ..., Xp(w) — Xp—1(w),0,0,...) € F

for w € @ and n € N. Obviously, (Yn,fn,P) is an F-valued martingale.
Moreover,

[Xollz = IYollr and [[Xn—Xnalle =1¥Yn—Ynallr, el

and therefore the left-hand side of (6.3.19) is implied by (6.3.17) while the right-
hand side also follows from (6.3.17) when the roles of the X, and Y,’s are
reversed. [

We now turn to the proof of (6.3.17), which, as we said before, is both elemen-
tary and mysterious. The heart of the proof lies in the computations contained
in the following two lemmas.

6.3.20 Lemma. Let p € (1,00) be given, set
PP -1P i pe2,00)
= prr if pe(1,2),
and defineu: E X F — R by

) — { (IxIIE—( —lylle) (Ixle + Iylle)" ™ i pe 200
(I YIe) (x|l g + ”}’”F)p_l if pe(1,2)
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Then (cf. (6.2.17))

HXH% - (BPHyHF)p S Qp u(x,y), (xvy) € B X F.

PROOF: By embedding both E and F into E & F' if necessary, we may and will
assume the E = F. Next, observe that it suffices to show that for all (x,y) € E?
satisfying ||x||z + |yl = 1:

<p*?(p- 1" (Ixlle — (P~ Dlylle)
>p? P (p— 1P (Ixlle — (P = Dllylle)-

depending on whether p € (2,00) or p € (1,2). Indeed, when p = 2 there is
nothing to do, when p € (2,00), (6.3.21) is precisely the result desired, and,
when p € (1,2), (6.3.21) gives the desired result after one divides through by
(p — 1)P and reverses the roles of x and y.

We begin the verification of (6.3.21) by checking that

m&ﬂ)nﬂ@—«p—MWMf{

>1 if pe(2,0)
<1 if pe(1,2).

(*) PP (p- 1)”‘1{

To this end, set f(p) = (p—1)log(p—1) — (p—2)logp for p € (1,00). Then f is
strictly convex on (1,2) and strictly concave on (2,00). Thus, f [ (1,2) cannot
achieve a maximum and therefore, since lim,~ 1 f(p) =0 = f(2), f < 0on (1,2).
Similarly, f | (2,00) cannot achieve a minimum, and therefore, since f(2) = 0
while lim,, o f(p) = o0, we have that f > 0 on (2,00).

Next, observe that proving (6.3.21) comes down to checking that

>0 ifpe(2,00)

(I’(S) = p2—p (p - 1)1)—1 (1 _pS) - (1 - 3)p + (p - 1)1) Sp{ <0 ifp € (1 2)

for s € [0,1]. To this end, note that, by (*), ®(0) > 0 when p € (2,00) and
®(0) < 0 when p € (1,2). Also, for s € (0,1),

N

and
@"(s) = plp— D[(p - 1) 772 = (1= 5)2].

In particular, we see that:

() -¥ (3) -0

P P

In addition, depending on whether p € (2,00) or p € (1,2): lim,\ o ®”(s) is nega-
tive or positive, ®” is strictly increasing or decreasing on (0, 1), and lim, ~ ®” (1)
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is positive or negative. Hence, there exists a unique ¢ € (0,1) with the property
that

<0 ifpe(2,0)
>0 ifpe(1,2)

>0 ifpe(2,00)

® f(O,t){ <0 ifpe(1,2)

and ®" [(t,l){

Moreover, from the equation ®”(t) = 0, it is easy to see that t € (0, %)

Now suppose that p € (2,00) and consider ¢ on each of the intervals [%, 1],
[t, %], and [0, ] separately. Because both ® and @' vanish at % while "’ > 0
on (%,1), it is clear that ® > 0 on (%,1]. Next, because ¢’ (%) =0 and " |
(t, ;7) > 0, we know that ® is strictly decreasing on (t, %) and therefore that

o [t, %) > & (%) — 0. Finally, because ®” | (0,t) < 0 while ®(0) A ®(t) > 0,

we also know that ® | (0,¢) > 0. The argument when p € (1,2) is similar; only
this time all the signs are reversed. [

6.3.22 Lemma. Again let p € (1,00) be given, and defineu: E x F — R as
in Lemma 6.3.20. In addition, define the functions v and w on E x F'\ {0,0} by

o(x,y) = p(xlle + lyll#)" " (Ixle + 2 = p)llyllr)
and
w(x,y) = p(1 - p)(IIxllz + Iyll#)" " llyllF-

Then, for (x,k) € E? and (y,h) € F? satisfying

min (I + il Ally + thilr) >0 and [idle < hilr

u(x +k,y +h) —u(x,y)
gv(x,y)%e( X k)E+w(x,y)%e(—¥— h)F

lIx[iz’ lylir>

(6.3.23)

when p € [2,00) and

(p—1)[u(x+k,y+h) —u(x,y)]

(6.3.24) y
< —wly, %) Re (20 k) , — 000 Re (FFb)

when p € (1, 2].
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PROOF: Just as in the proof of Lemma 6.3.20, we may and will assume that
E = F. Next, set
®(t) = ®(t; (x, k), (y,h))
-1

= (IIx + tkllz — (p — Dlly + thlig) (IIx + kil + ly +thll)" ",
and observe that
(t; (x, k), (v, b)) if pe€[2,00)
~(p- 1) o (y,h), (xK) if pe(12).
Hence, it suffices for us to prove that

x+tk +th
&'(t) = v(x +tk, y + th)Re (mk)E +w(x +th,y + th)Re (m h)E

u(x + tk,y + th) :{

and that
<0 ifpel2, d|k|le <|h
®" (t; (x,k)»(y,h)){ - [2,00) and il < [[bfl=
>0 ifpe(1,2] and |kl > |h|E.
To prove the preceding, set x(t) = x + tk, y(t) =y + th, ¥(t) = |[x(t)||z +

ly®)lle,
Re(x(t), k)

B %e( (1), h)E
xole 0 2 =

alt) = IOl

One then has that
@'(t) = pu(ty~ [(I(0)ls + 2 = DIy Ols) alt) + (1 = Py O]z b(1)
= p[(1 = )T 2 Iy (®)lp (alt) +b(1)) + ¥(®" " a(t)].

In particular, the first expression in the preceding establishes the required form
for ®'(t). In addition, from the second expression, we see that

“2O _ 1y - 2 B Iy @l (at) + (1)
+(p— 1)U [b(t)(a(t) £ b(1) + 12Ol 4 (1)? 1 b, (1)?]
tyP-2 (1) + b(1) a(t) + (1) S ]
= (p-1)(p—2) T3 |y(t)]& (alt) +b(2))’
+(p— )W 2(Ibl% - IklI%)
+(p-2) WP 2O
where

ay(t) = /Ikll} —a(t)? and bL(t) = \/I]E - b(t)*
Hence the required properties of ®”(¢) have also been established. O
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PROOF OF THEOREM 6.3.15: Again we will assume that F = F. In addition,
weset K, =X, -X,_,and H, =Y, - Y, for n € Z*, and we will assume
that there is an € > 0 with the property that

||X0(w) —span{K,(w)}: n € Z+}I|E > €

and
[ Yo(w) — span{H,(w)} : n € Z¥}||p > €

for all w € Q. Indeed, if this is not already the case, then we can replace E by
R x E (or, when E is complex, C x E) and X,(w) and Y, (w), respectively, by

X()(w) = (e,Xn(w)) and Y9 (w)= (e,Yn(w)),

for each n € N. Clearly, (6.3.17) for each X\ and Y implies (6.3.17) for X,
and Y, after one lets € \, 0. Finally, because there is nothing to do when the
right-hand side of (6.3.17) is infinite, we let p € (1,00) be given, and assume
that Y, € LP(P; E) for each n € N. In particular, if u is the function defined in
Lemma 6.3.20 and v and w are those defined in Lemma 6.3.22, then

w(Xp, Yr) € LNP;R) and  0(Xyp, Ya), w(Xn, Y,) € LP (P;R)

for all n € N.
Note that, by Lemma 6.3.20, it suffices for us to show that

(6.3.25) An =B [u(X,, Y0)] €0, neN.
Since u(XO,YO) < 0 P-almost surely, there is no question that Ay < 0. Next,

assume that A, < 0, and, depending on whether p € [2,00) or p € (1,2], use
(6.3.23) or (6.3.24) to see that

Ant1 SEP [U(XMY")me (HTXJJH_E’ Kle)E}

+EP [w(xn»Y")me (HTﬁl_E’H"“)E]

or
Appr < —EP [w(Yn,x )me(“x - Kn+1)E]
—EP [U(Yn,xn)me (W,HHI)E] .

But »(X,.,Y, )W)—(—'h— is F,-measurable, Ef [K,+1|F,] = 0, and therefore (cf.
Exercise 5.1.36)

P [0(Xn, Yo)Re (W%jE,KnH)E] =0.
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Since the same reasoning shows that each of the other terms on the right-hand
side vanishes, we have now proved that A,;; <0. O

Exercises

6.3.26 Exercise: Because it arises repeatedly in the theory of stochastic inte-
gration, one of the most frequent applications of Burkholder’s inequality is to
situations in which E is a separable Hilbert space and (X,,, F,,, P) is an E-valued
martingale for which one has an estimate of the form

L

(6.3.27) K, = sup
mezt

E” I = X1 |32 Fim )7 <

Le=(P)

for some p € [1,00). To see how (6.3.27) gets used, let F be a second separable
Hilbert space and suppose that {o, : m € N} is an {.7-'” tn € N} -progressively
measurable sequence of maps o, : @ — Hom(E; F) for which

1
om = EF [||0'm||2Ep_,F] ? < o0, meN,

set

Y.=Y om1(Xm—Xm1) forneN,

and show that

n—1 %
(6.3.28) 1Yol fon(pry < (2P — 1) K, (Zafn) :

m=0

6.3.29 Exercise: Return to the setting in part (iv) of Exercise 5.2.40. Given
f € L*([0,1); C), show that, for each p € (1, c0),

1
(p - 1)AF”f = (D200 | 1o o0

1

(6.3.30) /[0 ! (ZIA 2) ’ dt

< (p - 1) v FTHf B (f’ 1)L2([0v1);c) “LP([OJ);C)'
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For functions f with (f, ee)r2(0,1);c) = 0 unless £ = +2™ for some m € N,
the is a case of a famous theorem proved by Littlewood and Paley generalizing
Parseval’s identity when p # 2. Unfortunately, the argument is far too weak to
give their inequality for general f’s.

6.3.31 Exercise: In connection with the preceding exercise, it is interesting to
note that there is an orthonormal basis for L? ([0, 1); R) which, as distinguished
from the trigonometric functions, can be nearly completely understood in terms
of martingale analysis. Namely, recall the Rademacher functions {Rn:neZt}
introduced in Section 1.1. Next, use § to denote the set of all finite subsets F
of Z*, and define the Walsh function Wy for F € § by

6.3.32) wp={ 1 it F=9
(6 F‘{HmepRm it F#0.

Finally, set Ag =0 and A, = {1,...,n} for n € Z*.

(i) For each n € N, let F,, be the o-algebra generated by the partition
(&5 0 <k <2},

and show that {WF : F C An} is an orthonormal basis for the subspace

L2([0,1), Fn, Leb; R); and conclude from this that {Wr: F ¢ 3} forms an
orthonormal basis for L([0,1); R).

(if) Let f € L'([0,1); R) be given, and set

(6.3.33) X,{ = Z < f(t) Wr(t) dt) Wr forneN
[0,1)

FCA,
Using the result in (i), show that X7 = EL*®[f|F,] and therefore that (X1, Fn,
Leb) is a martingale. In particular, X — f both (a.e., Leb) and in L ([0, 1],R).
(iif) Show that for each p € (1,00) and f € L} ([0,1); R):

(=D A@=1""fllzeony

- 1
2\ 2 P

< / Z Z( f(S)WF(S)d3> Wr(t) dt
|Fl=n \"10:1)

S-DVE-D"fllzeqo)-

6.3.34 Exercise: Although Burkholder’s inequality is extremely useful, it does
Dot give particularly good estimates in the case of martingales with bounded
increments. For such martingales, the following line of reasoning, which was
introduced by J. Azema in his thesis, is useful.
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(i) For any @ € R and z € [-1, 1], show that

e < 1;xe“+ 1;9:6_& < cosha + zsinha.

(ii) Suppose that {Y1,...,Y,} are [-1, 1]-valued random variables on the prob-
ability space (€2, F, P) with the property that, for each 1 <m < mn,

EP[Y;, - Y;,] =0 forall1<j; < - <jm <m.
Show that, for any {a;}7 C R,

EP exp Zanj < Hcoshaj < exp

i=1 =1 =1

3

a

2
3 ’

and conclude that

n R2
p a;Y;>R| <exp| ———=7+— 1|, Re€]0,0).
2.0 (o)

(iii) Suppose that (X,,, F, P) is a bounded martingale with Xy = 0 and D,, =
HXn - Xn_IHLoc(P). Show that

RQ

P(X, > R) <exp (_W
j=1

), R € [0,00).



Chapter VII:

Continuous Martingales

and Elementary Diffusion Theory

§7.1: Continuous Parameter Martingales

It turns out that many of the ideas and results introduced in Section 5.2 can
be easily transferred to the setting of processes depending on a continuous time
parameter. Thus, let (£, F) be a measurable space and {Fo:te [0,00)}
a nondecreasing family of sub-o-algebras. We will say that a function X on
[0,00) x  into a measurable space (E,B) is {F; : t € [0, 00) }-progressively
measurable if X | [0,T] x Q is Bjg 7] x Fr-measurable for every T' € [0, 00).
When E is a metric space, we say that X : [0,00) x} — E is right-continuous
or left-continuous depending on whether

X(s,w) =}i\n1X(t,w) or X(s,w) =}i/IgX(t,w)

for every (s,w) € [0,00) x € and, of course, if X is both left- and right-
continuous, we say that it is continuous.

7.1.1 Remark. The reader might have been expecting a slightly different def-
inition of progressive measurability here. Namely, he might have thought that
one would say that X is {F; : t € [0, 00) }-progressively measurable if it is
Bjo,oo) x F-measurable and w € @ — X(t,w) € E is Fi-measurable for each
t € [0,00). Indeed, in extrapolating from the discrete parameter setting, this
would be the first definition at which one would arrive. In fact, it was the notion
with which Doob and Ité originally worked; and such functions were said by
them to be {F; : t € [0,00) }-adapted. However, it came to be realized that
there are various problems with the notion of adaptedness. For example, even
if X is {F,: t € [0,00)}-adapted and f: E — R is a bounded, B-measurable
function, the function

t

(t,w) — Y(t,w) = / f(X(s,w)) ds € R

0

need not be {.7-} 1t € [0,00)}-adapted. On the other hand, if X is {.7-} it €
[0, oo)}-progressively measurable, then Y will be also.
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The following simple lemma should help to explain the virtue of progressive
measurability and its relationship to adaptedness.

7.1.2 Lemma. Let PM denote the set of A C [0,00) x € such that 14 is
an {F; : t € [0,00)}-progressively measurable function. Then PM is a sub-
o-algebra of Bjg o) X F and X is {]—"t : t €0, oo)}—progressively measurable
if and only if it is P M-measurable. Furthermore, if E is a metric space and
X : [0,00) x @ — E is a left-continuous function which is {Fi:tel0,00)}-
adapted, then X is {ft 1 te [0,00)}—progressive1y measurable. Finally, if

(7.1.3) Far=()Fe for se0,00),

t>s

then every right-continuous, {F; : t € [0,00) }-adapted function is {Fir : t e
[0, 00) }-progressively measurable

PROOF: First note that
AePM < ([0,T] xQ)NAE€ By x Fr forall T € [0,00);

from which it is clear that PM is a o-algebra. Furthermore, for any X : [0, 00) X
Q— E, T €[0,00), and T' € Bg,

{(tw) €0,T] x Q: X(t,w) €T}
= ([0,7) x ) N {(t,w) € [0,00) x @ : X(t,w) € '},

andso X is {Fy: te [0, 00) }-progressively measurable if and only if it is PM-
measurable. Hence, the first assertion has been proved.

Next, suppose that X is a left-continuous, {]—"t : t €0, oo)}—adapted function,
and define

Xn(t,w)=X ([22#1#1) , (t,w)€[0,00) x N and n € N.

Obviously, X, is {]—"t :t € [0,00)}—progressively measurable for every n € N
and X, (t,w) — X (t,w) as n — oo for every w € Q. Hence, by the first part of
this lemma, X is {F; : t € [0, 00) }-progressively measurable.

Finally, suppose that X is a right-continuous, {]—"t it € [O,w)}—adapted
function and set

Xa(tw)=X ([2";#,“}) , (t,w)€[0,00) x N and n €N

Given € > 0, X, is {ft+e 1t e [0,00)}—progressively measurable so long as
2% < €; and therefore, since X,, — X pointwise, X is {}"HE it e [0,00)}'
progressively measurable for every € > 0, which is, of course, the same as saying

that X is {]—"t+ 1t e [0,00)}—progressively measurable. [
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Given a probability space (€, F,P) and a nondecreasing family of sub-o-
algebras {F; : t € [0,00)}, we say that X : [0,00) x @ —> (—00,00] is a
P-submartingale with respect to {.7-} 1t e [O,oo)} or, equivalently, that
(X (t), Ft, P) is a submartingale if X is a right-continuous, {Fe: tel0,00)}-
progressively measurable function with the properties that X(t)~ is P-integrable
for every t € [0,00) and

X(s) <EFP [X(t)|.7-'s] (a.s.,P) forall 0<s<t<oo;

and when both (X(t),%:, P) and (—X(t),}'t,P) are submartingales, we say
either that X is a P-martingale with respect to {F;: t € [0, 00)} or simply
that (X(t),F:, P) is a martingale. Finally, if Z : [0,00) x @ — Cis a
right-continuous, {.7-} 1t e |0, oo)}—progressively measurable function, then we
say that (Z(t), Fy, P) is a (complex) martingale if both (Re Z(t), Fi, P) and
(Jm Z(t), Fi, P) are.

7.1.4 Basic Example. We give here an example which, all by itself, justifies
the introduction of continuous parameter martingales. Namely, recall the path-
space P(RY) and the sub-o-algebras {B; : t € [0,00)} defined in (4.1.3), and

let W,SN), x € RY, be the shifts of Wiener’s measure defined in the discussion
preceding Lemma 4.3.7. From (4.1.5), we see that, for each 0 < s <?,x € RV,
and € € RV,

B [ee((t) ~ (5)) | B] = [ cely)ilay) = e 5

W,EN)—almost surely, where we have introduced the notation

(7.1.5) ee(y) = exp[\/—_l (E,y)RN] for (£,y) € RY xRY.
Hence,, after shifting factors a little, we come to the conclusion that
(7.1.6) (exp [\/ji (&) g + l—gﬁt] , B, WX(N)) is a martingale

for every ¢ € RY. As we will see in Corollary 7.1.20, (7.1.6) is the source for
a great many other martingales. Moreover, together with the initial condition
Wi (¥(0) = x) = 1, (7.1.6) completely characterizes W™ That is, if P €
M, (BRN)), P(¢(0) = x) =1, and, for every £ € RV,

(exp [\/:T (&%) + J%Et],Bt,P) is a martingale,
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then P = W) To see this, simply reverse the preceding line of reasoning and
conclude that

B [ee(w(t) () [ B.] = ¢ (as.,P)

Now, proceeding by induction on n € Z*, one sees that, for any 0 < tg < t; <
e <ty {w(tm) - tj)(tm_l)}? are mutually independent, R" -valued random
variables under P with distribution 'ytjmv _¢,._,» and from this and the condition

P(¥(0) = x) = 1, it is clear (cf. Theorem 3.4.20) that P = W™V,

We will now run through some of the results from Section 5.2 which transfer
immediately to the continuous parameter setting.

7.1.7 Lemma. Let the interval I and the function f : I — R U {oc} be
as in Corollary 5.2.16. If either (X(t),]-'t,P) is an I-valued martingale or
(X(t), Fi, P) is an I-valued submartingale and f is non-decreasing and bounded
below, then (f o X(t), F:, P) is a submartingale.

Proor: The fact that the parameter is continuous makes no difference here,
and so this result is already covered by the argument in Corollary 5.2.16. O

7.1.8 Theorem (Doob’s Inequality). Let (X(t),F:, P) be a submartingale.
Then, for every a € (0,00) and T € [0, 00),

1
(7.1.9) Pl sup X(¢)>a| < =EF | X(T), sup X(t)>al.
te[0,T) a t€[0,T}

In particular, for nonnegative submartingales and T € [0, o0),

(7.1.10) E”

sup X(t)?| < P g [X(T)”]%, p € (0,00).
t€[0,T) p—1

ProoOF: For each T € (0,00) and N € N, apply Theorem 5.2.4 to the discrete
parameter submartingale

(X (5F) . 2. P).

and observe that

sup {X (Z%):0<n<2¥} 7~ sup X(t) as N —oo. O
£€[0,T}
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In order to state the analogs of Hunt’s and Doob’s stopping time results (cf.
Theorem 5.2.19 and Corollary 5.2.21), we must first make sure that it is clear
what a stopping time is in the present context. Thus, call a function 7: Q@ —
[0,00] an {F; : t € [0, 00) }-stopping time if {7 <t} € F; for every t € [0, 00);
set Fr = {A €F: An{r <t} € Fiforevery t € [O,oo)}; note that F;
is a sub-c-algebra of F; and check that all but the final part of Lemma 4.3.2
continue to hold when “B” is replaced by “F” throughout. As for the final
part of Lemma 4.3.2, let (E,p) be a Polish space, X : [0,00) x @ — E a
right-continuous, {]—"t : t € [0, 00) }-progressively measurable function, and o a
{}"t : t €0, oo)}—stopping time, and check that for every closed F in E

(7.1.11) Tf = inf {tZU: inf p(X(s),F) =O}

s€o,t]

is an {F; : t € [0, 00)}-stopping time. (Of course, when X is continuous, one
can eliminate the infimum over s € [o,t] without altering the definition of 7g.)
The key to extending Hunt and Doob’s results is contained in the following
application of Theorem 7.1.8.

7.1.12 Lemma. Suppose that X is an {]—"t it € [O,oo)}-progressively mea-
surable function into some measurable space (E,B) and that 7 is an {F; : t €
[0, 00) }-stopping time. Then, the function w € {r < oo} — X (7(w),w) € E
is F;[{r < oo}|-measurable. Moreover, if (X(t),F;, P) is a martingale or a
nonnegative, P-integrable submartingale, then, for each T € [0, 00), the set

{X(T) : 7 isan {F;: t € [0,00)}-stopping time and T < T}

is uniformly P-integrable.

PROOF: To prove the first assertion, note that for any t € [0,00) and I € B,
A(t,T) = {(s,w) €[0,] x 0: X(s,w) € r} € Bioy x Fi,
and therefore
{w : X (r(w),w) € l"} N{r<t}= {w : (T(w),w) € A(t,l")} € Fi.
Turning to the second assertion, first note that, by Lemma 7.1.7, it suffices to

consider nonnegative submartingales. Thus, let (X (t), Ft, P) be a nonnegative,
P-integrable submartingale, and define

_ { L&g"T)]ﬂ if 7(w) < oo
To(w) =

00 if 7(w) =00

(7.1.13)
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for {F; : t € [0,00) }-stopping times 7 and n € N; and let T(T) denote the set
of {F; : t € [0,00)}-stopping times dominated by T'. It is then clear that, for
each N € Z* and 7 € T(2V),

Tm<2V+1 foralmeN and X(r) = lim X (7).

n—o0

Hence, it suffices for us to show that, for each N € Z*,

: P _
ngnoo ilég T;ru(gN) E [X(Tn), X(r) > R} =0.

But, by Theorem 5.2.19 applied to discrete parameter process

(x(2).7a.7).

we have

BP[X(ra), X(ra) 2 B| <EP[X(2¥ +1), X (ra) 2 R]

?

<EP |X(2¥ +1), sup X()>R
te[0,2N +1]

and, by (7.1.9),

P( sup X(t)2R>—>O as R "oo. O

te[0,2NV +1]

7.1.14 Theorem (Hunt). Let ¢ and 7 be a pair of bounded {.7-} bt €
[0, 00) }-stopping times and assume that o < 7. If (X(t),]-'t,P) is a nonneg-
ative, P-integrable submartingale, then X (o) < EP [X(1)|F,] (as., P); and if
(X (t), 7, P) is a martingale, then X (o) = EF [X(1)|%,] (as., P).

PRrROOF: Forn € N, define o, and 7, from ¢ and 7 by the prescription in (7 .1.13),

note that F, C F,,, and apply Theorem 5.2.19 to conclude that, for each n € N
and A € F,,

B [X (o), A] < B [X(r), A] or E”[X(ow), 4] =B [X(r), 4]

depending on whether (X (t), F:, P) is a nonnegative, P-integrable submartin-
gale or a martingale. Finally, use the last part of Lemma 7.1.12 and right-
continuity to justify a passage to the limit as n — oco. U ‘
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Just as Theorem 5.2.19 led immediately to Corollary 5.2.21, so the preceding
implies the following.

7.1.15 Corollary (Doob’s Stopping Time Theorem). Depending on whe-
ther (X (t), F:, P) is a nonnegative, P-integrable submartingale or a martingale,
(X(tAT),Fy, P) is again a nonnegative, P-integrable submartingale or a mar-
tingale for every {.7-} : t € [0,00) }-stopping time T.

Before stating the analog of Theorem 5.2.22 for the continuous parameter
case, note that there is no problem adapting the convergence criterion used in
the proof there to the setting here. Namely, given a function f : [0,00) — R,
lim; o0 f(t) exists in [~o0, 00] if and only if for every pair of rational numbers
—00 < @ < b < 00 there is an s € [0,00) such that either f(t) < bforallt>s
or f(t) > aforallt>s.

7.1.16 Doob’s Martingale Convergence Theorem. Let (X(t),F:, P) bea
P-integrable submartingale. If

sup EF [X(t)"] < o0,
t€[0,00)

then there exists an Fo, = \/,( Fi-measurable X = X(o0) € L'(P;R) to which

X(t) converges P-almost surely as t — oco. Moreover, when (X(t),F, P) is
either a nonnegative submartingale or a martingale, the convergence takes place
in LY(P) if and only if the family {X(t) : t € [0,00)} is uniformly P-integrable,
in which case

{X(T) : 7is an {F; : t € [0, 00) }-stopping time}
is uniformly P-integrable and, for every {.7-} : t € [0, 00) }-stopping time T,
X(r)<EP[X|F] or X(r)=EP[X|F],

depending on whether (X (t), F;, P) is a submartingale or a martingale. Finally,
again when (X (t), F¢, P) is either a nonnegative submartingale or a martingale,
for each p € (1,00) the family {|X(t)|” : t € [0,00)} is uniformly P-integrable
if and only if $up, o 00y X (t)llLr(p) < 00, in Which case X(t) — X in LP(P).

PROOF: To prove the initial convergence assertion, note that, by Theorem 5.2.22
applied to the discrete parameter process (X (n), Fn, P), there is an oy Fn-
measurable X € L'(P) to which X(n) converges P-almost surely. Hence, we
need only check that lim; oo X (t) exists in [—o0, co] P-almost surely. To this
end, define U[(:i] (w) for n € N and a < b to be the precise number of times that
the sequence {X (22,w) : m € N} upcrosses the interval [a, b] (cf. the paragraph
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preceding Theorem 5.2.22), observe that U[(a",))] (w) is nondecreasing as n increases,
and set

Uay(w) = lim U(@).

Note that if Upsp(w) < oo, then (by right-continuity), there is an s € [0, c0)
such that either X (t,w) < b for all t > s or X(t,w) > a for all ¢t > s. Hence, we
will know that X (t,w) converges in [—o00, 00| for P-almost every w € {2 as soon
as we show that EF [U[a,b]] < oo for every pair a < b. But, by (5.2.23), we know
that

P X —a)t
sup ]EP[U[(:Z]] < sup £ [( )~ o) ]

< < 00,
neN te[0,00) b—a

and so the required estimate follows from the Monotone Convergence Theorem.

Now assume that (X (t),}'t,P) is either a nonnegative submartingale or a
martingale. Given the preceding, it is clear that X (t) — X in L*(P) if {X(¢):
t € [0,00)} is uniformly P-integrable. Conversely, suppose that X (t) — X in

L'(P;R), and set X(oo) = X. Then one can use Theorem 7.1.14 to easily check
that

(7.1.17) |X(T)| <EP[|X||F;] (as.,P)

for all bounded {F; : t € [0,00)}-stopping times 7. But given (7.1.17) for
bounded 7’s, one can prove it for arbitrary 7’s by replacing 7 with 7 A n and
using Corollary 5.2.7 to pass to the limit as n — oo. Thus, we now know (7.1.17)
for all {F;:te€ [0,00) }-stopping times. In particular, after combining (7.1.17)
with (7.1.9), we see first that

1
(7.1.18) P| sup [X(t)|>a]< —EP 11X, sup |X(t)|>a
t€[0,00) « te[0,00)

for every a € (0,00) and then that
{X(T) : Tisan {F; : t € [0,00) }-stopping time}

is uniformly P-integrable. Moreover, when (X (t), Fi, P) is a martingale which
converges to X = X(oo) in L!(P), we can replace (7.1.17) by

X(r)=EP[X| %]

for any {F; : t € [0, 00)}-stopping time.

Finally, the assertions about p € (1,00) are now easy applications of the
results already proved and the reasoning used in proof of the analogous results
for the discrete parameter case (cf. Corollary 5.2.25). The details are left to the
reader.
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The reader will have undoubtedly noticed that the one result from the Section
5.2 for which we have not given a counterpart here is Doob’s Decomposition
for submartingales (cf. Lemma 5.2.18). The reason for our not doing so is that,
although it is, perhaps, the most trivial result which we proved there, its counter-
part here (known as the Doob-Meyer Decomposition Theorem) is highly
nontrivial and requires a good many preparations which would lead us too far
afield. (Cf. Exercise 7.1.33 below for an important special case.) Hence, we will
content ourselves with the following simple observation about the relationship
between martingales and functions of bounded variation.

7.1.19 Theorem. SupposeV : [0, 00) x§2 — C is a right-continuous, {.7-} (te
[0, 00) }-progressively measurable function, and let |V|(t,w) € [0, c0] denote the
total variation of V(-,w) on the interval [0,t]. Then |V|: [0,00) x & — [0, 00]
is a nondecreasing, {.7-} 1 te |0, oo)}—progressively measurable function which is
right-continuous on each interval [0,t) for which |V|(t,w) < oco. Next, suppose
that (X (t),}'t,P) is a C-valued martingale with the property that, for each
(t,w) € (0,00) x Q, the product | X(-,w)||V|(t,w) is bounded on [0,t]. Define

w)V(ds,w) if |V|(t,w) < oo
B(t,w) = f(o ¢
otherwise
where, in the case when |V|(t,w) < oo, the integral is the Lebesgue integral of

X(-,w) on [0,t] with respect to the C-valued measure induced by V(-,w). If

EP < oo forallT € (0,00),

sup ’X ‘(|V| +|V l)

t€[0,T]

then (X (t)V(t) — B(t), F, P) is a martingale.

Proor: Without loss in generality, we will assume that both X and V are R-
valued. To see that |V|is {F; : t € [0, 00)}-progressively measurable, simply
observe that, by right-continuity,

(2]

VI,

neN k—0
and to see that |V|(-,w) is right-continuous on [0,t) whenever |V|(t,w) < oo,
recall that the magnitude of the jumps (from the right and left) of the variation
of a function coincide with those of the function itself.

We now turn to the second part. Certainly B is {ft : t €0, oo)}—progressively
measurable. In addition, because

sup |X(s,w)||V|(t,w) < oo, (t,w)€[0,00)x1Q,
s€[0,t]
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for any w € €2, one has that

B(t,w)=0 or B(t,w)= X (s,w)V(ds,w) for all t € [0,00);
(0.4]

and so, in either case, B(-,w) is right-continuous and B(t,w) — B(s,w) can be
computed as

[2"¢]

lim Z X k+1/\tw) (V(g—tl/\t,w)—V(f;\/s,w)).

n—»oo
=[2m3]

In fact, under the stated integrability condition, the convergence in the preceding
takes place in L1(P;R) for every t € [0, 00); and therefore, forany 0 < s <t < 00
and A € F,:

E” [B(t) — B(s), 4]

[27¢]

= lm Y EP|X (52 Atw) (V(’“;;l/\t,w)—V(%\/s,w)),A}
k=[2"3s]
(271]

= lim > B [X(t+1)(V(%/\t,w)—V(%\/s,w)),A}
k=[273s]

=E°[X(t+1)(V(t) - V(5)), A =EP[X(O)V() - X(s)V(s), A

and clearly this is equivalent to the asserted martingale property. [J

We next use Theorem 7.1.19 to produce some of the additional martingales
advertised in Example 7.1.4.

7.1.20 Corollary. Suppose that Y : [0,00) x PRN) — CM isa {B, : t €
[0, oo)}-progressively measurable function with the property that Y(-,1) €
C'([0,00); RM) for each ¢ € P(RY) and

T
WA [/ ‘Y(t)| dt} < oo foreach T € (0,00) and x € RY.
0
Then, for each F € C2' (RN x RM;C) and x € RV,

P00, Y (0) - [ ARE + (Y (5,%), Ty F) o] (5 915)) s
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is a W:éN)-martingaIe relative to {Bt : t € [0,00)}. In particular, if f €
C42([0,00) x R¥;C) and, for each T € (0,00), there exists a C(T) < oo for
which

(7.1.21) |f(ty)| + H%{ + %Af] (t,y)‘ < C(T)EEDV! (ty) € [0,T] x B,
then

t 8f 4 1 (N)
(7122) (f(t»'/’(t)) - A [63 + §Af] (5,'/’(3)) ds,Bt,Wx )

is a continuous martingale

for every X € RV.

PROOF: After an easy approximation procedure, we may and will restrict our
attention to F' € C&° (RV x RM ;(C) while proving the first assertion, in which
case

Flx,y) = (2m) ¥ M / een(x,y) F(=€, —m) dédn,
Y xRM

where F', the Fourier transform of F, is rapidly decreasing (i.e., tends to 0 at
infinity faster than any power of (1 + |&|+ |’q|)~1) and

egn(X,y) = eXP[\/——l ((E,X)Rv + (n,y)RM)]-

In particular, if e¢ »(t,¥) = e¢.n (tj)(t),Y(t,t/))) and

Mealt,) = cenlt, )+ [ (5 V7T (1Y (0,9 ) cemlss0) e

then, by elementary Fourier considerations,

F(y(t),Y(t,v)) —/0 [%AXF + (Y(8,%), Vy F) gt (5,%(s)) ds

= m M [ Meq(t,0) F(=€, —m) dedn
®N xRM

Hence, if we show that (Mgﬁ,,(t), B:, ,SN)) is a martingale for each (£, 7), then

the desired result will follow immediately as an application of Fubini’s Theorem.
But

t
Men(t ) = Ze(t, ) Ven(9) — | Ze(s,16) Ven(ds, ),
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where 2
Ze(t,16) = exp[ VT (6 () + 5]
and

Vem(t, %) = exp[v=T (n, Y (t,9))ps — 55¢].

Thus, by (7.1.6) and Theorem 7.1.19, we are done.
To handle the second assertion, first suppose that the derivatives of f are
bounded, set

F(x,y) = f(O,x)—{-/Oy%%(lth) dt for (x,y) € RY x R,

and apply the preceding with Y'(¢) = ¢t. To handle f’s satisfying (7.1.21), choose
neCX(R xRY;[0,1]) so that =1 on [-1,1] X Bgv (0, 1), and set

fn(tvx) =n (%7 %) f(tvx)'
If (,(1p) is the smallest ¢ > 0 such that (¢,(t)) ¢ [~n,n] x By (0,n), then, by
the case already handled (applied to f,) and Corollary 7.1.15,

F{En (), Bt n () - / et 5L+ 3Af] (5, %(5)) ds

is W™ martingale relative to {B; : t € [0,00)}. Hence, by (7.1.21) and the
estimate in (3.3.30), it is an easy matter to see that one can let n — oo and
thereby arrive at the required conclusion. O

7.1.23 Remark: The preceding leads to an extremely appealing characteriza-
tion of WX(N). Namely, it says that

(f(w(t)) - /0 t LAF((s)) ds,Bt,W,ﬁm)

is a martingale for each f € C=°(RY;R).

(7.1.24)

Conversely, if P € M;(B(RV)) and

(f(w(t)) - /0 LAF@(s) ds,Bt,P)

is a martingale for each f € C(RV;R), then it is easy to see that the same
is true for all f € C° (RN;C). In particular, this means that (cf. (7.1.5)) for
0<s<tand A € B;:

B (e (6(0)), 4] = 7 [eg(v1s)). 4] - 4 [ B [eq(w(r). 4] dr:
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from which it is obvious that
2
EP [eg(w(1)), 4] = e~ OB [ee(w(5), 4],
and therefore that
— g . .
(eXP[V 1 (E,t/)(t))RN ) t],Bt,P) is a martingale.

Hence, if, in addition, P(’(/)(O) = x) = 1, then (cf. Example 7.1.4) we know that
P = WX(N). In other words, WX(N) is completely characterized by (7.1.24) and
the initial condition W) (9(0) = x) = 1.

The reason why the preceding characterization is more appealing than the
earlier one in Example 7.1.4 is that it lends itself to the following somewhat
loose interpretation. Namely, it hints that Wiener paths are the integral curves
of %A. To understand this interpretation, recall that if b = Zszl brey is a
smooth vector field on RY, then the integral curve of b starting at x € RV is
that path ¥ with the properties that ¢(0) = x and

t € [0,00) — f(3(1)) - /Ot(b,Vf)RN ($(r)) dr

is constant for every f € C>°(RV;R). Hence, if one now accepts the proposi-
tion that martingales are the stochastic analog of constants (cf. Exercise 7.1.24
below), then one starts to understand the preceding interpretation of Wiener
paths as the integral curves of %A.

Having made such a fuss about various martingale characterizations of Wie-
ner’s measure, it is only fitting that we close this section with a far deeper
characterization which is due to P. Lévy. The depth of Lévy’s characterization
lies in the observation that one need not use all test functions f € C>°(RY;R) in
(7.1.24) but need only use quadratic ones; an observation which is reminiscent
of and closely related to the heuristic discussion with which we introduced the
Central Limit Theorem in Section 2.1. Before presenting Lévy’s Theorem, we
need a definition. Namely, given a probability space (2, F,P) and a map 3 :
[0, o0) x Q@ —3 RY which is progressively measurable with respect to some family
{ft i te [0,00)}, we say that (,B(t),}'t,P) is a Brownian motion if 8(-,w)
1s continuous for each w € 2 and (cf. (7.1.5))

E” [ee(B(1) ~ B(s) | 7] =9 (as, P)

foral 0 < s<tand & ecR".
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Equivalently, by precisely the same reasoning as we used in Example 7.1.4
(B(t), Fe, P) is a Brownian motion if an only if

(exp [V=T(&.8() ~ B(0)) g + e 7P )

is a martingale for each § € RY.

(7.1.25)

In particular, if w € Q — B(-,w) € P(RY) is F-measurable and F; = a(B(s):
s € [0,]), then (B(t), F¢, P) is a Brownian motion if and only if the distribution
of we 0 B(,w) — B(0,w) € P(RY) under P is W,

7.1.26 Theorem (Lévy). Let (0, F,P) be a probability space, {.7-} 1t e
[0,00)} a nondecreasing family of sub-o-algebras, and B : [0,00) x @ — RY
an {.7-} 1t € [O,oo)}-progressively measurable map with the property that
B(-,w) € P(RN) for each w € Q. In order that (B(t), Ft, P) be a Brownian
motion, it is necessary and sufficient that, for each (§,m) € RY x RV:

(&, B8(t) - B0)) g + (m.B(t) = BO)) o — Inlt

be a P-martingale relative to {F; : t € [0,00)}.

PROOF: Because it entails no loss in generality, we will assume throughout that

B8(0) = 0. f
Assume that (B(t), F;, P) is a Brownian motion. Because W) is the distri- -

bution of w € 0+ B(-,w) — B(0,w) € P(RN), Corollary 7.1.20 says that

(f(t,ﬂ(t)) - /Ot [%ﬁ + %Af] (5,B(s)) ds,}'t,P)

is a continuous martingale for every f € C12([0,00) x RV ; C) satisfying (7.1.21).
In particular, this observation certainly provides a proof of the necessity. Alter-
natively, one can proceed more directly and note that, from

P(B(t) - B(s) e T| Fs) = 1L, (D),

it is obvious that, for each £ € RV,

EP [exp[(&,ﬂ(t) - 5(3))w] IJ-'] =9 (a5, P).

Given the above expression for this conditional moment generating function, it
is an easy matter to check that

E”[(€,8() - B(9)a | F:] =0 (a5, P)
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and

B [(6.8() - B(s)2 | 7] = (=9 (as.P)

and from these one can quickly verify the necessity of the stated condition.
We now want to prove the sufficiency. Thus, let 0 < Ty < T3, A € Fr,, and
¢ € RN be given. What we have to show is that

E” [exp[ﬁ (6, B(T) g + ST A]
(7.1.27) ]
=EP [exp [\/—’1 (&,8(Th))w + %Tl], A]

on the basis of the stated condition about quadratic functions. Our problem is
to learn how to take full advantage of the assumed continuity (cf. Exercise 7.1.34
to understand just how essential this point is).T To this end, let ¢ € (0,1] be
given, set 7o = T, and use induction to define

Tn = (inf {t > Tpho1: l,@(t) - ,B(Tn-l)l > e}) A (Tno1 + €) AT,

for n € Z+. By induction and the argument used to prove that 7z in (7.1.11)
is a stopping time, we see that {r,,}$° is a nondecreasing sequence of [Th, Ta2)-
valued {.7-} 1t e [O,oo)}—stopping times. Hence, by Theorem 7.1.14 and our
assumption,

EP [An

]-'T,H] =0
(7.1.28) (a.s., P),

EP [Ai

Fra| =EF [0 | Fr_i]

where

Ap(w)

(E,,@(Tn(w),w) — ﬂ(Tn_l(w),w))RN
(W) = €] (Tn(w) — T2 (W)

Moreover, because 3( -,w) is continuous, we have that, for each w € Q,

(7.1.29) | An(w)] V On(w) < e(1+€7)

1\Lévy’s Theorem is Theorem 11.9 in Chapter VII of Doob’s Stochastic Processes, publ. by
J. Wiley (1953). Doob uses a clever but somewhat opaque Central Limit argument. The
argument which we give is far simpler and is adapted from the one introduced by H. Kunita

and S. Watanabe in their article “On square integrable martingales,” Nagoya Math. J. 30
(1967).
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and that 7,(w) = T3 for all but a finite number of n’s. In particular, we can

write the difference between the left and the right sides of (7.1.17) as the sum
over n € Zt of EF [DnMn, A], where

D, = exp[\/——lAn—F 6—2“} -1
M, = exp[\/——l (E,B(Tn-l))RN + %Ernﬂl].

By Taylor’s Theorem,

o= (T80 )4 (T80 5) 4

Hence, after rearranging terms, we see that
Dp=+vV-1A, — (A2 = 6,) + En,

where (cf. (7.1.29))
2 2 le)?
Bl < 31800a] + %+ 25 (JA0P + B) < e(141€2)e 5 (A% +6);

and so, after taking (7.1.28) into account, we arrive at

oo

> EF (Do My, A]

1

oo

> EP[E.M,, A]

1

oo

< 2e(1+1€R)eF Y BP [, A] < 26(1+ |E)(T; — Tr)e' SO,
1

In other words, we have now proved that, for every ¢ € (0,1], the difference

2
between the two sides of (7.1.27) is dominated by 2¢(1+|€|?)(T% —Tl)e%“(HT"‘),
and so the equality in (7.1.27) has been established. [

Exercises

7.1.30 Exercise: Here is a slightly better version of the basic tail estimate in
(3.4.30). Namely, show that for each € € (0, 1)

2
EV " lexp | sup vl < (l—e)fN, T € (0, 0),
tepo,r] 2T
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and conclude that

1

t€[0,T] —2_T‘

dim R=%log W () ( sup [9(t)] > R) =

Hint: Observe first that

1
lim R 2logW®™ | sup [9(t)|>R| < —55%
R— o0 g t€[07T]l ) 2T

follows immediately from the first assertion and second that

lim R~ *logWw ) ( sup |(t)| > R) > lim R 2logW ™ (|9(T)| > R)
R—oc R—oo

te[0,T)

. 1
= lim 47" (Bw (0, R)C) = — 5.

Hence, it suffices to prove the first assertion. To this end, let p € (1,00) be
given, and use Doob’s Inequality (7.1.10) to derive

v [ sup exp(p(&ﬂ!’(t))w)]

te[0,T]
< (527) o () (en(t6 w0 - 2))'

for every £ € RY. Next, integrate both sides of the preceding over § € RY with
2
respect to v, with 7 = %, and finally take the limit as p — oo.

7.1.31 Exercise: Define F,, for t € [0,00) as in (7.1.3).

(i) Show that 7 : Q@ — [0,00] is an {F;y : t € [0, 00) }-stopping time if and only
if {r <t} € F; for every t € [0,00).

(ii) If (X (t), F¢, P) is a martingale, show that (X (t), Fis,P) is also a martingale.

(iii) Let (X (t), F:, P) be a continuous martingale and, for each (t,w) € [0,00) X
Q, use | X|(t,w) € [0,00] to denote the total variation of X(-,w)|[0,¢t]. If, for
R € (0,00),

or(w) = sup {t € [0,00) : | X|(t,w) < R}, w € 0,
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and Xg(t) = X (t Aor) — X(0), show that or is an {Fiy 1 t€[0,00)}- stoppmg )
time, and conclude that (Xg(t), Fii,P) is a continuous martingale with the
property that |Xg|(t) < R. Next, note that, on the one hand, by Riemann
integration theory,

Xr(t,w)? = 2/(: Xg(s,w)dXg(s,w), (t,w)e€[0,00)xQ,

while, on the other hand, by Theorem 7.1.19,

(0,8]

E” [Xg(t)?] = E” { Xg(s) XR(ds):| , te0,00).
Hence, since the preceding Riemann and Lebesgue integrals coincide, conclude :
that EF [Xg(t)?] = 0 for all t € [0,00). Finally, use these considerations to show -
that

P(Elt €[0,00) 0< |X|(t) < oo) = 0.

In other words, the paths of a non-constant, continuous martingale must have -
unbounded variation.

(iv) Just to make sure that it is understood what an essential réle continuity '
plays in the preceding, recall the simple Poisson process {N(t) : t € [0,00)}
described in (3.3.3), let F; denote the o-algebra generated by {N(s) : s € [0,¢]}
for each ¢ € [0,00), and set X(t) = N(t) — t. Show that (X(t),F;, P) is a non-
constant martingale whose paths all have bounded variation on each finite time
interval. Of course, it is also true that its paths are discontinuous!

7.1.32 Exercise: At the end of Remark 7.1.23, we asserted that the character-
ization of Wiener’s measure WX(N) in terms of the martingales

(f(w(t)) - /0 LIAf] (%(s)) ds,Bt,W,SM), f e C(RY;R),

constituted grounds for thinking of Wiener paths as the integral curves of %A-
In order to further support this contention, consider a bounded, smooth vector
field b : RY — RY and suppose that P € M, (‘B(RN )) has the properties that
P(¢(0) = 0) =1 and that

(rwin - [ (5910 (915)) ds. 51 P

is a continuous martingale for every f € C®(RM;R). Show that ¥(t) =
fo ((s))ds, t € [0,00), for P—almost every ¢ € P(RV). In other words,
for a vector field, as distinguished from A, stochastic constancy is the same as
P-almost sure actual constancy.
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Hint: As an application of Theorem 7.1.19, Leibniz’s rule, and integration by
parts, show that

([f(t/)(t)) —/t(b, V) (%(5)) dsr,Bt,P>

0

is a continuous martingale for every f € C*(RY;R), and conclude that

F@0) = £0) = [ (1) (W) ds, £ 020), (@5 P)

7.1.33 Exercise: It turns out that the most important special case of the Doob-
Meyer Decomposition for submartingales is rather easy to prove. Namely, let
(2, F, P) be a probability space and (X(t), ¢, P) a continuous, square inte-
grable (i.e., X(T) € L?(P) for each t € [0,00)) martingale, and assume that
Fo contains every P-null A € F.!' Then, (X (t)2, F;, P) is a continuous sub-
martingale, and the Doob-Meyer Theorem says that there exists a P-almost
surely unique continuous, {.7-} : te|o, oo)}—progressively measurable function
A :[0,00) x  —> [0,00) with the properties that, for each w € €2, A(0,w) =0
and A(-,w) is nondecreasing, and (X (t)? — A(t), F:, P) is a martingale. Here is
the outline of a proof.}

(i) Prove the uniqueness assertion as a consequence of Exercise 7.1.31.

(ii) Set 70¢(w) = £ for £ € N. Next, proceeding by induction, define {mne}2%0
for n € Z* so that 7,0 = 0 and, for £ € Z*, 7, ¢(w) is equal to

when 7, 1 s-1(w) < Tue-1(w) < Tno1k(w). Check that, for each n € N,
{m.6}52, is a nondecreasing sequence of bounded, {.7-} :te [O,oo)}—stopping
times and that 7, ¢ /* 00 as £ — oo. Further, note that {7, ¢}529 2 {Tn-1,k}7Z0
for every n € Z*.

(iii) Set

Tn—1,k(w) A inf {t > Te1(w) @ | X(tw) - X (Tner(w),w)| >

S|

Xpo(w) = X (tne-1(w),w) and
Ay p(t,w) = X(t A T,L,g(w),w) - X(t A Tnvg_l(w),w)

Pt is easy to check that this represents no real loss in generality in the sense that, if it is not
already true, all P-null A € F can be added to the Fi’s without destroying the martingale
Property.

Y1 learned the idea for the existence proof in a lecture given by K. Ito.
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for n € N and £ € ZT, and observe that
X(t,w)? — X(0,w)? = 2M,(t,w) + An(t,w),

where

oo

Ma(t,w) = Xne(w)Ape(t,w) and An(t,w) = Ana(t,w)?

=1 £=1

Show that (Mn(t),}'t,P) is a continuous martingale and that A, : [0,00) x
Q — [0,00) is an {F; : t € [0, 00) }-progressively measurable function with the
properties that, for each w € Q: A,(0,w) = 0, Ap(-,w) is a continuous, and :
An(t,w) + # > A, (s,w) whenever 0 < s < t.

(iv) For 0 < m < n and £ € Z%, define

X (@) = Xmi(w) when 71 (w) < T p1(@) < k(W)

note that

Mo (t,w) — Min(t,w) = Z(Xn,g(w) —x(m (w))An,g(t,w),
£=1

and conclude that
EP [(Mn(t) - Mm(t))2] < m 2EP [X(8)® - X(0)2].

In particular, as an application of (7.1.10) with p = 2, show that there exists a
continuous martingale (M (t), Fe, P) with the property that

lim EX | sup |Ma(t) — M(#)]’| =0 for each T € [0, 00).
n—oo tc(o,T]

(v) To complete the proof, combine parts (iii) and (iv) to see that the function
A :[0,00) x 2+ [0,00) given by

A(t,w) =0V sup {X(s,w)2 —X(0,w)? —2M(s,w): s € [O,t]}

has the required properties.

7.1.34 Exercise: This exercise deals with various aspects of Lévy’s Theorem,
Theorem 7.1.26.
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(i) As we mentioned in the course of its proof, the subtlety of Lévy’s Theorem lies
in its use of continuity. To see just how essential continuity is, again consider the
martingale X (t) = N(t) — t introduced in part (iv) of Exercise 7.1.31, and verify
that (X ()2 - t,F;, P) is also a martingale. On the other hand, (X(t), F:, P)
certainly is not a Brownian motion!

(ii) An important application of Lévy’s Theorem and the Doob—Meyer Theorem
is the observation that every real-valued, continuous martingale is Brownian
motion run at a random rate. Because the general statement would involve
us in too many technical details, we will content ourselves with a special case.
Namely, refer to the setting in Exercise 7.1.33, and assume that, for each w € £,
the function A(-,w) is a homeomorphism of [0, 00) onto itself. That is, Al w)
is strictly increasing, and lim;_,o A(t,w) = co. Next, define 7 : [0,00) X Q@ —
[0,00) by the equation A(T(t,w),w) = t and check that {T(t) . t €0, oo)} is
an increasing family of {F; : t € [0, 00) }-stopping times. Finally, set B(t,w) =
X (7(t,w),w), and show that (B(t), Fr(t), P) is a Brownian motion. In other
words, X(t) follows Brownian paths but does so at a Tate determined by the
clock A(t).

Hint: When each 7(t) is bounded, the result is an essentially trivial application
of Theorems 7.1.14 and 7.1.26. To prove it when the 7(t)’s are not necessarily
bounded, what one has to do is show that, for each t € [0, 00), X(r(t)An) —
B(t) in L*(P); a fact which can be proved as a consequence of A(T(t)An) St

(iii) Continue in the setting of part (ii) above, and note that any computation
which does not involve path parameterization will be the same for X (-) as it is
for B(-). Thus for example, show that if —co < a <0 < b < o0 and o, and 7
are the first times ¢ for which X (¢)— X (0) = a and X (t)— X (0) = b, respectively,
then both o, and 7 are P-almost surely finite and

b
b—a

P(Ua < Tb) =

(Hint: Apply Theorems 7.1.20 and 7.1.14 to f(z) = =2 and 04 A 0v.)

(iv) In this connection, also prove the following version of the Law of the Tterated
Logarithm:
— X
lim ()

=1 (as.,P).
e 240 logz) Alt)
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§7.2: Non-local Properties of Diffusion Paths

At this point we have enough general theory' to make some interesting compu-
tations. Thus, rather than continue developing abstract theory, we will devote
the first part of this section to applications of the results in Section 7.1 to the
analysis of Wiener’s measure, and we will then point out how the same ideas
can be used in the analysis of more general Markov processes.

The key to all our conclusions about Wiener’s measure lies in the following
variant of the last part of Corollary 7.1.20.

7.2.1 Lemma. For & an open subset of R x RV, set
(7.2.2) ¢®(p) =inf {t >0: (t,%(t)) ¢ 6}.

Then, for any f € C»?(®) N Cy,(®) and any measurable function g : & — R
which is bounded below and satisfies g < % + 1A,

FEACC(W), P(tAC®)) — /MCW) g(s,9(s)) ds

0

is a continuous W,EN)—submartingale relative to {Bt : t €0, oo)} for each x €
RY such that (0,x) € &. In particular, if % + $Af >0, then

(£t A @)%t A ), B W)

is a submartingale for each x € RY with (0,x) € &; and if % +%Af is bounded,
then

MP(t, ) =F(t AP (), ¥(t A C®))

(7.2.3) 3 /()tAC®(¢) [% + %Af] (s,%(s)) ds

is a continuous W,EN)-martingale for each x € RN with (0,x) € &.

ProOF: Throughout, we assume that (0,x) € &.

Now, choose a sequence of open sets &, > (0,x) in R x RV in such a way
that ®,, CC &, for each n € Z+ and &, / & as n — oo. It is then an easy
matter to check that, as n — oo, either (%~ () tends to oo or (¢®~(v), »(¢®n))
converges to the boundary of &; and from this it is a short step to ¢ ®n (% as

f French readers of a certain generation will probably not have recognized the content of §7.1
as general theory.
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n — 0o. Hence, it suffices for us to check that (M;’j", B;, x(N)) is a martingale

for each n € Z*. Indeed, it will then be clear that

FEACO (), p(t A COR)) — /MC%(WQ(S ¥(s)) ds
) o ’

is a continuous W,EN)-submartingale relative to {Bt 1t e [O,oo)}, and so the
desired conclusion will follow immediately from Fatou’s Lemma after one lets
n — 00.

Let n € Z* be given. To prove that (M?",Bt, x(N)) is a martingale,
choose 7, € C°(B,,41;(0,1]) so that 7, =1 on &y, and define f, € Cé’2 (R x
RY;R) so that f, = 0 off & and f, = nn f on &. Then, by Corollary 7.1.20,
(M%XRN (t),}'t,W,EN)) is a martingale; and therefore the desired result follows
from Doob’s Stopping Time Theorem (cf. Corollary 7.1.15) and the identity

M (1) = MPR (1) forte [0,¢%). O

As our first application of Lemma 7.2.1, we give the following computation.

7.2.4 Theorem. There is an a € (0,00) with the property that, for each N €
Z* and every € > 0:

(7.2.5) w o) (OzltlgTW)(t)‘ < e) > exp [—O‘JZST] , T e (0,00).

(See part (i) of Exercise 7.2.31.)
PRrOOF: First observe that

W ( sup [3b(0)] < ) > W) ( sup [5()] < —= for 1 < j < N)
0<t<T 0<t<T VN

N N

€

=W/| sup |¥(t <——) =W sup P(t) <1 ,
(s2um, o < iV

where we have used the independence of the coordinates and Wiener scaling.

Thus, it suffices for us to treat the case when N =1 and ¢ = 1. To handle this

case, set
2

f(t,z) = e'T sin(Z(z+1)), (t,z) eRxR,
note that
or 191 _,
ot 20z2
and apply Lemma 7.2.1 to see that

W > T) > B [f(T/\ GHT AQ), ¢ > T =1(0,0) =1,
where ((¢) = inf{t: [¢(t)] > 1}. O



386 VII: Continuous Martingales and Diffusions

Recall that the support of a Borel measure on a topological space is the
smallest closed set whose complement has measure 0. As a consequence of the

preceding, we can now characterize the support of Wx(N)-

7.2.6 Corollary. Let H(RY) be the Cameron-Martin subspace described in
the introduction to Section 4.2. Then, for each h € H(R"Y) and ¢ > 0,

w ) ( sup |9(t) — h(t)| < e)

(7.2.7) 0st=T ,
2aN2T

> exp [_ a62 — Hh”%_I(RN)il , Te€e (0, OO)

In particular, for each x € RN, the support of Wx(N) as a Borel measure on
P(RN) coincides with the set of all ¥ € P(RY) with (0) = x.

ProOF: Clearly, the last assertion reduces immediately to the case when x = 0.

Moreover, the first part guarantees that the support of W) contains H(RY).

Hence, since H(RY) is a dense subspace of {3 € P(R"Y) : (0) = 0}, we will

be done once we prove (7.2.7). To this end, let h € H(R"Y) be given, think of

W) as a measure on O(RY) (cf. the discussion preceding Lemma 4.2.14) and
a

define Ry : ©(RY) — (0,00) as in (4.2.16). Then, by Lemma 4.2.15,
w ( sup |6(t)| < e) = / Ru(0) WM (d6)
0<t<T

{ supo<icr 18(H)—h(D)]<e}

3
(V) _
< l'RhllLZ‘(w(N))W <Ozltl£T|9(t) h(t)| < 6) )
which, when combined with the estimate at the end of Remark 4.2.17 and (7.2.5),
yields (7.2.7). O

The preceding result says that, with positive probability, Wiener paths will
mimic (at least in the sense of the uniform topology) any given continuous path
arbitrarily well over any finite time interval. From the analytic standpoint, the
single most interesting consequence of this fact is the following version of The
Strong Maximum Principle.

7.2.8 Theorem. Given an open ® in Rx RY containing (0,x), let f : 6 —R
be a measurable function which is bounded above, upper semicontinuous o

[(0,00) x RV] N &, and satisfies f(0,x) > f(t,y) for all (t,y) € & with ¢t > 0. If
(cf. (7.2.2))

(V)
rag 1005 [ senC@venc) wa)

for t € [0,00),
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then

(7.2.10) F(t,9(t)) = £(0,x) for all (t,9) € [0,00) x P(RY)
‘ such that ¥(0) = x and t € [0,(®(v)).
Hence, if f € C12(&;R) satisfies £(0,x) > f(t,y) and [%{ + %Af] (t,y) >0 for

all (t,y) € & witht > 0, then (7.2.10) holds. In particular, if G is a connected,
open set in RY and f € C?(G;R) is bounded above and satisfies Af > 0, then
f achieves its maximum value if and only if f is constant.

PRrOOF: Given g € P(RY) with 1p5(0) = x, suppose that

f(to,'(,[)o(to)) < f(O,X) for some tg € (O,qu(’d)o))

Then we can find a § > 0 with the property that

¢®(¥) > to and f(to, ¥(to)) < £(0,x) — § whenever

vea={ved®): s [0~ vo)] <3

0<t<to+1

Hence, because Corollary 7.2.6 implies that W,gN)(A) > 0, (7.2.9) with t = ¢to
leads to the contradiction

£0,%) < (£(0,x) — )WM(A) + £(0,x)(1 - WM (A)) < £(0,x).

Next, let f € CV2(®;R) be as in the second part of the theorem. Given
¥ € PRY) with ¢p(0) = x and T € [O,CQ’), choose a bounded open set ®’
with the properties that &’ CC & and (t,w(t)) € &' for t € [0,T). Now apply
Lemma 7.2.1, with & replaced by &, to f | &’ in order to conclude first that
(7.2.9) holds with & replaced by &’ and then that f(0,x) = f(t,%(t)) for all
te[0,T).

Finally, in order to prove the last assertion, suppose that f achieves its maxi-
mum value at x € G and apply the preceding to see that {y € G: f(y) = f(x)}
is open. Since, by continuity, {y € G : f(y) = f(x)} is closed in G and G is
connected, it follows that G = {y € G: f(y)=f(x)}. O

The preceding results deal with the behavior of Wiener paths over finite time
intervals. Our next results deal with the long time behavior of Wiener paths,
and here we will see dimension start to play a critical role.

7.2.11 Theorem. Forr € [0,00), define

¢-(¥) =inf {t € [0,00) : |9(t)| = r}, ¢ € PRY).
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Then
S [¢] = r? — x[?
TN
(7.2.12) o - (N + 4)r? — Nix[2 ) for |x| < 7.
" N2(N +2)
In addition, if 0 < r < |x| < R < 0o, then
' %ﬂ if N=1
-
log R — log |x| i
(V) -] - N=2
(7.213) WM (¢ <Cr) = log B — log if
N-2 pN-2 N-2
r R — |x| .
L (m) N2,z i N23

In particular,

W (G <o0) =1 forallz R,
WP ((o < 00) =0, x#0, but WP (( <o0) =1, xeR* and r >0,

and

N-2
W)gN) (CT < o0) = (é) ,0<r<|x|, when N >3.

ProoF: To prove (7.2.12), set f(t,x) = |x|?> — Nt, use Lemma 7.2.1 to show
that

(£ A Gt A 6), Fe W)
and
2 tAC,
(f(tAcr,w(tAcr)) -4 / |¢(s)|2ds,8t,w,£N))
0

are continuous martingales, and conclude that

NE [t A ¢] = B [W,(t/\g)ﬂ ~ %P2, te0,00),
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and

N2EYS [(E A G
= |x[* + 4EW< [/OMCT [ (s))? ds]

+ 2NE (¢ A G (e A P =B e n ¢l

for all t € [0,00). Next, pass to the limit as ¢ = oo in the first of these to arrive
at the first equality in (7.2.12). Finally, to get the second equality in (7.2.12)
from the second of these, use Lemma 7.2.1 to show that

tAGr
<|¢(tA(r)|4—(4+2N)/() |¢(3)|2d3,.7-'t,Wx(N))

is a continuous martingale and therefore that

N tACr N
(4+ 2N [ / |¢(3)|2d3] = B [t n 6] - i,

plug this into the above, and pass to the limit as { /* oco.

To prove (7.2.13), for each N € Z* choose fx € CF° (RN;R) so that fn is equal
to the corresponding expression on the right of (7.2.13) in an open neighborhood
U of the annulus {x cr < x| < R}, note that Afy = 0 on U, and conclude
(via Lemma 7.2.1) that

(£ (6 A G A CR), B W)

is a bounded, continuous martingale. In particular, after one lets ¢ — oo, this
leads to ‘

WM (¢ < Cr) = BV [fN (¢ A CR)] =fyv(x), 0<r<|x|<R,

as required. Given (7.2.13), the rest of the theorem follows easily by letting
R /oo and, in the case when N = {1,2}, r \,0. O

7.2.14 Corollary. If G # 0 is open in R, then

(7215) wi (/0

(Cf. Exercise 7.2.32 below for further implications.) On the other hand,

o0

1g(w(t)) dt = oo) =1, xeRY, when N €{1,2}.

(7.2.16) W ((1im |p(t)| = ) =1, x€RY, whenN2>3
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Proo¥F: Clearly it suffices to prove (7.2.15) in the case when G = Bgv (0, R) for
some R € (0,00), and so we will assume that this is the case. Next, set 79 =0, :
and define {0,}$° and {7,,}$° inductively with respect to n € Z* so that

}

Tn(1) = inf {t 2 0p: Id’(t)‘ 2 R}'

It is easy to check (cf. the last part of Lemma 4.3.2 or the discussion surrounding
(7.1.11)) that each o, and 7, is an {B : t € [0,00)}-stopping time, and that
Tan_1 < 00 and o, < oo imply, respectively, that

on(1) = inf {t > Thol: It/)(t)l <

©l

and

Opn=Tp1+010%, _, and 7,=0,+110%,,.

Hence, by the strong Markov property (cf. Theorem 4.3.3), one knows that, for
every I' € Bg and Wx(N)—almost every 1 € P(RY), ¢

Wx(N) (Un —Tpy1 €T

BT,H)(Q/;) =W (o €T) if Taa(w) < oo
and

W,((N)(Tn—on el

Bgn)(w) =W (nel)  ifoul®) < .

In addition, by (7.2.12) and (because N € {1,2}) (7.2.13), we know that

BV [n] <00 and WM (o1 < 00) = 1
for all x € RY; and so, by induction on n € Z*, we now see that
Wi (n < 00) = AR (0n <00) =1 forallneZt.

In fact, because of the rotation invariance discussed in Exercise 3.3.28, the dis-
tribution of 7 under Wd(:j(\;)n) is the same for all n € Z* and ¢ € {0, < 00},
and therefore we have now proved that if

X, (1) = { Tn(¢¥) — on(¥) when o,(¢) < 00 %

0 otherwise, ¢

then {X,}{° is a sequence of mutually independent, identically distributed, in-
tegrable random variables under Wx(N). Finally, since

/0 " @®) dt > Y Xom(w)
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for Wa™¥)-almost every ¥ € P(RV) and X1 > 0 (as., x(N)), an application of

the Strong Law of Large Numbers completes the proof of (7.2.15).
Now assume that N > 3. Given r > 0, apply Lemma 7.2.1 to see that (cf. the
notation in Theorem 7.2.11)

(et n )|V, B W)

is a bounded, nonnegative martingale for every |x| > r > 0. Hence, for any
0<s<t<ooand A € B,,

|x|"N+2 > B [W(S)\_Nﬁv An{G(¥) > 5}]
— Y [W’(“\ gr)|'N+2, An{¢(v) > 5}];

and, because N > 3 and therefore (, / 00 (a.s., x(N)), an application of the
Monotone Convergence Theorem and Fatou’s Lemma leads to

‘xl-‘N+2 Z ]wa(N) [|¢(5)‘_N+2, A] Z EWX(N) [l'(j)(t)‘_N+2, A]
forall0 < s <t < oo, A€ B,, and x # 0. In particular, this proves that

(~heo] ™", B W)

is a nonpositive submartingale for every x # 0 and therefore, by Theorem 7.1.186,
that im0 't/)(t)' exists in [0, oo} for WM _almost every ¢ € B(RY). On the
other hand,

W,EN)(W(t)I < R) =y ({y: ly —x| < R}) —0

as t — oo for every R € (0,00) and x € RV; and so we now know that, at least
when x # 0, |¢(t)| — oo for Wi _almost every 9 € B(RY). Finally, since

i gt el <) = e (gl <) o0

t>T+1
RV\{0}

the same result also holds when x = 0. U

The conclusions drawn in Theorem 7.2.11 and Corollary 7.2.14 are very fa-
mous. In particular, they say that only when N = 1 does a typical Wiener
path ever hit a point at which it did not start, that when N € {1,2} a typical
Wiener path spends infinite time in every (cf. Exercise 7.2.32) nonempty open
set, and that when N > 3 a typical Wiener path spends a finite amount of time
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in every bounded set. In the jargon of Markov process theory, these properties
are summarized by the statement that the Wiener process is recurrent in one
and two dimensions but is transient in three and higher dimensions. When one
thinks about what underlies these facts, the following picture emerges. In one
dimension, the typical Wiener path sweeps back and forth in such a way that
(cf. (4.1.8) and use symmetry)

lim () = —co and lim ¥(t) = +o0,
t—o0 t—oo

and therefore, by continuity, must visit every point infinitely often. Moreover,
because a Wiener path is continuous, each time a Wiener path visits a point it
must spend a positive amount of time in a neighborhood of that point, which,
after an infinite number of visits, leads to its spending an infinite amount of time
there. When N = 2, the two coordinates of the Wiener path are independent,
and so they are very unlikely to cooperate well enough for them both to take
prescribed values at the same time. On the other hand, even though they never
actually simultaneously take on prescribed values, each spends enough time close
to a specified value that the path still ends up spending infinite time in every
neighborhood of every point in the plane. However, when N > 3, cooperation
between the coordinates is so bad that, after a long time, at least one coordinate
is so large that the path ends up tending to infinity.

In the rest of this section we will show that the ideas just introduced to study
Wiener paths apply equally well to general Markov processes. Thus, without
further comment, we will be assuming that x € RY ~— Py € M, (PRY))
is a continuous mapping and that {Px :x e RY } is a strong Markov family
(cf. Exercises 4.3.57 and 5.1.30). Further, we will use (¢,x) € (0,00) X RN +—
P(t,x, -) € M;(R") to denote the transition probability function for {Px: X €
RN }, and we will assume that

(7.2.17) / P(t,x,G)dt >0 forall x € RY and open G # 0,
0

which is certainly the case when Px = X(N), xeRY.

7.2.18 Lemma. For any nonempty, open G and K CC R, there exists a
T € (0,00) and € > 0 such that

T
/ P(t,x,G)dt > ¢ forallx € K.
0
In particular, if G is a bounded open set and ¢C is the first exit time from G,

then there is an o > 0 for which

(7.2.19) sup E= [exp[ae®]] < oo;
x€G

and, therefore, Px(e€ < co) =1 forallx € G.
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PRrOOF: Notice (cf. (7.2.17)) that
x € RN »—>/ e”tP(t,x,G)dt € (0,1]
0
is lower semicontinuous. Hence, if K cC RV, then
VSR Y Ralg _
inf 5 e 'P(t,x,G)dt =€ > 0.
0

Thus, by choosing T € (0, 00) so that e~T < ¢, we arrive at the first conclusion.
Now assume that G is bounded. By the preceding, there exist T' € (0,00) and
€ € (0,1) such that

T
/ P(t,x,RY\G)dt > e>0, x€G.
0
In particular,

T
TP, (€ <T) >E™ [/ g \g(¥(t)) dt} >e¢, x€G;
0

and so

(*) Px(eG>T)§051——;;<1, x € G.
But, because ¢¢ > s = ¢C = s+ ¢¢ o 3,, the Markov property leads to
Po(e% > (n+ 1)T) = B [Pyur (¢ > T), ¢ > nT| < 6P,(eS > nT)

for all n € N and x € G. Thus, by induction,
Px(eG > nT) <9, neNand xe G,

and (7.2.19) follows easily from here. U
We can now prove the following general criterion for transience.

7.2.20 Theorem. Assume that (7.2.17) holds and that, for each r € (0, 00),

(7.2.21) 1> { inf g5y Pe(3t € [0,00) |9(t)] <) when N =1

T x| o0 Px (3t € [0,00) [4(t)] < 7)  when N > 2.
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Then the process {Px :x €RN } is transient in the sense that, for every x € RN,

(7.2.22) Py (tlggo (8] = oo) =1L

PROOF: We must show that, for each € (0,00) and x € R :
Pt [00)1 > )=t
t—o0

To this end, let r € (0,00) be given, and suppose that there is an R € (r, 00) for
which

6 = sup Px(|¢(t)| < r for some t € [0,00)) < L
|xi>R

Next, set ao(9) = inf {t: |9(t)] < r}, and use induction to define

To(h) = inf {t > on(¥) : [9(t)] > R}
and
Tnpr(¥) = inf {t > m () : |(t)| <7}

By Lemma 4.3.2, all the o,’s and 7,’s are {Bt Tt e [0,00)}-stopping times.
Moreover, because (cf. the notation in Theorem 7.2.11) 0, < 0 = T, =
on + (r 0 X, , the strong Markov property and Lemma 7.2.18 lead to

Px(an <ooand 1, = oo)

= / Py (o) (Cr = ) Px(dyp) =0
{on () <co}

for each n € N. Hence,

Py (0, = 00) = Py(0¢ = 00) + Z Px(amq <oo&oym= oo)

m=1

= Px(og = 00) + Z Px(Tm_l <oo&kon = oo)

m=1
< P (1m 9012 7).
t—oo

Thus, lim, ,__ |9 (¢)| > r (ass., P;) will follow as soon as we check that Py(on =
00) — 1 as n — 00. But, 7, <00 => 0Onq1 = Tn+ 090 X, and so, again by
the strong Markov property,

Py (Un+1 < OO) = / P¢(Tn)(00 < OO) Px(d'(j))
{mn(¥) <o}
< GPx(mn < 00) < 0Px(0y < 00),
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which, after a trivial induction argument, means that we are done when (*)
holds.

The preceding argument takes care of the case when N > 2. However, when
N =1, there is more to be done. Namely, because we know only that

P, (Et € [0,00) |9(t)| < r) < 1 for some a ¢ [—r,7],
there are two possibilities: either
P_.(3t€[0,00) [¥(t)] <) <1 or P_o(3te€[0,00) [9(t)| < r)=1.

In the first case, we take R = |a], o(¢)) = inf {t > 0: [(t)| < R}, and apply
the strong Markov property to see that, for |z| > R:

PEteD o BOIsr) = [ Pun(Ete o) )| <7) Peld)
{o(p)<oo}

<9=P_,(3t € [0,00) [¥(t) < 1)V Pa(3t € [0,00) [$(5) <7) <1

Hence, this case is covered by the preceding.
To handle the other case, we assume, without loss in generality, that for some
R>r:

(**) 8= Pr(3t €[0,00) [¥(t)] <r) < 1but P_g(3t € [0,00) [¢(t)] < r)=1.
With {0} and {7,}3° as above, it is clear that the place where the preceding

argument fails is at the point where we have to show that P, (Un < oo) N 0.
Indeed, all that we can say now is that

Pp(ons1 < o0) = / Py(ry (00 < 00) Pr(dy))
{rn(9)<oc}
= 0P, (7a(1) < 00 & $(7) = R) + Pe(ra () < 00 & ¥(m) = —R)
= Px(on < oo) —(1- G)Px(’rn(l[)) < oo & YP(mn) = R).

Thus, we must still show that, for some € > 0,
P-T(Tn(d}) <& lD(Tn) = R) > EPx(Un < OO),
and, by the strong Markov property, this comes down to checking that

inf P, <n-r) >0,
it (MR < 1-R)
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where 71, (¢) = inf {t >0: 9Y(t) = y} for each y € R. To this end, note that, for
any y € [—r,r}:

P_.(nr <n-g) = P_,(ny <nr < 1-R)
=E"- [Py (TIR < U—R), Ny < TI—R] <P, (7)R < U—R);

and so we need only show that

P_.(nr <n-r) > 0.

But suppose that
P_.(n-r<nr) =1.
Then, by the strong Markov property and (**):

P_,(Th41 < 7R | 7 < nr) = P-r(10 <nR) = P (n_r<nr)=1 (as., P_);

which, because 7, /' oo (a.s., P_,) means that P_r(nR = oo) = 1. However,
this would imply that

/0 " P(t, -1, (R,00)) dt = E" [ /( RUSIEC) dt] =0,

which obviously contradicts (7.2.17). O
We turn now to the problem of determining when {Px :x € RN } is recurrent.

7.2.23 Theorem. Again assume (7.2.17), but this time suppose that there is
an r € (0,00) with the property that

(7.2.24) Px(lt/)(t)] < r for some t € [0, oo)) =1 forallx € RY.
Then {Px cx €RN } is recurrent in the sense that for every x € RY
(7.2.25) Py (/000 lg(t/)(t)) dt = oo) =1 for all open G # 0.
(Cf. Exercise 7.2.32 for further information.)

PROOF: Let G be a nonempty open set and, using Lemma 7.2.18, choose T €
(0,00) and € > 0 so that

T
/ P(t,x,G)dt > 2¢ for all |x| <.
0
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Next, define

o(y) = inf {t > 0: [(t)] <7},
Tt () = inf {t > 7 (¥) + T [P(1)] < r},

Tn (¢)+T

() = 10,00 (7a(®)) / L e

for n € N. By Lemma 4.3.2, 7, and 7, + 1" are {Bt : te|o, oo)}-stopping times
for every n € N. In addition, by (7.2.24) and the strong Markov property,

Px(Tn+1 < oo) = /{ }P¢(TH+T)(TO < oo) Py(dy) = Px(Tn < oo)
T <00

for all n € N and x € RN . Hence, we have now shown that (7.2.24) implies that
Py(tn < ) =1 for all n € Nand x € RY.
Since, for |y| <,

2¢ <EPY [/T 1e(v(t)) dt] =EN[T5) < e+ TPy (To > ¢)

and 7, < 00 => T, = Too Xr,_, we conclude that (7.2.14) implies

Pe(T > €| B-, ) 205%>0 (as.,Py) foralln e &xeRY.

Finally, set A, = {T. > €}, and apply the form of the Borel-Cantelli Lemma
proved in part (iii) of Exercise 5.2.34 to see that:

/00 lg(t/)(t)) dt > i'ﬁl > eilAn = (a.s., Px)
0 0 0

forallx e RVY. O

Obviously, except when N = 1, there is a gap between the criteria given
in Theorems 7.2.20 and 7.2.23. However, as the next result shows, there are
conditions under which one can show that this apparent gap disappears.

7.2.26 Theorem. Suppose that, for each x € RN | the support of Px on P(RN)
coincides with {1 € P(RY) : ¥(0) = x}. Further, assume that either N =1 or
N > 2 and, for each r € (0,0), the function

x e RN —s Px(|¢(t)| < r for some t € [0, oo)) € [0,1]
is upper semicontinuous. Then, either {Px X € RN} is transient, in the sense

that (7.2.22) holds for every x € RN, or it is recurrent, in the sense that (7.2.25)
holds for all x € RY.
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PROOF: Obviously, the support assumption guarantees that (7.2.17) holds; and
so, by Theorems 7.2.20 and 7.2.23, there is nothing more to do when N = 1.
Thus, assume that N > 2 and make the stated upper semicontinuity hypothesis.
Then, for r € (0,00), the function x € BV +— f(x) = Px(o, < 0) € [0,1] is
upper semicontinuous when

(7.2.27) o () = inf {t: |¥(t)| < 7}
In addition, by the Markov property, for any (t,x) € [0,00) x RV,
F(x) = Pe(o, < t) + Px(t < o, < 00)

- / £ ((02) Pelde) + / £ ((8) Puld®)
{o.(¢)<t} {or(¥)>t}

= / f('d’(t/\ar)) PX(d"!’)»
PERN)
where, in the passage to the second line, we have used the facts that f =1 on
Bgn (0,7) and that
or(P) =t + o, 0 By(p) if or() > t.

Hence, by proceeding in precisely the same way as we did in the proof of The
Strong Maximum Principle (cf. Corollary 7.2.8), we see that if f(x) = 1 for some
|x| > r, then

Fp(t)) =1 forall ¢ € PRY) with 1(0) =x and t € [0, 0. (1)).

But, because N > 2 and therefore RY \ Bgw (0,7) is connected, this means that
f=1

In view of the preceding, we have that, for any r € (0, 00),
Py(o, <o0)=1 forall x € RY or Py(o, <o)< 1 forall|x|>r.
Moreover, by upper semicontinuity, the latter case means that

e(r) = sup Px(o, < o0) <1,

|x|=2r

and therefore, by the strong Markov property, that

Py(o, < 00) = / P,,,(JQT)(UT < 00) Py(dvp) < e(r)
{o2r () <00}

for all [x| > 2r. In other words, we now know that, for each r € (0, 00),

Py(o, <00) =1 forallx e RY or sup Px(o, <o0) <1
||>I;

But, by Theorems 7.2.20 and 7.2.23, this dichotomy proves that {Px 1 X € RN}
is either recurrent or transient in the required sense. [
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The condition of upper semicontinuity in Theorem 7.2.26 can often be checked
as a consequence of the following.

7.2.28 Corollary. Assume that, for each t € (0,00) and I" € Bgw,
(7.2.29) x € RN — P(t,x,T") is continuous.

Then, for every r € (0, 00),
x € RY \ Baw (0,7) +— P(Ja(t)] < r for some ¢ € 0,00)) € [0,1]

is continuous. In particular, if the support of Py is {1p € P(RY) : (0) = x} for
every x € RN then {Px: x € RV} is either transient or recurrent in the senses
described in (7.2.22) or (7.2.25).

ProoF: Clearly, we need only verify the first assertion. To this end, let 7 €
(0,00) be given and, for s € [0, 00), set

fo(x) = PX(W)(t)\ < r for some t € [s, oo))

Our goal is to prove that fy is continuous on RN \ Bg~(0,7). By the Markov
property, we know that

fs(x) = - fO(y) P(vav dy)v (Say) € (07 OO) X RNa

and therefore, by our hypothesis, fs is continuous for each s € (0, 00). At the
same time, if § > 0 and |x| > r+4, then, because x € RNV +— P, e M, (‘B(RN))
is continuous,

fo(x) — fo(x) = Px(\w(t)l < r for some t € [0,3])

ng(sup l¢(t)—¢(0)|25) — 0 ass\0

t€(0,s]

uniformly on compact subsets of RV \ Bg~ (0,7 +6); and, obviously, the required
continuity of fy follows from this. [

We close with criteria for transience and recurrence which are slightly more
down to earth. In fact, the ones which we about to give are, more or less, the
basis for our proof of Corollary 7.2.14.
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7.2.30 Theorem. Again assume (7.2.17), and, for r € [0,00), define o, as in
(7.2.27). If, for some rg € [0, 00), there is a strictly positive, continuous function
f on RN \ Bgn (0,70) with the property that

(—f(t/)(t A U,«O)),Bt, Px) is a submartingale for every |x| > ro,

then lim x| f(x) = 0 implies that {Px : x € RY} is transient (in the sense
that (7.2.22) holds for all x € RY) and limy|_,o f(X) = oo implies that it is
recurrent (in the sense that (7.2.25) holds for all x € RV ).

PROOF: Assume that limy)— o f(x) = 0. By Theorem 7.2.20, all that we have
to do is check that (7.2.21) holds for each r € (0,00), and, obviously, this will
be done once we check it for r > ry. But if r > rg, then, by Doob’s Stopping
Time Theorem,

m(r)Px(or < 00) =m(r) lim Py (or < 1)

t—o0

< lim f((t Aoy)) Pe(di) < f(x),

~ t—ooo m(RN)

where m(r) = inf {f(y) : |y| =71} > 0.

Next assume that limjy|_,o f(X) = co. By Theorem 7.2.23, we need only
check that Pyx(o,, < oo) = 1 for all x € RY. To this end, define (g as in
Theorem 7.2.11, and note that, again by Doob’s Stopping Time Theorem and
the fact that f > 0,

E™ | £(¥(CR)), Cr < a7, | = lim E™ [£($(CR)), Cr < ony AT

< lim B [£((0, ACRAT))] < £0)

T—oo

for ro < [x| < R. Now let [x| > r¢ be fixed, let R * 00, and use limy|,o f(X) =
oo to conclude that limg_,oc Px({r < 0v,) = 0. Hence, since (cf. Lemma 7.2.18)
Px(Cr < o0) =1 for all R € (0,00), this proves that

Px(opy < 00) > lim Py(o, <(Cr)=1. O
R—o0
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Exercises

7.2.31 Exercise: The results in Theorem 7.2.4 and Corollary 7.2.6 can be
sharpened in two obvious directions.

(1) In our derivation of (7.2.5), we actually found the rate at which a Wiener path
N

() A

sharper estimate would have been obtained had we used the fact, coming from

elementary properties of the Laplacian, that there is a unique smooth function

fn : Bryv (0,1) — (0,00) and ay € (0,00) with the properties that
sAfy=—anf, f<f(0)=1, and Jim fn(x) =0.

(Indeed, the constant « in (7.2.5) is, in the present notation, a;.) Assuming this

fact, show that (7.2.5) holds when aN? is replaced by this choice of ay. With
a little more work, one can show that this ax is optimal in the sense that

escapes not from the ball By~ (0, €) but instead from the cube

lim e¥Ty (V) ( sup |e(t)| < 1) > 0.

T—o0 0<t<T

(ii) Think of W) as a Borel measure on ©(R"Y) (cf. Section 4.2) and show
that, as such, its support is the whole of @(RM).

Hint: Observe that, for each T € [1, 00),
o(t) — 6(T
W(N)(HOH@(RN) <e)>wM ( sup |8(t)] < < and supM < E) ,
0<t<T 2 T 1+t 2

and use this together with (7.2.5) and (3.4.32) to see that, for all € > 0,
WM (]|8]|gwvy < €) > 0. Now, proceed as in the proof of Corollary 7.2.6.

7.2.32 Exercise: Let {Px X € RN} be a Markov family which is recurrent in
the sense that (7.2.25) holds for every x € RY. Observe that, for each x € RV
and Py-almost every ¢ € B(RY),

/00 16(¥(t)) dt = 0o for every open G # 0.
0

In particular, Px-almost every path spends an infinite amount of time in every
nonempty open set. Using this observation together with the Martingale Con-
vergence Theorem, show that the only functions f € C (RN ; [0,00)) with the
Property that

$092 [ S@) Pl (630 € (0,00) xBY,

are constant.



402 VII: Continuous Martingales and Diffusions
Hint: Show that (— f (¢(t)),3t, Px) is a submartingale, and conclude that

lim f(v(t)) exists for Py-almost every 9 € PRM).

t—oc

Now use recurrence to see that this is possible only if f is constant.

7.2.33 Exercise: Let x € RY —— P, € M, (B(R")) be a continuous map,
and assume that {Px : x € RV } is a strong Markov process with transition
probability function P(t,x, -).

(1) Under the conditions in Theorem 7.2.20, show that for each bounded open
G in RV there is an ag € (0,00) such that

sup / exp [Otg/ 1o (9(t)) dt] Py (dv) < 0.
xERN JP(RN) 0

(ii) Under the conditions in Theorem 7.2.26, show that {Px T X € RN} is
transient if and only if there exists an open G # @ and an x € RV for which

/ P(t,x,G)dt < oo.
0

7.2.34 Exercise: Referring to the notation in Theorem 7.2.11, show that

IEWX(N)[Q] = oo for all 0 < r < |x|. Of course, in view of the last part of
Theorem 7.2.11, this is interesting only when N € {1,2}.

§7.3: Perturbations of Wiener Paths

In this section we will introduce a class of diffusions which are obtained from
Wiener paths by the introduction of a force field. That is, let b : RN — RN be
a “nice” vector field, and consider the map XP? : [0,00) x BP(RY) — RV which
is determined by the integral equation

t

(7.3.1) Xb(t,w):tj)(t)+/ b(X®(s,1)) ds.

0

The reason for our looking at this class of processes is that it brings out an
interesting conflict between the original Wiener paths and the perturbing force
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field. In particular, because the difference between the perturbed and the original
Wiener paths are paths of locally bounded variation, it is reasonably clear that
their local behavior will be governed by that of the highly irregular Wiener
paths. On the other hand, because the Wiener paths tend too jiggle too much
to get anywhere fast, the long time behavior of the perturbed paths ought to be
determined by the force field.

In order to get started, suppose that we take seriously the interpretation
(given in Remark 7.1.23) of Wiener paths as the integral curves of $A. Then it
is reasonable to guess that, in the same sense, the paths X b(. 1)) ought to be
the integral curves of

(7.3.2) LP=1A+b-V.

That is, we are predicting that, for each f € C°(RV;R) and x € RV,

t

FXP ) = [ L) (X5(,0) ds

0

is a Wi")-martingale relative to {B, : t € [0,00)}. Equivalently, what we
are saying is that if Q2 € M, (‘B(RN)) is the distribution of ¥ € PRN) —
XP(. ) € BRY) under WY and

t

M) = 1 (0) - [ L] () ds,

0

then (M}’(t), B, QE) ought to be a continuous martingale. In fact, we can even
hope that, together with the initial condition QP ((0) = x) = 1, this property
will characterize QZ.

In order to test the preceding conjecture, we must first make its statement a
little more precise. Thus, from now on, we will be assuming that b : RV — RV
is a continuously differentiable vector field and we will be using X b(. 1) to
denote the solution to (7.3.1) up to the first time of explosion. That is, for each
£ e Z*, choose a by € C}f (RN;RN) so that

b, [BRN(O,E-{- I)Eb I BRN(O,E-{- 1)

and determine XP : [0,00) x P(RY) — P(RY) by (7.3.1) with b, replacing
b. As is well-known (via the Picard method for solving ordinary differential
equations), XP(-,) is uniquely determined for each ¢ € B(RN) and, in fact,
¥ € PRV) — XP(-, ) € B(RY) is a continuous map for which Xp : [0,00) X
B(RY) — RN is {B; : t € [0, 00) }-progressively measurable. Next, set

(7.3.3) B () =inf {t: |XP(t,¥)| > ¢}
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Then, for each £ € Z* and v € PRY), XpP L (tY) = XP(t, ) for t €
[0, ¢?(1)) and so eP () < e?,(¢). Finally, define the first explosion time
P : PRY) — [0, 00] by

(7.3.4) P() = Jim (), ¥ € PERY).

It is then an easy matter to check that, for each ¥ € P(RN), the path t €
[0, () — XP(t, ) € RV given by

(7.3.5) XP(t,9) = XP(t, ) for £ Z" and t € [0,¢f(¥))
is well-defined and is uniquely determined by the fact that it satisfies (7.3.1) for -

all t € [0,eP(v)).

7.3.6 Lemma. The function ¢ : BP(RN) — [0, 00] is a lower semicontinuous, ;
{Bt : t €0, oo)}-stopping time, and therefore

(7.3.7) Q(b) = { € PRY) : () = o0}

is a Borel measurable subset of B(RY ). Furthermore, if 85 : P(RY) — PRY)
is the time increment mapping in Lemma 4.1.4 and Tx : PERY) — PRY) is -
the translation map described just before Lemma 4.3.7, then

b(’(/)) > 5 — eb(t/)) =5+ eb(Txb(sﬂl,) ods1p) and

e
7.3.
(7.38) P(p) > s+t = XP(s+t,9) = XP(t, T xo(s,) 0 d51p).

Finally, for each T € (0, 00),
¥ € Qr(b) = {® > T} — XP(- AT, 9) € BRY)

is a continuous, Br[{e® > T'}|-measurable map with the propert that
Y

(7.3.9) W‘;I(\g))({t/) : eP(¢) > T and sup |Xb(t,t/)) - <p(t)| < e}) >0

0<t<T

for all ¢ € P(RY) and € > 0.

PRroOOF: Because 25’ ¢P, the first assertion will be proved once we show that,
for any ¥ € P(RY), ¢?(¢¥) > t and ¥, — 1 imply that |X}’(s,t/)n)| <t s€
[0, 1], for all sufficiently large n € Z*. But, since XP(-,9,) — X}’(-,lp)
uniformly on [0,¢] and {XP(s,¢¥): s € [0,¢]} is a compact subset of Bgx (0, ),
there is nothing more to do. In particular, this proves that, as the decreasing
limit of the open sets {¢® > n}, the set {(b) in (7.3.7) is a Borel set. Next, let
s € [0,00) and 9 € Q,(b) be given. Then t € [0,e(3p) — 5) — XP(s +t, %) €.
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RN satisfies (7.3.1) with ) replaced by T xv(s,4) 08,1, and, by uniqueness, both
parts of (7.3.8) follow. Finally, if {4} U {#¥x}1° C Qr(b) and ¢, — ¥, then
there is an £ € Z* such that ¢ (vy,,) > T forall n € Z%. Hence,

sup |Xb(t,'¢n) — Xb(t,’l/’)l

te(0,T)

= sup lX})(t,’ll’n) - XP(t, )| — 0 asn — oo
t€(0,T]

and this proves the required continuity result. Thus, all that remains is to check
(7.3.9). But given @ € P(RY), set

bolt) = p(t) - / b(e(s))ds, t € [0,00),

and note that, by uniqueness, ¢® (1) = oo and @(t) = XP(t, 1) for all t €
[0, 00). In particular, given € > 0, we can find 4 > 0 so that

¢®(¢) > T and sup |Xb(t,¢) — <p(t)| <€
0<t<T
whenever supg<;<r | (t) — ¥o(t)| < 6. Hence, (7.3.9) follows as a consequence
of Corollary 7.2.6. O

Now that we have a precise formulation of what we mean by a solution to
(7.3.1), we turn to the problem of connecting the paths XP(-, 1) with the op-
erator LP in (7.3.2).

7.3.10 Theorem. For each x € RV, there is at most one P € Mi(B(RY))
with the properties that P(¢(0) = x) =1 and ‘

(7.3.11) (f("’(t)) - /Ot [L°£](w(s)) ds,Bt,P)

is a martingale for every f € C>(RY;R).
Moreover, such a P exists if and only if
(7.3.12) WM (Q(b)) =1,
in which case P is the distribution QY of
¥ € Q(b) — X°(-,9) € PRY)
under W™, In particular, when (7.3.12) holds, {¢p € P(RY) : ¥(0) = x} is
the support of QP on B(RY); and, for every f € C12([0, 00) x RN;C) with the

property that both f and % + LPf are bounded on each strip [0,T] x RY, T ¢
(0, 0):

(7.3.13) ME(t, ) = £ (6, (1)) - /0 (92 + 1P 1] (s, () ds

is a QP-martingale relative to {B; : t € [0, 00)}. Finally, if (7.3.12) holds for
each x € RV, then x € RY +—3 QP € M, (B(R")) is continuous and the family
{QP: x € RV} is strong Markov (cf. Exercises 4.3.57 and 5.1.30).
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PROOF: First suppose that (7.3.12) holds, let f € cl? ([O, o0o) x RV (C) be given,
set

¢

F(x',x" t) = f(O,x+x’)+/ g—f(lsl,x'+x") ds for (x',x",t) e RY xRV xR,
O 3

and define

By(t,v) = /0 b (X2 (s,9)) ds for £ € Z* and (t,1) € [0,00) x B(RY).

By Corollary 7.1.20, with M = N+1 and Y(t,v¢) = (Bg(t,'l,[)),t), applied to F,
we see that

£ X5 (8 9) —/0 (3L + L2 ] (5, X3 (5, 9)) ds

is a W,((N)—martingale relative to {Bt : tefo, oo)} Hence, by Corollary 7.1.15,
we now know that

Fendxow) - [ (3410 X0 b

is a W,((N)—martingale relative to {Bt : te|o, oo)} But, by (7.3.12), ¢? " o0
Wi _almost surely, and so we have proved that (cf. (7.3.13)) (M}’(t), B, Q%)
is a martingale for all f € C}?([0,00) x RY;RV). In fact, if f € C12([0, 00) x
RY; (C) satisfies the given boundedness condition on strips, then we can apply a
standard cut-off argument and repeat the preceding to see that (Mj‘?(t), B, Q;’)
is a martingale in this case also.

We next suppose that P is a probability measure on B(R") for which (7.3.11)
and P(¥(0) = x) = 1 hold. Set

t

Bt ) =90 - [ b)) ds, (1) € [0,00) x .

0

X

to show that (B(t), B;, P) is a Brownian motion (cf. the discussion preceding
Theorem 7.1.26). Indeed, because (by uniqueness) @ = Xb(-,ﬂ(-,'zj))) for
every ¥ € B(RY), we will then know that the distribution of ¢ € P(RY) —
B(-,v) € B(RY) under P is W"¥) and therefore both that

In order to prove that Wy’ (Q(b)) = 1 and that P = Q¥, it suffices for us

WM Qb)) = P(B(+) € A(b)) =1
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and that P = QE. In order to prove that (ﬂ (t), Bt, P) is a Brownian motion, we
will use Theorem 7.1.26. Thus, let £ € RY be given and set

¢£(t) = (va(t))wa 5E(t7¢) = (E?ﬂ(t))RN7
bg(t,’l,l)) = (E,b(w(t)))w, and Bg(t,’l,l)) :‘/O bE(S,'(j)) ds.

What we must show is that both

(Be(t), B, P) and (Be(t)* — |&°t, Be, P)

are martingales. To this end, for each n € Z* choose f, € C*(RM;R) so
that f,(y) = (E,y)RN for y € Bgv(x,7), take (,(1p) to be the first time that
¥ € P(RY) exits from By (0,n), and apply (7.3.11) followed by Corollary 7.1.15
to see that

tACn

Be(tACr) and et A Ga)? — [EPEA Gy — 2 / e(s) Be(ds)

are P-martingales relative to {Bt :t € [0,00)}. Next, apply Theorem 7.1.19,
with X (t) = Be(t A () and V (t) = Be(t A (n), to see that

tACn
Be(t A Gu)Be(t A Cn) — / Be(s) Be(ds)

is also a P-martingale relative to {B; : t € [0,00)}. Hence, since Be(t)? =
2 fot be(s) Bg(ds) and therefore

Be(t)? — €12t = (1) — |€[*t — 2u¢(t) Be(t) + Be(t)®
= te(t)? — €%t — 2B¢(t) Be(t) — Be(t)?

— pe(t)? — 1€t 2 / e(s) Be(ds)
) (ﬂs(t)Be(t) -/ Be(9) Belds))

we conclude that both

(Be(t A Cn), B, P)  and (Be(t A Cn)? — 1EI7E A Goy Be, P)

are martingales for each n € Zt. Thus, we will be done as soon as we check
that, for each t € [0,00), Be(t A () — Be(t) in L?(P). But, by what we have
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already proved:

lim_E”[(8e(t) ~ Be(t A C))*] < tim  sup B | (Be(t A o) = Be(t A Gm) ]

m—o0 m—=30 n>m

= lim Sl>lp (IEP [ﬁg(t A Cn)2] —-EP [5§(t A Cm)2])

m— oo n

= Tim sup [ (BF [t A Ga] ~E7[tAGn]) = 0.

m—o0 nzm

Finally, assume that (7.3.12) holds for every x € RY. In order to show that
x € RY — QP € M, (B(RY)) is continuous, it is sufficient (cf. Exercise 3.4.26)

for us to check that x € RN —s E®x [F] € R is continuous for each bounded,
continuous F : P(RY) — R which is Br-measurable for some T € [0,00). To
this end, let such an F be given, and set

Fb('!’) = 1QT(b)(¢)F(Xb(' /\T,'/’)), '/’ € m(RN)

Then, by the last part of Lemma 7.3.6, we know that F' b is continuous at each
¥ € Qp(b); and, therefore, (7.3.12) guarantees that, for each x € RN, F®

is continuous Wy™ -almost surely and that E9%[F] = EW~ N)[F P]. Hence, by
part (vii) of Theorem 3.1.4, the required continuity is now clear. As for the
asserted Markov property, because (cf. (iii) in Exercise 4.3.57) x € RY +—
QP € M, (B(RY)) is continuous, the strong Markov property holds as soon as
the Markov property does. Thus, let s € (0,00) and a bounded B; X Bywvy-

measurable F : P(RY )2 — R be given. Then, by Lemma 7.3.6 and especially
(7.3.8),

/ F(3h, Bup) Q(dp) = / F® (Toap, 8,9) W (d),
P(RN) P(RY)

where F? : B(RV)> — R is defined so that
F*(p,9) = F(X°(,0), X°(+, Txo(a %))

when (¢, Txb(s7‘p)¢) € Q,(b) x (b) and vanishes otherwise. Hence, by Theo-
rem (4.3.3) (with o = s), we see that

/ F(t, Sth) Q2 (dep)
P(RY)

- / ( / Fb(szo,w)wW)(dw)) w ™ (de)
PRY) \VBRY)
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- / /F(Xb("‘P)’Xb("TX"(sﬁcp)"/’))W(N)(d'l/)) W (dep)

2. (b) (b)

:/ (/ F(‘Pvd’)Qg(s)(dd’)) QP(dp). O
PRN) \/BRY)

The following provides a somewhat crude, but nonetheless useful, criterion for
deciding when (7.3.12) holds.

7.3.14 Corollary. Suppose that f € C? (]RN; [0, oo)) has the properties that

lim f(x)=o00 and LPf(z)<A+Bf(x), xeRY,

|x|—o00
for some pair A, B € [0,00). Then (7.3.12) holds for all z € RY and so {Q¥ :
x € RV} has all the properties described at the end of Theorem 7.3.10. In fact,
Bt _

e 1
B b

(t,x) € [0,00) x RY,

EQx [f(z/)(t))] <eBT 1+ A

apt_l

where ea_,, t when ap, = 0. In particular, if

(7.3.15) (x,b(x))RN < A+B|x]?, xeR"Y,

for some A € [0,00) and B € R, then, (7.3.12) holds for all x € RV, and
2Bt _ 1

2B

(7.3.16) Q= [|p(1)]?] < e2BT|x[2 + (24 + N)©
PRrooF: To prove the first part, for each £ € Z*, choose f¢ € C2(R"Y;R) so that
fe(x) = f(x) when |x| < £+ 1. Then, by Theorem 7.3.10,

¢

Fo(X2 () - [ (L] (XP (s, ) ds

0

is a continuous Wx(N)-martingale relative to {Bt :te|o, oo)}, and therefore, by
Doob’s Stopping Time Theorem,

t/\e?
f(Xb(t/\e}’)—/ LPf(X®(s))ds

0

is also continuous W (¥)-martingale. Hence,

(7.3.07) EW [£(w(tAef))| < f(x)+At+B /Ot BV [ (XP(s), € > s] ds.
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In particular, if
(V)
up(t) = B> [f(Xb (t A e}?)],
then t € [0,00) — ug(t) € [0, 00) is continuous,
t
up(t) < eBUf(x) + At + B/ ug(s)ds, te€[0,00),
0

and therefore, by Gromwall’s inequality (cf. Exercise 7.3.29 below),

BV 7 (P (A )] < ePpix) + AeBtB— !

for all £ € N and (¢, x) € [0,00) x RY.

(7.3.18)

Starting from (7.3.18) and using my to denote inf{f(x) : |x| > £}, we see
that, for each t € (0, 00),

1 (N)
W (e < 1) < B [f(XP0 A )] — 0

as ¢ — oco. Hence we have now proved that (7.3.12) holds and, after letting
£ — oo in (7.3.18), that
eBt —1

B ¥

(7.3.19)  E@ [f(w(t))] < ePtf(x) + A (t,%) € [0, 00) x RV,

To complete the proof, first note that there is nothing to do when B > 0.
Indeed, if f(x) = |x|?, then (7.3.15) implies that LPf < (2A+ N) + 2Bf, and
so, when B > 0, (7.3.16) is a special case of the preceding. Moreover, even when
B < 0 we know that (7.3.12) holds and that

EQx [lw(t)ﬂ < |x[2+ (24 + N)t.

Hence, we can first replace the left side of (7.3.17) by V< [f(%(1)), e? > t]
and then pass to the limit as £ — oo in order to arrive at

B9 [[(t)?] < |x|2+(2A+N)t+B/O E9 [|op(s)[?] ds.

Thus, we ought to be able apply Gromwall’s inequality again to arrive at (7.3.16).
However, before we can do so, we have to know that ¢ ~ EQx [lw(t)|?] is con-
tinuous. Equivalently, we must check that {l(t)|? : t € [0,7T]} is uniformly
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QP-integrable for each T' € (0,00). To this end, take f(x) = |x|!, and observe
that
LP f(x) = 2(d + 2)|x|* + 4|x|? (x,b(X)) v
< 2(d+2+24)x> + 4B|x|* < (d+2+24)+ (4B + 1) f(x).

Hence, by the first part, we know that {ja(t)] : t € [0,T]} is bounded in
L*(QY)- O

Notice that when the constant B in (7.3.15) is strictly negative, (7.3.16) says
that the centripetal force introduced by the vector field b eventually dominates
the dispersive tendencies of Wiener paths and results in paths which tend to
hang around. This is, of course, completely consistent with the comments made
at the start of this section. Namely, when B < 0, the force field is strongly

centripetal near infinity, and therefore, on the long term, its effect is to force the
paths to stay away from infinity.

Our final goal in this section is to show that the semigroup associated with
{Qb: xe RV} has sufficient regularity to have Corollary 7.2.28 apply.

7.3.20 Lemma. Assume that (7.3.12) holds for every x € RN . Then, for each
f € B(RV;R),
b
(t,%) € (0,00) x BY +— [QPf](x) = E%= [f(¥(1))] € R
is continuous. In fact, for each T € (0, 00),
(7.3.21) {Ql%f I Bpv (0,7) ¢ || fllu < 1} is uniformly equicontinuous

for every r € (0,00).

PROOF: Let n € C°(RV;R) be given, and define [Stf] (x) for (¢,x) € (0,00) X
RY and f € B(RV;R) to be the quantity

/Rv (412000 + 71 (V) + N(x)b(x), €) g | £ — €)% (d6).

Clearly, (t,x) € (0,00) X RV +— S, f(x) € R is smooth. Moreover, the support
of S, f is contained in that of n, and there is a K € (0,00) such that

(7.3.22) 5051, < 21l 1€ @.20)

t Although the regularity result proved here will suffice for most of our purposes, standard
elliptic regularity theory provides much more information. For an account of the basic facts,
see A. Friedman’s Partial Differential Equations of the Parabolic Type, publ. by Prentice
Hall (1964). For a more recent treatment directed toward probabilistic applications, see the
author’s survey article “Diffusion semigroups corresponding to uniformly elliptic divergence
form operators” in Sem. de Prob. XXII, publ. by Springer—Verlag’s LNMS.
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Finally, by (7.3.11) and elementary calculus, we see that, for each ¢ € (0, c0),

Qb (i k)] (0 = [Q% 0 Si-o] (9, (5,30 € (0.8) X BY.

Hence, at least when f € C,(RV;R), we have that

(1323)  [QP(A]x) = n(x)[r¥ kf](x) + /0 [Q° 0 5o f] (x) ds

for (t,x) € (0,00) x RV. But, because of (7.3.22), it is clear that the set of f’s
for which (7.3.23) holds is closed under bounded, pointwise convergence; and,
therefore, it holds for all f € B(RY;R) as soon as it does for continuous ones,
In addition, for each § > 0, there is a C'(§) < oo such that

and so (7.3.23), the continuity of x € RY +— QP € M, (B(RY)) plus Lemma
3.1.10, and the estimate in (7.3.22) are enough to guarantee both that

(t,x) € (0,00) x RY ~— [QP(nf)](x) € R

is continuous for each f € B(RY;R) and that

{QR(nf) I Ba (0,7) : || fllu < 1}

is uniformly equicontinuous for each T' € (0, 00) and r € (0, 00).
To complete the proof, it suffices to show that there exists a sequence of
nn € Co(RY;R) with the property that

sup “Q?(nnf)] (x) - [@¢/] (x)l — 0

Ifll<1

uniformly for (¢,x) in compact subsets of (0,00) x Y. To this end, choose
n € Cc(R¥;[0,1]) so that n = 1 on B (0, 1), set 7,(x) = (%) for n € Z*, and
note that

1[QP£](x) — [QP (. )] (x)] < I£1.Q% (¥(2) ¢ Bgv (0,7)).

Finally, since {Q¥ : [x| < r} is tight in M (PB(R"Y)) for each r € (0,00), We
know that

lim QQ(%(t) ¢ Bav(0,n)) =0

uniformly on bounded subsets of [0,00) x RY. O
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7.3.24 Theorem. Assume that (7.3.12) holds for every x € RN. Then {Q¥ :
x € RN} is either transient, in the sense that

(7.3.25) Q% (Jim w(e) = ) =1, xeRY,

or it is recurrent, in the sense that

(7.3.26) Qx (/Ooo g (¥(t)) dt = oo) =1

for all x € RN and open G # 0.
In fact, if

>2— N when N € {1,2}

7.3.97 2(x, b
(7:3.27) (6, b)) >0  when N >3

for sufficiently large |x|, then it is transient. On the other hand, if, for sufficiently
large |x/,

< 2— N when N € {1,2}

7.3.28 2(x, b
(7.3.28) Cobay o pen N> 3,

then {Q%: x € RN} is recurrent.

ProOOF: We know (cf. Theorem 7.3.10) that, for each x € RV, the support of
QP coincides with the space of ¥ € P(RY) satisfying ¥(0) = x. Hence, by the
preceding lemma and Corollary 7.2.28, we know that {Q% : x € RV } is either
transient or recurrent in the asserted senses.

Now assume that (7.3.27) holds, and choose rp € (0, 00) so that

>2-Nif N € {1,2}

aEinf{2(x,b(x))RN x| 27'0} >0 if N > 3.

Next, choose f € CZ(RM;(0,00)) so that, when N € {1,2}, f(x) = |x|~* and,
when N > 3, f(x) = |x|>~" for |x| > ro. Notice that LPf < 0 on RV \
Bpn (0,79). Hence, after an obvious use of a cutoff function and an application

of Doob’s Stopping Time Theorem, we see first that (cf. the notation in Theorem
7.2.11 and (7.2.27))

(—f('/’(t Nory ACR))s Bty Qg) is a submartingale

for each R > r¢ and 7 < |x| < R, and then, by Lebesgue’s Dominated Conver-
gence Theorem, that

(—f(t/)(t A ary)), B, Qf’() is a submartingale for every |x| > ro.
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Hence, since lim|x|_,o0 f(x) = 0, the first part of Theorem 7.2.30 guarantees the
required transience.

The proof of recurrence when (7.3.28) holds follows exactly the same pattern,
Namely, we again use Theorem 7.2.30, only this time we take ro € (0,00) so that

<2-Nif Ne{1,2}

azsup{2(x,b(X))RN x| 2”’} <0 ifN>3

and f € C?*(R¥;(0,00)) so that

|x| if N=1
fx) =1 log 22 if N =2
x| i N>3

for |x| >ro. O

Exercises

7.3.29 Exercise: Gromwall’s inequality has many forms, and the one with
which we deal in this exercise is perhaps the most elementary. Namely, let
a : [0,00) — R be a right-continuous function of bounded variation on each
compact interval, and suppose that u : [0,00) — R is a continuous function
which satisfies

(7.3.30) u(t) < at) + ﬁ/t u(s)ds, te€[0,00),

for some 8 € R. Prove that

(7.3.31) u(t) < ePta(0) + /t P9 da(s), t € [0,00).

Hint: Set w(t) = fot u(s) ds, note that (7.3.30) implies that

2 (e w(®) < e Pa(), tel0,00)

and conclude that ;
u(t) < alt) + 8 / A=) o (5) ds.
0
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Finally, integrate by parts to arrive at (7.3.31).

7.3.32 Exercise: Consider b(x) = —%, and show that

;@mw=¢m—%[a%WmMa(mmqm@xmmw

In particular, referring to Exercise 4.2.40, use this to see that Qb (6(RN ) =1

and that Q8 | ©(RY) coincides with the Ornstein-Uhlenbeck measure U (V).
(See Exercise 7.5.40 below for more information.)

7.3.33 Exercise: Let a continuously differentiable vector field b : RY — R be
given, and define LP as in (7.3.2). Given an open region & C RxRY, (s,x) € &,
and a function f € Cl’2(®;]R) satisfying

J(t,y) 2 f(s,%) and [%+1Pf|(ty) 20

for all (t,y) € ((s,00) x RY) N &, use (7.3.9) and the argument in the proof of
Theorem 7.2.8 to show that (7.2.10) holds. In other words, the strong maxi-
mum principle holds for the operator % + LP.

7.3.34 Exercise: For ¥ € P(RY) and x € RV, define
e®(x,9) = e®(x + ¥ — ¥(0)) and XP(t,x,9) = XP(t,x + 1 — ¥(0))

for t € [O, eP(x, ¢)) The purpose of this exercise is to study XP as a function
of its starting point X.

(i) Given T € [0, 00), define 97 € P(RY) for 3 € P(RY) by
PT(t) =(T-TAt)—p(T Vi), telo,o00),
and note that W™ is invariant under ¥ € PRY) — T € P(RY).
(ii) Show that
P(x, ) >T = e P(XP(T,x,9),%7)>T
and XP(T — t,x,%) = X~°(t, X°(T,x,%),%")
for t € [0, T). In particular, conclude that

P, ) A e—b(.,QLT) >T = XP(T, -,v) is a homeomorphism on RN
(7335) and Xb(T) ) Qp)_l = X—b (T3 ° 31LT)'



416 VII: Continuous Martingales and Diffusions

(iii) Assuming that e®(x, ) > T, note that e®(y, 1) > T for all y in an open ball
Bgv (0,7), and apply the elementary theory of ordinary differential equations to
see that XP(T,-,) is continuously differentiable at x, the Jacobian matrix

b
I°(t,x,¢) = %(t, x, )

X

is continuous on [0, T] x Bgv (0,7) x B(RY), and

T
I°(T,x, ) :I+/ @(Xb(t,x,w))Jb(t,x,w)dt-

0 8)(

Conclude, in particular, that, when ¢®(x, ) > T,

T
(7.3.36) det (J°(T,x, 1)) = exp [ / divb (XP(t,x,9)) dt |,
0
where divb = IIV%% is the divergence of b. When combined with (7.3.35),

this leads to

e (x,¥) A e P (x, $T) > T for all x € RV
(7.3.37) = XP(T, -, 1) is a diffeomorphism on RY
and X°(T, -, ¢)" ' =X7°(T, -, ¥").

(iv) Assume that
(7.3.38) W(N)(eb(x) A e—b(x) = oo for all x € ]RN) =1

Given nonnegative, measurable ¢ and f on RN, use the preceding, Jacobi’s
change of variables formula, and Tonelli’s Theorem to see that,

/ [QB] (3) £ () dx
RN

=/ (p(X)]EQ;b {f(q/)(T)) exp <—/ divb((t)) dt)] dx.
RN 0

See Exercise 7.4.27 for a continuation of this line of reasoning.

(7.3.39)
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§7.4: Elementary Ergodic Theory of Diffusions
The results obtained in Section 7.3 provide us with fertile ground on which
to test the results in Section 6.1 (cf. Theorem 7.4.16 below). However, before
concentrating on the examples coming out of Section 7.3, it may be helpful to

get some perspective by making a few general remarks about the ergodic theory
of Markov processes.

Thus, suppose that {Px : X € RN} is a Markov family (cf. Exercises 4.3.57
and 5.1.30) of probability measures on B(R"), and introduce the associated
transition probability function (¢,x) € (0,00) X RY — P(t,x,-) € My(RY)
and semigroup {P; : t > 0} of operators on B(RV;R) determined by

P(t,x,T) = Px(¢(t) €eT) and [Pip](x) = /cp(y) P(t,x, dy).

Next, observe that P(t,x, -) also determines a dual action on the set of (non-
negative) Borel measures on RY; namely, given a Borel measure ;1 on RY, define
pP; for t € (0,00) by

(7.4.1) (4P (T) = /Nv P(t,x,T) u(dx), T € Bpv.

Clearly, [pP:] (RV) = u(RY), and, more generally, for any Borel measurable
@ : RV — [0, 00):
(‘Pv#Pt> = (Pt(PJJ),

where we have returned to the notation (cf. Section 3.1) {¢, 1) to denote [ @ dp.
Finally, we say that the o-finite Borel measure g on RY is invariant under
{P, : t > 0} or, equivalently, {P, : t > 0}-invariant, if uP; = p for each
t € (0,00). Notice that, by Jensen’s inequality (cf. Exercise 2.3.35), for any
{P,: t > 0}-invariant y and p € [1, 00):

(7.4.2) HPt(PHLp(“) < N@llizeuys ¢ € LP(n)-

For reasons which are made clear in the following, we say that a {P;: t > 0}-
invariant p is ergodic if the only ¢ € L?(p) satisfying ¢ = Pep (a.e., p) for
every t € (0,00) is constant.

7.4.3 Theorem. Given a o-finite, nonzero, Borel measure y on RV, define the
Borel measure P, on B(RY) by

(7.4.4) P, = /RV Py p(dx).

Then P, | By is o-finite. Moreover, (cf. Section 4.3)
(Z4). P, = Pup, for each t € [0, 00),

and so the time-shift semigroup {Zi : t € [0,00)} is P,-measure preserving
if and only if p is {P; : t > 0}-invariant; in which case {Z¢ : t € [0,00)} is
P, -ergodic if and only if p is ergodic for {P¢: t > 0}.
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PRrOOF: Because P, ((0) € T') = p(T'), it is obvious that P, | By is o-finite if p
is. Next, let F € B(B(RN); [0, 00)) be given, and set f(x) = EPx[F] for x ¢ RV,
By the Markov property,

EE)-PulF] = B% [f((1) ] = (£,uP,) = B [F],

which means that (X;).P, = P,p,; and, as a consequence, we see that {X,; : t ¢
[0,00)} is P,-measure preserving if and only if u is {P; : ¢ > 0}-invariant.

Next, assume that p is {P; : ¢ > O}-invariant. If {¥; : ¢t € (0,00)} is
Py-ergodic and f € L?(p) satisfies f = P,f (a.e., ) for each t € (0,00), set
F(w) = £((0)) for 1 € B(RY),

B(f) = {t/): /0 | £ (1(t))] dt < oo for allTE(O,oo)},

and
Fo() = { T o F(W(t)dt it e o(r)
0 if ¢ ¢ &(f).

Then (cf. the discussion preceding Theorem 6.1.26) &(f)0 is a {Z¢: te[0,00)}-
invariant, P,-null set. In addition, by the Markov property, for each ¢ € L2(p):

(fa‘P)Lz(“):<% /0 Ptfdt,go) = E™ [ Fr(s)o(w(0))].

L2(p)

In particular, if 4(RY) = 0o and therefore P,(B(RY)) = oo, we see that

. P,
(£10) 12y = Jlim EP [Pr(w)e((0))] =0,
since, by Theorem 6.1.26, we know that Fz — 0 in L2(P,). On the other hand,
if u(RV) < oo and therefore P,(P(RN)) < oo, then the same theorem leads to

EP«[F ,
(fv ‘p)L2(“) = #[(les(i “>'

Hence, in either case, we conclude that f is u-almost everywhere constant and,
therefore, {P; : t > 0} is p-ergodic. Conversely, if {P; : t > 0} is y-ergodic and
F € L*(P,) satisfies F = F o 3; (a.s., P,) for each t > 0, set B(F)={x: Fe€
L*(Px)} and

EP[F) if x € &(F)

0 otherwise,

£ = {
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note that &(F)C is a p-null set, and use the Markov property to check that, for
each t > O:

[P:f](#(0)) = EP» [F o ;| Bo) (%) = EF* [F | Bo] (%) = £ (1(0))

for P,-almost every 1. In other words, f = P.f (a.e., u) for each t € (0, 00)
and therefore f is p-almost everywhere constant. At the same time, by Theorem
5.3.3 and the Markov property,

ER[F?] = lim E™ [E%[F|B,]F]
= lim E” [EP*‘ [F|B,]Fo zn} = lim B [EP*‘ [F| Bn]f(tj)(n))].

Hence, since either u(RV) = oo and f(1p(n)) = 0 or u(RY) < 0o and f(¢(n)) =
p(RV)~IEPu [F] P,-almost everywhere, we conclude that

0 when p(RY) = 0o
EP [F?] { n(RY)
p(RY)TIEP [F1?if p(RY) < oo;
and, in either case, F' is P,-almost everywhere constant. O

We next want to develop a few elementary facts about the structure of the set
ﬁﬁ({Pt it > 0}) of {P; : t > 0}-invariant, o-finite, Borel measures on R"; and
a critical element in our analysis will be played by the following.

7.4.5 Lemma. Let y € M({P;: t > 0}), and suppose that F € L*(P,;R)
satisfies

(7.4.6) F=Fo%, (as., P,) foreacht € (0,00).
If f : RV — R is defined by
EP<[F] when F € L%(Py)
(7.4.7) F(x) = { _
0 otherwise,
then f € L?(u) and f = P;f (a.e., u) for each t > 0. In fact, for each t € (0, 00),

f(¥(t)) = F(y) for P,-almost every ¢ € P(RY).

PROOF: Only the final assertion requires comment; and, to handle it, set Fy =
EPu [F | B,] and note that, by the Markov property:

Fy() = ET[F o B, | Bo](¥) = f(4(s))

for P,-almost every ¥ € B(RY). Hence, since P, = (£,).P, and, by Theorem
5.3.3, Foyn — F in L?(P,) as n — oo:

B [(Fw) - 1(60)) | =B [(Fo Zatw) - f(pi+m)) ]
=EP«[(F - Fi4n)’] — 0 asn—ooo. O
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7.4.8 Theorem. The set M; ({P;: t > 0}) =M{Pe: t >0} NMi(RY) is a
convex subset of M;(RY). Moreover, it € M ({P;: t > 0}) is extreme if and
only if p is ergodic. Finally, if yu; and p, are extreme elements in 9 (RY), then
either py = pa or py L ps.

PrOOF: The convexity is trivial. Next, suppose that g = 6u; + (1 — 0)ps,
where 6 € (0,1) and y; and po are distinct elements of 9 ({Pt > 0}) Then
du, = fdu, where f € Ll(p; [0,0_1]) and f is not p-almost surely constant. In
addition, because both y; and p are {P; : t > 0}-invariant, it is an easy matter
to check that f = P, f (a.e., ) for each t > 0. Hence, if

then f = f (a.e., n) and f =P, f for each ¢t > 0; and so y is not ergodic.

Conversely, suppose that p is not ergodic. Then, by Theorem 7.4.3, we know
that {Z;: t € [0, 00)} is not P,-ergodic. In particular, there is an A € Bygy)
such that A = X;1(A) for each s € (0,00) and § = P,(A) € (0,1). Thus, if
F(x) = Px(A), x € RV, then, by the Markov property and Lemma 7.4.5 (with
F =14,), for each ¢ € B(RV;R):

(FPup, ) = B [£(3(0) 0(#(0))] = E™ [p(#(), 4] =
EE)-P [o(4(0)), 4] = E™ [p(1(0)), 4] = E [7((0)0(4(0))] = (f.1
Hence, if we define p; and pa by

f 1-f
p = dp and  dpz = 4 du,
then both 1 and p are {P; : t > 0}-invariant, p; # g, and p = Oy +(1—0)p2-
In other words, p is not an extreme element of Mt; ({P; : t > 0}).
Finally, suppose that pu; # po are extreme elements of Eml({Pt Tt > 0})
Then P,, and P,, are distinct elements of M, (P(RY)) for which {z::te

(0,00)} is ergodic. Choose B € Bygny so that P, (B) # P,(B), set
PBRN) [B1 [’

— 1 7
F:Th—I)nooT‘/O 1Boztdt,
and consider A = {¢ : F(¢) = P,,(B)}. By the version of the Individual
Ergodic Theorem in Theorem 6.1.26, P,,(A4) = 1 and P,,(A) = 0. Thus, if
I'= {x: Px(A) >0}, then p3(T) =1 and p2(T) =0. O
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7.4.9 Remark: It should be observed that nothing which has been said so
far relies on the structure of RV or the path-space B(RY). Indeed, everything
extends, verbatim, to the setting of a Markov family on the space of measurable
paths on any measurable space.

We turn now to a few results in which topological considerations play some
role.

7.4.10 Theorem. Assume that every f € B(RY;R) satisfying f = Pyf for
each t € (0,00) is continuous and that

Py (Vs € [0,00) 3t € (5,00) P(t) €G) =1

74.11
( ) for all x € RY and open G # 0.

Then every f € B(RV;R) satisfying f = P.f for each t € (0,00) is constant. In
particular, there is at most one p € WTI({Pt it > 0}) Moreover, if such a p
exists, then it is ergodic, and, for every X € RV and F € B(RV;R):

1 T
(7.4.12) lim —/ FoX,dt =EP[F] (as.,Px).

T—o0 0

Thus, in fact, 9 ({P; : t > 0}) # 0 implies that M, ({P;: t > 0}) = {p} where

o1 T
(7.4.13) (o) = lim 7 /0 [Peo](x) dt

for all x € RY and ¢ € B(RY;R).
Proor: To prove the first assertion, suppose that f is a non-constant, bounded

continuous function which satisfies f = P;f for each t € (0,00). Then, by the
Markov property,

E™ [f('/’(t)) IBs] (p) = [Pt—sf] (<P(S)) = f(cp(s)) (a.s., Po)

for all 0 < s < t < oo; and so (f(tj)(t)),Bt,Po) is a bounded, continuous

martingale. In particular, for Pp-almost every ¥ € P(RY), limyeo f (t/)(t))
exists. On the other hand, because f is continuous and non-constant, there
exist —00 < a < b < oo such that G = {f < a} and H = {f > b} are both
nonempty open sets. Hence, by (7.4.11),

lim f(¥(t) >b and lim f(3(t)) <a

t—o0 t— 00

for Py-almost every ¥ € P(RY); which is obviously a contradiction.
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Now suppose that p € MM, ({P; : t > O}) and that A € By~ is {Z; : t e
[0,00) }-invariant. Then, by the Markov property, the function x € RY +—,
f(x) = Px(A) € [0,1] satisfies f = P;f for every t € (0,00) and is therefore,
by the preceding, constant. But, by Lemma 7.4.5, this means that 14 is P,-
almost surely constant, or, equivalently, that P,(A) € {0,1}. In other words,
we have shown that, for every u € ‘.ml({Pt :t > O}), {Et : te|o, oo)} is P,-
ergodic, which, by Theorem 7.4.3 means that every such p is ergodic. Since,
by Theorem 7.4.8, 9, ({Pt 1> O}) must contain a non-ergodic element if it
contains more than one element, this completes the proof that 9, ({Pt t> O})
is either empty or consists of precisely one element and that that element must
be ergodic.

Finally, to prove (7.4.12), suppose that u € 9%, ({P; : ¢t > 0}) and let F €
B(RY;R) be given. Because {3 : t € [0,00)} is P,-ergodic, we know that
(7.4.12) holds when Py is replaced by P,. In particular, if

T—o0

f(x)= Py ( lim /OTF(t/)(t)) dt:]EP“[F]> , xX€ERY,

then f € B(RV;R) and f =1 (a.e., u). Moreover, by the Markov property,

T—o0

t+T
[P.f](x) = Px ( lim /t F((s)) ds = E» [F])

T

=Py ( lim / F(y(t)) dt = E [F]) = f(x).
T—o0 fq

Hence, f is constant; and so we have now proved that f(x) = 1 for every

x € RY. After combining this with (7.4.12), one gets (7.4.13) by taking F (1) =

e(¥(0)). O

Thus far, all of our results are about properties of {P; : t > 0}-invariant u’s
under the assumption that any exist. The following result provides a basic
existence criterion.’

7.4.14 Theorem. Assume that x € RY — P, € P(RV) is continuous and
that P; : B(RV;R) — Co(R;R) for each t > 0. In addition, assume that
there exist 0 < r < R < oo with the property that

sup EP*[p] < o0,

x| <7

t1 learned this line of reasoning from the article “Ergodic properties of recurrent diffusion
processes and stabilization of the solution of the Cauchy problem for parabolic equations” by
Raphail Khasminskii published in Teor. Verojatnost. i Primenen. in 1960. However, the
basic idea seems to go back to Maruyama and Tanaka.
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where

p() == inf{t > eBev (OB (4h) : Jap(t)] < r}

and ¢B=¥(OR) s the first exit time from By (0, R). Then there exists a Borel
probability measure 7 on S(r) = 8Bg (0,7) such that

Pr((p) €T, p< o) =m([), T € By.

Moreover, if 4 € M, (RY) is determined so that
p(b)
(f,pn) = EP [ 'E™ [/0 f(@@®)dt|, feBR;R),

then p € My ({P, : t > 0}).

PROOF: : We begin by producing 7. To this end, define the transition function
x ~ II(x, - ) on S(r) by

M(x,T) = P((p) € T, p < ),

and determine the associated Markov operator II by
160 = [ fwedy), € BEC)R)
Then, for any ¢t > 0,
Tf(x) = EP= [ (9(1)), (PR > ¢ & p < oo
+EP [£((1)), (P OR <t & p < o).

Next, set u(x) = EP< [f(1(p)), p < oo] for x € RY, and use the Markov property
plus the relation ePxV (OR) >t — p(3p) =t + po T, (¥) to justify
]EPx [f(w(t))a CBRN(O,R) > ¢ & p < OO] — EPX I:u(w(t)), CBRN(O,R) > t]
= P,u(x) — EP [u(d)(t)), eBav (0.R) < t].
Hence,
|TLf(x) — Pyu(x)| < 2| flluPx(¢P (@R <),

Since {P, : x € S(r)} is tight, this proves that Pyu — IIf uniformly on S(r)
and therefore that II maps B(S(r); R) into C(S(r);R).
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Now define
MO (x, ) = 6 and T+D(x, ) = / ™ (y, - T(x, dy),
S(r)

and, for some fixed xo € S(r), set

1 n—1
_ Z e (%o
n
£=0

Then, because S(r) is compact, there exists a subsequence {mn, too_, and a
T € MI(S( )) such that m,, => m. Furthermore, for any f € B(S(r);R),
If € C(S(r);R), and so

(11f,7) = lim —ZH(“”f(xO) (f,m).

m—ro0 nm

Hence, this 7 will serve.
Given m, define p accordingly. Then, for any f € B(RY;R) and s > 0, the
Markov property says that

p(®) p(¥)
EP~ [p] (Pof, p) = B [/0 P, f(v(t)) dt} =g [/0 F(s+1)) dt]

() s+p(¥P)
=E™ [ / f(w(t) dt} +E™ [ / " F(¥(®) dt] :

u(x) = E [/0 F(w(®) dt] , xeRY,

and apply the strong Markov property to see that

Next, set

P [ [T ) dt] — " [u(#(0). o < 0]

()
(it = o) =B [ [ (o) ]

Hence, after combining this with the preceding, we see that

o)
EPx (o] (Pef, 1) = EP" [/0 f(t)dt]- O
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We will now apply these considerations to the processes produced in Sec-
tions 7.3. Thus, let b : RV —s RV be a once continuously differentiable
map, assume that (7.3.12) holds for every x € RV, and consider the associ-
ated strong Markov family {Q : x € RY } described in Theorem 7.3.10. Next,
let (£,x) € (0,00) x RY +— QP(t,x, ) € M, (RY) and {QP : t > 0} be, respec-
tively, the corresponding transition probability function and semigroup.

7.4.16 Theorem. Either M, ({Q%’ ct > O}) is empty or it contains precisely

one element . Moreover, in the latter case, y is ergodic, its support is the whole
of RV, and

1 T
(7.4.17) Jim —/ FoX,dt =E2[F] (as., Q%)
—o0 0

for every x € RV and F € B(RV;R). In particular, if 9, ({Qp:t> 0}) = {u},
then, for every ¢ € B(RV;R),

T—o0

(7.4.18) lim Elr‘/o (0Po](x)dt = (o, ), x € BV,

and {Q% : x € RV} is recurrent in the sense that (7.3.26) holds. In fact, for
every I' € B with pu(I') > 0,

(7.4.19) Qb (/Ooo 1r(¥(t)) dt = oo) —1 foralxeRY.

PRoOF: By Theorem 7.3.24, we know that {Q: X € RN} is either recurrent
or transient. In particular, either (7.4.11) holds and Theorem 7.4.10 applies, or
(7.3.25) holds. But, in the latter case, for any u € M, (RY) and r € (0,00):

_ o |1 [T
(7.4.20) lim B9 [T | a0 (400) dt] ~0,
© 0

which means that 9%, ({QF : t > 0}) must be empty. In other words, we have

now proved that either 9, ({Q%’ tt> O}) is empty or it contains precisely one

element and Theorem 7.4.10 applies. Hence, all that remains is to remark that,

from (7.4.18) and the fact (cf. (7.3.9)) that the support of QP (t,x, -) is RY for

every (t,x) € (0,00) X RV it is obvious that the support of p must also be
O

7.4.21 Theorem. Assume there exists an f € C? (RN; [O,oo)) such that

LPf < —e outside of B (0,7)
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for some choice of strictly positive e and r. Then MM ({QP : t > 0}) = {u},
where p has all the properties derived in Theorem 7.4.16. In particular, this will

be the case if

lim (x,b(x))g < —iv—.

|x|—o00 2

PrROOF: Set R = r + 1. In view of Theorems 7.4.14 and 7.4.16, all that we
have to do is show that x € B (0,7) — Efx[p] € [0, 00) is bounded when p is
defined as in Theorem 7.4.16. To this end, note that

W(0) <7 = p(p) = P OB (W) + 008 s y0m (),

where (1) = inf{t > 0 : |¢(t)] < r} is the first hitting time of Byv(0,r).
Hence, by the strong Markov property,

x| <r = EPx (o] = DL [eB]RN(O:R)] + EPx l:]EPap(gBRN (0.R), o], CB]RN(O,R) < oo],

and so, by Lemma 7.2.18, we will be done as soon as we check that sup|—g Efx< o]
< 0o. But, by our now familiar procedure using a cut-off function and Doob’s
Stopping Time Theorem, we know that

EPX [f('lj)(U A gBRN(O,L)))] _ f(x) < —EEP" [U A eBRN(07L)]

for every L € (0,00). Hence, after rearranging terms and letting L — oo, we see
that EPx[o] < €7 f(x).

Finally, to check the last part of the statement, take f(x) = |x|?, and check
that LPf(x) = N + 2(x,b(x)) 5. O '

Exercises

7.4.22 Exercise: Returning to the general setting at the beginning of this
section, assume that, for each I" € Bpv,

Ix e RY / e tP(t,x,T')dt > 0

(7.4.23) 0 -

= VxeRY / e tP(t,x,T)dt > 0;
0

and show that there is at most one ergodic element of 9, ({P, : t > 0}).
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Hint: Define x ¢ BV — R(x, )€ MI(RN) by
R(x,T) :/ e tP(t,x,I')dt, T € Bgv;
0

note that, for each p € M, ({Py: t >0}), p = [ R(x, -) u(dx); and use this
together with (7.4.23) to conclude that no two elements of M ({P; : t > 0}) can
be singular. Finally, apply the last part of Theorem 7.1.8.

7.4.24 Exercise: Continuing in the general setting, assume this time that
M, ({P;: t > 0}) is a compact subset of M;(RY). As a consequence of the
famous Krein-Millman Theorem,’ show that 9, ({Pt > O}) is the closed con-
vex hull of its ergodic elements. In particular, if 901, ({Pt Dt > 0}) is compact
and contains more than one element, then it contains elements which are mu-
tually singular; and so, by Exercise 7.4.22, when, in addition, (7.4.23) holds, we
know that 2, ({Pt > 0}) can have at most one element.

7.4.25 Exercise: Again work in the general setting. If, for some T' € (0, o0)
and o-finite, Borel measure p, one knows that 4 = pPr and that the only square
u-integrable f’s satisfying f = Prf (a.e., u) are p-almost every constant, show
that, for every p € [1,00) and F € LP(P,;R) :

lim 1nZ_:IFoE E" [F] (a.e.,P,) and in L?(P,;R)
- T = ——  (ae, nd in i R),
n—oo n £~ = U(®RY) p p

where the ratio is taken to be 0 when the denominator is infinite. In particular,
if one knows that every f € B(RY;R) satisfying f = Prf is constant, show that
{E.r: n € Z*} is P,-ergodic for every p € M;(R") which satisfies u = uPr,
conclude that there is at most one such p and that, if it exists,

n—1
1
EP[F]= lim =Y FoXnr (as,FP)
m=0

n—oo N
for every F € B(P(RV);R) and x € RY.

7.4.26 Exercise: Here is a criterion which is deceptively similar to the one in
developed in Theorems 7.4.14 and and 7.4.21.

T See §8.3 of Chapter V in N. Dunford and J.T. Schwartz’s Linear Operators, Part I, publ. by
J. Wiley (1958).
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(i) Assume that, for each t € (0,00), P; maps Cp(RY;R) into itself. Further,
assume that there is a v € M, (RY) with the property that the family

{l/nE-l—/ VPsds:nEZ“L}
nJo

is tight, and let p be a limit point of {v,,}$°. Show that u € M, ({P; : t > 0}),
and conclude that 2%, ({P; : ¢ > 0}) # 0.
(ii) Next, use (i) to see that if there is an f € C?(R"; [0, 00)) with the properties
that

L°f <0 and lLim f(x)= oo,

|| =00
then not only does (7.3.12) hold for every x € RY but also
{@Q°(t,x, +) : (t,x) € (0,00) x K'}
is tight for each K cc RY. In particular, conclude that there is a unique
peM({QP: t>0}).

(iii) Show, by example, that the condition in (ii) cannot be replaced by LPf <0
outside of some bounded set. Thus, although the criterion in (ii) looks similar
to the one in Theorem 7.4.21, it is, in reality, quite different.

7.4.27 Exercise: Assume that (7.3.12) holds. Here is another criterion for
testing when 9; ({QP : t > 0}) # 0.

(i) Let v be a locally finite, Borel measure on RY, and assume that
(7.4.28) vQP <v forall t € (0,00).

(We write u < v if {p,u) < (p,v) for every nonnegative, Borel function p.) If
v(RY) € (0, 00), show that p = ;ﬁ € M, ({QP : t > 0}). Evenif v(RY) = o0,
show that there is a unique Borel measure p with the property that

(. vQP) N (@), 9 € L' (1510, 00));

and conclude that p is {QP : t > 0}-invariant. Unfortunately, in general, will
be identically 0 and therefore trivial.

(ii) Assume that (7.3.38) holds, and suppose that f € C? (RN; [0,00)) satisfies

(7.4.29) L~Pf — divbf <0.
Using Theorems 7.3.10 and 7.1.19, show that
T
(7.4.30) EQx" [f(¢(T)) exp (—/ divb((t)) dt)} < f(x)
0

for all (T,x) € (0,00)) x RV. Next, define v on Bpv by v(dx) = f(x)dx, and
use (7.3.39) to see that (7.4.28) holds. In particular, the conclusions drawn in
(i) apply to this v.
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(iii) Continuing in the setting of (ii), assume this time that divb is bounded
below, f € C2(RV;[0,00)) is bounded, and that equality holds in (7.4.29). Pro-
ceeding as in (ii), show that equality holds in (7.4.30) and therefore that the
associated v is {QP : t > 0}-invariant.

(iv) When N = 1, the situation is quite transparent. Indeed, assume that
2
b€ C*(R;R) and that (7.3.12) holds for L® = 3 + b(z) Z. Set

o) =exp (2 G ds) . zeR,

and check that f satisfies L=%f + &' f = 0. Hence, M, ({QY: t >0}) #0if

/Rexp (2 /Om b(g)dg) dz < oo.

It is interesting, and encouraging, that this criterion is not all that different from
the one at the end of Theorem 7.4.21.

§7.5: Perturbations by Conservative Vector Fields

Although, as we saw in the preceding section, it is possible to say something
about the ergodic properties of diffusions even when one has no explicit expres-
sion for their invariant measures, a great deal more can be said when one knows,
ahead of time, what the invariant measure must be. To see how one might ar-
range things so that a particular measure will be the obvious candidate to be
the invariant measure for a diffusion, we use the ideas developed in Exercise
7.4.27, only now we work backwards. Namely, suppose that p is invariant for
the semigroup {QP : ¢ > 0} associated with the Markov family {Qb: xe RV}
described in Theorem 7.3.10. Then, for any ¢ € C2°(RV;R), we have that

d
0= E(Q?%MLZO = (LPp, ).

Hence, p is a generalized solution (i.e., pretend that p has a smooth density f
with respect to Lebesgue’s measure and integrate by parts) to the equation

(7.5.1) V-(iVf-fb)=0.

Thus, given an f € C2(RY;(0,00)), we can hope that the measure p given by
pu(dx) = f(x)dx will be {QP : t > 0}-invariant only if f is a (classical) solution
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to (7.5.1). In particular, we can force the issue by taking b = 2—Vft = 2V log f;
which, when we write f = e 2V is equivalent to taking

(7.5.2) b= —-VU where U e C*(RV;R).

In other words, we are hoping that the measure
(7.5.3) pv(T) = / e VX dgx, T € By,
r

will be invariant for {QP : ¢ > 0} when b is given by (7.5.2); and in this section
we will see that, among other things, this hope is well-founded.

We will call the vector field b given by (7.5.2) and the measure pY given by
(7.5.3) the conservative vector field and the Gibbs state determined by the
potential U. Obviously, b is unchanged by the addition of constants to the
potential U, and so we will always assume that U has been chosen so that

(7.5.4) pY(RY) =1 whenever / e~ 2U™) dx < o0.
R

Further, in order to emphasize that we are dealing with conservative b’s, when
b is given by (7.5.2), we will use the notation (cf. (7.3.4), (7.3.5), (7.3.2), and
Theorem 7.3.10)

eV (1) = (), ¥ e PRY),
XU (t, %) = X*(t, %), ¥ € PRY) and t € [0,¢7(¥))
LY = LP,
and QY = Q® when wiv (eU =o00) = 1.

(7.5.5)

Finally, given U € C?(RV;R), we set

RY(t, ) = exp [U(t/)(O)) - U(t/)(t)) + /0 vy (tj)(s)) ds]

where 2VV = —|VU|* + AU.

(7.5.6)

The careful reader will have already noticed that he has seen this notation
before (specifically, at the end of Section 4.3) and will be relieved to learn in the
following that its use here is consistent with its use there.

7.5.7 Theorem. Let U € C? (RN;R) be given, and refer to the notation in
(7.5.5) and (7.5.6). Then for each (t,x) € [0,00) x RY and A € By,

(7.5.8) W ({¢  XU(- ) € Ak eV () > t}) — " [RU(t), A].



§7.5: Perturbations by Conservative Vector Fields 431

In particular,
(7.5.9) BV RV = WM (Y > 1) <1, (%) € [0,00) x RV,

Thus, Wx(N)(eU = o0) = 1 if and only if (RY(t), Bt, x(N)) is a nonnegative,
continuous martingale; in which case

(7.5.10) QU(A) =™ [RU(t), A] for allt € [0,00) and A € B;.

PROOF: We begin by assuming that U € CZ (RY; R), in which case we know that
eV (¢) = oo for all ¥ € P(RY) and, by Theorem 7.3.10, that QY is the unique
P € M, (PB(RY)) satisfying P((0) = x) = 1 and (7.3.11) with b = —VU. At
the same time, if f € CF° (]RN;R), g = e Uf, and we apply Theorem 7.1.19
with P = WV,

X(t,) = g (1)) - / [LYg] (%(s)) ds,

and
V(t,¥) = exp [U(w(O)) + /Ot VY ((s)) ds] ,

then we find that

U B t Uy [LY o)) ds. By, W)
(7.5.11) (R ()f (. 9(1)) /OR () [LY ] ((s)) ds, B, Wy )

is a continuous martingale.
In particular, when f = 1, this says that (RU(t),Bt, ,EN)) is a positive, con-
tinuous martingale with mean-value 1. Next, for each n € Z*t, define P, €
M, (B(RY)) by

Pa(A) =B [RY(n), 4], A € Bypv)-

It is then clear (from the martingale property for RY(.)) that Poy1 | Br =
P, | B, and therefore (cf. Exercise 3.3.26) that {P,}$° is tight in M (P(RY)).
Moreover, if P is any limit of this sequence, then (again by the martingale
Property)

EP[F]=E"- [RY(t)F],
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first for bounded, B;-measurable F which are continuous and then for general
ones. Hence, by (7.5.11), for every f € C®(RV;R), 0 < s <t, and A € B,,

EP [f(w(t)) — f(w(s)), A]
o )0 A

= /stlEWx(N) [RU(g) [LY 7] (%(6)), A} g
= /st EW,(N) [RU(t) [LUf] (d)(&)), A} de

=E" [ / t [LY £] (w(9)) d, A] .

That is, P satisfies (7.3.11) with b = —VU; and therefore, since it is obvious
that P(¢(0) = x) = 1, we have now proved that P = QY. In other words, the
proof is complete for U € CZ(RY;R).

Turning to general U € C%(RV;R), choose {U,}° C CZ(RV;R) so that
U, | Bgn(0,n +1) = U | Bg~v(0,n + 1) for each n € Zt. Then, by the
preceding applied to U,,, we see that, for n € Z*,t € [0,00), and A € By,

W ({: XU, ) € A& () > 1}) =B [BV (1), AN {G > ],
where
Ca() =inf {t: [9(t)] > n} and e (3)=inf{t: | XY (t,9)| > n}.

Hence (7.5.8) follows after we let n — oo, clearly (7.5.9) is just a special
case of (7.5.8), and, obviously, (7.5.9) implies that W,SN)(eU = o0) = 11if
(RY(t), By, ,EN)) is a martingale.

Finally, suppose that WX(N) (eU = oo) = 1. Then, for each 0 < 5 < ¢ and

A € Bg, (7.5.8) says that

BV [RY (1), A] = WV (XV(-) € 4) = BV [RY(s), A].

Thus, (RY(t), B, ,£N)) is a martingale; and obviously (7.5.10) becomes just 3

restatement of (7.5.8). O

Warning: From now on, we will be assuming that

(7.5.12) WM (¥ = 0) =1 for all x € RY.
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Hence, as a consequence of Theorem 7.3.10, we know that x € RV +— QY €
M, (B(RY)) is continuous and that {QY : X € RN} is a strong Markov family
with the property that, for each x € RV, QY has {1 € PRY): (0) = x} as
its support.

As we are about to see, it is (7.5.10) which makes conservative vector fields
more tractable than general ones.

7.5.13 Theorem. Define the transition probability function
(t,%) € (0,00) x RN +— QU(t,x, ) € M1 (B(RY))
by
QU(t,x,T) = QU(#(t) €T), T € By
and, for (t,x,y) € (0,00) x RNV x RV, set (cf. (4.3.29))
(7.5.14) ¢ (t,x,y) = V@O Ny —x) 7 (1 x,y),
where (cf. (4.2.19)) rVU(t,x,y) is given by

¢
/ exp [/ VU((l - x+3y+ ¢t(8)) ds] w W) (dp).
0

P(RY)
Then (t,%,y) € (0,00) x RY x RN — ¢Y(t,x,y) € (0,00] is lower semicontin-
wous, ¢V (t,x,y) = ¢V (t,y,x), and
(75.15) QV(t,x,dy) = ¢V (t,x,y) u¥ (dy), (t,x) € (0,00) x RY,
- where puY (dy) = e V) gy,
In particular, if
(7.5.16) vU(x)<C(1+|x|), xeRY
for some C € [0,0), then ¢V € C((0,00) x RN x RY; (0, 00)).t
Proor: Obviously, ¢ (t,x,y) > 0. Moreover, when (7.5.16) holds, the conti-
nuity of qU follows immediately from the uniform integrability afforded by the
estimate in (3.3.30). More generally, even when (7.5.16) fails, the lower semi-
continuity of gV becomes clear as soon as one replaces VY on the right-hand
side of (7.5.14) by VY An and then lets n — oco. Furthermore, the symmetry of

¢V (t, -, - ) comes directly from the reversibility of 1, proved in Theorem 4.2.18.
Finally, to prove (7.5.15), let f € B(RY; /0, 00)) be given, and use (7.5.10)
together with (4.2.20) to see that

/ f(y)QY(t,x,dy) =/ F(3) V@I V7 (1 x,y) N (v — %) dy,
RN RN

from which (7.5.15) is an easy step. [

t Although it is not evident from the present line of reasoning, elliptic regularity theory (cf.
the references in the footnote to Lemma 7.3.23) says that qV will always be continuous.
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As the first step in our analysis of the ergodic properties of these processes,
we give the following application of the results in Theorems 7.3.24 and 7.2.30.

7.5.17 Corollary. For every U € C*(RV;R) satisfying (7.5.12), {QY :

RV} is either transient or recurrent (cf. (7.3.25) or (7.3.26) with b = —VU)_
Moreover, it will be recurrent if

lim U(x)=oc0 and

|x|—o00

—2|VU|* + AU < 0 off of Bgv (0,19) for some 1o € (0,00).

On the other hand, it will be transient if there exist a nonempty open G, an
€ (0,00), and xg ¢ G such that

—(2-)|[VUP+AU <0 off G and U(xg) < iggU(x).

Proor: The initial statement is already covered by Theorem 7.3.24. As for
the second assertion, note that U must be bounded below, set f =U —m +1,
where m = inf,cpv U(x), and check that the criterion in Theorem 7.2.30 for
recurrence is met. Finally, to prove the last criterion, the one for transience, all
that we have to do is show that, under the stated hypotheses, the process cannot
be recurrent; and we will do this by checking that Qf{o (05 < o) < 1, where

og(y) =if{t: ¥(t) € G}. To this end, take f = e®U | and, after repeating the

same kind of reasoning as we used in last part of the proof of Theorem 7.2.30,
check that

min f(x) Q% (05 < ) < / f((0)) Qx, () < f(xo).
x€
{og(¥)<oo}
Hence, the required inequality follows from U(xg) < infxeq U(x). O
We next take up some analytic properties which derive from (7.5.15).

7.5.18 Theorem. Define the semigroup {QV : t > 0} of operators on B(R"; R)
by

VAl = [ fQ (txdy), xR
Then QV : B(RV;R) — Cp(RY;R) for each t € (0,00), and, for each f €

C'b(]RN ) QY f —» f uniformly on compacts ast ~\, 0. Finally, if uV is the
measure defined in (7.5.5), then, for each t € (0, 00),

|, £601¥5)(x) ¥ ()
(7.5.19)

= /R 90 [QF f] () u7(dx), f, g € Be(RY;R),
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(7.5.20) U =pbQY,

and so, for every p € [1,00), QY | C. (]RN;IR) determines a unique extension
to LP(uY) as a contraction operator. In particular, if 6%7 is the contraction on
L2?(pY) determined by QY | C.(RV;R), then {Q—g : t € (0,00)} is a strongly
continuous semigroup of self-adjoint contractions, and therefore there is a res-
olution of the identity {EY : A € (0,00)} by orthogonal projections with the
property that

(7.5.21) Q—gfz/ e MdEY, t e (0,00).
[O’OO)

ProOOF: Clearly, everything through (7.5.19) is covered either by Lemma 7.3.20
or by one part or another of Theorem 7.5.13. Moreover, given (7.5.19), we
can prove (7.5.20) as follows. Let f € B.(R";[0,00)) be given and choose a
sequence {g,}7° from B. (RN; [0,00)) so that g, /1. Then, by the Monotone
Convergence Theorem, we know from (7.5.19) that, for any f € B. (RN; [0, oo)),

/fduU=egrgo/qugedu‘f=Zgrgo/geQ$fduU=/Q$fduU;

and as soon as one has (f,uV) = (QY f, uY) for f € B.(RY;[0,00)), it follows
for all f € B(RN ; 0, oo)) by another application of the Monotone Convergence
Theorem.

Starting from (7.5.20), we have, by Jensen’s inequality,

1QY £ 1o vy < (/Qf(lflf’) duU)” - (/Ifl”duU)p

for each p € [1,00) and f € B(RN;R). Hence, the required extension of QY
as a contraction on LP(uY) is easy. Moreover, the semigroup property extends
automatically; and, when p = 2, the self-adjointness of Q—g follows from the
symmetry in (7.5.19) of QY. In addition, to see that {Q—g : t € (0,00)} is
strongly continuous on L?(uY), it suffices to check that G?f — fin L?(uY) as
¢\, 0 for any dense set of f € L?(uY). But if f € C. (RN;R), then QVf — f
boundedly and pointwise, and therefore

”(—2?_]( - fH2L2(“U) = (nga Q%]f)L2(“U) - 2(nga f)LZ(uU) + Hf“2LZ(;LU)
= (Qgtfa f)L2(uU) - 2(nga f)Lz(uU) + ”f“%?(uu)

tends to 0 by Lebesgue’s Dominated Convergence Theorem.
Finally, now that we know that {QY : ¢t € (0, 00)} is a strongly continuous

semigroup of self-adjoint contractions on L2(uY), the spectral representation in
(7.5.21) is a standard application of spectral theory.! 0O

1 See, for example, the main theorem in § 141 of F. Riesz and B. 8z.-Nagy’s Functional Analysis,
publ. by Ungar (1955).
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When pU(RY) = 1, Theorem 7.4.16 applies and tells us not only that uU ig
the unique element of 9, ({QY : ¢ > 0}) but also that, for each x € RV:

1T QY U
(7.5.22) lim —/ FoX;dt=E"»[F] (as., Qx)
T—oc 0
for every F € B(RV;R) and that
1 (T oy U
(7.5.23) Jim 7 [ Q¥ = o)

for every ¢ € B(RV;R). In particular, this proves that {QY : x € RV} is recur-
rent whenever e 2U € L(RV). In addition, it gives precision to the intuition
coming from the equation

t
XUt ) =(t) — / VU(XU(S,'t,lJ)) ds.
0

Namely, since U can only decrease along integral curves of the gradient field
—VU, solutions to X (t) = —VU (X (t)) will be drawn toward the region MU)C
RV in which U is minimal. Hence, at least when U grows fast enough at infinity
so that M(U) is bounded and stable, one suspects that the paths XY (-, )
should, in the long run, spend most of their time near M (U), which is exactly
what (7.5.22) and (7.5.23) confirm.

Because (7.5.22) and (7.5.23) depend directly on (7.5.20) and only indirectly
on (7.5.19), (7.5.22) and (7.5.23) can be sharpened when one takes full advantage
of (7.5.19).

7.5.24 Corollary. For each T € (0,00), the only f € L?(uY;R) satistying f =
QY f (ae., pY) is uY-almost everywhere constant. Hence, for each ¢ € L*(uY):
U _ : U U —
© (IRN) =1 = tllglo”Qt Y= <()03H >HL2(/LU) =0
(7.5.25) U ) U
pU () =00 = lim {|Q7 | 2,0y = O

In fact, for each r € (0,00):

“U(RV)Zl — lim sup HQU(t,X, )_/"LU” =0

t—00 |X|ST‘ var

pY(RY) =00 = lim sup ‘QU(t,X,BRN(O,T'))‘ =0.

t—o0 lx|§r

(7.5.26)

Finally, if (cf. (7.5.14)) qU is continuous (e.g., if (7.5.16) holds') on (0,00) X
RY x RV, then, for all (t,x,y) € (0,00) x RY x RV:

(7527) HqU(t’ : ,X)Hiz(#U) = HqU(t,X, . )HiZ(p,U) = qU(2t,X, X),

T See the comment in the footnote to Theorem 7.5.13.
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and, depending on whether U (RY) =1 or p¥(RV) = oo,

¢V (t+2,%,y) — 1] < qV(2,%,%)%|QF (¢”(1, - ¥)) = | z2 (o)

(7.5.28) U v R
¢V (t +2,%,¥)| < ¢V(2,%%)% Q7 (6" (1, -, ¥)) || 2 o)
In particular, when ¢V is continuous,

pY(R")=1 = lim sup qu(t,x,y) -1/=0
120 xjvly|<r

(7.5.29) R ) =0 = lim sup |¢U(t,x,y)]=0.

t=0 Ix|viy|<r

PrOOF: We begin by noting that, because of the spectral representation in
(7.5.21), the first assertion is equivalent to
p/RY) =00 = Ejf=0
for f € L?(i;R).
WERY) =1 = B = [ faut

Alternatively, we must show that
(7.5.30) L*(uU;R) > f = EYf — fis uY-a.e. constant.

Thus, suppose that f = EY f for some f € L?(uY;R) with ||f||z2(,vy = 1. By
(7.5.21), we know that

(7.5.31) f= Q—?f pY-a.e. for each t € (0, 00).

We next note that

pV({f>0})=0 or p/({f<0})=0.

Indeed, because ¢V (1,x,y) > 0 for all x and y, (7.5.31) would otherwise lead to
1= Z2gu0) = (QFVF.5) 2
//f Y(1,x,y) fiy) u¥ (dx)u (dy)
< [[1760187 (1,%3) 110 1 (0 ()
= (QUUAIA) 0, S WEague) =1
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Hence, without loss in generality, we will assume that f > 0, which, because
q¥(1,x,y) > 0, means that

/f U(1,x,y)u¥(dy) >0 for pU-ae x € RV,

In particular, we now know that Range(EY ) cannot contain nonzero orthogonal
elements and is therefore at most one-dimensional; and so,

(7.5.32) Q—?go — EJp= ((p’f)L"‘(uU) f, ast—ooforall pe LA (uY).
But, from (7.5.32), we see that

(‘P’f)L2(uU) f(x) < ll¢llpeuv), for p-ae. x and every ¢ € BC(]RN;]R),
from which it follows that

I£llzr oy 1z uoy € 1= 1FI1Z2 (00

and therefore that f = ||f||po(,v) nY—almost everywhere.
Given the preceding, (7.5. 25) is an easy apphcatlon of (7.5.21). As for (7.5.26),
note that, by Lemma 7.3.20 and the fact that QY,; = QY o Qv:

{Q?@ [ By (0,7‘) tte (1700) and “‘IOHH < 1}

is uniformly equicontinuous for each r € (0,00). Hence, if pV(RY) = oo and
therefore QngBRN(O,r) —» 0in L2(uY), it is clear that the second line in (7.5.26)
holds. On the other hand, if UV (RY) = 1, then the same argument shows that,
for each ¢ € B(RV;R), QVy — (¢, 1Y) uniformly on compacts. In order to
improve this to the convergence in variation statement in (7.5.26), first note
that, from the preceding, for each r € (0, 00):

im sup QY(t,x, B (0,R)0) < 1V (B (0,R)C) — 0 as R — oo;

t—oo \X1<7‘

and so, if {pn}3° C Cp(RY;R) is bounded and @, — ¢ uniformly on compacts,
then

lim lim sup 1[QY n] (%) — [QF ¢] (%)] = 0.

=3¢ T—=C (¢ x)e[T,o0) x Bon (0,7)

Now suppose that the first part of (7.5.26) were not true. Then there would
exist an increasing sequence {t,}3° C (1,00) tending to infinity, a sequence
{x,}3° C Bpv (0,7), and a sequence {¢n}7° C B(RY;R) satisfying

lonllu <1 and HQ?"‘Pn] (Xn) — <‘P7:,7/LU>’ > €
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for all n € Z* and some € > 0. After passiug to a subsequence if necessary.
we could and would assume that x,, —> x for some x € Bz (0.7) and that
there exists (cf. the remark with which this discussion begau) a ¢ € Co(RY:R)
to which {Q?cpn}jc converges uniformly on compacts. But. iun view of the
preceding. this would mean that

fim QY ¢)(x) — (p.p¥)] > T |[QF,_1(QFvu)] (xa) = (Q wn i)

n—oc n—oc

= lim HQtL;‘P"] (xn) — <997H“U>‘ 2 €
n—oc
which obviously contradicts the fact that QVyp — (o, pY) uniformly on com-
pacts. In other words, we have now proved that, for each r € (0, ),

im sup sup |[QUe}(%) — (¢, k") = 0;

E=00 x| <r [lellu<1

and this is equivalent to the first line in (7.5.26).

Finally, we turn to the case when ¢V is continuous. The key to (7.5.27)
and (7.5.28) is the observation that, in terms of ¢V, the Chapman-Kolmogorov
equation becomes

(s +t,x,y) = /qU(s,x,ﬁ)qU(t,ﬁ,y) Y (dg);

and so, by the symmetry of qY (t,x,y), (7.5.27) follows when the preceding is
evaluated at the diagonal. In particular, if fy = qu(1, -,y), then, y € RY +—
fy € L*(pY) is continuous; and so, for each r € (0,00), {fy : Iy < r} is compact
in L2(uY). Hence, by (7.5.25),

Am |31|1£r Ha?fy - K/“LQ(HU) =0

where k = 0 or 1 depending on whether pU is infinite or finite. Thus, all that
remains is to check (7.5.28). But, by the Chapman-Kolmogorov equation,

P2y —n= [ xe) ([QF4)© - ) w0,

from which (7.5.28) follows by Schwarz’s inequality and (7.5.27). O

There are circumstances in which the qualitative conclusions drawn in (7.5.25)
and (7.5.29) can be replaced by quantitative ones which provide a rate at which
the convergence is taking place. For example, under quite general conditions,
one can show that the operators Qf must be compact and therefore that their
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spectrum must be completely discrete. Thus, if, in addition, one knows that
pY(RN) = oo, then, because EY = 0, one can say that

e = Sup{(@w,tp)Lz(“U) 1 € Ce(RV;R)

(7.5.33)
with (||| L2 (v = 1} <1

or, equivalently, that
QVyp = / e MdEYy fort e (0,00) and ¢ € L*(uY;R);
[)\0,00)
and therefore that
(7'5'34) ”Q?WHLz(“U) < e_)‘Ot”(p“L2(uU)a te (Ov OO),

for all ¢ € L*(uY;R). On the other hand, when the QU’s are compact and
pY(RY) = 1, then, because EJ ¢ = (¢, uV), we know that
e =sup {(Q7,0) 12, * ¥ € C(RYSR)
(7.5.35)
with ¢ 2y = 1 and (o, ") =0} < 1

and therefore that

(7536) Q¢ — o], . <e M eliage), te (0,00)

L2(uY)

for all ¢ € L?(uY;R). Finally, when ¢V is continuous, notice that (7.5.34),
(7.5.36), (7.5.27), and (7.5.28) lead to the following version of (7.5.29):

¥t +2,%,y) — 1] < e /gU(2,x,0)0Y (2,7, y)

¥ (¢ +2,%,5)] < e /g (2, %,%)¢Y (2., ¥),

depending on whether Y (RY) =1 or uY(RV) = .
As the preceding discussion makes clear, it is of considerable interest to know

when the operators QY ’s are compact; and for this reason we give the following
simple criterion.

7.5.38 Corollary. For each T € (0,00):

(7.5.39) 1QF 515,22ty < (4nT)™ %

(7.5.37)

U
eTV

)

L2(&N)

where ||A|lu.s.(g) denotes the Hilbert-Schmidt norm of an operator A on a sep-
arable Hilbert E. In particular, if e?V" € L'(RV;R) for some p € (0,00), then,
depending on whether Y (RY) = oo or pV (RN) = 1, either the A in (7.5.33) is
positive and (7.5.34) holds or the Ay in (7.5.35) is positive and (7.5.36) holds.
Moreover, if, in addition, qV is continuous, then (7.5.37) holds.
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PROOF: We need only prove (7.5.39). To this end, we use the Chapman-—
Kolmogorov equation and the symmetry of ¢V (t,X,y) to obtain

1QF Iy s (22 0uo = ¥ (T, x,y)? ¥ (dx)p" (dy)
(L2(pnY))

RN xRN

= /qU(2T, x,x) pY (dx) = (47rT)_% /RN rVU(2T,x,x) pY (dx)

2T

I
I~
3
3
|
o
—
&=
S
z
—
)
4
o]
TN
S~

VU (x + ¥r(t)) dt)] dx

2T
< (4nT)" % % i LA [/RN exp(2TVU(x+ tZ)T(t))) dx] dt

= (47rT)'%/ e2TVY () dx,
RN

where 97 (s) = ¥(s) — $5L4(T) and, in the passage to the fourth line we have
used Jensen’s Inequality and Tonelli’s Theorem. U

Exercises

7 5.40 Exercise: As some readers may have already guessed, the archetypical
example of the situation discussed in Theorems 7.5.7, 7.5.13, and their corollaries
is the one when U has the form

olgP
Ua(®) = 25
Indeed, notice that, by the criterion given at the beginning of Corollary 7.3.14,
there is no question that (7.5.12) is satisfied for every choice of a. In addition,
for each a € R\ {0}, (7.5.16) is satlsﬁed and eV * is integrable. Hence, by
Theorem 7.5.13, we know that ¢V~ € C((0,00) x RN x RY;(0,00)) and, by
Corollary 7.5.38, that, depending on whether & > 0 or a < 0, there exist strictly
positive A;(a) or Ag(c) such that

—l g|7rI for some a € R\ {0}.

(7.5.41) lg¥=(t +2,%x,y) = 1] < e‘Al(“)t\/; «(2,%,%x) q"=(2,y,Y)
or
(7.5.42) Ve (t+2,%,y) < e 20 [qUn (2,%,%) gV~ (2,7, )

for all t € (0,00).
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Actually, when o > 0, these examples were examined in Exercise 4.3.52, where
it was shown that qY=(t,x,y) is given by the expression in (4.3.53). However,
at that time we did not know yet about the connection between the measures
QY= and the integral equation

XU () = (0~ § [ XU (o) ds, (1,9) € 0.0 < BEY)

and so we were not able to handle a € (—oc,0). But now that we do know
this connection, we can not only treat negative a’s but can also give an entirely

different, and probabilistically more appealing, derivation of the expression for
U
q .

(i) Notice that when 1 is smooth, then the integral equation for X Ya(-,) can
be converted into the simple linear, ordinary differential equation whose solution
is

t
XUﬂ(t,w>:e*%‘w(o>+e—%‘/ e% 4(s) ds,
4]

which, after integration by parts, becomes

t
(7.5.43) XUe (t,95) = (t) — %/ =5 (s) ds.
0

Next, verify that, even when 1) is not smooth, (7.5.43) holds nonetheless.

(ii) Starting from (7.5.43) and remembering that { (&, ¥(t))q : (t,€) € [0,00) X

RV} is a centered Gaussian family (cf. Exercise 4.2.39) under W (M) conclude
that, for each (t,x) € (0,00)xRY, the dlstrlbutlon of i € PRY) — XU (t,y) €
RN under W,éN) is Gaussian with mean e~ % x and covariance 1=¢— IRN In

particular, when a € (0,0c), use this to verify that "= is given by the formula
n (4.3.53); and when o € (—oc,0), show that ¢V=(t,x,y) is equal to

lalt
(ol _ 1) exp | & X 2 26F (0 )y + e yl?
P o elalt — 1

(iii) Again assume that o # 0. As we already observed, Corollary 7.5.38 guar-

antees that QY= is compact for all ¢ € (0,00). In fact, when a € (0, 0c), note
that uY~ = v, and that

N
1 1 — ot
a(t,x,y) :H (azwj,azyj,e 2),

j=1
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where M is the Mehler kernel which appears in (2.3.6), and use this to conclude
that

Qlep = > e~ 5 (il_ﬁ.3 99) HY,

L2 aN
nENN (va™)

where ||n|| = Ziv nj,

1/ n]'
and H, is the Hermite polynomial given by (2.3.1). Hence, when a > 0, \(a) =
a and (7.5.41) becomes

Vs _ ¥ a(lxP+1yl?) | _o
lgP(t+2,x,y)—1| < (1-€7) exp[———2(e%+1) e~ T,

(iv) Now suppose that a < 0. Using the result obtained in (ii), note that

HY () =[] L H, (Vaz,),

Nat alx(? aly|?

det,x,y)=e? e 7 g’ (t,x,y)e =,
and conclude that

—= Ntinll oy (e(@) )
o= 3 M (EE ) R
nENN L2 (pUe)
where )
H (x) = =5 H{*V (x).
In particular, use this to see that Ag(a) = # and (7.5.42) becomes

ld%(t+ 2,x,y)|

2 2
< (6'“' - 1)_% exp [ag—)((el%:—'ﬁ—)] e~ 12

7.5.44 Exercise: Return to the general setting described at the beginning of
Section 7.4. Just as the {P; : t > 0}-invariance relation y = Py, t € (0,00), has
the consequence that {2 : ¢ € [0,00)} is the P,-invariant, so the {P;: ¢ > 0}-
symmetry relation

(7.5.45) [P~ [ePwdn ove BE.20)
has implications about P,. Namely, show that (7.5.45) implies that the process
is reversible in the sense that, for each T € (0, c0),
P e BRY) — v 1 0,T] € C([0,T);RY)
and 5
$ € PRY) — Pr = (T - -) € C([0, T RY)

have the same distribution under P,.
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Hint: First observe that it is sufficient to show that, for each n € Z*, 0 = ¢; <
- < tn = Ta and an"'afn € BC(RNaR)a

Jon, L i (t0) Puta)
(7.5.46)

n

= o (W(T = t)) Pa(dip).
Joy IL 017 = 2) Puta)

Next, note that when n = 1, (7.5.46) is simply a restatement of (7.5.45). Finally,
use induction on n and the Markov property to prove (7.5.46) for general n € Z*,

7.5.47 Exercise: Show that, for any (T,x) € (0,00)xR" and F € B(B(R");R)
NnL! (QZU;R)i

n—1 QY . U
1 MU =
lim ~ > FoX,r= ESF) i pt (RY) =1 (as., QY).
noeo 0 otherwise

Hint: See Corollary 7.5.24 and Exercise 7.4.25.



Chapter VIII:
A Little Classical Potential Theory

§8.1: The Dirichlet Heat Kernel

In this chapter we will be exploiting a few of the deep and beautiful relations
which exist between Wiener’s measure and the potential theory of the Euclidean
Laplacian A.! We have already seen the origins of this relationship: namely, the
fact stated in (7.1.22). Actually, (7.1.22) is itself simply the probabilistic coun-
terpart of the purely analytic fact that the Gauss kernel 4{Y is the fundamental
solution to the heat equation:

N
(8.1.1) 8g; = %A%N and 7N = o ast \, 0;

and, as we will see, (7.1.22) is only the first remarkable conclusion which can be
drawn by performing a clever dance with one foot in analysis and the other in
probability theory. In particular, given an open set & in RY, we will use ¢® (1))
to denote the first exit time inf {t > 0: ¥(t) ¢ &} of ¢ € P(RY) from &, and
what we will do is use the distribution of

P € {e® < oo} — (W), ¥(e%)) € [0,00] x 9&

to represent the solution to various boundary value problems for the operator
%A in ®.

We begin our program with an important a prior: regularity result, which, in
turn, will require us to know the following simple fact from interpolation theory.

8.1.2 Lemma. Set Q= (-1,1)N. Ifn€ Z" and F € Cr(Q;R), then

el
e (x)

max
la|=n

< 8LIFIZ, @m 1Pl o

for all x € Q.

! For a truly complete account of the subject, the reader should consult J.L. Doob’s Classical
Potential Theory and Its Probabilistic Counterpart, publ. by Springer—Verlag in 1984. After
all, Doob more or less invented the subject. For a less ambitious but beautifully composed
account, the reader should consult S. Port and C. Stones’s Brownian Motion and Classical
Potential Theory, publ. in the Academic Press series on Probability Theory and Mathematical
(1978).
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ProoF: First suppose that n = N = 1 and use a two place Taylor’s expansion
to see that

o] < 2l Pl

€ (—1,1) and r € (0,1].

Thus, by taking
s IFll
HFHle((—l,l);R),

we arrive at ||F'[lu < 3||F|lul|Fllcz((—11)® in this special case. To get the

general result, assume that the result holds for n, let & € NV be given, apply
the preceding to see that

6xﬁ || “Cn+1 (Q;R)

9B F
{ x>

lex|
<3| %

for any B € NV obtained from a by adding 1 to precisely one coordinate, and
use the induction hypothesis to complete the proof. O

8.1.3 Theorem. Let f € B([0,00) x 08;R) be given, and set

(8.1.4) u®(t,x) = BV [ £(t— e 9(e®), < t]

for all (t,x) € [0,00) x 8. Then u € C*°([0,00) x &;R), for each n € Z*, there
exists an M, € [1,00) for which

oIl M |51 dist(x, 9"
f < ——nilJiin -
(8.1.5) max | s (t’x)' = Qist(x, B)" eXp[ Mt ] ’
and
8nu®
(8.1.6) S (6%) = [(34)"ug] (6.

PROOF: We first want to reduce everything to the case when x = 0 and ® = B
= Bgn~ (0 1 + \/_) To this end, let x € & be given, set R = dist(x, &), and
take r = n \/_ Then, by the strong Markov property,

R S g

Next, apply Wiener scaling and translation invariance and use the preceding t0
arrive at

u? (t,x +y) = u? (r”2t,r_1y), (t,y) € {0,00) x Bw (0, R),
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where f(t,£) = u®(r2t,x + r¢) for (t,€) € [0,00) x dB. Hence, we will have
proved (8.1.5) once we show that for some, not necessarily the same, M, € [1,0)

. 3|“|u}3 1
0 ma |24 1,0)| < s (=577 ) 1Sl
and
onub n
(**) L(T,0) = [(3A)"uf](T,0),

for all T € (0, 0) and bounded, measurable f on [0,00) x B.

Let f be given, and extend f to the whole of R x RN by setting it equal to 0
off of [0,00) x OB. Observe that then u? = f on [0,00) X OB and u]f3 = 0 off of
[0,00) x B. Next, let T € (0,00) be given, and define

2(T'A1)

) =nt {o2 X002 iy ¢}

and
un(t,y) =B [F(E - e i), e <t (1Y) eRXRY.

Then uy = 0 off of [g(—T,c/\—l), oo) x RN and

20T N1
un(t,y) = uB (6, Y|V [uan () — we(ts3)] < 201 Flla WY (eB < (——)) .

k

In particular, this means that uy — u = u]f3 uniformly on compact subsets of
[0,00) x B and that (cf. (3.4.30))

[ues (t,¥) = et y)| < 4N fllu exp [‘mﬁ]

for (t,y) € [0,00) X Bpv (0, \/N) At the same time, because

2(T A1)
k

e = +2B o Xzrrn,
%

the Markov property gives

up(T,y) = [’Y%ﬁﬁ*u? (T i ')](Y);



448 VIII: A Little Classical Potential Theory

and therefore, for each n € Z*, there is a C,, € [1,00) such that

8|“|uk 8|aif}/]2\£Tk/\1) k Z
T < — k W< Ch| —— u-
max |2 (1) < e | o <o (5agy ) 1
LiRN)
When T € (0, 1], we can write
U(T,y) = Z(uk-l-l(Tvy) - uk(Tvy))
k=1

and conclude from the preceding and Lemma 8.1.2 that

dlely > [ k\? k
< - _
S 8NCx kzzl <2T) eXp( 8NT)’

Oy
which, after elementary estimation, yields (*) for T € (0, 1] and an appropriate
choice of M, € [1,00). When T € (1, 00), we write

max
lei=n

(T,0)

U(T, y) = ul(Ta y) + Z(uk-i-l (T7 y) - uk(T7 y))a
k=1
proceed in the same way to obtain (*) for T € [1, 00).
To show that u?( -,0) is smooth and, at the same time, derive (**), note that,
for h € (0,1),

wf (T +h,0) =BV V[f(T+h— e, 9(eP)), ¥ < T+
=BV [ (T, $(h), ¢ > ]
+ BV V1T + b= B p(eP)), e <]
= [vn *uf (T, -)](0)

+ BV [F(T+h— 8, 9()) — uf (T, (), ¢ < hl;
and therefore (again by (3.4.30))
N
W (7 4 h,0) = D kuB(T, ] 0)] < 4Vl exp | -

At the same time, from (8.1.1), we know that, for each n € N,
0"y
atn

and so, by Taylor’s Theorem and elementary estimation, we see that, uniformly

for T € [0, 00),

= (%A)n%;

uf (T +h,0) =) %[(%)mu?(n .)] (x) +o(h™*!) as h\,0,

which proves not only that u#(-,0) but also that it satisfies (**) as well. O
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As our first application of the preceding, we use it to study the Cauchy initial
value problem for the heat equation in [0,00) X & with Dirichlet data (i.e.,
value 0) at the spatial boundary (cf. Theorem 8.1.18 below).

8.1.7 Corollary. Define P® : B(®;R) — B(&;R) for t € (0,00) by
(8.1.8) [P?f](x) = BV [f(w(t)), e® > t], X € ®.

Then P®,, = P® o PP for all s, t € (0,00), and, for each f € B(8;R), (t,x) €
(0,00) x & — [PP f](x) € R is a smooth function which satisfies

OPPf

(8.1.9) L

APPf on (0,00) x &.

Proor: The equation P®, = P% o PP is an elementary expression of the
Markov property. Next, given f € B(®;R), extend f to RY by setting it equal
to 0 off of &, and define F; : ‘B(]RN)2 — R so that

Fi(p, ) = 10,4 (¢%()) f (1 (t — e()).

Then, by the strong Markov property applied to F' = F;:

P20 = B [ (w0)] - B [£(w0), <]
=[7 % f] (%)

- [ s e W) | W)
{p:e®(p)<t} \P(RY)

= b x A0 — B [ ok /] (969, 0 < 8.
In view of Theorem 8.1.3, this proves that
(t,x) € (0,00) X & —> [Pt@f](x) eR

is a smooth function which satisfies (8.1.9). O

In Corollary 8.1.8 we learned that (t,x) € (0,00) x & — [P f](x) solves the
heat equation (8.1.9), and our next goal is to characterize analytically which
solution it is. For this purpose, it will be useful to have the following variant of
the result in Lemma 7.2.1.
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8.1.10 Lemma. For any (T,x) € (0,00) X & and f € C*2((0,T) x &R) N
Cyv ([0, T x &;R) with the property that %{j + %Af >0,

(f(t AT Ae® Yt AT A e“‘)),ft,w,ﬁm)
is a bounded, continuous submartingale and therefore

(8.1.11) £(0,x) < BV [f(:r A e, (T A e®))], X € ®.

In particular, if %{ + %Af = 0, then this submartingale is a martingale and the
inequality in (8.1.11) becomes an equality.

PROOF: We want to reduce everything to the situation covered by Lemma 7.2.1
applied to subregions of (—oo,T) x &. To be precise, let 0 < s < T be given, set
®, = (—o0,T — s) x &, and note that (cf. (7.2.2))

¢85 () = (T — ) A e® ().

Hence, by Lemma 7.2.1, we know that
f(s+t/\(T—5)/\e®,¢(t/\(T—s)/\e®))

is a bounded, continuous W,EN)—submartingale relative to {Bt . t € [0, oo)}
Finally, let s N\, 0. O

As an application of (8.1.11), we obtain the following uniqueness result.

8.1.12 Lemma. Ifu is a bounded element of C*2((0,00) x &;R) which solves
the Cauchy initial value problem

5 =3Au in(0,00x 8, limu(t,x)=f(x), x€8,

and lim u(t,x) =0, (t,a)€ (0,00) % IG,

x—a
for some f € B(®;R), then u(t, -) = P f for all t € (0, 00).
Proor: Given T € (0,00) and € > 0, set
fre(t,x) =u(T —t +¢x), for (t,x)€[0,T)x8,
note that equality holds in (8.1.11) with f = fr,, and conclude that
w(T + ¢€,x) = [PPu(e, -)](x) for each e € (0, 00).

Finally, let € \, 0 and use Lebesgue’s Dominated Convergence Theorem to arrive
at u(T,x) = [P2f](x). O
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What we want to do now is prove an existence statement which complements
the preceding uniqueness statement. That is, we want to find out to what extent
(t,x) € (0,00) x & — [PP f](x) is always a solution to Cauchy initial value
problem in Lemma 8.1.12. To this end, notice that, at least when f is continuous,
we already know that both the heat equation as well as the initial conditions in
the above Cauchy problem are satisfied by (t,x) € (0,00) X & —> [P;’jf] (x).
Hence, the only question is whether the correct boundary value is taken on at
the lateral boundary (0, 00) x G; and this comes down to the problem of finding
out for which a € 0&

(8.1.13) lim W) (e® > 6) =0, € (0,00).
x€®

Indeed, it is reasonably clear that

lim [PPf](x) =0 foreveryte (0,00) and f € Ch(&;R)
x€®

for every a € &® at which (8.1.13) holds; and for this reason we will say that
a € 06 is a regular point for ® and will write a € Oreg® when (8.1.13) is
satisfied.

In order to get a handle on the problem of checking when a € 96 is regular,
it will be convenient to have introduced the {Bt 1 telo, oo)}—stopping times

e (p) =inf {t > s: P(t) ¢ B} =5+ (Ts1p)

for s € (0,00) and ¥ € P(RY). Clearly s € (0,00) — ¢2(2p) € [0,00] is
nondecreasing and

lim ¢2(9) = 8, (y) = nf {t > 0: (1) ¢ &}

is the first positive exit time from &. Notice that, for s € (0,00),
(8.1.14) ®>s = @=s+c®oX%, and ef, >s = ey = s+¢%o X,

8.1.15 Lemma. Regularity is a local property in the sense that, for each r €
(0,00), a € Breg® if and only if a € Oreg (Q§ N Bgr~ (a,r)). Furthermore, given
ac 00,

(8.1.16) a € Breg® = WV (g >0) =0;

and if a € Oree®, then, for each 4 >0,

(8.1.17) lim WM (8, %(e2) € (0,6) x Bre (a, 5)) ~1.

x€B

In particular, Oreg® € Bos.
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PROOF: Set ®(a,r) = BNBg~ (a,r). Since it is obvious that ¢®(@7) is dominated
by ¢2, there is no question that a € Jreg® == & € FregB(a, r). On the other
hand, if a € O,eg®(a,r) and € > 0, then, for all 0 < J <,

Tm W (e® > ) < Tim WY (e® > 6)
xX—a X—a

x€e® x€ES
< lim W(N)( S(ar) > 6) + hm W(N)( Byn(am) < 6)
Xa
xEG(a,r) xEQS

_<_W(N)(sup |1 (t) Zz) — 0 asd 0.

t€[0,5] 2

Hence, we have now also proved that a € dreg®(a,7) = a € Greg®.
Next, let a € 6. To check the equivalence in (8.1.16), first use ¢? = s+e®oX,
and the Markov property to see that

XERN»—>W,£N)(2§526): W(N)( > 8- s)yN(y —x)dy €[0,1]
RN
is a continuous function for every s € (0,00), and therefore that

x € RY »—)W,ﬁN)(egiL >§) = li\rj%)Wx(N)(ef > §)

is upper semicontinuous for all § > 0. In particular, if WB(N) (egiL > O) =0, it
follows that

’@W,ﬁm( >6)—th(N)( >§) =

xeB xEQS
for every § > 0. To prove the converse, suppose that a € Oreg®, let positive €
and § be given, and choose r > 0 so that

)/V,ﬁN)(eQ5 >4) <e forxe®NBgn(ar).
Then, by the Markov property and (3.4.30), for each s € (0, ) one has

W (5, 2 2) B W (02 6), bs) € @

< 6+WB(N)(’(,[)(3) ¢ BRN(a,r)) < €+ 2Ne 27s;

from which it is evident that Wi’ (e, >0) =0.
Now, assume that a € 0,¢,®, and observe that, for each 0 < € < d,

WN) (w &%) ¢ Byw (a,5) or ¢® > 5)

te(0,¢€]
Hence, (8.1.13) and (3.4.30) together imply that

<WIM (e > ) + W ( sup |4(t) —a| > 6) :

o 2
%ignql?WX(N) (t/)(e@) ¢ Bgn (x,0) or ¢® > 6) < 2N exp [ 2Ne]
from which (8.1.17) follows after one lets € \, 0. O
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8.1.18 Theorem. Let f € Cp(®;R) be given. Then (t,x) € (0,00) X & —>
u(t,z) = [PPf](x) € R is a bounded element of C12%([0,00) x ®;R) with the
properties that

gu — 1Au in(0,00) X &, }i\r‘r(l)u(t,x) = f(x), x€®6,

(8119) lim u(t,x) =0 for (s,a) S (O, 00) X 6reg®'
(t,x)—(s,a)
(t,x)€(0,00)x &

In particular, when 0® = 0O, ®, then (8.1.19) completely characterizes (t,x) €
(0,00) x & — [P2f](x) € R.

PROOF: Let f € Cp(®;R) be given. If u(t, - ) = PP f, Corollary 8.1.7 says that
this u satisfies the first line in (8.1.19), and, by (8.1.17), it satisfies the second line
as well. Conversely, suppose that 0® = 8¢ ®, and let u be a solution to (8.1.19)
and (T, x) € (0,00) x ® be given. To see that u(T,x) = [P2](x), choose a
sequence {®,}5° of open sets so that ®, CC & and &, / & as n — oo.
Then, by the last part of Lemma 8.1.10 applied to (t,x) € [0,T] x B, —
u(T + § — t,x) € R, we see that

(T +6,x) = [PCru(s, )] (x) + BV [u(T 45— O p(en)), €2 < T]

for every § > 0 and x € ®,. Hence, because ¢®n 7 e¢® as n — oo, the second
line of (8.1.19) guarantees that u(T + d,x) = [P2u(d, )] (x) for all 6 > 0 and
x € 6. Finally, let § \, 0, and conclude that u(T, -) = P2f. O

In order to make the result in Theorem 8.1.18 effective, we must know criteria
for testing when a boundary point is regular. For this purpose, it will be useful
to know the following interesting fact about Wiener’s measure.

8.1.20 Theorem (Blumenthal’s 0-1 Law). For any A € Bo4 (cf. (7.1.3)),
M (4) € {0,1} for every x € RV.
Proor: Let A € By, be given, and note that

Y- [F, A] = lim V" [F o3, Al

(N)
= tim [ B0 [F] W (@) = Wi (4) EV<" [F].
s A

for every F € Cy (‘B(RN);R). Since the set of F' € B(‘B(RN);R) for which
B [F, 4] = W (AR [F]

is closed under bounded pointwise convergence, we have now shown that A is
W,((N)—independent of every B € By®~). In particular, this means that

WM (A) = WM (AN 4) =WV (42 O
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The application of Blumenthal’s 0-1 in which we are interested is contained
in the following criterion for regularity.

8.1.21 Theorem. For all x € RV, W) (e, > 0) € {0,1}, and so a € 9B is
regular if and only if WSEN) (eO®+ = 0) > 0. In particular, if a € 0® and

— |80 Bew (a,6)]
51{% &N

> 0,

then a is regular for &. (Here |I'| is used to denote the Lebesgue measure of T'.)
In particular, the set 0® \ O;.s® has Lebesgue measure 0.

PRrROOF: Since {ef, > 0} € By, the first assertion is an immediate consequence
of Blumenthal’s 0-1 Law and (8.1.16). Next, because

WM (e8, < 8) > W (y(8) ¢ 8)

1 ly—al?
= - d
(2n6) ¥ /Qscexp [ 2 ] Y
1|60 N Bev (a,82))]
(2m8) 7 ’
the second assertion follows from the fact that

Wat) (e = 0) = lim W™ (e, < 9).

v
o™

Finally, given the preceding, one gets the concluding assertion as a consequence
of Lebesgue’s Differentiation Theorem which, when applied to indicator func-
tions, says that, for I' € Bmv, Lebesgue every a € T is a density point in the
sense that

. |TN Bgv(a,d)|

im =1 0O

6™\0 IBRN (a, 5)‘

8.1.22 Remark. The criterion for regularity in Theorem 8.1.21 is a quite good,
albeit rather crude, general purpose test for regularity. In particular, it shows
that a € 0 is regular if G is smooth in a neighborhood of a. In fact, it
shows that smoothness is not really essential so long as a is not hidden from
®C. Thus, for example, if a lies at the end of a very sharp spike on 8®, then a
will be regular if the spike points into &C, but it may be irregular if the spike
goes into ®. In particular, a € Gres® if there is a ¢ € 8L and an r > 0 such
that Bgwn (c,r) C 8L and a € Bgwv(c,r). This latter statement is sometimes
called the Poincaré exterior ball condition. As our criterion makes clear,
the ball can be replaced by any nontrivial open cone in &( with a at its vertex.
However, if one wants to get a criterion for regularity which is necessary as well
as sufficient, one has to replace Lebesgue’s measure by capacity and, in other
ways, be more careful (cf. Wiener’s test in (8.4.40)).
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As the criterion in Theorem 8.1.21 and the discussion in Remark 8.1.22 in-
dicate, one has to be inclined toward the slightly pathological to consider re-
gions whose boundaries contain irregular points. Hence, for most reasonable
regions, Theorem 8.1.18 provides a complete analytic characterization of (f,x) €
(0,00) x & — [PPf](x) eR for f € Cp(0®;R). On the other hand, for those
who crave completeness, there remains an annoying gap which we will not at-
tempt to fill until the next section (cf. Theorem 8.2.9). Instead, we will turn now
to the development of a good kernel for the operators PP. In fact, for reasons
which will not be clear until the next section, we first want to extend the PP’s
to operators on B(RY;R) by setting

(8.1.23)  [PEf](x) =B [f(¢(t)),eg’+(¢)>t], (t,%) € (0,00) x &

for f € B(RV;R). Obviously, as long as x € &, the right hand side of (8.1.23)

does not depend on f | 80 and ¢® = e%’+ ,gN)—almost surely. Thus, the

preceding does give a legitimate extension of our earlier definition. In addition,
it is clear that

(8.1.24) [PPf](x) =0 when x € Oreg® U (.

On the other hand, when x ¢ 3® \ 9, ®, there are certain subtleties which arise
from the use of 2, instead of ¢®. Two of these are addressed in the following
lemma.

8.1.25 Lemma. The family {Py : t > 0} of operators on B(RY;R) given
by (8.1.23) forms a semigroup. In addition, for every (t,x) € (0,00) x R,
,SN)(eS:L = t) = 0; and therefore, for every f € B(RV;R),

(8.1.26) P2 Fli0 =BV [£(0). 8, () 2 1].

PROOF: Because of (8.1.14) and the Markov property, P2, fl(x) = [P8g](x),

where
(N)

g(y) =B [F(9(), %) > .

Thus, the semigroup property follows from the observation that

e§L(P)>5 = P(s) €6 = Wd(f(\;))(e@: eg,) =1

To prove the second part, set

p(&) = /RN VVy(N)(eQ5 > )1V (dy), s€(0,00).
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Obviously, p is a non-increasing, right-continuous, [0, 1]-valued function; and, as
such, has only a countable number of discontinuities. Hence, there is a countable
set A C (0, 00) with the property that

E¢AN = W;N)(eqs =¢)=0 for Lebesgue almost every y € RV,

Now let (t,x) € (0,00) x RV be given, and choose s € (0,t) so that t —s ¢ A.
Then, by (8.1.14) and the Markov property,

W (8 =1) = N)( >s5&e®oX, —t—3)<WN)(e oY, =t—s)

= [ W=t =)@ =0. O

Returning now to the question of a good kernel for P?, what we are seeking
is a kernel which will be maximally smooth and will reflect as many of the
important properties of {Pt@ > 0} as possible. For this purpose, let (¢,x,y) €
(0,00) x RY x RV and define 1 € P(RY) — 1, .y € B(RV) so that

By ) = (1= 210) (et 90) + 2 (3 = (60— 9(a)). e [0.00)

Then, by Theorem 4.2.18, for any (t,x) € (0,00) x RV, f € B(RN;R), and
Ac Bti

(8.1.27) /f(w() WM (dep) = /f M (Prx,y € A) %N (y — x) dy.
In particular, if

(8.1.28) P8, x,y)=wm ('J)t,x,y(u) € & for all u € (0, t))%N(y - x),

then

L 1oty dy =2 [1(000), () 2 1],

and so, by (8.1.26),

(8.1.29) PP f](x / Fy)p®(t,x,y)dy.

In other words, p®(t, x,y) is a kernel for P, but we have yet to see how good
a one it is.
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8.1.30 Theorem. For each t € (0,00), (x,¥) € BV x RV +— p®(t,x,y) is a
lower semicontinuous, symmetric function. In addition, for each (s,t) € (0, )2
and (x,y) € Y x RV, one has the Chapman-Kolmogorov equation

(8.1.31) PP+ txy) = [ PPl x 06 Y)
R’V
Finally, for each (t,x,y) € (0,00) x RY x RV,
(8132)  pP(tx,y) =%V (y -x) —EV {%N(y — (e5h))s eon < t]'

PrOOF: The symmetry of p®(t,x,y) is easy. Namely, from the reversibility
assertion in Theorem 4.2.18, one sees that the distribution of

¥ € PRY) — Py () 10,8] € C(0,2;RY)
under W) coincides with that of
¥ € PRY) — Pryx(t— ) [0,¢] € C([0,th RY);

and obviously this proves that p®(t,x,y) = p®(t,y, x).
To prove the lower semicontinuity, first set

ra(t:,y) = W™ (Bry(w) €6, at <u < (1-a)t)

for o € [O, %),and observe that it suffices to check that, for each a € (O, %),

(x,y) € RBY xRY s ro(t,x,y) € [0,1]

is continuous. But, writing

Bey () = (1= 5) (x+ w(at) + (¥(w) - v(an))

+ 2y~ (@) - w(( - a)) - (w((1- ) - $(w))

for u € (at, (1 - @)t), one can use the mutual independence of Brownian incre-
ments over disjoint intervals to check that

ralt,x,y) = / / ro((1 = 20)t,% + &,y + 1) Yor™ (d€) 0™ (dn)

RV xRV

_ / / ro((1 — 2a)t, &, m) YN (& — )7 N (n + y) dedn,

RV xRV
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from which it is clear that r,(t,x,y) is smooth with respect to (x,y).
In proving (8.1.31) and (8.1.32), it will be useful to introduce

pe(t.x,y) =W (d?t.x.y(U) €B,0<u< at)%‘v(y —x)

for & € (0,1). By the same reasoning as we just applied to analyze r,(t,x,y),
it is clear that, for each (¢,x) € (0,00) x RV, p®(t,x, -) is continuous on RV,
Moreover, by (8.1.27), the Markov property, Lemma 8.1.25, and (8.1.14), for any
f € B(RV;R):

/RN fly) (/RN p®(3,x,§)p2(t,§,y) d§) d

:]EW"(N)[ (t/) ) ®+ >s&e®oXx, > at]
=B [F((0), ) > s&e® o, > ot
=BV [F(@(0), 6, > s+ at] =B [F((1), ¢y > s+ at]

— & (5

= /RN f(y)pa (a +t,x,y) dy.
Hence, by continuity, we conclude that

[ o eey)de = (5 +txy)
RV «

for all & € (0,1), which gives (8.1.31) after one passes to the limit as o 1.
The proof of (8.1.32) follows a similar line of reasoning. Namely, by the strong
Markov property,

/RN FO1N (v - x)dy = EV= [f (d’(t))]
=BV [ (w(1), ¢ > at] + B [F(p(1)), ¢ < af]

(V) (v
= EWx [ (¥(1)), & t] + W= hlje@ X F($(ed)), e? < at]
for any « € (0,1) and s € (0,00). In particular, after letting s \, 0, we obtain

/f )ps (t,%,y)d / y —x)dy

(V)
S [N e g R (e, € < at].
Thus, by continuity,
PS(ta X, y) = FYtN(y - X) - ]EWX [")’tzjegs+(¢) (y - '!’(Q(Q)it)))a egﬁ-i— < at]’
and so (8.1.32) results after « /1. O

The relation (8.1.32) is one version of what is often called Duhamel’s for-
mula, and we will close this section with two of its applications.
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8.1.33 Corollary. The restriction of (t,X,y) ~ p®(t,X,y) to (0,00) x & x &
is infinitely differentiable and satisfies

(8.1.34) (—%p@(t,x,y) = 1[Ap®(t, -, ¥)](x) = 3 [Ap®(t.x, )] (¥)-

Moreover, p®(t,x,y) > 0 whenever x and y lie in the same connected component
of ®, and, for each a € Oz ®,

(8.1.35) lim p®(t,x,y) = p°(t,2,y) =0
x€®

uniformly fast as (t,y) ranges over compact subsets of (0,00) x &.

PROOF: Set vo™ (x) = 0 for x # 0, and conclude that (8.1.32) can be rewritten
as

PO txy) = (y — %)~ B [Ny — (), @ < o] for (x,y) € &2

Hence, both the smoothness assertion as well as the first equality in (8.1.34) fol-
low immediately from Theorem 8.1.3. Moreover, because p® (¢, x,y) = p®(t,y, %),
the second equality is an easy consequence of the first. Finally, to prove (8.1.35),
simply apply (8.1.17) to the second term on the right hand side of the preced-
ing. O

As our final goal in this section, we apply Duhamel’s formula (cf. (8.1.32))
to give a simple derivation of a famous result proved originally by H. Weyl. In
order to describe Weyl's result, observe that the operators P? admit unique
extensions as nonnegative definite, self-adjoint contractions operators PP on
L2(®). Indeed, from (8.1.29) and the symmetry of p®(t, -, - ), it is clear that
P? is symmetric on L?(®), and so one can proceed in exactly the same way
as we did in Theorem 7.5.18 to produce the desired extensions. Moreover, if
® has finite volume |®|, then, because p®(t,x,y) < ¥ (y — x), the Chapman-
Kolmogorov equation (cf. (8.1.31)) for p®(t,x,y) plus symmetry lead to

//pei(t,x,y)2 dxdy = / p®(2t,x,x) dx < (47rt)_% |8] < oo,
&
BxS

which means that all the ﬁ’s are Hilbert-Schmidt operators. Hence, when
|| < oo, we know that there is a nondecreasing sequence {A,}5" C [0,00)
which tends to oo and an orthonormal basis {¢,}§¢ in L?(®) such that, for each
nenN,

(8.1.36) PSo, = e tp,, € (0,00).
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In fact, from (8.1.36) and the regularity properties of p®(t,x,y), it is clear that
we may take the ¢,’s to be bounded, smooth functions in & with the properties
that
Ap, = —App, and )1(1_1& Pn(x) =0 for a € Oreg®.
x€®

In other words, the numbers {A, }{° are the eigenvalues of self-adjoint extension
of —A corresponding to Dirichlet boundary conditions.

Working under the assumption that |&| < oo, what Weyl did is study the
distribution function

(8.1.37) N®(A) =card{n € N: ), < A}

In particular, his goal was to show that, as A ,* oo, the growth of N®()) depends
only on N and the volume of 8.7 To get his result from (8.1.32), first note that,
on the one hand,

Z(P%St(;ona (Pn)L2(®) = Z(Pt@(ﬂna P?‘Pn)lg(@)
0 0

= 2
= XO:/QS(pQS(t,x, ) #n) 12y 9%

/ p®(t,x, - ) dx = / p®(2t, %, x) dx,
& &

while, on the other hand,

Z(P%st(p"’(p")L?(@) = Ze—t)\n - ‘/[O )e—)\t dNQS()\),
0 0 »00

where the last integral is taken in the sense of Riemann—Stieltjes with respect
to the nondecreasing function \ € [0, 00) — N®()) € N. Thus, we have

(8.1.38) / e’)‘thQs()\):/st(%,x,x) dx.
[0,00) <]

t As M. Kac explains in his wonderful article “Can one hear the shape of drum?,” Am. Math.
Monthly 78, the origin of Weyl’s result is a problem posed by Lorentz. What Lorentz noticed
is that, if one takes Planck’s theory of black body radiation seriously, then the distribution of
high frequencies emitted should depend only on the volume of the radiator. Thus, the original
interest in the result was that the asymptotic distribution of eigenvalues is so insensitive to
the shape of the radiator. When Kac took up the problem, he turned it around. Namely, he
asked what geometric information, besides the volume, is encoded in the eigenvalues. When he
explained his program to L. Bers, Bers rephrased the problem in the terms which Kac adopted
for his title. Audiophiles will be disappointed to learn that, according to C. Gordon, D. Webb,
and S. Wolpert’s 1992 announcement in B.A.M.S., new series 27 (2), “One cannot hear the
shape of a drum,” even a two-dimensional one.



§8.1: The Dirichlet Heat Kernel 461

At this point, we want to invoke what M. Kac used to call the principle of not
feeling the boundary. That is, for each x € &, the probability that a Wiener path
goes from x to x during a short time-interval [0, ¢| without hitting the boundary
8% should be essentially the same as that of its going from x to x during [0, ¢]
without worrying about the boundary. To make this intuition quantitative, note
that, by (8.1.32),

o2

1> (4mt) = p®(2t,x,x) > 1 — p(t,x),

where

NP3

N N A t
plt,x) = (4mt) R [38] o~ (e), ¢ < 2] < Z055,

d(x) = dist(x, ®C), and

oz

AN = sup (4s)Z e °.

5€(0,00)

Hence,
1> (4mt) T p®(2t,x,x) — 1 ast\,0

uniformly for x compact subsets of &; which, in conjunction with (8.1.38), leads
to

N
lim (4mt) 2 / e MAN®()) = |8
N0 (0,00)

In particular, after an application of standard Tauberian theory,’ we arrive at
the following theorem.

8.1.39 Theorem (Weyl). Assume that |®| < oo and define N®()\) as in
(8.1.37). Then
NQS
o N el
Ao Az (4m)=T (5 +1)

where T'(t) is the Gamma function given in (1.3.22).

t See, for example, Theorem 1.7.6 in Bingham, Goldie, and Teugel’s Regularly Varying Func-
tions, publ. by Cambridge U. Press (1987).
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Exercises

8.1.40 Exercise: Set RY = {x ¢ RV : zy > 0}. Given an f € Cc(RY;R),
define f € C.(RV;R) so that f [ RY = f and fy) = —f(¥), where y =
(y,—yN) fory = (¥,yn) € RV ! x (—00,0]. Show that

BV (Y ke fl (), & <t =0

t—e

for all (t,x) € (0,00) X Rf, and use this, together with (8.1.32), to prove first
that

(8.1.41) B £](0) = Yk f1(0), (8,%) € (0,00) x RY,

for every f € B(Rf;R) and second that

(8.1.42) P (%, y) =3 (y — %) = (7 — %)

for all (¢,x,y) € (0,00) X ]Rf X ]Rf. Finally, when IV = 1, use either (8.1.41) or
(8.1.42) to give another proof of the reflection principle in (4.3.5).

8.1.43 Exercise: Let & be an open region in RY, f a bounded continuous
function on &, and g a bounded continuous function on [0,00) x 9®. Show that
the function

(%) € (0,00) x & s [PEF](x) + B [gt = e, %(c%)), ¢ <] € R
is a bounded element u of C*%((0, 00) x &; R) with the properties that

%—’t‘ = 3Au in (0,00) x &, }i\n(l)u(t,x) = f(x), x € 8,

lim u(t,x) = g(t,a) for (t,a) € (0,00) X OregG-
{t,x)—(s,a)
(£,%)€(0,00) x &

(8.1.44)

In particular, when 8G = 9., ®, show that it is the only such u. (Cf. Exercise
8.2.13 below for the general case.)

8.1.45 Exercise: Qur discussion of regular points extends to more general
Markov processes. Indeed, let x € RN — P e M,y (‘D(RN)) be a continuous
map for which the family {Px : x € RV} is strong Markov, and show that
Blumenthal’s 0-1 Law (cf. Theorem 8.1.20) holds; that is, Px(A) € {0, 1} for
each x € RY and A € Byy. Next, add the assumption that the associated
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transition probability function P(t,x, -) is strongly continuous in the sense that
x € RN — P(t,x,T) € [0,1] is a continuous function for each t € (0,00) and

T € By~v. Given an open & in RV, proceed as in Lemma 8.1.15 to prove that,
for each a € G,

limy %%%Px(eg >6) =0 <= Pa(efy >0)=0 < Pa(ed, >0) < 1.

Finally, let Oree® be the set of a € O for which

lim lim Py (e® > 6) = 0;
OO0 SEE

and check that: O,s® € Bas,

C & (6 N _
%1{‘1}) %E%‘Px((e ,(e®)) € (0,0) x By (a,é)) =1, a€ Oiee®.

8.1.46 Exercise: Given any a € [0,00) and 3 € [0,00), the goal of this exercise
is to show that
w(w(t) < o+ Bt for all t € [0, oo)) —1- e 208
(i) Use Wiener scaling to show that, for any T' € (0, 00),
w(w(t) <a+fBtforalte [o,T]) = w(w(t) < oT 5 +48T5t for all t € [0, 1]).
(ii) Use the Cameron-Martin formula (cf. (4.2.16)) to see that
w(w(t) < a+ftforall t €0, 1])
=W [exp(—ﬁw(l) - %i), ¥(t) < afor all t € [0, 1]] .
Next, starting from this and making an obvious translation of (8.1.42), arive at
w(w(t) < a+ Bt forall t €0, 1]) — F(a,B) — e 2PF(=a,B),

where ¢

Fem=e / e~ 31 (dy).

— o0
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(iii) By combining (i) and (ii), show that

W(W) <a+ptforalltelo, T])

1
2

=1 —2apB -3 1 -&£r o ‘BT%?J
=[(1-e )F(—aT 2,072 ) +e 2 € 7 (dy).
—aT?

Now use elementary estimation to get the desired result.

§8.2: Uniqueness and Exiting through Regular Points

When the region & is regular in the sense that O, ® = 00, PPf | & is
completely determined (cf. Theorem 8.1.18) by (8.1.19) for each f € Cy(®;R).
However, as we mentioned after Remark 8.1.22, there is a gap when & is not
regular; and the purpose of this section is to provide the crucial fact needed to
fill this gap. Namely, we will show that, for any region &,

(8.2.1) WM (eﬁ(w) < oo & ¥(e?) ¢ arega) =0, x€®.
Our! proof of (8.2.1) will be based on the analysis of the function
(8.2.2) v®(x) = EVx [e_‘&] , xeRY.

Since, by the Markov propery and (8.1.14),
(N) )
[ ¥ =)y =B [ F] 10t

as 5 \, 0, it is clear that v® is lower semicontinuous. In addition, it is obvious
that v® < 1 everywhere and that

(8.2.3) {x e RV : v®(x) =1} = reg(BC) = Oz U (RV\ 8).

8.2.4 Lemma. Define the Borel measure v® on RY byt

V() = / EW=" [e—€5’+<¢>,¢(eg’+) er] dx.
Ry

tIn truth, the proof given below is adapted from the one given in Port and Stone, op cit in
the footnote at the beginning of § 8.1.

®
t Below, we use the convention that e *0+(¥) = 0 when e%:_ () = oo. Thus, the problem of

® .
giving 1/:(e85+) meaning when e%:— (1) = oo does not arise in integrals with e 0+ (¥) in their
integrands.
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Then v® is supported on ®(, and if
r(x) = / e tyN(x)dt, x€ RY.
(0,00)

then,
(8.2.5) v®(x) = / r(x —y)v®(dy), x¢€ RY.
R

In particular, v® is always locally finite and is therefore finite in the case when
&0 is compact. Finally, for any non-empty, open set $CRY: (cf. (8.2.3))

(8.2.6) ®&CC reg(Hl) = v®(x) = V< [e‘*§+ v® (tj)(e&)], xeRY.

Proor: Clearly v® is supported on 0. To prove (8.2.5), note that, from
(8.1.32) and the symmetry of p®(t,x,y),

BV [0 (v — (e ), eB < t] = B [ (e = 9(e)) €8 < d

for all (t,x,y) € (0,00) x RY x RY. Hence, after multiplication by et and
integration with respect to t € (0,00), one arrives at

oA [e‘*g5+ r((eoy) — y)] — [e”e& r(v(edy) — x)]

But
/ r(x—y)dy =1, xeRY,
i

and so (8.2.5) follows after one integrates the preceding over y € RV and applies
Tonelli’s Theorem.

Given (8.2.5) and the fact that r is uniformly positive on compacts, it becomes
obvious that »#® must be locally finite. Thus, all that remains is to check (8.2.6).
But clearly, (8.1.32), with $ replacing &, leads immediately to

(V)
r(x-y)= /( e~'pO(t,x,y) dt + B [6"‘& r(w(ecs) — y)]-
0,00)
Hence, since

p2(t,x,y) =0 for (¢,x, y) € (0,00) X RY x reg(ﬁc)»

(8.2.6) follows by integrating the preceding with respect to v®(dy) and using
(8.2.5). O
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8.2.7 Lemma. If &( is compact and, for some 6 € [0,1), v® | &C < 6, then
(V) (e$, < 00) =0 for every x € RV.

PROOF: We begin by checking that v® < # everywhere. Thus, suppose that

H={xeR :%x) >0+ €} # 0 for some € > 0. We will derive a

contradiction by first showing that &0 C reg(fj['.) and then applying (8.2.6). To

carry out the first step, we use (8.2.5) to see that, for any s € (0, o0):

w0 [Tet ([ Al -xutan)

st [t ([ ey -ty a
(0,0¢) Y

= e N kv®(x) > e (6 + OV (9(s) € 9)
> e *(0+ W (e, > 5).

Hence, after letting s \, 0, we see that v® > 6 + € off of reg(HC), which means
that = ¢ reg(9)L = z € & or, equivalently, & C reg(HC). In particular, we
now know that (8.2.6) applies and yields the contradiction

0+e<v®(x)= EW=" [e‘“§+ v® (t/)(e&))] <f+¢e forxe$.

That is, $ must be empty.

Knowing that v® < 6 everywhere, we now want to argue that v®(RV) <
Ov® (RY). Since v®(RY) < oo, this will show that ¥® = 0 and therefore, by
(8.2.5), that v® = 0, which is equivalent to the result which we are after. Thus,
let K = &, and, for each n € Z*, set K, = {x : dist(x,K) < n~'} and
&, = K,0. Clearly, K C reg(QSnE), and so, by (8.2.5) and Tonelli’s Theorem,

VO (RY) = /RN 087 (x) 1% (dx) = / v® (y) %" (dy) < 0O (BY).

RV

Thus, all that we have to do is check that v®»(RV) N\, v®(RY) when n — oo.
But
Vo (RY) = / v®" (x) dx

and v®:(RV) < oo. Hence, by the Monotone Convergence Theorem, it is enough
for us to know that v®~(x) N\, v®(x) for Lebesgue almost every x € RV. But,
when x € &,,, egf =¢%n % = egl Wx(N)—almost surely. Thus, 1 > v®» \ v®
on &. On the other hand, 1 > v®* > v® =1 on reg(QSE), and (cf. Theorem
8.1.21) 80 \ reg(&C) has Lebesgue measure 0. O

8.2.8 Theorem. (8.2.1) holds for every open & C RY.
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PROOF: Suppose that (8.2.1) fails. We could then find an x € RY anda d >0
for which

W (68, () < o0 & $(ely) € Ts) > 0.
where

; 1
T = {y € 96 : W (e§, >9) > 5}.
But then, there would exist a compact K C I's for which
W) (eé{f < oo) > W) (c&(d)) < oo p(ed,) € K) > 0.

On the other hand, v5C¢ < v® everywhere and there is a 8 € [0,1) for which
v® | K < 6. Hence, by Lemma 8.1.7, W;N)(eé{f < oo) = 0, which is obviously
a contradiction. [

As we said at the beginning of the section, (8.2.1) was the ingredient which we
needed to complete our characterization of {PS5 t> 0} when & is not regular.
But now that we have it, the characterization becomes easy.

8.2.9 Theorem. For each f € Cp(®;R), (t,%) € (0,00) x & — [P f](x) € R
is the unique bounded u € C"?((0,00) X ®;R) which satisfies (8.1.19). In
addition, p® | (0,00) x & x & is the unique p € C=((0,00) X & x &;[0,00))
with the properties that: for each x € &,

0
(8.2.10) ap(t,x,y) = 1[Ap(t, S y)](x), (t,x) € (0,00) x &,
and
(8.2.11) lim  p(t,x,y) =0, (s,a)€ (0,00) X Oreg®
(t,x)ze(js,a)

uniformly as y ranges over compact subsets of &; while, for each x € B,

/p(t,x,y>dy <1, te(0,00),
&

(8.2.12)

lim li t dy =1.
and lim fim / p(t,x,y)dy

Bgn (x,r)NS

Proor: The proof of the first assertion is precisely the same as the proof Lemma
8.1.18, only now we use the additional fact that w(eg) € Oreg® for W,EN)-almost
every 9 € {¢® < co}. As for the second assertion, all that we need to do is make
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sure that (8.2.10)-(8.2.12) uniquely determine p® on (0,00) X & x &. For this
purpose, let f € C.(®;R) be given, and set

u(x) = /Q5 f(y)p(t,x,y)dy.

Using (8.2.10)—(8.2.12), one can easily check that u is a bounded element of
C12((0,00) x &; R) which satisfies (8.1.19). Hence, by the first part, for each ¢ €
(0,0), u(t, -) = PP f, and so the desired conclusion follows from (8.1.29). 0O

Exercises

8.2.13 Exercise: Referring to Exercise 8.1.43, show that, even when & is
not regular, there is only one bounded u € Cl’2((0,oo) X @;]R) which satis-
fies (8.1.44).

8.2.14 Exercise: In the first edition of this book, a “proof” of (8.2.1) was based
on the “relation” ¢, = ¢®+¢f, o T,o on {¢® < co}. Unfortunately, as pointed
out by F. Knight, this relation is not quite true, and, to the extent that it is

true, it depends heavily on the truth of (8.2.1). Namely, using (8.2.1), prove
that, for every x € RV, egﬂr =%+ e85+ oXY,.s W,((N)-almost surely on {e® < oo}.

§8.3: The Dirichlet Problem

Having dealt with the Cauchy initial value problem, we will now turn our atten-
tion to the classical Dirichlet problem. Namely, we say that a function u on &
is harmonic if v € C°(®;R) and Au = 0; and, given f € B(0®;R), we say
that u solves the Dirichlet problem for f in & if u is a harmonic function
satisfying the boundary condition

(8.3.1) lim u(x) = f(a)
xcd

for a € G. As the following result shows, we already know how to solve the
Dirichlet problem in great generality.
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8.3.2 Theorem. Given a measurable f : 0& — R which is either nonnegative
or bounded, set

(8.3.3) (2O £)(x) =B [£($(e%)), ¢ < oo], X € ®.

If f is bounded, then H® f is a bounded harmonic function on & and
lim [H® 1] () = f(a)
x€B

whenever a € Oyeg® Is a point at which f is continuous. Furthermore, if f is
nonnegative and u is an element of C? (6; [0, oo)) which satisfies
(8.3.4) Au<0 in® and limu(x)> f(a) fora € Oweg®,

X—a
x€B

then H® f < u. In particular, if f € Cy (3®;R), then H® f is the one and only
harmonic function u in ® with the properties that

(8.3.5) lu(x)l < CW,EN)(eQ’ < 00) for some C € (0,00) and all x € &,
and that
(8.3.6) ;%u(x) = f(a) for all a € Oreg®.

b3

Proor: Let f € B(BQS; R) be given. To prove that H?® f is an harmonic function
in &, set v = H® f and apply the Markov property to see that

) = [PPu)00 + B [1(0(e2). ¢ <]

for all (¢,x) € (0,00) x ®. Hence, by Theorem 8.1.3 and Corollary 8.1.7, we
know both that u € C*(8;R) and, after applying 1A - % to both sides of
the preceding, that Au = 0. Moreover, if a € Oreg® is a point at which f is
continuous, then, by (8.1.17) in Lemma 8.1.15, it is clear that u(x) — f(a) as
x — a through &.

Next, suppose that u is an element of C? (6; [0, oo)) which satisfies (8.3.4) for
some nonnegative f. To prove that H ® f < u, choose a sequence of bounded,
open subsets ®,, so that ®,, C ® and &, / . Then, by Lemma 8.1.10, applied
to f(t,-)=—u | &, and Fatou’s Lemma, we know that

u(x)> lim m B [u(@(T A )]

T oo n—00

> ll_IIl_ ll___m EW"(N) [u(w(eeﬁn))’ e@ < T]

T o0 n—00

> B [ (3(e2), € < oo] = [HOf](x)
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for each x € &, where, in the passage to the last line, we have used (8.2.1).

Finally, let f € Cy,(0®;R) be given. We already know that H ® f is a bounded
harmonic function in & which satisfies (8.3.5) and (8.3.6). Now suppose that y
is a second such function, and set M = C + ||f|lu. Then, by the preceding, we
have both that

MW (e® < 00) +u(x) > [H® (M1 + f)](x)
= MWN (e® < 00) + [H® f](x)
and that
MVV,EN)(eQs < 00) — u(x) > [H®(M1 — 0] (x)
= MW (% < 00) - [H® f] (%),
which means, of course, that u = H®f. O

Although the preceding shows that the boundary condition in (8.3.6) makes
the Dirichlet problem well-posed, it leaves open the possibility that one can do
better. In order to see that, in general, one cannot, we will need the following.

8.3.7 Lemma. Let ® be a nonempty, connected, open set in RY. Then
Oreg® =0 = W (e® <00) =0 forallx e .

On the other hand, if O;eg® # 0 and b € 0®, then

b ¢ 8reg® < lim im WM (w(ee’) ¢ Bgn (b,r) & ¢® < oo) > 0.
™SO

Proor: The equivalence
Oreg® =0 = WM (® <00)=0, x€®

follows immediately from (8.2.1).
Now assume that Oreg® # 0. If b € 0, ®, then

lim lim W™ (w(eg) ¢ Bpn (b,r)&¢® < oo) =0
il

follows from (8.1.17). Thus, suppose that b ¢ O;eg®. Choose a € Oreg®, and
set B = By~ (b,r) where 0 < r < 1la — b|. One can then construct an f €
C(86;[0,1]) with the properties that f = 0 on BN d® and f(a) = 1. In
particular, if © = H® f, then

0 < u(x) < WM (#(e®) ¢ B&e® < %) <1 forallx€®,



§8.3: The Dirichlet Problem 471
and so we need only check that

lim u(x) > 0.
x—b
xe®

To this end, first note that, since

lim u(x) = f(a) = 1,
xed

the Strong Maximum Principle (cf. Theorem 7.2.8) applied to the harmonic
function 1 — u in & says that u > 0 everywhere in &. Next, because b is not
regular, we can find a § > 0 and a sequence {x,}{° C & such that x, = b and

e= inf WM (e® >4) > 0.
nezZ+ "

Moreover, by the Markov property, we know that
)

u(a) > B [ (0(69)), 6 < ¢ < oo = [ uly)p® 650y dy.
(]

At the same time, by (8.1.32), we know that p®(d,xn,y) < ¥ (y — x»), and
therefore that

sup/ p%(0,%n,y)dy <
neZt J B\ K

Do

for some compact subset K of &. Hence,

x—b n—oo yeK
xXEB

lim u(x) > lm u(x,) > % inf u(y) >0. O

As a consequence of Lemma 8.3.7, we have the following negative complement
to the positive result obtained in Theorem &8.3.2.

8.3.8 Theorem. Let ® be a connected open set in RN and assume that Oreg® #
0. If b € O \ Oreg®, then there exists an f € C(0®;[0,1]) which has the
property that for every u € C2(®;[0,00)) satisfying (8.3.4),

f(b) < @) u(x);
*e®

and so there can be no harmonic function u on ® which satisfies (8.3.5), (8.3.6),
and
lim u(x) = f(b).

x—b
xe®
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ProoF: Given b, use Lemma 8.3.7 to choose an r € (0, 00) so that

Fim W™ ((e%) ¢ Ban (b,r) &e® < oo) > 0,
e

and construct f so that f =1 on 8& N Bg~ (b,7)0 and f(b) = 0. Then, for any
u € C*(®;[0,00)) satisfying (8.3.4),

£(b) < Tim [H® f](x) < Tm u(x).
e et

In particular, if « were a harmonic function on & which satisfies (8.3.5) and

(8.3.6), then u would equal H® f and therefore could not tend to f(b) as & >
x—b. O

We next want to take a closer look at the conditions under which we can assert
the uniqueness of the solution to the Dirichlet problem. To begin, observe that
the situation is quite satisfactory when we know that

(8.3.9) WM (® <o) =1 forallx € &.

Indeed, when (8.3.9) holds, the condition (8.3.5) becomes equivalent to the con-
dition that u is bounded; and therefore we can say that, for each f € C}, (86; R) ,
H®f is the one and only bounded harmonic u satisfying (8.3.6). In fact, this
line of reasoning shows that the same conclusion holds as soon as one knows
that WX(N) (eQs < oo) is bounded below by a positive constant; and therefore, be-
cause X € & — VV,((N)(eQ5 < o0) is a bounded harmonic function which satisfies
(8.3.6) with f = 1, we see that

(8.3.10) inf WM (® < 00) >0 = inf WM (e® < 00) = 1.

On the basis of these simple observations, we can now prove the following.

8.3.11 Theorem. Let & be a nonempty subset of RY. If (8.3.9) holds,
then, for each f € Cy(0®;R), H®f is the unique bounded harmonic func-
tion u for which (8.3.6) holds. Moreover, even if (8.3.9) fails, when N > 3 and
f € C.(0®;R), H®f is the one and only bounded harmonic function on & which
satisfies not only (8.3.6) but also the condition

(8.3.12) lim u(x)=0.
|x| =00
x€®

ProoF: The first assertion is covered by the preceding discussion. To prove the
second assertion, let f € C.(0®;R) be given. We already know that H®f is
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a bounded harmonic function satisfying (8.3.6), but we must still show that it
satisfies (8.3.12). For this purpose, choose r € (0,00) so that f is supported in
Bgn (0,7). Then (cf. the last part of Theorem 7.2.11), because N > 3,
[[H® F1G0)| < NF WM (¢ < 00) — 0 as [x| — oo.

Finally, to prove that H ® £ is the only such function u, select bounded open sets
&, /' & with &, CC &, and note that, for each T € (0, ),

u(x) = lim EV* [u(d’(T A 26"))]

[f('d’(e@)), e® < T] +EWX(N) [u('lj)(T)), T < ¢® < oo]

RV [u(tj)(T)), e® = oo].
Clearly,
[H®f] (x) = hrnoo IEWX(N) [f (t/)(e@)), e® < T]
and

lim BV [u(w(T)), T<e®< oo] = 0.
T, o0

Finally, because N > 3 and therefore (cf. (7.2.16)) |¢(T)| — o0 as T oo for
WM _almost every 1 € P(RY), (8.3.12) guarantees that

Jim < [u(w(T)), e® = oo] —0;

which completes the proof that v = H®f. O

When N > 3, the result in Theorem 8.3.11 gives a complete analytic character-

ization of the distribution of 1 € {¢® < 0o} — 1(¢®) under WM. However,
there is still a gap when N € {1,2}; and to remove this gap we present the
following.

8.3.13 Theorem. If N € {1,2}, then for every nonempty open set & in RV :
WM (P <oo)=1forallxe® or WM (e® < o0) =0 forall x € &,

depending on whether 8,,® # 0 or 8yeq® = 0. Moreover, if 8;,® = 0, then the
only functions u € C?(®;[0,00)) satisfying Au < 0 are constant. In particular:
either O;e,® = @, and there are no non-constant, nonnegative harmonic functions
on &; or Oreg® # 0, and, for each f € Cp(0®; R), HE® f is the unique bounded
harmonic function on & satisfying (8.3.6).
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PROOF: Suppose that W,Eév)(e"j < o0) < 1 for some x¢ € &, and choose open

sets ®,, 7 ® so that xo € ®; and ®B, CC & for all n € Z*. Given u ¢
C?(®;[0.0c)) with Au <0, set

Xt ) = Lo} (€% (9) u((t))  for (t,9) € [0,00) x P(RY).

As an elementary application of Lemma 8.1.10, one can easily check that —X,(t)
is a nonpositive, right-continuous, W,Eév)-submartingale relative to {Bt 1t e
[0,00)} for each n € ZT. Hence, since

Xa(t, ) 7 X(5,9) = 1i00)(e®) u(th(t)) pointwise as n — oo,

an application of The Monotone Convergence Theorem allows us to conclude

that (—X(t),Bt,Wx(éV)) is also a nonpositive, continuous, submartingale. In
particular, by Theorem 7.1.16, this means that

tlim u(tp(t)) exists for W,Eév)-almost every 9 € {¢® = oo}.
—roC

At the same time (cf. Exercise 7.2.32), we know that, for W,Eév)-almost every

P € P(RY), N
/ 1y (v = oo for all open U # 0.
0

Hence, since on )(e(’j 00) > 0, there exists a ¥y € PB(RY) with the properties
that '(,[)( ) = Xp, ¢ 6(’(j)0 oo,
)d

00
Jo ot
0

t = oo for all open U # 0,

and
tlingo u(tpo(t)) exists;

which is possible only if u is constant. In other words, we have now proved that

when VV,E({V)(eQj < o) < 1 for some x¢ € &, then the only u € 02(05;[0,00))
with Au < 0 are constant.
Given the preceding paragraph, the rest is easy. Indeed, if Oree® = @, then

(8.2.1) already implies that WM (8 < c0) = 0 for all x € &. On the other
hand, if a € Os® but W,Ejv) (e"j < oo) < 1 for some xg € &, set

u(x) = [H®1](x) = WV (% < o0).
Then, by the preceding paragraph, u is constant and we derive the contradiction

1> u(xo) = limu(x)=1. O
xc®
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With Theorems 8.3.11 and 8.3.13, we now have a complete analytic charac-
terization of the distribution of ¥ € {¢® < o0} — 9(e®) € G. However. for
the reader who is familiar with the characterization of regular points in terms of
barrier functions, the following little addendum may be helpful. For example,
it shows that, when & is bounded and f € C'(9G;R), then H® f coincides with
the solution to the Dirichlet problem for f at which one arrives via the procedure
of Wiener, Perron, and Brelot (cf. Exercise 8.3.37).

8.3.14 Lemma. Given a € 98, a € 0,,® if and only if there exists an r €
(0,00) and a bounded n € C*(® N Bg~ (a,r); (0,00)) with the properties that
An < —e for some € > 0 and n(x) — 0 as x — a through &. In fact, if & is
bounded, and

m®(x) = W 6], X € 6,

[e
then m® € C*(&;R) N Cy,(B;(0,00)), 1Am® = —1, and

1
2

lim m®(x) =0 <= a € Jex®.
Xed

PRrOOF: Since (cf. Lemma 8.1.15) regularity is a local property, we may and will
assume throughout that & is bounded.

Because  is bounded, we can find R € (0,00) so that & CC B = By~ (0, R).
Hence, by (7.2.12), we have that

2 1412
8.3.15 0<m®(x §me:M, x € B;
N

which certainly means that m® is positive and bounded. In addition, by the
strong Markov property,

m®(x) = m®(x)

= ]EW"(N) [2

B _ e"j]
= ]EW"(N) [mB (w(‘eB)), ef < oo] = [H"ij](x)

for all x € &. Hence, by Theorem 8.3.2 and the last relation in (8.3.15), we see

that m® is not only smooth but also satisfies 1 Am® = —1. Finally, note that
(8.3.16) A € Oeg® <= lim m®(x) = 0.
xed

Indeed, the “if” direction is completely trivial; and to go the other way, observe
that because ¢® < ¢, (7.2.12) (and, even more convincingly, Lemma 7.2.18)
implies that

C = sup s [(26)2] 2 < oo,
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and therefore that
m®(x) <+ C’WX(N) (eQs > 5)% for every & > 0.

In view of (8.3.16), all that remains is to show that the existence of r ¢
(0,00) and 1 with the prescribed properties implies a € Oreg®. Moreover, since
regularity is a local property, we may and will assume that & = & N Bgv (a, ),
and what we will show is that m®(x) — 0 as & > x — a. To this end, set

M =supm®(x) and u(x)=2n(x)+e(M —m®(x)) for x € &.
x€®
Then
u>0, Au<0in®, and lim u(x)>eM for b € O ®;

x—b
x€e®

and so, by the second part of Theorem 8.3.2, we know that u > eM in &, from
which it is clear that
2
lim m®(x) < = lim p(x) =0. O

x—a € xX—a
x€B x€G

In the classical literature, a function 1 of the sort described in Lemma 8.4.14
is called a barrier in ® at a.

We now have a rather complete abstract analysis of when the Dirichlet problem
can be solved. Indeed, we know that, at least when f € C.(0G;R), one cannot
do better than take one’s solution to be the function H® f given by (8.3.3). For
this reason, we call

(8.3.17) % (x,T) = WY (4(e®) €T, % < )
the harmonic measure for & based at x € & of the set I' € Byg. Obviously,
(8.3.18) HOf)6) = [ fo)1®(x,dn).

®

This connection between harmonic measure and Wiener’s measure is due to
Doob,! and it is the starting point for what, in the hands of G. Hunt,} became
an isomorphism between potential theory and the theory of Markov processes.

t Actually, S. Kakutani’s 1944 article “Two dimensional Brownian motion and harmonic func-
tions,” Proc. Imp. Acad. Tokyo 20, together with his 1949 article “Markoff process and the
Dirichlet problem,” Proc. Imp. Acad. Tokyo 21, are generally accepted as the first place in
which a definitive connection between the harmonic functions and Wiener’s measure was estab-
lished. However, it was not until with Doob’s “Semimartingales and subharmonic functions,”
T.A.M.S. 77, in 1954 that the connection was completed.

$In 1957, Hunt published a series of three articles: “Markov processes and potentials, parts
LI & IIL,” Iil. J. Math. 1 & 2. In these articles, he literally created the modern theory of
Markov processes and their relationship to potential theory. To see just how far Hunt's ideas
can be elaborated, see M. Sharpe’s General Theory of Markov Processes, Acad. Press Series
in Pure & Appl. Math. 133 (1988).
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Although (8.3.17) provides an intuitively appealing formula for the harmonic
measure II®(x, - ), it can hardly be considered ezplicit. Thus, before closing this
section, we will write down two important examples in which explicit formulae
for the harmonic measure are readily available. The first case in which an explicit
expression is known has already been discussed in Exercise 4.3.49: namely, when
& is a half-space. To be precise, if N = 1 and ® = (0, 00), then, because one-
dimensional Wiener paths hit points, it is clear that I1(%°°)(x, -) is nothing
but the point mass §y for all x € (0,00). On the other hand, if N > 2 and
¢ = RY = R¥~! x (0,00), then we know from (8.3.17) and (4.3.50) that, for
y € (0,00),

2
T ((O,y),dn) = y v Arv-1(dn), y € (0,00),
v (g2 + )

where we have identified R} with RV ~! and used Ag~x-1 to denote Lebesgue’s
measure on RY 1. Hence, after a trivial translation,

N 2
% ((x,y), dn) = y & Arn-1(dn)
(8.3.19) ON-1 (g2 4 |x —n2)?

for (x,y) € RV™! x (0, 00).

Moreover, by using further translation plus Wiener rotation invariance (cf. Exer-
cise 3.4.28), one can pass easily from the preceding to an explicit expression of
the harmonic measure for an arbitrary half-space.

In the preceding, we were able to derive an expression giving the harmonic
measure for half-spaces directly from probabilistic considerations. Unfortu-
nately, half-spaces are essentially the only regions for which probabilistic rea-
soning yields such explicit expressions. Indeed, embarrassing as it is to admit,
it should still be recognized that, when it comes to explicit expressions, the
time-honored techniques of clever changes of variables followed by separation
of variables is more powerful than anything which comes out of (8.3.17). To
wit, the author is unable to give a truly probabilistic derivation of the classical
formula given in the following.

8.3.20 Theorem (Poisson’s Formula). Use Ag~-1 to denote the surface mea-
sure on the unit sphere SV~ in RV, and define

1~ 2
(8.3.21) M(x,n) = ! i&v for (x,m) € B~ (0,1) x SN71,
wy-1 |x =7

Then:

(8.3.22) 8=~ 0D (x dn) = 7N (x, ) Asv-1(dn), for x € Bgw (0,1).
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(Cf. Exercise 8.4.33 below.) More generally, if c € RV, r € (0,00), and x €
Bzn (c, ), then

1 r?—jx-cf?

8.3.23 B~ (x dn) = Asv—1(c.r)(d
( ) (X, T’) WN_1T |x_77|N SN -1I( 7“)( T’)v

where Agn-1(c ) denotes the surface measure on the sphere
SVY(c,r) = 8By~ (c,7).

Equivalently, for each open & in RY, harmonic function u on &, Bgn(c,r1)
CC &, and x € Bgn(c,7):

(8.3.24) u(x) = /le u(c + &) ) (222, &) Agn-1(d€).

In particular, if {u,}$° is a sequence of harmonic function on the open set &
and if u, — u boundedly and pointwise on compact subsets of ®, then u is
harmonic on & and u,, — u uniformly on compact subsets.

PROOF: Set B = Bgn (0,1). As an easy application of Wiener translation and
scaling invariance, we see that, for any x € By~ (¢,r) and bounded measurable

f on SN (¢, r):

[HBRN(C’T)f] (X) = [Hch,r] (iz_c) where fc,r(n) = f(C + 7'77)-

Hence, the formulae in (8.3.23) and (8.3.24) follow immediately from the one in
(8.3.22).

To prove (8.3.22), first check, by direct calculation, that 7(N) (., n) is harmonic
in B for each n € SV 1. Hence, in order to complete the proof, all that we have
to do is check that

Jim Fm) =™ (x,m) Agv-1 (dn) = f(a)
x€B SN-1

for every f € C’(SN“I; R) and a € SV~1. Since, for each § > 0, it is clear that

:lig}a / W(N)(xv n) Asv-1(dn) = 0,
xcB SN-1MB, v (a,5)0

we will be done as soon as we show that

/ 7™M (x,m) Agx—1(dn) =1 for all x € B.
SN-1
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But, because 7N)(. ¢} is harmonic in B and, by (i) in Exercise 4.3.51.

HBRN(O.T)(O’ ) _ )\SN—I(}(\){.T‘)1
WN_1T T

we have that, for r € [0,1) and ¢ € SV-1,
=0y am™(0,6) = wy [HP> 07N (. g)] (0)

for each r € (0. 00),

- / M) (1, €) A (dip) = / 7N (1€, ) Mg+ (dm),
SN‘I

S§N-1
where, in the final step, we have used the easily verified identity
M (rg, &) = ™M (rg,m) for all r e [0,1) and (§,7) € (SN—1)2.
Thus, by writing x = r£, we obtain the desired identity. O
When N = 2, one gets the following dividend from Theorem 8.3.20.
8.3.25 Corollary. Set D(r) = Bgz(0,r) forr € (0,00). Then
2

[ 2 2
(8.3.26) ) VT S S L el

As1(0.r)(dn)
27 Hx'2n_7.2x|2 s

for each x ¢ D(r). In particular, if u € C, (R? \ D(r); R) is harmonic on
R2\ D(r), then

X2 x|2 _ 2
(8.3.27) u(x) = u/ %u(rq))\y(dn);
21 Js |1x|2m — rx‘
and so
(8.3.28) lim wu(x)= i/ u(rn) As1(dn).
|x| =00 21 s1

PROOF: By an easy scaling argument, we may and will assume that r = 1. Thus,
set D = D(1), and assume that u € C, (R2 \ D; R) is harmonic in R? \ D. Next,

set v(x) = u (i) for x € D\ {0}. Obviously, v is bounded and continuous.

Ix[2
In addition, by using polar coordinates, one easily checks that v is harmonic in

D\ {0}. In particular, if p € (0,1) and B(p) = B\ Bp2(0,p), then (cf. the
notation in Theorem 7.2.11)

o) =B [0((0)). G < 6] + B o), ¢ <

for all x € B(p). Hence, because (cf. Theorem 7.2.11) ¢, * oo (a.s.,Wx(N)) as
P\, 0, this leads to

. N) 1
v(x) = BV {”('!’(41))’41“0]_ /s

1-[x)?
=5 | —5

5 u(n) As1(dn)
t | — x|
for all x € D\ {0}. Finally, given the preceding, the rest comes down to a simple
matter of bookkeeping. O
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As a second application of Poisson’s formula, we give the following famous ob-
servation, which can be viewed as a quantitative version of the Strong Maximum
Principle (cf. Theorem 7.2.8) for harmonic functions.

8.3.29 Corollary (Harnack’s Principle). For any ¢ € RY and r € (0,00):

rN=2(r — |x = cf)

)N—l

P € e, )
(r+|x —c|

(8.3.30)
N2 (r+ |x —cl)

< IBev (e (x N-1

) < mPev(en(e, -).

)

(r—|x—c|

for all x € Bgn~(c,r). Hence, if u is a nonnegative, harmonic function on
Bgn (e¢,7), then

rN=2(r - |x —¢c|)

)N—l

rN=2(r + |x —cl)

~—3 u(c).
)

(8.3.31) u(c) < u(x) <

(r+|x —c| (r—|x—c|
In particular, if & is a connected region in RN and {u,}5° is a nondecreasing
sequence of harmonic functions on &, then either lim,_,., u(x) = oo for every
X € & or there is a harmonic function v on & such that u, — u uniformly on
compact subsets of &.

PRrROOF: The inequalities in (8.3.30) are immediate consequences of Poisson’s for-
mula and the triangle inequality; and, given (8.3.30), the inequalities in (8.3.31)
comes from integrating the inequalities in (8.3.30). Finally, let a connected ®
and a nondecreasing sequence {u, }$° of harmonic functions be given. By replac-
ing u, with u, — ug if necessary, we may and will assume that all the u,’s are
nonnegative. Next, for each x € &, set u(x) = limy_, 00 Un(x) € [0, 00]. Because
(8.3.31) holds for each of the u,’s and Bgw~(¢,7) CC &, the Monotone Conver-
gence Theorem allows us to conclude that it also holds for u itself. Hence, we
know that both

{xe®:u(x)=0cc0} and {x€&: u(x)<oo}

are open subsets of &, and so one of them must be empty. Finally, assume that
u < oo everywhere on &, and suppose that Bgn (c,2r) CC ®. Then, by the
right-hand side of (8.3.31), the uy,’s are uniformly bounded on Bgw (c, 3); and
so, by the last part of Theorem 8.3.20, we know that u is harmonic and that
Uy, — u uniformly on Bgw (c,r). O

Notice that, by taking ¢ = 0 and letting r oo in (8.3.31), one gets an
easy derivation of the following general statement, of which we already know &
sharper version when N € {1,2} (cf. Theorem 8.3.13).
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8.3.32 Corollary (Liouville’s Theorem). The only nonnegative harmonic
functions on RY are constant.

Exercises

8.3.33 Exercise: As a consequence of (8.3.28), note that if u is a bounded
harmonic function in the exterior of a compact subset of R?, then « has a limit
as |x| = oo. Show (by counterexample) that the analogous result is false in
dimensions greater than two.

8.3.34 Exercise: Once we reduced the problem to that of studying v on D\ {0},
the rest of the argument which we used in the proof of (8.3.28) was based on
a general principle. Namely, given an open &, a K CC &, and a harmonic
function on & \ K, one says that K is a removable singularity for u in & if u
admits a unique harmonic extension to the whole of &.

(ii) Let K CC RY and use ok (1) to denote the first entrance time of ¥ € P(RY)
into K. Given an open 6 DD K, show that
(8.3.35) WM (o <¢®) =0 forallx € 8\ K

if and only if K N Greg(® \ K) = 0, and use the locality proved in Lemma 8.1.15
to conclude that (8.3.35) for some & DD K is equivalent to K N Greg(G\ K) =0
for all DD K. In particular, conclude that (8.3.35) holds for some & 5D K if
and only if

(8.3.36) WN) (Ht € [0,00) (1) € K) —0 forall x ¢ K.

(ii) Let K CC RV be given, and assume that (8.3.36) holds. Given ® DD K
and a harmonic function u on &\ K which is bounded in a neighborhood of 0K,
show that K is a removable singularity for « in &.

Hint: Begin by choosing a bounded open set $ 2D K so that $§ CC &. Next,
set

o () = inf{t >0 : dist(ep(t), K) < Q—IEdist(K,ﬁC)},
and define u,, on $ by
un() =B [u((e?)), ¢ < 7]
Show that, on the one hand, u, — u on $ \ K, while, on the other hand,

lim u,(x) = V=" [u(d)(ef’)) ce? < oo}

n—oo

for all x € §.
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(iii) Finally, let K be a compact subset of RY and a connected ® DD K be
given. Assuming either that N > 3 or that O;eg® # 0. show that (8.3.36) holds
if K is a removable singularity in & for every bounded. harmonic function on

6\ K.

Hint: Consider the function x € & \ K — Wit (ox < ¢®) € [0,1], and use
the Strong Maximum Principle.

8.3.37 Exercise: Although probability theory is not much help when it comes
to writing down explicit expressions for H® f, it is a rich source of schemes with
which to approximate H® f. For example, let & be a region in RN for which
(8.3.9) holds. Given an x € ®, use induction to construct, on an appropriate
probability space (2, F, P), random variables Z,, n € N, so that Zo = x and,
for n € Z*, Z,,(w) is uniformly distributed on the sphere S¥~!(R,, (w)), where
R,(w) = \Zn_l(w) - Q5El. Proceeding as in Exercise 4.3.51, show that, for any
F ey, (]RN ;R),

[H® f](x) = lim E[F(Z,)]

when f = F | 6. What we have outlined here is the general balayage
method.

8.3.38 Exercise: As a second example of the way in which probability the-
ory provides approximation schemes for solving the Dirichlet problem, con-
sider the following prescription based on the Invariance Principle. Namely,
let {X,}5° be a sequence of independent, identically distributed RV -valued
random variables on some probability space (2, F, P). Further, assume that
X, is square P-integrable, has mean-value 0, and covariance Ig~; and define
we Qr— Sp(-,w) € P(RY) accordingly, as in (3.4.9). By Theorem 3.4.20, we
know that (S,),P => Wi") as n — oo.

(i) Referring to the preceding paragraph, let & be an open region in RN for
which (8.3.9) holds, x an element of ®, and set

72(x,w) =inf {t > 0: x + Sy,(t,w) ¢ &}.
Under the condition that

lim ¢%(¢p) = e%(1h) < o0
(8.3.39) oo
for W) -almost every 9 € {¢® < oo},

show that, for any F € Cp(R;R),
(8.3.40) [H®f](x) = lim EF [F(x +8a(r2(0)) ), (%) < oo]
where f = F [ 06.
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(ii) Part (i) raises the question of determining when (8.3.39) holds. That is. we
need to develop a criterion with which to determine when % is W,gN)-almost

surely continuous on {¢® < oo}. To this end, first observe that ¢® is always lower
semicontinuous. Next, introduce

e®(y) =inf {t > 0: () ¢ 8},

note that ¢® is upper semicontinuous, and conclude that ¢? is continuous on the
{e®=1¢® < 00}. Hence, (8.3.39) will hold if

(8.3.41) WM (e8 = ¢® < 00) = 1.

Finally, under condition (8.3.9), show that (8.3.41) holds for every x € & if
(8.3.42) WM (e =0) =1

for all a € Oreg®.

(iii) Using Blumenthal’s 0-1 Law (cf. Theorem 8.1.20), first show that, for any

a e RV, M) (e6 =0) € {0,1}, and then proceed as in the proof of Theorem
8.1.21 to prove that (8.3.42) will hold for any a satisfying

1—_— IQ—SE N BRN (a,5)|
61{% oN

> 0.

After collecting these results together, we see that if & is a bounded region
whose boundary is minimally smooth, then (8.3.40) will hold for all x € & and
f € Cp(08;R).T

8.3.43 Exercise: For each r € (0,00), let S(r) denote the open vertical strip
(=r,r) x R in R?. Clearly,

SO () =) =inf {t > 0: [y (1) > r};

and so the harmonic measure for S(r), based at any point in S(r), will be
supported on {(z,y) : £ = £r and y € R}. In particular, if u € Cy, (S(r);R) is
bounded and harmonic on S(r), then

(8.3.44) Jully < supfu(l,y)|V |u(-1,y)|.
yeR

! This type of approximation was carried out originally by H. Phillips and N. Wiener in “Nets
and Dirichlet problem,” J. Math. Phys. 2 in 1923. Ironically, the authors do not appear to have
made the connection between this procedure and probability theory. In 1928, a more complete
analysis was carried out in the famous article “{Tber die partiellen Differenzengleichungen der
Phsik,” Ann. Math. 5 (2), of R. Courant, K. Friedrichs, and H. Lewy. Interestingly, these
authors do allude to a possible probabilistic interpretation, although their method (based on
energy considerations) makes no direct use of probability theory.
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The estimate in (8.3.44) is a primitive version of the Phragmén-Lindelsf
maximum principle. To get a sharpened version, one has to relax the global
boundedness condition on S(r). To see what can be expected, consider the
function

m(x+r

(8.3.45) ur(z) = (sin T)) (cosh g—g) for z = (z,y) € R%.

Obviously, u, is harmonic everywhere but (8.3.44) fails dramatically. Hence,
even if boundedness is not necessary for (8.2.44), something is: the function
can not be allowed to grow, as |y| — oo, as fast as u, does. What we will
show now is that those harmonic functions which grow strictly slower than u,
do satisfy (8.2.44). More precisely, we will show that, for u € C(—S—(r—); R) which
are harmonic on S(r):

Or|y|

sup exp[ }|uwy|<ooforsome9€[01)

(z,y)eS(r)
= u satisfies (8.3.44).

(i) Given R € (0,00), set T( )(tj)) =inf{t > 0: |¢2(t)| > R}, and show that, for
any u € C( r); R) which is harmonic on S(r):

=2 [u () 7 < 2] 4 (w2 D < ]
for z € S(r,R) = (-r,7) X (=R, R). Conclude that (8.3.44) holds so long as

lim sup |u(z,R)|V |u(z, R)|Wz(2) (Tg) <) =0, zeS(r).

R—oo z[<1

Thus, the desired conclusion comes down to showing that, for each p € (r, ),

(8.3.46) im exp [ 2R} WP (r < M) =0, =z e S(r).

R— oo

(ii) To prove (8.3.46), let p € (r,o0) be given. Show that (cf. (8.3.45)), for
R € (0,00) and z € S(r, R),

u,(z) = (cosh %) EW-" [sin 7(%( )+2) Tg) < T,Sl)]

2p

> (cosh %) (cos %‘) Wz(2)(T§g2) < Trgl));

and from this get (8.3.46).
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§8.4: Poisson’s Problem and Green’s Functions

Let & be an open subset of RV and f a smooth function on ®. The basic problem
which motivates the contents of this section is that of analyzing solutions u to
Poisson’s problem

(8.4.1) %Au =—fin® and lim u(x) =0 forac (9reg®.
x—a

Notice that, at least when & is bounded, or, more generally, whenever (8.3.9)
holds, there is at most one bounded u € C?(®;R) which satisfies (8.4.1). Indeed,
if there were two, then their difference would be a bounded harmonic function
on ® satisfying boundary condition 0 at dreg®, which, because of (8.3.9) and the
last part of Theorem 8.3.2, means that this difference vanishes. Moreover, when
N > 3, even if (8.3.9) fails, one can (cf. Theorem 8.3.11) recover uniqueness by
adding to (8.4.1) the condition that

(8.4.2) lim u(x)=0.
|x|— 00
x€®
In view of the preceding discussion, the problem in Poisson’s problem is that
of proving that solutions exist. In order to get a feeling for what is involved,
recall the operators P® defined in (8.1.8). Given f € C,(®;R), define

(8.4.3) wr(x) = /[T_l i (Pef](x)dt for T € (1,00) and x € ®.

It is then an immediate consequence of Corollary 8.1.7 (especially (8.1.9)) and
Theorem 8.1.18 that up is a smooth function on ® which satisfies

(8.4.4) JAur = P2f—-P8f and li_I}}luT(x) =0 for a € Oreg®.
T X
x€®

Hence, at least when (8.3.9) holds and therefore P2f — 0asT /oo, it is
reasonable to hope that u = limy_,o ur exists and will be the desired solution
to (8.4.1). On the other hand, it is neither obvious that the limit will exist nor,
even if it does exist, in what sense the smoothness properties and (8.4.2) will
survive the limit procedure.

Motivated by the preceding considerations, we now define the Green’s op-
erator G® by

(8.4.5) Gﬁf(x):/ PP fl(x)dt, x€@,
(0,00)

for nonnegative, measurable f on ®; and our first order of business will be to
prove that there are reasonable conditions under which we can show that G® f
is finite.
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8.4.6 Lemma. Ifeither (8.3.9) holds or N > 3, then G® has a unique extension
as a nonnegative, linear map from B (®; R) into B(®;R). In fact, in both cases,
for each K CC ® and p € [1,00),

(8.4.7) sggEW,fN) [(/ 1x(¥(1)) dt) } < 0.

Proor: Clearly, it suffices to check (8.4.7); and when N > 3, we may restrict
our attention to the case when & = RY. Thus, let N > 3, and set

falx) = Ex [(/Ow 1k ($(1)) dt)n] .
Because N > 3,

fl(x)z/ooo (/K%N(y—X)dy> dt§1+(2w)—%|K|/l°°t—gdt§1+ 2K

and, by the Markov property, f,+1(x) is equal (n + 1)! times

2| [ [ @) 1)) der - dias

0<t1 < <lny1<00

:]EWX(N) // 1K('¢’(t1)) "'1K(’l/’(tn))f1(¢(tn)) dt,---dt,

<t <<ty <00

Hence, by induction, (8.4.7) is proved when N >3 and ® = RV.

Now assume that N € {1,2} and that (8.3.9) holds. In order to prove the
desired result, it suffices to show that for any ¢ € & and r € (0,00) with
Bgn (€,2r) CC 6, we have

[ p
(V) ¢
Sgg wa [(A 1BRN(077‘) ('(j)(t)) dt) :| < 00;

and during the proof of this, we may and will assume that & is connected and
will use the notation B = Bgw~(c,r) and 2B = Bgn(c,2r). Assuming that
N =2, set 79 = 0, and define {(on, 7)}5° inductively by

on(p) = inf {t > 7,1(¥) : ¥P(t) € B}

and
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() = inf {t > ou($) : (t) ¢ 2B}

for n € Z*. Notice that if u(x) = W,éz)(al < e@') for x € &, then u is a
nonnegative, harmonic function on & \ B and

5 { 0 ifa€ Oeg®
xg‘é%B"(x) “ 11 ifaecaB.

Thus, because N = 2 and therefore & \E is connected, an application of The
Strong Maximum Principle (Theorem 7.2.8) shows that u(x) € (0,1) for every
x € B\ B. In particular, this means that

a= max u(x)€ (0,1).
jx—c|=2r

At the same time, by the strong Markov property,
wid (On41 <€) = O [u(d)(rn)), Ty < e@'] <aWP (o, < e
for all n € Z* and x € &, and therefore
W,§2) (Un < 26) <a™ ! forallneZ" and x € &.

Finally, observe that

where @
f(y) =B [(EP)] fory € 2B.

But, by Lemma 7.2.18, we know that f, is uniformly bounded by some constant
C(p,r) € (0,00), and so, after combining this with the preceding, we arrive at

the estimate
W< / '
0

15 (w(t)) dt) T )y
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Turning to the case when N = 1, we assume, without loss in generality, that
& = (0,00) and that B = (c —r,c+ ), where ¢ > 2r. With {ro} U {(o4,7n)}7
defined as in the preceding, we have, by (8.3.23) with N = 1,

W;l)(an-n < 66) = g {W(l)

ey (01 < €%), 7o < ee’]

- 2r

=W, (Tn <e® & V() =c+ 2r) + ¢ Wz(rn <e® & Y(m) =c— 2r)

T

=W (1 < €®) = ——Wo (1 < € & P(ra) = c—21).

cC—T

At the same time, again by (8.3.23),

W, (Tn <e® & Y(Th) =c— 2r) = IEWa(vl) [W;I(Ln)(iﬁ(ew) =c- 2r), On < eQS}

> Wél)(an < eQS).

1
4
Hence, we have now proved that

T

Wél)(U}H_] < CQS) S (1 — 4(0——-7‘)

) Wél)(an < eQS);

and at this point the rest of the argument goes through without change. [

With the preceding result in mind, we will assume from now on that either
N > 3 or (8.3.9) holds. Our next goal is to represent the Green’s operator G®
in terms of a kernel. But clearly,

(8.4.8) [G®f](x) = /@gQS(x,y) fy)dy, x€®and f € B(&;[0,)),

where (cf. (8.1.29)) the Green’s function' ¢® is given by

(8.4.9) 9%(x,y) E/ p®(t,%,y) dt.
(0,00)
In particular, if

<) = N (5) df — 2x|*~N
(8.4.10) T )_/(o,oo)% ()t = N 2on

for N > 3 and x € RV \ {0},

t The author has chosen this terminology in spite of the stern admonition by Doob in the
historical comments at his end of his book referred to at the beginning of this chapter. At
least (or, perhaps, worse), the present author has also used the possessive in references to
Lebesgue’s and Wiener’s measures.
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then, for all N > 3, open & C RV
Duhamel’s formula

and distinct x and y from &, we have

?

(8.4.11) g% (x,y) = y(x — y) = EW< [FN ($(e®) — y), e®< oo}

as a consequence of (8.1.32). Notice that, since (8.4.11) is equivalent to
(8.4.12)

[G®F](x) = [Inkf](x) — [H® (Ivkf)](x), x€B& feB(&RY),

most of our problems about finding a solution to (8.4.1) disappear. Indeed,
assume that N > 3, and suppose that f € C2(RV;R) is given. Because dif-
ferentiation commutes with convolution, it is clear that vk f € CZ(RM;R).
Thus,

N — x
LA (k) ) = lim DEXVAIJOO Z kI __ i

N0 t

where, in the first equality we have used (8.1.1), and, in the second, we have used
the first expression for Iy in (8.4.10). Hence, by (8.4.12), we see that G® f is a
solution to (8.4.1). Moreover, since Iy %|f| — 0 as |x| — oo and, by (8.4.12),

IG®f| < G®|f| < Ivklfl,

we also know that G® f satisfies (8.4.2). Thus, at least for f € C2(RV;R), we
have now shown that in three or more dimensions the unique solution to (8.4.1)
satisfying (8.4.2) is given by G®f.

Notice that Duhamel’s formula (8.4.11) could have been guessed. To be pre-
cise, Iy is a fundamental solution for —%A in RY in the sense that

1A(Iyky) = —¢ for all test functions ¢ on RY;

and g® is to be a fundamental solution for —1 A in & with 0 boundary data in
the sense that it is the kernel for the solution operator which solves the Poisson
problem in (8.4.1). Based on these remarks, one should guess that a reasonable
approach to the construction of g® would be to correct Iy (- —y) for each y € &
by subtracting off a harmonic function which has Iy (- — y) as boundary data,
and this is, of course, precisely what is being done in (8.4.11).

Obviously, what accounts for the simplicity in the cases N > 3 is the fact
that we are dealing there with a process which spends a finite amount of time in
bounded sets. Hence, when N € {1,2} and process is recurrent, we should have
to work a little harder. In particular, we cannot simply apply here the reasoning
which led us from (8.1.32) to (8.4.11) because, when N € {1,2}, the integral in
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(8.4.10) diverges at every point. On the other hand, starting from (8.1.42) with
N =1, we see that,

/ pO®)(t,z,y)dt =Ty (z —y) = Ti(z + v)

(0,00)

where
>0 z2

(8.4.13) Iy(z) = (27)"2 / =2 (e‘W - 1) dt = —|z| forz e R;
0

and therefore we know that
(8.414) ¢gO(z,y)=Ty(z —y)-Ni(zc+y)=2cAy forz, ye (0,00).

Similarly, from (8.1.42) with N = 2, we see that

27r/ pRi (t,x,y)dt
(0,00)

T | 2 3 2
y — X| Iy — x|
=1 - - dt
7750 o (exp{ ot ] [ ot D
Iy—XI‘r“1
= lim Ze T dt,
T Moo t
|y —x|~2

and therefore that

(8.4.15) & (x,y) =Ta(x—y) —T(x — §) = ~log :i — zla
where

1
(8.4.16) I(x) = —=log[|x|] for x € R?\ {0}.

Vs

Next, suppose that & C Rf. Then, just as in the derivation of (8.1.32), we
know that

N N[ N
PPt y) = 9% (t3,y) — BV [P (£ e% 9(e9),y), ¥ < t],
which, in turn, leads to

3 069) = 6% () — B [ (069, ), €0 < o]
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for distinct x,y € &. In particular, if N € {1,2} and we use (8.4.14) and
(8.4.15), then we arrive at

9%(x,y) =Tn(x—y) — [H?Tn(: —¥)](x)
+ [H®TN(- = 9)](x) —Tn(x - ).

But I'y (- — ¥) is itself a bounded harmonic in &, and therefore the last two terms
in the preceding cancel. Hence, we have now proved that, even when NV € {1,2},
(8.4.11) (cf. (8.4.13) and (8.4.16)) and therefore also (8.4.12) continue to hold
first whenever & is a subset of RY and then, after an obvious translation and
rotation, whenever & is contained in some half-space. In particular, this means
that, by exactly the same sort of argument which we used before in the case
when N > 3: for every & contained in a half-space and every f € C2(RV;R),
GO f is the unique solution to (8.4.1). Thus, all that remains is the situation
covered in the following theorem.

8.4.17 Theorem. Let ® be a nonempty, open subset of R? for which 8;eg® # 0.
Then, (8.3.9) holds,

(8.4.18) sup EWx(r“) [ | log |t/)(e®) - y||, e® < oo] < oo for KCC®,
x,ye K

and
(x,y) € &2 — BV [log |9 (e®) — |, e® < oo] eR

is a smooth function which is harmonic with respect to x € & for fixed y and
with respect to 'y € & for fixed x. In addition, for each c € &, the limit
logr
(8.4.19) R (x) = lim 2w (eBR"‘(c’r) < 26), X €®,
r—oo T
exists, is uniform with respect to x in compact subsets of & and independent of
¢ € 6, and determines a harmonic function of x € &. Finally,

(2)

(8.4.20) ¢%(x,y) =Da(x—y)— EM= [FZ (¥(®) ~y), ®< oo] + h®(x)

for all distinct x and y from ®; and so
(8.4.21) g®(-,y) — h® uniformly on compacts as |y| = co.

PRrROOF: Note that, because N = 2, Theorem 8.3.13 guarantees that (8.3.9)

follows from O,eg® # 0.
In proving the rest of the theorem, we may and will assume that & is con-
nected. For ¢ € ® and r € (0,00), set

BT(C) = Bpe (C,T‘), 6r(c) =6nNn BT(C), and gc,r( : 7Y) = gQﬁr(c)( '7)')'
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Because &,(c) is bounded (and therefore (8.4.11) holds), we know that
(8422)  ger(x¥) = Dalx —y) - B [Ly($(e® () - y), ¢ < oo].

In particular, this shows that ge .(-,y) is a harmonic in &,(c) \ {y} for each
r>0andy € &(c,r). At the same time, because p®(©) (¢, -,y) is nondecreasing
in r for each (t,y) € (0,00) x &, we know that g (-,y) is nondecreasing in
r for each y € &. Hence, by Harnack’s Principle (cf. Corollary 8.3.29), either
lim, roo ge,r(X,y) = oo for every x € & \ {y} or g (-,y) converges uniformly
on compact subsets of & \ {y} to a harmonic function. But, because

9% (x,y) = /( )p“(t,x,Y) dt
0,00

= lim p® O (t,x,y)dt = lim g (x,y),
r oo (0,00) r oo

we conclude from Lemma 8.4.6 that only the second alternative is possible. Thus,
we now know that, for each y € &, g®(-,y) is a nonnegative (in fact positive)
harmonic function on &\ {y}. But, by symmetry, this means that, for each x €
®, g®(x, -) is a nonnegative harmonic function on &\ {x}, which leads, in turn,

to the conclusions that g® is a smooth function on & = {(x,y) €B: x#£ y}
and so, by Dini’s Lemma, that

(8.4.23) ger(X,y) 2 ¢g®(x,y) uniformly on compact subsets of ®.

To go further, first notice that (8.4.22) can be rewritten as

(8.4.24) N
— EW= [I‘2 (P(eBr)) —y), eBrle) < e® < oo].

Next, set
(2)
uy(x,y) = —EW= |:F2 (¥(e®) —y), e® < eB”(c)] for (x,y) € &,(c)%.

We want to prove that, as r * oo, the u,’s tend uniformly on compacts to a
function which is harmonic in x and y separately. To this end, let a connected,
open subset 4 of & with A CC & be given, set D(A) = dist (A, Qiﬂ), and observe
that, for each (x,y) € A2,

r € (0,00) —up(x,y) — ww}g) (ecs < eB,(.:))

_ L [log (Iwe@) ;yl,) Y emc)} € [0,00)

s
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is nondecreasing. Hence, since

log(D(4)) 11 @) (2 < 2@

(x,y) € ®r(c)2 — ur(xvy) - T

is harmonic in x and y separately while
w/i (eQ5 < eB’(c)) Jw® (eQ5 < oo) = [H®1](x) =1,

Harnack’s Principle says that either u, tends to oo everywhere on A? or it tends

uniformly on compacts to a function which is also harmonic in x and y separately.
But, by (8.4.24),

ur(x,y) < g% (x,y) ~Ta(x—y) ifr>|y|+1,

and therefore we have now proved that
(x,y) € 8% — EVx [B (¥(e®) — ), e® < oo}

is a smooth function which is harmonic in x and y separately. In particular, this
completes the proof of the estimate in (8.4.18). At the same time, in conjunction
with (8.4.24), we also know that, as r , oo,

_EY [Fz (d)(eB’(c)) -y), eBr(e) < & < oo]
()
— ¢%(x,y) —Ta(x —y) + EM= [B (w(eQ’) - y), e® < oo]

uniformly on compact subsets of 2. Thus, both the uniform existence on com-
pacts of the limit in (8.4.19) as well as the equality in (8.4.20) come down to the
trivial observation that, as r ,* oo,

B L (65 19) - y), 5700 < 0 < o] - EDW (5700 < o2 < o)
Vs

= lEWx(N) llog (M) , eBr(c) S QQS < OO‘| — 0
s

r

uniformly for (x,y) in compact subsets of 2. Moreover, by the last part of
Theorem 8.3.20, we know that h® (cf. (8.4.19)) is harmonic; and, given (8.4.20),
it is clear that the limit in (8.4.19) does not depend on the choice of ¢ € &.
Finally, to prove (8.4.21), use (8.4.20) to write

R (x) = g% (x,y) + %]wam [log (M> , %< oo] ,

Ix -yl

and apply Lebesgue’s Dominated Convergence Theorem together with the esti-
mate in (8.4.18) to see that, as |y] — oo, the second term tends to 0 for each
x € &. Hence, after another application of the last part of Theorem 8.3.20, we
see that the pointwise convergence is, in fact, uniform on compacts. O
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8.4.25 Coroilary. Let everything be as in Theorem 8.4.17. Then, for each
KcCc®andr >0,

(8.4.26) sup {ges(x,y) cx—y|>randye€ K} < 00,
and
. 53 _
(8.4.27) )1‘13}a sup g° (x,y) =0 for each a € Or®.
xe® YEK

Moreover, for each f € C2(®;R), G® f is the unique bounded solution to (8.4.1).

PRrOOF: To prove (8.4.26) and (8.4.27), let ¢ € & and r > 0 satisfying Bg: (c, 2r)
CC & be given, set B = Bpz(c,7), and define the first entrance time o(1) of ¢
into B by .

o() =inf {t > 0: ¢(t) € B}.
By the strong Markov property, we see that, for any f € B, (B [0, oo)):

4]

[ ® oyt dy =2 [/ @) dt, o < e
& o

= [/@ 9% (¥(0),y)f(y)dy, 0 < eﬂ :

Hence, if x ¢ 2B = B (c, 2r) and therefore g®(x, -) | B is continuous, we find
that

g% (x,y) = V< [geS (¢¥(0),y), o < ees] for all y € B.
But, because ¢g® | (8(2B)) x B is bounded, we now see that

sup g®(x,y) < CWP (0 < ¢®), x¢2B,
YEB

for some C € (0,00). In particular, this, combined with the obvious Heine-Borel
argument, proves (8.3.26). In addition, if a € Jz®, then, for each § > 0,

Tm W (0 < ¢9) < i W2 (o < 6) + T W2 (e > 9)
xXES xeS x€ES
= )@W@ (o <6).
x€B

Hence, since the last expression obviously tends to 0 as § N\, 0, we have now
proved that

lim sup ¢%(x,y) =0;

xe® veB =0
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which (again after the obvious Heine-Borel argument) means that we have also
proved (8.4.27).

Turning to the second part of the statement, let f € C2(®.R) be given.
Using (8.4.9) and the first equality in (8.4.15), check that %AFQ*f = —f for
f € C?(R%;R). Because of (8.3.9) and the observation made in the discussion
following (8.4.1), we know that there is at most one bounded solution to (8.4.1).
Secondly, as an application of Lemma 8.4.6, we know that G?f is bounded;
and, from the representation of g® in (8.4.20) and the properties (proved in
Theorem 8.4.17) of the quantities on the right-hand side of (8.4.20), it is now an
easy matter to check that G®f € C%(®;R) and that ;AG®f = —f. Finally,
because of (8.4.27), it is clear that G® f goes to 0 at Oreg®. U

The appearance of the extra term h® in (8.4.20) is, of course, a reflection of the
fact that, for unbounded regions in R?, we do not know a priori which harmonic
function (cf. the paragraph following the derivation of (8.4.11)) should be used
to correct [2(- —y); when N > 3, the obvious choice was the one which behaved
the same way at oo as Iy itself (i.e., the one which tends to 0 at co). Actually, as
(8.4.21) makes explicit, the same principle applies to the case N = 2, although
now (8.4.11) will not, in general, do the job. To get a feeling for when the extra
correction term h® actually appears, consider the case when & is the half-space
R2. By combining (8.4.15) with (8.4.21), we see that h¥: = 0, and, obviously,
the same will be true of any half-space and therefore of any ® which is contained
in a half-space. On the other hand, if D(R) is the open disk {x: |x| < R} and

® = R2 \ D(R), then it is an easy matter to check that, for R < |x| <,

El

log

]

W@ (eD(r) < eQs) _ [HD(T)\D(R)lsl(o,r)](x) = og

m|s

Hence, by (8.4.19), we see that

8.4.98 READ® () = 1o ﬂ, x ¢ D(R).
T & R

In fact, as the following result shows, for ®’s whose complements are compact,
the form of the expression in (8.4.28) is typical, at least as |x| — oo.

8.4.29 Theorem. Let & be an open region in R? for which Oreg® # ¢ and
K = R?\ & is compact. Then, for each R € (0,00) with the property that
K C D(R), one has that

1 2 2 _R?
h® (x) — - log ‘—;%’ = %/ -l—):'——2h®(R7l) As1(dn)
(8.4.30) st [lx|*n — Rx|

L[ h®(Rn) rsi(dn)

2 sl

as |x| = oo.
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PRrooF: Define o : P(RY) — [0, 0] to be the first entrance time into D(R),
and note (cf. the preceding discussion) that, for each r > R and R < |x| < r:

WP (P < ¢¥)
=W (PN <o) + BV [Wﬁz,)(eD(r) <e%,0< eD(r)]
log Xl
= l"o%g_R +EVT W R (PO < 69), 0 < PO,
R

Hence, after multiplying the preceding through by 1—07%—'1, using (8.4.19), and
letting 7 — oo, we arrive at

1 X
h®(x) = - log %

which certainly implies that

+ %EWJ” [h®(#()), 0 < 0|, x € R\ D(R),

) 1 x|
R2 h — Zlog £t
x € R* — A% (x) og R
is bounded. Hence, by (8.4.30) now follows from (8.3.26). O

The number obtained in the limit on the right-hand side of (8.4.30) plays an
important réle in classical two-dimensional potential theory, where it is known
as the Robin’s constant for &.

Exercises

8.4.31 Exercise: In this exercise we give an explicit expression for the Green’s
function gPx~(&:B) To this end, first use translation and scaling to see that

gBRN(c,R)(x,y) - R2—NgB]RN(O,1) (x —C Yy~ C)

R’ R
for distinct x, y from Bgn~ (¢, R). Second, observe that
Ix—y| = \py|x - ﬁ for x € S¥~1 and y € Bgv (0,1) \ {0},

set € = (1,0,...,0) € SV~ and use this observation together with (8.4.11) to
conclude that

T (Iylx— ) for y#0

(8.4.32)  gB=vOD(x y)=Iy(x—y)— {
Iv(e) for y=0
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8.4.33 Exercise: The derivation which we gave of Poisson’s formula (cf. Theo-
rem 8.3.20) required us to already know the answer and simply verify that it is
correct. Here we give another approach, which is the basis for a quite general
procedure. To begin with, recall the classical Green’s Identity

/ (uAv — vAu) dx = / (u% — vg—ﬁ) dos
® 9%

for bounded, smooth regions & in R" and functions v and v which are smooth
in a neighborhood of &. (In the preceding, %%(E) is used to denote the normal
derivative (Vw(€),n(¢))zy, where n(§) is the outer unit normal at § € 06,
and \je is the standard surface measure for 06.) Next, let ¢ be an element
of Bgn (0,1), suppose r > 0 satisfies Bgw (c,r) CC Bgn (0,1), and let u be a
function which is harmonic in a neighborhood of Bgw (0, 1). By applying Green’s
Identity with & = Bgn (0,1)\ Bgw (c,7) and v = ¢B=N (01 (c, -), use (8.4.32) to
verify

u(c) = }«1{% PNl /SN—1 (E’ V(e + T‘E))RNU(C + 7€) Agn-1(dE)

=/ (& Vu(£)) g u(€) Asn-1(d€) =/ u(€)m™ (¢, €) Asn-1(d€),
sN-1 SN-1

where 7™ is the Poisson kernel given in (8.4.21). Finally, given f € C(0®;R),
extend f to Bgw~ (0,1)0 so that it is constant on rays, take

ug = HB=N OB f for R > 1,

check that ug —» HB&~ (D f uniformly on Bgn (0,1), and use the preceding to
conclude that

(B O] (@) = [ O (e, dow-r (48);

SN—-1

which is, of course, Poisson’s Formula.

§8.5: Green’s Potentials, Riesz Decompositions, and Capacity

The origin of Green’s functions lies in the theory of electricity and magnetism.
Namely, if & is a region in RY whose boundary is grounded and y € ©, then
g%(-,y) should be the electrical potential in & which results from placing a unit
point charge at y. More generally, if p is any distribution of charge in & (ie., a
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nonnegative Radon measure on ), then one can consider the potential G®
given by

(8.5.1) (GO (x) = /6 ¢°(x,y) iu(dy). x €8,

where we have implicitly assumed about ® either that N > 3 or that (8.3.9) holds
(cf. Lemma 8.4.6 and (8.4.9)). In this concluding section, we will prove a general
theorem (cf. Corollary 8.5.16 below) which characterizes functions which arise
in this way (i.e., are potentials) and will close with a probabilistic interpretation
of a special but particularly important class of potentials.

Throughout this section, ® will be a nonempty, connected, open region in RV |
and we will be assuming either that N > 3 or that (8.3.9) holds. Thus, by the
results obtained in Section 8.4, the Green’s function (cf. (8.4.9)) g% satisfies
(depending on whether N € Z* \ {2} or N = 2) either (8.4.11) or (8.4.20) (cf.
(8.4.10), (8.4.16), and (8.4.13)); and, in order to have g® defined everywhere on
®2, we will take g%(x,x) = 00, x € &, when N > 2. Next, we will say that
u is excessive on ® and will write u € £(®) if u is a lower semicontinuous,
[0, oc]-valued function with the super mean-value property that

1
(8.5.2) ulx) 2 WN-1

[ o+ 1) renes(dg)
S§N-1

whenever Bgn (x,7) C &.
As the next lemma shows, there are lots of excessive functions.

8.5.3 Lemma. &£(®) is closed under nonnegative linear combinations and non-
decreasing limits. Moreover, if u and v are excessive, so is u A v. Finally, for
each nonnegative Radon measure i1 on & and each harmonic function h : & —
[0,00), G®u + h is an excessive function.

ProoF: The first two assertions are easy; and, clearly, the third assertion comes
down to showing that G®pu is excessive. Moreover, by Fatou’s Lemma and
Tonelli’s Theorem, we will know that G® y is excessive as soon as we show that,
for each y € &, ¢®(- ,y) is excessive. To this end, set f, = p"j(%, -,y) and (cf.
(8.4.5)) u, = G®f,. Obviously, u,, is lower semicontinuous. In addition, by the
strong Markov property and rotation invariance: By (x,7) CC & implies

Un(Xx) > V" [/26 fa(9(t)) dt} — {un (¥(er)), er < oo]

er

= 1 /SN—1 un(x+ TE) /\SN‘l(dE)’

WN-—1

where we have introduced the notation

(8.5.4) er(t) = inf {t L ap(t) — (0)] > r}.
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Hence, each u,, is excessive, and therefore, since
o ®
wn) = [P txy)de g%y

we are done. O

Our next goal is to prove that, apart from the trivial case when u = oo, every
excessive function on & admits a unique representation in the form G®p+ h for
an appropriate choice of  and h.

8.5.5 Lemma. If u € £(&), then either u = oo or u is integrable on each
compact subset of . Next, choose some reference pointc € 8, set R = %|C-Q§Cl,
and, for each n € Z*, take

(8.5.6) 6, ={x€®nBu(e,n): [x -6 > £}.

Given u € £(®) which is not identically infinite, define
(85,7 wn) = [ palx—y)uly)ay,
Ban

where p,(x) = nVp(nx) forn € Z+ and x € RV and p is a rotationally invariant
element of C° (BRN (0,%);[0,00)) which has total integral 1. Then, u, €

Cé’o(@; [0,00)), un < u and Au, <0 on 6, and u,(x) — u(x) as n - oo for
each x € &. In particular, there exists a unique nonnegative Radon measure
on & with the property that

(8.5.8) ;/ Apudx = —/ @dp  for all p € C*(&;R);
(] (]

and, in fact, for all p € C;(®;R),

(8.5.9) /cpdu: li_)m / @du, where py(dy) = —1[ls, Aus](y) dy.
® o Je

Proor: To prove the first assertion, let &/ denote the set of all x € & with the
property that

/ u(y)dy < oo for some r > 0 with Bz~ (x,7) CC &.
B, n(x.7r)

Obviously, I is an open subset of &. At the same time, if x € &\ and r > 0
is chosen so that Bzn (x,2r) CC ®, then, for each y € Bz~ (x,r) and s € (0,7):
1

u(y) >
WN-1

[ 50 rama(at)
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and so, after integrating this with respect to NsV~1ds over (0,r), we get

1 / 1
> w(g)de > — / u(€) d = oo,
Qn_1r¥ Ben(y,r) Qn_rN Bg N (x.6) )

where § = r — |y — x|. Hence, we now see that & \ U is also open, and therefore
that either i/ = & or & = () and u = co.

Now assume that © € £(®) is not identically infinite. If u is smooth at some
x € ®, then an easy computation shows that

u(y)

A =l
u(x) R0 @y 172

/SN‘1 (u(x +7r€) — u(x)) Agn-1(d€) < 0.

Next, define &,, and u,, as in (8.5.6) and (8.5.7), respectively. Obviously, u, €
Cc ((‘5; [0, oo)) In addition, if x € &,,, then, by taking advantage of the rotation
invariance of p, we see that

(%) = /(07% £V =15(¢) (/SN_lu(x—F%E) ASN_I(dg)> dt

<u(x)wn_1 / tNT15(t) dt = u(x),
©.%

where j: R — [0, 00) is taken so that p(€) = 5(|€|). Similarly, if Bg~ (x,7) CC
®,,, then

/ wn (3 + 1) Agn -1 (dn)
SN-1

=/ e ( [l zerm) /\sw—l(dn)> dé
BRN(O,%) SN-1

SwN-1 / p(&)u (x + 1€) d€ = wn 1ua(x).
BRN(O’%)

Hence, u, | ., is a smooth element of £(®,,), and therefore we know that Au, <
0 on ®,. To see that u, — u pointwise, observe that we already know that
u(x) > lim, 00 u,(x). On the other hand, because u is lower semicontinuous,
an application of Fatou’s Lemma yields

u(x) < lim [ p(€)u(x+1€) d€ = lim un(x).

n—ooJ B n—oo
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To complete the proof, let u, be the measure defined in (8.5.9) and note that

Up(x) = W [un (Pt A 26"))] e |:/0 “ 3Au, (¥(s)) ds
_w |:/O e %Aun(w(s)) ds}

/Ot (/npw"(s’x,Y)un(dy)) ds

for all n € Z* and (t,x) € (0,00) x &,. Hence, after letting t /* oo, we see that

u(x) > up(x) > / g% (%,¥) pn(dy), n€Z' and x € &,.
In particular, because u(x) < oo for Lebesgue almost every x € &, this proves
that, for each K CC &, sup,cz+ in(K) < oo; and therefore (cf. part (iv) of
Exercise 3.1.17 and use a Cantor diagonalization procedure) {u,}{° is rela-
tively compact in the sense that every subsequence { unm} admits a subsequence
{ unmk} and a Radon measure y on & with the property that

lim ¢ dpn,,, =/ pdu for all p € Cc(B;R).
® ®

k—o0

At the same time, using integration by parts followed and Lebesgue’s Dominated
Theorem, we see that

lim ¢du, = —% lim Atpundx:—%/ Apudx, ¢ € C*(®;R),
® n—oo ®

n—o0 ®

and therefore any limit g of {u,} must satisfy (8.5.8), which proves not only
that there is such a p but also that (8.5.9) is satisfied. [

8.5.10 Lemma. For any lower semicontinuous u : & —» [0,00], u € £(®) if
and only if

(N)

(8.5.11) BV [u(d)(r)), T < e@’] < BV [u(w(a)), o< e@’]

for every pair o and T of {B; : t € [0, 00) }-stopping times with o < 7. In par-
ticular, if u € £(®) and Bgw (x,7) CC @, then for any rotationally symmetric
p € Cc(Bgn (0,7); [0, 00)) with total integral 1,

te(0,1)— / p(y) u(x + ty) dy € [0, 0]
BRN(O,T)

is a nonincreasing function.
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PRrROOF: Let u € £(®) be given. Clearly (8.5.11) is trivial in the case when
u = 0o. Thus, assume that u # oo, and define &, and u, for n € Z* as in
(8.5.6) and (8.5.7). Because Au, | &, < 0, we know (cf. Lemma 8.1.32 and
apply Theorem 7.1.15) that

o [un (tj)(T/\e@’" AT)), o AT < 86’"] < BV [un ('/’(U/\T))v oAT < eﬁm]

foralll1 <m <n, x € &, and T € [0,00). Next, after noting that %" < 0
W;N)-almost surely, let T' 7 oo in the preceding and arrive at

Vs [un(d)(r Ae®m)), o < eé’"] < VS [un(d)(a)), o< eﬁm}.
But, because o < 7 and u > u,, > 0, this means that
A [un ('l,b(’/")), T< eqjm] < ]EW"(N) [u(d)(a)), o< eﬁm},
which, because 0 < u,, — u pointwise, leads, via Fatou’s Lemma, first to
B [u((m), 7 < @] < B [u(w(e), o <o),

and thence, by the Monotone Convergence Theorem, to (8.5.11).
From here, the rest is easy. Given a lower semicontinuous u : & — [0, o0]
and By~ (x,7) CC & we have (cf. (8.5.4))

1
[ ulxt ) dssos (d) = B [u(w(en), e < e
WN_1 JgN-1
Thus, if, in addition, (8.5.11) holds, then
1
re 1 — [ ucek tr€) dan o (de) € (0.9
WN-1 JgN-1

is nonincreasing; and, therefore, not only is u excessive but also (after passing
to polar coordinates and integrating) one gets that the monotonicity described
in the final assertion is true. O

8.5.12 Theorem (Riesz Decomposition). Let & be a nonempty, connected
open subset of RV and assume either that N > 3 or that (8.3.9) holds. If
u € £(®) is not identically infinite, then there exists a unique nonnegative
Radon measure 1 on & and a unique nonnegative harmonic function h with the
property that

(8.5.13) u(x) = [G®u)(x) + h(x) forallx € &.

In fact, p is uniquely determined by (8.5.8), and h is the unique harmonic func-
tion on & which is dominated by u and has the property that h > w for every
nonnegative harmonic w which is dominated by u. (Cf. Exercise 8.5.53 as well.)
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PROOF: Define ®,, u,, and p, as in (8.5.6), (8.5.7), and (8.5.9). As an appli-
cation of Lemma 7.2.1, we see that, for each 1 < m <nand x € G2

un(x) = / 4O (x,y) fn(dy) + [HE™un]) ().

m

By the last part of Lemma 8.5.10, we know that um < u, < u on &, for each
1 < m < n. Hence, after combining this with the pointwise convergence result
in Lemma 8.5.5, we see first that ugvm /* ¢ pointwise on &, as k — oo, and
then, by the Monotone Convergence Theorem, that the preceding leads to

/@ uGv(d) = fim, / / 6% (x, y) v(dx)djue(y)
(8.5.14) 62,

Qjmuxux
+/@m[H ] () v(dx)

for every nonnegative Radon measure v on &,,.

Notice (cf. Harnack’s Principle) that, as the nondecreasing limit of nonnegative
harmonic functions, H®mu is either identically infinite or itself a nonnegative
harmonic function on &; and so, since u(x) < oo Lebesgue almost everywhere,
(8.5.14) shows that the latter must be the case. Now let a be a fixed element
of ®,,, let p, be the function described in the statement of Lemma 8.5.5, and
define

o pn(x —a)g®m(x,y)dx if yE€ (LI
pn(y) =

0 otherwise.

By taking v(dx) = Llem (X)pn(x = a)dx in (8.5.14), we see that, for n > m,

/ i~ () dx = Jim [ o) eldy)

k—oo

+/ pn(x — a) [qumu] (x) dx.

m

But, since every element of 9®,, satisfies Poincaré’s exterior ball condition (cf.
Remark 8.2.1) and is therefore regular, the fact, just verified, that pn(- — a) €
C2°(Bm; [0, 00)) for all n’s larger than some n(a) implies that ¢, is continuous
for all large n > n(a). In particular, by (8.5.9), we can now say that

/@m pn(x — @) u(x) dx = /@9%()() p(dx) + / pr(x — a) [H®™u](x) dx

m

for all n > n(a). In addition (by the results in Lemmas 8.5.5 and 8.5.10), as
n — 0o, the term on the left tends to u(a), the second term on the right goes
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to [H®mu](a), and {¢n(y) : n > n(a)} tends nondecreasingly to g% (a,y).
Thus, we have now proved that

(8.5.15) w=G®"pu+ H® y on &, for every m € Z".

Starting from (8.5.15), the rest of the proof is quite simple. Namely, fix x € &,
choose m so that x € ®&,,, note that, ¢g®"(x, -) is nondecreasing as n > m
increases, and conclude that [G®~vmp](x) / [G®p](x). Hence, by (8.5.15)
(alternatively, by (8.5.11)), we know that [H®™»u](x) tends nonincreasingly to
a limit h(x), which Harnack’s Principle guarantees to be harmonic as a function
of x € ®. Thus, after passing to the limit as m — oo in (8.5.15), we conclude
that (8.5.13) holds with the p satisfying (8.5.8) and h = limpm 0o H®™u. To
prove that these quantities are unique, note that if v is any nonnegative Radon
measure on & for which v — G®v is a nonnegative harmonic function, then, for
every ¢ € C°(6;R), simple integration parts plus the symmetry of g® shows

that
—%/ Agoudx:—%/ AG®¢dV:/g0dV.
& ® &

That is, v must satisfy (8.5.8); and so we have now derived the required unique-
ness result. Finally, to check the asserted characterization of h, suppose that
w is a nonnegative harmonic function which is dominated by u on &. We then
have

w(x) = [H®™w](x) < [H®"u](x) for all m € Z* and x € Bp;

and therefore the desired conclusion follows from the fact that H®™u tends to
h. O

By combining Lemma 8.5.3 with Theorem 8.5.12, we arrive at the following
characterization of potentials.

8.5.16 Corollary. Let everything be as in Theorem 8.5.12, and suppose that
u : & — [0,00] is not identically infinite. Then a necessary and sufficient
condition for u to be the potential G®u of some nonnegative Radon measure
p on & is that u be excessive on & and have the property that the constant
function 0 is the only nonnegative harmonic function which is dominated by
on &.

Let u be an excessive function on & which is not identically infinite. In keeping
with the electrostatic metaphor, we will call the Radon measure p entering the
Riesz decomposition (8.5.13) of u the charge determined by u. Thinking
more mathematically, we can give the charge another interpretation. Namely,
by Lemma 8.5.5, we know that u is locally integrable on &, and, as such, can
be viewed as a distribution (in the sense of L. Schwartz) on &. Hence, in the
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language of distribution theory, (8.5.8) is the statement that the charge p of v is
—3Au. On the other hand, the general theory of distributional derivatives is a
little too crude to be very useful here, and it is better to approach the problem
of computing p with an approximation scheme which is intimately connected to
the problem at hand. To this end, note that, for any ¢ € C2(®;R):

_ po
(8.5.17) p=Pry — —1Ayp uniformly as € \, 0.
€

Hence, because it is obviously closely related to the analysis which we have been
doing, it is reasonable to suppose that (8.5.17) might provide a good way to
construct p from u. Thus, after noting that, by (8.5.11) with 0 = 0 and 7 =€,
u > P?u, define

(8.5.18)

€

u(x) — [PC®ul(x) if wu(x
f€<x>=1{ (0~ [P0 if u(x) <

00
00 if wu(x)=o0.

Clearly, each f. is a nonnegative, locally integrable function on &. In fact, if
u(x) < 0o, then

/ °(x,y) fe(y) dy
&

€ T+e
:Tli/r‘nooe_l (/0 [Pt@u](x)dt—/T [P?u](x)dt)
¢! ‘ bl (x u(x).
< /O[Pt J(x)dt < u(x)

Hence, since u < oo Lebesgue almost everywhere, we see that, for each K CC &,

(8.5.19) sup pe(K) < 00 where pe(dx) = fe(x) dx.
e>0

In particular, this means that the family of Radon measures {ue De> 0} is
relatively compact in the sense that (cf. the discussion near the end of the proof
of Lemma 8.5.5) every subsequence admits a subsequence which converges when
tested against functions ¢ € Cc(®;R). At the same time, by the symmetry of
p®(t, x,y) and (8.5.17), for any ¢ € CZ(&;R):

—P®
/cpduez/ uudx—)—%/Acpudx
® ® € ®

as € \, 0. In other words, every limit point of {pe : € > 0} as €\, 0 satisfies
(8.5.8), and therefore we have now proved the following result.
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8.5.20 Theorem. Let & be as in Theorem 8.5.12 and u an element of £(®)
which is not identically infinite. Then the Radon measure y entering (8.5.13) is
determined by

(8.5.21) / pdp = lim/ pdue, ¢ € C(&;R),
® O Je

where the measures ji. are the ones described in (8.5.19) (cf. (8.5.18) as well).

We will now apply these considerations to a special class of potentials. Namely,
given ® and K CC O, set

(8522)  p%(x) = sup{[G%] (x): 1(®\K) =0and G®p < 1}, X € 8.
For reasons justified in the following, the function p% is called the capacitory

potential of K in 6.

8.5.23 Theorem. Let & be as in Theorem 8.5.12, K CC &, and p% the func-
tion given by (8.5.22). Then

(8.5.24) pe(x) = WV (Ht € (0,¢%) p(t) € K) for all x € &.

In particular, p§ is a potential whose charge p% is supported on K.

PROOF: Let u(x) be the right-hand side of (8.5.24). We begin by checking that
u is excessive. Obviously, u takes its values in [0, 1]. Furthermore, by the Markov
property, for each € > 0:

(8.5.25) ue(x) = [PPu](x) = UGS (Ht € (€,¢%) h(t) € K).

Hence, u. 7 u; and therefore, because each u, is continuous, we now know that
u is lower semicontinuous. At the same time, by the strong Markov property, if
Bz~ (x,7) CC &, then (cf. (8.5.4))

1

WN—1

/s ulc+ ) Asw1(d8) = BV [u(w(er), e <]
— W (Ht € (e0,¢%) B(2) € K) < u(x).

Thus, we have now proved that u is excessive.

T It is interesting to note that, although Wiener’s 1924 article “Certain notions in potential
theory,” J. Math. Phys. M.I.T. 4, contains the first proof that an arbitrary compact set is
capacitable, it contains no reference to Wiener’s measure.
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The next step is to prove that u is a potential. For this purpose, choose the
sets ®,, as in (8.5.6), and let w be any nonnegative harmonic function which is
dominated by u. Then, for each x €  and n € Zt for which &,, 3 x,

w(x) = [H® w](x) < [H®"u](x) = W (3t € (7,¢) (1) € K)
= WM (at € (@, e®) plt) e K & ®< oo)
+ WM (3t e (¢9,00) Y(t) € K & ¢® = ).
Obviously,

lim Wx(N)(Et € (26",26) P(t) e K &e®< oo) =0

n—o0

and when (8.3.9) holds,
W,EN)(EH € (e®",e®) P(t) € K &P = oo) < W,((N)(eesz oo) =0

for all n € Z+. Thus, when (8.3.9) holds, we have shown that w(x) = 0. To
handle the case when N > 3 but (8.3.9) fails, observe that

lim W,EN)(EH € (%, 00) Y(t) e K & e®=oo>

n—oo

< W (vs € (0,00) 3t € (5,00) P(t) € K) —0,

since ¢®n (1) ~ ¢®(p) and limyeo lt/)(t)‘ = oo for Wx(N)—almost every ¢ €
B(RN). Hence, in this case also, w(x) = 0.

We now know that v = G®y for the Radon measure . on & satisfying (8.5.8).
To see that p(® \ K) = 0, note that u [ & \ K = H®\K1; and is therefore
harmonic. Thus, if ¢ € C2(® \ K;R), then, after elementary integration by
parts, one has (cf. (8.5.8))

/godu:—%/ Agoudx:—%/ ¢ Audx = 0;
(o} (o} B\K

from which it is clear that p(® \ K) = 0.

So far, we have proved that u = G®y with p(® \ K) = 0. In particular, since
u < 1, we know that u < p%. To prove the opposite inequality, let w = G%v,
where v(® \ K) = 0, and assume that w < 1. Clearly w is harmonic on &\ K
and w(x) — 0 as X € ® — a € O, ®. Hence, for any § > 0, we know that

w(x) = EWX(N) [w (t/)(o(‘s))), @ < e@’] for x € &,
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where
o® () = inf {t > 0: dist(ep(t), K) < 8}.

At the same time, because w < 1,
wa(”) [w(w(o(‘s))), c® < eqj] < WX(N) (0(6) < eé),

and so
w(x) < W,EN)(U(‘S) < eé) for § >0 and x € &.

But, forx € &\ K,
lim WM (0 < ¢©)
ao o\
= u(x) + W) (V5 > 00® < oo but éi{% o® =00 = 86)7

and (by the same sort of reasoning as we used earlier), the second term on the
right vanishes when either (8.3.9) holds or N > 3. Hence, we now know that
wB\K <u]®&\K. To handle x € K, first note that u | K =1 > w when
N = 1; and so we may and will assume that N > 2. Because, when N > 2,
g%(x,x) = 0o and therefore (since w < 1) v({x}) = 0, it suffices for us to show
that

ws(x) = / g% (x,y)v(dy) < u(x) forall § > 0.
&\ By (x,5)
However, by the argument just given, we know that
ws(x) < W (3t € (0,6%) B(t) € K \ Ba (x,6) ) < u(x),

which completes the proof. U

The charge & is called the capacitory distribution for K in & and its
total mass

(8.5.26) Cap(K;®) = pu5(K)

is called the capacity of K in &. As a dividend from Theorem 8.5.23, we
get the following important connection between properties of Wiener paths and
classical potential theory.

8.5.27 Corollary. Let everything be as in the statement of Theorem 8.5.23.
Then the following are equivalent:
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(i) For every X € &,
WM (3t € (0,6) (1) € K) >0,
(ii) There is an x € & for which
WM (Ht € (0,¢%) ¥(t) € K) > 0;

(iii) There exists a nonzero, bounded potential on & whose charge is supported
in K;

(iv) Cap(K;®) > 0.

(Cf. Exercise 8.5.55 for additional information.)!

PRrROOF: The only implications which are not completely trivial are the ones
(iii) = (iv) and (iv) = (i). But, by (8.5.23), (iii) implies that % # 0 and
therefore that p% # 0. Similarly, (iv) implies that u% # 0, and therefore, since
g® > 0 throughout &2, that p$ > 0 throughout ®. Hence, by (8.5.24), (iv) =
(i). O

As our final goal, we will present a few of calculations which, if nothing else,
should leave no doubt about the intimacy of the connection between potential
theory and Wiener paths. The first of these calculations gives a probabilistic
interpretation of the capacitory distribution u%; and for this purpose it will be
convenient to have introduced the function £% : P(RY) — [0, 00] given by

(2 (w) =sup{t € (0,%%)) : $(t) € K |

(8.5.28)
(zoif {te(0,e%w): v() € K} =0).

Notice that the quitting time €% is not a stopping time. On the other hand,
it transforms nicely under the time-shift maps ¥; (cf. the discussion preceding
Lemma 4.3.7). Namely,

(8.5.29) (Cos, = (1% —t)" fortel0,e®).

8.5.30 Theorem (Chung).? If everything is as in Theorem 8.5.23, then, for
all ¢ € B(®;R) and every ¢ € &,

9% (c,v(£§))

t This result is anticipated in the article by S. Kakutani’s 1944 article referred to after (8.3.18).
t This result appeared originally in K.L. Chung’s “Probabilistic approach in potential theory
to the equilibrium problem,” Ann. Inst. Fourier Gren. 28 (3) (1973). It gives the first direct
probabilistic interpretation of the capacitory measure.

(8.5.31) / odu® =EV" [M, % € (0,00)
(]
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PRrooF: Take u = p%, and define f. for € > 0 as in (8.5.18). From (8.5.24) and
(8.5.25), it is clear that

efe(x) = WM (0 <8< 6);

and so, when i, is defined as in (8.5.19), we find that, for any ¢ € Cy(®;R):

[}

/@g@(c,y)w(y) ne(dy) = BV VO‘ @($(t)) fe(¥(t)) dt}

1

RIS
=L [T oW o < <9, >

. /oo BV (1), t < R <t+ e] dt
0

€

~) ex
— W [1/ p((t)) dt, (R € (0,00)}

€ J(es—e)t
N A [w(w(eg)), ) oo)] as e\, 0,

where, in the passage to the third line we have applied the Markov property and
used (8.5.29). Next, let n € C.(®;R) be given, note that ¢ = % is again an
element of C;(®;R), and conclude from (8.5.21) and the preceding that (8.5.31)
holds first for ¢’s in C.(®;R) and then for all ¢ € B(&;R). [

Aside from its intrinsic beauty, (8.5.31) has the virtue that it simplifies the
proofs of various important facts about capacity. To illustrate what we have in
mind, we must first define the energy form £%(u,v), for nonnegative Radon
measures y and v on &, given by

(8.5.32) £ (,v) = / / ¢® (x,y) u(dx)v(dy)
@2

and prove the following Schwarz inequality.

8.5.33 Lemma. For any pair of nonnegative Radon measures p and v,

£ (1) < \JE€ (1) \JEO (v v);

and, when the factors on the right are both finite, equality holds if and only if
ap — bv = 0 for some pair (a,b) € [0,00)% \ (0,0).
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ProoF: For each (t,x) € (0,00) x &, set
f(t,x) = / p®(t,x,y) pu(dy) and g(t.x) = / 9% (t,x,y) v(dy).
® ®

and note that, by (8.4.9), the Chapman-Kolmogorov equation (8.1.31), Tonelli’s
Theorem, and Schwarz’s inequality:

e = [ Z / POt x,y) ldx)v(dy) | di
=[] 169 0(58) aae
(0,00)x &
< // f(4,€)° dide | // L €)? dde |
(0,00)x® (0,00)x &
= (Oyo[)/xqsf(t,x)dtdx E (OOZ/XG g(t,x) dtdx E

— JE2 () [0 (1),

Furthermore, when f and g are square integrable, then equality holds if and only
if they are linearly dependent in the sense that af — bg = 0 Lebesgue almost
everywhere for some nontrivial choice of a, b € [0,00). But this means that

/ pdu=Jim 7 [ ' ( /@ [P?w](ﬁ)u(da) at

:%iglo% // P(€) £(1,6) dedg = Jim // g(t, &) dtdé

(0,T]x & (()T Ix®

=}i§no%/: (/@[P?@](E)V(dﬁ)) dt:b/qsgpdy

for every ¢ € C.(®;R), and so ap —bv =0. 0O

8.5.34 Corollary. Continuing with the setting in Theorem 8.5.23, let {K, } be
a nonincreasing sequence of compact subsets of & and set K = N} K. Then,
for every measurable ¢ : & — R which is continuous in a neighborhood of K,

(8.5.35) lim [ pdu% :/ pdu®;
& &

n—oo
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and so,
(8.5.36) Cap(K;®) = le Cap(Kn; 8).

Finally, if p is any nonnegative Radon measure on & satisfying u(® \ K) = 0
and G®u < 1, then

(8.5.37) £® (u, 1) < Cap(K;®) and equality holds <= p= pe.

PROOF: Let ¢ € &\ K] be given. In view of (8.5.31), checking (8.5.35) comes
down to showing that, for WY _almost every ¥ € P(RV):

68 (1) — £ () € (0,e%(x)) if either
{2, ()} € (0,e%(x)) or LR (%) € (0,¢%(w)).

To this end, let ¥ € PB(RY) with 1(0) = c be given. If {£& (1)} C (0, (%)),
then it is clear that

€ (¥) T > €5 (p) where T € (0,¢%(4)).

In addition, by continuity, ¢(T) € K; which means first that T < £g (¢) and
then that £% (1) — £R(¢) € (0,e®(1p)). Next, observe that

0 < €2 () < (W) <00 => € (P) € [€R(1),e%(ep)) forallneZ*.

Hence, we are done if (8.3.9) holds. On the other hand, if N > 3, then, because
limy o0 [3(£)] = 00 for W™ -almost all 4 € P(RY), we know that, for W™ -

almost every ¥ € P(RV):

e%(1p) = 00 and £ (%) € (0,00) = {€§, (¥} C (0,00);

and so we have now completed the proof of (8.5.35).

Obviously, (8.5.36) is just a special case of (8.5.35). Finally, to prove (8.5.37),
first choose compact K,’s in & so that K CC K for each n € Zt and K, \ K
as n — 0o. Because (cf. (8.5.24)) p% | K =1 and p%_ <1, we then have that

Cap(K; ®) = /@ pe. (%) u® (dx) = % (u%, 1)

[SIE

1
< E® (u%, u% )2 E® (u%, 1%,)
=2 uon)! ([ 800k, (@)

< £9 (12, uP)? Cap(Kni ®)F — €% (1%, %) * Cap(K; ®)*

[SIE
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as n — oo. Hence, Cap(K;®) <
0 and G®p < 1, then, since (cf.

(8
Sﬁ(u,u)Z/QSG“udus/

']
1 1
< E°(u% n%) 2E% (1, 1)?
1

2 1
=(/ p;%u%) £ (p,p)% < +/Cap(K;®)1/E® (1, 1),
&

£®(ug,p$). On the other hand, if w(B\K) =
5.22)) G®u <p% < 1:

p% du = E@ (%, 1)

and equality can hold only if au$, — b = 0 for some nontrivial pair (a,b) €
[0,00)%. When one takes y = 1%, this, in conjunction with the preceding, proves
that Cap(K;®) = £%(u%,n%). In addition, for any p with pw(®\ K)=0and
G%p < 1, it shows that £%(u,p) < Cap(K;®) and that equality can hold only
if 4 and p% are related by a nontrivial linear equation, in which case p = ue
follows immediately from the equality £ (u%,p%) = £%(p,p). O

As a second example of the way in which Wiener paths can be used to provide
insight into purely potential theoretic questions, we will now give a probabilisti-
cally motivated proof of Wiener’s famous test for regularity (cf. (8.1.13)). Thus,
let N > 2, ® an open subset of RY, and an a € 0® be given, set

(8.5.38) K, = {y ¢&: 2" <|y—al< 2—"},
and define
(8.5.39) W (a, ®) = Cap(Kn; Bgv (a,1))IN(27") forn € Z7,

where (cf. (8.4.10) and (8.4.16))

Ty(t) = Iv(te) withe=(1,0,...,0)€S" .
Then Wiener’s test says that
(8.5.40) AE Oreg® = Y Wy(a,®) =0

n=1

Notice that, at least qualitatively, (8.5.40) is what one would expect (cf. Remark
8.2.1) in the sense that the divergence of the series is some sort of statement to
the effect that ®C is robust at a.

The key to our proof of Wiener’s test is the trivial observation that because

pn(x) = WY (Bt € (0,B=v D) (1) € Kn)

(8.5.41) _ / gBxv @l (x, y) 'uliliN(a,l)(dy),

n
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and (cf. Exercise 8.4.31) there exists an ay € (0,1) such that
(8.5.42) anIv(a—y) < gBv@(ay) <Ty(a—y) forye€ By (a,}),
we know that

anWa(a, 6) < pn(a) < Wy(a,®), neZ'.

Hence, in probabilistic terms, Wiener’s test comes down to the assertion that
(cf. Theorem 8.1.21)

(8.5.43) W (e, =0) =1 = Y WM (A,) =0,
1

where A,, is the set of ¥ € P(RY) which visit K,, before leaving Bgw~ (a,1).
Actually, although (8.5.43) may not be immediately obvious, the closely related
statement

(8.5.44) WM (8, =0) =1 <= WM (n@o An) >0

is essentially immediate. Indeed, if ¥(0) = a and ed. () = 0, then there
exists a sequence of times t,, \, 0 with the property that ¥ (t,) € B~ (a,1) N
&0 for all m; from which it is clear that v visits infinitely many K, ’s before
leaving Bgw (a,1). Hence, the “ = " in (8.5.44) is trivial. As for the opposite
implication, suppose that 1 € P(RY) has the properties that ¥(0) = a, 1
leaves Bgw (a, 1) in a finite time, ¥ (t) # a for any t > 0, but ¥ visits infinitely
many K,,’s before leaving Bgw~ (a,1). We can then find a subsequence {nm}$°
and a convergent sequence of times ¢, > 0 such that ¥(t,,) € K, for each m.
But clearly, if T = limm— o0 tm, then ¥(T) = a, and therefore we would know
that limmy,— o tm = 0 which, in turn, would mean that efﬁ(w) = 0. Hence, since
(remember that N # 1 and recall Theorem 7.2.11)

w;m({w . ¢Bav@D () < 00 and {t: P(t) =a} = {0}}) =1,

we now see that
W) (eg’+ = o) > WM ( lim An) ;

n—oo

and therefore, because WafN) (egj+ = 0) € {0, 1}, we have now proved the equiv-
alence in (8.5.44).

In view of the preceding paragraph, the proof of Wiener’s test reduces to the
problem of showing that

(8.5.45) WiV (m 4n) >0 <> 21: WM (A,) = oo
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By the trivial part of the Borel-Cantelli Lemma, the ¥ = ” implication in
(8.5.45) is easy. On the other hand, because the events { A, };° are not mutually
independent, the nontrivial part of that lemma does not apply and therefore
cannot be used to go in the opposite direction. Nonetheless, as we will see, the
following interesting variation on the Borel-Cantelli theme does apply and gives
us the “<=" implication in (8.5.45).

8.5.46 Lemma. Let (Q, F, P) be a probability space and {A,}7° a sequence of
F-measurable sets with the property that

P(An N Ay) < CP(An)P(4z), m €L andn>m+d,
for some C € [1,00) and d € Z*. Then

[ o]

S P(4,) =00 = P(Tm 4) > 1

n—oo
1

PRrOOF: Because

ZP(A,L) =00 = ZP(And+k) = oo forsome0<k<d,
n=1 n=1
whereas
P(Eﬁ An) zP(m‘ And+k) for each 0 < k < d,
n—oo n—o0
we may and will assume that d = 1. Further, since
P (5 4) 2 JELP(4).

we will assume that P(4,) < % for all n € Z*+. In particular, these assumptions
mean that, for each m € Z*, we can find an n, >m such that

Indeed, simply take n,, to be the largest n > m for which

" 1
;P(Ag) <5

At the same time, by an easy induction on n > m, one has that

n n 1
P(U Ag) > P(4) - 5 P(ArN A
{=m {=m m<k#L<n
for all n > m > 1; and therefore

P GA >p UA o _COm o 1
Z:ml B Z:ml - 2 _40

foral mezt. O
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ProoF oF WIENER'S TEST: All that remains is to check that the sets A,

appearing in (8.5.45) satisfy the hypothesis in Lemma 8.5.46 when P = Wi,
To this end, set

(1) = in {t € (0,00) : ¥(t) € Kn}.

Clearly, A, = {7, < ¢}, where ¢ = ¢Bx~(®D; and so
WM (Am N Ay) < Wa(N)(Tm <1y < e) +W8(N)(Tn < T < e)
for all m € Z* and n # m. But, by the strong Markov property, (cf. (8.5.41))

W (i < 7 < ) BV [ (9(m), 7on < €] < B, m)pm(a),

where we have introduced the notation 3(m,n) = maxxek,, Prn(x). Finally, from
(8.5.41) and Exercise 8.4.31, it is easy to check that there exists a Cy € (0, 00)
such that

B(m,n) < Cnypn(a) for all jm —n|> 2.

Hence, since pn(a) = a(N) (An), we have now shown that
WV (Am N Ay) < 20y W) (Am)Wa(N) (An) forall|m—n|>2,

which means that Lemma 8.5.46 applies with C = 2Cy and d =2. [

We have just seen that Wiener paths can be used to gain insight into the
purely potential theoretic notion of capacity. Thus, it is only fitting that we turn
the tables and see whether capacity cannot be used to make some interesting
computations which have probabilistic significance. As our first example of such
a computation, we give the following calculation, which was made originally by

A. Joffe.t

8.5.47 Theorem. Assume that N > 3, let K CC R, and define the first
positive entrance time 1 : P(RY) — [0, 00] by

Tk (¢) = inf {t >0: Y(t) € K}.
Then, ast / oo: (cf. (8.5.22) and (8.5.24))

2Cap(K;RY)(1 - p§ (x))
emE(N -2

£z W) (TK € (t,oo)) —

uniformly as x runs over compacts.

f Although Joffe was the first to verify this conjecture made by Kac, we will follow F. Spitzer
(cf. the article cited in the footnote to Exercise 8.5.56).
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PROOF: Without loss in generality (cf. Corollary 8.5.27), we will assume that
Cap(K;RY) > 0. Next, set

pK(t,x) = WX(N) (TK € (t,OO)), pK(x) = pHI{}N (X),
and pK(t,x,y) = PKG(t» X, Y);

and note that, by the Markov property:

pr(t,x) = /K prly) Pt x, ) dy.

N
2

Thus, since pg(t,x,y) < (2mt)” 7, we know that

Y N
lim sup t=
t—o0 x€RN

Pk (t,%) = / pr(¥) Pk (t, %, y)dy| =0
lyi=R
for every R > 0 with K CC Bgv (0, R). At the same time, from (cf. (8.4.10))

prc(y) = /K Ly (y — €) uE" (d8),

it is clear that ( N)
2Cap(K; R
lim N-2 === 2

Hence, we have now shown that

lim sup 2 |pk(t,x) — y =0

=00 y eV (N = 2)wn-1 ly|V—2

2Cap(K;RY) / pr(t, %)
ly|>R

for each R € (0,00) with K CC Bgv (0, R), and what we must still prove is that

(8.5.48) lim sup

t—o0 |x|§r

N_ px(t, %,y) WN, (V)
t 1 P dy — —1W = - 07
2 ‘/lyIZR |le_2 y (27[_)% x (TK OO)

for all positive r and R.
To prove (8.5.48), let r and R be given, and use (8.1.32) to see that

t7x7 (N)
/ il N—2y> dy = q(t,x) — E"~ [Q(t_TK7¢(TK))aTK <t],
>R 1Yl

RO PR
T Jyizr YIV? ’ ’
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After changing to polar coordinates and making a change of variables, one can
easily check that, for each T € [0, o0)

lim sup t2 gt — s, —1ll=o.
t=00 gco<T al &= (2#)%
&|<r

Thus, if, for T € (0,t), we write

t%*l/ Pk (tx,y) d— WN-1 W)
PRI

(271_)% x (TK = OO)

= (q(t,l‘) - (2:—)_51) _ ]EWx [(q(t _ TKaw(TK)) _ WN_1

¥ k) 7]
WY [q(t - TK,¢(TK))7 Tk € (T, t)]

WN-1 W(N)(TK € (T, 0)),
(2m)%
then it becomes clear that (8.5.48) will follow once we check that

lim sup W(N) (TK € (T, oo)) =0
T—oo XERN
lim su t2
T—o00 t>¥

1™ [q(t — TK,tj)(TK)), TK € (T,t)] =0
x€RY

n (3.4.30)

where C = C(N, R)

we see that, as T — oo, W

To handle (**

To check (*), note that, by the Markov property, (8.1.32), and the estimate

WN) (TK e (T,T + 1]) - / x(T, %, Y)W (TK < 1) dy
K
<@ [ wm (TK < 1) dy < CT™%,
RN

(0,00). Hence, after writing

W(N)(TK € (T,oo)) < in(N)(TK e(T+n-1 T+n])
n=0

(tx € (T, 0)) — 0 uniformly with respect to
), note that there is a constant A € (0, 00) for which
q(t,y) < A(tv1)'”

7, (t,y) € (0,00) x K,
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and therefore
N _ (™)
t% IEWx [Q(t — T, %(TK)), TK € (T»t)}

< AtF (W,EM (TK e ([t] - 1,t]>

n [t]i:l(t - EWM (TK € (6-1,)

=T

N

(t]-1
<ACHF I - 1) F 4 ACET Y (-0 F(E-1)”
£=(T]

wlz

where, in the last inequality, we have used again the estimate which gave us (*).
Thus, everything comes down to verifying

n—1

lim supng_ Z(n—f) 74T =0.

m—0 n>m
£=m

But by taking €, = m¥~! and considering

Y (-0 and > (-0

m<L<(l—em)n (1—€m )n<E€<n

NIZ
w2
w2

-

separately, one finds that there is a B € (0,00) such that

n—1
n71 Z(n - Z)l‘%f”% < Be,,. O
£=m

As one might guess, on the basis of (8.4.19), the analogous situation in R? is
somewhat more delicate in that it involves logarithms.

8.5.49 Theorem (Hunt). ! Let K be a compact subset of R?, define Tk as in
Theorem 8.5.47, assume that me (TK < oo) — 1 for all x € R?, and use hi to
denote the function h® given in (8.4.19) when & = R? \ K. Then

log ¢
(8.5.50) lim 8~

t—oo 2T

w® (TK >t> = hx(x) for each x € R* \ K.

t This theorem is taken from G. Hunt’s article “Some theorems concerning Brownian motion,”
T.A.M.S. 81. With breathtaking rapidity, it was followed by the articles referred to after
(8.3.18).
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PROOF: Set ® = R?\ K. By assumption, & satisfies the hypotheses of Theorem
8.4.17. Now let x € & be given, and choose y € &\ {x} from the same connected
component of ® as x. Then p®(t,x,y) > 0 for all t € (0,00). In addition, by
(8.1.32), for each a € (0, 00),

oo
/ e~ *p®(t,x,y)dt
0

* —a (" —QarT, * —a
:/ eO2(x — y) dt — BV [ x/ et (i) —y) dt .
0 1]

Next observe that

Writing

o0

2rf(B) = /Olt—l exp[—pt —t7'] dt+/ t e Pt (exp[—t_l] - 1) dt

- 1
+/ t~le tdt
8

integrating by parts, and performing elementary manipulations, we find that

logé
£9) = 2 rto1) as BN\,

1 o0
K= —/ e tlogtdt.
0

where

s

At the same time, we have that

/ e 'p®(t,x,y)dt — g% (x,y) asa\,0.
0
Hence, when we plug these into the preceding, we find (cf. (8.4.16)) that

g% (x,y) =Ta(x—y) — WS [Fg (t/)(TK) — y), TR < oo]

P 1o o]t
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as o Ny 0. But, by (8.4.20), this means that

. logl W T arne
A (- ) bt

or, equivalently, that

alog L e
i a —at (N)( _ ‘
al\mo ( 5 ) /0 e YW,V Tk > t) dt = hk(x)

Thus, by Karamata’s Tauberian Theorem,’ we have first that

logT [T
im e (N)( =
Th_Igo 2T /) Wx TR > t) dt hK(x)
and then, because t € (0,00) —> Wi (rx >t) € [0,1] is monotone, (8.5.44).
O

8.5.51 Remark. Let K CC RY be as in Theorem 8.5.49 and ¢ € K be given.
By comparing (8.5.50) with (8.4.19), we see that

@
(8.5.52) lim < (x> 1)

@ =2 for each x € KC.
t—o0 Wy (TK > eB]Rz(c,t))

It would be interesting to know if there is a more direct route to this conclusion;
in particular, one which avoids a Tauberian argument. Indeed, given (8.4.19),
(8.5.50) and (8.5.52) become equivalent; and so a direct proof of (8.5.52) might
point the way to the next term in the asymptotic expansion of W 2) (TK > t).

Exercises

8.5.53 Exercise: Let & be a connected open set in RV, and suppose that
N € {1,2}. If (8.3.9) fails, show that every excessive function on & is constant.
Hence, the only cases not already covered by Riesz’s Decomposition Theorem
are trivial anyhow.

Hint: Using the reasoning employed to prove the first part of Lemma 8.5.5,
reduce to the case when u is smooth and satisfies Au < 0, and in this case apply
the result in Exercise 7.2.32.

t See the reference given in the footnote preceding Theorem 8.1.39.
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8.5.54 Exercise: Referring to Corollary 8.5.34, show that for every pu with
w(B\K)=0and G®u <1,

(8.5.55) u(K) < Cap(K;®) and equality holds <« y = N4
and use this to conclude both that
Cap(K;®) < Cap(K;®') whenever K CC &' C &

and that

pR(x) =1 for u% almost every x € K.

8.5.56 Exercise: Given a K CC RY, one says that K has positive capacity if
N >3 and Cap(K;RY) >0o0r N € {1,2} and Cap(K;®) > 0 for some open
® DD K satisfying (8.3.9). More generally, given any subset A of RV , One says
that A has positive capacity and writes Cap(A) > 0 if A contains a compact
set of positive capacity.

(i) Show that Cap(A) > 0 if and only if there is a nonzero, compactly supported
Radon measure 4 such that supp(p) C A and (cf. (8.4.10), (8.4.16), and (8.4.13))

x€eRY — In(x—y)u(dy) e R
RN
is bounded above. When N = 1, conclude that Cap(A) > 0 if and only if
A # 0 and, when N > 2, Cap(A) > 0 whenever A contains a set of positive
Lebesgue measure. (Actually, for those who know what it means, it will be clear
that Cap(A) > 0 as soon as A has positive inner (N — 1)-dimensional Hausdorff
measure.)

(ii) Given K CC RV, show that
Cap(K) > 0 <= 0 eg(RY \ K) # 0.

Also, given a connected & D> K with Oreg® # 0, show that Cap(K) = 0 if and
K is a removable singularity in & for every bounded, harmonic % on & \K. (Cf.
Exercise 8.3.34.)

(iii) Given a nonempty open set ® in RV , sShow that 0® \ 9, ® has capacity 0
(i.e., it does not have positive capacity). In view of part (ii) above, this represents
a considerable sharpening of the comment at the end of Remark 8.1.22.

8.5.57 Exercise: Let N >3, K CC RY, and 74 (cf. Theorem 8.5.47) the first
positive entrance time into K. Following Spitzer,’ we consider the quantity

Ex(t) E/KC WM (1 < t) dx,

t This exercise is adapted from F. Spitzer’s beautiful “Electrostatic capacity, heat flow, and
Brownian motion,” Z. Wahrsh. Gebiete. 3.
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which can be thought of as the amount of heat which flows from KC into K
during [0, t].

(i) Check that ¢ € [0,00) — Eg(¢) is a continuous, nonnegative, nondecreasing
function. Further, given 0 < h < ¢, show that

Ex(t) - Ex(t—h)= | WM (t—h <1 <t)dx.
RN

Hint: The first part is a more or less immediate consequence of Theorem 8.1.3
and the estimate in (3.4.30). As for the second part, the only real problem is to
show that the integration over KC can be replaced by integration over the whole
of RY, and this comes down to showing that Wx(N) (TK > 0) = 0 for Lebesgue
almost every x € K. Obviously, there is no question about x € K°. Thus, the
problem is only whether almost every x € K is a regular point for RV \ K, and
this is handled by the comment at the end of Remark 8.2.1 or by parts (ii) and
(iii) of the preceding exercise.

(ii) Building on part (i), show that, for ¢ > h,

(8.5.58) Ex(t) - Ex(t—h)= [ WM (TK <hand 7k > t) dy,
RN

where

T}}(d)) = inf {3 € (h,00): Y(s) € K}
is the first entrance time into K after h.

Hint: Perhaps the most intuitively appealing way to see (8.5.58) is to set (cf.
(4.2.19))

x t—s = 5
'/’t( ’Y)(S) = Tx-|~1/’t(3) + -t-y, s €[0,1],

use the reversibility proved in Theorem 4.2.18 to write

WMt —h < ¢ < 1)

= W(N)(t—h<n<(¢t(x’”) St) Wy —x)dy
RN

_ W(N) (TK (wt(y,x)) < h and T]Iz (wt(y,x)) > t) %N(y — X) dy’
RN

and then integrate with respect to x to arrive at (8.5.58) after an application of
Tonelli’s Theorem.
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(iii) Starting from (8.5.58), show that, for each h € [0, o0)

Ag(h) = lim (Ex(t +h) - Ex (1))

(8.5.59)
= Wy(N) (TK < hand 7% = oo) dy
RN

and that the convergence is uniform for A in compacts. In particular, conclude
that Ak is a nonnegative, continuous function which is additive (i.e., Ag(h; +
h2) = Ak (h1) + Ak (h2).) Hence, by standard results about additive functions,
we can now say that Ag(h) = hAg(1).

(iv) In order to evaluate Ak (1), first observe that (cf. (3.4.30))

K|2
(N) < h _ < _I—)
Wy (TK h and T oo) 2N exp [ N ,

and therefore that

lim sup / Wy(N) (TK < h and TI’} = oo) dy = 0.
R0 he(0,1] J{ly|2 R}

Second, note that

Wy(N) (TK < h and TI’} = oo) = W;N) (T,’} = oo) - Wy(N) (TK = oo)
=k (v) = [W ok |¥)-
Finally, combine these with Theorem 8.5.20 and the preceding to see that
(8.5.60) Ak(1) = Cap(K;RY), he (0,00).
(v) By writing

[¢]
Ek(t) = Ex(]t)) + Z(EK(]t[—{-n) — Ex(Jt[+n - 1)), where Jt[=t — [t],
n=1
use the preceding to show that the asymptotic rate of heat transfer is equal to

capacity: that is,
lim

t—oo

Bell) _ Gap(i:mY),
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Notation Description Seet
AC The complement of the set A
A8 The §-hull around the set A §3.1
14 The indicator function of the set A. §1.1

aAb&avb | The minimum and the maximum of a, b € R.

The positive part a V 0 and negative part (—a) Vv 0 of

+ -
o &a a€R

KCCcE To be read: K 1s a compact subset of E.

\/ Fi The o-algebra generated by UieI Fi §1.1
i€l
The measure p is absolutely continuous with respect to
by
the measure v.
plv The measures u and v are singular. L. 3.1.1
H Wi The product measure with factors u;, ¢ € J. E. 1.1.14
i€d
The set of rational numbers.
Q
{p, 1) Alternative notation for fcpd,u §3.1
o => 1 {un} converges weakly to p §3.1
] Integer part of t € R
Space of bounded, Borel measurable functions from E
B(E;R) |, §3.1
into R.
Space of bounded, Borel measurable functions with com-
BC(G;R)

pact support in the open set G

t This column points to the place in the text where the notation is used first. L=Lemma,
E=Example, T= Theorem, and numbers enclosed in parentheses refer to equations.
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Notation

The o-algebra over m(RN) generated by ¢ € m(RN) —

B 4.1.3
8 ¥(t) € RN for t € [0, s]. ( )
Bg The Borel field over the topological space E.
I
-l The uniform or “sup” norm on functions §3.1
Cb( E;R) Space of bounded continuous functions from E into R.
Space of continuous, R-valued functions having compact
Cc(G;R) .
support in the open set G.
Space of functions (x,y) € RM x RN — R which are
CY2(RM x RV;R) . . . . _
continuously differentiable once in x and twice in y.
s The time increment map on P(RY ). §4.1
To be read the ezpectation value of X with respect to p
E* [X, A] on A. Equivalent to fA X dyu. When A is unspecified, it
is assumed to be the whole space.
To be read the conditional ezpectation value of X given
gt 5.1
B (X | 7] the o-algebra F. 5
f*kg The convolution product of functions f and g.
d*p The pushforward (image) of the measure p under ®. (1.1.4)
I'(t) Euler’s Gamma function. (3.2.23)
The fundamental solution in RN: N > 3, N = 1, and (8.3.10), (8.3.13),
v () N=2. & (8.3.16)
v The Gauss kernel. §1.3
gQ’ (x,¥) Green’s function in the region &. (8.3.9)
G% Green’s operator in the region &. (8.3.8)
7N (dx) &N (x) | The N(0, tI)-measure on RV and its density. §2.28 §4.3
Oreg® The regular points of &. §8.1
N The Cameron—Martin subspace for Wiener’s measure on 42
H(RY) O(RN). i
H®f The harmonic extention of f € Cp,(8&;R) to &. (8.2.3)
g
Z(h) The Paley—Wiener integral of h. T.4.2.4
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The Lebesgue space of E-valued functions f for which
LP(1; E) IIfI% is p-integrable. When E is omitted, it is under- §5.1
stood to be R.
M; (E) Space of Borel probability measures on E. §3.1
med(Y) The set of medians of the random variable Y. §1.4
i} The characteristic function (Fourier transform) of p. §2.2 & §4.2
13 2% The convolution product for Ml(RN) . §3.1
N(t) The simple Poisson process. (3.2.23)
N The non-negative integers: N = {F} UZT.
The Gaussian (normal) distribution with mean-value m
N(m, C) and covariance C. §2.2
WN_1 The surface area of the unit sphere SV—1. E. 2.1.40
P(E) The space C’([O,oo); E) of continuous E-valued paths. §3.2
Py The Hélder conjugate ;g—l of p € [1,00].
p;N_l)(x) The Poisson kernel for Ri’. E. 4.3.50
p® (t,x,y) The Dirichlet heat kernel for the region ®. C.81.6
{P? (>0} The Dirichlet heat flow semigroup in the region &. (8.1.7)
{Q:’ :t >0} | Heat flow semigroup with force field b §4.3
{Q? :t> 0} | Heat flow semigroup with conservative force field —VU §4.3& §7.5
{PY (1t >0} Feynman—Kac semigroup §4.3
o7 The pinned Wiener path. T.4.2.4
gN-1 The unit sphere in RV .
Sa The Wiener scaling transformation. §4.3
IR The time shift transformation on P(RY). §4.3
Sn The sum Z;L X, of n random variables. §1.2
S The average %Sn of n random variables. §1.2
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Notation

Sn Sum scaled for Law of the Iterated Logarithm. 81.5
Sn Central limit scaling of n random variables. §2.1
Sn(t,w) Piecewise linearization of central limit scaling. §3.3
@(RN) The space of RN -valued Wiener paths. §4.2
Ué’(E;R) Space of bounded, p-uniformly continuous ¢ : E — R 83.1
w Wiener’s measure on P(R) or ©(R). §3.3

w (V) Wiener’s measure on ‘B(RN) or @(RN). §3.3
W,&N) The distribution of ¢ € ‘B(RN) = X+YE ‘B(RN) under §4.3

w V),

The strictly positive integers.




Index

A for martingale multipliers
original version, 346

for martingale square-function
new version for Hilbert-valued case, 354
original version, 351

absolutely monotone, 18
abstract Wiener space, 199
adapted, 363

o-algebra
atom in, 12
tail, 2 C
trivial, 2 Calderén-Zygmund Decomposition
approximate identity, 16 for functions, 307
a.e. convergence of, 313 Gundy’s for martingales, 290
Arcsine Law, 236 Cameron—-Martin formula
asymptotic, 34 necessity, 294
atom, 12 sufficiency, 205
Azema’s inequality, 361 Cameron—Martin subspace, 207
capacitory distribution, 508
B Chung’s representation of, 509
capacitory potential, 506
balayage, 252, 482 capacitory distribution for, 508
barrier, 476 probabilistic representation of, 506
Beckner’s inequality, 110 capacity, 508
Bernoulli multiplier, 104 continuity property, 511
Bernoulli random variables, 5 set of positive capacity, 522
Bernstein polynomial, 17 Cauchy distribution, 152, 252
Berry-Esseen Theorem, 71 Cauchy initial value problem, 231
Besov norm, 175, 184 Central Limit Theorem
Beta function, 153 basic case, 64
Blumenthal’s 0-1 Law Berry-Esseen, 71
general case, 462 for path-space, 181
for Wiener’s measure, 453 Lindeberg, 62
Bochner’s Theorem, 135 necessity of second moment, 78
Borel-Cantelli Lemma Chapman-Kolmogorov equation
approximate version, 515 for Dirichlet heat kernel, 457
martingale extension of, 293 for Feynman-Kac transition function, 243
original version, 2 general, 256
Brownian motion, 375 characteristic function, 85
Lévy’s characterization, 376, 382 Banach space case, 197
Burkholder’s inequality Bochner’s characterization, 135
application to Fourier series, 360 infinitely divisible, 140
application to Walsh series, 361 Chebychev polynomial, 35
martingale comparison Chebyshev’s inequality, 14
new version for Hilbert-valued case, 354  Chernoff’s Inequality, 31
original version, 353 Chung-Fuchs Theorem, 300
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conditional expectation value
application to Fourier series, 272
basic properties, 263
existence and uniqueness, 261
for Gaussian families, 272
infinite measure, 269
Banach space-valued case, 269
Jensen’s inequality for, 281
versus orthogonal projection, 271
conditional probability
as limit of naive case, 280
Kolmogorov’s definition, 263
nalve case, 259
conditional probability distribution
existence of, 264
regular version, 267
conservative vector field, 430
convergence
in law or distribution, 129
weak, 120
convolution product, 139
countably generated o-algebra, 12
covariance, 87
Cramér’s Theorem, 29

D

difference operator, 18
Dirichlet problem, 468
basic existence and uniqueness, 468
uniqueness criterion
N >3, 472
N e {1,2}, 473
distribution, 11
Cauchy, 152, 252
finite dimensional time marginal, 171
function, 6
Gaussian or normal, 87
one-sided stable of order %, 251
symmetric stable, 152
uniform, 5
Donsker’s Invariance Principle, 180
Doob-Meyer Decomposition Theorem, 371
important special case, 381
Doob’s Decomposition, 283
Doob’s Inequality
Banach-valued case, 308
continuous parameter, 366
discrete parameter, 278
Doob’s Stopping Time Theorem
continuous parameter, 369

Index

discrete parameter, 284
Duhamel’s formula, 449
for Green’s function
N =2, 491
N >3, 489
for the heat kernel, 458

E

empirical distribution, 137
energy of a charge, 510
equicontinuous, 127
ergodic hypothesis
continuous case, 325
discrete case, 321
ergodic theory
for {P; : t > 0}, 417
Individual Ergodic Theorem
continuous parameter, 325
discrete parameter, 320
stationary family, 323
error function, 66
Euler’s Gamma function, 33
excessive function, 498
charge determined by, 504
Riesz Decomposition of, 502
exchangeable random variables
Strong Law for, 297

F

Feynman-Kac
formula, 233
semigroup, 236
symmetry of, 243
first entrance time, 225
asymptotics of distribution
N =2, 519
N >3, 516
first exit time, 229, 445
positive, 451
first explosion time, 404
formula
Duhamel’s, 449, 489, 491
Feynman-Kac, 233
Stirling’s, 34
function
characteristic, 85
distribution, 6
error, 66
Euler’s Beta, 153
Euler’s Gamma, 33



function (continued)
excessive, 498
Fourier transform of, 85
harmonic, 468
Hermite, 103
indicator, 4
moment generating, 23

logarithmic, 26

nonnegative definite, 135
normalized Hermite, 113
probability generating, 19
progressively measurable, 363
rapidly decreasing, 85
tempered, 99

fundamental solution
Dirichlet heat equation in ]RJ_X , 462
Dirichlet heat equation in &, 449
heat equation in RY, 445
Poisson’s problem in RV

N =1, 490
N =2, 490
N >3, 488

G

Gamma function, 33
independent increment process, 153
Gauss kernel, 24
Gaussian families, 219
Gibbs state, 430
Green’s function
for balls, 496
Duhamel’s formula
N =2, 491
N >3, 489
in (0, 00), 490
in &, 488
in RZ, 490
properties when N = 2, 493
Green’s Identity, 497
Green’s operator, 485
Gromwall’s inequality, 414
ground-state representation, 244
Guivarc’h recurrence lemma, 46, 328

H

Hardy’s Inequality, 306

harmonic function, 468
Harnack’s inequality & principle, 480
Liouville’s Theorem, 480
removable singularities for, 481

Index

harmonic measure, 476
approximation
by balayage, 482
via Invariance Principle, 483
via random walks, 482
Harnack’s Inequality, 480
Harnack’s Principle, 480
heat equation, 231
Dirichlet data in &, 449
first boundary value problem, 462
fundamental solution in RV, 445
heat flow semigroup, 231
heat transfer
Spitzer’s estimate of rate, 522
Hermite
functions, 103
normalized, 113
multiplier, 100
polynomials, 99
Hewitt-Savage 0-1 Law, 299
Hilbert transform, 329
relation to analytic functions, 342
Holder conjugate, 102
hypercontractive, 108

independent
events or sets, 1
random variables, 4
existence in general, 11
existence of R-valued sequences, 6
o-algebras, 1
independent increment process, 154
non-decreasing, 167
indicator function, 4
inequality
Gromwall’s, 414
Harnack’s, 480
Khinchine’s, 95
Kolmogorov’s, 38
Lévy’s, 42
logarithmic Sobolev for Gauss, 115
Nelson’s hypercontractive, 108
infinitely divisible, 139
characteristic function, 140
measure, 139
integer part, 5
interpolation theorem
for derivatives, 445
Marcinkiewicz, 335
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532 Index

invariance principle, 180
applied to Erdds & Kac Theorem, 228
invariant measure under {P¢ : £ > 0}, 417
criterion for existence, 425, 428
invariant set, 318

J

Jacobian process, 415
adjoint semigroup, 416

Jensen’s Inequality, 281
Banach-valued case, 312

K

Kac’s theorem, 324
Kakutani’s Theorem, 293

kernel
Gauss, 24
Green’s, 488

Mehler’s, 101
Poisson’s for ]Rf, 252
Khinchine’s inequality, 95
Kolmogorov’s
continuity criterion, 178
Extension or Consistency Theorem, 134
Inequality, 37
Strong Law, 40
0-1 Law, 2
Kronecker’s Lemma, 39

L

A-system, 8
Laplace transform
inversion formula, 21
Laplacian for RV, 231
large deviations estimates, 30
Law of Large Numbers
Strong
in Banach space, 137, 313, 328
for empirical distribution, 137
for exchangeable random variables, 297
Kolmogorov’s, 40
for Wiener paths, 186
Weak, 16
refinement, 20, 46, 57
Law of the Iterated Logarithm
converse, 58
for continuous martingales, 383
proof of, 55
statement, 51

for Wiener paths
at infinity, 190
at s € [0,00), 216
Lebesgue’s Differentiation Theorem, 305
Lévy’s Continuity Theorem, 134
Lévy—Khinchine formula
expression for, 143
proof of, 150
Lévy system, 143
Lindeberg’s Theorem, 62
Lindeberg—Feller Theorem, 62
Liouville’s Theorem, 480
Littlewood—-Paley g-function, 339
inequality for, 340
locally integrable, 268
logarithmic Sobolev for Gauss, 115
lowering operator, 99

M

Marcinkiewicz Interpolation Theorem, 335
Markov family
of measures, 255
transition probability function for, 256
Markov property
general, 255
in terms of spliced measures, 275
strong
general, 255
of Wiener’s measure, 230
in terms of conditional distributions, 274
in terms of conditional expectations, 273
of Wiener’s measure, 230
martingale
application to Fourier series, 296, 360
continuous parameter, 365
complex, 365
discrete parameter, 276
o-finite case, 301
Gundy’s decomposition of, 290
Hahn decomposition of, 290
reversed, 296
Banach-valued case, 313
unbounded variation of paths, 379
martingale convergence
continuous parameter, 369
Doob’s general version, 285
Hilbert-valued case, 315
preliminary version for R, 278
preliminary version for Banach space, 308
second proof, 288
third proof, 290



maximal function
Hardy-Littlewood, 303
Hardy-Littlewood inequality, 304
maximum principle
Phragmén— Lindelsf, 484
Maxwell distribution
for ideal gas, 82
mean-value
Banach space case, 139, 268
vector-valued case, 87
measure
centered Gaussian, 220
characteristic function of, 85
Fourier transform of, 85
Gauss, 169
infinitely divisible, 139
invariant, 113
Lévy, 143
non-atomic, 131
Poisson, 140
product, 9
pushforward ®.u of p under &, 11
spliced, 275
support of, 386
Wiener’s, 180
measure preserving, 316
measures
consistent family, 134
convolution product of, 139
tight, 126, 133
median, 41
variational characterization, 45
Mehler kernel, 101
moment generating function, 23
logarithmic, 26
multiplier
Bernoulli, 104
Fourier, 345
Hermite, 100
martingale, 346

N

nonnegative linear functional, 124
normal law, 24
fixed point characterization, 93
Lévy-Cramér Theorem, 79
standard, 24

Index

operator
Fourier, 102
Beckner’s inequality for, 110
Parseval’s Identity for, 114
hypercontractive, 108
lowering, 99
raising, 99
Ornstein—Uhlenbeck process
covariance for, 255
Gaussian description, 220
as perturbed Wiener paths, 415
spectral gap for, 441
stationary, 223

P

Paley-Littlewood inequality for Walsh

series, 361

Paley-Wiener map, 199

Parseval’s Identity, 114

perturbed Wiener paths

conservative vector field

analytic properties, 434
Radon-Nikodym formula, 430
reversibility, 443
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symmetry of transition probability, 433

martingale characterization, 405

recurrence and transience criteria, 412

Phragmén-Lindelof, 484
w-system, 7
Poisson measure, 140
Poisson process, 157
simple, 155
Poisson’s formula, 477
Poisson’s kernel
for balls, 477
via Green’s identity, 497
for RY , 252, 477
Poisson’s problem, 485
Polish space, 124
potential, 430, 498
capacitory, 506
charge determined by, 504
in terms of excessive functions, 504
principle of accompanying laws, 131

principle of not feeling the boundary, 461

probability space, 1
process

with identically distributed increments, 154

with independent increments, 154
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process (continued)
Ornstein-Uhlenbeck, 220
reversible, 223
simple Poisson, 155
stationary, 223
stochastic, 154

product measure, 9

progressive measurability versus adapted, 364

progressively measurable, 363

Q
quitting time, 509

R

Rademacher functions, 5
Radon-Nikodym derivatives
martingale interpretation, 287
raising operator, 99
random variable, 4
Bernoulli, 5
convergence in law, 129
Gaussian or normal, 24
vector-valued case, 87
median of, 41
Poisson, 21
symmetric, 45
uniformly integrable, 15
unit exponential, 155
variance of, 15
rapidly decreasing, 8
Rayleigh’s random flight model, 183, 187
recurrence
additional property, 401
for conservative vector field, 434
general criterion, 396
test-function criterion, 399
for Wiener paths, 389
recurrence-transience dichotomy, 397
reflection principle
for independent random variables, 42
for Wiener paths, see Wiener paths
regular point
barrier criterion, 475
crude criterion, 454
for Dirichlet problem, 451
Poincaré exterior ball condition, 454
probabilistic interpretation, 451
Wiener’s test for, 513
regular region, 464
removable singularity, 481

Index

reversibility, 443
Riesz Decomposition Theorem, 502
Riesz transform, 330
a.e. existence of, 330
LP-estimates for, 338
via square functions, 344
Robin’s constant, 496

S

scaling map, 188
semigroup
determined by transition function, 417
Feynman-Kac, 236
heat flow, 231
hypercontractive estimate, 108
of operators, 231
shift
natural on lattice, 322
time, 229
general path space, 256
shift invariant, 322
sigma algebra
countably generated, 12
singular integral operator, 329
spliced measures, 275
square function
Littlewood-Paley
g-function, 339
gv and gp, 341
martingale
Burkholder’s inequality for, 351
new version, 354
stable law
one-sided, 153
symmetric, 152
stable laws
Cauchy distribution, 252
one-sided of order %, 251
stationary, 322
stationary family
canonical setting for, 322
Kac’s Theorem for, 324
statistical mechanics
derivation of Maxwell distribution, 82
Stein’s method, 67
Stirling’s formula, 34, 83
stochastic process, 154
adapted, 363
continuous, 363
left-continuous, 363



stochastic process (continued)
right-continuous, 363
stopping time, 224
associated o-algebra, 225, 249, 367
discrete case, 283
first entrance time, 224
first exit time, 229
geueral case, 367
strong Markov family
general, 255
Strong Maximum Principle
for classical heat operator, 386
perturbed Laplacian, 415
strong topology on M, (E), 119
not metrizable, 131
submartingale
continuous parameter, 365
discrete parameter, 276
Doob’s Decomposition, 283
Doob’s Decomposition, see Doob—Meyer
Doob’s Inequality
continuous parameter, 366
discrete parameter, 277
Doob’s upcrossing inequality, 285
reversed, 296
discrete parameter
o-finite case, 301
stopping time theorem
continuous parameter
Doob’s, 369
Hunt’s, 368
discrete parameter
Doob’s, 284
Hunt’s, 284
subordination, 252
sums of independent random variables
moment estimates, 96
support, 386
symmetric difference, 318
symmetric random variable, 45
symmetric stable law, 152

T

tempered, 99
tight, 126, 133

for finite measures, 133
time increment map, 189
time-shift

on Wiener space, 229

Index 53

transform
Fourier, 85
Laplace, 21
Legendre, 26
transformation
measure preserving, 316
transience
for conservative vector field, 434
general criterion, 393
implication for occupation time, 402
test-function criterion, 399
for Wiener paths, 389
transition probability, 113, 267
for Markov family, 256
translation maps on Wiener space, 229

U

uniform norm |} - ||, 17
uniform topology on M, (E), 117
uniformly distributed, 5
uniformly integrable, 15

A%

variance, 15

A\ %

Walsh functions, 361
weak convergence, 120
Lévy’s Continuity Theorem, 134
principle of accompanying laws, 131
Weak Law of Large Numbers, 16
weak topology on M, (E), 120
completeness, 127
Prohorov metric for, 129
separable, 126, 132
weak-type inequality, 278
Weierstrass’s approximation theorem, 16
Weyl’s Theorem
distribution of eigenvalues, 461
Wiener paths
as integral curves, 375
infinite expected return time, 402
loops, 274
non-differentiability of, 192
perturbed, see perturbed Wiener paths
square variation of, 193
sublinear growth, 463
variance of, 254
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Wiener’s measure as an abstract Wiener space, 217
as an abstract Wiener space, 205 reversibility of, 207
Blumenthal’s 0-1 Law, 453 in terms of conditional probability, 274
continuity of paths, 190 recurrence and transience properties, 389
description and existence, 180 reflection principle for, 228
Feynman’s picture, 195 second derivation, 462
Gaussian tail estimate, 185, 378 rotation invariance, 185
general invariance property of, 205 scaling invariance of, 188
Invariance Principle for, 180 Strong Law for, 186
Lévy’s Arcsine law, 236 strong Markov property for, 230
Lévy-Ciesielski construction, 218 support in P(RY), 386
Law of Iterated Logarithm for, 190 time-inversion invariance of, 216
short time, 216 translation quasi-invariance, 205, 294
Markov property for, 230 Wiener loops, 274
martingale characterization, 365 Wiener’s construction
Lévy’s, 376 via Fourier series, 214
pinned paths generalized, 310

another representation, 220 Wiener’s test for regularity, 513



