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Preface  

In this book, we introduce readers to the main techniques of statistical analysis employed
by psychologists and sociologists. However, we do not see the book as a standard
introduction to statistics. We see it as distinctively different because we are not concerned
to introduce the often complex formulae that underlie the statistical methods covered.
Students often find these formulae and the calculations that are associated with them
extremely daunting, especially when their background in mathematics is weak.
Moreover, in these days of powerful computers and packages of statistical programs, it
seems gratuitous to put students through the anxiety of confronting complex calculations
when machines can perform the bulk of their work. Indeed, most practitioners employ
statistical packages that are run on computers to perform their calculations, so there
seems little purpose in treating formulae and their application as a rite de passage for 
social scientists. Moreover, few students come to understand fully the rationale for the
formulae that they would need to learn. Indeed, we prefer the term ‘quantitative data 
analysis’ to ‘statistics’ because of the negative image that the latter term has in the minds
of many prospective readers.  

In view of the widespread availability of statistical packages and computers, we feel 
that the two areas that students need to get to grips with are, first, how to decide which
statistical procedures are suitable for which purpose, and second, how to interpret the
ensuing results. We try to emphasize these two elements in this book.  

In addition, the student needs to get to know how to operate the computer software 
needed to perform the statistical procedures described in this book. To this end, we
introduce students to a widely-used suite of programs for statistical analysis in the social 
sciences—Minitab. As such, this book differs from earlier versions of the book, which 
were based on a different package of statistical programs (Bryman and Cramer, 1990,
1994). Minitab has undergone many revisions over the years and the most recent releases
are described in Chapter 2. Moreover, Minitab can be used on mainframe computers and 
on IBM-compatible personal computers in DOS and Windows environments as well as 
on Apple Macintosh computers. We have tried to present the workings of Minitab in such 
a way that it will be useful and accessible to all groups of users.  

In order to distinguish methods of quantitative data analysis from Minitab commands, 
the latter are always in bold. We also present some data that students can work on and the
names of the variables are also in bold (for example, income).  

There are exercises at the end of each chapter. Answers are provided at the end of the 
book. We hope that students and instructors alike will find these useful; they can easily
be adapted to provide further exercises.  

The case for combining methods of quantitative data analysis used by both 
psychologists and sociologists in part derives from our belief that the requirements of
students of the two subjects can often overlap substantially. None the less, instructors can
omit particular techniques as they wish.  



We are grateful to the Longman Group UK Ltd, on behalf of the Literary Executor of
the late Sir Ronald A.Fisher, F.R.S. and Dr Frank Yates, F.R.S. for permission to
reproduce a portion of Table VII from Statistical Tablesfor Biological and Medical
Research 6/e (1974).  

We wish to thank David Stonestreet, formerly of Routledge, for his support for the
earlier editions of this book and our current editor Vivien Ward for her support of the
present book. We also wish to thank Louis Cohen, Max Hunt, and Tony Westaway for
reading the manuscript for the first version of this book and for making many helpful
suggestions for improvement of that edition. We accept that they cannot be held liable for
any errors in that or the present edition: such errors are entirely of our own making,
though we will undoubtedly blame each other for them.  

Alan Bryman and Duncan Cramer, 
Loughborough University 



Chapter 1  
Data analysis and the research process  

This book largely covers the field that is generally referred to as ‘statistics’, but as our 
Preface has sought to establish, we have departed in a number of respects from the way in
which this subject is conventionally taught to under- and post-graduates. In particular, our 
preferences are for integrating data analysis with computing skills and for not burdening
the student with formulae. These predilections constitute a departure from many, if not
most, treatments of this subject. We prefer the term ‘quantitative data analysis’ because 
the emphasis is on the understanding and analysis of data rather than on the precise
nature of the statistical techniques themselves.  

Why should social science students have to study quantitative data analysis, especially
at a time when qualitative research is coming increasingly to the fore (Bryman, 1988a)?
After all, everyone has heard of the ways in which statistical materials can be distorted,
as indicated by Disraeli’s often-quoted dictum: ‘There are lies, damn lies and statistics’. 
Why should serious researchers and students be prepared to get involved in such a
potentially unworthy activity? If we take the first issue—why should social science 
students study quantitative data analysis—it is necessary to remember that an extremely
large proportion of the empirical research undertaken by social scientists is designed to
generate or draws upon quantitative data. In order to be able to appreciate the kinds of
analyses that are conducted in relation to such data and possibly to analyse their own data
(especially since many students are required to carry out projects), an acquaintance with
the appropriate methods of analysis is highly desirable for social science students.
Further, although qualitative research has quite properly become a prominent strategy in
sociology and some other areas of the social sciences, it is by no means as pervasive as
quantitative research, and in any case many writers recognise that there is much to be
gained from a fusion of the two research traditions (Bryman, 1988a).  

On the question of the ability of statisticians to distort the analyses that they carry out,
the prospects for which are substantially enhanced in many people’s eyes by books with 
such disconcerting titles as How to Lie withStatistics (Huff, 1973), it should be 
recognized that an understanding of the techniques to be covered in our book will greatly
enhance the ability to see through the misrepresentations about which many people are
concerned. Indeed, the inculcation of a sceptical appreciation of quantitative data analysis
is beneficial in the light of the pervasive use of statistical data in everyday life. We are
deluged with such data in the form of the results of opinion polls, market research
findings, attitude surveys, health and crime statistics, and so on. An awareness of
quantitative data analysis greatly enhances the ability to recognise faulty conclusions or
potentially biased manipulations of the information. There is even a fair chance that a
substantial proportion of the readers of this book will get jobs in which at some point they
will have to think about the question of how to analyse and present statistical material.



Moreover, quantitative data analysis does not comprise a mechanical application of
predetermined techniques by statisticians and others; it is a subject with its own
controversies and debates, just like the social sciences themselves. Some of these areas of
controversy will be brought to the reader’s attention where appropriate.  

QUANTITATIVE DATA ANALYSIS AND THERESEARCH PROCESS 

In this section, the way in which quantitative data analysis fits into the research process—
specifically the process of quantitative research—will be explored. As we will see, the
area covered by this book does not solely address the question of how to deal with
quantitative data, since it is also concerned with other aspects of the research process that
impinge on data analysis.  

Figure 1.1 provides an illustration of the chief steps in the process of quantitative
research. Although there are grounds for doubting whether research always conforms to a
neat linear sequence (Bryman, 1988a, 1988b), the components depicted in Figure 1.1
provide a useful model. The following stages are delineated by the model.  

Theory 

The starting point for the process is a theoretical domain. Theories in the social sciences
can vary between abstract general approaches (such as functionalism) and fairly low-
level theories to explain specific phenomena (such as voting behaviour, delinquency,
aggressiveness). By and large, the theories that are most likely to receive direct empirical
attention are those which are at a fairly low level of generality. Merton (1967) referred to
these as theories of the middle-range, to denote theories that stood between general,
abstract theories and empirical findings. Thus, Hirschi (1969), for example, formulated a
‘control theory’ of juvenile delinquency which proposes that delinquent acts are more
likely to occur when the child bonds to society are breached. This theory in large part
derived from other theories and also from research findings relating to juvenile
delinquency. 
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Figure 1.1 The research process  

Hypothesis 

Once a theory has been formulated, it is likely that researchers will want to test it. Does
the theory hold water when faced with empirical evidence? However, it is rarely possible
to test a theory as such. Instead, we are more likely to find that a hypothesis, which
relates to a limited facet of the theory, will be deduced from the theory and submitted to a
searching enquiry. For example, Hirschi, drawing upon his control theory, stipulates that
children who are tied to conventional society (in the sense of adhering to conventional
values and participating or aspiring to participate in conventional values) will be less
likely to commit delinquent acts than those not so tied. Hypotheses very often take the
form of relationships between two or more entities—in this case commitment to 
conventional society and juvenile delinquency. These ‘entities’ are usually referred to as 
‘concepts’, that is, categories in which are stored our ideas and observations about
common elements in the world. The nature of concepts is discussed in greater detail in 
Chapter 4. Although hypotheses have the advantage that they force researchers to think
systematically about what they want to study and to structure their research plans
accordingly, they exhibit a potential disadvantage in that they may divert a researcher’s 
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attention too far away from other interesting facets of the data he or she has amassed.  

Operationalization of concepts 

In order to assess the validity of a hypothesis it is necessary to develop measures of the
constituent concepts. This process is often referred to as operationalization, following 
expositions of the measurement process in physics (Bridgman, 1927). In effect, what is
happening here is the translation of the concepts into variables, that is, attributes on
which relevant objects (individuals, firms, nations, or whatever) differ. Hirschi
operationalized the idea of commitment to conventional society in a number of ways.
One route was through a question on a questionnaire asking the children to whom it was
to be administered whether they liked school. Delinquency was measured in two ways, of
which one was to ask about the number of delinquent acts to which children admitted (i.e.
self-reported delinquent acts). In much experimental research in psychology, the 
measurement of concepts is achieved through the observation of people, rather than
through the administration of questionnaires. For example, if the researcher is interested
in aggression, a laboratory situation may be set up in which variations in aggressive
behaviour are observed. Another way in which concepts may be operationalized is
through the analysis of existing statistics, of which Durkheim’s (1952/1898) classic 
analysis of suicide rates is an example. A number of issues to do with the process of
devising measures of concepts and some of the properties that measures should possess
are discussed in Chapter 4.  

Selection of respondents or subjects 

If a survey investigation is being undertaken, the researcher must find relevant people to
whom the research instrument that has been devised (e.g. self-administered questionnaire, 
interview schedule) should be administered. Hirschi, for example, randomly selected over
5,500 school children from an area in California. The fact of random selection is
important here because it reflects a commitment to the production of findings that can be
generalized beyond the confines of those who participate in a study. It is rarely possible
to contact all units in a population, so that a sample invariably has to be selected. In order
to be able to generalize to a wider population, a representative sample, such as one that 
can be achieved through random sampling, will be required. Moreover, many of the
statistical techniques to be covered in this book are inferential statistics, which allow the 
researcher to demonstrate the probability that the results deriving from a sample are
likely to be found in the population from which the sample was taken, but only if a
random sample has been selected. These issues are examined in Chapter 6.  

Setting up a research design 

There are two basic types of research design that are employed by psychologists and
sociologists. The former tend to use experimental designs in which the researcher 
actively manipulates aspects of a setting, either in the laboratory or in a field situation,
and observes the effects of that manipulation on experimental subjects. There must also
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be a ‘control group’ which acts as a point of comparison with the group of subjects who
receive the experimental manipulation. With a survey/correlational design, the researcher 
does not manipulate any of the variables of interest and data relating to all variables are
collected simultaneously. The term correlation also refers to a technique for analysing
relationships between variables (see Chapter 8), but is used in the present context to
denote a type of research design. The researcher does not always have a choice regarding
which of the two designs can be adopted. For example, Hirschi could not make some 
children committed to school and other’s less committed and observe the effects on their 
propensity to commit delinquent acts. Some variables, like most of those studied by
sociologists, are not capable of manipulation. However, there are areas of research in
which topics and hypotheses are addressed with both types of research design (e.g. the
study of the effects of participation at work on job satisfaction and performance—see 
Bryman, 1986; Locke and Schweiger, 1979). It should be noted that in most cases,
therefore, the nature of the research design—whether experimental or 
survey/correlational—is known at the outset of the sequence signified by Figure 1.1, so 
that research design characteristics permeate and inform a number of stages of the
research process. The nature of the research design has implications for the kinds of
statistical manipulation that can be performed on the resulting data. The differences
between the two designs are given greater attention in the next section.  

Collect data 

The researcher collects data at this stage, by interview, questionnaire, observation, or
whatever. The technicalities of the issues pertinent to this stage are not usually associated
with a book such as this. Readers should consult a text-book concerned with social and 
psychological research methods if they are unfamiliar with the relevant issues.  

Analyse data 

This stage connects very directly with the material covered in this book. At a minimum,
the researcher is likely to want to describe his or her subjects in terms of the variables
deriving from the study. For example, the researcher might be interested in the proportion
of children who claim to have committed no, just one, or two or more delinquent acts.
The various ways of analysing and presenting the information relating to a single variable
(sometimes called univariate analysis) are examined in Chapter 5. However, the analysis 
of a single variable is unlikely to suffice and the researcher will probably be interested in
the connection between that variable and each of a number of other variables, i.e.
bivariate analysis. The examination of connections among variables can take either of
two forms. A researcher who has conducted an experiment may be interested in the
extent to which experimental and control groups differ in some respect. For example, the
researcher might be interested in examining whether watching violent films increases
aggressiveness. The experimental group (which watches the violent films) and the control
group (which does not) can then be compared to see how far they differ. The techniques
for examining differences are explored in Chapter 7. The researcher may be interested in 
relationships between variables—are two variables connected with each other so that they

Data analysis and the research process     5     



tend to vary together? For example, Hirschi (1969:121) presents a table which shows how
liking school and selfreported delinquent acts are inter-connected. He found that whereas 
only 9 per cent of children who say they like school have committed two or more
delinquent acts, 49 per cent of those who say they dislike school have committed as many
delinquent acts. The ways in which relationships among pairs of variables can be
elucidated can be found in Chapter 8. Very often the researcher will be interested in
exploring connections among more than two variables, i.e. multivariate analysis. Chapter 
9 examines such analysis in the context of the exploration of differences, while Chapter 
10 looks at the multivariate analysis of relationships among more than two variables. The
distinction between studying differences and studying relationships is not always clear-
cut. We might find that boys are more likely than girls to commit delinquent acts. This
finding could be taken to mean that boys and girls differ in terms of propensity to engage
in delinquent acts or that there is a relationship between gender and delinquency.  

Findings 

If the analysis of data suggests that a hypothesis is confirmed, this result can be fed back
into the theory that prompted it. Future researchers can then concern themselves either
with seeking to replicate the finding or with other ramifications of the theory. However,
the refutation of a hypothesis can be just as important in that it may suggest that the
theory is faulty or at the very least in need of revision. Sometimes, the hypothesis may be
confirmed in some respects only. For example, a multivariate analysis may suggest that a
relationship between two variables pertains only to some members of a sample, but not
others (e.g. women but not men, or younger but not older people). Such a finding will
require a reformulation of the theory. Not all findings will necessarily relate directly to a
hypothesis. With a social survey, for example, the researcher may collect data on topics
whose relevance only becomes evident at a later juncture.  

As suggested above, the sequence depicted in Figure 1.1 constitutes a model of the 
research process, which may not always be reproduced in reality. None the less, it does
serve to pinpoint the importance to the process of quantitative research of developing
measures of concepts and the thorough analysis of subsequent data. One point that was
not mentioned in the discussion is the form that the hypotheses and findings tend to 
assume. One of the main aims of much quantitative research in the social sciences is the
demonstration of causality—that one variable has an impact upon another. The terms
independent variable and dependent variable are often employed in this context. The 
former denotes a variable that has an impact upon the dependent variable. The latter, in
other words, is deemed to be an effect of the independent variable. This causal imagery is
widespread in the social sciences and a major role of multivariate analysis is the
elucidation of such causal relationships (Bryman, 1988a). The ease with which a
researcher can establish cause and effect relationships is strongly affected by the nature
of the research design and it is to this topic that we shall now turn.  
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CAUSALITY AND RESEARCH DESIGN 

As suggested in the last paragraph, one of the chief preoccupations among quantitative
researchers is to establish causality. This preoccupation in large part derives from a
concern to establish findings similar to those of the natural sciences, which often take a
causal form. Moreover, findings which establish cause-and-effect can have considerable 
practical importance: if we know that one thing affects another, we can manipulate the
cause to produce an effect. In much the same way that our knowledge that smoking may
cause a number of illnesses, such as lung cancer and heart disease, the social scientist is
able to provide potentially practical information by demonstrating causal relationships in
appropriate settings.  

To say that something causes something else is not to suggest that the dependent 
variable (the effect) is totally influenced by the independent variable (the cause). You do
not necessarily contract a disease if you smoke and many of the diseases contracted by
people who smoke afflict those who never smoke. ‘Cause’ here should be taken to mean 
that variation in the dependent variable is affected by variation in the independent 
variable. Those who smoke a lot are more likely than those who smoke less, who in turn
are more likely than those who do not smoke at all, to contract a variety of diseases that
are associated with smoking. Similarly, if we find that watching violence on television
induces aggressive behaviour, we are not saying that only people who watch televised
violence will behave aggressively, nor that only those people who behave aggressively
watch violent television programmes. Causal relationships are invariably about the
likelihood of an effect occurring in the light of particular levels of the cause: aggressive
behaviour may be more likely to occur when a lot of television violence is watched and
people who watch relatively little television violence may be less likely to behave
aggressively.  

Establishing causality 

In order to establish a causal relationship, three criteria have to be fulfilled. First, it is
necessary to establish that there is an apparent relationship between two variables. This
means that it is necessary to demonstrate that the distribution of values of one variable
corresponds to the distribution of values of another variable. Table 1.1. provides 
information for ten children on the number of aggressive acts they exhibit when they play
in two groups of five for two hours per group. The point to note is that there is a
relationship between the two variables in that the distribution of values for number of
aggressive acts coincides with the distribution for the amount of televised violence
watched—children who watch more violence exhibit more aggression than those who 
watch little violence. The relationship is not  
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perfect: three pairs of children—3 and 4, 6 and 7 and 9 and 10—record the same number 
of aggressive acts, even though they watch different amounts of television violence.
Moreover, 8 exhibits more aggression than 6 or 7, even though the latter watch more
violence. None the less, a clear pattern is evident which suggests that there is a
relationship between the two variables.  

Second, it is necessary to demonstrate that the relationship is nonspurious. A spurious 
relationship occurs when there is not a ‘true’ relationship between two variables that
appear to be connected. The variation exhibited by each variable is affected by a common
variable. Imagine that the first five children are boys and the second five are girls. This
would suggest that gender has a considerable impact on both variables. Boys are more
likely than girls both to watch more television violence and to exhibit greater 
aggressiveness. There is still a slight tendency for watching more violence and aggression
to be related for both boys and girls, but these tendencies are far less pronounced than for
the ten children as a whole. In other words, gender affects each of the two variables. It is
because boys are much more likely than girls both to watch more television violence and
to behave aggressively that Figure 1.2 illustrates the nature of such a spurious 
relationship.  

Third, it is necessary to establish that the cause precedes the effect, i.e. the time order
of the two related variables. In other words, we must establish that aggression is a
consequence of watching televised violence and not the other way around. An effect
simply cannot come before a cause. This may seem an extremely obvious criterion that is
easy to demonstrate, but as we will see, it constitutes a very considerable problem for
non-experimental research designs.  

Table 1.1 Data on television violence and aggression  

Child 
Number of hoursof violence watchedon 

televisionper week 
Number 

ofaggressiveactsrecorded 

1  9.50  9  

2  9.25  8  

3  8.75  7  

4  8.25  7  

5  8.00  6  

6  5.50  4  

7  5.25  4  

8  4.75  5  

9  4.50  3  

10  4.00  3  

Quantitative data analysis with Minitab     8



Causality and experimental designs 

A research design provides the basic structure within which an investigation takes place.
While a number of different designs can be found, a basic  

 

Figure 1.2 A spurious relationship  

distinction is that between experimental and non-experimental research designs of which
the survey/correlational is the most prominent. In an experiment, the elucidation of cause-
and-effect is an explicit feature of the framework. The term internal validity is often 
employed as an attribute of research and indicates whether the causal findings deriving
from an investigation are relatively unequivocal. An internally valid study is one which
provides firm evidence of cause and effect. Experimental designs are especially strong in
respect of internal validity; this attribute is scarcely surprising in view of the fact that
they have been developed specifically in order to generate findings which indicate cause
and effect.  

Imagine that we wanted to establish that watching violence on television enhances 
aggression in children, we might conceive of the following study. We bring together a
group of ten children. They are allowed to interact and play for two hours, during which
the number of aggressive acts committed by each child is recorded by observers, and the
children are then exposed to a television programme with a great deal of violence. Such
exposure is often called the experimental treatment. They are then allowed a further two-
hour period of play and interaction. Aggressive behaviour is recorded in exactly the same
way. What we have here is a sequence which runs  

where Obs1 is the initial measurement of aggressive behaviour (often called the pre-test), 
Exp is the experimental treatment which allows the independent variable to be
introduced, and Obs2 is the subsequent measurement of aggression (often called the post-
test).  

Let us say that Obs2 is 30 per cent higher than Obs1, suggesting that aggressive 
behaviour has increased substantially. Does this mean that we can say that the increase in
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aggression was caused by the violence? We cannot make such an attribution because
there are alternative explanations of the presumed causal connection. The children may
well have become more aggressive over time simply as a consequence of being together
and becoming irritated by each other. The researchers may not have given the children
enough food or drink and this may have contributed to their bad humour. There is even
the possibility that different observers were used for the pre- and post-tests who used 
different criteria of aggressiveness. So long as we cannot discount these alternative
explanations, a definitive conclusion about causation cannot be proffered.  

Anyone familiar with the natural sciences will know that an important facet of a
properly conducted experiment is that it is controlled so that potentially contaminating
factors are minimized. In order to control the contaminating factors that have been
mentioned (and therefore to allow the alternative explanations to be rejected), a control 
group is required. This group has exactly the same cluster of experiences as the group 
which receives the first treatment—known as the experimental group—but it does not 
receive the experimental treatment. In the context of our imaginary television study, we
now have two groups of children who are exposed to exactly the same conditions, except
that one group watches the violent films (the experimental group) and the second group
has no experimental treatment (the control group). This design is illustrated in Figure 1.3. 
The two groups’ experiences have to be as similar as possible, so that only the 
experimental group’s exposure to the experimental treatment distinguishes them.  

It is also necessary to ensure that the members of the two groups are as similar as 
possible. This is achieved by taking a sample of children and randomly assigning them to 
either the experimental or the control group. If random assignment is not carried out,
there is always the possibility that differences between the two groups can be attributed to
divergent personal or other characteristics. For example, there may be more boys than
girls in one group, or differences in the ethnic composition of the two groups. Such
differences in personal or background characteristics would mean that the ensuing
findings could not be validly attributed to the independent variable, and that factor alone.  

Let us say that the difference between Obs1 and Obs2 is 30 per cent and between Obs3
and Obs4 is 28 per cent. If this were the case, we would conclude that the difference 
between the two groups is so small that it appears that the experimental treatment (Exp)
has made no difference to the increase in aggression; in other words, aggression in the
experimental group would probably have increased anyway. The frustration of being
together too long or insufficient food or drink or some other factor probably accounts for
the Obs2–Obs1 difference. However, if the difference between Obs3 and Obs4 was only 3 
per cent, we would be much more prepared to say that watching violence has increased
aggression in the experimental group. It would suggest that around 27 per cent of the
increase in aggressive behaviour in the experimental group (i.e. 30–3) can be attributed to 
the experimental treatment. Differences between experimental and control groups are not
usually as clear cut as in this illustration, since often the difference between the groups is
fairly small. Statistical tests are necessary  
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Figure 1.3 An experiment  

in this context to determine the probability of obtaining such a difference by chance.
Such tests are described in Chapters 7 and 9.  

In this imaginary investigation, the three criteria of causality are met, and therefore if 
we did find that the increase in the dependent variable was considerably greater for the
experimental group than the control group we could have considerable confidence in
saying that watching television violence caused greater aggression. First, a relationship is
established by demonstrating that subjects watching television violence exhibited greater
aggression than those who did not. Second, the combination of a control group and
random assignment allows the possibility of the relationship being spurious to be
eliminated, since other factors which may impinge on the two variables would apply
equally to the two groups. Third, the time order of the variables is demonstrated by the
increase in aggressive behaviour succeeding the experimental group’s exposure to the 
television violence. Precisely because the independent variable is manipulated by the
researcher, time order can be easily demonstrated, since the effects of the manipulation
can be directly gauged. Thus, we could say confidently that Watching television
violence→Aggressive behaviour since the investigation exhibits a high degree of internal 
validity.  

There is a variety of different types of experimental design. These are briefly 
summarized in Figure 1.4. In the first design, there is no pre-test, just a comparison 
between the experimental and control groups in terms of the dependent variable. With the
second design, there is a number of groups. This is a frequent occurrence in the social
sciences where one is more likely  
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Figure 1.4 Three types of experimental design  

to be interested in different levels or types of the independent variable rather than simply
its presence or absence. Thus, in the television violence context, we could envisage four
groups consisting of different degrees of violence. The third design, a factorial design, 
occurs where the researcher is interested in the effects of more than one independent
variable on the dependent variable. The researcher might be interested in whether the
presence of adults in close proximity reduces children’s propensity to behave 
aggressively. We might then have four possible combinations deriving from the
manipulation of each of the two independent variables. For example, Exp1+A would mean 
a combination of watching violence and adults in close proximity; Exp1+B would be 
watching violence and no adults in close proximity.  

SURVEY DESIGN AND CAUSALITY 

When a social survey is carried out, the nature of the research design is very different
from the experiment. The survey usually entails the collection of data on a number of
variables at a single juncture. The researcher might be interested in the relationship
between people’s political attitudes and behaviour on the one hand, and a number of 
other variables such as each respondent’s occupation, social background, race, gender,
age, and various non-political attitudes. But none of these variables is manipulated as in 
the experiment. Indeed, many variables cannot be manipulated and their relationships
with other variables can only be examined through a social survey. We cannot make
some people old, others young, and still others middle-aged and then observe the effects 
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of age on political attitudes. Moreover, not only are variables not manipulated in a social-
survey study, data on variables are simultaneously collected so that it is not possible to
establish a time order to the variables in question. In an experiment, a time order can be
discerned in that the effect of the manipulated independent variable on the dependent
variable is directly observed. These characteristics are not solely associated with research
using interviews or questionnaires. Many studies using archival statistics, such as those
collected by governments and organizations, exhibit the same characteristics, since data
are often available in relation to a number of variables for a particular year.  

Survey designs are often called correlational designs to denote the tendency for such 
research to be able to reveal relationships between variables and to draw attention to their
limited capacity in connection with the elucidation of causal processes. Precisely because
in survey research variables are not manipulated (and often are not capable of
manipulation), the ability of the researcher to impute cause and effect is limited. Let us
say that we collect data on manual workers’ levels of job satisfaction and productivity in 
a firm. We may find, through the kinds of techniques examined in Chapter 8 of this book, 
that there is a strong relationship between the two, suggesting that workers who exhibit
high levels of job satisfaction also have high levels of productivity. We can say that there
is a relationship between the two variables (see Figure 1.5), but as we have seen, this is 
only a first step in the demonstration of causality. It is also necessary to confirm that the
relationship is non-spurious. For example, could it be that workers who have been with 
the firm a long time are both more satisfied and more productive (see Figure 1.6)? The 
ways in which the possibility of non-spuriousness can be checked are examined in 
Chapter 10.  

However, the third hurdle—establishing that the putative cause precedes the putative 
effect—is extremely difficult. The problem is that either of the two possibilities depicted
in Figure 1.7 may be true. Job satisfaction may cause greater productivity, but it has long 
been recognized that the causal connection may work the other way around (i.e. if you
are good at your job you often enjoy it more). Because data relating to each of the two
variables have been simultaneously collected, it is not possible to arbitrate between the
two versions of causality presented in Figure 1.7. One way of dealing with this problem
is through a reconstruction of the likely causal order of the variables involved. Sometimes
this process of inference can be fairly uncontroversial. For example, if we find a
relationship between race and  

 

Figure 1.5 A relationship between two variables  
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Figure 1.6 Is the relationship spurious?  

 

Figure 1.7 Two possible causal interpretations of a relationship  

number of years spent in formal schooling, we can say that the former affects the latter.
However, this modelling of likely causal connections is more fraught when it is not
obvious which variable precedes the other, as with the relationship between job
satisfaction and productivity. When such difficulties arise, it may be necessary to include
a second wave of data collection in relation to the same respondents in order to see, for
example, whether the impact of job satisfaction on subsequent productivity is greater than
the impact of productivity on subsequent job satisfaction. Such a design is known as a
panel design (Cramer, 1994a), but is not very common in the social sciences. The bulk of
the discussion in this book about non-experimental research will be concerned with the
survey/correlational design in which data on variables are simultaneously collected.  

The procedures involved in making causal inferences from survey data are examined in 
Chapter 10 in the context of the multivariate analysis of relationships among variables.
The chief point to be gleaned from the preceding discussion is that the extraction of
causal connections among variables can be undertaken with greater facility in the context
of experimental research than when survey data are being analysed.  

EXERCISES 

1. What is the chief difference between univariate, bivariate and multivariate
quantitative data analysis?  

2. Why is random assignment crucial to a true experimental design?  
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3. A researcher collects data by interview on a sample of households to find out if
people who read ‘quality’ daily newspapers are more knowledgeable about politics than 
people who read ‘tabloid’ newspapers daily. The hunch was confirmed. People who read 
the quality newspapers were twice as likely to respond accurately to a series of questions
designed to test their political knowledge. The researcher concludes that the quality
dailies induce higher levels of political knowledge than the tabloids. Assess this
reasoning.  
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Chapter 2  
Analysing data with computers  

First steps with Minitab  

Since the different kinds of statistics to be described in this book will be carried out with
one of the most widely used and comprehensive statistical programs in the social
sciences, Minitab, we will begin by outlining what it entails. This program is available
for both personal and mainframe (or multi-user) computers. It is being continuously
updated and so there are various versions in existence. Currently there are two main kinds
of operating system for computers. The traditional system, still employed by mainframe 
(or multi-user) computers, requires commands to be typed in. The more recent system
uses menus from which commands can be selected by keys or a mouse, although 
commands can also be typed in. This latter system was originally developed for
Macintosh personal computers and is now available for a Windows environment on IBM-
compatible personal computers having a 386 or higher processor. At the time of writing,
the latest revision of Minitab is Release 10Xtra for Windows and Macintosh (Minitab 
Inc., 1995). Release 9 is available for some kinds of mainframe (or multi-user) computers 
(Minitab Inc., 1992) and Release 7 (Minitab Inc., 1989) for others. There is also a 
Release 8 (Minitab Inc., 1991) for certain types of IBM-compatible personal computers 
and a Release 7 for others. Apart from the operating systems, the differences between
these releases are few and relatively minor for the purposes of this book. Consequently,
any differences are described as they arise.  

The great advantage of using a package like Minitab is that it will enable you to score 
and to analyse quantitative data very quickly and in many different ways once you have
learned how. In other words, it will help you to eliminate those long hours spent working
out scores, carrying out involved calculations, and making those inevitable mistakes that
so frequently occur. It will also provide you with the opportunity for using more
complicated and often more appropriate statistical techniques which you would not have
dreamt of attempting otherwise.  

There is, of course, what may seem to be a strong initial disadvantage in using 
computer programs to analyse data and that is you will have to learn how to run these
programs. The time spent doing this, however, will be much less than doing these same 
calculations by hand. In addition, you will have picked up some knowledge which should
be of value to you in a world where the use of computers is fast becoming increasingly
common. The ability to do things quickly and with little effort is also much more fun and
often easier than you might at first imagine.  

When mastering a new skill, like Minitab, it is inevitable that you will make mistakes
which can be frustrating and off-putting. While this is something we all do, it may seem 
that we make many more mistakes when learning to use a computer than we do carrying



out other activities. The reason for this is that programs require instructions to be given in
a very precise form and usually in a particular sequence for them to work. This precision
may be less obvious or true of other everyday things we do. It is worth remembering,
however, that these errors will not harm the computer or its program in any way.  

To make as few mistakes as possible, it is important at this stage to follow precisely the 
instructions laid down for the examples in this and subsequent chapters in terms of the
characters and spaces that go to make up each line. Although ‘bugs’ do sometimes occur, 
errors are usually the result of something you have done and not the fault of the machine
or the program. The program will tell you what the error is if there is something wrong
with the form of the instructions you have given it, but not if you have told it to add up
the wrong set of numbers. In other words, it questions the presentation but not the
objectives of the instructions.  

GAINING ACCESS TO MINITAB 

To use Minitab, it is necessary to have access to it via a personal computer or a terminal
connected to a mainframe (or multi-user) computer. Both a computer terminal and a 
personal computer consist of a keyboard on which you type in your instructions and
usually a video display unit (VDU) or television-like screen which shows you what you 
have typed. While the amount of information shown at any one moment on the screen is
necessarily limited, further information can be brought into view with the appropriate use
of the keys or the mouse. The computer you are connected to will have a high speed
printer which you can instruct to print out any information you have stored in it. Indeed,
if you want to keep a record of what you have done when using a screen, then this usually
can be carried out by typing a few instructions. It should be relatively easy to find out
what these are from someone familiar with your computer.  

Keyboards are used to type or put in (hence the term input) the data that you want to 
analyse. If you have a small amount of data, it is most probably quicker to do this
yourself. If, however, you are intending to collect and analyse a large amount of data,
then it may be more convenient to have this done for you by people who provide such a
service. You can also use the keyboard to type in or write any Minitab commands that 
you want to run.  

Since different makes of computers have different instructions or programs for 
operating them which also change from time to time, it is not possible in a book of this
size to provide you with all the information you need to use them. Your local expert
should be able to show you how to do this. However, you might find it helpful to have a
general idea of how to operate a computer.  

First, if you are using a mainframe (or multi-user) computer, you usually have to
register as a user just as you do when using a library or bank. You will be given an
identification label or ID which may be your surname and initials, a password which you 
can change so that only you will know it, and some space to store information in, which
is sometimes referred to as your directory or file space. Every time you want to use a 
terminal, you have to quote your ID followed by your password. This is often called
logging on or in. The idea of the password is to prevent unauthorized people from using 
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the computer and having access to your file space.  
Second, you will have to learn how to store or to file information in this space as well 

as how to change it and get rid of or delete it. In other words, you will need to know how
to use an editor or editing system which does this. The information is stored in files
which will generally consist of your data and any Minitab programs or macros you want 
to run. In order to work with them, it is necessary to give each of them a short name. The
name should be of a form which helps you remember what is contained in the file to
which it refers.  

Third, you will need to learn the few commands necessary to run Minitab and to print 
any results of which you wish to keep a hard copy. While this might seem like a lot to
learn at first, you will soon get the hang of it.  

THE DATA FILE 

Before you can analyse your data, you need to create a file which holds them. The data
have to be put into a file space which consists of a large number of rows, comprising a
maximum of eighty columns in many computers. The data for the same variable are
always placed in the same column(s) in a row and a row always contains the data of the
same object of analysis or case. Cases are often people, but can be any unit of interest 
such as families, schools, hospitals, regions or nations.  

To illustrate the way in which these files are created, we will use an imaginary set of 
data from a questionnaire study referred to as the Job Survey. The data relating to this
study derive from two sources: a questionnaire study of employees who answer questions
about themselves and a questionnaire study of their supervisors who answer questions
relating to each of the employees. The questions asked are shown in Appendix 2.1 at the 
end of this chapter, while the coding of the information collected is presented in Table 
2.1. The cases consist of people, traditionally called respondents by sociologists and 
subjects by psychologists whose preferred term now is participants. Although 
questionnaire data have been used as an example, it should be recognized that Minitab
and the data analysis  

Table 2.1 The Job Survey data (see text and Appendix 2.1, p. 35, for explanation)  

01 1 1 8300 29 01 4 * 3 4 4 2 4 2 2 2 2 3 2 2 3 * 1 07 

02 2 1 7300 26 05 2 * * 2 3 2 2 1 2 3 4 4 4 1 3 4 4 08 

03 3 1 8900 40 05 4 4 4 4 1 2 1 2 2 2 1 2 3 1 4 3 4 00 

04 3 1 8200 46 15 2 2 5 2 4 1 2 2 2 3 2 2 3 2 3 3 4 04 

05 2 2 9300 63 36 4 3 4 4 1 2 3 3 3 4 5 5 4 1 3 5 3 00 

06 1 1 8000 54 31 2 2 5 3 3 2 1 1 2 4 4 4 4 1 1 3 4 01 

07 1 1 8300 29 02 * 3 3 2 3 2 2 3 2 3 5 4 2 2 3 5 2 00 

08 3 1 8800 35 02 5 2 2 4 2 3 4 3 2 3 3 3 2 2 3 4 4 02 
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09 2 2 8800 33 04 3 3 1 2 4 2 3 4 1 2 2 3 2 2 2 1 1 05 

10 2 2 6900 27 06 4 3 2 3 3 2 1 3 2 3 4 3 5 1 2 2 4 04 

11 1 1 7100 29 04 2 2 4 1 4 2 1 1 2 5 4 3 4 2 2 2 3 08 

12 2 1 * 19 02 1 1 5 2 4 1 1 1 1 3 4 3 3 1 3 2 3 04 

13 4 1 9000 55 35 3 3 3 4 2 2 2 3 2 5 5 5 4 1 4 3 5 01 

14 1 2 8500 29 01 2 3 4 2 4 2 2 3 1 4 3 4 4 1 1 2 2 00 

15 3 1 9100 48 08 3 3 2 2 1 3 2 4 4 2 3 3 3 2 4 5 5 01 

16 2 1 7900 32 07 3 3 4 2 2 2 3 1 2 4 2 2 2 2 2 2 3 04 

17 1 1 8300 48 14 3 3 3 2 4 1 2 2 2 4 5 4 4 1 2 5 3 01 

18 1 2 6700 18 01 2 2 4 2 4 2 3 2 2 5 5 5 1 1 2 3 3 06 

19 3 2 7500 28 02 4 4 2 3 2 3 4 3 3 3 2 3 2 2 3 4 4 03 

20 3 2 8800 37 01 3 2 3 3 3 3 2 1 2 5 4 4 5 1 1 4 1 03 

21 1 1 * 43 16 1 4 4 3 3 3 2 3 3 3 2 4 4 2 4 5 2 06 

22 1 1 8700 39 06 3 2 3 2 3 3 2 2 3 4 3 5 3 2 1 1 5 05 

23 1 1 9000 53 05 1 4 3 4 4 4 3 2 2 3 5 4 2 1 3 3 5 13 

24 2 2 8000 34 09 1 3 4 1 5 1 2 1 1 3 4 4 3 2 1 3 3 09 

25 3 2 8500 43 17 4 3 4 5 3 3 1 3 2 3 2 4 4 1 3 5 2 02 

26 1 1 7000 21 01 4 4 2 2 3 4 3 3 4 2 3 2 2 1 2 5 5 03 

27 1 1 8100 50 28 3 2 3 3 4 2 1 1 2 5 5 5 4 1 2 2 4 08 

28 1 2 6200 31 09 1 2 5 1 4 2 2 1 2 4 4 5 4 2 3 5 5 00 

29 1 1 6800 31 12 3 3 4 3 3 3 2 2 3 2 3 1 2 1 3 5 4 06 

30 2 2 8200 52 21 2 3 2 3 2 3 3 3 3 2 2 2 2 2 4 4 3 10 

31 1 1 7200 54 12 3 5 3 3 3 3 2 3 2 4 3 4 4 2 4 4 2 * 

32 3 2 6200 28 10 2 2 4 1 5 1 2 2 2 3 3 3 2 1 2 4 4 09 

33 2 2 8300 50 23 4 4 3 4 3 4 2 3 4 3 3 3 3 2 3 4 5 05 

34 2 2 8000 52 21 5 4 3 3 3 3 4 3 3 2 3 3 2 1 3 2 5 04 

35 1 2 7500 40 21 1 1 3 4 3 3 2 3 2 2 3 2 2 1 2 2 3 06 

36 2 1 5900 19 01 2 2 5 2 4 2 1 2 2 5 5 5 5 2 2 3 2 03 

37 2 1 8800 38 04 5 4 1 4 3 5 3 3 3 2 1 2 1 2 4 4 4 08 

38 2 1 9000 61 41 5 3 2 4 1 3 2 2 2 2 2 1 2 2 3 5 4 03 

39 1 2 7800 37 08 3 2 4 2 3 2 3 3 2 4 5 4 5 1 3 4 4 08 

40 2 1 6700 31 05 2 2 5 2 5 2 2 2 1 5 5 5 4 2 1 1 2 05 

41 2 2 7500 43 21 4 3 2 2 2 3 4 2 3 3 3 3 3 1 1 4 2 00 

42 3 1 6800 23 03 1 2 5 3 5 1 1 2 1 4 4 4 5 1 3 2 2 08 
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procedures described in this book may be used with other forms of quantitative data, such
as official statistics or observational measures.  

Since it is easier to analyse data consisting of numbers rather than a mixture of 
numbers and other characters such as alphabetic letters, all of the variables or answers in
the Job Survey have been coded as numbers. So, for instance, each of the five possible

43 2 2 7000 27 05 1 1 4 1 4 1 1 1 2 4 5 4 4 2 1 2 1 09 

44 1 1 7500 28 07 3 3 1 3 3 3 5 3 3 1 2 2 1 1 2 4 3 09 

45 1 1 6600 00 10 1 1 4 1 4 2 2 2 2 4 2 5 5 1 4 1 3 10 

46 3 1 6700 18 01 4 2 3 4 2 2 3 3 2 4 3 5 4 1 4 3 4 03 

47 1 2 10300 48 23 3 4 3 3 3 2 2 3 2 2 1 3 2 2 4 4 3 08 

48 1 2 6800 29 10 2 3 5 4 4 2 2 2 1 3 4 2 2 1 3 4 4 11 

49 1 2 7300 42 10 2 2 3 3 3 2 2 1 2 5 5 5 5 2 1 4 4 00 

50 1 1 9100 53 12 4 5 2 5 1 4 5 3 4 2 2 2 2 2 4 4 4 01 

51 1 1 7600 32 12 3 2 4 1 4 3 2 2 3 3 3 4 2 1 2 3 2 01 

52 1 2 6500 31 02 1 3 5 1 5 2 2 3 2 5 4 4 5 2 1 3 1 08 

53 1 1 9500 55 19 5 4 3 5 3 5 4 3 3 3 4 3 3 1 3 4 3 00 

54 3 2 7400 26 08 4 4 1 3 3 4 5 2 3 1 2 1 2 2 4 3 3 02 

55 1 2 8600 53 22 3 4 2 3 1 3 4 4 3 2 1 2 2 1 3 5 5 00 

56 1 1 7800 51 31 2 3 3 3 3 3 2 4 4 5 4 5 5 1 4 1 1 08 

57 1 1 7700 48 23 3 1 4 3 4 2 2 2 2 5 5 4 5 1 1 3 2 06 

58 1 2 6900 48 28 1 1 4 1 5 2 2 2 1 5 5 5 5 2 1 4 3 04 

59 2 2 7900 62 40 1 2 3 2 5 2 2 3 2 5 4 4 5 2 1 1 5 07 

60 2 1 8700 57 13 2 3 4 2 3 2 3 1 2 3 3 4 3 1 4 4 1 04 

61 1 2 8900 42 20 5 4 2 2 2 3 3 3 3 2 1 2 4 2 3 3 3 02 

62 1 1 7100 21 02 1 2 3 1 4 2 3 2 1 3 3 3 3 1 4 2 2 00 

63 3 2 6400 26 08 3 1 3 2 4 1 2 1 1 2 3 3 2 1 4 1 1 04 

64 1 2 6800 46 00 1 2 5 2 4 3 1 2 2 5 5 5 5 2 2 3 4 05 

65 1 2 10500 59 21 4 3 2 4 2 2 2 3 3 2 3 2 2 2 4 5 1 04 

66 4 2 7100 30 08 0 3 3 2 4 2 3 2 2 5 4 4 4 1 2 2 3 02 

67 1 1 7300 29 08 3 2 2 3 3 2 3 2 1 5 3 4 3 2 1 4 5 10 

68 3 1 6900 45 09 2 3 4 3 4 3 3 3 3 3 4 3 3 2 2 3 4 09 

69 3 1 8000 53 30 3 2 5 3 2 2 1 2 2 4 5 3 4 2 2 1 4 02 

70 1 1 6900 47 22 2 3 4 2 5 2 3 4 2 4 3 5 4 1 2 4 4 11 
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answers to the first question has been given a number varying from 1 to 5. If the
respondent has put a tick against White/European, then this response is coded as 1.
(Although the use of these ethnic groups may be questioned, as may many of the
concepts in the social sciences, this kind of information is sometimes collected in surveys
and is used here as an example of a categorical variable. We shall shorten the name of the
first category to ‘white’ throughout the book to simplify matters.) It is preferable in 
designing questionnaires that, wherever possible, numbers should be clearly assigned to
particular answers so that little else needs to be done to the data before it is typed in by
someone else. Before multiple copies of the questionnaire are made it is always worth
checking with the person who types in this information that this has been adequately
done. Missing values in Minitab should be represented with an asterisk (*).  

It is advisable to give each subject an identifying number to be able to refer to them if 
necessary. This number should be placed in the first few columns of each row or line.
Since there are seventy subjects, only columns 1 and 2 need to be used for this purpose. If
there were 100 subjects, then the first three columns would be required to record this
information as the largest number consists of three digits.  

As previously mentioned, there are two main kinds of operating system. The first
requires commands to be typed in after a prompt appears on the screen. Prompts in 
Minitab are short or abbreviated words written in capitals followed by a right facing
arrow (e.g. MTB>). To call up this version of Minitab, we usually have to type its name
and press the Return or Enter key. On many keyboards, the Return key is identified by

having a  sign on it. After the title of the program has been shown, the prompt MTB>
together with a flashing cursor will appear. The cursor is the sign which indicates your 
position on the screen where you may initiate an action such as typing in a command.  

The second system allows commands to be selected from words or icons presented as a 
menu in a window on the screen. Commands can usually be selected by moving the
cursor on to them with either the keys or, more normally, the mouse, and then pressing
the Return key or the left button on the mouse, or in Windows 95 by simply selecting the
next option. Choosing options with the mouse is generally easier than doing this with
keys since it simply involves moving the mouse appropriately. With keys, however, some
options are chosen by pressing the relevant cursor keys while others are selected by
pressing up to two keys other than the cursor keys. The cursor keys are usually on the
right hand side of the keyboard and have arrows on them pointing in the direction in
which the cursor is to be moved. You may prefer to use the mouse for some operations
and the keys for others.  

However, in the Windows version of Minitab, commands can also be typed in if the
window called Session is selected. To invoke the Windows version when in the windows 
environment, select the appropriate Minitab icon. In Release 9 two overlapping windows 
appear as shown in Figure 2.1. The front one is the Data window while immediately 
behind it is the Session window. To select the  
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Figure 2.1 Opening Session and Data window in Release 9 

 

Figure 2.2 Opening Session and Data window in Release 10 

Session window with the mouse, move the cursor on to the bar containing this word or 
title and then either pressing the left button on the mouse or the Return key when the
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MTB> prompt will be presented together with the cursor. The key strokes for carrying
out this action are described in Appendix 2.2.  

In Release 10, however, the Data window occupies most of the lower half of the 
screen while the Session window fills most of the upper half as depicted in Figure 2.2. 
Move the cursor into the Session window and press the left button on the mouse.  

Release 8 also enables options to be selected from menus. To simplify the presentation 
and since this format has been superseded with a superior one in later releases, the use of
this menu version will not be detailed separately.  

The prompt or session method of running Minitab will always be described first since 
it is common to both operating systems and is more flexible than the menu system in that
it can be used to write commands for carrying out routines that are not available in menu
format.  

PROMPT SYSTEM 

With the prompt system, we can enter the data in Table 2.1 either row by row with the 
read command or column by column with the set command. Note that columns in 
Minitab refer to the values of a variable and are specified by the letter c followed by their 
respective number so that the first column is called c1, the second c2 and so on. The 
number of columns (or variables) per row (or case) is restricted to 1,000 in Releases 7 to
10.  

With the read command we need to list the columns for each case. Since in this 
example we have 24 columns of data, we can list the 24 columns on the read command 
by naming each one separately. Each column label needs to be separated by a blank space
or a comma. Consequently, after the MTB> prompt, we can type  

MTB> read c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, 
c12, c13, c14, c15,c16, c17, c18, c19, c20, c21, c22, c23, 
c24 

Alternatively, as the columns are consecutive, we can list them implicitly by specifying
only the first and last column (with a hyphen between the two), so that the read
command becomes shortened to  

MTB> read c1-c24 

Note that Minitab commands have been printed in small letters throughout the book to
distinguish them from Minitab prompts which are displayed on the screen in capital
letters followed by a right facing arrow. The command is completed by pressing the
Return key, when the DATA> prompt will appear.  

If, before pressing the Return key, you type the wrong information (say, a1 instead of 
c1), use the backspace delete key to delete back to and including the mistake (a) and type 
in the correct details. The backspace delete key usually has a leftward facing arrow sign
[←] on it to identify it. If, after pressing the Return key, you realize you have made a
mistake (say, a1 instead of c1) type in the correct command when the MTB> prompt 
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reappears. If, on the other hand, you typed in the wrong column (say, c2 instead of c1), 
the DATA> prompt will appear in which case you need to type end after it when the 
MTB> prompt will be shown. You then type in the correct command.  

After listing the appropriate column numbers, we type in the first row of data
(separating each datum with either a blank space or a comma) as follows  

DATA> 01 1 1 8300 29 01 4 * 3 4 4 2 4 2 2 2 2 3 2 2 3 * 1 
07 

To enter this line of data, we press the Return key. We proceed in this way until we have
typed in all 70 rows of data.  

If in a row you type in fewer values than the number of columns, you will receive the 
following error message  

* ERROR * INCOMPLETE ROW-REENTER 

whereas if you type in too many values, the error message will be  

* ERROR * TOO MANY VALUES-REENTER ROW 

Simply type in the values again after the DATA> prompt.  
When we have finished typing in the data, we indicate this by typing end after the 

DATA> prompt  

DATA> end 

A message will appear which reads  

70 ROWS READ 

To display the data we have typed in, we simply type print after the MTB> prompt and 
the columns we want to see. So, to show the first, third and fifth columns, we need only
type  

MTB> print c1 c3 c5 

Note that the output also gives the row number so that you may feel it unnecessary to
input the case number if it is the same as the row number.  

If you realize you have typed in a wrong value (say, 27 instead of 29 in column 5 for 
the age of case 1), you can correct this by typing  

MTB> let c5 (1)=29 

where the value in brackets refers to the row number and the value after the equals sign is
the correct value. You can check that this has been done by printing c5 

MTB> print c5 
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To type in data with the set command, we first specify the column (say, c5)  

MTB> set c5 

after which we press the Return key when the DATA> prompt appears. We type in the 
values for that column, i.e.  

DATA> 29 26 40 46 63 54 29 35 33 27 29 19 55 29 48 32 48 18 
2837 43 39 53 34 43 21 50 31 31 52 54 28 50 52 40 19 38 61 
37 3143 23 27 28 * 18 48 29 42 53 32 31 55 26 53 51 48 48 
62 57 4221 26 46 59 30 29 45 53 47 

Then we press the Return key, and type end after the DATA> prompt.  
If we had more than ninety-six cases, we would have to add an ampersand (&) after 

entering the age of the ninety-sixth case, press Return when another DATA> prompt 
would appear and then continue to add more ages. If we added the ampersand after the
ninety-seventh case, the data in the previous row will be ignored. In other words, when 
entering a long column of data, make sure that you add the ampersand at least two spaces
before the end of the row.  

You can name your columns with the name command on which you list the column 
number and a name in single quotes of up to eight characters. So, the command for 
calling c5 ‘age’ and c7 ‘commit’ (for organizational commitment) is  

MTB> name c5 ‘age’ c7 ‘commit’ 

Once a column is named we can refer to it either by the name in single quotation marks
or the column number. So, we can print c5 and c7 by typing  

MTB> print ‘age’ ‘commit’ 

If we do not save the set of data we have just typed in we will lose it when we leave
Minitab and we will have to type it in again should we wish to carry out some further
analyses on a later occasion. Since alternative ways of analysing data often occur to us
later on either as the result of our own thoughts or the suggestions of others, it is almost
always desirable to save data. Information in computers is stored in files which we have 
to name in order to retrieve them. To save a set of data we use the save command 
followed by the name we wish to call it placed within single quotation marks. The name
consists of a prefix or stem of up to eight characters followed by a full stop and a suffix
or extension of up to three characters. To remind us of the content and the nature of the
file, it is conventional to have the stem name refer to the content of the file and the
extension name to the kind of file it is.  

The save command stores the data as a worksheet which is written in binary code and 
which cannot be read as simple text. If we do not give this worksheet an extension name,
then Minitab will automatically add the extension .MTW which is short for Minitab 
worksheet. Consequently, we shall follow this practice and use the extension .mtw for 
naming our worksheets. As the data in our example refer to the raw data of our job
survey, the stem name could be jsrd which is an abbreviation of ‘job survey raw data’. 
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Since Minitab accepts letters written in capitals or upper case (for example, JSRD.MTW)
and small or lower case (for example, jsrd.mtw), lower-case letters will be used to make 
typing easier for you. The command for saving these data as a worksheet is  

MTB> save ‘jsrd.mtw’ 

If we are working on a personal computer, it is worthwhile storing a copy of the data file
on a separate floppy disk in case the file stored in our computer is deleted or lost. The
floppy disk is inserted into a slot called a drive. This is done only after the computer has
been switched on. The disk may first have to be formatted if it is new or if its present 
format is not compatible with the machine. It is preferable to do this before entering
Minitab so that any files can be stored direct on to the floppy disk when you are using
Minitab. To store a file on to a floppy disk, use the same save command but insert the 
letter of the drive followed by a colon after the opening quote of the name and before the 
stem. So, to store this file on the floppy disk in drive a, the command would be  

MTB> save ‘a:jsrd.mtw’ 

In a session of Minitab we may wish to work on a number of different data files. To call
up a different file in the same session or to call a file in a new session we use the retrieve
command followed by the name of the file (including the disk drive if it is on a floppy
disk). So, to call up the file jsrd.mtw on the floppy disk in drive a, the command would 
be  

MTB> retrieve ‘a:jsrd.mtw’ 

Note that full command words longer than four letters can generally be shortened to the
first four letters of the word as the subsequent letters are ignored. Thus, for example, the
word retrieve will work if shortened to retr or misspelt as retrive.  

A full listing of the variables and their Minitab names is given in Table 2.2. It is 
important to remember that the same name cannot be used for different files or variables.
Thus, for example, you could not use the name ‘satis’ to refer to all four of the questions 
which measure job satisfaction. You would need to distinguish them in some way such as
calling the answer to the first question ‘satis1’, the answer to the second one ‘satis2’, and 
so on. Of course, it is possible to shorten them further. However, to make it easier for you
to remember what we are referring to, we have kept them as long and as meaningful as
possible. Since it is easier to work with names than with column numbers, we will name
all the columns as shown in Table 2.2 and save the names in the worksheet ‘jsrd.mtw’. If 
you forget the column number or name for any variable you can always obtain the
complete list with the prompt command info. The output for this command is displayed 
in Table 2.3. This output also gives the overall number of values for each variable and the 
number of missing values.  

Data are often stored in a simple text or ASCII file. ASCII stands for American 
Standard Code for Information Interchange and is widely used for transferring
information from one computer to another. If, for example, we had collected a large
amount of data and if we had access to a service which typed in those data for us, then
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this information may be stored for us in a text file which we can transfer to the computer
we are using. The conventional extension name of such files is often dat which is short 
for data. If the data in Table 2.1 had been stored as a text file, then we might call it 
jsr.dat. To read such a file from our computer into a Minitab session, we would use the
read command which lists the name of the file in single quotes together with the columns 
of data we want to read. So if we wanted to read all 24 columns, the command would be  

MTB> read ‘jsr.dat’ into c1-c24 

Table 2.2 The Minitab names and column numbers of the Job Survey variables  

Variable name Minitab name Column number 

Identification number  id c1 

Ethnic group  ethnicgp c2 

Gender  gender c3 

Gross annual income  income c4 

Age  age c5 

Years worked  years c6 

Organizational commitment  commit c7 

Job-satisfaction scale  

Item 1  satis1 c8 

Item 2  satis2 c9 

Item 3  satis3 c10 

Item 4  satis4 c11 

Job-autonomy scale  

Item 1  autonom1 c12 

Item 2  autonom2 c13 

Item 3  autonom3 c14 

Item 4  autonom4 c15 

Job-routine scale  

Item 1  routine1 c16 

Item 2  routine2 c17 

Item 3  routine3 c18 

Item 4  routine4 c19 

Attendance at meeting  attend c20 

Rated skill  skill c21 
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Note that the word into can be omitted. If we find it easier, we can then name the column 
numbers as before and save the text file as a worksheet.  

To leave Minitab, we use the command stop 

MTB> stop 

In the Windows version, the program will ask you if you wish to save the data as a
worksheet if you have not already done so.  

MENU SYSTEM 

The opening windows differ slightly for Releases 9 and 10 of Minitab for Windows. In 
Release 9, two overlapping windows appear. The front one is the Data window while 
immediately behind it is the Session window (see Figure 2.1). In Release 10, however, 
the Data window occupies most of the lower half of the screen while the Session window 
fills most of the upper half (see Figure 2.2).  

Rated productivity  prody c22 

Rated quality  qual c23 

Absenteeism  absence c24 

Table 2.3Info listing of column numbers and names of variables in jsrd.mtw 

COLUMN NAME COUNT MISSING 
C1 id 70   

C2 ethnicgp 70   

C3 gender 70   

C4 income 70 2 

C5 age 70 1 

C6 years 70   

C7 commit 70   

C8 satis1 70 2 

C9 satis2 70 1 

C10 satis3 70   

C11 satis4 70   

C12 autonom1 70   

C13 autonom2 70   
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The Data window consists of a matrix of numbered columns and rows. The cursor will 
be in the cell in the first row of the first column. The frame of this cell will be shown in 
bold to denote that it is the active cell. To enter a value in any one cell, make that cell
active by moving to it with either the cursor keys or the mouse, type in the value and then
move to the next cell into which you want to put a value. To change any value already
entered, move to the cell containing that value, remove that value with the backspace key
and type in the new value. If you delete the entry with the backspace key and move to
another cell, an asterisk (*) will be left denoting a missing value. To name any particular
column move to the cell just below its column number and type in the name.  

To increase the size of the Data (or the Session) window with the mouse, place the 
cursor on the triangle pointing upward in the right-hand corner of the window and press
the left button. To return the window to its original size, place the pointer on the square in
the right-hand corner containing the upward and downward facing triangle and press the
left button. The key  

C14 autonom3 70   

C15 autonom4 70   

C16 routine1 70   

C17 routine2 70   

C18 routine3 70   

C19 routine4 70   

C20 attend 70   

C21 skill 70   

C22 prody 70 1 

C23 qual 70   

C24 absence 70 1 

CONSTANTS USED: NONE 
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Figure 2.3 Options on the File drop-down menu  

strokes for carrying out the actions described in this section are given in Appendix 2.2.  
To save the data as a worksheet, carry out the following steps.  
Step 1 Select File from the bar on the Worksheet window by pressing the left button 

on the mouse which will cause a menu to drop down. The options on this menu are
shown in Figure 2.3. To cancel the drop-down menu, place the pointer anywhere outside 
the option and press the left button.  

Step 2 Select Save WorksheetAs…when a dialog box will appear as illustrated in 
Figure 2.4.  

Note that in Release 9 an intermediate dialog box is presented in which the Minitab 
worksheet option is ready to be selected. This is indicated by this option being encased
in a rectangle drawn with a dashed line. So select it to produce the dialog box shown in
Figure 2.4.  

The ellipse or three dots after an option term (…) signifies a dialog box will appear if 
this option is chosen. A right facing arrowhead>, on the other hand, indicates that a
further submenu will appear to the right of the dropdown menu. An option with neither of
these signs means that there are no further drop-down menus to select.  
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Figure 2.4Save WorksheetAs dialog box  

Step 3 In this dialog box the name *.mtw is highlighted in a rectangular box under the 
label FileName:. The asterisk or wildcard denotes any stem name.  

Step 4 Type in the name of your file and press the Return key or select OK. When 
using the menu system you do not have to put single quotation marks around names. An
exception to this is when forming mathematical expressions which will be described in
the next chapter.  

To save the file on a floppy disk in a disk drive, select the appropriate drive (e.g. a) 
from those in the box below the label Drives: by putting the cursor on the downward
button, pressing the left button and highlighting the a drive.  

When carrying out procedures with the menu system, the prompt commands for
performing the same procedure will be displayed in the Session window once the 
procedure has been executed. The first letter after the MTB> prompt is capitalized.  

We will use a particular notation to describe the steps involved in using the menu
system. The selection of a step or option will be indicated with a right facing
arrow→pointing to the term(s) on the menu or dialog box to be chosen. Any explanations
will be placed in square parentheses after the option shown. Thus, the notation for saving
data as a worksheet using the menu system in Release 10 is  

→File→Save WorksheetAs…→box under Drives→ drive [e.g. 
a]  from options listed→box under FileName and in it type 
file name  [e.g. jsrd.mtw] →OK 

In the rest of this chapter we will initially explain the steps involved in using the menu
system and give the notation whereas in subsequent chapters we will simply present the
notation.  

To retrieve this file at a later stage when it is no longer the current file, select File from 
the bar of the window, Open Worksheet…, the appropriate drive if it is not already
present and either type in the name or select the name from the files listed. To call up this
file, highlight it and either press the left button once and select OK or press the left 
button twice.  
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→File→Open Worksheet…→box under Drives→drive [e.g. 
a]  from options listed→box under FileName→file name 
[e.g.  jsrd.mtw] →press the left button once and select OK 
or press the left  button twice   

In Release 9 an intermediate Open Worksheet dialog box appears in which the Type of 
Worksheet is first selected before choosing Select File.  

To read in a data text ASCII file, you need to use the prompt system in the Session
window, as in the following example  

MTB> read ‘a:jsr.dat’ c1-c24 

The data will be displayed in the Data window.  
To remind yourself of the column numbers and any names for the variables in your 

current worksheet, choose File, Get WorksheetInfo… and OK.  

→File→Get WorksheetInfo…→OK 

To display a column in the Session window, select File and DisplayData…. Then select 
or type the variable(s) into the box entitled Columns,constants, and matrices to
display: and select OK. You can move the appropriate column or variable name into
such a box by first highlighting it and then choosing Select. To carry out the procedure, 
choose OK or press Return.  

→File→Display Data…→variable(s) →Select [this puts the 
relevant  variable(s) in the box beside Columns, constants, 
and matrices todisplay:] →OK 

To leave Minitab with the menu system, select File and Exit.  

→File→Exit 

STATISTICAL PROCEDURES 

At this stage, you may be ready to analyse your data. The rest of the book describes
numerous ways in which you can do this. To show you how this is generally done, we
will ask Minitab to calculate the average or mean age of the sample. This can be 
performed with a number of Minitab commands, but we shall use the one called mean. 
All we have to do is to add after the word mean the column number (c5) or name we 
have given this variable (age), making sure to leave one space between them. So, to
provide these descriptive statistics for c5 (or ‘age’), we type  

MTB> mean c5 

The output from this command is displayed on the screen when this command is run and
is shown below.  
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MEAN=39.188 

To do this with the menu system, first select the Calc option from the menu bar when a 
drop-down menu will appear listing various statistics as illustrated in Figure 2.5. To 
calculate the mean of a column, select the Column Statistics…option when a dialog box 
will be shown as depicted in Figure 2.6. Select Mean and type in or select into the box 
labelled Inputvariables: the column number (c5) or the name of the variable (age)
whose mean you want.  

→Calc→Column Statistics…→Mean→box beside Inputvariables: 
→variables [e.g. age] →Select [this will put the 
relevant  variable in this box] →OK 

 

Figure 2.5 Options on the Calc drop-down menu  
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Figure 2.6Column Statistics dialog box  

KEEPING MINITAB OUTPUT 

To keep a listing of what you will do in a session, type the command outfile followed by 
the name you want to call that file in single quotes at the point you want the record to
begin. The default extension name is .lis which is short for listing. If we wished to call 
our output or listing file ‘sess1.lis’, we would use the following command  

MTB> outfile=‘sess1.lis’ 

There is normally no need to save this file on to your floppy disk as we will want to print
it out immediately after we have left Minitab. If this is not the case, store the file on to
your floppy disk.  

We can control the width of that output file from 30 to 132 spaces with the ow
command (output width), although some commands cannot make their output narrower
than 70. So, the command for requesting a width of 70 spaces is  

MTB> ow=70 

Output is saved in this file until the command nooutfile is typed. Output may be saved in 
different listing files if desired. If the same listing file is called up later in the session,
then the output will be added to the end of that file.  
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In the Windows version of Minitab, the Session window keeps up to 25 half-full pages, 
after which it automatically discards the first half of the output. To save the output of an
entire session with the menu system, select File, OtherFiles and Start 
RecordingSession…when a dialog box will appear. The default option of Record 
output in file and display in Sessionwindow is already selected. Specify the output
width if necessary in the box entitled Set outputwidth to and then select Select File. In 
the dialog box, select the drive if necessary, name the file and select OK.  

→File→OtherFiles→Start RecordingSession…→Record outputin 
file and display in Session window→box to the left of Set 
outputwidth to [optional e.g. →70 in the box to its right] 
→Select File→box  under FileName→filename [e.g. 
sess1.lis] →OK 

To stop saving the output, select File, OtherFiles and Stop RecordingSession.  

→File→OtherFiles→Stop RecordingSession 

EXERCISES 

1. You need to collect information on the religious affiliation of your respondents. You
have thought of the following options: Agnostic, Atheist, Buddhist, Catholic, Jewish,
Hindu, Muslim, Protestant and Taoist. Which further category has to be included?  

2. You want to record this information in a data file to be stored in a computer. How
would you code this information?  

3. Looking through your completed questionnaires, you notice that on one of them no
answer has been given to this question. What are you going to put in your data file for
this person?  

4. Suppose that on another questionnaire two categories had been ticked by the
respondent. How would you deal with this situation?  

5. The first two of your sample of fifty subjects describe themselves as agnostic and
the second two as atheists. The ages of these four subjects are 25, 47, 33, and 18. How
would you arrange this information in your data file?  

6. If data are available for all the options of the religious affiliation question, how
many columns would be needed to store this information in Minitab?  

7. How many columns to a line are there in most computers for listing data or
commands?  

8. What is the maximum number of characters that can be used for the name of a
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variable in Minitab?  

Appendix 2.1: The Job Survey questions 

EMPLOYEE QUESTIONNAIRE 

This questionnaire is designed to find out a few things about yourself and your job.
Please answer the questions truthfully. There are no right or wrong answers.  
      Code  Col  
1. To which one of the following racial or ethnic groups do you belong? (Tick one)  4  

    —White/European  1    

    —Asian  2    

    —West Indian  3    

    —African  4    

    —Other  5    

2. Are you male or female  6  

    —Male  1    

    —Female  2    

3. What is your current annual income before tax and other deductions?  

      £———
 8–12  

4. What was your age last birthday (in years)?  

      —years  14–15  

5. How many years have you worked for this firm?  

      —years  17–18  

6. Please indicate whether you (1) strongly disagree, (2) disagree, (3) are undecided, (4) agree, or 
(5) strongly agree with each of the following statements. Circle one answer only for each 
statement.  

    SD D U A SA   

(a)  I would not leave this firm even if another employer could offer me a 
little more money  

1  2  3  4  5  20 

(b) My job is like a hobby to me  1  2  3  4  5  22 

(c)  Most of the time I have to force myself to go to work  1  2  3  4  5  24 

(d) Most days I am enthusiastic about my work  1  2  3  4  5  26 

(e)  My job is pretty uninteresting  1  2  3  4  5  28 

(f)  I am allowed to do my job as I choose  1  2  3  4  5  30 

(g) I am able to make my own decisions about how I do my job  1  2  3  4  5  32 
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SUPERVISOR QUESTIONNAIRE 

I would be grateful if you could answer the following questions about one of the people
for whom you act as supervisor—[Name of Employee]  

  (h)  People in my section of the firm are left to do their work as they please  1 2 3 4 5 34 

  (i)  I do not have to consult my supervisor if I want to perform my work 
slightly differently  

1 2 3 4 5 36 

  (j)  I do my job in much the same way every day  1 2 3 4 5 38 

  (k)  There is little variety in my work  1 2 3 4 5 40 

  (l)  My job is repetitious  1 2 3 4 5 42 

  (m) Very few aspects of my job change from day to day  1 2 3 4 5 44 

7. Did you attend the firm’s meeting this month?  46 

    —Yes  1           

    —No  2           

1. Please describe the skill level of work that this person performs. Which one of the 
following descriptions best fits his/her work? (Tick one)  

48  

    —Unskilled  1    

    —Semi-skilled  2    

    —Fairly skilled  3    

    —Highly skilled  4    

2. How would you rate his/her productivity? (Tick one)  50  

    —Very poor  1    

    —Poor  2    

    —Average  3    

    —Good  4    

    —Very good  5    

3. How would you rate the quality of his/her work? (Tick one)  52  

    —Very poor  1    

    —Poor  2    

    —Average  3    

    —Good  4    

    —Very good  5    

4. How many days has he/she been absent in the last twelve months?    

    —days    54–
55  
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Appendix 2.2: Operating within Windows using keys 

To select the Sessions window, press the Tab key while holding down the Ctrl key. The
Tab key is usually on the leftmost side of the keyboard and may have two arrows on it
pointing leftwards and rightwards respectively.  

To expand a window, press Alt and the key with the hyphen (-) on it which will 
produce a drop-down menu; select Maximise. To return the window to its original size, 
press the Alt and hyphen key and select either the Restore or Minimise option from the 
drop-down menu.  

To save the data as a worksheet, carry out the following steps.  
Step 1 Select File from the bar on the Worksheet window when a menu will drop 

down. To select any of these options, press the Alt key and the key of the letter
underlined in the option, which is F in this case. To cancel the drop-down menu, press 
the Esc key.  

Step 2 Select Save WorksheetAs pressing either the downward cursor key or the key
of the letter underlined in the option, which is A. A dialog box will appear.  

In Release 9 an intermediate dialog box appears in which the Minitab worksheet
option is ready to be and should be selected.  

Step 3 In this dialog box the name *.MTW is highlighted in a rectangular box under 
the label File Name:.  

Step 4 Type in the name of your file and press the Return key or select OK. To save it 
on a floppy disk in a disk drive, select the appropriate drive from those in the box below
the label Drives:.  

The cursor may be moved in a dialog box with the following keys. To move forwards 
to the box entitled Drives:, press the Tab key. To move backwards to it, press the Tab 
key while holding down the Shift key. Alternatively, press Alt and the letter underlined in
the title which in this case is v. To move the cursor within a box, use the cursor keys.  

To retrieve this file at a later stage when it is no longer the current file, select File from 
the bar of the window, Open Worksheet, the appropriate drive if it is not already present
and either type in the name or select the name from the files listed. To select a file, use
the downward cursor key until the right file has been underlined, press the upward cursor
key and the Return key.  

Quantitative data analysis with Minitab     38



Chapter 3  
Analysing data with computers  

Further steps with Minitab  

Now that you know some of the basics of how to run Minitab, we can introduce you to
some further commands which you may find very useful. These commands will enable
you to carry out the following kinds of operations: select certain cases (such as all white
men under the age of 40) for separate analyses; recode values; and create new variables
(such as scoring an attitude or personality scale) and new files for storing them.  

SELECTING CASES 

To select cases with certain characteristics, we can copy the data of those cases into other
columns with the copy command and select particular cases with the use subcommand. 
For example, if you wanted to find out the average age of only the men in the Job Survey
sample, you could first copy ‘age’ with the copy command into a new column c25 which 
we shall first call ‘agec’ (for age copy)  

MTB> name c25 ‘agec’ 
MTB> copy ‘age’ ‘agec’; 

Then with the use subcommand you would select ‘gender’ (which contains the code for 
gender) and specify 1 which is the code for men  

SUBC> use ‘gender’=1. 

Note that the line before a subcommand must end in a semi-colon (;) and the last 
subcommand must finish with a full stop (.).  

The menu procedure for doing this is  

→Manip→Copy Columns…→variable or column to be copied 
[e.g.  age] →Select [this puts the variable in the box 
under Copyfromcolumns:] →box under To columns: →type 
column or name of  variable to be copied [e.g. agec] →Use 
Rows… [this opens a second  dialog box] →Use rowswith 
column [equal to (eg, −4.5 −2:3 14):]→box beside 
it→variable for selection [e.g. gender] 
→Select→type    value for selection [e.g. 1] which goes in 
the box below→OK [this  closes the second dialog box]→OK 



Options on the Manip menu are depicted in Figure 3.1 whereas the Copy and Copy—
Use Rows dialog boxes are shown in Figures 3.2 and 3.3 respectively.  

To calculate the average age of the men with the prompt system we would simply use 
the mean command  

MTB> mean ‘agec’ 

The menu procedure for doing this is  

→Calc→Column Statistics…→Mean→box beside Inputvariables: 
[this will display variables which can be selected]
→agec→Select [this puts agec in this box]→OK 

The output for this command is displayed below:  

MEAN=39.211 

To work out the average age of the women we would repeat the procedure substituting 2
for 1 in the use subcommand. The data for women overwrites the data for men in ‘agec’.  

 

Figure 3.1Manip menu options  
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Figure 3.2Copy dialog box  

To select cases under 40 years of age, we would list ‘age’ on the use subcommand and 
specify the age range 0 to 39 where the colon : signifies the notion of ‘to’  

MTB> copy ‘age’ ‘agec’; 
SUBC> use ‘age’ 0:39. 

The menu procedure for doing this is  

→Manip→Copy Columns…→age→Select [this puts age in the 
box  under Copyfrom columns:]→box under To columns: 
→agec→Select [this puts agec in this box]→Use Rows… [this 
opens a  second dialog box]→Use rowswith column [equal to 
(eg, −4.5 −2:314):]→box beside it→age→Select→type 0:39 
which goes in the box  below→OK [this closes the second 
dialog box] →OK 

We could check that none of the ages was 40 or over by printing ‘agec’.  
To select cases based on more than one category such as white men under 40, we 

would use the let command to create a new column with the appropriate categories which
we then use to copy the variables we wish to  
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Figure 3.3Copy—Use Rows dialog box  

analyse. Suppose we want to calculate the average number of years worked (‘years’) for 
white men under 40. We would first specify on the let command that the new column c25
(which we shall first name ‘wmu40’) holds the relevant categories, namely whites coded 
as 1 in ‘ethnicgp’ containing the ethnic categories, men coded as 1 in ‘gender’
comprising the gender categories and values less than (lt) 40 in ‘age’ storing age  

MTB> name c25 ‘wmu40’ 
MTB> let ‘wmu40’=(‘ethnicgp’=1) and (‘gender’=1) and(‘age’ 
lt 40) 

The let command assigns 1 to cases which are white, male and under 40 and puts them 
into ‘wmu40’.  

The menu procedure for doing this is  

→Calc→MathematicalExpressions…→type the variable name 
[e.g.  wmu40] in the box beside Variable [new or 
modified]:→box  beneath Expression: and type in it the 
required expression [e.g.  (‘ethnicgp’=1) and (‘gender’=1) 
and (‘age’ lt 40)]→OK 

We would then copy the average number of years worked (‘years’) into the new column 
c26 (called ‘yearsc’) for the cases stored in ‘wmu40’.  
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MTB> name c26 ‘yearsc’ 
MTB> copy ‘years’ ‘yearsc’; 
SUBC> use ‘wmu40’=1. 

The menu sequence for doing this is  

→Manip→Copy Columns…→years→Select [this puts years 
in  the box under Copyfrom columns:] →box under To 
columns:→type yearsc [this puts yearsc in this box] →Use 
Rows… [this  opens a second dialog box] →Use rowswith 
column [equal to (eg,−4.5 −2:3 14):] →box beside 
it→wmu40→Select→type 1 which  goes in the box below→OK 
[this closes the second dialog box]  →OK 

COMPARISON OPERATORS 

A comparison operator like the equals sign (=) compares the value on its left (for
example, ‘wmu40’) with that on its right (for example, 1). There are six such operators, 
which can be represented by the following symbols (with or without spaces on either
side) or keywords (with a blank space on either side):  

If the comparison is true (for example, if the age of a particular case is less than 40), 
the result is set to 1. If the comparison is not true (for example, age is 40 or greater), the
result is set to 0. If the datum is missing, then the result is set to *.  

LOGICAL OPERATIONS 

We can combine comparison operations with one of three logical operators using the
following symbols or keywords:  

& or and 
| or or 
~ or not 
In other words, the three comparison operations of (‘ethnicgp’=1),(‘gender’=1) and 

(‘age’ lt 40) are added together with the logical operator and.  
To select people of only West Indian and African origin, we would have to use the or

logical operator since people cannot have been born in both the West Indies and Africa:  

= or eq equal to  

~= or ne not equal to  

< or lt less than  

<= or le less than or equal to  

> or gt greater than  

>= or ge greater than or equal to  
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MTB> let c25=(‘ethnicgp’=3 or ‘ethnicgp’=4) 

The menu procedure for doing this is  

→Calc→MathematicalExpressions…→c25→Select [this puts c25 
in the box beside Variable [new or modified]:] →box under 
Expression: and in it type (‘ethnicgp’=3 or ‘ethnicgp’=4) 
→OK 

Note that it is necessary to repeat the full logical relation. It is not permissible to
abbreviate this expression as:  

(‘ethnicgp’=3 or=4) 

To select people between the ages of 30 and 40 inclusively, we can use the expression:  

(‘age’ ge 30 and ‘age’ le 40) 

Here, we have to use the and logical operator. If we used or, we would in effect be
selecting the whole sample since everybody is either above 30 or below 40 years of age.  

RECODING THE VALUES OF VARIABLES 

Sometimes it is necessary to change or to recode the values of some variables. For
example, it is recommended that the wording of questions which go to make up a scale or
index should be varied in such a way that people who say yes to everything (yeasayers) or
no (naysayers) do not end up with an extreme score. To illustrate this, we have worded
two of the four questions assessing job satisfaction in the Job Survey (‘6c. Most of the
time I have to force myself to go to work.’ and ‘6e. My job is pretty uninteresting.’) in the
opposite direction from the other two (‘6b. My job is like a hobby to me.’ and ‘6d. Most
days I am enthusiastic about my work.’). These questions are answered in terms of a 5-
point scale ranging from 1 (‘strongly disagree’) to 5 (‘strongly agree’). While we could
reverse the numbers for the two negatively worded items (6c and 6e) on the questionnaire,
this would draw the attention of our respondents to what we were trying to accomplish. It
is simpler to reverse the coding when we come to analyse the data. Since we want to
indicate greater job satisfaction with a higher number, we will recode the answers to the
two negatively worded questions, so that 1 becomes 5, 2 becomes 4, 4 becomes 2, and 5
becomes 1. We can do this in the following way with the code command where the
column values for 6c are named as ‘satis2’ and those for 6e as ‘satis4’: 

MTB> code (1) 5 (2) 4 (4) 2 (5) 1 ‘satis2’ ‘satis4’ c25 c26 

The values to be changed precede the column number or variable names. The original
values in ‘satis2’ and ‘satis4’ are placed in the new columns c25 and c26 when recoded
which we could name ‘satis2r’ and ‘satis4r’ where the r stands for recoded. The values
to be changed must always be placed in parentheses. Any number of values can be
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changed but only to one value. For example, if we wished to form a 3-point scale with 
only one ‘agree’, one ‘disagree’, and one ‘undecided’ answer, we could do this in the 
following way:  

MTB> code (2) 1 (3) 2 (4 5) 3 ‘satis1’-‘satis4’ c25-c28 

If we then wanted to recode the two negatively worded items, we could do this with a
further code command:  

MTB> code (1) 3 (3) 1 c26 c28-c30 

We can specify a range of values with the colon symbol :. For example, we could recode 
ethnic group into whites (code unchanged) and nonwhites (recoded as 2) with this symbol
as follows:  

MTB> code (3:5) 2 ‘ethnicgp’ c31 

Similarly, we could recode cases into those 40 years old or above and those below:  

MTB> code (0:39) 1 (40:99) 2 ‘age’ c32 

If we had ages which were not whole numbers and which fell between 39 and 40, such as
39.9, they would not be recoded. To avoid this problem, we would use overlapping end-
points:  

MTB> code (0:40) 1 (40:99) 2 ‘age’ c32 

In this example all people aged 40 and less would be coded as 1. Since values are recoded 
consecutively and once only, age 40 will not also be recoded as 2.  

The menu action for recoding is  

→Manip→Code DataValues…→variable(s) to be changed 
[e.g.  age]→Select [this puts the variable(s) in the box 
beneath Code datafrom columns:]→box under Into columns and 
in it type new variable  [e.g. c32]→first box under 
Original values [eg, 1:4 12]: and type first  values to be 
changed [e.g. 0:40]→first corresponding box under New: and 
in it type first new value [e.g. 1]→second box under 
Originalvalues [eg, 1:4 12]: and in it type second values 
to be changed [e.g.   
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Figure 3.4Code Data Values dialog box  

40:99] →second corresponding box under New: and in it type 
second  new value [e.g. 2] →OK 

The Code Data Values dialog box is presented in Figure 3.4.  

CHECKING RECODED VALUES AND NEWVARIABLES 

It is always good practice to check what you have done, particularly when you are
learning a new skill. So far, we have asked you to accept on trust what we have said about
recoding values. Let us now see whether some of these examples do what we have
described. To check this, we use the command print and list the columns containing the
original data and the recoded data. So, to check the original and new values of the ethnic
group variable  

MTB> code (3:5) 2 ‘ethnicgp’ c31 

we use the following command:  

MTB> print ‘ethnicgp’ c31 

The menu procedure for printing is  
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→File→Display Data…→ethnicgp→Select [this puts ethnicgp 
in  the box under Columns, constants, and matrices to 
display:] →c31→Select [this puts c31 in the box below 
Columns, constants, andmatrices to display:] →OK 

We need only ask for the receding of one case for each of the four ethnic groups to check
the operation of this command. We could, therefore, look through the data on ethnic
group and select the first representative of each category (i.e. cases 1, 2, 3, and 13) as
appropriate examples using the following copy command:  

MTB> copy ‘id’ ‘ethnicgp’ c31 c32; 
SUBC> use 1:3 13. 

The subcommand specifies the rows or cases (1 to 3 and 13) to be copied. The
identification number (‘id’) and the original ethnic code (‘ethnicgp’) for these four cases
are copied into c31 and c32 respectively. We could then recode c32 and store it as c33: 

MTB> code (3:5) 2 c32 c33 

The menu procedure for doing this is  

→Manip→Copy Columns…→id→Select [this puts id in the 
box  under Copyfrom columns:] →ethnicgp→Select→box under 
Tocolumns: and in it type c31 and c32→Use Rows…→Userows 
[eg,1:4 12]: →box under it and in this box type 1:3 
13→OK→OK 

We then print c31-c33 which gives the following output:  

As we can see, values 1 and 2 remain the same, while 3 and 13 are recoded as 2. Once
we are satisfied that the command does what we want, we can then recode the values for
all 70 cases.  

COMPUTING A NEW VARIABLE 

Sometimes we want to create a new variable. For example, we have used four items to
assess what may be slightly different aspects of job satisfaction. Rather than treat these
items as separate measures, it may be preferable and reasonable to combine them into one
index. To do this, we can use the rsum command to create a new column or variable
which is the four job satisfaction items ‘satis1’,‘satis2’, ‘satis3’ and ‘satis4’ added

ROW C31 C32 C33 

1 1 1 1 

2 2 2 2 

3 3 3 2 

4 13 4 2 
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together. In other words, this command sums specified columns across rows. Before 
doing this, however, we have to remember to recode two of the items (‘satis2’ and 
‘satis4’) because the answers to them are scored in the reverse way. The two commands,
then, which are needed for creating the new variable in c27 which we shall call ‘satis’
are:  

MTB> code (1) 5 (2) 4 (4) 2 (5) 1 ‘satis2’ ‘satis4’ 
‘satis2r’ ‘satis4r’ 
MTB> name c27 ‘satis’ 
MTB> rsum ‘satis1’ ‘satis2r’ ‘satis3’ ‘satis4r’ ‘satis’ 

The menu action for doing this is  

→Manip→Code DataValues…→satis2→Select [this puts satis2 
in  the box beneath Code data from columns:] 
→satis4→Select [this  puts satis4 in the box beneath Code 
data from columns:] →box under  Into columns: and type 
satis2r satis4r in it→first box under Originalvalues [eg, 
1:4 12]: and in it type 1→first corresponding box 
under  New: and in it type 5→second box under Original 
values [eg, 1:412]: and in it type 2→second corresponding 
box under New: and in it  type 4→third box under Original 
values [eg, 1:4 12]: and in it type 4→third corresponding 
box under New: and in it type 2→fourth box  under Original 
values [eg, 1:4 12]: and in it type 5→fourth corresponding 
box under New: and in it type 1→OK 
→Calc→Row Statistics…→Sum→box under 
Inputvariables:→satis1→Select [this puts satis1 in this 
box] →satis2r→Select→satis3→Select→satis4r→Select→box 
beside Store result in: and  in it type satis→OK 

To check that these commands do what we want, we will try them out initially on the first
three cases in the data file. To select these cases, we can use the following command:  

MTB> copy c1 c8-c11 c30-c34; 
SUBC> use 1:3. 

We could then recode c9 and c11 which for the three cases are now in c32 and c34 and 
store the recoded values in c35 and c36.  

MTB> code (1) 5 (2) 4 (4) 2 (5) 1 c32 c34-c36 

Next we sum these four values to create the new variable c37: 

MTB> rsum c31 c33 c35-37 

We then print c30-c37 which produces the following output:  
ROW C30 C31 C32 C33 C34 C35 C36 C37 
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If we look at the first case, we can see that 4 in c34 has been recoded as 2 in c36. We 
can also see that the 9 in c37 is the sum of * in c31, 4 in c33, 3 in c35 and 2 in c36.  

We can carry out these actions with the menu system by  

→Manip→Copy Columns…→c1→Select [this puts c1 in the 
box  under Copy from columns:] →c8 c9 c10 c11→Select→box 
under  To columns: and in it type c30-c34→Use Rows…
→Userows [eg,  1:4 12]: →box under it and in this box type 
1:3→OK→OK 
→Manip→Code DataValues…→c32→Select [this puts c32 in 
the  box beneath Code data from columns:] →c34→Select→box 
under  Into columns: and in it type c35 c36→type 1, 2, 4 
and 5 in the  appropriate boxes beneath Original values 
[eg, 1:4 12]: →type 5, 4, 2 and 1 in the corresponding 
boxes beneath New: →OK 
→Calc→Row Statistics…→Sum→box beside 
Inputvariables:→c31→Select [this puts c31 in this box]
→c33→Select→c35 c36→Select→box beside Store result in: 
and in it type c37→OK→File→Display Data…→c30 c31 c32 c33 
c34 c35 c36 c37→Select [this puts c30-c37 in the box 
beneath Columns, constants, andmatrices to display:] →OK 

An alternative way of summing these four items is to use the let command as follows:  

MTB> let ‘satis’=‘satis1’+‘satis2r’+‘satis3’+‘satis4r’ 

The menu action for doing this is  

→Calc→MathematicalExpressions…→type satis in the box 
beside  Variable [new or modified]:]→box beneath 
Expression: and in it  type 
(‘satis1’+‘satis2r’+‘satis3’+‘satis4r’) →OK 

Other arithmetic operations available with let are subtraction (−), multiplication (*),
division (/) and exponentiation (* *).  

MISSING DATA AND COMPUTING SCORES TOFORM NEW 
MEASURES 

This section may be difficult for some readers to follow and, if so, can be skipped. It
describes how new measures can be created by adding scores together such as the
responses to the four job satisfaction questions.  

As we have seen, the answer to the first job satisfaction item for the first subject and to

1 1 * 3 4 4 3 2 9 

2 2 * * 2 3 * 3 5 

3 3 4 4 4 1 2 5 15 
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the first and second job satisfaction items for the second subject are missing. In research,
it is quite common for some scores to be missing. Participants may omit to answer
questions, they may circle two different answers to the same question, the experimenter
may forget to record a response and so on. It is important to consider carefully how you
are going to deal with missing data. If many of the data for one particular variable are
missing, this suggests that there are problems with its measurement which need to be
sorted out. Thus, for example, it may be a question which does not apply to most people
in which case it is best omitted. If many scores for an individual are missing, it is most
probably best to omit this person from the sample since there may be problems with the
way in which these data were collected. Thus, for example, it could be that the participant
was not paying attention to the task at hand.  

When computing scores to form a new measure, a rule of thumb is sometimes applied
to the treatment of missing data such that if 10 per cent or more of them are missing for
that index, the index itself is then defined as missing for that subject. If we applied this
principle to the two subjects in this case, no score for job satisfaction would be computed
for them, although they would have scores for job routine and autonomy. To operate this
rule, we would first have to count the number of missing values to see whether they
exceeded 10 per cent. We would then have to set the job satisfaction total score as
missing for subjects with more than this number of items missing, which in this case is if
one or more of the items are absent.  

When computing scores to form an index, we may want to form an average total score
by dividing the total score by the number of available individual scores. One such
situation is where we have a variable which is made up of more than ten items and we
want to assign it as missing when the scores for 10 per cent or more of its items are not
available. Suppose we have a variable which is made up of 100 items. If ten or more of
the scores for these items are missing, this variable will be coded as zero. If nine or fewer
of them are missing, we have to take account of the fact that the total score may be based
on numbers of items ranging from ninety-one to 100. We can control for this by using the 
average rather than the total score, which is obtained by dividing the total score by the
number of items for which data are available. One advantage of doing this is that the
averaged scores now correspond to the answers on the Job Survey questionnaire, so that
an average score of 4.17 on job satisfaction means that that person generally answers
‘agree’ to the job-satisfaction items.  

To illustrate how this can be done, we will use the four job-satisfaction items. With 
only four items, we cannot use a cut-off point of 10 per cent for exclusion as missing.
Therefore, we will adopt a more lenient criterion of 50 per cent. If 50 per cent or more
(i.e. two or more) of the scores for the job-satisfaction items are missing, we will code 
that variable for subjects as missing.  

We first count the number of valid or non-missing values in each row for the four 
items using the rn command and store this number in c27 which we shall call 
‘nvsatis’ (for number of valid job-satisfaction items):  

MTB> name c27 ‘nvsatis’ 
MTB> rn ‘satis1’ ‘satis2r’ ‘satis3’ ‘satis4r’ ‘nvsatis’ 

The menu system for doing this is  
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→Calc→Row Statistics…→Ntotal→box beside 
Inputvariables:→satis1→Select [this puts satis1 in this 
box] →satis2r→Select→satis3→Select→satis4r→Select→box 
beside Store result in: and  in it type nvsatis→OK 

With the code command we then recode ‘nvsatis’ as missing (*) for cases which have 
two, one or no valid values and store these in c28 which we shall call ‘cvsatis’ (for the 
criterion of valid job-satisfaction items):  

MTB> name c28 ‘cvsatis’ 
MTB> code (0:2) * ‘nvsatis’ ‘cvsatis’ 

The menu procedure for doing this is  

→Manip→Code DataValues…→nvsatis→Select [this puts nvsatis 
in the box under Code data from columns:] →box under 
Intocolumns: and in it type cvsatis→first box under 
Original values [eg,1:4 12]: and in it type 0:2→first 
corresponding box under New: and in  it type *→OK 

Next we sum with the rsum command the four job-satisfaction items and put these into 
c29 which we shall call ‘ssatis’ (for sum of job-satisfaction items):  

MTB> name c29 ‘ssatis’ 
MTB> rsum ‘satis1’ ‘satis2r’ ‘satis3’ ‘satis4r’ ‘ssatis’ 

The menu action for this is  

→Calc→Row Statistics…→Sum→box beside 
Inputvariables:→satis1→Select [this puts satis1 in this 
box] →satis2r→Select→satis3→Select→satis4r→Select→box 
beside Store result in: and  in it type ssatis→OK 

In other words, a mean job-satisfaction score will only be computed for cases on the basis
of valid answers to three or four job-satisfaction items.  

We use the let command to divide the sum of the job-satisfaction items (‘ssatis’) by 
the criterion of valid job-satisfaction items (‘cvsatis’) to give the mean job-satisfaction 
score which we put in c30 and which we name ‘msatis’.  

MTB> name c30 ‘msatis’ 
MTB> let ‘msatis’=‘ssatis’/‘cvsatis’ 

The menu procedure for doing this is  

→Calc→MathematicalExpressions…→type msatis in the 
box  beside Variable [new or modified]: →box under 
Expression: and in it  type ‘ssatis’/‘cvsatis’→OK 
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Finally, if we want to convert this mean score back into a total score (which takes into
account numbers of valid scores that might vary between three and four), we use the let
command to multiply the mean score by four and store it in c31 which we shall call 
‘tsatis’ (for total job-satisfaction score):  

MTB> name c31 ‘tsatis’ 
MTB> let ‘tsatis’=‘msatis’ * 4 

The menu procedure for doing this is  

→Calc→MathematicalExpressions…→type tsatis in the 
box  beside Variable [new or modified]: →box beneath 
Expression: and in  it type ‘msatis’ * 4→OK 

To check that these commands have done what we wanted them to do we will print
‘satis1’, ‘satis2r’, ‘satis3’, ‘satis4r’, ‘nvsatis’, ‘cvsatis’, ‘ssatis’,‘msatis’ and ‘tsatis’
for the first three cases as shown below:  

Because the last column (tsatis) could not fit on to the screen, it is printed as a row. 
We can see that for the first two cases who have missing values, a mean and total job
satisfaction score have been worked out for the first case who has only one missing job-
satisfaction item score but not for the second case who has two such missing scores.  

We need to save ‘msatis’ on our worksheet and we also have to calculate and save the 
mean job-autonomy and job-routine scores for subsequent analyses.  

If we want to check whether these items have missing values which we need to take 
into account or values which do not constitute valid scores such as 6 or 7, we would use
the tally command to give us the frequencies of the values for those variables. We would
use the following command to give these frequencies for the job-autonomy items:  

MTB> tally ‘autonom1’—‘autonom4’ 

The menu action for this is  

→Stat→Tables→Tally…→autonom1 autonom2 
autonom3autonom4→Select [this puts autonom1-autonom4 in the 
box under  Variables:] →OK 

The options available on the Stat menu are shown in Figure 3.5.  

ROW satis1 satis2r satis3 satis4r nvsatis cvsatis ssatis msatis 
1 * 3 4 2 3 3 9 3.00 

2 * * 2 3 2 * 5 * 

3 4 2 4 5 4 4 15 3.75 

>tsatis   

12 * 15   
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Figure 3.5Stat menu options  

The output from this command is shown below:  

As we can see, there are no missing or invalid values for these items and that there was
no ‘strongly agree’ response (coded as 5) for the third and fourth items.  

When you no longer need variables, you may find it more convenient to delete them
with the erase command. For example, once we have created a composite job-satisfaction 
score such as ‘msatis’ or ‘tsatis’, it is unlikely that we will need the variables that we
used to produce it such as ‘nvsatis’, ‘cvsatis’ and ‘ssatis’. Consequently, we could erase 
these as follows  

MTB> erase ‘nvsatis’ ‘cvsatis’ ‘ssatis’ 

The menu action for doing this is  

autonom1 COUNT autonom2 COUNT autonom3 COUNT autonom4 COUNT 
1 8 1 12 1 13 1 11 

2 34 2 31 2 25 2 37 

3 21 3 17 3 27 3 17 

4 5 4 7 4 5 4 5 

5 2 5 3 N= 70 N= 70 

N= 70 N= 70   
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→Manip→Erase variables…→nvsatis→Select [this puts nvsatis 
in  the box under Columns, constants, and matrices to 
erase:] →cvsatis→Select→ssatis→Select→OK 

Indeed, you may find it more useful to create a new worksheet which just contains the
variables we want to analyse. For example, once we have formed the new variables of
mean job satisfaction (‘msatis’), mean job autonomy (‘mautonom’) and mean job 
routine (‘mroutine’), we could delete the variables we used to create them including the
individual items such as ‘satis1’ and ‘satis2’. We could save these mean scores together
with the remaining variables of the Job Survey such as ‘ethnicgp’ and ‘gender’ in a new 
worksheet which we could call ‘jssd.mtw’ (for job scored survey data) and use this file 
in subsequent analyses.  

Aggregate measures of job satisfaction, job autonomy and job routine used in
subsequent chapters have been based on summing the four items within each scale and
assigning the summed score as missing where 10 per cent or more of the items were
missing. Since two of the seventy cases in the Job Survey had one or two of the answers
to the individual job satisfaction items missing, the number of cases for whom a summed
job satisfaction score could be computed is sixty-eight. The summed scores for job 
satisfaction, job autonomy and job routine have been called ‘satis’,‘autonom’ and 
‘routine’ respectively.  

HELP SYSTEM 

Minitab has a Help system which you may like to use to avoid having to refer to a book
like this one or to find out more about the program. The Help systems are meant to be
self-explanatory and so you should be able to learn to use them yourself after a little 
experience. Consequently, only the way to access the Help system will be described here. 

In Release 7 of Minitab, type help after the MTB> prompt to find out how Help is 
organised. Basically, you can obtain general information about how Minitab works by
typing help overview and details of the commands available by typing help commands. 
If you want help on a particular command such as read, type help followed by the name 
of the command.  

In Release 8 you can obtain information about Minitab as follows. For example, for 
information about the read command, type help read. The information will quickly 
scroll or move down the screen. To read it once it has stopped, move up it using either
the cursor keys or the mouse. The cursor key with Pg Dn on it will take you down a page
or a screenful at a time while the key with Pg Up on it will take you up a screenful at a
time. To move through the text with the mouse, move the cursor to the bottom of the
scroll bar on the right-hand side if you want to go down and to the top if you want to go 
up. Alternatively, you can access a window of Help by either pressing the H key while 
holding down Alt or pressing the F1 function key. The function keys are usually on either
the top of the keyboard or the left-hand side. To remove this window, press Return.  

In the Windows version, there are three ways of accessing Help. In the Session
window you may type help and the name of the command with which you want help. In a
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dialog box, select the Help or ? option in the dialog box. When not in a dialog box, you 
may obtain help by pressing F1 when you will be presented with the Contents of the 
Help system. Alternatively, you may select the Help option from the menu bar, when you 
may then choose from a drop-down menu of Contents,Getting Started…,How 
doI…,Search for Help on…andHow to Use Help. Ignore AboutMinitab which simply 
displays the Minitab title page.  

There are a number of different routes for selecting these options. The Contents option 
also contains Using Help,Getting Started and How doI…? which are the same as How 
to Use Help,Getting Started…and HowdoI…. When you select any of these options, a 
second horizontal menu bar will appear below the one containing the Help option. This 
menu bar will always offer Contents,Search,Back and History. In addition, when the 
How to Use Help option is chosen, a further Glossary menu bar option is offered. The 
Search option is the same as Search for Help on….  

The Search or Search for Help on…option enables you to type in a topic you want
help on or to choose one from those listed. The Back option takes you back to the 
Contents option when you have chosen the Contents option. The History option keeps a 
record of the Help options you have selected. The Glossary option offers you 
information on a number of topics.  

EXERCISES 

1. What is the appropriate Minitab command for selecting men and women who are of
African origin in the Job Survey data?  

2. Write a Minitab command to select women of Asian or West Indian origin who are
25 years or younger in the Job Survey data.  

3. Recode the Job Survey variable ‘skill’ so that there are only two categories
(unskilled/semi-skilled vs fairly/highly skilled).  

4. Recode the variable ‘income’ into three groups of those earning less than £5,000, 
between £5,000 and under £10,000, and £10,000 and under £50,000.  

5. Using the arithmetic operator *, express the variable ‘weeks’ as ‘days’. In other 
words, convert the number of weeks into the number of days.  
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Chapter 4  
Concepts and their measurement  

Concepts form a linchpin in the process of social research. Hypotheses contain concepts
which are the products of our reflections on the world. Concepts express common
elements in the world to which we give a name. We may notice that some people have an
orientation in which they dislike people of a different race from their own, often
attributing to other races derogatory characteristics. Still others are highly supportive of
racial groups, perhaps seeing them as enhancing the ‘host’ culture through instilling new 
elements into it and hence enriching it. Yet others are merely tolerant, having no strong
views one way or the other about people of other racial groups. In other words, we get a
sense that people exhibit a variety of positions in regard to racial groups. We may want to
suggest that there is a common theme to these attitudes, even though the attitudes
themselves may be mutually antagonistic. What seems to bind these dispositions together
is that they reflect different positions in regard to ‘racial prejudice’. In giving the various 
dispositions that may be held regarding persons of another race a name, we are treating it
as a concept, an entity over and above the observations about racial hostility and
supportiveness that prompted the formulation of a name for those observations. Racial
prejudice has acquired a certain abstractness, so that it transcends the reflections that
prompted its formulation. Accordingly, the concept of racial prejudice becomes
something that others can use to inform their own reflections about the social world. In
this way, hypotheses can be formulated which postulate connections between racial
prejudice and other concepts, such as that it will be related to social class or to
authoritarianism.  

Once formulated, a concept and the concepts with which it is purportedly associated,
such as social class and authoritarianism, will need to be operationally defined, in order 
for systematic research to be conducted in relation to it. An operational definition
specifies the procedures (operations) that will permit differences between individuals in
respect of the concept(s) concerned to be precisely specified. What we are in reality
talking about here is measurement, that is, the assignment of numbers to the units of
analysis—be they people, organizations, or nations—to which a concept refers. 
Measurement allows small differences between units to be specified. We can say that
someone who actively speaks out against members of other races is racially prejudiced,
while someone who actively supports them is the obverse of this, but it is difficult to
specify precisely the different positions that people may hold in between these extremes.
Measurement assists in the specification of such differences by allowing systematic
differences between people to be stipulated.  

In order to provide operational definitions of concepts, indicators are required which 
will stand for those concepts. It may be that a single indicator will suffice in the
measurement of a concept, but in many instances it will not. For example, would it be



sufficient to measure ‘religious commitment’ by conducting a survey in which people are
asked how often they attend church services? Clearly it would not, since church
attendance is but one way in which an individual’s commitment to his or her religion may 
be expressed. It does not cover personal devotions, behaving as a religious person should
in secular activities, being knowledgeable about one’s faith, or how far they adhere to 
central tenets of faith (Glock and Stark, 1965). These reflections strongly imply that more
than one indicator is likely to be required to measure many concepts; otherwise our
findings may be open to the argument that we have only tapped one facet of the concept
in question.  

If more than one indicator of a concept can be envisaged, it may be necessary to test 
hypotheses with each of the indicators. Imagine a hypothesis in which ‘organizational 
size’ was a concept. We might measure (i.e. operationally define) this concept by the 
number of employees in a firm, its turnover or its net assets. While these three
prospective indicators are likely to be inter-connected, they will not be perfectly related
(Child, 1973), so that hypotheses about organizational size may need to be tested for each
of the indicators. Similarly, if religious commitment is to be measured, it may be
necessary to employ indicators which reflect all of the facets of such commitment in
addition to church attendance. For example, individuals may be asked how far they
endorse central aspects of their faith in order to establish how far they adhere to the
beliefs associated with their faith.  

When questionnaires are employed to measure concepts, as in the case of religious
commitment, researchers often favour multiple-item measures. In the Job Survey data,
‘satis’ is an example of a multiple-item measure. It entails asking individuals their
positions in relation to a number of indicators, which stand for one concept. Similarly,
there are four indicators of both ‘autonom’ and ‘routine’. One could test a hypothesis 
with each of the indicators. However, if one wanted to use the Job Survey data to
examine a hypothesis relating to ‘satis’ and ‘autonom’, each of which contains four 
questions, sixteen separate tests would be required. The procedure for analysing such
multiple-item measures is to aggregate each individual’s response in relation to each 
question and to treat the overall measure as a scale in relation to which each unit of
analysis has a score. In the case of ‘satis’, ‘autonom’ and ‘routine’, the scaling 
procedure is Liken Scaling, which is a popular approach to the creation of multiple-item 
measures. With Likert scaling, individuals are presented with a number of statements
which appear to relate to a common theme; they then indicate their degree of agreement
or disagreement on a five- or seven-point range. The answer to each constituent question
(often called an item) is scored, for example from 1 for Strongly Disagree to 5 for
Strongly Agree if the range of answers is in terms of five points. The individual scores
are added up to form an overall score for each respondent. Multiple-item scales can be 
very long; the four ‘satis’ questions are taken from an often-used scale developed by 
Brayfield and Rothe (1951) which comprised eighteen questions.  

These multiple-item scales are popular for various reasons. First, a number of items is
more likely to capture the totality of a broad concept like job satisfaction than a single
question. Second, we can draw finer distinctions between people. The ‘satis’ measure 
comprises four questions which are scored from 1 to 5, so that respondents’ overall 
scores can vary between 4 and 20. If only one question was asked, the variation would be
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between 1 and 5—a considerably narrower range of potential variation. Third, if a
question is misunderstood by a respondent, when only one question is asked that
respondent will not be appropriately classified; if a few questions are asked, a
misunderstood question can be offset by those which are properly understood.  

It is common to speak of measures as variables, to denote the fact that units of analysis 
differ in respect to the concept in question. If there is no variation in a measure, it is a
constant. It is fairly unusual to find concepts whose measures are constants. On the
whole, the social sciences are concerned with variables and with expressing and
analysing the variation that variables exhibit. When univariate analysis is carried out, we 
want to know how individuals are distributed in relation to a single variable. For
example, we may want to know how many cases can be found in each of the categories or
levels of the measure in question, or we may be interested in what the average response
is, and so on. With bivariate analysis we are interested in the connections between two 
variables at a time. For example, we may want to know whether the variation in ‘satis’ is 
associated with variation in another variable like ‘autonom’ or whether men and women 
differ in regard to ‘satis’. In each case, it is variation that is of interest.  

TYPES OF VARIABLE 

One of the most important features of an understanding of statistical operations is an
appreciation of when it is permissible to employ particular tests. Central to this
appreciation is an ability to recognise the different forms that variables take, because 
statistical tests presume certain kinds of variable, a point that will be returned to again
and again in later chapters.  

The majority of writers on statistics draw upon a distinction developed by Stevens 
(1946) between nominal, ordinal and interval/ratio scales or levels of measurement. First,
nominal (sometimes called categorical) scales entail the classification of individuals in 
terms of a concept. In the Job Survey data, the variable ‘ethnicgp’, which classifies 
respondents in terms of five categories—White, Asian, West Indian, African and Other—
is an example of a nominal variable. Individuals can be allocated to each category, but
the measure does no more than this and there is not a great deal more that we can say
about it as a measure. We cannot order the categories in any way, for example.  

This inability contrasts with ordinal variables, in which individuals are categorized but 
the categories can be ordered in terms of ‘more’ and ‘less’ of the concept in question. In 
the Job Survey data, ‘skill’, ‘prody’ and‘qual’ are all ordinal variables. If we take the 
first of these, ‘skill’, we can see that people are not merely categorized into each of four 
categories—highly skilled, fairly skilled, semi-skilled and unskilled—since we can see 
that someone who is fairly skilled is at a higher point on the scale than someone who is
semi-skilled. We cannot make the same inference with ‘ethnicgp’ since we cannot order 
the categories that it comprises. Although we can order the categories comprising ‘skill’,
we are still limited in the things that we can say about it. For example, we cannot say that
the skill difference between being highly skilled and fairly skilled is the same as the skill
difference between being fairly skilled and semi-skilled. All we can say is that those rated 
as highly skilled have more skill than those rated as fairly skilled, who in turn have
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greater skill than the semi-skilled, and so on. Moreover, in coding semi-skilled as 2 and 
highly skilled as 4, we cannot say that people rated as highly skilled are twice as skilled
as those rated as semi-skilled. In other words, care should be taken in attributing to the
categories of an ordinal scale an arithmetic quality that the scoring seems to imply.  

With interval/ratio variables, we can say quite a lot more about the arithmetic 
qualities. In fact, this category subsumes two types of variable—interval and ratio. Both 
types exhibit the quality that differences between categories are identical. For example,
someone aged 20 is one year older than someone aged 19, and someone aged 50 is one
year older than someone aged 49. In each case, the difference between the categories is
identical—one year. A scale is called an interval scale because the intervals between 
categories are identical. Ratio measures have a fixed zero point. Thus ‘age’,‘absence’
and ‘income’ have logical zero points. This quality means that one can say that 
somebody who is aged 40 is twice as old as someone aged 20. Similarly, someone who
has been absent from work six times in a year has been absent three times as often as
someone who has been absent twice. However, the distinction between interval and ratio
scales is often not examined by writers because in the social sciences, true interval
variables frequently are also ratio variables (e.g. income, age). In this book, the term
interval variable will sometimes be employed to embrace ratio variables as well.  

Interval/ratio variables are recognized to be the highest level of measurement because 
there is more that can be said about them than with the other two types. Moreover, a
wider variety of statistical tests and procedures is available to interval/ratio variables. It
should be noted that if an interval/ ratio variable like age is grouped into categories—
such as 20–29, 30–39, 40–49, 50–59 and so on—it becomes an ordinal variable. We 
cannot really say that the difference between someone in the 40–49 group and someone 
in the 50–59 group is the same as the difference between someone in the 20–29 group 
and someone in the 30–39 group, since we no longer know the points within the 
groupings at which people are located. On the other hand, such groupings of individuals
are sometimes useful for the presentation and easy assimilation of information. It should
be noted too, that the position of dichotomous variables within the three-fold 
classification of types of variable is somewhat ambiguous. With such variables, there are
only two categories, such as male and female for the variable gender. A dichotomy is
usually thought of as a nominal variable, but sometimes it can be considered an ordinal
variable. For example, when there is an inherent ordering to the dichotomy, such as
passing and failing, the characteristics of an ordinal variable seem to be present.  

Strictly speaking, measures like ‘satis’, ‘autonom’ and ‘routine’, which derive from 
multiple-item scales, are ordinal variables. For example, we do not know whether the
difference between a score of 20 on the ‘satis’ scale and a score of 18 is the same as the 
difference between 10 and 8. This poses a problem for researchers since the inability to
treat such variables as interval means that methods of analysis like correlation and
regression (see Chapter 8), which are both powerful and popular, could not be used in 
their connection since these techniques presume the employment of interval variables. On
the other hand, most of the multiple-item measures created by researchers are treated by 
them as though they are interval variables because these measures permit a large number
of categories to be stipulated. When a variable allows only a small number of ordered
categories, as in the case of ‘commit’, ‘prody’, ‘skill’ and ‘qual’ in the Job Survey data, 
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each of which comprises only either four or five categories, it would be unreasonable in
most analysts’ eyes to treat them as interval variables. When the number of categories is
considerably greater, as in the case of ‘satis’, ‘autonom’ and ‘routine’, each of which 
can assume sixteen categories from 5 to 20, the case for treating them as interval
variables is more compelling.  

Certainly, there seems to be a trend in the direction of this more liberal treatment of
multiple-item scales as having the qualities of an interval variable. On the other hand,
many purists would demur from this position. Moreover, there does not appear to be a
rule of thumb which allows the analyst to specify when a variable is definitely ordinal
and when interval. None the less, in this book it is proposed to reflect much of current
practice and to treat multiple-item measures such as ‘satis’, ‘autonom’ and ‘routine’ as 
though they were interval scales. Labovitz (1970) goes further in suggesting that almost
all ordinal variables can and should be treated as interval variables. He argues that the
amount of error that can occur is minimal, especially in relation to the considerable
advantages that can accrue to the analyst as a result of using techniques of analysis like
correlation and regression which are both powerful and relatively easy to interpret.
However, this view is controversial (Labovitz, 1971) and whereas many researchers
would accept the treatment of variables like ‘satis’ as interval, they would cavil about 
variables like ‘commit’, ‘skill’, ‘prody’ and ‘qual’. Table 4.1 summarizes the main 
characteristics of the types of scale discussed in this section, along with examples from
the Job Survey data.  

In order to help with the identification of whether variables should be classified as 
nominal, ordinal, dichotomous, or interval/ratio, the steps articulated in Figure 4.1 can be 
followed. We can take some of the job survey  

Table 4.1 Types of variable  

Type Description 

Example 
inJob Survey 
data 

Nominal  A classification of objects (people, firms, nations, etc.) into 
discrete categories.  

ethnicgp 

Ordinal  The categories associated with a variable can be rank-ordered. 
Objects can be ordered in terms of a criterion from highest to 
lowest.  

commit 
skill 
prody 
qual 

Interval (a)  With ‘true’ interval variables, categories associated with a 
variable can be rank-ordered, as with an ordinal variable, but the 
distances between categories are equal.  

income 
age 
years 
absence 

Interval (b)  Variables which strictly speaking are ordinal, but which have a 
large number of categories, such as multiple-item questionnaire 
measures. These variables are assumed to have similar properties 

satis 
routine 
autonom 
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Figure 4.1 Deciding the nature of a variable  

variables to illustrate how this table can be used. First, we can take ‘skill’. This variable 
has more than two categories; the distances between the categories are not equal; the
categories can be rank ordered; therefore the variable is ordinal. Now income. This 
variable has more than two categories; the distances between them are equal; therefore
the variable is interval/ratio. Now gender. This variable does not have more than two 
categories; therefore it is dichotomous. Finally, we can take ‘ethnicgp’. This variable has 
more than two categories; the distances between the categories are not equal; the
categories cannot be rank ordered; therefore, the variable is nominal.  

to ‘true’ interval variables.  

Dichotomous A variable that comprises only two categories.  gender 
attend 
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DIMENSIONS OF CONCEPTS 

When a concept is very broad, serious consideration needs to be given to the possibility
that it comprises underlying dimensions which reflect different aspects of the concept in
question. Very often it is possible to specify those dimensions on a priori grounds, so that 
possible dimensions are established in advance of the formation of indicators of the
concept. There is much to recommend deliberation about the possibility of such 
underlying dimensions, since it encourages systematic reflection on the nature of the
concept that is to be measured.  

Lazarsfeld’s (1958) approach to the measurement of concepts viewed the search for 
underlying dimensions as an important ingredient. Figure 4.2 illustrates the steps that he 
envisaged. Initially, the researcher forms an image from a theoretical domain. This image
reflects a number of common characteristics, as in the previous example of job
satisfaction which denotes the tendency for people to have a distinctive range of
experiences in relation to their jobs. Similarly, Hall (1968) developed the idea of
‘professionalism’ as a consequence of his view that members of professions have a
distinctive constellation of attitudes to the nature of their work. In each case, out of this
imagery stage, we see a concept starting to form. At the next stage, concept specification
takes place, whereby the concept is developed to show whether it comprises different
aspects or dimensions. This stage allows the complexity of the concept to be recognized.
In Hall’s case, five dimensions of professionalism were proposed:  

1The use of the professional organization as a major reference This means that the 
professional organization and members of the profession are the chief source of ideas 
and judgements for the professional in the context of his or her work.  

2A belief in service to the public According to this aspect, the profession is regarded as 
indispensable to society.  

3Belief in self-regulation This notion implies that the work of a professional can and 
should only be judged by other members of the profession, because only they are 
qualified to make appropriate judgements.  

4A sense of calling to the field The professional is someone who is dedicated to his or her 
work and would probably want to be a member of the profession even if material 
rewards were less.  

5Autonomy This final dimension suggests that professionals ought to be able to make 
decisions and judgements without pressures from either clients, the organizations in 
which they work, or any other non-members of the profession.  

Not only is the concept specification stage useful in order to reflect and to capture the full
complexity of concepts, but it also serves as a means of bridging the general formulation
of concepts and their measurement, since the establishment of dimensions reduces the
abstractness of concepts.  

The next stage is the selection of indicators, in which the researcher searches for
indicators of each of the dimensions. In Hall’s case, ten indicators of each dimension
were selected. Each indicator entailed a statement in relation to which respondents had to
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answer whether they believed that it agreed Very Well, Well, Poorly, or Very Poorly in
the light of how they felt and behaved as members of their profession. A neutral category  

 

Figure 4.2 Concepts, dimensions and measurements  
Sources: Lazarsfeld (1958); Hall (1968); Snizek (1972)  

was also provided. Figure 4.2 provides both the five dimensions of professionalism and
one of the ten indicators for each dimension. Finally, Lazarsfeld proposed that the
indicators need to be brought together through the formationof indices or scales. This 
stage can entail either of two possibilities. An overall scale could be formed which
comprised all indicators relating to all dimensions. However, more frequently, separate
scales are formulated for each dimension. Thus, in Hall’s research, the indicators relating 
to each dimension were combined to form scales, so that we end up with five separate
scales of professionalism. As Hall shows, different professions exhibit different ‘profiles’
in respect of these dimensions—one may emerge as having high scores for dimensions 2, 
3, and 5, moderate for 1, and low for 4, whereas other professions will emerge with
different combinations.  

In order to check whether the indicators bunch in the ways proposed by an a priori
specification of dimensions, factor analysis, a technique that will be examined in Chapter 
11, is often employed. Factor analysis allows the researcher to check whether, for
example, all of the ten indicators developed to measure ‘autonomy’ are really related to 
each other and not to indicators that are supposed to measure other dimensions. We might
find that an indicator that is supposed to measure autonomy seems to be associated with
many of the various indicators of ‘belief in service to the public’, while one or two of the 
latter might be related to indicators which are supposed to denote ‘belief in self-
regulation’, and so on. In fact, when such factor analysis has been conducted in relation 
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to Hall’s professionalism scale, the correspondence between the five dimensions and their
putative indicators has been shown to be poor (Snizek, 1972; Bryman, 1985). However,
the chief point that should be recognized in the foregoing discussion is that the
specification of dimensions for concepts is often an important step in the development of
an operational definition.  

Some measurement is carried out in psychology and sociology with little (if any) 
attention to the quest for dimensions of concepts. For example, the eighteen-item measure 
of job satisfaction developed by Brayfield and Rothe (1951), which was mentioned
above, does not specify dimensions, though it is possible to employ factor analysis to
search for de facto ones. The chief point that can be gleaned from this section is that the 
search for dimensions can provide an important aid to understanding the nature of
concepts and that when established on the basis of a priori reasoning can be an important 
step in moving from the complexity and abstractness of many concepts to possible
measures of them.  

VALIDITY AND RELIABILITY OF MEASURES 

It is generally accepted that when a concept has been operationally defined, in that a
measure of it has been proposed, the ensuing measurement device should be both reliable
and valid.  

Reliability 

The reliability of a measure refers to its consistency. This notion is often taken to entail
two separate aspects—external and internal reliability. External reliability is the more 
common of the two meanings and refers to the degree of consistency of a measure over
time. If you have kitchen scales which register different weights every time the same bag
of sugar is weighed, you would have an externally unreliable measure of weight, since
the amount fluctuates over time in spite of the fact that there should be no differences
between the occasions that the item is weighed. Similarly, if you administered a
personality test to a group of people, re-administered it shortly afterwards and found a 
poor correspondence between the two waves of measurement, the personality test would 
probably be regarded as externally unreliable because it seems to fluctuate. When
assessing external reliability in this manner, that is by administering a test on two
occasions to the same group of subjects, test-retest reliability is being examined. We 
would anticipate that people who scored high on the test initially will also do so when
retested; in other words, we would expect the relative position of each person’s score to 
remain relatively constant. The problem with such a procedure is that intervening events
between the test and the retest may account for any discrepancy between the two sets of
results. For example, if the job satisfaction of a group of workers is gauged and three
months later is re-assessed, it might be found that in general respondents exhibit higher 
levels of satisfaction than previously. It may be that in the intervening period they have
received a pay increase or a change to their working practices or some grievance that had
been simmering before has been resolved by the time job satisfaction is retested. Also, if
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the test and retest are too close in time, subjects may recollect earlier answers, so that an
artificial consistency between the two tests is created. However, test-retest reliability is 
one of the main ways of checking external reliability.  

Internal reliability is particularly important in connection with multiple-item scales. It 
raises the question of whether each scale is measuring a single idea and hence whether
the items that make up the scale are internally consistent. A number of procedures for
estimating internal reliability exist. One of the most common is split-half reliability. The 
researcher divides the items in a scale into two groups (either randomly or on an odd-
even basis) and examines the relationship between respondents’ scores for the two 
halves. Thus, the Brayfield-Rothe job satisfaction measure, which contains eighteen 
items, would be divided into two groups of nine, and the relationship between
respondents’ scores for the two halves would be estimated. A correlation coefficient is 
then generated (see Chapter 8), which varies between 0 and 1 and the nearer the result is 
to 1—and preferably at or over 0.8–the more internally reliable is the scale. This can be
done in Minitab through the correlation procedure which is described in Chapter 8. 
Other methods for examining internal reliability exist and are described in Zeller and 
Carmines (1980; see also Cramer, 1994b, chapter 12). Two other aspects of reliability,
that is in addition to internal and external reliability, ought to be mentioned. First, when
material is being coded for themes, the reliability of the coding scheme should be tested.
This problem can occur when a researcher needs to code people’s answers to interview 
questions that have not been pre-coded, in order to search for general underlying themes 
to answers or when a content analysis of newspaper articles is conducted to elucidate
ways in which news topics tend to be handled. When such exercises are carried out, more
than one coder should be used and an estimate of inter-coder reliability should be 
provided to ensure that the coding scheme is being consistently interpreted by coders.
This exercise would entail gauging the degree to which coders agree on the coding of
themes deriving from the material being examined. Second, when the researcher is
classifying behaviour an estimate of inter-observer reliability should be provided. For 
example, if aggressive behaviour is being observed, an estimate of inter-observer 
reliability should be presented to ensure that the criteria of aggressiveness are being
consistently interpreted. Methods of bivariate analysis (see Chapter 8) can be used to 
measure inter-coder and inter-observer reliability. A discussion of some methods which 
have been devised specifically for the assessment of inter-coder or inter-observer 
reliability can be found in Cramer (1994b).  

Validity 

The question of validity draws attention to how far a measure really measures the concept
that it purports to measure. How do we know that our measure of job satisfaction is really
getting at job satisfaction and not at something else? At the very minimum, a researcher
who develops a new measure should establish that it has face validity, that is, that the 
measure apparently reflects the content of the concept in question.  

The researcher might seek also to gauge the concurrent validity of the concept. Here 
the researcher employs a criterion on which people are known to differ and which is
relevant to the concept in question. For example, some people are more often absent from
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work (other than through illness) than others. In order to establish the concurrent validity
of our job satisfaction measure we may see how far people who are satisfied with their
jobs are less likely than those who are not satisfied to be absent from work. If a lack of
correspondence was found, such as frequent absentees being just as likely to be satisfied
as not satisfied, we might be tempted to question whether our measure is really
addressing job satisfaction. Another possible test for the validity of a new measure is
predictive validity, whereby the researcher uses a future criterion measure, rather than a
contemporaneous one as in the case of concurrent validity. With predictive validity, the
researcher would take later levels of absenteeism as the criterion against which the 
validity of job satisfaction would be examined.  

Some writers advocate that the researcher should also estimate the construct validity of 
a measure (Cronbach and Meehl, 1955). Here, the researcher is encouraged to deduce
hypotheses from a theory that is relevant to the concept. For example, drawing upon ideas
about the impact of technology on the experience of work (e.g. Blauner, 1964), the
researcher might anticipate that people who are satisfied with their jobs are less likely to
work on routine jobs; those who are not satisfied are more likely to work on routine jobs.
Accordingly, we could investigate this theoretical deduction by examining the
relationship between job satisfaction and job routine. On the other hand, some caution is
required in interpreting the absence of a relationship between job satisfaction and job
routine in this example. First, the theory or the deduction that is made from it may be
faulty. Second, the measure of job routine could be an invalid measure of the concept.  

All of the approaches to the investigation of validity that have been discussed up to
now are designed to establish what Campbell and Fiske (1959) refer to as convergent 
validity. In each case, the researcher is concerned to demonstrate that the measure
harmonizes with another measure. Campbell and Fiske argue that this process usually
does not go far enough in that the researcher should really be using different measures of
the same concept to see how far there is convergence. For example, in addition to
devising a questionnaire-based measure of job routine, a researcher could use observers
to rate the characteristics of jobs in order to distinguish between degrees of routineness in
jobs in the firm (e.g. Jenkins et al., 1975). Convergent validity would entail 
demonstrating a convergence between the two measures, although it is difficult to
interpret a lack of convergence since either of the two measures could be faulty. Many of
the examples of convergent validation that have appeared since Campbell and Fiske’s 
(1959) article have not involved different methods, but have employed different
questionnaire research instruments (Bryman, 1989). For example, two questionnaire-
based measures of job routine might be used, rather than two different methods.
Campbell and Fiske went even further in suggesting that a measure should also exhibit
discriminant validity. The investigation of discriminant validity implies that one should 
also search for low levels of correspondence between a measure and other measures
which are supposed to represent other concepts. Although discriminant validity is an
important facet of the validity of a measure, it is probably more important for the student
to focus upon the various aspects of convergent validation that have been discussed. In
order to investigate both the various types of convergent validity and discriminant
validity, the various techniques covered in Chapter 8, which are concerned with 
relationships between pairs of variables, can be employed.  
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EXERCISES 

1. Which of the following answers is true? A Likert scale is (a) a test for validity; (b)
an approach to generating multiple-item measures; (c) a test for reliability; or (d) a
method for generating dimensions of concepts?  

2. When operationalizing a concept, why might it be useful to consider the possibility
that it comprises a number of dimensions?  

3. Consider the following questions which might be used in a social survey about
people’s drinking habits and decide whether the variable is nominal, ordinal,
interval/ratio or dichotomous:  

a. Do you ever consume alcoholic drinks?  
Yes __  
No __ (go to question 5)  
b. If you have ticked Yes to the previous question, which of the following 

alcoholic drinks do you consume most frequently (tick one category only)?  
Beer __  
Spirits __  
Wine __  
Liquors __  
Other __  
c. How frequently do you consume alcoholic drinks? Tick the answer that 

comes closest to your current practice.  
Daily __  
Most days __  
Once or twice a week __  
Once or twice a month __  
A few times a year __  
Once or twice a year __  
d. How many units of alcohol did you consume last week? (We can assume 

that the interviewer would help respondents to translate into units of alcohol)  
number of units __  

4. In the Job Survey data, is absence a nominal, an ordinal, an interval/ratio, or a 
dichotomous variable?  

5. Is test-retest reliability a test of internal or external reliability?  

6. A researcher computes the split-half reliability for ‘autonom’. Would this be a test 
of internal or external reliability?  
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7. A researcher develops a new multiple-item measure of ‘political conservatism’. 
He/she administers the measure to a sample of individuals and also asks them how they 
voted at the last general election in order to validate the new measure. The researcher
relates respondents’ scores to how they voted. Which of the following is the researcher
assessing: (a) the measure’s concurrent validity; (b) the measure’s predictive validity; or 
(c) the measure’s discriminant validity?  
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Chapter 5  
Summarizing data  

When researchers are confronted with a bulk of data relating to each of a number of
variables, they are faced with the task of summarizing the information that has been
amassed. If large amounts of data can be summarized, it becomes possible to detect
patterns and tendencies that would otherwise be obscured. It is fairly easy to detect a
pattern in a variable when, say, we have data on ten cases. But once we go beyond about
twenty, it becomes difficult for the eye to catch patterns and trends unless the data are
treated in some way. Moreover, when we want to present our collected data to an
audience, it would be extremely difficult for readers to take in the relevant information.
This chapter is concerned with the various procedures that may be employed to
summarize a variable.  

FREQUENCY DISTRIBUTIONS 

Imagine that we have data on fifty-six students regarding which faculty they belong to at 
a university (see Table 5.1). The university has only four faculties: engineering, pure
sciences, arts, and social sciences. Even though fifty-six is not a large number on which 
to have data, it is not particularly easy to see how students are distributed across the
faculties. A first step that might be considered when summarizing data relating to a
nominal variable such as this (since each faculty constitutes a discrete category) is the
construction of a frequency distribution or frequency table. The idea of a frequency 
distribution is to tell us the number of cases in each category. By ‘frequency’ is simply 
meant the number of times that something occurs. Very often we also need to compute
percentages, which tell us the proportion of cases contained within each frequency, i.e.
relative frequency. In Table 5.2, the number 11 is the frequency relating to the arts 
category, i.e. there are eleven arts students in the sample, which is 20 per cent of the total
number of students.  

The procedure for generating a frequency distribution with Minitab will be addressed 
in a later section, but in the meantime it should be realized that all that is happening in the
construction of a frequency table is that the number of cases in each category is added up.
Additional information in the  



Table 5.1 The faculty membership of fifty-six students (imaginary data)  

Case No. Faculty Case No. Faculty 

1  Arts  29  Eng  

2  PS  30  SS  

3  SS  31  PS  

4  Eng  32  SS  

5  Eng  33  Arts  

6  SS  34  SS  

7  Arts  35  Eng  

8  PS  36  PS  

9  Eng  37  Eng  

10  SS  38  SS  

11  SS  39  Arts  

12  PS  40  SS  

13  Eng  41  Eng  

14  Arts  42  PS  

15  Eng  43  SS  

16  PS  44  PS  

17  SS  45  Eng  

18  Eng  46  Arts  

19  PS  47  Eng  

20  Arts  48  PS  

21  Eng  49  Eng  

22  Eng  50  Arts  

23  PS  51  SS  

24  Arts  52  Eng  

25  Eng  53  Arts  

26  PS  54  Eng  

27  Arts  55  SS  

28  PS  56  SS  

Note: Eng=Engineering PS=Pure Sciences SS=Social Sciences  
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form of the percentage that the number of cases in each category constitutes is usually
provided. This provides information about the relative frequency of the occurrence of
each category of a variable. It gives a good indication of the relative preponderance of
each category in the sample. Table 5.2 provides the frequency table for the data in Table 
5.1. Percentages have been rounded up or down to a whole number (using the simple rule 
that 0.5 and above are rounded up and below 0.5 are rounded down) to make the table
easier to read. The letter n is often employed to refer to the number of cases in each 
category (i.e. the frequency). An alternative way of presenting a frequency table for the
data summarized in Table 5.2 is to omit the frequencies for each category and to present
only the relative percentages. This approach reduces the amount of information that the
reader must absorb. When this option is taken, it is necessary to provide the total number
of cases (i.e. n=56) beneath the column of percentages.  

Table 5.2 can readily be adapted to provide a diagrammatic version of the data. Such 
diagrams are usually called bar charts or bar diagrams and are often preferred to tables 
because they are more easily assimilated. A bar chart presents a column for the number or
percentage of cases relating to each category. Figure 5.1 presents a bar chart for the data 
in  

Table 5.2 Frequency table for data on faculty membership  

  n Percent 

Engineering  18  32  

Pure Sciences  13  23  

Arts  11  20  

Social Sciences  14  25  

Total  56  100  
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Figure 5.1 Bar chart of data on faculty membership  

Table 5.1 in terms of the number of cases. On the horizontal axis the name of each
category is presented. There is no need to order them in any way (e.g. short to long bars).
The bars should not touch each other but should be kept clearly separate. It should be
realized that the bar chart does not provide more information than Table 5.2; indeed, 
some information is lost—the percentages. Its main advantage is the ease with which it
can be interpreted, a characteristic that may be especially useful when data are being
presented to people who may be unfamiliar with statistical material.  

When a variable is at the interval/ratio level, the data will have to be grouped in order
to be presented in a frequency table. The number of cases in each grouping must then be
calculated. As an example, the Job Survey data on ‘income’ may be examined. We have 
data on sixty-eight individuals (two are missing), but if the data are not grouped there are
thirty-three categories which are far too many for a frequency table. Moreover, the
frequencies in each category would be far too small. In Table 5.3, a frequency table is 
presented of the data on ‘income’. Six categories are employed. In constructing 
categories such as these a number of points should be borne in mind. First, it is
sometimes suggested that the number of categories should be between six and twenty,
since too few or too many categories can distort the shape of the distribution of the
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underlying variable (e.g. Bohrnstedt and Knoke, 1982). However, it is not necessarily the
case that the number of categories will affect the shape of the distribution. Also, when
there are relatively few cases the number of categories will have to fall below six in order
for there to be a reasonable number of cases in each category. On the other hand, a large
number of categories will not be easy for the reader to assimilate and in this regard
Bohrnstedt and Knoke’s rule of thumb that the upper limit should be twenty categories 
seems slightly high. Second, the categories must be discrete. You should never group so
that you have categories like: 5,500–6,500; 6,500–7,500; 7,500–8,500 and so on. Which 
categories  

would incomes of £6,500 and £7,500 belong to? Categories must be discrete, as in Table 
5.3, so that there can be no uncertainty about which one a case should be allocated to. 
Note that in Table 5.3, the reader’s attention is drawn to the fact that there are two 
missing cases. The presence of two missing cases raises the question of whether
percentages should be calculated in terms of all seventy cases in the Job Survey sample
or the sixty-eight on whom we have income data. Most writers prefer the latter since the
inclusion of all cases in the base for the calculation of the percentage can result in
misleading interpretations, especially when there might be a large number of missing
cases in connection with a particular variable.  

The information in Table 5.3 can be usefully presented diagrammatically as a 
histogram. A histogram is like a bar chart, except that the bars are in contact with each 
other to reflect the continuous nature of the categories of the variable in question. Figure 
5.2 presents a histogram produced in professional graphics in Minitab for Windows for 
the ‘income’ data. Its advantages are the same as those for the bar chart.  

If an ordinal variable is being analysed, grouping of categories is rarely necessary. In 
the case of the Job Survey data, a variable like ‘skill’, which can assume only four 
categories will not need to be grouped. The number of cases in each of the four categories
can simply be added up and the percentages computed. A histogram can be used to
display such data since the categories of the variable are ordered.  

Table 5.3 Frequency table for income (Job Survey data)  

Income (£) n Percentage 

6499 and below  4 5.9 

6500–7499  23 33.8 

7500–8499  21 30.9 

8500–9499  17 25.0 

9500–10499  2 2.9 

10500 and over  1 1.5 

  68 100.0 

Note: Two cases are missing  
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Figure 5.2 Histogram for income (Minitab Professional Graphics)  

Using Minitab to produce frequency tables and histograms 

In order to generate a frequency table for ‘income’, we will need to group the data. 
Otherwise we will get a frequency count and percentage for every single income in the
sample. Similarly, we will have separate bars for each income within the sample. In a
large sample, that could represent a lot of bars. To group the data, we will need to use the
code procedure. This is probably done most easily with the prompt system. In order to 
group the data for the frequency table to be the same as the grouping for the histogram,
we will need the following to be typed in after the MTB> prompt:  

MTB> code (5500:6499)1 (6500:7499)2 (7500:8499)3 
(8500:9499)4(9500:10499)5 (10500:11499)6 c4 c30 

This creates six ‘income’ groups: the first is all members of the sample whose incomes
lie between £5,500 and £6,499; the second is all those between £6,500 and £7,499 and so 
on. These categories have been chosen because they are consistent with the way in which
a histogram is automatically configured for the variable ‘income’. The new variable, 
which we might want to call ‘incgrp’, has been placed in c30. Note that it is important 
that income groups do not overlap.  

The new variable can be named as follows:  

MTB> name c30 ‘incgrp’ 
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In order to create the frequency table in the prompt system, the following commands are
required:  

MTB> tally ‘incgrp’; 
SUBC> counts; 
SUBC> percents. 

This will give the frequencies (counts) for each category and the percentage of the sample
in each category. To achieve the same end with the menu system, the following steps can
be followed:  

→Stat→Tables→Tally…→incgrp→Select [this will bring 
incgrp into the window. If frequency tables for other 
variables are required,  simply click on each variable and 
then click on Select] → [for a  frequency table with both 
frequencies (counts) and percentages make  sure that there 
is a cross in the relevant boxes in the windows. 
If  crosses are not present, simply click once in each or 
either box.]  →OK 

The resulting output can be found in Table 5.4.  
The histogram of ‘income’ in Figure 5.2 was generated with the Professional Graphics

facility within Minitab for Windows. If this is unavailable, Standard Graphics must be
enabled. Figure 5.3 shows what the  

resulting histogram of ‘income’ will look like. In order to generate a histogram in the 
prompt system, the following step should be taken:  

MTB> histogram ‘income’ 

Table 5.4 Frequency table for incgrp (Minitab output)  

Summary Statistics for Discrete Variables 

incgrp Count Percent 
1 4 5.88 

2 23 33.82 

3 21 30.88 

4 17 25.00 

5 2 2.94 

6 1 1.47 

N= 68   

*= 2   
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If Professional Graphics are available and are enabled, the histogram will look like Figure 
5.2. If only Standard Graphics are available, it will look like Figure 5.3.  

To achieve the same end with the menu system, we need to follow the following steps:  

→Graph→Histogram…→income→Select [this will bring income 
into the Graph variables: box] → [in the Data display: box 
you  should have Bar in the cell by Item 1 in the column 
labelled Display.  In the cell to the right of this cell 
you should have Graph in the column  labelled For each. 
These can be changed, if necessary, by clicking on  the 
downward pointing arrow to the immediate right of Display 
and/or  For each] → [a title for the histogram can be 
inserted by clicking on   

 

Figure 5.3 Histogram for incgrp (Minitab Standard Graphics)  

  the downward pointing arrow to the right of Annotation 
and inserting  the title at the appropriate point] → [to 
produce more than one  histogram, highlight further 
variables and click on Select for each  variable selected] 
→OK 

This sequence will generate the output presented in Figure 5.2. or 5.3 depending on 
whether Professional Graphics are available and enabled. Note that the diagram in Figure 
5.2 provides the mid-point for each of the bars on the horizontal axis.  

MEASURING CENTRAL TENDENCY 

One of the most important ways of summarizing a distribution of values for a variable is
to establish its central tendency—the typical value in a distribution. Where, for example,
do values in a distribution tend to concentrate? To many readers this may mean trying to
find the ‘average’ of a distribution of values. However, statisticians mean a number of 
different measures when they talk about averages. Three measures of average (i.e. central
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tendency) are usually discussed in text-books: the arithmetic mean, the median and the
mode. Stephen J.Gould, a palaeontologist who is well known for his popular writings on
science, illustrates the first two of these measures of average when he writes:  

A politician in power might say with pride, ‘The mean income of our citizens is 
$15,000 per year.’ The leader of the opposition might retort, ‘But half our 
citizens make less than $10,000 per year.’ Both are right, but neither cites a 
statistic with impassive objectivity. The first invokes a mean, the second a 
median.  

1991:473  

While this comment does little to reassure us about the possible misuse of statistics, it
does illustrate well the different ways in which average can be construed.  

The arithmetic mean 

The arithmetic mean is a method for measuring the average of a distribution which
conforms to most people’s notion of what an average is. Consider the following
distribution of values:  

12 10 7 9 8 15 2 19 7 10 8 16  
The arithmetic mean consists of adding up all of the values (i.e. 123) and dividing by 

the number of values (i.e. 12), which results in an arithmetic mean of 10.25. It is this kind
of calculation which results in such seemingly bizarre statements as ‘the average number 
of children is 2.37’. However, the arithmetic mean, which is often symbolised as  is by 
far the most commonly used method of gauging central tendency. Many of the statistical
tests encountered later in this book are directly concerned with comparing means deriving
from different samples or groups of cases (e.g. analysis of variance—see Chapter 7). The 
arithmetic mean is easy to understand and to interpret, which heightens its appeal. Its
chief limitation is that it is vulnerable to extreme values, in that it may be unduly affected
by very high or very low values which can respectively increase or decrease its
magnitude. This is particularly likely to occur when there are relatively few values; when
there are many values, it would take a very extreme value to distort the arithmetic mean.
For example, if the number 59 is substituted for 19 in the previous distribution of twelve
values, the mean would be 13.58, rather than 10.25, which constitutes a substantial
difference and could be taken to be a poor representation of the distribution as a whole.
Similarly, in Table 8.11 in Chapter 8, the variable ‘size of firm’ contains an outlier (case 
number 20) which is a firm of 2,700 employees whereas the next largest has 640
employees. The mean for this variable is 499, but if we exclude the outlier it is 382.6.
Again, we see that an outlier can have a very large impact on the arithmetic mean,
especially when the number of cases in the sample is quite small.  

The median 

The median is the mid-point in a distribution of values. It splits a distribution of values in
half. Imagine that the values in a distribution are arrayed from low to high, e.g. 2, 4, 7, 9,
10, the median is the middle value, i.e. 7. When there is an even number of values, the
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average of the two middle values is taken. Thus, in the former group of twelve values, to
calculate the mean we need to array them as follows  

2 7 7 8 8 9 10 10 12 15 16 19.  

Thus in this array of twelve values, we take the two underlined values—the sixth and 
seventh—and divide their sum by 2, i.e. (9+10)/2=9.5. This is slightly lower than the
arithmetic mean of 10.25, which is almost certainly due to the presence of three fairly
large values at the upper end—15, 16, 19. If we had the value 59 instead of 19, although
we know that the mean would be higher at 13.58 the median would be unaffected,
because it emphasizes the middle of the distribution and ignores the ends. For this reason,
many writers suggest that when there is an outlying value which may distort the mean,
the median should be considered because it will engender a more representative
indication of the central tendency of a group of values. On the other hand, the median is
less intuitively easy to understand and it does not use all of the values in a distribution in
order for it to be calculated. Moreover, the mean’s vulnerability to distortion as a 
consequence of extreme values is less pronounced when there is a large number of cases.  

The mode 

This final indicator of central tendency is rarely used in research reports, but is often
mentioned in text-books. The mode is simply the value that occurs most frequently in a
distribution. In the foregoing array of twelve values, there are three modes—7, 8, and 10. 
Unlike the mean, which strictly speaking should only be used in relation to interval
variables, the mode can be employed at any measurement level. The median can be
employed in relation to interval and ordinal, but not nominal, variables. Thus, although
the mode appears more flexible, it is infrequently used, in part because it does not use all
of the values of a distribution and is not easy to interpret when there is a number of
modes.  

MEASURING DISPERSION 

In addition to being interested in the typical or representative score for a distribution of
values, researchers are usually interested in the amount of variation shown by that
distribution. This is what is meant by dispersion—how widely spread a distribution is. 
Dispersion can provide us with important information. For example, we may find two
roughly comparable firms in which the mean income of manual workers is identical.
However, in one firm the salaries of these workers are more widely spread, with both
considerably lower and higher salaries than in the other firm. Thus, although the mean
income is the same, one firm exhibits much greater dispersion in incomes than the other.
This is important information that can usefully be employed to add to measures of central
tendency.  

The most obvious measure of dispersion is to take the highest and lowest value in a 
distribution and to subtract the latter from the former. This is known as the range. While 
easy to understand, it suffers from the disadvantage of being susceptible to distortion
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from extreme values. This point can be illustrated by the imaginary data in Table 5.5, 
which shows the marks out of a hundred achieved on a mathematics test by two classes of
twenty students, each of which was taught by a different teacher. The two classes exhibit
similar means, but the patterns of the two distributions of values are highly dissimilar.
Teacher A’s class has a fairly bunched distribution, whereas that of Teacher B’s class is 
much more dispersed. Whereas the lowest mark attained in Teacher A’s class is 57, the 
lowest for Teacher B is 45. Indeed, there are eight marks in Teacher B’s class that are 
below 57. However, whereas the highest mark in Teacher A’s class is 74, three of 
Teacher B’s class exceed this figure—one with a very high 95. Although the latter
distribution is more dispersed, the calculation of the range seems to  

Table 5.5 Results of a test of mathematical ability for the students of two teachers 
(imaginary data)  

  Teacher (A) Teacher (B) 

  65  57  

  70  49  

  66  46  

  59  79  

  57  72  

  62  54  

  66  66  

  71  65  

  58  63  

  67  76  

  61  45  

  68  95  

  63  62  

  65  68  

  71  50  

  69  53  

  67  58  

  74  65  

  72  69  

  60  72  

Arithmetic mean  65.55  63.2  

Standard deviation  4.91  12.37  
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exaggerate its dispersion. The range for Teacher A is 74–57, i.e. a range of 17. For 
teacher B, the range is 95–45, i.e. 50. This exaggerates the amount of dispersion since all 
but three of the values are between 72 and 45, implying a range of 27 for the majority of
the values.  

One solution to this problem is to eliminate the extreme values. The inter-quartile 
range, for example, is sometimes recommended in this connection (see Figure 5.4). This 
entails arraying a range of values in ascending order. The array is divided into four equal
portions, so that the lowest 25 per cent are in the first portion and the highest 25 per cent
are in the last portion. These portions are used to generate quartiles. Take the earlier array
from which the median was calculated.  

 

The first quartile (Q1), often called the ‘lower quartile’ will be between 7 and 8 and is 
calculated as ([3×7]+8)/4, i.e. 7.25. The third quartile (Q3), often  

 

Figure 5.4 The inter-quartile range  

called the ‘upper quartile’, will be (12+[3×15])/4, i.e. 14.25. Therefore the inter-quartile 
range is the difference between the third and first quartiles, i.e. 14.25−7.25=7. As Figure 
5.4 indicates, the median is the second quartile, but is not a component of the calculation 
of the inter-quartile range. The main advantage of this measure of dispersion is that it 
eliminates extreme values, but its chief limitation is that in ignoring 50 per cent of the

Median  66  64  
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values in a distribution, it loses a lot of information. A compromise is the decilerange,
which divides a distribution into ten portions (deciles) and, in a similar manner to the
inter-quartile range, eliminates the highest and lowest portions. In this case, only 20 per
cent of the distribution is lost.  

By far the most commonly used method of summarizing dispersion is the standard 
deviation. In essence, the standard deviation calculates the average amount of deviation 
from the mean. Its calculation is somewhat more complicated than this definition implies.
A further description of the standard deviation can be found in Chapter 7. The standard 
deviation reflects the degree to which the values in a distribution differ from the
arithmetic mean. The standard deviation is usually presented in tandem with the mean,
since it is difficult to determine its meaning in the absence of the mean.  

We can compare the two distributions in Table 5.5. Although the means are very 
similar, the standard deviation for Teacher B’s class (12.37) is much larger than that for
Teacher A (4.91). Thus, the standard deviation permits the direct comparison of degrees
of dispersal for comparable samples and measures. A further advantage is that it employs
all of the values in a distribution. It summarizes in a single value the amount of
dispersion in a distribution, which, when used in conjunction with the mean, is easy to
interpret. The standard deviation can be affected by extreme values, but since its
calculation is affected by the number of cases, the distortion is less pronounced than with
the range. On the other hand, the possibility of distortion from extreme values must be 
borne in mind. None the less, unless there are very good reasons for not wanting to use
the standard deviation, it should be used whenever a measure of dispersion is required. It
is routinely reported in research reports and widely recognized as the main measure of
dispersion.  

This consideration of dispersion has tended to emphasize interval variables. The 
standard deviation can only be employed in relation to such variables. The range and
inter-quartile range can be used in relation to ordinal variables, but this does not normally
happen, while tests for dispersion in nominal variables are also infrequently used.
Probably the best ways of examining dispersion for nominal and ordinal variables is
through bar charts, histograms and frequency tables.  

Measuring central tendency and dispersion with MINITAB 

All of these statistics can be generated in Minitab. When using the prompt system, the
following commands should be used for generating these basic statistics for the variables
‘satis’ and ‘income’: 

MTB> describe ‘satis’ ‘income’ 

With the Minitab for Windows menu system, the following sequence will achieve the
same end:  

→Stat→Basic Statistics→Descriptive Statistics…
→satis→Select [satis will now appear in the Variables: 
box] →income→Select [income will now appear in the 
Variables: box below satis] →OK 
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This procedure will generate the following information that has been covered above:
number in sample, excluding those for whom there is missing data (N); number for 
whom there is missing data (N*); the arithmetic mean (Mean); the median (Median); the 
standard deviation (StDev); the minimum value (Min); the maximum value (Max); the 
first quartile (Q1); and the third quartile (Q3). Other information is provided, but can be 
ignored for present purposes. Sample output can be found in Table 5.6.  

STEMS AND LEAVES, BOXES AND WHISKERS 

In 1977, John Tukey published a highly influential book entitled Exploratory Data 
Analysis, which sought to introduce readers to a variety of techniques he had developed
which emphasize simple arithmetic computation and diagrammatic displays of data.
Although the approach he advocates is antithetical to many of the techniques
conventionally employed by data analysts, including the bulk of techniques examined in
this book, some of Tukey’s displays can be usefully appended to more orthodox
procedures. Two diagrammatic presentations of data are very relevant to the present
discussion—the stem and leaf display and the boxplot (sometimes called the box and 
whisker plot).  

The stem and leaf display 

The stem and leaf display is an extremely simple means of presenting data on an interval
variable in a manner similar to a histogram, but without the loss of information that a
histogram necessarily entails. It can be easily constructed by hand, although this would
be more difficult with very large amounts of data. In order to illustrate the stem and leaf
display, data on one indicator of local authority performance are taken. For a number of
years, the British government has given the Audit Commission the task of collecting data
on the performance of local authorities, so that their performance can be compared. One
of the criteria of performance relates to the percentage of special needs reports issued
within six months. A good deal of variation could be discerned with respect to this
criterion, as the author of an article in The Times noted:  

Table 5.6 Central tendency and dispersion analysis for income and satis (Minitab for 
Windows Release 10 output)  

Variable N N* Mean Median TrMean StDev SEMean 

income 68 2 7819 7800 7792 998 121 

satis 68 2 10.838 11.000 10.790 3.304 0.401 

Variable Min Max Q1 Q3       

income 5900 10500 6925 8675       

satis 5.000 19.000 8.000 14.000       
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If a child in Sunderland needs a report drawn up on its special educational 
needs, it has no chance of receiving this within six months. If the child moved a 
mile or two down the road into Durham, there would be an 80 per cent chance 
that the report would be issued in that time.  

Murray, 1995:32  

Whether such data really measure efficiency is, of course, a matter of whether the
measure is valid (see Chapter 4), but there is no doubt that there is a great deal of 
variation with respect to the percentage of reports issued within six months. As Table 5.7
shows, the percentage varies between 0 and 95 per cent.  

Figure 5.5 provides a stem and leaf display for this variable which we call ‘needs’. The 
display has two main components. First, the digits in the middle column make up the
stem. These constitute the starting parts for presenting each value in a distribution. Each
of the digits that form the stem represents age in tens, i.e. 0 refers to single digit numbers;
1 to tens; 2 to twenties; 3 to thirties and so on. To the right of the stem are the leaves,
each  

Table 5.7 Percentage of special needs reports issued within six months in local 
authorities in England and Wales, 1993–4  

London Boroughs English Counties Metropolitan Authorities 
Inner London   Avon  11 Greater Manchester   

City of London  * Bedfordshire  25 Bolton  9 

Camden  48 Berkshire  16 Bury  16 

Greenwich  14 Buckinghamshire  69 Manchester  35 

Hackney  36 Cambridgeshire  7 Oldham  50 

Ham & Fulham  6 Cheshire  25 Rochdale  0 

Islington  44 Cleveland  32 Salford  10 

Ken & Chelsea  8 Cornwall  3 Stockport  16 

Lambeth  4 Cumbria  35 Tameside  16 

Lewisham  12 Derbyshire  17 Trafford  11 

Southwark  10 Devon  55 Wigan  21 

Tower Hamlets  37 Dorset  33 Merseyside   

Wandsworth  4 Durham  72 Knowsley  8 

Westminster  63 East Sussex  8 Liverpool  95 

Outer London   Essex  29 St Helens  21 

Barking & Dag  22 Gloucestershire  45 Sefton  37 

Barnet  40 Hampshire  12 Wirral  13 
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Bexley  37 Hereford & Worcs  3 South Yorkshire   

Brent  23 Hertfordshire  61 Barnsley  15 

Bromley  24 Humberside  14 Doncaster  1 

Croydon  27 Isle of Wight  60 Rotherham  10 

Ealing  3 Kent  15 Sheffield  4 

Enfield  2 Lancashire  14 Tyne & Wear   

Haringey  10 Leicestershire  * Gateshead  4 

Harrow  1 Lincolnshire  36 Newcastle u T  30 

Havering  0 Norfolk  1 North Tyneside  48 

Hillingdon  7 Northamptonshire  48 South Tyneside  5 

Hounslow  20 Northumberland  79 Sunderland  0 

Kingston u Thames  27 North Yorkshire  34 West Midlands   

Merton  16 Nottinghamshire  10 Birmingham  5 

Newham  3 Oxfordshire  22 Coventry  20 

Redbridge  34 Shropshire  15 Dudley  41 

Richmond u Thames  27 Somerset  50 Sandwell  1 

Sutton  6 Staffordshire  20 Solihull  31 

Waltham Forest  24 Suffolk  27 Walsall  3 

    Surrey  55 Wolverhampton  3 

    Warwickshire  26 West Yorkshire   

    West Sussex  14 Bradford  25 

    Wiltshire  30 Calderdale  2 

        Kirklees  38 

        Leeds  17 

        Wakefield  15 

        Welsh Counties   

        Clwyd  30 

        Dyfed  67 

        Gwent  17 

        Gwynedd  88 

        Mid Glamorgan  48 

        Powys  80 

        South Glamorgan  45 

        West Glamorgan  4 
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of which represents an item of data which is linked to the stem. Thus, the 0 to the right of
the 0 refers to the lowest value in the distribution, namely the percentage figure of 0. We
can see that three authorities failed to issue any reports within six months and four issued
only 1 per cent of reports within six months. When we come to the row starting with 1,
we can see that five managed to issue 10 per cent of reports within six months. It is
important to ensure that all of the leaves—the digits to the right of the stem—are 
vertically aligned. It is not necessary for the leaves to be ordered in magnitude, i.e. from 0
to 9, but it is easier to read. We can see that the distribution is very bunched at the lower
end of the distribution. The appearance of the diagram has been controlled by requesting
that incremental jumps are in tens, i.e. first teens, then twenties, then thirties, and so on.
The output can also be controlled by requesting that any outliers are separately
positioned. Practitioners of exploratory data analysis use a specific criterion for the
identification of outliers. Outliers at the low end of the range are identified by the formula 

and at the high end of the range by the formula  

The first quartile for ‘needs’ is 8.0 and the third quartile is 36.0. Substituting in these two 
simple equations means that outliers will need to be below −36.0 or above 78.0. Using 
this criterion, four outliers at the high (HI) end of the range are identified.  

This output can be generated in the prompt system thus:  

MTB> stem-and-leaf ‘needs’; 
SUBC> trim; 
SUBC> increment 10. 

With the menu system, the following sequence will produce the same end:  

→Graph→CharacterGraphs→Stem-and-Leaf…→needs→Select [this 
will bring needs into the Variables: box] → the box 
by  Trim outliers [if a mark in the box is not already 
there] →the box  with the heading Increment: and then 10 
→OK 

The output is in Figure 5.5. The figures in the column to the left of the starting parts
represent cumulative frequencies moving toward the median, which is 20 and is found in
the row in which a frequency appears in brackets (19). These are a useful, but not strictly
necessary, adjunct to a stem and leaf display. It is always important to stipulate the unit in

Note: * missing or doubtful information  
Source: adapted from The Times 30 March 1995, p. 32  
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which the leaves are presented which in this case is simply 1—for a single percentage 
point. We can also see that there are missing data for two authorities.  

 

Figure 5.5 Stem-and-leaf display for the percentage of special needs reports 
issued within 6 months in local authorities in England and Wales 
(Minitab for Windows Release 10 output)  

The stem and leaf display provides a similar presentation to a histogram, in that it gives a
sense of the shape of the distribution (such as whether values tend to be bunched at one
end), the degree of dispersion, and whether there are outlying values. However, unlike
the histogram it retains all the information, so that values can be directly examined to see
whether particular ones tend to predominate.  

The boxplot 

Figure 5.6 provides the skeletal outline of a basic boxplot. The box comprises the middle
50 per cent of observations. Thus the lower end of the box, in terms of the measure to
which it refers, is the first quartile and the upper end is the third quartile. In other words,
the box comprises the inter-quartile range. The line in the box is the median. The broken 
lines (the whiskers) extend downwards to the lowest value in the distribution and
upwards to the largest value excluding outliers, i.e. extreme values, which are separately 
indicated. It has a number of advantages. Like the stem and leaf display, the boxplot
provides information about the shape and dispersion of a distribution. For example, is the
box closer to one end or is it near the middle? The former would denote that values tend
to bunch at one end. In this case, the bulk of the observations are at the lower end of the
distribution, as is the median. This provides further information about the shape of the
distribution, since it raises the question of whether the median is closer to one end of the
box, as it is in this case. On the other hand, the  

Quantitative data analysis with Minitab     86



 

Figure 5.6 Boxplot  

boxplot does not retain information like the stem and leaf display. Figure 5.7 provides a 
boxplot of the data from Table 5.7 using Professional Graphics in Minitab for Windows. 
The four outliers are signalled, using the previously-discussed criterion, with asterisks. It 
is clear that in half the authorities (all those below the line representing the median) 20
per cent or fewer reports are issued within six months. If Standard Graphics are enabled,
the boxplot will be rather different.  

In order to generate a boxplot for ‘needs’ with the prompt system, the following
command will produce a basic boxplot:  

MTB> boxplot ‘needs’ 

With the menu system, the following sequence will produce the same end:  

→Stat→EDA→Boxplot…→needs→Select [this will bring needs 
into the Graph Variables: box beneath the Y and to the 
right of the  figure 1] →if IQ Range Box and Outlier  do 
not appear in the Datadisplay: box, click on the downward 
pointing arrow to the right of  Display and enable each of 
these by choosing first IQ Range Box, then click again on 
the downward pointing arrow and then choose  Outlier S>>→OK 
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Both of these exploratory data analysis techniques can be recommended as providing
useful first steps in gaining a feel for data when you first start to  

 

Figure 5.7 Boxplot of the percentage of special needs reports issued within 6 
months in local authorities in England and Wales (professional 
graphics)  

analyse them. Should they be used as alternatives to histograms and other more common
diagrammatic approaches? Here they suffer from the disadvantage of not being well
known. The stem and leaf diagram is probably the easier of the two to assimilate, since
the boxplot diagram requires an understanding of quartiles and the median. If used in
relation to audiences who are likely to be unfamiliar with these techniques, they may
generate some discomfort even if a full explanation is provided. On the other hand, for
audiences who are (or should be) familiar with these ideas, they have much to
recommend them.  

THE SHAPE OF A DISTRIBUTION 

On a number of occasions, reference has been made to the shape of a distribution. For
example, values in a distribution may tend to cluster at one end of the distribution or in
the middle. In this section, we will be more specific about the idea of shape and introduce
some ideas that are central to some aspects of data analysis to be encountered in later
chapters.  

Statisticians recognise a host of different possible distribution curves. By far the most 
important is the normal distribution. The normal distribution is a bell-shaped curve. It 
can take a number of different forms depending upon the degree to which the data are
dispersed. Two examples of normal distribution curves are presented in Figure 5.8. The 
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term ‘normal’ is potentially very misleading, because perfectly normal distributions are 
very rarely found in reality. However, the values of a variable may approximate to a
normal distribution and when they do, we tend to think of them as  

 

Figure 5.8 Two normal distributions  

having the properties of a normal distribution. Many of the most common statistical
techniques used by social scientists presume that the variables being analysed are nearly
normally distributed (see the discussion of parametric and non-parametric tests in 
Chapter 7).  

The normal distribution should be thought of as subsuming all of the cases which it 
describes beneath its curve. Fifty per cent will lie on one side of the arithmetic mean; the
other 50 per cent on the other side (see Figure 5.9). The median value will be identical to 
the mean. As the curve implies, most values will be close to the mean. This is why the
curve peaks at the mean. But the tapering off at either side indicates that as we move in
either direction away from the mean, fewer and fewer cases are found. Only a small
proportion will be found at its outer reaches. People’s heights illustrate this fairly well. 
The mean height for an adult woman in the UK is 5ft 3ins (160.9 cm). If women’s 
heights are normally distributed, we would expect that most women would cluster around
this mean. Very few will be very short or very tall. We know that women’s heights have 
these  
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Figure 5.9 The normal distribution and the mean  

properties, though whether they are perfectly normally distributed is another matter.  
The normal distribution displays some interesting properties that have been determined 

by statisticians. These properties are illustrated in Figure 5.10. In a perfectly normal 
distribution  

68.26 per cent of cases will be within one standard deviation of the mean  
95.44 per cent of cases will be within two standard deviations of the mean  
99.7 per cent of cases will be within three standard deviations of the mean.  
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Figure 5.10 Properties of the normal distribution  

Thus, if we have a variable which is very close to being normally distributed, we can say
that if the mean is 20 and the standard deviation is 1.5, 95.44 per cent of cases will lie
between 17 and 23 (i.e. 20±2×1.5). Turning this point around slightly, we can assert that
there is a 95.44 per cent probability that a case will lie between 17 and 23. Likewise, 99.7
per cent of cases will lie between 15.5 and 24.5 (i.e. 20±3×1.5). Thus, we can be 99.7 per 
cent certain that the value relating to a particular case will lie between 15.5 and 24.5.  

The data in Table 5.5 can be used to illustrate these ideas further. Ignoring the fact that
we have all of the Mathematics scores for the students of these two teachers for a
moment, if we know the mean and standard deviation for each of the two distributions,
assuming normality we can work out the likelihood of cases falling within particular
regions of the mean. With teacher A’s students, 68.26 per cent of cases will fall within 
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±4.91 (the standard deviation) of 65.55 (the mean). In other words, we can be 68.26 per 
cent certain that a student will have gained a mark of between 60.64 and 70.46. The range
of probable marks for Teacher B’s students is much wider, largely because the standard
deviation of 12.37 is much larger. For teacher B’s class, there is a 68 per cent probability 
of gaining a mark of between 50.83 and 75.77. Table 5.8 presents the ranges of marks for 
one, two and three standard deviations from the mean for each teacher. The larger
standard deviation for Teacher B’s class means that for each standard deviation from the
mean we must tolerate a wider range of probable marks.  

It should be noted that as we try to attain greater certainty about the likely value of a 
particular case, the range of possible error increases from 1×the standard deviation to 
3×the standard deviation. For teacher A, we can be 68.26 per cent certain that a score will 
lie between 70.46 and 60.64; but if we aimed for 99.7 per cent certainty, we must accept
a wider band of possible scores, i.e. between 80.28 and 50.82. As we shall see in the
context of the discussion of statistical significance in Chapter 6, these properties of the 
normal distribution are extremely useful and important when the researcher wants to
make inferences about populations from data relating to samples.  

 

Figure 5.11 Positively and negatively skewed distributions  

Table 5.8 Probable mathematics marks (from data in Table 5.5)  

  One 
standarddeviationfrom 

the mean 

Two 
standarddeviationsfrom 

the mean 

Three 
standarddeviationsfrom 

the mean 

  68.26% of caseswill fall 
between: 

95.44% of caseswill fall 
between: 

99.7% of cases willfall 
between: 

Teacher 
A  

70.46 and 60.64  75.37 and 55.73  80.28 and 50.82  

Teacher 
B  

75.57 and 50.83  87.94 and 48.46  100.31 and 26.09  
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It is important to realize that some variables will not follow the shape of the normal
distribution curve. In some cases, they may depart very strikingly from it. This tendency
is most clearly evident when the values in a distribution are skewed—that is, they tend to 
cluster at either end. When this occurs, the mean and median no longer coincide. These
ideas are illustrated in Figure 5.11. The left-hand diagram shows a curve that is positively 
skewed in that cases tend to cluster to the left and there is a long ‘tail’ to the right. The 
variable ‘needs’ is an illustration of a positively skewed distribution, as the boxplot in 
Figure 5.7 suggests (the mean is 24.75 and the median is 20.00). In the right-hand 
diagram, the curve is negatively skewed. Another kind of distribution is one which
possesses more than one peak.  

Although there is a recognition that some variables in the social sciences do not exhibit
the characteristics of a normal curve and that therefore we often have to treat variables as
though they were normally distributed, when there is a very marked discrepancy from a
normal distribution, such as in the two cases in Figure 5.11, some caution is required. For 
example, many writers would argue that it would not be appropriate to apply certain
kinds of statistical test to variables which are profoundly skewed when that test presumes
normally distributed data. Very often, skewness or other pronounced departures from a
normal distribution can be established from the examination of a frequency table or of a
histogram.  

EXERCISES 

1. Using Minitab how would you generate a frequency table for ‘prody’ (Job Survey 
data), along with percentages and median?  

2. Run the job for the commands from Question 1. What is the percentage of
respondents in the ‘poor’ category?  

3. Which of the following should not be used to represent an interval variable: (a) a
boxplot; (b) a stem and leaf display; (c) a bar chart; or (d) a histogram?  

4. Using Minitab how would you calculate the inter-quartile range for ‘income’ (Job 
Survey data)?  

5. What is the inter-quartile range for ‘satis’?  

6. Why might the standard deviation be a superior measure of dispersion to the inter-
quartile range?  

7. Taking ‘satis’ again, what is the likely range of ‘satis’ scores that lie within two 
standard deviations of the mean? What percentage of cases is likely to lie within this
range?  
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Chapter 6  
Sampling and statistical significance  

In this chapter, we will be encountering some issues which are fundamental to an
appreciation of how people (or whatever is the unit of analysis) should be selected for
inclusion in a study and of how it is possible to generalize to the population from which
people are selected. These two related issues are concerned with sampling and the
statistical significance of results. In examining sampling we will be examining the
procedures for selecting people so that they are representative of the population from
which they are selected. The topic of statistical significance raises the issue of how
confident we can be that findings relating to a sample of individuals will also be found in
the population from which the sample was selected.  

SAMPLING 

The issue of sampling is important because it is rarely the case that we have sufficient
time and resources to conduct research on all of those individuals who could potentially
be included in a study. Two points of clarification are relevant at this early stage. We talk
about sampling from a population in the introduction to this chapter. It should be
recognized that when we sample, it is not necessarily people who are being sampled. We
can just as legitimately sample other units of analysis such as organizations, schools,
local authorities, and so on. Second, by a ‘population’ is meant a discrete group of units 
of analysis and not just populations in the conventional sense, such as the population of
England and Wales. Populations can be populations of towns, of particular groups (e.g.
all accountants in the United Kingdom), of individuals in a firm, or of firms themselves.
When we sample, we are selecting units of analysis from a clearly defined population.  

Clearly, some populations can be very large and it is unlikely that all of the units in a
population can be included because of the considerable time and cost that such an
exercise would entail. Sometimes, they can be sufficiently small for all units to be
contacted; or if they are not too large, it may be possible to carry out postal questionnaire
or telephone interview surveys on a whole population. On the other hand, researchers are
very often faced with the need to sample. By and large, researchers will want to form a
representative sample, that is, a sample that can be treated as though it were the
population. It is rare that perfectly representative samples can be created, but the chances
of forming a representative sample can be considerably enhanced by probability
sampling. The distinction between probability and non-probability sampling is a basic 
distinction in discussions of sampling. With probability sampling, each unit of a
population has a specifiable probability of inclusion in a sample. In the basic forms of
probability sampling, such as simple random samples (see below), each unit will have an
equal probability of inclusion.  



As an example of a non-probability sampling procedure, consider the following
scenario. An interviewer is asked to obtain answers to interview questions for fifty
people—twenty-five of each gender. She positions herself in a shopping area in a town at 
9.00 a.m. on a Monday and starts interviewing people one by one. Will a representative
sample be acquired? While it is not impossible that the sample is representative, there are
too many doubts about its representativeness. For example, most people who work will
not be shopping, she may have chosen people to be interviewed who were well-dressed 
and some people may be more likely to use the shops by which she positions herself than
others. In other words, there is a strong chance that the sample is not representative of the
people of the town. If the sample is unrepresentative, then our ability to generalize our
findings to the population from which it was selected is sharply curtailed. If we do
generalize, our inferences may be incorrect. If the sample is heavily biased towards
people who do not work, who appeal to the interviewer because of their appearance and
who only shop in certain retail outlets, it is likely to be a poor representation of the wider
population.  

By contrast, probability sampling permits the selection of a sample that should be
representative. The following is a discussion of the main types of probability sample that
are likely to be encountered.  

Simple random sample 

The simple random sample is the most basic type of probability sample. Each unit in the
population has an equal probability of inclusion in the sample. Like all forms of
probability sample, it requires a sampling frame, which provides a complete listing of all
the units in a population. Let us say that we want a representative sample of 200 non-
manual employees from a firm which has 600 non-manual employees. The sample is 
often denoted as n and the population as N. A sampling frame is constructed which lists 
the 600 non-manual employees. Each employee is allocated a number between 1 and N
(i.e. 600). Each employee has a probability of n/N of being included in the sample, i.e. 1
in 3. Individuals will be selected for inclusion on a random basis to ensure that human
choice is eliminated from decisions about who should be included and who excluded.  

Each individual in the sampling frame is allocated a number 1 to N. The idea is to 
select n from this list. To ensure that the process is random, a table of random numbers 
should be consulted. These tables are usually in columns of five-digit numbers. For 
example, the figures might be  

26938  
37025  
00352  
Since we need to select a number of individuals which is in three digits (i.e. 200), only 

three digits in each five-digit random number should be considered. Let us say that we
take the last three digits in each random number, that is we exclude the first two from
consideration. The first case for inclusion would be that numbered 938. However, since
the population is only 600, we cannot have a case numbered 938, so this figure is ignored
and we proceed to the next random number. The figure 37025 implies that the case
numbered 025 will be the first case for inclusion. The person numbered 025 will be the
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first sampled case. The next will be the person numbered 352, and so on. The process
continues until n (i.e. 200) units have been selected.  

By relying on a random process for the selection of individuals, the possibility of bias
in the selection procedure is largely eliminated and the chances of generating a
representative sample is enhanced. Sometimes, a systematic sample is selected rather
than a simple random sample. With a systematic sample, the selection of individuals is
undertaken directly from the sampling frame and without the need to connect random
numbers and cases. In the previous example, a random start between 1 and 3 would be
made. Let us say that the number is 1. The first case on the sampling frame would be
included. Then, every third case would be selected, since 1 in 3 must be sampled. Thus,
the fourth, seventh, tenth, thirteenth and so on would be selected. The chief advantage of
the systematic sample over the simple random sample is that it obviates the need to
plough through a table of random numbers and to tie in each number with a
corresponding case. This procedure can be particularly time-consuming when a large 
sample must be selected. However, in order to select a systematic sample, the researcher
must ensure that there is no inherent ordering to the list of cases in the sampling frame,
since this would distort the ensuing sample and would probably mean that it was not
representative.  

Stratified sampling 

Stratified sampling is commonly used by social scientists because it can lend an extra
ingredient of precision to a simple random or systematic sample. When selecting a
stratified sample, the researcher divides the population into strata. The strata must be
categories of a criterion. For example, the population may be stratified according to the
criterion of gender, in which case two strata—male and female—will be generated. 
Alternatively, the criterion may be department in the firm, resulting in possibly five
strata: production, marketing, personnel, accounting, and research and development.
Provided that the information is readily available, people are grouped into the strata. A
simple random or systematic sample is then taken from the listing in each stratum. It is
important for the stratifying criterion to be relevant to the issues in which the researcher
is interested; it should not be undertaken for its own sake. The researcher may be
interested in how the attitudes of non-manual employees is affected by the department to 
which they are attached in the firm. The advantage of stratified sampling is that it offers
the possibility of greater accuracy, by ensuring that the groups that are created by a
stratifying criterion are represented in the same proportions as in the population.  
Table 6.1 provides an illustration of the idea of a stratified sample. The table provides the
numbers of non-manual personnel in each department in the first column and the number 
of each department (i.e. stratum) that would be selected on a 1 in 3 basis. The important
point to note is that the proportions of personnel from each department in the sample are
the same as in the population. The largest department—production—has 35 per cent of 
all non-manual employees in the firm and 35 per cent of non-manual employees in the 
sample. A simple random or systematic sample without stratification might have
achieved the same result, but a stratified sample greatly enhances the likelihood of the
proper representation of strata in the sample. Two or more stratifying criteria can be
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employed in tandem. For example, if the researcher were interested in the effects of
gender on job attitudes, as well as belonging to different departments, we would then
have ten strata (five departments×two sexes), that is, men and women in production, men 
and women in marketing, and so on. From each of the ten strata a 1 in 3 sample would
then be taken.  

If the numbers in some strata are likely to be small, it may be necessary to sample 
disproportionately. For example, we may sample 2 in 3 of those  

in Research and Development. This would mean that 30, rather than 15, would be
sampled from this department. However, to compensate the extra 15 individuals that are
sampled in Research and Development, slightly less than 1 in 3 for Production and
Accounting may need to be sampled. When this occurs, it has to be recognized that the
sample is differentially weighted relative to the population, so that estimates of the
sample mean will have to be corrected to reflect this weighting.  

Multistage cluster sampling 

One disadvantage of the probability samples covered so far is that they do not deal very
well with geographically dispersed populations. If we took a simple random sample of all
chartered accountants in the UK or indeed of the population of the UK itself, the resulting
sample will be highly scattered. If the aim was to conduct an interview survey,
interviewers would spend a great deal of time and money travelling to their respondents.
A multistage cluster sample is a probability sampling procedure that allows such
geographically dispersed populations to be adequately covered, while simultaneously
saving interviewer time and travel costs.  

Initially, the researcher samples clusters, that is areas of the geographical region being 
covered. The case of seeking to sample households in a very large city can be taken as an
example of the procedure. At the first stage, all of the electoral wards in the city would be
ascribed a number 1 to N and a simple random sample of wards selected. At the second
stage, a simple random sample of streets in each ward might be taken. At the third stage,
a simple random sample of households in the sampled streets would be selected from the

Table 6.1 Devising a stratified random sample: non-manual employees in a firm  

Department 
Population 

N 
Sample 

n 

Production  210 70 

Marketing  120 40 

Personnel  63 21 

Accounting  162 54 

Research and development  45 15 

Total  600 200 
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list of addresses in the electoral rolls for the relevant wards. By concentrating
interviewers in small regions of the city, much time and travel costs can be saved. Very
often, stratification accompanies the sampling of clusters. For example, wards might be
categorized in terms of an indicator of economic prosperity (e.g. high, medium and low)
like the percentage of heads of household in professional and managerial jobs.
Stratification will ensure that clusters are properly represented in terms of this criterion.  

SAMPLING PROBLEMS 

One of the most frequently asked questions in the context of sampling is ‘how large 
should a sample be?’. In reality, there can only be a few guidelines to answering this
question, rather than a single definitive response.  

First, the researcher almost always works within time and resource constraints, so that 
decisions about sample size must always recognize these boundaries. There is no point in
working out an ideal sample size for a project if you have nowhere near the amount of
resources required to bring it into effect. Second, the larger the sample the greater the
accuracy. Contrary to expectations, the size of the sample relative to the size of the
population (in other words n/N) is rarely relevant to the issue of a sample’s accuracy. 
This means that sampling error—differences between the sample and the population
which are due to sampling—can be reduced by increasing sample size. However, after a
certain level, increases in accuracy tend to tail off as sample size increases, so that greater
accuracy becomes economically unacceptable.  

Third, the problem of non-response should be borne in mind. Most sample surveys 
attract a certain amount of non-response. Thus, it is likely that only some of the 200 non-
manual employees we sample will agree to participate in the research. If it is our aim to
ensure as far as possible that 200 employees are interviewed and if we think that there
may be a 20 per cent rate of non-response, it may be advisable to select 250 individuals,
on the grounds that approximately 50 will be non-respondents. Finally, the researcher 
should bear in mind the kind of analysis he or she intends to undertake. For example, if
the researcher intends to examine the relationship between department in the firm and
attitudes to white-collar unions, a table in which department is crosstabulated against 
attitude can be envisaged. If ‘attitude to white-collar unions’ comprises four answers and 
since ‘department’ comprises five categories, a table of twenty ‘cells’ would be 
engendered (see discussion of contingency tables and cross-tabulation in Chapter 8). In 
order for there to be an adequate number of cases in each cell a fairly large sample will be
required. Consequently, considerations of sample size should be sensitive to the kinds of
analysis that will be subsequently required.  

The issue of non-response draws attention to the fact that a well-crafted sample can be 
jeopardized by the failure of individuals to participate. The problem is that respondents
and non-respondents may differ from each other in certain respects, so that respondents 
may not be representative of the population. Sometimes, researchers try to discern
whether respondents are disproportionately drawn from particular groups, such as
whether men are clearly more inclined not to participate than women. However, such
tests can only be conducted in relation to fairly superficial characteristics like gender;
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deeper differences, such as attitudinal ones, cannot be readily tested. In addition, some
members of a sample may not be contactable, because they have moved or are on
holiday. Moreover, even when a questionnaire is answered, there may still be questions
which, by design or error, are not answered. Each of these three elements—non-response, 
inability to contact and missing information for certain variables—may be sources of 
bias, since we do not know how representative those who do respond to each variable are
of the population.  

Finally, although social scientists are well aware of the advantages of probability 
sampling procedures, a great deal of research does not derive from probability samples. 
In a review of 126 articles in the field of organization studies which were based on
correlational research, Mitchell (1985) found that only twenty-one were based on 
probability samples. The rest used convenience samples, that is, samples which are either
‘chosen’ by the investigator or which choose themselves (e.g. volunteers). However,
when it is borne in mind that response rates to sample surveys are often quite low and are
declining (Goyder, 1988), the difference between research based on random samples and
convenience samples in terms of their relative representativeness is not always as great as
is sometimes implied. None the less, many of the statistical tests and procedures to be
encountered later in this book assume that the data derive from a random sample. The
point being made here is that this requirement is often not fulfilled and that even when a
random sample has been used, factors like non-response may adversely affect its random 
qualities.  

STATISTICAL SIGNIFICANCE 

How do we know if a sample is typical or representative of the population from which it
has been drawn? To find this out we need to be able to describe the nature of the sample
and the population. This is done in terms of the distributions of their values. Thus, for
example, if we wanted to find out whether the proportion of men to women in our sample
was similar to that in some specified population, we would compare the two proportions.
The main tests for tackling such problems are described in Chapters 7 and 9. It should be 
noted that the same principle lies behind all statistical tests including those concerned
with describing the relationship between two or more variables. Here, the basic idea
underlying them will be outlined.  

To do this we will take the simple case of wanting to discover whether a coin was 
unbiased in the sense that it lands heads and tails an equal number of times. The number
of times we tossed the coin would constitute the sample while the population would be 
the outcomes we would theoretically expect if the coin was unbiased. If we flipped the
coin just once, then the probability of it turning up heads is once every two throws or 0.5.
In other words, we would have to toss it at least twice to determine if both possibilities
occur. If we were to do this, however, there would be four possible theoretical outcomes
as shown in Table 6.2: (1) a tail followed by a head; (2) a head followed by a tail; (3) two 
tails; and (4) two heads. What happens on each throw is independent of, or not affected 
by, the outcome of any other throw. If the coin was unbiased, then each of the four
outcomes would be equally probable. In other words, the probability of obtaining either
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two tails or two heads (but not both possibilities) is one in four or 0.25, while that of
obtaining a head and a tail is two in four, or 0.5. The probability of obtaining a head and a
tail (0.5) is greater than that of two tails (0.25) or two heads (0.25) but is the same as that
for two tails and two  

heads combined (0.25+0.25). From this it should be clear that it is not possible to draw
conclusions about a coin being unbiased from so few throws or such a small sample. This
is because the frequency of improbable events is much greater with smaller samples.
Consequently, it is much more difficult with such samples to determine whether they
come from a certain population.  

If we plot or draw the distribution of the probability of obtaining the same proportion 
of heads to tails as shown in Figure 6.1, then it will take the shape of an inverted ‘V’. 
This shape will contain all the possible outcomes which will add up to 1
(0.25+0.25+0.25+0.25=1).  

Table 6.2 Four possible outcomes of tossing a coin twice  

Possible outcomes Probability (p) 

1  Head  Tail  0.25  
=0.5  

2  Tail  Head  0.25  

3  Head  Head  0.25      

4  Tail  Tail  0.25    
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Figure 6.1 The distribution of similar theoretical outcomes of tossing a coin 
twice  

Theoretically, the more often we throw the coin, the more similar the distribution of 
the possible outcomes will be to an inverted ‘U’ or normal distribution. Suppose, for 
example, we threw the same coin six times (or, what amounts to the same thing, six coins
once). If we did this, there would be sixty-four possible outcomes. These are shown in
Table 6.3. The total number of outcomes can be calculated by multiplying the number of
possible outcomes on each occasion (2) by those of the other occasions
(2×2×2×2×2×2=64). The probability of obtaining six heads or six tails in a row (but not 
both) would be one in sixty-four or about 0.016. Since there are six possible ways in
which one head and five tails can be had, the probability of achieving this is six out of
sixty-four or about 0.10 (i.e., 0.016×6). The distribution of the probability of obtaining
different sequences of the same number of tails and heads grouped together (for example,
the six sequences of finding five tails and a head) is presented in Figure 6.2.  

It should be clear from this discussion that we can never be 100 per cent certain that 
the coin is unbiased, because even if we threw it 1,000 times, there is a very small chance
that it will turn up all heads or all tails on every one of those throws. So what we do is to
set a criterion or cut-off point at or beyond which we assume the coin will be judged to be
biased. This point is  

Sampling and statistical significance     101     



 

Figure 6.2 The distribution of similar theoretical outcomes of tossing a coin six 
times  

Table 6.3 Theoretical outcomes of tossing a coin six times and the probabilities of 
similar outcomes  

  Theoretical probabilityoutcomes   Theoretical probabilityoutcomes 

1  TTTTTT    0.016  64  HHHHHH    0.016  

2  TTTTTH    63  HHHHHT    

3  TTTTHT    62  HHHHTH    

4  TTTHTT    61  HHHTHH    

5  TTHTTT  0.094  60  HHTHHH  0.094  

6  THTTTT    59  HTHHHH    
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7  HTTTTT    58  THHHHH    

8  TTTTHH    57  HHHHTT    

9  TTTHHT    56  HHHTTH    

10  TTHHTT    55  HHTTHH    

11  TTTHTH    54  HHHTHT    

12  TTHTHT    53  HHTHTH    

13  TTHTTH    52  HHTHHT    

14  THTHTT    51  HTHTHH    

15  THHTTT  0.234  50  HTTHHH  0.234  

16  THTTTH    49  HTHHHT    

17  THTTHT    48  HTHHTH    

18  HTTHTT    47  THHTHH    

19  HTTTHT    46  THHHTH    

20  HTHTTT    45  THTHHH    

21  HTTTTH    44  THHHHT    

22  HHTTTT    43  TTHHHH    

23  TTTHHH      42  HHHTTT    

24  TTHHHT      41  HHTTTH    

25  TTHHTH      40  HHTTHT    

26  TTHTHH      39  HHTHTT    

27  THTHTH      38  HTHTHT    

28  THTHHT      37  HTHTTH  0.312  

29  THHTTH      36  HTTHHT    
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arbitrary and is referred to as the significance level. It is usually set at a probability or p
level of 0.05 or five times out of a hundred. Since the coin can be biased in one of two
ways, i.e. in favour of either heads or tails, this 5 per cent is shared equally between these
two possibilities. This means, in effect, that the probability of the coin being biased
towards heads will be 0.025 and that the probability of its bias towards tails will also be
0.025. In other words, if it turns up heads or tails six times in a row, then the probability 
of both these outcomes occurring would be about 0.032 (i.e., 0.016+0.016) which is
below the probability of 0.05. If either of these two events happened we would accept
that the coin was biased. If, however, it landed tails once and heads five times, or heads
once and tails five times, there are six ways in which either of these two outcomes could
happen. Consequently, the probability of either one happening is six out of sixty-four or 
about 0.10. The probability of both outcomes occurring is about 0.2 (i.e., 0.10+0.10). In
this case, we would have to accept that the coin was unbiased since this probability level
is above the criterion of 0.05.  

Because we can never be 100 per cent certain that the coin is either biased or unbiased,
we can make one of two kinds of error. The first kind is to decide that the coin is biased
when it is not. This is known as a Type I error and is sometimes referred to as α (alpha). 
For example, as we have seen, an unbiased coin may land heads six times in a row. The
second kind of error is to judge the coin to be unbiased when it is biased. This is called a
Type IIerror and is represented by β (beta). It is possible, for instance, for a biased coin to
come up tails once and heads five times. We can reduce the possibility of making a Type
I error by accepting a lower level of significance, say 0.01 instead of 0.05. But doing this
increases the probability of making a Type II error. In other words, the probability of a
Type I error is inversely related to that of a Type II one. The more likely we are to make
a Type I error, the less likely we are to commit a Type II error.  

At this stage, it is useful to discuss briefly three kinds of probability distribution. The
first is known as a binomial distribution and is based on the idea that if only either of two
outcomes can occur on any one occasion (for example, heads or tails if a coin is thrown),
then we can work out the theoretical distribution of the different combinations of
outcomes which could occur if we knew the number of occasions that had taken place.
One characteristic of this distribution is that it consists of a limited or finite number of
events. If, however, we threw an infinite number of coins an infinite number of times,
then we would have a distribution which would consist of an infinite possibility of
events. This distribution is known variously as a DeMoivre’s, Gaussian, normal, standard 
normal or z curve or distribution. If random samples of these probabilities are taken and
plotted, then the shape of those distributions will depend on the size of the samples.
Smaller samples will produce flatter distributions with thicker tails than the normal
distribution, while larger ones will be very similar to it. These distributions are known as
t distributions. What this means is that when we want to know the likelihood that a 

30  THHTHT      35  HTTHTH    

31  THTTHH      34  HTHHTT    

32  THHHTT      33  HTTTHH    
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particular series of events could have occurred by chance, we need to take into account
the size of the sample on which those events are based.  

So far, in order to convey the idea that certain events may occur just by chance, we 
have used the example of tossing a coin. Although this may seem a bit remote from the
kinds of data we collect in the social sciences, we use this underlying principle to 
determine issues such as whether a sample is representative of its population and whether
two or more samples or treatments differ from each other. Suppose we drew a small
sample of six people and wanted to determine if the proportion of males to females in it
was similar to that of the population in which the number of men and women are equal.
Each person can only be male or female. Since there are six people, there are sixty-four 
possible outcomes (i.e., 2×2×2×2×2×2). These, of course, are the same as those displayed 
in Table 6.3 except that we now substitute males for tails and females for heads. The joint 
probability of all six people being either male or female would be about 0.03 (i.e.
0.016+0.016), so that if this were the result we would reject the notion that the sample
was representative of the population. However, if one was male and the other five female,
or there was one female and five males, then the probability of this occurring by chance
would be about 0.2 (i.e. 0.096+0.096). This would mean that at the 0.05 significance
level we would accept either of these two outcomes or samples as being typical of the
population because the probability of obtaining these outcomes is greater than the 0.05
level. This shows that sample values can diverge quite widely from those of their
populations and still be drawn from them, although it should be emphasized that this
outcome would be less frequent the larger the sample. Statistical tests which compare a
sample with a population are known as one-sample tests and can be found in the next 
chapter.  

The same principle underlies tests which have been developed to find out if two or 
more samples or treatments come from the same population or different ones, although
this is a little more difficult to grasp. For example, we may be interested in finding out
whether women are more perceptive than men, or whether alcohol impairs performance.
In the first case, the two samples are women and men while in the second they are
alcohol and no alcohol. Once again, in order to explain the idea that underlies these tests,
it may be useful to think about it initially in terms of throwing a coin, except that this
time we throw two coins. The two coins represent the two samples. We want to know
whether the two coins differ in their tendency to be unbiased. If the two coins were
unbiased and if we were to throw them six times each, then we should expect the two sets
of theoretical outcomes obtained to be the same as that in Table 6.3. In other words, the 
two distributions should overlap each other exactly.  

Now if we threw the two coins six times each, it is unlikely that the empirical
outcomes will be precisely the same, even if the coins were unbiased. In fact, we can
work out the theoretical probability of the two distributions being different in the same
way as we did earlier for the coin turning up heads or tails. It may be easier in the first
instance if we begin by comparing the outcomes of tossing two coins just once. If we do
this, there are four possible outcomes: (1) two tails; (2) two heads; (3) one tail and one
head; and (4) one head and one tail. If we look at these outcomes in terms of whether
they are the same or different, then two of them are the same (two tails and two heads)
while two of them are different (one tail and one head, and vice versa). In other words,
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the probability of finding a difference is two out of four or 0.5, which is the same as that
for discovering no difference. We stand an equal chance of finding no difference as we
do of a difference if we throw two unbiased coins once.  

Thinking solely in terms of the outcomes of the two coins being the same or different, 
if we threw the two coins twice, then there would be four possible outcomes: (1) two the
same; (2) two different; (3) the first the same and the second different; and (4) the first
different and the second the same. In other words, the probability of obtaining the same
outcome when two unbiased coins are thrown twice is 0.25. The probability of the
outcomes being mixed is greater with the value being 0.5. The probability of the
outcomes being the same on all six throws would be about 0.016
(0.5×0.5×0.5×0.5×0.5×0.5=0.016). Hence, if the two coins were unbiased, we would not
expect them to give the same outcome on each occasion they were tossed. The
distribution of the outcomes of the two coins represents, in effect, what we would expect
to happen if the differences between two samples or two treatments were due to chance.  

Applying this idea to the kind of question that may be asked in the social sciences, we
may wish to find out if women and men differ in their perceptiveness. There are three
possible answers to this question: (1) women may be more perceptive than men; (2) they
may be no different from them; or (3) they may be less perceptive than them. In other
words, we can have three different expectations or hypotheses about what the answer
might be. Not expecting any difference is known as the null hypothesis. Anticipating a 
difference but not being able to predict what it is likely to be is called a nondirectional 
hypothesis. However, it is unlikely that we would ask this sort of question if we did not
expect a difference of a particular nature, since there is an infinite number of such
questions which can be posed. In carrying out research we are often concerned with
showing that a particular relationship either holds or does not hold between two or more
variables. In other words, we are examining the direction as well as the existence of a
relationship. In this case, we may be testing the idea that women are more perceptive than
men. This would be an example of a directional hypothesis. As we shall see, specifying 
the direction of the hypothesis means that we can adopt a slightly higher and more lenient
level of significance.  

Since there are three possible outcomes (i.e. a probability of 0.33 for any one outcome) 
for each paired comparison, if we tested this hypothesis on a small sample of five men
and five women, then the probability of all five women being more perceptive than men
just by chance would be about 0.004 (i.e. 0.33×0.33×0.33×0.33×0.33). If we obtained 
this result, and if we adopted the usual 0.05 or 5 per cent as the significance level at or
below which this finding is unlikely to be due to chance, then we would accept the
hypothesis since 0.004 is less than 0.05. In other words, we would state that women were
significantly more perceptive than men below the 5 per cent level—see Figure 6.3 (a). As 
we shall see, Minitab provides the exact level of significance for each test when this level
is given. It has been customary in the social sciences to provide the significance level
only for results which fall at or below the 0.05 level and to do so for certain cut-off points 
below that such as 0.01, 0.001, and 0.0001. However, with the advent of computer
programs such as Minitab which give exact significance levels, it could be argued that
this tradition does not maximize the information that could be supplied without any
obvious disadvantages.  
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If, however, we found that only four of the women were more perceptive than the men, 
then the probability of this happening by chance would be about 0.04, since there are ten
ways or sequences in which this result could occur (0.004×10=0.04). This finding is still 
significant. However, if we had adopted a non-directional hypothesis and had simply 
expected a  

 

Figure 6.3 One-tailed and two-tailed 0.05 levels of significance  

difference between men and women without specifying its direction, then this result
would not be significant at the 0.05 level since this 0.05 would have to be shared between
both tails of the distribution of possible outcomes as in Figure 6.3 (b). In other words, it 
would become 0.025 at either end of the distribution. This result would require a
probability level of 0.025 or less to be significant when stated as a non-directional 
hypothesis. As it is, the probability of either four women being more perceptive than men
or four men being more perceptive than women is the sum of these two probabilities,
namely 0.08, which is above the 0.05 level. The important point to note is that non-
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directional hypotheses require two-tailed significance levels while directional hypotheses 
only need one-tailed ones. If we find a difference between two samples or treatments we
did not expect, then to test the significance of this result we need to use a two-tailed test.  

It may be worth reiterating at this stage that a finding that four out of the five women 
being more perceptive than the five men may still be obtained by chance even at the 0.04
one-tailed level. In other words, this means that there remains a four in a hundred 
possibility that this result could be due to chance. In accepting this level of significance
for rejecting the null hypothesis that there is no difference between men and women, we
may be committing a Type I error, namely thinking that there is a difference between
them when in fact there is no such difference. In other words, a Type I error is rejecting
the null hypothesis when it is true as shown in Table 6.4. We may reduce the probability 
of making this kind of error by lowering the significance level from 0.05 to 0.01, but this
increases the probability of committing a Type II error, which is accepting that there is no
difference when there is one. A Type II error is accepting the null hypothesis when it is
false. Setting the significance level at 0.01 means that the finding that four out of the five
women were more perceptive than the men is assuming that this result is due to chance
when it may be indicating a real difference.  

The probability of correctly assuming that there is a difference when there actually is 
one is known as the power of a test. A powerful test is one that is  

more likely to indicate a significant difference when such a difference exists. Statistical
power is inversely related to the probability of making a Type II error and is calculated
by subtracting beta from one, (i.e. 1−β).  

Finally, it is important to realize that the level of significance has nothing to do with 
the size or importance of a difference. It is simply concerned with the probability of that
difference arising by chance. In other words, a difference between two samples or two
treatments which is significant at the 0.05 level is not necessarily bigger than one which
is significant at the 0.0001 level. The latter difference is only less probable than the
former one.  

EXERCISES 

1. What is the difference between a random sample and a representative sample?  

Table 6.4 Type I and Type II errors  

    Reality 

    No difference A difference 

Interpretation of reality  
Accept no difference  Correct  Type II error β 

Accept a difference  Type I error α Correct  
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2. Why might a stratified sample be superior to a simple random sample?  

3. In what context might multistage cluster sampling be particularly useful?  

4. If a sample of grocery shops was selected randomly from the Yellow Pages in your 
town, would you necessarily have a representative sample?  

5. Flip a coin four times. What is the probability of finding the particular sequence of
outcomes you did?  

6. If the coin were unbiased, would you obtain two heads and two tails if you threw it
four times?  

7. What is the probability of obtaining any sequence of two heads and two tails?  

8. You have developed a test of general knowledge, which consists of a hundred
statements, half of which are false and half of which are true. Each person is given one
point for a correct answer. How many points is someone who has no general knowledge
most likely to achieve on this test?  

9. Fifty people are tested to see if they can tell margarine from butter. Half of them are
given butter and the other half are given margarine. They have to say which of these two
products they were given (i.e. there were no ‘don’t knows’). If people cannot discriminate 
between them, how many people on average are likely to guess correctly?  

10. If we wanted to see if women were more talkative than men, what would the null
hypothesis be?  

11. What would the non-directional hypothesis be?  
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Chapter 7  
Bivariate analysis  

Exploring differences between scores on two variables  

In this chapter we will be looking at ways of determining whether the differences
between the distributions of two variables are statistically significant. Thus, for example,
when analysing data we may wish to know the answers to some of the following kinds of
questions: Is the proportion of black to white workers the same among men as it is among
women? Do women workers earn less than their male counterparts? Does job satisfaction
change from one month to the next? Do the scores in one treatment group differ from
those in another?  

In looking at differences between two variables, the variable which we use to form our 
comparison groups usually has a small number of values or levels, say between two and
six. We shall call this the comparison-group variable to distinguish it from the other one
which we shall refer to as the criterion variable. The comparison-group variable is 
sometimes known as the independent variable, and the criterion variable as the dependent
one. An example of a comparison-group variable would be gender if we wanted to
compare men with women. This typically has two levels (i.e. men and women) which go
to make up two comparison groups. Race or ethnic origin, on the other hand, may take on
two or more levels (e.g., Caucasian, Negroid, Asian and Mongolian), thereby creating
two or more comparison groups. Other examples of comparison-group variables include 
different experimental treatments (for example, drugs versus psychotherapy in treating
depression), different points in time (for example, two consecutive months), and the
categorization of participants into various levels on some variable (such as high,
intermediate and low job satisfaction). The other variable is the one that we shall use to
make our comparison (for example, income or job satisfaction).  

CRITERIA FOR SELECTING BIVARIATE TESTS OFDIFFERENCES 

There is a relatively large number of statistical tests to determine whether a difference
between two or more groups is significant. In deciding which is the most appropriate 
statistical test to use to analyse your data, it is necessary to bear the following
considerations in mind.  

Categorical data 

If the data are of a categorical or nominal nature, where the values refer to the number or
frequency of cases that fall within particular categories, such as the number of black



female workers, it is only possible to use what is referred to as a non-parametric test (see 
below for an explanation). Thus, for example, in trying to determine whether there are
significantly more white than black female employees, it would be necessary to use a
non-parametric test.  

Ordinal and interval/ratio data 

If the data are of a non-categorical nature, such as the rating of how skilled workers are or 
how much they earn, then it is necessary to decide whether it is more appropriate to use a
parametric or non-parametric test. Since this issue is a complex and controversial one, it
will be discussed later in some detail.  

Means or variances? 

Most investigators who use parametric tests are primarily interested in checking for
differences between means. Differences in variances are also normally carried out but 
only to determine the appropriateness of using such a test to check for differences in the
means. Variance is an expression showing the spread or dispersion of data around the
mean and is the square of the standard deviation. If the variances are found to differ
markedly, then it may be more appropriate to use a non-parametric test. However, 
differences in variance (i.e. variability) may be of interest in their own right and so these
tests have been listed separately. Thus, for example, it may be reasonable to suppose that
the variability of job satisfaction of women will be greater than that of men, but that there
will be no difference in their mean scores. In this case, it would also be necessary to pay
attention to the differences between the variances to determine if this is so.  

Related or unrelated comparison groups? 

Which test you use also depends on whether the values that you want to compare come
from different cases or from the same or similar ones. If, for example, you are comparing
different groups of people such as men and women or people who have been assigned to
different experimental treatments, then you are dealing with unrelated samples of
subjects. It is worth noting that this kind of situation or design is also referred to in some 
of the following ways: independent or uncorrelated groups or samples; and between-
subjects design. If, on the other hand, you are comparing the way that the same people 
have responded on separate occasions or under different conditions, then you are dealing
with related samples of observations. This is also true of groups of people who are or
have been matched or paired on one or more important characteristic such as, for
example, husbands and wives, which may also make them more similar in terms of the
criterion variable under study. Once again, there is a number of other terms used to
describe related scores such as the following: dependent or correlated groups or samples; 
repeated measures; and within-subjects design.  
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Two or more comparison groups? 

Different tests are generally used to compare two rather than three or more comparison
groups.  

The tests to be used given these criteria are listed in Table 7.1. Readers may wish to 
use this table as a guide to the selection of tests appropriate to their needs. Page numbers
have been inserted in the table to facilitate finding further information on the tests.  

PARAMETRIC VERSUS NON-PARAMETRIC TESTS 

One of the unresolved issues in data analysis is the question of when parametric rather
than non-parametric tests should be used. Some writers have argued that it is only 
appropriate to use parametric tests when the data fulfil the following three conditions: (1)
the level or scale of measurement is of equal interval or ratio scaling i.e. more than
ordinal; (2) the distribution of the population scores is normal; and (3) the variances of
both variables are equal or homogeneous. The term parameter refers to a measure which 
describes the distribution of the population such as its mean or variance. Since parametric
tests are based on the assumption that we know certain characteristics of the population
from which the sample is drawn, they are called parametric tests. Non-parametric or 
distribution-free tests are so named because they do not depend on assumptions about the
precise form of the distribution of the sampled populations.  

However, the need to meet these three conditions for using parametric tests has been
strongly questioned. Some of the arguments will be mentioned here and these will be
simply stated, with sources provided where further details can be found. As far as the first
condition is concerned, level of measurement, it has been suggested that parametric tests
can also be used with ordinal variables since tests apply to numbers and not to what those
numbers signify (for example, Lord, 1953). Thus, for  

Table 7.1 Tests of differences  

Nature of 
criterion 
variable 

Type of 
test 

Type of 
data 

Number 
ofcomparison 
groups 

Name of test Page 
numbers 

Categorical: 
nominal or 
frequency  

Non-
parametric  

Unrelated  1  Binomial  114–16  

  2+  Chi-square  116–19  

Non-
categorical:  

Non-
parametric  

Unrelated  2  Mann-Whitney U 119–21  

      3+  Kruskal-Wallis H 121–4  

    Related  2  Sign  124–6  
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example, we apply these tests to determine if two scores differ. We know what these
scores indicate, but the test obviously does not. Therefore, the data are treated as if they
are of interval or ratio scaling. Furthermore, it can be argued that since many
psychological and sociological variables such as attitudes are basically ordinal in nature
(see p. 57), parametric tests should not be used to analyse them if this first condition is
valid. However, it should be noted that parametric tests are routinely applied to such
variables.  

With respect to the second and third conditions, the populations being normally
distributed and of equal variances, a number of studies have been carried out (for
example, Boneau, 1960; Games and Lucas, 1966) where the values of the statistics used
to analyse samples drawn from populations which have been artificially set up to violate
these conditions have been found not to differ greatly from those for samples which have
been drawn from populations which do not violate these conditions. Tests which are able
to withstand such violations are described as being robust.  

One exception to this general finding was where both the size of the samples and the
variances were unequal although some have argued that this exception applies even with
equal sample sizes (Wilcox, 1987). Another exception was where both distributions of
scores were non-normal. In such circumstances, it may be prudent to compare the results
of a non-parametric test with those of a parametric test. Where the distributions of scores
are not normal, it may also be worth running a parametric test on the scores as they are
and after they have been transformed closer to normality. For more details on
transforming scores to normality, see Mosteller and Tukey (1977). It may also be more

      2  Wilcoxon  126–7  

      3+  Friedman  127–30  

  Parametric: 
Means  

Unrelated  1–2  t 130–6  

    2+  One-way and two-
way analysis of 
variance  

137–41  

        197–201  

    Related  2  t 141–3  

      3+  Repeated measures 
analysis of variance  

144–7  

    Related and 
Unrelated  

2+  Two-way analysis 
of variance with 
repeated measures 
on one factor  

206–10  

        Two-way analysis 
of covariance  

201–4  

  Parametric:  Unrelated  2  F 134–8  

        Levene’s test  136–7  

  Variances  Related  2  t 143–4  
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desirable to use non-parametric tests when the size of the samples is small, say under
fifteen, since under these circumstances it is more difficult to determine the extent to
which these conditions have been met. A fuller description of non-parametric tests may 
be found in Siegel and Castellan (1988) or Conover (1980).  

CATEGORICAL VARIABLES AND NON-PARAMETRIC TESTS 

Binomial test for one dichotomous variable 

The binomial test is used to compare the frequency of cases actually found in the two
categories of a dichotomous variable with those which are expected on some basis.
Suppose, for example, that we wanted to find out whether the ratio of female to male
workers in the industry covered by our Job Survey was the same as that in the industry in
general, which we knew to be 1:3. We could do this by carrying out a binomial test in
which the proportion of women in our survey was compared with that of an expected
proportion of 1:4 or one out of every four workers. In our survey there are 31 women and
39 men.  

With the Minitab prompt system, a one-tailed binomial test can be calculated with the
pdf (which stands for probability distribution function) command and the binomial
subcommand. On the pdf command specify the smaller of the two frequencies, which is
31, followed by a semicolon.  

MTB> pdf 31; 

On the binomial subcommand, type binomial followed by the total number of cases in 
the sample (which is 70), the expected probability of obtaining the less frequent value 
(which is .25) and a full stop.  

SUBC> binomial 70 .25. 

The menu action for doing this is  

→Calc→ProbabilityDistributions→Binomial…→Probability 
[as  this is the default it is already selected] →box 
beside Number oftrials: and type in the sample size [e.g. 
70] →box beside Probabilityof success: and type in 
probability of obtaining the less frequent  category [e.g. 
.25] →Input constant: →box beside it and in it type 
the  frequency of that category [e.g. 31] →OK 

The output displays the value of the smaller frequency (K) and the probability of 
obtaining that outcome (P) as follows:  

K  P(X=K) 

31.00  0.0002 
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The one-tailed probability of the sample containing 31 women is 0.0002 when the 
expected probability of obtaining a woman is 0.25. This means that the probability of
obtaining this result by chance is highly unlikely with p equal to 0.0002 or less. In other 
words, the likelihood of this result happening by chance is 1 out of 10,000 times.
Therefore, we would conclude that the ratio of female to male workers is not 1:3.  

If we wanted to find out if the number of white workers (which is 36) in our sample 
does not differ significantly from the number of non-white workers (which is 34), we 
would use the cdf command (which stands for cumulative distribution function) and the 
binomial subcommand. On the cdf command we specify the smaller of the two
frequencies, which is 34, followed by a semi-colon.  

MTB> cdf 34; 
SUBC> binomial 70 .5. 

The menu procedure for doing this is  

→Calc→Probability Distributions 
→Binomial…→Cumulative probability→box beside Number 
oftrials: and type in the sample size [e.g. 70] →box beside 
Probabilityof success: and type in probability of obtaining 
the less frequent  category [e.g. .5] →Input constant: 
→box beside it and in it type the  frequency of that 
category [e.g. 34] →OK 

The output for this procedure is  

The one-tailed probability of the sample comprising 34 non-white workers is 0.4525
when the expected probability of having a non-white worker is 0.5. This means that the
probability of finding this result is high. Consequently, we would conclude that there is
no significant difference in the number of non-white and white workers.  

Incidentally, the similarity of these examples to those used to illustrate the notion of 
significance testing in the previous chapter should be noted, except that there we were
comparing the frequency of finding one tail (or one male) to every five heads (or five
females) against an expected frequency or probability of 0.5.  

Chi-square test for two or more unrelated samples 

If we wanted to compare the frequency of cases found in one variable in two or more
unrelated samples or categories of another variable, we would use the chi-square test. We 
will illustrate this test with the relatively simple example in which we have two
dichotomous variables, gender (male and female) and ethnic group (white and non-
white), although it can also be applied to two variables which have three or more
categories. Suppose, for instance, we wished to find out whether the proportion of male
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to female workers was the same in both white and black workers.  
We would begin by recoding ‘ethnicgp’ as follows  

MTB> code (3:5) 2 ‘ethnicgp’ c31 

We could name c31 as ‘rethncgp’.  

MTB> name c31 ‘rethncgp’ 

The menu procedure for doing this is  

→Manip→Code DataValues…→ethnicgp→Select [this 
puts  ethnicgp in the box under Code data from columns:] 
→type  rethncgp in the box under Into columns: →first box 
under Originalvalues [eg, 1:4 12]: and in it type 3:5→first 
corresponding box under  New: and in it type 2→OK 

Next we need to count the number of male and female white and non-white workers 
using the following table command and count subcommand  

MTB> table ‘gender’ ‘rethncgp’; 
SUBC> count. 

The menu action for doing this is  

→Stat→Tables→Cross Tabulation…→gender→Select [this 
puts  gender in the box under ClassificationVariables] 
→rethncgp→Select→box beside Counts [this puts a cross in 
this box] →OK 

The variable listed first will form the rows of the table while that listed second will form
the columns.  

The output from this procedure is shown in Table 7.2. The rows in Table 7.2 represent 
‘gender’ with 1 signifying men and 2 women while the columns reflect ‘rethncgp’ with 
1 denoting white workers and 2 non-white workers.  

We then create two new columns which contain the frequency of male and female
white and non-white workers  

MTB> set c32 
DATA> 22 14 
DATA> end 
MTB> set c33 
DATA> 17 17 
DATA> end 

We are now ready to conduct a chi-square test on these two new columns with the
following chisquare command  
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MTB> chisquare c32 c33<  

The output from this command is presented in Table 7.3. The expected 
frequencies or counts are displayed below the observed frequencies. Thus, the 
expected frequency of male white workers is 20.06 which is slightly lower than 
the observed frequency of 22. In other words, there are slightly fewer white 
male workers than expected. The chi-square value for this analysis is 0.875 with 
1 df or degree of freedom. The term degrees offreedom (df), associated with any 
statistic, refers to the number of components which are free to vary. It is a 
difficult concept which is well explained elsewhere (Walker, 1940). In chi-
square, degrees of freedom are calculated by subtracting 1 from the number of 
categories in each of the two variables and multiplying the remaining values 
which in this case gives 1 [i.e. (2−1)×(2−1)=1].  

To work out the statistical significance of obtaining a chi-square of 0.875 at 
the 0.05 two-tailed level, we use the invcdf (inverse cumulative distribution 
function) command followed by the chisquare subcommand.  

On the invcdf command the level of statistical significance is specified by 
subtracting that level from 1.00. So, for the 0.05 probability level the appropriate 
figure is 0.95 (1.00−0.05=0.95).  

MTB> invcdf .95; 

On the chisquare subcommand, which gives critical values for the chisquare 
distribution, the appropriate degrees of freedom are listed after the keyword 
chisquare. Therefore, the subcommand for finding the 0.05 two-tailed critical 
value of chisquare with 1 degree of freedom is  

SUBC> chisquare 1. 

The following output is provided  
0.9500      3.8415  

Table 7.2 Table showing frequency of male and female white and non-white 
workers in the Job Survey  

ROWS: gender COLUMNS: rethncgp 
  1 2 ALL 

1 22 17 39 

2 14 17 31 

ALL 36 34 70 

CELL CONTENTS—     

  COUNT 
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The first figure refers to the inverse cumulative distribution function of 
0.9500 while the second is the critical chi-square value of 3.8415. As the chi-
square value we obtained, which was 0.875, is smaller than the critical value of 
3.8415, we would conclude that the frequencies did not differ significantly from 
those expected by chance at less than the two-tailed 0.05 level. Since the value 
of chi-square is not significant, this means that the proportion of male to female 
workers is the same for both whites and nonwhites.  

To obtain chi-square with the menu system, we carry out the following 
sequence  

→Stat→Tables→ChisquareTest…→c32→Select [this puts 
c32 in  the box under Columns containing the table:] 
→c33→Select→OK 

In Release 10 the probability of obtaining chi-square is given, which for our 
example is displayed as p=0.350.  

In Releases 8 and 9, the critical value of chi-square is found by  

→Calc→ProbabilityDistribution→Chisquare…
→Inversecumulative probability→box beside Degrees 
of freedom and type  degrees of freedom [e.g. 1] in 
it→box beside Input constant: and in  it type the 
cumulative probability level [e.g. .95] →OK 

There is a restriction on using chi-square when the expected frequencies are 
small. With only two categories (or one degree of freedom), the number of cases 
expected to fall in these categories should be at least 5 before this test can be 
applied. If the expected frequencies are less than 5, then the binomial test should 

Table 7.3Chisquare output comparing number of white and non-white men and 
women in the Job Survey  

Expected counts are printed below observed counts 
  C32 C33 Total 

1 22 17 39 

  20.06 18.94   

2 14 17 31 

  15.94 15.06   

Total 36 34 70 

ChiSq= 0.188+ 0.199+   

  0.237+ 0.251=0.875   

df=1 
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be used instead. With three or more categories (or more than one degree of 
freedom), chi-square should not be used when any expected frequency is smaller 
than 1 or when more than 20 per cent of the expected frequencies are smaller 
than 5. In these situations, it may be possible to increase the expected 
frequencies in a category by combining it with those of another.  

NON-CATEGORICAL VARIABLES AND NON-PARAMETRIC 
TESTS 

Mann-WhitneyUtest for two unrelated samples 

The Mann-Whitney test compares the number of times a score from one of the 
samples is ranked higher than a score from the other sample. If the two groups 
are similar, then the number of times this happens should also be similar for the 
two groups.  

To find out if rated quality of work is similar for men and women, we first 
have to separate rated quality of work (‘qual’) for men and women using the 
following unstack command and subscripts subcommand:  

MTB> unstack (‘id’ ‘gender’ ‘qual’) (c31 c32 c33) 
(c34-c36); 
SUBC> subscripts ‘gender’. 

The menu system for doing this is  

→Manip→Unstack…→id→Select [this puts id in the box 
below  Unstack:] →gender→Select→qual→Select→box 
beside Usingsubscripts: →gender→Select→Store 
results inblocks: [this is  automatically selected] 
→type c31 c32 c33 in the first box [which 
is  automatically selected] →second box and in it 
type c34-c36→OK 

The Unstack dialog box is pictured in Figure 7.1.  
To enable you to check that this procedure has worked correctly, we have also 

included the identification number (‘id’) of the participants although it is not 
necessary to do this once you have learned how to use this command.  

The original variables we want to re-arrange are ‘id’, ‘gender’ and ‘qual’. 
We want to put these variables in new columns according to the values of 
‘gender’ which only takes the two values 1 and 2. We do this with the 
subscripts subcommand since it is as if we are putting the subscript 1 against all 
male values and the subscript 2 against all female values. Consequently, we 
need three extra columns for the male data (c31, c32 and c33) and three for the 
female data (c34, c35 and c36) for the identification number, gender and rated 
quality of work respectively.  
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Figure 7.1Unstack dialog box  

To remind us that c33 contains rated quality of work for men and c36 rated 
quality of work for women we will name these two new columns ‘mqual’ and 
‘fqual’ respectively.  

MTB> name c33 ‘mqual’ c36 ‘fqual’ 

To check that this procedure has worked, we will print ‘id’, ‘gender’,‘qual’ and 
c31 to c36.  

MTB> print ‘id’ ‘gender’ ‘qual’ c31-c36 

The menu sequence for doing this is  

→File→Display Data…→id→Select [this puts id in the 
box beneath  Columns, constants, and matrices to 
display:] →gender→Select→qual→Select→c31-
c36→Select→OK 

The output for this procedure is displayed in Table 7.4. For case 70 who is male 
we can see that the rating of 4 has been placed in ‘mqual’ while for case 66 who 
is female the rating of 3 has been put in ‘fqual’.  

To carry out a Mann-Whitney test comparing rated quality of work for men 
and women, we used the mann-whitney command with the variables ‘mqual’ 
and ‘fqual’: 
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MTB> mann-whitney ‘mqual’ ‘fqual’ 

The menu sequence for doing this is  

→Stat→Nonparametrics→Mann-Whitney…→mqual→Select 
[this puts mqual in the box beside First Sample:] 
→fqual→Select [this puts fqual in the box beside 
Second Sample:] →OK 

The output from this sequence is shown in Table 7.5. We can see that the value 
of the Mann-Whitney statistic, the Wilcoxon W (which is the sum of the ranks of 
the smaller group) is 1440.5. The probability of obtaining this value is 0.5003 
when an adjustment is made for the number of scores which receive or tie for the 
same rank. As this probability is greater than 0.05 and so is not significant, we 
can conclude that there is no statistically significant difference between men and 
women in the mean ranking of the rated quality of their work.  

Kruskal-WallisHtest for three or more unrelated samples 

The Kruskal-Wallis H test is similar to the Mann-Whitney U test in that the cases 
in the different samples are ranked together in one series. However, unlike the 
Mann-Whitney U test, it can be used to compare scores in more than two groups. 
To compare the rated quality of work for people in the four ethnic groups, we 
use the following command:  

MTB> kruskal-wallis ‘qual’ ‘ethnicgp’ 

Table 7.4‘Qual’ unstacked for men and women as ‘mqual’ and ‘fqual’ 

ROW id gender qual C30 C31 mqual C33 C34 fqual 
1 1 1 1 1 1 1 5 2 3 

2 2 1 4 2 1 4 9 2 1 

3 3 1 4 3 1 4 10 2 4 

4 4 1 4 4 1 4 14 2 2 

5 5 2 3 6 1 4 18 2 3 

6 6 1 4 7 1 2 19 2 4 

7 7 1 2 8 1 4 20 2 1 

8 8 1 4 11 1 3 24 2 3 

9 9 2 1 12 1 3 25 2 2 

10 10 2 4 13 1 5 28 2 5 

11 11 1 3 15 1 5 30 2 3 

12 12 1 3 16 1 3 32 2 4 
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13 13 1 5 17 1 3 33 2 5 

14 14 2 2 21 1 2 34 2 5 

15 15 1 5 22 1 5 35 2 3 

16 16 1 3 23 1 5 39 2 4 

17 17 1 3 26 1 5 41 2 2 

18 18 2 3 27 1 4 43 2 1 

19 19 2 4 29 1 4 47 2 3 

20 20 2 1 31 1 2 48 2 4 

21 21 1 2 36 1 2 49 2 4 

22 22 1 5 37 1 4 52 2 1 

23 23 1 5 38 1 4 54 2 3 

24 24 2 3 40 1 2 55 2 5 

25 25 2 2 42 1 2 58 2 3 

26 26 1 5 44 1 3 59 2 5 

27 27 1 4 45 1 3 61 2 3 

28 28 2 5 46 1 4 63 2 1 

29 29 1 4 50 1 4 64 2 4 

30 30 2 3 51 1 2 65 2 1 

31 31 1 2 1 53 3 66 2 3 

32 32 2 4 1 56 1       

33 33 2 5 57 1 2       

34 34 2 5 60 1 1       

35 35 2 3 62 1 2       

36 36 1 2 67 1 5       

37 37 1 4 68 1 4       

38 38 1 4 69 1 4       

39 39 2 4 70 1 4       

40 40 1 2             

41 41 2 2             

42 42 1 2             

43 43 2 1             

44 44 1 3             

45 45 1 3             

46 46 1 4             

47 
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Note that the variable to be compared (‘qual’) is listed first followed by the 
variable which provides the categories (‘ethnicgp’).  

The menu action for doing this is  

→Stat→Nonparametrics→Kruskal-Wallis…→qual→Select 
[this  puts qual in the box beside Response:] 
→ethnicgp→Select [this puts  ethnicgp in the box 
beside Factor:] →OK 

47 2 3             

48 48 2 4             

49 49 2 4             

ROW id gender qual C30 C31 mqual C33 C34 fqual 

50 50 1 4             

51 51 1 2             

52 52 2 1             

53 53 1 3             

54 54 2 3             

55 55 2 5             

56 56 1 1             

57 57 1 2             

58 58 2 3             

59 59 2 5             

60 60 1 1             

61 61 2 3             

62 62 1 2             

63 63 2 1             

64 64 2 4             

65 65 2 1             

66 66 2 3             

67 67 1 5             

68 68 1 4             

69 69 1 4             

70 70 1 4             
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The output from this procedure is presented in Table 7.6. The number of 
observations or cases (NOBS) for the four ethnic groups or LEVELs is 
displayed in the second column and their average rank (AVE. RANK) in the 
fifth column. The H and its significance level is shown both unadjusted 
(p=0.786) and adjusted for ties [p=0.772 (adj. for ties)]. Since the significance 
level is greater than 0.05 on both tests, this indicates there is no difference 
between workers of the four ethnic groups in the mean ranking of the rated 
quality of their work.  

Sign test for two related samples 

The sign test compares the number of positive and negative differences between 
two scores from the same cases at two points in time, in two treatments, or from 
two samples which have been matched to be similar in certain respects such as 
having the same distributions of age, gender, and socio-economic status. The 
sign test ignores the size of any differences. If the two samples are similar, then 
these differences should be normally distributed. Suppose, for example, we 
wanted to find out if there had been any changes in the rated quality of work 
during two consecutive months. If the number of positive differences (i.e. 
decreases in ratings) was similar to the number of negative ones (i.e. increases in 
ratings), this would mean that there was no change in one particular direction 
between the two occasions.  

The use of tests to analyse information from two or more related samples will 
be illustrated with the small set of data in Table 7.7. This consists of one 
example of the three kinds of variables (categorical, ordinal and interval/ratio) 
measured at three consecutive monthly intervals on twelve workers. The 
categorical variable is the attendance at the firm’s monthly meeting (attend1 to 
attend3), the ordinal one is the quality of the work as rated by the supervisor 

Table 7.5Mann-Whitney output comparing rated quality of work for men 
(‘mqual’) and women (‘fqual’) 

Mann-Whitney Confidence Interval and Test 
mqual N=39 Median= 4.000 

fqual N=31 Median= 3.000 

Point estimate for ETA1-ETA2 is −0.000 

95.0 pct c.i. for ETA1-ETA2 is (0.000, 1.000) 

W=1440.5 

Test of ETA1=ETA2 vs. ETA1 n.e. ETA2 is significant at 0.5117 

The test is significant at 0.5003 (adjusted for ties) 

Cannot reject at alpha=0.05 
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(qual1 to qual3), while the interval/ratio one is self-expressed job satisfaction 
(satis1 to satis3). A study in which data are  

collected from the same individuals at two or more points is known as a 
prospective, longitudinal, or panel design. Consequently, this example will be 
referred to as the Panel Study.  

To compare rated quality of work in the first and second month, we first have 
to subtract one variable from the other using the following let command:  

Table 7.6Kruskal-Wallis output comparing rated quality of work for four 
ethnic groups  

LEVEL NOBS MEDIAN AVE. RANK Z VALUE 
1 36 3.000 35.0 −0.22 

2 18 3.000 33.5 −0.49 

3 14 4.000 37.7 0.46 

4 2 4.000 47.5 0.85 

OVERALL 70   35.5   

H=1.06 d.f.=3 p=0.786 

H=1.12 d.f.=3 p=0.772 (adj. for ties) 

* NOTE * One or more small samples 

Table 7.7 The Panel Study data  

id attend1 qual1 satis1 attend2 qual2 satis2 attend3 qual3 satis3 

01 1 5 17 1 4 18 1 5 16 

02 1 4 12 2 3 9 2 2 7 

03 2 3 13 1 4 15 2 3 14 

04 2 4 11 2 5 14 2 3 8 

05 2 2 7 2 3 10 1 3 9 

06 1 4 14 1 4 15 2 3 10 

07 1 3 15 2 1 6 1 4 12 

08 2 4 12 1 3 9 1 4 13 

09 1 4 13 2 5 14 1 3 15 

10 1 1 5 2 2 4 2 3 9 

11 1 3 8 2 3 7 1 3 6 

12 1 4 11 2 4 13 1 3 10 
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MTB> let c11=‘qual1’-‘qual2 

The menu procedure for doing this is  

→Calc→MathematicalExpressions…→c11→Select [this 
puts c11 in the box beside Variable [new or 
modified]:] →box under  Expression: and in it type 
‘qual1’-‘qual2’→OK 

We can display the data for these three variables with the print command  

MTB> print ‘qual1’ ‘qual2’ c11 

The menu action for doing this is  

→File→Display Data…→qual1→Select [this puts qual1 
in the box  beneath Columns, constants, and matrices 
to display:] →qual2→Select→c11→Select→OK 

We can see from the output displayed in Table 7.8 that five of the differences 
are positive, four are negative and three are zero.  

To determine if the number of positive differences differs from the number of 
negative differences, we carry out the sign test on the differences stored in c11 
with the following stest command  

MTB> stest c11 

Table 7.8 The difference (C11) between qual1 and qual2  

ROW qual1 qual2 C11 
1 5 4 1 

2 4 3 1 

3 3 4 −1 

4 4 5 −1 

5 2 3 −1 

6 4 4 0 

7 3 1 2 

8 4 3 1 

9 4 5 −1 

10 1 2 −1 

11 3 3 0 
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The menu procedure for doing this is  

→Stat→Nonparametrics→1-Sample Sign…→c11→Select 
[this  puts c11 in the box under Variables:] →OK 

The output from this procedure is displayed in Table 7.9. With almost equal 
numbers of positive and negative differences, it is not surprising that the test is 
non-significant. In other words, there is no change in rated quality of work over 
the two months.  

Wilcoxon matched-pairs signed-ranks test for two related samples 

This test, like the Mann-Whitney, takes account of the size of the differences 
between two sets of related scores by ranking and then summing those with the 
same sign. If there are no differences between the two samples, then the number 
of positive signs should be similar to the number of negative ones. This test 
would be used, for example, to determine if the rated quality of work in the 
Panel Study was the same in the first and second month (qual1 and qual2). To 
do this we would use the following wtest command on the difference between 
qual1 and qual2 stored in c11: 

MTB> wtest c11 

The menu procedure for doing this is  

→Stat→Nonparametrics→1-Sample Wilcoxon…
→c11→Select [this puts c11 in the box under 
Variables:] →OK 

The output from this procedure is presented in Table 7.10. The Wilcoxon 
statistic reported is the sum of the ranks for the positive differences. Once  

12 4 4 0 

Table 7.9Stest output comparing the number of positive and negative 
differences between qual1 and qual2 

SIGN TEST OF MEDIAN=0.00000 VERSUS N.E. 0.00000 
  N BELOW EQUAL ABOVE P-VALUE MEDIAN 
C11 12 5 3 4 1.0000 0.0000 

Table 7.10Wtest output comparing the sum of the ranked positive and negative 
differences in size between qual1 and qual2 
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again we see that there is no significant difference in the rated quality of work 
between the first and second month.  

Friedman test for three or more related samples 

If we wanted to compare the scores of three or more related samples, such as the 
rated quality of work across all three months rather than just two of them, we 
would use the Friedman two-way analysis of variance test. It ranks the scores for 
each of the cases and then calculates the mean rank score for each sample. If 
there are no differences between the samples, their mean ranks should be 
similar.  

To compare the rated quality of work over the three months in the Panel 
Study, we first need to create three new columns. The first column contains 
rated quality of work on the three occasions and can be set up with the following 
stack command:  

MTB> stack ‘qual1’ ‘qual2’ ‘qual3’ c12 
The column containing ‘qual1’ is placed on top of the 
column holding  ‘qual2’ which in turn is put on top 
of the column storing ‘qual3’. These  three columns 
are stacked in this way in c12 which we could name 
‘qual’: 

MTB> name c12 ‘qual’ 

The menu action for stacking is  

→Manip→Stack…→qual1→Select [this puts qual1 in the 
first box  below Stack the followingblocks:] →second 
box under Stack thefollowingblocks: →qual2→Select 
[this puts qual2 in this box]  →third box under 
Stack the followingblocks: →qual3→Select→box under 
Store results inblocks: and in it type c12 or 
qual→OK 

The second column we have to make consists of a code telling us to which of the 
three months the rated quality of work refers. The first month we will code as 1, 
the second month as 2 and the third month as 3. So, the first 12 values in c14 
refer to the first month, the second 12 values to the second month and the third 
12 values to the third month. We form this second column with the set 

TEST OF MEDIAN=0.000000 VERSUS MEDIAN N.E. 0.000000 
  N N 

FORTEST
WILCOXONSTATISTIC P-

VALUE
ESTIMATEDMEDIAN

C11 12 9 22.5 1.000 0.000E+00
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command:  

MTB> set c13 
DATA> 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 
3 3 3 3 3 3 3 3 3 3 3 3 
DATA> end 

We could call c13 ‘month’.  

MTB> name c13 ‘month’ 

The third column we have to make simply contains the number of the 
participants at each of the three times and can be created by stacking ‘id’ three 
times in the new column c14: 

MTB> stack ‘id’ ‘id’ ‘id’ c14 

We could call c14 ‘subjects’: 

MTB>name c14 ‘subjects’ 

The menu procedure for doing this is  

→Manip→Stack…→id→Select [this puts id in the first 
box below  Stack the followingblocks:] →second box 
under Stack the followingblocks: →id→Select [this 
puts id in this box] →third box under Stackthe 
followingblocks: →id→Select→box under Store results 
inblocks: and in it type subjects→OK 

The values of these three new columns can be displayed with the print 
command  

MTB> print ‘subjects’ ‘month’ ‘qual’ 

The menu action for doing this is  

→File→Display Data…→subjects→Select [this puts 
subjects in  the box beneath Columns, constants, and 
matrices to 
display:]  →month→Select→qual→Select→OK 

These three columns are reproduced in Table 7.11.  
To carry out a Friedman test on the data in Table 7.11, we use the following 

command  

MTB> friedman ‘qual’ ‘month’ ‘subjects’ 
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where the variable to be compared (‘qual’) is listed first followed by the 
variable forming the category (‘month’) followed by the variable which orders 
or blocks the participants (‘subjects’).  

Table 7.11 Panel Study rated quality of work data rearranged for the Friedman 
command  

ROW subjects month qual 
1 1 1 5 

2 2 1 4 

3 3 1 3 

4 4 1 4 

5 5 1 2 

6 6 1 4 

7 7 1 3 

8 8 1 4 

9 9 1 4 

10 10 1 1 

11 11 1 3 

12 12 1 4 

13 1 2 4 

14 2 2 3 

15 3 2 4 

16 4 2 5 

17 5 2 3 

18 6 2 4 

19 7 2 1 

20 8 2 3 

21 9 2 5 

22 10 2 2 

23 11 2 3 

24 12 2 4 

25 1 3 5 

26 2 3 2 

27 3 3 3 
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The menu procedure for doing this is  

→Stat→Nonparametrics→Friedman…→qual→Select [this 
puts  qual in the box beside Response:] 
→month→Select [this puts month in the box beside 
Treatment:] →subjects→Select [this puts subjects in 
the box beside Blocks:] →OK 

The output for this procedure is shown in Table 7.12 which includes the S 
statistic adjusted and unadjusted for ties, the degrees of freedom and the  

sum of ranks. Since there is the same number of participants across the three 
months, it makes no difference whether the sum or the mean of ranks is used. 
The mean is simply the sum divided by the number of cases. The degrees of 
freedom is the number of samples minus 1. The non-significant S value means 
there is no difference in the mean ranks of rated quality of work across the three 
months.  

28 4 3 3 

29 5 3 3 

30 6 3 3 

31 7 3 4 

32 8 3 4 

33 9 3 3 

34 10 3 3 

35 11 3 3 

36 12 3 3 

Table 7.12Friedman output comparing the mean rank of rated quality of work 
across the three months  

Friedman test of qual by month blocked bysubjects 
S=0.54 d.f.=2 p=0.763 

S=0.68 d.f.=2 p=0.710 (adjusted for ties) 

month N Est.Median Sum ofRANKS 

1 12 3.5000 24.5 

2 12 3.6667 25.5 

3 12 3.3333 22.0 

Grand median=3.5000 
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NON-CATEGORICAL VARIABLES ANDPARAMETRIC 
TESTS 

ttest for one sample 

This test is used to determine if the mean of a sample is similar to that of the 
population. If, for example, we knew what the mean score for job satisfaction 
was for workers in the industry covered in the Job Survey and we wanted to find 
out if the mean of our sample was similar to it, we would carry out a t test. 
Suppose the population mean was 10. To compare this population mean with 
our sample mean, we would use the following ttest command in which the 
population mean is listed before the column number or name of the variable 
concerned:  

MTB> ttest 10 ‘satis’ 

The menu action for doing this is  

→Stat→Basic Statistics→1-Sample t…→satis→Select 
[this puts  satis in the box beside Variables:] 
→Test mean: →box beside it and  in it type 10→OK 

The output for this procedure is presented in Table 7.13. The mean for the total 
job satisfaction score for our sample of 68 cases is 10.838. We see that there is a 
significant difference between the population mean of 10 and the sample mean 
of 10.838 at the two-tailed probability level of 0.04.  

A one-tailed probability can be computed by adding the following alternative 
subcommand.  

MTB> ttest 10 ‘satis’; 
SUBC> alternative=1. 

The menu sequence for doing this is  

→Stat→Basic Statistics→1-Sample t…
→satis→Select→Testmean: →box beside it and in it 
type 10→the down button on the box  beside 
Alternative: →greater than→OK 

The output from this procedure is displayed in Table 7.14. The one-tailed 
probability value (0.020) is half that of the two-tailed level (0.040).  

Standard error of the mean 
It is important to outline more fully what the standard error of the mean is since 
this important idea also constitutes the basis of other parametric tests such as the 
analysis of variance. One of the assumptions of many parametric tests is that the 
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population of the variable to be analysed should be normally distributed. The 
errors of most distributions are known to take this form. For example, if a large 
group of people were asked to guess today’s temperature, the distribution of 
their guesses would approximate that of a normal distribution, even if the 
temperature does not itself represent a normal distribution. In addition, it has 
been observed that the distribution of certain characteristics also takes this form. 
If, for example,  

you plot the distribution of the heights of a large group of adult human beings, it 
will be similar to that of a normal distribution.  

If we draw samples from a population of values which is normally distributed, 
then the means of those samples will also be normally distributed. In other 
words, most of the means will be very similar to that of the population, although 
some of them will vary quite considerably. The standard error of the mean 
represents the standard deviation of the sample means. The one-sample t test 
compares the mean of a sample with that of the population in terms of how 
likely that difference has arisen by chance. The smaller this difference is, the 
more likely it is to have resulted from chance.  

ttest for two unrelated means 

This test is used to determine if the means of two unrelated samples differ. It 
does this by comparing the difference between the two means with the standard 
error of the difference in the means of different samples:  

The standard error of the difference in means, like the standard error of the 
mean, is also normally distributed. If we draw a large number of samples from a 

Table 7.13 Two-tailed ttest output comparing a sample and population mean  

TEST OF MU=10.000 VS MU N.E. 10.000 
  N MEAN STDEV SE MEAN T P VALUE 
satis 68 10.838 3.304 0.401 2.09 0.040 

Table 7.14 One-tailed ttest output comparing a sample and population mean  

TEST OF MU=10.000 VS MU G.T. 10.000 
  N MEAN STDEV SE MEAN T P VALUE 
satis 68 10.838 3.304 0.401 2.09 0.020 
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population whose values are normally distributed and plot the differences in the 
means of each of these samples, the shape of this distribution will be normal. 
Since the means of most of the samples will be close to the mean of the 
population and therefore similar to one another, if we subtract them from each 
other the differences between them will be close to zero. In other words, the 
nearer the difference in the means of two samples is to zero, the more likely it is 
that this difference is due to chance.  

To compare the means of two samples, such as the mean job satisfaction of 
male and female workers in the Job Survey, we could first unstack ‘satis’ 
according to ‘gender’ using the following command:  

MTB> unstack (‘gender’ ‘satis’) (c31 c32) (c33 c34); 
SUBC> subscripts ‘gender’. 

The menu procedure for doing this is  

→Manip→Unstack…→gender→Select [this puts gender in 
the box  below Unstack:] →satis→Select→box beside 
Usingsubscripts:→gender→Select→Store results 
inblocks: [this is automatically  selected] →type 
c31 c32 in the first box which is automatically 
selected  →second box and type c33 c34→OK 

We would then compare job satisfaction for men in c31 with that for women in 
c33 with the twosample command:  

MTB> twosample c31 c33 

The menu procedure for doing this is  

→Stat→Basic Statistics→2-Sample t…→Samples 
indifferentcolumns→box beside First: →c31→Select 
[this puts c31 in this box]  →c32→Select [this puts 
c32 in the box beside Second:] →OK 

Alternatively, we could avoid having to unstack ‘satis’ by using the following 
twot command:  

MTB> twot ‘satis’ ‘gender’ 

The variable to be compared (‘satis’) is listed before the variable forming the 
two groups (‘gender’).  

The menu action for doing this is  

→Stat→Basic Statistics→2-Sample t…→Samples inone 
column [this is automatically selected] →box beside 
Samples: →satis [this  puts x1 in this box] 
→Select→gender→Select [this puts gender in  the box 
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beside Subscripts:] →OK 

The output from both the twosample and twot procedures is the same apart from 
the names of the variables. Output from the twot command is shown in Table 
7.15. To obtain the one-tailed probability we would simply add the following 
alternative subcommand  

SUBC> alternative=1. 

The menu system for doing this is  

→the down button on the box beside Alternative: 
→greater than→OK 

In this case the one-tailed probability would be given as P=0.39 which is almost 
half that of P=0.77.  

There is one further complication we need to consider when interpreting the 
result of an unrelated t test. Since we do not know what the standard error of the 
difference in means is of the population in question, we have to estimate it. How 
this is done depends on whether the difference in the variances of the two 
samples are statistically significant. We use the F test or ratio to determine if the 
variances of the two groups differ.  

Ftest for two unrelated variances 

To calculate the F test, we first square the standard deviations which gives 
11.0224 (3.32×3.32=11.0224) for men and 11.0889 (3.33×3.33= 11.0889) for 
women. We then divide the larger variance by the smaller variance, which 
produces 1.01 (11.0889/11.0224=1.0060). Next we find the critical value of the 
F distribution with the requisite degrees of freedom by using the invcdf (inverse 
cumulative distribution function) command and the f subcommand. On the 
invcdf command the level of statistical significance is specified by subtracting 
that level from 1.00. So, for the 0.05 probability level the appropriate figure is 

Table 7.15Twot output comparing the means of total job satisfaction in men and 
women in the Job Survey (two-tailed test with separate variance 
estimates)  

TWOSAMPLE T FOR satis 

gender N MEAN STDEV SE MEAN 
1 37 10.95 3.32 0.55 

2 31 10.71 3.33 0.60 

95 PCT CI FOR MU 1–MU 2: (−1.38, 1.86) 

TTEST MU 1=MU 2 (VS NE): T=0.29 P=0.77 DF=63 
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0.95 (1.00−0.05=0.95).  

MTB> invcdf .95; 

On the f subcommand, which provides critical values for the F distribution, the 
degrees of freedom for the numerator and denominator need to be respectively 
listed after the f. Therefore, the subcommand for finding the 0.05 two-tailed 
critical value of F with 1 and 1 degree of freedom in the numerator and 
denominator respectively is  

SUBC> f 11. 

The menu sequence for doing this is  

→Calc→ProbabilityDistributions→F…→Inverse 
cumulativeprobability→box beside Numerator degrees 
of freedom: and type 1→box beside Denominator 
degrees of freedom: and type 1→Inputconstant: →box 
beside it and in it type .95→OK 

The output from this procedure first gives the inverse cumulative distribution 
function of 0.9500 followed by the critical F value of 161.4475.  

0.9500      161.4475 
As our F value of 1.01 is smaller than the critical value of 161.4475, the 

variances of the two groups do not differ significantly and we need to pool the 
two variances to estimate the standard error of the difference in means. If the 
variances had been significantly different, we would have used the separate 
variances to calculate the standard error of the difference in means. The values 
of the t test and its probability level shown in Table 7.15 is based on treating the 
variances separately.  

It should be pointed out that the variance, the standard deviation and the 
standard error of a sample are related. The variance or mean squared deviation 
is calculated by subtracting the mean of the sample from each of its scores (to 
provide a measure of their deviation from the mean), squaring them, adding 
these squares together and dividing them by one less than the number of cases. 
Since the deviations would sum to zero, they are squared to make the negative 
deviations positive. The standard deviation is simply the square root of the 
variance. The advantage of the standard deviation over the variance is that it is 
expressed in the original values of the data. For example, the standard deviation 
of job satisfaction is described in terms of the 20 points on this scale. The 
standard error is the standard deviation divided by the square root of the 
number of cases. The relationships between these three measures can be checked 
out on the statistics shown in Table 7.15.  

ttest with pooled variances 

To calculate a t test where the variances have been pooled, simply add the 
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pooled subcommand to either the twosample or twot command:  

MTB> twosample c31 c33; 
SUBC> pooled. 

The menu procedure for doing this is  

→Stat→Basic Statistics→2-Sample t…→Samples inone 
column [this is automatically selected] →box beside 
Samples: →satis→Select→gender→Select [this puts 
gender in the box beside Subscripts:]  →box beside 
Assumeequal variances→OK 

The output for the twosample procedure comparing job satisfaction in men and 
women is shown in Table 7.16. In this case, there is no difference in the t and p 
values in terms of whether pooled or separate variances are used in calculating 
the standard error of the difference in means. Note, however, the degrees of 
freedom differ (DF), being 66 and 63 for the pooled and separate variance tests 
respectively. In both cases, the difference in job satisfaction between men and 
women is not significant.  

Unrelatedttest and ordinal data 

Some people have argued that parametric tests should only be used on 
interval/ratio data (for example, Stevens, 1946). Others, as we have mentioned 
earlier, have reasoned that such a restriction is unnecessary. In  

view of this controversy, it may be interesting to see whether the use of an 
unrelated t test on an ordinal variable such as rated quality of work gives very 
dissimilar results to that of the Mann-Whitney previously used. According to 
Siegel (1956), the Mann-Whitney test is about 95 per cent as powerful as the t 
test. What this means is that the t test requires 5 per cent fewer subjects than the 

Table 7.16Twosample output comparing the means of total job satisfaction in 
men and women in the Job Survey (two-tailed test with pooled 
variance estimates)  

TWOSAMPLE T FOR C31 VS C33 
  N MEAN STDEV SE MEAN 
C31 37 10.95 3.32 0.55 

C33 31 10.71 3.33 0.60 

95 PCT CI FOR MU C31—MU C33: (−1.38, 1.85) 

TTEST MU C31=MU C33 (VS NE): T=0.29 P=0.77 DF=66 

POOLED STDEV= 3.33     
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Mann-Whitney test to reject the null hypothesis when it is false. The following 
procedure was used to generate the output in Table 7.17:  

MTB> twot ‘qual’ ‘gender’; 
SUBC> pooled. 

The menu action for doing this is  

→Stat→Basic Statistics→2-Sample t…→Samples inone 
column [this is automatically selected] →box beside 
Samples: →qual→Select→gender→Select [this puts 
gender in the box beside Subscripts:]  →box beside 
Assumeequal variances→OK 

As can be seen, this test also indicates that there is no significant difference 
between men and women in the mean of their rated quality of work.  

Levene’s test for two unrelated variances 

Levene’s test rather than the F ratio should be used when the data are not 
normally distributed. This test is available on Release 10 using the following %
vartest command  

MTB> %vartest ‘satis’ ‘gender’ 

The dependent variable ‘satis’ is listed first followed by the independent 
variable ‘gender’.  

The menu action for doing this is  

→Stat→Basic Statistics→Homogeneity of Variance…
→satis 
→Select [this puts satis in the box beside 

Table 7.17Twot output comparing rated quality of work for men and women in 
the Job Survey (two-tailed test with pooled variance estimates)  

TWOSAMPLE T FOR qual 

gender N MEAN STDEV SE MEAN 
1 39 3.28 1.21 0.19 

2 31 3.06 1.34 0.24 

95 PCT CI FOR MU 1–MU 2: (−0.39, 0.83) 

TTEST MU 1=MU 2 (VS NE): T=0.71 P=0.48 DF=68 

POOLED STDEV= 1.27     
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Response:] →gender 
→Select [this puts gender in the box beside 
Factors:] →OK 

The output from this procedure is shown in Table 7.18. The value of Levene’s 
test is 0.074 which is not significant since it has a p of 0.786 or less of occurring. 
In other words, the variances of ‘satis’ for men and women do not differ 
significantly.  

One-way analysis of variance for three or more unrelated means 

To compare the means of three or more unrelated samples, such as the mean job 
satisfaction of the four ethnic groups in the Job Survey, it is necessary to 
compute a one-way analysis of variance. This is essentially an F test in which an 
estimate of the between-groups variance (or mean-square as the estimate of the 
variance is referred to in analysis of variance) is compared with an estimate of 
the within-groups variance by dividing the former by the latter:  

The total amount of variance in the dependent variable (i.e. job satisfaction) can 
be thought of as comprising two elements: that which is due to the independent 
variable (i.e. ethnic group) and that which is due to other factors. This latter 
component is often referred to as error or residual variance. The variance that is 
due to the independent variable is frequently described as explained variance. If 
the between-groups (i.e. explained)  

  

Table 7.18% variance output showing the results of Levene’s test comparing 
the variance of satis across gender(Release 10) 

Homogeneity of Variance 

Response satis       

Factors gender       

ConfLvl 95.0000       

Bonferroni confidence intervals for standard deviations 

Lower Sigma Upper n Factor Levels 

2.62755 3.32454 4.49340 37 1 

2.57917 3.32860 4.65093 31 2 

Bartlett’s Test (normal distribution) 

Test Statistiic: 0.000 
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estimated variance is considerably larger than that within-groups (i.e. error or 
residual), then the value of the F ratio will be higher which implies that the 
differences between the means is unlikely to be due to chance.  

The within-groups mean-square or estimated variance is its sum-of-squares 
divided by its degrees of freedom. These degrees of freedom are the sum of the 
number of cases minus one in each group [i.e. (the number of cases in group 
one−1)+(the number of cases in group two−1) and so on]. The sum-of-squares is 
the sum of squared differences between each score in a group and its mean, 
summed across all groups. The between-groups sum-of-squares, on the other 
hand, is obtained by subtracting each group’s mean from the overall (total or 
grand) mean, squaring them, multiplying them by the number of cases in each 
group, and summing the result. It can also be calculated by subtracting the 
within-groups sum-of-squares from the total sum-of-squares since the total sum-
of-squares is the sum of the between- and within-groups sum-of-squares:  

The between-groups mean-square or estimated variance is its sum-of-squares 
divided by its degrees of freedom. These degrees of freedom are the number of 
groups minus one. The degrees of freedom for the total sum-of-squares are the 
sum of those for the within- and between-groups sum-of-squares or the total 
number of subjects minus one. Although this test may sound complicated, the 
essential reasoning behind it is that if the groups or samples come from the same 
population, then the between-groups estimate of the population’s variance 
should be similar to the within-groups estimated variance.  

To compare the mean job satisfaction of the four ethnic groups in the Job 
Survey, we would use the following command:  

MTB> oneway ‘satis’ ‘ethnicgp’ 

The variable to be compared is listed first (‘satis’) followed by the grouping 
variable (‘ethnicgp’).  

The menu sequence for doing this is  

→Stat→ANOVA→Oneway…→satis→Select [this puts satis 
in the  box beside Response:] →ethnicgp→Select 
[this puts ethnicgp in the  box beside Factors:] →OK 

p value: 0.996 

Levene’s Test (any continuous distribution) 

Test Statistic: 0.074 

p value: 0.786 
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The output for this procedure is displayed in Table 7.19. The F ratio, which is 
the between-group mean square (ethnicgp) divided by the within-group one 
(ERROR) is 0.26 (2.9/11.3=0.256), which is non-significant (0.855). 
Consequently, there is no statistically significant difference in job satisfaction 
between the four ethnic groups.  

The F test or ratio only tells us whether there is a significant difference 
between one or more of the groups. It does not inform us where this difference 
lies. To determine this, we need to carry out further statistical tests. Which tests 
we use depends on whether or not we predicted where the differences  

would be. If, for example, we predicted that whites would be less satisfied than 
Asians and the F test had been significant, then we would carry out an unrelated 
t test as described above using a one-tailed level of significance.  

If, however, we had not expected any differences but found that the F test was 
significant, then we would need to take into account the fact that if we carried 
out a large number of comparisons some of these would be significant just by 
chance. Indeed, at the 5 per cent level of significance, 5 per cent or one in 
twenty comparisons could be expected to be significant by definition. A number 
of tests which take account of this fact have been developed and are available on 
the Minitab oneway command. Because these tests are carried out after the data 

Table 7.19Oneway output comparing job satisfaction across four ethnic groups 
in the Job Survey  

ANALYSIS OF VARIANCE ON satis 

SOURCE DF SS MS F 

ethnicgp 3 8.7 2.9 0.26 

ERROR 64 722.5 11.3   

TOTAL 67 731.2     

      INDIVIDUAL 95 PCT CI’S FOR MEANBASED ON 

LEVEL N MEAN STDEV 

1 35 10.543 3.284 

2 17 10.941 3.596 

3 14 11.286 3.292 

4 2 12.000 2.828 

        

POOLED STDEV=3.360 9.0 12.0 15.0 18.0 
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have been initially analysed, they are referred to as post hoc or a posteriori tests. 
One of these, the Tukey test, will be briefly outlined. To conduct a Tukey test to 
compare job satisfaction between every possible pair of ethnic group, add the 
following tukey subcommand to the oneway command:  

SUBC> tukey. 

The menu procedure for doing this is  

→Comparisons…→box beside Tukey’s, family error 
rate:→OK 

The output for this procedure is shown in Table 7.20. The pairs of numbers in 
the table give the confidence intervals for the mean of one group minus the 
mean of another group for all possible comparisons. So, for  

example, the first pair of numbers (−3.018, 2.221) provides the confidence 
interval for the mean of group 1 (whites) minus the mean of group 2 (Asians). 
Comparisons where the confidence limits exclude zero (e.g. 0.56, 3.24 or −1.21, 
−4.07) indicate a significant difference. Since none of the comparisons have 
confidence limits which omit zero, there are no significant differences between 
any of the groups, taken two at a time.  

ttest for two related means 

To compare the means of the same subjects in two conditions or at two points in 

Table 7.20Tukey output comparing job satisfaction across the four ethnic 
groups in the Job Survey  

Tukey’s pairwise comparisons   

Family error rate=0.0500   

Individual error rate=0.0104   

Critical value=3.73   

Intervals for (column level mean)−(row level mean) 

  1 2 3 

2 −3.018     

  2.221     

3 −3.545 −3.543   

  2.059 2.854   

4 −7.900 −7.683 −7.413 

  4.986 5.566 5.985 
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time, we would use a related t test. We would also use this test to compare 
subjects who had been matched to be similar in certain respects. The advantage 
of using the same subjects or matched subjects is that the amount of error 
deriving from differences between subjects is reduced. The unrelated t test 
compares the mean difference between pairs of scores within the sample with 
that of the population in terms of the standard error of the difference in means:  

Since the population mean difference is zero, the closer the sample mean 
difference is to zero, the less likely it is that the two sets of scores differ 
significantly from one another.  

The difference between a related and an unrelated t test lies essentially in the 
fact that two scores from the same person are likely to vary less than two scores 
from two different people. For example, if we weigh the same person on two 
occasions, the difference between those two weights is likely to be less than the 
weights of two separate individuals. This fact is reflected in the different way in 
which the standard error of the difference in means is calculated for the two tests 
which we do not have space to go into here. The variability of the standard error 
for the related t test is less than that for the unrelated one, as illustrated in Figure 
7.2. In fact, the variability of the standard error of the difference in means for the 
related t test will depend on the extent to which the pairs of scores are similar or 
related. The more similar they are, the less the variability will be of their 
estimated standard error.  

To compare two related sets of scores such as job satisfaction in the first two 
months (‘satis1’ and ‘satis2’) in the Panel Study, we first have to subtract one of 
the scores from the other for each case and to put these differences in a new 
column with the let command:  

MTB> let c12=‘satis1’-‘satis2’ 
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Figure 7.2 A comparison of the distribution of the standard error of 
the differences in means for related and unrelated samples  

The menu system for doing this is  

→Calc→MathematicalExpressions…→c12→Select [this 
puts c12 in the box beside Variable [new or 
modified]:] →box under Expression: and in it type 
‘satis1’-‘satis2’→OK 

To carry out the related t test, we simply specify this new column (c12) on the 
ttest command  

MTB> ttest c12 

The menu sequence for doing this is  

→Stat→Basic Statistics→1-Sample t…→c12→Select 
[this puts  c12 in the box beside Variables] →OK 

The output from this procedure is shown in Table 7.21. Since the PVALUE is 
greater than 0.05, we would conclude that job satisfaction does not differ 
significantly between the first and second month. If we wanted the  
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one-tailed p value, we would add the following alternative subcommand to the 
ttest command  

SUBC> alternative=1. 

which would give a P VALUE of 0.37.  
The menu procedure for doing this is  

→the down button on the box beside Alternative: 
→greater than→OK 

ttest for two related variances 

If we want to determine whether the variances of two related samples are 
significantly different from one another, we have to calculate it using the 
following formula (McNemar, 1969) since it is not available on Minitab:  

To apply this formula to the job satisfaction variances in the above example, we 
would first have to calculate their variances and the correlation between the two 
variables.  

We could calculate the standard deviation of the two variables using the stdev 
command for the first and then the second variable  

MTB> stdev ‘satis1’ 
ST.DEV.=3.4245 
MTB> stdev ‘satis2’ 
ST.DEV.=4.2817 

The menu sequence for doing this is  

→Calc→Column Statistics…→Standard deviation→box 
beside  Inputvariables: →satis1→Select→OK 

Table 7.21 Two-tailed ttest output comparing job satisfaction in the first and 
second month in the Panel Study  

TEST OF MU=0.000 VS MU N.E. 0.000 
  N MEAN STDEV SE MEAN T P VALUE 
C12 12 0.333 3.420 0.987 0.34 0.74 
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→Calc→Column Statistics…→Standard deviation→box 
beside  Inputvariables: →satis2→Select→OK 

To convert these standard deviations into variances we simply square them 
which makes them 11.73 and 18.33 respectively.  

In Release 10, we could obtain the variances directly with the following stats 
command  

MTB> stats ‘satis1’ ‘satis2’; 
SUBC> variance c12 c13. 

The variances will be stored in the worksheet where they can be read.  
To calculate the correlation between the two variables we use the following 

correlation command  

MTB> correlation ‘satis1’ ‘satis2’ 

The menu action for doing this is  

→Stat→Basic Statistics→Correlation…→satis1→Select 
[this puts  satis1 in the box under Variables:] 
→satis2→Select→OK 

The following output is displayed  

Correlation of satis1 and satis2=0.626 

Substituting the appropriate values in the above equation, we arrive at a t value 
of 0.91, which with 10 degrees of freedom is not significant with a two-tailed 
test. To have been significant at this level, we would have needed a t value of 
2.228 or greater.  

A single-factor repeated-measures analysis of variance for three 
ormore related means 

To compare three or more means from the same or matched subjects, such as job 
satisfaction during three consecutive months, we would need to carry out a 
repeated-measures analysis of variance (ANOVA) test which has one within-
subjects or repeated-measures variable. The categorizing or independent 
variables in analysis of variance are called factors and the categories or 
treatments are termed levels. In this analysis there is one factor consisting of the 
time or month of assessment and this factor has three levels since it is repeated 
three times. This design is referred to variously as a single group (or factor) 
repeated-measures and treatments-by-subjects design. To conduct it on the 
present example, we first have to create three new columns.  

The first column contains job satisfaction on the three occasions and can be set 
up with the following stack command:  

Quantitative data analysis with Minitab     146



MTB> stack ‘satis1’ ‘satis2’ ‘satis3’ c11 

The column containing ‘satis1’ is placed on top of the column holding ‘satis2’ 
which in turn is put on top of the column storing ‘satis3’. These three columns 
are stacked in this way in c11 which we could name ‘satis’: 

MTB> name c11 ‘satis’ 

The menu procedure for doing this is  

→Manip→Stack…→satis1→Select [this puts satis1 in 
the first box  below Stack the followingblocks:] 
→second box under Stack thefollowingblocks: 
→satis2→Select [this puts satis2 in this 
box]  →third box under Stack the followingblocks: 
→satis3→Select →box under Store results inblocks: 
and in it type satis→OK 

The second column we have to make consists of a code telling us to which of the 
three months the rated quality of work refers. The first month we will code as 1, 
the second month as 2 and the third month as 3. So, the first 12 values in c12 
refer to the first month, the second 12 values to the second month and the third 
12 values to the third month. We form this second column with the set 
command:  

MTB> set c12 
DATA> 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 
3 3 3 3 3 3 3 3 3 3 3 3 
DATA> end 

Alternatively, we could use the following abbreviation to set this pattern of 
values  

DATA> (1:3) 12 

The numbers to be repeated are placed within parentheses. The colon represents 
consecutive numbers between 1 and 3 (i.e. 1, 2, 3). The number 12 after the 
closing parenthesis means the first number 1 is repeated 12 times, the second 
number 2 is repeated 12 times and so on. There must be no space between this 
number and the closing bracket.  

We could call c12 ‘month’.  

MTB> name c12 ‘month’ 

The third column we have to make consecutively numbers the participants at 
each of the three times in the same order and can be created by stacking ‘id’ 
three times in the new column c13: 
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We could call c13 ‘subjects’: 

MTB> name c13 ‘subjects’ 
MTB> stack ‘id’ ‘id’ ‘id’ c13 

The menu sequence for doing this is  

→Manip→Stack…→id→Select→second box under Stack 
thefollowingblocks: →id→Select→third box under 
Stack the followingblocks: →id→Select→box under 
Store results in blocks: and in it  type subjects→OK 

The values of these three new columns can be displayed with the print 
command  

MTB> print ‘subjects’ ‘month’ ‘satis’ 

The menu action for doing this is  

→File→Display Data…
→subjects→Select→month→Select→satis→Select→OK 

To carry out this single factor repeated-measures analysis of variance we would 
use the following anova command  

MTB> anova satis=month subjects; 
SUBC> means month. 

The dependent variable satis is listed first followed by an equals sign=, the 
factor month and the variable subjects which orders subjects. Note that the 
quotation marks around the variable names can be omitted in the anova 
command. If, as usual, we want to display the mean of the dependent variable 
across the levels of the categorizing variable we add the means subcommand 
which lists the name of the categorizing variable month.  

The menu procedure for doing this is  

→Stat→ANOVA→Balanced ANOVA…→satis→Select [this 
puts  satis in the box beside Response:] →box under 
Model: →month→Select [this puts month in this box] 
→subjects→Select→box  under Displaymeans for (list 
of terms): →month→Select→OK 

The output from this procedure is shown in Table 7.22. The F ratio for month 
tells us whether job satisfaction differs significantly across the three months. It 
is calculated by dividing the mean square (MS) of month(1.694) by the Error 
mean square (5.604) which gives an F ratio of 0.30 (1.694/5.604=0.302). This F 
ratio is not significant since its p value is greater (0.742) than 0.05. Note that the 
factors in this model are described as being fixed as opposed to being random. 
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This means that the levels of  

the factors have not been chosen at random so that the results cannot be 
generalized to the factors as a whole.  

As was the case for the one-way analysis of variance test, the F test only tells 
us whether there is a significant difference between the three related scores but 
does not inform us where this difference lies. If a significant overall difference 
had been found, we would need to carry out some supplementary analyses. If we 
had predicted a difference between two scores, then we can determine if this 
prediction was confirmed by conducting a related t test as described above. If we 
had found but had not predicted a difference, then we need to use a post hoc test, 
of which there are a number (Maxwell, 1980). Since these are not available on 
Minitab, they have to be calculated separately. If the scores are significantly 
correlated, the Bonferroni inequality test is recommended, whereas if they are 
not, the Tukey test is advocated.  

The Bonferroni test is based on the related t test but modifies the significance 
level to take account of the fact that more than one comparison is being made. 
To calculate this, work out the total number of possible comparisons between 
any two groups, divide the chosen significance level (which is usually 0.05) by 
this number, and treat the result as the appropriate significance level for 
comparing more than three groups. In the case of three groups, the total number 

Table 7.22 A single-factor repeated-measures anova output comparing job 
satisfaction across three months in the Job Survey  

Factor Type Levels Values                 

month fixed 3 1 2 3             

subjects fixed 12 1 2 3 4 5 6 7 8 9 

      10 11 12             

Analysis of Variance for satis   

Source DF SS MS F P   

month 2 3.389 1.694 0.30 0.742   

subjects 11 321.639 29.240 5.22 0.000   

Error 22 123.278 5.604   

Total 35 448.306   

MEANS   

month N satis   

1 12 11.500   

2 12 11.167   

3 12 10.750   
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of possible comparisons is 3 which means the appropriate significance level is 
0.017 (0.05/3).  

The calculation for the Tukey test is more complicated (Stevens, 1992). The 
difference between any two means is compared against the value calculated by 
multiplying the square root of the repeated measures within-cells mean-square 
error term (divided by the number of cases) with the studentized range statistic, 
a table of which can be found in Stevens (1992). If the difference between any 
two means is greater than this value, then this difference is significant. The 
within-cells mean-square error term is presented in the output in Table 7.21 and 
is about 5.6. The square root of this divided by the number of cases is 0.68 

. The appropriate studentized range value with 3 groups and 22 
degrees of freedom for the error term is 3.58. This multiplied by 0.68 gives 2.43. 
If any two means differed by more than this, they would be significant at the 
0.05 level.  

EXERCISES 

1. Suppose you wanted to find out whether there had been a statistically 
significant change in three types of books (classified as romance, crime and 
science fiction) sold by two shops. What test would you use?  

2. What would the null hypothesis be?  

3. The data for the two shops are in the columns of the table while the data for 
the three categories of books are in its rows. The first column is called shop1 
and the second shop2. What would be the Minitab procedure for running this 
test?  

4. Would you use a one- or a two-tailed level of significance?  

5. If the probability level of the result of this test were 0.25, what would you 
conclude about the number of books sold?  

6. Would a finding with a probability level of 0.0001 mean that there was a 
greater change in the number of books sold than one with a probability level of 
0.037?  

7. If the value of this test were statistically significant, how would you 
determine if there had been a significant change between any two cells, say 
romance books for the two shops?  

8. Would you use a one- or a two-tailed level of significance to test the 
expectation that the first shop should sell more romance books than the second?  

9. How would you determine a one-tailed level of significance from a two-
tailed one of, say, 0.084?  
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10. If you wanted to find out if more men than women said that they had 
fallen in love at first sight, would it be appropriate to test for this difference 
using a binomial test in which the number of men and women reporting this 
experience was compared?  

11. What test would you use to determine if women reported having a greater 
number of close friends than men?  

12. When would you use the pooled rather than the separate variance 
estimates in interpreting the results of a t test?  

13. What test would you use if you wanted to find out if the average number 
of books sold by the same ten shops had changed significantly in the three 
months of October, November, and December?  
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Chapter 8  
Bivariate analysis  

Exploring relationships between two variables  

This chapter focuses on relationships between pairs of variables. Having 
examined the distribution of values for particular variables through the use of 
frequency tables, histograms, and associated statistics as discussed in Chapter 5, 
a major strand in the analysis of a set of data is likely to be bivariate analysis—
how two variables are related to each other. The analyst is unlikely to be 
satisfied with the examination of single variables alone, but will probably be 
concerned to demonstrate whether variables are related. The investigation of 
relationships is an important step in explanation and consequently contributes to 
the building of theories about the nature of the phenomena in which we are 
interested. The emphasis on relationships can be contrasted with the material 
covered in the previous chapter, in which the ways in which cases or subjects 
may differ in respect to a variable were described. The topics covered in the 
present chapter bear some resemblance to those examined in Chapter 7, since 
the researcher in both contexts is interested in exploring variance and its 
connections with other variables. Moreover, if we find that members of different 
ethnic groups differ in regard to a variable, such as income, this may be taken to 
indicate that there is a relationship between ethnic group and income. Thus, as 
will be seen, there is no hard-and-fast distinction between the exploration of 
differences and of relationships.  

What does it mean to say that two variables are related? We say that there is a 
relationship between two variables when the distribution of values for one 
variable is associated with the distribution exhibited by another variable. In 
other words, the variation exhibited by one variable is patterned in such a way 
that its variance is not randomly distributed in relation to the other variable. 
Examples of relationships that are frequently encountered are: middle class 
individuals are more likely to vote Conservative than members of the working 
class; infant mortality is higher among countries with a low per capita income 
than those with a high per capita income; work alienation is greater in routine, 
repetitive work than in varied work. In each case, a relationship between two 
variables is indicated: between social class and voting behaviour; between the 
infant mortality rate and one measure of a nation’s prosperity (per capita 
income); and between work alienation and job characteristics. Each of these 
examples implies that the variation in one variable is patterned, rather than 
randomly distributed, in relation to the other variable. Thus, in saying that there 
is a relationship between social class and voting behaviour from the above 
example, we are saying that people’s tendency to vote Conservative is not 



randomly distributed across categories of social class. Middle class individuals 
are more likely to vote for this party; if there was no relationship we would not 
be able to detect such a tendency since there would be no evidence that the 
middle and working classes differed in their propensity to vote Conservative.  

CROSSTABULATION 

In order to provide some more flesh to these ideas the idea of crosstabulation 
will be introduced in conjunction with an example. Crosstabulation is one of the 
simplest and most frequently used ways of demonstrating the presence or 
absence of a relationship. To illustrate its use, consider the hypothetical data on 
thirty individuals that are presented in Table 8.1. We have data on two variables: 
whether each person exhibits job satisfaction and whether they have been absent 
from work in the past six months. For ease of presentation, each variable can 
assume either of two values—yes or no. In order to examine the relationship 
between the two variables, individuals will be allocated to one of the four 
possible combinations that the two variables in conjunction can assume. Table 
8.2 presents these four possible combinations, along with the frequency of their 
occurrence (as indicated from the data in Table 8.1). This procedure is very 
similar to that associated with frequency tables for one or more variables. We 
are trying to summarize and reduce the amount of information with which we 
are confronted to make it readable and analysable. Detecting a pattern in the 
relationship between two variables as in Table 8.1 is fairly easy when there are 
only thirty subjects and the variables are dichotomous; with larger data sets and 
more complex variables the task of seeing patterns without the employment of 
techniques for examining relationships would be difficult and probably lead to 
misleading conclusions.  

The crosstabulation of the two variables is presented in Table 8.3. This kind 
of table is often referred to as a contingency table. Since there are four possible 
combinations of the two variables, the table requires four cells, in which the 
frequencies listed in Table 8.2 are placed. The following additional information 
is also presented. First, the figures to the right of the table are called the row 
marginals and those at the bottom of the table are the column marginals. These 
two items of information help us to interpret frequencies in the cells. Also, if the 
frequencies for each of the two variables have not been presented previously in a 
report or publication, the row and column marginals provide this information. 
Second, a percentage in  

Table 8.1 Data for thirty Individuals on job satisfaction and absenteeism  

Subject Job satisfaction Absent 

1 Yes  No  

2 Yes  Yes  
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3 No  Yes  

4 Yes  Yes  

5 No  Yes  

6 No  Yes  

7 Yes  No  

8 Yes  No  

9 No  No  

10 Yes  No  

11 No  No  

12 No  Yes  

13 No  Yes  

14 No  No  

15 No  Yes  

16 Yes  No  

17 Yes  Yes  

18 No  No  

19 Yes  No  

20 No  Yes  

21 No  No  

22 Yes  No  

23 No  Yes  

24 No  Yes  

25 Yes  No  

26 Yes  Yes  

27 Yes  No  

28 No  Yes  

29 Yes  No  

30 Yes  No  

Table 8.2 Four possible combinations  

Job satisfaction Absenteeism N 

Yes  Yes  4 

Yes  No  10 
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each cell is presented. This allows any patterning to be easily detectable, a 
facility that becomes especially helpful and important when tables with large 
numbers of cells are being examined. The percentages presented in Table 8.3 are 
column percentages, that is, the frequency in each cell is  

treated as a percentage of the column marginal for that cell. Thus, for cell 1 the 
frequency is 4 and the column marginal is 14; the column percentage is 
4/14×100, i.e. 28.6 (rounded up to 29 per cent).  

What then does the contingency table show? Table 8.3 suggests that there is a 
relationship between job satisfaction and absence. People who express job 
satisfaction tend not to have been absent from work (cell 3), since the majority 
(71 per cent) of the fourteen individuals who express satisfaction have not been 
absent; on the other hand, of the sixteen people who are not satisfied, a majority 
of 69 per cent have been absent from work (cell 2). Thus, a relationship is 
implied; satisfied individuals are considerably less likely to be absent from work 
than those who are not satisfied.  

In saying that a relationship exists between job satisfaction and absence, we 
are not suggesting that the relationship is perfect; some satisfied individuals are 
absent from work (cell 1) and some who are not satisfied have not been absent 
(cell 4). A relationship does not imply a perfect correspondence between the two 

No  Yes  11 

No  No  5 

Table 8.3 The relationship between job satisfaction and absenteeism  

Note: The top figure in each cell is the frequency, i.e. the number of cases to which that 
cell applies. The figure in brackets is the expected frequency—that is, the frequency that 
would be obtained on the basis of chance alone (see discussion of X2). The percentages 
are column percentages.  
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variables. Such relationships are not specific to the social sciences—everyone 
has heard of the relationship between lung cancer and smoking, but no one 
believes that it implies that everyone who smokes will contract lung cancer or 
that lung cancer only afflicts those who smoke. If there had been a perfect 
relationship between satisfaction and absence, the contingency table presented in 
Table 8.4a would be in evidence; if there was no relationship, the 
crosstabulation in Table 8.4b would be expected. In the case of Table 8.4a, all 
individuals who express satisfaction would be in the ‘No’ category, and all who 
are not  

satisfied would be in the absence category. With Table 8.4b, those who are not 
satisfied are equally likely to have been absent as not absent.  

As noted above, the percentages in Tables 8.2 to 8.4 are column percentages. 
Another kind of percentage that might have been preferred is a row percentage. 
With this calculation, the frequency in each cell is calculated in terms of the row 
totals, so that the percentage for cell 1 would be 4/15×100 i.e. 27 per cent. The 
row percentages for cells 2, 3 and 4 respectively would be 73 per cent, 67 per 
cent and 33 per cent. In taking row percentages, we would be emphasizing a 
different aspect of the table, for example, the percentage of those who have been 
absent who are satisfied (27 per cent in cell 1) and the percentage who are not 

Table 8.4 Two types of relationship  
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satisfied with their jobs (73 per cent in cell 2). The question of whether to use 
row or column percentages in part depends on what aspects of the data you want 
to highlight. It is sometimes suggested that the decision depends on whether the 
independent variable is across the top or along the side of the table: if the 
former, column percentages should be used; if the latter, row percentages should 
be employed. Typically, the independent variable will go across the table, in 
which case column percentages should be used. However, this suggestion 
implies that there is a straightforward means of identifying the independent and 
dependent variables, but this is not always the case and great caution should be 
exercised in making such an inference for reasons that will be explored below. It 
may appear that job satisfaction is the independent and absence the dependent 
variable, but it is hazardous to make such an attribution.  

Minitab can produce tables without percentages, though such tables are 
unlikely to be very helpful, and can produce output with either row or column 
percentages or both.  

Crosstabulation with Minitab 

Crosstabulations can easily be created with Minitab. Let us turn now to the Job 
Survey data. Let us say that we want to examine the relationship between ‘skill’ 
and ‘gender’ and that we want the following information in the table: counts 
(i.e. the frequency for each cell); the row percentages; the column percentages; 
and a chi-square test. This last piece of information will be dealt with in detail 
below. The following sequence would be used when employing the prompt 
system in the Minitab for Windows session window or in the mainframe or PC 
versions of Minitab:  

MTB> table ‘skill’ ‘gender’; 
SUBC> counts; 
SUBC> rowpercents; 
SUBC> colpercents; 
SUBC> chisquare. 

Note that the dependent variable, ‘skill’, comes first and the independent 
variable, ‘gender’, comes second. This will create a contingency table in which 
‘gender’ goes across and ‘skill’ down. In the Minitab for Windows menu 
system the following sequence would be used with the menu system:  

→Stat→Tables→Cross Tabulation…
→skill→Select→gender→Select [this will have 
brought skill and then gender into 
the  ClassificationVariables box] → [If you want 
frequencies, row  percentages, and column percentages 
in each cell, ensure that there is a  mark in the 
small boxes by Counts,Row percents, and 
Columnpercents. If no mark is present, click once in 
the relevant boxes. Also,  click on the box by 
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Chisquareanalysis, a topic that will be dealt 
with  shortly. A cross will appear in each box that 
has been chosen.] →OK 

If column percentages only were required, you need only click on that box or 
when using the prompt system only use the subcommand for column 
percentages. In fact, it is likely that only column percentages would be used 
since ‘gender’ has been identified as the independent variable and goes across 
the table; the row percentages are requested and presented here for illustrative 
purposes. Table 8.5 provides the output deriving from these instructions along 
with some additional features that will be explained below.  

Table 8.5 Contingency table for skill by gender (Minitab for Windows Release 
10 output from Job Survey data)  

Tabulated Statistics 
  ROWS: skill COLUMNS:gender 
  1 2 ALL 
1 5 9 14 

  35.71 64.29 100.00 

  12.82 29.03 20.00 

  5 9 14 

2 11 7 18 

  61.11 38.89 100.00 

  28.21 22.58 25.71 

  11 7 18 

3 11 10 21 

  52.38 47.62 100.00 

  28.21 32.26 30.00 

  11 10 21 

4 12 5 17 

  70.59 29.41 100.00 

  30.77 16.13 24.29 

  12 5 17 

ALL 39 31 70 

  55.71 44.29 100.00 

  100.00 100.00 100.00 
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CROSSTABULATION AND STATISTICALSIGNIFICANCE: 
THE CHI-SQUARE (x2) TEST 

As the discussion of statistical significance in Chapter 6 implies, a problem that 
is likely to be of considerable concern is the question of whether there really is a 
relationship between the two variables or whether the relationship has arisen by 
chance, for example as a result of sampling error having engendered an 
idiosyncratic sample. If the latter were the case, concluding that there is a 
relationship would mean that an erroneous inference was being made: if we find 
a relationship between two variables from an idiosyncratic sample, we would 
infer a relationship even though the two variables are independent (i.e. not 
related) in the population from which the sample was taken. Even though the 
sample may have been selected randomly, sampling error may have engendered 
an idiosyncratic sample, in which case the findings cannot be generalized to the 
population from which the sample was selected. What we need to know is the 
probability that there is a relationship between the two variables in the 
population from which a random sample was derived. In order to establish this 
probability, the chi-square (x2) test is widely used in conjunction with 
contingency tables. This is a test of statistical significance, meaning that it 
allows the researcher to ascertain the probability that the observed relationship 
between two variables may have arisen by chance. In the case of Table 8.3, it 
might be that there is no relationship between job satisfaction and absence in the 
company as a whole, and that the relationship observed in our sample is a 
product of sampling error (i.e. the sample is in fact unrepresentative).  

The starting point for the administration of a chi-square test, as with tests of 
statistical significance in general, is a null hypothesis of no relationship between 
the two variables being examined. In seeking to discern whether a relationship 
exists between two variables in the population from which a random sample was 
selected, the procedure entails needing to reject the null hypothesis. If the null 
hypothesis is confirmed, the proposition that there is a relationship must be 
rejected. The chi-square statistic is then calculated. This statistic is calculated by 
comparing the observed frequencies in each cell in a contingency table with 
those that would occur if there were no relationship between the two variables. 
These are the frequencies that would occur if the values associated with each of 

  39 31 70 

CHI-SQUARE= 4.101 WITH D.F.=3 

  CELL CONTENTS—   

    COUNT   

    % OF ROW   

    % OF COL   

    COUNT   
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the two variables were randomly distributed in relation to each other. In other 
words, the chi-square test entails a comparison of actual frequencies with those 
which would be expected to occur on the basis of chance alone (often referred to 
as the expected frequencies). The greater the difference between the observed 
and the expected frequencies, the larger the ensuing chi-square value will be; if 
the observed frequencies are very close to the expected frequencies, a small 
value is likely to occur.  

The next step is for the researcher to decide what significance level to 
employ. This means that the researcher must decide what is an acceptable risk 
that the null hypothesis may be incorrectly rejected (i.e. a Type I error). The null 
hypothesis would be incorrectly rejected if, for example, there was in fact no 
relationship between job satisfaction and absence in the population, but our 
sample data (see Table 8.3) suggested that there was such a relationship. The 
significance level relates to the probability that we might be making such a false 
inference. If we say that the computed chi-square value is significant at the 0.05 
level of statistical significance, we are saying that we would expect that a 
maximum of 5 in every 100 possible samples that could be drawn from a 
population might appear to yield a relationship between two variables when in 
fact there is no relationship between them in that population. In other words, 
there is a 1 in 20 chance that we are rejecting the null hypothesis of no 
relationship when we should in fact be confirming it. If we set a more stringent 
qualification for rejection, the 0.01 level of significance, we are saying that we 
are only prepared to accept a chi-square value that implies a maximum of 1 
sample in every 100 showing a relationship where none exists in the population. 
The probability estimate here is important—the probability of your having a 
deviant sample (i.e. one suggesting a relationship where none exists in the 
population) is greater if the 0.05 level is preferred to the 0.01 level. With the 
former, there is a 1 in 20 chance, but with the latter a 1 in 100 chance, that the 
null hypothesis will be erroneously rejected. An even more stringent test is to 
take the 0.001 level which implies that a maximum of 1 in 1000 samples might 
constitute a deviant sample. These three significance levels—0.05, 0.01, 
0.001—are the ones most frequently encountered in reports of research results.  

The calculated chi-square value must therefore be related to a significance 
level, but how is this done? It is not the case that a larger value implies a higher 
significance level. For one thing, the larger a table is, i.e. the more cells it has, 
the larger a chi-square value is likely to be. This is because the value is 
computed by taking the difference between the observed and the expected 
frequencies for each cell in a contingency table and then adding all the 
differences. It would hardly be surprising if a contingency table comprising four 
cells exhibited a lower chi-square value than one with twenty cells. This would 
be a ridiculous state of affairs, since larger tables would always be more likely 
to yield statistically significant results than smaller ones. In order to relate the 
chi-square value to the significance level it is necessary to establish the number 
of degrees of freedom associated with a crosstabulation. This is calculated as 
follows:  
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(number of columns−1) (number of rows−1)  

In Table 8.3, there are two columns and two rows (excluding the column and 
row marginals which are of no importance in calculating the degrees of 
freedom), implying that there is one degree of freedom, i.e. (2−1) (2−1). In 
addition to calculating the chi-square value, Minitab will calculate the degrees of 
freedom associated with each crosstabulation. In order to generate such output 
with the Minitab for Windows menu system, simply click on the box next to 
Chisquareanalysis when setting up a crosstabulation. When using the prompt 
system in the mainframe and PC version or the session window in Minitab for 
Windows, simply add chi-square as a sub-command as on page 154.  

The chi-square value is 4.101 with 3 degrees of freedom. In order to 
determine whether this is statistically significant within Minitab the following 
procedure can be activated in the mainframe and PC versions of Minitab or in 
the Minitab for Windows session window. In order to establish whether this chi-
square value is significant at the p<0.05 level we type in:  

MTB> invcdf .95; 
SUBC> chisquare 3. 

The first line stipulates the 95 per cent confidence level, which is in effect the 
obverse of p<0.05. If the chi-square value was found to be statistically 
significant, we would be 95 per cent confident that the relationship had not 
occurred by chance, which is the same as saying that there is only a 5 per cent 
possibility that the relationship could have arisen by chance. The subcommand 
stipulates the number of degrees of freedom—in this case 3. With the menu 
system, the following steps should be followed:  

→Calc→ProbabilityDistribution→Chisquare…
→Inversecumulative probability→box beside Degrees 
of freedom→type 3→box beside Input constant: 
→type .95→OK 

When we enter this command and subcommand, the output informs us that the 
chi-square value that we would need is 7.8147. Thus, with three degrees of 
freedom, we would need a chi-square value of 7.817 to be 95 per cent confident 
that the relationship has not arisen by chance and hence for p to be less than 
0.05. In fact, the chi-square value of 4.101 is less than this, so that there is 
unlikely to be a relationship between the two variables: although, for example, 
men (1) are more likely than women (2) to work on higher skill jobs (4), the 
respective column percentages being 30.8 per cent and 16.1 per cent, the chi-
square value is not sufficiently large for us to be confident that the relationship 
could not have arisen by chance since as many as 25 per cent of samples could 
fail to yield a relationship. In other words, the null hypothesis of independence 
between the two variables is confirmed. By contrast, the contingency table 
presented in Table 8.3 generates a chi-square value of 4.82 which is significant 
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at the 0.05 level, implying that we could have confidence in a relationship 
between the two variables in the population.  

It is also possible to calculate the chi-square value for an existing table. Table 
8.6 presents a slightly adapted table taken from Marshall et al. (1988) showing 
the relationship between sex and class according to one particular categorization 
of social class. We can establish the chi-square value with Minitab, using the 
prompt system either in the Minitab for Windows session window or with the 
mainframe or PC versions of Minitab, by ‘reading’ the  

data into columns as follows:  

MTB> read C1-C2 
DATA> 22 3 
DATA> 50 9 
DATA> 54 25 
DATA> 117 46 
DATA> 44 15 
DATA> 78 46 
DATA> 70 83 
DATA> 335 317 
DATA> END 
8 rows read. 
MTB> chisquare C1-C2 

With the menu system in Minitab for Windows, the data would need to be 
entered into a new Minitab worksheet. We will then have created two 
columns—c1 and c2. We then follow the following sequence:  

Table 8.6 Social class by gender (percentages in brackets)  

Social class Gender 
  Male Female 

Bourgeoisie  23 (3.0) 3 (0.6) 

Small employers  50 (6.5) 9 (1.7) 

Petit bourgeoisie  54 (7.0) 25 (4.6) 

Managers  117 (15.2) 46 (8.5) 

Advisory managers  44 (5.7) 15 (2.8) 

Supervisors  78 (10.1) 46 (8.5) 

Semi-autonomous employees  70 (9.1) 83 (15.3) 

Workers  335 (43.5) 317 (58.3) 

Total  771 544 

Source: Adapted from: G.Marshall et al. (1988, Table 4.13)  
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→Stat→Tables…→Chisquare Test→c1→Select→c2→Select 
[c1 and c2 should now be in the box under Columns 
containing thetable:] →OK 

The output from this exercise is presented in Table 8.7. The figure under the 
frequency in each cell is the expected frequency. These expected frequencies 
provide a stronger ‘feel’ for the degree to which the observed frequencies differ 
from the distribution that would occur if chance alone was operating. This 
additional information can aid the understanding and  

Table 8.7 Chi-square analysis of data in Table 8.6 (Minitab for Windows 
Release 10)  

Chi-Square Test 

Expected counts are printed below observed counts 
  C1   C2   Total 
1 22   3   25 

  14.65   10.35     

2 50   9   59 

  34.57   24.43     

3 54   25   79 

  46.29   32.71     

4 117   46   163 

  95.52   67.48     

5 44   15   59 

  34.57   24.43     

6 78   46   124 

  72.66   51.34     

7 70   83   153 

  89.66   63.34     

8 335   317   652 

  382.07   269.93     

Total 770   544   1314 

ChiSq= 3.688 + 5.220 +   

  6.883 + 9.742 +   

  1.283 + 1.816 +   

  4.832 + 6.839 +   
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interpretation of a relationship, but is rarely provided in tables when they are 
presented to the reader. In Minitab for Windows 10, the actual chisquare level 
and the p level are presented. Earlier versions of Minitab do not provide the p 
level. The chi-square value is 72.538, there are 7 degrees of freedom and the p 
level is 0.000, which means that the chi-square value is very significant and is 
better than p<0.001. If an earlier version of Minitab is being used the p level 
would need to be worked out. Since 72.538 is a large value, we might want to 
check whether p<0.01. We can proceed as follows:  

MTB> invcdf .99; 
SUBC> chisquare 7. 

With the menu system, the following steps would be taken:  

→Calc→ProbabilityDistribution→Chisquare…
→Inversecumulative probability→box beside Degrees 
of freedom→type 7→box beside Input constant: 
→type .99→OK 

Can we be 99 per cent confident that the relationship has not arisen by chance? 
The output informs us that the chi-square value for 7 degrees of freedom and 99 
per cent confidence is 18.4753. The chi-square value of 72.538 for the table 
exceeds this by a wide margin, so we can be very confident that the relationship 
has not arisen by chance and therefore that p<0.01.  

When presenting a contingency table and its associated chi-square test for a 
report or publication, some attention is needed to its appearance and to what is 
conveyed. Table 8.8 presents a ‘cleaned’ table of the output provided in Table 
8.5. A number of points should be noted. First, only column marginals have 
been presented. Second, observed and expected frequencies are not included. 
Some writers prefer to include observed frequencies as well as column 
percentages, but if as in Table 8.8 the column marginals are included, observed 
frequencies can be omitted. Percentages have been rounded. Strictly speaking, 
this should only be done for large samples (e.g. in excess of 200), but rounding 
is often undertaken on smaller samples since it simplifies the understanding of 
relationships. The chisquare value is inserted at the bottom with the associated 
level of  

  2.570 + 3.638 +   

  0.392 + 0.555 +   

  4.310 + 6.100 +   

  5.799 + 8.208 = 71.873 

df=7, p=0.000 
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significance. In this case, the value is not significant at the 0.05 level, the usual 
minimum level for rejecting the null hypothesis. This is often indicated by NS 
(i.e. non-significant) and an indication of the significance level employed. Thus, 
p>0.05 means that the chi-square value is below that necessary for achieving the 
0.05 level, meaning that there is more than a 5 per cent chance that there is no 
relationship in the population. If the chisquare value exceeds that necessary for 
achieving the 0.05 level, one would write p<0.05.  

A number of points about chi-square should be registered in order to facilitate 
an understanding of its strengths and limitations, as well as some further points 
about its operation. First, chi-square is not a strong statistic in that it does not 
convey information about the strength of a relationship. This notion of strength 
of relationship will be examined in greater detail below when correlation is 
examined. By strength is meant that a large chi-square value and a 
correspondingly strong significance level (e.g. p<0.001) cannot be taken to 
mean a closer relationship between two variables than when chisquare is 
considerably smaller but moderately significant (e.g. p<0.05). What it is telling 
us is how confident we can be that there is a relationship between two variables. 
Second, the combination of a contingency table and chi-square is most likely to 
occur when either both variables are nominal (categorical) or when one is 
nominal and the other is ordinal. When both variables are ordinal or 
interval/ratio other approaches to the elucidation of relationships, such as 
correlation which allows strength of relationships to be examined and which 
therefore conveys more information, are likely to be preferred. When one 
variable is nominal and the other interval, such as the relationship between 
voting preference and age, the latter variable will need to be ‘collapsed’ into 
ordinal groupings (i.e. 20–29, 30–39, 40–49, etc.) in order to allow a 
contingency table and its associated chi-square value to be provided.  

Third, chi-square should be adapted for use in relation to a 2×2 table, such as 
Table 8.3. A different formula is employed, using something called ‘Yates’ 
Correction for Continuity’. It is not necessary to go into the technical reasons for 

Table 8.8 Rated skill by gender (Job Survey data)  

Rated skill Gender 
  Malepercentage Femalepercentage 

Unskilled  13  29  

Semi-skilled  28  23  

Fairly skilled  28  32  

Skilled  31  16  

Total  N=39  N=31  

x2=4.10 NS, p>.05  
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this correction, save to say that some writers take the view that the conventional 
formula results in an overestimate of the chi-square value when applied to a 2×2 
table. Minitab does not provide Yates’ correction for 2×2 tables, but accounts of 
the formula can be found in Cohen and Holliday (1982) and Cramer (1994b). If 
Yates’ correction has been used in the computation of the chi-square statistic, 
this should be clearly stated when the data are presented for publication.  

Fourth, chi-square can be unreliable if expected cell frequencies are less than 
five, although like Yates’ correction for 2×2 tables, this is a source of some 
controversy. Minitab output alerts the user to the number of cells with expected 
frequencies (counts) fewer than five.  

Some writers suggest that the phi coefficient can be preferable to chisquare as 
a test of association between two dichotomous variables. This statistic, which is 
similar to the correlation coefficient (see below) in that it varies between 0 and 1 
to provide an indication of the strength of a relationship, is not available in 
Minitab but can easily be generated by the formula  

Thus, if chi-square equals 28.8 and there are 80 cases, chi-square is equal to √
(28.8/80), i.e. √0.36. Thus, the phi coefficient will be 0.6. The significance of 
phi can then be examined by checking the chi-square values for one degree of 
freedom (since a 2 by 2 table will always yield one degree of freedom) in a table 
of chi-square values. For p<0.05 the chi-square value will need to be at or equal 
to 3.8414; at p<0.01 the relevant value is 6.6349; and for p<0.001 it is 10.828. 
Thus, in our example, the phi value of 0.6 with 80 cases would imply that there 
is very likely to be a relationship in the population.  

A statistic related to phi is Cramer’s V. This can be used to estimate the 
degree of association between pairs of nominal variables and can also be used in 
relation to calculate the degree of association between a nominal variable and an 
ordinal variable with few categories. It varies between 0 and +1. It is not directly 
available in Minitab but can easily be calculated once chi-square has been 
computed. The formula is:  

Thus, chi-square is divided by the number of cases multiplied by the number of 
rows minus 1 or the number of columns minus 1, whichever is the smaller. In 
the case of Table 8.6, the chi-square value was found to be 71.873. The number 
of cases is 1315 and there are fewer columns than rows, so the calculation 
becomes:  
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Thus, there is a rather weak association between the two variables in Table 8.6. 
In the case of 2×2 tables, Cramer’s V and phi will always be the same.  

CORRELATION 

The idea of correlation is one of the most important and basic in the elaboration 
of bivariate relationships. Unlike chi-square, measures of correlation indicate 
both the strength and the direction of the relationship between a pair of 
variables. Two types of measure can be distinguished: measures of linear 
correlation using interval variables and measures of rank correlation using 
ordinal variables. While these two types of measure of correlation share some 
common properties, they also differ in some important respects which will be 
examined after the elucidation of measures of linear correlation.  

Linear correlation: relationships between interval variables 

Correlation entails the provision of a yard-stick whereby the intensity or strength 
of a relationship can be gauged. To provide such estimates, correlation 
coefficients are calculated. These provide succinct assessments of the closeness 
of a relationship among pairs of variables. Their widespread use in the social 
sciences has meant that the results of tests of correlation have become easy to 
recognise and interpret. When variables are interval, by far the most common 
measure of correlation is Pearson’s Product Moment Correlation Coefficient, 
often referred to as Pearson’s r. This measure of correlation presumes that 
interval variables are being used, so that even ordinal variables are not supposed 
to be employed, although this is a matter of some debate (e.g. O’Brien, 1979).  

In order to illustrate some of the fundamental features of correlation, scatter 
diagrams (often called ‘scattergrams’) will be employed. A scatter diagram plots 
each individual case on a graph, thereby representing for each case the points at 
which the two variables intersect. Thus, if we are examining the relationship 
between income and political liberalism in the imaginary data presented in Table 
8.9, each point on the scatter diagram represents each respondent’s position in 
relation to each of these two variables. Let us say that political liberalism is 
measured by a scale of five statements to which individuals have to indicate 
their degree of agreement on a five-point array (‘Strongly Agree’ to ‘Strongly 
Disagree’). The maximum score is 25, the minimum 5. Table 8.9 presents data 
on eighteen individuals for each of the two variables. The term ‘cases’ is 
employed in the table, rather than subjects, as a reminder that the objects to 
which data may refer can be entities such as firms, schools, cities, and the like. 
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In Figure 8.1, the data on income and political liberalism from Table 8.9 are 
plotted to form a scatter diagram. Thus, case number 1, which has an income of 
£9,000 and a liberalism score of 18, is positioned at the intersection of these two 
values on the graph. This case has been encircled to allow it to stand out.  

Initially, the nature of the relationship between two variables can be focused 
upon. It should be apparent that the pattern of the points moves downwards from 
left to right. This pattern implies a negative relationship, meaning that as one 
variable increases the other decreases: higher incomes are associated with lower 
levels of political liberalism; lower incomes with  

Table 8.9 Data on age, income and political liberalism  

Case no. Income Age Political-liberalismscore 

1 9,000 23 18 

2 11,000 33 11 

3 7,000 21 23 

4 12,500 39 13 

5 10,000 27 17 

6 11,500 43 19 

7 8,500 21 22 

8 8,500 27 20 

9 15,000 43 9 

10 13,000 38 14 

11 7,500 30 21 

12 14,500 54 11 

13 16,000 63 8 

14 15,500 58 10 

15 8,000 25 22 

16 10,500 51 12 

17 10,000 36 15 

18 12,000 34 16 
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Figure 8.1 Scatter diagram: political liberalism by income (Minitab 
plot with Standard Graphics)  

higher levels of liberalism. In Figure 8.2 a different kind of relationship between 
two variables is exhibited. Here, there is a positive relationship, with higher 
values on one variable (income) being associated with higher values on the other 
(age). These data derive from Table 8.9. In Figure 8.2,  

 

Figure 8.2 Scatter diagram: income by age (Minitab plot with 
Professional Graphics)  
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case number 1 is again circled. Notice how in neither case is the relationship 
between the two variables a perfect one. If there was a perfect linear 
relationship, all of the points in the scatter diagram would be on a straight line 
(see Figure 8.3), a situation which almost never occurs in the social sciences. 
Instead, we tend to have, as in Figures 8.1 and 8.2, a certain amount of scatter, 
though a pattern is often visible, such as the negative and positive relationships 
each figure respectively exhibits. If there is a large amount of scatter, so that no 
patterning is visible, we can say that there is no or virtually no relationship 
between two variables (see Figure 8.4).  

In addition to positive and negative relationships we sometimes find 
curvilinear relationships, in which the shape of the relationship between two 
variables is not straight, but curves at one or more points. Figure 8.5 provides 
three different types of curvilinear relationship. The relationship between 
organizational size and organizational properties, like the amount of 
specialization, often takes a form similar to diagram (c) in Figure 8.5 (Child, 
1973). When patterns similar to those exhibited in Figure 8.5 are found, the 
relationship is non-linear, that is it is not straight, and it is not appropriate to 
employ a measure of linear correlation like Pearson’s r. When scatter diagrams 
are similar to the patterns depicted in Figure 8.5 (b) and (c), researchers often 
transform the independent variable into a logarithmic scale, which will usually 
engender a linear relationship and hence will allow the employment of Pearson’s 
r. Here we see an important reason for investigating scatter diagrams before 
computing r—if there is a  

 

Figure 8.3 A perfect relationship  
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Figure 8.4 No relationship (or virtually no relationship)  

 

Figure 8.5 Three curvilinear relationships  

non-linear relationship the computed estimate of correlation will be 
meaningless, but unless a scatter diagram is checked it is not possible to 
determine whether the relationship is not linear.  

Scatter diagrams allow three aspects of a relationship to be discerned: whether 
it is linear; the direction of the relationship (i.e. whether positive or negative); 
and the strength of the relationship. The amount of scatter is indicative of the 
strength of the relationship. Compare the pairs of positive and negative 
relationships in Figures 8.6 and 8.7 respectively. In each case the right-hand 
diagram exhibits more scatter than the left-hand diagram. The left-hand diagram 
exhibits the stronger relationship: the greater the scatter (with the points on the 
graph departing more and more from being positioned on a straight line as in 
Figure 8.4).  

Scatter diagrams are useful aids to the understanding of correlation. Pearson’s 
r allows the strength and direction of linear relationships between variables to be 
gauged. Pearson’s r varies between −1 and +1. A relationship of −1 or +1 would 
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indicate a perfect relationship, negative or positive respectively, between two 
variables. Thus, Figure 8.4 would denote a perfect positive relationship of +1. 
The complete absence of a relationship would engender a computed r of zero. 
The closer r is to 1 (whether positive or negative), the stronger the relationship 
between two variables. The nearer r is to zero (and hence the further it is from + 
or −1), the weaker the relationship. These ideas are expressed in Figure 8.8. If r 
is 0.82, this would indicate a strong positive relationship between two variables, 
whereas 0.24 would denote a weak positive relationship. Similarly, −0.79 and 
−0.31 would be indicative of strong and weak negative relationships 
respectively. In Figures 8.6 and 8.7, the left-hand diagrams would be indicative 
of larger computed rs than those on the right.  

 

Figure 8.6 Two positive relationships  
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Figure 8.7 Two negative relationships  

 

Figure 8.8 The strength and direction of correlation coefficients  

What is a large correlation? Cohen and Holliday (1982) suggest the following: 
0.19 and below is very low; 0.20 to 0.39 is low; 0.40 to 0.69 is modest; 0.70 to 
0.89 is high; and 0.90 to 1 is very high. However, these are rules-of-thumb and 
should not be regarded as definitive indications, since there are hardly any 
guidelines for interpretation over which there is substantial consensus.  

Further, caution is required when comparing computed coefficients. We can 
certainly say that an r of −0.60 is larger than one of −0.30, but we cannot say 
that the relationship is twice as strong. In order to see why not, a useful aid to 
the interpretation of r will be introduced—the coefficient of determination (r2). 
This is simply the square of r multiplied by 100. It provides us with an 
indication of how far variation in one variable is accounted for by the other. 
Thus, if r=−0.6, then r2=36 per cent. This means that 36 per cent of the variance 
in one variable is due to the other. When r=−0.3, then r2 will be 9 per cent. 
Thus, although an r of −0.6 is twice as large as one of −0.3, it cannot indicate 
that the former is twice as strong as the latter, because four times more variance 
is being accounted for by an r of −0.6 than one of −0.3. Thinking about the 
coefficient of determination can have a salutary effect on one’s interpretation of 
r. For example, when correlating two variables, x and y, an r of 0.7 sounds quite 
high, but it would mean that less than half of the variance in y can be attributed 
to x (i.e. 49 per cent). In other words, 51 per cent of the variance in y is due to 
variables other than x.  

A word of caution is relevant at this point. In saying that 49 per cent of the 
variation in y is attributable to x, we must recognize that this also means that 49 
per cent of the variation in x is due to y. Correlation is not the same as cause. We 
cannot determine from an estimate of correlation that one variable causes the 
other, since correlation provides estimates of covariance, i.e. that two variables 
are related. We may find a large correlation of 0.8 between job satisfaction and 
organizational commitment, but does this mean that 64 per cent of the variation 
in job satisfaction can be attributed to commitment? This would suggest that 
organizational commitment is substantially caused by job satisfaction. But the 
reverse can also hold true: 64 per cent of the variation in organizational 
commitment may be due to job satisfaction. It is not possible from a simple 
correlation between these two variables to arbitrate between the two 
possibilities. Indeed, as Chapter 10 will reveal, there may be reasons other than 
not knowing which causes which for needing to be cautious about presuming 
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causality.  
Another way of expressing these ideas is through Venn diagrams (see Figure 

8.9). If we treat each circle as representing the amount of variance exhibited by 
each of two variables, x and y,Figure 8.9 illustrates three conditions: in the top 
diagram we have independence in which the two variables do not overlap, i.e. a 
correlation of zero as represented by Figure 8.4 or in terms of a contingency 
table by Table 8.4 (b); in the middle diagram there is a perfect relationship in 
which the variance of x and y coincides perfectly, i.e. a correlation of 1 as 
represented by Figure 8.3 or the contingency table in Table 8.4 (a); and the 
bottom diagram which points to a less than perfect, though strong, relationship 
between x and y, i.e. as represented by the left-hand diagrams in Figures 8.6 and 
8.7. Here only part of the two circles intersect, i.e. the shaded area, which 
represents just over 67 per cent of the variance shared by the two variables; the 
unshaded area of each circle denotes a sphere of variance for each variable that 
is unrelated to the other variable.  

It is possible to provide an indication of the statistical significance of r. This is 
described in the next section. The way in which its significance is calculated is 
strongly affected by the number of cases for which there are pairs of data. For 
example, if you have approximately 500 cases, r only needs to be 0.088 or 0.115 
to be significant at the 0.05 and 0.01 levels respectively. If you have just 
eighteen cases (as in Table 8.6), the rs will need to be at least 0.468 or 0.590 
respectively. Some investigators only provide information about the significance 
of relationships. However, this is a grave error since what is and is not 
significant is profoundly affected by the number of cases. What statistical 
significance does tell us is the likelihood  
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Figure 8.9 Types of relationship  

that a relationship of at least this size could have arisen by chance. It is 
necessary to interpret both r and the significance level when computing 
correlation coefficients. For example, a correlation of 0.17 in connection with a 
random sample of 1,000 individuals would be significant at the 0.001 level, but 
would indicate that this weak relationship is unlikely to have arisen by chance 
and that we can be confident that a relationship of at least this size holds in the 
population. Consider an alternative scenario of a correlation of 0.43 based on a 
sample of 42. The significance level would be 0.01, but it would be absurd to 
say that the former correlation was more important than the latter simply 
because the correlation of 0.17 is more significant. The second coefficient is 
larger, though we have to be somewhat more circumspect in this second case 
than in the first in inferring that the relationship could not have arisen by chance. 
Thus, the size of r and the significance level must by considered in tandem. The 
test of statistical significance tells us whether a correlation could have arisen by 
chance (e.g. by sampling error) or whether it is likely to exist in the population 
from which the sample was selected. It tells us how likely it is that we might 
conclude from sample data that there is a relationship between two variables 
when there is no relationship between them in the population. Thus, if r=0.7 and 
p<0.01, there is only 1 chance in 100 that we could have selected a sample that 
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shows a relationship when none exists in the population. We would almost 
certainly conclude that the relationship is statistically significant. However, if 
r=0.7 and p<0.1, there are 10 chances in 100 that we have selected a sample 
which shows a relationship when none exists in the population. We would 
probably decide that the risk of concluding that there is a relationship in the 
population is too great and conclude that the relationship is non-significant.  

Generating Scatter Diagrams and computingrwith Minitab 

The prompt system command for generating scatter diagrams with Minitab is 
plot. Taking the Job Survey data, if you wanted to plot ‘satis’ and ‘routine’ 
using the prompt system, simply type in:  

MTB> plot ‘satis’ * ‘routine’ 

With the menu system, the sequence would be:  

→Graph→Plot…→satis→Select [notice that satis will 
now appear  in the Y column in the Graph variables 
box] →routine→Select [routine will appear in the X 
column of the box] →OK 

A scatter diagram with ‘routine’ on the horizontal axis will be generated. 
Examples of Minitab output from plot using Standard Graphics and Professional 
Graphics are provided in Figures 8.1 and 8.2 respectively.  

In order to generate correlation coefficients for the variables 
‘routine’,‘autonom’ and ‘satis’, using the prompt system in the mainframe and 
PC versions of Minitab (or if using the session window in Minitab for 
Windows), use the following simple command:  

MTB> correlation ‘routine’ ‘autonom’ ‘satis’ 

The following sequence should be followed for the menu system:  

→Stat→Basic Statistics→Correlation…
→routine→Select [routine will now appear in the 
Variables: box] →autonom→Select [autonom will now 
appear in the Variables: box] →satis→Select [satis 
will now appear in the Variables: box] →OK 

A matrix of correlation coefficients will be generated, as in Table 8.10. This 
table shows the size of the correlation for each variable entered into the analysis. 
In order to find out whether the correlations are statistically significant, the table 
in Appendix I needs to be consulted. This gives the critical values at the p<0.10, 
p<0.05, and p<0.02 levels for a two-tailed test. These are equivalent to p<0.05, 
p<0.025, and p<0.01 respectively for a one-tailed test. We must look up the 
values associated with the  
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appropriate row using the simple formula—Number of cases (N) −2. This 
represents the number of degrees of freedom in the analysis. We have 70 cases 
suggesting that the appropriate row is 68. The nearest row below this figure is in 
fact 60 at which point the correlation coefficients need to exceed 0.2108, 0.2500, 
and 0.2948 for the p<0.10, p<0.05, or p<0.02 levels respectively (0.05, 0.025, or 
0.01 if the test is one-tailed). All three correlations exceed these levels 
substantially.  

Rank correlation: relationships between ordinal variables 

In order to employ Pearson’s r, variables must be interval and the relationship 
must be linear. When variables are at the ordinal level, an alternative measure of 
correlation can be used called rank correlation. The most prominent method for 
examining the relationship between pairs of ordinal variables is Spearman’s rho 
(ρ). The interpretation of the results of this method is identical to Pearson’s r, in 
that the computed coefficient will vary between −1 and +1. Thus, it provides 
information on the strength and direction of relationships. Moreover, unlike 
Pearson’s r, rho is a non-parametric method which means that it can be used in a 
wide variety of contexts since it makes fewer assumptions about variables.  

Let us say that we want to correlate ‘skill’, ‘prody’ and ‘qual’, each of which 
is an ordinal measure. Even though these are ordinal variables, they have to be 
rank ordered. The reason for this apparent paradox is that many respondents will 
exhibit tied ranks. This means that, for example, many respondents will have a 
‘skill’ score of 4 (in fact, 17 respondents have this score). The rank procedure 
in Minitab will adjust for such tied ranks. With the prompt system, the following 
would produce ranked variables:  

MTB> rank ‘skill’ c40 
MTB> rank ‘prody’ c41 
MTB> rank ‘qual’ c42 
MTB> name c40 ‘rskill’ c41 ‘rprody’ c42 ‘rqual’ 

The first three commands create new variables—c40, c41 and c42—which are 
‘skill’, ‘prody’ and ‘qual’ respectively in ranked form. The fourth command 
names these new variables ‘rskill’, ‘rprody’, and ‘rqual’. With the menu 

Table 8.10 Pearson product-moment correlation coefficients (Minitab for 
Windows Release 10 output from Job Survey data)  

Correlations (Pearson) 
  routine autonom 
autonom −0.487   

satis −0.580 0.733 

Bivariate analysis: exploring relationships      177     



system, the following steps would need to be followed:  

→Manip→Rank…→skill→Select [this brings skill into 
the Rankdata in: box] → [the cursor will be flashing 
in the Store ranks in: box,  into which you should 
type rskill] →OK 
→Manip→Rank…→prody→Select [this brings prody into 
the  Rank data in: box] → [the cursor will be 
flashing in the Store ranksin: box, into which you 
should type rprody] →OK 
→Manip→Rank…→qual→Select [this brings qual into 
the Rankdata in: box] → [the cursor will be flashing 
in the Store ranks in: box,  into which you should 
type rqual] →OK 

The ranked variables then need to be correlated. With the prompt system, the 
following simple command will yield the appropriate analysis:  

MTB> correlation ‘rskill’ ‘rprody’ ‘rqual’ 

If you are using the menu system, the following sequence should be employed:  

→Stat→Basic Statistics→Correlation…
→rskill→Select→rprody→Select→rqual→Select 
[rskill, rprody and rqual should  now be in the 
Variables: box] →OK 

The resulting output is provided in Table 8.11. All of the correlations reported in 
Table 8.11 are low, the largest being the correlation between rprody and rskill 
(0.24 rounded up) for rho. In order to establish the statistical significance of the 
resulting correlations, the table in Appendix II should be consulted. We must 
search out the row which corresponds best to the number of cases (N), not N−2. 
The levels specified are p<0.10, p<0.05, p<0.02 for two-tailed tests (and hence 
0.05, 0.25, and 0.01 for one-tailed tests). Taking N=30 as the closest point to our 
sample of 70, we can see that none of the correlation coefficients achieves 
statistical significance at p<0.05.  

If you need to correlate an ordinal variable with interval/ratio variable, both 
variables must be rank-ordered. Spearman’s rho would then be  

Table 8.11 Spearman rho correlation coefficients (Minitab for Windows Release 
10 output from Job Survey data)  

Correlations (Pearson) 
  rskill rprody 
rprody 0.239   
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computed to establish the level of correlation. If we want to know whether more 
skilled workers earn more, we will need to correlate ‘skill’ and ‘income’. The 
former is ordinal and the latter is interval/ratio. We have already ranked 
‘skill’ (‘rskill’). In order to rank ‘income’, the product of which we will call 
‘rankinc’, we would do the following in the prompt system:  

MTB> rank ‘income’ c43 
MTB> name c43 ‘rankinc’ 

The following sequence would be used for the menu system:  

→Manip→Rank…→income→Select [this brings income 
into the  Rank data in: box] → [the cursor will be 
flashing in the Store ranksin: box, into which you 
should type ‘rankinc’] →OK 

Once ‘income’ has been rank-ordered, the rank correlation (ρ) between ‘rskill’ 
and ‘rankinc’ can be generated in the prompt system by  

MTB> correlation ‘rskill’ ‘rankinc’ 

In the menu system the following sequence should be followed:  

→Stat→Basic Statistics→Correlation…
→rskill→Select→rankinc→Select→OK 

Although rank correlation methods are more flexible than Pearson’s r, the latter 
tends to be preferred because interval/ratio variables comprise more information 
than ordinal ones. One of the reasons for the widespread use in the social 
sciences of questionnaire items which are built up into scales or indices (and 
which are then treated as interval variables) is probably that stronger approaches 
to the investigation of relationships like Pearson’s r (and regression—see below) 
can be employed.  

REGRESSION 

Regression has become one of the most widely used techniques in the analysis 
of data in the social sciences. It is closely connected to Pearson’s r, as will 
become apparent at a number of points. Indeed, it shares many of the same 
assumptions as r, such as that relationships between variables are linear and that 
variables are interval. In this section, the use of regression to explore 
relationships between pairs of variables will be examined. It should become 
apparent that regression is a powerful tool for summarizing the nature of the 

rqual 0.013 0.171 
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relationship between variables and for making predictions of likely values of the 
dependent variable.  

At this point, it is worth returning to the scatter diagrams encountered in 
Figures 8.1 and 8.2. Each departs a good deal from Figure 8.3 in which all of the 
points are on a straight line, since the points in Figures 8.1 and 8.2 are more 
scattered. The idea of regression is to summarize the relationship between two 
variables by producing a line which fits the data closely. This line is called the 
line of best fit. Only one line will minimize the deviations of all of the dots in a 
scatter diagram from the line. Some points will appear above the line, some 
below and a small proportion may actually be on the line. Because only one line 
can meet the criterion of line of best fit, it is unlikely that it can accurately be 
drawn by visual inspection. This is where regression comes in. Regression 
procedures allow the precise line of best fit to be computed. Once we know the 
line of best fit, we can make predictions about likely values of the dependent 
variable, for particular values of the independent variable.  

In order to understand how the line of best fit operates, it is necessary to get to 
grips with the simple equation that governs its operation and how we make 
predictions from it. The equation is  

In this equation, y and x are the dependent and independent variables 
respectively. The two elements—a and b—refer to aspects of the line itself. 
First, a, is known as the intercept which is the point at which the line cuts the 
vertical axis. Second, b is the slope of the line of the best fit and is usually 
referred to as the regression coefficient. By the ‘slope’ is meant the rate at which 
changes in values of the independent variable (x) affect values of the dependent 
variable (y). In order to predict y for a given value of x, it is necessary to  

1 multiply the value of x by the regression coefficient, b, and  
2 add this calculation to the intercept, a.  

Finally, e is referred to as an error term which points to the fact that a proportion 
of the variance in the dependent variable, y, is unexplained by the regression 
equation. In order to simplify the following explanation of regression, for the 
purposes of making predictions the error term is ignored and so will not be 
referred to below.  

Consider the following example. A researcher may want to know whether 
managers who put in extra hours after the normal working day tend to get on 
better in the organization than others. The researcher finds out the average 
amount of time a group of twenty new managers in a firm spend working on 
problems after normal working hours. Two years later the managers are re-
examined to find out their annual salaries. Individual’s salaries are employed as 
an indicator of progress, since incomes often reflect how well a person is getting 
on in a firm. Moreover, for these managers, extra hours of work are not 
rewarded by overtime payments, so salaries are a real indication of progress. Let 
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us say that the regression equation which is derived from the analysis is  

The line of best fit is drawn in Figure 8.10.  

 

Figure 8.10 A line of best fit  

The intercept, a, is 7500, i.e. £7500; the regression coefficient, b, is 500. The 
latter means that each extra hour worked produces an extra £500 to a manager’s 
annual salary. We can calculate the likely annual salary of someone who puts in 
an extra 7 hours per week as follows:  

which becomes  

which becomes  
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For someone who works an extra 8 hours per week, the likely salary will be 
£11,500, i.e. 7500+(500) (8). If a person does not put in any extra work, the 
salary is likely to be £7,500, i.e. 7500+(500) (0). Thus, through regression, we 
are able to show how y changes for each additional increment of x (because the 
regression coefficient expresses how much more of y you get for each extra 
increment of x) and to predict the likely value of y for a given value of x. When 
a relationship is negative, the regression equation for the line of best fit will take 
the form y=a−bx (see Figure 8.11). Thus, if a regression equation was y=50−2x, 
each extra increment of x produces a decrease in y. If we wanted to know the 
likely value of y when x=12, we would substitute as follows  

When a line of best fit has a positive slope and intersects with the horizontal axis 
at a positive value of x, the intercept, a, will have a minus value. This is because 
when the line is extended to the vertical axis it will intercept it at a negative 
point (see Figure 8.12). In this situation, the regression equation will take the 
form  

Supposing the equation were y=−7+23x, if we wanted to know the likely value 
of y when x=3, we would substitute as follows  
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Figure 8.11 Regression: a negative relationship  

 

Figure 8.12 Regression: a negative intercept  

As suggested at the start of this section, correlation and regression are closely 
connected. They make identical assumptions that variables are interval and that 
relationships are linear. Further, r and r2 are often employed as indications of 
how well the regression line fits the data. For example, if r=1, the line of best fit 
would simply be drawn straight through all of the points (see Figure 8.13). 
Where points are more scattered, the line of best fit will provide a poorer fit with 
the data. Accordingly, the more scatter there is in a scatter diagram, the less 
accurate the prediction of likely y values will be. Thus, the closer r is to 1, the 
less scatter there is and therefore, the better the fit between the line of best fit 
and the data. If the two scatter diagrams in Figures 8.6 and 8.7 are examined, the 
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line of best fit for the left-hand diagram in each case will constitute a superior fit 
between data and line and will permit more accurate predictions. This can be 
further illustrated by reference to Figure 8.14. If we take a particular value of x, 
i.e. xn, then we can estimate the likely value of y (ŷn) from the regression line. 
However, the corresponding y value for a particular case may be yn, which is 
different from ŷn. In other words, the latter provides an estimate of y, which is 
likely not to be totally accurate. Clearly, the further the points are from the line, 
the less accurate estimates are likely to be. Therefore, where r is low, scatter will 
be greater and the regression equation will provide a less accurate representation 
of the relationship between the two variables.  

On the other hand, although correlation and regression are closely connected, 
it should be remembered that they serve different purposes. Correlation is 
concerned with the degrees of relationship between variables and regression 
with making predictions. But they can also be usefully used in conjunction, 
since, unlike correlation, regression can express the  

 

Figure 8.13 Regression: a perfect relationship  
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Figure 8.14 The accuracy of the line of best fit  

character of relationships. Compare the two scatter diagrams in Figure 8.15. The 
pattern of dots is identical and each would reveal an identical level of correlation 
(say 0.75), but the slope of the dots in (a) is much steeper than for (b). This 
difference would be revealed in a larger regression coefficient for (a) and a 
larger intercept for (b).  

The r2 value is often used as an indication of how well the model implied by 
the regression equation fits the data. If we conceive of y, the dependent variable, 
as exhibiting variance which the independent variable goes some of the way in 
explaining, then we can say that r2 reflects the proportion of the variation in y 
explained by x. Thus, if r2 equals 0.74, the model is providing an explanation of 
74 per cent of the variance in y.  

It should be noted that although we have been talking about y as the 
dependent and x as the independent variable, in many instances it makes just  
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Figure 8.15 Scatter diagrams for two identical levels of correlation  

as much sense to treat x as dependent and y as independent. When this is done, 
the regression equation will be totally different. Two other words of caution 
should be registered. First, regression assumes that the dispersion of points in a 
scatter diagram is homoscedastic, or where the pattern of scatter of the points 
about the line shows no clear pattern. When the opposite is the case, and the 
pattern exhibits heteroscedasticity, where the amount of scatter around the line 
of best fit varies markedly at different points, the use of regression is 
questionable. An example of heteroscedasticity is exhibited in Figure 8.16, 
which suggests that the amount of unexplained variation exhibited by the model 
is greater at the upper reaches of x and y. It should be noted that 
homoscedasticity is also a precondition of the use of Pearson’s r.  

Second, it should be noted that the size of a correlation coefficient and the 
nature of a regression equation will be affected by the amount of variance in 
either of the variables concerned. For example, if one variable has a  
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Figure 8.16 Heteroscedasticity  

restricted range and the other a wider range, the size of the correlation 
coefficient may be reduced, but not if both were of equally wide variance.  

Third, outliers, that is extreme values of x or y, can exert an excessive 
influence on the results of both correlation and regression. Consider the data in 
Table 8.12. We have data on twenty firms regarding their size (as measured by 
the number of employees) and the number of specialist functions in the 
organization (that is, the number of specialist areas, such as accounting, 
personnel, marketing, or public relations, in which at least one person spends 
100 per cent of his or her time). The article by Child (1973) presents a similar 
variable with a maximum score of 16, which formed the idea for this example. 
In Table 8.12, we have an outlier—case number 20—which is much larger than 
all of the other firms in the sample. It is also somewhat higher in terms of the 
number of specialist functions than the other firms. In spite of the fact that this is 
only one case its impact on estimates of both correlation and regression is quite 
pronounced. The Pearson’s r is 0.67 and the regression equation is 
y=5.55+0.00472size. If the outlier is excluded, the magnitude of r rises to 0.78 
and the regression  

Table 8.12 The impact of outliers: the relationship between size of firm and 
number of specialist functions (imaginary data)  

Case no. Size of firm(number of employees) Number ofspecialist functions 

1 110 3 

2 150 2 

3 190 5 

4 230 8 

5 270 5 

6 280 6 

7 320 7 

8 350 5 

9 370 8 

10 390 6 

11 420 9 

12 430 7 

13 460 3 

14 470 9 

15 500 12 
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equation is y=0.78+0.0175size. Such a difference can have a dramatic effect on 
predictions. If we wanted to know the likely value of y (number of specialist 
functions) for an organization of 340 employees with all twenty cases, the 
prediction would be 7.15; with the outlying case omitted the prediction is 6.73. 
Thus, this one outlying case can have an important impact upon the predictions 
that are generated. When such a situation arises, serious consideration has to be 
given to the exclusion of such an outlying case.  

The purpose of this section has been to introduce the general idea of 
regression. In Chapter 10, it will receive a much fuller treatment, when the use 
of more than one independent variable will be examined, an area in which the 
power of regression is especially evident.  

Generating basic regression analysis with Minitab 

Minitab can generate a host of information relating to regression. However, 
much of this information is too detailed for present purposes; only some of it 
will be examined in Chapter 10. It is proposed to postpone a detailed treatment 
of generating regression information until this later chapter. The following 
discussion should allow the Minitab user to generate basic regression 
information relating to the relationship between two variables. Imagine that we 
want to undertake a simple regression analysis of ‘routine’ and ‘satis’, with the 
latter as the implied dependent variable. If you are using the prompt system, the 
following will yield the analysis presented in Table 8.13:  

MTB> regress ‘satis’ 1 ‘routine’ 

After the regress statement, the dependent variable (‘satis’) is entered. The 1 
refers to the number of independent variables, which in the case of simple 
bivariate regression will always be one. This is then followed by the 
independent variable ‘routine’.  

With the menu system, the following steps will provide the information in 
Table 8.13.  

→Stat→Regression→Regression…→satis→Select [satis 
will now  appear in the Response box] 

16 540 9 

17 550 13 

18 600 14 

19 640 11 

20 2,700 16 

Notes: When case 20 is included Pearson’s r=0.67 and the regression equation is 
specialization=5.55+0.00472size. When case 20 is excluded Pearson’s r=0.78 and the 
regression equation is specialization=0.78+0.0175size.  
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→routine→Select [routine will now  appear in the 
Predictors box] →OK 

Thus, the dependent variable has to go into the Response box; the independent 
variable (or variables in multiple regression—see Chapter 10) is entered into the 
Predictors box.  

The resulting regression equation is:  

This implies that for every increment of routine, satis declines by 0.464. We are 
also given quite a large amount of extra information. We are given  

the coefficient of determination, r2, which is 33.6 per cent (see R-sq). This 
expresses the amount of variance in ‘satis’ explained by the equation. Other 

  

Table 8.13 Regression: satis by routine (Minitab for Windows Release 10 
output from Job Survey data)  

Regression Analysis 
The regression equation is 

satis=17.1−0.464 routine 

68 cases used 2 cases contain missing values 

Predictor Coef Stdev t-ratio P   

Constant 17.094 1.130 15.12 0.000   

routine −0.46437 0.08027 −5.79 0.000   

s=2.711 R−sq=33.6% R−sq (adj)=32.6%   

Analysis of Variance 

SOURCE DF SS MS F P   

Regression 1 246.04 246.04 33.47 0.000   

Error 66 485.18 7.35   

Total 67 731.22   

Unusual Observations 

Obs. routine satis Fit Stdev.Fit Residual St.Resid 

4 10.0 7.000 12.450 0.431 −5.450 −2.04R 

13 19.0 14.000 8.271 0.552 5.729 2.16R 

32 11.0 6.000 11.986 0.384 −5.986 −2.23R 

50 8.0 19.000 13.379 0.549 5.621 2.12R 

R denotes an obs. with a large st. resid. 
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basic useful information includes an estimation of the statistical significance of 
the coefficients relating to the constant in the equation and to ‘routine’ using the 
t value and an analysis of variance which provides an F test for the equation. 
The p values suggest that the coefficients and the equation itself achieve a high 
level of statistical significance. The analysis also draws attention to ‘unusual 
observations’ based primarily on large ‘standardized residuals’ (St.Resid) being 
revealed (note the R by those in the table). A residual is the difference between 
the predicted value of y implied by the line of best fit and the actual value of y 
for a given level of x. Thus, we can see that the fourth person in the sample 
(Obs. 4) has a score of 10 for ‘routine’ and a ‘satis’ score of 7. But according to 
the line of best fit he or she was predicted to achieve a level of ‘satis’ (Fit) of 
12.45. Therefore, the Residual is 7−12.45=−5.450. The standardized residual 
merely adjusts the residual, so that in the case of multiple regression all the 
residuals are directly comparable. Highlighting these unusual observations is 
meant to alert the researcher to areas of an analysis that might warrant further 
investigation.  

The amount of output generated by Minitab’s regress command can be 
controlled, but within Minitab for Windows this can only be done from the 
session window. This is done by using the brief command before the regress 
command:  

MTB> brief [followed by one of the following digits: 
0, 1, 2, or 3]   
MTB> regress ‘satis’ 1 ‘routine’ 

The digit after brief controls the output in the following way:  

Users of Minitab and of techniques of quantitative data analysis who are not 
very familiar with regression techniques will probably find that brief 1 will meet 
most of their needs.  

A scatter diagram along with a fitted regression line and basic regression 
information can be generated in Minitab for Windows Release 10, as in Figure 
8.17. To generate this output, the following command should be used with the 
prompt system:  

%fitline ‘satis’ ‘routine’ 

In other words, the dependent variable is specified after the %fitline command. 

0 No output printed. The analysis is done and stored. It is unlikely that most users will need th
option, although there is a description of a context in which it might be used in Chapter 10.  

1 The regression equation, table of coefficients, r2, and part of the analysis of variance table ar
provided.  

2 The brief 1 output is provided, plus the rest of the analysis of variance table and ‘unusual 
observations’ and their details, brief 2 is the default, so that if brief is not specified, the outp
associated with brief 2 is generated.  

3 In addition to the brief 2 output, a full table of fits and residuals is printed.  
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In the Minitab for Windows Release 10 menu system, the following sequence 
should be used:  

→Regression→Fitted Line Plot…→satis→Select [satis 
will now  appear in the Response [Y] box] 
→routine→Select [routine will now  appear in the 
Predictor [X] box] →OK 

If only basic regression information is required or if users are new to regression 
procedures, this route to generating a regression equation can be very useful.  

 

Figure 8.17 Scatter diagram: satis by routine with fitted regression 
line (Minitab for Windows Release 10 output from Job 
Survey data)  

OVERVIEW OF TYPES OF VARIABLE ANDMETHODS OF 
EXAMINING RELATIONSHIPS 

In large part, the nature of the variables being analysed determines the type of 
analysis to be used. Crosstabulation and chi-square are most likely to occur in 
conjunction with nominal variables; Pearson’s r presumes the use of interval 
variables; and when examining pairs of ordinal variables, rho should be 
employed. But what if, as can easily occur in the social sciences, pairs of 
variables are of different types, e.g. nominal plus ordinal or ordinal plus 
interval? One rule-of-thumb that can be recommended is to move downwards in 
measurement level when confronted with a pair of different variables. Thus, if 
you have an ordinal and an interval variable, rho could be used. If you have an 
ordinal and a nominal variable, you should use cross-tabulation and chi-square. 
This may mean collapsing ranks into groups (e.g. 1 to 5, 6 to 10, 11 to 15 and so 
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on) and assigning ranks to the groupings (e.g. 1 to 5=1, 6 to 10=2, 11 to 15=3 
and so on). If you have a nominal and an interval variable, again the 
combination of a contingency table and chi-square is likely to be used. As 
suggested in the discussion of cross-tabulation, the interval variable will need to 
be collapsed into groups. The chief source of concern with collapsing values of 
an ordinal or interval variable is that the choice of cut-off points is bound to be 
arbitrary and will have a direct impact on the results obtained. Accordingly, it 
may be better to use more than one method of grouping or to employ a fairly 
systematic procedure like quartiles as a means of collapsing cases into four 
groups.  

When pairs of variables are dichotomous, the phi coefficient should be given 
serious consideration. Its interpretation is the same as Pearson’s r, in that it 
varies between 0 and +1. When pairs of variables are nominal or where one 
variable is nominal and the other ordinal, Cramer’s V can be used to test for 
strength of association.  

The following rules-of-thumb are suggested for the various types of 
combination of variables that may occur:  

1 Nominal—nominal. Contingency table analysis in conjunction with chisquare 
as a test of statistical significance can be recommended. Cramer’s V can be 
used to test strength of association.  

2 Ordinal—ordinal. Spearman’s rho and its associated significance test.  
3 Interval—interval. Pearson’s r and regression for estimates of the strength and 

character of relationships respectively. Each can generate tests of statistical 
significance, but more detail in this regard for regression is provided in 
Chapter 10.  

4 Dichotomous—dichotomous. Same as under 1 for nominal—nominal, except 
that phi could be used to measure the strength of association.  

5 Interval—ordinal. If the ordinal variable assumes quite a large number of 
categories, it will probably be best to use rho. The interval variable will need 
to be rank-ordered using the rank procedure. Contingency table analysis may 
be used if there are few categories in both the ordinal and interval variables 
(or if categories can be ‘collapsed’). If the interval variable can be relatively 
unambiguously identified as the dependent variable and if the ordinal variable 
has few categories, another approach may be to use an analysis of variance 
which will in turn allow an F ratio to be computed (see Chapter 7). In this 
way, a test of statistical significance can be provided.  

6 Interval—nominal/dichotomous. Contingency table analysis plus the use of 
chi-square may be employed if the interval variable can be sensibly 
‘collapsed’ into categories. This approach is appropriate if it is not 
meaningful to talk about which is the independent and which is the dependent 
variable. If the interval variable can be identified as a dependent variable, an 
analysis of variance could be considered.  

7 Nominal—ordinal. Same as 1.  
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EXERCISES 

1. (a) Using Minitab, how would you create a contingency table for the 
relationship between ‘gender’ and ‘prody’, with the former variable going 
across, along with column percentages (Job Survey data)?  

(b) How would you assess the statistical significance of the relationship with 
Minitab?  

(c) In your view, is the relationship statistically significant?  
(d) What is the percentage of women who are described as exhibiting ‘good’ 

productivity?  

2. A researcher carries out a study of the relationship between ethnic group 
and voting behaviour. The relationship is examined through a contingency table, 
for which the researcher computes the chi-square statistic. The value of chi-
square turns out to be statistically significant at p<0.01. The researcher 
concludes that this means that the relationship between the two variables is 
important and strong. Assess this reasoning.  

3. (a) Using Minitab, how would you generate a matrix of Pearson’s r 
correlation coefficients for ‘income’, ‘years’, ‘satis’ and ‘age’ (Job Survey 
data)?  

(b) Conduct an analysis using the commands from question 3 (a). Which pair 
of variables exhibits the largest correlation?  

(c) Taking this pair of variables, how much of the variance in one variable is 
explained by the other?  

4. A researcher wants to examine the relationship between social class and 
number of books read in a year. The first hundred people are interviewed as they 
enter a public library in the researcher’s home town. On the basis of the answers 
given, the sample is categorized in terms of a four-fold classification of social 
class: upper middle class/lower middle class/upper working class/ lower 
working class. Using Pearson’s r, the level of correlation is found to be 0.73 
which is significant at p<0.001. The researcher concludes that the findings have 
considerable validity, especially since 73 per cent of the variance in number of 
books read is explained by social class. Assess the researcher’s analysis and 
conclusions.  

5. A researcher finds that the correlation between income and a scale 
measuring interest in work is 0.55 (Pearson’s r) which is nonsignificant since p 
is greater than 0.05. This finding is compared to another study using the same 
variables and measures which found the correlation to be 0.46 and p<0.001. 
How could this contrast arise? In other words, how could the larger correlation 
be nonsignificant and the smaller correlation be significant?  

6. (a) What statistic or statistics would you recommend to estimate the 
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strength of the relationship between ‘prody’ and ‘commit’ (Job Survey data)?  
(b) What Minitab commands would you use to generate the relevant 

estimates?  
(c) What is the result of using these commands?  

7. The regression equation for the relationship between ‘age’ and 
‘autonom’ (with the latter as the dependent variable) is  

(a) Explain what 6.964 means.  
(b) Explain what 0.06230 means.  
(c) How well does the regression equation fit the data?  
(d) What is the likely level of autonom for someone age 54?  
(e) Using Minitab, how would you generate this regression information?  
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Chapter 9  
Multivariate analysis  

Exploring differences among three or more 
variables  

In most studies in the social sciences we collect information on more than just 
two variables. Although it would be possible and more simple to examine the 
relationships between these variables just two at a time, there are serious 
disadvantages to restricting oneself to this approach, as we shall see. It is 
preferable initially to explore these data with multivariate rather than bivariate 
tests. The reasons for looking at three or more variables vary according to the 
aims and design of a study. Consequently, we will begin by outlining four 
design features which only involve three variables at a time. Obviously these 
features may include more than three variables and the features themselves can 
be combined to form more complicated designs, but we shall discuss them 
largely as if they were separate designs. However, as has been done before, we 
will use one set of data to illustrate their analysis, all of which can be carried out 
with a general statistical model called analysis of variance and covariance 
(ANOVA and ANCOVA). The basic principles of this model are similar to 
those of other parametric tests we have previously discussed such as the t test, 
one-way analysis of variance, and simple regression.  

MULTIVARIATE DESIGNS 

Factorial design 

We are often interested in the effect of two variables on a third, particularly if 
we believe that the two variables may influence one another. To take a purely 
hypothetical case, we may expect the gender of the patient to interact with the 
kind of treatment they are given for feeling depressed. Women may respond 
more positively to psychotherapy where they have an opportunity to talk about 
their feelings while men may react more favourably to being treated with an 
antidepressant drug. In this case, we are anticipating that the kind of treatment 
will interact with gender in alleviating depression. An interaction is when the 
effect of one variable is not the same under all the conditions of the other 
variable. It is often more readily understood when it is depicted in the form of a 
graph as in Figure 9.1. However, whether these effects are statistically 
significant can only be determined by testing them and not just by visually 
inspecting them. The vertical axis shows the amount of improvement in 



depression that has taken place after treatment, while the horizontal one can 
represent either of the other two variables. In this case it reflects the kind of 
treatment received. The effects of the third variable, gender, is depicted by two 
different kinds of points and lines in the graph itself. Men are indicated by a 
cross and a continuous line while women are signified by a small circle and a 
broken line.  

An interaction is indicated when the two lines representing the third variable 
are not parallel. Consequently, a variety of interaction effects can exist, three of 
which are shown in Figure 9.2 as hypothetical possibilities. In Figure 9.2 (a), 
men show less improvement with psychotherapy than with drugs while women 
derive greater benefit from psychotherapy than from the drug treatment. In 
Figure 9.2 (b), men improve little with either treatment, while women, once 
again, benefit considerably more from psychotherapy than from drugs. Finally, 
in Figure 9.2 (c), both men and women improve more with psychotherapy than 
with drugs, but the improvement is much greater for women than it is for men.  

The absence of an interaction can be seen by the lines representing the third 
variable as remaining more or less parallel to one another, as is the case in the 
three examples in Figure 9.3. In Figure 9.3 (a), both men and women show a 
similar degree of improvement with both treatments. In Figure 9.3 (b), women 
improve more than men under both conditions while both treatments are equally 
effective. In Figure 9.3 (c), women show greater benefit than men with both 
treatments, and psychotherapy is better than drugs.  

The results of treatment and gender on their own are known as main effects. 
In these situations, the influence of the other variable is disregarded. If, for 
example, we wanted to examine the effect of gender, we would only  

 

Figure 9.1 An example of an interaction between two variables  
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Figure 9.2 Examples of other interactions  

look at improvement for men and women, ignoring that of treatment. If we were 
interested in the effect of the kind of treatment, we would simply compare the 
outcome of patients receiving psychotherapy with those being given drugs, 
paying no heed to gender.  

The variables which are used to form the comparison groups are termed 
factors. The number of groups which constitute a factor are referred to as the 
levels of that factor. Since gender consists of two groups, it is called a two-level 
factor. The two kinds of treatment also create a two-level factor. If a third 
treatment had been included such as a control group of patients receiving neither 
drugs nor psychotherapy, we would have a three-level factor. Studies which 
investigate the effects of two or more factors are known as factorial designs. A 
study comparing two levels of gender and two levels of treatment is described as 
a 2×2 factorial design. If three rather than two levels of treatment had been 
compared, it would be a 2×3 factorial design. Incidentally, a study which only 
looks at one factor is called a one-way or single factor design.  
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Figure 9.3 Examples of no interactions  

The factors in these designs may be ones that are manipulated such as differing 
dosages of drugs, different teaching methods, or varying levels of induced 
anxiety. Where they have been manipulated and where subjects have been 
randomly assigned to different levels, the factors may also be referred to as 
independent variables since they are more likely to be unrelated to, or 
independent of, other features of the experimental situation such as the 
personality of the subjects. Variables which are used to assess the effect of these 
independent variables are known as dependent variables since the effect on them 
is thought to depend on the level of the variable which has been manipulated. 
Thus, for example, the improvement in the depression experienced by patients 
(i.e. the dependent variable) is believed to be partly the result of the treatment 
they have received (i.e. the independent variable). Factors can also be variables 
which have not been manipulated such as gender, age, ethnic origin, and social 
class. Because they cannot be separated from the individual who has them, they 
are sometimes referred to as subject variables. A study which investigated the 
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effect of such subject variables would also be called a factorial design.  
One of the main advantages of factorial designs, other than the study of 

interaction effects, is that they provide a more sensitive or powerful statistical 
test of the effect of the factors than designs which investigate just one factor at a 
time. To understand why this is the case, it is necessary to describe how a one-
way and a two-way (i.e. a factorial) analysis of variance differ. In oneway 
analysis of variance, the variance in the means of the groups (or levels) is 
compared with the variance within them averaged across all the groups:  

The between-groups variance is calculated by comparing the group mean with 
the overall or grand mean, while the within-groups variance is worked out by 
comparing the individual scores in the group with its mean. If the group means 
differ, then their variance should be greater than the average of those within 
them. This situation is illustrated in Figure 9.4 where the means of the three 
groups (M1, M2, and M3) are quite widely separated causing a greater spread of 
between-groups variance (VB) while the variance within the groups (V1, V2, and 
V3) is considerably less when averaged (Vw).  

Now the variance within the groups is normally thought of as error since this 
is the only way in which we can estimate it, while the between-groups variance 
is considered to consist of this error plus the effect of the factor which is being 
investigated. While some of the within-groups variance may be due to error such 
as that of measurement and of procedure, the rest of it  

 

Figure 9.4 Schematic representation of a significant one-way effect  

  

Multivariate analysis: exploring differences      199     



will be due to factors which we have not controlled such as gender, age, and 
motivation. In other words, the within-groups variance will contain error as well 
as variance due to other factors, and so will be larger than if it contained just 
error variance. Consequently, it will provide an overestimate of error. In a two-
factor design, on the other hand, the variance due to the other factor can be 
removed from this overestimate of the error variance, thereby giving a more 
accurate calculation of it. If, for example, we had just compared the 
effectiveness of the drug treatment with psychotherapy in reducing depression, 
then some of the within-groups variance would have been due to gender but 
treated as error, and may have obscured any differential effect due to treatment.  

Covariate design 

Another way of reducing error variance is by removing the influence of a non-
categorical variable (i.e., one which is not nominal) which we believe to be 
biasing the results. This is particularly useful in designs where subjects are not 
randomly assigned to factors, such as in the Job Survey study, or where random 
assignment did not result in the groups being equivalent in terms of some other 
important variable, such as how depressed patients were before being treated. A 
covariate is a variable which is linearly related to the one we are most directly 
interested in, usually called the dependent or criterion variable.  

We will give two examples of the way in which the effect of covariates may 
be controlled. Suppose, for instance, we wanted to find out the relationship 
between job satisfaction and the two factors of gender and ethnic group in the 
Job Survey data and we knew that job satisfaction was positively correlated with 
income, so that people who were earning more were also more satisfied with 
their jobs. It is possible that both gender and ethnic group will also be related to 
income. Women may earn less than men and non-white workers may earn less 
than their white counterparts. If so, then the relationship of these two factors to 
job satisfaction is likely to be biased by their association with income. To 
control for this, we will remove the influence of income by covarying it out. In 
this case, income is the covariate. If income was not correlated with job 
satisfaction, then there would be no need to do this. Consequently, it is only 
advisable to control a covariate when it has been found to be related to the 
dependent variable.  

In true experimental designs, we try to control the effect of variables other 
than the independent ones by randomly assigning subjects to different treatments 
or conditions. However, when the number of subjects allocated to treatments is 
small (say, about ten or less), there is a stronger possibility that there will be 
chance differences between them. If, for example, we are interested in 
comparing the effects of drugs with psychotherapy in treating depression, it is 
important that the patients in the two conditions should be similar in terms of 
how depressed they are before treatment begins (i.e. at pre-test). If the patients 
receiving the drug treatment were found at pre-test to be more depressed than 
those having psychotherapy despite random assignment, then it is possible that 
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because they are more depressed to begin with, they will show less improvement 
than the psychotherapy patients. If pre-test depression is positively correlated 
with depression at the end of treatment (i.e. at post-test), then the effect of these 
initial differences can be removed statistically by covarying them out. The 
covariate in this example would be the pre-test depression scores.  

Three points need to be made about the selection of covariates. First, as 
mentioned before, they should only be variables which are related to the 
dependent variable. Variables which are unrelated to it do not require to be 
covaried out. Second, if two covariates are strongly correlated with one another 
(say 0.8 or above), it is only necessary to remove one of them since the other 
one seems to be measuring the same variable(s). And third, with small numbers 
of subjects only a few covariates at most should be used, since the more 
covariates there are in such situations, the less powerful the statistical test 
becomes.  

Multiple measures design 

In many designs we may be interested in examining differences in more than 
one dependent or criterion measure. For example, in the Job Survey study, we 
may want to know how differences in gender and ethnic group are related to job 
autonomy and routine as well as job satisfaction. In the depression study, we 
may wish to assess the effect of treatment in more than one way. How depressed 
the patients themselves feel may be one measure. Another may be how 
depressed they appear to be to someone who knows them well, such as a close 
friend or informant. One of the advantages of using multiple measures is to find 
out how restricted or widespread a particular effect may be. In studying the 
effectiveness of treatments for depression, for instance, we would have more 
confidence in the results if the effects were picked up by a number of similar 
measures rather than just one. Another advantage is that although groups may 
not differ on individual measures, they may do so when a number of related 
individual measures are examined jointly. Thus, for example, psychotherapy 
may not be significantly more effective than the drug treatment when outcome is 
assessed by either the patients themselves or by their close friends, but it may be 
significantly better when these two measures are analysed together.  

Mixed between-within design 

The multiple-measures design needs to be distinguished from the repeated-
measures design which we encountered at the end of Chapter 7. A multiple-
measures design has two or more dependent or criterion variables such as two 
separate measures of depression. A repeated-measures design, on the other hand, 
consists of one or more factors being investigated on the same group of subjects. 
Measuring job satisfaction or depression at two or more points in time would be 
an example of such a factor. Another would be evaluating the effectiveness of 
drugs and psychotherapy on the same patients by giving them both treatments. If 
we were to do this, we would have to make sure that half the patients were 
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randomly assigned to receiving psychotherapy first and the drug treatment 
second, while the other patients would be given the two treatments in the reverse 
order. It is necessary to counterbalance the sequence of the two conditions to 
control for ordereffects. It would also be advisable to check that the sequence in 
which the treatments were administered did not affect the results. The order 
effect would constitute a between-subjects factor since any one subject would 
only receive one of the two orders. In other words, this design would become a 
mixed one which included both a between-subjects factor (order) and a within-
subjects one (treatment). One of the advantages of this design is that it restricts 
the amount of variance due to individuals, since the same treatments are 
compared on the same subjects.  

Another example of a mixed between-within design is where we assess the 
dependent variable before as well as after the treatment, as in the study on 
depression comparing the effectiveness of psychotherapy with drugs. This 
design has two advantages. The first is that the pre-test enables us to determine 
whether the groups were similar in terms of the dependent variable before the 
treatment began. The second is that it allows us to determine if there has been 
any change in the dependent variable before and after the treatment has been 
given. In other words, this design enables us to discern whether any 
improvement has taken place as a result of the treatment and whether this 
improvement is greater for one group than the other.  

Combined design 

As was mentioned earlier, the four design features can be combined in various 
ways. Thus, for instance, we can have two independent factors (gender and 
treatment for depression), one covariate (age), two dependent measures 
(assessment of depression by patient and informant), and one repeated measure 
(pre- and post-test). These components will form the basis of the following 
illustration, which shall be referred to as the Depression Project. The data for it 
are shown in Table 9.1. There are three treatments: a no treatment control 
condition (coded 1 and with eight subjects); a psychotherapy treatment (coded 2 
and with ten subjects); and a drug treatment (coded 3 and with twelve subjects). 
Females are coded as 1 and males as 2. A high score on depression indicates a 
greater degree of it. The patient’s assessment of their depression before and after 
treatment is referred to as ‘patpre’ and ‘patpost’ respectively and the 
assessment  

Table 9.1 The Depression Project data  

‘id’ ‘treat’ ‘gender’ ‘age’ ‘patpre’ ‘infpre’ ‘patpost’ ‘infpost’ 

01 1 1 27 25 27 20 19 

02 1 2 30 29 26 25 27 
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provided by an informant before and after treatment as ‘infpre’ and ‘infpost’. 
We shall now turn to methods of analysing the results of this kind of study using 
ANOVA or ANCOVA.  

03 1 1 33 26 25 23 26 

04 1 2 36 31 33 24 26 

05 1 1 41 33 30 29 28 

06 1 2 44 28 30 23 26 

07 1 1 47 34 30 30 31 

08 1 2 51 35 37 29 28 

09 2 1 25 21 24 9 15 

10 2 2 27 20 21 9 12 

11 2 1 30 23 20 10 8 

12 2 2 31 22 28 14 18 

13 2 1 33 25 22 15 17 

14 2 2 34 26 23 17 16 

15 2 1 35 24 26 9 13 

16 2 2 37 27 25 18 20 

17 2 1 38 25 21 11 8 

18 2 2 42 29 30 19 21 

19 3 1 30 34 37 23 25 

20 3 2 33 31 27 15 13 

21 3 1 36 32 35 20 21 

22 3 2 37 33 35 20 18 

23 3 1 39 40 38 33 35 

24 3 2 41 34 31 18 19 

25 3 1 42 34 36 23 27 

26 3 2 44 37 31 14 11 

27 3 1 45 36 38 24 25 

28 3 2 47 38 35 25 27 

29 3 1 48 37 39 29 28 

30 3 2 50 39 37 23 24 
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MULTIVARIATE ANALYSIS 

Factorial design 

The example we have given is the more common one in which there are unequal 
numbers of subjects on one or more of the factors. Although it is possible to 
equalize them by randomly omitting two subjects from the psychotherapy 
treatment and four from the drug one, this would be a waste of valuable data and 
so is not recommended. There are three different ways of analysing the results of 
factorial designs (Overall and Spiegel, 1969). All three methods produce the 
same result when there are equal numbers of subjects in each cell. When they 
are unequal, as in this case, one of them has to be selected as the preferred 
method since the results they give differ. The first method, referred to as the 
regression or unweighted means approach, assigns equal weight to the means in 
all cells regardless of their size. In other words, interaction effects have the same 
importance as main ones. This is the approach to be recommended in a true 
experimental design such as this one where subjects have been randomly 
assigned to treatments. The second method, known as the classic experimental 
or least squares approach, places greater weight on cells with larger numbers of 
subjects and is recommended for non-experimental designs in which the number 
of subjects in each cell may reflect its importance. This approach gives greater 
weight to main effects than to interaction ones. This analysis will be described at 
the end of this chapter. The third method, called the hierarchical approach, 
allows the investigator to determine the order of the effects. If one factor is 
thought to precede another, then it can be placed first. This approach should be 
used in non-experimental designs where the factors can be ordered in some 
sequential manner. If, for example, we are interested in the effect of ethnic 
group and income on job satisfaction, then ethnic group would be entered first 
since income cannot determine to which ethnic group we belong.  

To determine the effect of treatment, gender and their interaction on post-test 
depression as seen by the patient for unequal numbers of cases in cells, we need 
to use the glm command which would take the following form:  

MTB> glm patpost=treat gender treat * gender; 
SUBC> means treat gender treat * gender; 
SUBC> brief 1. 

Glm is short for general linear model. Note that the quotation marks around the 
variable names can be omitted from the glm command. The means 
subcommand provides means and standard deviations for subjects grouped 
according to treatment, gender and their interaction. Specifying 1 on the brief 
subcommand restricts the output to the analysis of variance table.  

The menu procedure for doing this is  

→Stat→ANOVA→General Linear Model…→patpost→Select 
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[this puts patpost in the box beside Response:] →box 
under Model:→treat→Select [this puts treat in this 
box] →gender→Select→type  treat * gender→Options…
→box under Displaymeans for (list ofterms): 
→treat→Select [this puts treat in this box] 
→gender→Select→type treat * gender→OK 

The menu system does not have the brief 1 output option, so the default output 
option (brief 2) is produced which includes unusual observations (see Table 9.6 
for an example).  

The brief 1 output is presented in Table 9.2. The F ratios in the analysis of 
variance table reflect the regression approach and are the most appropriate for 
analysing the results of this design. They are produced by dividing the adjusted 
mean square of an effect by the adjusted mean square of the error. For example, 
the F ratio for the treatment effect is 23.76 which is derived by dividing the 
adjusted mean square (Adj MS) of treatment (383.97) by the adjusted mean 
square of Error (16.16). This effect is significant (p<0.0005) as is the interaction 
effect of treatment and gender (p=0.016).  

If we wanted F ratios for the classic experimental approach, we first need to 
obtain the sequential mean square for an effect by dividing its sequential sum of 
squares (Seq SS) by its degrees of freedom (DF). We would then divide this 
sequential mean square by the adjusted mean square of the error. For instance, 
the sequential mean square for treatment is 383.97 (767.94/2) giving an F ratio 
of 23.76 (383.97/16.16). To determine the probability of this value, we would 
need to use the appropriate invcdf command as shown in Chapter 7. F ratios for 
the classical experimental approach are provided if effects are ordered as 
follows: (1) covariates; (2) main effects; (3) two-way interactions; (4) three-way 
interactions and so on.  

Table 9.2Glm brief 1 output for the effect of treatment, gender and their 
interaction on patient-rated post-treatment depression  

Analysis of Variance for patpost 
Source DF Seq SS Adj SS Adj MS F P 

treat 2 767.94 767.94 383.97 23.76 0.000 

gender 1 7.50 2.68 2.68 0.17 0.688 

treat*gender 2 159.61 159.61 79.80 4.94 0.016 

Error 24 387.92 387.92 16.16   

Total 29 1322.97   

Means for patpost 

treat Mean Stdev   

1 25.38 1.421   
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If, for some reason, we wished to enter the interaction effect before the two 
main effects in the analysis of variance, we would place this term first after the 
equals sign on the glm command.  

MTB> glm patpost=treat * gender treat gender; 
SUBC> brief 1. 

The menu sequence for doing this is  

→Stat→ANOVA→General Linear Model…→patpost→Select 
[this puts patpost in the box beside Response:] →box 
under Model:→type treat * gender [this puts treat * 
gender in this box] 
→treat→Select→gender→Select→OK 

The brief 1 output for this procedure is presented in Table 9.3. Note that while 
the adjusted sums of squares are the same in both analyses, the sequential sum 
of squares differs slightly for the gender and the treat * gender effect.  

If we plot the means of this interaction, we can see that depression after the 
drug treatment is higher for women than for men, while after psychotherapy it is 
higher for men than for women.  

We can plot the interaction in Release 10 with the following prompt 
command  

MTB> %interact ‘treat’ ‘gender’; 
SUBC> responses ‘patpost’. 

The factors are listed on the % interact command and the dependent variable 
on the responses subcommand.  

2 13.10 1.271   

3 22.25 1.161   

gender 

1 20.54 1.052   

2 19.94 1.052   

treat*gender   

1 1 25.50 2.010   

1 2 25.25 2.010   

2 1 10.80 1.798   

2 2 15.40 1.798   

3 1 25.33 1.641   

3 2 19.17 1.641   
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The menu sequence for doing this is  

→Stat→ANOVA→Interactions Plot…→treat→Select [this 
puts  treat in the box under Factors :] 
→gender→Select→box beside  Raw response data in: 
→patpost→Select [this puts patpost in this  box] 
→box beside Display full interaction plot matrix→OK 

The output from this procedure is depicted in Figure 9.5.  

 

Figure 9.5% interact output showing the effect of treatment and 

Table 9.3Glm brief 1 output for the interaction effect of treatment and gender 
and the main effects of treatment and gender on patient-rated post-
treatment depression  

Analysis of Variance for patpost 

Source DF Seq SS Adj SS Adj MS F P 
treat*gender 2 164.43 159.61 79.80 4.94 0.016 

treat 2 767.94 767.94 383.97 23.76 0.000 

gender 1 2.68 2.68 2.68 0.17 0.688 

Error 24 387.92 387.92 16.16     

Total 29 1322.97         
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gender on patient-rated post-treatment depression  

Having found that there is an overall significant difference in depression for the 
three treatments, we need to determine where this difference lies. One way of 
doing this is to test for differences between two treatments at a time. If we had 
not anticipated certain differences between treatments, we would apply a priori 
tests such as Tukey’s to do this, whereas if we had predicted them we would use 
unrelated t tests (see Chapter 7).  

Covariate design 

If the patients’ pre-test depression scores differ for gender, treatment or their 
interaction and if the pre-test scores are related to the post-test ones, then the 
results of the previous test will be biased by this. To determine if there are such 
differences, we need to run a factorial analysis of variance on the patients’ pre-
test depression scores using the following Minitab prompt command  

MTB> glm patpre=treat gender treat * gender; 
SUBC> brief 1. 

The menu action for doing this is  

→Stat→ANOVA→General Linear Model…→patpre→Select 
[this puts patpre in the box beside Response:] →box 
under Model:→treat→Select [this puts treat in this 
box] →gender→Select→type  treat*gender→OK 

If we do this, we find that there is a significant effect for treatments (see the 
output in Table 9.4), which means that the pre-test depression scores differ 
between treatments.  

Covariate analysis is based on the same assumptions as the previous factorial 
analysis plus three additional ones. First, there must be a linear relationship 
between the dependent variable and the covariate. If there is no such 
relationship, then there is no need to conduct a covariate analysis. This 
assumption can be tested by plotting a scatter diagram (see Chapter 8) to see if 
the relationship appears non-linear. If the correlation is statistically significant, 
then it is appropriate to carry out a covariate analysis. The statistical procedure 
glm also provides information on this (see p. 204). If the relationship is non-
linear, it may be possible to transform it so that it becomes linear using a 
logarithmic transformation of one variable. The procedure for effecting such a 
transformation with Minitab involves using the appropriate let command.  

The second assumption is that the slope of the regression lines is the same in 
each group or cell. If they are the same, this implies that there is no interaction 
between the independent variable and the covariate and that the average within-
cell regression can be used to adjust the scores of the dependent variable. This 
information is also provided by glm. If this condition is not met, then the 
Johnson-Neyman technique should be considered. This method is not available 
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on Minitab but a description of it may be found elsewhere (Huitema, 1980).  
The third assumption is that the covariate should be measured without error. 

For some variables such as gender and age, this assumption can usually be 
justified. For others, however, such as measures of depression, this needs to be 
checked. This can be done by computing the alpha reliability coefficient for 
multi-item variables (such as job satisfaction) or test-retest correlations where 
this information is available. A coefficient of 0.8 or above is usually taken as 
indicating a reliable measure (see Cramer, 1996). This assumption is more 
important in non- than in true-experimental designs, where its violation may 
lead to either Type I or II errors. In true-experimental designs, the violation of 
this assumption only leads to loss of  

power. As there are no agreed or simple procedures for adjusting covariates for 
unreliability, these will not be discussed.  

To determine if the second assumption, that the slope of the regression lines is 
the same in each cell, is met we need to use the following commands  

MTB> glm patpost=treat patpre treat * patpre; 
SUBC> covariates patpre; 
SUBC> brief 1. 

The dependent variable patpost is listed first after the glm keyword, followed 
by an equals sign and the two variables and their interaction. It is the 
significance of this interaction that we are solely concerned with in this analysis. 
The covariance subcommand specifies that patpre is to be the covariate in this 
analysis while 1 on the brief subcommand restricts the output to the analysis of 
covariance table.  

The menu sequence for doing this is  

→Stat→ANOVA→General Linear Model…→patpost→Select 
[this puts patpost in the box beside Response:] →box 
under Model:→treat [this puts treat in this box] 

Table 9.4Glm brief 1 output for the effect of treatment, gender and their 
interaction on patient-rated pre-treatment depression  

Analysis of Variance for patpre 

Source DF Seq SS Adj SS Adj MS F P 
treat 2 686.47 686.47 343.24 33.14 0.000 

gender 1 3.33 4.23 4.23 0.41 0.529 

treat*gender 2 3.47 3.47 1.74 0.17 0.847 

Error 24 248.58 248.58 10.36     

Total 29 941.87         
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→patpre→Select→type  treat * patpre→box under 
Covariates [optional]: →patpre→Select→OK 

The brief 1 output from this procedure is presented in Table 9.5. The interaction 
between the independent variable of treatment and the covariate of patpre is not 
significant since p is 0.793. This means that the slope of the regression line in 
each of the cells is similar and the second assumption is met. Therefore, we can 
proceed with the main analysis.  

To find out the effect of treatment on patient-reported post-treatment 
depression covarying patient-reported pre-test depression, we use the following 
commands  

MTB>glm patpost=treat patpre; 
SUBC>covariates patpre; 
SUBC>means treat. 

We are not now interested in the effect of the interaction between treatment and 
the covariate, so we omit this interaction term from the glm command. We 
include the means subcommand because we want to know the means of the 
three treatments adjusted for the effect of the covariate. We leave out the brief 
subcommand since we wish to display the covariate coefficient.  

The menu procedure for doing this is  

→Stat→ANOVA→General Linear Model…→patpost→Select 
[this puts patpost in the box beside Response:] →box 
under Model:→treat [this puts treat in this box] 
→patpre→Select→box under  Covariates [optional]: 
→patpre→Select→Options…→box under  Displaymeans 
for (list of terms): →treat→Select [this puts treat 
in  this box] →OK 

The output from this procedure is shown in Table 9.6. The coefficient for the 
covariate patpre (1.0814) is statistically significant (p<0.0005). This means that 

Table 9.5Glm brief 1 output showing the test of homogeneity of slope of 
regression line within cells  

Analysis of Variance for patpost 

Source DF Seq SS Adj SS Adj MS F P 
treat 2 767.94 16.91 8.45 0.81 0.458 

patpre 1 298.65 299.44 299.44 28.58 0.000 

treat*patpre 2 4.91 4.91 2.45 0.23 0.793 

Error 24 251.47 251.47 10.48     

Total 29 1322.97         
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the first assumption is also satisfied which is that there is a significant linear 
relationship between the dependent variable and the covariate. The analysis of 
the covariance table shows there is a significant treatment effect when pre-
treatment depression is covaried out (p<0.0005). Comparing the unadjusted 
means in Table 9.2 with the adjusted ones in Table 9.6 indicates that controlling 
for pre-treatment depression has little effect on the mean for the control group, 
which remains at about 25. However, it makes a considerable difference to the 
means of the two treatment conditions, reversing their order so that patients who 
received psychotherapy report themselves as being more depressed than those 
given the drug treatment. The Bryant-Paulson post-hoc test for determining 
whether this difference is statistically significant is described in Stevens (1992).  

Multiple measures design 

So far, we have analysed only one of the two dependent measures, the patient’s 
self-report of depression. Analysing the two dependent measures together has 
certain advantages. First, it reduces the probability of making Type I errors 
(deciding there is a difference when there is none) when making a number of 
comparisons. The probability of making this error is usually set at 0.05 when 
comparing two groups on one dependent variable. If we made two such 
independent comparisons, then the p level would increase to about 0.10. Since 
the comparisons are not independent, this probability is higher. Second, 
analysing the two dependent measures together provides us with a more 
sensitive measure of the effects of the independent variables.  

This analysis is only available from Release 9 onwards. To determine the 
effect of treatment on patient-reported and informant-reported post- 

Table 9.6Glm output testing the effect of treatment on patient-reported post-
treatment depression covarying patient pre-treatment depression  

Factor Levels Values   

treat 3 1 2 3   

Analysis of Variance for patpost 

Source DF SeqSS AdjSS AdjMS F P 

treat 2 767.94 339.16 169.58 17.20 0.000 

patpre 1 298.65 298.65 298.65 30.29 0.000 

Error 26 256.38 256.38 9.86     

Total 29 1322.97         

Term Coeff Stdev t-value P 

Constant −12.107 5.907 −2.05 0.051 

patpre 1.0814 0.1965 5.50 0.000 
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treatment patient depression taken together and separately, we would use the 
following commands:  

MTB> glm patpost infpost=treat; 
SUBC> manova; 
SUBC> brief 1. 

The two dependent measures patpost and infpost are listed after the glm 
keyword, followed by the equals sign and the independent variable treat. The 
manova subcommand performs the four following multivariate tests: Wilk’s 
test, Lawley-Hotelling test, Pillai’s test and Roy’s largest root test.  

The menu action for doing this is  

→Stat→ANOVA→General Linear Model…→patpost→Select 
[this puts patpost in the box beside Response:] 
→infpost→Select →box under Model: →treat [this 
puts treat in this box] →box beside  Include 
multivariateANOVA→OK 

The brief 1 output from this procedure is shown in Table 9.7. The results of the 
two univariate tests are presented first and indicate a significant treatment effect 
(p<0.0005) for the two measures examined separately. The three multivariate 
tests which provide a probability value also demonstrate a significant treatment 
effect (p<0.0005) when the two measures are taken together. To determine 
which treatments differ significantly from one another, it would be necessary to 
carry out a series of unrelated t tests or post hoc tests as discussed previously.  

Unusual Observations for patpost 

Obs. patpost Fit Stdev.Fit Residual St.Resid 

23 33.0000 27.2063 1.2778 5.7937 2.02R 

26 14.0000 23.9622 0.9584 −9.9622 −3.33R 

R denotes an obs. with a large st. resid. 

Means for Covariates 

Covariate Mean Stdev   

patpre 30.27 5.699   

Adjusted Means for patpost 

treat Mean Stdev   

1 25.53 1.111   

2 19.66 1.551   

3 16.68 1.359   
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Mixed between-within design 

To be able to carry out with Minitab an analysis of variance on the data from a 
mixed between-within design, it is necessary to have a balanced design which 
contains an equal number of subjects in the different conditions. Consequently,  

if we wanted to carry out this kind of analysis on the Depression Project data, 
we need to have eight subjects in each of the three treatments by randomly 
dropping the data of two subjects in the second condition (say, 13 and 15) and 
four in the third condition (say, 19, 20, 21 and 23). To determine, for example, 
whether there is a significant difference between the three conditions in 
improvement in depression as assessed by the patient before (patpre) and after 
(patpost) treatment, we have to create four new columns. Note that since the 
data of the subjects are grouped together according to our independent variable 
treat, it is not necessary to re-order the data as we need to do for the analysis of 
the data in the combined design below.  

The first column contains the pre-test depression scores stacked on top of the 

Table 9.7Glm brief 1 output testing the effect of treatment on patient- and 
informant-reported post-treatment depression taken separately and 
together  

General Linear Model 

Analysis of Variance for patpost 

Source DF Seq SS Adj SS Adj MS F P 

treat 2 767.94 767.94 383.97 18.68 0.000 

Error 27 555.03 555.03 20.56     

Total 29 1322.97         

Analysis of Variance for infpost 

Source DF Seq SS Adj SS Adj MS F P 

treat 2 652.14 652.14 326.07 11.50 0.000 

Error 27 765.72 765.72 28.36     

Total 29 1417.87         

MANOVA for treat S=2 m=−0.5 n=12.0     

CRITERION TEST STATISTIC F DF P 

Wilk’s 0.39350 7.724 (4, 52) 0.000 

Lawley-Hotelling 1.51298 9.456 (4, 50) 0.000 

Pillai’s 0.61765 6.032 (4, 54) 0.000 

Roy’s 1.49402       
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post-test depression scores which we do with the following command:  

MTB> stack ‘patpre’ ‘patpost’ c9 

We shall call this first new column ‘pat’ which is short for patient  

MTB> name c9 ‘pat’ 

The menu sequence for doing this is  

→Manip→Stack…→patpre→Select [this puts patpre in 
the first  box below Stack the followingblocks:] 
→second box under Stack thefollowingblocks: 
→patpost→Select [this puts patpost in this 
box]  →box under Store results inblocks: and in it 
type pat→OK 

The second new column comprises the code which distinguishes the pre-test 
scores (coded as 1) from the post-test scores (coded 2). It consists of 24 1’s and 
24 2’s and can be formed with the following set command  

MTB> set c10 
DATA> (1:2) 24 
DATA> end 

The numbers to be repeated are placed within parentheses. The colon represents 
consecutive numbers between 1 and 2 (i.e. only 1 and 2 in this case). The 
number 24 after the closing parenthesis means the first number 1 is repeated 24 
times after which the second number 2 is repeated 24 times. There must be no 
space between this number and the closing bracket.  

We shall call this new column ‘test’ for time of testing  

MTB> name c10 ‘test’ 

The third new column indicates which of these pre- and post-test scores comes 
from which of the three conditions and can be produced by stacking ‘treat’ 
twice  

MTB> stack ‘treat’ ‘treat’ c11 

We can call this new column ‘treat2’ to distinguish it from ‘treat’.  
The menu sequence for doing this is  

→Manip→Stack…→treat→Select→second box under Stack 
thefollowingblocks: →treat→Select→box under Store 
results inblocks: and in it type treat2→OK 

The fourth new column indicates that there are eight subjects in each condition. 
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It consists of six sets of eight subjects and is produced with the following set 
command  

MTB> set c12 
DATA>6(1:8) 
DATA> end 

The numbers to be repeated are placed within parentheses. The colon represents 
consecutive numbers between 1 and 8. The number 6 before the opening 
parenthesis means the sequence 1 to 8 is repeated 6 times. There must be no 
space between this number and the opening bracket.  

We shall call this fourth new column ‘subjects’.  
To carry out an analysis of variance on this balanced mixed design we use the 

following anova command  

MTB> anova pat=treat2 test subjects treat2 * test 
treat2 * subjects 

The dependent variable pat is listed after the anova keyword followed by an 
equals sign and the effects we want to test which include three main effects 
(treat2, test and subjects) and two interactions (treat2*test and treat2 * 
subjects). The quotes around the variable names can be omitted from the anova 
command.  

The menu action for doing this is  

→Stat→ANOVA→Balanced ANOVA…→pat→Select [this 
puts  pat in the box beside Response:] →box under 
Model: →treat2→Select [this puts treat2 in this 
box] →test→Select→subjects→Select→type treat2 * 
test→type treat2 * subjects→OK 

The output from this procedure is shown in Table 9.8. The effect that we are 
interested in is the interaction between treat2 (i.e. the three treatments) and test 
(i.e. the two times of testing) which with an F ratio of 20.22 is statistically 
significant with a p of 0.0005 or less. This F ratio is formed by dividing the 
mean square of this interaction term (88.08) by the mean square of the error 
term (4.36). The result of 20.20 differs slightly from the figure of 20.22 shown 
in Table 9.8 due to the fact that Minitab calculates these statistics using values 
with more decimal places than those shown in the output.  

Table 9.8Anova output for a balanced mixed between- and within-subjects 
design  

Factor Type Levels Values   

treat2 fixed 3 1 2 3           
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To display the means of the patients’ pre-test and post-test depression scores we 
use the following table command  

MTB> table ‘treat2’ ‘test’; 
SUBC> count; 
SUBC> means ‘pat’. 

The menu sequence for doing this is  

→Stat→Tables→Cross Tabulation…→treat2→Select 
[this puts  treat2 in the box under 
ClassificationVariables] →test→Select→box beside 
Counts [this puts a cross in this box] →Summaries…
→pat→Select [this puts pat in the box under 
Associatedvariables:]  →box beside Means [this puts 
a cross in this box] →OK 

The first variable ‘treat2’ forms the rows of the table while the second variable 
‘test’ makes up its columns. The count subcommand counts the number of 
observations in each cell while the means subcommand gives the mean for the 
variable ‘pat’ for each cell, each row and each column.  

The output from this procedure is presented in Table 9.9. We can see that the 
amount of improvement shown by the three groups of patients is not the same. 
Least improvement has occurred in the group receiving no treatment 
(30.125−25.375=4.75), while patients being administered the drug treatment 
exhibit the most improvement (36.000−22.000=14.000).  

Statistical differences in the amount of improvement shown in the three 
treatments could be further examined using oneway analysis of variance where 
the dependent variable is the computed difference between pre- and post-test 
patient depression.  

test fixed 2 1 2             

subjects fixed 8 1 2 3  4 5 6 7 8 

Analysis of Variance for pat 

Source DF SS MS F P 

treat2 2 1000.67 500.33 114.83 0.000 

test 1 1160.33 1160.33 266.31 0.000 

subjects 7 337.33 48.19 11.06 0.000 

treat2*test 2 176.17 88.08 20.22 0.000 

treat2*subjects 14 128.67 9.19 2.11 0.059 

Error 21 91.50 4.36     

Total 47 2894.67       
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Combined design 

As pointed out earlier on, it is possible to combine some of the above analyses. 
To show how this can be done, we shall look at the effect of two between-
subject factors (treatment and gender) and one within-subject one (pre- to post-
test or time) on two dependent variables (depression as assessed by the patient 
and an informant), covarying out the effects of age which we think might be 
related to the pre- and post-test measures.  

To do this we first need to ensure that each cell has the same number of cases 
as every other cell. In other words, one of the cases dropped at random from the 
second condition of psychotherapy must be male (say, 13) and one female (say, 
18) while two of the cases in the third treatment of drugs must be male (say, 19 
and 21) and two female (say, 20 and 23). We can check that this has been done 
using the appropriate table and count command.  

Next we have to re-arrange the data so that the data for, say, males is grouped 
together within each of the three treatments. We do this with the following sort 
command  

MTB> sort c1-c8 c9-c16; 
SUBC> by ‘treat’ ‘gender’. 

The data in columns 1 to 8 are to be arranged in ascending order according to 
the two variables ‘treat’ and ‘gender’ and these re-arranged data are to be put 
into columns 9 to 16. Rows are sorted initially by the first variable (‘treat’) on 

Table 9.9 Means of patients’ pre-test and post-test depression for the three 
treatments in the Depression Project  

ROWS: treat2 COLUMNS: test 
  1 2 ALL 

1 8 8 16 

  30.125 25.375 27.750 

2 8 8 16 

  24.125 13.375 18.750 

3 8 8 16 

  36.000 22.000 29.000 

ALL 24 24 48 

  30.083 20.250 25.167 

CELL CONTENTS— 

    COUNT 
pat: MEAN 
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the by subcommand, and then, within that, by the second variable (‘gender’).  
The menu action for doing this is  

→Manip→Sort…→c1-c8→Select [this puts c1-c8 in the 
box under  Sortcolumn(s): →box under Store sorted 
column(s)in: and in it  type c9-c16→box beside first 
Sort by column: →treat→Select→box  beside second 
Sort by column: →gender→Select→OK 

We shall name columns 9 to 16 by adding s (for sorted) to the beginning of each 
of their original names as follows  

MTB>name c9 ‘sid’ c10 ‘streat’ c11 ‘sgender’ c12 
‘sage’ &CONT>c13 ‘spatpre’ c14 ‘sinfpre’ c15 
‘spatpost’ c16 &CONT>‘sinfpost’ 

Note that a line within a Minitab session can contain up to 160 characters. If the 
information we wish to put on a command exceeds this number, then we can 
continue on to subsequent lines by adding an ampersand (&) at or before the end 
of the line and press return. The CONT> prompt will appear as shown above.  

Output of the data in columns 9 to 16 is presented in Table 9.10.  

Table 9.10 Subsample of the Depression Project data containing four men and 
four women in each of three treatments sorted according to treatment 
and then gender  

ROW sid streat sgender sage spatpre sinfpre spatpost sinfpost 
1 1 1 1 27 25 27 20 19 

2 3 1 1 33 26 25 23 26 

3 5 1 1 41 33 30 29 28 

4 7 1 1 47 34 30 30 31 

5 2 1 2 30 29 26 25 27 

6 4 1 2 36 31 33 24 26 

7 6 1 2 44 28 30 23 26 

8 8 1 2 51 35 37 29 28 

9 9 2 1 25 21 24 9 15 

10 11 2 1 30 23 20 10 8 

11 15 2 1 35 24 26 9 13 

12 17 2 1 38 25 21 11 8 

13 10 2 2 27 20 21 9 12 

14 12 2 2 31 22 28 14 18 

Quantitative data analysis with Minitab     218



Next we need to create seven new columns in order to perform the within-
subjects analysis on the pretest-posttest difference.  

The variable c17, called ‘pat’, consists of patient-assessed pre-test and post-
test depression scores and is formed by stacking ‘patpre’ on ‘patpost’ 

MTB> stack ‘patpre’ ‘patpost’ ‘pat’ 

The menu procedure for doing this is  

→Manip→Stack…→patpre→Select→second box under 
Stack thefollowingblocks: →patpost→Select→box under 
Store results inblocks: and in it type pat→OK 

The variable c18, named ‘inf’, comprises informant-assessed pre-test and post-
test depression scores and is produced by stacking ‘infpre’ on ‘infpost’ 

MTB> stack ‘infpre’ ‘infpost’ ‘inf’ 

The menu procedure for doing this is  

→Manip→Stack…→infpre→Select→second box under 
Stack thefollowingblocks: →infpost→Select [this 
puts infpost in this box]  →box under Store results 
inblocks: and in it type inf→OK 

The variable c19, named ‘test’, provides the code for identifying pre-test (coded 
1) and post-test (coded 2) scores and consists of 24 1’s and 24 2’s. As explained 
previously, it can be created using the following set command  

MTB> set c19 
DATA> (1:2) 24 
DATA> end 

15 14 2 2 34 26 23 17 16 

16 16 2 2 37 27 25 18 20 

17 23 3 1 39 40 38 33 35 

18 25 3 1 42 34 36 23 27 

19 27 3 1 45 36 38 24 25 

20 29 3 1 48 37 39 29 28 

21 24 3 2 41 34 31 18 19 

22 26 3 2 44 37 31 14 11 

23 28 3 2 47 38 35 25 27 

24 30               
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The variable c20, called ‘subjects’, specifies the number of cases in each cell 
and identifies the data coming from the same cases. It consists of 12 sets of the 
four consecutive numbers 1 2 3 4 which can be produced using the previously 
described set command as follows  

MTB> set c20 
DATA> 12 (1:4) 
DATA> end 

The variable c21, called ‘streat2’, provides the code for denoting the three 
treatments of the stacked pre- and post-test scores and is produced using the 
stack command.  

The variable c22, named ‘sgender2’, gives the code for signifying the gender 
of the stacked pre- and post-test scores and is formed with the stack command.  

The variable c23, named ‘sage2’, provides the age of the stacked pre-and 
post-test scores and is created with the stack command.  

The output shown in Table 9.11 lists the values of the variables stored in 
columns 17 to 23.  

Table 9.11 Variables and their values for the combined design ancova analysis  

ROW pat inf test subjects streat2 sgender2 sage2 
1 25 27 1 1 1 1 27 

2 26 25 1 2 1 1 33 

3 33 30 1 3 1 1 41 

4 34 30 1 4 1 1 47 

5 29 26 1 1 1 2 30 

6 31 33 1 1 2 2 36 

7 28 30 1 3 1 2 44 

8 35 37 1 4 1 2 51 

9 21 24 1 1 2 1 25 

10 23 20 1 2 2 1 30 

11 24 26 1 3 2 1 35 

12 25 21 1 4 2 1 38 

13 20 21 1 1 2 2 27 

14 22 28 1 2 2 2 31 

15 26 23 1 3 2 2 34 

16 27 25 1 4 2 2 37 

17 40 38 1 1 3 1 39 
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18 34 36 1 2 3 1 42 

19 36 38 1 3 3 1 45 

20 37 39 1 4 3 1 48 

21 34 31 1 1 3 2 41 

22 37 31 1 2 3 2 44 

23 38 35 1 3 3 2 47 

24 39 37 1 4 3 2 50 

25 20 19 2 1 1 1 27 

26 23 26 2 2 1 1 33 

27 29 28 2 3 1 1 41 

28 30 31 2 4 1 1 47 

29 25 27 2 1 1 2 30 

30 24 26 2 2 1 2 36 

31 23 26 2 3 1 2 44 

32 29 28 2 4 1 2 51 

33 9 15 2 1 2 1 25 

34 10 8 2 2 2 1 30 

35 9 13 2 3 2 1 35 

36 11 8 2 4 2 1 38 

37 9 12 2 1 2 2 27 

38 14 18 2 2 2 2 31 

39 17 16 2 3 2 2 34 

40 18 20 2 4 2 2 37 

41 33 35 2 1 3 1 39 

42 23 27 2 2 3 1 42 

43 24 25 2 3 3 1 45 

44 29 28 2 4 3 1 48 

45 18 19 2 1 3 2 41 

46 14 11 2 2 3 2 44 

47 25 27 2 3 3 2 47 

48 23 24 2 4 3 2 50 
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The following ancova command is used for carrying out the analysis for this 
combined design  

MTB> ancova pat inf=streat2 sgender2 test subjects & 
CONT> streat2*sgender2 streat2*test streat2*subjects 
& 
CONT> sgender2 * test sgender2 * subjects streat2 * 
sgender2 * test & 
CONT> streat2 * sgender2 * subjects; 
SUBC> covariates sage2. 

Table 9.12Ancova output for patient-assessed depression in the combined 
design  

Factor Levels   Values       

streat2 3   1 2 3   

sgender2 2   1 2     

test 2   1 2     

subjects 4   1 2 3 4 

Analysis of Covariance for pat 

Source   DF ADJ SS MS F P 

Covariates   1 0.00 0.00 0.00 1.000 

streat2   2 123.54 61.77 23.93 0.000 

sgender2   1 0.00 0.00 0.00 1.000 

test   1 1150.52 1150.52 445.79 0.000 

subjects   3 21.45 7.15 2.77 0.073 

streat2*sgender2   2 63.06 31.53 12.22 0.001 

streat2*test   2 159.54 79.77 30.91 0.000 

streat2*subjects   6 45.78 7.63 2.96 0.037 

sgender2*test   1 7.52 7.52 2.91 0.106 

sgender2*subjects   3 7.86 2.62 1.01 0.410 

streat2*sgender2*test   2 69.04 34.52 13.38 0.000 

streat2*sgender2*subjects   6 126.57 21.10 8.17 0.000 

Error   17 43.87 2.58     

Total   47 3297.48       

Covariate Coeff Stdev t-value P 

sage2 0.1250 1191157 0.000000 1.000 
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Note that the covariate sage2 is only listed on the covariates subcommand. It is 
not possible to perform a multivariate test on pat and inf together with the 
ancova command.  

The menu sequence for doing this is  

→Stat→ANOVA→Balanced ANOVA…→pat→Select [this 
puts  pat in the box beside Response:] 
→inf→Select→box under Model:→streat2→Select [this 
puts streat2 in this box] 
→sgender2→Select→test→Select→subjects→Select→type 
streat2 * gender→type  streat2 * test→type streat2 
* subjects→type sgender2 * test→type  sgender2 * 
subjects→type streat2 * sgender2 * test→type 
streat2* sgender2 * subjects→box under Covariates 
[optional]: →sage2→Select→OK 

The output from this procedure is shown separately for patient-assessed 
depression in Table 9.12 and informant-assessed depression in Table 9.13. The 
effect we are interested in is the interaction between treatment, gender and time 
of testing (streat2 * sgender2 * test). This effect is statistically significant for 
patient-assessed depression (p<0.0005) but not for informant-assessed 
depression (p=0.115). To interpret these results, it would be necessary to 
compute the mean pre- and post-treatment patient depression scores, adjusted 
for age, for men and women in the three treatments which we could do by 
adding the following means subcommand  

MTB>means streat2 * sgender2 * test 

The menu sequence for doing this is  

→Options…→box under Displaymeans for (list of 
terms):→streat2 * sgender2 * test→Select [this puts 
streat2 * sgender2 *test in this box] →OK 

Additional analyses would have to be conducted to test these interpretations, as 
described previously.  

Table 9.13Ancova output for informant-assessed depression in the combined 
design  

Analysis of Covariance for inf 

Source   DF ADJ SS MS F P 

Covariates   1 0.000 0.000 0.00 1.000 

streat2   2 125.380 62.690 7.98 0.004 

sgender2   1 0.000 0.000 0.00 1.000 
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EXERCISES 

1. What are the two main advantages in studying the effects of two rather than 
one independent variable?  

2. What is meant when two variables are said to interact?  

3. How would you determine whether there was a significant interaction 
between two independent variables?  

4. A colleague is interested in the relationship between alcohol, anxiety and 
gender on performance. Participants are randomly assigned to receiving one of 
four increasing dosages of alcohol. In addition, they are divided into three 
groups of low, moderate, and high anxiety. Which is the dependent variable?  

5. How many factors are there in this design?  

6. How many levels of anxiety are there?  

7. How would you describe this design?  

8. If there are unequal numbers of subjects in each group and if the variable 
names for alcohol, anxiety, gender, and performance are alcohol, 
anxiety,gender, and perform respectively, what is the Minitab procedure for 
examining the effect of the first three variables on performance?  

9. You are interested in examining the effect of three different methods of 

test   1 784.083 784.083 99.85 0.000 

subjects   3 14.883 4.961 0.63 0.605 

streat2*sgender2   2 217.500 108.750 13.85 0.000 

streat2*test   2 136.792 68.396 8.71 0.002 

streat2*subjects   6 67.685 11.281 1.44 0.258 

sgender2*test   1 3.000 3.000 0.38 0.545 

sgender2*subjects   3 40.600 13.533 1.72 0.200 

streat2*sgender2*test   2 38.625 19.313 2.46 0.115 

streat2*sgender2*subjects   6 148.951 24.825 3.16 0.029 

Error   17 133.500 7.853     

Total   47 2907.667       

Covariate Coeff Stdev t-value P     

sage2 0.1245 2077787 0.000000 1.000     
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teaching on learning to read. Although subjects have been randomly assigned to 
the three methods, you think that differences in intelligence may obscure any 
effects. How would you try to control statistically for the effects of intelligence?  

10. What is the Minitab procedure for examining the effect of three teaching 
methods on learning to read, covarying out the effect of intelligence when the 
names for these three variables are methods, read, and intell respectively?  

11. You are studying what effect physical attractiveness has on judgments of 
intelligence, likeability, honesty, and self-confidence. Participants are shown a 
photograph of either an attractive or unattractive person and are asked to judge 
the extent to which this person has these four characterstics. How would you 
describe the design of this study?  

12. If the names of the five variables in this study are attract, intell, 
likeable,honesty, and confid respectively, what Minitab procedure would you 
use for analysing the results of this study?  

13. What kind of design would this be called if participants had been 
presented with photographs of both the attractive and the unattractive person?  

14. What would the appropriate Minitab procedure be for analysing the results 
of this study?  

15. Suppose that in the Depression Study described in this chapter, patients 
had been followed up three months after the experiment had ended to find out 
how depressed they were. What would the appropriate Minitab commands be for 
comparing pre- with post-treatment depression and post-treatment with follow-
up depression? These three variables are respectively called ‘pre’, ‘post’ and 
‘fol’.  
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Chapter 10  
Multivariate analysis  

Exploring relationships among three or more 
variables  

In this chapter we will be concerned with a variety of approaches to the 
examination of relationships when more than two variables are involved. 
Clearly, these concerns follow on directly from those of Chapter 8, in which we 
focused upon bivariate analysis of relationships. In the present chapter, we will 
be concerned to explore the reasons for wanting to analyse three or more 
variables in conjunction, that is, why multivariate analysis is an important aspect 
of the examination of relationships among variables.  

The basic rationale for multivariate analysis is to allow the researcher to 
discount the alternative explanations of a relationship that can arise when a 
survey/correlational design has been employed. The experimental researcher can 
discount alternative explanations of a relationship through the combination of 
having a control group as well as an experimental group (or through a number of 
experimental groups) and random assignment (see Chapter 1). The absence of 
these characteristics, which in large part derives from the failure or inability to 
manipulate the independent variable in a survey/ correlational study, means that 
a number of potentially confounding factors may exist. For example, we may 
find a relationship between people’s self-assigned social class (whether they 
describe themselves as middle or working class) and their voting preference 
(Conservative or Labour). But there are a number of problems that can be 
identified with interpreting such a relationship as causal. Could the relationship 
be spurious? This possibility could arise because people of higher incomes are 
both more likely to consider themselves middle class and to vote Conservative. 
Also, even if the relationship is not spurious, does the relationship apply equally 
to young and old? We know that age affects voting preferences, so how does 
this variable interact with self-assigned social class in regard to voting 
behaviour? Such a finding would imply that the class-voting relationship is 
moderated by age. The problem of spuriousness arises because we cannot make 
some people think they are middle class and others working class and then 
randomly assign subjects to the two categories. If we wanted to establish 
whether a moderated relationship exists whereby age moderated the class-voting 
relationship with an experimental study, we would use a factorial design (see 
Chapter 9). Obviously, we are not able to create such experimental conditions, 
so when we investigate this kind of issue through surveys, we have to recognize 
the limitations of inferring causal relationships from our data. In each of the two 
questions about the class-voting relationship, a third variable—income and age 



respectively—potentially contaminates the relationship and forces us to be 
sceptical about it.  

The procedures to be explained in this chapter are designed to allow such 
contaminating variables to be discounted. This is done by imposing ‘statistical 
controls’ which allow the third variable to be ‘held constant’. In this way we can 
examine the relationship between two variables by partialling out and thereby 
controlling the effect of a third variable. For example, if we believe that income 
confounds the relationship between self-assigned social class and voting, we 
examine the relationship between social class and voting for each income level 
in our sample. The sample might reveal four income levels, so we examine the 
class-voting relationship for each of these four income levels. We can then ask 
whether the relationship between class and voting persists for each income level 
or whether it has been eliminated for all or some of these levels. The third 
variable (i.e. the one that is controlled) is often referred to as the test factor (e.g. 
Rosenberg, 1968), but the term test variable is preferred in the following 
discussion.  

The imposition of statistical controls suffers from a number of disadvantages. 
In particular, it is only possible to control for those variables which occur to you 
as potentially important and which are relatively easy to measure. Other 
variables will constitute further contaminating factors, but whose effects are 
unknown. Further, the time order of variables collected by means of a 
survey/correlational study cannot be established through multivariate analysis, 
but has to be inferred. In order to make inferences about the likely direction of 
cause and effect, the researcher must look to probable directions of causation 
(e.g. education precedes current occupation) or to theories which suggest that 
certain variables are more likely to precede others. As suggested in Chapter 1, 
the generation of causal inferences from survey/correlational research can be 
hazardous, but in the present chapter we will largely side-step these problems 
which are not capable of easy resolution in the absence of a panel study.  

The initial exposition of multivariate analysis will solely emphasize the 
examination of three variables. It should be recognised that many examples of 
mutivariate analysis, particularly those involving correlation and regression 
techniques, go much further than this. Many researchers refer to the relationship 
between two variables as the zero order relationship; when a third variable is 
introduced, they refer to the first order relationship, that is the relationship 
between two variables when one variable is held constant; and when two extra 
variables are introduced, they refer to the second orderrelationship when two 
variables are held constant.  

MULTIVARIATE ANALYSIS THROUGHCONTINGENCY 
TABLES 

In this section, we will examine the potential of contingency tables as a means 
of exploring relationships among three variables. Four contexts in which such 
analysis can be useful are provided: testing for spuriousness, testing for 
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intervening variables, testing for moderated relationships, and examining 
multiple causation. Although these four notions are treated in connection with 
contingency table analysis, they are also relevant to the correlation and 
regression techniques which are examined later.  

Testing for spuriousness 

The idea of spuriousness was introduced in Chapter 1 in the context of a 
discussion about the nature of causality. In order to establish that there exists a 
relationship between two variables it is necessary to show that the relationship is 
non-spurious. A spurious relationship exists when the relationship between two 
variables is not a ‘true’ relationship, in that it only appears because a third 
variable causes each of the variables making up the pair. In Table 10.1 a 
bivariate contingency table is presented which derives from an imaginary study 
of 500 manual workers in twelve firms. The table seems to show a relationship 
between the presence of variety in work and job satisfaction. For example, 80 
per cent of those performing varied work are satisfied, as against only 24 per 
cent of those whose work is not varied. Thus there is a difference (d1) of 56 per 
cent (i.e. 80–24) between those performing varied work and those not 
performing varied work in terms of job satisfaction. Contingency tables are not 
normally presented with the  

differences between cells inserted, but since these form the crux of the 
multivariate contingency table analysis, this additional information is provided 
in this and subsequent tables in this section.  

Could the relationship between these two variables be spurious? Could it be 
that the size of the firm (the test variable) in which each respondent works has 
‘produced’ the relationship (see Figure 10.1)? It may be that size of firm affects 
both the amount of variety of work reported and levels of job satisfaction. In 

Table 10.1 Relationship between work variety and job satisfaction (imaginary 
data)  
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order to examine this possibility, we partition our sample into those who work in 
large firms and those who work in small firms. There are 250 respondents in 
each of these two categories. We then examine the relationship between amount 
of variety in work and job satisfaction for each category. If the relationship is 
spurious we would expect the relationship between amount of variety in work 
and job satisfaction largely to disappear. Table 10.2 presents such an analysis. In 
a sense, what one is doing here is to present two separate tables: one examining 
the relationship between amount of variety in work and job satisfaction for 
respondents from large firms and one examining the same relationship for small 
firms. This notion is symbolized by the double line separating the analysis for 
large firms from the analysis for small firms.  

What we find is that the relationship between amount of variety in work and 
job satisfaction has largely disappeared. Compare d1 in Table 10.1 with both d1 
and d2 in Table 10.2. Whereas d1 in Table 10.1 is 56 per cent, implying a large 
difference between those whose work is varied and those whose work is not 
varied in terms of job satisfaction, the corresponding percentage differences in 
Table 10.2 are 10 and 11 per cent for d1 and d2 respectively. This means that 
when size of firm is controlled, the difference in terms of job satisfaction 
between those whose work is varied and those whose work is not varied is 
considerably reduced. This analysis implies that there is not a true relationship 
between variety in work and job satisfaction, because when size of firm is 
controlled the relationship between work variety and job satisfaction is almost 
eliminated. We can suggest that size of firm seems to affect both variables. Most 
respondents reporting varied work come from large firms ([cell1+cell5]−
[cell3+cell7]) and most respondents who are satisfied come from large firms 
([cell1+cell2]−[cell3+cell4]).  

 

Figure 10.1 Is the relationship between work variety and job 
satisfaction spurious?  
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What would Table 10.2 look like if the relationship between variety in work 
and job satisfaction was not spurious when size of firm is controlled? Table 10.3 
presents the same analysis but this time the relationship is not spurious. Again, 
we can compare d1 in Table 10.1 with both d1 and d2 in Table 10.3. In Table 
10.1, the difference between those who report variety in their work and those 
who report no variety is 56 per cent (i.e. d1), whereas in Table 10.3 the 
corresponding differences are 55 per cent for large firms (d1) and 45 per cent for 
small firms (d2) respectively. Thus, d1 in Table 10.3 is almost exactly the same 
as d1 in Table 10.1, but d2 is 11 percentage points smaller (i.e. 56–45). However, 
this latter finding would not be sufficient to suggest that the relationship is 
spurious because the difference between those who report varied work and those 
whose work is not varied is still large for both respondents in large firms and 
those in small firms. We do not expect an exact replication of percentage 
differences when we carry out such controls. Similarly, as suggested in the 
context of the discussion of Table 10.2, we do not need percentage differences 
to disappear completely in order to infer that a relationship is spurious. When 
there is an in-between reduction in percentage differences (e.g. to around half of 
the original difference), the relationship is probably partially spurious, implying 
that part of it is caused by the third variable and the other part is indicative of a 
‘true’ relationship. This would have been the interpretation if the original d1 
difference of 56 per cent had fallen to around 28 per cent for respondents from 
both large firms and from small firms.  

Testing for intervening variables 

The quest for intervening variables is different from the search for potentially 
spurious relationships. An intervening variable is one that is both a product of 
the independent variable and a cause of the dependent variable. Taking the data 
examined in Table 10.1, the sequence depicted in Figure 10.2 might be 
imagined. The analysis presented in Table 10.4 strongly suggests that the level 
of people’s interest in their work is an intervening variable. As with Tables 10.2 
and 10.3, we partition the sample into two groups (this time those who report 

Table 10.2 A spurious relationship: the relationship between work variety and 
job satisfaction, controlling for size of firm (imaginary data)  
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that they are interested and those  

 

Figure 10.2 Is the relationship between work variety and job 
satisfaction affected by an intervening variable?  

reporting no interest in their work) and examine the relationship between work 
variety and job satisfaction for each group. Again, we can compare d1 in Table 
10.1 with d1 and d2 in Table 10.4. In Table 10.1d1 is 56 per cent, but in Table 
10.4d1 and d2 are 13 per cent and 20 per cent respectively. Clearly, d1 and d2 in 
Table 10.3 have not been reduced to zero (which would suggest that the whole 
of the relationship was through interest in work), but they are also much lower 
than the 56 per cent difference in Table 10.1. If d1 and d2 in Table 10.4 had 
remained at or around 56 per cent, we would conclude that interest in work is 
not an intervening variable.  

Table 10.3 A non-spurious relationship: the relationship between work variety 
and job satisfaction, controlling for size of firm (imaginary data)  

Table 10.4 A Intervening variable: the relationship between work variety and 
job satisfaction, controlling for interest in work (imaginary data)  
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The sequence in Figure 10.2 suggests that variety in work affects the degree 
of interest in work that people experience which in turn affects their level of job 
satisfaction. This pattern differs from that depicted in Figure 10.1 in that if the 
analysis supported the hypothesized sequence, it suggests that there is a 
relationship between amount of variety in work and job satisfaction, but the 
relationship is not direct. The search for intervening variables is often referred to 
as explanation and it is easy to see why. If we find that a test variable acts as an 
intervening variable, we are able to gain some explanatory leverage on the 
bivariate relationship. Thus, we find that there is a relationship between amount 
of variety in work and job satisfaction and then ask why that relationship might 
exist. We speculate that it may be because those who have varied work become 
more interested in their work which heightens their job satisfaction.  

It should be apparent that the computation of a test for an intervening variable 
is identical to a test for spuriousness. How, then, do we know which is which? If 
we carry out an analysis like those shown in Tables 10.2, 10.3 and 10.4, how can 
we be sure that what we are taking to be an intervening variable is not in fact an 
indication that the relationship is spurious? The answer is that there should be 
only one logical possibility, that is, only one that makes sense. If we take the trio 
of variables in Figure 10.1, to argue that the test variable—size of firm—could 
be an intervening variable would mean that we would have to suggest that a 
person’s level of work variety affects the size of the firm in which he or she 
works—an unlikely scenario. Similarly, to argue that the trio in Figure 10.2 
could point to a test for spuriousness, would mean that we would have to accept 
that the test variable—interest in work—can affect the amount of variety in a 
person’s work. This too makes much less sense than to perceive it as an 
intervening variable.  

One further point should be registered. It is clear that controlling for interest 
in work in Table 10.4 has not totally eliminated the difference between those 
reporting varied work and those whose work is not varied in terms of job 
satisfaction. It would seem, therefore, that there are aspects of the relationship 
between amount of variety in work and job satisfaction that are not totally 
explained by the test variable, interest in work.  

Testing for moderated relationships 

A moderated relationship occurs when a relationship is found to hold for some 
categories of a sample but not others. Diagrammatically this can be displayed as 
in Figure 10.3. We may even find the character of a relationship can differ for 
categories of the test variable. We might find that one category (those who 
report varied work) exhibit greater job satisfaction, but for another category of 
people the reverse may be true (i.e. varied work seems to engender lower levels 
of job satisfaction than work that is not varied).  

Table 10.5 looks at the relationship between variety in work and job 
satisfaction for men and women. Once again, we can compare d1 (56 per cent) in 
Table 10.1 with d1 and d2 in Table 10.5, which are 85 per cent and 12 per cent 
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respectively. The bulk of the 56 percentage points difference between those 
reporting varied work and those reporting that work is not varied in Table 10.1 
appears to derive from the relationship between variety in work and job 
satisfaction being far stronger for men than women and there being more men 
(300) than women (200) in the sample. Table 10.5 demonstrates the importance 
of searching for moderated relationships in that they allow the researcher to 
avoid inferring that a set of findings pertains to a sample as a whole, when in 
fact it only really applies to a portion of that sample. The term interaction effect 
is often employed to refer to the situation in which a relationship between two 
variables differs substantially for categories of the test variable. This kind of 
occurrence was also addressed in Chapter 9. The discovery of such an effect 
often inaugurates a new line of inquiry in that it stimulates reflection about the 
likely reasons for such variations.  

The discovery of moderated relationships can occur by design or by chance. 
When they occur by design, the researcher has usually anticipated the possibility 
that a relationship may be moderated (though he or she may be wrong of 
course). They can occur by chance when the researcher conducts a test for an 
intervening variable or a test for spuriousness and finds a marked contrast in 
findings for different categories of the test variable.  

 

Figure 10.3 Is the relationship between work variety and job 
satisfaction moderated by gender?  

Table 10.5 A moderated relationship: the relationship between work variety and 
job satisfaction, controlling for gender (imaginary data)  
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Multiple causation 

Dependent variables in the social sciences are rarely determined by one variable 
alone, so that two or more potential independent variables can usefully be 
considered in conjunction. Figure 10.4 suggests that whether someone is 
allowed participation in decision-making at work also affects their level of job 
satisfaction. It is misleading to refer to participation in decision-making as a test 
variable in this context, since it is really a second independent variable. What, 
then, is the impact of amount of variety in work on job satisfaction when we 
control the effects of participation?  

Again, we compare d1 in Table 10.1 (56 per cent) with d1 and d2 in Table 
10.6. The latter are 19 and 18 per cent respectively. This suggests that although 
the effect of amount of variety in work has not been reduced to zero or nearly 
zero, its impact has been reduced considerably. Participation in decision-making 
appears to be a more important cause of variation in job satisfaction. For 
example, compare the percentages in cells 1 and 3 in Table 10.6: among those 
respondents who report that they perform varied work, 93 per cent of those who 
experience participation exhibit job satisfaction, whereas only 30 per cent of 
those who do not experience participation are satisfied.  

One reason for this pattern of findings is that most people who experience 
participation in decision-making also have varied jobs, that is (cell1+cell5)–
cell2+cell6). Likewise, most people who do not experience participation have 
work which is not varied, that is (cell4+cell8)–(cell3+cell7). Could this mean 
that the relationship between variety in work and job satisfaction is really 
spurious, when participation in decision-making is employed as the test 
variable? The answer is that this is unlikely, since it would mean that 
participation in decision-making would have to cause variation in the amount of 
variety in work, which is a less likely possibility (since technological conditions 
tend to be the major influence on variables like work variety). Once again, we 
have to resort to a combination of intuitive logic and theoretical reflection in 
order to discount such a possibility. We will return to this kind of issue in  

 

Figure 10.4 Does work variety have a greater impact on job 
satisfaction than participation at work?  
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the context of an examination of the use of multivariate analysis through 
correlation and regression.  

Using Minitab to perform multivariate analysis through 
contingencytables 

Taking the Job Survey data, we might want to examine the relationship between 
‘skill’ and ‘ethnicgp’, holding ‘gender’ constant (i.e. as a test variable). 
Assuming that we want cell frequencies and column percentages, the following 
commands would be required in the prompt system:  

MTB> table ‘skill’ ‘gender’ ‘ethnicgp’; 
SUBC> counts; 
SUBC> colpercents; 
SUBC> layout 1 2. 

The order in which the variables are specified in the first line and the layout 
subcommand in the last line are key here. Thus, the variable by which a 
relationship is to be broken down, which in this case is ‘gender’, has to be the 
second of the three variables stipulated. Chi-square is not available with the 
layout subcommand.  

With the menu system, the following sequence will yield the same results:  

→Stat→Tables→Cross Tabulation…→skill→Select 
[skill should  now be in the ClassificationVariables: 
box] →gender→Select [gender should now be in the 
ClassificationVariables: box]  →ethnicgp→Select 
[skill should now be in the ClassificationVariables: 
box] → [if the boxes by Counts and Column Percents 
do  not have a tick in them, you should click once on 
each of these boxes]  →Options…→type 1 in the box 
in the middle of the clause Use thefirst…
classification variables for rows and type 2 in the 

Table 10.6 Two independent variables: the relationship between work variety 
and job satisfaction, controlling for participation at work (imaginary 
data)  
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box in the  middle of the clause and the next…for 
columns→OK→OK 

The resulting table will produce two contingency tables crosstabulating ‘skill’ by 
‘ethnicgp’—one for men and one for women.  

MULTIVARIATE ANALYSIS AND CORRELATION 

Although the use of contingency tables provides a powerful tool for multivariate 
analysis, it suffers from a major limitation, namely that complex analyses with 
more than three variables require large samples, especially when the variables 
include a large number of categories. Otherwise, there is the likelihood of very 
small frequencies in many cells (and indeed the likelihood of many empty cells) 
when a small sample is employed. By contrast, correlation and regression can be 
used to conduct multivariate analyses on fairly small samples, although their use 
in relation to very small samples is limited. Further, both correlation and 
regression provide easy to interpret indications of the relative strength of 
relationships. On the other hand, if one or more variables are nominal, 
multivariate analysis through contingency tables is probably the best way 
forward for most purposes.  

The partial correlation coefficient 

One of the main ways in which the multivariate analysis of relationships is 
conducted in the social sciences is through the partial correlation coefficient. 
This test allows the researcher to examine the relationship between two variables 
while holding one other or more variables constant. It allows tests for 
spuriousness, tests for intervening variables, and multiple causation to be 
investigated. The researcher must stipulate the anticipated logic that underpins 
the three variables in question (e.g. test for spuriousness) and can then 
investigate the effect of the test variable on the original relationship. Moderated 
relationships are probably better examined by computing Pearson’s r for each 
category of the test variable (e.g. for both men and women, or young, middle-
aged, and old) and then comparing the rs.  

The partial correlation coefficient is computed by first calculating the 
Pearson’s r for each of the pairs of possible relationships involved. Thus, if the 
two variables concerned are x and y, and t is the test variable (or second 
independent variable in the case of investigating multiple causation), the partial 
correlation coefficient computes Pearson’s r for x and y, x and t, and y and t. 
Because of this, it is necessary to remember that all the restrictions associated 
with Pearson’s r apply to variables involved in the possible computation of the 
partial correlation coefficient (e.g. variables must be interval).  

There are three possible effects that can occur when partial correlation is 
undertaken: the relationship between x and y is unaffected by t; the relationship 
between x and y is totally explained by t; and the relationship between x and y is 
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partially explained by t. Each of these three possibilities can be illustrated with 
Venn diagrams (see Figure 10.5). In the first case (a), t is only related to x, so 
the relationship between x and y is unchanged, because t can only have an 
impact on the relationship between x and y if it affects both variables. In the 
second case (b), all of the relationship between x and y (the cross-hatched area) 
is encapsulated by t. This would mean that the relationship between x and y 
when t is controlled would be zero. What usually occurs is that the test variable, 
t, partly explains the relationship between x and y, as in the case of (c) in Figure 
10.5. In this case, only part of the relationship between x and y is explained by t 
(the shaded area which is overlapped by t). This would mean that the partial 
correlation coefficient will be lower than the Pearson’s r for x and y. This is the 
most normal outcome of calculating the partial correlation coefficient. If the first 
order  
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Figure 10.5 The effects of controlling for a test variable  

correlation between x and y when t is controlled is considerably less than the 
zero order correlation between x and y, the researcher must decide (if he or she 
has not already done so) whether: (a) the x–y relationship is spurious, or at least 
largely so; or (b) whether t is an intervening variable between x and y; or (c) 
whether t is best thought of as a causal variable which is related to x and which 
largely eliminates the effect of x on y. These are the three possibilities 
represented in Figures 10.1, 10.2 and 10.4 respectively.  

As an example, consider the data in Table 10.7. We have data on eighteen 
individuals relating to three variables: age, income and a questionnaire scale 
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measuring support for the market economy, which goes from a minimum of 5 to 
a maximum of 25. The correlation between income and support for the market 
economy is 0.64. But could this relationship be spurious? Could it be  

that age should be introduced as a test variable, since we might anticipate that 
older people are both more likely to earn more and to support the market 
economy? This possibility can be anticipated because age is related to income 
(0.76) and to support (0.83). When we compute the partial correlation 
coefficient for income and support controlling the effects of age, the level of 
correlation falls to 0.01. This means that the relationship between income and 
support for the market economy is spurious. When age is controlled, the 
relationship falls to nearly zero. A similar kind of reasoning would apply to the 
detection of intervening variables and multiple causation.  

Partial correlation with Minitab 

Partial correlation cannot be generated directly with Minitab. In order to 

Table 10.7 Income, age and support for the market economy (imaginary data)  

Subject Age Income Support formarket economy 

1 20 9,000 11 

2 23 8,000 9 

3 28 12,500 12 

4 30 10,000 14 

5 32 15,000 10 

6 34 12,500 13 

7 35 13,000 16 

8 37 14,500 14 

9 37 14,000 17 

10 41 16,000 13 

11 43 15,500 15 

12 47 14,000 14 

13 50 16,500 18 

14 52 12,500 17 

15 54 14,500 15 

16 59 15,000 19 

17 61 17,000 22 

18 63 16,500 18 
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compute partial correlation coefficients with Minitab either of two routes can be 
followed. With the first route, it is necessary first to compute the Pearson r 
coefficients for the variables concerned and then substitute those coefficients in 
the following formula:  

In this equation, r12.3 refers to the partial correlation coefficient between 
variables 1 and 2, holding 3 constant (i.e. partialling out its effect). If we want to 
calculate the correlation between ‘age’ and ‘income’ holding ‘years’ constant, 
we will first have to use the correlation command in Minitab. With the prompt 
system, the following simple command will provide the correlation coefficients:  

MTB> correlation ‘age’ ‘years’ ‘income’ 

In the Minitab for Windows menu system:  

→Stat→Basic Statistics→Correlation…
→age→Select→years→Select→income→Select [age, 
years, and income should be in the  Variables: box] 
→OK 

The correlation between ‘age’ and ‘income’ (r12) is 0.618; for ‘age’ and 
‘years’ (r13) it is 0.808; and for ‘income’ and ‘years’ (r23) it is 0.342. 
Substituting in the formula we then have:  

Thus, the correlation between ‘age’ and ‘income’ is unaffected by ‘years’, since 
the computed partial correlation coefficient of 0.62 is almost identical to the 
zero order correlation between ‘age’ and ‘income’. We have just computed a 
‘first order’ partial correlation coefficient, i.e. one in which a single variable has 
been held constant. If two variables are to be held constant, for example, both 
‘years’ and ‘satis’, ‘second order’ partial correlation coefficients will be needed. 
To do this the first order correlation coefficients need to be computed and 
substituted in the above equation (see Cramer, 1994b, for a fuller exposition).  

The alternative route is through the regression procedure and is probably 
easiest with the prompt system. The commands and the output are presented in 
Table 10.8. Essentially, this route involves storing the residuals from the two 
regression commands and then correlating the two residuals which have been 
stored as c45 and c46 respectively. The regression output has been controlled 
using brief 0 (see Chapter 8). Using brief 0 means that no regression output will 
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be generated on the screen, but the residuals will be stored, as requested. Since it 
is not necessary to examine the regression output in this particular context, there 
seems little point generating it. However, it is then necessary to restore the 
default, brief 2, in order for the correlation output to be printed. The resulting 
partial correlation coefficient, 0.644, is very slightly different from that 
produced through the other route, 0.62, and almost certainly the difference 
derives from rounding errors. In  

order to establish whether the correlation is statistically significant, the table in 
Appendix I should be consulted using number of cases–3 (i.e. n–3) as the 
number of degrees of freedom.  

REGRESSION AND MULTIVARIATE ANALYSIS 

Nowadays regression, in the form of multiple regression, is the most widely 
used method for conducting multivariate analysis, particularly when more than 
three variables are involved. In Chapter 8 we previously encountered regression 
as a means of expressing relationships among pairs of variables. In this chapter, 
the focus will be on the presence of two or more independent variables.  

Consider first of all, a fairly simple case in which there are three variables, 
that is two independent variables. The nature of the relationship between the 
dependent variable and the two independent variables is expressed in a similar 
manner to the bivariate case explored in Chapter 8. The analogous equation for 
mutivariate analysis is  

where x1 and x2 are the two independent variables, a is the intercept, b1 and b2 

Table 10.8 Computing the partial correlation coefficient for age and income 
holding years constant (Minitab for Windows Release 10 output from 
Job Survey data using the prompt system)  

MTB> brief 0 

MTB> regress ‘age’ 1 ‘years’; 

SUBC> residuals c45. 

MTB> regress ‘income’ 1 ‘years’; 

SUBC> residuals c46. 

MTB> brief 2 

MTB> correlation c45 c46. 

Correlations (Pearson) 

Correlation of C45 and C46=0.644 
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are the regression coefficients for the two independent variables, and e is an 
error term which points to the fact that a proportion of the variance in the 
dependent variable, y, is unexplained by the regression equation. As in Chapter 
8, the error term is ignored.  

In order to illustrate the operation of multiple regression we can return to the 
data in Table 10.7. The regression equation for these data is  

where 5.913 is the intercept (a), 0.21262 is the regression coefficient for the first 
independent variable, age (x1), and 0.000008 is the regression coefficient for the 
second independent variable, income (x2). Each of the two regression 
coefficients estimates the amount of change that occurs in the dependent 
variable (support for the market economy) for a one unit change in the 
independent variable. Moreover, the regression coefficient expresses the amount 
of change in the dependent variable with the effect of all other independent 
variables in the equation partialled out (i.e. controlled). Thus, if we had an 
equation with four independent variables, each of the four regression 
coefficients would express the unique contribution of the relevant variable to the 
dependent variable (with the effect in each case of the three other variables 
removed). This feature is of considerable importance, since the independent 
variables in a multiple regression equation are almost always related to each 
other.  

Thus, every extra year of a person’s age increases support for the market 
economy by 0.21262, and every extra £1,000 increases support by 0.000008. 
Moreover, the effect of age on support is with the effect of income removed, and 
the effect of income on support is with the effect of age removed. If we wanted 
to predict the likely level of support for the market economy of someone aged 
40 with an income of £17,500, we would substitute as follows:  

Thus, we would expect that someone with an age of 40 and an income of 
£17,500 would have a score of 14.56 on the scale of support for the market 
economy.  

While the ability to make such predictions is of some interest to social 
scientists, the strength of multiple regression lies primarily in its use as a means 
of establishing the relative importance of independent variables to the dependent 
variable. However, we cannot say that simply because the regression coefficient 
for age is larger than that for income that this means that age is more important 
to support for the market economy than income. This is because age and income 
derive from different units of measurement that cannot be directly compared. In 
order to effect a comparison it is necessary to standardize the units of 
measurement involved. This can be done by multiplying each regression 
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coefficient by the product of dividing the standard deviation of the relevant 
independent variable by the standard deviation of the dependent variable. The 
result is known as a standardizedregression coefficient or beta weight. A 
possibly simpler approach is to standardize the relevant variables and then to 
perform the regression on the standardized variables. This is done by a simple 
procedure through which each value of a variable is subtracted from that 
variable’s mean and then divided by the variable’s standard deviation.  

In the following example we will want to treat ‘satis’ as the dependent 
variable and ‘routine’, ‘autonom’ and ‘income’ as the independent variables. 
The three independent variables were chosen because they are all known to be 
related to ‘satis’, as revealed by the relevant correlation coefficients. However, 
it is important to ensure that the independent variables are not too highly related 
to each other. The Pearson’s r between each pair of independent variables 
should not exceed 0.80; otherwise the independent variables that show a 
relationship at or in excess of 0.80 may be suspected of exhibiting 
multicollinearity. Multicollinearity is usually regarded as a problem because it 
means that the regression coefficients may be unstable. This implies that they 
are likely to be subject to considerable variability from sample to sample. In any 
case, when two variables are very highly correlated, there seems little point in 
treating them as separate entities.  

Standardized regression coefficients in a regression equation employ the same 
standard of measurement and can therefore be compared to establish which of 
two or more independent variables is the more important factor in relation to the 
dependent variable. They essentially tell us how many standard deviation units 
the dependent variable will change for a one unit change in the independent 
variable.  

We can now take an example from the Job Survey data in order to illustrate 
some of these points. When the previous multiple regression analysis is carried 
out, the following equation is generated:  

Thus, if we wanted to predict the likely ‘satis’ score of someone with an 
‘autonom’ score of 16, an ‘income’ of £8,000, and a ‘routine’ score of 8, the 
calculation would proceed as follows:  

However, it is the relative impact of each of these variables on ‘satis’ that 
provides the main area of interest for many social scientists. Table 10.9 presents 
the regression coefficients for the three independent variables remaining in the 
equation and the corresponding standardized regression coefficients. Although 
‘autonom’ provides the largest unstandardized and standardized regression 

  

 

Multivariate analysis: exploring differences      243     



coefficients, the case of ‘income’ demonstrates the danger of using 
unstandardized coefficients in order to infer the magnitude of the impact of 
independent variables on the dependent variable. The variable ‘income’ 
provides the smallest unstandardized coefficient (0.0012787), but  

the second largest standardized coefficient (0.38625). As pointed out earlier, the 
magnitude of an unstandardized coefficient is affected by the nature of the 
measurement scale for the variable itself. The variable ‘income’ has a range 
from 0 to 10,500, whereas a variable like ‘routine’ has a range of only 4 to 20. 
When we examine the standardized regression coefficients, we can see that 
‘autonom’ has the greatest impact on ‘satis’ and ‘income’ the next highest. The 
variable ‘routine’ has the smallest impact which is negative, indicating that 
more ‘routine’ engenders less ‘satis’.  

We can see here some of the strengths of multiple regression and the use of 
standardized regression coefficients. In particular, the latter allow us to examine 
the effects of each of a number of independent variables on the dependent 
variable. Thus, the standardized coefficient for ‘autonom’ means that for each 
one unit change in ‘autonom’, there is a standard deviation change in ‘satis’ of 
0.47873, with the effects of ‘income’ and ‘routine’ on ‘satis’ partialled out.  

One of the questions that we may ask is how well the independent variables 
explain the dependent variable. In just the same way that we were able to use r2 
(the coefficient of determination) as a measure of how well the line of best fit 
represents the relationship between the two variables, we can compute the 
multiple coefficient of determination (R2) for the collective effect of all of the 
independent variables. The R2 value for the equation as a whole is 0.71, 
implying that only 29 per cent of the variance in ‘satis’ (i.e. 100–71) is not 
explained by the three variables in the equation. In addition, Minitab will 
produce an adjusted R2. The technical reasons for this variation should not 
overly concern us here, but the basic idea is that the adjusted version provides a 
more conservative estimate than the ordinary R2 of the amount of variance in 
‘satis’ that is explained. The adjusted R2 takes into account the number of 
independent variables involved. The magnitude of R2 is bound to be inflated by 
the number of independent variables associated with the regression equation. 
The adjusted R2 corrects for this by adjusting the level of R2 to take account of 

Table 10.9 Comparison of unstandardized and standardized regression 
coefficients with satis as the dependent variable  

Independent 
variables 

Unstandardized 
regressioncoefficients 

Standardized 
regressioncoefficients 

autonom 0.57327  0.47847  

income 0.0012787  0.38627  

routine −0.16989  −0.21114  
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the number of independent variables.  

Statistical significance and multiple regression 

A useful statistical test that is related to R2 is the F ratio. The F ratio test 
generated by Minitab is based on the multiple correlation (R) for the analysis. 
The multiple correlation, which is of course the square root of the coefficient of 
determination, expresses the correlation between the dependent variable (‘satis’) 
and all of the independent variables collectively (i.e. ‘autonom’, ‘routine’, and 
‘income’). The multiple R for the multiple regression analysis under 
consideration is 0.85. The F ratio test allows the researcher to test the null 
hypothesis that the multiple correlation is zero in the population from which the 
sample (which should be random) was taken. For our computed equation, 
F=53.03 (see Table 10.10) and the significance level is 0.0000 (which means 
p<0.00005), suggesting that it is extremely improbable that R in the population 
is zero.  

The calculation of the F ratio is useful as a test of statistical significance for 
the equation as a whole, since R reflects how well the independent variables 
collectively correlate with the dependent variable. If a test of the statistical 
significance of the individual regression coefficients is required, a different test 
must be used. Minitab will produce a test of the statistical significance of 
individual regression coefficients through the calculation of a t value for each 
coefficient and an associated two-tailed significance test. As the output in Table 
10.10 indicates, the significance levels for ‘autonom’ and ‘income’ were 0.000, 
and for ‘routine’ 0.009. These are consistent with the previous analysis using 
the F ratio and suggest that the coefficients for ‘income’, ‘autonom’ and 
‘routine’ are highly unlikely to be zero in the population.  

Multiple regression and Minitab 

The regression program within Minitab can create a large amount of output 
which can be controlled through brief (see Chapter 8, page 185). The default for 
the regression program is brief 2 and for most users of multiple regression with 
Minitab, this will probably generate the right amount of detail. In other words, 
for most purposes there will probably be little need to specify the amount of 
output required. The output for the regression analysis used as an illustration in 
the previous section (in which ‘satis’ is the dependent variable and ‘autonom’, 
‘routine’, and ‘income’ are the independent variables) is presented in Table 
10.10.  

The output in Table 10.10 can be produced through the prompt system with 
the following command:  

MTB> regress ‘satis’ 3 ‘income’ ‘autonom’ ‘routine’ 

Thus, after regress the dependent variable (‘satis’) is specified. This is followed 
by a number which refers to the number of independent variables being used (in 
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this case 3). Then the three independent variables—‘income’, ‘autonom’, and 
‘routine’—are specified. If brief has not been specified, the default output 
(brief 2) will be generated.  

With the menu system, the following steps will provide the information in Table 

Table 10.10 Sample multiple regression output using unstandardized variables 
(Minitab for Windows Release 10)  

Regression Analysis 

The regression equation is 

satis=−2.24+0.573 autonom−0.170 routine+0.00128 income 

66 cases used 4 cases contain missing values 

Predictor Coef Stdev t-ratio P   

Constant −2.243 2.391 −0.94 0.352   

autonom 0.57327 0.09616 5.96 0.000   

routine −0.16989 0.06273 −2.71 0.009   

income 0.0012787 0.0002400 5.33 0.000   

s=1.787 R−sq=72.0% R−sq (adj)=70.6%   

Analysis of Variance 

SOURCE DF SS MS F P   

Regression 3 508.20 169.40 53.03 0.000   

Error 62 198.06 3.19   

Total 65 706.26   

SOURCE DF SEQ SS   

autonom 1 368.33   

routine 1 49.16   

income 1 90.71   

Unusual Observations 

Obs. autonom satis Fit Stdev.Fit Residual St.Resid 

4 7.0 7.000 10.556 0.455 −3.556 −2.06R 

10 8.0 13.000 8.618 0.303 4.382 2.49R 

31 10.0 14.000 10.148 0.289 3.852 2.18R 

46 10.0 13.000 9.339 0.378 3.661 2.10R 

51 10.0 7.000 11.169 0.248 −4.169 −2.36R 

R denotes an obs. with a large st. resid. 
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10.10.  

→Stat→Regression→Regression…→satis→Select [satis 
will now  appear in the Response: box] 
→income→Select [income will now  appear in the 
Predictors: box] →autonom→Select [autonom will  now 
appear in the Predictors: box] →routine→Select 
[routine will  now appear in the Predictors: box] 
→OK 

The procedure yields the following information which relates to aspects of 
regression that have been covered above:  

1 The regression equation is specified with the coefficients rounded to make it 
easier to read.  

2 The number of cases on which the analysis is based (66) and the number of 
missing cases (4) are specified.  

3 A table showing the coefficient (Coef) and the t-ratio and the statistical 
significance level (p) for each coefficient. The t-ratios for the coefficients 
relating to the three independent variables are all statistically significant, but 
the t-ratio relating to the constant is not.  

4 The R2 is given (R-sq) and the adjusted R2(R-sq(adj)). The former is given as 
72.0 per cent, suggesting that the multiple correlation (R) is 0.85. The 
adjusted R2 is very slightly lower at 70.6 per cent.  

5 The F ratio for the model and the significance level of F are produced. Also, 
an analysis of variance table is produced, which can be interpreted in the 
same way as the ANOVA procedure described in Chapter 7. The analysis of 
variance table has not been discussed in the present chapter because it is not 
necessary to an understanding of regression for our present purposes.  

6 There is then a list of Unusual Observations.  

It must be remembered that the regression coefficients in this output are 
unstandardized regression coefficients. If standardized regression coefficients 
(beta weights) are wanted, as noted above, two possibilities present themselves. 
First, it can be done by multiplying each regression coefficient by the product of 
dividing the standard deviation of the relevant independent variable by the 
standard deviation of the dependent variable. We know that the unstandardized 
regression coefficient for ‘autonom’ is 0.57327. Using the Minitab describe 
command, we can establish that the standard deviation for ‘autonom’ is 2.757 
and for ‘satis’ it is 3.304. Therefore, the standardized regression coefficient for 
‘autonom’ will be  

Thus the standardized regression for ‘autonom’ is 0.478.  
Alternatively, we can standardize all the relevant variables and then perform 
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the regression on the standardized variables. This is done by subtracting from 
each value of a variable that variable’s mean and then dividing by the variable’s 
standard deviation. All four variables will need to be standardized. To create 
standardized variables which we will call ‘satiss’,‘routines’, ‘autonoms’, and 
‘incomes’, the following procedure needs to be followed.  

Table 10.11 Sample multiple regression output using standardized variables 
(Minitab for Windows Release 10)  

Regression Analysis 

The regression equation is 

satiss=0.0050+0.478 autonoms−0.211 routines+0.386 incomes 

66 cases used 4 cases contain missing values 

Predictor Coef Stdev t-ratio P   

Constant 0.00496 0.06666 0.07 0.941   

autonoms 0.47847 0.08026 5.96 0.000   

routines −0.21114 0.07796 −2.71 0.009   

incomes 0.38627 0.07249 5.33 0.000   

s=0.5410 R−sq=72.0% R−sq (adj)=70.6%   

Analysis of Variance 

SOURCE DF SS MS F P   

Regression 3 46.565 15.522 53.03 0.000   

Error 62 18.147 0.293   

Total 65 64.713   

SOURCE DF SEQ SS   

autonoms 1 33.750   

routines 1 4.504   

incomes 1 8.311   

Unusual Observations 

Obs. autonoms satiss Fit Stdev.Fit Residual St.Resid 

4 −0.87 −1.1618 −0.0853 0.1378 −1.0766 −2.06R 

10 −0.50 0.6544 −0.6721 0.0918 1.3264 2.49R 

31 0.22 0.9571 −0.2089 0.0876 1.1660 2.18R 

46 0.22 0.6544 −0.4539 0.1145 1.1082 2.10R 

51 0.22 −1.1618 0.1002 0.0751 −1.2620 −2.36R 

R denotes an obs. with a large st. resid. 
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With the prompt system, the following command should be used:  

MTB> center ‘satis’ ‘routine’ ‘autonom’ ‘income’ c61 
c62 c63 c64 
MTB> name c61 ‘satiss’ c62 ‘routines’ c63 ‘autonoms’ 
c64 ‘incomes’ 

In other words, we stipulate after center the four variables to be standardized 
and then stipulate the four new names for them. We then need to use the 
regression command as previously outlined. With the prompt system, we would 
type:  

MTB> regress ‘satiss’ 3 ‘incomes’ ‘autonoms’ 
‘routines’ 
In the Minitab for Windows menu system, the following 
sequence should  be used to standardize the 
variables:   

→Calc→Standardize…
→satis→Select→routine→Select→autonom→Select→income→Sele
[satis, routine, autonom and  income should now be in 
the Input column(s): box.] →Store resultsin: box and 
click once. →type satiss routines autonoms 
incomes→make sure that the circle by Subtract mean 
and divide by std. Dev.  is filled with a black dot. 
If it is not, click once in the box→OK 

The following sequence should then be used to perform the regression on the 
standardized variables:  

→Stat→Regression→Regression…→satiss→Select 
[satiss will  now appear in the Response: box] 
→incomes→Select [incomes will  now appear in the 
Predictors: box] →autonoms→Select [autonoms will 
now appear in the Predictors: box] →routines→Select 
[routines will now appear in the Predictors: box] 
→OK 

The relevant output is shown in Table 10.11. The format of the output is 
basically the same as Table 10.10 in which the same regression analysis was 
performed but with unstandardized variables.  

PATH ANALYSIS 

The final area to be examined in this chapter, path analysis, is an extension of 
the multiple regression procedures explored in the previous section. In fact, path 
analysis entails the use of multiple regression in relation to explicitly formulated 
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causal models. Path analysis cannot establish causality; it cannot be used as a 
substitute for the researcher’s views about the likely causal linkages among 
groups of variables. All it can do is to examine the pattern of relationships 
between three or more variables, but can neither confirm nor reject the 
hypothetical causal imagery.  

The aim of path analysis is to provide quantitative estimates of the causal 
connections between sets of variables. The connections proceed in one direction 
and are viewed as making up distinct paths. These ideas can best be explained 
with reference to the central feature of a path analysis—the path diagram. The 
path diagram makes explicit the likely causal connections between variables. An 
example is provided in Figure 10.6 which takes four variables employed in the 
Job Survey: ‘age’, ‘income’, ‘autonom’, and ‘satis’. The arrows indicate 
expected causal connections between variables. The model moves from left to 
right implying causal priority to those variables closer to the left. Each p denotes 
a causal path and hence a path coefficient that will need to be computed. The 
model proposes that ‘age’ has a direct effect on ‘satis’(p1). But indirect effects 
of ‘age’ on ‘satis’ are also proposed: ‘age’ affects ‘income’(p5) which in turn 
affects ‘satis’(p6); ‘age’ 

 

Figure 10.6 Path diagram for satis 

affects ‘autonom’(p2) which in turn affects ‘satis’(p3); and ‘age’ affects 
‘autonom’(p2) again, but this time affects ‘income’(p4) which in turn affects 
‘satis’(p6). In addition, ‘autonom’ has a direct effect on ‘satis’(p3) and an 
indirect effect whereby it affects ‘income’(p4) which in turn affects ‘satis’(p6). 
Finally, ‘income’ has a direct effect on ‘satis’(p6), but no indirect effects. Thus, 
a direct effect occurs when a variable has an effect on another variable without a 
third variable intervening between them; an indirect effect occurs when there is 
a third intervening variable through which two variables are connected.  
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In addition, ‘income’, ‘autonom’ and ‘satis’ have further arrows directed to 
them from outside the nexus of variables. These refer to the amount of 
unexplained variance for each variable respectively. Thus, the arrow from e1 to 
‘autonom’(p7) refers to the amount of variance in ‘autonom’ that is not 
accounted for by ‘age’. Likewise, the arrow from e2 to ‘satis’(p8) denotes the 
amount of error arising from the variance in ‘satis’ that is not explained by 
‘age’, ‘autonom’ and ‘income’. Finally, the arrow from e3 to ‘income’(p9) 
denotes the amount of variance in ‘income’ that is unexplained by ‘age’ and 
‘autonom’. These error terms point to the fact that there are other variables that 
have an impact on ‘autonom’ and ‘satis’, but which are not included in the path 
diagram.  

In order to provide estimates of each of the postulated paths, path coefficients 
are computed. A path coefficient is a standardized regression coefficient. The 
path coefficients are computed by setting up structuralequations, that is 
equations which stipulate the structure of hypothesized relationships in a model. 
In the case of Figure 10.6, three structural equations will be required—one for 
‘autonom’, one for ‘satis’ and one for ‘income’. The three equations will be:  

The standardized coefficient for ‘age’ in (Eq. 10.1) will provide p2. The 
coefficients for ‘age’, ‘autonom’ and ‘income’ in (Eq. 10.2) will provide p1, p3 
and p6 respectively. Finally, the coefficients for ‘age’ and ‘autonom’ in (Eq. 
10.3) will provide p5 and p4 respectively.  

Thus, in order to compute the path coefficients, it is necessary to treat the 
three equations as multiple regression equations and the resulting standardized 
regression coefficients provide the path coefficients. The intercepts in each case 
are ignored. It is preferable to remove the constant altogether by typing in the 
following command in the prompt system before doing a regression analysis 
(regardless of whether the regression analysis will be done in the prompt or the 
menu system):  

MTB> noconstant 

However, if this is done the output will not include an R2 value which is an 
important component of a path diagram (see below), since the computation of 
the error term is based on it. The R2 value could be calculated by running 
regress for each equation with a constant (so that R2 can be computed) and then 
running each equation without a constant. Thus, each of the three equations has 

(Eq. 10.1)  

(Eq. 10.2)  

(Eq. 10.3)  
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to be run twice—once with a constant to generate an estimate of R2 and once 
without to compute the standardized coefficients with the constant removed.  

The three error terms are calculated by taking the R2 for each equation away 
from 1 and taking the square root of the result of this subtraction.  

To compute the three equations with Minitab we will need to standardize all 
four variables. We can call these four variables ‘autonoms’, ‘ages’, ‘incomes’, 
and ‘satiss’. Of these four variables, only ‘ages’ has not been created thus far. 
We can standardize this variable with the prompt system as follows:  

MTB> center ‘age’ c65 
MTB> name c65 ‘ages’ 

In other words, we stipulate after center the variable to be standardized and then 
the new name for it.  

In the Minitab for Windows menu system the following sequence should be 
used:  

→Calc→Standardize…→age→Select [age should now be 
in the  Input column(s): box] →Store results in: 
box→type ages→make    sure that the circle by 
Subtract mean and divide by std. Dev. is filled  with 
a black dot. If it is not, click once in the box→OK 

Once all the variables have been standardized, the three equations can be 
generated with the following commands:  

For equation (10.1):  

With the prompt system, we would type:  

MTB> regress ‘autonoms’ 1 ‘ages’ 

With Minitab for Windows the following steps will be required:  

→Stat→Regression→Regression…→autonoms→Select 
[autonoms will now appear in the Response: box] 
→ages→Select [ages will now appear in the 
Predictors: box] →OK 

For equation (10.2), with the prompt system, we would type:  

MTB> regress ‘satiss’ 3 ‘incomes’ ‘autonoms’ ‘ages’ 

With the Minitab for Windows menu system, the following steps will be 
required:  

→Stat→Regression→Regression…→satiss→Select 
[satiss will  now appear in the Response: box] 

Quantitative data analysis with Minitab     252



→incomes→Select [incomes will now appear in the 
Predictors: box] →autonoms→Select [autonoms will 
now appear in the Predictors: box] →ages→Select 
[ages will  now appear in the Predictors: box] →OK 

For equation (10.3), with the prompt system, we would type:  

MTB> regress ‘incomes’ 2 ‘autonoms’ ‘ages’ 

With the Minitab for Windows menu system, the following steps will be 
required:  

→Stat→Regression→Regression…→incomes→Select 
[incomes will now appear in the Response: box] 
→autonoms→Select [autonoms will now appear in the 
Predictors: box] →ages→Select [ages will now appear 
in the Predictors: box] →OK 

The crucial information in the Minitab output for these three equations will be 
the standardized regression coefficient for each variable and the R2 (for the error 
term paths). If we take the results of the third equation, we find that the 
standardized coefficients for ‘autonom’ and ‘age’ are 0.21681 and 0.56818 
respectively and the R2 is 0.426. Thus for p4, p5 and p9 in the path diagram 
(Figure 10.7) we substitute 0.22, 0.57, and 0.76 (the latter being the square root 
of 1−0.426). All of the relevant path coefficients have been inserted in Figure 
10.7.  

 

Figure 10.7 Path diagram for satis with path coefficients  

Since the path coefficients are standardized, it is possible to compare them 
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directly. We can see that ‘age’ has a very small negative direct effect on ‘satis’, 
but it has a number of fairly pronounced positive indirect effects on ‘satis’. In 
particular, there is a strong sequence that goes from ‘age’ to ‘income’ (p5=0.57) 
to ‘satis’ (p6=0.46).  

Many researchers recommend calculating the overall impact of a variable like 
‘age’ on ‘satis’. This would be done as follows. We take the direct effect of 
‘age’ (−0.08) and add to it the indirect effects. The indirect effects are gleaned 
by multiplying the coefficients for each path from ‘age’ to ‘satis’. The paths 
from ‘age’ to ‘income’ to ‘satis’ would be calculated as (0.57) (0.46)=0.26. For 
the paths from ‘age’ to ‘autonom’ to ‘satis’ we have (0.28) (0.57)=0.16. 
Finally, the sequence from ‘age’ to ‘autonom’ to ‘income’ to ‘satis’ yields 
(0.28) (0.22) (0.46)=0.03. Thus the total indirect effect of ‘age’ on ‘satis’ is 
0.26+0.16+0.03=0.45. For the total effect of ‘age’ on ‘satis’, we add the direct 
effect and the total indirect effect, i.e. −0.08+0.45=0.37. This exercise suggests 
that the indirect effect of ‘age’ on ‘satis’ is inconsistent with its direct effect, 
since the former is slightly negative and the indirect effect is positive. Clearly, 
an appreciation of the intervening variables ‘income’ and ‘autonom’ is essential 
to an understanding of the relationship between ‘age’ and ‘satis’.  

The effect of ‘age’ on ‘satis’ could be compared with the effect of other 
variables in the path diagram. Thus, the effect of ‘autonom’ is made up of the 
direct effect (0.57) plus the indirect effect of ‘autonom’ to ‘income’ to ‘satis’, 
i.e. 0.57+(0.22) (0.46), which equals 0.67. The effect of ‘income’ on ‘satis’ is 
made up only of the direct effect, which is 0.46, since there is no indirect effect 
from ‘income’ to ‘satis’. Thus, we have three effectcoefficients as they are often 
called (e.g. Pedhazur, 1982)–0.37, 0.67, and 0.46 for ‘age’, ‘autonom’ and 
‘income’ respectively—implying that ‘autonom’ has the largest overall effect 
on ‘satis’.  

Sometimes, it is not possible to specify the causal direction between all of the 
variables in a path diagram. In Figure 10.8‘autonom’ and ‘routine’ are deemed 
to be correlates; there is no attempt to ascribe causal priority to one or the other. 
The link between them is indicated by a curved arrow with two heads. Each 
variable has a direct effect on ‘absence’ (p5 and p4). In addition, each variable 
has an indirect effect on ‘absence’ through ‘satis’:‘autonom’ to ‘satis’ (p1) and 
‘satis’ to ‘absence’ (p3); ‘routine’ to ‘satis’ (p2) and ‘satis’ to ‘absence’ (p3). 
In order to generate the necessary coefficients, we would need the Pearson’s r 
for ‘autonom’ and ‘routine’ and the standardized regression coefficients from 
two equations:  

We could then compare the total causal effects of both ‘autonom’,‘routine’ and 

(Eq. 10.4)  

(Eq. 10.5)  
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‘satis’. The total effect would be made up of the direct effect plus the total 
indirect effect. The total effect of each of these three variables on ‘absence’ 
would be:  

These three total effects can then be compared to establish which has the greater 
overall effect on absence. However, with complex models involving a large 
number of variables, the decomposition of effects using the foregoing 
procedures can prove unreliable and alternative methods have to be employed 
(Pedhazur, 1982).  

Path analysis has become a popular technique because it allows the relative 
impact of variables within a causal network to be estimated. It  

 

Figure 10.8 Path diagram for absence 

forces the researcher to make explicit the causal structure that is believed to 
undergird the variables of interest. On the other hand, it suffers from the 
problem that it cannot confirm the underlying causal structure. It tells us what 
the relative impact of the variables upon each other is, but cannot validate that 
causal structure. Since a cause must precede an effect, the time order of 
variables must be established in the construction of a path diagram. We are 
forced to rely on theoretical ideas and our common sense notions for 
information about the likely sequence of the variables in the real world. 
Sometimes these conceptions of time ordering of variables will be faulty and the 
ensuing path diagram will be misleading. Clearly, while path analysis has much 
to offer, its potential limitations should also be appreciated. In this chapter, it has 
only been feasible to cover a limited range of issues in relation to path analysis 
and the emphasis has been upon the use of examples to illustrate some of the 
relevant procedures, rather than a formal presentation of the issues. Readers 
requiring more detailed treatments should consult Land (1969), Pedhazur (1982) 
and Davis (1985).  

  

Multivariate analysis: exploring differences      255     



EXERCISES 

1. A researcher hypothesizes that women are more likely than men to support 
legislation for equal pay between the sexes. The researcher decides to conduct a 
social survey and draws a sample of 1,000 individuals among whom men and 
women are equally represented. One set of questions asked directs the 
respondent to indicate whether he or she approves of such legislation. The 
findings are provided in Table 10E.1. Is the researcher’s belief that women are 
more likely than men to support equal pay legislation confirmed by the data in 
Table 10E.1?  

2. Following from Question 1, the researcher controls for age and the results 
of the analysis are provided in Table 10E.2. What are the implications of this 
analysis for the researcher’s view that men and women differ in support for 
equal pay legislation?  

3. What Minitab commands would be required to examine the relationship 
between ‘ethnicgp’ and ‘commit’, controlling for ‘gender’?  

Table 10E.1 The relationship between approval of equal-pay legislation and 
gender  

  Men 
(percentage) 

Women 
(percentage) 

Approve  58 71 

Disapprove  42 29 

  100 100 

N=  500 500 

Table 10E.2 The relationship between approval of equal-pay legislation and 
gender holding age constant  

  Under 35 35 and over 
  Men (percentage) Women Men (percentage) Women 

Approve  68 92 48 54 

Disapprove  32 8 52 46 

  100 100 100 100 

N=  250 250 250 250 
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4. A researcher is interested in the correlates of the number of times that 
people attend religious services during the course of a year. On the basis of a 
sample of individuals, he finds that income correlates fairly well with frequency 
of attendance (Pearson’s r=0.59). When the researcher controls for the effects of 
age the partial correlation coefficient is found to be 0.12. Why has the size of the 
correlation fallen so much?  

5. What Minitab commands would you need to correlate ‘income’ and ‘satis’, 
controlling for ‘age’?  

6. Consider the following regression equation and other details:  

(a) What value would you expect y to exhibit if x1=9, x2=22, and x3=17? 
 

(b) How much of the variance in y is explained by x1, x2, and x3?  
(c) Which of the three independent variables exhibits the largest effect on y?  
(d) What does the negative sign for x3 mean?  

7. What Minitab commands would you need to provide the data for the 
multiple regression equations on p. 249? In considering the commands, you 
should bear in mind that the information is required for a path analysis.  

8. Turning to the first of the two equations referred to in Question 7 (i.e. the 
one with ‘satis’ as the dependent variable),  

(a) How much of the variance in ‘satis’ do the two variables account for?  
(b) Are the individual regression coefficients for ‘autonom’ and ‘routine’ 

statistically significant?  
(c) What is the standardized regression coefficient for ‘routine’?  

9. Examine Figure 10.8. Using the information generated for Questions 7 and 
8, which variable has the largest overall effect on ‘absence’—is it ‘autonom’, 
‘routine’ or ‘satis’?  

  

Multivariate analysis: exploring differences      257     



Chapter 11  
Aggregating variables  

Exploratory principal-components analysis  

Many of the concepts we use to describe human behaviour seem to consist of a 
number of different aspects. Take, for example, the concept of job satisfaction. 
When we say we are satisfied with our job, this statement may refer to various 
feelings we have about our work, such as being keen to go to it every day, not 
looking for other kinds of jobs, being prepared to spend time and effort on it, 
and having a sense of achievement about it. If these different components 
contribute to our judgement of how satisfied we are with our job, we would 
expect them to be interrelated. In other words, how eager we are to go to work 
should be correlated with the feeling of accomplishment we gain from it and so 
on. Similarly, the concept of job routine may refer to a number of 
interdependent characteristics such as how repetitive the work is, how much it 
makes us think about what we are doing, the number of different kinds of tasks 
we have to carry out each day and so on. Some people may enjoy repetitive 
work while others may prefer a job which is more varied. If this is the case, we 
would expect job satisfaction to be unrelated to job routine. To determine this, 
we could ask people to describe their feelings about their job in terms of these 
characteristics and see to what extent those aspects which reflect satisfaction are 
correlated with one another and are unrelated to those which represent routine. 
Characteristics which go together constitute a factor and factor analysis refers to 
a number of related statistical techniques which help us to determine them.  

These techniques are used for three main purposes. First, as implied above, 
they can assess the degree to which items, such as those measuring job 
satisfaction and routine, are tapping the same concept. If people respond in 
similar ways to questions concerning job satisfaction as they do to those about 
job routine, this implies that these two concepts are not seen as being 
conceptually distinct by these people. If, however, their answers to the job-
satisfaction items are unrelated to their ones to the job-routine items, this 
suggests that these two feelings can be distinguished. In other words, factor 
analysis enables us to assess the factorial validity of the questions which make 
up our scales by telling us the extent to which they seem to be measuring the 
same concepts or variables.  

Second, if we have a large number of variables, factor analysis can determine 
the degree to which they can be reduced to a smaller set. Suppose, for example, 
we were interested in how gender and ethnic group were related to attitudes 
towards work. To measure this, we generate from our own experience twelve 
questions similar to those used in the Job Survey to reflect the different feelings 



we think people hold towards their job. At this stage, we have no idea that they 
might form three distinct concepts (i.e. job satisfaction, autonomy, and routine). 
To analyse the relationship of gender and ethnic group to these items, we would 
have to conduct twelve separate analyses. There would be two major 
disadvantages to doing this. First, it would make it more difficult to understand 
the findings since we would have to keep in mind the results of twelve different 
tests. Second, the more statistical tests we carry out, the more likely we are to 
find that some of them will be significant by chance. It is not possible to 
determine the likelihood of this if the data come from the same sample.  

The third use to which factor analysis has been put is related to the previous 
one but is more ambitious in the sense that it is aimed at trying to make sense of 
the bewildering complexity of social behaviour by reducing it to a more limited 
number of factors. A good example of this is the factor analytic approach to the 
description of personality by psychologists such as Eysenck and Cattell (for 
example, Eysenck and Eysenck, 1969; Cattell, 1973). There is a large number of 
ways in which the personality of people varies. For example, there are hundreds 
of words describing personality characteristics listed in a dictionary. Many of 
these terms seem to refer to similar aspects. For example, the words ‘sociable’, 
‘outwardgoing’, ‘gregarious’, and ‘extraverted’ all describe individuals who like 
the company of others. If we ask people to describe themselves or someone they 
know well in terms of these and other words, and we factor analyse this 
information, we will find that these characteristics will group themselves into a 
smaller number of factors. In fact, a major factor that emerges is one called 
sociability or extraversion. Some people, then, see factor analysis as a tool to 
bring order to the way we see things by determining which of them are related 
and which of them are not.  

Two uses of factor analysis can be distinguished. The one most commonly 
reported is the exploratory kind in which the relationships between various 
variables are examined without determining the extent to which the results fit a 
particular model. Confirmatory factor analysis, on the other hand, compares the 
solution found against a hypothetical one. For example, if we expected the four 
items measuring job satisfaction in the Job Survey to form one factor, then we 
could assess the degree to which they did so by comparing the results of our 
analysis with a hypothetical solution in which this was done perfectly. Although 
there are techniques for making these kinds of statistical comparisons (for 
example, Bentler, 1993; Jöreskog and Sörbom, 1989), they are not available 
with Minitab. Consequently, we shall  

Table 11.1Correlation output of a correlation matrix for job satisfaction and 
routine items  

Correlations (Pearson) 
  satis1 satis2 satis3 satis4 routine1 routine2 routine3 
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confine our discussion to the exploratory use of factor analysis. We will 
illustrate its use with an analysis of the job satisfaction and routine items in the 
Job Survey, in which we will describe the decisions to be made, followed by the 
commands to carry these out.  

CORRELATION MATRIX 

The initial step is to compute a correlation matrix for the eight items which 
make up the two scales of job satisfaction and routine. If there are no 
statistically significant correlations between these items, then this means that 
they are unrelated and that we would not expect them to form one or more 
factors. In other words, it would not be worthwhile to go on to conduct a factor 
analysis. Consequently, this should be the first stage in deciding whether to 
carry one out.  

The Minitab prompt command for performing a correlation is correlation and 
so the command for producing this matrix is  

MTB> correlation c8-c11 c16-c19 

The menu procedure for doing this is  

→Stat→Basic Statistics→Correlation…→c8-c11 
→Select [this puts c8-c11 in the box under 
Variables:]   
→c16-c19→Select→OK 

The output for this procedure is shown in Table 11.1. With a sample of 68, a 
correlation of about 0.24 is significant at the 0.05 two-tailed level. As all but one 
of the correlations are higher than this value, this suggests that the data may 
constitute one or more factors.  

SAMPLE SIZE 

Second, how reliable the factors are which emerge from a factor analysis 

satis2 −0.439             

satis3 0.439 −0.314           

satis4 −0.442 0.470 −0.543         

routine1 −0.468 0.521 −0.301 0.404       

routine2 −0.465 0.472 −0.213 0.398 0.693     

routine3 −0.393 0.434 −0.293 0.407 0.787 0.621   

routine4 −0.351 0.463 −0.247 0.283 0.725 0.507 0.638 
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depends on the size of the sample, although there is no consensus on what this 
should be. There is agreement, however, that there should be more subjects than 
variables. Gorsuch (1983), for example, has proposed an absolute minimum of 
five subjects per variable and not less than 100 individuals per analysis. 
Although factor analysis can be carried out on samples smaller than this to 
describe the relationships between the variables, not much confidence should be 
placed that these same factors would emerge in a second sample. Consequently, 
if the main purpose of a study is to find out what factors underlie a group of 
variables, it is essential that the sample should be sufficiently large to enable this 
to be done reliably.  

PRINCIPAL COMPONENTS 

The two most widely used forms of factor analysis are principal-components 
and factor analysis (also called principal-axis factoring). There are other kinds 
of methods such as alpha, image, and maximum likelihood factoring (which is 
also available on Release 9 onwards) but these are used much less frequently. 
Because of this and the need to keep the discussion brief, we will outline only 
the first technique.  

Principal-components analysis is primarily concerned with describing the 
variation or variance which is shared by the scores of people on three or more 
variables. This variance is referred to as common variance and needs to be 
distinguished from two other kinds of variance. Specific variance describes the 
variation which is specific or unique to a variable and which is not shared with 
any other variable. Error variance, on the other hand, is the variation due to the 
fluctuations which inevitably result from measuring something. If, for example, 
you weigh yourself a number of times in quick succession, you will find that the 
readings will vary somewhat, despite the fact that your weight could not have 
changed in so short a time. These fluctuations in measurement are known as 
error variance. So the total variation that we find in the scores of an instrument 
(such as an item or test) to assess a particular variable can be divided or 
partitioned into common, specific and error variance.  

Since principal-components analysis cannot distinguish specific from error 
variance, they are combined to form unique variance. In other words, the total 
variance of a test consists of its common and its unique variance.  

This idea may be illustrated with the relationship between three variables, x, y, 
and z, as displayed in the Venn diagram in Figure 11.1. The overlap between 
any two of the variables and all three of them represents common variance (the 
shaded areas), while the remaining unshaded areas constitute the unique 
variance of each of the three variables.  

In principal-components analysis, all the variance of a score or variable is 
analysed, including its unique variance. In other words, it is assumed that the 
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test used to assess the variable is perfectly reliable and without error.  

 

Figure 11.1 Common and unique variance  

Since principal-components analysis examines the total variance of a test, this is 
set at 1, while for principal-axis factoring it varies between 0 and 1. The 
variance of a test to be explained is known as its communality.  

The first component that is extracted accounts for the largest amount of 
variance shared by the tests. The second component consists of the next largest 
amount of variance which is not related to or explained by the first one. In other 
words, these two components are unrelated or orthogonal to one another. The 
third component extracts the next largest amount of variance, and so on. There 
are as many components as variables, although the degree of variance which is 
explained by successive components becomes smaller and smaller. In other 
words, the first few components are the most important ones.  

The Minitab prompt command and subcommand for producing just the 
principal components, their communality, their variance (or eigenvalue) and 
(more accurately) the proportion of variance they account for is  

MTB> factor c8-c11 c16-c19; 
SUBC> brief 1. 

This subcommand suppresses the display of the component score coefficients 
which we do not require.  

The menu procedure for doing this is  

→Stat→Multivariate→Factor Analysis…→c8-c11→Select 
[this  puts c8-c11 in the box under Variables:] 
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→c16-c19→Select→OK 

The brief 1 output for this procedure is presented in Table 11.2. The output for 
the menu system is slightly different in format. The relationship  

between each item (or test) and a principal component (or factor) is expressed as 
a correlation or loading. So, satis1 correlates or loads 0.673 with Factor1. The 

Table 11.2Principal components brief 1 output of the principal components, 
their communality and variance  

Factor Analysis 

Principal Component Factor Analysis of the Correlation Matrix 

Unrotated Factor Loadings and Communalities 

68 cases used 2 cases contain missing values     

Variable Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 

satis1 0.673 −0.306 0.375 −0.468 0.259 −0.139 

satis2 −0.706 0.087 −0.406 −0.521 −0.165 −0.152 

satis3 0.524 −0.691 −0.361 −0.054 0.137 0.289 

satis4 −0.671 0.506 0.077 −0.192 0.363 0.345 

routine1 −0.873 −0.310 0.113 0.050 −0.002 −0.036 

routine2 −0.771 −0.242 −0.234 0.170 0.377 −0.174 

routine3 −0.814 −0.296 0.253 0.076 0.112 −0.083 

routine4 −0.744 −0.364 0.235 −0.111 −0.352 0.225 

Variance 4.2485 1.2084 0.6281 0.5792 0.5238 0.3341 

% Var 0.531 0.151 0.079 0.072 0.065 0.042 

Variable Factor7 Factor8 Commnlty   

satis1 0.091 0.018 1.000   

satis2 −0.081 −0.019 1.000   

satis3 −0.112 0.005 1.000   

satis4 −0.012 0.015 1.000   

routine1 −0.059 0.348 1.000   

routine2 0.291 −0.076 1.000   

routine3 −0.357 −0.185 1.000   

routine4 0.248 −0.103 1.000   

Variance 0.3049 0.1730 8.0000   

% Var 0.038 0.022 1.000   
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variance accounted for by the first factor is 4.2485 or 53.1 (0.531) per cent of 
the total variance. The total variance explained by the eight components is 
simply the sum of their eigenvalues, which in this case is 8. The proportion of 
variance accounted for by any one factor is its eigenvalue divided by the sum of 
the eigenvalues, which is multiplied by 100 to convert it to a percentage. Thus, 
for example, the proportion of variance due to the first factor is about 4.25/8 or 
0.531, which multiplied by 100 equals 53.1.  

NUMBER OF COMPONENTS TO BE RETAINED 

Since the object of principal-components analysis is to reduce the number of 
variables we have to handle, this would not be achieved if we used all of them. 
Consequently, the next step is to decide how many components we should keep. 
This really is a question of how many of the smaller components we should 
retain, since we would obviously keep the first few which explain most of the 
variance. There are two main criteria used for deciding which components to 
exclude. The first, known as Kaiser’s criterion, is to select those components 
which have an eigenvalue greater than one. Since the total variance that any one 
variable can have has been standardized as one, what this means, in effect, is 
that a component which explains less variance than a single variable is excluded. 
From Table 11.2, we can see that only the first two components have 
eigenvalues greater than one.  

The second method is the graphical scree test proposed by Cattell (1966). In 
this method, a graph is drawn of the descending variance accounted for by the 
components initially extracted.  

The Minitab prompt command and subcommand for storing the eigenvalues 
in a new column (and the eigenvectors in a matrix) are  

MTB> factor c8-c11 c16-c19; 
SUBC> eigen c25 m1; 
SUBC> brief 1. 

The menu sequence for doing this is  

→Stat→Multivariate→Factor Analysis…→c8-c11→Select 
[this  puts c8-c11 in the box under Variables:] 
→c16-c19→Select→Storage…→box beside Eigenvalues: 
and in it type c25→box  beside Eigenmatrix: and in 
it type m1→OK 

To plot the eigenvalues in c25 against the eight principal components, we create 
a further column containing values from one to eight.  

MTB> set c26 
DATA> 1:8 
DATA> end 
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With the plot command, we then plot c25 against c26.  

MTB> plot c25 * c26 

The menu procedure for doing this is  

→Graph→Plot…→c25→Select [this puts c25 in the Y 
column of  the box under Graph variables:] 
→c26→Select [this puts c26 in the  X column of this 
box] →OK 

The output for this procedure is depicted in Figure 11.2. The plot typically 
shows a break between the steep slope of the initial components and the  

 

Figure 11.2 Scree test of eigenvalues  

gentle one of the later components. The term ‘scree’, in fact, is a geological one 
for describing the debris found at the bottom of a rocky slope and implies that 
these components are not very important. The components to be retained are 
those which lie before the point at which the eigenvalues seem to level off. This 
occurs after the first two components in this case, both of which also have 
eigenvalues greater than one. In other words, both criteria suggest the same 
number of components in this example. Which criterion to use may depend on 
the size of the average communalities and the number of variables and subjects. 
The Kaiser criterion has been recommended for situations where the number of 
variables is less than 30 and the average communality is greater than 0.70 or 
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when the number of subjects is greater than 250 and the mean communality is 
greater than or equal to 0.60 (Stevens, 1992).  

ROTATION OF COMPONENTS 

The first components extracted from an analysis are those which account for the 
maximum amount of variance. As a consequence, what they represent may not 
be easy to interpret since items will not correlate as highly with them as they 
might. In fact, most of the items will fall on the first component, although their 
correlations with it may not be that high. In order to increase the interpretability 
of components, they are rotated to maximize the loadings of some of the items. 
These items can then be used to identify the meaning of the component. A 
number of ways have been developed to rotate components. The two most 
commonly used methods are orthogonal rotation which produces components 
which are unrelated to or independent of one another, and oblique rotation in 
which the components are correlated.  

There is some controversy as to which of these two kinds of rotation is the 
more appropriate. The advantage of orthogonal rotation is that the information 
the components provide is not redundant, since a person’s score on one 
component is unrelated to their score on another. For example, if we found two 
orthogonal components which we interpreted as being job satisfaction and 
routine, then what this means is that in general how satisfied people are with 
their job is not related to how routine they see it as being. The disadvantage of 
orthogonal rotation, on the other hand, is that the components may have been 
forced to be unrelated, whereas in real life they may be related. In other words, 
an orthogonal solution may be more artificial and not necessarily an accurate 
reflection of what occurs naturally in the world. This may be less likely with 
oblique rotation, although it should be borne in mind that the original 
components in an analysis are made to be orthogonal.  

ORTHOGONAL ROTATION 

Only orthogonal rotation is available on Minitab. To produce a varimax 
orthogonal rotation of the first two principal-components, we use the following 
command and subcommands  

MTB> fact c8-c11 c16-c19; 
SUBC> nfac=2; 
SUBC> sort; 
SUBC> vmax; 
SUBC> brief 1. 

The first subcommand (nfac=2) specifies that the number of factors to be 
extracted is 2. The components extracted are always the largest ones. The 
second subcommand (sort) orders the loadings so that the items with the highest 
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absolute correlations with the first component are displayed first, followed by 
the items with the highest absolute loadings on the second component and so on. 
This ordering makes it easier to see which items correlate the highest with which 
components.  

The menu action for doing this is  

→Stat→Multivariate→Factor Analysis…→c8-c11→Select 
[this  puts c8-c11 in the box under Variables:] 
→c16-c19→Select→box  beside Number offactors to 
extract: and in it type 2→Varimax [when the circle 
beside it will have its centre filled] →Sortloadings 
[when a cross will be put in the box beside it] →OK 

The brief 1 output for this procedure is shown in Table 11.3. In terms of the 
orthogonally rotated solution, five items (routine1, routine3, routine4,routine2 
and satis2) load on the first component, while three items (satis3,satis4 and 
satis1) correlate most highly with the second component. The items which load 
most strongly on the first component are listed or grouped together first and are 
ordered in terms of the size of their correlations. The items which correlate most 
strongly with the second component form the second group on the second 
component. If there had been a third component, then the items which loaded 
most highly on it would constitute the  

Table 11.3Principal components brief 1 output of unsorted and sorted item 
loadings on the two orthogonally rotated components  

Factor Analysis 

Principal Component Factor Analysis of the Correlation Matrix 

Rotated Factor Loadings and Communalities 

Varimax Rotation 

68 cases used 2 cases contain missing values 

Variable Factor1 Factor2 Commnlty 

satis1 −0.379 0.634 0.546 

satis2 0.531 −0.473 0.506 

satis3 −0.037 0.866 0.752 

satis4 0.264 −0.798 0.706 

routine1 0.894 −0.243 0.859 

routine2 0.772 −0.240 0.653 

routine3 0.837 −0.220 0.749 

routine4 0.819 −0.124 0.686 
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third group on the third component, and so on. From the items loading most 
highly on them, the first component appears to be a measure of job routine and 
the second component a measure of job satisfaction.  

Although the data are made up, if we obtained a result like this with real data 
it would suggest that the way in which people answered the job-routine items 
was not related to the way they responded to the job-satisfaction ones, with the 
exception of satis2. In other words, the two groups of items seem to be 
factorially distinct. The loadings of items on components can be positive or 
negative: for example, the satis2 item has a positive correlation with the first 
component while satis1 is negatively correlated with it. In fact, this item appears 
to be a reflection of both these components, since it correlates quite highly with 
both of them. Consequently, if we wanted to have a purer measure of job 
satisfaction, it would be advisable to omit it from this scale.  

In general, the meaning of a component is determined by the items which load 
most highly on it. Which items to ignore when interpreting a component is 
arguable. It may not be appropriate to use the significance level of the 
component loading since this depends on the size of the sample. In addition, the 
appropriate level to use is complicated by the fact that a large number of 
correlations have been computed on data which come from the same subjects. 
Conventionally, items or variables which correlate less than 0.3 with a 
component are omitted from consideration since they account for less than 9 per 
cent of the variance and so are not very important. An alternative criterion to use 
is the correlation above which no item correlates highly with more than one 
component. The advantage of this rule is that components are interpreted in 
terms of items unique to them. Consequently, their meaning should be less 

Variance 3.2635 2.1934 5.4569 

% Var 0.408 0.274 0.682 

Sorted Rotated Factor Loadings and Communalities 

Variable Factor1 Factor2 Commnlty 

routine1 0.894 −0.243 0.859 

routine3 0.837 −0.220 0.749 

routine4 0.819 −0.124 0.686 

routine2 0.772 −0.240 0.653 

satis2 0.531 −0.473 0.506 

satis3 −0.037 0.866 0.752 

satis4 0.264 −0.798 0.706 

satis1 −0.379 0.634 0.546 

Variance 3.2635 2.1934 5.4569 

% Var 0.408 0.274 0.682 
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ambiguous. According to these two rules, component 1 comprises all four of the 
routine items whereas component 2 contains only satis3 and satis4. However, 
the use of these two conventions in conjunction produces a highly stringent set 
of criteria for deciding which variables should be included in which 
components. Many researchers ignore the second convention and emphasize all 
loadings of 0.3 and above regardless of whether any variables are thereby 
implicated in more than one component.  

The amount and proportion of variance that each of the orthogonally rotated 
components accounts for is also shown in the output. The first component 
explains about 41 (0.408) per cent of the variance and the second component 
about 27 (0.274) per cent.  

EXERCISES 

1. You have developed a questionnaire to measure anxiety which consists of 
ten items. You want to know whether the items constitute a single factor. To 
find this out, would it be appropriate to carry out a factor analysis on the ten 
items?  

2. If you were to carry out a factor analysis on ten items or variables, what 
would be the minimum number of subjects or cases you would use?  

3. What is the unique variance of a variable?  

4. How does principal-components analysis differ from principal-axis 
factoring?  

5. How many components are there in a principal-components analysis?  

6. Which component accounts for most of the variance?  

7. Why are not all the components extracted?  

8. Which criterion is most commonly used to determine the number of 
components to be extracted?  

9. What is meant by a loading?  

10. Why are components rotated?  

11. What is the main advantage of orthogonal rotation?  
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Appendix I  
Critical values of the Pearson Product  

Moment Correlation Coefficient  

  Level of significance for one-tailed test  

  0.05  0.025  0.01  
  Level of significance for two-tailed test  

df=N−2  0.10  0.05  0.02  

1 0.9877 0.9969 0.9

2 0.9000 0.9500 0.9

3 0.8054 0.8783 0.9

4 0.7293 0.8114 0.8

5 0.6694 0.7545 0.8

6 0.6215 0.7067 0.7

7 0.5822 0.6664 0.7

8 0.5494 0.6319 0.7

9 0.5214 0.6021 0.6

10 0.4973 0.5760 0.6

11 0.4762 0.5529 0.6

12 0.4575 0.5324 0.6

13 0.4409 0.5139 0.5

14 0.4259 0.4973 0.5

15 0.4124 0.4821 0.5

16 0.4000 0.4683 0.5

17 0.3887 0.4555 0.5

18 0.3783 0.4438 0.5

19 0.3687 0.4329 0.5

20 0.3598 0.4227 0.4

25 0.3233 0.3809 0.4

30 0.2960 0.3494 0.4

35 0.2746 0.3246 0.3



40 0.2573 0.3044 0.3

45 0.2428 0.2875 0.3

50 0.2306 0.2732 0.3

60 0.2108 0.2500 0.2

70 0.1954 0.2319 0.2

90 0.1726 0.2050 0.2

100 0.1638 0.1946 0.2

Source: Taken from Table VII of Fisher and Yates, StatisticalTables for Biological, Agricultur
and Medical Research, published by Longman Group UK Ltd, 1974, and reproduced by 
permission of the authors and publishers.  
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Appendix II  
Critical values for the Spearman Rank-Order  

Correlation Coefficient  

  Significance level for a one-tailed test at  

  0.05  0.025  0.005  
  Significance level for a two-tailed test at  

N  0.10  0.05  0.01  

5 0.900 1.000 

6 0.829 0.886 1

7 0.715 0.786 0

8 0.620 0.715 0

9 0.600 0.700 0

10 0.564 0.649 0

11 0.537 0.619 0

12 0.504 0.588 0

13 0.484 0.561 0

14 0.464 0.539 0

15 0.447 0.522 0

16 0.430 0.503 0

17 0.415 0.488 0

18 0.402 0.474 0

19 0.392 0.460 0

20 0.381 0.447 0

21 0.371 0.437 0

22 0.361 0.426 0

23 0.353 0.417 0

24 0.345 0.407 0

25 0.337 0.399 0

26 0.331 0.391 0

27 0.325 0.383 0
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28 0.319 0.376 0

29 0.312 0.369 0

30 0.307 0.363 0

Source: Glasser, G.J. and Winter, R.F. ‘Critical Values of the Coefficient of Rank Correlation 
Testing the Hypothesis of Independence,’ Biometrika, 48, 444 (1961). Permission for the use o
this table was granted by the Biometrika Trustees.  
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Answers to exercises  

CHAPTER 1 

1. These forms of analysis concentrate upon one, two and three or more 
variables respectively.  

2. It is necessary in order to ensure that members of experimental and control 
groups are as alike as possible. If members of the experimental and control 
groups are alike any contrasts that are found between the two groups cannot be 
attributed to differences in the membership of the two groups; instead, it is 
possible to infer that it is the experimental stimulus (Exp) that is the source of 
the differences between the two groups.  

3. The reasoning is faulty. First, those who read the quality dailies and those 
who read the tabloids will differ from each other in ways other than the 
newspapers that they read. In other words, people cannot be treated as though 
they have been randomly assigned to two experimental treatments—qualities 
and tabloids. Second, the causal inference is risky because it is possible that 
people with a certain level of political knowledge are more likely to read certain 
kinds of newspaper, rather than the type of newspaper affecting the level of 
political knowledge.  

CHAPTER 2 

1. Since not all possible religious affiliations have been included (e.g. Baha’i, 
Zoroastrianism), it is important to have a further option in which these can be 
placed. This can be called ‘Other’.  

2. The most convenient way of coding this information is to assign a number 
to each option, such as 1 for Agnostic, 2 for Atheist, and so on.  

3. This information should be coded as missing. In other words, you need to 
assign an asterisk to data that are missing.  

4. If this happened very infrequently, then one possibility would be to code 
this kind of response as missing. Since the answer is not truly missing, an 
alternative course of action would be to record one of the two answers. There 
are a number of ways this could be done. First, the most common category could 
be chosen. Second, one of the two answers could be selected at random. Third, 
using other information we could try and predict which of the two was the most 
likely one. If there were a large number of such multiple answers, then a 



separate code could be used to signify them.  

5. If we provide an identification number for each subject and if Agnostics are 
coded as 1 and Atheists as 2, your data file should look something like this:  

01 1 25  
02 1 47  
03 2 33  
04 2 18  

In other words, the information for the same participant is placed in a separate 
row, while the information for the same variable is placed in the same column
(s).  

6. Two columns as we have to include the ‘Other’ category.  

7. There are usually no more than 80 columns to a line.  

8. Eight characters.  

CHAPTER 3 

1. With the prompt system  

MTB> copy relevant variables;   
SUBC> use ‘ethnicgp’=4. 

With the menu system  

→Manip→Copy Columns…→relevant variables→Select 
[this puts them  in the box under Copyfrom columns:] 
→box under To columns: and type  new variables in 
it→Use Rows…→Use rowswith column equal to [eg,−4.5 
−2:3 14): →box beside it→ethnicgp→Select→type 4 
[which goes  in the box below] →OK→OK 

2. With the prompt system  

MTB> let c30=(‘ethnicgp’=2 or ‘ethnicgp’=4) and 
(‘gender’=2) and(‘age’ le 25) 
MTB> copy relevant variables;   
SUBC> use c30=1. 

With the menu system  

→Calc→MathematicalExpressions…→type c30 in the box 
beside  Variable [new or modified]: →box under 
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Expression: and in it type  (‘ethnicgp’=2 or 
‘ethnicgp’=4) and (‘gender’=2) and (‘age’ le 25)→OK 

→Manip→Copy Columns…→relevant variables→Select 
[this puts them  in the box under Copyfrom columns:] 
→box under To columns: →type  new names of 
variables→Use Rows…→Use rowswith column equal to
[eg, −4.5 −2:3 14] →box beside it→c30→Select→type 
1 [which goes in  the box below] →OK→OK 

3. With the prompt system  

MTB> code (2) 1 (3 4) 2 ‘skill’ new column   

With the menu system  

→Manip→Code DataValues…→skill→Select [this puts 
skill in the  box under Code data from columns:] 
→box under Into columns: and  type name of variable 
in it→first box beneath Original values [eg, 1:412]: 
and in it type 2→first corresponding box under New: 
and in it type 1→second box under Original values 
[eg, 1:4 12]: and in it type 3 and 4→second 
corresponding box under New: and in it type 2→OK 

4. With the prompt system  

MTB> code (1:4999) 1 (5000:9999) 2 (10000:50000) 
‘income’ new column   

With the menu system  

→Manip→Code DataValues…→income→Select [this puts 
income in  the box beneath Code data from columns:] 
→box under Into columns: and type new variable in 
it→first box under Original values [eg, 1:4 
12]:  and in it type 1:4999→first corresponding box 
under New: and in it type 1→second box under 
Original values [eg, 1:4 12]: and in it type 
5000:9999→second corresponding box under New: and in 
it type 2→third box under  Original values [eg, 1:4 
12]: and in it type 10000:50000→third  corresponding 
box under New: and in it type 3→OK 

5. With the prompt system  

MTB> name new column ‘days’ 
MTB> let ‘days’=‘weeks’ * 7 
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With the menu system  

→Calc→MathematicalExpressions…→type days in the box 
beside  Variable [new or modified]: →box under 
Expression: and in it type  (‘weeks’ * 7) →OK 

CHAPTER 4 

1. (b).  

2. It forces the researcher to think about the breadth of the concept and the 
possibility that it comprises a number of distinct components.  

3. (a) dichotomous  
(b) nominal  
(c) ordinal  
(d) interval/ratio.  

4. Interval.  

5. External reliability.  

6. Internal reliability.  

7. (a).  

CHAPTER 5 

1. If you are using the prompt system:  

MTB> tally ‘prody’; 
SUBC> counts; 
SUBC> percents. 

If you are using the menu system:  

→Stat→Tables→Tally…→incgrp→select→ [make sure 
that there is a  cross in the relevant boxes in the 
windows by both Counts andPercents. If  crosses are 
not present, simply click once in each or either 
box.] →OK 

2. 17.39 per cent.  

3. (c)  

4. You will need to find the first and third quartiles. With the prompt system:  
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MTB> describe ‘satis’ 

With the menu system:  

→Stat→Basic Statistics→Descriptive Statistics…
→satis→select→OK 

5. 6 (i.e. 14–8).  

6. It takes all values in a distribution into account and is easier to interpret in 
relation to the mean which is more commonly employed as a measure of central 
tendency than the median.  

7. Between 4.23 and 17.446. Some 95.44 per cent of cases will probably lie 
within this range.  

CHAPTER 6 

1. A representative sample is one which accurately mirrors the population 
from which it was drawn. A random sample is a type of sample which aims to 
enhance the likelihood of achieving a representative sample. However, due to a 
number of factors (such as sampling error or non-response), it is unlikely that a 
random sample will be a representative sample.  

2. Because it enhances the likelihood that the groups (i.e. strata) in the 
population will be accurately represented.  

3. When a population is highly dispersed, the time and cost of interviewing 
can be reduced by multistage cluster sampling.  

4. No. Quite aside from the problems of non-response and sampling error, it is 
unlikely that the Yellow Pages provide a sufficiently complete and accurate 
sampling frame.  

5. Since there are only two possible outcomes (heads and tails) and the coin 
was flipped four times, the probability of finding the particular sequence you did 
would be one out of sixteen (2×2×2×2) or 0.0625.  

6. No. Even if the coin was unbiased, you would still have a one in sixteen 
chance that you would obtain four heads in a row.  

7. The probability of obtaining any sequence of two heads and two tails is six 
out of sixteen or 0.375 since six such sequences are possible. In other words, 
this is the most likely outcome.  

8. Since there are only two outcomes to each question (true and false), the 
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most likely score for someone who has no general knowledge is 50 points 
(0.5×100 which is the mean of the probability distribution).  

9. Once again, there are only two outcomes for each person (butter or 
margarine). The probability of guessing correctly is 0.5. Since fifty people took 
part, the mean or most likely number of people guessing correctly would be 
twenty-five.  

10. The null hypothesis would be that there was no difference in talkativeness 
between men and women.  

11. The non-directional hypothesis would be that men and women differ in 
talkativeness. In other words, the direction of the difference is not stated.  

CHAPTER 7 

1. A chi-square test should be used since there are two unrelated categorical 
variables (i.e. shop and type of book) and the number of books sold in any one 
category is fixed. In other words, the number of books in this case is a frequency 
count.  

2. The null hypothesis is that the number of books sold according to shop or 
type of book does not differ from that expected by chance.  

3. With the prompt system  

MTB> chisquare ‘shop1’ ‘shop2’ 

With the menu system  

→Stat→Tables→ChisquareTest…→shop1→Select [this 
puts shop1 in the box under Columns containing the 
table:] →shop2→Select→OK 

4. We would use a two-tailed level of significance in this case and in others 
involving a comparison of three or more cells since it is not possible to 
determine the direction of any differences as all differences have been made 
positive by being squared.  

5. Since the value 0.25 is greater than the conventional criterion or cut-off 
point 0.05, we would conclude that the number of books sold did not differ 
significantly according to shop or type of book. A probability value of 0.25 
means that we could expect to obtain this result by chance one out of four times. 
To be more certain that our result is not due to chance, it is customary to expect 
the finding to occur at or less than five times out of a hundred.  

6. A finding with a probability level of 0.0001 would not mean that there had 
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been a greater difference in the number of books sold than one with a probability 
level of 0.037. It would simply mean that the former finding was less likely to 
occur (once in 10,000 times) than the latter one (thirty-seven out of a thousand 
times).  

7. A binomial test would be used to determine if there had been a significant 
difference.  

8. If we specify the direction of the difference in the number of books sold 
between the two shops, we would use a one-tailed level of significance.  

9. You would simply divide the two-tailed level by 2, which in this case 
would give a one-tailed level of 0.042.  

10. It would be inappropriate to analyse these data with a binomial test since it 
does not take account of the number of men and women who reported not 
having this experience. In other words, it does not compare the proportion of 
men with the proportion of women reporting this experience. Consequently, it is 
necessary to use a chi-square test for two samples. Note, however, that it would 
have been possible to have used a binomial test if the proportion of people 
falling in love in one sample was compared with that in the other. However, it 
may be simpler to use chi-square.  

11. Since the number of close friends a person has is a ratio measure and the 
data being compared come from two unrelated samples (men and women), an 
unrelated t test should be used.  

12. The pooled variance estimate is used to interpret the results of a t test 
when the variances do not differ significantly from one another.  

13. You would use a repeated-measure test since the average number of books 
sold is an interval/ratio measure which can vary between the ten shops, and the 
cases (i.e. the ten shops) are the same for the three time-periods.  

CHAPTER 8 

1. (a)  

MTB> table ‘prody’ ‘gender’; 
SUBC> counts; 
SUBC> colpercents; 
SUBC> chisquare. 

With the menu system:  

→Stat→Tables→Cross Tabulation…
→prody→select→gender→select→ [ensure that there 
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is a mark in the small boxes by Counts and  Column 
percents. If no mark is present, click once in the 
relevant boxes.  Also, click on the box by 
Chisquareanalysis. A cross will appear in each  box 
that has been chosen.] →OK 

(b) Chi-square would probably be the best choice.  
(c) With (x2=1.183 and p>.05, the relationship would be regarded as 

nonsignificant.  
(d) 35.48 per cent.  

2. The reasoning is faulty. Chi-square cannot establish the strength of a 
relationship between two variables. Also, statistical significance is not the same 
as substantive significance, so that the researcher would be incorrect in believing 
that the presence of a statistically significant chi-square value indicates that the 
relationship is important.  

3. (a) With the prompt system:  

MTB> correlation ‘income’ ‘years’ ‘satis’ ‘age’ 

With the menu system:  

→Stat→Basic Statistics→Correlation…
→income→select→years→select→satis→select→age→select→OK

(b) The correlation between income and years (r=0.81).  
(c) 66 per cent.  

4. There is a host of errors. The researcher should not have employed r to 
assess the correlation, since social class is an ordinal variable. The amount of 
variance explained is 53.3 per cent, not 73 per cent. Finally, the causal inference 
(i.e. that social class explains the number of books read) is risky with a 
correlational/ survey design of this kind.  

5. The statistical significance of r is affected not just by the size of r, but also 
by the size of the sample. As sample size increases, it becomes much easier for r 
to be statistically significant. The reason, therefore, for the contrast in the 
findings is that the sample size for the researcher’s study, in which r=0.55 and 
p>0.05, is smaller than the one which found a smaller correlation but was 
statistically highly significant.  

6. (a) Since these two variables are ordinal, a measure of rank correlation will 
probably be most appropriate.  

(b) First, they will need to be ranked. The procedure for doing this can be 
found on p. 175. Assuming that the ranked variables have been called ‘rprody’ 
and ‘rcommit’, the following command would be used with the prompt system:  
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MTB> correlation ‘rprody’ ‘rcommit’ 

With the menu system:  

→Stat→Basic Statistics→Correlation…
→rprody→select→rcommit→select→OK 

(c) rho=0.31.  

7. (a) The intercept.  
(b) The regression coefficient. For each extra year, autonom increases 

by .0623.  
(c) Not terribly well. Only 28 per cent of the variance in autonom is 

explained by age.  
(d) 10.308.  
(e) With the prompt system:  

MTB> regress ‘autonom’ 1 ‘age’ 

With the menu system:  

→Stat→Regression→Regression…
→autonom→select→age→select→OK 

CHAPTER 9 

1. One advantage is that a more accurate measure of error variance is 
provided. The other is to examine interaction effects between the two variables.  

2. An interaction is where the effect of one variable is not the same under all 
the conditions of the other variable.  

3. You would conduct an analysis of variance (ANOVA) to determine 
whether the interaction between the two variables was significant.  

4. Performance is the dependent variable since the way in which it is affected 
by alcohol, anxiety and gender is being investigated.  

5. There are three factors, i.e. alcohol, anxiety and gender.  

6. There are three levels of anxiety.  

7. It can be described as a 4×3×2 factorial design.  

8. With the prompt system  

MTB> glm perform=alcohol anxiety gender alcohol * 

Answers to exercises    282



anxiety &CONT> alcohol * gender anxiety * gender 
alcohol * anxiety * gender 

With the menu system  

→Stat→ANOVA→General Linear Model…→perform→Select 
[this  puts perform in the box beside Response:] 
→box under Model:→alcohol→Select [this puts alcohol 
in this box] →anxiety→Select→gender→Select→type 
alcohol * anxiety→type alcohol * gender→type 
anxiety * gender→type alcohol * anxiety * gender→OK 

9. First, you would find out if there were any differences in intelligence 
between the three conditions, using one-way analysis of variance. If there were 
no significant differences, then you could assume that the effect of intelligence is 
likely to be equal in the three conditions and that there is no need to control for it 
statistically. If you had found that there were significant differences in 
intelligence between the three conditions, you would need to determine if there 
was any relationship between intelligence and the learning to read measure. If 
such a relationship existed, you could control for the effect of intelligence by 
conducting an analysis of covariance.  

10. With the prompt system  

MTB> glm read=methods intell; 
SUBC> covariates intell. 

With the menu system  

→Stat→ANOVA→General Linear Model…→read→Select 
[this  puts read in the box beside Response:] →box 
under Model: →methods→Select [this puts methods in 
this box] →intell→Select→box under  Covariates 
[optional]: →intell→Select→OK 

11. It is a between-subjects design with multiple measures.  

12. With the prompt system  

MTB> glm intell likeable honesty confid=attract; 
SUBC> manova. 

With the menu system  

→Stat→ANOVA→General Linear Model…→intell→Select 
[this  puts intell in the box beside Response:] 
→likeable→Select→honesty→Select→confid→Select→box 
under Model: →attract [this puts  attract in this 
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box] →box beside Include multivariateANOVA→OK 

13. It is a within-subjects or repeated-measures design with multiple measures.  

14. You would have to distinguish the ratings of the attractive face from those 
of the unattractive one which you could do with a column called attract where 
the attractive face was coded 1 and the unattractive face 2. You would also need 
another column which we could call subjects and which consecutively numbers 
the cases in the same order for the two faces.  

With the prompt system  

MTB> anova intell likeable honesty confid=attract 
subjects 

With the menu system  

→Stat→ANOVA→Balanced ANOVA…→intell→Select [this 
puts  intell in the box beside Response:] 
→likeable→Select→honesty→Select→confid→Select→box 
under Model: →attract [this puts  attract in this 
box] →subjects→Select→OK 

15. With the prompt system  

MTB> let c30=‘pre’-‘post’ 
MTB> let c31=‘post’-‘fol’ 
MTB> ttest c30 c31 

With the menu system  

→Calc→MathematicalExpressions…→c30→Select [this 
puts c30 in  the box beside Variable [new or 
modified]:] →box under Expression: and in it type 
‘pre’-‘post’→OK 
→Calc→MathematicalExpressions…→c31→Select [this 
puts c31 in  the box beside Variable [new or 
modified]:] →box under Expression: and in it type 
‘post’-‘fol’→OK 
→Stat→Basic Statistics→1-Sample t…→c30 c31→Select 
[this puts  c30 c31 in the box beside Variables:] 
→OK 

CHAPTER 10 

1. To a large extent, in that 71 per cent of women support equal pay 
legislation, as against 58 per cent of men.  
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2.Table 10E.2 suggests that the relationship between sex and approval for 
equal pay legislation is moderated by age. For respondents under the age of 35, 
there is greater overall support for legislation, and the difference between men 
and women is greater than in Table 10E.1. Among those who are 35 and over, 
the overall level of approval is lower and the difference between men and 
women is much less than in Table 10E.1. Clearly, the relationship between sex 
and approval for equal pay legislation applies to the under-35s in this imaginary 
example, rather than to those who are 35 or over.  

3. In the prompt system:  

MTB> table ‘commit’ ‘gender’ ‘ethnicgp’; 
SUBC> counts; 
SUBC> colpercents; 
SUBC> layout 12. 

In the menu system:  

→Stat→Tables→Cross Tabulation…
→commit→Select→gender→Select→ethnicgp→Select→ 
[if the boxes by Counts and ColumnPercents do not 
have a tick in them, you should click once on each of 
these  boxes] → Options…→type 1 in the box in the 
middle of the clause Usethe first…classification 
variables for rows and type 2 in the box in 
the  middle of the clause and the next…for 
columns→OK→OK 

4. The main possibility is that the relationship between income and attendance 
at religious services is spurious. Age is probably related to both income and 
attendance. However, it should also be noted that the relationship between 
income and attendance does not disappear entirely when age is controlled.  

5. In the prompt system:  

MTB> brief 0 
MTB> regress ‘income’ 1 ‘age’; 
SUBC> residuals c60. 
MTB> regress ‘satis’ 1 ‘age’; 
SUBC>residuals c61. 
MTB> brief 2 
MTB> correlation c60 c61 

6. (a) 94.4.  
(b) 78 per cent.  
(c) This was a trick question. Since the three regression coefficients presented 

in the equation are unstandardized, it is not possible to compare them to 
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determine which independent variable has the largest effect on y. In order to 
make such an inference, standardized regression coefficients would be required.  

(d) For every one unit change in x3, y decreases by 1.4.  

7. You will need to work with the standardized variables (see pp. 242–4 for 
the procedure for creating these). In the prompt system:  

MTB> regress ‘satiss’ 2 ‘autonoms’ ‘routines’ 
MTB> regress ‘absences’ 3 ‘satiss’ ‘autonoms’ 
‘routines’ 

In the menu system:  

→Stat→Regression→Regression…
→satiss→Select→autonoms 
→Select→routines→Select→OK 
→Stat→Regression→Regression…
→absences→Select→satiss 
→Select→autonoms→Select→routines→Select→OK 

8. (a) According to the adjusted R2, 59.1 per cent of the variance in satis 
(satiss) is explained by autonom (autonoms) and routine (routines). 

(b) Yes. The t values for autonom (autonoms) and routine (routines) are 
significant at p<0.0000 and p<0.0002 respectively.  

(c) −0.29106.  

9. The largest effect coefficient is for satis (−0.50). The effect coefficients for 
autonom and routine respectively were −0.115 and −0.02.  

CHAPTER 11 

1. No. If you were to do this, you would be examining the way in which your 
anxiety items were grouped together. In other words, you may be analysing the 
component structure of anxiety itself. To find out if your ten items assessed a 
single component of anxiety, you would need to include items which measured 
other variables such as sociability.  

2. At least 50–100 cases.  

3. This is the variance which is not shared with other variables.  

4. Principal-components analysis analyses all the variance of a variable while 
principal-axis factoring analyses the variance it shares with the other variables.  

5. There are as many components as variables.  

6. The first component always accounts for the largest amount of variance.  
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7. This would defeat the aim of principal-components analysis which is to 
reduce the number of variables which need to be examined. The smaller 
components may account for less variance than that of a single variable.  

8. Kaiser’s criterion which extracts components with an eigenvalue greater 
than one.  

9. A loading is a measure of association between a variable and a component.  

10. Components are rotated to increase the loading of some items and to 
decrease that of others so as to make the components easier to interpret.  

11. The advantage of orthogonal rotation is that since the components are 
uncorrelated with one another, they provide the minimum number of 
components required to account for the relationships between the variables.  
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Index  

(Entries in bold are Minitab commands and key words.)  

%interact200 
%fitline185–6 
 
analysis of covariance189 
analysis of variance78, 113, 184–5, 187;  

oneway137–41, 209;  
single-factor repeated measures with three or more related means144–5 

ANOVA139, 146, 198, 200–2, 206, 208, 214 
anova146, 208 
arithmetic mean see mean, arithmetic 
 
bar chart72–3 
Basic Statistics130–1, 133, 135–7, 142, 144, 172, 174, 235, 254 
Bentler, P.M.253 
beta weight see standardized regression coefficient 
between-subjects design112 
binomial distribution104 
binomial test113, 114–16;  

generation of with Minitab115–16 
bivariate analysis:  

and differences110–47;  
and relationships6, 149;  
concept of6, 57, 66, 149, 189 

Blauner, R.67 
Bohrnstedt, G.W.73 
Boneau, C.114 
Bonferroni test147 
boxplot86–8;  

generation of with Minitab87–8 
Brayfield, A.57, 64–5 
Bridgman, P.W.4 
brief185, 198–9, 203–4, 206, 235–6, 256 
Bryman, A.1, 2, 5, 7, 64, 67 
 
Cammann, C.67 
Campbell, D.T.67 
Carmines, E.G.66 
case, notion of in Minitab18 
Castellan, N.J.114 
categorical variable see nominal variable 



Cattell, R.B.253, 258 
causality, concept of7–15, 153, 170, 180–1, 219, 244 
cdf115 
center243, 246 
central tendency, concept of77 
CharacterGraphs85 
Child, J.56, 166, 182 
chisquare117–18 
chi-square test (X2):  

and contingency table analysis154, 153–63, 186–7, 231;  
generation of with Minitab154, 158–61;  
two or more unrelated samples113, 116–19;  
generation of with Minitab17–18;  
Yates’s Correction for Continuity162 

code44–5, 47, 50, 75, 116 
Code DataValues44–5, 47, 50,116 
coefficient of determination (r2)169–70, 179–80, 184, 239–40, 242, 246 
Cohen, L.162, 169 
combined design210–15 
common variance, in principal-components analysis255–6 
communality, concept of in principal-components analysis256 
comparison group variable110 
comparison group:  

related112;  
unrelated111–12 

Comparisons140 
computers, using16–18 
concepts, measurement of4, 7, 55–6, 64 
concepts, nature of3–4, 55, 64 
Conover, W.J.114 
contingency table analysis:  

and bivariate analysis150–64, 186–7;  
generation of with Minitab154–5;  
and multivariate analysis220–31;  
generation of with Minitab231 

copy38–40, 42, 46, 47 
Copy Columns38–9, 47 
correlated groups see dependent groups 
correlation144, 172, 174, 235–6, 254 
correlation:  

concept of5, 59, 162–75, 179–80;  
linear164–73; 
rank164, 173–5;  
see also Pearson’s Product Moment Correlation Coefficient;  
phi;  
Spearman’s rho 

covariance, analysis of see analysis of covariance 
covariate design201–4 
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covariate, in multivariate analysis of variance and covariance194–5 
Cramer, D.15, 66, 162, 235 
Cramer’s V163, 187 
criterion variable194 
Cronbach, L.J.67 
crosstabulation150–64 
 
data files18–22 
Data window21–2, 27–31 
Davis, J.A.250 
decile range81 
degrees of freedom, concept of118, 138–9, 157 
dependent groups112 
dependent variable7, 110, 192, 194 
Depression Project:  
data197;  
description196–7 
describe82 
Descriptive Statistics82 
design see combined design;  

experimental design;  
factorial design;  
mixed between-within design;  
multiple measures design;  
panel design;  
survey/correlational design 

dichotomous variable59–61, 114, 187 
differences, examination of114 
dimensions of concepts61–4 
dispersion, concept of79 
Display Data46, 48, 121, 125, 128, 145 
distribution-free tests see non-parametric tests 
distributions see bionomial distribution;  

normal distribution;  
t distribution 

Durkheim, E.4 
 
EDA87 
eigenvalue, concept of in principal-components analysis256–7 
end24 
erase52 
Erase Variables53 
error term176, 236 
error variance, in principal-components analysis255 
expected frequencies, concept of118, 156 
experimental design3, 5, 6, 10–13, 15, 218;  

types of12–13 
Eysenck, H.J.253 
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Eysenck, S.B.G.253 
 
F test113, 137, 139–40, 145, 184, 187, 193, 199, 239–40, 242;  

for two unrelated variances134–5 
factor256, 258, 260 
factor analysis, exploratory252;  

compared with confirmatory factor analysis253, 256;  
see principal-components analysis 

factor, concept of in multivariate analysis of variance191 
factorial design13, 189–94, 197–201, 218–19 
Fiske, D.W.67 
frequency distributions, tables70–4;  

generation of with Minitab75 
Friedman test113, 127–30;  

generation of with Minitab127–30 
 
Games, P.114 
glm198–206 
Glock, C.Y.56 
Gorsuch, R.L.255 
Gould, S.J.77 
Goyder, J.100 
 
Hall, R.H.62 
help53–4 
Help54 
heteroscedasticity181 
Hirschi, T.2–6 
Histogram76 
histogram74;  

generation of with Minitab75–6 
histogram76, 86 
Holliday, M.162, 169 
Huff, D.1 
Huitema, B.202 
hypothesis:  

concept of3–4, 6–7, 55;  
directional106;  
nondirectional106–7;  
null106, 108, 136, 156–7 

 
independent groups112 
independent variable7, 10, 192, 218 
indicator, nature of an56, 62 
inferential statistics4–5 
info26 
interaction effect see interaction, statistical 
interaction, statistical: 
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concept of189–92, 227 
internal validity10;  

see also causality 
inter-quartile range80–1, 85, 86;  

generation of with Minitab82 
interval/ratio variable58–61, 111, 112, 114, 124, 135, 162, 164, 175, 186, 187 
intervening variable223–6, 232 
invcdf118, 134, 158, 161, 199 
 
Jenkins, G.D.67 
Job Survey:  

general description of18–20;  
questionnaires35–6;  
raw data19–20;  
variables27, 59–61 

Jöreskog, K.G.253 
 
Kaiser’s criterion258–9 
Knoke, D.73 
kruskal-wallis121 
Kruskal-Wallis H test113, 121–4;  

generation of with Minitab121–4 
 
Labovitz, S.60 
Land, K.C.250 
Lawler, E.E.67 
Lazarsfeld, P.F.62 
let24, 41, 43, 48, 50–1, 125, 141, 202 
Levene’s test113, 136–7 
Likert scaling57 
line of best fit176–9 
Locke, E.A.5 
logarithmic transformation166, 202 
logical operators42–3 
Lord, F.M.112 
Lucas, P.114 
 
manipulation of variables5, 12, 13 
mann-whitney121 
Mann-Whitney U test113, 119–21, 126, 136;  

generation of with Minitab119–21 
marginals:  

column150, 161;  
row150 

Marshall, G.158–9 
Maxwell, S.E.147 
McNemar, Q.143 
mean32, 39 
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mean, arithmetic77–8, 89, 91–2;  
generation of with Minitab82 

means215 
median77–9, 81, 85–6, 89, 92;  

generation of with Minitab82 
Meehl, P.E.67 
Merton, R.K.2 
Minitab, versions of16 
missing data, values20, 48–53 
Mitchell, T.R.100 
mixed between-within design195–6, 206–10 
mode77, 79 
moderated relationships218, 227–8, 232 
multicollinearity238 
multiple causation229–31, 232 
multiple coefficient of determination (R2)239–40 
multiple correlation (R)240;  

and statistical significance240 
multiple measures design195, 204–6 
multiple regression see regression, multiple 
multiple-item measures48–51, 56–7, 59–60, 65–6 
multivariate analysis, concept of6, 7, 15, 189, 218–19 
Murray, I.83 
 
Nadler, D.A.67 
name24–5, 38, 41–2, 47, 49, 50–1, 75, 116, 121, 127–8, 144–5, 173, 207, 211, 243 
noconstant246 
nominal variable58, 60–1, 110, 124, 162, 186–7 
non-parametric tests:  

criteria for selecting89, 111, 112–14, 173 
Nonparametrics121, 123, 126, 129 
normal distribution88–92, 104, 112, 131 
null hypothesis see hypothesis, null 
 
O’Brien, R.M.164 
oblique rotation, in factor analysis260 
one-sample test105 
oneway139–40 
operationalization4, 55–6;  

see also concepts, measurement of 
order effect196 
ordinal variable58, 60–1, 111, 112–14, 124, 162, 164, 173, 175, 186–7 
orthogonal rotation, in factor analysis260–2 
outfile33 
outliers, importance of: 

in regression78, 85;  
in univariate analysis78 

Overall, J.E.198 
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ow33 
 
panel design15, 125 
Panel Study:  

general description of124–5;  
raw data125 

parametric tests89, 111, 112–14, 135, 189 
partial correlation coefficient232–6;  

and Pearson’s r232;  
generation of with Minitab234–6 

participants19 
path analysis240–50 
pdf115 
Pearson’s Product Moment Correlation Coefficient (Pearson’s r)164–73, 175, 179–81, 
186–7;  

and statistical significance170–2;  
generation of with Minitab172 

Pedhazur, E.J.249–50 
percentages:  

column151–4;  
in contingency tables250–2;  
in frequency distributions, tables72–3;  
row153–4 

phi coefficient ( 162–3,187 
plot172 
Plot172 
population, concept of91, 94 
power, statistical108–9, 202 
principal-components analysis:  

generation of with Minitab256–8, 260–2;  
orthogonality in256; 
rotation of factors in259–62;  
selecting number of factors in258–9;  
uses of64, 252–3;  
see also factor analysis 

print24, 25, 45, 47, 121, 125, 145 
probability sampling see sampling, probability 
prompt system21, 22–7 
psychology4, 5, 19, 114 
 
qualitative research1 
quantitative research1–7 
 
random assignment11, 194, 218–19 
range79–80;  

generation of with Minitab82 
rank173, 175, 187 
Rank174–5 
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ratio variable58–9;  
see also interval/ ratio variable 

read22–3, 26, 159 
receding variables43–6 
regress183–6, 235–6, 240, 243–5, 247 
Regression183, 185, 241–2, 247 
regression, bivariate175–87;  

compared with correlation177–80;  
intercept in176;  
use of in prediction175–81;  
use of Minitab to generate240–4 

regression, multiple236–44;  
and prediction237–8;  
and statistical significance239–40;  
generation of with Minitab240–4 

relationship:  
concept of6, 7–9, 13, 152–4;  
curvilinear166–7;  
first order;  
negative164–5, 168–9, 178;  
perfect166–8;  
positive165–6;  
second order219;  
strength of162, 168–9;  
zero order219 

relationships, compared to examination of differences6, 149 
reliability of measures: 

external65;  
inter-coder66;  
inter-observer66;  
internal65–6;  
split-half, 65–6;  
generation of with Minitab65–6;  
test-retest65 

repeated measures112, 144 
residual184–5, 235–6 
respondents13, 19 
retrieve26 
retrieving data26, 31 
Rosenberg, M.219 
rn49–50 
Rothe, H.57, 64, 65 
Row Statistics47, 48, 50 
rsum47, 50 
 
sample:  

convenience100;  
multistage cluster98;  
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representative4, 94–6;  
simple random4–5, 95–6;  
stratified96–8;  
systematic96 

sampling:  
concept of4–5, 94–5;  
error99, 156, 171;  
frame95–6;  
probability95;  
problems in98–100 

save25–6 
saving data25–6 
scatter diagram164–9;  

generation of with Minitab125–6 
Schweiger, D.M.5 
scree test258–9 
set22, 24, 128, 144, 207–8, 212, 258 
Siegel, S.114, 135 
sign test113, 124–6;  

generation of with Minitab125–6 
significance level103–4, 106–7 
significance, statistical see statistical significance 
skewed distributions92 
Snizek, W.E.64 
sociology1, 5, 19, 114 
Sörbom, D.253 
sort210 
Spearman’s rho (ρ)173–5, 186;  

generation of with Minitab173–5 
specific variance, in principal-components analysis255 
Spiegel, D.K.198 
spurious relationship9, 14, 218, 220–3, 226, 229, 232 
stack127–8, 144–5, 207, 212 
Stack127–8, 144–5, 207–8, 212 
standard deviation81–2, 91, 135;  

generation of with Minitab82 
standard error of the mean131–2 
Standardize244, 246–7 
standardized regression coefficient237–9, 242–4;  

generation of with Minitab242–4 
Stark, R.56 
statistical power see power, statistical 
statistical significance:  

concept of91, 94, 100–9, 110, 116, 119, 156;  
one-tailed test of107–8, 172, 174;  
robustness of test of114;  
two-tailed test of107–8, 172, 174 

stats143 
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stdev143 
stem and leaf display83–8;  

generation of with Minitab85–6 
stem-and-leaf85 
stest125 
Stevens, J.147, 204, 259 
Stevens, S.S.58, 135 
stop27 
structural equations245–6 
subjects19 
survey research4, 7, 13 

see also survey/ correlational design 
survey/correlational design3, 5, 9–10, 13–15, 218 
 
t distribution104 
t test113, 184, 240, 242;  

for one sample130–1;  
for two related means141–3;  
for two unrelated means132–3;  
for two related variances143–4;  
unrelated135–6, 141–2, 201;  
pooled versus separate variances135 

table117, 231 
Tables51, 75, 117, 119, 159, 209, 231 
tally51, 75 
test variable, in multivariate analysis219, 232 
theory, in quantitative research2–3, 6–7, 149 
ttest130–1, 142 
Tukey test140–1, 147, 201 
Tukey, J.W.83, 114 
twosample133, 135 
twot133, 135, 136 
Type I error104, 108, 156, 204 
Type II error104, 108–9 
 
uncorrelated groups see independent groups 
unique variance, in principal-components analysis255 
univariate analysis, concept of6, 57 
unstack119–20, 132 
Unstack120, 132 
use38, 40, 42, 47 
 
validity of measures:  

concurrent validity66;  
construct validity67;  
convergent validity67;  
discriminant validity67;  
face validity66;  
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