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PREFACE

Numerous emails and the fact that the first edition sold out suggests that many found
it a positive NPV investment. This is encouraging, as unless these things are turned
into a major motion picture, the cash rewards to the author are not great. My wife
currently believes that the direct return per hour of effort is less than that of a compe-
tent plumber – and she’s right. But she has yet to factor in positive externalities and
real options theory – that’s my counter argument anyway. Nevertheless, being risk
averse and with time-varying long-term net liabilities, I do not intend giving up my
day job(s).

When invited to dinner, accompanied by the finest wines someone else can buy,
and asked to produce a second edition, there comes a critical point late in the evening
when you invariably say, ‘Yes’. This is a mistake. The reason is obvious. Were it not
for electronic copies, the mass of ‘stuff’ in this area that has appeared over the last
10 years would fill the Albert Hall. The research and first draft were great, subsequent
drafts less so and by the end it was agony – Groundhog Day. For me this could have
easily been ‘A Book Too Far’. But fortuitously, for the second edition, I was able to
engage an excellent forensic co-author in Dirk Nitzsche.

For those of you who bought the first edition, a glance at the ‘blurb’ on the cover
tells you that the second edition is about 65% new material and the ‘old material’
has also been revamped. We hope we have chosen a coherent, interesting and varied
range of topics. For those who illegally photocopied the first edition and maybe also
got me to sign it – the photocopy that is – I admire your dedication to the cause of
involuntary personal contributions to foreign aid. But I hope you think that for this
much-improved second edition, you could ‘Show Me The Money’.
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Who’s it for?

The book is aimed at students on quantitative MSc’s in finance and financial economics
and should also be useful on PhD programmes. All you need as a pre-requisite is a
basic undergraduate course in theory of finance (with the accompanying math) and
something on modern time-series econometrics. Any finance practitioners who want
to ‘get a handle’ on whether there is any practical value in all that academic stuff
(answer, ‘Yes there is – sometimes’), should also dip in at appropriate points. At least,
you will then be able to spot whether the poor Emperor, as he emerges from his ivory
tower and saunters into the market place, is looking sartorially challenged.

In the book, we cover the main theoretical ideas in the pricing of (spot) assets and
the determination of strategic investment decisions (using discrete time analysis), as
well as analysing specific trading strategies. Illustrative empirical results are provided,
although these are by no means exhaustive (or we hope exhausting). The emphasis is on
the intuition behind the finance and economic concepts and the math and stats we need
to analyse these ideas in a rigorous fashion. We feel that the material allows ‘entry’
into recent research work in these areas and we hope it also encourages the reader to
move on to explore derivatives pricing, financial engineering and risk management.

We hope you enjoy the book and it leads you to untold riches – who knows, maybe
this could be the beginning of a beautiful friendship. Anyway, make the most of it, as
after all our past efforts, our goal from now on is to understand everything and publish
nothing. Whether this will increase social welfare, only time and you can tell.

Keith Cuthbertson
Dirk Nitzsche
October 2004
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1
BASIC CONCEPTS IN
F INANCE

Aims

• To consider different methods of measuring returns for pure discount bonds, coupon-
paying bonds and stocks.

• Use discounted present value techniques, DPV, to price assets.

• Show how utility functions can be used to incorporate risk aversion, and derive asset
demand functions from one-period utility maximisation.

• Illustrate the optimal level of physical investment and consumption for a two-period
horizon problem.

The aim of this chapter is to quickly run through some of the basic tools of analysis
used in finance literature. The topics covered are not exhaustive and they are discussed
at a fairly intuitive level.

1.1 Returns on Stocks, Bonds and Real Assets
Much of the theoretical work in finance is conducted in terms of compound rates of
return or interest rates, even though rates quoted in the market use ‘simple interest’. For
example, an interest rate of 5 percent payable every six months will be quoted as a sim-
ple interest rate of 10 percent per annum in the market. However, if an investor rolled
over two six-month bills and the interest rate remained constant, he could actually earn
a ‘compound’ or ‘true’ or ‘effective’ annual rate of (1.05)2 = 1.1025 or 10.25 percent.
The effective annual rate of return exceeds the simple rate because in the former case
the investor earns ‘interest-on-interest’.



2 C H A P T E R 1 / B A S I C C O N C E P T S I N F I N A N C E

We now examine how we calculate the terminal value of an investment when the
frequency with which interest rates are compounded alters. Clearly, a quoted interest
rate of 10 percent per annum when interest is calculated monthly will amount to more
at the end of the year than if interest accrues only at the end of the year.

Consider an amount $A invested for n years at a rate of R per annum (where R is
expressed as a decimal). If compounding takes place only at the end of the year, the
future value after n years is FV n, where

FV n = $A(1 + R)n (1)

However, if interest is paid m times per annum, then the terminal value at the end of
n years is

FV m
n = $A(1 + R/m)mn (2)

R/m is often referred to as the periodic interest rate. As m, the frequency of compound-
ing, increases, the rate becomes ‘continuously compounded’, and it may be shown that
the investment accrues to

FV c
n = $AeRcn (3)

where Rc = the continuously compounded rate per annum. For example, if the quoted
(simple) interest rate is 10 percent per annum, then the value of $100 at the end of
one year (n = 1) for different values of m is given in Table 1. For daily compounding,
with R = 10% p.a., the terminal value after one year using (2) is $110.5155. Assuming
Rc = 10% gives FV c

n = $100e0.10(1) = $100.5171. So, daily compounding is almost
equivalent to using a continuously compounded rate (see the last two entries in Table 1).

We now consider how to switch between simple interest rates, periodic rates, effec-
tive annual rates and continuously compounded rates. Suppose an investment pays a
periodic interest rate of 2 percent each quarter. This will usually be quoted in the mar-
ket as 8 percent per annum, that is, as a simple annual rate. At the end of the year,
$A = $100 accrues to

$A(1 + R/m)m = 100(1 + 0.08/4)4 = $108.24 (4)

The effective annual rate Re is 8.24% since $100(1 + Re) = 108.24. Re exceeds the
simple rate because of the payment of interest-on-interest. The relationship between

Table 1 Compounding frequency

Compounding Frequency Value of $100 at End of Year
(R = 10% p.a.)

Annually (m = 1) 110.00
Quarterly (m = 4) 110.38
Weekly (m = 52) 110.51
Daily (m = 365) 110.5155
Continuous (n = 1) 110.5171
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the quoted simple rate R with payments m times per year and the effective annual rate
Re is

(1 + Re) = (1 + R/m)m (5)

We can use (5) to move from periodic interest rates to effective rates and vice versa.
For example, an interest rate with quarterly payments that would produce an effective
annual rate of 12 percent is given by 1.12 = (1 + R/4)4, and hence,

R = [(1.12)1/4 − 1]4 = 0.0287(4) = 11.48% (6)

So, with interest compounded quarterly, a simple interest rate of 11.48 percent per
annum is equivalent to a 12 percent effective rate.

We can use a similar procedure to switch between a simple interest rate R, which
applies to compounding that takes place over m periods, and an equivalent continuously
compounded rate Rc. One reason for doing this calculation is that much of the advanced
theory of bond pricing (and the pricing of futures and options) uses continuously
compounded rates.

Suppose we wish to calculate a value for Rc when we know the m-period rate R.
Since the terminal value after n years of an investment of $A must be equal when
using either interest rate we have

AeRcn = A(1 + R/m)mn (7)

and therefore,
Rc = m ln[1 + R/m] (8)

Also, if we are given the continuously compounded rate Rc, we can use the above
equation to calculate the simple rate R, which applies when interest is calculated m

times per year:
R = m(eRc/m − 1) (9)

We can perhaps best summarise the above array of alternative interest rates by using
one final illustrative example. Suppose an investment pays a periodic interest rate of
5 percent every six months (m = 2, R/2 = 0.05). In the market, this might be quoted
as a ‘simple rate’ of 10 percent per annum. An investment of $100 would yield 100[1 +
(0.10/2)]2 = $110.25 after one year (using equation 2). Clearly, the effective annual
rate is 10.25% p.a. Suppose we wish to convert the simple annual rate of R = 0.10 to
an equivalent continuously compounded rate. Using (8), with m = 2, we see that this
is given by Rc = 2 ln(1 + 0.10/2) = 0.09758 (9.758% p.a.). Of course, if interest is
continuously compounded at an annual rate of 9.758 percent, then $100 invested today
would accrue to 100 eRc·n = $110.25 in n = 1 year’s time.

Arithmetic and Geometric Averages

Suppose prices in successive periods are P0 = 1, P1 = 0.7 and P2 = 1, which cor-
respond to (periodic) returns of R1 = −0.30 (−30%) and R2 = 0.42857 (42.857%).
The arithmetic average return is R = (R1 + R2)/2 = 6.4285%. However, it would be
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incorrect to assume that if you have an initial wealth W0 = $100, then your final wealth
after 2 periods will be W2 = (1 + R)W0 = $106.4285. Looking at the price series it
is clear that your wealth is unchanged between t = 0 and t = 2:

W2 = W0[(1 + R1)(1 + R2)] = $100 (0.70)(1.42857) = $100

Now define the geometric average return as

(1 + Rg)
2 = (1 + R1)(1 + R2) = 1

Here Rg = 0, and it correctly indicates that the return on your ‘wealth portfolio’
Rw(0 → 2) = (W2/W0) − 1 = 0 between t = 0 and t = 2. Generalising, the geometric
average return is defined as

(1 + Rg)
n = (1 + R1)(1 + R2) · · · (1 + Rn) (10)

and we can always write
Wn = W0(1 + Rg)

n

Unless (periodic) returns Rt are constant, the geometric average return is always less
than the arithmetic average return. For example, using one-year returns Rt , the geo-
metric average return on a US equity value weighted index over the period 1802–1997
is 7% p.a., considerably lower than the arithmetic average of 8.5% p.a. (Siegel 1998).

If returns are serially uncorrelated, Rt = µ + εt with εt ∼ iid(0, σ 2), then the arith-
metic average is the best return forecast for any randomly selected future year. Over
long holding periods, the best forecast would also use the arithmetic average return
compounded, that is, (1 + R)n. Unfortunately, the latter clear simple result does not
apply in practice over long horizons, since stock returns are not iid.

In our simple example, if the sequence is repeated, returns are negatively serially
correlated (i.e. −30%, +42.8%, alternating in each period). In this case, forecasting
over long horizons requires the use of the geometric average return compounded,
(1 + Rg)

n. There is evidence that over long horizons stock returns are ‘mildly’ mean
reverting (i.e. exhibit some negative serial correlation) so that the arithmetic average
overstates expected future returns, and it may be better to use the geometric average
as a forecast of future average returns.

Long Horizons

The (periodic) return is (1 + R1) = P1/P0. In intertemporal models, we often require
an expression for terminal wealth:

Wn = W0(1 + R1)(1 + R2) · · · (1 + Rn)

Alternatively, this can be expressed as

ln(Wn/W0) = ln(1 + R1) + ln(1 + R2) + · · · + ln(1 + Rn)

= (Rc1 + Rc2 + · · · + Rcn) = ln(Pn/P0)
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where Rct ≡ ln(1 + Rt) are the continuously compounded rates. Note that the term in
parentheses is equal to ln(Pn/P0). It follows that

Wn = W0 exp(Rc1 + Rc2 + · · · + Rcn) = W0(Pn/P0)

Continuously compounded rates are additive, so we can define the (total continuously
compounded) return over the whole period from t = 0 to t = n as

Rc(0 → n) ≡ (Rc1 + Rc2 + · · · + Rcn)

Wn = W0 exp[Rc(0 → n)]

Let us now ‘connect’ the continuously compounded returns to the geometric average
return. It follows from (10) that

ln(1 + Rg)
n = (Rc1 + Rc2 + · · · + Rcn) ≡ Rc(0 → n)

Hence
Wn = W0 exp[ln(1 + Rg)

n] = W0(1 + Rg)
n

as we found earlier.

Nominal and Real Returns

A number of asset pricing models focus on real rather than nominal returns. The real
return is the (percent) rate of return from an investment, in terms of the purchasing
power over goods and services. A real return of, say, 3% p.a. implies that your initial
investment allows you to purchase 3% more of a fixed basket of domestic goods (e.g.
Harrod’s Hamper for a UK resident) at the end of the year.

If at t = 0 you have a nominal wealth W0, then your real wealth is W r
0 = W0/P

g
o ,

where P g = price index for goods and services. If R = nominal (proportionate) return
on your wealth, then at the end of year-1 you have nominal wealth of W0(1 + R) and
real wealth of

W r
1 ≡ W1

P
g
1

= (W r
0P

g
o )(1 + R)

P
g
1

Hence, the increase in your real wealth or, equivalently, your (proportionate) real
return is

(1 + Rr) ≡ W r
1/W r

0 = (1 + R)/(1 + π) (11)

Rr ≡ �W r
1

W r
0

= R − π

1 + π
≈ R − π (12)

where 1 + π ≡ (P
g
1 /P

g
0 ). The proportionate change in real wealth is your real return

Rr, which is approximately equal to the nominal return R minus the rate of goods
price inflation, π . In terms of continuously compounded returns,

ln(W r
1/W r

0) ≡ Rr
c = ln(1 + R) − ln(P

g
1 /P g

o ) = Rc − πc (13)
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where Rc = (continuously compounded) nominal return and πc = continuously
compounded rate of inflation. Using continuously compounded returns has the advan-
tage that the log real return over a horizon t = 0 to t = n is additive:

Rr
c(0 → n) = (Rc1 − πc1) + (Rc2 − πc2) + · · · + (Rcn − πcn)

= (Rr
c1 + Rr

c2 + · · · + Rr
cn) (14)

Using the above, if initial real wealth is W r
0, then the level of real wealth at t =

n is W r
n = W r

0e
Rn

c (0→n) = W r
0e

(Rr
c1+Rr

c2+···+Rr
cn). Alternatively, if we use proportionate

changes, then
W r

n = W r
0(1 + Rr

1)(1 + Rr
2) · · · (1 + Rr

n) (15)

and the annual average geometric real return from t = 0 to t = n, denoted Rr,g is
given by

(1 + Rr,g) = n
√

(1 + Rr
1)(1 + Rr

2) · · · (1 + Rn)r

and W r
n = W r

0(1 + Rr,g)
n

Foreign Investment

Suppose you are considering investing abroad. The nominal return measured in terms of
your domestic currency can be shown to equal the foreign currency return (sometimes
called the local currency return) plus the appreciation in the foreign currency. By
investing abroad, you can gain (or lose) either from holding the foreign asset or from
changes in the exchange rate. For example, consider a UK resident with initial nominal
wealth W0 who exchanges (the UK pound) sterling for USDs at a rate S0 (£s per $)
and invests in the United States with a nominal (proportionate) return Rus. Nominal
wealth in Sterling at t = 1 is

W1 = W0(1 + Rus)S1

S0
(16)

Hence, using S1 = S0 + �S1, the (proportionate) nominal return to foreign investment
for a UK investor is

R(UK → US ) ≡ (W1/W0) − 1 = Rus + �S1/S0 + Rus(�S1/S0) ≈ RUS + RFX

(17)

where RFX = �S1/S0 is the (proportionate) appreciation of FX rate of the USD against
sterling, and we have assumed that Rus(�S1/S0) is negligible. The nominal return to
foreign investment is obviously

Nominal return(UK resident) = local currency(US)return + appreciation of USD

In terms of continuously compound returns, the equation is exact:

Rc(UK → US ) ≡ ln(W1/W0) = Rus
c + �s (18)
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where Rus
c ≡ ln(1 + Rus) and �s ≡ ln(S1/S0). Now suppose you are concerned about

the real return of your foreign investment, in terms of purchasing power over domestic
goods. The real return to foreign investment is just the nominal return less the domestic
rate of price inflation. To demonstrate this, take a UK resident investing in the United
States, but ultimately using any profits to spend on UK goods. Real wealth at t = 1,
in terms of purchasing power over UK goods is

W r
1 = (W r

0P
g
o )(1 + Rus)S1

P
g
1 S0

(19)

It follows that the continuously compounded and proportionate real return to foreign
investment is

Rr
c(UK → US ) ≡ ln(W r

1/W r
0) = Rus

c + �s − πuk
c (20)

Rr(UK → US ) ≡ �W r
1/W r

0 ≈ Rus + RFX − πuk (21)

where �s = ln(S1/S0). Hence, the real return Rr(UK → US ) to a UK resident in
terms of UK purchasing power from a round-trip investment in US assets is

Real return (UK resident) = nominal ‘local currency’ return in US

+ appreciation of USD − inflation in UK

From (20) it is interesting to note that the real return to foreign investment for a UK
resident Rr

c(UK → US ) would equal the real return to a US resident investing in the
US, (Rus

c − πus
c ) if

πuk
c − πus

c = �s (22)

As we shall see in Chapter 24, equation (22) is the relative purchasing power parity
(PPP) condition. Hence, if relative PPP holds, the real return to foreign investment
is equal to the real local currency return Rus

c − πus
c , and the change in the exchange

rate is immaterial. This is because, under relative PPP, the exchange rate alters to just
offset the differential inflation rate between the two countries. As relative PPP holds
only over horizons of 5–10 years, the real return to foreign investment over shorter
horizons will depend on exchange rate changes.

1.2 Discounted Present Value, DPV

Let the quoted annual rate of interest on a completely safe investment over n years
be denoted as rn. The future value of $A in n years’ time with interest calculated
annually is

FV n = $A(1 + rn)
n (23)

It follows that if you were given the opportunity to receive with certainty $FVn in
n years’ time, then you would be willing to give up $A today. The value today of
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a certain payment of FV n in n years’ time is $A. In a more technical language, the
discounted present value DPV of FV n is

DPV = FV n/(1 + rn)
n (24)

We now make the assumption that the safe interest rate applicable to 1, 2, 3, . . . , n

year horizons is constant and equal to r . We are assuming that the term structure of
interest rates is flat. The DPV of a stream of receipts FV i (i = 1 to n) that carry no
default risk is then given by

DPV =
n∑

i=1

FV i/(1 + r)i (25)

Annuities

If the future payments are constant in each year (FV i = $C) and the first payment
is at the end of the first year, then we have an ordinary annuity. The DPV of these
payments is

DPV = C

n∑
i=1

1/(1 + r)i (26)

Using the formula for the sum of a geometric progression, we can write the DPV of
an ordinary annuity as

DPV = C · An,r where An,r = (1/r)[1 − 1/(1 + r)n] (27)

and DPV = C/r as n → ∞
The term An,r is called the annuity factor, and its numerical value is given in annuity
tables for various values of n and r . A special case of the annuity formula is when
n approaches infinity, then An,r = 1/r and DPV = C/r . This formula is used to
price a bond called a perpetuity or console, which pays a coupon $C (but is never
redeemed by the issuers). The annuity formula can be used in calculations involving
constant payments such as mortgages, pensions and for pricing a coupon-paying bond
(see below).

Physical Investment Project

Consider a physical investment project such as building a new factory, which has a
set of prospective net receipts (profits) of FV i . Suppose the capital cost of the project
which we assume all accrues today (i.e. at time t = 0) is $KC . Then the entrepreneur
should invest in the project if

DPV ≥ KC (28)

or, equivalently, if the net present value NPV satisfies

NPV = DPV − KC ≥ 0 (29)

If NPV = 0, then it can be shown that the net receipts (profits) from the investment
project are just sufficient to pay back both the principal ($KC ) and the interest on the
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Cost of funds, r (%)

NPV

0
105 15

Figure 1 NPV and the discount rate

loan, which was taken out to finance the project. If NPV > 0, then there are surplus
funds available even after these loan repayments.

As the cost of funds r increases, then the NPV falls for any given stream of profits
FV i from the project (Figure 1). There is a value of r (= 10% in Figure 1) for which
the NPV = 0. This value of r is known as the internal rate of return IRR of the
investment project. Given a stream of net receipts FV i and the capital cost KC for
a project, one can always calculate a project’s IRR. It is that constant value of y

for which

KC =
n∑

i=1

FV i/(1 + y)i (30)

An equivalent investment rule to the NPV condition (28) is to invest in the project if

IRR(= y) ≥ cost of borrowing (= r) (31)

There are some technical problems with IRR (which luckily are often not problematic
in practice). First, a meaningful solution for IRR assumes all the FV i > 0, and hence
do not alternate in sign, because otherwise there may be more than one solution for
the IRR. Second, the IRR should not be used to compare two projects as it may not
give the same decision rule as NPV (see Cuthbertson and Nitzsche 2001a).

We will use these investment rules throughout the book, beginning in this chapter,
with the derivation of the yield on bills and bonds and the optimal scale of physical
investment projects for the economy. Note that in the calculation of the DPV, we
assumed that the interest rate used for discounting the future receipts FV i was constant
for all horizons. Suppose that ‘one-year money’ carries an interest rate of r1, two-year
money costs r2, and so on, then the DPV is given by

DPV = FV 1/(1 + r1) + FV 2/(1 + r2)
2 + · · · + FV n/(1 + rn)

n =
∑

δiFV i (32)

where δi = 1/(1 + ri)
i . The ri are known as spot rates of interest since they are the

rates that apply to money that you lend over the periods r1 = 0 to 1 year, r2 = 0 to
2 years, and so on (expressed as annual compound rates). At any point in time, the
relationship between the spot rates, ri , on default-free assets and their maturity is known
as the yield curve. For example, if r1 < r2 < r3 and so on, then the yield curve is said
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to be upward sloping. The relationship between changes in short rates over time and
changes in long rates is the subject of the term structure of interest rates.

The DPV formula can also be expressed in real terms. In this case, future receipts
FV i are deflated by the aggregate goods price index and the discount factors are
calculated using real rates of interest.

In general, physical investment projects are not riskless since the future receipts are
uncertain. There are a number of alternative methods of dealing with uncertainty in
the DPV calculation. Perhaps, the simplest method, and the one we shall adopt, has
the discount rate δi consisting of the risk-free spot rate ri plus a risk premium rpi .

δi = (1 + ri + rpi)
−1 (33)

Equation (33) is an identity and is not operational until we have a model of the risk
premium. We examine alternative models for risk premia in Chapter 3.

Stocks

The difficulty with direct application of the DPV concept to stocks is that future
dividends are uncertain and the discount factor may be time varying. It can be shown
(see Chapter 4) that the fundamental value Vt is the expected DPV of future dividends:

Vt = Et

[
Dt+1

(1 + q1)
+ Dt+2

(1 + q1)(1 + q2)
+ · · ·

]
(34)

where qi is the one-period return between time period t + i − 1 and t + i. If there are
to be no systematic profitable opportunities to be made from buying and selling shares
between well-informed rational traders, then the actual market price of the stock Pt

must equal the fundamental value Vi . For example, if Pt < Vt , then investors should
purchase the undervalued stock and hence make a capital gain as Pt rises towards Vt .
In an efficient market, such profitable opportunities should be immediately eliminated.

Clearly, one cannot directly calculate Vt to see if it does equal Pt because expected
dividends (and discount rates) are unobservable. However, in later chapters, we discuss
methods for overcoming this problem and examine whether the stock market is efficient
in the sense that Pt = Vt . If we add some simplifying assumptions to the DPV formula
(e.g. future dividends are expected to grow at a constant rate g and the discount rate
q = R is constant each period), then (34) becomes

V0 = Do(1 + g)/(R − g) (35)

which is known as the Gordon Growth Model. Using this equation, we can calculate the
‘fair value’ of the stock and compare it to the quoted market price P0 to see whether
the share is over- or undervalued. These models are usually referred to as dividend
valuation models and are dealt with in Chapter 10.

Pure Discount Bonds and Spot Yields

Instead of a physical investment project, consider investing in a pure discount bond
(zero coupon bond). In the market, these are usually referred to as ‘zeros’. A pure
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discount bond has a fixed redemption price M , a known maturity period and pays no
coupons. The yield on the bond if held to maturity is determined by the fact that it is
purchased at a market price Pt below its redemption price M . For a one-year bond, it
seems sensible to calculate the yield or interest rate as

r1t = (M1 − P1t )/P1t (36)

where r1t is measured as a proportion. However, when viewing the problem in terms
of DPV, we see that the one-year bond promises a future payment of M1 at the end
of the year in exchange for a capital cost of P1t paid out today. Hence the IRR, y1t ,
of the bond can be calculated from

P1t = M1/(1 + y1t ) (37)

But on rearrangement, we have y1t = (M1 − P1t )/P1t , and hence the one-year spot
yield r1t is simply the IRR of the bill. Applying the above principle to a two-year bill
with redemption price M2, the annual (compound) interest rate r2t on the bill is the
solution to

P2t = M2/(1 + r2t )
2 (38)

which implies
r2t = (M2/P2t )

1/2 − 1 (39)

If spot rates are continuously compounded, then

Pnt = Mne
−rnt n (40)

where rnt is now the continuously compounded rate for a bond of maturity n at time
t . We now see how we can, in principle, calculate a set of (compound) spot rates at t

for different maturities from the market prices at time t of pure discount bonds (bills).

Coupon-Paying Bonds

A level coupon (non-callable) bond pays a fixed coupon $C at known fixed intervals
(which we take to be every year) and has a fixed redemption price Mn payable when the
bond matures in year n. For a bond with n years left to maturity, the current market price
is Pnt . The question is how do we measure the return on the bond if it is held to maturity?

The bond is analogous to our physical investment project with the capital outlay
today being Pnt and the future receipts being $C each year (plus the redemption price).
The internal rate of return on the bond, which is called the yield to maturity yt , can
be calculated from

Pnt = C/(1 + yt ) + C/(1 + yt )
2 + · · · + (C + Mn)/(1 + yt )

n (41)

The yield to maturity is that constant rate of discount that at a point in time equates the
DPV of future payments with the current market price. Since Pnt , Mn and C are the
known values in the market, (41) has to be solved to give the quoted rate for the yield
to maturity yt . There is a subscript ‘t’ on yt because as the market price falls, the yield
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to maturity rises (and vice versa) as a matter of ‘actuarial arithmetic’. Although widely
used in the market and in the financial press, there are some theoretical/conceptual
problems in using the yield to maturity as an unambiguous measure of the return
on a bond even when it is held to maturity. We deal with some of these issues in
Part III.

In the market, coupon payments C are usually paid every six months and the interest
rate from (41) is then the periodic six-month rate. If this periodic yield to maturity is
calculated as, say, 6 percent, then in the market the quoted yield to maturity will be
the simple annual rate of 12 percent per annum (known as the bond-equivalent yield
in the United States).

A perpetuity is a level coupon bond that is never redeemed by the primary issuer
(i.e. n → ∞). If the coupon is $C per annum and the current market price of the bond
is P∞,t , then from (41) the yield to maturity on a perpetuity is

y∞,t = C/P∞,t (42)

It is immediately obvious from (42) that for small changes, the percentage change in
the price of a perpetuity equals the percentage change in the yield to maturity. The flat
yield or interest yield or running yield yrt = (C/Pnt )100 and is quoted in the financial
press, but it is not a particularly theoretically useful concept in analysing the pricing
and return on bonds.

Although compound rates of interest (or yields) are quoted in the markets, we often
find it more convenient to express bond prices in terms of continuously compounded
spot interest rates/yields. If the continuously compounded spot yield is rnt , then a
coupon-paying bond may be considered as a portfolio of ‘zeros’, and the price is
(see Cuthbertson and Nitzsche 2001a)

Pnt =
n∑

k=1

Cke
−rkt k + Mne

−rnt n =
n∑

k=1

P ∗
kt + P ∗

nt (43)

where P ∗
k = Cke

−rkk and P ∗
n are the prices of zero coupon bonds paying Ck at time

t + k and Mn at time t + n, respectively.

Holding Period Return

Much empirical work on stocks deals with the one-period holding period return Ht+1,
which is defined as

Ht+1 = Pt+1 − Pt

Pt

+ Dt+1

Pt

(44)

The first term is the proportionate capital gain or loss (over one period) and the second
term is the (proportionate) dividend yield. Ht+1 can be calculated ex-post but, of course,
viewed from time t, Pt+1 and (perhaps) Dt+1 are uncertain, and investors can only try
and forecast these elements. It also follows that

1 + Ht+i+1 = [(Pt+i+1 + Dt+i+1)/Pt+i] (45)
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where Ht+i is the one-period return between t + i and t + i + 1. Hence ex-post if $A

is invested in the stock (and all dividend payments are reinvested in the stock), then
the $Y payout after n periods is

Y = A[1 + Ht+1][1 + Ht+2] · · · [1 + Ht+n] (46)

The continuously compounded holding period return (or ‘log-return’) is defined as

ht+1 = ln(Pt+1/Pt ) = pt+1 − pt (47)

The continuously compounded return over period t to t + n is

ht+n = pt+n − pt = ht + ht+1 + · · · + ht+n (48)

Throughout the book, we will demonstrate how expected one-period returns Ht+1 can
be directly related to the DPV formula. Much of the early empirical work on whether
the stock market is efficient centres on trying to establish whether one-period returns
Ht+1 are predictable. Later empirical work concentrated on whether the stock price
equalled the DPV of future dividends, and the most recent empirical work brings
together these two strands in the literature.

With slight modifications, the one-period holding period return can be defined for
any asset. For a coupon-paying bond with initial maturity of n periods and coupon
payment of C, we have

Hn,t+1 = [(Pn−1,t+1 − Pn,t )/Pn,t ] + C/Pn,t (49)

and is also often referred to as the (one-period) holding period yield HPY. Note that
the n-period bond becomes an n − 1 period bond at t + 1. The first term is the capital
gain on the bond and the second is the coupon (or running) yield. For a zero coupon
bond, C = 0. In models of the term structure, we usually use continuously compounded
returns on zero coupon bonds, and hence ht+1 is given by

ht+1 = pn−1,t − pn,t (50)

Often, we can apply the same type of economic model to explain movements in holding
period returns for both stock and bonds (and other speculative assets), and we begin
this analysis with the Capital Asset Pricing Model (CAPM) in the next chapter.

1.3 Utility and Indifference Curves
In this section, we briefly discuss the concept of utility but only to a level such
that the reader can follow the subsequent material on portfolio choice and stochastic
discount factor (SDF) models. Economists frequently set up portfolio models in which
the individual chooses a set of assets in order to maximise some function of terminal
wealth or portfolio return or consumption. For example, a certain level of wealth will
imply a certain level of satisfaction for the individual as he contemplates the goods



14 C H A P T E R 1 / B A S I C C O N C E P T S I N F I N A N C E

and services he could purchase with the wealth. If we double his wealth, we may
not double his level of satisfaction. Also, for example, if the individual consumes one
bottle of wine per night, the additional satisfaction from consuming an extra bottle may
not be as great as from the first. This is the assumption of diminishing marginal utility.
Utility theory can also be applied to decisions involving uncertain (strictly ‘risky’)
outcomes. In fact, we can classify investors as ‘risk averters’, ‘risk lovers’ or ‘risk
neutral’ in terms of the shape of their utility function. Finally, we can also examine
how individuals might evaluate ‘utility’, which arises at different points in time, that
is, the concept of discounted utility in a multiperiod or intertemporal framework.

Fair Lottery

A fair lottery (game) is defined as one that has an expected value of zero (e.g. tossing
a coin with $1 for a win (heads) and −$1 for a loss (tails)). Risk aversion implies that
the individual would not accept a ‘fair’ lottery, and it can be shown that this implies
a concave utility function over wealth. Consider the random payoff x:

x =
{
k1 with probability p

k2 with probability 1 − p
(51)

A fair lottery must have an expected value of zero

E(x) = pk 1 + (1 − p)k2 = 0 (52)

which implies k1/k2 = −(1 − p)/p or p = −k2/(k1 − k2). For our ‘coin toss’, p =
1/2, k1 = −k2 = $1.

Expected Utility

Suppose a random variable end-of-period wealth W can have n possible values Wi with
probability pi

(∑n
i=1 pi = 1

)
. The utility from any wealth outcome Wi is denoted

U(Wi), and the expected utility from the risky outcomes is

E[U(W)] =
n∑

i=1

piU(Wi) (53)

Uncertainty and Risk

The first restriction placed on utility functions is that more is always preferred to less
so that U ′(W) > 0, where U ′(W) = ∂U(W)/∂W . Now, consider a simple gamble of
receiving $16 for a ‘head’ on the toss of a coin and $4 for tails. Given a fair coin, the
probability of a head is p = 1/2 and the expected monetary value of the risky outcome
is $10:

EW = pW H + (1 − p)WT = (1/2)16 + (1/2)4 = $10 (54)
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We can see that the game is a fair bet when it costs c = $10 to enter, because then
E(x) = EW − c = 0. How much would an individual pay to play this game? This
depends on the individual’s attitude to risk. If the individual is willing to pay $10 to
play the game, so that she accepts a fair bet, we say she is risk neutral. If you dislike
risky outcomes, then you would prefer to keep your $10 rather than gamble on a fair
game (with expected value of $10) – you are then said to be risk averse. A risk lover
would pay more than $10 to play the game.

Risk aversion implies that the second derivative of the utility function is negative,
U ′′(W) < 0. To see this, note that the utility from keeping your $10 and not gambling
is U (10) and this must exceed the expected utility from the gamble:

U(10) > 0.5U(16) + 0.5U(4) or U(10) − U(4) > U(16) − U(10) (55)

so that the utility function has the concave shape, marked ‘risk averter’, as given in
Figure 2. An example of a utility function for a risk-averse person is U(W) = W 1/2.
Note that the above example fits into our earlier notation of a fair bet if x is the risky
outcome with k1 = WH − c = 6 and k2 = WT − c = −6, because then E(x) = 0.

We can demonstrate the concavity proposition in reverse, namely, that concavity
implies an unwillingness to accept a fair bet. If z is a random variable and U(z) is
concave, then from Jensen’s inequality:

E{U(z)} < U [E(z)] (56)

Let z = W + x where W is now the initial wealth, then for a fair gamble, E(x) = 0
so that

E{U(W + x)} < U [E(W + x)] = U(W) (57)

and hence you would not accept the fair bet.
It is easy to deduce that for a risk lover the utility function over wealth is convex

(e.g. U = W 2), while for a risk-neutral investor who is just indifferent between the
gamble or the certain outcome, the utility function is linear (i.e. U(W) = bW , with
b > 0). Hence, we have

U ′′(W) < 0 risk averse; U ′′(W) = 0 risk neutral; U ′′(W) > 0 risk lover

Wealth

Utility U(W ) Risk neutral

Risk lover

U(16)

U(4)

U(10)

4

Risk averter

10 16

Figure 2 Utility functions
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A risk-averse investor is also said to have diminishing marginal utility of wealth:
each additional unit of wealth adds less to utility, the higher the initial level of wealth
(i.e. U ′′(W) < 0). The degree of risk aversion is given by the concavity of the utility
function in Figure 2 and equivalently by the absolute size of U ′′(W). Note that the
degree of risk aversion even for a specific individual may depend on initial wealth
and on the size of the bet. An individual may be risk-neutral for the small bet above
and would be willing to pay $10 to play the game. However, a bet of $1 million for
‘heads’ and $0 for tails has an expected value of $500,000, but this same individual
may not be prepared to pay $499,000 to avoid the bet, even though the game is in his
or her favour – this same person is risk-averse over large gambles. Of course, if the
person we are talking about is Bill Gates of Microsoft, who has rather a lot of initial
wealth, he may be willing to pay up to $500,000 to take on the second gamble.

Risk aversion implies concavity of the utility function, over-risky gambles. But how
do we quantify this risk aversion in monetary terms, rather than in terms of utility?
The answer lies in Figure 3, where the distance π is the known maximum amount you
would be willing to pay to avoid a fair bet. If you pay π , then you will receive the
expected value of the bet of $10 for certain and end up with $(10 − π). Suppose the
utility function of our risk-averse investor is U(W) = W 1/2. The expected utility from
the gamble is

E[U(W)] = 0.5U(WH) + 0.5U(WT) = 0.5(16)1/2 + 0.5(4)1/2 = 3

Note that the expected utility from the gamble E[U(W)] is less than the utility from
the certain outcome of not playing the game U(EW ) = 101/2 = 3.162. Would our risk-
averse investor be willing to pay π = $0.75 to avoid playing the game? If she does
so, then her certain utility would be U = (10 − 0.75)1/2 = 3.04, which exceeds the
expected utility from the bet E[U(W)] = 3, so she would pay $0.75 to avoid playing.
What is the maximum insurance premium π that she would pay? This occurs when the
certain utility U(W − π) from her lower wealth (W − π) just equals E[U(W)] = 3,
the expected utility from the gamble:

U(W − π) = (10 − π)1/2 = E[U(W)] = 3

Wealth

Utility

0

AE[U(W )] = 3
= 0.5(4) + 0.5(2)

(W–p) = 9 

EW = 10 164

p

U(4) = 2

U(W ) = W1/2
U(EW ) = 101/2 = 3.162

U(16) = 4

Figure 3 Monetary risk premium
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which gives the maximum amount π = $1 that you would pay to avoid playing the
game. The amount of money π is known as the risk premium and is the maximum
insurance payment you would make to avoid the bet (note that ‘risk premium’ has
another meaning in finance, which we meet later – namely, the expected return on a
risky asset in excess of the risk-free rate). A fair bet of plus or minus $x = 6 gives
you expected utility at point A. If your wealth is reduced to (W − π), then the level
of utility is U(W − π). The risk premium π is therefore defined as

U(W − π) = E{U(W + x)} (58)

where W is initial wealth. To see how π is related to the curvature of the utility
function, take a Taylor series approximation of (58) around the point x = 0 (i.e. the
probability density is concentrated around the mean of zero) and the point π = 0:

U(W − π) ≈ U(W) − πU ′(W)

= E{U(W + x)} ≈ E{U(W) + xU ′(W) + (1/2)x2U ′′(W)}
= U(W) + (1/2)σ 2

x U ′′(W) (59)

Because E(x) = 0, we require three terms in the expansion of U(W + x). From (59),
the risk premium is

π = −1

2
σ 2

x

U ′′(W)

U ′(W)
= 1

2
σ 2

x RA(W) (60)

where RA(W) = −U ′′(W)/U ′(W) is the Arrow (1970)–Pratt (1964) measure of abso-
lute (local) risk aversion. The measure of risk aversion is ‘local’ because it is a function
of the initial level of wealth.

Since σ 2
x and U ′(W) are positive, U ′′(W) < 0 implies that π is positive. Note that

the amount you will pay to avoid a fair bet depends on the riskiness of the outcome
σ 2

x as well as both U ′′(W) and U ′(W). For example, you may be very risk-averse
(−U ′′(W) is large) but you may not be willing to pay a high premium π , if you are
also very poor, because then U ′(W) will also be high. In fact, two measures of the
degree of risk aversion are commonly used:

RA(W) = −U ′′(W)/U ′(W) (61)

RR(W) = RA(W)W (62)

RA(W) is the Arrow–Pratt measure of (local) absolute risk aversion, the larger RA(W)

is, the greater the degree of risk aversion. RR(W) is the coefficient of relative risk
aversion. RA and RR are measures of how the investor’s risk preferences change with
a change in wealth around the initial (‘local’) level of wealth.

Different mathematical functions give rise to different implications for the form of
risk aversion. For example, the function U(W) = ln(W) exhibits diminishing abso-
lute risk aversion and constant relative risk aversion (see below). Now, we list some
of the ‘standard’ utility functions that are often used in the asset pricing and portfo-
lio literature.
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Power (Constant Relative Risk Aversion)

With an initial (safe) level of wealth W0, a utility function, which relative to the starting
point has the property U(W)/U(W0) = f (W/W0) so that utility reacts to the relative
difference in wealth, is of the relative risk aversion type. The latter condition is met by
power utility, where the response of utility to W/W0 is constant, hence the equivalent
term constant relative risk aversion CRRA utility function:

U(W) = W(1−γ )

1 − γ
γ > 0, γ 	= 1

U ′(W) = W−γ U ′′(W) = −γW−γ−1

RA(W) = γ/W and RR(W) = γ (a constant) (63)

Since ln [U ′(W)] = −γ ln W , then γ is also the elasticity of marginal utility with
respect to wealth.

Logarithmic

As γ → 1 in (63), it can be shown that the limiting case of power utility is logarithmic.

U(W) = ln(W) and RR(W) = 1 (64)

This has the nice simple intuitive property that your satisfaction (utility) doubles each
time you double your wealth.

Quadratic

U(W) = W − b

2
W 2 b > 0

U ′(W) = 1 − bW U ′′(W) = −b

RA(W) = b/(1 − bW) and RR(W) = bW/(1 − bW) (65)

Since U ′(W) must be positive, the quadratic is only defined for W < 1/b, which is
known as the ‘bliss point’. Marginal utility is linear in wealth and this can sometimes be
a useful property. Note that both RR and RA are not constant but functions of wealth.

Negative Exponential (Constant Absolute Risk Aversion)

With an initial (safe) level of wealth W0, a utility function, which relative to the
starting point has the property U(W)/U(W0) = f (W − W0) so that utility reacts to
the absolute difference in wealth, is of the absolute risk aversion type. The only
(acceptable) function meeting this requirement is the (negative) exponential, where the



S E C T I O N 1 . 4 / A S S E T D E M A N D S 19

response of utility to changes in W − W0 is constant, hence the term constant absolute
risk aversion CARA utility function:

U(W) = a − be−cW c > 0

RA(W) = c and RR(W) = cW (66)

It can be shown that the negative exponential utility function plus the assumption of
normally distributed asset returns allows one to reduce the problem of maximising
expected utility to a problem involving only the maximisation of a linear function
of expected portfolio return ERp and risk, that is (unambiguously) represented by the
variance σ 2

p . Then, maximising the above CARA utility function E[U(W)] is equivalent
to maximising

ERp − (c/2)σ 2
p (67)

where c = the constant coefficient of absolute risk aversion. Equation (67) depends
only on the mean and variance of the return on the portfolio: hence the term mean-
variance criterion. However, the reader should note that, in general, maximising
E[U(W)] cannot be reduced to a maximisation problem in terms of a general function
ERp and σ 2

p only (see Appendix), and only for the negative exponential can it be
reduced to maximising a linear function. Some portfolio models assume at the outset
that investors are only concerned with the mean-variance maximand and they, therefore,
discard any direct link with a specific utility function.

HARA (Hyperbolic Absolute Risk Aversion)

U(W) = 1 − γ

γ

(
αW

1 − γ
+ β

)γ

(68)

RA(W) =
(

W

1 − γ
+ β

α

)−1

(69)

RA(W) > 0 when γ > 1, β > 0

The restrictions are γ 	= 1, [αW/(1 − γ )] + β > 0, and α > 0. Also β = 1 if γ =
−∞. HARA (Hyperbolic Absolute Risk Aversion) is of interest because it nests con-
stant absolute risk aversion (β = 1, γ = −∞), constant relative risk aversion (γ <

1, β = 0) and quadratic (γ = 2), but it is usually these special cases that are used in
the literature.

1.4 Asset Demands
Frequently, we want to know what determines the optimal demand for stocks, bonds
and other assets, in investors’ portfolios. Not surprisingly, the answer depends on how
we set up the maximisation problem and the constraints facing the investor. Here we
concentrate on one-period models with relatively simple solutions – later chapters deal
with more complex cases.
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Mean-Variance Optimisation

The simplest model is to assume investors care only about one-period expected portfolio
returns and the standard deviation (risk) of these portfolio returns. Let α = proportion
of initial wealth W0 held in the single risky asset with return R and (1 − α) = amount
held in the risk-free asset with return r . The budget constraint (with zero labour
income) is

W1 = (αW0)(1 + R) + [(1 − α)W0](1 + r)

and therefore the return and variance of the portfolio are

Rp ≡ W1

W0
− 1 = α(R − r) + r

σp = ασR

where σR is the standard deviation of the only stochastic variable R. Investors are
assumed to maximise

max
α

θ = ERp − c

2
σ 2

p

where c > 0 is a measure of risk aversion (more precisely, the trade-off between
expected portfolio return and the variance of portfolio returns). The first-order condition
FOC is

ER − r − αcσR = 0

so that the optimal share of the risky asset is independent of wealth:

α∗ = (ER − r)

cσR

Hence, the absolute (dollar) amount held in the risky asset A0 = α∗W0 is proportional
to initial wealth, and is positively related to the excess return on the risky asset and
inversely related to the degree of risk aversion and the volatility of the risky asset.
The share of the risk-free asset is simply (1 − α∗) ≡ Aof /W0. The above is Tobin’s
(1956) mean-variance model of asset demands, and the reason for the simple closed
form solution is that the maximand is quadratic in α (because σ 2

p = α2σ 2
R). If we had

included known non-stochastic labour income y in the budget constraint, this would not
alter the solution. This one-period model is sometimes used in the theoretical literature
because it is linear in expected returns, which provides analytic tractability.

The mean-variance approach is easily extended to n-risky assets R = (R1, R2, . . .,
Rn)

′, and the maximand is

max
α

θ = α
′
(R − r.e) + r − c

2
α

′
�α

where α = (α1, α2, . . . , αn)
′, e is an n × 1 column vector of ones and � = (n × n)

variance–covariance matrix of returns. The FOCs give

α∗ = (c�)−1(ER − r.e)



S E C T I O N 1 . 4 / A S S E T D E M A N D S 21

and the share of the risk-free asset is α∗
f = 1 − ∑n

i=1 α∗
i . For two risky assets,

�−1 = (σ11σ22 − σ12σ21)
−1

(
σ22 −σ21

−σ12 σ11

)

and therefore the relative weights attached to the expected returns (ER1 –r) and (ER2 –r)
depend on the individual elements of the variance–covariance matrix of returns. The
second-order conditions guarantee that ∂α∗

i /∂ERi > 0 (i = 1 or 2).

Negative Exponential Utility

It is worth noting that the maximand θ does not, in general, arise from a second-order
Taylor series expansion of an arbitrary utility function depending only on termi-
nal wealth U(W1). The latter usually gives rise to a non-linear function EU (W) =
U(ERp) + 1

2σ 2
p U ′′(ERp), whereas the mean-variance approach is linear in expected

return and variance. However, there is one (very special) case where the maximand θ

can be directly linked to a specific utility function, namely,

max
α

E[U(W)] = −E{exp(−bW 1)} = −E{exp(−bW 0(1 + Rp))}
subject to Rp ≡ (W1/W0) − 1 = α

′
(R − r.e) + r

where b is the constant coefficient of absolute risk aversion. Thus, the utility function
must be the negative exponential (in end-of-period wealth, W1), and as we see below,
asset returns must also be multivariate normal. If a random variable x is normally
distributed, x ∼ N(µ, σ 2), then z = exp(x) is lognormal. The expected value of z is

Ez = exp

(
µ + 1

2
σ 2

)

In our case, µ ≡ Rp and σ 2 ≡ var(Rp). The maximand is monotonic in its exponent,
therefore, max E[U(W)] is equivalent to

max
α

E[U(W1)] = α
′
(ER − r.e) − 1

2
bW 0α

′
�α

where we have discarded the non-stochastic term exp(−bW0). The maximand is now
linearly related to expected portfolio return and variance. The solution to the FOCs is

α∗ = (bW 0 �)−1(ER − r.e)

This is the same form of solution as for the mean-variance case and is equivalent if
c = bW0. Note, however, that the asset demand functions derived from the negative
exponential utility function imply that the absolute dollar amount A = α∗W0 invested
in the risky asset is independent of initial wealth. Therefore, if an individual obtains
additional wealth next period, then she will put all of the extra wealth into the risk-free
asset – a somewhat implausible result.
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Quadratic Utility

In this section, we will outline how asset shares can be derived when the utility function
is quadratic – the math gets rather messy (but not difficult) and therefore we simplify
the notation (as in Cerny 2004). We assume one risky asset and a risk-free asset. The
budget constraint is

W = α̃W0R
∗ + (1 − α̃)W0R

∗
f + y

where α̃ = A/W0 is the risky asset share, y is the known labour income and R∗ =
1 + R is the gross return on the risky asset. The risk-free asset share is α̃f = 1 − α̃.
After some rearrangement, the budget constraint becomes

W = Wsafe(1 + αX)

where Wsafe ≡ R∗
f W0 + y, X = R − Rf and α = α̃W0/Wsafe

Hence, α is just a scaled version of α̃. The utility function is quadratic with a fixed
‘bliss level’ of wealth Wbliss:

U(W) = −1

2
(W − Wbliss)

2 = −1

2
(W 2 − 2WWbliss + W 2

bliss)

We assume investors are always below the bliss point. It is easy to see from the above
that E[U(W)] depends on α, α2, EX and E(X2). The FOCs will therefore be linear
in α. In addition, E(X2) ≡ var(X) − (EX )2 so that the optimal α will depend only on
expected excess returns EX and the variance of returns on the risky assets (but the
relationship is not linear). Substituting the budget constraint in E[U(W)] and solving
the FOC with respect to α gives (after tedious algebra)

α∗ = qk

EX

E (X 2 )

where qk = 2 k(1 − k)/2 k2 and k = Wsafe/Wbliss.
Note that no explicit measure of risk aversion appears in the equation for α∗ but

it is implicit in the squared term ‘2’ in the utility function, and is therefore a scaling
factor in the solution for α∗. (Also see below for the solution with power utility that
collapses to quadratic utility for γ = −1.)

In order that we do not exceed the bliss point, we require k 
 1 and to simplify
the algebra, take k = 1/2 so that qk = 1 (Equation 3.53, p. 68 in Cerny 2004). Hence,

α∗ = EX

E (X 2 )
= µx

σ 2
x + µ2

x

= 1

µx(1 + 1/SR2
x)

where SRx = µx/σx is known as the Sharpe ratio, and appears through the book as a
measure of return per unit of risk (reward-to-risk ratio). Here the optimal α (and α̃) is
directly related to the Sharpe ratio. It can be shown that α∗ for quadratic utility (and
for W(α∗) < Wbliss) is also that value that gives the maximum Sharpe ratio (and this
generalises when there are many risky assets, (see Cerny 2004, Chapter 4)).
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Choosing a portfolio (i.e. α = (α1, α2, . . . , αn)) to maximise the Sharpe ratio can
therefore be directly linked to maximising expected quadratic utility (for W(α∗) <

Wbliss) – although the Sharpe ratio criterion would not be valid if the optimal α implies
that W(α∗) > Wbliss. The link between the (basic) Sharpe ratio and utility cannot be
established for other types of utility function. Nevertheless, the Sharpe ratio is often
used in practice to rank alternative risky portfolios without trying to link the decision
to any specific utility function – as we see in later chapters. Also, if the ‘basic’ Sharpe
ratio above can be generalised to link it to a constant CARA utility function, then it
can be referred to as the Hodges ratio (see Cerny 2004, Hodges 1998).

Power Utility

A closed form solution for asset shares for most utility functions is not possible.
We then have to use numerical techniques. We demonstrate this outcome for power
utility over (one period) final wealth for one risky and one risk-free asset. The budget
constraint is

W(α̃) = α̃W0R
∗ + (1 − α̃)W0R

∗
f + y = Wsafe(1 + αX)

Suppose we have a simple set-up where R∗
u = 1.20 and R∗

D = 0.90 so that the risky
asset has only two possible outcomes, up or down (i.e. 20% or −10%), with equal prob-
ability of 1/2. Let γ = 5, r = 0.03, W0 = $1 m and y = $200,000. The maximisation
problem with power utility is then

max
α

θ = E

[
W 1−γ

(1 − γ )

]
=

{
1

2

W
1−γ
u

(1 − γ )
+ 1

2

W
1−γ

D

(1 − γ )

}

= W
1−γ

safe

{
1

2

(1 + αXu)

(1 − γ )
+ 1

2

(1 + αXu)
1−γ

(1 − γ )

}

Everything in θ is known except for α. Actually, an analytic solution for this case is
possible. We would set ∂θ/∂α = 0, and the resulting equation is solved for α∗ and then
for α̃∗ = α∗Wsafe/W0 = 0.3323 (see Cerny 2004, p. 60). Alternatively, any numerical
optimiser would also directly give the solution. Having obtained α∗, we can substitute
this in the above equation to give the expected utility at the optimum.

θ∗ = E[U [W(α∗)]] = −1.110397(10−25)

The certainty equivalent level of wealth Wcert can be calculated from

U(Wcert) = E{U [W(α∗)]} that is,
W

1−γ
cert

1 − γ
= −1.110397(10−25)

which for (γ = 5) gives Wcert = $1,224,942. We have Wsafe = R∗
f W0 + y =

$1,220,000, so the investor is better off by $4,942 compared to holding only the
risk-free asset.
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The above is easily extended to the case where we still have only one risky asset
but there are m possible outcomes (‘states’) for the risky asset excess return X with
probabilities pi . The maximand θ summed over all states is

θ = max
α

m∑
i=1

piU(Wi)

where U(Wi) = W
1−γ

i /(1 − γ ) and Wi = Wsafe(1 + αXi). Again, the only unknown in
θ is the risky asset share α (or α̃), and the optimal α can be obtained from a numerical
optimiser (or ‘by hand’ if you have numerous sheets of paper).

Now let us be a little more adventurous and assume we choose a set of risky assets
α = (α1, α2, . . . , αn)

′
, but for the moment assume there are only m = 4 states of nature

for each excess return with an associated joint probability distribution:

X(i) = (X
(i)
1 , . . . , X(i)

n )′ (n × 1)

Wi = Wsafe(1 + α
′
X(i)) (i = 1 − 4)

pi = (p1, p2, p3, p4) (1 × 4)

Wi is a scalar, and each outcome for the n-vector X(i) has an associated joint probability
pi . There are only four possible outcomes for the four vectors X(i) with probabilities pi

and hence four outcomes for Wi and U(Wi). So, θ contains a sum over four states and
is easily calculated but it now depends on the n values of αi . The FOCs are ∂θ/∂αi =
0 (for i = 1, 2, . . . , n) and, in general, these non-linear equations cannot be solved
analytically and hence an optimiser must be used to obtain the α∗

i (i = 1, 2, . . . , n),
which maximises θ .

Continuous Distribution

Suppose we have n assets but the distribution of returns R is continuous and for expo-
sitional purposes, assume the (n × 1) vector X = R − r.e (where e = n × 1 vector of
ones) is multivariate normal with conditional density f (x|�), where � is information
at t − 1 or earlier. We have

W = Wsafe(1 + α′X)

U(W) = W 1−γ /(1 − γ )

Hence:

θ = E{U [W(α)]} = W
1−γ

safe

(1 − γ )
·
∫ ∞

−∞
(1 + α

′
x)

1−γ
f (x/�) dx

For illustrative purposes, assume n = 2 and X|� ∼ N(µ, �), then

f (x) = 1

(2π)n| det �| exp

[
−1

2
(x − µ)�−1(x − µ)

]

The conditional mean and covariance matrix are assumed ‘known’ (i.e. estimated by a
statistician from historic data), and the term in square brackets is a scalar function of
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x. In the simplest case where each xit is iid over time but there is cross-correlation at
time t

xi = µ + εi � = E(ε
′
ε)

and the conditional and unconditional moments are equal. The (multiple) integral may
be solvable analytically, but usually has to be evaluated numerically. In effect, the
optimiser chooses alternative trial values for α = (α1, α2, . . . , αn), calculates θ(α) and
chooses that value α = α∗ that achieves the largest value of θ(α∗). A clear exposition
of optimisation, including some useful GAUSS programmes, can be seen in Chapter 4
of Cerny (2004).

Risk Aversion and Portfolio Choice

When investors have a one-period horizon and maximise U(W), there is a little more
we can say about the response of the demands for risky assets to a change in initial
wealth. For simplicity, we assume only one risky asset. We state these results without
proof, but they are based on an analysis of the FOC, for any concave utility function:

E[U ′(W)(R − Rf)] = 0

where W = W0(1 + Rf) + A(R − Rf) and W0 = initial wealth, A = $-amount invested
in the risky asset (and (W0 − A) is invested in the risk-free asset). Our first result is
easily seen from the FOC. If ER = Rf, then A = 0 satisfies the FOC, W = W0(1 +
Rf) is non-stochastic, so E[U ′(W)(R − Rf)] = U ′(W)E(R − Rf) = 0. Hence, a risk-
averse individual would not accept a fair gamble, namely, ER − Rf = 0, since the latter
implies A = 0. Other results for any concave utility function are:

(i) If ER > Rf, then A > 0, the investor holds a positive amount of the risky asset – she
is willing to accept a small gamble with positive expected return.

(ii) Declining absolute risk aversion (i.e. ∂RA/∂W0 < 0, where RA is the coefficient
of absolute risk aversion) implies that ∂A/∂W0 > 0, that is, the individual invests
more ‘dollars’ in the risky asset if initial wealth is higher (and vice versa).

(iii) If the coefficient of relative risk aversion RR is decreasing in wealth (i.e.
∂RR/∂W0 < 0), then (∂A/A0)/(∂W/W0) > 1, so the individual invests a greater
proportion in the risky asset as wealth increases. The opposite applies for an
investor with a coefficient of relative risk aversion that increases in wealth.

The above complement our earlier results that for constant absolute risk aversion,
CARA (e.g. negative exponential), ∂A/∂W0 = 0 and for constant relative risk aversion,
∂A/A = ∂W/W , so optimal asset shares remain constant.

1.5 Indifference Curves and Intertemporal Utility
Although it is only the case under somewhat restrictive circumstances, let us assume
that the utility function in Figure 2 for the risk averter can be represented solely in
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terms of the expected return and the variance of the return on the portfolio. The link
between end-of-period wealth W and investment in a portfolio of assets yielding an
expected return ERp is W = (1 + ERp)W0, where W0 is initial wealth. However, we
now do assume that the utility function can be represented as

U = U(ERp, σ
2
p ) U1 > 0, U2 < 0, U11, U22 < 0 (70)

The sign of the first-order partial derivatives (U1, U2) imply that expected return adds
to utility, while more ‘risk’ reduces utility. The second-order partial derivatives indicate
diminishing marginal utility to additional expected ‘returns’ and increasing marginal
disutility with respect to additional risk. The indifference curves for the above utility
function are shown in Figure 4.

At a point like A on indifference curve I1, the individual requires a higher expected
return (A′′′ –A′′) as compensation for a higher level of risk (A–A′′) if he is to maintain
the level of satisfaction (utility) pertaining at A: the indifference curves have a positive
slope in risk–return space. The indifference curves are convex to the ‘risk axis’, indi-
cating that at higher levels of risk, say at C, the individual requires a higher expected
return (C′′′ –C′′ > A′′′ –A′′) for each additional increment to the risk he undertakes,
than he did at A: the individual is ‘risk-averse’. The indifference curves in risk–return
space will be used when analysing portfolio choice in a simple mean-variance model.

Intertemporal Utility

A number of economic models of individual behaviour assume that investors obtain
utility solely from consumption goods. At any point in time, utility depends positively
on consumption and exhibits diminishing marginal utility

U = U(Ct) U ′(Ct ) > 0, U ′′(Ct ) < 0 (71)

The utility function, therefore, has the same slope as the ‘risk averter’ in Figure 2 (with
C replacing W ). The only other issue is how we deal with consumption that accrues
at different points in time. The most general form of such an intertemporal lifetime
utility function is

UN = U(Ct , Ct+1, Ct+2, . . . , Ct+N) (72)

ssp
2

ERp I2

I1

A A′′

A′′′

C′′′

C′′C

(A-A′′) == (C-C′′)

Figure 4 Risk–return: indifference curves
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However, to make the mathematics tractable, some restrictions are usually placed on
the form of U, the most common being additive separability with a constant subjective
rate of discount, 0 < θ < 1:

UN = U(Ct ) + θU(Ct+1) + θ2U(Ct+2) + · · · + θNU(Ct+N) (73)

The lifetime utility function can be truncated at a finite value for N , or if N → ∞,
then the model is said to be an overlapping generations model since an individual’s
consumption stream is bequeathed to future generations.

The discount rate used in (73) depends on the ‘tastes’ of the individual between
present and future consumption. If we define θ = 1/(1 + d), then d is known as the
subjective rate of time preference. It is the rate at which the individual will swap utility
at time t + j for utility at time t + j + 1 and still keep lifetime utility constant. The
additive separability in (73) implies that the marginal utility from extra consumption
in year t is independent of the marginal utility obtained from extra consumption in any
other year (suitably discounted).

For the two-period case, we can draw the indifference curves that follow from
a simple utility function (e.g. U = C

α1
0 C

α2
1 , 0 < α1, α2 < 1) and these are given in

Figure 5. Point A is on a higher indifference curve than point B since at A the individual
has the same level of consumption in period 1, C1 as at B, but at A, he has more
consumption in period zero, C0. At point H, if you reduce C0 by x0 units, then for the
individual to maintain a constant level of lifetime utility he must be compensated by
y0 extra units of consumption in period 1, so he is then indifferent between points H
and E. Diminishing marginal utility arises because at F, if you take away x0 units of
C0, then he requires y1 (> y0) extra units of C1 to compensate him. This is because at
F he starts off with a lower initial level of C0 than at H, so each unit of C0 he gives
up is relatively more valuable and requires more compensation in terms of extra C1.

The intertemporal indifference curves in Figure 5 will be used in discussing invest-
ment decisions under certainty in the next section and again when discussing the
consumption – CAPM model of portfolio choice and equilibrium asset returns under
uncertainty.

C1

C0

I1

I0
HD

E

F

AB

G

y1

x0

x0

y0

Figure 5 Intertemporal consumption: indifference curves
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1.6 Investment Decisions and Optimal Consumption

Under conditions of certainty about future receipts, our investment decision rules indi-
cate that managers should rank physical investment projects according to either their
NPV or IRR. Investment projects should be undertaken until the NPV of the last
project undertaken equals zero or equivalently if IRR = r , the risk-free rate of inter-
est. Under these circumstances, the marginal (last) investment project undertaken just
earns enough net returns (profits) to cover the loan interest and repayment of prin-
cipal. For the economy as a whole, undertaking real investment requires a sacrifice
in terms of lost current consumption output. Labour skills, man-hours and machines
are, at t = 0, devoted to producing new machines or increased labour skills that will
add to output and consumption but only in future periods. The consumption pro-
file (i.e. less consumption goods today and more in the future) that results from
the decisions of producers may not coincide with the consumption profile desired
by individual consumers. For example, a high level of physical investment will dras-
tically reduce resources available for current consumption and this may be viewed
as undesirable by consumers who prefer at the margin, consumption today rather
than tomorrow.

How can financial markets, through facilitating borrowing and lending, ensure that
entrepreneurs produce the optimal level of physical investment (i.e. which yields high
levels of future consumption goods) and also allow individuals to spread their consump-
tion over time according to their preferences? Do the entrepreneurs have to know the
preferences of individual consumers in order to choose the optimum level of physical
investment? How can the consumers acting as shareholders ensure that the managers
of firms undertake the ‘correct’ physical investment decisions, and can we assume that
the financial markets (e.g. stock markets) ensure that funds are channelled to the most
efficient investment projects?

Questions of the interaction between ‘finance’ and real investment decisions lie at
the heart of the market system. The full answer to these questions involves complex
issues. However, we can gain some useful insights if we consider a simple two-period
model of the investment decision in which all outcomes are certain (i.e. riskless) in real
terms (i.e. we assume zero price inflation). We shall see that under these assumptions,
a separation principle applies. If managers ignore the preferences of individuals and
simply invest in projects until the NPV = 0 or IRR = r , that is, maximise the value
of the firm, then this policy will, given a capital market, allow each consumer to
choose his desired consumption profile, namely, that which maximises his individual
welfare. There is therefore a two-stage process or separation of decisions; yet, this still
allows consumers to maximise their welfare by distributing their consumption over time
according to their preferences. In step one, entrepreneurs decide the optimal level of
physical investment, disregarding the preferences of consumers. In step two, consumers
borrow or lend in the capital market to rearrange the time profile of their consumption
to suit their individual preferences. In explaining this separation principle, we first deal
with the production decision and then the consumers’ decision before combining these
two into the complete model.
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Second investment
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Tenth investment
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Figure 6 Production possibility curve

All output is either consumed or used for physical investment. The entrepreneur has
an initial endowment W0 at t = 0. He ranks projects in order of decreasing NPV, using
the risk-free interest rate r as the discount factor. By abstaining from consumption of
C

(1)
0 , he obtains resources for his first investment project I0 = W0 − C

(1)
0 . The physical

investment in that project, which has the highest NPV (or IRR), yields consumption
output at t = 1 of C

(1)
1 , where C

(1)
1 > C

(1)
0 (see Figure 6). The IRR of this project (in

terms of consumption goods) is

1 + IRR(1) = C
(1)
1 /C

(1)
0 (74)

As he devotes more of his initial endowment W0 to other investment projects with
lower NPVs, the IRR (C1/C0) falls, which gives rise to the production opportunity
curve with the shape given in Figure 6. The first and the most productive investment
project has an NPV of

NPV (1) = C
(1)
1 /(1 + r) − I0 > 0 (75)

and
IRR(1) = C

(1)

1 /C
(1)

0 > r (76)

Let us now turn to the financing problem. In the capital market, any two consumption
streams C0 and C1 have a present value PV given by

PV = C0 + C1/(1 + r) [77a]

and hence,
C1 = PV (1 + r) − (1 + r)C0 [77b]

For a given value of PV, this gives a straight line in Figure 7 with a slope equal
to −(1 + r). The above equation is referred to as the ‘money market line’ since it
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Consumption
in period 0

Consumption
in period 1

C1
*

C0
*      W0

X
Money market line :

(slope = −(1 + r)

I0
*

Figure 7 Money market line

represents the rate of return on lending and borrowing money. If you lend an amount
C0 today, you will receive C1 = (1 + r) C0 tomorrow.

Our entrepreneur, with an initial endowment of W0, will continue to invest in phys-
ical assets until the IRR on the nth project just equals the risk-free interest rate

IRR(n) = r

which occurs at point (C∗
0 , C∗

1 ). Hence, the investment strategy that maximises the (net
present) value of the firm involves an investment of

I ∗
0 = W0 − C∗

0

Current consumption is C∗
0 and consumption at t = 1 is C∗

1 (Figure 7). At any point
to the right of X, the slope of the investment opportunity curve (= IRR) exceeds the
market interest rate (= r) and at points to the left of X, the opposite applies. However,
the optimal levels of consumption (C∗

0 , C∗
1 ) from the production decision may not

conform to those desired by an individual consumer’s preferences. We now leave the
production decision and turn exclusively to the consumer’s decision.

Suppose the consumer has income accruing in both periods and this income stream
has a present value of PV. The consumption possibilities that fully exhaust this income
(after two periods) are given by (77a). Assume that lifetime utility (satisfaction) of the
consumer depends on C0 and C1

U = U(C0, C1)

and there is diminishing marginal utility in both C0 and C1 (i.e. ∂U/∂C > 0,
∂2U/∂C2 < 0). The indifference curves are shown in Figure 8. To give up one unit of
C0, the consumer must be compensated with additional units of C1 if he is to maintain
his initial level of utility. The consumer wishes to choose C0 and C1 to maximise
lifetime utility, subject to his budget constraint. Given his endowment PV, his optimal
consumption in the two periods is (C∗∗

0 , C∗∗
1 ) – Figure 8. In general, the optimal

production or physical investment plan that yields consumption (C∗
0 , C∗

1 ) will not equal
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Figure 9 Maximisation with capital market

the consumer’s optimal consumption profile (C∗∗
0 , C∗∗

1 ). However, the existence of a
capital market ensures that the consumer’s optimal point can be attained. To see this,
consider Figure 9.

The entrepreneur has produced a consumption profile (C∗
0 , C∗

1 ) that maximises the
value of the firm – Figure 9. We can envisage this consumption profile as being paid
out to the owners of the firm in the form of (dividend) income. The present value of
this ‘cash flow’ is PV∗, where

PV ∗ = C∗
0 + C∗

1/(1 + r) (78)

This is, of course, the ‘income’ given to our individual consumer as owner of the firm.
But, under conditions of certainty, the consumer can ‘swap’ this amount PV∗ for any
combination of consumption that satisfies

PV ∗ = C0 + C1/(1 + r) (79)

Given PV∗ and his indifference curve I2 in Figure 9, he can then borrow or lend in
the capital market at the riskless rate r to achieve that combination (C∗∗

0 , C∗∗
1 ) that

maximises his utility.
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Thus, there is a separation of investment and financing (borrowing and lending)
decisions. Optimal borrowing and lending take place independently of the physical
investment decision. If the entrepreneur and consumer are the same person(s), the
separation principle still applies. The investor (as we now call him) first decides how
much of his own initial endowment W0 to invest in physical assets, and this decision
is independent of his own (subjective) preferences and tastes. This first-stage decision
is an objective calculation based on comparing the IRR of his investment projects with
the risk-free interest rate. His second-stage decision involves how much to borrow or
lend in the capital market to ‘smooth out’ his desired consumption pattern over time.
The latter decision is based on his preferences or tastes, at the margin, for consumption
today versus (more) consumption tomorrow.

Much of the rest of this book is concerned with how financing decisions are taken
when we have a risky environment. The issue of how shareholders ensure that managers
act in the best interest of the shareholders, by maximising the value of the firm, comes
under the heading of corporate control mechanisms (e.g. mergers, takeovers). The
analysis of corporate control is not directly covered in this book. We only consider
whether market prices provide correct signals for resource allocation (i.e. physical
investment), but we do not look closely at issues involving the incentive structure
within the firm based on these market signals: this is the principal–agent problem in
corporate finance.

We can draw a parallel between the above results under certainty with those we
shall be developing under a risky environment.

(i) In a risky environment, a somewhat different separation principle applies. Each
investor, when choosing his portfolio of risky marketable assets (e.g. shares, bonds),
will hold risky assets in the same proportion as all other investors, regardless of
his preferences of risk versus return. Having undertaken this first-stage decision,
each investor then decides how much to borrow or lend in the money market at
the risk-free interest rate – it is at this point that his preferences influence the split
between the risky assets and the risk-free asset. This separation principle is the
basis of the mean-variance model of optimal portfolio choice and of the CAPM of
equilibrium asset returns.

(ii) The optimal amount of borrowing and lending in the money market in the riskless
case occurs where the individual’s subjective marginal rate of substitution of future
for current consumption [i.e. (∂C1/∂C0)u] equals −(1 + r), where r is the ‘price’
or opportunity cost of money. Under uncertainty, an analogous condition applies,
namely, that the individual’s subjective trade-off between expected return and risk
is equal to the market price of risk.

1.7 Summary

We have developed some basic tools for analysing behaviour in financial markets.
There are many nuances on the topics discussed that we have not had time to elaborate



A P P E N D I X : M E A N - VA R I A N C E M O D E L A N D U T I L I T Y F U N C T I O N S 33

in detail, and in future chapters, these omissions will be rectified. The main conclusions
to emerge are:

• Market participants generally quote ‘simple’ annual interest rates but these can
always be converted to effective annual (compound) rates or to continuously com-
pounded rates.

• The concepts of DPV and IRR can be used to analyse physical investment projects
and to calculate the fair price of bills, bonds and stocks.

• Theoretical models of asset demands and asset prices often use utility functions as
their objective function. Utility functions and their associated indifference curves
can be used to represent risk aversion, risk lovers and risk-neutral investors.

• Under conditions of certainty, a type of separation principle applies when deciding
on (physical) investment projects. Managers can choose investment projects to max-
imise the value of the firm and disregard investor’s preferences. Then, investors are
able to borrow and lend to allocate consumption between ‘today’ and ‘tomorrow’
in order to maximise their utility.

• One-period models in which utility is assumed to depend only on expected portfolio
return and the variance of return give rise to asset shares that depend on expected
excess returns, the covariance matrix of returns and ‘risk aversion’ of the investor.

• One-period models that depend on the expected utility of end-of-period wealth gen-
erally do not give closed-form solutions. The exceptions are quadratic utility or
negative exponential utility plus multivariate normally distributed returns, where
asset demands are linear in expected excess returns. For many other utility functions,
the optimal solution for asset demands has to be calculated numerically.

Appendix: Mean-Variance Model and Utility
Functions
If an investor maximises expected utility of end-of-period portfolio wealth, then it can
be shown that this is equivalent to maximising a function of expected portfolio returns
and portfolio variance providing

(a) either utility is quadratic, or

(b) portfolio returns are normally distributed (and utility is concave).

If initial wealth is W0 and the stochastic portfolio return is Rp, then end-of-period
wealth and utility are

W = W0(1 + Rp) (A1)

U(W) = U [W0(1 + Rp)] (A2)
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Expanding U(Rp) in a Taylor series around the mean of Rp(= µp) gives

U(Rp) = U(µp) + (Rp − µp)U
′(µp) + (1/2)(Rp − µp)

2U ′′(µp)

+ higher order terms (A3)

Since E(Rp − µp) = 0, and E(Rp − µp)
2 = σ 2

p , taking expectations of (A3):

E[U(Rp)] = U(µp) + 1

2
σ 2

p U ′′(µp) + E(higher − order terms) (A4)

If utility is quadratic, then higher-order terms other than U ′′ are zero. If returns are
normally distributed, then E[(Rp − µp)

n] = 0 for n odd, and E[(Rp − µp)
n] for n

even is a function only of the variance σ 2
p . Hence for cases (a) and (b), E[U(Rp)] is

a function of only the mean µp and the variance σ 2
p . This result is moderately useful;

for example, it can be shown that if utility is defined only in terms of µp and σp and
is concave, then indifference curves in (µp, σp) space are convex, as assumed in the
text (see Figure 4). However, until we specify a specific utility function, we do not
know the functional relationship between E[U(Rp)] and (µp, σp) and hence we cannot
determine whether there is an analytic closed-form solution for asset demands.

Using quadratic utility has the problem that marginal utility is negative for levels of
wealth above the bliss point. Assuming normality for returns may not be an accurate
representation and also prices may become negative. Continuous time models assume
returns that are instantaneously normally distributed, and this provides considerable
tractability (see Cuthbertson and Nitzsche 2001a), which is widely used in derivatives
pricing. Again, the empirical validity of normality even at high frequencies (e.g. tick-
data) is debatable, but the usefulness of results depends on the problem at hand (e.g.
it seems reasonable when pricing stock index options).



2
BASIC STAT IST ICS
IN F INANCE

Aims

• Examine the lognormal distribution and Jensen’s inequality.

• Discuss the relationship between unit roots, random walk and cointegration.

• Demonstrate the use of Monte Carlo Simulation (MCS) and bootstrapping.

• Indicate how Bayes’ rule can be used to combine prior information and data estimates
to give an optimal forecast for parameters of interest.

The reader is assumed to have a good knowledge of basic undergraduate statistics
and econometrics, and the material in this chapter provides a brief résumé of a few
selected topics that are of key importance in understanding modern empirical work in
financial economics.

2.1 Lognormality and Jensen’s Inequality

Suppose Z has a lognormal distribution z = ln Z ∼ N(µz, σ 2
z ), where µz = E(ln Z),

σ 2
z = E(ln Z − E(ln Z))2. Then, the expected value of Z is given by

EZ = Eez = eµz+(1/2)σ 2
z (1)

Equation (1) is a special case of Jensen’s inequality that applies to expectations of
non-linear functions:

E[f (Z)] �= f (EZ ) (2)
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Here, Z = exp(z) but EZ �= exp(Ez ) = exp(µz). To illustrate this, suppose the k-period
forward rate is an unbiased predictor of the expected future exchange rate, k-periods
ahead:

EtSt+k = F k
t (3)

Assume the spot rate is conditionally lognormally distributed:

ln St+k ≡ st+k (4a)

st+k|�t ∼ N [Etst+k, vart (st+k)] (4b)

where �t is the information set at time t . It follows from (1)

EtSt+k = Et [exp(st+k)] = exp[Etst+k + (1/2)vart (st+k)] (5a)

ln(EtSt+k) = Etst+k + (1/2)vart (st+k) (5b)

Using (5b) in (3), we have

f k
t = Etst+k + (1/2)vart (st+k) (6)

where f k
t = ln(F k

t ). Hence, the log of the forward rate is not an unbiased predictor of
the expected value of the (log of the) future spot rate, when the spot rate is condition-
ally lognormal. The additional variance term in (6) is often referred to as the Jensen
inequality term. This becomes of relevance when discussing forward rate unbiasedness
and other issues in later chapters.

Exchange rates can be measured either as domestic per unit of foreign currency S t

or vice versa, so that

S∗
t+1 = 1

St+1
(7)

where S∗
t+1 is measured as foreign per unit of domestic currency. However, because (7)

is a non-linear transformation,

EtS
∗
t+1 = Et(1/St+1) �= 1/Et(St+1) (8)

so that Et(1/St+1) �= 1/Et(St+1) – this special case of Jensen’s inequality is known as
Siegel’s paradox. However, for the logarithm of the exchange rate st+1 = ln St+1, it is
true that

Et(st+1) = −Et(−st+1) (9)

2.2 Unit Roots, Random Walk
and Cointegration
A random walk with drift (= µ) is an individual stochastic series xt that behaves as

xt = µ + xt−1 + εt εt ∼ iid(0, σ 2
ε ) (10a)
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where iid stands for ‘identical and independently distributed’. Standard econometric
tests are based on the assumption that variables are stationary (i.e. broadly speaking, a
constant unconditional population mean and variance and autocorrelations that depend
only on the time lag between the series). The series xt in (10) is non-stationary (i.e.
wanders off in an upward or downward direction and rarely re-crosses its starting point)
and is said to have a unit root (i.e. (1 − ρL)xt = εt where ρ = 1). This unit root gives
rise to a stochastic trend since from (10a)

xt+T = T µ + xt + vt (10b)

Etxt+T = T µ (10c)

vart (xt+T ) = T σ 2
ε (10d)

where vt = εt+1 + εt+2 + · · · + εt+T . Even when µ = 0 (i.e. no drift), the xt series
‘wanders’ further from its starting point and as T → ∞, its variance increases with
‘T’ – this is the stochastic trend. The first difference of xt , that is, �xt = µ + εt , is
stationary (since εt is stationary) and has a constant mean. A test for stationarity of
an individual series xt can be obtained by running the Augmented Dickey–Fuller, or
ADF, test, which is based on the OLS (maintained) regression

�xt = µ + γ xt−1 +
m∑

i=1

δi�xt−i + εt (11)

where εt is normally distributed and iid – usually written niid or N(0, σ 2
ε ). The null

of non-stationarity is
H0 : γ = 0

and the alternative of stationarity is Ha : γ < 0 (on a one-tail test). The OLS ‘t-statistic’
for H0 : γ = 0 is

τ̂µ = γ̂ /se(γ̂ ) (12)

where the subscript µ indicates that the data generation process (DGP) or ‘true’ model
is (10a). Under the null, τ̂µ is not distributed as a Student’s t-distribution, hence its
5% critical value has to be determined using MCS (see below) and depends on the
‘true’ value of µ in the DGP and on sample size, n. For example, for µ = 0, n =
50 (and the lag length in (11) is m = 0), the 5% (one-tail) critical value is −2.92,
whereas for µ = 0.25, it is −2.63 (Patterson 2000, Table 6, p. 232). For µ �= 0, the
distribution of τ̂µ is asymptotically normal, with a 5% critical value of −1.65, but
rarely do we have enough data points to warrant using the asymptotic value. For
µ = 0 in the DGP and n = 50, and given a value of τ̂µ < −2.92, one would reject the
null of non-stationarity. There are many variants on the above test but all follow the
same general principle set out above (see Patterson 2000 for an excellent overview of
these issues).

Testing for the null of a unit root against a stationary alternative is somewhat
‘severe’. If you do not reject the null, you are accepting that the series can ‘wander off’
to plus or minus infinity (i.e. has an unconditional variance that is proportional to ‘time’)
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and ‘shocks’ have a permanent effect. But if you reject the null, the series is covariance
stationary and does not ‘explode’. An alternative to this rather extreme dichotomy is
the idea of fractional integration. Here, a univariate series is assumed to follow a
process (1 − L)dxt = εt , where εt is stationary (but not necessarily white noise). If
d ≥ 0.5, then this implies non-stationarity but not necessarily explosive behaviour. As
d approaches 1, this indicates increasing non-stationarity, until d = 1 when xt has a
unit root. If d ∈ [0.5, 1), then xt is covariance non-stationary but mean reverting, so
an innovation has no permanent effect on xt . Hence, we can test (Robinson 1994) for
various values of d to get some idea of the degree of non-stationarity in the series
and whether it is explosive or not. However, this approach is not so prevalent in the
literature. This is because the implications of cointegration between variables that are
shown to be I(1) (rather than fractionally cointegrated) have allowed useful multivariate
approaches to testing economic theories (see below).

It is worth noting that most tests for the order of integration of a univariate series
have very low power against alternatives that are ‘near’ unit roots – which occurs for
many time series of interest in finance. Hence, one must use one’s judgement when
interpreting the many ‘statistical results’ in this area.

Cointegration

Any series xt that can be differenced to give a stationary series, with a minimum of d

differences, is said to be ‘integrated of order-d’ or ‘I(d)’ for short. The random walk
is an I(1) series. (Note that not all series that are non-stationary can be differenced to
make them stationary.)

If two series xt and yt are both I(1), say, then a linear combination of xt and yt will
generally also be I(1):

yt − βxt = zt (13)

However, it is possible that the (stochastic) trend in xt is ‘offset’ by the trend in yt

such that the linear combination is stationary (with constant β). If this ‘special case’
holds, then xt and yt are said to be cointegrated. A simple test for cointegration is to
run the OLS regression

yt = α̂ + β̂xt + et (14)

and test the residuals for stationarity using et (in place of xt ) in (11) (although the
critical values from MCS, for H0 : γ = 0 will differ from those given above).

Engle–Granger Representation Theorem

Engle and Granger (1987) show that if two (or more) I(1) series are cointegrated, then
there exists a dynamic error correction model (ECM), whereby the linear combination
(y − βx)t−1 helps predict either �xt or �yt or both. To demonstrate this in the sim-
plest possible case, suppose (xt , yt ) are both I(1) but cointegrated, so that (y − βx)t
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is stationary. Then (y − βx)t must have a stationary autoregressive moving average
(ARMA) representation

(yt − βxt ) = ρ1(y − βx)t−1 + ρ2(y − βx)t−2 + vt (15a)

�xt = εt (15b)

where we have assumed an AR(2) process for (y − βx)t , that xt is a random walk
(with zero drift) and vt and εt are white noise processes.

From (15a) and (15b), it is straightforward to derive the error correction model ECM

�yt = δ1�yt−1 + δ2�xt−1 + λy(y − βx)t−1 + wt (16)

where δ1 = −ρ2, δ2 = ρ2β, λy = (ρ1 + ρ2 − 1) and wt = vt + βεt . Since (y − βx)t is
stationary, then ρ1 + ρ2 < 1 so that λy < 0. Hence, if yt−1 > βxt−1, then next period
�yt < 0 (ceteris paribus), and y moves back towards its long run equilibrium y∗ = βx.

If the process for �xt had been an ARMA process, then the �xt could also be
represented as an error correction model like (15a) with the same cointegration term
(y − βx)t−1 but with a different coefficient λx . The two ECM equations, one for �yt

and the other for �xt , are together known as a bivariate vector ECM (VECM). It
then becomes an empirical question whether λx or λy are both non-zero, or only one
is non-zero. If yt and xt are cointegrated, then at least one of λx or λy must be non-
zero. The Engle–Granger theorem also implies the converse, namely, if there is an
error correction representation for either �xt or �yt (or both), then xt and yt are
cointegrated.

Establishing that two (or more) series are I(1) and then invoking the Engle–Granger
theorem to infer predictability has been widely used where one (or more) of the series
is an asset price (e.g. stock, bond or price of foreign exchange). This establishes
predictability in at least one direction, and the VECM model is used to establish
one- or two-way causation. It is worth noting that establishing predictability of stock
returns (via cointegration and VECMs) does imply that in repeated gambles, you can
earn positive profits, but it does not necessarily imply that these profits are sufficient
to cover transactions costs and the risks underlying your repeated gambles – this issue
of ‘efficient markets’ is taken up in much of the rest of the book.

If there are n > 2, I(1) variables, then there are at most (n − 1) cointegrating vectors,
and these cointegrating vectors are not unique for n > 2. In principle, these n − 1 coin-
tegrating vectors can all appear in each of the ECMs for the n–variables. The Johansen
(1988) procedure allows one to test for the number of cointegrating vectors in the
VECM system and also to test restrictions on the parameters of the error correction
terms β (where β is now a vector for each of the distinct cointegrating vectors).

The small sample properties of many test statistics used in the cointegration literature
have to be established using Monte Carlo simulation or bootstrapping (e.g. Psaradakis
2001), and often their power properties are poor if the alternative is a near unit root
(see the web site for programmes that demonstrate this).
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2.3 Monte Carlo Simulation (MCS)
and Bootstrapping
It is often the case in econometrics that we have asymptotic analytic results for the
properties of estimators and their statistical distribution but we do not know what
properties the estimator has in small samples. This is where MCS can be useful.

Dickey–Fuller Test

To start the ball rolling, consider how the critical value for τ̂µ = γ̂ /se(γ̂ ), the
Dickey–Fuller ‘t-statistic’ for H0 : γ = 0 is obtained using MCS. The subscript µ

indicates that the data generation process, DGP, or ‘true’ model is (10a). Suppose we
draw a random sample of n = 50 observations (say) of εt ∼ N(0, 1). Set µ = 0.25,
x0 = 0 in (10a) and with the 50 random values of εt , generate a simulated data series for
xt under the null. Use these 50 simulated observations on xt and run the Dickey–Fuller
OLS regression �xt = µ̂ + γ̂ xt−1 + v̂t and retain the value for τ̂µ = γ̂ /se(γ̂ ). This is
the first run of the MCS. We now repeat the above with a different set of random
draws of εt (t = 1, 2, . . . , 50) and obtain a large number (say 20,000) values of τ̂µ

(under the null γ = 0), which can be plotted in a histogram. A well-known result is
that γ̂ is biased downwards, and therefore τ̂µ will not be centred on 0 (as it is under
the null). We now find the cut-off point in the histogram for τ̂µ, which leaves 5% of
the area of the simulated distribution in the left tail. This value, as we noted above, is
τ̂µ = −2.63 (for µ = 0.25, n = 50), which is the critical value for a one-tail test. We
can then repeat the MCS for alternative sample lengths, alternative values of µ in the
DGP and alternative lag-lengths (see (11)) in the regression and obtain critical values
for these alternative scenarios (these alternative critical values can often be represented
in terms of a simple formula where the critical value depends on sample size, the value
of µ, etc. – this is known as a response surface).

Return Regressions

Next, let us examine a very well known problem in financial econometrics that can be
represented:

yt = α + βxt−1 + ut (17a)

xt = θ + ρxt−1 + vt (17b)

where |ρ| < 1, and ut , vt are contemporaneously correlated, σuv �= O. However, each
error term is normally and independently distributed over time (i.e. no heteroscedastic-
ity or serial correlation in either error term). Assume the two error terms are bivariate
normal and the covariance matrix of the errors is

∑
=

[
σ 2

u σuv

σuv σ 2
v

]
(18)
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yt can be taken to be the change in price (i.e. return) on an asset during period t , and
xt−1 is a variable known at the end of period t − 1. If yt is the (one-period) return
on equity, then xt−1 might be the dividend–price ratio (i.e. dividend yield) or book-
to-market value or the yield spread. In bond markets, yt might be the holding period
return or the change in the bond yield and xt−1 the yield spread. In the FX market, yt

could be the (one-period) change in the spot-FX rate and xt−1 is the forward premium.
We will meet all of these cases later in the book, usually under the heading of testing
the efficient markets hypothesis.

Here, we confine our analysis to that where yt is a one-period return. The same
problems ensue when we examine multiperiod returns. For example, if we have over-
lapping data (e.g. monthly data and yt is the annual price change) then ut is serially
correlated, and similar results to those discussed below apply to the standard estimators
(e.g. GMM). It can be shown that the OLS estimator of β in (17a) is consistent but
biased and the source of the bias is the correlation between ut and vt . The intuition
behind this is as follows. Suppose ut > 0, and σuv > 0, then on average, vt will also
be greater than 0. The increase in vt leads to an increase in xt , so although vt , and
hence ut , is uncorrelated with xt−1, in (17a), ut is correlated with xt , and it is the latter
that causes the OLS-β̂ to be biased.

The standard assumption used to prove that the OLS estimator β̂ in (17a) is BLUE is

E{ut | . . . xt−2, xt−1, xt , xt+1, xt+2, . . .} = 0 (19)

So, ut is assumed to be uncorrelated with xt at all leads and lags. However, when
we consider E(ut |xt , xt+1, xt+2, . . .), then as shown above, this expectation is not 0,
and the standard OLS results no longer hold. It can be shown that asymptotically, β̂

is consistent and

t = β̂ − β

se(β̂)
∼ N(0, 1) (20)

Hence, hypothesis tests on β are ‘standard’ in large samples. Note that for n → ∞,
this (pseudo) ‘t-statistic’ is distributed N(0,1). However, in small samples, the OLS
estimator β̂ is biased, the OLS formula for σ̂ 2

u and se(β̂) are also biased and the ‘t-
statistic’ in (20) is not distributed as Student’s-t (or even normally distributed). If we
use the asymptotic result in (20) when we only have a finite sample, then we may
draw the wrong inferences. How can we investigate the small sample distribution for
the OLS, β̂? Suppose the null hypothesis we are trying to test is β = 1 (we choose
this for convenience) and yt = monthly (excess) return on S&P500 and xt−1 is the
dividend yield at the end of the previous month (this is usually measured as dividends
paid from t − 12 to t − 1 divided by the S&P500 price level at end t − 1).

Suppose an OLS regression of (17a) on real data using annual observations and
sample size n = 50 years gives β̂d = 2.2 and se(β̂d ) = 0.2. Using the asymptotic ‘t-
statistic’ in (20) for H0 : β = 1 gives

td = (2.2 − 1)/0.2 = 6 (21)

On a two-tail test at a 5% significance level, H0 is clearly rejected (since the crit-
ical value = ±1.96) with the p-value for td = 6 being less than 0.001. In order to
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investigate the small sample properties of the OLS statistics under the null H0 : β = 1,
we undertake a MCS and generate simulated data on x and y. To do this, we need to
know the parameters α, β, θ , ρ and the elements of .

As a first approximation, we can use the ‘OLS’ estimates of these parameters (which
are consistent) by running regressions (17a) and (17b) together on the ‘real’ data set
(i.e. SURE estimators). These estimators will be biased in finite samples, but they
may provide a reasonable ‘ball park’ starting point for our Monte Carlo analysis. (We
can always see how sensitive our conclusions are to changes in these parameters at a
later date.)

Suppose we find that our OLS estimates are α = 0.2, θ = 0.1 and ρ = 0.98, where
the latter is consistent with the observed persistence (or smoothness) in the divi-
dend–price ratio. We also have our OLS estimates of the elements of , based on
the residuals from (17a) and (17b).

The parameters {α, θ, ρ and } are held fixed throughout the MCS, and β = 1 is
fixed at its chosen ‘true value’ (usually given by economic theory). The MCS consists
of the following steps.

(i) Draw (n1 + n) values of ut and vt from a bivariate normal distribution with
covariance matrix .

(ii) Generate the series xt recursively, starting with xo = 4% (the average dividend–
price ratio in the data).

(iii) Use the generated x-series and the random errors ut to generate (n1 + n) values
for yt .

(iv) Discard the first n1 values of x and y, so you are left with n-values.

(v) Calculate the OLS estimator β̃(1) and other statistics of interest such as the asymp-
totic OLS standard error, se(β̃(1)).

(vi) Repeat (i)–(v), for m = 10,000 times, obtaining 10,000 values for β̃(i){i =
1, 2, . . . ,m} and se(β̃(i)).

We discard the first n1 data points so that our generated data is independent of the
starting value x0 (usually n1 = 150 is adequate). The fixed sample of ‘length’ n = 50
is crucial as this represents the size of our ‘small sample’ with the real world data.
The number of ‘runs’ of the MCS (m = 10,000) does not affect the properties of the
estimator and must be large enough to obtain a reasonably precise estimate of the
distribution of the β̃(i) – see Figure 1. Calculate the mean value of the 10,000 values
of β̃(i)

mean(β̃) =
m∑

i=1

β(i)/m = 2.6 (say) (22)

Thus, when we know that β = 1 in (17a), we find that the mean of the OLS estimator
for β in the MCS of sample size n = 50 is 2.6. (We make this difference ‘large’ to
make the point, although as we shall see, such a large difference occurs when testing
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the expectations hypothesis of the term structure of interest rates – Bekaert, Hodrick
and Marshall 1997.) It follows that the small sample OLS bias for β is

bias(β̂OLS) = mean(β̃) – true(β) = 2.6 − 1 = 1.6 (23)

Using real data, our ‘one-shot’ OLS estimate was β̂d = 2.2. But ‘1.6’ of this is
accounted for by the bias, and hence a more accurate finite sample estimate of β

in the real data would be

adj (β̂d) = β̂d − bias(β̂OLS) = 2.2 − 1.6 = 0.6 (24)

The bias-adjusted value adj (β̂d) = 0.6 is now much closer to the theoretical value of
unity, and we are now more likely (ceteris paribus) to accept the null. The ‘distance’
between the small sample adj (β̂d) and the null hypothesis β = 1 is now only 0.4 (in
absolute value):

Distance = adj (β̂d) – β = 0.6 − 1 = −0.4 (25)

We might now be tempted to undertake the following ‘t-test’ of H0 : β = 1

adj -t = adj (β̂d) − β

se(β̂d)
= 0.6 − 1

0.2
= −2 (26)

which is just rejected at the 5% significance level (two-tail test), since from the normal
distribution, the (asymptotic) critical value is −1.96. But even this result could be
misleading because we have used the biased OLS formula to calculate se(β̂d). We
have also assumed that ‘adj-t’ is distributed as N(0,1), in a finite sample, and this may
not be the case. Can we improve on this using our MCS results?
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Figure 1 shows the distribution of the 10,000 values of β̃(i) from the MCS, when
we know that β = 1 and the variance–covariance matrix (of the error terms)  is
representative of that found using the real data. Purely for pedagogic purposes, we
assume that the distribution of β̃(i) is not symmetric and, therefore, the mean is not an
unambiguous measure of central tendency. We could use the median value in place of
mean(β̃) instead in (23) and (24) as a sensitivity test of our conclusions. But we will
stick with the mean as our measure of central tendency.

In Figure 1, we see that the ‘empirical distribution’ of β̃(i) is more dispersed (around
mean(β̃)) than in the asymptotic distribution. Indeed, we can calculate the standard
deviation of β̃(i) from our MCS:

mean(β̃) =
m∑

i=1

β̃(i)/m (27a)

stdv(β̃) =
[

m∑
i=1

{β̃(i) − mean(β̃)}2/(m − 1)

]1/2

= 0.4 (say) (27b)

which is twice the standard error of the asymptotic distribution of the OLS estimator
of 0.2.

Often, these MCS standard deviations are reported in place of the analytic asymptotic
values because in small samples, the former are thought to be more representative of
the true values; although note that if the empirical distribution is not symmetric, the
standard deviation may not be a useful measure of the dispersion of our estimate of β.

If stdv (β̃) = 0.4, then using this in (26) would give adj -t = 1 and hence accepting
the asymptotic normality assumption would imply we now do not reject H0 : β = 1.
But we have the obvious problem that the finite sample distribution of β̃(i) from the
MCS is not normal and hence we cannot use critical values from the normal distribution
when testing for H0 : β = 1. What we can do is compare our estimate of beta using
the real data β̂d = 2.2, with its p-value taken from the empirical distribution.

From Figure 1, we see that when the true β = 1 then mean(β̃) = 2.6. Hence,
we should measure ‘how far’ the OLS estimate using real data β̂d = 2.2 is from
mean(β̃) = 2.6, in statistical terms. (Note that 2.6 − 2.2 = 0.4 is the same as the ‘Dis-
tance’ in (25).)

One useful ‘statistical measure’ of β̂d = 2.2 is the proportion of the β̃(i) in the
MCS that have values less than 2.2, which is 15% (Figure 1). Hence, the Monte Carlo
distribution (which embodies the OLS small sample bias) implies that under the null
(β = 1), the p-value (on a one-tail test), given β̂d = 2.2, is 15%, suggesting we do not
reject β = 1.

The above is equivalent to moving the empirical distribution to the left (Figure 1) so
its mean is centred on β = 1, but it retains the same standard deviation and shape as the
MC distribution. The bias adjusted estimate based on real data is adj (β̂d) = 0.6 and
this would also have a p-value of 15% (after moving the MC distribution to the left).

However, it is easier to work with the actual empirical distribution in Figure 1, and
here we can calculate the 5th and 95th percentiles as βL = 2 and βu = 4. Note that
these are not symmetric around mean (β̃) = 2.6 because we have assumed that the
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Monte Carlo distribution is not symmetric. With 90% confidence, we can say that if the
true(β) = 1, then in a finite sample, an OLS value for β between 2 and 4 on any real
data set (of n-observations) does not reject the null that β = 1. So, if the true(β) = 1,
then an OLS estimate on real data of βd ≤ 1.99 say would be observed less than 5%
of the time. Put another way, given an OLS estimate of 1.99, then for H0 : β = 1, the
empirical (lower tail) p-value is 0.05.

Although we have conducted the above analysis wholly in terms of the MC dis-
tribution of β, we could equally have plotted the MC distribution of the ‘t-statistic
τ (i) = (β̃(i) − 1)/se(β̃(i)) for m = 10,000 runs of the MCS (where the estimators β̂ and
se(β̂) are consistent). We can then obtain the upper and lower 2.5% tail critical values
for the MC distribution of τ (i), which might be +2 and +6.2 (say). The t-statistic using
the real data is td = (2.2 − 1)/0.2 = 6, and hence we would not reject the null β = 1
on the basis of the MC distribution of the ‘t-statistic’, in a finite sample. The distri-
bution of the ‘t-statistic’ is often preferred in MCS (and bootstrapping, see below), to
the distribution of β̂ itself as the former has better statistical properties. The t-statistic
is said to be ‘pivotal’, which means that its distribution does not depend on ‘nuisance
parameters’ such as the variance of the error term.

Analytic Expressions

In some cases, it is possible (after much effort) to work out an analytic expression for
the bias, standard error and p-values (under the null) for a particular estimator (e.g.
OLS), given a particular model. In the case of (17a) and (17b), the OLS bias is,

Eβ̂ − β = σuv

σ 2
v

[Eρ̂ − ρ] (28)

where approximately
Eρ̂ − ρ ≈ −(1 + 3ρ)/n (29)

Hence, using σuv = ρuvσuσv where ρuv is the correlation coefficient between u and v

Eβ̂ − β = −ρuvσu

σv

(
1 + 3ρ

n

)
(30)

The OLS estimator of β is biased upwards (downwards) for ρuv < 0 (>0). The bias is 0
if ρuv = 0 (the standard OLS case), and the bias disappears in large samples (n → ∞).
The bias is greater the greater is ρ (i.e. the persistence or autocorrelation in xt ) and
the larger is σu relative to σv .

Bootstrapping

In a MCS, we assume we know the joint distribution of the error terms (e.g. multivariate
normal). However, the residuals using the real data might be far from normal, although
it is also worth noting that the residuals may be biased estimates of the true errors, since
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the OLS β̂ and ρ̂ are biased in small samples. Nevertheless, the residuals using the
real data are all we have to guide us. Suppose the residuals are iid but not normally
distributed. We can then repeat the whole of our MCS using random draws (with
replacement) from our set of residuals (in place of the generated multivariate normal
errors in the MCS). This is called bootstrapping. For each run of the bootstrap, we
obtain an OLS estimate of β̃(i) and τ (i) and their empirical (bootstrap) distributions.
For example, if the residuals have fat tails (compared to the normal distribution), we
might find that the empirical distributions of β̃(i) and τ (i)under the bootstrap have
fatter tails than under the MCS using multivariate normal errors. Again, the bootstrap
distribution of τ (i) is usually used for inference because it is ‘better behaved’ than that
for β̃(i) (i.e. is ‘pivotal’).

In the bootstrap, we draw n residuals, (ût , v̂t ) in (17a) and (17b) in pairs. This
preserves any contemporaneous correlation in the residuals, if cov(ût , v̂t ) �= 0. The
time series of simulated or ‘bootstrapped’ data for xt and yt will not be the same for
each run of the bootstrap for two reasons. First, the order in which you draw the n

values of v̂t determines xt (recursively), and this ordering will differ for each run of
the bootstrap. Second, since we ‘draw with replacement’, a particular residual pair,
say (û10, v̂10), from the real data set can be drawn more than once, in any run of
the bootstrap.

If the residuals ût or v̂t are not iid, then the bootstrap has to be modified. For
example, if the residuals ût were MA(1), then each ‘bootstrap draw’ of ût would
involve adjacent pairs (ût , ût−1), together with the corresponding pair of values for
(v̂t , v̂t−1) to preserve the contemporaneous correlation across equations (Politis and
Romano 1994). If ut were AR(1), the residuals could be randomly chosen in ‘blocks’
to adequately represent this autocorrelation pattern (not surprisingly, this is called a
block bootstrap – Li and Maddala 1997). Alternatively, (17b) could be re-estimated
with a Cochrane–Orrcutt transformation and then the ‘new’ residuals would not be
autocorrelated and could be bootstrapped in the usual way (this is the basic idea
behind the ‘sieve bootstrap’ – Buhlmann 1997). In general, with some ingenuity, one
can devise a bootstrap method of generating repeated samples of the residuals so that
the generated residuals ‘match’ those found in the real data.

The obvious limitations of MCS and bootstrapping are that the results hold for a
specific model, null hypothesis and sample size. However, sensitivity analysis pro-
vides results for alternative scenarios (e.g. assuming the process for xt has a unit
root), and ‘response surfaces’ give critical values for alternative sample sizes (and for
alternative values of ‘nuisance parameters’ such as µ in the ADF test). Increased com-
puting power has led to a major increase in the use of these techniques when testing
economic models.

Another use of MCS (and to a less extent bootstrapping) is to set up a theoretical
model, calibrate the model using ‘reasonable’ parameter estimates and then generate
artificial data by drawing random samples from the error terms of the model, assum-
ing a known distribution (e.g. multivariate normal). The generated artificial data are
therefore consistent with a known theoretical model. By repeatedly generating artifi-
cial data from the theory model, we can then examine the statistical properties of key
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variables (e.g. asset returns, consumption, etc.). Statistical properties might include
means, standard deviation, skewness, kurtosis, autocorrelations, cross-correlations and
regressions between ‘simulated’ data series. If the ‘moments’ of the simulated data
broadly match those found in the real data, it shows that the theoretical model is
consistent with the ‘stylised facts’. This method of validating theoretical models is
often referred to as calibration, and we will meet numerous examples of this in later
chapters.

2.4 Bayesian Learning

There is a wide range of alternative methods investors could use to learn about the
parameters of a particular stochastic process (e.g. returns Rt+1 depend linearly on the
current level of the dividend–price ratio (D/P )t so that Rt+1 = α + β(D/P )t + εt+1).
Under rational expectations, we assume investors know the parameters θ = (α, β)

exactly and base their forecasts of Rt+1 assuming θ is known with certainty. This
is clearly a strong assumption to make. An alternative is to assume investors update
their views about the parameters θ as more data arrives and hence they recognise the
uncertainty in their current knowledge about θ . A Bayesian assumes investors have a
prior estimate of the parameters θ (e.g. from economic theory), and they update this
estimate as more sample data arrives, to give a posterior estimate of θ . A number of
models we meet in later chapters invoke Bayesian learning and, therefore, we outline
the main features of this approach.

The simplest case is to consider a single parameter distribution, which we take
to be Poisson. After noting the new organisational changes for London Underground
(Metro), suppose you are sitting at home and you think that the mean arrival times of
London Underground trains on a busy route will now be either λ = 2 (minutes) or 4
(minutes). Assume these beliefs are held with prior probabilities

P(λ = 2) = 0.8 and P(λ = 4) = 0.2

Hence, given your prior views, λ = 2 has 4 times as much chance of being correct as
λ = 4. You now go along to your local Metro stop, and the train arrives after X = 6
minutes. Intuition tells you that λ = 4 seems more likely than λ = 2, after you have
observed X = 6. That is, your posterior probability differs from the prior probabilities.
The probability density function (p.d.f.) for the Poisson distribution is

f (λ, x) = e−λλx

x!
(31)

Therefore

P(X = 6|λ = 2) = 0.012 (32a)

P(X = 6|λ = 4) = 0.104 (32b)
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The posterior probability for λ = 2, given X = 6, is

P(λ = 2|X = 6) = P(λ = 2, X = 6)

P (X = 6)

= P(λ = 2)P (X = 6|λ = 2)

P (λ = 2)P (X = 6|λ = 2) + P(λ = 4)P (X = 6|λ = 4)

= 0.8(0.012)

0.8(0.012) + 0.2(0.104)
= 0.316 (33)

and similarly
P(λ = 4|X = 6) = 0.684

So, after observing X = 6, the prior probability P(λ = 2) = 0.8 has decreased to a
posterior probability P(λ = 2|X = 6) = 0.316, while the prior probability P(λ = 4) =
0.2 has increased to P(λ = 4|X = 6) = 0.684.

If θ = λ can take more than two values, a Bayesian must assign a prior p.d.f. h(θ)

to all possible prior values for the parameter(s) θ . Also, we usually have more than one
observation on which to calculate the posterior probabilities. Suppose Y is a statistic
for the parameter θ with p.d.f. g(y|θ) where Y could be the mean X of the data sample
X = (X1,X2, . . . , Xn) and g(y|θ) could be the normal distribution (see below). Then
the joint p.d.f. k(y, θ) of the statistic Y and the parameter θ is

k(y, θ) = g(y|θ)h(θ) (34)

The marginal p.d.f. of Y is

km(y) =
∫ ∞

−∞
h(θ)g(y|θ) dθ (35)

The conditional p.d.f. of the parameter θ , given Y = y, is known as the posterior p.d.f.
of θ , denoted k(θ |y):

k(θ |y) = k(y, θ)

km(y)
= g(y|θ)h(θ)

km(y)
(36)

The posterior p.d.f. for θ depends only on the observed data Y . Note that if h(θ) is
a constant, so that the prior p.d.f. is the uniform distribution, then this is referred to
as a noninformative prior. Bayesians consider θ as a random variable, and their best
forecast (guess) for θ depends on their loss function. For example, if Z is a random
variable and ‘b’ is a guess for Z and the loss function is E[(Z − b)2], this is minimised
for b = EZ . So if the loss function for a guess w(y) for θ is E[θ − w(y)]2, the best
(Bayes) estimate for θ is the conditional mean

w(y) =
∫ ∞

−∞
θk(θ |y) dθ (37)

Similarly, if the loss function is the absolute value of the error |θ − w(y)|, then the
median of the posterior distribution would be the Bayes estimate for θ .
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Perhaps a simple example will provide a slightly more intuitive interpretation of
Bayes theorem. Suppose Y = x is the mean of a random sample of size-n, so x =
{x1, x2, . . . , xn} where

xi ∼ N(θ, σ 2)

and we assume σ 2 is known with certainty. (Therefore, we do not need to use Bayesian
updating for σ 2.) A standard statistical result is that g(y ≡ x|θ) has a p.d.f.

g(y ≡ x|θ) = N(θ, σ 2/n) (38)

Suppose we assign prior guesses to θ , using the prior p.d.f. h(θ), which we take to be
normal:

h(θ) = N(θ0, σ
2
0 ) (39)

Then the posterior p.d.f. k(θ |y) is

k(θ |y)∝ 1√
2π(σ/

√
n)

1√
2π(σ0)

exp

[−(y − θ)2

2(σ 2/n)
− (θ − θ0)

2

2σ 2
0

]
(40)

Now eliminate all constant terms not involving θ (i.e. including terms involving y

only):

k(θ |y)∝ exp

[
− (σ 2

0 + σ/n)θ2 − 2(yσ 2
0 + θ0σ

2/n)θ

2(σ 2/n)σ 2
0

]
(41)

After completing the square (and eliminating elements not involving θ), this becomes

k(θ |y)∝ exp

[
− (θ − m)2

var

]
(42)

where

m = yσ 2
o + θ0(σ

2/n)

(σ 2
0 + σ 2/n)

=
[

σ 2
0

σ 2
0 + (σ 2/n)

]
y +

[
σ 2/n

σ 2
0 + (σ 2/n)

]
θ0 (43a)

var = (σ 2/n)σ 2
0

[σ 2
0 + (σ 2/n)]

(43b)

Hence, the posterior p.d.f. is normal with mean = m and variance = var. If we assume
a square error loss function, the Bayes estimate of θ is the posterior mean, given
by (43a). The posterior mean is a weighted average of the sample mean y = x and
the prior mean θ0, where the weights depend on the relative size of the prior variance
σ 2

0 and the sample variance σ 2/n (for σ 2 known). The prior estimate θ0 is therefore
‘shrunk’ towards the sample estimate x and as n increases, the posterior mean gets
closer to the maximum likelihood estimate, x. If the loss function in the above had
been |w(y) − θ |, then the Bayes estimate would have been the median of the posterior
distribution given by k(θ |y).

In the above example, we assumed we knew the conditional distribution g(y ≡
x|θ), as this is a standard statistical result (i.e. the sample mean is the maximum
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likelihood estimate of the population mean with variance σ 2/n). In general, we would
not necessarily know this result, and hence, given sample observations {x1, x2, . . . , xn},
we replace g(y|θ) by the likelihood function

L(θ) = f (x1|θ)f (x2|θ) · · · f (xn|θ)

which is the joint p.d.f. of {x1, x2, . . . , xn} given θ . Then the posterior p.d.f. is

k(θ |x1, x2, . . . , xn)∝h(θ)L(θ) (44)

The Bayesian estimate of θ , say, w(x1, x2, . . . , xn), is then some characteristic of the
above posterior distribution, such as the mean or median. (For an excellent introduction
to basic statistics and Bayes theorem, see Hogg and Tanis (1993), from which this
section draws heavily.)

Note that Bayes theorem is not the only way we could mimic learning behaviour. For
example, if we are willing to assume that agents have no priors about the parameters,
then they may use a relatively simple updating procedure such as recursive OLS. If
the true population parameters are constant, then the recursive OLS estimates would
eventually converge towards the true parameters as more data becomes available. If
the true parameters are themselves time varying and we know the stochastic properties
of this time variation (e.g. the parameters follow a random walk), then more complex
optimal updating of the parameters is often possible (e.g. using the Kalman filter)
as more data becomes available. An alternative to time-varying parameters that vary
continuously is to assume the true parameters are constant within any regime (e.g.
high-inflation or low-inflation regimes), but they are different in different regimes.
The investor is then faced with a filtering problem since she has to work out the
probability of being in a specific regime before she can make forecasts. Where the
transition between regimes follows a Markov process, this problem can be solved
using the Hamilton (1994) filter. All of the above methods have been used to mimic
learning behaviour, as we shall see in future chapters.

2.5 Summary

• Jensen’s inequality implies that the expectation of a non-linear function of a random
variable does not equal the function of the expected value E[f (Z)] �= f (EZ ). For
certain distributions, for example, the lognormal ln Z ∼ N(µ(ln Z), σ 2(ln Z)), we
can obtain an explicit expression for the expected value: EZ = exp(µ + (1/2)σ 2).

• When data series have a unit root, the properties of some statistical tests are ‘non-
standard’. If two or more series have a unit root, then a linear combination may
be stationary – the series are then said to be cointegrated. Cointegrated series are
stationary and hence ‘standard’ statistical results apply. If two (or more) series are
cointegrated, then at least one of the variables is ‘Granger caused’ by the error
correction term (i.e. the lagged cointegrating vector).
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• MCS and bootstrapping can be used to determine the critical values of test statistics
in finite samples, where analytic solutions are not available. Stochastic simulation of
theoretical models generates artificial data whose properties can be compared with
the real data, in order to validate the model. This is calibration.

• Bayes theorem can be used to optimally combine prior information about parameters
with the sample estimates of the parameters. This gives a posterior distribution for
the parameters that depends only on the data observed and the prior guesses. As
more data arrives, the mean of this posterior distribution is determined relatively
more by the sample of data, and the prior guesses carry less weight. Hence, Bayes
theorem can be used to model a ‘rational’ learning process by investors when they
try and update their views about unknown parameter values as new data arrives.





3
EFF IC IENT MARKETS
HYPOTHES IS

Aims

• Show that the EMH (efficient markets hypothesis) implies that no abnormal profits
can be made (on average) by trading in risky financial assets.

• Demonstrate the implications of the EMH for investment analysts, mergers and
takeovers, capital adequacy and the cost of capital.

• Introduce the concepts of fair game, martingale and a random walk, within the
context of the EMH.

• Outline alternative empirical tests of the EMH.

In the United Kingdom, there used to be a TV programme called ‘The Price is
Right’, in which contestants had to try and guess the correct market price of a consumer
durable. A shorthand for the EMH could well be ‘The Price is Right’, where here the
price is that of a risky asset. The fair value of the asset represents the DPV (discounted
present value) of future receipts from the asset and in an ‘efficient market’, the market
price should always equal this ‘fair value’.

In general, when economists speak of capital markets as being efficient, they usually
consider asset prices and returns as being determined as the outcome of supply and
demand in a competitive market, peopled by rational traders. These rational traders
rapidly assimilate any information that is relevant to the determination of asset prices
or returns (e.g. future dividend prospects) and adjust prices accordingly. Hence, indi-
viduals do not have different comparative advantages in the acquisition of information.
It follows that, in such a world, there should be no opportunities for making a return on
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a stock that is in excess of a fair payment for the riskiness of that stock. In short, abnor-
mal profits from trading should be zero. Thus, agents process information efficiently
and immediately incorporate this information into stock prices. If current and past infor-
mation is immediately incorporated into current prices, then only new information or
‘news’ should cause changes in prices. Since news is by definition unforecastable, then
price changes (or returns) should be unforecastable: no information at time t or earlier
should help improve the forecast of returns (or equivalently to reduce the forecast error
made by the individual). This independence of forecast errors from previous informa-
tion is known as the orthogonality property and it is a widely used concept in testing
the efficient markets hypothesis.

3.1 Overview

Under the EMH, the stock price Pt already incorporates all relevant information, and,
the only reason for prices to change between time t and time t + 1 is the arrival of
‘news’ or unanticipated events. Forecast errors, that is, εt+1 = Pt+1 − EtPt+1 should
therefore be zero on average and should be uncorrelated with any information �t that
was available at the time the forecast was made. The latter is often referred to as the
rational expectations RE element of the EMH and may be represented as:

Pt+1 = EtPt+1 + εt+1 (1a)

Et(Pt+1 − EtPt+1) = Etεt+1 = 0 (1b)

An implication of Etεt+1 = 0 is that the forecast of Pt+1 is unbiased (i.e. on average,
actual price equals the expected price). Note that εt+1 could also be (loosely) described
as the unexpected profit (or loss) on holding the stock between t and t + 1. Under the
EMH, unexpected profits must be zero on average and this is represented by (1b).

The statement that ‘the forecast error must be independent of any information �t

available at time t (or earlier)’ is known as the orthogonality property. It may be shown
that if εt is serially correlated, then the orthogonality property is violated. An example
of a serially correlated error term is the first-order autoregressive process, AR(1):

εt+1 = ρεt + vt+1 (2)

where vt+1 is a (white noise) random element (and by assumption is independent of
information at time t , �t). The forecast error εt = Pt − Et−1Pt is known at time t and
hence forms part of �t . Equation (2) implies that this period’s forecast error εt has a
predictable effect on next period’s error εt+1 but the latter, according to (1), would be
useful in forecasting future prices. This violates the EMH.

We can see more directly why serial correlation in εt implies that information at
time t helps to forecast Pt+1 as follows. Lag equation (1a) one period and multiply it
by ρ:

ρPt = ρ(Et−1Pt) + ρεt (3)
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Subtract (3) from (1a), and use vt+1 = εt+1 − ρεt :

Pt+1 = ρPt + (EtPt+1 − ρEt−1Pt) + vt+1 (4)

We can see from (4) that when ε is serially correlated, tomorrow’s price depends upon
today’s price and is, therefore, (partly) forecastable from the information available
today. (Note that the term in brackets being a change in expectations is not fore-
castable.) Therefore, the assumption of ‘no serial correlation’ in ε is really subsumed
under the EMH assumption that information available today should be of no use in
forecasting tomorrow’s stock price (i.e. the orthogonality property).

Note that the EMH/RE assumption places no restrictions on the form of the second
and higher moments of the distribution of εt . For example, the variance of εt+1 (denoted
σ 2

t+1) may be related to its past value, σ 2
t without violating RE. (This is an ARCH

process.) RE places restrictions only on the behaviour of the first moment (i.e. expected
value) of εt .

The efficient markets hypothesis is often applied to the return on stocks Rt and
implies that one cannot earn abnormal profits by buying and selling stocks. Thus, an
equation similar to (1) applies to stock returns. Actual returns Rt+1 will sometimes be
above and sometimes below expected returns, but on average, unexpected returns or
the forecast errors εt+1 are zero:

εt+1 = Rt+1 − EtRt+1 (5)

where Etεt+1 = 0. To test the EMH, we need a model of how investors determine
expected (or required) returns. This model should be based on rational behaviour
(somehow defined). For the moment, assume a very simple model where

(i) stocks pay no dividends, so that the expected return is the expected capital gain
due to price changes

(ii) investors are willing to hold stocks as long as expected (required) returns are
constant,

Hence,
Rt+1 = k + εt+1 (6)

where εt+1 is white noise and independent of �t . We may think of the required rate of
return k on the risky asset as consisting of a risk-free rate r and a risk premium rp (i.e.
k = r + rp) and in (6) we assume both are constant over time. Since for a non-dividend
paying stock, Rt+1 = (Pt+1 − Pt)/Pt ≈ ln(Pt+1/Pt ), equation (6) implies:

ln Pt+1 = k + ln Pt + εt+1 (7)

Equation (7) is a random walk in the logarithm of P with drift term k. Note that
(the logarithm of) stock prices will only follow a random walk under the EMH if the
risk-free rate r and the risk premium rp are constant and dividends are zero. Often,
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in empirical work, the ‘price’ at t + 1 is adjusted to include dividends paid between t

and t + 1, and when it is stated that ‘stock prices follow a random walk’, this usually
applies to ‘prices inclusive of dividends’. In some empirical work, researchers may take
the view that the stock return is dominated by capital gains (and losses) and hence will
use quoted prices excluding dividends.

For daily changes in stock prices over a period of relative tranquillity (e.g. exclud-
ing ‘crash periods’ like October 1987 and 2000–2003), it may appear a reasonable
assumption that the risk premium is a constant. However, when daily changes in stock
prices are examined, it is usually found that the error term is serially correlated and
that the return varies on different days of the week. In particular, prices tend to fall
between Friday and Monday. This is known as the weekend effect. It has also been
found for some stocks, that daily price changes in the month of January are dif-
ferent from those in other months. ‘Weekends’ and ‘January’ are clearly predictable
events! Therefore, returns on stocks depend in a predictable way upon information
readily available, (e.g. what day of the week it is). This is a violation of the EMH
under the assumption of a constant risk premium since returns are, in part, predictable.
However, in the ‘real world’ it may not be the case that this predictability implies
that investors can earn supernormal profits since transactions costs need to be taken
into account.

It should be clear from the above discussion that, in order to test the EMH, we
require an economic model of the determination of equilibrium (or required) returns.
Our tests of whether agents use information efficiently is conditional on our having
chosen the correct model to explain expected returns. Rejection of the efficient markets
hypothesis could be either because we have the wrong equilibrium ‘pricing model’ or
because agents genuinely do not use information efficiently.

As noted above, another way of describing the EMH is to say that in an efficient
market it is impossible for investors to make supernormal profits. Under the EMH,
investors make a return on each security that covers the riskiness of that security and
any transactions costs. However, under the EMH there must be no opportunities for
making abnormal profits by dealing in stocks. The latter is often referred to as the
‘fair game’ property.

3.2 Implications of the EMH

The view that equity returns are determined by the action of rational agents in a com-
petitive market, and that equilibrium returns reflect all available public information, is
probably quite a widely held view amongst financial economists. The slightly stronger
assertion, namely that stock prices also reflect their fundamental value (i.e. the DPV
of future dividends), is also widely held. What then are the implications of the EMH
applied to the stock market?

As far as a risk-averse investor is concerned the EMH means that she should adopt
a ‘buy and hold’ policy. She should spread her risks and hold the market portfolio
(or the 30 or so shares that mimic the market portfolio). Andrew Carnegie’s advice
to “put all your eggs in one basket and watch the basket” should be avoided. The
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role for the investment analyst, if the EMH is correct, is very limited and would, for
example, include:

(a) advising on the choice of the 30 or so shares that mimic the market portfolio;

(b) altering the proportion of wealth held in each asset to reflect the market share
portfolio weights, which will alter over time;

(c) changing the portfolio as taxes change (e.g. if dividends are more highly taxed than
capital gains then for high-rate income tax payers it may be optimal, at the margin,
to move to shares that have low dividends and high expected capital gains);

(d) ‘shopping-around’ in order to minimise transactions costs of buying and selling.

Under the EMH, investment analysts cannot ‘pick winners’ by using publicly avail-
able information and therefore ‘active’ investment managers are wasteful. We can go
even further: the individual investor should simply buy a ‘passive’ index fund (e.g.
mutual fund or unit trust), which tracks a particular market index such as the S&P500
and has low transactions costs (e.g. less than 1% pa). Practitioners such as investment
managers do not take kindly to the assertion that their skills are largely redundant,
given a competitive efficient market. However, they often support the view that the
market is ‘efficient’. But their use of the word ‘efficient’ is usually the assertion that the
stock market should be free of government intervention (e.g. zero stamp duty, minimal
regulations on trading positions and capital adequacy). Paradoxically, active managers
do help ensure that information is rapidly assimilated in prices, so even though they
may not earn excess returns (corrected for risk) they do help make the market efficient
by their trading activities (Grossman and Stiglitz 1980).

It is worth noting that most individuals and institutions do not hold anything like
the ‘market portfolio’ of all marketable assets. Except for residents of the United
States of America, this would require most investors to hold predominantly foreign
securities (i.e. most corporations would be owned by foreigners). Also, most mutual
funds and unit trusts specialise and sell funds in particular sectors (e.g. banks) or
specific geographical areas (e.g. Japanese stocks). There is a marketing reason for this.
If an investment bank operates a number of alternative funds, then it will usually have
at least one fund it can boast of as having ‘beaten the market’ (or its rivals).

Takeovers, Conglomerates and Financial Institutions

Let us turn now to some public policy issues. The stock market is supposed to provide
the ‘correct’ signals for the allocation of real resources (i.e. fixed investment). Only
a small proportion of corporate investment is financed from new issues (e.g. about
4 percent on a gross basis in the UK), nevertheless, the average rate of return of a
quoted company on the stock market may provide a reasonable measure of the ‘cost of
equity funds’ corrected for risk. The latter can be used in discounting future expected
profits from a physical investment project (i.e. in investment appraisal) for an all-equity
firm. However, if the share price does not reflect fundamentals but is influenced by
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whim or fads of ‘irrational’ investors then this link is broken. An abnormally low share
price, which reflects ill-informed extraneous factors (e.g. irrational market prejudice),
will then inhibit a firm from raising equity finance and embarking on what (on a
rational calculation) is a viable investment project.

The above analysis also applies to takeovers. If the stock market is myopic, that
is, only considers profits and dividends that accrue in the near future, then managers,
fearful of a takeover, may distribute more in current dividends rather than using the
retained profits to undertake profitable real investment say on R&D expenditure. This
strategy will then boost the share price. This is generally known as ‘short-termism’.
A possible response by government to such short-termism might be to forbid hostile
takeovers (e.g. as in Japan).

The opposite view to the above, namely that hostile takeovers are welfare-enhancing
(i.e. in terms of the output and profits of the merged firms), requires the assumption
that markets are efficient and that takeovers enable ‘bad’ incumbent managers to be
replaced. In this scenario, the hostile bidder recognises that the incumbent ‘bad’ man-
agement has led shareholders to mark down the firm’s share price. The hostile bidder
pays a price in excess of the existing share price. After replacing the ‘bad’ man-
agers and reorganising the firm, the ensuing higher future profits are just sufficient
to compensate for the higher price paid by the acquirer. If there are genuine synergy
benefits of the merger, then this provides an additional return to the shareholders of
the combined firm.

In the 1960s and 1970s, there was a wave of conglomerate formation followed in
the 1980s by leveraged buyouts and conglomerate breakups (e.g. ‘asset stripping’).
Conglomerate mergers were sometimes justified on the grounds that the acquisition of
unrelated firms by ‘firm-A’, reduced risk to the shareholder who held A’s shares since
the ‘conglomerate’ constituted a diversified portfolio of firms. Since diversification is
easily accomplished by individuals altering their own portfolio of stocks, then the above
reason for the formation of conglomerates is invalid. (Of course it carries more weight
if, for some reason, risk-averse individuals do not diversify their share holdings.)

If share prices do reflect fundamentals but ‘news’ occurs frequently and is expected
to make a substantial impact on a firm’s future performance, then one would still
expect to observe highly volatile share prices, even if the market is efficient. However,
if the market is inefficient and prices are subject to longer-term ‘irrational swings’,
then stock price volatility may be greater than that predicted from the efficient markets
hypothesis. Here, a prima facie case for financial institutions to have enough resources
(reserves) to weather such storms seems stronger. This is one argument for general
capital adequacy rules applied to the market risk of financial institutions (e.g. under the
Basle market risk directives). If there are also systemic risks (i.e. a form of externality),
then, in principle, government action is required to ensure that the level of capital
reflects the marginal social costs of the systemic risk rather than the marginal private
costs (for any individual financial institution). Systemic risk would also support Central
Bank intervention in organising a rescue package for financial institutions, which might
otherwise precipitate other bank failures (e.g. Long-Term Capital Management, LTCM,
for which the Federal Reserve Board organised a rescue by a consortium of US banks
in 1998).



S E C T I O N 3 . 3 / E X P E C TAT I O N S , M A R T I N G A L E S A N D FA I R G A M E 59

What are the implications of market efficiency in stock and bond markets for issues
in corporate finance? If the market is efficient, then there is no point in delaying a
physical investment project in the hope that ‘financing conditions will improve’ (i.e.
that the share price will be higher): under the EMH the current price is the correct
price and reflects expected future earnings from the project. Also, under the EMH the
firm’s cost of capital cannot be lowered by altering the mix of debt and equity finance.
The Modigliani–Miller theorem (in the absence of taxes and bankruptcy) suggests
that in an efficient market, the cost of capital is independent of capital structure (i.e.
debt–equity ratio – see Cuthbertson and Nitzsche 2001a). The issue of capital-mix can
also be applied to the maturity (term) structure of debt. Since rates on long and short
corporate bonds fully reflect available information, the proportion of long-debt to short-
dated debt will also not alter the cost of capital to the firm. For example, under the
expectations hypothesis, low long-term rates of interest and high current short rates,
simply reflect expectations of lower future short rates. So there is no advantage ex ante,
to financing an investment project by issuing long bonds rather than ‘rolling over’ a
series of short bonds.

It follows from the above arguments that under the EMH, the role of the Corporate
Treasurer as an ‘active manager,’ either as regards the choice of the appropriate ‘mix’
of different sources of finance or in analysing the optimum time to float new stock or
bond issues, is futile. Of course, if the market is not efficient, the Corporate Treasurer
has scope to alter the stock market valuation of the firm by his chosen dividend policy
or by share repurchase schemes and so on.

As one might imagine, the issue economists find hard to evaluate is what are the
precise implications for public policy and the behaviour of firms if markets are not
fully efficient (i.e. a so-called ‘second-best’ policy). If markets are efficient, there is
a presumption that government intervention is not required. If markets are inefficient,
there is a prima facie case for government intervention. However, given uncertainty
about the impact of any government policies on the behaviour of economic agents,
the government should only intervene if, on balance, it feels the expected return from
its policies outweigh the risks attached to such policies. Any model of market ineffi-
ciency needs to ascertain how far from ‘efficiency’ the market is on average and what
implications government policy has for economic welfare in general. This is a rather
difficult task.

3.3 Expectations, Martingales and Fair Game

The EMH can be formally stated in a number of different ways. We do not wish to
get unduly embroiled in the finer points of these alternatives, since our main concern
is to see how the hypothesis may be tested and used in understanding the behaviour of
asset prices and rates of return. However, some formal definitions are required. To this
end, we begin with some properties of conditional mathematical expectations, we then
state the basic axioms of rational expectations such as unbiasedness, orthogonality and
the chain rule of forecasting. Next we introduce the concepts of a martingale and a fair
game. We then have the basic tools to examine alternative representations and tests of
the EMH.
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Mathematical Expectations

If X is a random variable (e.g. heights of males in the UK), which can take discrete
values X1, X2, X3, . . . with probabilities πi , then the expected value of X, denoted EX
is defined as

E(X) =
∞∑
i=1

πiXi (8)

If X is a continuous random variable (−∞ < X < ∞) with a continuous probability
distribution f (X) (e.g. normal distribution), then

EX =
∫ ∞

−∞
Xf (X) dX (9)

Conditional probability distributions are used extensively in the RE literature. For
example, a fair die has a probability of (1/6)th of landing on any number from 1 to
6. However, suppose a friend lets you know that the die to be used is biased and
lands on the number ‘6’ for half the time and on the other numbers equally for the
remaining throws. Conditional on the information from your friend, you would then
alter your probabilities to (1/2) for a ‘6’ and (1/10) for the remaining five numbers.
Your conditional expected value would therefore be different from the expected value
from an unbiased die since the associated probabilities (or probability density function)
are different. The conditional expectation based on the information set (denoted) �t

is defined as

E(Xt |�t) =
∫ ∞

−∞
Xtf (Xt |�t) dXt (10)

where f (Xt |�t) is the conditional density function. A conditional expectation may
be viewed as an optimal forecast of the random variable Xt , based on all relevant
information �t . The conditional forecast error is defined as:

εt+1 = Xt+1 − E(Xt+1|�t) (11)

and is always zero on average:

E(εt+1|�t) = E(Xt+1|�t) − E(Xt+1|�t) = 0 (12)

Rearranging (11):
Xt+1 = E(Xt+1|�t) + εt+1 (13)

We can reinterpret (13) as stating that the conditional expectation is an unbiased fore-
cast of the out-turn value. Another property of conditional mathematical expectations
is that the forecast error is uncorrelated with all information at time t or earlier:

E(εt+1 �t |�t) = 0 (14)
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This is known as the orthogonality property of conditional expectations. The intuitive
reason why (14) holds is that, if �t could be used to reduce the forecast error εt+1,
then it could be used to improve the forecast: hence, all relevant information could not
have been used in forecasting Xt+1. It also follows that an optimal conditional forecast
is one in which subsequent forecast errors are unpredictable.

Note that an optimal forecast need not necessarily predict Xt+1 accurately. Each
εt+1 can be large and the conditional expectations EtXt+1 may only explain a small
part of the variation in actual Xt+1. What is important is that the optimal forecast
cannot be improved upon (in the sense of using �t to reduce the forecast errors, εt+1).
It is also worth noting that it is only the behaviour of the mean of the forecast error
that we have restricted in (14). The variance of the conditional forecast error denoted
E(ε2

t |�t) need not be constant and indeed may in part be predictable.
Consider for a moment making a forecast in January (at time t) as to what your

forecast will be in February (t + 1), about the outcome of the variable X in March (i.e.
Xt+2). For example, Xt could be the temperature. Mathematically, the forecast may be
represented as:

Et [Et+1(Xt+2)] (15)

If information �t at time t is used efficiently, then you cannot predict today how you
will change your forecast in the future, hence,

Et [Et+1(Xt+2)] = Et(Xt+2) (16)

where Et(Xt+1) is equivalent to [E(Xt+1|�t)]. This is the rule of iterated expectations.
The three properties discussed here, unbiasedness, orthogonality and iterated expec-

tations, all hold for conditional mathematical expectations (as a matter of mathematical
‘logic’). What rational expectations does is to assume that individual agents’ subjective
expectations equal the conditional mathematical expectations, based on the true prob-
ability distribution of outcomes. Economic agents are therefore assumed to behave as
if they form their subjective expectations equal to the mathematical expectations of
the true model of the economy. (This is often referred to as ‘Muth-RE’, Muth 1961.)

To get a feel for what this entails, consider a simple supply and demand model
for, say, wheat. The supply and demand curves are subject to random shocks (e.g.
changes in the weather on the supply side and changes in ‘tastes’ on the demand side
for wheat-based products such as cookies). Conceptually, the ‘rational’ farmer has to
determine his supply of wheat at each price and the expected supplies of wheat of all
other farmers (based on known factors such as technology, prices of inputs etc.). He
makes a similar calculation of the known factors influencing demand, such as income,
xd

t . He then solves for the expected equilibrium price by setting the demand and supply
shocks to their expected values of zero. Thus, under (Muth) RE, the farmers behave as
if they use a competitive stochastic model. The difference between the equilibrium (or
expected) price and the out-turn price is a random unforecastable ‘error’ due to random
shocks to the supply and demand functions. No additional information available to the
farmer can reduce such errors any further (i.e. the RE orthogonality property holds).
The stochastic reduced form is

Pt+1 = P e
t+1 + εt+1 = f (xd

t , x
s
t ) + εt+1 (17)
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where P e
t+1 = f (xd

t , x
s
t ) is the equilibrium price based on the known factors xi

t , which
influence supply and demand. The forecast error is the random variable εt+1. Hence,
under RE, the uncertainty or randomness in the economy (e.g. the weather or new
product innovations) gives rise to agents’ forecast errors.

To test whether agent’s actual subjective expectations obey the axioms of mathe-
matical conditional expectations, either we need an accurate measure of individual’s
subjective expectations or we need to know the form of the true model of the economy
used by all agents. Survey data on expectations can provide a ‘noisy’ proxy variable
for each agent’s subjective expectations. If we are to test whether actual forecast errors
have the properties of conditional mathematical expectations via the second method
(i.e. using the true model of the economy), the researcher has to choose a particular
model from among the many available on the ‘economist’s shelf’ (e.g. Keynesian,
monetarist, real business cycle etc.). Clearly, a failure of the forecast errors from such
a model to obey the RE axioms, could be due to the researcher taking the wrong model
‘off the shelf’. (That is, agents in the real world, actually use a different model.) The
latter can provide a convenient alibi for a supporter of RE, since she can always claim
that failure to conform to the axioms is not due to agents being ‘non-rational’ but
because the ‘wrong’ economic model was used.

Martingale and Fair Game Properties

Suppose we have a stochastic variable Xt , which has the property:

E(Xt+1|�t) = Xt (18)

then Xt is said to be a martingale. Given (18) the best forecast of all future values of
Xt+j (j ≥ 1) is the current value Xt . No other information in �t helps to improve the
forecast once the agent knows Xt . A stochastic process yt is a fair game if:

E(yt+1|�t) = 0 (19)

Thus, a fair game has the property that the expected ‘return’ is zero, given �t . It
follows trivially that if Xt is a martingale yt+1 = Xt+1 − Xt is a fair game. A fair
game is therefore sometimes referred to as a martingale difference. An example of a
fair game is tossing an unbiased coin, with a payout of $1 for a head and minus $1
for a tail. The fair game property implies that the ‘return’ to the random variable yt is
zero on average, even though the agent uses all available information �t , in making
his forecast.

One definition of the EMH is that it embodies the fair game property for unex-
pected stock returns yt+1 = Rt+1 − EtRt+1, where EtRt+1 is the equilibrium expected
return given by some economic model. The fair game property implies that on average
the abnormal return is zero. Thus, an investor may experience large gains and losses
(relative to the equilibrium expected return EtRt+1) in specific periods, but these aver-
age out to zero over a series of ‘bets’. If we assume equilibrium-required returns by
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investors are constant (= k), then the fair game property implies:

E[(Rt+1 − k)|�t ] = 0 (20)

A straightforward test of whether returns violate the fair game property under the
assumption of constant equilibrium returns is to see if returns can be predicted from
past data, �t . Assuming a linear regression:

Rt+1 = α + β ′�t + εt+1 (21)

then if β ′ �= 0 (or εt+1 is serially correlated), the fair game property is violated. Here,
the test of the fair game property is equivalent to the orthogonality test for RE.

Samuelson (1965) points out that the fair game result under constant required returns,
can be derived under certain (restrictive) assumptions about investor preferences. All
investors would have to have a common and constant time preference rate, have homo-
geneous expectations and be risk-neutral. Investors then prefer to hold whichever asset
has the highest expected return, regardless of risk. All returns would therefore be
equalised, and the required (real) rate of return equals the real interest rate, which in
turn equals the constant rate of time preference.

Martingales and Random Walks

A stochastic variable Xt is said to follow a random walk with drift parameter δ if

Xt+1 = δ + Xt + εt+1 (22)

where εt+1 is an identically and independently distributed iid random variable with:

Etεt+1 = 0 Et(εmεs |Xt) =
(

σ 2

0

)
for

{
m = s

m �= s
(23)

A random walk without drift has δ = 0. Clearly, Xt+1 is a martingale and 	Xt+1 =
Xt+1 − Xt is a fair game (for δ = 0). As the εt are independent random variables, the
joint density function f (εm, εs) = f (εm)f (εs) for m �= s, and this rules out any depen-
dence between εs and εm, whether linear or non-linear. A martingale is less restrictive
than the random walk, since for a martingale εs and εt need only be uncorrelated
(i.e. not linearly related). Also, the random walk is more restrictive than a martingale
since a martingale does not restrict the higher conditional moments (e.g. σ 2) to be
statistically independent. For example, if the price of a stock (including any dividend
payments) is a martingale then successive price changes are unpredictable, but a mar-
tingale process would allow the conditional variance of the price changes E(ε2

t+1|Xt)

to be predictable from past variances. But, time-varying conditional variances are not
allowable if prices follow a random walk.
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Formal Definition of the EMH

Suppose that at any point in time all relevant (current and past) information for pre-
dicting returns is denoted �t , while market participants p have an information set
�

p
t (assumed to be available without cost). In an efficient market, agents are assumed

to know all relevant information (i.e. �
p
t = �t) and they know the complete (true)

probability density function of the possible outcomes for returns

f p(Rt+n|�p
t ) = f (Rt+n|�t) (24)

Hence, under the EMH, investors know the true economic model that generates future
returns and use all relevant information to form their ‘best’ forecast of the expected
return. This is the rational expectations element of the EMH.

Ex-post, agents will see that they have made forecast errors and this will involve
ex-post profits or losses

η
p
t+1 = Rt+1 − Ep(Rt+1|�p

t ) (25)

where the superscript p indicates that the expectations and forecast errors are con-
ditional on the equilibrium model of returns used by investors. The expected or
equilibrium return will include an element to compensate for any (systemic) risk in the
market and to enable investors to earn normal profits. (Exactly what determines this
risk premium depends on the valuation model assumed.) The EMH assumes that excess
returns (or forecast errors) only change in response to news so that η

p
t+1 are innovations

with respect to the information available (i.e. the orthogonality property of RE holds).
For empirical testing, we need a definition of what constitutes ‘relevant information’,

and three broad types have been distinguished.

• Weak Form: The information set consists only of information contained in past
prices (returns).

• Semi-Strong Form: The information set incorporates all publicly available infor-
mation (which also includes past prices and returns).

• Strong Form: Prices reflect all information that can possibly be known, includ-
ing ‘inside information’ (e.g. such as an impending announcement of a takeover
or merger).

In empirical work, tests of the EMH are usually considered to be of the semi-strong
form. We can now sum up basic ideas that constitute the EMH.

(i) All agents act as if they have an equilibrium (valuation) model of returns (or price
determination).

(ii) Agents process all relevant information in the same way, in order to determine
equilibrium returns (or fundamental value). Forecast errors are unpredictable from
information available at the time the forecast is made.

(iii) Agents cannot make abnormal profits over a series of ‘bets’.
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Conditional on the researcher having the true economic model used by agents,
tests in (ii) reduce to tests of the axioms of rational expectations (e.g. unbiasedness,
orthogonality) and are generally referred to as tests of informational efficiency. Tests
based on (iii) are slightly different. Excess returns may be predictable but whether
one can make abnormal profits depends on correctly adjusting returns, for risk and
transactions costs. Perhaps (iii) is best expressed by Jensen (1978)

“A market is efficient with respect to an information set �t if it is impossible to
make economic profits by trading on the basis of �t . By economic profits we mean
the risk adjusted rate of return, net of all costs”.

3.4 Testing the EMH

In this section, we provide an overview of some of the test procedures used in assessing
the EMH. It is useful to break these down into the following types:

(i) Tests of whether excess (abnormal) returns η
p
t+1 = Rit+1 − E

p
t Rit+1 are indepen-

dent of information �t available at time t or earlier. To test this proposition
consider:

Rit+1 = E
p
t Rit+1 + γ ′�t + wt+1 (26)

where E
p
t Rit+1 = equilibrium expected returns. If information �t adds any addi-

tional explanatory power then Rit+1 − E
p
t Rit+1 is forecastable. This is a test of

informational efficiency and it requires an explicit representation of the equilibrium
asset-pricing model used by agents.

(ii) Tests of whether actual ‘trading rules’ (e.g. ‘active’ strategies such as buy low cap
stocks, short-sell high cap stocks) can earn abnormal profits after taking account
of transaction costs and the (systematic) risk of the ‘active’ strategy. Abnormal
profits are usually measured relative to a benchmark passive strategy (e.g. holding
the S&P500): These tests mimic possible investor behaviour and include explicit
trading rules (e.g. value-growth), active strategies based on regression equations
and so-called ‘anomalies’.

(iii) Tests of whether market prices always equal fundamental value. These tests use
past data to calculate fundamental value (or the variance of fundamental value) of
stocks, using some form of dividend discount model (RVF). We then test whether
the variation in actual prices is consistent with that given by the variability in
fundamentals (e.g. Shiller volatility tests).

In principle, the above tests are not mutually exclusive but in practice, they may give
different inferences. In fact, in one particular case, namely that of rational bubbles, tests
of type (i), even if supportive of the EMH, can, nevertheless, (as a matter of principle)
be contradicted by those of type (iii). This is because if rational bubbles are present in
the market, expectations are formed rationally and forecast errors are independent of
�t but price does not equal fundamental value.
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3.5 Using Survey Data
Suppose we have accurate survey data that provide a time series of an individual’s
subjective expectations. We can then, without having to choose a particular model, see
if these forecasts obey the axioms of rational expectations. We therefore reduce our
joint hypothesis to a test only of the informational efficiency assumptions. Our results
will be valid regardless of the equilibrium model actually used by agents. Although tests
using survey data appear to avoid a key problem area in testing the EMH (i.e. which
equilibrium model to use), such tests, nevertheless, have their own in-built difficulties.

Survey data are sometimes available on an individual agent’s expectations of eco-
nomic variables (e.g. of future inflation, exchange rates or interest rates). This may
be in the form of quantitative information collected on the individual’s expectations,
for example, he may reply that “interest rates will be 10 percent this time next year”.
This information for each individual-i provides a time series of his expectations Ze

it+j .
Using past data we can directly calculate the forecast error εit+j = Zit+j − Ze

it+j for
each individual, over all time periods. We do not need to know the precise model
the individual uses to forecast Zit+j , yet we can test for informational efficiency by
running the regression:

Zit+j = β0 + β1Z
e
it+j + β ′

2�t + εit+j (27)

and testing the null H0: β0 = β2 = 0 and β1 = 1. If H0 is not rejected, then from (27)
the forecast error is zero on average

E(Zit+j − Ze
it+j )|�t) = E(εit+j |�t) = 0 (28)

and is independent of information �t available at time t . The limited information set
�t ⊂ �t consists of any variables known at time t or earlier (e.g. past interest rates,
stock returns). For the forecast error εit+j to be independent of information at time t ,
we also require εit+j to be serially uncorrelated (which only applies for j = 1).

Frequently, survey data on expectations are only available ‘in aggregate’, that is,
for a sample of individuals (i.e. the figures are for the average forecast for any period
t + j for all participants in the survey), and clearly this makes the interpretation of
the results more problematic. For example, if only one person in a small sample of
individuals exhibits behaviour that violates the information efficiency assumptions, this
might result in a rejection of the RE axioms. However, under the latter circumstances,
most people would argue that the information efficiency was largely upheld.

Indeed, even when we have survey data on individuals’ expectations, they may
have little incentive to reveal their true expectations, that is the forecasts they would
have made in an actual real world situation (e.g. by backing their hunch with a large
$ investment). In other words, our survey data might reject the information efficiency
assumption of RE because participants in the survey had little incentive to reveal
their true forecasts, since they lose nothing if such forecasts are erroneous. Another
problem is that participants in a survey may not be typical of those in the market
who are actually doing the trades and ‘making the market’ (i.e. those who are ‘on
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the margin’ rather than intra-marginal). Finally, although there are econometric tech-
niques available (such as instrumental variables estimation) to correct for random
errors of measurement in the survey data, such methods cannot deal with mismea-
surement on the basis of an individual’s systematic inaccurate reporting of their true
expectations.

Even more problems arise in these kinds of tests when the survey data is qualitative
or categorical. In this case, participants respond to questions such as, ‘Will interest
rates in one year’s time be (a) higher, (b) lower, (c) same, as they are at present? Such
responses have to be ‘transformed’ into quantitative data and all the methods currently
available require one to impose some restrictive assumptions, which may invalidate
the tests under consideration.

The applied work in this area is voluminous, but because of the difficulties discussed
above, this avenue of research has not been extensive over the last 10 years. Surveys of
empirical work on direct tests of the RE assumptions of unbiasedness and informational
efficiency using survey data (e.g. Pesaran 1987, Sheffrin 1983, Taylor 1988) tend to
frequently reject the RE axioms (also see inter alia Batchelor and Dua 1987, Cavaglia,
Verschoor and Wolf 1993, Ito 1990, Frankel and Froot 1988). At this point the reader
may feel that it is not worth proceeding with the RE assumption. If expectations are
not rational, why go on to discuss models of asset prices that assume rationality? One
answer to this question is to note that tests based on survey data are not definitive
and they have their limitations as outlined above. Indirect tests of RE based on data
on returns or prices that are actually generated by ‘real world’ trades in the market
might therefore provide useful complementary information to direct tests on the basis
of survey data.

Orthogonality and Cross-Equation Restrictions

If survey data are not available, the null hypothesis of efficiency may still be tested
but only under the additional assumption that the equilibrium pricing model chosen
by the researcher is the one actually used by market participants and is therefore the
‘true’ model. To illustrate orthogonality tests and RE cross-equation restrictions in the
simplest possible way, let us assume that an equilibrium pricing model for Zt+1 may
be represented as:

E
p
t Zt+1 = γ0 + γ ′xt (29)

where xt is a set of variables suggested by the equilibrium-pricing model. A test of
information efficiency (or orthogonality), conditional on the chosen equilibrium model,
involves a regression

Zt+1 = γ0 + γ ′xt + β ′�t + εt+1 (30)

The orthogonality test is H0: β ′ = 0. One can also test any restrictions on (γ0, γ
′) sug-

gested by the pricing model chosen. The test for β ′ = 0 is a test that the determinants
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xt of the equilibrium pricing model fully explain the behaviour of EtZt+1. Of course,
informational efficiency may be tested using alternative equilibrium pricing models.

Note that in all of the tests discussed above, εt+1 must be serially uncorrelated
(since εt ⊂ �t the full information set). However, εt+1 need not be homoscedastic
and the variance of εt+1 may vary over time or may depend on other economic
variables, without violating informational efficiency. This is because informational
efficiency depends only on the first moment of the distribution, namely the expected
value of εt+1.

Cross-Equation Restrictions

There are stronger tests of ‘informational efficiency’ that involve cross-equation restric-
tions. A simple example will suffice at this point and will serve as a useful introduction
to the more complex cross-equation restrictions that arise in the vector autoregres-
sive VAR models in later chapters. We keep the algebraic manipulations to a minimum
here (but see the appendix for a full derivation). Consider a stock that simply pays
an uncertain dividend at the end of period t + 1 (this could also include a known
redemption value for the stock at t + 1). The ‘rational’ equilibrium price is:

Pt = δEtDt+1 (31)

where δ is a constant discount factor. Now assume an expectations generating equation
for dividends on the basis of the limited information set �t = (Dt , Dt−1):

Dt+1 = γ1Dt + γ2Dt−1 + vt+1 (32)

with E(vt+1|�t) = 0, under RE. We can now demonstrate that the equilibrium pric-
ing model (31) plus the assumed explicit expectations generating equation (32) plus
the assumption of RE, in short the EMH, implies certain restrictions between the
parameters. To see this, note that from (32) under RE

EtDt+1 = γ1Dt + γ2Dt−1 (33)

and substituting in (31):
Pt = δγ1Dt + δγ2Dt−1 (34)

We can rewrite (34) as:
Pt = π1Dt + π2Dt−1 (35)

where π1 = δγ1, π2 = δγ2. A regression of Pt on (Dt , Dt−1) will yield coefficient
estimates π1 and π2. Similarly, the regression equation (32) will yield estimates π3

and π4:
Dt+1 = π3Dt + π4Dt−1 + vt+1 (36)
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where π3 = γ1 and π4 = γ2. However, if (31) and (32) are true, then this implies (34).
Hence, from the regression equations (35–36), the EMH implies:

π1/π3 = π2/π4 = δ (37)

The values of (γ1, γ2) can be directly obtained from the estimated values of π3 and π4

while from (37), δ can be obtained either from π1/π3 or π2/π4. Hence, in general, we
obtain two different values for δ (i.e. the system is ‘overidentified’).

We have four estimated coefficients (i.e. π1 to π4) and only three underlying param-
eters in the model (δ, γ1, γ2). Therefore, there is one restriction amongst the π’s given
in (37), which involves the estimated parameters in two distinct equations. Hence, (37)
constitutes a non-linear cross-equation restriction and is an implication of the pricing
model plus RE. (Note that when we impose this restriction we only obtain one value
for δ.)

An intuitive interpretation of the cross-equation restrictions is possible. These restric-
tions do nothing more than ensure that no abnormal profits are earned on aver-
age and that errors in forecasting dividends are independent of information at time
t or earlier. First, consider the profits that can be earned by using our estimated
equations (35) and (36). The best forecast of the fair value is given by Vt = δEtDt+1

and using (36) gives
Vt = δ(π3Dt + π4Dt−1) (38)

Usually, the realised price will be different from the fundamental value given by (38)
because the researcher has less information than the agent operating in the market (i.e.
�t ⊂ �t). The price is given by (35) and hence profits are given by:

Pt − Vt = (π1Dt + π2Dt−1) − δ(π3Dt + π4Dt−1) = (π1 − δπ3)Dt + (π2 − δπ4)Dt−1

(39)

Hence, for all values of (Dt, Dt−1), profit will be zero only if:

δ = π1/π3 = π2/π4

but this is exactly the value of δ, which is imposed in the cross-equation restric-
tions (37). Now consider the error in forecasting dividends:

Dt+1 − EtDt+1 = (π3Dt + π4Dt−1 + vt+1) − (1/δ)Pt (40)

where we have used (36) and the equilibrium model (31) Substituting for Pt from (35)
we have:

Dt+1 − EtDt+1 = (π3 − π1/δ)Dt + (π4 − π2/δ)Dt−1 + vt+1 (41)

Hence, the forecast error can only be independent of information at time t (i.e. Dt and
Dt−1) if δ = π1/π3 = π2/π4. Tests of cross-equation restrictions are very prevalent in
the EMH/RE literature and are usually more complex than the simple example above.
However, no matter how complex, such restrictions merely ensure that no abnormal
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profits are earned on average and that forecast errors are orthogonal to the information
set assumed.

One additional problem with the above test procedure is that it is conditional on
the specific expectations generating equation chosen for Dt+1. If this is an incorrect
representation of how agents form expectations, the estimated parameters (π3, π4) are
likely to be biased estimates of the true parameters. Hence, the cross-equation restric-
tions based on these estimated parameters may not hold, even though in a ‘true model’
they do hold. This is the usual mis-specification bias in econometrics.

Interpretation of Tests of Market Efficiency

The EMH assumes information is available at zero cost or that the movement in market
prices is determined as if this were the case. The assumption that the acquisition and
processing of information as well as the time involved in acting on such information
is costless is a very strong one. If prices ‘always reflect all available relevant infor-
mation’, which is also costless to acquire, then why would anyone invest resources
in acquiring information? Anyone who did so, would clearly earn a lower return than
those who costlessly observed current prices, which under the EMH contain all rele-
vant information. As Grossman and Stiglitz (1980) point out, if information is costly,
prices cannot perfectly reflect the information available. Stiglitz (1983) also makes
the point that speculative markets cannot be completely efficient at all points in time.
The profits derived from speculation are the result of being faster in the acquisition
and correct interpretation of existing and new information. Thus, one might expect
the market to move towards efficiency as the ‘well informed’ make profits relative
to the less well informed. In so doing, the ‘smart-money’ sells when the actual price
is above fundamental value and this moves the price closer to its fundamental value.
However, this process may take some time, particularly if agents are unsure of the true
model generating fundamentals (e.g. dividends). If, in addition, agents have different
endowments of wealth, then some may have a disproportionate influence on prices.
Also, irrational or ‘noise’ traders might be present and then the rational traders have
to take account of the behaviour of the noise traders. It is, therefore, possible that
prices might deviate from fundamental value for substantial periods. Recently, much
research has taken place on learning by agents, on the nature of sequential trading and
the behaviour of noise traders. These issues are discussed in later chapters.

3.6 Summary

We have considered the basic ideas that underlie the EMH in both intuitive and math-
ematical terms and our main conclusions are:

• The EMH is important in assessing public policy issues such as the desirability
of mergers and takeovers, short-termism and regulation of financial markets and
institutions.
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• The EMH implies that (unexpected) returns are a fair game.

• Tests of informational efficiency (RE) can be undertaken using survey data on expec-
tations.

• In general, tests of the EMH require an explicit model of equilibrium expected
returns. Conditional on the equilibrium model, returns should not be predictable
from known data.

• The EMH assumes investors process information efficiently so that persistent abnor-
mal profits cannot be made by trading in financial assets. Cross-equation restrictions
are tests of informational efficiency (RE) and zero abnormal profits.

• Failure of the EMH in empirical tests may be due to a failure of informational
efficiency (RE), or an inappropriate choice of the model for equilibrium returns, or
simply that the EMH does not hold in the ‘real world’.

Appendix: Cross-Equation Restrictions
There are some rather subtle issues in developing these cross-equation restrictions and,
in the text, we presented a simplified account. A more complete derivation of the
issues is given below. The researcher is unlikely to have the full information set that
is available to market participants, �t ⊂ �t . This implies that equation (34) in the
text has an error term, which reflects the difference in the informational sets available
that is ωt+1 = [E(Dt+1|�t) − E(Dt+1|�t)]. To see this note that the stock price is
determined by the full information set available to agents

Pt = δE(Dt+1|�t) (A1)

The econometrician uses a subset �t = (Dt , Dt−1) of the full information set to forecast
dividends:

Dt+1 = γ1Dt + γ2Dt−1 + vt+1 (A2)

We then employ the identity:

E(Dt+1|�t) = E(Dt+1|�t) + {E(Dt+1|�t) − E(Dt+1|�t)}
= E(Dt+1|�t) + ωt+1 (A3)

where

ωt+1 = [(Dt+1 − E(Dt+1|�t)] − [Dt+1 − E(Dt+1|�t)] = vt+1 − ηt+1 (A4)

and ηt+1 is the true RE forecast error made by agents when using the full informa-
tion set, �t . Note that E(ωt+1|�t) = 0. To derive the correct expression for (34) we
use (A1), (A2) and (A3):

Pt = δEt(Dt+1|�t) = δEt(Dt+1|�t) + δωt+1

= δγ1Dt + δγ2Dt−1 + εt+1 = π1Dt + π2Dt−1 + εt+1 (A5)
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where εt+1 = δωt+1. The complete derivation of the ‘no-profit’ condition (39) in the
text has agents using the full information set to determine Vt :

Vt = δE(Dt+1|�t) = δE(Dt+1|�t) + δωt+1 (A6)

Hence, using (A5) and (A6)):

Pt − Vt = (π1Dt + π2Dt−1 + δωt+1) − δ(π3Dt + π4Dt−1 + ωt+1)

= (π1 − δπ3)Dt + (π2 − δπ4)Dt−1 (A7)

which is equation (39) in the text. The forecast for dividends is based on the
full information set available to agents (although not to the econometrician) and
using (A2) and (A1) is given by:

Dt+1 − E(Dt+1|�t) = (π3Dt + π4Dt−1 + vt+1) − (1/δ)Pt (A8)

However, substituting for Pt from (A5) and noting that ωt+1 = vt+1 − ηt+1, we have:

Dt+1 − E(Dt+1|�t) = (π3 − π1/δ)Dt + (π4 − π2/δ)Dt−1 + ηt+1 (A9)

Hence, equation (A9) above, rather than equation (41) in the text, is the correct expres-
sion. However, derivation of (41) in the text is less complex and provides the intuition
we require at this point in the book.



4
ARE STOCK RETURNS
PREDICTABLE?

Aims

• Examine returns on stocks, bonds and T-bills over the last century.

• Provide a set of alternative tests to ascertain whether stock returns are forecastable
over different horizons.

• Introduce univariate tests, including the correlogram (autocorrelations) of returns, a
variance-ratio statistic and multivariate tests such as cointegration and error correc-
tion models (ECM).

• Use Monte Carlo simulations (MCS) to assess the ‘power’ of univariate tests of
randomness.

• Assess non-linear and regime-switching models applied to stock returns.

• Examine the profitability of ‘active’ trading strategies (market timing) on the basis
of forecasts from regression equations.

4.1 A Century of Returns

Figure 1 shows the US monthly real S&P500 index from January 1915 to April 2004.
The real index is simply the nominal index divided by an aggregate price index (e.g.
wholesale or consumer price index) and shows the changing purchasing power (over
goods and services) of holding a diversified portfolio of stocks that mimics the S&P500
index. The 1930s crash and the recent crash of 2000–2003 are clearly visible as well
as the major long-run rise in the index in the 1990s. The stock index is non-stationary
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(or integrated of order one, I(1)) since its mean level is not constant and rises over
time. The monthly return on the index (excluding dividend payments) in Figure 2
appears to be stationary (i.e. I(0)) with a constant (unconditional) mean and variance.
The relatively large proportion of ‘outliers’ in Figure 2 (i.e. very large or very small
returns) probably implies that the unconditional returns are non-normal with fat tails
and the distribution may be asymmetric, as there are more large negative returns than
there are positive returns, which indicates non-normality. This is confirmed in the
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histogram of returns, where the fat tails and the negative skew are clearly visible
(Figure 3).

Returning to Figure 2, it is evident that the volatility in the monthly returns goes
through periods of calm (e.g. the 1950s and 1960s) and turbulence (e.g. 1930s, 1970s
and at the turn of the 20th century). Once returns become highly volatile, they tend
to stay volatile for some time, and similarly, when returns are relatively small (either
positive or negative), they tend to stay small for some time. Hence, volatility is con-
ditionally autoregressive. As volatility in econometrics is known as heteroscedasticity,
the behaviour of volatility in Figure 2 is said to follow an autoregressive condi-
tional heteroscedasticity (ARCH) process. A special case of this class of models is
the so-called GARCH(1,1) model (see Chapter 29), which when fitted to the data in
Figure 2 over the sample period February 1915 to April 2004, gives the following
result.

Rt+1 = 0.00315
[2.09]

+ εt+1 εt+1|�t ∼ N(0, ht+1)

ht+1 = 0.00071
[2.21]

+ 0.8791
[33.0]

ht + 0.0967
[4.45]

ε2
t

t-statistics in parentheses

where ht+1 is the conditional variance of returns. The mean (real) return is 0.315%
per month (3.85% p.a.). The GARCH equation for the conditional variance ht+1 is
typical of results using stock returns where volatility at time t + 1, ht+1 is conditional
on volatility at time t, ht and the squared ‘surprise’ in returns ε2

t . The relatively large
coefficient on the lagged ht term of 0.8791 implies that if volatility is high (low), it stays
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Figure 4 Conditional variance, GARCH(1,1) model (US, Feb 1915–April 2004)

high (low) for some time – that is, it is autoregressive. The unconditional volatility is
σ 2 = 0.00071/(1–0.8791–0.0967) = 0.0007276, which implies a standard deviation
of 0.02697 (2.697% per month). The time series of ht+1 using the above equation is
shown in Figure 4, in which the persistence in volatility is evident. It may be worth
noting at this point that GARCH-type persistence effects in conditional volatility are
found in daily, weekly and monthly returns but returns at lower frequencies (e.g. for
returns at horizons greater than three months) generally do not exhibit GARCH effects
(but see Engle, Lilien and Robins (1987) for an example of ARCH effect in quarterly
term structure data). In other words, volatility is persistent for short-horizon returns
but not for long-horizon returns.

Now let us take a look at average annual returns and volatility for stocks, bonds
and bills using a long data series for the period 1900–2000 (Table 1 – Dimson, Marsh
and Staunton 2002). The arithmetic mean returns R (in real terms) for stocks in the
United Kingdom, in the United States and for a world index (including the USA) are
between 7.2% and 8.7% p.a. (Table 1A). The standard deviation of these (arithmetic)
returns is around 20% p.a., indicating the high risk attached to holding stocks in any
particular year. If (log) returns are normally distributed, then R − Rg = (1/2)σ 2. For
the United States, R − Rg = 2.0 and (1/2)σ 2 = 2.04%, which is close, indicating that
annual returns are approximately lognormal.

The high volatility of stock returns also means that ex-post measures of aver-
age returns are sensitive to a run of good or bad years. A return in only 1 year
out of 100, that was two standard deviations (i.e. 40%) above the average, would
raise the average by 40 basis points (0.4% p.a.). This demonstrates the uncertainty
attached to our estimate of R. Put somewhat differently, note that if returns are niid
(i.e. homoscedastic and not serially correlated), then the standard error in estimating
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Table 1 Real returns: 1900–2000

Panel A: Real Stock Returns (% p.a.)

Inflation Real Return

Arith. Geom. Arithmetic
Mean

Standard
Deviation

Standard
Error

Geometric
Mean

Minimum
Return

Maximum
Return

UK 4.3 4.1 7.6 20.0 2.0 5.8 −57 (in 1974) +97 (in 1975)
USA 3.3 3.2 8.7 20.2 2.0 6.7 −38 (in 1931) +57 (in 1933)
World (incl.

USA)
n.a. n.a. 7.2 17.0 1.7 6.8 n.a. n.a.

Panel B: Real Bond Returns (% p.a.)

Inflation Real Return

Arith. Geom. Arithmetic
Mean

Standard
Deviation

Standard
Error

Geometric
Mean

UK 4.3 4.1 2.3 14.5 1.4 n.a.
USA 3.3 3.2 2.1 10.0 1.0 1.6
World (incl. USA) n.a. n.a. 1.7 10.3 1.0 1.2

Panel C: Real Returns on Bills (% p.a.)

Inflation Real Return

Arith. Geom. Arithmetic
Mean

Standard
Deviation

Standard
Error

UK 4.3 4.1 1.2 6.6 0.7
USA 3.3 3.2 1.0 4.7 0.5

Notes:

(1) Annual averages taken over 1900–2000. ‘World’ comprises 16 developed countries including USA, Canada, South Africa,
Australia, Japan and European countries.

(2) The real return = (Rt – πt )/(1 + πt ), where Rt = nominal return and πt = inflation rate and therefore the average real return
does not equal the average nominal return minus the average inflation rate (the latter is an approximation, valid only for low
inflation rates).

(3) The standard error has been calculated as σ/
√

T .
Figures are extracted from Dimson, Marsh and Staunton (2002).

the mean return is σ
R

= σ/
√

n = 20/
√

101 = 2% p.a., and therefore we can be 95%
certain that the mean return (for the USA) lies approximately in the range R ± 2σ

R
=

8.7 ± 4 = {4.7, 12.7} – this is quite a wide range of possible outcomes for the mean
return. Of course, in any one year taken at random, the actual return has a standard
deviation of around 20% p.a., and Table 1 shows a fall as great as 57% (in 1974 in the
UK) and a rise of 96.7% (in the UK in 1975). The US stock market also had an average
return-per-unit of risk R/σ of 0.43 and a Sharpe ratio (i.e. the excess return-per-unit
of risk) of SR = (R − r)/σ of around 0.5.
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Table 2 Equity premium (% p.a.): 1900–2000

Over Bills Over Bonds

Arith. Geom. Standard Error Arith. Geom.

UK 6.5 4.8 2.0 5.6 4.4
USA 7.7 5.8 2.0 7.0 5.0
World (incl. USA) 6.2 4.9 1.6 5.6 4.6

Notes: See Table 1.

The average (real) return on government long-term bonds (Table 1B) is around 2%
p.a. with lower volatility than stocks of around 10 to 14% p.a., which gives a return-
per-unit of risk for the United States of 0.21, much lower than for stocks. T-bills
(Table 1C) have a lower average (real) return than bonds of around 1% p.a. with an
even lower volatility than bonds of σ ≈ 5 to 6% p.a. The relative returns on equi-
ties, bonds and bills and their volatilities in the 14 other countries studied by Dimson,
Marsh and Staunton (2002) follow the above pattern noted for the United States and
United Kingdom.

The equity premium is the excess return of stocks over bonds or bills (Table 2). The
arithmetic average equity premium over bills is higher than over bonds, and for the
United States, these figures are 7.7% (over bills) and 7% p.a. (over bonds). The standard
error of the mean equity premium is σR = 2% p.a.; therefore, the mean equity premium
is measured with substantial error, reflecting the high volatility of stock returns noted
above. The 95% confidence interval for the arithmetic mean US equity premium is
7.7% ± 4%, which again covers quite a wide range.

The above averages for the equity risk premium calculated by Dimson, Marsh and
Staunton (2002) are about 1.5% higher than in some earlier studies (Ibbotson Associates
2001, Barclays Capital 2003, Goetzmann and Jorion 1999). This is due to different
time periods and country coverage and different computational methods (e.g. whether
dividends as well as price changes are included in measured returns for all countries).

Risk, Return and the Sharpe Ratio

Clearly, if one’s private or state pension contributions are to be invested in risky
assets such as stocks, we need to carefully assess the return we might obtain and
the risk we are taking on. High average stock returns in the United States cannot be
merely due to high productivity of the US economy or impatience (time preference)
by consumers, otherwise real returns on bonds would also be high. The reward for
saving in government index-linked bonds is not high (at around 3% p.a. in real terms),
so what high stock returns imply is a high reward for bearing stock market risk. As
we have seen above, this risk is substantial, giving a range of 12.7 to 4.7% p.a. for
R in the United States (with 95% confidence). The US equity premium of 7.7% (over
bills) is the reward for holding this stock market risk.

Using the CRSP database, Figure 5 demonstrates the first law of finance, namely, a
higher average return implies a high-level of risk (i.e. standard deviation). The ex-post
Sharpe ratio (R − r)/σ , that is, the excess return per unit of risk, for all the size-sorted
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decile stock portfolios in Figure 5, is around 0.5. Clearly, it is relatively easy to obtain
high average returns – you simply take on more risk. Figure 5 also demonstrates that
the Sharpe ratio in the post-WWII period for US government and corporate bonds
is very low at around 0.1 – this is part of the argument for moving some of social
security (i.e. state) pension fund contributions into stocks.

It is better to compare the performance of different asset classes using the Sharpe
ratio rather than just average returns because it ‘corrects for risk’ and is also invariant
to leverage. For example, suppose a stock is currently priced at $100 and its average
return is R = 10%, with a standard deviation of 20% and r = 2%. If you invest all
your own funds of $100 in the stock, the excess return is 8% and the Sharpe ratio
is 0.4. If you borrow 10% (= $10) of the funds at r = 2% to purchase the stock
and use 90% ($90) of your own funds, the return on your levered stock portfolio is
Rp = (100/90)R ≈ 11% – you have ‘levered’ up your (average) return by borrowing
to invest in the stock. This levered (expected) return can be increased simply by
borrowing more cash and using less of your own funds to invest in the risky assets.
The return net of interest cost is

Rp ≈ 1.1R − 0.1r

The excess return and standard deviation (remember σr = 0) of the levered portfolio are

Rp − r = 1.1(R − r) σp = 1.1σR

The Sharpe ratio of the levered portfolio is

SRp = Rp − r

σp
= (R − r)

σR

which is equal to that of the unlevered portfolio and hence is unaffected by leverage.
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Importance of Equity Returns

For investors, the forward-looking equity premium is important because it provides
an estimate of the future value of any funds invested in the stock market relative
to the risk-free return. This is particularly important for pension funds that invest (a
proportion of) their assets in equities. For defined contribution pension schemes, the
individual saver receives at retirement a ‘pot of money’ that she usually then invests
(all or part) in an annuity. The equity part of this ‘pot of money’ is extremely sensitive
to the mean return on stocks. For example, for the USA, using Rg = 6.7% p.a., $100
invested at t = 0 accumulates to $100 (1.067)30 = $700 after 30 years, whereas if the
mean equity return is one standard deviation lower (i.e. Rg = 4.7% p.a.), then the
$100 accumulates to about $400 after 30 years. These are real returns, so the higher
equity return increases wealth by a factor of 7 but the lower return by a factor of
only 4. For a defined benefit pension scheme (i.e. pension is based on final salary),
the forward-looking equity return is important for the solvency of the pension scheme.
The liabilities of the pension fund are existing and future (final salary) pensions, which
the fund is contracted to honour. Clearly, the liabilities are somewhat uncertain (e.g.
depending on the growth of real earnings, retirement patterns and longevity). To cover
these liabilities we have the reasonably certain pension contributions of individuals
and employers (based on salary). A major uncertainty is what these contributions will
earn (in real terms) over many years, if invested in equities. After the equity market
crash of 2000–2003, a number of defined benefit pension fund trustees took the view
that future stock market returns were insufficient to adequately cover future pension
liabilities. This led to such schemes being limited to existing members, while new
employees had to join a defined benefit scheme (so the stock market risk is then
shared amongst employees rather than employers and employees). Also, firms with a
defined benefit scheme that was actuarially in deficit (because of lower expected equity
returns) would have to raise contribution levels for employees or employers or both.
The closing of defined benefit schemes to new members and the existence of deficits
in such funds became a major issue, particularly in the United Kingdom after the crash
of 2000–2003.

The historic real (geometric) return on equities of 6.8% for the world index demon-
strates that over the last 100 years, a world index tracker fund (or even a US or UK
fund) would have performed very well (even after deduction of annual fees of around
1% p.a.). An ‘actively managed’ fund would involve management fees of around 3
to 5%, and so historically would have done reasonably well even if it had only per-
formed as well as a ‘tracker’ (which the ‘average’ active fund seems just about to
manage to do – see Chapter 9). However, if you believe that the forward-looking real
equity return is closer to, say, 4% (see below), then the active fund looks much less
attractive, with its high management fees. You would be better off with index-linked
bonds, with a real return of around 3% p.a. (e.g. John Ralfe switched all of Boots the
Chemists’ pension fund into bonds in 2001).

For companies, a key input to calculating the cost of equity capital is a forward-
looking measure of the equity premium (adjusted by the company’s beta). Historically,
the US/UK equity premium has been high at around 7% p.a. (arithmetic mean) which,
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with a beta of unity and an average real interest rate of 3% p.a. (say), gives a (real)
cost of equity capital for the firm of 10% p.a. This may be the hurdle rate used by the
firm (i.e. internal rate of return of the investment project must exceed 10% p.a.). But
if the forward-looking required return on equity is lower than 10%, then clearly the
firm should lower its hurdle rate, otherwise value-enhancing investment projects may
be rejected.

Because of their market power, state or privatised utilities are often subject to price
caps (e.g. prices can rise no faster than the consumer price index less x%) or ‘rate of
return regulation’ (i.e. the rate of return on capital cannot exceed y% p.a.). In the case
of the latter, a forward-looking required rate of return is required, and if the forecast
equity premium is lower, the regulator should ensure that the public utility earns a
lower return on its capital (e.g. by lowering its prices). Hence, the forecast equity
premium is important for institutional investors like pension funds, for individual’s
investments in active or passive mutual funds and for the hurdle rate for corporate
investment projects.

Forecasts of the Equity Risk Premium

Needless to say, forecasts of the equity premium are subject to wide margins of
error. Welch (2000, 2001) asked 226 financial economists to forecast the average equity
premium over the next 30 years for the United States, and the (arithmetic) mean was
7.1% with a standard deviation of around 2%. This forecast is a little lower than the
101-year historic US equity premium of 7.7% (Table 1), but the standard error of
respondents’ replies is about the same as the historic standard error of 2% (Table 1).
Respondents seem fairly closely ‘anchored’ to the historic premium when forming their
view of the future premium (see the psychological biases noted in Chapter 18).

Dimson, Marsh and Staunton (2002) adjust the ex-post historic risk premium for
the impact of unanticipated higher earnings at the end of the 1990s, for the fact that
increased international diversification may have lowered the required return, as might
diminished investment risk (e.g. because of the ending of the Cold War, progress in
multilateral trade talks, etc.) and because of reduced risk aversion of the marginal
investor. They suggest a forecast equity premium of 5.4% for the United States, 3.7%
for the United Kingdom and 4% for the world index (arithmetic averages, with geomet-
ric averages about 1% lower). Campbell (2001), using a variety of methods, suggests
a forecast US equity real return of 6.5 to 7% (arithmetic) and 5 to 5.5% (geometric)
with a forecast real interest rate of 3 to 3.5%. This implies a forecast range for the
equity premium of 3 to 4% (arithmetic) for the United States. Historic returns imply
the ex-post average equity return is

Rt ≡
(

Dt

Pt−1

)
+

(
�Pt

Pt−1

)

As well as measuring the equity premium directly from historic returns data, one can try
and measure long-run expected capital gains using ‘price ratios’. If a variable (X/P )t

is stationary (mean reverting), then over the long run, (�Xt/Xt−1) = (�Pt/Pt−1), and
the X-variable provides an alternative estimate of the average capital gain, to use in the
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above equation (in place of the actual capital gain). The most obvious candidates for Xt

are dividends Dt or earnings Et . Earnings figures are invariant to share repurchases,
whereas share repurchases are often employed in lieu of dividend payments, which
may distort the dividend growth figures. On the other hand, earnings are more volatile
than dividends, which implies their mean value is estimated with greater uncertainty.
Dividend–price and earnings–price ratios move in very long slow swings and appear to
be stationary variables (see below). It would be somewhat counterintuitive to believe
that these ratios moved in the long run to plus or minus infinity since this would
imply either that dividend growth or future expected returns are non-stationary (see
Chapters 12 and 23).

Fama and French (2002) use average dividend growth and average earnings growth
as an estimate of future expected capital gains. (Using dividend growth is equivalent to
invoking the Gordon growth model – see Chapter 10.) They find that the (unconditional)
real equity premium for 1872–2000 using the dividend growth model is 3.54% p.a.,
whereas using the historic average stock return, the equity premium is much higher at
5.57% p.a. The difference between the two is due mainly to the last 50 years, since the
dividend growth model gives an equity premium of 2.55% p.a. for 1951–2002, whereas
the estimate using the average stock return is 7.43% p.a. For 1951–2000, the earnings
growth model gives an estimate of the equity premium of 4.32% p.a., which is larger than
that from the dividend growth model but still well below the historic average of returns
data of 7.43% p.a.

Fama and French note that dividend and earnings price ratios can forecast either
future dividend growth or future expected returns (see Chapters 12 and 23). But the
dividend–price ratio has hardly any explanatory power for the future growth in divi-
dends. Hence, they suggest that the rising price–dividend ratio throughout the 1950–
2000 period is mainly due to changes in expected returns. They therefore argue that
much of the high historic equity return over the 1951–2000 period comprises an unex-
pected capital gain due to a decline in discount rates. The consensus therefore appears
to be that the equity premium is forecast to be below its historic average, with the
implications noted above (see also Jagannathan, McGatten and Scherbina, 2001).

4.2 Simple Models

The main aim in this chapter is to present a range of tests examining the predictabil-
ity of stock returns. You can if you wish, just think of the regression models as a
‘data description’ or the ‘stylised facts’. However, under constant expected returns,
‘predictability’ violates informational efficiency and if abnormal profits in excess of
transition costs and after correcting for risk are persistent, then this also violates the
Efficient Markets Hypothesis (EMH). Tests of the EMH require an equilibrium model
of asset returns. We can think of the equilibrium expected return on a risky asset as
consisting of a risk-free rate rt (e.g. on Treasury Bills) and a risk premium, rp t

EtRt+1 ≡ rt + rpt (1)
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At present, we make no sharp distinction between nominal and real variables, and
equation (1) could be expressed in either form. Equation (1) is an identity until we
have an economic model of the risk premium. Many (early) empirical tests of the
EMH assume rp t and rt are constant and consider the regression

Rt+1 = k + γ ′�t + εt+1 (2)

where �t = information available at time t . Alternatively, we can use excess returns
Rt+1 − rt in (2). A test of γ ′ = 0 provides evidence on the ‘informational efficiency’
element of the EMH. These regression tests vary, depending on the information as-
sumed:

(i) data on past returns Rt−j (j = 0, 1, 2, . . . , m)

(ii) data on past forecast errors εt−j (j = 0, 1, . . . , m)

(iii) data on variables such as the dividend–price ratio, the earnings–price ratio, inter-
est rates, etc.

When (i) and (ii) are examined together, this gives rise to Autoregressive Moving
Average (ARMA) models, for example, the ARMA (1,1) model:

Rt+1 = k + γ1Rt + εt+1 − γ2εt (3)

If one is only concerned with weak-form efficiency, the autocorrelation coefficients
between Rt+1 and Rt−j (j = 0, 1, . . . , m) can be examined to see if they are non-zero.
The EMH applies over all holding periods: a day, week, month or even over many
years. Hence, we may find violations of the EMH at some horizons but not at others.

Suppose the above tests show that informational efficiency does not hold, so infor-
mation at time t can be used to help predict future returns. Nevertheless, it may be
highly risky for an investor to bet on the outcomes predicted by a regression equation
that has a high standard error or low R-squared. It is therefore worth investigating
whether such predictability really does allow one to make abnormal profits in actual
trading, after taking account of transaction costs. Thus, there are two approaches when
testing the EMH, one is informational efficiency and the other is the ability to make
abnormal profits (i.e. profits after transaction costs and correcting for ex-ante risk ).

Smart Money and Noise Traders

Before discussing the details of the various tests on predictability, it is worth briefly
discussing the implications for stock returns and prices of there being some non-
rational or noise traders in the market. This enables us to introduce the concepts of
mean reversion and excess volatility in a fairly simple way. We assume that the market
contains a particular type of noise trader, namely, a positive feedback trader whose
demand for stocks increases after there has been a price rise. To simplify matters, we
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assume the rational traders or smart money believe that expected equilibrium returns
are constant, 1 + EtRt+1 = k∗, or equivalently:

Et [(Pt+1 + Dt+1)/Pt = k∗ (4)

If only the smart money (fundamentals’ traders) is present in the market, prices only
respond to new information or news. Price changes are random, and past returns cannot
be used to predict future returns. Now consider introducing positive feedback traders
into the market. After any good news about dividends, positive feedback traders pur-
chase the stock, increasing its price above fundamental value. If the rational traders
recognise this mispricing, they short-sell the overvalued stock, and the price moves
back towards its fundamental value. Prices are therefore mean-reverting.

Two things are immediately obvious. First, prices have overreacted to fundamentals
(i.e. news about dividends). Second, prices are more volatile than would be predicted
by changes in fundamentals. It follows that prices are excessively volatile compared
to what they would be if there are only rational traders in the market. Volatility tests
based on the early work of Shiller (1989) and LeRoy and Porter (1981) attempt to
measure this excess volatility in a precise way.

As positive feedback traders purchase the stock, then over short horizons, returns are
positively serially correlated: positive returns are followed by further positive returns.
Conversely, after ‘bad news’, negative returns are followed by further negative returns.
But over long horizons, returns are negatively serially correlated as the rational traders
move prices back to their fundamental value. Thus, in the presence of feedback traders,
short-horizon returns are positively serially correlated, while long-horizon returns are
negatively serially correlated. This pattern of serial correlation over different horizons
implies that buying recent ‘winners’ will tend to yield winners next period – this is a
momentum strategy. Over long horizons (say, 3–5 years), the negative serial correla-
tion implies you should buy low price stocks – this is a value-growth strategy. Also,
the above scenario implies that returns are likely to be correlated with changes in div-
idends and the dividend–price ratio, so regressions of Rt+1 on (D/P)t have often been
interpreted as evidence for the presence of noise traders in the market.

One can also see why feedback traders may cause changes in the variance of returns
over different return horizons. Suppose the variance of annual returns is 15% p.a. If
expected returns are constant so that returns are iid, then after two years, the variance
of returns would be 30%. However, with mean reversion, the variance of returns over
two years will be less than twice the variance over one year. This is because prices
overshoot their fundamental value in the short run but not in the long run (see the
variance-ratio test below).

It may be too difficult to infer whether a given observed path for returns is consistent
with market efficiency or with the presence of noise traders. This arises because tests
of the EMH are based on a specific model of equilibrium returns, and if the latter is
incorrect, the EMH will be rejected by the data. However, another model of equilibrium
returns might conceivably support the EMH. Also, predictability per se does not refute
the EMH if expected returns vary over time, since then actual returns will be correlated
with variables known at time t . We need to look very carefully at alternative models
of equilibrium returns before we conclude that ‘predictability’ refutes the EMH. There



S E C T I O N 4 . 3 / U N I VA R I AT E T E S T S 85

are enumerable tests of stock return predictability, and we provide illustrative results
below (for a comprehensive bibliography, see Campbell 2000).

4.3 Univariate Tests

Over short horizons such as a day, one would expect equilibrium expected returns
to be constant. Hence, actual returns probably provide a good approximation to daily
abnormal returns. Fortune (1991) provides an illustrative statistical analysis of the
returns using over 2,700 daily observations on the S&P500 share index (closing prices,
January 2, 1980, to September 21, 1990). Stock returns are measured as Rt = � ln Pt .
A typical regression is

Rt = 0.0007
(2.8)

+ 0.054
(2.8)

εt−1 − 0.037
(1.9)

εt−2 − 0.019εt−3

(1.0)

− 0.054εt−4

(2.8)

+ 0.051εt−5

(2.7)

−0.0017
(3.2)

WE + 0.0006
(0.2)

HOL + 0.0006
(0.82)

JAN + εt (5)

R2 = 0.0119, SEE = 0.0108, (.) = t-statistic

The variable WE = 1 if the trading day is a Monday and 0 otherwise, HOL = 1 if the
current trading day is preceded by a one-day holiday (0 otherwise) and JAN = 1 for
trading days in January (0 otherwise). The only statistically significant dummy variable
(for this data spanning the 1980s) is for the ‘weekend effect’, which implies that price
returns are negative on Mondays. The January effect is not statistically significant in
the above regression for the ‘aggregate’ S&P500 index (but it could still be important
for stocks of small companies). The error term is serially correlated with the MA(1),
MA(4) and MA(5) terms being statistically significant. Since previous periods forecast
errors εt−j are known (at time t), this is a violation of informational efficiency, under
the null of constant equilibrium returns. The MA pattern might not be picked up by
longer-term weekly or monthly data, which might therefore have white noise errors
and hence be supportive of the EMH.

However, the above data might not indicate a failure of the EMH where the latter
is defined as the inability to persistently make abnormal profits. Only about 1 percent
(R-squared = 0.01) of the variability in daily stock returns is explained by the regres-
sion: hence, potential profitable arbitrage possibilities are likely to involve substantial
risk. A strategy to beat the market based on (5) might involve repeatedly short-selling
stocks on Friday and re-purchasing these stocks on a Monday, which yields a pre-
dictable return on average of 0.17 of 1%. But if the portfolio consists of the 25–30
stocks required to mimic the S&P500 index, this might involve high transactions costs
that might well outweigh any profits from these strategies. However, one could miti-
gate this problem by using stock index futures. Since the coefficients in equation (5)
are in a sense averages over the sample data, one would have to be pretty confident
that these ‘average effects’ would persist in the future. Of course, if the coefficient
on WE remains negative, the repeated strategy will earn profits (ignoring transactions
costs). But at a minimum, one would wish to test the temporal stability of coefficients
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before embarking on such a set of repeated gambles. In addition, one would probably
need a substantial amount of financial resources as the investor may be unlucky in
the first few weeks of this strategy and may initially lose a considerable amount of
money. Whether the latter is a problem for ‘big players’ such as pension fund managers
depends on how often their performance is evaluated. An R-squared of around 0.01
implies that you are taking on a 51/49 bet, which does not look good if transactions
costs are involved. To adequately test the ‘supernormal profits’ view of the EMH, one
needs to examine ‘real world’ strategies, trading specific stocks within the portfolio,
taking account of all transactions costs, bid–ask spreads, managerial and dealers’ time
and effort and the riskiness of the strategy. In short, if the predictability indicated by
regression tests cannot yield risk-adjusted abnormal profits in the real world, one may
legitimately treat the statistically significant ‘information’ in the regression equation as
being of no economic significance.

The above regression provides an example of calendar effects in stock returns of
which there are many varieties. Here, we have examined these effects in a single study
using conventional test statistics and 5% critical values. A question arises as to whether
those (possibly large numbers of) studies that find calendar effects, do so because they
‘trawl’ over a large number of alternative calendar effects (e.g. January effects, day-
of-the-week effects, weekend effects) and alternative data periods, and hence they bias
our judgement in favour of calendar effects – this is discussed in later chapters and is
known as data snooping bias.

Technical trading rules (e.g. chartists, filter rules, support and resistance levels,
neural networks, genetic algorithms) are also used to try and ‘beat the market’ over
short horizons (e.g. daily and intra-day trading), and we discuss these in later chapters
both for stocks and for foreign exchange.

Risk and Investment Horizon

There is a ‘rule of thumb’ often quoted, that the proportion of stocks an investor should
hold in her portfolio of ‘stocks plus bonds’ should equal ‘100 minus their age’. So,
a 20-year-old should hold 20% in bonds and 80% in stocks, whereas a 70-year old
should hold 30% in stocks and 70% in bonds. Is there any logic to this rule of thumb?

Suppose your decision to hold risky assets such as stocks depends only on expected
excess return and the variance of your portfolio return (we discuss this ‘mean-variance’
approach in detail in the next chapter and in Chapters 15 and 16). Are stocks riskier
in the short run than in the long run? Does the higher expected return in the long
run compensate for the higher risk incurred? Let us take the ‘baseline’ case where
we assume that continuously compounded returns are iid (normality is not required
here). Then, the mean return and variance of return both scale with horizon, that is,
E0R0→k = kµ and σ 2

0→k = kσ 2 where k = horizon in years (say), µ is the annual
expected return (continuously compounded) and σ the annual standard deviation. Yes,
variance increases with horizon but so does expected return hence, the return (or excess
return) per unit of variance is the same for any horizon. Hence, with iid returns, one
might expect two investors (with the same degree of risk tolerance) to invest the
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same proportion in risky assets, regardless of horizon (see Chapters 15 and 16 for a
formal analysis).

Note it is true that for µ > 0 and niid returns, the probability that one loses money
in the stock market falls with horizon (i.e. we require the probability that Rn < 0, where
Rn is the return over n years). This ‘shortfall probability’ for niid returns and a horizon
of n years is given by the probability that the standard normal variable zn is less than
−nµ/

√
nσ = −√

nµ/σ , and this probability declines as n increases. However, even
if the shortfall probability is rather small over say, 10 or 20 years, this is surely not
sufficient to make you invest heavily in the stock market, since you might still end up
with little or no increase in your real wealth, and you might have been better holding
riskless index government bonds. While it may be mildly reassuring to know that you at
least ‘get your money back’ with high probability, this single consideration is unlikely
to dominate your portfolio choice. However, that is not to say that mean and variance
are necessarily the only inputs to your investment decision either. Different objectives
(e.g. potential losses ‘hurt’ much more than equal gains, minimising the probability of
very bad monetary outcomes) will give different investment choices – as we see later
in the book.

An allied (but different) concept to the shortfall probability is (percent) value at
risk (VaR). This is the maximum you expect to lose over a given horizon (e.g. 1 year),
which will occur 5% of the time (e.g. 1 year in 20). If the mean annual equity return
is µ (%) with standard deviation σ (%) and returns are niid, then the percent VaR is
(µ − 1.65σ), where 1.65 is the 5% left tail cut-off point for the normal distribution.
For example, for µ = 6% p.a. and σ = 20% p.a., the maximum you expect to lose
1 year out of every 20 is 27% (and in 19 years out of 20, you expect to lose less than
this). Of course, the amount you actually lose in any one year is unknown – mere
mortals can only make probability statements, only God is omniscient.

Long-Horizon Returns

Above, we discussed the ‘baseline’ case of iid returns and its implication for portfolio
choice. What is the evidence that returns are iid? Or are long-horizon stock returns
mean-reverting, that is, higher than average returns are followed by lower returns in
the future? Fama and French (1988b) and Poterba and Summers (1988) find evidence
of mean reversion in stock returns over long horizons (i.e. in excess of two years).
Fama and French estimate an autoregression where the return over the interval t –k to
t , call this Rt−k,t , is correlated with Rt,t+k

Rt,t+k = αk + βkRt−k,t + εt+k (6)

Fama and French using monthly returns on an aggregate US stock index consider
return horizons k = 1 to 10 years, using a long data set covering most of the 1900s.
They found little or no predictability, except for holding periods of between k = 2
and k = 7 years for which β is less than 0. There was a peak at k = 5 years when
β = −0.5, indicating that a 10 percent negative return over 5 years is, on average,
followed by a 5 percent positive return over the next 5 years. The R-squared in the
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regressions for the three- to five-year horizons are about 0.35. Such mean reversion
is consistent with that from the ‘anomalies literature’, where a ‘buy low–sell high’,
value-growth strategy yields positive profits (see Chapter 18).

Poterba and Summers (1988) investigate mean reversion by looking at variances of
holding period returns over different horizons. If stock returns are random iid, then
variances of holding period returns should increase in proportion to the length of
the holding period. To see this, assume the expected (log) return is constant Etht+1 ≡
Etpt+1 − pt = µ. Under RE, this implies the (log) random walk model of stock prices,
and the return over k-periods is

ht,t+k = (pt+k − pt) = kµ + (εt+1 + εt+2 + · · · + εt+k) (7)

Under RE, the forecast errors εt are iid with zero mean, hence

Etht,t+k = kµ and Var(ht,t+k) = kσ 2 (8)

Alternatively and more directly, if log returns are iid, then

var(ht,t+k) = var(ht+1 + ht+2 + · · · + ht+k) = k var(ht+1) (9)

The variance-ratio statistic is defined as

VRk =
(

1

k

)
var(ht,t+k)

var(ht+1)
≈ 1 + 2

k

k−1∑
j=1

(k − j)ρj (10)

which should be unity if returns are iid and less than unity under mean reversion
(i.e negative autocorrelation coefficients ρj ). With iid returns, the ‘adjusted’ Sharpe
ratio is

SRt,t+k/
√

k = Etht,t+k/stdv(ht,t+k) = µ/σ (11)

which should be constant for all horizons, k. If stock returns are mean reverting, then
they are ‘safer in the long run than in the short run’, as the variance of long-horizon
returns rises at a rate less than k. The Fama–French regressions, the VR-statistic and
the Sharpe ratio are different ways of measuring the same phenomenon, namely mean
reversion. Indeed, a sequence of small negative autocorrelations in returns can give
rise to long-horizon mean reversion, and it can be shown that VRk (see (10)) and
βk (see (6)) can be written in terms of the sum of these negative autocorrelations
(see Cochrane 2001, p. 1373).

Using a long span of US data, Poterba and Summers (1988) find that the variance
ratio is greater than unity for lags of less than one year and less than unity for lags in
excess of one year, which implies that returns are mean reverting (for 8 > k > 1 years).
This conclusion is generally upheld when using a number of alternative aggregate
stock price indexes, although the power of the tests is low when detecting persistent
yet transitory returns. Work since Fama and French (1988b) has shown that the results
using VRk and βk statistics are not very robust (Cochrane 2001). For example, for some
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periods (e.g. US 1947–1996 using aggregate stock indices), the βk coefficients for 3–5-
year horizons are positive; nevertheless, the ‘adjusted’ Sharpe ratio remains constant
as k increases (indicating iid returns), while VRk is usually consistently less than unity
(indicating mean reversion). However, for individual stock returns, the evidence for
mean reversion is somewhat stronger. So, for aggregate US stock indexes, the different
statistics used to measure mean reversion give different inferences in small samples,
although there does appear to be some rather weak evidence of mean reversion at
long horizons.

Under the null that returns are niid, the limiting distribution of θ(k) = VRk − 1 (Lo
and MacKinlay 1988) for non-overlapping (log) returns is:

√
T θ(k) ∼ N(0, 2k)

and for overlapping (log) returns

√
T θ(k) ∼ N

(
0,

2(2k − 1)(k − 1)

3k

)

where T = number of observations used and n = k/12 where n = number of years
and k = number of months used in calculating VRk . However, these statistics are not
valid in small samples, and VRk is biased away from unity even when returns (i.e.
price changes) are iid. Using 1000 MCS from an niid series calibrated to historic
monthly returns, it can be shown that the median value of VRk for a 10-year horizon
(overlapping monthly data) is 0.810 rather than unity, when using around 900 months
(75 years) of data (Table 3, bottom of panel A). Hence, a point estimate of VRk < 1 at
a 10-year horizon does not necessarily signify mean reversion.

Table 3 Variance-ratio equity returns (excluding dividends)

Country 1 Year 3 Years 5 Years 10 Years

Panel A: Monthly data January 1921–December 1996

US 1.0 0.994 0.990 0.828
UK 1.0 1.008 0.964 0.817
Global 1.0 1.211 1.309 1.238
Asymptotic test statistic 5%, 1-sided – 0.712 0.571 0.314

MCS (Normality)

(a) Median VR – 0.960 0.916 0.810
(b) 5th percentile – 0.731 0.598 0.398

Panel B: Monthly data January 1915–April 2004 (Dow Jones Industrial Average)

US 1.0 1.198 0.886 0.549

MCS (Normality)

(a) Median VR – 1.178 0.860 0.499
(b) 5th percentile – 0.690 0.432 0.168

Source: Author’s calculations Panel B, Jorion (2003), Panel A.
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Jorion (2003) using aggregate stock market indices on 30 different countries over
1921–1996 (Goetzmann and Jorion 1999) finds no evidence of mean reversion in real
returns over 1–10 year horizons based on the MCS distributions for VRk (at 5% left
tail significance level) for any of the 30 countries studied. In Table 3, the variance-ratio
statistics for the United Kingdom and United States decline with horizon, but not very
quickly. This result appears to be invariant to the inclusion or otherwise of dividends,
when measuring returns. For markets that were interrupted (e.g. Russia, Germany,
Japan), there tends to be mean aversion (i.e. VRk > 1) – which means that the global
index also shows mean aversion (Table 3, panel A, (a) and (b)). The asymptotic test
statistics and the 5%, one-sided critical value from the MCS under the normality
assumption (Table 3, panel A, (a) and (b)) indicate that the variance-ratio statistics
reject the null of mean reversion.

We have incorporated more recent data than Jorion for the United States by using
the Dow Jones index (industry average, monthly non-overlapping end-of-period data
from January 1915 to April 2004) and find broadly similar results (Table 3, panel B).
There is evidence of slightly greater mean reversion at 5- and 10-year horizons than
in the Jorion data. Again the median VRk statistic is biased downwards under the null
of no mean reversion (and normality), but the VRk statistics on the real data are larger
than their 5% one-sided critical values from the MCS, thus confirming that statistically
we can reject mean reversion at long horizons.

In terms of the absolute level of volatility, many markets are more risky than the
US stock market, at most horizons. For the five-year horizon some of the volatilities
(log price changes) found in the Jorion study are the United States 59.7%, Austria
82%, Finland 86%, Italy 78%, Japan 89%, Germany 94%, Portugal 155%, Philippines
212%, Brazil 228%, Chile 250%, Columbia 100% and Mexico 187%.

Using the actual empirical distribution of US real returns (rather than assuming
normally distributed returns), Jorion (2003) finds that the probability of a loss for US
stocks at horizons of 1, 5 and 10 years falls only slightly from 36.6% to 34.3% to 33.7%
respectively when using price changes (i.e. capital gains) to measure returns (Table 4).
When we include the average 3.8% dividend yield and repeat the calculation based on
total returns (i.e. capital gains plus dividends) then as expected, these shortfall proba-
bilities fall to 30.8%, 20.7% and 15.5% at 1-, 5- and 10-year horizons, respectively.

Which of these sets of figures is more representative of long-term risks? The figures
that include dividends are from stock markets that were not closed down at some point,
and hence there is a survivorship bias of around 150 basis points in the returns series.
The shortfall probabilities do not take into account the fact that one can always invest
in bills or bonds, and therefore it might be better to measure shortfall probabilities
in terms of excess returns. Given a small positive real return on bills (or bonds) of,
say, 1% p.a., this would offset some of the dividend yield and increase the shortfall
probabilities for excess returns (relative to those for the ‘raw’ equity total returns).

We must also consider transactions costs and management fees. For index (tracker)
funds, the management fees (currently) are around 50–100 basis points, and your cho-
sen fund may of course underperform the index (by an average of 40–50 basis points
for the S&P500 index funds according to Frino and Gallagher (2001) and therefore pos-
sibly by more for foreign index funds). For managed (mutual) funds, the transactions
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Table 4 Long-horizon risk and return: 1920–1996

Probability of Loss Value at Risk (5% Left Tail)

1 Year 5 Years 10 Years 1 Year 5 Years 10 Years

US (price change) 36.6 34.3 33.7 −27.8 −45.5 −51.2
US (total return) 30.8 20.7 15.5 −24.5 −33.7 −22.3
UK (price change) 40.3 32.5 45.2 −24.5 −54.8 −50.8
UK (total return) 30.1 22.1 30.8 −24.9 −47.8 −45.1
Median (price change) – 30

countries
48.2 46.8 48.2 −31.0 −60.3 −65.4

Median (total return) – 15
countries

36.1 26.9 19.9 −24.7 −39.9 −34.8

Global index (price change) 37.8 35.4 35.2 −20.8 −40.4 −41.1
Global index (total return) 30.2 18.2 12.0 −16.7 −19.8 −11.2

Notes:

(1) The global index uses GDP weights.
(2) Total return is the % price change plus the % dividend yield.
(3) Statistics are calculated from the empirical distribution of returns.
(4) The median price change using total returns has less coverage as data is only available on dividends

for 15 countries.

costs may be in the range 300–500 basis points and on average managed funds may
not outperform index funds (see Chapter 9 for evidence on mutual fund performance).
Hence, these transactions costs may partly or wholly cancel out the 3.8% dividend
yield, so the shortfall probabilities after transactions costs may be closer to the figures
using only the capital returns.

One must also be aware that the worst loss over any 5- or 10-year horizon in the
United States was −56.4% (ending September 1934) and −60.7% (ending August
1982) respectively – these are ‘big-hits’ to take over such long horizons, and this
is arguably the best-performing stock market in the world. The 5% lower tail, VaR
figures (i.e. the maximum expected loss, which occurs 5% of the time – see Table 4
and Chapter 28) for US stocks using capital gains (total returns) are for a one-year
horizon 27.8% (24.5%), for a five-year horizon 45.5% (33.7%) and for a 10-year
horizon 51.2% (22.3%) (Jorion 2003). When we include our more recent data using
the Dow Jones index (January 1915 to April 2004), the VaR figures are similar to
those found by Jorion, so the recent crash has not had a major effect on the possible
size of large losses on stocks over long horizons. This evidence clearly demonstrates
that US stocks are very risky, even over long horizons. The 29 non-US economies
taken together are even more risky (which is reflected in the ‘median figures’ in
Table 4).

If we accept that risk does not attenuate over long horizons; it implies that young
investors who trade off expected return against risk (standard deviation) should not
hold a greater proportion of their assets in stocks than do older investors. (Of course,
there may be other reasons why younger investors should hold more in stocks than
older investors – see Chapter 16.)

There is some consolation, however – but not very much. The timing of the worst
losses in the 30 different geographical markets is not perfectly synchronised. Some
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of the worst losses occurred around the 1930s, the second World War, the crash of
1974 and, for some developing countries, in the inflationary 1980s and latterly in the
recent crash of 2000–2003. Hence, the global return index (using capital gains only)
has volatility at one-year horizon of 16.1% (US = 20.89%). However, at longer 5-
and 10-year horizons, the volatility of the global index at 52.87% (US = 59.74%) and
80.73% (US = 81.79) is not too different from the US figures. The probabilities of
loss at the 5- and 10-year horizons for the global index are 35.4% (US = 34.3%) and
35.2% (US = 33.7%) respectively, about the same as the US figures, while the VaR
for the global index at 5- and 10-year horizons is 40.4% and 41.1% respectively, which
are slightly lower than the comparable US figures (Table 4). So, global diversification
has slight benefits for a US investor and possibly greater benefits for non-US investors.

Although the evidence in favour of mean reversion is somewhat uncertain, this does
not necessarily rule out predictability. VRk and βk are univariate tests of predictability
and even if Rt,t+k is not forecastable on the basis of any Rt−k,t , it may be influenced
by other variables (e.g. dividend–price ratio, interest rates) in a multivariate regres-
sion. Cochrane (2001) cleverly shows how a plausible vector auto regressive (VAR)
model in which there is a slow-moving expected return ht+1, determined by a slow-
moving dividend–price ratio, can imply very low univariate, mean reversion. The VAR
gives rise to a univariate moving average representation of the form

ht = (1 − γL)

1 − bL
νt (12)

= νt − (γ − b)νt−1 − b(γ − b)νt−2 − b2(γ − b)νt−3 + · · ·
If γ > b, then a positive shock νt sets off a string of negative returns, which give rise
to mean reversion in the univariate return series. But this ultimately derives from a
slow-moving variable affecting expected returns and is therefore not a violation of the
EMH. Cochrane’s VAR is

ht+1 = xt + εht+1 (13a)

xt+1 = bxt + εxt+1 (13b)

�dt+1 = εdt+1 (13c)

where xt is the slow-moving (b > 0.95) forecast variable (e.g. the log dividend–price
ratio), ht+1 is the return, and dividend growth is not forecastable. Cochrane shows
that when xt determines Etht+1, and there is zero correlation between dividend growth
shocks εdt and expected return shocks εht , then (1 − γ )/(1 − b) = 0.7 in (12), which
is in the ball-park of the actual long-run mean reversion found in the data. Hence,
‘strong’ multivariate predictability and low univariate mean reversion are not mutu-
ally exclusive.

Power of Tests

It is always possible that in a sample of data, a particular test statistic fails to reject
the null hypothesis of randomness even when the true model has returns that really are
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predictable. The ‘power of a test’ is the probability of rejecting a false null. Poterba and
Summers (1988) provide a nice, simple pedagogic example of how to evaluate ‘power’.
To evaluate the power properties of the statistics ρk, VRk and βk Poterba–Summers
set up a true model where stock returns are correlated. A MCS is used to generate
artificial returns, and the test statistics for randomness are calculated. If these ‘statistics’
are powerful, they should reject the null of randomness in most cases. The true model
has stock returns following an ARIMA(1,1) process. The logarithm of actual prices
pt is assumed to comprise a permanent component p∗

t and a transitory component ut ,
and the permanent component follows a random walk:

pt = p∗
t + ut (14a)

p∗
t = p∗

t−1 + εt (14b)

The transitory component ut is persistent.

ut = ρut−1 + vt (14c)

where ut , εt and νt are not contemporaneously correlated. Poterba–Summers set ρ =
0.98, implying that innovations in the transitory price component have a half-life of
2.9 years (if the basic time interval is considered to be monthly). From the above three
equations, we obtain

�pt = ρ�pt−1 + [(εt − ρεt−1) + (vt − vt−1)] (15)

Therefore, the model implies that log returns follow an ARMA(1,1) process. They then
generate data on pt , taking random drawings for the errors, with the relative share of the
variance of �pt determined by the relative sizes of σ 2

ε and σ 2
v . They then calculate the

statistics ρk, VRk and βkfrom a sample of the generated data of 720 observations (i.e.
the same ‘length’ as that for which they have historic data on returns). They repeat the
experiment 25,000 times and obtain the frequency distributions of the three statistics
of interest. They find that all three test statistics have little power to distinguish the
random walk model (i.e. the false ‘null’) from the above ‘true model’, which has a
highly persistent yet transitory component.

Autoregressive Moving Average (ARMA)

If weak-form efficiency does not hold, then actual returns Rt+1 might not only depend
upon past returns but could also depend on past forecast errors (see (15) above) as in
a general ARMA(p, q) model:

Rt+1 = k + γ (L)Rt + θ(L)εt+1 (16)

where γ (L) and θ(L) are polynomials in the lag operator; for example: γ (L) = 1 +
γ1L + γ2L

2 + · · · + γpLp and LnRt = Rt−n. Under the EMH, we expect all param-
eters in γ (L) and θ(L) to be zero. Regressions based on ARMA models are often
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used to test the informational efficiency assumption of the EMH. In fact, Poterba and
Summers (1988) attempt to fit an ARMA(1,1) model to their generated data on stock
returns which, of course, should fit this data by construction. However, in their esti-
mated equations, they find γ1 = 0.98 and θ1 = 1, and because ρ and θ are ‘close to’
each other, the estimation package often could not ‘separate out’ (identify) and suc-
cessfully estimate statistically distinct values for ρ and θ . When Poterba and Summers
do succeed in obtaining estimates, less than 10% of the regressions have parameters
that are close to the (known) true values. This is another example of an estimated
model failing to mimic the true model in a finite sample.

Cecchetti, Lam and Mark (1990) take up the last point and question whether the
results of Poterba and Summers (1988) and Fama and French (1988b) that stock prices
are mean-reverting should be interpreted in terms of the presence of noise traders. They
note that serial correlation of returns does not in itself imply a violation of efficiency.
Cecchetti et al. go on to demonstrate that empirical findings on mean reversion are
consistent with data that could have been generated by an equilibrium model with time-
varying expected returns. They take a specific parameterisation of the Consumption-
CAPM (see Chapter 13) as their representative equilibrium model and use Monte Carlo
methods to generate artificial data sets. They then subject the artificial data sets to the
variance-ratio tests of Poterba–Summers and the long-horizon return regressions of
Fama–French. They find that measures of mean reversion in stock prices calculated
from historic returns data nearly always lie within a 60% confidence interval of the
median of the Monte Carlo distributions implied by the equilibrium consumption-
CAPM. Like all Monte Carlo studies, the results are specific to the parameters chosen
for the equilibrium model. Cecchetti et al. note that in the Lucas (1978) equilibrium
model, consumption equals output, which equals dividends, and their Monte Carlo
study investigates all three alternative ‘fundamental variables’. Taking dividends as an
example, the Monte Carlo simulations assume

ln Dt = ln Dt−1 + (α0 + α1St−1) + εt

The term St−1 is a Markov switching variable (see section 7 and Hamilton 1989) that
has transition probabilities

Pr(St = 1|St−1) = p

Pr(St = 0|St−1 = 0) = q

Pr(St = 0|St−1 = 1) = 1 − p

Pr(St = 1|St−1 = 0) = 1 − q

Since α1 is restricted to be negative, St = 0 is a ‘high growth’ state, Et� ln Dt+1 = α0

and St = 1 is a low growth state, Et� ln Dt+1 = α0 + α1 (with α1 < 0). Therefore,
ln Dt is a random walk with a stochastic drift (α0 + α1St−1). The parameters of the
dividend process are estimated by maximum likelihood and then used to generate the
artificial series for dividends.

The Euler equation for the C-CAPM (with dividends replacing consumption-see
Chapter 13) is

PtU
′(Dt) = δEt [U

′(Dt+1)(Pt+1 + Dt+1)]
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with preferences given by a power utility function U(D) = (1 + γ )−1D1−γ with −∞ <

γ ≤ 0, the constant coefficient of relative risk aversion (CRRA). The Euler equation
can then be written:

PtD
γ
t = δEtPt+1D

γ

t+1 + δEtD
γ+1
t+1

which when iterated forward gives the solution

Pt = D
−γ
t

∞∑
i=1

δiEtD
1+γ

t+i

Simplifying somewhat, the artificial series for dividends when used in the above
equation (with representative values for δ and γ the CRRA) gives a generated series
for prices, which satisfies the C-CAPM general equilibrium model. Generated data
on returns Rt+1 = [(Pt+1 + Dt+1)/Dt ] − 1 are then used to calculate the Monte Carlo
distributions for the Poterba–Summers variance-ratio statistic and the Fama–French
long-horizon return regressions.

Essentially, the Cecchetti et al. results demonstrate that with the available 116 annual
observations of historic data on US stock returns, one cannot have great faith in return
regressions based on, say, returns over a five-year horizon, since there are only about
23 non-overlapping observations. The historic data is therefore too short to make
a clear-cut choice between an equilibrium model and a ‘noise-trader’ model. The
Cecchetti et al. results do make one far more circumspect in interpreting weak-form
tests of efficiency (which use only data on lagged returns), as signalling the presence
of noise traders.

4.4 Multivariate Tests

The Fama–French and Poterba–Summers results are univariate tests. However, a num-
ber of variables other than past returns have also been found to help predict current
returns. Early studies, for example, Keim and Stamburgh (1986), using monthly excess
returns on US common stocks (over the T-bill rate) for the period from about 1930
to 1978 find that for a number of portfolios (based on size), the following (somewhat
arbitrary) variables are usually statistically significant: (a) the difference in the yield
between low-grade corporate bonds and the yield on one-month Treasury bills; (b) the
deviation of last periods (real) S&P index from its average over the past 4–5 years and
(c) the level of the stock price index based only on ‘small stocks’.

They also find a ‘pure’ January effect in that the impact of (a)–(c) is different
in January from other months. (They also find that the above variables influence the
monthly rates of return on other assets such as government long-term bonds and high-
grade long-term corporate bonds.) However, it should be noted that for monthly return
data on stocks, the regressions only explain about 0.6–2% of the actual excess return.

Fama and French (1988b) examine the relationship between (nominal and real)
returns and the dividend yield, D/P .

Rt,t+k = a + b(D/P )t + εt+k (17)
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The equation is run for monthly and quarterly returns and for return horizons of
1–4 years, using the NYSE index. They also test the robustness of the equation by
running it over various sub-periods. For monthly and quarterly data, the dividend yield
is often statistically significant (and β > 0) but only explains about 5% of the vari-
ability in actual returns. For longer horizons, the explanatory power increases. For
example, for nominal returns over the 1941–1986 period the explanatory power for 1-,
2-, 3- and 4-year return horizons are 12, 17, 29 and 49 percent respectively. The longer
return horizon regressions are also found to be useful in forecasting ‘out-of-sample’.

Predictability and Market Timing

More recently, Cochrane (2001) using Shiller’s data on excess stock returns, on US
data 1947–1996, for a one-year horizon finds b ≈ 5 (s.e. = 2) and R-squared = 0.15,
while for a five-year horizon b ≈ 33 (s.e. = 5.8) and R-squared = 0.60. We have used
Shiller’s US data from 1947–2002, and the actual and predicted (within sample) annual
and five-year excess returns are shown in Figures 6 and 7 for data ending in 2002.

Clearly, the one-year returns are highly volatile, and the dividend–price ratio explains
little of the variability in returns. At first glance, the five-year returns appear to fit the
data better. The price–dividend ratio (Figure 8) is a slow-moving (persistent) variable
that crosses its mean value about once every 20 years, and over the last 10 years (to
2002), has risen to unprecedentedly high values of around 70.

Returning to one-year returns (Figure 9), one can see that this equation in 1998 and
1999 was predicting a negative return (within sample), but these years experienced
large price rises (partly due to the telecoms boom). Had you used this model to time
the market, you would have missed two years of substantial price rises and also a very
large price rise in 1995 (and may have been fired if you were a professional trader).
By 2001 and 2002, the equation is ‘back on track’.

US : One-year returns : 1947–2002 (actual, fitted)
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Figure 6 One-year excess returns
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US : Five-year returns : 1947–2002 (actual, fitted)
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Figure 7 Five-year excess returns

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

Figure 8 Price–dividend ratio: USA (1947–2002)

Outside-sample predictions may well be worse than the in-sample performance dis-
cussed above. Indeed, Cochrane (1997) estimates this returns equation up to 1996
(the latest data he had), as well as an AR(1) equation to predict the price–dividend
ratio (P/D):

Rt+1 = a + b(P/D)t + εt+1 b < 0

(P/D)t+1 = µ + ρ(P/D)t + vt+1

Using the second equation to predict (P/D)1997 = µ + ρ(P/D)1996 and then R̂1998 =
a + b(P/D)1997 etc., Cochrane finds that the equation predicts a −8% excess return
for 1997, and after 10 years, the forecast is still −5% p.a. Clearly, Figure 9 shows
that these forecasts are badly wrong for 1998 and 1999, which experienced rather
high returns, but the ‘outside-sample’ forecasts come ‘back on track’ for 2000–2002.
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Figure 9 One-year excess returns and P–D ratio annual US data (1947–2002)

Certainly, given that the price–dividend ratio in the late 1990s is way above its his-
toric mean value and given the slow movement in the dividend–price ratio in this
data (i.e. the autocorrelation coefficient ρ > 0.95), the returns equation will predict
negative returns for many years to come. But Figures 8 and 9 illustrate the problems
of assessing return predictability. Remember that ρ is biased and measured with error,
so the persistence in the price–dividend ratio may be less than given by the point
estimate. If the price–dividend ratio were not persistent at all (clearly not a truthful
statement!), then it would return to its mean very quickly, and any predicted negative
returns would last for only one period.

There is the possibility that the linear AR model for the price–dividend ratio is
incorrect and a non-linear model is appropriate, so that the price–dividend ratio moves
faster towards its mean value, if it is currently a long way from its mean. (We assume
most of this move to its long-run equilibrium level will be due to price changes rather
than dividend changes – since it has been found that the dividend–price ratio has little
or no predictability for future dividend changes, Cochrane 2001.) Here we are positing
a non-linear dynamic response of the price–dividend ratio, which we discuss in the
next section. This implies fewer years of negative returns after 2002.

On the other hand, maybe from now on, the average long-run price–dividend ratio
will be higher than its historic average (e.g. because of increased productivity due to
the ‘new’ economy, which may have permanently raised future profits and hence prices
relative to current dividends). This would also imply that future returns would not fall
so drastically, as the price–dividend ratio would then have less distance to fall before
it reaches its new higher mean value.

When we look at the return regression (Figure 9), it is possible that there may be
a non-linear relationship between Rt+1 and (P/D)t , and a better fit might ensue if
the ‘straight-line’ actually flattened out at the extreme right-hand side (i.e. data points
2000–2002). If that were the case, then this new equation would predict a much smaller
fall in prices in the future. To emphasise the fragility of these results, it is worth noting
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that Ang and Bekaert (2001), in a study of stock markets across the world, find that the
dividend–price ratio has little or no forecasting power for stock returns when data for
the late 1990s is included in the sample and the short-rate then becomes the most robust
predictor of stock returns (also see Goyal and Welch 1999). All in all, this evidence
should alert you to the fact that ‘market timing’ is a hazardous and risky occupation.

You should also be wary of statistics indicating ‘strong predictability’ at long
horizons that could be misleading for two reasons. First, ‘b’ is biased (Stamburgh
1999). Second, where the forecasting variable (D/P ) is persistent, then as a matter of
logic, if short-horizon returns are very slightly predictable with a ‘small’ coefficient,
then longer-horizon returns regressions will have increasing values of ‘b’ and larger
R-squareds. To see the former, consider

Rt+1 = bxt + εt+1 (18a)

xt = ρxt−1 + vt (18b)

where xt is very persistent (i.e. ρ > 0.9) and xt represents the forecasting variable
(e.g. xt ≡ ln(D/P )t ). Then three-period (continuously compounded) returns, for exam-
ple, are

(Rt+1 + Rt+2 + Rt+3) = b(1 + ρ + ρ2)xt + b(1 + ρ)vt+1 + bvt+2 +
3∑

i=1

εt+i (19)

Hence, for ρ = 0.9 and b > 0, the coefficient on xt rises with horizon (as does R-
squared – not shown here). The rising R-squared with horizon is a little illusory and
mainly demonstrates that periods when the dividend–price ratio is high for long periods
(i.e. prices are low) tend to be followed by high returns over the next five years
or so. But the overlapping data problem when using annual data and a return over
five years means that we really only have one-fifth of the observations we think we
have, so predictability is a more contentious issue than it looks by just examining the
usual statistics.

What is important is the temporal stability of any estimated coefficients. Certainly,
you do not have to look far to find studies that show that return forecasting vari-
ables such as the dividend (earnings)–price ratio, the (detrended) T-bill rate, the yield
spread, the default spread (i.e. corporate less T-bill yield) and the consumption–wealth
ratio, have all been found useful at some time or other in ‘explaining’ the time-series
behaviour of returns (over different horizons) – but the coefficients on these variables
are not particularly stable (e.g. see Lettau and Ludvigson 2001a, Pesaran and Timmer-
mann 2000). This means we have to be very careful in interpreting ‘predictability’
where there has been substantial search over alternative variables and specifications
(i.e. data-mining). Clearly ‘out-of-sample’ forecast tests are useful here, to see whether
the regression really does provide a ‘market timing’ advantage.

The EMH implies that abnormal returns are unpredictable, not that actual returns
are unpredictable. Several studies find ‘predictability’, but as they do not incorporate
a reasonably sophisticated model of equilibrium returns, we do not know if the EMH
would be rejected in a more general model. For example, the finding that b > 0 in (17)
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could be interpreted within the EMH by asserting that (D/P ) is a proxy for changes
in equilibrium expected returns (and there is some theoretical backing for this – see
Chapters 12 and 13). To take another example, if, as in Keim and Stamburgh, an
increase in the yield on low-grade bonds reflects an increase in investors’ general
perception of ‘riskiness’, we would expect a change in both equilibrium and actual
returns. Here, predictability could conceivably be consistent with the EMH, although
without a coherent theoretical model of equilibrium returns, such ex-post explanations
can be a little feeble.

4.5 Cointegration and Error Correction
Models (ECM)

As we shall see in a later chapter, stock prices P are determined by the present value of
expected future dividends D and discount rates (i.e. one-period future returns). Hence,
the dividend–price ratio should either predict future dividends or future returns or both.
If expected future returns are not constant, then there is some theoretical justification
for believing that the dividend–price ratio might predict future returns.

Suppose in long-run (static) equilibrium, p = ln P is proportional to d = ln D, so
the dividend–price ratio is constant (= k). Deviations of (p − d) from k might then
result in changes in the price. This is the basis of the ECM. We assume that the speed
and direction of future change in prices depends on the disequilibrium in the ‘long-
run’ price–dividend ratio. If the ‘long-run’ (log) price–dividend ratio z = (p − d) is
assumed to be constant, the ‘standard’ error correction model ECM is

�pt = β1(L)� dt−1 + β2(L)�pt−1 − α(z − k)t−1 + εt α > 0 (20)

where βi(L) is a polynomial in the lag operator (i = 1, 2), and k is the long-run
equilibrium value of the (log) price–dividend ratio (P/D is around 20 for annual
data). When prices are high (relative to ‘long-run’ dividends), (p − d) > k, then �pt

is negative and prices fall next period, bringing (p − d) back towards its equilibrium
value. If pt and dt are non-stationary I(1) but are cointegrated, then (p − d)t−1 should
Granger-cause either �pt or �dt . This is the statistical basis for forecasting equations
like (20).

MacDonald and Power (1995) estimate an ECM like (20) using US annual data
1871–1987. They have to include the retention ratio (= retained earnings/total earn-
ings) as well as dividends to obtain a stationary cointegrating vector. They find evi-
dence of predictability within sample and obtain reasonable outside-sample forecasts
(1976–1987) – although the latter may be due to the inclusion of a contemporaneous
�dt term. Similarly, Clare, O’Brien, Thomas and Wickens (1993) provide an ECM
based on the gilt-equity yield ratio (GEYR). The GEYR is widely used by market ana-
lysts to predict stock returns (e.g. Hoare Govett 1991). The GEYRt = (C/Bt)/(D/Pt ),
where C = coupon on a consol/perpetuity, Bt = bond price, D = dividends, Pt =
stock price (of the FT All-Share Index). It is argued that UK pension funds, which are
big players in the market, are concerned about income flows rather than capital gains,
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in the short run. Hence, when (D/P) is low relative to (C/B), they sell equity (and
buy bonds). Hence, a high GEYR implies a fall in stock prices, next period. Broadly
speaking, the rule of thumb used by market analysts is that if GEYR > 2.4, then sell
equity while for GEYR < 2, buy more equity and if 2 ≤ GEYR ≤ 2.4, then ‘hold’ an
unchanged position. A simple model that encapsulates the above is

� ln Pt = α0 + βGEYRt−1 +
3∑

i=1

αi�GEYRt−i + εt

In static equilibrium, the long-run GEYR is −α0/β and Clare et al. (using quarterly
data) find this to be equal to 2.4. For every 0.1 that the GEYR exceeds 2.4, then the
estimated equation predicts that the FT All-Share Index will fall 5%:

� ln Pt = 122.1
(3.7)

− 50.1
(3.4)

GEYRt−1 + 48.1�

(2.4)

GEYRt−1 + 6.5�

(3.4)

GEYRt−2

+ 32.6�

(2.8)

GEYRt−3 + [dummy variables for 73(3), 73(4), 75(1), 87(4)]

1969(1) − 1992(2), R
2 = 0.47

They use recursive estimates of the above equation to forecast over 1990(1) – 1993(3)
and assume investors’ trading rule is to hold equity if the forecast capital gain exceeds
the three-month Treasury bill rate (otherwise hold Treasury bills). This strategy, using
the above estimated equation, gives a higher ex-post capital gain of 12.3% per annum
and lower standard deviation (σ = 23.3) than the simpler analysts’ ‘rule of thumb’
noted above (where the return is 0.4% per annum and σ = 39.9). The study thus
provides some prima facie evidence against weak-form efficiency; although, note that
capital gains rather than returns are used in the analysis and transactions costs are not
considered. However, it seems unlikely that these two factors would undermine their
conclusions.

The above analysis has been replicated and extended by Harris and Sanchez-Valle
(2000a, b) for the United States and United Kingdom using monthly data ending around
1997, and the above GEYR trading rule generates returns that exceed a buy-and-hold
strategy (even after allowing for transactions costs) by around 1–3% p.a., but there is
no correction for ex-ante risk. Clare, Priestly and Thomas (1997) use the UK GEYR
to forecast returns on the FTSE100 but find no outside-sample predictability. The
evidence is therefore rather weak that the GEYR can be used by ‘market timers’ to
beat the market corrected for risk.

Cointegration and the Engle–Granger theorem has led to thousands of empirical
studies that (a) seek to establish a set of cointegrating vectors (i.e. maximum of n − 1),
from a set of (n × 1), non-stationary I(1) variables, x (b) use the single equation ECM
(or Johansen’s (1988), VAR) or multivariate VECMs to demonstrate predictability for
some or all of the x variables (i.e. Granger causality). Here, the scope for data-mining
is vast, and one’s faith in such results depends in part on a good statistical analysis
(e.g. appropriate diagnostics, out-of-sample performance, etc.) and also on one’s view
of the ‘theoretical’ model behind such regressions.
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For example, in the finance area alone, there are many studies that examine the
predictability of spot FX-rates on the basis of either deviations from purchasing power
parity, forward premia or uncovered interest party. Many studies of stock price pre-
dictability are based on cointegration between stock prices and dividends (or earnings),
which then leads to a VECM where one of the equations ‘explains’ stock returns. Other
studies are based on cointegration between different stock market indices (e.g. does the
US stock market Granger-cause the Brazilian stock market, or vice versa) or on coin-
tegration between stock indices and stock index futures prices or on the relationship
between other macro variables such as inflation, interest rates and consumption–wealth
ratios. The list is endless.

These are usually purely statistical relationships with rather weak (or very simple)
theoretical underpinnings. It is as well to remind the reader that such predictability
may not apply ex-ante and that allowing for transactions costs and the riskiness of
trading strategies is of crucial importance. Unfortunately, the literature is so voluminous
that one cannot draw general conclusions. But it is likely that any ‘free lunches’
discovered in the data may turn out to be rather more expensive than the investor
bargained for when she uses the equation for ex-ante predictions. Later, we examine
some ‘market timing’ strategies that have been carefully undertaken, including outside-
sample forecasting performance.

Cointegration and Persistence

Does the evidence that Pt and Dt often appear to be not cointegrated imply that the
rational valuation formula (RVF) for stock prices is incorrect? Here, we use a Monte
Carlo simulation to investigate this issue. If there is a constant discount factor, then
stock prices are determined by Pt = kDt – this is the RVF (see Chapter 10). If Pt and
Dt are I(1), then the RVF implies that Pt and Dt should be cointegrated. Empirical
studies often find that neither (Pt , Dt) nor (ln Pt, ln Dt) are cointegrated, which rejects
the RVF but only if expected returns are constant. Using MCS in a model in which
dividends and expected returns vary over time and the RVF holds by construction, we
can see why P and D might appear to be not cointegrated in a finite sample of data.
If in our artificial data, standard tests indicate that P and D are not cointegrated, then
time-varying returns provide one possible explanation of the non-cointegration found
in the actual data even though the RVF holds. Reasonable data-generation processes
for dividends and returns are

ln Dt = µ + ln Dt−1 + εdt εdt ∼ niid(0, σ 2
d ) (21)

(Rt − R) = ρ(Rt−1 − R) + εrt εrt ∼ niid(0, σ 2
R) (22)

Hence, EtDt+m = exp[m(µ + σ 2
d /2)], and after some linearisation around R (Poterba

and Summers 1986), the ‘RE-price’ is determined by the following general function.

P̂t = f (g, R, ρ,Rt − R)Dt (23)
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where g = exp(µ + σ 2
d /2) − 1. Timmermann (1996) undertakes a MCS on (21) and

(22), where he generates P̂t using (23) and then tests for cointegration between either
(P̂t ,Dt ) or (ln P̂t , ln Dt). He finds that when there is strong persistence in expected
returns (i.e. ρ greater than 0.6) but the RVF holds (by construction), then cointegration
is frequently rejected (for almost any reasonable values of the volatility of dividends).
Hence, rejection of cointegration does not necessarily imply rejection of the RVF, if
expected returns are time-varying.

4.6 Non-Linear Models

In ECM models above, the effects of the disequilibrium (d-p-k) on �pt is symmet-
ric and independent of the size of the disequilibrium. Non-linear models relax these
assumptions. They often tend to be rather ad hoc in the sense that economic the-
ory plays a role only in defining the long-run static equilibrium and the dynamics
are determined by some non-linear response to this long-run equilibrium. Other non-
linear models include chaos models that form a class of their own, in that they are
deterministic, but the non-linearity produces a response that appears random. ARCH
and GARCH models are non-linear in the second moment (i.e. variances and covari-
ances) – see Chapter 29. Here, we concentrate on a popular set of ad hoc approaches
that model the non-linear dynamics.

These non-linear models aim to relax the restrictions on dynamic behaviour found in
the symmetric and proportionate response to disequilibrium in the above ECM model
(while retaining the long-run equilibrium relationship). We begin with three forms of
non-linearity commonly employed in empirical work: a threshold model, a spline model
and the (quadratic) smooth transition autoregressive (STAR) model. These models are
becoming increasingly popular in applied work, although it is worth remembering
that they only deal with alternative dynamics and take the long-run equilibrium as
given. They are stylised descriptions of the data, usually with fairly simple long-run
equilibrium relationships (e.g. p-d is constant in the long run).

Threshold (asymmetric) model

This model is based on a ‘switching’ dummy variable, depending on whether the
disequilibrium term zt−1 is above or below some threshold value:

�pt = β1(L)� dt−1 + β2(L)�pt−1 (24)

+ α1(DV1 = 1, zt−1 > c1)zt−1 − α2(DV 2 = 1, zt−1 < c2)zt−1 + εt

where DVi are indicator variables taking the value 1 when the condition on zt−1 is
satisfied (and 0 otherwise). If c1 
= c2, then for zt−1 lying between c1 and c2, no
adjustment occurs. The model can be estimated by OLS, conditional on a grid search
over c1 and c2. Clearly, this model has symmetric effects if α1 = α2.
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Spline model

This model is a special case of (24) where we set c1 = c2 = 0, so there is no threshold
but possible asymmetry of adjustment:

�pt = β1(L)� dt−1 + β2(L)�pt−1

− α1(DV1 = 1, zt−1 > 0)zt−1 − α2(DV2 = 1, zt−1 < 0)zt−1 + εt (25)

STAR model

In this variant, the adjustment can have different speeds (α1 
= α2), but the response
to positive and negative disequilibria is symmetric:

�pt = β1(L)� dt−1 + β2(L)�pt−1 − α1zt−1[1 − F(zt−1)] − α2zt−1[F(zt−1)] + εt

(26a)

F(zt−1) = [1 + exp{−γ (zt−1 − c1)(zt−1 − c2)}/σ 2
z ]−1 γ > 0 (26b)

If γ = 0, the model is linear and as γ → ∞, the model approaches the threshold
model. For intermediate values of γ , the adjustment to disequilibrium is smooth.

ESTAR model

A simpler version of the above model (assuming an AR(1) process) is the exponential-
STAR model:

zt = (πo + π1zt−1) + (π∗
1 zt−1)F (zt−j ) + εt (27)

where F(zt−j ) = 1 − exp[−γ (zt−j − c)2/σ 2
z ].

The term σ 2
z is usually fixed at its sample mean value. F(zt−1) is ‘U-shaped’ and

bounded between zero and unity. If zt−j = c, then F = 0, and (24) becomes a linear
AR(1) model. As (zt−j − c) → ∞, the disequilibrium is very large and F = 1, so (27)
becomes a different AR(1) model with the coefficient on zt−1 being (π1 + π∗

1 ).
Essentially, the ESTAR models allow the adjustment speed to be different the fur-

ther zt−1 − c is from 0. Intuitively, one might expect adjustment to be faster, the larger
(in absolute value) is zt−1 − c. For stocks, if one believes that z = d − p adjusts mainly
through changes in prices, then this would constitute the so-called risky arbitrage hypoth-
esis (Chiang, Davidson and Okunev 1997). An alternative would be that the adjustment
is slower when zt−1 − c is large, because traders may have lost so much money while
waiting for earlier mispricing to be reversed that they have fewer (borrowed) funds with
which to arbitrage away large disequilibria (Shleifer and Vishny 1997) – this is the limits
to arbitrage hypothesis. These two hypotheses are represented by

π1 + π∗
1 < π1 ‘risky arbitrage’ and π1 + π∗

1 > π1 ‘limits to arbitrage’ (28)

When estimating this type of model, there are several practical issues that arise:

(i) How do we determine if there are non-linearities of any kind in the data?
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(ii) Choosing the lag lengths in the dynamics (i.e. � terms) and the single lag length
for F(yt−j )

(iii) Estimation and convergence

(iv) Evaluating and testing the models

There are several pre-testing procedures to determine general non-linearity such as
the BDS-test, the Ramsey reset test and several other tests (see Granger and Terasvirta
1993, Lin and Terasvirta 1994). Popular methods are to approximate the non-linearity
in zt using a Taylor series approximation of some kind. For example, given the ESTAR
model (24), we would pre-test using

zt = πo + π1zt−1 + π2zt−1zt−j + π3zt−1z
2
t−j + π4zt−1z

3
t−j + εt (29)

Then a test of linearity versus non-linearity is a test of πi = 0 (for i = 2 − 4). The
Ramsey reset test is similar in that ẑt , the predictions from the linear model are
regressed on higher powers of ẑ

q
t (q = 2, 3, . . .) and the statistical significance of these

terms assessed using standard Wald or LR tests. The above is not exhaustive – for
example, one could fit a neural network to zt and then test for linearity (Lee, White
and Granger 1993) and Chen (2003) provides a test (which has good power properties
for T > 100) to discriminate between alternative STAR models (e.g. between LSTAR
and ESTAR). Lag lengths are usually found by trial and error (e.g. using the partial
autocorrelation function for zt ).

Estimation of the above models is usually by NLLS, although convergence problems
can sometimes arise. Testing for cointegration (e.g. between p and d) and hypothesis
testing in the STAR models is not straightforward, but Monte Carlo simulation under
the null of non-linearity is used to establish critical values (e.g. Corradi, Swanson and
White 2000).

These non-linear dynamic models can easily be applied to any problem where there
is a fairly straightforward equation for long-run equilibrium (e.g. purchasing power
parity, expectations hypothesis of the term structure) but here we illustrate with the
dividend–price ratio. As we know, the (log) dividend–price ratio is a very persis-
tent variable with large deviations around its sample mean value. The ESTAR model
can be used to examine whether adjustment of zt = (d − p)t is faster, the larger are
these deviations. Gallagher and Taylor (2001), using quarterly US data 1926–1997,
find the AR(1)-ESTAR model (with c = 0, j = 5 in the F-function) has R2 = 0.70
with a statistically significant γ = −0.36 (t = 3.3) and the risky arbitrage proposition
holds – see (27) and (28). As the authors note, the linear model has an R2 of 0.68,
so the improvement here is not large. But the model does imply that the greater the
distance (d − p) is from its mean value, the faster the dividend–price ratio moves
back to equilibrium. However, the model is agnostic on whether it is �p or �d that
is doing most of the adjusting, since the dependent variable in their ESTAR model is
�(d − p)t .

Clearly, the danger with these non-linear models containing variables that are highly
persistent (i.e. borderline stationary–non-stationary) is that the non-linear results are
generated by a few outliers or regime shifts in the data. For example, we know that after
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the crashes of 1929, the 1940s, 1974/5 and to a lesser extent 1987, stock prices rose
quite fast and hence so did the price–dividend ratio. It would therefore be interesting
to know how sensitive the ‘whole-sample’ results of such models are to these ‘special
periods’. One further caveat. It is well known that the mean of the dividend–price ratio
was higher in the 1926–1950 period than in the 1950–1997 period and the non-linear
effect found in the ESTAR model (which assumes a constant mean) may be the result
of a ‘regime shift’ (see below) but in a linear dynamic model. Further work is needed
on these models, although one’s ‘gut feeling’ is that there are periods and situations
where non-linear adjustment could be present.

4.7 Markov Switching Models

Markov switching models have been much in evidence in the macroeconomic and
finance literature since the seminal work of Hamilton (1990). They are non-linear
models that allow the data to be considered as being generated by two or more regimes
or ‘states’ (e.g. ‘high’ and ‘low’ dividend–price ratio or interest rate regimes), but the
regimes are unobservable. So, in the non-linear ESTAR type models, we have a constant
coefficient model in which the dynamic response to the disequilibrium term is non-
linear (but there is only one ‘true’ regime). With the Markov switching approach, the
model can be linear in the parameters in each regime, but the stochastic nature of the
regime shifts imparts a non-linear stochastic dynamic response as you switch between
regimes. Essentially both approaches are less restrictive than the standard ECM/VECM
constant parameter model, and they are simply alternative ways of providing more
parameters in the model and hence giving the model more scope (loosely speaking,
more ‘freedom’ to fit the data).

We consider only the two-regime case in our exposition (and owing to computational
difficulties, the number of regimes considered in applied work is usually at most 3).
The Markov property implies that the probability distribution of an observed variable
yt lying in the interval {a, b} depends only on their state at time t − 1 and not on any
earlier states. Suppose the unobservable state variable is St , then the Markov two-state
process would be represented by

pr[St = 1|St−1 = 1] = p11 pr[St = 2|St−1 = 1] = 1 − p11

pr[St = 2|St−1 = 2] = p22 pr[St = 1|St−1 = 2] = 1 − p22

Thus, p11 is the probability that yt , which is currently in regime-1, will remain in
regime-1. It can be shown that the series yt can be represented by

yt = µ1 + µ2 St + (σ 2
1 + θ St )

1/2εt

where εt ∼ N(0, 1). So, in state-1, the mean and variance are (µ1, σ
2
1 ) and in state-

2, they are (µ1 + µ2, σ
2
1 + θ). The unknown parameters that can be estimated using

maximum likelihood are (µ1, µ2, σ
2
1 , σ 2

2 , p11, p22). The transition probability matrix
P is the 2 × 2 matrix of the above probabilities. The current state probabilities are
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defined as πt = [π1t , π2t ] where πit is the probability that y is currently in state i.
Given πt and the (2 × 2) probability matrix P, then the probability that y will be
in a given regime next period can be obtained from πt+1 = πtP , and it follows that
πt+k = πtP

k.
Brooks and Persand (2001) provide an interesting example of a regime-switching

model in which yt is the GEYR for the UK over the period January 1975 – August
1997. They note that the time series for the GEYR has periods of ‘high’ or ‘low’
values (as noted above), and the Hamilton filter gives statistically significant values for
the parameters (µ1, µ2, σ

2
1 , σ 2

2 , p11, p22) = (2.43, 2.07, 0.062, 0.014, 0.9547, 0.9719).
Hence, there are different means and variances in the two regimes. Also there is less
than a 10% chance of moving from a ‘low’ to a ‘high’ mean-GEYR regime – in the
time series, this manifests itself in persistent (i.e. long) periods in which the GEYR
either stays high or remains low.

Movements in the GEYR = (Pt/Bt)(C/Dt ) are dominated by Pt and Bt , the price of
stocks and bonds. A low GEYR essentially implies stock prices are low relative to bond
prices (and relative to dividends). A trading strategy based on mean reversion would
buy stocks when stock prices are low (and sell bonds). Essentially, if the GEYR is low
(high), buy equities (bonds). (We will see this later in the value-growth stock picking
strategy). Brooks and Persand (2001) use this type of trading strategy, but instead
of looking at GEYR per se as their market timing ‘signal’, they use the forecast
probability that the GEYR will be in a particular regime next period (see above).
Hence, if the probability that GEYR will be in the low regime next period is greater
than 0.5, this implies buying equities (otherwise hold gilts). The forecast probability
for regime-1 (Engel and Hamilton 1990) is given by

pf
1,t+1|t = µ2 + [λ + (p11 + p22 − 1)(p1,t − λ)(µ1 − µ2)]

where p1t is the last observed probability of being in regime-1. A recursive regres-
sion and one-step ahead forecasts of pf

1,t+1|t are produced for 212 data points and the
stock–bonds switching strategy is implemented. This is compared with a passive ‘buy-
and-hold’ strategy for the stock index. The monthly average return for the passive and
switching strategies (1980–1996) are 0.622% and 0.689%, with standard deviations
of 2.14 and 1.58, and the Sharpe ratios are 0.089 (passive) and 0.16 (switching). But
the switching strategy involves 16 ‘switches’, and after taking account of transactions
costs, the Sharpe ratio of the passive and switching strategies are almost identical.
Results for the United States and Germany are less favourable to the switching strat-
egy. While (as expected) Markov switching models tend to have a superior in-sample
statistical performance compared to simple ‘fixed parameter’ time-series models (e.g.
random walk, linear AR, MA(1)-GARCH), they tend to have relatively worse outside-
sample forecast performance – which is due to the poor forecasts of next period’s
regime (Dacco and Satchell 1999).

Markov Switching in a VECM (MS-VECM)

In principle, we can embed a Markov switching (MS) process in almost any constant
parameter model, so if we augment a standard VECM linear model, we can write our
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MS-VECM as

�yt = µ(St ) +
p−1∑
d=1

ψd(St )�yt−d + α(St )zt−1 + εt

εt ∼ ND(0, �(St )) St = 1, 2, . . . regimes

where yt ∼ (n × 1) vector of I (1) variables (one of which could be the stock price,
pt ), St is the Markov switching variable and zt is the vector of cointegrating variables.
For example, zt might be simply the log dividend–price ratio (pt − dt ) or it might be a
stationary linear combination of the S&P500, the FTSE100 and the Nikkei 225 indexes
or it might be the log of the futures minus spot stock indexes ft − st (i.e. ‘the basis’)
for several countries (e.g. 3 cointegrating vectors ft − st for the spot-futures basis for
the S&P500, FTSE100 and Nikkei 225). All of the above-mentioned zt−1 variables
might Granger-cause the change in the stock index �st (as well as the change in the
other variables in the chosen cointegrating vectors).

Now, it is a well-established empirical fact that for most financial time series of price
changes (e.g. for stock, bond and spot FX returns), the conditional distribution of �pt

(i.e. the εt term) is non-normal and usually leptokurtic, fat-tailed and left-skewed). One
way to model these non-normalities is to use time-varying conditional variances (and
covariances), and these ARCH-GARCH models are discussed in Chapter 29. Alter-
natively, one can use non-linear functions as in ESTAR type models or the Markov
Switching VECM (MS-VECM) model noted above, where the intercepts µ, autore-
gressive dynamics ψd , the error correction coefficients α and the covariance matrix
of errors � may all be regime-dependent. This more ‘flexible’ model might explain
�yt (particularly �pt ⊂ �yt) better than the standard VECM, both within sample and
using out-of-sample forecasts and in predicting the shape of whole distribution (i.e.
forecast density function).

A good example of the MS-VECM approach is Sarno and Valente (2004), who
use weekly data 1989–2000 with zit = fit − sit , where {si, fi} = {stock index, futures
index} for i = S&P500, Nikkei 225, FTSE100. They find that the outside-sample one-
step-ahead forecasts from the MS-VECM model do not improve on the standard linear-
VECM forecasts, in terms of mean absolute error (MAE) and root mean squared error.
However, the proportion of correctly predicted signs of stock price changes in the
outside sample one-step ahead forecasts are better for the MS-VECM model than for
the linear-VECM model – this is a test of relative market timing.

Because we know the stochastic path of the covariance matrix and the regime-
switching VECM parameters, we can produce the outside-sample forecast predictive
density of stock price changes, week-by-week. The MS-VECM one-step ahead ‘fore-
cast densities’ can be calculated analytically and are mixtures of multivariate normal
distributions with weights given by the predicted regime probabilities – it is mainly
the latter that impart skewness, kurtosis and heteroscedasticity.

Note that ‘predictive’ here does not imply a forecast, but the density in the chosen
outside-sample period only (i.e. not the whole data period) given by the MS-VECM.
The ‘model’ predictive density can then be compared with the true density in the data,
over each forecast period. Sarno and Valente show that the MS-VECM mode gives an
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‘outside-sample’ density, which is closer to the true density for stock price changes on
the three stock indexes than does the linear-VECM. (It is good to see this confirmed,
but the result is not too surprising, given that the MS-VECM is ‘designed’ to fit the
known non-normality in the data, whereas the linear-VECM is not.)

It follows that if one is interested in the extreme tails of the distribution (i.e. at
1% level or less) for stock price changes �st , then the MS-VECM model will more
closely measure the change in price for this tail probability (and hence gives a better
measure of the VaR at this significance level – see Chapter 28).

It is important to note what the Sarno-Valente paper does not say. There is no exam-
ination of market efficiency, only relative market timing (i.e. getting the sign of �st

correct, more times than does an alternative model). There is no analysis of transactions
costs and the riskiness of an investment strategy based on the MS-VECM approach.
The R

2
for the MS-VECM approach ranges from 0.08 (8%) for the Nikkei 225 index

returns to 0.12 (12%) for the FTSE index returns (weekly data), and this is within sam-
ple. So outside sample, although the forecast (direction) of change improves with the
MS-VECM approach relative to the linear-VECM, this tells us nothing about the abso-
lute number of times either model forecasts the sign of �st correctly. Finally, note that
the superior VaR performance of MS-VECM is for one asset at a 1% confidence level.
In practice, financial institutions are interested in the potential loss over many assets,
and they rely on some self-cancelling errors across assets in their portfolio, when cal-
culating VaR. (Often they are also interested in the VaR at the 5% tail probability.)
In practical terms, therefore, it is portfolio VaR that is important, not the individual
asset’s VaR, and we do not know if the MS-VECM model (applied to many assets)
would provide an improvement over simpler approaches (e.g. a simple EWMA). What
we do know is the MS-VECM model is horrendously more computer (and manpower)
intensive than other methods discussed in Chapter 28, so it may remain an intellectual
curiosus in the context of VaR. Of course, these models are largely a-theoretical and
can be viewed as providing a relatively parsimonious description of the data. The only
bit of ‘finance’ in the model is that riskless arbitrage ensures that ft = st (if we ignore
the deterministic time to maturity T – t in this relationship and the stochastic risk-free
rate – see Cuthbertson and Nitzsche 2001b).

4.8 Profitable Trading Strategies?

When looking at regression equations that attempt to explain returns, an econometrician
would be interested in general diagnostic tests (e.g. is the error term iid and the
RHS variables weakly exogenous), the outside-sample forecasting performance of the
equations and the temporal stability of the parameters. In many of the above studies,
this useful statistical information is not always fully presented, so it becomes difficult
to ascertain whether the results are as ‘robust’ as they seem. However, Pesaran and
Timmermann (1994) provide a study of stock returns to meet such criticisms of earlier
work. They run regressions of the excess return on variables known at time t or earlier.
They are, however, very careful about the dating of the information set. For example,
in explaining annual returns from end-January to end-January (i.e. using the last trading
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day of the month), they use interest rates (or a term structure variable) up to the last
trading day but industrial output data only up to December of the previous year (since
it is published with a lag).

They looked at excess returns on the S&P 500 index and the Dow Jones Index
measured over one year, one-quarter and one month for the period 1954–1971 and
sub-periods. For annual excess return, a small set of independent variables, including
the dividend yield, annual inflation, the change in the three-month interest rate and the
term premium, explain about 60% of the variability in the excess return. For quarterly
and monthly data, broadly similar variables explain about 20% and 10% of excess
returns, respectively. Interestingly, for monthly and quarterly regressions, they find a
non-linear effect of previous excess returns on current returns. For example, squared
previous excess returns are often statistically significant, while past positive returns
have a different impact than past negative returns on future returns. The authors also
provide diagnostic tests for serial correlation, heteroscedasticity, normality and ‘correct’
functional form, and these test statistics indicate no misspecification in the equations.

To test the predictive power of these equations, they use recursive estimation (OLS)
and predict the sign of next periods excess return (i.e. at t + 1) on the basis of esti-
mated coefficients that only use data up to period t . For annual returns, 70–80% of the
predicted returns have the correct sign, while for quarterly excess returns, the regres-
sions still yield a (healthy) 65% correct prediction of the sign of returns. Thus, Pesaran
and Timmermann (1994) reinforce the earlier results that excess returns are predictable
and can be explained quite well by a relatively small number of independent variables.

Transactions costs arise from the bid-ask spread (i.e. dealers buy stock at a low price
and sell to the investor at a high price), and the commission charged on a particular
‘buy’ or ‘sell’ order given to the broker. P-T use ‘closing prices’ that may be either ‘bid’
or ‘ask’ prices. They therefore assume that all trading costs are adequately represented
by a fixed transactions cost per dollar of sales/purchases. They assume costs are higher
for stocks cs than for bonds cb. They consider a simple trading rule, namely,

If the predicted excess return (from the recursive regression) is positive then hold the market
portfolio of stocks, otherwise hold government bonds with a maturity equal to the length
of the trading horizon (i.e. annual, quarterly, monthly).

Note that it is the ‘sign’ of the return prediction that is important for this strategy,
and not the overall (within sample) ‘fit’ of the equation (i.e. its R-squared).

The above ‘switching strategy’ avoids potential bankruptcy since assets are not sold
short and there is no gearing (borrowing). The passive benchmark strategy is one of
holding the market portfolio at all times. They assess the profitability of the switching
strategy over the passive strategy for transactions costs that are ‘low’, ‘medium’ or ‘high’.
(The values of cs are 0, 0.5 and 1% for stocks and for bonds cb equals 0 and 0.1 percent.)

In general terms, they find that the returns from the switching strategy are higher
than those for the passive strategy for annual returns (i.e. switching once per year in
January) even when transactions costs are ‘high’ (Table 5). However, it pays to trade at
quarterly or monthly intervals only if transactions costs are less than 0.5% for stocks.
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Table 5 Performance measures of the S&P500 switching portfolio relative to the market port-
folio and T-bills (annual returns 1960–1990)

Portfolios

Market1 Switching2 T-Bills3

Transaction Costs (%)

For stocks 0.0 0.5 1.0 0.0 0.5 1.0 – –
For T-bills – – – 0.0 0.1 0.1 0.0 0.1

Returns and Performance

Arithmetic mean
return (%)

10.780 10.720 10.670 12.700 13.430 12.210 6.750 6.640

SD of return (%) 13.090 13.090 13.090 7.240 7.200 7.160 2.820 2.820
Sharpe ratio 0.310 0.300 0.300 0.820 0.790 0.760 – –
Treynor ratio 0.040 0.040 0.039 0.089 0.085 0.081 – –
Jensen’s alpha – – – 0.045 0.043 0.041 – –

– – – (4.63) (4.42) (4.25) – –
Wealth at

end-of-period4
1,913 1,884 1,855 3,833 3,559 3,346 749 726

1The ‘market’ portfolio denotes a buy-and-hold strategy in the S&P500 index.
2The switching portfolio is based on recursive regressions of excess returns on the change in the three-month
interest rate, the term premium, the inflation rate and the dividend yield. The switching rule assumes that
portfolio selection takes place once per year on the last trading day of January.
3T-bills’ denotes a roll-over strategy in 12 month T-bills.
4Starting with $100 in January 1960.
Source: Pesaran and Timmermann (1994), reproduced with permission from J. Wiley and Sons.

In addition, they find that the standard deviation of annual returns for the switching
portfolio (Table 5) is below that for the passive portfolio (even under high transactions
cost scenario). Hence, the switching portfolio dominates the passive portfolio on the
mean-variance criterion over the whole data period 1960–1990.

The above results are found to be robust with respect to different sets of regressors in
the excess return equations and over sub-periods 1960–1970, 1970–1980, 1980–1990.
In Table 5, we report the Sharpe, Treynor and Jensen indices of performance for the
switching and passive portfolios for the one-year horizon (see Chapter 7). For any
portfolio ‘p’, these are given by

SR = (ERp − r)/σp

TR = (ERp − r)/βp

(Rp − r)t = α + β(Rm − r)t + εt

The ‘Jensen index’ is the intercept α in the above regression. These three statistics
are alternative measures of ‘return corrected for risk’. The larger is SR, TR or α,
the more successful the investment strategy. One can calculate the average values
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of SR and TR for the switching and market portfolios. In general, except for the
monthly trading strategy under the high-cost scenario, Pesaran and Timmermann find
that these performance indices imply that the switching portfolio ‘beats’ the passive-
market portfolio.

Model Uncertainty

Pesaran and Timmermann (1995, 2000) extend the above analysis to include model
uncertainty. Unlike the 1992 study, they allow the investor to choose the ‘best’ model
at each point in time. A ‘core’ set of three variables (dividend–price ratio, interest rate
and inflation) are always included, but a further set (change in interest rates, change
in bond yield and January dummy) is tested at each point in time to obtain the best
model. Also, if there is a residual ‘outlier’ of greater than three standard deviations,
then a (0,1) dummy is added to the forecasting equation (and retained thereafter) – this
applies for the 1974 and 1987 stock market crashes.

They use a number of alternative criteria to choose the ‘best’ model at each point
in time (e.g. R

2
, Akaike and Schwartz criteria and ‘within-sample’ correct ‘sign’ pre-

dictions). The switching strategy at t is as in the earlier study, namely, buy the stock
index if predicted excess returns Rt+1 − rt > 0, otherwise hold the risk-free asset. The
‘passive strategy’ is to hold the market index at all times.

Using recursive estimation on monthly data over 1960(11)–1992(2) for the United
States and 1965(1)–1993(12) for the United Kingdom, the switching strategies (for all
but the Schwartz selection criterion on US data) give higher Sharpe ratios than holding
the passive market portfolio. For example, for the UK (1970–1993), the passive-market
portfolio has a mean return of 20.8% p.a. and standard deviation of 36.5%, giving a
Sharpe ratio of 0.33. The ‘monthly’ switching portfolios for ‘high’ transaction costs
for either the Akaike or Schwartz or R-squared criteria give mean returns (standard
deviations) of 15.8 (10.2), 18.8 (11.5) and 15.5 (10.5), implying Sharpe ratios of 0.69,
0.86 and 0.64, respectively (Pesaran and Timmermann 2000, Table 5). The Jensen’s
α (t-stats) for these three switching criteria are 0.061 (2.8), 0.090 (3.62) and 0.058
(2.58). In the 1980s, when markets were less volatile than the 1970s, the switching
portfolios gave lower performance results but still beat the passive-market portfolio.
The results are also very similar when the active strategy uses index futures rather
than actual purchase of stocks. It is noteworthy that the switching portfolios did not
‘lose’ in the UK bear market of 1974 but neither did they ‘win’ in the sharp upturn of
January–February 1975, since the model indicated that the investor should have been
in T-bills in these periods. This may account for some of the overall success of the
switching strategy.

Keen gamblers might like to note that the above results imply ‘you have to earn
your free lunch’. In some years, the switching strategy will lose money (e.g. for the
UK data, the R-squared over the whole sample, without the 1974–1975 dummies, is
only 0.12), and you would have had to get the crucial 1974-5 predictions correct. In
years when you lose money, you would have to have enough capital (or borrowing
facilities) to ‘take the hit’ and survive to trade another day. And of course, every month
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you have to perform a large number of regressions and hope that any predictability
you find is genuine. For the United States, Pesaran and Timmermann (2000) find that
there is no single model that performs adequately over the whole 1960–1992 period,
and genuine outperformance (e.g. Sharpe ratio) based on an active (monthly) switching
strategy, after taking account of transactions costs, is difficult to find.

It has been shown (Campbell and Viceira 1999, Brandt 1998, Kandel and Stam-
burgh 1996) that portfolio optimization in a multiperiod framework depends crucially
on return predictability, where optimal portfolio weights change dramatically over
time, as investors implement market timing strategies. The evidence from Pesaran
and Timmermann suggests that such an ‘active’ portfolio strategy might be worth
implementing.

4.9 Summary

• Univariate tests of return predictability (e.g. autocorrelation coefficients, autoregres-
sive and ARMA models, regression-based tests, variance-ratio tests) show weak
evidence of positive autocorrelation at short horizons (up to 6 months) and some-
what stronger evidence of long-horizon mean reversion (over 3–8 year horizon), for
aggregate stock indexes. Results differ for different tests and in part, this is because
the small sample properties of the test statistics differ but also because such univari-
ate properties may not be constant over time. The power of univariate tests is not
particularly good.

• Multivariate tests of ‘market timing’ indicate that (real) stock returns and excess
returns are predictable. Again, this predictability is subject to much uncertainty and
may sometimes ‘disappear’ in out-of-sample forecast tests.

• Models with non-linear dynamics or incorporating regime changes or just recur-
sive updating of parameters indicate rather weak out-of-sample predictability, but
Markov switching models pick up the non-normality in the conditional distribution
of stock returns.

• There is some evidence that active trading strategies (market timing) based on the
predictions from regression equations, may result in returns corrected for (ex-post)
risk and dealing costs, which exceed those for a passive strategy but only over
certain data periods.

• The key question for the validity or otherwise of the EMH is whether profits, when
corrected for transactions costs and ex-ante risk, remain positive over a run of ‘bets’.
On the basis of ex-post outcomes, there is certainly evidence that this might well be
the case, although it can always be argued that methods used to correct for the risk
of the portfolio are inadequate.

• This chapter has been mainly about the statistical properties of returns – we have
not really mentioned finance theory. We have found that individual and aggregate
stock prices (returns) are highly volatile. In Chapters 10 and 11, we explore whether
various ‘rational’ economic models based on ‘fundamentals’ can explain this high
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volatility – if the theories fail to explain this phenomenon, we say we have excess
volatility or a volatility puzzle.

• Similarly, the high observed equity premium (and its high volatility) and the low
variability in interest rates should be capable of being explained by ‘economic fun-
damentals’ – that are sources of risk which affect investors. The fact that some
‘standard models’ do not explain these two empirical facts has become known as
the equity premium puzzle and the risk-free rate puzzle respectively, and these issues
are extensively discussed in Chapters 13 and 14.

• We have also noted the positive autocorrelation in returns at short horizons and the
negative autocorrelation at long horizons (i.e. mean reversion) – these phenomena
will also need to be explained by our theories. It is a pretty tall order to develop a
general model with rational informed investors who maximize their ‘welfare’ subject
to constraints (e.g. you cannot consume more than your lifetime wealth), which can
explain all of these stylized facts.

• There are also more startling ‘facts’ that turn up in Chapter 18, known as anomalies,
which we would also like our theory to explain. In this, financial economists are a
little like physicists, looking for a general model that can encompass all these diverse
empirical findings. In future chapters, we see how successful they have been.

• The implications of return predictability and volatility for portfolio asset allocation
are discussed in Chapters 5 and 6 for a static model and for intertemporal models
in Chapters 15 and 16.



5
MEAN-VARIANCE
PORTFOL IO THEORY
AND THE CAPM

Aims

• Explain how investors who trade off expected return and risk will hold a diversified
portfolio of risky assets. This gives rise to the efficient frontier.

• Determine how much an individual investor will borrow (or lend) at the safe rate
in order to increase (decrease) her exposure to the ‘bundle’ of risky assets. This
is, in part, determined by the capital market line (CML), which together with the
efficient frontier allows us to calculate the optimal proportions in which to hold the
risky assets. This is the mean-variance model of portfolio choice, and these optimal
proportions constitute the market portfolio.

• Analyse the determinants of the equilibrium expected return on an individual secu-
rity, so that all the risky assets are willingly held by ‘mean-variance’ investors. This
gives rise to the capital asset pricing model, CAPM, where the risk premium depends
on the asset’s ‘beta’.

5.1 An Overview

We restrict our world to one in which agents can choose a set of risky assets (stocks)
and a risk-free asset (e.g. fixed-term bank deposit or a three-month Treasury Bill).
Agents can borrow and lend as much as they like at the risk-free rate. We assume
agents like higher expected returns but dislike risk (i.e. they are risk-averse). The
expected return on an individual security we denote ERi and we assume that the risk
on an individual security i can be measured by the variance of its return σ 2

i . All
individuals have homogeneous expectations about the expected returns, the variances
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and covariances (correlation) between the various returns. Transaction costs and taxes
are assumed to be zero.

Consider the reason for holding a diversified portfolio consisting of a set of risky
assets. Assume for the moment that funds allocated to the safe asset have already been
fixed. Putting all your wealth in asset i, you incur an expected return ERi and a risk
σ 2

i . Let us assume a two-asset world where there is a negative covariance of returns
σ12 < 0. Hence, when the return on asset-1 rises, that on asset-2 tends to fall. (This
also implies a negative correlation coefficient ρ12 = σ12/σ1σ2.) Hence, if you diversify
and hold both assets, this would seem to reduce the variance of the overall portfolio
(i.e. of asset-1 plus asset-2). To simplify even further, suppose that ER1 = ER2 and
σ 2

1 = σ 2
2 and, in addition, assume that when the return on asset-1 increases by 1%,

that on asset-2 always falls by 1% (so, ρ12 = −1). Under these conditions, when you
hold half your initial wealth in each of the risky assets, the expected return on the
overall portfolio is ER1 = ER2. However, diversification has reduced the risk on the
portfolio to zero: an above-average return on asset-1 is always matched by an equal
below average return on asset-2 (since ρ12 = −1). Our example is, of course, a special
case but, in general, even if the covariance of returns are zero or positive (but not
perfectly positively correlated), it still pays to diversify and hold a combination of
both assets.

The above simple example also points to the reason why each individual investor
might at least hold some of each of all the available stocks in the market, if we allow
him to borrow (or lend) unlimited funds at the risk-free rate r . To demonstrate this
point, we set up a counter example. If one stock were initially not desired by any of
the investors, then its current price would fall as investors sold it. However, a fall in
the current price implies that the expected return over the coming period is higher,
ceteris paribus (assuming one expected it to pay some dividends in the future). One
might therefore see the current price fall until the expected return increases so that the
stock is sufficiently attractive to hold.

The reader may now be thinking that the individual investor’s tastes or preferences
must come into the analysis at some point. However, there is a quite remarkable result,
known as the separation theorem. The investment decision can be broken down into
two separate decisions. The first decision concerns the choice of the optimal proportions
w∗

i of risky assets held, and this is independent of the individual’s preferences con-
cerning his subjective trade-off between risk and return. This choice only depends on
the individual’s views about the objective market variables, namely, expected returns,
variances and covariances. If expectations about these variables are assumed to be
homogeneous across investors, then all individuals hold the same proportions of the
risky assets (e.g. all investors hold 1/20 of ‘A-shares’, 1/80 of ‘B-shares’, etc.) irre-
spective of their risk preferences. Hence aggregating, all individuals will hold these
risky assets in the same proportions as in the (aggregate) market portfolio (e.g. if the
share of AT&T in the total stock market index is 1/20 by value, then all investors hold
1/20 of their own risky asset portfolio in AT&T shares).

It is only after determining their optimal market portfolio that the individual’s pref-
erences enter the calculation. In the second-stage of the decision process, the individual
decides how much to borrow (lend) in order to augment (reduce the amount of) his
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own initial wealth invested (in fixed proportions) in the market portfolio of risky
assets. It is at this point that the individual’s preferences enter the decision pro-
cess. If the individual is very risk averse, she will use most of her own wealth to
invest in the risk-free asset (which pays r) and only invest a small amount of her
own wealth in the risky assets in the fixed proportions w∗

i . The converse applies
to a less risk-averse person, who will borrow at the risk-free rate and use these
proceeds (as well as her own initial wealth) to invest in the fixed bundle of risky
assets in the optimal proportions. Note, however, this second-stage, which involves
the individual’s preferences, does not impinge on the relative demands for the risky
assets (i.e. the proportions w∗

i ). Since relative demands for the risky assets determine
equilibrium expected returns, the latter are independent of individuals’ preferences
(and depend only on objective market variables as such variances and covariances
of returns).

Throughout this and subsequent chapters, we shall use the following equivalent
ways of expressing expected returns, variances and covariances:

Expected return = µi ≡ ERi

Variance of returns = σ 2
i ≡ var(Ri)

Covariance of returns = σij ≡ cov(Ri, Rj )

CAPM and Beta

Let us turn now to some specific results about equilibrium returns that arise from the
CAPM. The CAPM provides an elegant model of the determinants of the equilibrium
expected return ERit on any individual risky asset in the market. It predicts that the
expected excess return on an individual risky asset (ERi − r)t is directly related to
the expected excess return on the market portfolio (ERm − r)t , with the constant of
proportionality given by the beta of the individual risky asset:

(ERi − r)t = βi(ERm − r)t (1)

where beta
βi = cov(Rit , Rmt )/ var(Rmt ) (2)

The CAPM explains the expected excess return on asset i, given the expected mar-
ket excess return. Therefore, the CAPM does not ‘explain’ the market return – for
this, we require a more elaborate model (see the SDF in Chapter 13). The CAPM
is not a predictive equation for the return on asset i, since both the dependent and
independent variables are dated at time t . Rather, the CAPM implies that contempora-
neous movements in (ERi − r)t are linked to contemporaneous changes in the excess
market return.

ERmt is the expected return on the market portfolio and is the ‘average’ return from
holding all assets in the optimal proportions w∗

i . Since actual returns on the market
portfolio differ from expected returns, the variance var(Rmt ) on the market portfolio is
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non-zero. The definition of firm i’s beta, βi indicates that equilibrium expected return
of asset i depends on:

(i) the covariance between the return on security i and the market portfolio, cov(Rit , Rmt )

(ii) is inversely related to the variance of the market portfolio, var(Rmt ).

Loosely speaking, if the ex-post (or actual) returns when averaged, approximate
the ex-ante expected return ERit , then we can think of the CAPM as explaining the
average return (over say a number of months) on security i.

To put the CAPM intuitively, consider the following. The standard deviation of the
return on asset-A is 20% p.a. and the beta of A is 1.5. Asset-B has a return standard
deviation of 60% and a beta of 0.75. You are considering holding only one asset,
either A or B (and you have no other risky assets). Ask yourself on which asset would
you want a higher average return? Well, asset-B has a much larger standard deviation
of return than A, so presumably you would be happy with a higher average return
on B (relative to A) because of its higher (individual) risk. Your hunch would be
correct.

Now consider a slightly different question. Suppose you already hold a number of
risky assets (say 25) and you are considering adding either A or B to your existing
portfolio. Now, on which asset do you require the higher average return? Well, A
has a beta of 1.5 and B has a beta of 0.75. Beta is proportional to the covariance
(correlation) between the asset return (A or B) and the existing portfolio of assets you
hold. The lower is beta, the lower is this correlation and therefore the less the increase
in portfolio risk (standard deviation), if you include this asset in your portfolio. Hence,
because B adds little to portfolio risk (compared with A), you are willing to add B
to your portfolio, even if it has a relatively low average return. So, it is incremental
portfolio risk that is important in determining average returns, not the risk of the asset
in isolation (i.e. its standard deviation). This is the conceptual link between portfolio
theory and the CAPM and why beta is the correct measure of security’s risk, when the
security is held as part of a well-diversified portfolio.

There is another intuitive point to make here. Asset-B’s return has a standard devi-
ation of 60% and a beta of 0.75 and we have agreed that when held as part of a
well-diversified portfolio, asset-B will be willingly held even though it has a lower
expected return than asset-A (with standard deviation of 20% p.a. and beta of 1.5).
How is the very large standard deviation of asset-B influencing portfolio standard devi-
ation? Well, much of the individual risk of this stock is ‘diversified away’ at almost
zero cost, when you include this stock along with other stocks in a diversified portfo-
lio. Therefore, you should receive no reward (i.e. higher average return) on the basis
of stock-B’s high individual standard deviation. The CAPM implies that you should
only receive a reward, that is, an average return, on the basis of how much stock-B
contributes to the risk of your whole portfolio – and this is given by its beta.

What does the CAPM tell us about the absolute level of equilibrium returns on
individual securities in the stock market? First, note that ERm − r > 0, otherwise no
risk-averse agent would hold the market portfolio of risky assets when he could earn
more, for certain, by investing all his wealth in the risk-free asset.
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Returns on individual stocks (within the same country) tend to move in the same
direction and hence, empirically cov(Rit , Rmt ) ≥ 0 and βi > 0. The CAPM predicts
that for those stocks that have a zero covariance with the market portfolio, they will be
willingly held as long as they have an expected return equal to the risk-free rate (put
βi = 0 in (1)). Securities that have a large positive covariance with the market return
(βi > 0) will have to earn a relatively high expected return: this is because the addition
of such a security to the portfolio does little to reduce overall portfolio variance.

The CAPM also allows one to assess the relative volatility of the expected returns
on individual stocks on the basis of their βi values (which we assume are accurately
measured). Stocks for which βi = 1 have a return that is expected to move one-
for-one with the market portfolio (i.e. ERi = ERm) and are termed neutral stocks.
If βi > 1, the stock is said to be an ‘aggressive stock’ since it moves more than
changes in the expected market return (either up or down) and conversely ‘defensive
stocks’ have βi < 1. Therefore, investors can use betas to rank the relative safety
of various securities. However, the latter should not detract from one of portfolio
theory’s key predictions, namely, that all investors should hold stocks in the same
optimal proportions w∗

i . This will include neutral, aggressive and defensive stocks. An
investor who wishes to ‘take a position’ in particular stocks may use betas to rank
the stocks to include in her portfolio (i.e. she does not obey the assumptions of the
CAPM and therefore does not attempt to mimic the market portfolio). The individual’s
portfolio beta (of n assets) is βp = ∑n

i=1 wiβi .

5.2 Mean-Variance Model

We assume that the investor would prefer a higher expected return ER rather than a
lower expected return, but she dislikes risk (i.e. is risk-averse). We choose to measure
risk by the portfolio variance. Thus, if the agent is presented with a portfolio-A (of
n securities) and a portfolio-B (of a different set of securities), then according to the
mean-variance criteria (MVC) portfolio-A is preferred to portfolio-B if

ERA ≥ ERB (i)

and
var(RA) ≤ var(RB) or SD(RA) ≤ SD(RB) (ii)

where SD = standard deviation. Of course, if, for example, ERA > ERB but var(RA) >

var(RB), then we cannot say what portfolio the investor prefers using the MVC. Port-
folios that satisfy the MVC are known as the set of efficient portfolios. Portfolio-A
that has a lower expected return and a higher variance than another portfolio-B is said
to be ‘inefficient’, and an individual would (in principle) never hold portfolio-A, if
portfolio-B is available.

We wish to demonstrate in a simple fashion the gains to be made from holding a
diversified portfolio of assets and initially assume only two (risky) assets. The actual
return (over one period) on each of the two assets is R1 and R2 with expected returns
µ1 = ER1 and µ2 = ER2. The variance of the returns on each security is σ 2

i = E(Ri −
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µi)
2. Assume that the correlation coefficient between the returns is ρ(−1 ≤ ρ ≤ 1)

where
ρ = σ12/σ1σ2 and σ12 = E[(R1 − µ1)(R2 − µ2)] (3)

σ12 = cov(R1, R2) is the covariance between the two returns. If ρ = +1, the two-asset
returns are perfectly positively (linearly) related, and the asset returns always move in
the same direction. For ρ = −1, the converse applies, and for ρ = 0, the asset returns
are not (linearly) related. As we see below, the ‘riskiness’ of the portfolio consisting
of both asset-1 and asset-2 depends crucially on the sign and size of ρ. If ρ = −1, risk
can be completely eliminated by holding a specific proportion of initial wealth in both
assets. Even if ρ is positive (but less than +1), the riskiness of the overall portfolio is
reduced by diversification (although not to zero).

Minimum Variance ‘Efficient’ Portfolios

Suppose for the moment that the investor chooses the proportion of his total wealth to
invest in each asset in order to minimise portfolio risk. He is not, at this stage, allowed
to borrow or lend or place any of his wealth in a risk-free asset. Should the investor
put ‘all his eggs in one basket’ and place all of his wealth either in asset-1 or asset-2
and incur risk of either σ1 or σ2 or should he hold some of his wealth in each asset,
and if so, how much of each? Suppose the investor chooses to hold a proportion w1

of his wealth in asset-1 and a proportion w2 = 1 − w1 in asset-2. The actual return on
this diversified portfolio (which will not be revealed until one period later) is

Rp = w1R1 + w2R2 (4)

The expected return on the portfolio (formed at the beginning of the period) is
defined as

ERp = w1ER1 + w2ER2 = w1µ1 + w2µ2 (5)

The variance of the portfolio is given by

σ 2
p = E(Rp − ERp)

2 = E[w1(R1 − µ1) + w2(R2 − µ2)]
2

= w2
1σ

2
1 + w2

2σ
2
2 + 2w1w2ρσ1σ2 (6)

For the moment, we are assuming the investor is not concerned about expected return
when choosing wi . To minimise portfolio risk, σ 2

p , we substitute w2 = 1 − w1 and
differentiate with respect to the one unknown w1:

∂σ 2
p

∂w1
= 2w1σ

2
1 − 2(1 − w1)σ

2
2 + 2(1 − 2w1)ρσ1σ2 = 0 (7)

Solving (7) for w1, we have

w1 = (σ 2
2 − ρσ1σ2)

(σ 2
1 + σ 2

2 − 2ρσ1σ2)
= (σ 2

2 − σ12)

(σ 2
1 + σ 2

2 − 2σ12)
(8)
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Note that from (8), ‘portfolio variance’ will be smallest when ρ = −1 and largest
when ρ = +1 (assuming the wi are both positive). For illustrative purposes, assume
σ 2

1 = (0.4)2, σ 2
2 = (0.5)2, ρ = 0.25 (i.e. positive correlation). Then the value of w1 for

minimum variance is

w1 = (0.5)2 − 0.25(0.4)(0.5)

(0.4)2 + (0.5)2 − 2(0.25)(0.4)(0.5)
= 20

31
(9)

and substituting this value of w1 in (6), we have, σ 2
p = 12.1%, which is smaller than

the variance if all his wealth had been put in asset-1 σ 2
1 = (0.4)2 = 16% or all in

asset-2, σ 2
2 = (0.5)2 = 25%. Note that, in general, the minimum variance portfolio has

a positive expected return, here ERp = (20/31)ER1 + (11/31)ER2, although wi was
chosen independently of a desired expected return.

For the special case where ρ = −1, then using (8), we obtain w1 = 5/9 and sub-
stituting this value in (6), we obtain σ 2

p = 0. Thus, all risk can be diversified when
the two-asset returns are perfectly negatively correlated. It follows from this analysis
that an individual asset may be highly risky taken in isolation (i.e. its own variance
of returns is high) but if it has a negative covariance with assets already held in the
portfolio, then investors will be willing to add it to their existing portfolio even if its
expected return is relatively low since such an asset tends to reduce overall portfolio
risk σ 2

p . This basic intuitive notion lies behind the explanation of determination of
equilibrium asset returns in the CAPM.

Principle of Insurance

Generalising the above, from equation (6) for n assets, we have

σ 2
p =

n∑
i=1

w2
i σ

2
i +

n∑
i=i

n∑
j=1
i �=j

wiwjρij σiσj

For the special case where asset returns are totally uncorrelated (i.e. all n assets have
ρij = 0), the portfolio variance can be reduced to

σ 2
p = (w2

1σ
2
1 + w2

2σ
2
2 + · · · + w2

nσ
2
n ) (10)

Simplifying further, if all the variances are equal (σ 2
i = σ 2) and all the assets are held

in equal proportions (1/n), we have

σ 2
p = 1

n2
nσ 2 = 1

n
σ 2 (11)

Hence, as n → ∞, the variance of the portfolio approaches 0. Thus, if uncorrelated
risks are pooled, much of the portfolio risk is diversified away. This is the ‘insurance
principle’ and is the reason your buildings and car insurance premiums are a rela-
tively small proportion of the value of these items. The insurer relies on these risks
being largely uncorrelated across individuals when setting the premium. The total risk
attached to each individual security is in part due to factors that affect all securities
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(e.g. interest rates, growth of the economy, etc.), and this is known as market risk and
in part, is due to events that are specific to the individual firm (e.g. luck in gaining new
orders, an unexpected fall in input costs, etc.) – this is specific (idiosyncratic) risk. It
is this specific risk that can be completely eliminated when we hold many shares in a
diversified portfolio. Essentially, the ‘good luck’ of several firms is broadly cancelled
out by some other firms who are currently experiencing ‘bad luck’ – on average, these
specific risks cancel out if you hold many shares. Intuitively, one is inclined to suggest
that such specific risk should not be reflected in the average return on any stock you
hold (provided you hold all stocks in a diversified portfolio). As we shall see, this
intuition carries through to the CAPM.

In practice, one can reduce portfolio variance substantially even with a random
selection of stocks, (taken from the S&P500 say), even when their returns do not
have zero correlation with each other. Portfolio variance σ 2

p falls very quickly as you
increase the number of stocks held from 1 to 10, and the reduction in portfolio variance
is very small after around 30 stocks in the portfolio (Figure 1). This, coupled with the
brokerage fees and information costs of monitoring a large number of stocks, may
explain why individuals tend to invest in only a relatively small number of stocks.
Individuals may also obtain the benefits of diversification by investing in mutual funds
(unit trusts) and pension funds since these institutions use funds from a large number
of individuals to invest in a very wide range of financial assets, and each individual
then owns a proportion of this ‘large portfolio’. Note that we have not said anything
about expected returns from the above ‘random stock picking’ strategy – although as
the number of stocks approaches 30, you will tend to earn about the same average
return as on the S&P500. The question is whether we can improve on this random
selection procedure by choosing (optimal ) asset proportions based on mean-variance
portfolio theory.

Portfolio Expected Return and Variance

Clearly, individuals are interested in both expected portfolio return µp ≡ ERp and the
risk of the portfolio σp. The question we now ask is how µp and σp vary, relative to each

Standard deviation

25–30 451 2 ...

Note: 100% = Risk when holding only one asset

100%

40%

Diversifiable/
idiosyncratic/
specific risk

Non-diversifiable/market risk

No. of stocks
in portfolio

Figure 1 Random selection of stocks
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Table 1 Calculation of portfolio mean and variance (ρ = −0.5)

w1 w2 (= 1 − w1) Expected
Portfolio
Return

Portfolio
Standard
Deviation

Portfolio
Variance

0 1 20 30 900
0.2 0.8 18 23.07 532
0.4 0.6 16 16.37 268
0.6 0.4 14 10.39 108
0.8 0.2 12 7.21 52
1 0 10 10 100

other, as the investor alters the proportion of her own wealth held in each of the risky
assets. Take the two-asset case. Remember that µ1, µ2, σ1, σ2 and σ12 (or ρ) are fixed
and known. As we alter w1 (and w2 = 1 − w1), equation (5) and equation (6) allow us
to calculate the combinations of (µp, σp) that ensue for each of the values of w1 (and
w2) that we have arbitrarily chosen. (Note that there is no maximisation/minimisation
problem here; it is a purely arithmetic calculation.) A numerical example is given in
Table 1 for µ1 = 10, µ2 = 20, ρ = −0.5, σ1 = 10 (σ 2

1 = 100), σ2 = 30 (σ 2
2 = 900),

and is plotted in Figure 2.
We could repeat the above calculations using different values for ρ (between +1 and

−1). In general, as ρ approaches −1, the (µp, σp) locus moves closer to the vertical axis
as shown in Figure 3, indicating that a greater reduction in portfolio risk is possible for
any given expected return. (Compare portfolios A and B corresponding to ρ = 0.5 and
ρ = −0.5, respectively.) For ρ = −1, the curve hits the vertical axis, indicating there
are values for wi which reduce risk to zero. For ρ = 1, the risk–return locus is a straight
line between the (µi, σi) points for each individual security. In the above example,
we have arbitrarily chosen a specific set of wi values, and there is no maximisation
problem involved. Also, in the real world, there is only one value of ρ (at any point
in time) and hence only one risk–return locus corresponding to different values of wi .
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Figure 2 Expected return and standard deviation
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Figure 3 Efficient frontier and correlation

This risk–return combination is part of the feasible set or opportunity set available to
every investor, and for two assets, it gives a graph known as the risk–return frontier.

More Than Two Securities

If we allow the investor to distribute his wealth between any two securities A and B or
B and C or A and C, we obtain three graphs, one for each ‘two-asset’ combination. If
we now allow the agent to invest in all three securities, that is, we vary the proportions,
w1, w2, w3 (with

∑3
i=1 wi = 1), this new ‘three-asset frontier’ will lie to the right of

any of the ‘two-asset frontiers’. This demonstrates that holding more securities reduces
portfolio risk for any given level of expected return. Intuitively, more choice gives you
unambiguously better outcomes in terms of (µp, σp) combinations. The slope of the
efficient frontier is a measure of how the agent can trade off expected return against risk
by altering the proportions wi held in the three assets. Note that the dashed portion
of the curve below the minimum variance point Z (for the frontier with ρ = −0.5
in Figure 3) indicates mean-variance inefficient portfolios. An investor would never
choose portfolio-C rather than B because C has a lower expected return but the same
level of risk, as portfolio-B. Portfolio-B is said to dominate portfolio-C on the mean-
variance criterion.

Efficient Frontier

We now consider the case of N assets. When we vary the proportions wi (i =
1, 2, . . . , N) to form portfolios, there are a large number of possible portfolios, as
we form 2, 3, . . . to N asset portfolios. We can also form portfolios consisting of the
same number of assets but in different proportions. Every possible portfolio is given
by ‘crosses’ marked in Figure 4.

If we now apply the mean-variance dominance criterion, then all of the points in
the interior of the portfolio opportunity set (e.g. P1, P2 in Figure 4) are dominated by
those on the curve ABC, since the latter have a lower variance for a given level of
expected return. Points on the curve AB also dominate those on BC, so the curve AB
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Figure 4 Efficient and inefficient portfolios

represents the different proportions wi in the efficient set of portfolios and is referred
to as the efficient frontier.

How does the investor calculate the wi values that make up the efficient frontier?
The investor faces a known set of n expected returns µi and variances σ 2

i and n(n −
1)/2 covariances σij (or correlation coefficients ρij ) and the formulae for the expected
return and variance of the portfolio are

µp =
n∑

i=1

wiµi (12)

σ 2
p =

n∑
i=1

w2
i σ

2
i +

n∑
i=1

n∑
j=1
i �=j

wiwjρij σiσj (13)

where σij = ρijσiσj . We assume our investor wishes to choose the proportions invested
in each asset wi but is concerned about expected return and risk. The efficient frontier
shows all the combinations of (µp, σp), which minimises portfolio risk σp for a given
level of expected portfolio return µp. The investor’s budget constraint is �wi = 1, that
is, all his wealth is placed in the set of risky assets. (For the moment, he is not allowed
to borrow or lend money at the riskless rate). Short sales wi < 0 are permitted. A
stylised way of representing how the agent seeks to map-out the efficient frontier is
as follows.

1. Choose an arbitrary ‘target’ return on the portfolio µ∗
p (e.g. µ∗

p = 10%)

2. Arbitrarily choose the proportions of wealth to invest in each asset (wi)1 (i =
1, 2, . . . , n) such that µ∗

p is achieved (using equation (12)).

3. Work out the variance or standard deviation of this portfolio (σp)1 with these values
of (wi)1 using (13).

4. Repeat steps (2) and (3) with a new set of (wi)2 if σp2 < σp1, then discard the set
(wi)1 in favour of (wi)2 and vice versa.

5. Repeat (2)–(4) until you obtain that set of asset proportions w∗
i (with

∑
w∗

i = 1)
that meets the target rate of return µ∗

p and yields the minimum portfolio standard
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deviation denoted σ ∗
p . The assets held in the proportions w∗

i is an efficient portfolio
and gives one point in (µp, σp) space – point U in Figure 4.

6. Choose another arbitrary ‘target’ rate of return µ∗∗
p (= 9% say) and repeat the above

to obtain the new efficient portfolio with proportions w∗∗
i and minimum variance

σ ∗∗
p – point L.

We could repeat this exercise using alternative targets for µp and hence trace out
the curve AULBC (Figure 4). However, only the upper portion of the curve, that is
AULB, yields the set of efficient portfolios, and this is the efficient frontier.

It is worth noting at this stage that the general solution to the above problem could
(and usually does) involve some w∗

i being negative as well as positive. A positive
w∗

i indicates stocks that have been purchased (i.e. stocks held ‘long’). Negative w∗
i

represent stocks held ‘short’, that is, stocks that are owned by someone else (e.g. a
broker) that the investor borrows and then sells in the market. She therefore has a
negative proportion held in these stocks (i.e. she must return the shares to the broker
at some point in the future). She uses the proceeds from these short sales to augment
her holding of other stocks. Overall, the efficient frontier ‘involves’ the following.

1. The investor chooses optimal proportions w∗
i , which satisfy the budget constraint∑

w∗
i = 1 and minimise σp for any given level of expected return on the portfolio µp.

2. She repeats this procedure and calculates the minimum value of σp for each level
of expected return µp and hence maps out the (µp, σp) points that constitute the
efficient frontier. There is only one efficient frontier for a given set of µi, σi, ρij .

3. Each point on the efficient frontier corresponds to a different set of optimal pro-
portions w∗

1, w
∗
2, w

∗
3, . . . in which the stocks are held.

Points 1–3 constitute the first ‘decision’ the investor makes in applying the separa-
tion theorem – we now turn to the second part of the decision process.

Borrowing and Lending: Transformation Line

We now allow our agent to borrow or lend at the risk-free rate of interest, r . Because
r is fixed over the holding period, its variance and covariance (with the set of n risky
assets) are both zero. Thus, the agent can:

(i) invest all of her wealth in risky assets and undertake no lending or borrowing;

(ii) invest less than her total wealth in the risky assets and use the remainder to lend
at the risk-free rate;

(iii) invest more than her total wealth in the risky assets by borrowing the additional
funds at the risk-free rate. In this case, she is said to hold a levered portfolio.

The transformation line is a relationship between expected return and risk on a
portfolio that consists of (i) a riskless asset and (ii) a portfolio of risky assets. The
transformation line holds for any portfolio consisting of these two assets, and it turns



S E C T I O N 5 . 2 / M E A N - VA R I A N C E M O D E L 127

out that the relationship between expected return and risk (measured by the standard
deviation of the ‘new’ portfolio) is linear. Suppose we construct a portfolio (call it k)
consisting of one risky asset with expected return µ1 and standard deviation σ1 and
the riskless asset. Then we can show that the relationship between the return on this
new portfolio k and its standard deviation is

µk = a + bσk

where ‘a’ and ‘b’ are constants and µk = expected return on the new portfolio, σk =
standard deviation on the new portfolio. Similarly, we can create another new portfolio
‘N’ consisting of (i) a set of q risky assets held in proportions wi (i = 1, 2, . . . , q),
which together constitute our one risky portfolio and (ii) the risk-free asset. Again, we
have

µN = δ0 + δ1σN

To derive the equation of the transformation line, let us assume the individual has
somehow already chosen a particular combination of proportions (i.e. the wi) of q

risky assets (stocks) with actual return R, expected return µR and variance σ 2
R. Note

that the wi are not optimal proportions but can take any values (subject to
∑

i wi = 1).
Now, the investor is considering what proportion of her own wealth to put in this
one portfolio of q assets and how much to borrow or lend at the riskless rate. She
is therefore considering a ‘new’ portfolio, namely, combinations of the risk-free asset
and her ‘bundle’ of risky assets. If she invests a proportion x of her own wealth in the
risk-free asset, then she invests (1 − x) in the risky ‘bundle’. Denote the actual return
and expected return on this new portfolio as RN and µN respectively.

RN = xr + (1 − x)R (15)

µN = xr + (1 − x)µR (16)

where (R, µR) is the (actual, expected) return on the risky ‘bundle’ of her portfolio
held in stocks. When x = 1, all wealth is invested in the risk-free asset and µN = r

and when x = 0, all wealth is invested in stocks and µN = µR. For x < 0, the agent
borrows money at the risk-free rate r to invest in the risky portfolio. For example,
when x = −0.5 and initial wealth = $100, the individual borrows $50 (at an interest
rate r) and invests $150 in stocks (i.e. a levered position).

Since r is known and fixed over the holding period, the standard deviation of this
‘new’ portfolio depends only on the standard deviation of the risky portfolio of stocks
σR. From (15) and (16), we have

σ 2
N = E(RN − µN)2 = (1 − x)2E(R − µR)2 (17)

σN = (1 − x)σR (18)

where σR is the standard deviation of the return on the set of risky assets. Equations (16)
and (18) are both definitional, but it is useful to rearrange them into a single equation in
terms of mean and standard deviation (µN, σN) of the ‘new’ portfolio. Rearranging (18)

(1 − x) = σN/σR (19)
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and substituting for x and (1 − x) from (19) in (16) gives the identity

µN = r +
[
µR − r

σR

]
σN = δ0 + δ1σN (20)

where δ0 = r and δ1 = (µR − r)/σR. Thus for any portfolio consisting of two assets,
one of which is a risky asset (portfolio) and the other is a risk-free asset, the relationship
between the expected return on this new portfolio µN and its standard error σN is linear
with slope given by δ1 and intercept = r . Equation (20) is, of course, an identity; there
is no behaviour involved. Note that (µR − r) is always positive since otherwise no one
would hold the set of risky assets.

When a portfolio consists only of n risky assets, then as we have seen, the efficient
opportunity set in return–standard deviation space is curved (see Figure 4). However,
the opportunity set for a two-asset portfolio consisting of a risk-free asset and any
single risky portfolio is a positive straight line. This should not be unduly confusing
since the portfolios considered in the two cases are different, and in the case of the
‘efficient set’, the curve is derived under an optimising condition and is not just a
rearrangement of (two) identities.

Equation (20) says that µN increases with (σN/σR). This arises because from (19),
an increase in (σN/σR) implies an increase in the proportion of wealth held in the
risky asset (i.e. 1 − x) and since µR > r , this raises the expected return on the new
portfolio µN. Similarly, for a given (σN/σR) = (1 − x), an increase in the expected
excess return on the risky asset (µR − r) increases the overall portfolio return µN. This
is simply because here the investor holds a fixed proportion (1 − x) in the risky asset
but the excess return on the latter is higher.

We can see from (20) that when all wealth is held in the set of risky assets, x = 0 and
hence σN = σR, and this is designated the 100% equity portfolio (point X, Figure 5).
When all wealth is invested in the risk-free asset, x = 1 and µN = r (since σN/σR = 0).
At points between r and X, the individual holds some of his initial wealth in the risk-
free asset and some in the equity portfolio. At points like Z, the individual holds a
levered portfolio (i.e. he borrows some funds at a rate r and also uses all his own
wealth to invest in equities).

Expected return, mN

sR Standard deviation, sN

X
L

Q

Z

Borrowing/
leverage

Lending

r

All wealth in risky asset

All wealth in
risk-free asset

Figure 5 Transformation line
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Optimal ‘Tangent’ Portfolio

The transformation line gives us the risk–return relationship for any portfolio consist-
ing of a combination of investment in the risk-free asset and any ‘bundle’ of stocks.
There is no optimisation by agents behind the derivation of the transformation line: it
is an identity. At each point on a given transformation line, the agent holds the risky
assets in the same fixed proportions wi . Suppose point X (Figure 5) represents a combi-
nation of wi = 20%, 25% and 55% in the three risky securities of firms, ‘alpha’, ‘beta’
and ‘gamma’. Then points Q, L and Z also represent the same proportions of the risky
assets. The only ‘quantity’ that varies along the transformation line is the proportion
held in the one risky bundle of assets relative to that held in the risk-free asset.

The investor can borrow or lend and be anywhere along the transformation line rZ.
(Exactly where he ends up along rZ depends on his preferences for risk versus return,
but, as we shall see, this consideration does not enter the analysis until much later.)
For example, point Q in Figure 5 might represent 40% in the riskless asset and 60%
in the bundle of risky securities. Hence, an investor with $100 would at point Q hold
$40 in the risk-free asset and $60 in the risky assets made up of 0.2 × $60 = $12 in
alpha and 0.25 × $60 = $15 in beta and 0.55 × $60 = $33 in the gamma securities.

Although an investor can attain any point along rZ, any investor (regardless of his
preferences) would prefer to be on the transformation line rZ′ (see Figure 6). This
is because at any point on rZ′, the investor has a greater expected return for any
given level of risk compared to points on rZ. In fact, because rZ′ is tangent to the
efficient frontier, it provides the investor with the best possible set of opportunities.
Point M represents a ‘bundle’ of stocks held in certain fixed proportions. As M is
on the efficient frontier, the proportions wi held in risky assets are optimal (i.e. the
w∗

i referred to earlier). An investor can be anywhere along rZ′, but M is always a
fixed bundle of stocks held by all investors. Hence, point M is known as the market
portfolio, and rZ′ is known as the capital market line (CML). The CML is therefore
that transformation line which is tangential to the efficient frontier.

Investor preferences only determine where along the CML each individual investor
ends up. For example, an investor with little or no risk aversion would end up at a
point like K where she borrows money (at r) to augment her own wealth and then

ER Capital market line

r

A

K

M

a

ERm

ERm − r

IB

IA Y

Z

Z′

sm s

Q

L

Figure 6 Portfolio choice
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invests all of these funds in the bundle of securities represented by M (but she still
holds all her risky stocks in the fixed proportions wi).

Although each investor holds the same proportions in the risky assets along the
CML, the dollar amount in each risky asset differs. If the investor borrows $50 to
add to her $100 own funds, then the dollar amount in alpha, beta and gamma shares
are $30, $37.50 and $82.50 respectively (= 150w∗

i ). The risk of this levered portfolio
(using (18)) is σN = (1 − x)σm = 1.5σm, and the expected return is µN = 1.5(µR −
r) + r . Hence, the levered portfolio has to be ‘north-east’ of point M, such as point K
(Figure 6).

Separation principle

Thus, the investor makes two separate decisions:

(i) He uses his knowledge of expected returns, variances and covariances to calculate
the set of stocks represented by the efficient frontier. He then determines point M
as the point of tangency of the straight line from r to the efficient frontier. All this
is accomplished without any recourse to the individual’s preferences. All investors,
regardless of preferences (but with the same view about expected returns, etc.),
will ‘home in’ on the portfolio proportions w∗

i of the risky securities represented
by M. All investors hold the market portfolio or, more correctly, all investors hold
their risky assets in the same proportions as their relative value in the market.
Put another way, if all investors hold risky assets in the same proportions, and
the market is just an aggregate of all investors, then logically each investor must
be holding assets in the proportions in which they are in the market. Thus, if the
value of AT&T shares constitutes 10% of the total stock market valuation, then
each investor holds 10% of his own risky portfolio in AT&T shares.

(ii) The investor now determines how he will combine the market portfolio of risky
assets with the riskless asset. This decision does depend on his subjective risk–return
preferences. At a point to the left of M, the individual investor is reasonably risk-
averse and holds a percentage of his wealth in the market portfolio (in the fixed
optimal proportions w∗

i ) and a percentage in the risk-free asset. If the individual
investor is less risk-averse, he ends up to the right of M, such as K, with a levered
portfolio (i.e. he borrows to increase his holdings of the market portfolio in excess of
his own initial wealth). At M, the individual puts all his own wealth into the market
portfolio and neither borrows or lends at the risk-free rate.

The CML, rZ′ which is tangential at M, the market portfolio, must have the form
given by (20):

µN = r +
[
µm − r

σm

]
σN (21)

The market price of risk

The amounts of the riskless asset and the bundle of risky assets held by any individual
investor depends on his tastes or preferences. An investor who is relatively risk-averse,
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with indifference curve I1, will put some of his wealth in the risk-free asset and some
in the market portfolio (point A, Figure 6). A less risk averse investor will end up
borrowing in order to invest more in the risky assets than allowed by his initial wealth
(point K, Figure 6). However, one thing all investors have in common is that the
optimal portfolio of risky assets for all investors lies on the CML and for each investor.

slope of CML = (µm − r)/σm = slope of the indifference curve (22)

The slope of the CML is often referred to as the market price of risk. The slope of the
indifference curve is referred to as the marginal rate of substitution (MRS), since it is
the rate at which the individual will ‘trade-off’ more return for more risk.

All investor’s portfolios lie on the CML, and, therefore, they all face the same market
price of risk. From equation (21) and Figure 6, it is clear that for both investors at A
and K, the market price of risk equals the MRS. Hence, in equilibrium, all individuals
have the same trade-off between risk and return. Not only that, but at any point
on the CML, the ‘excess return per unit of risk’ is maximised relative to any other
portfolio along the efficient frontier, LMY (Figure 6). The introduction of a risk-free
asset therefore widens the choice available to investors.

The derivation of the efficient frontier and the market portfolio has been conducted
in terms of the standard deviation being used as a measure of risk. When risk is
measured in terms of the variance of the portfolio,

λm = (µm − r)/σ 2
m (23)

then λm is also frequently referred to as the market price of risk. Since σm and σ 2
m

are conceptually very similar, this need not cause undue confusion. (See Merton 1973
for the derivation of (23) in a general equilibrium framework and Roll 1977 for a
discussion of the differences in the representation of the CAPM when risk is measured
in these two different ways.)

In What Proportions Are the Assets Held?

When we allow borrowing and lending, we know that the individual will hold the set of
risky assets in the optimal proportions represented by the point M. All investors choose
the proportions in risky assets represented by M because by borrowing or lending at
r, this enables them to reach the highest transformation line, given the efficient set or
‘bundles’ of risky assets. (This will ultimately allow each individual to be on her own
highest indifference curve).

But a problem remains. How can we calculate the risky asset proportions w∗
i rep-

resented by point M? So far, we have only shown how to calculate each set of w∗
i for

each point on the efficient frontier. We have not demonstrated how the proportions w∗
i

for the particular point M are derived. To show this, note that for any portfolio on the
transformation line (Figure 6),

tan α = (ERp − r)/σp (24)
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where p represents any risky portfolio and as we have seen, ERp and σp depend on
wi (as well as the known values of µi and σij for the risky assets). Hence, to achieve
point M, equation (24) can be maximised with respect to wi , subject to the budget
constraint

∑
wi = 1, and this yields the optimum proportions w∗

i . Some of the w∗
i

may be less than 0, indicating short selling of assets. (If short sales are not allowed,
then the additional constraint w∗

i ≥ 0 for all i, is required, but this would violate the
assumptions used to derive the CAPM – see below).

5.3 Capital Asset Pricing Model

In order that the efficient frontier be the same for all investors, they must have homo-
geneous expectations about the underlying market variables µi , σ 2

i and ρij . Hence, with
homogeneous expectations, all investors hold all the risky assets in the proportions
given by point M, the market portfolio. The assumption of homogeneous expectations
is crucial in producing a market equilibrium where all risky assets are willingly held
in the optimal proportions w∗

i given by M or, in other words, in producing market
clearing.

The mean-variance model in which agents choose optimal asset proportions also
yields a model of equilibrium expected returns known as the CAPM (providing we
assume homogeneous expectations). The equilibrium return is the ‘flip side’ or mirror
image of the optimal asset shares held by each individual in the same proportions, that
are independent of the individual’s wealth. Here, we demonstrate how the CAPM ‘drops
out’ of the mean-variance optimisation problem using graphical analysis (Figure 7) and
simple algebra. (A more formal derivation is given in the next chapter.)

The slope of the CML is constant and represents the market price of risk, which is
the same for all investors.

Slope of CML = (µm − r)/σm (25)

We now undertake a thought experiment whereby we ‘move’ from M (which contains
all assets in fixed proportions) and create an artificial portfolio by investing some of the
funds at present in the assets represented by M, in any risky security i. This artificial
portfolio (call it p) consists of two risky portfolios with proportions xi in asset-i and

Expected return CML

M

mm − r

Y

sm Standard deviation

B

A

L

Figure 7 Market portfolio
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(1 − xi) in the portfolio at M. This portfolio p has expected return µp and standard
deviation σp:

µp = xiµi + (1 − xi)µm (26a)

σp = [x2
i σ

2
i + (1 − xi)

2σ 2
m + 2xi(1 − xi)σim]1/2 (26b)

The portfolio p lies along the curve AMB and is tangent at M. It does not cross the
efficient frontier since the latter by definition is the minimum variance portfolio for any
given level of expected return. Note also that at M there is no borrowing or lending.
As we alter xi and move along MA, we are ‘shorting’ security-i and investing more
than 100% of the funds in portfolio M.

The key element in this derivation is to note that at point M, the curves LMY and
AMB coincide and since M is the market portfolio, xi = 0. To find the slope of the
efficient frontier at M, we require

[
∂µp

∂σp

]
xi=0

=
[
∂µp

∂xi

] [
∂σp

∂xi

]−1

(27)

where all the derivatives are evaluated at xi = 0. From (26a) and (26b),[
∂µP

∂xi

]
= µi − µm[

∂σp

∂xi

]
= 1

2σp
[2xiσ

2
i − 2(1 − xi)σ

2
m + 2σim − 4xiσim] (28)

At xi = 0 (point M), we know σp = σm and hence[
∂σp

∂xi

]
xi=0

= [σim − σ 2
m]/σm (29)

Substituting (28) and (29) in (27)[
∂µp

∂σp

]
xi=0

= (µi − µm)σm

σim − σ 2
m

(30)

But at M, the slope of the efficient frontier (equation (30)) equals the slope of the
CML (equation (25))

(µi − µm)σm

(σim − σ 2
m)

= µm − r

σm
(31)

From (31), we obtain the CAPM relationship

µi = r + (σim/σ 2
m)(µm − r) (32)

Using alternative notation,

ERi = r +
[

cov(Ri, Rm)

var(Rm)

]
(ERm − r) (33)
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When borrowing and lending in the risk-free asset is allowed, then in order for asset
i to be willingly held, it must command an expected or required return in the market
given by

ERi = r + βi(ERm − r) where βi = cov(Ri, Rm)/ var(Rm) (34)

There is one further rearrangement of (34) we wish to consider. Substituting for
(ERm − r) from (23) in (34) gives,

ERi = r + λm cov(Ri, Rm) (35)

5.4 Beta and Systematic Risk

If we define the extra return on asset i over and above the risk-free rate as a risk
premium,

ERi = r + rpi (36)

then the CAPM gives the following expressions for the risk premium

rpi = βi(ERm − r) = λm cov(Ri, Rm) (37)

The CAPM predicts that only the covariance of returns between asset i and the market
portfolio influence the cross-section of excess returns, across assets. No additional
variables such as the dividend–price ratio, the size of the firm or the earnings–price
ratio should influence the cross-section of expected excess returns. All changes in the
risk of asset i is encapsulated in changes in cov(Ri, Rm). Strictly, this covariance is
a conditional covariance – the agent at each point in time forms her best view of the
value for the covariance/beta.

Security market line

The CAPM can be ‘rearranged’ and expressed in terms of the security market line
(SML). Suppose that the historic average value of ERm − r is 8% p.a. and the risk-free
rate is 5%, then the CAPM becomes

ERi = r + 8βi (38)

This is a linear relationship between the cross-section of average returns ERi and the
asset’s beta βi (Figure 8) and is known as the security market line (SML). If the CAPM
is correct, then all securities should lie on the SML.

According to the CAPM/SML, the average excess monthly return (say over 60 months)
on each asset ERi − r should be proportional to that asset’s beta – a security with a high
beta has a high risk and therefore should earn a high average return:

Excess return on security i

Excess return on security j
= (ERi − r)

(ERj − r)
= βi

βj

(39)
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Required return = SML  and  actual return =

SML

Asset’s beta, bi

Q (buy)

S (sell)

P

Actual
return

Expected
return

0.5 1 1.2

T (sell)

M

Securities that lie above (below) the SML have a positive (negative) ‘alpha’,
indicating a positive (negative) ‘abnormal return’, after correcting for ‘beta risk’.

r

aQ > 0

aS < 0

Figure 8 Security market line, SML

The SML can be used to try to pick underpriced and overpriced stocks. To see this,
consider a security S (Figure 8) with a beta of 0.5. You could replicate the beta of
security S by buying a portfolio with 50% in the safe asset (β = 0) and 50% in
a security with a beta of unity (i.e. βp = 0.5(0) + 0.5(1) = 0.5). But this synthetic
portfolio would lie on the SML (at P) and have a higher expected return than S.
Hence, S would be sold, since its actual return is less than its equilibrium return
given by its beta. If S were sold, its current price would fall and this would raise its
expected return, so that S moved towards P. (Similarly, security T with βi = 1.2 could
be duplicated by borrowing 20% of your wealth at the safe rate and using your own
funds plus borrowed funds to invest in a security with a βi = 1.)

Alternatively, consider a security like Q also with βi = 0.5 (Figure 8) but which
currently has a higher average return than indicated by the SML. An investor should
purchase Q. Securities like Q and S are currently mispriced (i.e. they are not on
the SML), and a speculator might short sell S and use the funds to purchase Q. If
the mispricing is corrected, then the price of Q will rise as everyone seeks to pur-
chase it, because of its current high ‘abnormal’ average return. Conversely, everyone
seeks to short sell S, so its price falls in the market. If you spotted this mispricing
first and executed your trades before everyone else, then you would earn a hand-
some profit from this mispricing. A subtle point is that if the market return (Rm − r)

either rises or falls unexpectedly over this period, you still make a profit. (Can you
see why? Hint: note that both S and Q have the same beta.) To implement this
active long–short strategy, one has ‘to graph’ the average historic return for a set
of securities Ri (say monthly returns averaged over the past 5 years) against their βi

estimates and look for ‘big outlier securities’ like Q and S. However, remember that
in practice this investment strategy is risky since it assumes the CAPM is true, βi is
measured correctly and that any mispricing will be corrected over a reasonably short
time horizon.
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Systematic Risk

The systematic risk of a portfolio is defined as risk that cannot be diversified away by
adding extra securities to the portfolio (it is also known as non-diversifiable, ‘portfolio’
or ‘market risk’). There is always some risk even in a well-diversified portfolio because
of the covariance of returns. We have

σ 2
p =

n∑
i=1

w2σ 2
i +

n∑
i=1

n∑
j=1
i �=j

wiwjσij (40)

To illustrate this dependence of portfolio variance on the covariance terms, consider
a simplified portfolio where all assets are held in the same proportion (xi = 1/n) and
where all variances and covariances are constant (i.e. σ 2

i = var and σij = cov, where
‘var’ and ‘cov’ are constant). Then, (40) becomes

σ 2
p = n

n2
var +n(n − 1)

n2
cov = 1

n
var +

(
1 − 1

n

)
cov (41)

It follows that as n → ∞, the influence of the variance of each individual security on
portfolio variance approaches zero. The portfolio variance is then determined entirely
by the (constant) covariance. Thus, the variance of the returns of individual securities
is ‘diversified away’. However, the covariance terms cannot be diversified away, and
the latter (in a loose sense) give rise to systematic risk, which is represented by the
beta of the security. Hence, when assets are held as part of a well-diversified portfolio,
the idiosyncratic risk of individual securities (σi) does not earn any return, since this
risk can be diversified away. It is only the systematic risk, represented by the asset’s
beta, that ‘earns’ an expected return (i.e. ‘only beta-risk is priced’).

We can show the link between beta and its contribution to portfolio risk as follows.
The variance of the optimal (market) portfolio is

σ 2
m = w1(w1σ11 + w2σ12 + w3σ13 + · · · + wnσ1n)

+ w2(w1σ21 + w2σ22 + w3σ23 + · · · + wnσ2n)

+ w3(w1σ31 + w2σ32 + w3σ33 + · · · + wnσ3n)

+ · · · + wn(w1σn1 + w2σn2 + · · · + wnσnn) (42)

where we have rewritten σ 2
i as σii . If the wi are those for the market portfolio, then

in equilibrium, we can denote the variance as σ 2
m. For example, the contribution of

security-2 to the portfolio variance may be interpreted as the bracketed term in the
second line of (42), which is then ‘weighted’ by the proportion w2 of security-2 held
in the portfolio. The bracketed term contains the covariance between security-2 with all
other securities including itself, and each covariance σii is weighted by the proportion
of each asset in the market portfolio. It is easy to show that the term in brackets in the
second line of (42) is the covariance of the return of security-2 with the return on the
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market portfolio Rm:

cov(R2, Rm) = E(Rm − µm)(R2 − µ2) = E

n∑
i=1

wi(Ri − µi)(R2 − µ2)

= w1σ12 + w2σ22 + w3σ32 + · · · + wnσn2 (43)

It is also easy to show that the contribution of security-2 to the risk of the portfolio
is given by the above expression since ∂σ 2

m/∂w2 = 2 cov(R2, Rm). In general, the
variance of the market portfolio may be written

σ 2
m = w1 cov(R1, Rm) + w2 cov(R2, Rm) + · · · + wn cov(Rn, Rm) (44)

Now, rearranging the expression for the definition of βi ,

cov(Ri, Rm) = βiσ
2
m (45)

and substituting (45) in (44), we have

n∑
i=1

wiβi = 1 (46)

The βi of a security therefore measures the incremental effect of security-i on the
risk of the portfolio. A security with βi = 0 when added to the portfolio has zero
additional proportionate influence on portfolio variance, whereas βi < 0 reduces the
variance of the portfolio. Of course, the greater the amount of security-i held (i.e.
the larger is the absolute value of wi), the more the impact of βi on total portfolio
variance, ceteris paribus. Since an asset with a small value of βi considerably reduces
the overall variance of a risky portfolio, it will be willingly held even though the
security has a relatively low expected return. All investors are trading off risk, which
they dislike, against expected return, which they do like. Assets that reduce overall
portfolio risk therefore command relatively low returns but are, nevertheless, willingly
held in equilibrium.

The predictability of equilibrium returns

In this section, we outline how the CAPM may be consistent with returns being both
variable and predictable. The CAPM applied to the market portfolio implies that equi-
librium expected (excess) returns are given by (see (23) and Chapter 6, equation (27))

EtRm,t+1 − rt = λEt(σ
2
m,t+1) (47)

where we have added subscripts t to highlight the fact that these variables will change
over time. From (47), we see that equilibrium excess returns will vary over time if the
conditional variance of the forecast error of returns is time-varying. From a theoretical
standpoint, the CAPM is silent on whether this conditional variance is time-varying.
For the sake of argument, suppose it is an empirical fact that periods of turbulence
or great uncertainty in the stock market are generally followed by further periods
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of turbulence. Similarly, assume that periods of tranquillity are generally followed
by further periods of tranquillity. A simple mathematical way of demonstrating such
persistence in volatility is to assume volatility follows an autoregressive AR(1) process.
A simple representation is the GARCH(1,1) model (see Chapter 2 and then Chapter 29
for a full discussion), where in the econometrics literature, the conditional variance is
usually written ht+1 ≡ σ 2

t+1:
σ 2

t+1 = ασ 2
t + βε2

t (48)

where εt+1 ≡ Rt+1 − EtRt+1 is the zero mean conditional forecast error of returns (in
equation (47)). The best forecast of σ 2

t+1 at time t is Etσ
2
t+1 = (α + β)σ 2

t . The CAPM
plus ARCH implies

EtRm,t+1 − rt = λ(α + β)σ 2
t (49)

Hence, we have an equilibrium model in which expected returns vary and depend
on information at time t , namely, σ 2

t . The reason expected returns vary with σ 2
t is

quite straightforward. The conditional variance σ 2
t is the investor’s best guess of next

period’s systematic risk in the market Etσ
2
t+1. In equilibrium, such risks are rewarded

with a higher expected return.
The above model may be contrasted with our simpler hypothesis, namely, that equi-

librium expected returns are constant. Rejection of the latter model, for example, by
finding that actual returns depend on information 
t at time t , or earlier (e.g. divi-
dend–price ratio) may be because the variables in 
t are correlated with the omitted
variable σ 2

t , which occurs in the ‘true’ model of expected returns (i.e. CAPM + ARCH).
The above argument about the predictability of returns can be repeated for the equi-
librium excess return on an individual asset.

EtRit+1 = λ covt (Ri,t+1, Rm,t+1) (50)

where covt (Ri,t+1, Rm,t+1) is the conditional covariance. If the covariance is, in part,
predictable from information at time t , then equilibrium returns on asset i will be non-
constant and predictable. Hence, the empirical finding that returns are predictable need
not necessarily imply that investors are irrational or are ignoring potentially profitable
opportunities in the market.

5.5 Summary
• If investors have homogeneous expectations about expected returns and variances,

then all ‘mean-variance’ investors hold risky assets in the same proportions, regard-
less of their preferences for risk versus return. These optimal proportions constitute
the market portfolio.

• Investor’s preferences enter in the second stage of the decision process, namely, the
choice between the ‘fixed bundle’ of risky securities and the risk-free asset. The
more risk averse the individual, the smaller the dollar amount of her own wealth she
will place in the bundle of risky assets. But the proportion held in the risky assets
is the same as for a less risk-averse investor.
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• The CAPM (and the SML) are a consequence of mean-variance portfolio theory. The
CAPM implies that in equilibrium the expected excess return on any single risky
asset ERi − r is proportional to the excess return on the market portfolio, ERm − r .
The constant of proportionality is the asset’s beta, where βi = cov(Ri, Rm)/σ 2

m

• Relative expected excess returns on two assets i and j are determined solely by the
betas of the two assets.

• The CAPM does not necessarily imply that equilibrium returns are constant. If
the conditional covariance, covt (Ri, Rm), varies over time, then so will equilibrium
returns. In addition, equilibrium returns may be predictable from information avail-
able at time t . This will arise if the variances and covariances, which measure ‘risk’
in the CAPM model, are themselves predictable.





6
INTERNATIONAL
PORTFOL IO
DIVERS IF ICAT ION

Aims

• Explain the math of calculating optimal portfolio weights when we have a large
number of assets and to derive the CAPM.

• Assess the sensitivity of optimal portfolio weights to changes in estimates of mean
returns, variances and covariances, and practical solutions to this issue.

• Show that by adding foreign assets we can move the ex-ante efficient frontier ‘to
the left’, thus giving a better risk–return trade-off, and to investigate whether this
applies in practice.

• Analyse whether an international investor should hedge currency receipts from for-
eign asset holdings. If she does hedge, should she use forwards, futures or options?

In this chapter, we analyse the theoretical and practical issues when mean-variance
portfolio theory is applied to asset allocation. First, we know that if you randomly
select stocks from a large set of stocks (e.g. those in the S&P500), then it is found
that the risk of the portfolio (measured by the standard deviation) quickly falls to a
near minimum value when only about 25 stocks are included. Some risk nevertheless
remains – this is known as systematic or undiversifiable risk. A question arises as to
whether this minimum level of systematic risk can be reduced by widening the choice
of stocks in the portfolio to include foreign stocks (or assets).

Second, can we do better than a random selection of stocks? In general, we are
interested in trading off ‘risk against return’. The efficient frontier gives this trade-off
for a given set of assets once we know the variances and covariances (correlations) of
returns (and a forecast of expected returns). If we can widen the set of asset (e.g. include
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foreign as well as domestic assets), then it may be possible to substantially move the
efficient frontier ‘to the left’, giving a better risk–return trade-off to the investor because
of relatively low correlations between returns across different countries. A key issue
for the benefits of portfolio diversification is whether these historic low correlations
will persist in the future and whether the estimates of the volatilities and (particularly)
the average returns are constant over time.

Third, if we include foreign assets in the portfolio, then the investor will usually
be interested in the return (and risk) measured in terms of her ‘home currency’. If the
investor does not hedge these risks, then we need estimates of variances and correlations
for bilateral exchange rates. If the investor hedges these risks, then exchange rate risk
can be ignored and it is the ‘local currency’ returns and volatilities that are relevant.
Of course, there is still the issue of what instruments to use for the hedge – should we
use forwards, futures or options?

Fourth, if we allow the investor to borrow and lend at a risk-free rate, and we have
the individual’s forecasts of expected returns and covariances, then we can determine
the optimal portfolio weights for this particular investor. We can then compare the
efficiency of alternative international investment strategies (e.g. an equally weighted
world portfolio) using performance indicators such as the Sharpe ratio.

Finally, the optimal portfolio weights clearly depend on our estimates of the future
values of the expected returns, variances and covariances between the assets. We need
to know how sensitive our optimal weights are to minor changes in these crucial inputs
(since they are invariably measured with error) and whether constraining these weights
(e.g. no short sales) can improve matters.

6.1 Mathematics of the Mean-Variance Model

The math needed to obtain optimal portfolio weights is pretty straightforward for
the one-period optimisation problem, if there are no constraints put on the optimal
weights (e.g. we allow a solution with some wi < 0, that is, short selling). It is a
standard quadratic programming problem with an analytic solution. If we want to
solve the portfolio allocation problem with constraints (e.g. no short selling), then, in
general, there is no analytic solution and a numerical optimisation routine is needed,
but these are now commonplace (e.g. as an Excel add-on or in programs such as RATS,
GAUSS(FANPAC) and Mathematica).

In this section, we demonstrate the mathematics behind various portfolio prob-
lems for an investor who is only concerned about the expected return and the vari-
ance of portfolio returns. The reader should be warned that, although the mathemat-
ics used does not go beyond simple calculus, the different models discussed have
rather subtle differences, in terms of maximands and constraints. These differences
should be carefully noted and are summarised at the end of the section. We cover the
following:

• How to calculate the proportions wi to hold in each risky asset, so that the investor
is at a point on the efficient frontier. This is the famous Markowitz problem.
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• To demonstrate that any two points on the Markowitz efficient frontier can be used
to map out the whole of the efficient frontier. This is often referred to as the two-
fund theorem.

• How to combine riskless borrowing or lending, together with the choice amongst
n risky assets to determine the optimal proportions wi held in the market portfo-
lio. This is the point of tangency between the capital market line (CML) and the
efficient frontier.

• To demonstrate the applicability of the two-fund theorem by showing that the market
portfolio is a particular combination of two efficient portfolios.

• To show that the capital asset pricing model (CAPM) is a direct consequence of
mean-variance optimisation (when we also allow riskless borrowing and lending).

The Efficient Frontier: Markowitz Model

To find a point on the efficient frontier, the investor solves the following constrained
minimisation problem:

min
1

2
σ 2

p = 1

2

n∑
i=1

n∑
j=1

wiwjσij = 1

2
(w′�w) (1)

where w′ = (w1, w2, . . . , wn) and � is the (n × n) covariance matrix {σij }. The con-
straints are

n∑
i=1

wiERi = ERp (2a)

n∑
i=1

wi = 1 (2b)

The use of 1/2 in (1) just makes the algebra neater. Note that the investor has estimates
of σij and ERi and can only invest her own wealth, so that

∑
i wi = 1. Note that the

wi are not constrained in any way and some of the optimal values for wi may be less
than zero (wi < 0), so that short selling is allowed. The solution to this optimisation
problem is fairly standard and involves the use of two unknown Lagrange multipliers
λ and � for the two constraints

Min L = (1/2)

n∑
i=1

n∑
j=1

wiwjσij − λ

(
n∑

i=1

wiERi − ERp

)
− ψ

(
n∑

i=1

wi − 1

)
(3)

This type of problem is most easily solved by setting it up in matrix notation (see
Appendix I), but there is a pedagogic advantage in considering the algebra of the
3-variable case:

L = (1/2)[w2
1σ11 + w1w2σ12 + w1w3σ13 + w2w1σ21 + w2

2σ22 + w2w3σ23

+ w3w1σ31 + w3w2σ32 + w2
3σ33] − λ(w1ER1 + w2ER2 + w3ER3 − ERp)

− ψ(w1 + w2 + w3 − 1) (4)
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Differentiating equation (4) with respect to wi , λ and ψ gives us the following first-
order conditions (FOC):

∂L

∂w1
= (1/2)[2w1σ11 + w2σ12 + w3σ13 + w2σ21 + w3σ31] − λER1 − ψ = 0 (5a)

∂L

∂w2
= (1/2)[w1σ12 + w1σ21 + 2w2σ22 + w3σ23 + w3σ32] − λER2 − ψ = 0 (5b)

∂L

∂w3
= (1/2)[w1σ13 + w2σ23 + w1σ31 + w2σ32 + 2w3σ33] − λER3 − ψ = 0 (5c)

∂L

∂λ
=

3∑
i=1

wiERi − ERp = 0 (5d)

∂L

∂ψ
=

3∑
i=1

wi − 1 = 0 (5e)

Equations for the Minimum Variance Set

The last two equations merely reproduce the constraints. However, there is a pattern
in the first three equations. Noting that σij = σji , the above equations generalised to
the n-asset case can be written as

n∑
j=1

σij wj − λERi − ψ = 0 (6a)

or
�w − λER − ψ · e = 0 (6b)

n∑
i=1

wiERi = ERp (6c)

and
n∑

i=1

wi = 1 (6d)

where � = (n × n) covariance matrix, ER is (n × 1) and e is an (n × 1) unit
vector while ψ and λ are scalars. In equation (6a), we know the σij and ER′ =
(ER1, ER2, . . . , ERn) and in (6c), we arbitrarily set the scalar ERp to any fixed value.
We have (n + 2) linear equations and (n + 2) unknowns, the wi , λ and ψ . These linear
equations are easily solved using spreadsheet programs (e.g. in Excel) to give the
optimal weights for one point on the minimum variance set once we know the basic
inputs, namely, the means ERi (i.e. our forecasts of expected returns), the standard
deviations and covariances σij for each asset return. Having obtained the optimal wi

(i = 1, 2, . . . , n), these can be substituted in σ 2
p = w′�w and ERp = w′ER to give
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one point on the efficient frontier. We now choose a new (arbitrary) value for ERp and
repeat the exercise until we have enough points to plot out the efficient frontier (see
the Excel worksheet on the web site).

Because the optimal weights are totally unconstrained, they can take on any value. A
negative value indicates short selling of the stock. Any funds obtained from short selling
can be used to invest in other assets and hence for some assets, wi may exceed unity (i.e.
you hold more than your initial ‘own wealth’ in this asset). The only restriction on the
optimal weights is that they sum to unity, which implies that all of your initial wealth is
held in the risky assets. Clearly, the above is an instructive way of demonstrating how
the efficient frontier can be constructed but it is hardly an ‘efficient’ computational
method. However, the solution we require can be obtained in a simpler fashion by
using a special property of the solution to equations (6a) to (6d) known as the two-
fund theorem.

Two-Fund Theorem

Suppose we find two optimal solutions to the Markowitz FOCs (equations (6a)–(6d))
for arbitrary values of ER(1)

p and ER(2)
p .

Solution 1:
w(1) = {w(1)

1 , w
(1)
2 , . . . , w(1)

n }′ and λ(1), ψ(1)

Solution 2:
w(2) = {w(2)

1 , w
(2)
2 , . . . , w(2)

n }′ and λ(2), ψ(2)

where w(1) and w(2) are column vectors. Then, any linear combination of w(1) and
w(2) is also a solution to the FOCs. Hence, another solution to equations (6a) to (6d) is
w(q) = αw(1) + (1 − α)w(2) where −∞ < α < +∞, and it is easy to see that

∑
w

(q)

i =
1. Since both solutions w(1) and w(2) make the left-hand side of equation (6a) equal
to zero, their linear combination also satisfies (6a). Since we have already solved for
w(1) and w(2), by altering α we can map out the entire minimum variance set (which
will include all points on the efficient set, the upper portion of the curve). The two-
fund theorem means that if an investor can find two ‘mutual funds’ (i.e. portfolios
of securities which have asset proportions w(1) and w(2) which satisfy the Markowitz
equations and are on the efficient set), then she can combine these two mutual funds
in proportions (α, 1 − α) to construct a portfolio that lies anywhere along the mean-
variance efficient frontier. In short,

The two-fund theorem implies that we only require two points on the efficient
frontier (often referred to as two mutual funds)

in order to map out the whole of the efficient frontier
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The expected return and variance of the portfolio q are

ER(q) =
n∑

i=1

w
(q)

i ERi = w(q)′ER (7a)

[σ (q)]2 = w(q)′�w(q) =
n∑

i=1

n∑
j=1

w
(q)

i w
(q)

j σij (7b)

As w(q) is a function of α, each value chosen (arbitrarily) for α gives us a point on the
mean-variance efficient frontier. At a purely mathematical level, the two-fund theorem
allows us to simplify the solution procedure for the Markowitz equations (6a) to (6d).
To solve (6a) to (6d) for all values of ERp, we need only to find two arbitrary solutions
and then form linear combinations of these two solutions. Obvious choices to simplify
the problem are

(a) λ = 0 and ψ = 1

(b) ψ = 0 and λ = 1

In ‘(a)’, the constraint
∑

i wiERi = ERp is ignored, so this gives the w(1) cor-
responding to the minimum variance portfolio. Imposing (a) and (b) may lead to a
violation of the constraint

∑
i wi = 1, but the solutions can be re-scaled to allow for

this. Setting λ = 0 and ψ = 1 in (6a) or (6b) gives n equations in the n unknowns z
(1)

(i)

(for i = 1, 2, . . . , n).
n∑

j=1

σij z
(1)
j = 1 or �z(1) = e (8a)

which is easily solved for z(1) = {z(1)
1 , z

(1)
2 , . . . , z(1)

n }. We then normalise the zi’s so
they sum to one

w
(1)
i = z

(1)
i

n∑
j=1

z
(1)
j

(8b)

The vector w(1) = {w(1)
1 , w

(1)
2 , . . . , w(1)

n } is then the minimum variance point on
the efficient frontier. The second (arbitrary) solution has ψ = 0 and λ = 1 and
equation (6a) becomes

n∑
j=1

σij z
(2)
j = ER or �z(2) = ER (9)

giving a solution z(2) = {z(2)
1 , z

(2)
2 , . . . , z(2)

n } and associated w(2) = {w(2)
1 , w

(2)
2 , . . . , w(2)

n }.
Having obtained these two solutions w(1) and w(2), we can calculate the values of
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∑
i wiERi = ERp and σp = ∑n

i,j wiwjσij at these two points on the efficient frontier.
We then calculate w(2) = αw(1) + (1 − α)w(2) for any arbitrary α and alter α to map all
the combinations of ER(q) and σ (q) using equation (7).

E X A M P L E Consider a 5-assets case (see web site for Excel file). Suppose (using sample aver-
ages of historic returns data) we find the following values of σij and ER

�5×5 = {σij } =




2.2 0.9 −0.3 0.65 −0.42
0.9 1.5 −0.39 0.2 0.47

−0.3 −0.39 1.8 0.8 0.27
0.65 0.2 0.8 1.5 −0.5

−0.42 0.47 0.27 −0.5 1.7


 (10a)

ER′ = (ER1, ER2, . . . , ER5) = [8.5, 18.3, 12.7, 10.8, 9.5] (10b)

In matrix notation, the n = 5 equations in (8a) can be written as

z(1) = �−1e (11)

where e is a 5 × 1 column vector of ones and hence

z(1) = �−1e = {0.3902, 0.2073, 0.3091, 0.5519, 0.7406} (12a)

5∑
i=1

z
(1)
i = 2.1991 (12b)

w
(1)
i = z

(1)
i /

∑
z
(1)
i = {w1, w2, w3, w4, w5}

= {0.1774, 0.0942, 0.1406, 0.2510, 0.3368} (12c)

The weights w(1) are actually the weights required to achieve the minimum variance
point (since we set λ = 0 in equation (3)). The second solution using equation (9), in
matrix notation is

�z(2) = ER (13a)

z(2) = �−1ER = {−1.3839, 16.1736, 10.6532, −0.3818, 0.3368} (13b)

with w(2) = {−0.0576, 0.6730, 0.4433, −0.0159, −0.0428}. We can then map out the
whole of the mean variance set (and hence the efficient frontier) by taking linear com-
binations w(q) = αw(1) + (1 − α)w(2) with α varying between {−∞, +∞} and each
time calculating ER(q) and σ (q) (which are functions of α). Unrestricted minimisation
of portfolio variance often gives portfolio weights wi < 0 (i.e. short selling), but some
financial institutions do not allow short selling (e.g. UK pension funds). Hence, we
need to derive the efficient frontier when all wi > 0.
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No Short Sales

In this case, the minimisation problem is exactly the same as in (1) and (2) but with
an additional constraint, namely, wi ≥ 0 (i = 1, 2, . . . , n). Now, we cannot use the
two-fund theorem to simplify the solution procedure and indeed a special form of pro-
gramming called quadratic programming is required in which the first-order conditions
are known as the Kuhn–Tucker conditions. Some readers may be familiar with this
type of solution procedure. It is usually the case that when short selling is allowed,
nearly all of the wi are non-zero (i.e. either positive or negative) but when short sales
are not allowed, many of the optimal wi’s are set to zero, and hence only a subset of
the total assets are held by the investor.

Borrowing and Lending: Market Portfolio

When we allow the investor to borrow or lend at the risk-free rate and also to invest in
n risky securities, the optimal solution is the market portfolio (if all investors have the
same view of expected returns, variances and covariances). The optimal proportions
are determined by the tangency of the transformation line with the efficient frontier
(short sales are permitted). Mathematically, to obtain the market portfolio, we choose
the proportions wi to

max θ = ERp − r

σp
(14)

Subject to

ERp = 	wiERi (15a)

	wi = 1 (15b)

σp =

 n∑

i=1

w2
i σ

2
i +

∑
i �=j

∑
wiwjσij




1
2

=

 n∑

i=1

n∑
j=1

wiwjσij




1
2

(15c)

ERi is the expected return on asset-i, ERp and σp are the expected return on the
portfolio and its standard deviation respectively. The constraint (15b) can be directly
incorporated in the maximand (14) by writing θ as

θ = 	wi(ERi − r)

σp
(16)

It can be shown (see Appendix II) that the FOCs are of the form

z1σ11 + z2σ12 + · · · + znσ1n = ER1 − r

z1σ12 + z2σ22 + · · · + znσ2n = ER2 − r

z1σ1n + z2σ2n + · · · + znσnn = ERn − r (17)
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where zi = ηwi and η is a constant. The constant η does not affect the solution since
if wi is a solution to (16), then so is ηwi , since the η cancels from the numerator and
denominator. Having solved equation (17) for zi , we can determine the optimal values
for wi from

n∑
i=1

wi = 1 = η−1
n∑

i=1

zi (18)

hence

η =
n∑

i=1

zi and ωi = zi

η
= zi

n∑
i=1

zi

Since ERi , r , σ 2
i and σij are known, equation (17) is an n-equation system, which can be

solved for the n unknowns zi to zn. Equation (17) can be written (for k = 1, 2, . . . , n)

n∑
i=1

σki zi = (ERk − r) or �z = ER − r (19)

where z = (z1, z2, . . . , zn), ER − r = (ER1 − r, ER2 − r, . . . , ERn − r)′ and � is the
(n × n) variance–covariance matrix. It follows that

z∗ = �−1(ER − r) (20)

The above solution is easily obtained. Again, we have placed no restrictions on the
values that the optimal weights can take but if short sales are prohibited, then wi ≥ 0
(for all i), and the optimisation involves the application of the Kuhn–Tucker conditions.
In practice, software for a variety of optimisation procedures of this type are available as
‘add-ons’ to the commonly used spreadsheet programs such as Excel. As the number
of assets increases or the type of restrictions on the wi become more complex, the
analysis will require more flexible (and speedy) software packages such as GAUSS,
Excel-Visual Basic, C++, and so on.

In the general case of n assets (plus the risk-free asset), we have to solve the n

equations in (19). This is relatively straightforward (in Excel) once we are given the
covariance matrix � and the forecast of expected returns ERi . The solution is z∗ =
{−3.33, 15.14, 9.11, −3.14, −4.73} and w∗ = {−0.26, 1.16, 0.70, −0.24, −0.36}.

There is a nice connection between our earlier Markowitz mean-variance problem
and that for the market portfolio weights. The set of FOCs in (17) for the market port-
folio are rather similar to the FOCs in the Markowitz two-fund problem (8a) and (9),
which are rewritten here with solutions z(1) and z(2):

n∑
j=1

σij z
(1)
j = 1 or �z(1) = e (8a)

n∑
j=1

σij z
(2)
j = ERk or �z(2) = ER (9)
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where e is the unit vector. The right-hand side of equation (19) is ERk − r and the
left-hand side is identical to that in (8a) and (9). Hence, if z(1) and z(2) are solutions
to the FOCs for the Markowitz efficient frontier, then z∗ = z(2) − rz (1) is a solution
for the market portfolio problem in (19). This should not be too surprising. Earlier, we
found that any linear combination of the Markowitz solutions also lie on the efficient
frontier. But clearly the market portfolio lies on the efficient frontier, so it too is a
linear combination of z(1) and z(2). We have already calculated z(1) and z(2), so, given
r = 5%, the solution for the market portfolio is

z∗ = z(2) − rz (1) = {−3.33, 15.14, 9.11, −3.14, −4.73} (21)

which gives the market portfolio weights of w∗ = {−0.26, 1.16, 0.70, −0.24, −0.36}.
The latter is, of course, the same solution as that from direct application of z∗ =
�−1(ER − r) from (20). The solution z∗ in (20) is another consequence of the two-
fund theorem.

Notice that (21) is only the market portfolio if all investors have homogeneous
expectations about the ERi and the σij ’s. If the investor has her own expectations about
the aforementioned variables, then z∗ still gives the optimum weights but only for that
single investor. Different investors will then have different optimal portfolio weights.
One can also introduce additional constraints such as no short selling (i.e. w ≥ 0),
but then we can no longer use the simplified solution method above and the optimal
weights do not constitute the ‘market portfolio’. All the above calculations require
as inputs, expected returns (and the current risk free rate r = 5% say), variances and
covariances (correlations), which we have assumed are constant in the above examples.
In practice, we need to estimate these variables over the appropriate horizon (e.g. a day,
month or year) and to recalculate the optimal portfolio proportions, as our forecasts of
these variables alter.

A rather neat (and, as it turns out, intuitive) way of obtaining the optimal (unre-
stricted) mean variance weights from a simple regression is given in Britten-Jones
(1999). You simply take a dependent variable Y as a (T × 1) column of ones. The
independent variable X is a (T × k) matrix of k asset excess returns, and the regression
has no intercept:

Y = Xβ + u (22)

The optimum weights w = b/
∑k

i=1 bi , where b is the OLS estimator. This procedure
also yields the standard error of b, so that we can test the hypotheses about these optimal
weights. In particular, Britten–Jones considers an optimal (unhedged) internationally
diversified portfolio (from a US investor perspective) and then tests to see if the weights
wi on all the non-US countries are jointly statistically zero. He finds that they are, with
the conclusion that a US investor should not diversify internationally. This is really
an alternative manifestation of the result that the optimal weights are very sensitive to
the assumptions about mean returns and the latter are measured with great uncertainty.
Also, note that the ‘invest at home’ conclusion has only been tested for a US-based
investor and the analysis only holds true if volatilities and correlations are constant
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(in the population). But the optimal weights (for the US investor) are found to be
time-varying (e.g. that for Denmark changes from a short position of 29% to a long
position of 69% when the data sample is split). Finally, the analysis does not apply if
weights are restricted a priori (e.g. no short sales).

The CAPM

The market portfolio is held by all investors and all assets in the market portfolio
have a particular expected return. What is the relationship between these expected
returns and what factors determine any particular expected return? The link between
the market portfolio and expected asset returns is given by the CAPM. The CAPM
assumes all investors have homogeneous expectations and decide on the proportions
of risky assets to hold by maximising θ in (14) (i.e. at the point of tangency between
the CML and the efficient frontier). When all assets are held, the equilibrium expected
return on any asset-k is

ERk = r + βk(ERm − r) (23)

where βk = cov(Rk, Rm)/σ 2
m. The above relationship must be implicit in the FOC of

the market portfolio. Taking the kth equation in (17), we have

ERk − r = η[w1σ1k + · · · + wnσnk] (24)

The term in square brackets is cov(Rk, Rm), since at the optimal values for wi we have

cov(Rk, Rm) = cov


Rk,


 n∑

j=1

wjRj





 =

n∑
j=1

wj cov(Rj , Rk) =
n∑

j=1

wjσjk (25)

Hence equation (13) can be written as

ERk − r = η cov(Rk, Rm) (26)

Since equation (24) holds for all assets, it must also hold for the market portfolio,
hence

ERm − r = ησ 2
m (27)

Substituting for η from (27) in (26), we obtain the CAPM

ERk − r = [
(ERm − r)/σ 2

m

]
cov(Rk, Rm) = βk(ERm − r) (28)

The expected return on any asset is determined by the assets beta and the excess market
return. In a diversified portfolio, the relative riskiness of any two assets is determined
by the relative size of their betas.
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6.2 International Diversification
The benefits of portfolio diversification depend upon finding ‘new’ assets that have a
‘low’ correlation with existing assets in the portfolio. In an early study of international
diversification, Solnik (1974) concentrated on the possible risk-reducing benefits of
international diversification (and ignored the expected returns from the portfolio). He
asked the questions:

• How many domestic securities must be held to ensure a reasonable level of diver-
sification?

• Does international diversification lead to less risk?

Using σ 2
p = w′�w, his inputs were equal weights (wi = 1/n) for each asset, and

estimates of the σij were based on simple (arithmetic) historic sample averages (using
weekly returns from 1966 to 1971). The steps in the analysis were:

1. Portfolios are generated by randomly choosing from a large set of possible stocks.

2. Form a portfolio of n = 1 stocks and repeat this m times. Calculate the aver-
age standard deviation σ (1)

p for a ‘1-stock portfolio’ (i.e. σ (1)
p is averaged over m,

‘1-asset’ portfolios). This averaging prevents the calculation being dominated by
‘outliers’.

3. Repeat (2) for n = 2, n = 3, . . . and so on, ‘size’ portfolios to obtain a sequence of
average values for σ (n)

p .

4. Scale each of the estimated ‘size-based’ standard deviations using σ (1)
p :

V (n)
p =

[
σ (n)

p /σ (1)
p

]2

and plot V (n)
p against ‘n’, the number of securities in the portfolio. (Note that

V (1)
p = 100%.)

5. Repeat steps (1) to (4) for different countries.

Solnik’s key results were that about 20 randomly selected ‘domestic securities’
achieve the minimum level of systematic (market) risk within any one country. (Today,
with increases in correlations, this would probably be achieved with about 30 stocks
in a domestic US portfolio and about 40 stocks for an international portfolio.) Sol-
nik finds, for example, that for the United States and Germany, the minimum values
of V (n)

p are 27% and 44% respectively, implying that Germany has a higher level of
systematic risk.

How effective was international diversification in reducing risk? Solnik assumes
perfect hedging of foreign currency returns (at zero cost of forward cover) so that any
prospective foreign currency receipts from the foreign asset are sold in the forward



S E C T I O N 6 . 2 / I N T E R N AT I O N A L D I V E R S I F I C AT I O N 153

market (or you borrow foreign currency to purchase the shares). Note that, in practice,
the above does not guarantee that you are fully hedged, since you do not know exactly
what your shares will be worth in, say, one month’s time. For a US resident (we take
the United States as the ‘domestic country’) investing in the German all-share index,
the DAX, the dollar hedged return is

Hedged return = RDAX + Forward premium on the Euro

Rh
US = RDAX + (F − S)/S

For a US-based investor, an unhedged portfolio in German securities provides a
return in dollar terms of

Unhedged return = Return on the DAX + Appreciation of the Euro

Ru
US = RDAX + RS

where RDAX = return on DAX (proportionate)
Rs = return on $/Euro (i.e. proportionate change in the $/Euro spot rate)

(F − S)/S = forward premium on the Euro (exchange rates measured as $/Euro)

Solnik (1974) takes nine countries (stock indexes) and randomly selects stocks from
these countries, forming different size-based international portfolios. For the unhedged
portfolio, the standard deviation of ‘returns’ and the correlation coefficients are derived
using the unhedged returns. For the hedged returns, the forward premium is assumed
to be small relative to RDAX and is set to zero. Therefore, unhedged returns are equal
to ‘local currency’ returns. Solnik then calculates the statistic V (n)

p for the hedged and
unhedged portfolios.

The hedged international diversification strategy will reduce portfolio risk σp if
correlations between returns in different ‘local currencies’ are low, relative to those
within a single country. Solnik finds that for a US-based investor, the statistic V (n)

p

falls to about 11% for the internationally diversified portfolio (whether hedged or
unhedged), which is well below that for the domestic (US) portfolio of about 27%.
The reason that the unhedged portfolio does nearly as well as the hedged portfolio
is that, in the former, movements in the set of bilateral exchange rates (against the
dollar) will be offsetting in such a well-diversified portfolio. Also, changes in most
exchange rates against the dollar were not large up to 1974 (when Solnik’s study
ends) because the quasi-fixed exchange rate regime of Bretton Woods was in exis-
tence until about 1973. The Solnik study was pioneering in this area but has obvious
limitations, namely:

• Historical averages are used for σij .
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• It takes no account of the expected returns from the portfolios.

• It assumes perfect hedging of foreign currency receipts.

Hedging Foreign Currency Receipts

Up to now, we have largely ignored the hedging issue. Consider whether an investor
who holds domestic and foreign assets should always fully hedge the prospective
foreign currency receipts in the forward market. The answer lies in the correlations
between returns on domestic and foreign stock markets and their correlation with the
return on the spot currency. An unhedged position ‘adds’ an extra element of risk,
namely, the variance of the spot rate. But it also gives rise to the possibility of low
(or negative) correlations between the spot rate and either the domestic stock market
or the foreign stock market or both. These correlations may offset the variance of the
spot rate and hence reduce the overall portfolio variance of the unhedged portfolio.

It is clear from the above studies that there are many potential factors to consider
in evaluating alternative portfolio allocation decisions. These include:

• How many countries to include in the study and how many assets within each
country (e.g. stocks only, bonds only or both, or an even wider set of assets – such
as including property).

• What will be the numeraire currency (i.e. home country) in which we measure
returns and risk. Results are not invariant to the choice of ‘home currency’ or the
time horizon (e.g. 1 month or 1 year) over which returns are measured.

• We must consider expected returns as well as risk and provide a measure of portfolio
performance that includes both (e.g. Sharpe ratio, Treynor index).

• It may be just as beneficial in practice if we use some simple method of international
portfolio diversification (e.g. an equally weighted allocation between alternative
countries or an allocation based on a set of existing weights as in Morgan Stanley’s
Capital International World Index).

• Whether to hedge or not hedge prospective foreign currency receipts and what instru-
ments to use, forwards, futures or options.

• Alternative forecasts of changes in the exchange rate (e.g. historic arithmetic aver-
ages, random walk model, use of the forward rate as a predictor of next period’s
spot rate) give rise to different unhedged optimal portfolio weights as do different
forecasts of variances and covariances (correlations).

• The different optimal portfolio weights using different forecasting schemes may not
be statistically different from each other if the alternative forecasting schemes have
wide margins of error.

We can only briefly deal with these issues in this chapter, but it is worth noting
the results in Eun and Resnick (1997) who consider a number of these crucial issues.
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They consider the home country as the United States, use a monthly return horizon
for stocks (only) for six foreign country indices (Canada, France, Germany, Japan,
Switzerland and the United Kingdom). They use simple historic arithmetic averages
to measure the variances and covariances of returns but because the optimal portfolio
weights are rather sensitive to changes in expected returns, they consider a number of
alternative forecasting schemes. They measure these variables using ‘in-sample’ data
and then calculate the optimal portfolio weights, but they then compare the outcome
for the return and standard deviation of these ex-ante portfolios over a 12-month ‘out
of sample’ period (using a ‘bootstrapping method’). The Sharpe ratio is one measure
they use to compare results from alternative methods of choosing the optimal portfolio
weights. In broad terms, they find that for a US-based investor:

• For an unhedged portfolio, it is found that investing in an internationally diversified
portfolio gives results that are superior (in terms of the Sharpe ratio or ‘stochastic
dominance analysis’) to investing solely in US stocks. This result applies irrespective
of whether the international portfolio comprises an equally weighted portfolio or
weights equal to those in Morgan Stanley’s Capital International World Index or
the ‘optimal weights’ given by mean-variance analysis. However, the gains to an
unhedged internationally diversified strategy are only marginally better than a solely
domestic investment, at least for a US investor. (Clearly, this result may not hold
for an investor based in a ‘small’ country where international diversification, even
if unhedged, may be a substantial improvement on a purely domestic strategy.)

• When considering the hedging decision, fully hedging using forward contracts nearly
always produces superior results than not hedging (e.g. this applies whether one uses
the ‘optimal’ portfolio weights or the equally weighted portfolio or the weights in
Morgan Stanley’s Capital International World Index). Also, the use of the forward
market is usually superior to using a protective put to hedge foreign currency receipts.
Hence, there is reasonably strong evidence that for the US investor, if she diversifies
internationally, then it pays to fully hedge the foreign currency receipts in some way.

• It was also found that assuming the spot rate next month equals this month’s spot
rate (i.e. a random walk) provides a better forecast than that based on the current
forward rate. Of course, this is consistent with the ‘poor’ results found in testing the
forward rate unbiasedness (FRU) proposition where a regression of the change in
the spot rate on the lagged forward premium invariably gives a negative coefficient
(see Chapter 25).

Home Bias Problem

It appears from the above evidence that there is a gain to be had by investing interna-
tionally, even for a US resident. It is therefore something of a puzzle why, in practice,
there is so little international diversification, particularly by US residents. This is the
‘home bias puzzle’.

Portfolio theory highlights the possible gains from international diversification when
domestic and foreign returns have lower correlations than those between purely domes-
tic securities, or if exchange rate movements lower these correlations. It has been
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estimated that a US resident would have been 10–50% better off investing internation-
ally (in the G7 counties) than purely domestically. However, somewhat paradoxically,
US residents keep over 90% of their assets ‘at home’. This also applies to investors in
other countries although the figure for other countries is usually less than this 90% ‘at
home’ – for example, UK pension funds currently have about a 70:30 split in favour
of the home country. The problem is so pervasive that it is known as the home bias
problem. It appears as if neither the risk of imposition of capital controls nor high
taxes on capital can explain why these apparent gains to holding foreign equity are
not exploited.

One reason for this ‘home bias’ may be the perceived lack of information about
the detailed performance of many foreign-based companies (e.g. small ‘foreign’ firms).
Sometimes there are legal restrictions on foreign investments. For example, currently,
UK pension funds have to meet the minimum funding requirement (MFR), which is a
type of solvency test that encourages investment in domestic government bonds and to
a lesser extent in UK equities. Another reason for ‘home bias’ is that a ‘proven gain’
using past data does not necessarily imply a gain in the (uncertain) future.

Yet another reason why investors might not diversify internationally is that they
wish to consume mainly home country goods and services with the proceeds from their
investments, and this will be uncertain if the real exchange rate fluctuates. However,
if purchasing power parity (PPP ) holds (see Chapter 24), then the real return from
foreign investment is the same as the real return to domestic residents of that country,
so that there is no foreign exchange risk. Unfortunately, PPP only holds over very long
horizons of 5–10 years, and changes in real exchange rates over a shorter time horizon
can be large (e.g. plus or minus 25% over 1–5 years). This introduces uncertainty since
you may wish to cash in your foreign investments just when the exchange rate is least
favourable – hence this may be a reason for ‘home bias’. With the cost of information
flows becoming lower (e.g. the prospect of increased information on foreign companies
and real-time stock price quotes and dealing over the internet), it is always possible
that the home bias problem may attenuate and investors may become more willing to
diversify internationally.

On the other hand, some argue that the ‘home bias’ problem is illusory once one
takes into account the fact that the inputs to the mean-variance optimisation problem
are measured with uncertainty. Although a US investor holding her stocks in the same
proportions as in the S&P500 may not hold precisely the mean-variance optimum pro-
portions, nevertheless, her S&P500 indexed portfolio may be within a 95% confidence
band of this optimum position. This argument may apply with even greater force if we
recognise that in the real world, we need to make a ‘genuine’ forecast of the inputs (i.e.
forecasts of expected returns and the variance–covariance matrix) to the mean-variance
optimisation problem. Under these circumstances, the S&P500 indexed portfolio may
actually outperform the optimum mean-variance portfolio.

6.3 Mean-Variance Optimisation in Practice

It is probably true to say that a large proportion of investment funds are not allocated
on the basis of mean-variance optimisation. Usually, a wide variety of criteria such as



S E C T I O N 6 . 3 / M E A N - VA R I A N C E O P T I M I S AT I O N I N P R A C T I C E 157

political risk, business risk and the state of the economic cycle are used in a relatively
informal way, by the investment policy committee of an investment bank to determine
asset allocation, across different countries. What are the problems associated with the
‘pure application’ of mean-variance optimisation as espoused in the textbooks and
which make it difficult to apply in practice? Most obviously, it only deals with risk as
measured by the variance–covariance matrix and not other forms of risk (e.g. political
risk) and (in its simplest form) it only covers one specific time horizon (e.g. 1 month
or 1 year etc.). However, the main reason it is not widely used is that it is somewhat
of a ‘black-box’ and the results are subject to potentially large estimation errors.

Estimation Errors

Consider possible estimation errors. If (continuously compounded) returns are nor-
mally, identically and independently distributed (niid), with a constant population mean
µ and variance σ 2, then (unbiased) estimates of the mean and standard deviation are
given by

R =

n∑
i=1

Ri

n
(29a)

σ̂ =

√√√√√√
n∑

i=1

(Ri − R)2

n − 1
(29b)

The above formulae can be applied to any chosen frequency for the data (e.g. daily,
weekly, monthly) to obtain the appropriate mean return and standard deviation for any
particular horizon. (We ignore complexities due to the use of overlapping data.) For
example, using monthly returns data, we might find that R = 1% p.m. and σ̂ = 4%
p.m. It can be shown that the standard deviation of the estimate of R is

stdv(R) = σ√
n

(30)

Suppose we wanted to obtain an estimate of the population mean return of 1% p.m. that
was accurate to ±0.1%, given that σ = 4% p.m. This would require n = 42/(0.1)2 =
1600 monthly observations, that is, 133 years of monthly data! Clearly, the accu-
racy of our estimate of the mean return obtained from a ‘moderate sample’ of, say,
60 monthly observations (i.e. 5 years) will be very poor. For example, for n = 60,
stdv(R) = σ/

√
n = 0.52%, so the error is more than half of the estimated mean value

for R of 1% p.m. There is an additional problem. If the population mean is not constant
over time, then even using a lot of past data will not provide an accurate estimate, as
data from the beginning of the period will not provide an accurate representation of
the changing population mean. Hence, analysts tend to use other methods to estimate
expected returns. They might use an estimate of the security market line (SML) and
the asset’s beta to predict expected returns or even use predictions from the APT or a
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more general regression model in which returns are assumed to depend on a set of ‘fun-
damental variables’ (e.g. dividend or price–earnings ratio, yield spreads, etc.). They
will also combine these estimates with ancillary information on the firm or sector’s
company reports.

What about the accuracy of our estimate of the sample standard deviation σ̂ = 4%
p.m.? The standard deviation (for normally distributed returns) of σ̂ is given by

stdv(σ̂ ) =
√

2σ 2

√
n − 1

(31)

Suppose we use 5 years (n = 60 monthly observations) of data to estimate σ̂ = 4%

p.m. Using the above equation, we get stdv(σ̂ ) =
√

242

√
60 − 1

= 0.38% p.m. Hence, the

accuracy of σ̂ = 4% p.m. is relatively good at 0.38% p.m. (i.e. 9.5% of its estimated
value), and estimates of variances (and covariances) using historic data is subject to
much less error (relatively speaking) than estimates of the expected return.

It might be thought that the precision in estimating the expected return could be
enhanced by keeping the same ‘length’ of data, say 5 years, but increasing the frequency
of data from, say, monthly to daily. However, this does not in fact help – you cannot
get something for nothing out of your fixed data set. This arises because if, say,
monthly returns are statistically independent, then it can be shown that the expected
daily return and standard deviation are given by µd = T µm and σd = √

T σm, where
T is the fraction of a month (and here T = 1/30 approximately). Hence, σd/µd =√

T σm/T µm = √
30σm/µm, which implies that the daily standard deviation relative to

the daily mean is about 5.5 times the monthly value (i.e. σm/µm). Hence, the relative
error increases as the period is shortened.

Black Box?

The ‘black-box’ element in mean-variance portfolio analysis arises because the optimal
weights w∗

i simply ‘pop out’ of the maximisation procedure, and it is often difficult
(especially with many assets) to undertake a sensitivity analysis that is tractable and
easy to understand. Estimation error arises because the inputs, that is, the forecast of
expected returns (ERi ) and of the elements of the variance–covariance matrix {σij } may
provide poor predictions of what actually happens in the future. The ‘optimiser’ will
significantly overweight (underweight) those securities that have large (small) forecast
expected returns, negative (positive) estimated covariances and small (large) variances.
Generally, it is the bias in forecasts of expected returns that are the major source of
error; by comparison, forecasts of the σij are reasonably good.

Generally, historic averages of past returns (e.g. the sample mean return over a
given ‘window’ of recent data) are used to measure future expected returns. These
methods can be improved upon, for example, using more sophisticated recursive mul-
tivariate regressions, time-varying parameter models, or pure time series models (e.g.
ARIMA and the stochastic trend model), Bayesian estimators and most recently, pre-
dictions based on neural networks. Forecasts of the variances and covariances can be
based on exponentially weighted moving averages (EWMA) or even simple ARCH and
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GARCH models (see Chapter 29). Essentially, these methods assume that the variance
(or covariance) are a weighted average of past squared returns. Of course, they involve
increased computing costs and, more importantly, costs in interpreting the results for
higher management who may be somewhat sceptical and lack technical expertise. How-
ever, we have little or no evidence on how these more sophisticated alternatives might
reduce the ‘estimation error’ in the mean-variance optimisation problem. But Simmons
(1999) provides a simple yet revealing sensitivity analysis. She uses historic sample
averages for ER and the variance–covariances and calculates the optimal weights (from
a US perspective) on the efficient frontier (with no short sales) taking US equities, US
bonds, US money market assets, European stocks and Pacific stocks as the set of assets
in the portfolio. She then repeats the exercise using EWMA forecasts for variances
and covariances and finds a dramatic change in the optimal weights, thus showing the
extreme sensitivity of mean-variance analysis to seemingly innocuous changes in the
inputs.

What evidence we do have (e.g. Jobson and Korkie 1980, 1981, Frost and Savarino
1988) on the ‘estimation error’ from mean-variance optimisation uses simple ‘historic’
sample averages for forecasts of Ri and σij . As we shall see, in general, these studies
suggest that the best strategy is to constrain the weight attached to any single ‘security’
to a relatively small value, possibly in the range 2–5% of portfolio value, and one
should also disallow short sales or buying on margin.

The technique known as Monte Carlo simulation allows one to measure the ‘esti-
mation error’ implicit in using the mean-variance optimiser. Monte Carlo simulation
allows ‘repeated samples’ of asset returns and the variance–covariance matrix to be
generated. For each ‘run’ of simulated data, we can calculate the estimated opti-
mal portfolio return (Rp) and its standard deviation (σp), and hence the Sharpe ratio
(Rp − r)/σp. We then compare these simulated outcomes with the known ‘true’ values
given from the underlying known distribution. The procedure involves the following
steps where

n = number of assets in the chosen portfolio (e.g. 20)
m = number of simulation runs in the Monte Carlo analysis
q = length of data sample used in calculating mean returns and the variances

and covariances

1. Assume returns are multivariate normal with true mean returns µi and
variance–covariance matrix 	 = {σij }. In the 2-asset case, the ‘true values’ of µ1,
µ2, σ1, σ2 and σ12 will be based on historic sample averages using q = 60 data
points (say). But from this point on we assume these values are known constants.
We therefore know the true ‘population parameters’ µi , 	 and can calculate the
true optimal weights w∗

i and the true optimal portfolio returns (R∗
p) and standard

deviation (σ ∗
p ) that maximise the Sharpe ratio S = (ER∗

p − r)/σ ∗
p .

2. The asset returns are generated from a multivariate normal distribution, which encap-
sulates the correlation structure between the asset returns:

Ri = µi + εi
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where εi is drawn from a multivariate normal distribution, with known
variance–covariance matrix 	, calculated as noted above. Now generate q = 60
simulated returns (Ri for each of the i = 1, 2, . . . , n assets. This is our first Monte
Carlo ‘run’ (i.e. m = 1).

3. With the q = 60 data points for each return series, calculate the sample average
returns ER̂

(1)
i = ∑q

i=1 R
(1)
i /q and variance–covariance matrix 	(1). Then, use these

as inputs to solve the portfolio maximisation problem to give our ‘first run’ values
for the simulated optimal portfolio weights ŵi , portfolio return and its variance (R̂p,
σp)

(1).

4. Repeat step (2) and step (3) m-times and use the m-generated values of (R̂p, σ̂p)
to obtain their average values (over ‘m-runs’), which we denote (Rp, σ p) together

with the average Sharpe ratio Ŝ = (Rp − r)

σ p
. We can compare these averages from

the Monte Carlo simulation with the known true values (R∗
p , σ ∗

p and S∗) to provide
a measure of the ‘bias’ produced by our estimation method for expected returns and
covariances.

Some empirical results from Jobson and Korkie (1980) for monthly returns on 20
stocks generated from a known multivariate distribution show that the Sharpe ratios for
the simulated data (Rp, σ p), the known population parameters (R∗

p , σ
∗
p ) and an equally

weighted portfolio were vastly different at 0.08, 0.34 and 0.27 respectively. Hence,
‘estimation error’ can be substantial and radically alters the risk–return trade-off.

Frost and Savarino (1988) in a similar experiment found that the ‘biases’ Rp − R∗
p

and σ p − σ ∗
p (particularly the former) fell dramatically as the portfolio weights in any

one asset are restricted to a small positive value and if no short sales are allowed.
In addition, for investors who are either twice or half as risk-averse as the market
investor (i.e. where the latter holds the ‘market portfolio’ of 25 equities, say), the
best outcome (in terms of certainty equivalent returns) occurs if the mean-variance
optimisation is undertaken under the restriction that no more than about 3–5% is
held in any one security. Also, note that either short selling or buying on margin
considerably worsens performance. Thus, it appears that mean-variance optimisation
can provide some improvement (albeit not large) to holding the market index as long
as some restrictions are placed on the optimisation problem.

Index tracking in equity markets using market value weights (wim) is fairly common-
place. One constrained optimisation strategy is to maximise the Sharpe ratio subject to
the optimal weights (w∗

i ) not being more than, say, 2% from the current market weights
for that stock (i.e. ŵ∗

i = wim ± 0.02 wim). Cavaglia, Melas and Miyashiuta (1994) find
that the Sharpe ratio can be improved for an international equity portfolio (i.e. one which
includes equity held in a large number of countries) as one moves a small amount away
from the current market value weights. It is also the case in practice that no investment
manager would believe in the optimal weights if these were not close to her intuitive
notions of what is ‘reasonable’. Indeed, UK pension funds rarely invest more than 5%
of their equity portfolio in a single stock (even though an indexing strategy on the
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FTSE100 would involve holding about 15% in Vodaphone-Mannesmann and a Finnish
pension fund would have to hold over 50% in Nokia!).

Some constraints need to be placed on the weights obtained from the mean-variance
optimiser if ‘unrestricted weighting’ means that the investor holds a significant percent-
age of any one firm or industry sector (e.g. as might be the case when holding 90% of
your wealth in small-cap stocks or a large proportion of stocks in emerging markets).
Unconstrained optimisation, which allows short selling, often results in weights, which
imply that you should short sell large amounts of one stock and use the proceeds to
invest long in another stock. Practitioners would simply not believe that such a strategy
would be successful, ex-post.

There have been attempts to see if a given portfolio is ‘close to’, in a statistical
sense, the mean-variance optimal portfolio (e.g. Jobson and Korkie 1980). However,
such tests appear to have low power (i.e. tend not to reject mean-variance efficiency
when it is false) and do not allow for inequality constraints (e.g. no short selling), so
this approach is not often used in practice.

It is also worth noting that there are some technical problems in calculating the
optimal weights. If the covariance matrix is large, there may be problems in inverting
it and then the optimal weights may be very sensitive to slight changes in the estimated
covariances.

Learning and Bayes Theorem

A well-known result in portfolio theory is that if you add an asset with positive mis-
pricing (i.e. Jensen’s α > 0) to the market portfolio, then the (squared) Sharpe ratio
for this new portfolio increases by (α/σε)

2, where σ 2
ε is the residual variance from the

market model regression (Ri − r) = αi + βi(Rm − r) + εi . A question raised by Pastor
(2000) is whether this is sensible if your estimate of α is uncertain. In a one-period
framework, Pastor assumes that we choose risky asset shares to maximise expected
end-of-period wealth:

max
α

∫
U(W+1)p(R+1|�) dR+1

where R is the portfolio return and p(.|.) is the probability density function (p.d.f.)
given information, �. However, Pastor assumes that the parameters θ in the predictive
equation are not known with certainty and investors use Bayes rule (see Chapter 2) to
form the predictive density p(R+1|�), where

p(R+1|�) =
∫

p(R+1|θ,�)p(θ |�) dθ

and p(θ |�) is the posterior distribution of θ , which in turn is proportional to the prior
distribution p(θ) and the likelihood function L(θ |�):

p(θ |�) ∝p(θ)L(θ |�)
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The optimal portfolio weights are given by the usual tangency condition (i.e. maximise
Sharpe ratio).

z∗
t = �−1(EtR+1 − r) w∗

i = zi/
∑

i

zi

where � and ER+1 are the first two moments of the predictive density p(R+1|�).
The standard method to obtain w∗

i (i = 1, 2, . . . , n) would be to use only the sample
estimates of � and ER calculated from historic data. The Bayesian uses estimates
based on the predictive distribution p(R+1|�), which takes into account the sample
estimates and the investor’s prior views about the (Jensen’s) α and β parameters.
The posterior for θ = (α, β) is a weighted average of the prior estimates θ0 and the
sample estimates θ̂ (obtained using maximum likelihood). For the Bayesian, the optimal
weight of any ‘new’ assets is proportional to α̃/σ̃ 2, the posterior means of α and σ 2

(the regression variance).
Pastor finds that the standard approach to determining w∗

i using only sample data for
� and ER − r for US investors implies an optimal weight of foreign equities of around
40%. But because of the uncertainty in estimating (particularly) the expected returns,
one cannot reject the null that the optimal tangency portfolio has a zero weight on
non-US stocks (see Britten–Jones above). In a Bayesian framework, the bias towards
domestic equities depends on the degree of confidence about the domestic CAPM.
Pastor finds that the prior belief about mispricing in the foreign portfolio must be
between −2% and +2% p.a. (i.e. σα = 1%) in order to explain the actual US holdings
of foreign stocks (of 8% of total wealth) – so a US investor’s belief in the efficiency
of the domestic (US market) portfolio has to be very strong, in order to explain the
observed home bias of US investors.

It remains the case, that for all its elegance, mean-variance optimisation is, in prac-
tice, merely one method of deciding on portfolio allocation. Other judgemental factors
such as an assessment of political risk and the state of the economic cycle in different
countries or industries play as important a role as ‘pure’ mean-variance analysis. Cur-
rent market value proportions, as embodied in the S&P index (for example), would
not be the same as those given by an unconstrained mean-variance analysis (e.g. one
that uses sample averages as forecasts of the mean return and the covariance matrix).
Therefore, in practice, mean-variance analysis tends to be used to see if ‘new forecasts’
of Ri and σij provide some improvement in the Sharpe ratio. Sensitivity analysis of
the Sharpe ratio is also usually conducted with ‘user imposed’ changes in key returns
and covariances rather than basing them on historic averages. As the scenarios change,
if the optimal weights w∗

i vary greatly in the unconstrained optimisation problem, then
some constraints will be placed on the w∗

i (e.g. that the new optimal proportions do not
vary greatly from the current market value ‘index tracking’ weights and also perhaps
that no short selling is allowed).

In summary, our overall conclusions might be that mean-variance optimisation is
useful if

• portfolio weights are constrained to a certain extent (e.g. hold less than 5% of value
in any one asset or do not move more than 2% away from the ‘market index weight’
or do not allow short sales);



S E C T I O N 6 . 4 / S U M M A RY 163

• better forecasts of returns Ri and covariances {σij } are used in place of his-
toric averages;

• a small number of assets are used (e.g. using mean-variance optimisation for allo-
cation between say 20 country indexes) so that transparency and sensitivity analysis
are possible.

6.4 Summary

We have discussed a wide range of practical and theoretical issues in this chap-
ter concerning international portfolio diversification. The key elements are listed
below.

• The mathematics of one-period mean-variance optimisation allows calculation of
optimal portfolio weights and, under the representative agent assumption, the deter-
mination of equilibrium expected returns, that is the CAPM. It also forms the
basis for other more complex portfolio optimisation techniques (e.g. those that
impose constraints on the portfolio weights and intertemporal models in Chapters 15
and 16).

• There appears to be substantial gains in reducing portfolio risk by diversification
with only a small number of assets (about 25). A greater risk reduction can be
obtained if we diversify internationally, even if we randomly choose the diversified
set of stocks.

• When we consider both expected return and risk, then international diversification
generally improves the risk–return trade-off (i.e. pushes the efficient frontier to the
left), particularly if the foreign returns are hedged either with forwards, futures or
options. The improvement from international diversification is more debatable when
returns are unhedged and must be examined on a case-by-case basis for a particular
‘home currency’ investor.

• Diversification can proceed on the basis of either random selection of stocks, or
an equally weighted portfolio or tracking a broad market index (e.g. the Morgan
Stanley World Index) or using a mean-variance optimiser.

• The main problem in accepting the results from a totally unconstrained mean-
variance analysis is that the optimal proportions (weights) are very sensitive to
forecasts of expected returns and to assets that have either very high or very low
forecast variances. In practice, therefore, the optimal proportions are constrained
in some way (e.g. that they must not differ from the current proportions by more
than 2%).

• The home bias problem may not be as acute when we consider the uncertainties
involved in actual portfolio diversification, but it is still ‘a puzzle’ why international
diversification is as low as observed.
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Appendix I: Efficient Frontier and the CML

Efficient Frontier

In the text, we derived the efficient frontier by exploiting the two-fund theorem. Once
we have optimal weights at two points on the frontier, we can map out the whole of the
frontier by forming a weighted average w(q) = αw(1) + (1 − α)w(2). In this appendix,
we derive the optimal weights explicitly, in terms of the ‘raw inputs’, namely, the
(n × n) covariance matrix of returns �, the expected returns on the risky assets ER
(n × 1) and the chosen mean portfolio return ERp ≡ µp. The problem is to choose w

(n × 1) to minimise portfolio variance σ 2
p ≡ w′�w subject to the budget constraint

w′e = 1 (e = unit vector) and a given level of expected portfolio return w′ER = µp.
The Lagrangian is

θ = 1
2 (w′�w) − λ(w′ER − µp) − ψ(w′e − 1) (A1)

The first-order conditions are

�w − λER − ψe = 0 (A2)

w′ER = µp (A3a)

w′e = 1 (A3b)

from (A2)
w = �−1[λER + ψe] (A3c)

Hence,
ER′w = ER′�−1[λER + ψe] = µp (A4)

e′w = e′�−1[λER + ψe] = 1 (A5)

(A4) and (A5) are two equations in two unknowns λ and ψ , and can be written as[
A B

B C

] [
λ

ψ

]
=

[
µp

1

]
(A6)

where
A = (ER′)�−1(ER) (A7a)

B = (ER′)�−1e (A7b)

C = e′�−1e (A7c)

Note that A, B and C are scalars. From (A6), the (scalar) Lagrange multipliers are
given by

λ = Cµp − B

AC − B2
(A8a)

ψ = A − Bµp

AC − B2
(A8b)
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Substituting (A8a) and (A8b) in (A3c),

w∗ = �−1

[
ER(Cµp − B) + e(A − Bµp)

(AC − B2)

]
(A9)

where w∗ is the (n × 1) vector of optimal proportions held in the risky assets.
Using (A9), the minimum variance portfolio (for given µp) has

var(Rp) = w′�−1w = Cµ2
p − 2Bµp + A

AC − B2
(A10)

The portfolio variance is a quadratic function of the mean portfolio return. In mean-
variance space this maps out a parabola, while in mean-standard deviation space, it
maps out a hyperbola.

The global minimum variance portfolio can be obtained by minimising w′�w sub-
ject to w′e = 1 or directly from (A10) by minimising var(Rp) with respect to µp, which
gives

µgmv
p = B/C (A11)

Therefore, the weights in the global minimum variance (gmv) portfolio w∗ (using (A9))
and the variance of this portfolio are

w∗
gmv = �−1e/(e′�−1e) (A12a)

σ 2
gmv = 1/C (A12b)

Of course, w∗
gmv is independent of expected returns, and the global minimum variance

portfolio does earn a positive expected return µ
gmv
p > 0, since C is a quadratic form

that must be positive definite.
Note also from (A9) that the portfolio weights on the efficient frontier are linear

in µp, so that for any two points on the efficient frontier, the mean return on a third
portfolio is

µ(3)
p = αµ(1)

p + (1 − α)µ(2)
p with w∗

p = αw∗
1 + (1 − α)w∗

2

This is the two-fund theorem and is sometimes expressed by saying that the mean-
variance frontier is spanned by any two frontier returns (and this terminology is used
in the allied literature when testing the CAPM).

Capital Market Line

When we introduce a risk-free asset, the combinations of var(Rp) and µp that minimise
portfolio variance are linear. The problem is to choose w to minimise w′�w subject
to the constraint

Rp = w′R + wfr (A13)
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where w ∼ (n × 1) and w′e + wf = 1; hence

Rp = w′(R − r .e) + r (A14)

The Lagrangian is

θ = 1
2w′�w + λ[µp − (w′ER − r .e) − r] (A15)

and µp is fixed (given). The solution is

w∗ = kpz (A16a)

z = �−1(ER − r .e) (A16b)

kp = (µp − r)/(A − 2Br + Cr2)

= (µp − r)/[(ER − r.e)�−1(ER − r .e)] (A16c)

w∗
f = 1 − e′w∗ (A16d)

var(Rp) = w∗′
�−1w∗ = (µp − r)2

(A − 2Br + Cr2)
(A17)

Note that kp is linear in µp (and so is w∗). The portfolio standard deviation
√

var(Rp)

is also linear in µp and, therefore, the CML (i.e. optimal weights given a choice of
risk-free and risky assets) is linear in (σp, µp) space. The CML is sometimes referred
to as ‘the efficient frontier with a riskless asset’.

There is another nice little ‘nugget’ we can extract from the CML, namely, the tan-
gency portfolio. We derive the step-by-step solution for the tangency portfolio below,
but we know that it lies somewhere on the CML. The solution for w∗, given any
particular µp, from (A16a) consists of two elements, one kp (a scalar) depends on the
choice of µp and the other z is independent of the choice of µp. The tangency portfo-
lio is a specific point on the CML, namely, the tangency point of the CML with the
efficient frontier, and is independent of any arbitrarily chosen µp. The weights of the
risky assets (only) in the tangency portfolio must therefore be proportional to z and
sum to unity. The tangency or ‘market’ portfolio weights wq of the risky assets are
therefore given by

wq = z

e′z
= �−1(ER − r .e)

e′�−1(ER − r .e)
(A18)

where the sum of the weights e′wq = 1. The market portfolio weights wq are the
same for all investors regardless of their degree of risk aversion. The proportion held
in the risk-free asset w∗

f = 1 − e′w∗ is at the moment indeterminate since we have
only determined wq and not kp and therefore not w∗ (see (A16a)). This should not be
surprising since the choice of how much to borrow or lend at the risk-free rate does
depend on the investor’s risk preferences, and we have not introduced an objective
(utility) function that ‘measures’ the degree of risk aversion. Only when we introduce
a function that tells us how the individual trades off risk σ 2

p against expected portfolio
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return µp can we ‘pin down’ the optimal proportions to hold in the riskless asset and
the risky asset bundle wq.

Appendix II: Market Portfolio

We assume short selling is permitted. Since
∑

i wi = 1, we can write the maximand,
incorporating this constraint:

maxθ = ERp − r

σp
= 	wi(ERi − r)

σp
(A1)

where

σp =

 n∑

i=1

n∑
j=1

wiwjσij




1/2

(A2)

We will first illustrate the solution without using matrix algebra. Since ERp and σp

depend on the wi , differentiating equation (A1) requires the use of the ‘product rule’
of differentiation (i.e. d(uv) = u dv + v du):

∂θ

∂wi

= 	wi(ERi − r)


 ∂

∂wi


 n∑

i=1

n∑
j=1

wiwjσij




−1/2

 + 1

σp

∂

∂wi

[
n∑

i=1

wi(ERi − r)

]

= 	wi(ERi − r)


(

−1

2

)
(σ−3

p )

n∑
j=1

(2wjσij )


 + 1

σp
(ERi − r) = 0 (A3)

Multiplying through by σp and noting
∑

i wiERi = ERp[
ERp − r

σ 2
p

]
n∑

j=1

wjσij = (ERi − r) for i = 1, 2, . . . , n (A4)

At the maximum, the term in square brackets is a constant, which we denote

η =
[

ERp − r

σ 2
p

]
(A5)

where η is often referred to as the market price of risk. Substituting equation (A5)
into equation (A4), we obtain the first-order condition for the market portfolio
(equation (19) in the text)

n∑
j=1

σij zj = ERi − r for i = 1, 2, . . . , n (19)

where zj = ηwj .
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Solution: Matrix Notation

We now repeat the above solution using matrix notation:

θ = w′(ER − r .e)

(w′�w)1/2
= 	wi(ER − r)

σp
(A6)

where w = (w1, w2, . . . , wn), ER − r .e = (ER1 − r, ER2 − r, . . . , ERn − r), σp =
(w′�w)1/2, �n×n = {σij } and e is the (n × 1) unit vector. Using the product rule
and chain rule of differentiation,

dθ

dw
= (ER − r .e)(w′�w)

− 1
2 − (1/2)w′(ER − r .e)(w′�w)

− 3
2 (2�w) = 0 (A7)

where d(w′�w)/dw = 2�w. Multiplying through by the scalar (w′�w)1/2

ER − r = [w′(ER − r .e)/(w′�w)]�w (A8)

The term in square brackets, a scalar, is the excess return on the portfolio (ERp − r)

divided by the variance of the portfolio σ 2
p = (w′�w) and is constant for any set of

wi’s. We denote this constant as η (see equation (A5)) and (A8) becomes

ER − r .e = �(ηw) = �z (A9)

where z = ηw. The solution for z the (n × 1) vector is therefore given by

z = �−1(ER − r .e) (A10)

The optimal ‘market portfolio’ weights are

wq = z

e′z
= �−1(ER − r .e)

e′�−1(ER − r .e)

as noted above. Since 	iwi = 1, each individual weight is wq,i = zi/	zi . This com-
pletes the derivation of the optimal ‘tangency’ or ‘market portfolio’ weights z (or
strictly w).



7
PERFORMANCE
MEASURES , CAPM
AND APT

Aims

• Define concepts that enable us to rank portfolio managers’ investment performance
and determine whether they can ‘beat the market’.

• Relax some of the restrictive assumptions of the standard CAPM.

• Demonstrate the usefulness of the single index model, SIM.

• Examine the arbitrage pricing theory, APT, which is a multifactor model of equilib-
rium returns based on the principle of ‘no-arbitrage’.

7.1 Performance Measures

It would be useful if we could assess the actual investment performance of different
traders or of the same trader over time. Such performance measures would include
the return relative to the risk of the portfolio and then rank alternative portfolios
accordingly. A trader who consistently turns in a higher return than all other traders is
not necessarily ‘the best’ trader, since his portfolio might carry a higher level of risk.
An ‘active’ mutual fund allows the managers of that fund to invest in a wide portfolio
of securities and to try and pick ‘winners’. One area where a performance index would
be useful is in ranking these ‘active’ mutual funds and seeing whether they outperform
a purely ‘passive’ investment strategy (e.g. index trackers). The performance measures
that we examine are the Sharpe, Treynor and Jensen indices.

For example, suppose the performance of fund managers is assessed every month.
Over a 5-year horizon, assume two fund managers A and B have identical average
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(excess) returns of 10% p.a. from their ‘active’ portfolio strategies. If fund manager
A has monthly returns (expressed at an annual rate) of 10.1%, 9.8%, 10.2%, 9.9%,
. . . , and so on, whereas the fund manager B has a sequence of returns like 20%, 2%,
25%, 0%, −39%, . . . , which fund manager would you be most happy with? If you
have a 1-month horizon and you like return but dislike risk (i.e. standard deviation),
you would prefer manager A. This simple example demonstrates that most investors
are not just concerned only with average return but also the risk associated with a
particular investment strategy. There is no unambiguous measure of risk. In the above
example, it is clear that the standard deviation of returns is larger for manager B than
for manager A and the Sharpe ratio measures ‘average return per unit of risk’ and
manager A has the highest Sharpe ratio.

What is causing the differential movement in the returns of manager A and manager
B? It may be that manager B has a portfolio of stocks with very high betas, whereas
manager A’s portfolio has a rather low portfolio beta. Since both managers earned
the same average return, we might conjecture that manager B is earning less average
return per unit of ‘beta risk’ than manager A. Here we are using the beta of the
portfolio as a measure of the (relative) riskiness of the two fund managers – this is the
basis of Treynor’s index of performance. Finally, note that according to the CAPM,
the ‘required return’ for each manager (i = A or B) is given by RRi = βi(Rm,t − r).
Hence, the required CAPM risk adjusted average excess return for manager A should
be lower than that for manager B, because A’s stock portfolio has a lower beta. Each
manager has an average excess abnormal return αi = actual average historic excess
return – RRi . This is Jensen’s ‘alpha’, which is also a widely used measure of risk
adjusted performance, and the approach can be extended to multifactor models.

Sharpe Ratio

The index suggested by Sharpe is a reward-to-variability ratio and is defined for any
portfolio-i as

SRi = ERi − r

σi

(1a)

where ERi = expected return on portfolio-i, σi = variance of portfolio-i and r = risk-
free rate. The Sharpe ratio measures the slope of the transformation line and, as we
have seen, is used in mean-variance portfolio theory to choose the optimal weights to
invest in risky assets (when borrowing and lending is permitted) – this is the ‘tangent
portfolio’. Used in this way, we can describe (1a) as the ex-ante Sharpe ratio. The ex-
ante Sharpe ratio based on forecasts of expected returns and the portfolio variance (e.g.
EWMA or GARCH models) can be used to rank alternative portfolios that you will hold
over, say, the next year. In practice, the Sharpe ratio is mainly used to rank alternative
portfolios, ex-post, that is based on their historic ‘reward-to-variability’ ratio:

SRi = Ri − r

σi

(1b)

This can be calculated for any risky portfolio using a series of (say) monthly port-
folio returns (together with the risk-free rate). The ‘best’ portfolio is then taken to
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be the one with the highest historic Sharpe ratio. The Sharpe ratio is widely used to
compare alternative ‘active’ strategies (e.g. ‘stock-picking’ or ‘market timing’) with
passive strategies (e.g. tracking the S&P500) and to compare the performances of
different mutual funds. The Sharpe ratio is usually used to compare two (or more)
well-diversified portfolios, and the assumption is that you should invest in the single
‘best portfolio’ with the highest Sharpe ratio.

Although widely used, the underlying assumptions behind the Sharpe ratio are rather
restrictive as we see below. The ‘original’ Sharpe ratio is the ‘correct’ statistic to use
when comparing the historic performance of alternative portfolios providing:

(i) We initially hold a portfolio invested solely in the riskless asset.

(ii) We then consider two (or more) mutually exclusive zero-investment strategies in
either funds X or Y (or others), which are financed by borrowing.

A zero-investment strategy consists of taking a short position in the risk-free rate
(i.e. borrowing) and investing in the fund of risky assets. (Sharpe 1966, 1975). When
ranking portfolios using the Sharpe ratio, a key assumption is that any fund chosen
(F = X or Y) has a zero correlation with the existing portfolio – this is assured when
the existing portfolio is ‘cash’ (i.e. the risk-free asset), but is not the case if the original
portfolio contains risky assets – as we see below.

Case A: Existing Investment is in ‘Cash’

To show why the ‘original’ Sharpe ratio is valid when (i) and (ii) hold, consider the
following. Suppose $A are currently invested in your existing portfolio – which is the
risk-free asset earning r . You now borrow $V to invest in any risky fund F, so the $-
value of your ‘new’ portfolio (i.e. pre-existing ‘cash’ plus the zero-investment strategy
in F) at t + 1 is

Wt+1 = A(1 + r) + V [(1 + RF) − (1 + r)] = A(1 + r) + V (RF − r) (2)

The percentage return (with the initial $A as numeraire) on the ‘new’ portfolio is

Rp = r + (V/A)(RF − r) (3)

where V/A is the leverage ratio. It follows that

σp = (V/A)σF (4)

By definition, the Sharpe ratio of fund-F is

SRF = (RF − r)/σF.

where we dispense with expectations in the notation, for simplicity. Hence,

Rp = r + (V/A)σF SRF (5)
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Knowing σF, the investor should therefore choose V to ‘hit’ her desired level of
portfolio risk σ ∗

p , hence, using (4), V ∗ = Aσ ∗
p /σF. But by now choosing that fund-F

with the highest Sharpe ratio, the investor is then maximising expected return on the
new portfolio (see (5)), given her risk tolerance σ ∗

p . This is the basis for choosing a
zero-investment strategy with any fund-F that has the highest Sharpe ratio – but this
‘rule’ relies on your pre-existing portfolio being the riskless asset.

For completeness, it is worth noting that a closely related concept to the Sharpe
ratio is the information ratio IR:

IRi = Ri/σi (6)

Compared to the Sharpe ratio, the IR only ‘omits’ the risk-free rate from the numerator.
However, it is possible for IRA > IRB for two alternative funds A and B even though
SRA < SRB, so that the two criteria can give different rankings. The Sharpe ratio is
the ‘correct’ statistic to use since it represents the return to a zero-investment strategy
and is just as easy to calculate.

Case B: Initial Investment Contains Risky Assets

Now we complicate matters a little by moving away from the ‘original’ Sharpe ratio
by assuming that your pre-existing portfolio is not ‘cash’ but a portfolio of risky assets
E. Your pre-existing portfolio-E contains risky assets that may be correlated with the
two (or more) mutually exclusive zero-investment portfolios that you are trying to add
to your existing portfolio-E. Another complication is that in practice we often want to
compare returns on a chosen portfolio, not with the risk-free rate but with a benchmark
portfolio (e.g. S&P500). Can we still make use of a Sharpe ratio to rank alternative
additions to our existing portfolio? The answer is ‘yes’ providing we are rather careful.
The ‘new’ Sharpe ratio (relative to the risky benchmark portfolio) for any fund-i that
we wish to add to our existing portfolio-E is

SRi = Ri − Rb

σ(Ri − Rb)
= Rd

σd(Rd)
(7)

where Rd = Ri − Rb is the difference between the chosen portfolio-i and the bench-
mark portfolio. This collapses to the original Sharpe ratio for Rb = r . Suppose you
could choose either fund-X or fund-Z to add to your existing risky portfolio-E, and
RX > RZ. The stand-alone Sharpe ratios are

SRX = RX − Rb

σ(RX − Rb)
> SRZ = Rz − Rb

σ(Rz − Rb)
(8)

Your new Sharpe ratio would be either SRE+X or SRE+Z. If SRX > SRZ, does this
always imply that SRE+X > SRE+Z? The answer is no! To see this intuitively, assume
your existing portfolio-E is uncorrelated with the benchmark portfolio return Rb. Now,
for simplicity, assume returns on E and X are positively correlated, while returns on E
and Z are negatively correlated. Adding X to E, your new portfolio gains lots of extra
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return RX > RZ but it adds to the risk of your new portfolio, since ρEX > 0. Adding
Z to E does not provide as much extra return (as X) but it reduces risk. Hence, we
cannot say for definite that SRE+X > SRE+Z. What we must do is to explicitly work
out the Sharpe ratio for the two possible new portfolios.

To see how this is done assume you initially have $A invested in your pre-existing
portfolio and you short-sell the benchmark portfolio to finance your acquisition of F
(where F is either X or Z, but not a combination of both). So, again, the Sharpe ratio
is defined for a zero-investment portfolio. Then,

Wt+1 = A(1 + RE) + V (RF − Rb) (9a)

RE+F ≡ (Wt+1/A) − 1 = RE + (V/A)(RF − Rb) (9b)

σ 2
E+F = σ 2(RE) + (V/A)2σ 2(RF − Rb)

+ 2(V/A)σ(RE)σ (RF − Rb)ρ(RE, RF − Rb) (9c)

Hence, the standard deviation of the ‘new’ portfolio (i.e. E plus a long position in
F and short position in the benchmark) depends on the correlation between RE and
(RF − Rb), and this correlation is needed to calculate the Sharpe ratio SRE+F (for either
F = X or Z), which is

SRE+F = RE+F − Rb

σ(RE+F − Rb)
(10)

We can still follow the same procedure that we outlined for the risk-free rate benchmark
portfolio. The investor chooses her level of risk tolerance σ ∗

E+F, and (9c) can be used
to calculate V ∗, which then determines RE+F in (9b). Finally, the Sharpe ratio SRE+F

is calculated. This applies for F = X and Z with σ ∗
E+X = σ ∗

E+Z, so that the level of risk
tolerance is the same for both choices. Then, either X or Z is chosen to add to your
existing portfolio-E, based on their respective Sharpe ratios, as calculated using (10)
and providing SRE+F > SRE > 0.

Case C: Old and New Portfolios

The above demonstrates that when our existing portfolio-E contains risky assets, we
have to calculate the Sharpe ratio for the ‘new’ portfolio consisting of E and the
additional assets that we are thinking of adding (F = X or Z). To see the intu-
ition behind this result, we simplify the notation by renaming the new portfolio-E
+ F simply as ‘new’. The Sharpe ratio then implies we invest in the new portfolio
if (Dowd 2000)

SRnew > SRE or
Rnew − Rb

σ new
d

>
RE − Rb

σ E
d

(11a)

where

Rnew = zRz + (1 − z)RE = z(Rz − RE) + RE (11b)
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Hence Rnew is a combination of risky candidate portfolio-Z with the existing portfolio-
E. Note that σ E

d ≡ σ(RE − Rb) already incorporates any correlation between RE and
Rb, while σ new

d ≡ σ(Rnew − Rb) incorporates any correlation between Rnew and Rb.
Rearranging (11a) and using (11b), it is easy to show that the Sharpe criterion

implies

Rz − Rb > (RE − Rb) + (RE − Rb)

z

(
σ new

d

σ E
d

− 1

)
(12)

Some intuitively obvious conclusions from (12) are:

(a) If σ new
d = σ E

d , then you would include portfolio-Z in your existing portfolio as long
as Rz > RE.

(b) If σ new
d > σ E

d , then to include portfolio-Z requires Rz > RE by a sufficient amount
to compensate for the higher overall portfolio risk when you include Z as part of
your ‘new’ portfolio (assuming also that RE − Rb > 0).

The Sharpe ratio can be linked to a limited set of utility functions in end-of-period
wealth. For small symmetric risks, all utility functions behave like the quadratic (i.e.
second-order Taylor series expansion). The SR is closely related to the quadratic utility
function, and there exists a one-to-one correspondence between portfolio choice based
on maximising (expected) quadratic utility and maximising the Sharpe ratio (in the
presence of a risk-free asset). However, the Sharpe ratio is not a good reward-to-risk
measure if changes in wealth push the investor past the bliss point or if returns are either
fat-tailed or skewed. To avoid these pitfalls, Hodges (1998) generalises the Sharpe ratio
for an investor who maximises the expected utility of end-of-period wealth, assuming
exponential utility (i.e. constant absolute risk aversion).

Treynor Ratio

The Treynor ratio (1965) is

TRi = ERi − r

βi

(13)

It is therefore a measure of the (ex-ante) excess return per unit of risk but this time
the risk is measured by the incremental portfolio risk given by the portfolio-beta. If
the CAPM holds, (

ERi − r

βi

)
= ERm − r (14)

and the value of TRi should be the same for all portfolios of securities. As with the
Sharpe ratio, the Treynor ratio is used to compare the historic performance of alternative
portfolios (investment strategies), and the ‘best’ portfolio is the one with the highest
Treynor ratio.

We can calculate the average of the excess return on the market portfolio given
by the right-hand side of equation (14), Rm − r , and we can also estimate the βi for
any given portfolio using a time-series regression of (Ri − r)t on (Rm − r)t . Given
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the portfolio average excess return Ri − r , we can compute all the elements of (13).
The ‘active’ fund manager outperforms the chosen (passive) market portfolio (e.g. the
S&P500) if her particular portfolio (denoted i) has a value of TRi , which exceeds the
average return on the market portfolio Rm − r . The Treynor ratio can also be used
to rank alternative risky portfolios and although there are difficulties in interpreting
the Treynor index if βi < 0, this is uncommon in practice (and we do not consider
it further).

A form of the Treynor ratio can also be expressed using the regression:

Ri,t − rt = αi + βi(Rm − r)t + εi,t (15)

The Treynor ratio is sometimes defined as TR∗
i = αi/βi . Hence, we chose fund-A over

fund-B if
αA/βA > αB/βB (16)

Using (16) in (15), the Treynor criterion of maximising TR∗
i = αi/βi gives the same

investment ranking as our earlier formulation based on TRi = (Ri − r)/βi . Does the
Treynor ratio always give the same ranking as the Sharpe ratio? If TRA > TRB, then

RA − r

βA
>

RB − r

βB

Using βA = ρAMσA/σM, it follows that

SRA/ρAM > SRB/ρB,M (17)

where SRi = (RA − r)/σA. Hence, for the Treynor ratio to give the same investment
decision as the Sharpe ratio requires the benchmark portfolio to be the risk-free asset
and for the two alternative investments to have the same correlation with the market
return. Clearly, the two criteria will not always imply the same investment rankings.

Jensen’s Alpha

Jensen’s index (‘alpha’) assumes that investors hold an activity-managed portfolio-i,
and performance is measured by the intercept αi in the following regression:

Rit+1 − rt = αi + βi(Rmt+1 − rt ) + εit+1 (18)

The regression might use 60 or more months of time-series data on the (excess) market
return and the excess return on the portfolio-i, adopted by the ‘stock picker’. It is
immediately apparent from equation (18) that if αi = 0, then we have the standard
CAPM. Hence, portfolio-i earns a return in excess of that given by the CAPM/SML if
αi > 0. The latter implies that the portfolio lies above the SML. For αi < 0, the active
portfolio manager has underperformed relative to beta risk of her portfolio. Note that
Jensen’s alpha can give different portfolio rankings to the basic Sharpe ratio (which
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uses a risk-free benchmark). It is easily shown that if αA > αB, then SRA > SRB only if
ρA,M = ρB,M and σA = σB. However, it is often the case (although clearly not always)
that the Sharpe, Jensen and Treynor measures give the same rankings and usually all
three are calculated for each possible portfolio.

‘Jensen’s-α’ is often estimated in a more complex regression than (18), where the
right-hand-side variables chosen reflect many possible influences on expected returns
(e.g. βi might be time varying, depending on a set of economic variables zt such as the
dividend yield, yield gap etc.). Nevertheless, ‘outperformance’ is still based on αi > 0.

We can rearrange (18):

TRi ≡ (EtRit+1 − rt )

βi

= αi

βi

+ (EtRm,t+1 − rt ) (19)

The left-hand side of (19) is the Treynor’ ratio TRi . If beta is positive (which it is for
most portfolios), then it is easy to see that when TRi > EtR

m
t+1 − r , then αi is greater

than zero.

Roll’s Critique and Performance Measures

Roll’s critique, which concerns the estimation of the CAPM using a sample of data,
indicates that in any dataset the following relationship will always hold:

Ri = r + (Rm − r)β̂i (20)

where Ri is the sample mean of the return on portfolio-i and Rm is the sample mean of
the return on the market portfolio. There is an exact linear relationship in any sample
of data between the mean return on portfolio-i and that portfolio’s beta, if the market
portfolio is correctly measured. Hence, if the CAPM were a correct description of
investor behaviour, then Treynor’s index would always be equal to the sample excess
return on the market portfolio and Jensen’s index would always be zero. It follows
that if the measured Treynor or Jensen indices are other than suggested by Roll, then
that simply means that we have incorrectly measured the market portfolio.

Faced with Roll’s critique, one can only recommend the use of these performance
indices on the basis of a fairly ad hoc argument. If we find that our performance
ranking using these three indices is largely invariant to the proxy we use for the
market portfolio (e.g. S&P500, NYSE index, etc.), then Treynor, Sharpe and Jensen
indices may well provide a useful summary statistic of the relative performance of
alternative portfolios.

7.2 Extensions of the CAPM

The CAPM predicts that the expected excess return on any stock adjusted for its ‘beta
risk’ βi should be the same for all stocks (and all portfolios):

(ERi − r)/βi = (ERj − r)/βj = · · · (21)
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Equation (21) applies, under the somewhat restrictive assumptions of the standard
CAPM, which include:

• all investors have homogeneous expectations;

• investors choose their portfolio weights to maximise the Sharpe ratio;

• investors can borrow or lend unlimited amounts at the riskless rate;

• the market is in equilibrium at all times.

It is possible to relax some of these assumptions, for example, using different borrowing
and lending rates, or allowing for taxes, non-marketable assets and (price) inflation.
However, these ‘variants’ are now, hardly discussed in the literature. There are two
issues worthy of brief discussion, however; these are the ‘zero-beta CAPM’ and the
consequences of introducing heterogeneous expectations into the mean-variance model.

Zero-Beta CAPM: No Riskless Asset

Although investors can lend as much as they like at the riskless rate (e.g. by purchas-
ing government bills and bonds), usually they cannot borrow unlimited amounts. In
addition, if the future course of price inflation is uncertain, then there is no riskless
borrowing in real terms (riskless lending is still possible in this case if government
issues index-linked bonds).

In this section, we restate the CAPM under the assumption that there is no risk-
less borrowing or lending (although short sales are still allowed). This gives rise to
the Black’s (1972) zero-beta CAPM. Since there is no risk-free asset, the model deter-
mines real returns on any asset-i (or portfolio of assets):

ERi = ERz + (ERp − ERz)βip (22a)

where ERz is the expected real return on the so-called zero-beta portfolio associated
with any efficient minimum variance portfolio-p (see Figure 1). The zero-beta portfolio
has the minimum variance of all portfolios uncorrelated with portfolio-p. (Note that
portfolio-p is not the ‘market portfolio’ of the standard CAPM.) The beta for asset-i is

βip = cov(Ri, Rp)

var(Rp)
(22b)

By construction, a zero-beta portfolio has zero covariance with its corresponding
efficient mean-variance portfolio-p. Note that all portfolios along ZZ′ are zero-beta
portfolios but Z is also that portfolio that has minimum variance (within this particular
set of portfolios). It can also be shown that Z is always an inefficient portfolio (i.e.
lies on the segment SS’ of the efficient frontier).

Since we chose portfolio-p on the efficient frontier quite arbitrarily, it is possible
to construct an infinite number of combinations of various portfolios like ‘p’ with
their corresponding zero-beta counterparts. Hence, we lose a key property found in
the standard CAPM, namely, that all investors choose the same mix of risky assets,
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Figure 1 Zero-beta CAPM

regardless of their preferences. This is a more realistic outcome since we know that
individuals do hold different mixes of the risky assets. The equilibrium return on
asset-i could equally well be represented by (22a) or by an alternative combination of
portfolios p∗ and z∗ with

ERi = ERz∗ + (ERp∗ − ERz∗)β∗
ip∗ (22c)

Of course, both (22a) and (22c) must yield the same expected return for asset-i. This
result is in contrast to the standard CAPM in which the combination of the risk-
free asset and the market portfolio implies a unique opportunity set. In addition, in
the zero-beta CAPM, the line XX′ does not represent the opportunity set available
to investors.

Given any two efficient portfolios pi (i = 1, 2) and their corresponding orthogonal
risky portfolios Zi , then all investors can (without borrowing or lending) reach their
desired optimum portfolio by combining these two efficient portfolios. Thus, the two-
fund property also applies for the zero-beta CAPM.

The zero-beta CAPM provides an alternative model of equilibrium returns to the
standard CAPM and its main features are:

• With no borrowing or lending at the riskless rate, an individual investor can reach
her own optimal portfolio (given her preferences) by combining any mean-variance
efficient portfolio-M with its corresponding zero-beta portfolio Z.

• A zero-beta portfolio is one that combines risky assets in certain proportions wi

such that the return on this portfolio ERz = ∑
i wiERi

(i) is uncorrelated with an efficient portfolio-p

(ii) is the minimum variance portfolio (relative to the orthogonal portfolio-p – see
Figure 1).

• The combination of the portfolios P and Z is not unique. Nevertheless, the equilib-
rium return on any asset-i (or portfolio of assets) is a linear function of ERz and
ERp, and is given by equation (22a).
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Heterogeneous Expectations

Investors may have different subjective expectations of expected returns, variances and
covariances. This could not be the case under rational expectations where all investors
are assumed to know the true probability distribution (model) of the stochastic returns,
at all points in time. Under heterogeneous expectations, each investor will have her
own subjective efficient frontier. For each investor, the problem is the standard mean-
variance one of maximising the Sharpe ratio, subject to her budget constraint that gives
optimum asset proportions, which differ for different investors.

In general, when we aggregate over all investors (k = 1, 2, . . . , p) so that the market
for each asset clears, we obtain an expression for the expected return on any asset-i,
which is a complex weighted average of the investor’s subjective preferences (of risk
against return) and asset covariances. The marginal rate of substitution depends on the
level of wealth of the individual. Hence, equilibrium returns and asset prices depend on
wealth, which itself depends on prices, so there is no ‘closed form’ or explicit solution
in the heterogeneous expectations case.

We can obtain a solution in the heterogeneous expectations case if we restrict the
utility function so that the marginal rate of substitution between expected return and risk
(variance) is not a function of wealth. Linter (1971) assumed a negative exponential
utility function in wealth, which implies a constant absolute risk-aversion parameter.
Even in this case, equilibrium returns, although independent of wealth, still depend on a
complex weighted average of the individual’s subjective expectations of the covariances
and the individual’s risk-aversion parameters.

7.3 Single Index Model
The single index model SIM is not really a ‘model’ in the sense that it embodies
any behavioural hypotheses (e.g. about the return required to compensate for holding
‘market risk’) but it is merely a statistical assumption that the return on any security
Rit may be adequately represented as a linear function of a single (economic) variable
It (e.g. inflation or interest rates).

Rit = θi + δiIt + εit (23)

where εit is a random error term, and equation (23) holds for any security (or portfolio)
i = 1, 2, . . . , n and for all time periods. Hence, It could be any variable that is found
to be correlated with Rit , and the SIM has no specific theoretical model that seeks to
explain this observed correlation.

Clearly, even if the variable chosen for It is the excess market return Rm − r , the
equations for the SIM and the CAPM do differ, because the CAPM uses excess returns
on asset-i and has a zero intercept term. However, in some of the literature, the CAPM
and SIM are often treated as equivalent (which they are not) and the CAPM is referred
to as a ‘single-factor model’. The latter is acceptable, provided It is the excess market
return Rm − r and the dependent variable is the excess return on the stock (Ri − r).
In any case, we have deliberately denoted the coefficient on It as δi rather than βi to
emphasise that, in general, the SIM differs from the CAPM.
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Equation (10) can be estimated by OLS (or more sophisticated techniques such
as GMM), using, say, 60 months of time-series data. This gives the estimates of the
parameters (θ, δ), the variance of the error term σ 2

ε,i and other ‘diagnostic output’
such as the R-squared of the regression. Strictly speaking, the SIM also assumes that
the ‘unexplained element’ of the return for any security-i, represented here by εit , is
independent of that for any other security-j.

cov(εit , εjt ) = 0 for i �= j and for all t (24a)

and It is assumed independent of εit :

cov(It , εit ) = 0 for all i and t (24b)

Given our assumptions, it is easy to show that

Rit = θi + δiI t (25a)

σ 2
i = δ2

i σ
2
I + σ 2

ε,i (25b)

σij = δiδjσ
2
I (25c)

Equation (25a) simply says that the average return on stock-i depends on the average
value of the index I t and on the value of δi and θi for that stock. Shares that have
more exposure to the index (i.e. a higher δi > 0) will have a higher average return (for
I t > 0). From (25b), we see that for any individual security, the SIM can be used to
apportion the total volatility of its return σ 2

i into that due to

(a) its systematic risk caused by changes in the index It (which is common across all
securities) and

(b) its specific risk σ 2
ε,i caused by random events that affect only this particular security.

Hence,

Total variance of return of security-i = ‘delta’ × variance of index It

+ variance of specific risk

In general, for monthly data for a particular stock, the R-squared of (10) is rather
low, which implies that much of the variability in individual stock returns is not particu-
larly well explained by the variable It . Hence, ‘ball-park’ figures for σi, (δiσI ) and σε,i

(expressed at an annual rate) when using the market return as the ‘index’ It might be
40%, 0.9 × 15% = 13.4% and 26.6% respectively. This simply demonstrates that much
of the total monthly return variability (here 40%) for individual stocks is due to specific
risk (26.6%), rather than market risk (13.4%). Of course, portfolio theory points out
that this specific risk can be diversified away at near-zero cost if this security is held
as part of a well-diversified portfolio. That is why the CAPM/SML predicts that the
average return on any individual stock depends not on its ‘own variance’ but on its
covariance (correlation) with the rest of the stocks in the portfolio.
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Equation (25c) shows that in the SIM, the covariance between any two securities
depends only on δi, θi and σ 2

I , and this is useful when calculating the Value at Risk of
a portfolio of stocks (see Chapter 28).

The independence assumption cov(εit , εjt ) = 0 across different securities rarely holds
exactly, in practice, for stock returns within one country. The reason for this is that it is
unlikely that ‘shocks’ or ‘news’ that influence returns on firm A do not also sometimes
influence the returns on firm B. When comparing returns in different countries, the SIM
has a somewhat greater applicability, since macroeconomic shocks (e.g. unexpected
changes in interest rates) may not be synchronised across countries. However, a violation
of the assumption E(εiεj ) = 0 does not bias the estimates of δi, θi and, therefore, the
SIM is quite widely used in practice (e.g. see Cuthbertson and Nitzsche 2001a). Also, it
can be ‘improved’ by extending it to a ‘multi-index’ model by including more variables
that are thought to influence all stock returns (to a greater or lesser extent) – for example,
macroeconomic variables such as interest rates or exchange rates or ‘factor mimicking’
variables such as the returns on ‘high minus low book-to-market value’ shares (see
later chapters). Such multifactor models are used in picking undervalued and overvalued
stocks, in the same way that we used the SML. The APT (see the following section) is
a multifactor model that incorporates some theoretical ideas on the impact of portfolio
diversification on the average return on any stock.

7.4 Arbitrage Pricing Theory

An alternative to the CAPM in determining the expected rate of return on individual
stocks and on portfolios of stocks is the arbitrage pricing theory (APT). Broadly speak-
ing, the APT implies that the return on a security can be broken down into an expected
return and an unexpected, ‘surprise’ or ‘news’ component. For any individual stock,
this ‘news component’ can be further broken down into ‘general news’ that affects all
stocks and specific ‘news’ that affects only this particular stock. For example, news
that affects all stocks might be an unexpected announcement of an increase in interest
rates by the Central Bank. News that affects the stocks of a specific industrial sector,
for example, might be the invention of a new radar system that might be thought to
influence the aerospace industry but not other industries like chemicals and service
industries. The APT predicts that ‘general news’ will affect the rate of return on all
stocks but by different amounts. For example, a 1% unexpected rise in interest rates
might affect the return on stocks of a company that was highly geared more than that
for a company that was less geared. The APT, in one sense, is more general than the
CAPM in that it allows a large number of factors to affect the rate of return on a par-
ticular security. In the CAPM, there is really only one factor that influences expected
returns, namely, the covariance between the return on the security and the return on
the market portfolio. The APT may be represented as

Rit = Re
it + uit

where Rit = actual rate of return on the ith stock, Re
it = the expected return on the ith

stock and uit = the unexpected, surprise or news element. We can further subdivide
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the surprise or news element uit into systematic or market risk mt , that is, the risk
that affects a large number of stocks each to a greater or lesser degree. The remaining
uncertainty is unsystematic (idiosyncratic or specific) risk εit , which affects a single
firm or a small group of firms:

uit = mt + εit (26)

As in the case of the CAPM, we shall find that systematic risk cannot be diversified
away because this element of news or new information affects all companies. But
specific risk can be diversified away and therefore is not ‘priced’.

In order to make the APT operational, we need some idea of what causes the
systematic risk. News about economy-wide variables are, for example, a government
announcement that the GDP is higher than expected or a sudden increase in interest
rates by the Central Bank. These economy-wide factors F (indexed by j) may have
different effects on different securities, and this is reflected in the different values for
the coefficients bij or ‘betas’ given below:

mt =
∑

j

bit (Fj − EFj )t = b11(F1t − EF 1t ) + b12(F2t − EF 2t ) + · · · (27)

where the expectations operator E applies to information at time t − 1 or earlier. For
example, if for a particular firm the beta attached to the surprise in interest rates is
equal to 0.5, then for every 1% that the interest rate rises above its expected level, this
would increase the return on security-i by 0.5 percent (above its expected value). A
crucial assumption of the APT is that the idiosyncratic or specific risk εi is uncorrelated
across different securities, cov(εi, εj ) = 0.

Return on the Portfolio

For simplicity, suppose there is only one systematic risk factor, Ft and n securities in
the portfolio. The return on a portfolio R

p
t of n-securities held in proportions xi is, by

definition,

R
p
t =

n∑
i=1

xiRit =
n∑

i=1

xi(R
e
it + bi(Ft − EF t ) + εi)

=
n∑

i=1

xiR
e
it +

(
n∑

i=1

bixi

)
(Ft − EF t ) +

n∑
i=1

xiεi (28)

The return on the portfolio is a weighted average of the expected return plus the
portfolio-beta (multiplied by the ‘news’ about factor F ) plus a weighted average of
the specific risk terms εi . If the specific risk is uncorrelated across securities, then
some of the εi will be positive and some negative but their weighted sum is likely to
be close to zero. In fact, as the number of securities increases, the last term on the
right-hand side of (28) will approach zero – the specific risk has been diversified away.
Hence, the return on the portfolio is made up of the expected returns on the individual
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securities and the systematic risk, as represented by the single economy-wide news
term (Ft − EF t ).

A More Formal Approach

The beauty of the APT is that it does not require any assumptions about utility theory
or that the mean and variance of a portfolio are the only two elements in the investor’s
objective function. The model is really a mechanism (an algorithm almost) that allows
one to derive an expression for the expected return on a security (or a portfolio of
securities) based on the idea that riskless arbitrage opportunities will be instantaneously
eliminated. Not surprisingly, the APT does require some (arbitrary) assumptions. We
assume that investors have homogeneous expectations and that the return Rit on any
stock is linearly related to a set of k-factors Fit :

Rit = ai +
k∑

j=1

bij Fjt + εit (29)

where the bij are known as factor weights. Taking expectations of (29) and assuming
Eεit = 0, then,

Rit = ERit +
k∑
j

bij (Fjt − EF jt ) + εit (30)

Equation (30) shows that although each security is affected by all the factors, the impact
of any particular Fj depends on the value of bij and this is different for each security.
This is the source of the covariance between the returns Rit on different securities. We
assume that we can continue adding factors to (30) until the unexplained part of the
return εi is such that

E(εiεj ) = 0 for all i �= j and all time periods (31a)

E[εi(Fj − EFj)] = 0 for all stocks and factors (and all t) (31b)

Equation (31a) implies that unsystematic (or specific) risk is uncorrelated across secu-
rities, while (31b) implies that specific risk is independent of the factors F . Note that
the factors F are common across all securities and measure systematic risk. Now we
perform an ‘experiment’ where investors form a zero-beta portfolio of n-assets with
zero net investment. The zero-beta portfolio must satisfy

n∑
i=1

xibij = 0 for all j = 1, 2, . . . , k (32)

and the assumption of zero investment implies that

n∑
i=1

xi = 0 (33)

It follows from (33) that some xi are less than zero, that is, some stocks are held short
and the proceeds invested in other securities. The next part of the argument introduces



184 C H A P T E R 7 / P E R F O R M A N C E M E A S U R E S , C A P M A N D A P T

the arbitrage element. If investors put up no funds and the zero-beta portfolio earns a
non-zero expected return, then a risk-free arbitrage profit can be made. This arbitrage
condition places a restriction on the expected return of the portfolio, so using (28),
we have

R
p
t =

n∑
i=1

xiRit =
n∑

i=1

xi


ERit +

k∑
j=1

bij (Fjt − EF jt ) + εit




=
n∑

i=1

xiERit +
(

n∑
i=1

xibi1

)
(F1t − EF 1t ) +

(
n∑

i=1

xibi2

)
(F2t − EF 2t )

+ · · · +
n∑

i=1

xiεit (34)

Using (34) and (32) plus the assumption that for a large well-diversified portfolio the
last term on the right-hand-side approaches zero, we have

R
p
t =

n∑
i=1

xiERit ≡ ERp
t (35)

where the second equality holds by definition. Since this artificially constructed portfolio
has an actual rate of return R

p
t equal to the expected return ERp

t , there is zero variability
in its return and it is therefore riskless. Arbitrage arguments then suggest that this
riskless return must be zero:

ERp
t =

n∑
i=1

xiERit = 0 (36)

At first ‘blush’ it may seem strange that a riskless portfolio does not earn the riskless
rate of interest rt . This is because the riskless asset is included in the set of assets
available and like other assets can be held short or long so that the net return is zero.

We now have to invoke a proof based on linear algebra. Given the
conditions (31), (32), (33) and (36), which are known as orthogonality conditions, it
can be shown that the expected return on any security-i may be written as a linear
combination of the factor weightings bij . For example, for a two-factor model,

ERi = λ0 + λ1bi1 + λ2bi2 (37)

We noted that bi1 and bi2 in (30) are specific to security-i. The expected return on
security-i weights these security-specific betas by a weight λj that is the same for all
securities. Hence, λj may be interpreted as the extra expected return required because
of a securities sensitivity to the j th factor (e.g. GNP or interest rates).

Interpretation of the λj

Assume for the moment that we know the values of bi1 and bi2. We can interpret the λj

as follows. Consider a zero-beta portfolio (e.g. bi1 and bi2 = 0), which has an expected
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return ERz. If riskless borrowing and lending exist, then ERz = r , the risk-free rate.
Using (37), we see that

λ0 = ERz (or r) (38)

Next, consider a portfolio having bi1 = 1 and bi2 = 0 with an expected return ER1.
Substituting in (37), we obtain

λ1 = ER1 − λ0 = E(R1 − Rz) (39)

Similarly,
λ2 = E(R2 − Rz) (40)

Hence, an alternative to (37) is

ERi = ERz + bi1E(R1 − Rz) + bi2E(R2 − Rz) (41)

Thus, one interpretation of the APT is that the expected return on a security-i depends
on its sensitivity to the factor loadings (i.e. the bij ). In addition, each factor loading
(e.g. bi1) is ‘weighted’ by the expected excess return E(R1 − Rz), that is, the (excess)
return on a portfolio whose beta with respect to the first factor is one and with respect
to all other factors is zero. This portfolio with a ‘beta of 1’ therefore mimics the
unexpected movements in the factor F1.

Implementation of the APT

The APT is a factor model and may be summed up in two equations:

Rit = ai +
k∑

j=1

bij Fjt + εit (42a)

ERit = λ0 +
k∑

j=1

bij λj (42b)

where λ0 = rt or ERz. Note that in (42b), the λ0 and λj are constant across all assets
(in the cross-section). The time-series equation (42a) is not a prediction equation for
Rit since the factors are also measured at time t , the equation measures the contempo-
raneous risk exposure to the factors.

If there is no risk-free rate, then λ0 must be estimated and as it is the expected
return on a portfolio when all betas are zero, λ0 is the zero-beta rate. The bij are
interpreted as the amount of exposure of asset-i to the factor j and λj is interpreted as
the ‘price’ of this risk exposure. So the expected return premium on asset-i equals the
unit exposure βij to factor Fj times λj , the price of this beta risk. It is the loadings or
betas that determine average returns, not any characteristics of the firm. For example,
‘value stocks’ (i.e. stocks with high values of book-to-market) earn a high average
return, not because they have high book-to-market ratios per se but because they have
a high loading (i.e. high βij ) on the book-to-market factor Fj .
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The APT may be implemented in the following (stylised) way. A ‘first-pass’ time-
series regression of Rit on a set of factors Fit (e.g. inflation, GDP growth, interest
rates) will yield estimates of ai and the bi1, bi2, and so on. This can be repeated
for i = 1, 2, . . . ,m securities so that we have m values for each of the betas, one
for each of the different securities. In the ‘second-pass’ regression, the bi vary over
the m securities and are therefore the right-hand-side variables in (42b). Hence, in
equation (42b), the bij are the variables that are different across the m securities. The
λj are the same for all securities and, hence, these can be estimated from the cross-
section regression (42b) of Ri on the bij (for i = 1, 2, . . . , m). The risk-free rate is
constant across securities and hence is the constant term in the cross-section regression.

The above estimation is a two-step procedure. There exists a superior procedure
(in principle at least), whereby both equations (42a) and (42b) are estimated simulta-
neously. This is known as factor analysis. Factor analysis chooses a subset of all the
factors Fj so that the covariance between each equation’s residuals is (close to) zero
(i.e. E(εiεj ) = 0), which is consistent with the theoretical assumption that the portfo-
lio is fully diversified. One stops adding factors Fj when the next factor adds ‘little’
additional explanation. Thus, we simultaneously estimate the appropriate number of
Fj ’s and their corresponding bij ’s. The λj are then estimated from the cross-section
regression (42b).

There are, however, problems in interpreting the results from factor analysis. First,
the signs on the bij and λj ’s are arbitrary and could be reversed. (e.g. a positive bij

and negative λj is statistically indistinguishable from a negative bij and positive λj ).
Second, there is a scaling problem in that the results still hold if the βij are doubled
and the λj halved. Finally, if the regressions are repeated on different samples of
data, there is no guarantee that the same factors will appear in the same order of
importance. Thus, the only a priori constraints in the APT model are that some λj

and bij are (statistically) non-zero: there is not a great deal of economic intuition one
can impart to this result.

The reason we have spent a little time, at this point, in discussing the testing of
the APT is that although the structure of the model is very general (based as it is on
arbitrage arguments plus a few other minimal restrictive assumptions), nevertheless, it
is difficult to implement and make operational. As well as the problems of interpretation
of the bij and λj that we cannot ‘sign’ a priori (i.e. either could be positive or negative),
we might also have problems in that the bij or λj may not be constant over time.

The CAPM and the APT

It must by now be clear to the reader that these two models of equilibrium expected
returns are based on rather different (behavioural) assumptions. The APT is often
referred to as a multifactor model. The standard CAPM in this terminology, may be
shown to be a very special case of the APT, namely, a single-factor version of the
APT, where the single factor is the expected return on the market portfolio ERm. If the
return generating equation for security-i is hypothesised to depend on only one factor
and this factor is taken to be the return on the market portfolio, then the APT gives

Rit = ai + biRmt + εit (43)
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This single-index APT equation (43) can be shown to imply that the expected return
is given by

ERit = rt + bi(ERmt − rt ) (44)

which conforms with the equilibrium return equation for the CAPM. The APT model
involves some rather subtle arguments and it is not easily interpreted at an intuitive
level. The main elements are:

(i) It provides a structure for determining equilibrium returns based on construct-
ing a portfolio that has zero risk (i.e. zero-beta portfolio) and requires no cash
investment.

(ii) These conditions, plus the assumptions of linear factor weightings and a large
enough number of securities to give an infinitely small (zero) specific risk, allow
orthogonality restrictions to be placed on the parameters of the expected returns
equation. These restrictions give rise to an expected returns equation that depends
on asset-i factor loadings bij and the weights λj ’s, which are the same across
different assets.

(iii) The APT does not rely on any assumptions about utility functions or that investors
consider only the mean and variance of prospective portfolios. The APT does,
however, require homogeneous expectations.

(iv) The APT contains some arbitrary choices when we consider its empirical imple-
mentation (e.g. what are the appropriate factors Fj ? Are the bij constant over
time?). The APT is rather difficult to interpret (e.g. there are no a priori restric-
tions on the signs of the bij and λj ).

7.5 Summary

• The Sharpe ratio, Treynor index and Jensen index (‘Jensen’s alpha’) are performance
measures that can be used to rank alternative portfolios or investment strategies.
The Jensen index can be generalised by including more ‘factors’ than just the mar-
ket return.

• The CAPM can be generalised in several ways, although the standard CAPM and
the zero-beta CAPM are often the focus in empirical work.

• The single index model SIM is a linear statistical representation of the return on
any stock-i or portfolio of stocks, which assumes that only one factor has a system-
atic effect on returns. Accepting this model considerably simplifies the analyses of
returns, optimal portfolio weights and Value at Risk calculations.

• The APT is a multifactor model of expected returns based on the no-arbitrage princi-
ple. Returns over time are influenced by several factors, and the factor betas explain
the cross-section of average returns.





8
EMPIR ICAL EV IDENCE :
CAPM AND APT

Aims

• Demonstrate how the CAPM (and zero-beta CAPM) can be tested using time-series
and cross-section approaches.

• Show that a cross section of average stock market returns is best explained by
a multifactor model. The cross section of stock returns depends on the betas for
book-to-market and size variables but not on the CAPM-beta.

• Demonstrate that the CAPM-beta only explains the different cross-section average
returns on bonds (or T-bills) versus stocks.

• Outline how the APT can be viewed as an equilibrium multifactor model.

8.1 CAPM: Time-Series Tests

The ‘standard’ Sharpe–Lintner CAPM is a direct implication of mean-variance effi-
ciency, under the assumption of homogeneous expectations and the existence of a
(known non-stochastic) risk-free rate. The most straightforward test is that αi = 0, in
the excess returns regression

ERit − rt = αi + βi(ERm − r)t (1)

We assume individual returns are temporally iid, although we allow contemporaneous
correlation across assets E(εitεjt ) �= 0. Then, under the assumption of joint normality
of returns, (1) can be estimated by maximum likelihood using panel data (N assets,
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t = 1, 2, . . . , T time periods). But because we have the same (single) independent
variable in all equations, maximum likelihood estimates for (α, β) are equivalent to
OLS equation-by-equation: the OLS residuals can be used to form the (contemporane-
ous) covariance matrix for the N assets

∑ = êê′/T . But the asymptotic results from
Wald and likelihood ratio tests may have substantial size distortions in finite samples
(see Campbell, Lo and MacKinlay 1997 Chapter 5). However, there are various tests
for α(N × 1) = 0, valid in small samples. The power (i.e. the probability of rejecting
the null, given that an alternative hypothesis is true) of the exact tests is found to be
increasing in T (as we might expect) but is very sensitive to N , which should probably
be kept small (i.e. less than 10). When there is conditional heteroscedasticity or serial
correlation, then GMM can be used, although less is known about the small sample
properties of exact tests of α = 0. In this case, MCS can be used (e.g. with alterna-
tive distributions) or we can bootstrap the residuals, in order to obtain an empirical
distribution for α, in finite samples.

Tests of Black’s zero-beta CAPM use real returns in the regression

Rt = α + βRmt + εt (2)

where R ∼ (N × 1) vector of N -asset returns etc. and (α, β) are both N × 1. The null
hypothesis is

H0 : α = (e − β)γ

where e is an (N × 1) unit vector and γ = E(R0B) the expected return on the zero-
beta portfolio, which is treated as an unobservable parameter. Panel data regression
using an iterative systems estimator gives estimates of the constrained β, γ (and the
covariance matrix �) and then standard (asymptotic) Wald and likelihood ratio tests
are possible.

Early studies in the 1970s find αi = 0 and hence tend to favour the Sharpe–Lintner
CAPM but subsequent work (e.g. Campbell, Lo and MacKinlay 1997) finds against.
Cochrane (1996) directly estimates a ‘conditional-CAPM’ where the impact of the
excess market return is ‘scaled’ by the dividend–price ratio or the term premium.
Hence, the impact of the market return on the return on assets (or portfolio of assets)
depends on variables that reflect the ‘state of the business cycle’. He finds that for
size-sorted portfolio returns, the pricing error (i.e. Jensen’s alpha) is halved compared
to the standard (unconditional) CAPM.

8.2 CAPM: Cross-Section Tests
The CAPM states that differences in average returns in a cross section of stocks depends
linearly (and solely) on asset-betas. (This is the Security Market Line, SML.) The first
problem in testing this hypothesis is that individual stock returns are so volatile that
one cannot reject the hypothesis that average returns across different stocks are the
same. For individual stocks, σ ≈ 30 − 80% p.a. and hence σ/

√
T can still be very

large even if T is large. One answer is to sort stocks into portfolios where the sorting
attempts to maximise differences in average returns – without differences in average
returns, we cannot test the CAPM. In principle, any grouping is permissible, but a
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grouping based on, say, ticker symbols A–E, F–J, and so on, may not produce a good
spread of average returns. However, grouping according to ‘size’ and ‘book-to-market’
are popular methods that produce a good spread of average returns. (Although, in early
work, the grouping was based on asset-betas.)

The second major problem is that the betas are measured with error. Several meth-
ods have been used to minimise this problem. One is to assign individual stocks into
a small number of ‘portfolio betas’. These portfolio betas are estimated using a time-
series regression of just a small number of portfolio returns (e.g. around 10) – this
grouping is thought to minimise the error in estimating betas. To allow a firm to have
a different beta over time, the above approach has been extended and used in rolling
regressions. These issues are discussed below.

Cross-section tests take the form of a two-stage procedure (on which, more below).
Under the assumption that βi is constant over the whole sample, a first-pass time-series
regression for each asset i, taken in turn is

Rit − rt = αi + βi(ERm − r)t + εit (3)

The estimates of βi for each security may then be used in a second-pass cross-section
regression. Here, the sample average monthly returns Ri (usually over the whole
sample) on all k-securities are regressed on the β̂i’s from the first-pass regression

Ri = λ0 + λ1β̂i + vi (4)

Comparing (4) with the standard CAPM relation

Ri = r + βi(Rm − r) + εi (5)

we expect λ0 = r, λ1 = Rm − r > 0 where a bar indicates the sample mean values.
An even stronger test of the CAPM in the second-pass regression is to note that only
the betas βi(i = 1 to k) should influence Ri , so no other cross-section variables should
be significant in (5) (e.g. the own variance of returns σ 2

εi).
Note that in (4), the λ0 and λ1 are constant across all assets (in the cross section).

If there is no risk-free rate, then λ0 must be estimated and as it is the expected return
on a portfolio when all betas are zero, λ0 is the zero-beta rate.

An acute econometric problem is that in the first-pass time-series regression, the
estimate β̂i may be unbiased but it is measured with error. Hence, in the second-pass
regression (4), we have a classic ‘errors-in-variables’ problem, which means that the
OLS coefficient of λ1 is downward biased. Also, if the true βi is positively correlated
with the security’s error variance σ 2

εi , then the latter serves as a proxy for the true
βi and hence if β̂i is measured with error, then σ 2

εi may be significant in the second-
pass regression. Finally, note that if the error distribution of εit is non-normal (e.g.
positively skewed or fat-tailed), then incorrect inferences will also ensue. In particular,
positive skewness in the residuals of the cross-section regressions will show up as an
association between residual risk and return, even though in the true model there is no
association.
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As an illustration of these early studies, consider that of Black, Jensen and Scholes
(1972), who use monthly rates of return 1926–1966 in the first-pass time-series regres-
sions. They minimised the heteroscedasticity problem and the error in estimating the
betas by grouping all stocks into a set of 10 portfolios based on the size of the betas for
individual securities (i.e. the time-series estimates of βi for individual securities over
a rolling five-year estimation period are used to assemble the portfolios). For each of
the 10 beta-sorted portfolios, the monthly return R

p
it is regressed on Rmt over a period

of 35 years
R

p
it = α̂i + β̂iRmt (6)

This gives the portfolio betas, and each individual stock is then allocated to one
of these 10 beta values. In the second-pass cross-section regressions, the average
monthly excess return Ri − r for all individual stocks is regressed on their ‘allo-
cated’ portfolio betas. A statistically significant positive coefficient λ1 in (4) supports
the CAPM.

Cochrane (2001) updates the above studies and provides a clear simple test of
the CAPM. First, he sorts all stocks on the NYSE into 10 portfolios on the basis
of size (i.e. market capitalisation) and also includes a portfolio of corporate bonds
and government bonds (i.e. 12 portfolios in all). Next, he uses separate time-series
regressions to estimate the 12 portfolio betas. Finally, he takes the sample average
returns (t = 1, 2, . . . , T ) for each portfolio Ri (i = 1, 2, . . . , 12) and regresses these
against the 12 estimated portfolio betas β̂i . The bond portfolios have low betas and
low average returns, and the size-sorted stock returns are also positively related to beta
(Figure 1). Things are looking good for the CAPM. However, there are two problems.
First, if we draw the SML, Ri = r + (Rm − r)βi , the points for the stock returns
tend to lie above it rather than on it – this is perhaps not too damning. Second, the
OLS regression has an average return for the smallest stock decile way above the
estimated SML (Figure 1). This is the ‘small firm effect’ (Banz 1981) – very small
firms (i.e. low market cap) earn average returns above their SML risk-adjusted value.
The CAPM/SML seems to do a reasonable job of explaining bond returns relative to
stock returns but not such a good job in explaining the cross section of average stock
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returns sorted by ‘size’. As we see below, this apparent moderate ‘success’ of the
CAPM is fragile since when stocks are sorted into deciles according to book-to-market
value, these decile returns are not explained by market betas.

Fama–MacBeth Rolling Regression

Fama and MacBeth (1973) provide a much-used regression methodology that involves
‘rolling’ cross-section regressions. Essentially, one undertakes a separate cross-section
regression for each time period, hence obtaining a time-series of the coefficient on the
chosen cross-section variable (e.g. the betas), on which we can then perform various
tests. To illustrate, suppose we have N industry returns for any single month t , Rt and
their associated cross-section betas are known with certainty. The simplest test of the
CAPM is to run a cross-section OLS regression for any single month t .

Rt = α
′
te + γtβ + θtZ + ε (7)

where Rt = (R1, R2, . . . , RN)t ∼ N × 1 vector of cross-section excess monthly
returns at time t

β = (β1, β2, . . . , βN) ∼ N × 1 vector of CAPM-betas
γt = scalar cross-section coefficient for time t (the ‘price’ of beta-risk)
αt = scalar estimate of intercept for time t

e = N × 1 vector of ones
Z = additional cross-section variables (e.g. book-to-market value)
ε = N × 1 vector of cross-section error terms

For any t , the CAPM implies αt = θt = 0 and γt > 0. The Fama–MacBeth procedure
‘averages’ these parameter estimates of over all time periods as follows. We repeat
regression (7) for each month t = 1, 2, . . . , T and obtain T estimates of αt , γt and
θt . In the second step, the time-series of these parameters are tested to see if α ≡
E(αt) = 0, θ ≡ E(θt ) = 0 and γ ≡ E(γt ) > 0 (i.e. positive risk premium on the betas).
If the returns are iid over time and normally distributed, then the following statistic is
distributed as Student’s-t (with T − 1 degrees of freedom)

tγ = γ̃ /σ̃ (8)

where

γ̃ =
T∑

t=1

γ̂t /T and σ̃ 2 = 1

T (T − 1)

T∑
t=1

(γ̂t − γ̃ )2

A similar procedure gives tα and tθ and hence the CAPM restrictions are easily tested.
One problem with the above is that the ‘true’ betas are unknown, and this introduces
an errors-in-variables problem. One could use instrumental variables for the betas,
but the popular method of minimising this problem is to group individual returns
into, say, 100 portfolios (e.g. sorted by size and book-to-market) and calculate 100
portfolio betas. We then assign each individual stock to have one of these 100 betas
(see Appendix).
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Fama and MacBeth (1974) used the above procedure and also included β2
i and

σ 2
εi(from the 1st-pass regression) when estimating the cross-section portfolio returns

equation separately for each month over 1935 to 1968.

R
p
i = λ0 + λ1βi + λ2β

2
i + λ3σ

2
εi + ηi (9)

They find that the (time series) average of λ2 and λ3 are not significantly different
from 0 and λ1 > 0, thus supporting the standard CAPM.

A practical use of the CAPM is in estimating the cost of equity for a firm, which
is then used in the weighted average cost of capital (WACC) to provide a discount
rate in evaluating investment projects (see Cuthbertson and Nitzsche 2001a). If the
firm has an estimate of beta that is biased upwards, then it will set its CAPM hurdle
rate too high and may therefore forego profitable investment projects (i.e. where the
internal rate of return does not exceed the upward biased hurdle rate). There are various
methods in use to calculate ‘beta’ (Blume 1975), but Bartholdy and Peare (2003) point
out that if the beta estimated using a proxy for the market index (e.g. S&P500) is then
multiplied by a different proxy for the average excess market return (NYSE index), then
a biased estimate of the cost of equity ensues. They then show how the Fama–MacBeth
procedure can be used to obtain an unbiased estimate of the ‘true’ cost of equity, even
if we use a proxy for the ‘market index’. First, use equation (3) with a proxy for the
market index (e.g. S&P500), on (say) 60 months of data (up to time t) to obtain an
estimate of β

pr
i for each firm. Now use monthly data for the next year (t + 1) to run

the cross-section regression (7) to obtain the first estimate of γt . Roll the regressions
forward every year and calculate the average value γ̃ . They show that the cost of
equity capital EtRi,t+1 − rt = βiEt(Rm,t+1 − rt ) = β

pr
i [E(R

pr
m − r)/ρ2

pr,m] = β
pr
i γ̃ and

therefore an unbiased estimate is given by β
pr
i γ̃ . Hence, any proxy for the market

portfolio can be used (e.g. S&P500, NYSE index), and we obtain an unbiased estimate
of the cost of equity capital, if the above procedure is followed. Of course, the method
still relies on the CAPM being the correct model of expected returns, and if the latter
does not ‘fit the data’ well, an unbiased estimate of the cost of capital but with a large
standard error may be of little comfort.

Roll’s Critique

Roll (1977) demonstrated that for any portfolio that is efficient ex-post (call it q),
then in a sample of data, there is an exact linear relationship between the mean return
and beta. It follows that there is really only one testable implication of the CAPM,
namely, that the market portfolio is mean-variance efficient. If the market portfolio
is mean-variance efficient, then the CAPM/SML must hold in the sample. Hence,
violations of the SML in empirical work may be indicative that the portfolio chosen
by the researcher is not the true ‘market portfolio’. Unless the researcher is confident he
has the true market portfolio (which may include land, commodities, human capital,
as well as stocks and bonds), tests based on the SML are largely superfluous and
provide no additional confirmation of the CAPM. Despite this, critique researchers
have continued to explore the empirical validity of the CAPM even though their proxy



S E C T I O N 8 . 3 / C A P M , M U LT I FA C T O R M O D E L S A N D A P T 195

for the market portfolio could be incorrect. This is because it is still of interest to see
how far a particular empirical model, even if an imperfect one, can explain equilibrium
returns, and we can always see if the results in the second-pass regression are robust
to alternative choices for the market portfolio.

8.3 CAPM, Multifactor Models and APT

One direct way to test the APT is to use some form of factor analysis. Roll and Ross
(1984) applied factor analysis to 42 groups of 30 stocks using daily data between
1962 and 1972. In their first-pass regressions, they find for most groups, about five
‘factors’ provide a sufficiently good statistical explanation of Rit . In the second-pass
regression, they find that three factors are sufficient. However, Dhrymes, Friend and
Gultekin (1984) show that one problem in interpreting results from factor analysis is
that the number of statistically significant factors appears to increase as we include more
securities in the analysis. Also, the ‘factors’ being linear combinations of economic
variables are also impossible to interpret. Hence, research over the past 20 years has
focused on multifactor regression-based approaches to explain the cross section of
average returns.

As we have seen, more recent studies try to sort portfolios in such a way as to
minimise the errors in measuring betas and to get as large a spread in average cross-
section returns across the chosen portfolio. Indeed, since the classic Fama and French
(1993) paper, attention has shifted towards models with multiple factors. To maximise
the spread in the cross-section returns, individual stocks are sorted into portfolios. A
frequently chosen grouping is by quintiles of book-to-market value (i.e. ‘value’) and
equity market value (i.e. ‘size’), giving a cross section of 25 average returns in all.
The use of portfolio betas reduces measurement error and also mitigates the problem
that individual betas may change over time because of changes in leverage, firm size,
business risks, and so on.

United States: Cross-Section Data

Fama and French (1993) find that the 25 ‘size and value’ sorted, monthly time-series
returns on US stocks are explained by a three-factor model where the factors are the
market return, the return on a ‘size’ portfolio (i.e. small minus big portfolio RSMB) and
the return on a high minus low (HML) book-to-market portfolio, RHML. The time-series
and cross-section regressions are

Rit = βmiRmt + βSMB,iRSMB,t + βHML,iRHML,t (10)

Ri = λmβmi + λSMBβSMB,i + λHMLβHML,i (11)

Using a time-series regression on each of the 25 portfolios in turn, we obtain estimates
of the three betas in equation (10) for each of the 25 portfolios. These cross-section
betas can then be used in (11) with the 25 average monthly returns Ri (averaged



196 C H A P T E R 8 / E M P I R I C A L E V I D E N C E : C A P M A N D A P T

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Beta on market

E
xc

es
s 

re
tu

rn

Returns sorted by BMV,
within given size quintile

Returns sorted by size,
within given BMV quintile

Figure 2 Average excess returns and market beta (25 size- and BMV-sorted portfolios)

over, say, 240 months, given the noise in the data – see Cochrane (2001), Chapter 15)
to estimate the λs. Fama and French (1993) find that the market betas βmi for the
25 size-value sorted portfolios are all clustered in the range 0.8 to 1.5, whereas the
25 average monthly returns have a large spread, from 0.25 to 1 (Figure 2). If the
CAPM were correct, then the average returns and the market beta would be perfectly
positively correlated and all of the points in Figure 2 would lie close to the 45◦ line.
Hence, the CAPM-beta explains hardly any of the cross-section variability in average
returns Ri across stocks (although, as we have noted above, it does help explain the
different average cross-section returns on stocks versus T-bills and corporate bonds).
As we see below, most of the variation in the cross-section of average stock returns is
explained by the SMB and HML betas – the ‘factor mimicking’ portfolios and not by
the CAPM-betas.

Note that if we join up points for different ‘size’ sorted returns (but within a given
book-to-market value BMV quintile), then the positive relationship between size-sorted
returns and market beta βmi reappears. (For clarity, we have done this for only one
of the book-to-market quintiles in Figure 2, but this positive relationship applies to
the other four quintiles with constant book-to-market values.) Hence, higher average
returns of smaller firms can partly be explained by their higher market betas βmi .
However, it is the BMV ‘sorting’ that is rejecting the CAPM, since if we look at
returns with size held constant but for different book-to-market values, then these
average returns are negatively related to their market betas βmi (see Figure 2-this
general negative relationship holds for the remaining quintiles sorted by different book-
to-market value within a given size quintile – we have not ‘joined up’ these points in
Figure 2). Hence, it matters how one sorts returns in deciding on the validity of the
CAPM. But of course, the CAPM should hold for returns based on any sorting criteria,
since (average) returns, whether individual or in any portfolios, should all show a linear
relation between average return and market beta. So, the real anomaly (for the CAPM)
is the fact that returns sorted using book-to-market ‘value’ cannot be explained by the
CAPM-betas.

The success of the Fama–French three-factor model is demonstrated in Figure 3
where the predicted returns (based on equation (11)) and actual average returns for the
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Figure 3 Actual and predicted average returns Fama–French three-factor model

25 ‘size and value’ sorted portfolios are graphed and are much closer to the 45◦ line than
in Figure 2. The dotted line joining the five points in the upper right corner of Figure 3
shows stocks that have different sizes within the highest book-to-market quintile (i.e.
‘low price’ or ‘value stocks’), and these provide a good fit to the Fama–French model.
The solid line joining the five points in the lower left corner of Figure 3 are those
stocks that have different sizes within the lowest book-to-market quintile (i.e. ‘high
price’ or ‘growth stocks’), and these provide the worst fit for the Fama–French model.
Except for the latter ‘growth stocks’, we can see from Figure 3 that the predicted
returns for the Fama–French three-factor model fit the actual average returns on our
25 portfolios rather well – since the points lie reasonably close to the 45◦ line and
much closer than in Figure 2.

Also, note that the ‘size effect’ probably disappeared in the mid-1980s. Using data
from 1979 to around 1998, Cochrane (2001) shows that for the size-sorted decile
portfolios, average monthly returns are all clustered around point A in Figure 1. So,
the small firm premium has disappeared as the points lie randomly around the SML,
and all of the market betas of the decile portfolios are around 1.0, so there is no positive
relationship between size-sorted returns and the market betas, post-1979 that is, after
the size anomaly appeared in the literature (Banz 1981).

We can view the Fama–French model as an APT model. If the R-squared of the
25 time-series regressions is 100%, the three factors can perfectly mimic the 25 returns,
without allowing arbitrage opportunities. Fama and French (1993) find the R-squareds of
the time-series regressions are in excess of 90%, so the APT is a possible candidate model.

Fama and French (1996) extend their earlier analysis and find that the HML and
SMB factor mimicking portfolios explain the cross-section of average returns based
on sorting by ‘new’ categories such as price multiples (e.g. price–earnings ratios)
and five-year sales growth. But the average returns on these new portfolios are not
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explained by their CAPM market betas. However, there is one well-known ‘failure’
of the Fama–French model – the HML and SMB betas do not explain the average
returns on stocks sorted according to their recent return performance (i.e. ‘momentum
stocks’) – see Chapter 18.

We are still left wondering about the economic causes of why the HML book-to-
market factor is priced. There has been some progress in this area. Fama and French
(1995) do find that the typical ‘value firm’, where price (and hence market-to-book) is
low, is a generally distressed or near-bankrupt firm. Hence, HML could signal aggre-
gate risk over the business cycle and there is weak evidence that the return on HML
portfolios do help explain movements in GDP (Liew and Vassalon 1999, Heaton and
Lucas 1996). It is also true that small firms tend to exhibit characteristics that indicate
financial distress (e.g. high gearing or leverage), but note that this risk must be perva-
sive to qualify as a risk factor (since specific risk of individual firms can be diversified
away at near zero cost). Also, the small-firm effect is a ‘low price’ phenomenon, since
other measures of size, such as book value alone or the number of employees, do not
predict the cross section of returns (Berk 1997). Finally, note that macro-economic
factors that help predict stock returns, such as the dividend (earnings) price ratio, the
term spread and the default spread, also help predict recessions, which is suggestive
that a recession-type explanation may lie behind the three-factor Fama–French results
using factor mimicking portfolios.

UK: Cross-Section Data

Miles and Timmermann (1996) use the Fama–MacBeth procedure on UK monthly
returns from 1979 to 1991 (12 years). For each month, the cross-section regression on
457 firms is

Ri = λ0 + λ1βi + λ2BMV i + λ3 ln MV i + εi (12)

where Ri = monthly return and the independent variables book-to-market value BMV i

and market value (‘size’) ln(MV )i are lagged by one year. This regression is repeated
for each month, over a 12-year period (1979–1991), so the cross-section regressions
give a time-series of 144 values of each cross-section parameter λi . They find that
BMV is the key cross-section variable in explaining average returns (average λ2 =
0.35, average t-statistic = 2.95) and the relationship is positive – that is, high BMV
companies have high average returns. They find no effect on the cross section of
returns from the CAPM-beta, or betas on dividend yields, P/E ratio or leverage. They
find weak evidence of ‘size effect’ but only for the lowest size decile.

Miles and Timmermann (1996) also report a non-parametric bootstrap test of the
influence of the ‘factors’ on average returns. This avoids having to make the linearity
and normality assumptions imposed by regression tests. In April, for each of the 12 years,
they randomly split the sample of 457 shares into 10 equally weighted portfolios. The
average mean monthly return for each of the decile portfolios is then calculated for
the whole 144 months, and these are ranked, giving the maximum and minimum mean
returns as well as the mean return spread (= ‘max’ − ‘min’). The procedure is repeated
5000 times, giving three separate distributions for the ‘spread’ ‘max’ and ‘min’ variables
and their 1%, 5% and 10% critical values under the null of random returns. When actual
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portfolio returns are then sorted by BMV and the ‘max’, ‘min’ and ‘spread’ calculated,
they are significant at the 1% significance level, but this generally does not apply to
other accounting variables tried.

For example, the 1% critical value for the minimum (maximum) return in the boot-
strap where portfolio rankings are random is 0.83% p.m. (1.50% p.m.). When sorted
by BMV, the lowest (highest) decile has a mean return of 0.75% p.m. (1.54% p.m.),
which implies that sorting by BMV gives a statistically significant positive relationship
(not necessarily linear) between BMV and average return at a 1% significance level.
Of the other ‘sorting keys’, only the lowest decile by ‘size’ has an average return lower
than the 1% critical value from the bootstrap, indicating a ‘size effect’ only for very
small firms. The results from the non-parametric approach are therefore consistent with
the regression approach, namely that BMV is a key determinant of the cross section
of average returns.

Alternative ‘risk’ factors

Alternative macro-economic variables (e.g. inflation, investment growth, labour income,
consumption–wealth ratio) have also been used as factors in the APT interpretation
(e.g. Chen, Roll and Ross 1986, Cochrane 1996, Lettau and Ludvigson 2001b) and
often these macro-factors are priced (i.e. in the cross-section regression (11), the λ’s
are statistically significant), thus supporting a multifactor APT model. However, in
general, these macro-variables do not explain the cross section of returns sorted on
value and size, as well as do the Fama–French, SMB and HML factors. The excep-
tion here is the Lettau and Ludvigson (2001a) model where the macro-variable is
zt = (c/w)t�ct+1. For any level of consumption growth, the factor zt depends on a
recession variable, the consumption–wealth ratio c/w, which provides a type of time-
varying risk aversion. Here, the marginal utility of consumption tomorrow depends not
just on consumption growth (as in the standard C-CAPM) but also on whether you are
in a recession or not, that is the c/w variable. The beta on the zt factor explains the
cross-section returns of the 25 size-value sorted portfolios as well as do the SMB and
HML, betas of the Fama–French three-factor model.

Clearly, the above empirical work suggests that more than one factor is important
in determining the cross section of stock returns, and the work of Fama and French
(1993, 1996) is currently the ‘market leader’ in explaining returns sorted by ‘value’
and ‘size’.

Cross-Equation Restrictions and the APT

In the original Fama and MacBeth (1973) article, their second-stage regression consists
of over 2000 individual stocks that are assigned to a limited number of 100 ‘portfolio’
betas, but there are 2000 observations on other cross-section variables such as ‘size’
and BMV. Hence, the larger cross-section variation in ‘size’ and ‘value’ may bias the
results against the limited number of portfolio βi variables. Also, the Fama and French
(1993) study uses OLS, which implicitly assumes (at any time t) that the cross-section
idiosyncratic risks (i.e. error terms εit and εjt ) have zero correlation. The APT implies
cross-equation restrictions between the time-series and cross-section parameters that
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are not investigated in the Fama–MacBeth and Fama–French ‘single-equation’ studies.
The APT can be represented:

Rit = E(Rit ) +
k∑

j=1

bij Fij + εit (13)

where Ri are the asset returns and Fj are the factors. Expected returns are given by

E(Rit ) = λ0 + λ1bi1 + · · · + λkbik (14)

Hence,

Rit = λ0 +
k∑

j=1

bij λj +
k∑

j=1

bij Fjt + εit (15)

A regression with an unrestricted constant term αi (and setting λ0 = r) is

(Rit − rt ) = αi +
∑

bij Fjt+εit (16)

Comparing (15) and (16), we see that there are non-linear cross-equation restrictions,
αi = ∑k

j=1 bij λj in (16), if the APT is the correct model. In the combined time-series
cross-section regressions, we can use NLSUR, which takes into account the contem-
poraneous covariances between the error terms (and gives more efficient estimators).
Hence, the λ’s and bij ’s are jointly estimated in (15).

With US portfolio returns, McElroy, Burmeister and Wall (1985) find the APT
restrictions do not hold. However, Clare et al. estimate (15) on UK data, imposing
the APT parameter restrictions and allowing for the contemporaneous cross-section
correlation of the error terms. The price of CAPM beta-risk (i.e. the λβ coefficient
on the market return beta) is found to be positive and statistically significant. In
contrast, when the variance–covariance matrix of errors is restricted to be diagonal
(i.e. closer to the Fama–MacBeth procedure), λβ is not statistically significant. Also,
the price of beta-risk λβ using the NLSUR estimator is reasonably stable over time,
and they find no additional explanatory power from other cross-section accounting
variables such as betas on ‘size’, book-to-market and price–earnings ratios. It is not
entirely clear why these results, using NLSUR on UK data, are so very different
from the Fama–MacBeth two-step approach using US data, since all NLSUR does
is improve efficiency and does not correct for any bias (errors-in-variables bias is
potentially present in both approaches). Maybe it is the imposition of APT restric-
tions that makes a difference, or returns in the United Kingdom behave differently
from those in the United States. So, it seems as if the CAPM is ‘alive’ in the
United Kingdom but ‘dead’ in the United States. But this conflicting evidence is
extremely puzzling.

In general, the key issues in testing and finding an acceptable empirical APT model
are whether the set of factors Fjt and the resulting values of λj are constant over
different sample periods and across different portfolios (e.g. sorted by ‘size’ and by
‘value’). If the λj are different in different sample periods, then the price of risk for
factor j is time-varying (contrary to the theory). Although there has been considerable
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progress in estimating and testing the APT, the empirical evidence on the above issues
is far from definitive.

MCS and Bootstrap

In the previous section, there is a rather bewildering array of econometric techniques
used in testing the CAPM and APT models and unfortunately space constraints limit
our ability to go into these important matters in great detail – that is why we have
econometrics texts, some of which do tell the truth about the limitations of these
techniques in practical situations. In most econometrics texts, maximum likelihood
assuming niid errors and a correct model specification (e.g. linear) is usually at ‘the
top of the tree’, since it delivers asymptotically efficient estimates (OLS and GLS are
of course special cases of ML). However, first-stage GMM with a correction to the
covariance matrix of errors, for serial correlation and heteroscedasticity, (e.g. White
1980, Newey-West 1987), which does not necessarily assume a particular parameter-
isation of the error term or that the distribution is normal, is probably more popular
in the asset pricing literature as it is thought to give estimates that are more robust to
misspecification of the model. Also because many distributional results (e.g. ‘the test
statistic is chi-squared under the null’) only apply asymptotically or exact statistics
require the assumption of normality, there is increasing use of Monte Carlo simula-
tion and bootstrapping. (The best and most accessible account of alternative estimation
procedures used in asset pricing models is Cochrane (2001), Chapters 15 and 16.)

For example, to assess alternative estimation techniques when testing the CAPM,
one might proceed as follows. The CAPM implies Re

i,t = αi + βiR
e
m,t + εit where

Re
i,t ≡ Ri,t − rt , R

e
m,t ≡ Rm,t − rt and if the CAPM is true, we expect αi = 0. Sup-

pose you have results from OLS time-series regressions on 10 size-sorted portfolios
using T monthly observations and hence have estimates of αi, βi and the residuals
eit for each of the 10 portfolios and hence the sample (contemporaneous) covari-
ance matrix �. We can now generate artificial data under the assumption that the
error terms are iid normal using the sample covariance matrix �. Then we gener-
ate the 10 size-portfolio returns (of length T ) under the null that the CAPM is true:
Re

i,t = 0 + βiR
e
m,t + εit , where the βi are the OLS estimates. Re

m,t is assumed to be nor-

mally distributed and T values are drawn from Re
m,t ∼ niid(R

e
m, σ (Re

m)), the sample
estimates, and are independent of the error term. These are the standard ML assump-
tions. With this artificial data, we can then estimate the CAPM, Re

i,t = αi + βiR
e
m,t + εit

using a variety of techniques (e.g. ML, GLS, OLS, one- or two-step GMM) and test
αi = 0. We can repeat the above, say, 10,000 times and obtain 10,000 values of our
parameters and test statistic for αi = 0. If the econometric technique is ‘good’, then
we would expect to reject, the null αi = 0 at a 5% significance level (say) around 5%
of the time (this is the ‘size’ of the test). Having generated artificial data on the 10
size portfolios over time (of length T ), we can take sample averages and also run the
cross-section regression R

e
i = λ1β̂i + vi using OLS or cross-section GLS (= ML with

covariance matrix E(vv′)) or the Fama–MacBeth rolling regression. We can repeat
this for our 10,000 simulations and test whether λ1 > 0 and is equal to the excess
market return.
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We can also repeat all of the above but instead of drawing the error terms from
a normal distribution, we can draw (randomly with replacement) from the original
OLS residuals eit and from the original sample data on Re

m,t to generate the artificial
data series Re

i,t = 0 + βiR
e
m,t + eit . In addition, if we believe the residuals are serially

correlated, we can use a block bootstrap (e.g. drawing the original data {Re
m,t , eit} in,

say, blocks of length 3, to capture MA(2) errors). Our bootstrap distributions and tests
of αi = 0 for the alternative estimation techniques will then reflect possible serial cor-
relation, heteroscedasticity, non-normality and non-independence of the market return
and residuals found in the real data set.

Cochrane (2001) does just this for 10 size-sorted NYSE portfolios with two alter-
native post-WWII monthly data sets of length T = 876 and a shorter period T =
240 months. He finds that for the cross-section regressions, the results of the alter-
native techniques are nearly identical. Now consider the time-series tests of αi = 0.
Under the MCS assuming niid residuals, although GMM (with three lags) corrects
for MA errors that are not there, the rejection frequency of the null are about the
same as for ML, although both reject at around 6–7% level rather than the nominal
size of 5%. (It is well known that GMM assuming a long-lag unweighted spectral
density matrix rejects the null far too often and here it rejects about 25–40% of the
time, for lag length 24.) However, the bootstrap results using the real data demon-
strates the usefulness of this technique when the residuals may be non-normal. The
ML χ2 test has about half the correct size, rejecting 2.8% of the time at a 5% nom-
inal size, while the first-stage GMM estimator (with correction for heteroscedasticity)
corrects this size distortion-GMM is therefore more robust. In a later chapter, we con-
sider further examples of the use of MCS and bootstrap techniques in examining the
finite sample properties of alternative test statistics. All models are incorrect, so we
should always compare the relative performance of alternative models (e.g. plausi-
bility of assumptions, internal consistency, parsimony) as well as how they perform
against the data, using a variety of techniques and tests (See inter alia, Cochrane
2001 and Hendry 1995 for interesting discussions of econometric testing and its rela-
tionship to economic theory, which is a much-debated topic, given that we cannot
‘repeat our experiments’ under (near) identical conditions, as natural scientists are able
to do.)

8.4 Summary

• CAPM-betas explain the difference in average (cross-section) returns between stocks
and bonds but not the spread of average returns within different portfolios of stocks.

• The Fama–French high minus low ‘book-to-market returns’ and ‘size factor’ largely
explain the cross-section average returns across stock portfolios (for the United States
and United Kingdom), sorted by size and book-to-market value. These ‘factors’ can
be loosely interpreted as indicating that investors require high average returns to
compensate for the risk caused by recessions – they represent ‘distress premia’.

• The three-factor Fama–French model does not explain the cross section of returns
where portfolios are sorted according to recent performance (i.e. momentum portfolios).
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Appendix: Fama–MacBeth Two-Step Procedure

The Fama–MacBeth cross-section regression requires an estimate of the stock’s beta.
The CAPM may be represented by

Rit = αi + βiRmt + εit (A1)

where Ri and Rm are the excess returns on the stocks and the market respectively.
Fama and MacBeth (1973) have around 2000 stocks but they calculate a set of 100
portfolio betas to which they assign the individual stocks. Allocation of the 2000 stocks
to a particular portfolio beta proceeds as follows.

(i) For each stock in turn, estimate βi in equation (A1) using t = 1 − 60, monthly
observations.

(ii) At t = 61, form 10 portfolios based on market value (‘size’) and then sub-
divide each of these portfolios into 10 further sub-samples according to the
stock’s estimated beta. Calculate the average monthly return on these 100 port-
folios over t = 61 to 72 (i.e. one year). We now have 100 average returns,
Rp (p = 1, 2, . . . , 100) sorted by size and beta.

(iii) The above procedure is now repeated for each year . This gives an adequate
spread in returns with which to estimate the betas. We can now either take the
average betas (over time) for each of the 100 sorted portfolios or run a time-series
regression for each of the 100 elements of Rp taken separately, on the market
return to obtain 100 portfolio betas.

(iv) In each year, individual stocks are then assigned a portfolio beta based on the
sorted ‘size-beta’ portfolio to which they belong. This does not imply that indi-
vidual company betas are constant over time. If an individual firm switches from
one of the 100 ‘size-beta’ groups to another, then the (portfolio) beta assigned to
that firm will also change.

The second stage then involves using these 100 portfolio betas in the cross-section
regression (A2) for the 2000 firms. This cross-section regression is repeated for all
months (t = 1, 2, . . . , T) of the sample giving a time-series for λ0, λ1, γ , which can
be analysed as indicated in the text.

Ri = λ0 + λ1β̂pi + γZi + vi (A2)

where Zi is any cross-section company variable.





9
APPL ICAT IONS
OF L INEAR FACTOR
MODELS

Aims

• Show how the market (or a factor) model can be used to quantify the impact of
‘events’ on stock returns.

• Explain how linear factor models are used in assessing the performance of mutual,
pension and hedge funds.

• Examine the importance of luck versus skill when assessing the performance of
mutual funds.

In this chapter, we utilise the factor models described in earlier chapters to exam-
ine two major areas of practical concern. The first is how to measure the impact of
‘news’ or ‘events’ on stock returns, which are the outcome of the assimilation of this
‘news’ by many market participants. News items might include the announcement of
higher earnings than expected or the announcement of a takeover or merger of a firm.
If the market is efficient and we have a ‘reasonable’ model of stock returns, then
any abnormal return on stocks should reflect the impact of this ‘news’ on future
prospects for the firm. In an efficient market, the impact of today’s news on all
future cash flows should be quickly assimilated in stock prices. The second part of
the chapter looks at some of the work done in trying to see if certain mutual (and
pension) funds outperform on a risk-adjusted basis and if this outperformance per-
sists, so that it can be effectively used by investors to pick mutual fund ‘stars’ and
avoid the mutual fund ‘dogs’. We also examine the role of luck versus skill in the
performance of mutual funds by utilising bootstrap techniques across the universe of
mutual funds.
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9.1 Event Studies

Event studies have been used to measure the quantitative impact of an event (or events)
on the value of a firm (or firms). The event might be the announcement of a takeover
bid or quarterly earnings announcements or the announcement of new share issues or
an initial public offering (IPO) of shares. Event studies in the United States can be used
in evidence in legal cases of insider dealing, which require a measure of abnormal share
price movements. If the market is efficient, it should very quickly reflect the influence
of ‘the event’ on all future cash flows, which is then speedily compounded in the stock
price, so that there should be no abnormal returns in the post-event period.

For example, event studies of merger and acquisitions (M&A) announcements tend
to find that the target firm’s shares exhibit an abnormal rise of around 20% on average,
whereas the share price effects on the acquirers are very close to zero, on average. This
suggests that M&As, on average, do not reduce competition (else we would see both
target and acquirer’s shares rising) but the acquirers do pay a substantial bid premium
in the ‘market for corporate control’. Of course, there are alternatives to using the
‘event study’ methodology for M&As, namely studying the merged firms accounting
performance (e.g. return on capital) over a longer horizon (e.g. 5 years) relative to a
control group of ‘similar’ firms in the industry, which did not merge.

Event studies are also used to examine the effect on firm value of announcements
that the firm will raise new funds by equity or bond (debt) issues. These studies
generally find a (abnormal) price fall of around 2.5 to 3.5% for equity issues and a fall
of around 0.2% for bond issues. This makes equity issues more costly than bond issues
and is consistent with the Myers and Majluf (1984) ‘pecking order’ view of capital
structure (see Cuthbertson and Nitzsche 2001a).

There are two models that are ‘close to’ the CAPM that are often used in empirical
work to ‘represent’ stock returns – these are the single-index model and the market
model.

Rit = αi + βiRmt + εit t = T0, . . . , T1

Ri = Xiθi + εi

where Ri = [Ri,T0+1, . . . , Ri,T1 ]′ is an (T1 − T0) × 1 vector, Xi = [e1, Rm] is a (T1 −
T0) × 2 vector with e1 = vector of ones and Rm is a (T1 − T0) × 1 vector of mar-
ket returns. We assume εit ∼ niid(0, σ 2

i ). The market model allows εi and εj to
be contemporaneously correlated (across firms), whereas for the single-index model,
E(εi, εj ) = 0. The single-index model is useful in portfolio theory and risk measure-
ment (‘Value at Risk’), since it allows us to calculate variances and covariances between
a large number of returns using only the estimates of the βi and σ 2

m (see Chapter 28).
The market model only differs from the CAPM in excluding the risk-free rate, but as
the latter varies much less than stock returns, the market model is a close approximation
to the CAPM. Here, we illustrate the use of the market model in ‘event studies’.

In principle, the event study methodology is relatively straightforward. Assume
we have an event at time τ (Figure 1), which we take to be an announcement of
a takeover bid. The estimation window (T0 to T1) is used to measure the ‘normal
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T0 T1 T2 T3

Estimation window Post-event window

Event window

t = 0

Figure 1 Event study

return’ on the target firm’s stock, and the most commonly used statistical model is
the market model. OLS gives consistent and efficient estimators, even if εi and εj are
contemporaneously correlated. In practice, when using daily data, imposing βi = 0 (i.e.
constant mean return model) makes little difference to the results, since Rmt adds little
to the explanatory power of the equation when using daily returns. One could also use
multifactor statistical models (i.e. more right-hand side variables) such as the Fama
and French (1995) three-factor model, or one could use the CAPM (i.e. αi = 0 and
using excess returns) or the APT, but these also make little difference in practice. The
abnormal return (AR) and cumulative abnormal return (CAR) over the event window
T1 + 1 to T2 are

ARit = Rit − R̂it = Rit − (α̂i + β̂iRmt ) (t = T1 + 1 to T2)

ARi = R∗
i − X ∗

i θ̂i

where R∗
i = [Ri,T1+1, . . . , Ri,T2 ]′, X∗

i = [e1, R∗
m] with R∗

m = [Rm,T1+1, . . . , Rm,T2 ]′,
e1∗ = (T2 − T1) column of ones, and θ̂i = [α̂i , β̂i]

CARi =
T2∑

t=T1+1

ARit = e1∗′
ARi

Under the null of no abnormal returns (and assuming εit is niid ),

CARi ∼ N(0, σ 2
CARi

)

where σ 2
CARi

= e1∗′
Vie1∗ and Vi = [I − X ∗

i (X ′
i Xi )

−1X ∗′
i ]σ 2

i . The standardised CAR is

SCARi = CARi/σ̂
2
CARi

SCARi is distributed as Student’s-t , with (T1 − T0 − 2) degrees of freedom and can be
used to test the null of zero CAR for any return i. The above test is easy to extend if
there are N firms as long as there is not any overlap of event windows (e.g. all firms
have earnings announcements at τ = 0). We simply sum the ARi and the variance over
the N firms (see Campbell, Lo and MacKinlay 1997)

CARN = N−1
N∑

i=1

CARi and var(CARN) = N−2
N∑

i=1

σ 2
CARi
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It is worth noting at this point that for some event studies involving several firms,
one might split the sample of firms before working out ARi and CARi . For example,
earlier we only considered the returns on the target firm but obviously we can repeat
the analysis for returns of the acquiring firm. Similarly, when measuring the impact of
say earnings news on a sample of N firms, one might split the firms into three different
‘event samples’: those experiencing ‘good’, ‘bad’ and ‘no news’. The ‘good’, ‘bad’
or ‘no news’ firms might be those with earnings news ‘greater than 2.5%’, ‘less than
2.5%’ and ‘between −2.5 and 2.5%’ respectively. The ‘news’ in each case is the actual
earnings announcement minus the expected earnings, where the latter is obtained either
from survey evidence or some simple time-series extrapolation of past earnings.

There is now a large body of evidence that, conditional on observable public
events, stocks experience post-event drift in the same direction as the initial event
impact. These events include earnings announcements (Bernard and Thomas 1989,
1990), dividend initiations and omissions (Michaely, Thaler and Womack 1995), as
well as stock issues and repurchases (Loughran and Ritter 1995, Ikenberry, Lakon-
ishok and Vermaelen 1995) and analyst recommendations (Womack 1996). Indeed,
returns over short horizons (6 months and 1 year) are predictable from both past earn-
ings and from ‘surprises’ or news about earnings (i.e. public events) – Chan, Jegadeesh
and Lakonishok (1996).

For example, Bernard and Thomas (1989) sort all stocks on the NYSE and AMEX
on the basis of the size of their unexpected earnings (as measured by the change in earn-
ings, assuming a random walk model). They find ‘post-earnings announcement drift’ or
‘underreaction’, since over the 60 days after the event, the decile with positive earnings
surprises outperforms the decile with poor earnings surprises in 46 out of 50 quarters
studied, with an average return for ‘good minus bad’ deciles of about 4% – which
is not explained by differences in CAPM betas. Longer periods of underreaction are
found for initiation and omission of dividend payments (i.e. abnormal returns over
one year) for share repurchases and primary or secondary share issues (i.e. abnormal
returns over four to five years). For these longer horizon abnormal returns, there are
statistical problems caused by the fact that if two or more firms have an ‘event’ within
the four- to five-year ‘window’, then their post-event returns are not independent – so,
results are difficult to interpret using standard approaches (see, for example, Barber
and Lyon 1997, Loughran and Ritter 2000, Brav 2000).

This methodology is also used to examine momentum in stock returns over short
horizons. For example, Lasfer, Melnik and Thomas (2003) use the event study method-
ology to show that after large changes in daily aggregate price indexes (e.g. NYSE
all-share) for 39 different countries (1989–1998), the subsequent CAR over the next
five days (i.e. t = 1 to 5) are positive and statistically significant. The definition of
the ‘event’ at time t = 0 is that daily returns move more than two standard deviations
at t = 0, from the average volatility over the previous −60 to −11 days. The latter
are price changes of around ±2.35% for developed and ±3.5% for emerging markets
and ‘large’ price changes occur about 3% of the time. For large positive price shocks,
the subsequent CAR for developed and emerging market indexes over five days are
0.66% and 1.54% respectively, while after large negative shocks, the CARs are −0.14%
and −0.50%. Hence, there is ‘momentum’ over very short horizons and underreaction
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after large price shocks. They also find that the CARs are larger for less liquid markets
(measured by market capitalisation) and are smaller in the latter part of the 1990s.
However, establishing predictability and abnormal returns (relative to a ‘world’ market
index or zero daily expected return) does not necessarily imply profits net of all trans-
actions costs. In developed markets with futures trading, transactions costs and tracking
error may be reasonably low, but this need not be the case for emerging markets where
futures markets may have relatively high transactions costs or may not be available on
the required indexes. In later chapters, we examine possible reasons for this pervasive
result of post-event drift (e.g. learning by agents, slow diffusion of information, etc.).

Some Practical Issues

The event day may be one single day τ = 0, but if the news of the event ‘leaks’ (e.g.
merger announcement), the event window can be extended ‘backwards’ towards T1,
and this prevents the estimation of the ‘normal return’ being ‘contaminated’ by the
impact of the event. For example, in event studies of M&A, T1 may be 10 days (say)
before the actual official announcement.

A relatively minor problem is that daily returns generally use closing prices of the
last transaction, but these do not represent the same time of day for all firms or the
same time for any one firm on different days – this causes a ‘non-trading’ bias. The
statistics we developed above assume daily returns are jointly normal and temporally
iid. In reality, this is an approximation, so we either have to rely on the asymptotic
results or perform MCS on the test statistics, using different parametric distributions
or use empirical bootstrap distributions.

Non-parametric tests, notably the sign test and the rank test, are also available,
which are free of distributional assumptions. Briefly, we deal with the sign test, which
considers the number of cases where the abnormal return is positive N+ out of the
total number of cases N . Then as N → ∞, we can use the asymptotically valid statistic

Z =
[
N+

N
− 0.5

]
N1/2

0.5
∼ N(0, 1)

The test assumes that abnormal returns are independent across securities and the
expected proportion of abnormal returns is 0.5, under the null. In event studies, this
provides a complementary test to using CAR.

9.2 Mutual Fund Performance
In this section, we first discuss alternative multifactor models that are used to measure
the risk exposure of a mutual fund and how abnormal performance is reflected in
Jensen’s alpha. We then discuss recent UK and US empirical results on the performance
of mutual (and pension) funds, including the persistence or otherwise of the ‘top-
performing’ and ‘bottom-performing’ funds. Finally, we look at a recent study that
attempts to see if any outperformance or underperformance is due to good or bad luck
rather than the skill of the fund managers. That is, we look at the tails of the empirical
distribution of performance.
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Unconditional Performance Measures

Clearly, an appropriate method of adjusting for risk is required when examining mutual
fund performance. The most common measures that appear in the literature are pre-
sented in this section. Jensen’s (1968) alpha represents abnormal performance on the
basis of the market model–CAPM specification that can be stated as

Rit − rt = αi + βi(Rmt − rt ) + εit (1)

where Rit is the return on fund i in period t , Rmt is the return on a market proxy
portfolio and rt is a risk-free rate, typically proxied in empirical work by the return on
a treasury bill. If the CAPM is the correct model of equilibrium returns, the portfolio
should lie on the Security Market Line and the value of alpha should be zero. Therefore,
a positive and statistically significant value of alpha indicates superior risk-adjusted
performance or stock-picking skills (selectivity), on the part of the fund manager. Alpha
may be estimated empirically from least squares regression of equation (1) – often with
a GMM correction for the standard errors.

Carhart’s Alpha Measure

The Carhart (1997) measure is the alpha estimate from a four-factor model that is an
extension of (1) and includes additional risk factors for exposure to size, book-to-market
value and momentum:

(Rit − rt ) = αi + β1i (Rmt − rt ) + β2iSMB t + β3iHMLt + β4iPR1YRt + εit (2)

where SMBt , HMLt and PR1YRt are risk factor mimicking portfolios for size, book-
to-market value and one-year momentum effects respectively in the stock holdings of
the funds. Carhart’s alpha is the intercept in (2).

The four-factor model is largely based on the empirical findings on US data of Fama
and French (1992, 1993) and Carhart (1995). Fama and French find that a three-factor
model including market returns, size and book-to-market value risk factors provides
significantly greater explanatory power than using only the excess market return, when
trying to explain the cross section of the average returns across funds. Fama and French
(1992) report a strong negative relationship between stock returns and size: smaller
firms tend to have higher average returns. They report on the basis of their size rankings
a spread of 0.74% per month on average. The size factor, SMB (‘small minus big’),
is a measure of the difference between the returns on small versus big stocks. The
economic rational underpinning the specification of a size risk factor is related to
relative prospects. The earnings prospects of small firms may be more sensitive to
economic conditions, with a resulting higher probability of distress during economic
downturns. There is also the concern that small firms embody greater informational
asymmetry for investors than large firms. Both these factors imply a risk loading for
size and a higher required return.

Fama and French (1992) also report a strong positive relationship between the cross
section of stock returns and book-to-market value: firms with high book-to-market
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ratios have higher average returns than low book-to-market value stocks (i.e. the
authors report a spread of 1.5% per month between the highest and lowest book-
to-market stocks in their study). The book-to-market value factor, HML (‘high minus
low’), is a measure of the difference between the returns on high versus low book-to-
market stocks. The cross section of book-to-market ratios may be the result of market
overreaction to the relative prospects of firms. High (low) book-to-market ratios rep-
resent firms whose prices have ‘overshot’ on the downside (upside) and therefore the
ratio predicts the cross section of stock returns.

The ‘momentum’ risk factor, PR1YR, captures Jegadeesh and Titman’s (1993) one-
year momentum anomaly. The PR1YR variable is the difference in returns between a
portfolio of previously high-performing stocks (e.g. top quintile) and previously poor-
performing stocks (e.g. bottom quintile). It captures a fund’s sensitivity to following
a zero-investment strategy of investing in past strong-performing ‘momentum’ stocks
and short-selling stocks with low past returns.

Conditional Performance Measures

The Jensen and Carhart measures described in the previous section are uncondi-
tional measures of performance. However, unconditional performance measures do
not accommodate a scenario where fund managers identify changing market infor-
mation about expected returns and risk and reconstitute the composition of the fund
in response.

Ferson and Schadt (1996) extend the CAPM specification to a conditional performance-
measurement model by allowing the factor loading on the market risk factor at time t

to be linearly related to a vector of instruments for the economic information set Zt as
follows.

βi = β0i + B ′
i[zt−1] (3)

where zt−1 is the vector of deviations of Zt−1 from unconditional means. Therefore,
β0i is the unconditional mean of the conditional beta. Substituting (3) into (1) and
generalising the notation to let Rbt denote the return on a benchmark portfolio (market
portfolio in this case), the conditional-beta CAPM can be written as

(Rit − rt ) = αi + β0i (Rbt − rt ) + B ′
i[zt−1(Rb,t − rt )] + εit (4)

As E[zt−1(Rb,t − rt )] = E[zt−1]E[Rbt − rt ] + cov[zt−1, (Rb,t − rt )], the specification
in (4) captures the covariance between the market-timing variables zt−1 and the expected
return on the benchmark portfolio. As before, under the null hypothesis of zero abnormal
performance, αi = 0.

The model in (4) specifies the abnormal performance measure, αi , as a constant.
However, it may be the case that abnormal returns are also time varying. Christo-
pherson, Ferson and Glassman (1998) assume a linear specification for the conditional
alpha as a function of the instruments in zt−1 as

αi = α0i + A′
i[zt−1] (5)
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Using (5) in (4) yields

(Rit − rt ) = α0i + A′
i[zt−1] + β0i (Rbt − rt ) + B ′

i[zt−1(Rb,t − rt )] + εit (6)

This conditional-alpha approach can also be applied to the Carhart four-factor model.
Ferson and Schadt (1996) and Christopherson, Ferson and Glassman (1998) use instru-
ments for economic information, Zt , that previous studies have shown are useful for
predicting security returns and risk over time. These include the lagged level of the
one-month T-bill yield, the lagged dividend yield of the market factor, a lagged mea-
sure of the slope of the term structure, a lagged quality spread in the corporate bond
market and a dummy variable to capture the January effect.

A. UK Mutual Funds

Quigley and Sinquefield (1999) examine the performance of all UK unit trusts (i.e.
open-ended mutual funds) in existence at any time between 1978 and 1997, a total of
752 funds, including non-surviving funds. They use returns calculated on a bid-price-to-
bid-price basis, (i.e. gross of customer charges that are captured in the bid/offer spread),
with reinvested gross dividends. This reflects the authors’ objective of evaluating the
performance of the fund manager and not the returns of the fund’s customer/investor.

Forming an equal-weighted portfolio of the unit trusts (surviving and non-surviving)
and estimating a Fama and French type three-factor model, the statistically significant
alpha (at 5% significance level) is found to be −0.09 basis points per month. This poor
performance is consistent across all four investment objectives of the funds examined
(i.e. growth stocks, income stocks, general equity and smaller companies). Equal-
weighted portfolios of unit trusts within each of these sectors all exhibit negative
alphas. The lack of any outperformance is most notable among funds investing in
small company and income stocks.

Persistence in Performance

Historic alphas indicate past average abnormal performance. Of great interest is whether
there is persistence in performance. That is to say, if we form a portfolio of stocks at
time t on the basis of some criteria (e.g. comprising the highest decile stock returns over
the past year), hold this portfolio until t + k and then rebalance, does this ‘recursively
formed’ portfolio outperform on a risk-adjusted basis?

Quigley and Sinquefield (1999) first examine the persistence of performance by, each
year, forming 10 equal-weighted portfolios of unit trusts on the basis of decile rankings
of the funds’ raw returns over the previous 12 months. Each decile of these mutual fund
portfolios are held for one year and then rebalanced – these are the ‘performance-
portfolios’. This strategy is repeated every year, giving a time-series of returns for
each decile. The spread in the annual compound return between the best and worst
fund (i.e. a zero-investment portfolio) is 3.54%. While this initially seems to point to
an easy ‘beat the market’ strategy, in fact pursuing this strategy involves an annual
turnover of 80% in the composition of the top portfolio and with a bid/offer spread
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of 5%, abnormal returns would be eliminated. In addition, when these performance-
portfolios are adjusted for risk in a three-factor model, the alphas of the 10 portfolios
do not suggest significant persistence in performance. The alphas from the top two
(post-formation) ‘performance portfolios’, while positive, are not statistically significant
(at 5% critical value). By contrast, the negative alphas of the bottom four portfolios
are all statistically significant. This finding echoes that of a number of US studies
(i.e. Carhart (1997) and Malkiel (1995)) in that, first, pursuing persistence strategies
involves high turnover and, second, in risk-adjusted terms, poor performance persists
but good performance does not.

Qualitatively similar results are found when Quigley and Sinquefield (1999) rank
funds into deciles on the basis of their past three-factor alphas based (recursively) on
the previous three years of data. Of the alphas of the 10 post-formation ‘performance-
portfolios’, only the bottom two are statistically significant and these are negative. Once
again, this leads to the conclusion that poor performance persists but good performance
does not. Repeating the exercise and looking at holding (rebalancing) periods greater
than one year, they find that any pattern of persistence has almost entirely disappeared
after three years, where the rank correlation between pre- and post-formation alphas
falls to 0.12.

Blake and Timmermann (1998) is a further important contribution to the literature
on UK mutual fund performance. The study examines a total of 2375 mutual funds, not
all of which are restricted to investing in UK equity. Non-surviving funds constitute
973 of the total number of funds. The paper studies the sample period February 1972
to June 1995, a slightly earlier sample period than Quigley and Sinquefield (1999).

However, on the question of persistence of performance, the findings of Blake and
Timmermann (1998) differ in a number of respects from those of Quigley and Sin-
quefield (1999). The unconditional factor model has the excess returns on the stock
market index, (Rmt − rt ), the excess return on small cap stock Rst over the market
index Rmt and the excess returns on a five-year UK government bond (Rst − rt ) as the
independent variables:

(Rit − rt ) = αi + βmi (Rmt − rt ) + βsi (Rst − rt ) + βsi (Rst − rt ) + εit (7)

Blake and Timmermann restrict their analysis of performance persistence to the UK
equity and balanced sectors, that is, 855 funds, for which the right-hand-side variables
in (7) are good benchmarks. They form two equal-weighted portfolios of funds from
among the top and bottom quartiles on the basis of ‘historic alpha’ over the previous
24 months and hold these portfolios for only one month. The paper carries out this
procedure separately for funds investing in five sectors: equity growth, equity income,
general equity, smaller companies and a balanced sector. With the exception of the
balanced sector, the recursive portfolios derived from the top quartile of funds in all
sectors produced positive abnormal returns over the sample period. The recursively
formed portfolios of the bottom quartile of funds produced negative abnormal returns
over the sample period. (This finding was robust with respect to how the portfolios were
weighted.) This indicates persistence in performance among both the top- and bottom-
performing funds. This finding of persistence was found to be statistically significant
among funds investing in growth stocks and smaller company stocks.
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That there is persistence in performance among top-performing funds is in sharp
contrast to the findings by Quigley and Sinquefield (1999). However, the finding of
persistence among the worst-performing funds is consistent between the two stud-
ies. Direct comparisons between these two analyses is complicated by first differing
measures of abnormal or risk-adjusted return and, second, differing frequencies of
rebalancing. Quigley and Sinquefield (1999) recursively rebalance portfolios annu-
ally on the basis of abnormal return during the previous three years, while Blake
and Timmermann (1998) reform portfolios monthly, on the basis of abnormal return
over the previous two years. Blake and Timmermann (1998) rationalise the decision
to revise portfolios monthly rather than annually to allow for the possibility that a
fund may close during the course of a year. Notwithstanding this advantage, for
an investor to exploit this apparent persistence anomaly may require considerable
ongoing portfolio reconstruction, which in turn would be likely to incur significant
transactions costs and management fees that may negate against earning abnormal
return. As Blake and Timmermann (1998) carry out their analysis using returns on
a bid-to-bid basis, the returns are gross of such transactions costs. Furthermore, the
paper does not provide any information on the degree of turnover in the composi-
tion of the top and bottom performing portfolios from month to month. Therefore,
inferences about the cost of attempting to exploit the persistence anomaly are made
more difficult.

A difficulty with the performance persistence tests described above in Quigley and
Sinquefield (1999), Blake and Timmermann (1998) and Fletcher (1997) that is, assess-
ing persistence through a recursive portfolio formation scheme, is that it aggregates the
data considerably rather than looking at persistence at the individual fund level. This
question is picked up in Lunde, Timmermann and Blake (1999) and is also examined
by Allen and Tan (1999), the latter evaluating UK investment trusts (i.e. closed-end
mutual funds) rather than unit trusts. Lunde, Timmermann and Blake (1999) first sort
the set of UK equity mutual fund returns into quartiles by a peer-group adjusted return
measure similar to that used by Blake and Timmermann (1998) above. Funds are sorted
on the basis of the previous 36 months of returns. For each quartile, the proportion of
funds that fall into a given quartile based on their subsequent performance over the
following 36 months is recorded. A contingency table of transitional probabilities is
then constructed. The probability that the worst-performing (bottom quartile) funds will
remain in the bottom quartile is reported as 0.332, while the probability of repeated top
performance is 0.355. When surviving funds are examined in isolation, that is, a more
homogeneous group, these probabilities fall to 0.284 and 0.317 respectively. Under a
null hypothesis of no persistence, all of the transitional probabilities should equal 0.25.
Hence, Lunde et al. report that this null is clearly rejected when looking at the full set
of both surviving and non-surviving funds.

The studies described above (see Table 1) encompass most of the main issues and
results that arise in the literature on performance, abnormal performance and perfor-
mance persistence among UK mutual funds. There is a small number of additional
studies that also examine the UK mutual fund industry using similar procedures to
those already described, and these report broadly similar results. A brief description is
provided below.
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The WM company (1999) examined surviving funds in the UK income and growth
sector over the period 1979–1998. Using only raw returns, the study analysed the persis-
tence of the top quartile of funds over five-year periods. Not surprisingly, the proportion
of funds remaining in the top quartile in subsequent periods quickly declines. When there
was no overlap in the sample periods, the study indicates that the proportion of funds
retaining a top quartile ranking is no more than would be expected by chance alone. The
conclusion is that historic relative performance is not a good guide for future performance.

In addition to unit trust and investment trust managers, the performance of other
types of UK fund manager has also been examined, particularly, pension fund man-
agers. Blake, Lehman and Timmermann (1999) examined over 306 pension funds
over the period 1986–1994. An important feature to emerge from the Blake, Lehman
and Timmermann (1999) study is that conclusions regarding relative performance and
performance persistence are more difficult to draw, relative to studies of unit trust man-
agers. The pensions fund market is more concentrated in terms of investment policy,
and performance is determined by the asset mix of a portfolio rather than by stock
selection or market-timing skills. That is, pension fund managers do not adopt much
of an active trading strategy relative to other fund types, and Blake et al. report sur-
prisingly little cross-sectional variation in returns to strategic asset allocation, security
selection or market timing. Brown, Draper and McKenzie (1997) report broadly similar
findings in a study of 600 pension fund managers.

Comparing and combining the results of numerous studies in an attempt to draw an
overall conclusion regarding performance persistence among UK mutual fund managers
is complicated by a number of factors. Different studies examine different sample peri-
ods of various lengths. Different studies also adopt different measures of risk-adjusted
or abnormal return. Furthermore, different studies examine persistence using different
criteria on the basis of deciles, quintiles, quartiles and median rankings. They also
assess persistence using different ranking and evaluation periods, for example, one-,
two-, three- and five-year return horizons. In some studies, persistence is examined by
aggregating the data, see Quigley and Sinquefield (1999) and Blake and Timmermann
(1998), while other studies concentrate more on the individual fund level. Finally, some
studies control for survivorship bias and devote at least some discussion to performance
anomalies net of transactions costs, while others do not.

Notwithstanding these caveats, it seems a reasonable characterisation of performance
in the UK mutual fund industry based on the surveyed studies to say that repeat
performance among top performers is small in effect and relatively short-lived. It is
doubtful that a significant exploitable persistence anomaly exists at the level of the
fund investor or customer net of the charges imposed by the fund. In comparison,
the evidence is stronger that poor performance persists. Overall, then, an analysis of
persistence may provide some modest insight for the investor into which funds to avoid
but says less about which funds to select.

B. US Mutual Funds

Studies in the literature on the performance of the US mutual fund industry are far
more numerous than those for the UK and Europe. The core issues to emerge from
recent studies (see Table 2) are discussed below.
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Carhart (1997) argues that many earlier findings on the performance of mutual
funds were driven largely by a ‘momentum effect’ in the stockholdings of the funds,
that may be due to luck rather than the stock-picking skills of the manager. Carhart’s
(1997) study is an important, comprehensive and widely cited contribution to the liter-
ature and consequently is discussed in some detail here. Carhart applies the recursive
portfolio formation methodology over the 1963–1993 period. All mutual funds are
sorted into deciles on the basis of lagged one-year raw returns, equal-weighted port-
folios of funds in each decile are formed, held for one year and then rebalanced.
Carhart’s fund returns are net of all operating expenses and security-level transac-
tion costs.

Carhart first applies the CAPM to the above decile ‘performance-portfolios’ and
estimates Jensen’s alpha. However, it is clear that the CAPM does not explain the
cross section of mean returns on these (decile) portfolios. The CAPM betas on the top
and bottom decile portfolios are almost identical and, therefore, the resulting Jensen’s
alphas exhibit as much dispersion as the simple returns. The Jensen’s alpha estimate
indicates a sizeable abnormal performance of 22 basis points per month in the top
decile portfolio and a negative abnormal performance of 45 basis points per month
for the bottom decile returns. A large number of the decile alphas are statistically
significant (5% critical value).

In contrast to using just the excess market return (i.e. CAPM), Carhart reports that
the four-factor model explains much of the spread in average decile returns amongst
the post-formation ‘performance-portfolios’, with size (SMB ) and momentum (PR1YR)
explaining most of the variation. The author reports that the momentum factor explains
half of the spread between the top and bottom decile returns. However, the alpha
measures from the four-factor models are negative for all portfolios and are significantly
so for all 10 portfolios ranked decile 3 or lower. This leads to the conclusion that on
a risk-adjusted and net-return basis, the only evidence that performance persists is
concentrated in underperformance, and the results do not support the existence of
skilled fund managers.

Persistence

The same performance persistence analysis is undertaken, this time by ranking funds
into deciles on the basis of ‘historic’ four-factor alphas (estimated recursively, using
the previous three years of data) and rebalancing annually. The four-factor model is
applied to these performance-portfolios’ decile returns and, again, evidence of persis-
tence among top-performing funds is not found to be statistically significant, while, in
contrast, underperformance is found to persist.

Carhart (1997) further investigates the momentum effect. As described, the momen-
tum variable explains almost half of the spread between the top- and bottom-performing
decile portfolio returns. Funds that follow a momentum strategy in stocks may there-
fore consistently earn above-average raw returns, although as described above by a
four-factor model, this performance may not be abnormal in risk-adjusted terms. To
further examine whether momentum strategy funds do consistently outperform, the
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paper ranks all funds by their loading on the momentum factor (PR1YR loading).
In the post-ranking period, the funds with the ‘best’ one-year momentum are found
to underperform rather than outperform (as measured by Carhart’s alpha). Carhart’s
analysis is conducted on returns net of security transaction costs and expenses and he
explains this apparent contradiction by suggesting that funds that have high momentum
factor loadings are not actively pursuing a momentum strategy but instead ‘acciden-
tally’ [Carhart p. 73] happen to hold last year’s winning stocks. By simply holding
these winning stocks, the fund enjoys a higher average return without incurring the
additional transactions costs that would be incurred in a rolling momentum strategy.

Carhart (1997) tries to get a handle on what determines abnormal performance (as
measured by the four-factor alpha) by measuring individual fund’s alphas using the
previous three years of data and rolling the regression forward on a monthly basis:

αit = (Rit − rt ) − b1i,t−1(Rm − rt ) − b2i,t−1(SMBt) − b3i,t (HMLt)

− b4i,t−1(PR1YRt) (8)

Each month, he then estimates the cross-section regression

αit = δ1 + δ2(Xit ) + εit (9)

where Xit are fund characteristics: size (in logs), expenses, turnover and load fees for
that month. As in Fama and MacBeth (1973), each month, Carhart (1997) estimates
the cross-sectional relation in (9) and then averages the ‘monthly’ coefficients across
all the months in the data set. His results indicate a strong negative relation between
performance and all characteristics except size. Of particular interest is the coefficient
on the expense ratio: for every 100 basis point increase in expense ratios, the annual
abnormal return (i.e. the cross-section alpha) drops by 1.54%. Therefore, these addi-
tional fund characteristics appear to further explain abnormal performance, and the
persistence therein among poor performers.

Chen, Jegadeesh and Wermers (2000) return to the question of persistence in per-
formance due to the momentum effect as investigated in Carhart (1997). The Chen,
Jegadeesh and Wermers (2000) paper is able to shed further light on whether ‘winning’
funds really follow momentum strategies or whether, as described by Carhart, winning
funds may simply happen to accidentally hold the previous period’s winning stocks.
The data set used by Chen, Jegadeesh and Wermers (2000) includes information on
the buy and sell trades of the winning and losing mutual funds between 1975 and 1995
(i.e. the top and bottom quintile of funds as ranked quarterly by raw returns).

The paper first reports that the average raw returns of winning funds during the
two quarters prior to the ranking period are significantly higher than the returns of
losing funds. Initially, this points to persistence in performance. In an analysis of the
buy and sell trades of funds, the paper finds that the past returns of the ‘buys’ of
winning funds are significantly higher than the past returns of the ‘buys’ of losing
funds. This seems to point to active momentum investing by winning funds relative to
losing funds and correspondingly appears to contradict the Carhart (1997) assertion that
winning funds do not actively follow a momentum strategy but rather accidentally end
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up holding previous period winning stocks and hence benefit from a momentum effect.
Nevertheless, the paper also shows that the buys of losing funds exhibit higher past
returns and continue to earn higher future returns than losing funds’ overall holdings,
which lends some support to Carhart’s argument that losing funds are accidentally stuck
with past losing stocks that reduces their future overall return. However, the buys of
winning funds do not significantly outperform the buys of losing funds over a one-year
holding period, whether measured in risk-adjusted terms or not. These results indicate
that winning funds do not possess superior stock-picking skills but may be benefiting
from a momentum effect in their overall stockholdings. This effect dissipates quickly,
however, as evidenced by most findings that suggest that persistence, where it exists,
is relatively short-lived.

Fund Characteristics and Performance

Wermers (2000) also picks up on the question of whether among actively managed
funds there is a link between the level of trading activity or stock turnover within
the fund and the level of fund performance. To address this question, Wermers (2000)
applies a recursive portfolio formation methodology described previously for Carhart
(1997), Blake and Timmermann (1998) and others. However, in this instance, Wermers
recursively forms hypothetical portfolios of funds by ranking funds into deciles (also
repeated for quintiles) by their levels of turnover during the previous year and holding
these portfolios for one year. This enables an analysis of whether top decile turnover
funds are also consistently the top performers.

Examining gross returns, that is, gross of transaction costs incurred and expenses
imposed by the fund, Wermers reveals that the top turnover decile of funds on average
outperforms the bottom decile by 4.3% p.a. over the 1975–1993 sample period. This
is significant at the 10% level. Wermers also investigates the sources of this difference
and reports that the difference is attributable, in descending order of importance, to
funds’ investment styles, stock-selection ability and market-timing ability. In terms of
net returns, the difference between top and bottom turnover deciles falls to 2.1% (not
significant), while the difference between top and bottom turnover quintiles is 2.7%
(significant at the 5% level). In terms of risk-adjusted net returns (Carhart’s alpha),
there is no difference between the performance of high and low turnover funds.

Not surprisingly, Wermers reports a strong and persistent correlation between fund
turnover and fund transaction costs and expense ratios. Interestingly, however, this
means that on the basis of Wermers (2000), we can draw similar conclusions regard-
ing the relationship between fund transaction costs and expenses ratios on the one
hand and fund performance on the other, as that recorded between turnover and per-
formance described above. Overall, the findings in Carhart (1997) regarding the effect
on performance, at least on risk-adjusted net performance, of turnover and expenses
point more strongly towards a negative relation than in Wermers (2000).

Chalmers, Edelen and Kadlec (1999) is a further comprehensive examination of
the costs/performance question. This study evaluates the relationship between trading
costs, expense ratio and turnover with a number of fund performance measures, during
the period 1984–1991. The authors rank funds by total fund costs into quintiles each
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quarter and calculate the average performance of funds in each quintile over the sam-
ple. This procedure is repeated ranking by (i) trading costs, (ii) expense ratio, and (iii)
turnover. In the case of all three costs ranking criteria, there is a strong negative (and
significant) relationship between the costs and the performance measures tested. The
relationship between turnover and performance is also found to be negative, though
not significant. The findings in Chalmers, Edelen and Kadlec (1999) are broadly in
line with those of Carhart (1997).

The issue of the relative performance between load and no-load funds is examined
in Ippolito (1989), Elton, Gruber, Das and Hlavka (1993), Grinblatt and Titman (1994),
Droms and Walker (1994), Gruber (1996), Fortin and Michelson (1995) and Morey
(2003). With the exception of Ippolito (1989), who find that load funds earn rates of
return that plausibly offset the load charge, generally studies find that before the effect
of load charges is incorporated into return, there is no significant difference between
the performance of load and no-load funds.

Morey (2003) is perhaps the most comprehensive paper to address this question
as Morey is the only paper in the area to examine the load-adjusted performances
of load and no-load funds. Previous papers examine only non-load-adjusted returns
between the two types of funds. In addition, Morey (2003) examines relative perfor-
mance within load funds between relatively high load and low load funds. The study
evaluates these relative performances employing a number of both risk-adjusted and
raw return measures, including a Jensen’s alpha measure. Morey finds that after adjust-
ing for loads in the return data, no-load funds outperform load funds for almost all
performance measures examined, while within load funds themselves, there is little
significant difference in performance between high-load funds and low-load funds.

Investment Flows and Performance

A further area of investigation in the mutual fund performance literature is that of
the relation between fund performance and the capital investment flows in and out
of the fund. The direction of causation between fund flows and performance is a
matter of debate. Many studies test for a positive relationship in which performance
influences subsequent flows into and out of a fund, see Gruber (1996), Zheng (1999).
However, Edelen (1999) examines the reverse causation.

With cash flows defined as the change in the fund’s total net assets minus the appreci-
ation in the fund’s assets held at the beginning of the period, Gruber (1996) examines
fund flows in period t of deciles of funds ranked by performance in period t − 1.
This is performed recursively for various values of t in the post-ranking period. The
study reports a strong and significant correlation between performance and subsequent
capital flows.

Similarly, regressions of fund cash flows on lagged one- and two-year fund per-
formance measures also demonstrate the significant influence of performance on sub-
sequent fund flows. More interestingly, however, this procedure also provides insight
into which performance measures investors use to evaluate managers. While many per-
formance measures prove significant in causing capital inflows/outflows to and from
funds, perhaps surprisingly, Gruber (1996) determines that a four-factor alpha measure
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proves particularly significant and robust. This would seem to indicate that investors
are quite sophisticated in accounting for market, size, value and credit risks in choosing
where to invest capital. Equally, however, it may simply reflect that fund-rating com-
panies rank funds by this or similar criteria, and this is the cause of investors selecting
such high alpha funds. DelGuercio and Tkac (2000) also find a significant relation
between a fund’s Jensen’s alpha measure and subsequent fund flow. The authors find
this to be the case for both mutual funds and pension funds, although in the latter case,
tracking error is also important in influencing flows. (Tracking error is a measure of
diversifiable risk and is often measured as the volatility of a portfolio’s deviation from
a benchmark index.)

Having found evidence that good (bad) performance gives rise to subsequent capital
inflows (outflows), Gruber (1996) proceeds to evaluate whether investors improve their
performance as a result of re-directing their capital. Inflows to a fund in quarter t are
multiplied by the risk-adjusted return of the fund in (a number of) subsequent periods.
Aggregated over all funds and all time periods and expressed as a percentage of total
capital inflows to all funds, the average risk-adjusted return on ‘new cash’ was 29 basis
points per annum. A similar procedure applied to fund outflows to measure how much
money an investor saves by removing their capital from a fund indicates a saving of
22 basis points per annum.

In a broadly similar study, Zheng (1999) investigates whether fund flows or ‘new
money flows’ predict future returns and whether aggregate money flows contain infor-
mation of sufficient economic significance to earn abnormal returns for an investor,
that is, does fund flow information represent a smart money signal. Zheng (1999)
implements a number of trading strategies on the basis of money flows and tests
whether these strategies earn abnormal returns. For example, one investment strat-
egy is to hold a portfolio of funds that exhibit positive fund flow. The portfolio is
updated recursively each quarter. Another strategy is to hold funds exhibiting neg-
ative fund flow. Another portfolio holds above median cash flow funds, while yet
another holds below median cash flow funds. In all cases, portfolios are reconstituted
each quarter. This generates a time series of returns for each portfolio. A single-
factor and multifactor performance alpha can then be estimated for these money
flow-based funds. Money flow or cash flow is as defined in Gruber (1996). During
the 1970–1993 sample period under investigation, Zheng (1999) reports that funds
that receive new money significantly outperform those that lose money. This finding is
broadly in line with that of Gruber (1996). However, the outperformance is relatively
short-lived. In addition, new money funds are not found to significantly beat the market
as a whole.

In the case of the Gruber (1996) and Zheng (1999) studies, one needs to be aware
that an apparent relationship between fund flow and performance may simply be picking
up on persistence (if it exists) in fund returns, that is, positive fund performance attracts
capital or ‘new money’, which in turn earns a high return for investors by benefiting
from performance persistence in the fund. Sirri and Tufano (1993) is a further study
to look at flows into individual funds. The study broadly finds that money flows into
funds with the best past performance but does not flow out of funds with the worst past
performance. This is likely to reflect (i) the huge growth in the mutual fund industry
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generally, which means that a large proportion of fund flow is additional capital rather
than capital moving between funds, and this capital is attracted to high past return funds
and (ii) that there is a cost for existing investors to leave one fund to join another.

Edelen (1999) presents a rather different picture of the fund-flow fund-performance
relationship. Edelen hypothesises a reverse direction of causation in this relationship to
that of Gruber (1996). Specifically, that fund flow has a negative effect on subsequent
fund performance. This study distinguishes between two components of a mutual fund’s
trading decisions, that is, between the two services provided by a mutual fund. A mutual
fund manager undertakes discretionary (rational) trades on the basis of information that
he anticipates will lead to a positive risk-adjusted return. In addition, however, arguably
the fund’s primary responsibility (and purpose) is to satisfy its investors’ liquidity
demands, that is, to provide a liquid equity position to its investors at low cost. Edelen
(1999) argues that fund flows, or flow shocks, force the manager to engage in ‘liquidity-
motivated trading’, which is non-discretionary. The flow shock experienced by the fund
immediately alters its relative cash/equity holdings and moves the fund from its target
portfolio. Sufficiently high fund flow magnitudes would increase the variability of the
fund’s cash position. First, this complicates the investor’s task in making risk–return
choices and second, it compromises the manager’s objective of tracking or beating
a benchmark index. Consequently, providing a liquid equity position for the investor
triggers marginal trading by the mutual fund manager. Edelen argues that this liquidity
component of the mutual fund manager’s trading plays the role of noise trading and
since noise traders face expected losses, the fund should experience negative return
performance in proportion to the volume of fund flow.

Edelen (1999) partitions a mutual fund’s abnormal return between return attributable
to liquidity-motivated trading and that attributable to information-motivated (discre-
tionary) trading. The paper first estimates liquidity-motivated trading as fi,t = cIf I

i,t +
c0f 0

i,t where f I
i,t and f 0

i,t denote the volumes of inflows and outflows respectively for
fund-j in time t , and cI, c0 are the estimated coefficients in separate bivariate regres-
sions of the volume of fund stock purchases on f I

i,t and the volume of fund stock sales
on f 0

i,t respectively, that is, cI and c0 are flow-trade response coefficients. The author
then constructs a regression of the form

ARi,t = λfi,t + δdi,t + εi,t

where ARi,t is the abnormal return on fund i in period t , fi,t is the estimated liquidity-
motivated trading and di,t is the estimated information-motivated (discretionary) trading
estimated as the combined volume of stock purchases and sales minus fi,t , εi,t is a
random disturbance term. In order to incorporate persistence, the author supplements
the right-hand side of the regression equation with lagged values of ARi,t . Finally,
in an attempt to avoid inference problems arising from the possible reverse causation
between ARi,t and fi,t cited by Gruber (1996), the author instruments fi,t by its lagged
value. Notwithstanding these difficulties, the estimation results in Edelen (1999) do
provide some evidence in support of the author’s hypothesis that fund flow negatively
impacts on fund performance.

One overall possible conclusion from combining the findings of Gruber (1996),
Zheng (1999) and Sirri and Tufano (1993) on the one hand and Edelen (1999) on the
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other is that high relative performance attracts capital inflow but that the fund manager,
who is under pressure to provide a liquid equity investment for investors, is unable
to optimally allocate funds to equity, that is, is unable to relatively quickly determine
information on the basis of rational trades, and this detracts from subsequent return
performance.

A further avenue of investigation in examining mutual fund capital flows is to eval-
uate whether fund flows in aggregate affect stock market returns. This question is taken
up by Warther (1995) and is briefly addressed here. Warther (1995) divides fund flows
into anticipated and unanticipated flows, using Box–Jenkins procedures to estimate
anticipated flows. Monthly unanticipated fund flows are found to strongly correlate
with concurrent stock market returns in a regression of the latter on the former. Antic-
ipated fund flows are uncorrelated with stock market returns, which is consistent with
informationally efficient markets where anticipated flows are ‘pre-contemporaneously’
discounted in returns. Warther (1995) also tests the feedback hypothesis by revers-
ing the direction of the regression and hypothesising that fund flows are, at least
in part, determined by lagged stock market returns. The author finds no empirical
evidence in support of the feedback trader hypothesis, however. Remolona, Kleiman
and Gruenstein (1997) also examine both directions of causality in the ‘aggregate fund
flow – aggregate stock market returns’ relationship in order to determine if in a declin-
ing stock market, the positive feedback theory could lead to a self-sustaining decline
in stock prices. However, their analysis suggests that over the 1986–1996 period, the
effect of short-term stock market returns on mutual fund flows were weak.

Mutual Fund Managers

It is also important to note that the findings relating to performance throughout this
review of the literature relate to the mutual fund as the entity rather than specifically
to the fund manager – the fund manager is likely to change over the return history of
the fund. Therefore, it may also be important to examine the relationship between fund
performance and the cross-sectional characteristics of fund managers as it is between
fund performance and the characteristics of the fund, such as investment objective,
expenses, and so on. This issue is pursued by Chevalier and Ellison (1999) who eval-
uate whether mutual fund performance is related to fund manager characteristics such
as age, the average SAT score of the manager’s undergraduate institution and whether
the manager held an MBA. Using a sample of 492 mutual fund managers who had sole
responsibility for a fund for at least some part of the 1988–1994 sample period, the
authors report that managers with MBAs outperform managers without an MBA by
63 basis points per year. However, controlling for the former groups greater holdings
of higher systematic risk stocks, the residual outperformance falls to zero. The study
does find a small degree of residual outperformance among younger versus older fund
managers (i.e. having controlled for other fund risk characteristics) and hypothesises
that this is due to a harder work ethic among young mangers who are still establishing
their careers and who face a higher probability of dismissal. Finally, the most robust
performance difference identified is that managers from undergraduate institutions with
higher SAT scores obtain higher returns, although some of this difference is attributable
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to risk and expense characteristics. Chevalier and Ellison (1999) suggest that the SAT
score outperformance arises because of the greater natural ability, better education
and better professional networks associated with having attended a higher SAT score
undergraduate institution.

Market Timing

Ideally, to test the market-timing ability of mutual fund managers, we require data on
the actual asset shares to see if the manager increases her exposure to the market just
before a rise in the market return. Without asset share data, we can use the Treynor
and Mazuy (1996) or Merton and Henriksson (1981) regressions using conditioning
variables. In the Treynor–Mazuy model, the time-varying beta is assumed to depend
linearly on the manager’s conditional forecast of the market return (i.e. βt = β +
λ(R̂m,t+1 − ERm), where R̂m,t+1 is the conditional forecast (at time t) of the market
return). The Merton–Henriksson model assumes a similar linear relationship but beta
depends on the sign of the market return forecast (i.e. βt = β + λ(max[0, R̂+

m,t+1])
Linear parameterisations of market timing are highly restrictive (Goetzmann, Inger-

soll and Ivokvich 2000) and do not separate out the fund manager’s quality of infor-
mation in market timing and the aggressiveness with which she reacts to this infor-
mation. Jiang (2003) provides a non-parametric test of market timing that can identify
the quality of the manager’s market-timing ability and does not rely on linear factor
models. The intuition behind the approach is that the manager should increase beta if
she thinks the market will rise next period. For any two non-overlapping time periods
t1 and t2, the statistic x is greater than zero for successful market timing:

x = 2 · prob(βt1 > βt2 |Rm,t1+1 > Rm,t2+1) − 1

With no market-timing ability, β has no correlation with the market return and hence
prob(.) = 1/2 and x = 0 (x < 0 implies adverse market timing). Now consider the
triplet observed for mutual fund i’s returns {Ri,t1 , Ri,t2 , Ri,t3} where Rm,t3 > Rm,t2 >

Rm,t1 . A fund manager who has superior market-timing ability (regardless of her degree
of aggressiveness) should have a higher average beta in the t2 to t3 period than in the
t1 to t2 period. The measured value of beta in these two periods is

β12 = Ri,t2 − Ri,t1

Rm,t2 − Rm,t1

β23 = Ri,t3 − Ri,t2

Rm,t3 − Rm,t2

The sample analogue to x is therefore

θ̂n =
(

n

3

)−1 ∑
w

sign (β23 > β12)

where w represents the triplets in the data where w ∈ Rm,t1 < Rm,t2 < Rm,t3 and sign(.)
assumes a value of {1, −1, 0} if the argument is {positive, negative, zero}. Jiang (2003)
uses a US monthly returns database (1980–1999) of actively managed mutual funds



226 C H A P T E R 9 / A P P L I C AT I O N S O F L I N E A R FA C T O R M O D E L S

(1827 surviving and 110 non-surviving, excluding index trackers). There will be some
funds with θ̂ > 0 just due to luck, and the top 5% of market timers in the data have
θ̂ > 8.4%. Therefore, we need to see whether θ̂ = 8.4% would occur in the 5% right tail
if θ = 0 for all our funds. To evaluate this proposition, we assume a normal distribution
for θ with the same standard deviation as found in our cross section of funds data. Jiang
(2003) finds that the CDF of θ̂ for the empirical distribution is stochastically dominated
by the normal distribution (under the null θ = 0) and therefore, fund managers do not
have market-timing ability. Hence, an investor would be better off by choosing a
passive index fund rather than randomly choosing a fund from the universe of actively
managed funds. Jiang finds some evidence that average market-timing performance
is positively related to the age of the fund, the length of management tenure and
negatively related to fund size – but these effects are not statistically or economically
significant.

As with studies of the UK mutual fund industry, attempting to draw an overall
conclusion from the body of US studies regarding performance and the persistence
of performance is complicated by the fact that the studies apply a range of differ-
ing methodological approaches over various sample periods and hence are difficult
to compare directly. Nevertheless, the survey of the literature above indicates that
while evidence of the existence of fund managers with genuine stock-picking skills
is certainly not widespread, there are some results that show managers outperforming
benchmark portfolios in risk-adjusted terms. This performance is generally not found to
persist beyond the short term, however. Broadly consistent with findings from studies
of UK mutual funds is the evidence that poor performance has a stronger tendency to
persist than good performance.

Hedge Funds

Hedge funds, like mutual funds, are pooled investments but are subject to fewer restric-
tions. There are many hedge fund styles, such as long–short, short-selling, long only
leveraged, emerging market funds, distressed securities, global macro and relative value
arbitrage. These strategies are risky so the term hedge fund is rather misleading. Hedge
funds require a high minimum investment, annual fees can be higher than 5% p.a.,
and the profit taken by the owners of the fund is as high as 20 to 25%. About 90%
of hedge fund managers are based in the United States, and 9% in Europe, with a
total of about 6000 funds worldwide managing around $400 billion capital. However,
many funds are relatively small, and around 80% of funds have less than $100 million
under management.

There has not been a great deal of work on hedge fund performance because of a
lack of data. Early studies show that hedge funds have a high rate of attrition (Brown,
Goetzmann and Ibbotson 1999), and there is evidence of ‘positive alpha’ risk-adjusted
performance, with some evidence of persistence (Agarwal and Naik 2000), possibly
due to style effects rather than differential manager skills (Brown, Goetzmann and
Ibbotson 1999, Brown, Goetzmann and Park 2001). Fung and Hsieh (1997) find that
hedge funds do not necessarily offer higher risk-adjusted returns, but hedge fund returns
do have relatively low correlations with other securities, hence when around 10 to 20%
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of an index tracker is supplemented with a hedge fund portfolio, this improves the
risk–return profile.

Because hedge funds have a wide variety of investment styles, it is difficult to ade-
quately characterise their returns using a linear factor model. Usually, many additional
return variables are added to the Carhart four-factor model – such as a world stock
index, various bond indices (including emerging market bonds and corporate bond
returns) and even a commodity return index. Even then, it is very debatable whether
these ‘factors’ can adequately mimic returns on hedge funds that contain substantial
positions in options, which usually have highly non-linear payoffs.

Capocci and Hubner (2004) use a multifactor model on a large database of over 2700
hedge funds (including 801 ‘dead funds’), concentrating mainly on the more recent (and
accurate) monthly returns over the bull market period of 1994–2000 (for which data
on non-survivors is available). Funds are divided into around 20 style categories (e.g.
long-short, small caps, etc.). Overall, there are around 25 to 30% of funds within any
style category that have positive and statistically significant alphas, with around 5 to
10% having negative alphas and the majority of funds (i.e. around 60%) having zero
alphas. The market betas of the hedge funds are lower than those for mutual funds
(at around 0.3 to 0.6) and for almost all funds, the coefficient on the SMB factor is
statistically significant. A subset of the funds also has a significant coefficient on the
emerging market bond return, but only about one-third of funds show evidence of a
significant HML factor, and about 15% of funds have a significant momentum factor.
The R-squared for these multifactor regressions are mostly in the range 0.65–0.95.
Hence, most hedge funds appear to have exposure to small cap stocks, while a smaller
proportion are also exposed to emerging market bonds and momentum stocks.

Unfortunately, in only a few cases (i.e. long–short, convertible arbitrage, non-
classified) do the positive alphas over the whole period 1994–2000 remain positive
over sub-periods. When funds are sorted into deciles on the basis of their past one-year
returns (Jan–Jan), held for one year and then rebalanced (equally weighted), the time
series of only two of the decile portfolios (P7, P9) have statistically significant alphas,
indicating a lack of persistence in performance for most deciles. Overall, the evidence
is that some hedge funds show positive abnormal returns over 1994–2000 but ‘picking
winners’ is difficult and persistence in performance seems rather weak.

9.3 Mutual Fund ‘Stars’?
Given that there are results pointing to some mutual and hedge funds earning abnormal
returns, the question then arises whether this outperformance represents stock-picking
ability or whether it reflects the luck of individual fund managers. Until recently, the
literature has not explicitly modelled the role of luck in fund performance. There has
been some attempt to control for luck among studies of persistence by ranking funds in
a period separate from the evaluation period. First, this procedure may be flawed if the
model used to rank abnormal performance is mis-specified in both periods. Second,
the recursive portfolio formation approach does not tell us whether individual fund
performance persists as the identity of the funds in the various deciles or quintiles, and
so on, changes over time.
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As we have seen, there is considerable evidence for the United States and the United
Kingdom that the average mutual fund underperforms its benchmark (e.g. S&P500
index, or a style benchmark return) by around 0.5 to 1.5% p.a. However, some sub-
groups of managers (e.g. growth-oriented funds, Chen, Jegadeesh and Wermers 2000,
Wermers 2000) do outperform their benchmarks. Can we be sure that the benchmarks
we have chosen are reasonable and that ‘outperformance’ of some funds is not due
solely to ‘good luck’ over several years?

Kosowski, Timmermann, White and Wermers (2003) is the first paper to explicitly
control for luck in evaluating US mutual fund performance. With such a large universe
of mutual funds in existence, close to 1700 in this study, one would expect that some
funds will appear to exhibit abnormal performance simply due to chance. The ques-
tion arises as to how we establish the boundaries of performance that are explicable
by chance.

As we have seen, to test the performance of the average mutual fund, we require a
model of expected returns for each fund (over t = 1, 2, . . . , T ). Here, for expositional
purposes, we take the ‘unconditional’ CAPM (i.e. with constant parameters) as our
model:

(Rit − rt ) = αi + βi(Rmt − rt ) + εit (10)

Then the null for no abnormal performance for any fund i is H0 : αi = 0. To test the
performance of the average fund, we run (10) for each fund individually. If there are
N funds, the average α and tα for the cross section of N funds is

αav = N−1
N∑

i=1

α̂i (11a)

tav = N−1
N∑

i=1

tαi
(11b)

We have noted that an interesting class of alternative models to the unconditional-
CAPM in (10) are conditional models where both αi and βi are allowed to vary
over time. If zt consists of the information set known at time t , then the conditional
model is

(Rit − rt ) = αi(zt−1) + βi(zt−1)[Rbt − rt ] + εit (12)

where for linear functions,

αi(zt ) = α0i + α′zt (13a)

βi(zt ) = β0i
+ β ′zt (13b)

The variables zt control for predictable variations in factor loadings and factor risk
premia. The vector zt might include such variables as the dividend yield, the long–short
interest rate spread, the T-bill yield and January dummies. Abnormal performance is
now given by α0i �= 0.
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US Mutual Fund ‘Stars’?

Kosowski, Timmermann, White and Wermers (2003), using US monthly returns data
1962–1994 for around 1700 mutual funds, find that αav = 0.003% per month and
tav = −0.004, indicating the average fund does not outperform the market benchmark.
But the cross-section standard deviation of these αi across the 1700 funds is high at
around 0.3% p.m., indicating the possibility that some funds within the sample are
performing very well (and others very badly). The question they then ask is whether
some of the extreme ‘winner’ (and ‘loser’) fund performance is solely due to ‘luck’.

To answer this question, given the non-normality of the equation residuals, they
use a bootstrap procedure. The bootstrap has the advantage that it provides a non-
parametric approach to statistical inference about performance. Residuals from per-
formance regressions are often found to be non-normal, which would make
statistical inferences regarding performance based on standard t-tests and F -tests
unreliable.

Here we show how to implement one type of bootstrap across the universe of
funds. Using actual data, we have the estimated βi = 0.9 (say) for a particular fund
and this fund’s residuals êit . In the bootstrap, we keep βi = 0.9 and the (Rmt − rt )

data series fixed. Now for this fund, with equal probability, we randomly select the êit

with replacement and generate a series for (Rit − rt ) for sample size T , but under the
null of no outperformance, that is, αi = 0:

Rit − rt = 0 + βi(Rm − r)t + êit (14)

Using the simulated data for Rit − rt , we then calculate the OLS estimates (α̂i , β̂i) and
the t-statistic tαi

from (10) (using GMM standard errors). These bootstrap estimates
will differ from those found using the real data because of the ‘new’ random draws
of êit . For example, if the random draws with replacement by chance have a relatively
large number of negative values, the bootstrap estimate of α̂i will be negative.

We repeat this for all funds i = 1, 2, . . . , N , giving N values of αi and tαi
. To

illustrate, suppose we are interested in whether the performance of the best fund is
due to chance. We then choose the maximum value of αboot

i (max) and tboot
αi

(max) (i.e.
the best-performing fund from the universe of all funds). This is the first run of the
bootstrap (boot = 1). The above is now repeated 1000 times so we have 1000 values
of each of αboot

i (max) and tboot
αi

(max), which form the empirical bootstrap distribution
for the best fund (under the null of no outperformance, that is, the ‘true’ αi = 0).

We can repeat the above to obtain separate bootstrap distributions for (α̂i , tαi
) for

any percentile (e.g. 2nd, 3rd, . . ., etc., best or worst funds). In fact, the bootstrap distri-
bution for the t-statistics has ‘better’ properties (i.e. is a ‘pivotal statistic’) than those
for the alphas themselves, and intuitively this is because the t-statistics are scaled by the
standard error of alpha and therefore, their bootstrap distribution is less dispersed than
that for the alphas themselves. Kosowski et al. record the spread in the bootstrapped
alpha estimates within each percentile and show that the spread is considerably higher
in the extreme tails of the distribution.
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Let us consider the results for the bootstrap distribution of the fifth-best fund.
Kosowski, Timmermann, White and Wermers (2003) estimate an α̂ (fifth best) using
the real data for US mutual funds of about 1% per month (p.m.) with a (GMM) t-
statistic of 4.0. The bootstrap has αi = 0 for all funds. The p-value for the t-statistic
from the bootstrap distribution (for the fifth-best fund) under the null of αi = 0 is
less than 0.001. Hence, there is a very small probability that the fifth-best fund could
have generated an alpha of 1% p.m. or higher by pure chance. After controlling for
luck (across all funds), we are therefore confident that the fifth-best fund has genuine
stock-picking skills of around 1% p.m.

We can put this slightly differently. Kosowski, Timmermann, White and Wermers
(2003) find that on the basis of the bootstrap simulated data with αi = 0, one should
expect nine funds to have a αi ≥ 0.5% p.m. (i.e. 6% p.a.) simply due to luck. But in the
real data, 60 funds achieved this, so some fund managers do have genuine stock-picking
skills. Active fund management lives! When repeating the analysis for different mutual
fund ‘styles’, they find the ‘stars’ are most evident for the ‘growth-fund’ managers.

Kosowski, Timmermann, White and Wermers (2003) also find that the funds just
inside the far left tail (e.g. fifth–tenth worst fund, or 1% to 10% worst fund) generally
have a poor performance that cannot be attributed to bad luck – they are genuinely
‘bad’ stock-pickers.

It is worth noting that the results demonstrate the superior (and inferior) stock-
picking skills of certain funds over an average of many months. If this performance
were to persist in the future, then you would be able to pick the best fund now and
beat the benchmark(s) in the future. Of course, in reality, there are many eventualities
that might prevent this happening, such as a change in stock-picking technique by the
fund or a change in personnel in the fund management team.

Kosowski, Timmermann, White and Wermers (2003) examine persistence over one
year using the Carhart (1997) procedure. In January of every year, funds are sorted
into fractiles on the basis of the value of alpha in the Carhart four-factor model and
using the past three years of data. Equally weighted portfolios are constructed and
held for one year, when the procedure is repeated and rebalancing takes place. (Hence,
some or all of the mutual funds in, say, the top decile, will change every year.) The
estimated alphas for various fractiles (e.g. top decile) are then computed over the period
1979 to 1993 using the real data. The bootstrap distributions for these fractiles follow
a similar procedure but impose αi = 0 across all funds. Under the bootstrap, the top
decile of funds say (with all αi = 0) are formed into an equally weighted portfolio,
rebalanced each year and the distribution of the estimated α̂’s (and tα’s) for the top
decile of funds is constructed. Using the whole universe of funds, they find that only
the top decile of funds exhibits persistence over one year, with an alpha of 1.6% p.a.
Within the aggressive growth sector, the top three deciles exhibit one-year persistence,
whereas for growth funds, only the top decile shows persistence, whereas other fund
styles (e.g. growth–income and balanced-income) do not exhibit persistence.

‘Superior performance’ is also model-specific, and the CAPM might be an incorrect
model but Kosowski, Timmermann, White and Wermers (2003) use several alterna-
tive models (e.g. Fama–French three-factor model, Carhart’s four-factor model that
also includes a ‘momentum factor’ and several conditional-beta models) and find the
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results are broadly unchanged. Finally, there is always that bit of uncertainty around.
Although there might only be, say, a 0.5% chance of your chosen ‘star fund’ beating
the market by, say, 1% p.m. (12% p.a.), purely due to luck – yet nevertheless, it may
have been luck!

The Kosowski, Timmermann, White and Wermers (2003) study is one of the most
thorough in the area, using several alternative models to the CAPM, looking at the
‘over’ and ‘under’ performance of the top (bottom) 1%, 5%, 10%, and so on, of funds,
minimising survivorship bias (e.g. by not omitting funds that only survived over part
of the sample period) and much more. Overall, the conclusion that the top 5–10 funds
out of 1700 or so genuinely outperform their benchmark because of skill, while the
bottom 5–10 underperform because of bad stock-picking, seems to be a robust one.

Given this evidence, there seems to be something of a paradox in that there are
so many ‘active’ mutual funds, even though many do not outperform on the basis of
Jensen’s alpha. Of course, a few mutual funds do outperform the passive portfolio,
while others do much worse. The difficulty is in finding out who the ‘winners’ are
and in knowing whether this relatively small group of ‘winners’ will continue to be
winners. This is hardly a ‘free lunch’.

Bootstrap Issues

For aficionados, there are a number of issues, which arises in applying a bootstrap
procedure that need to be considered. Instead of using alpha as the performance mea-
sure, one can evaluate the bootstrap distribution of the ‘t-statistic of alpha’ under the
null hypothesis of zero abnormal performance, H0: αi = 0, and compare this bootstrap
distribution to the observed t-alpha. Using t-statistics has an added bonus: funds with
fewer observations may be estimated with higher variance and less precision and will
in consequence tend to generate outlier alphas. There is a risk therefore that these
funds will disproportionately occupy the extreme tails of the actual and bootstrapped
alpha distributions. The t-statistic provides a correction by scaling alpha by its esti-
mated precision, that is, its standard error. The distribution of bootstrapped t-statistics
for extreme values is likely to have fewer problems with high variance, relative to the
bootstrap distribution of alpha at the same percentile in the performance distribution. In
studies of this type, the bootstrap distribution of both alpha and its t-statistic is usually
constructed. (All t-statistics are usually based on Newey–West heteroscedasticity and
autocorrelation adjusted standard errors.)

To further improve the precision of performance estimates, one can impose a mini-
mum number of observations for a fund to be included in the analysis. An insufficient
number of observations in the estimation is likely to increase the sampling variabil-
ity of the resulting estimates. This could widen the tails of the bootstrap distribution
and possibly bias the results towards the conclusion that fund performance is not
outside what might be expected because of chance. For example, a minimum of 60
observations may be set as the requirement for the inclusion of funds in the analysis.
The disadvantage with this approach, however, is that it imposes a certain survivor
bias by restricting the examination to funds that have been skilled or lucky enough
to survive for five years. To examine the significance of this issue, the sensitivity of
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the bootstrap results can be tested for a number of alternative minimum observations
specifications.

A number of alternative bootstrap re-sampling techniques may be applied. We may
re-sample residuals only, residuals and factors together, thus maintaining the same
time-series pairings as observed in the underlying data or we may re-sample factors
and residuals independently.

Also, it may be the case that we suspect cross-fund dependencies among fund
residuals, that is, cov(εi, εj ) �= 0 for funds i and j . This may well arise from a mis-
specification in the performance model. To retain this correlation information in the
bootstrap procedure would require using the same random draw of time observations
across all funds, in each of the 1000 bootstrap simulations. Implementing this presents
a difficulty, however, because the sample of funds do not all exist at the same time
(i.e. some funds drop out of the sample before other funds come into being). To restrict
the bootstrap analysis to contemporaneous fund histories would severely restrict the
number of funds that could be selected for the analysis and could call into question
the reliability of the findings. A way to mitigate this problem is to use alternative
equilibrium models of performance, thus limiting the scope for misspecification and
cross-fund residual correlation.

In a bootstrap procedure, randomly re-sampling residuals one at a time (with replace-
ment) assumes the residuals are independently and identically distributed. However,
if the sample of mutual funds exhibit (say) first-order serial correlation, we can allow
for this dependence by bootstrapping the residuals in blocks of various lengths (e.g. in
blocks of two for first-order MA errors, and so on).

Also of interest is whether the stock-picking skills of managers are related to the
investment objective of the funds. This may be examined by applying the bootstrap
procedure separately to the different investment objectives of the funds, for example,
equity income, equity growth, general equity and smaller companies. In order to pro-
vide a comprehensive study of performance and to test the robustness of results,
the bootstrap test should be applied to alternative performance-measurement mod-
els (i.e. both single and multifactor models with unconditional and conditional factor
loadings and alphas). Kosowski, Timmermann, White and Wermers (2003) imple-
ment all of these alternative bootstrap techniques and generally they find that the
results are invariant to these alternatives. This indicates that it is the non-normality
of the residuals that is driving the bootstrap results in the tails of the performance
distribution.

UK Mutual Fund ‘Stars’?

We now present preliminary results from a study of UK mutual funds from Cuthbertson,
Nitzsche and O’Sullivan (2004), which demonstrates the use of various bootstrapping
techniques across mutual funds in our attempt to find mutual fund ‘stars’ – that is,
performance that is exceptional even after accounting for possible ‘good luck’ that
may apply across many funds.
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Data

The mutual fund data set used comprises 1596 Unit Trusts and Open Ended Investment
Companies (OEICs). Unit trusts are pooled investments that enable their investors to
enjoy economies of scale in gaining access to well-diversified portfolios of securities.
However, unit trusts often have different investment objectives as laid down in the
trust deed. Unit trusts are ‘open-ended’ mutual funds in the sense that investors can
purchase new units in the fund at the going market price per unit, that is, the demand
for units does not increase the unit price. Unit trusts can only be traded between the
investor and the trust manager; there is no secondary market. Unit trusts differ from
investment trusts in that the latter may be described as a ‘closed-end’ fund. Although
they are still pooled investments, investment trusts are, in effect, companies that are
quoted on the stock exchange in their own right and whose business it is to trade in
securities. Investment trusts have a fixed number of units, just as there are a fixed
number of shares in a company. Unlike the case of unit trusts, demand for investment
trusts may push up the price of the trust’s shares. Here, it is possible for the price of the
investment trust to trade at a premium (discount) where the price is higher (lower) than
the value of the underlying assets of the investment trust. A premium, for example,
may reflect investor demand for the skills of the investment trust manager. OEICs are
constituted as companies so that investors buy shares, but the number of shares in
issue varies according to demand, hence the term open-ended. This implies that the
share price always reflects the underlying asset value and unlike investment trusts, is
not affected by market sentiment towards the OEIC itself. Hence, the risk profiles of
OEICs are more in line with that of unit trusts than investment trusts.

The mutual fund returns data have been obtained from Standard & Poor’s Micropal.
Returns are measured monthly between April 1975 and December 2002. The analysis
is restricted to funds investing in UK equity. This is defined by the Investment Man-
agement Association (IMA), formerly the Association of Unit Trusts and Investment
Funds (AUTIF), as having at least 80% of the fund invested in UK equity.

Among the database of 1596 funds, a total of 334 funds are referred to as second
units. These arise because often when a fund management company first launches a
new fund, it will in fact launch several very similar funds. Subsequently, the less
successful funds are merged with the more successful funds. Second units are the less
successful funds. They remain in the database but, post-merger, they report identical
returns to that of the fund with which they were merged. Pre-merger, the returns are
also very similar. Second units may also arise when a single fund splits into a number
of similar funds. In this case, second units are recorded in the database for the full
sample period but report identical returns pre-split. In the vast majority of cases, the
split occurs late in the fund’s life and, therefore, these second units report relatively
few ‘independent’ return observations. In either case in which second units arise, they
provide little new information. In this study, 334 such funds were identified and are
excluded for much of the analysis. Furthermore, 128 of the funds in the database are
market tracker funds. As this study is interested in examining mutual fund performance
relative to the benchmark market index, the performance of tracker funds is of little
interest and such funds are also excluded. Concentrating on non-tracker independent
(i.e. non-second unit) funds leaves a sample of 1150 funds.
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All equity funds are categorised by the investment objective of the fund. The invest-
ment objectives include equity growth (122 funds), equity income (253 funds), general
equity (i.e. income and growth, 591 funds) and smaller companies (184 funds). The
IMA’s fund classification system specifies that equity income funds are those that aim
to have a yield in excess of 110% of the yield of the FT All-Share Index, equity
growth funds have a primary objective of achieving growth, general equity funds have
80% of the fund invested in UK equity and smaller company funds have at least
80% of the fund invested in UK equities that form the bottom 10% of all equities
by market capitalisation. These investment styles are declared by the funds them-
selves but certified initially and subsequently monitored monthly by the IMA in the
United Kingdom. Funds failing to remain within their stated investment objective for
a period of three months are required to either rectify the situation or change their
investment objective.

In order to control for survivorship bias, the data set includes both surviving funds
(765) and non-surviving funds (358). In addition, funds are also categorised by the loca-
tion from where the fund is operated: onshore United Kingdom (845), offshore (305).
Offshore funds are mainly located in Dublin, Luxembourg and the Channel Islands.

All returns are calculated bid price to bid price with gross income reinvested. The
bid/offer spread in fund returns captures the initial charge (typically 5–6%), stamp
duty, dealing charges and commissions incurred by the fund and the bid/offer spreads
of the underlying securities. As returns in this study are calculated bid price to bid
price, they are gross of such transactions costs. The annual charge imposed by the
fund on its customer is incorporated in the trust price and cannot be stripped out by
Micropal in its database. Therefore, returns are net of annual charges. This may cause
some concern as it implies that in the estimation of performance models, fund returns
are net of annual charges, while the benchmark indices against which fund returns are
measured are gross returns. This could affect the estimation of the factor loadings.
However, provided the annual charge is relatively constant, which in percentage terms
is the case, the estimation of factor loadings is unaffected and the alpha performance
measure is simply reduced by the level of the (constant) annual charge. (Of course, the
annual charge would have to be spread over 12 monthly observations.) Total Expense
Ratios (TERs), which are comprised mainly of the annual charge, are available from
around 1997 onwards. To address the above concern, one could add the TER to net
returns as if it were constant over the life of the unit trust. As already indicated,
however, such a procedure is equivalent to adding the TER to the estimate of alpha
(with an appropriate monthly adjustment).

The risk-free rate is the one-month UK Treasury Bill rate and the market index
is the FT All-Share Index. The factor mimicking portfolio for the size effect, SMB t ,
is the difference between the monthly returns on the Hoare Govett Small Companies
(HGSC) Index and the returns on the FTSE 100 index. The HGSC index measures
the performance of the lowest 10% of stocks by market capitalisation of the main UK
equity market.

The factor mimicking portfolio to model the value premium, HMLt , is the difference
between the monthly returns of the Morgan Stanley Capital International (MSCI) UK
value index and the returns on the MSCI UK growth index. To construct these indices,
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Morgan Stanley ranks all the stocks in their UK national index by the book-to-market
ratio. Starting with the highest book-to-market ratio, stocks are attributed to the value
index until 50% of the market capitalisation of the national index is reached. The
remaining stocks are attributed to the growth index. The MSCI national indices have a
market representation of at least 60% (more recently, this has been increased to 85%).
The national indices are designed to represent a broad range of sectors rather than
simply represent the highest market capitalisation stocks.

The factor mimicking portfolio to capture the one-year momentum anomaly, PR1YRt ,
is constructed from the FTSE 100 index. Each month, it is the equal-weighted average
returns of stocks with the highest 30% of returns over the previous 11 months minus the
equal-weighted average returns of stocks with the lowest 30% returns. The variable is
included with a lag of one month. The instruments used in the estimation of models with
conditional factor loadings and conditional performance measures are as follows. The
risk-free rate is the redemption yield on a one-month UK T-bill, the dividend yield of
the market factor is the dividend yield on the FT All-Share index and the slope of the
term structure is the yield on the UK 10-year gilt minus the yield on the UK one-month
T-bill.

Model Selection

Estimation results of the unconditional models including the CAPM, Fama and French
three-factor model and the Carhart (four-factor model), along with the unconditional
Treynor–Mazuy model and Merton–Henriksson market-timing models, are broadly
similar. For example, the CAPM indicates that the cross-sectional average alpha was
negative at around −0.03% p.m., indicating that the average mutual fund manager
underperformed the market by 0.36% p.a. However, this abnormal performance is
not statistically significant at the 5% level (using the t-statistic, which is an average
of absolute values across funds and is based on Newey–West heteroscedasticity and
autocorrelation adjusted standard errors). The Fama and French and Carhart factor
models produce similar performance results.

In terms of the factor loadings, the t-statistics across all unconditional models are
consistent in showing the market-risk factor and the size-risk factor as statistically
significant determinants of the cross-sectional variation in equity returns. For example,
in the case of the Carhart four-factor model, the cross-sectional average t-statistic of
the market-risk factor is about 25, while for the size-risk factor, the average t-statistic
is 5.4. In fact, 100% and 80% of the mutual funds indicated a statistically significant
t-statistic on the ‘market’ and ‘size’ risk factors respectively. The ‘value’ risk factor
does not appear to be a significant influence in explaining fund returns, and only 24%
of the sample of mutual funds produced a statistically significant t-statistic on this risk
factor. The one-year momentum factor from the Carhart four-factor model also appears
to be relatively unimportant where only 21% of funds registered the momentum effect
as an important determinant of returns.

The findings in relation to alpha and the distribution of alpha among the conditional-
beta and conditional-alpha and beta models are remarkably similar to those for the
unconditional factor models. The average mutual fund manager failed to outperform



236 C H A P T E R 9 / A P P L I C AT I O N S O F L I N E A R FA C T O R M O D E L S

the market by a statistically significant amount in nearly all models. Conditional factor
model specifications permit dynamically adjusted portfolio sensitivities or generally
embody market-timing activities on the part of fund managers. The above parametric
tests provide evidence that fund managers collectively either do not market time or do
not do so successfully. (This finding is consistent with evidence from market-timing
tests among UK unit trusts in the literature (see Fletcher 1995, Leger 1997).) While
parametric tests inherently involve a joint hypothesis, Jiang (2003) also finds against
superior market-timing activity from non-parametric tests on US equity mutual funds.

The key model selection criterion used is the Schwartz Information Criterion (SIC),
which trades off a reduction in a model’s residual sum of squares for a parsimonious
‘best-fit’ model. This information criterion suggests that the model with the lowest
SIC measure should be selected. From among the class of unconditional models, the
three-factor Fama and French specification has the lowest SIC measure (on average
over all mutual funds). Indeed, this model provides the best fit from among all classes
of models estimated, a finding also reported in Kosowski, Timmermann, White and
Wermers (2003).

For all of our alternative specifications, the normality assumption is rejected for
between 60 and 80% of the mutual funds (using the Jarque–Bera test). It is this finding
that largely motivates the use of the bootstrap technique, as non-normal residuals
indicate that the alpha estimates themselves are also non-normally distributed, which
in turn invalidates the use of standard statistical tests such as the t-test and F-test, which
require normally distributed errors. The finding of widespread non-normally distributed
fund residuals also questions the reliability of past research that draws inferences from
t-tests regarding mutual fund abnormal performance. This strongly motivates the need
to bootstrap performance estimates to determine whether significant outperformance
(and underperformance) exists in the mutual fund industry.

Also, in the case of all models, over 60% of mutual funds exhibit serial correlation
of order one in the residuals (using LM test statistics). This has implications for the
implementation of the bootstrap analysis in which it will also be necessary to examine
a bootstrap technique that now randomly draws residuals in pairs. This is necessary
to preserve the information content in the serial correlation in order that the bootstrap
simulations mimic the original data generation process as closely as possible.

Bootstrap Analysis of UK Mutual Funds

As noted above, on the basis of the ‘within sample’ Schwartz criterion, it is found
that the unconditional Fama–French three-factor model performs ‘the best’. Table 3
presents bootstrap statistics for the full sample of mutual funds (i.e. for all investment
objectives) for the unconditional Fama and French three-factor model. The table shows
the estimated alpha and the Newey–West adjusted t-statistic of alpha using the ‘real’
data. The reported p-value is for the t-statistic of alpha, under the null of no outper-
formance (i.e. αi = 0 for all i). All bootstrap results reported throughout this section
are based on 1000 simulations.

Take the best fund performance as an example. Table 3 reveals that the best fund
ranked by alpha from the unconditional model achieved abnormal performance of
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Table 3 UK mutual fund performance

Fund Position Unconditional Three-Factor Model

Actual Alpha Actual t-alpha Bootstr. p-value

Top Funds

Best 0.7853 4.0234 0.056
2nd best 0.7239 3.3891 0.059
10th best 0.5304 2.5448 0.022
15th best 0.4782 2.4035 0.004

Bottom Funds

15th worst −0.5220 −3.6873 0.000
10th worst −0.5899 −4.1187 0.000
2nd worst −0.7407 −5.1664 0.001
Worst −0.9015 −7.4176 0.000

Note:
This table presents bootstrap statistics for the full sample of mutual funds, including all
investment objectives for the Fama–French three-factor performance model. The first col-
umn reports the estimated alpha using the real data. The second column reports the actual
t-statistics using the real data and with Newey–West heteroscedasticity and autocorrelation
adjusted standard errors. The third column reports the bootstrap p-values of the tα on the
basis of 1,000 bootstrap re-samples, under the null of no outperformance (i.e. αi = 0). The
sample period is April 1975 to December 2002.

0.785% per month. The bootstrap p-value of 0.056 indicates that 5.6% of the 1000
bootstrap simulations across all of the funds (under the null hypothesis of zero abnormal
performance) produced a t-statistic of alpha greater than that observed for the ‘best
fund’ in the real data. In other words, the p-value of 0.056 suggests, at 95% confidence,
that the performance of the best fund (using the t-statistic of alpha as the performance
measure) is statistically due to luck, and there is little evidence of genuine stock-picking
ability on the part of the fund’s manager(s).

Looking across the entire right tail of the performance distribution summarised in
Table 3, the evidence indicates that there are some funds, just inside the extreme of
the right tail (e.g. 10th- and 15th-best funds) that have genuine stock-picking skills,
but most ‘superior’ fund performance is due to luck. This finding differs somewhat
from Kosowski, Timmermann, White and Wermers (2003), who find stronger evidence
of ‘skill’ amongst the best fund managers.

In the left tail of the distribution, the bootstrap p-value (for tα) at the worst per-
formance level is −7.4, with a bootstrap p-value near to zero. That is, the 1000
lowest bootstrap tα-statistics across funds (under H0 : αi = 0) produce a less negative
t-statistic than the −7.4 found in using the ‘real’ data (from among the full sample
of mutual funds). This indicates genuine poor performance rather than bad luck. It is
also clear that for all of the left tail reported in Table 3, this conclusion continues to
hold. The findings here for the negative performance side of the distribution are similar
to those of Kosowski, Timmermann, White and Wermers (2003) US study where the
evidence also suggests that poor-performing funds possess truly inferior stock-picking
skills.
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Kernel density estimates of actual and bootstrap t–stats of alpha
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Figure 2 Kernel density estimates of actual t-statistics of alpha and the bootstrap distribution
all UK mutual funds (unconditional three-factor model)

Figure 2 provides a graphical illustration of the comparison between the bootstrap
distribution of tα , which is entirely due to random variation, versus the ‘observed’ dis-
tribution of tα , which uses the ‘real’ data from the sample of funds. This figure plots
kernel density estimates of the distributions for all investment objectives, estimated by
the three-factor unconditional model. It is clear from Figure 2 that the actual perfor-
mance distribution of tα has a much fatter left tail than the bootstrap distribution, while
the right tail of the tα distribution lies only just outside the right tail of the bootstrap
distribution. This again indicates that there are many genuinely inferior funds, whereas
the tα estimates of funds in the right tail of the distribution can mainly be attributed
to good luck.

Figures 3 and 4 show the bootstrap distribution of alpha at selected points of the
performance distribution. The upper left panel of Figure 3 shows the distribution of the
best alpha across funds from 1000 bootstrap re-samples under the null hypothesis of
no outperformance (H0 : αi = 0), while the upper right panel shows the 1000 fifth-best
alphas, and so on. It is quite evident from the four panels of Figure 3 that the best
bootstrap alphas are highly non-normal and have a relatively high variance but that the
distribution more closely approximates normality and exhibits a lesser variance as we
move even slightly closer to the centre of the performance distribution. In results not
shown, this finding follows closely from the fact that the residuals from the ‘best’ fund
regressions exhibit higher variance and a greater degree of non-normality than funds
closer to the centre of the distribution. It is this high variance among the top funds’
regression residuals that generates a wide dispersion among the alphas in the bootstrap
procedure. In Figure 4, an almost mirror image of this is presented for the extreme
lower end of the performance distribution where high variance non-normal residuals
among the extremely poor funds’ regressions also give rise to wide dispersion among
the bootstrap alphas.
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Figure 3 Histograms of bootstrap alpha estimates: all UK mutual funds
(upper end of the distribution: unconditional Fama–French three-factor model)
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Figure 4 Histograms of bootstrap alpha estimates: all UK mutual funds
(lower end of the distribution: unconditional Fama–French three-factor model)
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As an alternative interpretation, the bootstrap may be used to estimate how many
funds from the sample one might expect to achieve some given level of alpha perfor-
mance by random chance alone. This number can then be compared with the number
of funds that actually reach this level of alpha. For example, positive alphas should
be achieved by 364 funds solely on the basis of chance, whereas in fact only 240 are
observed to have produced positive performance.

Performance and Investment Styles

It is also of interest to investors to identify whether stock-picking talent is related to the
investment objective of the fund. From the mutual fund performance and persistence
literature, particularly among studies of the US fund industry, there is some evidence
that mutual funds with a growth stock investment style tend to be among the top-
performing funds (Chen, Jegadeesh and Wermers 2000).

In this study, we find that the top ten performing funds, ranked by a three-factor
unconditional alpha model, comprise three growth funds, four general equity funds,
three small stock funds and no income funds. Only five of the top ten funds are
surviving funds as of December 2002. At the opposite end of the alpha performance
scale, the worst ten funds consist of five general equity funds, two income funds
and three small stock funds while there are no growth funds. At the top end of the
performance spectrum, the findings here support evidence from US mutual fund studies
in that growth stock funds feature highly amongst top-performing funds but are not
amongst the extreme poor-performing funds.

To address the question of relative performance of mutual funds of different invest-
ment styles more rigorously, this study implements the bootstrap procedure separately
within each subgroup of investment styles or objectives. These investment styles are
declared by the funds themselves but certified initially and subsequently monitored
monthly by the IMA in the United Kingdom. Examining the performance and skills
of managers separately within each fund classification has the added advantage that
in each case, one is examining a more homogeneous risk group helping to control for
possible unknown cross-sectional risk characteristics that may be unspecified by the
equilibrium model of returns.

A comparison between the performance results among different investment styles is
provided in Figures 5 to 8. These figures present kernel density estimates of the actual
and bootstrap distribution of tα for equity income, equity growth, general equity and
small stock funds respectively. A comparison of the figures appears to indicate that
the left tails of the actual performance distributions (dashed lines) are broadly similar
between sectors and indicate poor performance that cannot be attributed to bad luck.
The actual performance distributions in the extreme right tail lie to the right of their
zero performance bootstrap counterparts only for growth and income funds, but even
here there is not much evidence of skill rather than ‘good luck’.

Length of Fund Histories

It may be advisable to restrict the bootstrap analysis to funds with a minimum number of
observations. This is to exclude short-lived funds that would be likely to generate alpha
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Kernel density estimates: Income funds
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Figure 5 Kernel density estimates of actual t-statistics of alpha and the bootstrap distribu-
tion – UK equity income funds

Kernel density estimates: Growth funds
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Figure 6 Kernel density estimates of actual t-statistics of alpha and the bootstrap distribu-
tion – UK equity growth funds

performance estimates with high sampling variability making their sample estimation
less reliable. These less reliably estimated funds could disproportionately occupy the
extreme tails of both the actual and bootstrap distributions. Choosing instead to con-
struct bootstrap p-values of the t-statistics of alpha mitigates this problem by scaling
the alpha by its precision. Even so, to avoid possible problems with both the mod-
ified and unmodified performance distributions, a minimum number of observations
restriction is advisable. All bootstrap p-values presented in this section above have
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Kernel density estimates: General equity funds
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Figure 7 Kernel density estimates of actual t-statistics of alpha and bootstrap distribution – UK
general equity funds

Kernel density estimates: Small stack funds
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Figure 8 Kernel density estimates of actual t-statistic of alpha and bootstrap distribution – UK
small stock funds

been calculated over funds with a minimum of 60 observations. However, a possible
drawback with this approach is that it may introduce a survivorship bias because the
analysis is limited to funds that have been skilled (or possibly lucky) enough to remain
in existence for five years.

Owing to this possible source of bias, it is necessary to examine the sensitivity of
the conclusions presented so far to this minimum number of observations restriction. In
order to examine this, this study conducts the bootstrap procedure and re-estimates the
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empirical p-value for a range of alternative minimum fund histories. The unconditional
three-factor model was used in all cases, and results relate to the full sample of all
investment objective funds. It is found that the interpretation of the bootstrap p-values
is unchanged in all minimum observation sample sizes. The findings already presented
are not sensitive to restricting sample size (i.e. survivorship bias is not important).
Specifically, performance in the left tails of the various panel distributions reject ran-
dom chance as the explanation for bad performance, while in the right tails, good luck
is usually the cause of ‘good’ performance.

Time-Series Dependence in the Residuals

The bootstrap procedure may be modified to select residuals in blocks of size that
correspond to the suspected order of serial correlation. In this study, it was shown
that for a large proportion of funds, the null hypothesis of serial correlation of order
one could not be rejected. The bootstrap simulation was repeated for a number of
alternative block lengths in which residuals were sampled, but the p-values were largely
invariant to this procedure. Thus, the bootstrap distributions are mainly the result
of non-normality in the tails of the distribution rather than any serial correlation in
the residuals.

Overall, the preliminary results of this UK study suggest that amongst the best-
performing UK mutual funds, very few exhibit genuine skill in outperforming their
benchmarks, while the performance of the worse funds is not due to bad luck but due
to ‘bad skill’. Of course, the majority of funds neither out- nor underperform their
benchmarks, and the issue of persistence in performance is not addressed in this study,
only the average performance over the whole data set. The reported results are for the
unconditional three-factor Fama and French model, and the sensitivity of the results to
alternative performance models (e.g. conditional models and market timing) needs to
be carefully examined.

9.4 Summary
• Event studies use variants of the ‘market model’ to measure the abnormal response

of stock returns to announcements (e.g. hostile takeover). The CAR is usually taken
as the market’s view of the impact of this ‘news’ on the value of the (equity of
the) firm.

• Studies of mutual (pension) fund performance use a multifactor approach to account
for the various sources of risk that may influence mutual fund portfolio returns and
frequently use Jensen’s alpha as a measure of abnormal return. This method can be
extended to measure persistence in performance.

• Standard statistical tests on alpha indicate that there may be some ‘outperformance’
and some ‘underperformance’ for funds at either end of the distribution, but the
majority of funds neither over- nor underperform. Any overperformance does not
appear to be persistent even over short horizons of one or two years, but underper-
formance persists for slightly longer.
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• After correcting for good or bad luck (using a bootstrap analysis), it has been found
that some funds in both the United States and United Kingdom in the ‘right tail’ of
the distribution genuinely outperform their benchmarks but the effect is much more
pronounced for US rather than UK funds. However, amongst both US and UK funds,
those in the ‘left tail’ underperform because of genuinely bad stock-picking skills.
However, this approach is relatively novel, and hence, these preliminary results,
although interesting, must be interpreted with some caution.



10
VALUATION MODELS
AND ASSET RETURNS

Aims
• Show that, when expected stock returns are constant, the stock price equals the

discounted present value (DPV) of future dividends, and the discount rate is constant.
This is the rational valuation formula (RVF).

• A special case of the RVF, where the dividend growth rate and the discount rate are
constant, gives the Gordon Growth Model.

• When equilibrium expected returns vary over time, then the discount rate in the RVF
for stock prices is also time-varying.

• Show how the RVF with a time-varying discount rate and time-varying growth rate
in dividends can be linearised. The link between stock price volatility and return
predictability is then demonstrated.

In this chapter, we look at models that seek to determine how investors decide what
is the fundamental or fair value Vt for a particular stock, where the ‘fundamentals’
are dividends and future required returns. A key idea running through this chapter is
that stock returns and stock prices are inextricably linked. Indeed, alternative models
of equilibrium expected returns give rise to different expressions for the fundamental
value of a stock and hence stock prices.

10.1 The Rational Valuation Formula (RVF)
The expected return is defined as

EtRt+1 = EtVt+1 − Vt + EtDt+1

Vt

(1)
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where Vt is the value of the stock at the end of time t,Dt+1 are dividends paid between
t and t + 1, Et is the expectations operator based on information �t at time t or earlier
and

E(Dt+1|�t) ≡ EtDt+1

Assume investors are willing to hold the stock as long as it is expected to earn a
constant return (= k). For the moment, we can think of this ‘required return’ k as that
rate of return that is just sufficient to compensate investors for the inherent riskiness
of the stock, but we do not yet specify a ‘model’ for k.

EtRt+1 = k k > 0 (2)

The stochastic behaviour of Rt+1 − k is such that no abnormal returns are made, on
average, and excess returns are a ‘fair game’.

Et(Rt+1 − k|�t) = 0 (3)

Using (1) and (2), we obtain the Euler equation that determines the movement in
‘value’ over time:

Vt = δEt(Vt+1 + Dt+1) (4)

where δ = discount factor = 1/(1 + k) with 0 < δ < 1. Leading (4) one period:

Vt+1 = δEt+1(Vt+2 + Dt+2) (5)

Now take expectations of (5), assuming that information is only available up to
time t :

EtVt+1 = δEt(Vt+2 + Dt+2) (6)

In deriving (6), we have used the law of iterated expectations:

Et(Et+1Vt+2) = EtVt+2 (7)

The expectation formed today of what one’s expectation will be tomorrow at t + 1
for Vt+2, is the left-hand side of (7). This simply equals the expectation today of Vt+2,
since under RE you cannot know how you will alter your expectations in the future.
Equation (6) holds for all periods so that

EtVt+2 = δEt(Vt+3 + Dt+3), etc. (8)

The next part of the solution requires substitution of (6) in (4).

Vt = δ[δEt(Vt+2 + Dt+2)] + δ(EtDt+1)

By successive substitution,

Vt = Et [δDt+1 + δ2Dt+2 + δ3Dt+3 + · · · + δN(Dt+N + Vt+N)] (9)
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Now let N → ∞ and, hence, δN → 0. If the expected growth in D is not explosive
so that EtVt+N is also finite, then,

lim︸︷︷︸
n→∞

Etδ
N [Dt+N + Vt+N ] → 0 (10)

Equation (10) is known as a terminal condition or transversality condition, and it rules
out rational speculative bubbles (see Chapter 17). Equation (9) then becomes

Vt = Et

∞∑
i=1

δiDt+i (11)

We have derived (11) under the assumptions that expected returns are constant, the
law of iterated expectations (i.e. RE) holds for all investors and the transversality
condition holds.

The fundamental value Vt of a share is the DPV of expected future dividends.
If Pt �= Vt , then unexploited profit opportunities exist in the market. For example, if
Pt < Vt , then investors would buy the share since they anticipate that they will make a
capital gain as Pt rises towards its ‘correct value’ in the future. As investors purchase
the share with Pt < Vt , this would tend to lead to a rise in the current price as demand
increases, so that it quickly moves towards its fundamental value. Now assume

• investors at the margin have homogeneous expectations or more precisely that their
subjective view of the probability distribution of fundamental value reflects the ‘true’
underlying distribution;

• risky arbitrage is instantaneous, so investors set the actual market price Pt equal to
fundamental value Vt .

Then we obtain the RVF for stock prices with a constant discount rate:

Pt = Et

[ ∞∑
i=1

δiDt+i

]
(12)

In the above analysis, we did not distinguish between real and nominal variables, and
indeed the mathematics goes through for either case: hence, (12) is true whether all
variables are nominal or deflated by an aggregate goods price index. Nevertheless,
intuitive reasoning and causal empiricism suggest that expected real returns are more
likely to be constant than expected nominal returns (not least because of goods price
inflation). Hence, the RVF is usually expressed in terms of real variables.

Finite or Infinite Horizon?

If investors have a finite horizon, then they are concerned with the price that they can
obtain in the near future, so does this alter our view of the determination of fundamental
value? Consider the simple case of an investor with a one-period horizon:

Pt = δEtDt+1 + δEtPt+1
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The price today depends on the expected price at t + 1. But how is this investor to
determine the value EtPt+1 at which she can sell at t + 1? If she is consistent (rational),
she should determine this in exactly the same way that she does for Pt . That is,

EtPt+1 = [δEtDt+2 + δEtPt+2]

But by repeated forward induction, each investor with a one-period horizon will believe
that Pt+j is determined by the above Euler equation and hence today’s price will equal
the DPV of dividends in all future periods. Thus, even if some agents have a finite
investment horizon, they will still determine the fundamental value in such a way that
it is equal to that of an investor who has an infinite horizon. An alternative view, that
if investors have short horizons then price cannot reflect fundamental value, is known
as short-termism.

Later in this chapter, the assumption that equilibrium returns are constant is relaxed
and we find that a version of the RVF still holds. In contrast, in Chapters 18 and 19,
non-rational agents or noise traders may influence returns, and in such a model, price
may not equal fundamental value.

10.2 Special Cases of the RVF

A. Expected Dividends Are Constant

Suppose the best forecast of all future (real) dividends is the current level of
dividends, so

Dt+1 = Dt + wt+1

where wt+1 is white noise, and dividends follow a random walk. Under RE, we
have Et(wt+j |�t) = 0 for j ≥ 1 and EtDt+j = Dt . Hence, the growth in dividends is
expected to be zero and the RVF (12) becomes

Pt = δ(1 + δ + δ2 + · · ·)Dt = δ(1 − δ)−1Dt = (1/k)Dt (13)

Equation (13) predicts that the dividend–price (D/P) ratio or dividend yield is a con-
stant equal to the required (real) return k. The model (13) also predicts that the percent-
age change in stock prices equals the percentage change in dividends. Price changes
occur only when new information about dividends (i.e. ‘fundamentals’) becomes avail-
able: the model predicts that volatility in stock prices depends wholly on the volatility
in dividends. Although an investor’s best forecast of dividends for all future periods
is Dt , the random element wt+1 (i.e. news or uncertainty) may cause actual future
dividends to differ from the investor’s best forecast. The conditional variance of prices
therefore depends on the variance in news about these fundamentals:

Pt+1 − Pt = (1/k)�Dt+1 = (1/k)wt+1 (14)

and
var(Pt+1 − Pt |�t) = (σw/k)2 (15)
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Later in the book (Chapter 12), we examine the more general case where the volatility
in prices depends not only on the volatility in dividends but also on the volatility in
the discount rate. In fact, an attempt is made to ascertain whether the volatility in stock
prices is mainly due to the volatility in dividends or the discount factor.

B. Gordon Growth Model

A time-series model in which (real) dividends grow at a constant rate g is the AR(1)
model:

Dt+1 = (1 + g)Dt + wt+1 (16)

where wt+1 is white noise. Expected dividend growth from (16) is easily seen to be
equal to g.

(EtDt+1 − Dt)/Dt = g (17)

Note that if the logarithm of dividends follows a random walk with a drift parameter g∗,
then this also gives a constant expected growth rate for dividends (i.e. Et(ln Dt+1) =
g∗ + ln Dt ). The optimal forecasts of future dividends may be found by leading (16)
and by repeated substitution.

EtDt+j = (1 + g)jDt (18)

Substituting the forecast of future dividends from (18) in the rational valuation formula
gives

Pt =
∞∑
i=1

δi(1 + g)iDt (19)

which after some simple algebra yields the Gordon Growth Model

Pt = (1 + g)

(k − g)
Dt with (k − g) > 0 (20)

For example, if g = 0.03, k = 0.08, then the price–dividend ratio is 20.6. If agents
suddenly revise their expectations about g or k, then prices will move substantially.
For example, if g falls to 0.02, then the new price–dividend ratio is 17, which
implies an ‘immediate’ fall in price of 17.4%. If we assume g and k remain con-
stant, then the model does not ‘fit the facts’ over short horizons, since prices are far
more volatile than dividends over short periods (e.g. up to 5 years); although over
the longer term (e.g. 25 years or more), prices and dividends tend to move broadly
together (i.e. are cointegrated), as predicted by the model (i.e. lnPt = α+ lnDt where
α = ln[(1 + g)/(k − g)]).

10.3 Time-Varying Expected Returns
Suppose investors require a different expected return in each future period in order that
they will willingly hold a particular stock. (Why this may be the case is investigated
later.) Our model is therefore

EtRt+1 = kt+1 (21)
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where we have a time subscript on k to indicate that it is time-varying. Repeating the
previous steps, involving forward substitution, gives

Pt = Et [δt+1Dt+1 + δt+1δt+2Dt+2 + · · · + · · · δt+N−1δt+N(Dt+N + Pt+N)] (22)

which can be written in a more compact form (assuming the transversality condition
holds):

Pt = Et


 ∞∑

j=1

[
j∏

i=1

δt+i

]
Dt+j


 ≡ Et

∞∑
j=1

δt,t+jDt+j (23)

where δt+i = 1/(1 + kt+i ) and δt,t+j = δt+1 . . . δt+j . The current stock price, therefore,
depends on expectations of future discount rates and dividends. Note that 0 < δt+j < 1
for all periods and hence expected dividends $-for-$ have less influence on the current
stock price the further they accrue in the future. However, it is possible that an event
announced today (e.g. a merger with another company) could be expected to have
a substantial impact on dividends starting in, say, 5 years’ time. In this case, the
announcement could have a large effect on the current stock price even though it is
relatively heavily discounted. Note that in a well-informed (‘efficient’) market, one
expects the stock price to respond immediately and completely to the announcement
even though no dividends will actually be paid for 5 years. In contrast, if the market
is inefficient (e.g. noise traders are present), then the price might rise not only in the
current period but also in subsequent periods. Tests of the stock price response to
announcements are known as event studies.

At the moment, (23) is ‘non-operational’ since it involves unobservable expectations
terms. We cannot calculate fundamental value (i.e. the right-hand side of (23)) and
hence cannot see if it corresponds to the observable current price Pt . We need some
ancillary tractable hypotheses about investors’ forecasts of dividends and the discount
rate. It is relatively straightforward to develop forecasting equations for dividends,
for example, on annual data, an AR(1) or AR(2) model for dividends fits the data
quite well. The difficulty arises with the equilibrium rate of return kt . We investigate
equilibrium models of returns in a two-period and multiperiod context in later chapters
and derive the implications for returns and stock prices.

For the moment, consider an ad hoc approach to equilibrium returns using the
CAPM. This is ad hoc because the CAPM is based on a one-period mean-variance
optimisation problem and we will use it in the multiperiod DPV formula. We are
being logically inconsistent! But such ad hoc approaches are not unknown in applied
work.

Market Portfolio

The one-period CAPM predicts that in equilibrium, all investors will hold the market
portfolio (i.e. all risky assets will be held in the same proportions in each individ-
ual’s portfolio). Merton (1973) developed this idea in an intertemporal framework
and showed that the excess return over the risk-free rate, on the market portfolio, is
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proportional to the expected variance of returns on the market portfolio.

EtRm,t+1 − rt = λ(Etσ
2
m,t+1) (24)

The expected return can be defined as comprising a risk-free return plus a risk
premium rpt :

EtRm,t+1 = rt + rpt where rpt = λEtσ
2
m,t+1 (25)

Comparing (21) and (25), we see that according to the CAPM, the required rate of
return on the market portfolio is given by

kt = rt + λ(Etσ
2
m,t+1) (26)

The equilibrium required return depends positively on the risk-free interest rate rt and
on the (non-diversifiable) risk of the market portfolio, as measured by its conditional
variance Etσ

2
m,t+1. If either

• agents do not perceive the market as risky (i.e. Etσ
2
m,t+1 = 0) or

• agents are risk-neutral (i.e. λ = 0)

then the appropriate discount factor used by investors is the risk-free rate rt . Note that
to determine the price using the RVF, investors must determine kt and hence forecast
future values of the risk-free rate and the risk premium.

Individual Asset Returns

Consider now the price of an individual security or a portfolio of assets, which is
a subset of the market portfolio (e.g. shares of either all industrial companies or all
banking firms). The CAPM implies that to be willingly held as part of a diversified
portfolio, the expected return on portfolio-i is given by

EtRit+1 = rt + βit (EtRm,t+1 − rt ) where βit = Et(σim/σ 2
m)t+1 (27)

Substituting from (24) for Etσ
2
mt+1, we have

EtRit+1 = rt + λEt(σim)t+1 (28)

where σim is the covariance between returns on asset-i and the market portfolio. Again
comparing (21) and (28), the equilibrium required rate of return on asset-i is

kt+1 = rt + λEt(σim)t+1

The covariance term may be time-varying and hence so might the future discount
factors δt+j in the RVF for an individual security (or portfolio of securities). In the
CAPM, the market only rewards investors for non-diversifiable (systematic) risk. The
required (nominal) rate of return kt to willingly hold an individual stock as part of a
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wider portfolio is equal to the risk-free rate plus a reward for risk or risk premium rp t ,
which depends on the (conditional) covariance.

Linearisation of the RVF

As we shall see in Chapter 12, it is possible to linearise the RVF with a time-varying
discount rate and this can prove very useful in analysing movements in stock prices. To
‘get a handle on this’, consider the Gordon Growth Model equation (20), which shows
that a high current price–dividend ratio must be due to either high expected dividend
growth or low expected future returns (discount rates). Now consider the following
linearisation of the RVF (assuming no rational bubbles):

pt − dt = constant + Et{
∞∑

j=1

ρj−1(� dt+j − ht+j )} + lim
j−→∞ ρj (pt+j − dt+j ) (29)

where ρ is a linearisation constant with a value of around 0.95, �dt+j is the change
in log-dividends and ht+j is a sequence of one-period log returns. Equation (29) is a
dynamic version of the Gordon Growth Model in which dividend growth and expected
returns are not constant but can vary from period to period. It is consistent with the
Gordon Growth Model since the price–dividend ratio depends positively on dividend
growth and negatively on future expected returns. Given that the dividend–price ratio
varies over time in the data, then from (29), it must forecast either future dividend
growth or future returns. Put another way, a high price–dividend ratio must be followed
(on average) by either high dividend growth or low returns ht+j (i.e. the discount factor)
if the RVF is valid in the real world.

The above equation encapsulates many of the issues that we will discuss in future
chapters. Shiller’s work, discussed in detail in the next two chapters essentially shows
that the volatility in the actual price (or price–dividend ratio) cannot be explained solely
by rational agents’ views of changes in expected dividend growth, since the latter does
not vary enough in the data. This contradiction cannot be rescued by assuming that
expected future stock returns Etht+j vary because of changes in interest rates, since,
then a high price–dividend ratio should predict lower interest rates on average, which
is not the case in the data. Hence, acceptance of the RVF must probably rely either on
changes in the degree of risk aversion or on changes in the perceived level of stock
market risk. Empirically, the evidence for a link between stock market volatility and
expected returns (see equation (28)) is not overly strong (e.g. French, Schwert and
Stambaugh 1987), and we survey this evidence in Chapter 29 concentrating on the
so-called GARCH-in-mean models. Changes in the perceived level of stock market
risk are discussed under the general heading of stochastic discount factor models in
Chapter 13 and changing risk aversion is the subject of models of ‘behavioural finance’
in Chapters 18 and 19. The final term in (29) could also account for the movement in
the price–dividend ratio, and this is the subject matter of Chapter 17 on rational bubbles
(see Brunnermeier 2001).

Of course, one could also take the view that investors do not know the true structure
of the economy (up to a set of white noise errors) and take time to learn about their
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environment. This would also go some way in resolving the volatility puzzle since
a random rise in earnings over a short period might be projected into the future,
thus leading to higher and hence more volatile prices than would be predicted if agents
were truly rational. This idea of changing beliefs and ‘incorrect’ expectations formation
appears throughout the book and in particular in Chapter 17.

Volatility and Long-Horizon Forecastability

If, as is broadly the case in the data, the price–dividend ratio does not forecast future
dividends, then it must forecast future returns. Hence, the RVF equation (29) is con-
sistent with regression results where long-horizon returns can be forecast using the
dividend–price ratio – the term

∑∞
j=1 ρj−1ht+j is rather like a long-horizon return

(for ρ close to unity). Hence, in the data, high price–dividend ratios do not seem to
reflect higher dividend growth but lower expected returns and hence lower expected
risk premia.

An alternative representation of the linearised RVF is

ht − Et−1ht = Et − Et−1




∞∑
j=0

ρj (� dt+j − �ht+j+1)


 (30)

The term Et − Et−1 is a change in expectations or a ‘surprise’ event. Hence, a surprise
in one-period returns must be due to either revisions in forecasts of future dividends or
in future returns (or both). Campbell (1991) finds that it is revisions to future returns
that mainly drive unexpected current returns – again dividends play a relatively minor
role in influencing returns. Equation (30) also demonstrates the mildly counterintuitive
yet logically consistent result that a rise in expected future returns with no change in
news about dividends implies an unexpected fall in current returns. This arises because
if future discount rates are expected to be higher, while dividends are unchanged, then
today’s price must fall.

Expected Returns and Price Volatility

Is the empirical finding of highly volatile prices and small yet predictable changes in
expected returns consistent? The answer is ‘yes’, provided expected returns are highly
persistent. This is seen most easily in the Gordon Growth Model where we noted
that a small permanent change in the required return k leads to a large price change.
Now, suppose expected returns are a persistent AR(1) process with coefficient φ close
to unity:

ht+1 = φht + εt+1 (31)

Note that (31) implies Etht+2 = φEtht+1 so that expected returns are persistent. Sub-
stituting in (29) for Etht+j = φjht (and ignoring the dividend growth term),

(pt − dt ) = −1

(1 − ρφ)
ht (32)
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Reasonable values are ρ = 0.95 and φ = 0.9. Then, even a ‘small’ volatility in expected
returns of σ(Etht+1) = 1% gives σ(pt − dt ) = 6.9% – a high volatility in prices. We
discuss these issues further in Chapter 12.

10.4 Summary

• Under instantaneous arbitrage, given any model for expected returns, we can show
that the price of a stock equals the PV of expected dividends and future discount
factors. This is the rational valuation formula, RVF. If equilibrium expected returns
are constant, then the discount rate in the RVF is constant.

• The Gordon Growth Model assumes a constant discount rate and constant growth in
dividends – dividends and discount rates are persistent. Prices are very sensitive to
small changes in the discount rate or the growth rate of dividends. If discount rates
and dividend growth really are constant in all time periods, then (log) prices move
one-for-one with the log of dividends.

• If equilibrium expected returns on an asset are given by the standard-CAPM, then
the discount factor in the RVF may be time-varying. This discount factor depends
on the risk-free rate and a variance term (for the market return) or a covariance term
(for individual assets or a subset of the market portfolio).

• Suppose dividend growth and future discount rates are time-varying and dividend
growth is not forecastable (e.g. (log) dividends follow a random walk). Then, even
though expected returns are barely forecastable, yet persistent, this can lead to highly
volatile prices.



11
STOCK PR ICE
VOLAT IL ITY

Aims
• Explain how Shiller’s variance bounds tests can be used to assess the RVF for stock

prices – this results in the volatility puzzle.

• Analyse the statistical problems of small-sample bias and non-stationarity in the
context of variance bounds tests.

• Demonstrate how the ‘Peso problem’ changes our interpretation of variance bounds
tests.

• Show the linkages between variance bounds tests and various regression tests of
the RVF.

In this chapter, we discuss whether ‘fundamentals’ such as changing forecasts about
dividends or future returns can explain the observed volatility in stock prices. If a
rational fundamentals model cannot explain such observed volatility, then we have an
anomaly, which has become known as the volatility puzzle (Campbell 2000). In later
chapters, we see that there are other stylised facts about stock returns that are difficult
to rationalise in conventional models, the most prominent being the equity premium
puzzle and the risk-free rate puzzle.

Volatility tests directly examine the rational valuation formula (RVF) for stock prices
under a specific assumption about equilibrium expected returns. The simplest assump-
tion is that one-period returns are constant.

Pt =
∞∑
i=1

δiEtDt+i (1)
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If we had a reliable measure of expected dividends, we could calculate the RHS of (1).
A test of the RVF would then be to see if var

(∑
δiEtDt+i

)
equals var(Pt ). Shiller

(1981) in a seminal article obviated the need for data on expected dividends. He
noted that under rational expectations (RE), actual and expected dividends only differ
by a random (forecast) error and therefore so do the actual price Pt and the perfect
foresight price P ∗

t , defined as P ∗
t = ∑

δiDt+i . Note that P ∗
t uses actual dividends.

Shiller demonstrated that the RVF implies var(Pt ) ≤ var(P ∗
t ). At the same time as

Shiller, two other financial economists, LeRoy and Porter (1981), provided similar
tests. However, whereas Shiller found that for US stock prices, the variance inequality
was grossly violated, LeRoy and Porter found that the inequality was only marginally
rejected (in a statistical sense). These two papers led to a plethora of contributions using
variants of this basic methodology. Some articles emphasised the small-sample biases
that might be present, whereas later work examined the robustness of the volatility
tests, under the assumption that dividends are a non-stationary process.

A number of commentators often express the view that stock markets are excessively
volatile – prices alter from day to day or week to week by large amounts that do not
appear to reflect changes in ‘news’ about fundamentals. If true, this constitutes a
rejection of the efficient markets hypothesis (EMH). Of course, to say that stock prices
are excessively volatile requires one to have a model based on rational behaviour that
provides a ‘yardstick’ against which one can compare volatilities. Common sense tells
us, of course, that we expect stock prices to exhibit some volatility. This is because
of the arrival of ‘news’ or new information about companies. However, the question
we wish to address here is not whether stock prices are volatile but whether they are
excessively volatile.

We now examine more formal tests of the RVF on the basis of variance bounds.
Broadly speaking, variance bounds tests examine whether the variance of stock prices
is consistent with the variability in fundamentals (i.e. dividends and discount rates)
given by the RVF. These tests can be classified into two broad types: ‘model-free’
tests and ‘model-based’ tests. In the former, we do not have to assume a particular
statistical model for the fundamental variables. However, as we shall see, this implies
that we merely obtain a point estimate of the relevant test statistic, but we cannot derive
confidence limits on this measure. Formal hypothesis testing is therefore not possible.
All one can do is to try and ensure that the estimator (based on sample data) of the
desired statistic is an unbiased estimate of its population value. Critics of the early
variance ratio tests highlighted the problem of bias in finite samples (Flavin 1983).

A ‘model-based test’ assumes a particular stochastic process for dividends. This
provides a test statistic with appropriate confidence limits and enables one to exam-
ine small-sample properties using Monte Carlo simulation. However, with model-based
tests, rejection of the RVF is conditional on having the correct statistical model for div-
idends and the discount rate. We therefore have the problem of a joint null hypothesis.

A further key factor in interpreting the various tests on stock prices is whether the
dividend process is assumed to be stationary or non-stationary. Under non-stationary,
the usual distributional assumptions do not apply and interpretation of the results from
variance bounds tests can be highly problematic. Later work in this area has been directed
towards test procedures that take account of possible non-stationarity in the data.
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11.1 Shiller Volatility Tests
Under constant (real) returns

Pt =
n∑

i=1

δiEtDt+i + δnEtPt+n (2)

Here, Pt+n is the expected ‘terminal price’ at time t + n, and all investors take the same
view of the future. At time t , we do not know what investors’ forecasts of expected
future dividends would have been. However, Shiller (1981) proposed a simple yet very
ingenious way of getting round this problem. Suppose we have data on actual dividends
in the past, say from 1900 onwards, and we have the actual price Pt+n today, say in
2004. We assume δ is a known value, say, 0.95, for annual data, implying a required
return of k = 5.2% p.a. [δ = 1/(1 + k)]. Then, using (2), we can calculate what the
stock price in 1900 would have been, if investors had forecast dividends exactly, in all
years from 1900 onwards. We call this the perfect foresight stock price, P ∗

t , in 1900.
By moving one year forward and repeating the above, we can obtain a data series for
P ∗

t for all years from 1900 onwards using the following formula.

P ∗
t =

n∑
i=1

δiDt+i + δnPt+n (3)

When calculating P ∗
t for 1900, the influence of the terminal price Pt+n is fairly minimal

since n is large and δn is relatively small. As we approach the end-point of, say, 2004,
the term δnPt+n carries more weight in our calculation of P ∗

t . One option is therefore
to truncate our sample, say, 10 years prior to the present. Alternatively, we can assume
that the actual price at the terminal date is ‘close to’ its expected value EtPt+n and
the latter is usually done in empirical work. Comparing Pt and P ∗

t , we see that they
differ by the sum of the forecast errors of dividends wt+i = Dt+i − EtDt+i , weighted
by the discount factor δi .

From (2) and (3) and the definition of wt+i :

P ∗
t = Pt +

n∑
i=1

δiwt+i + δn(Pt+n − EtPt+n)

Assuming the final term is close to zero as n → ∞ and noting that under RE,
cov(Pt , wt+i ) = 0, then it follows that the RVF implies var(P ∗

t ) ≥ var(Pt ).
For xt = Pt or P ∗

t , the sample variance is given by var(x) = ∑n
t=1 (xt − x)2/(n − 1),

where x = sample mean and n = number of observations. In 1900, investors did not
know what future dividends were going to be, and, therefore, the actual stock price
differs from the perfect foresight stock price. With hindsight, we know that investors
made forecast errors ηt = P ∗

t − Pt so

P ∗
t = Pt + ηt (4)

where ηt = ∑n
i=1 wt+i . Under RE, ηt is independent of all information at time t

and, in particular, ηt will be independent of the stock price at time t . From (4), we
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obtain
var(P ∗

t ) = var(Pt ) + var(ηt ) + 2 cov(ηt , Pt ) (5)

Informational efficiency (orthogonality) implies cov(Pt , ηt ) is zero, hence,

var(P ∗
t ) = var(Pt ) + var(ηt ) (6)

Since var(ηt ) ≥ 0,
var(P ∗

t ) ≥ var(Pt ) (7a)

or
VR = var(P ∗

t )/ var(Pt ) ≥ 1 and SDR = σ(P ∗
t )/σ (Pt ) ≥ 1 (7b)

Hence, under EMH/RE, and a constant discount factor, we would expect the variance
of the perfect foresight price P ∗

t to exceed that of the actual price Pt . For expositional
reasons, we assumed that P ∗

t is calculated using (3). However, in much of the empirical
work, an equivalent method is used. The DPV formula (3) is consistent with the Euler
equation.

P ∗
t = δ(P ∗

t+1 + Dt+1) (8)

Hence, if we assume a terminal value for P ∗
t+n, we can use (8) to calculate P ∗

t , and
so on, by backward recursion. This, in fact, is the method used in Shiller (1981). One
criticism of Shiller (1981) is that he uses the sample mean of prices for the terminal
value P ∗

t+n = n−1 ∑n
t=1 Pt . Marsh and Merton (1986) point out that this yields a biased

estimate of P ∗
t . However, Grossman and Shiller (1981) and Shiller’s (1989) later work

uses the actual stock price at Pt+n for the unobservable P ∗
t+n. The observable series,

which we denote P ∗
t/n, then uses (8) with Pt+n in place of P ∗

t+n. This preserves the
logical structure of the model since Pt+n = E(P ∗

t+n|�t+n).
Consider the results in Figure 1, which use Shiller’s US data 1871–1995. The solid

line is the (real) stock price Pt , which is clearly much more volatile than the perfect
foresight stock price P ∗

t calculated under the assumption that the (real) discount rate
is constant. ‘Eyeballing’ Figure 1 suggests rejecting the EMH-RVF under the constant
(real) returns assumption (but, of course, we do not know the standard error surrounding
our ‘eyeball estimate’). Let us see what happens when we apply more rigorous tests.

Volatility Tests

Empirical tests of the RVF generally use ‘real variables’. Early work on volatility tests
assume a constant real discount rate, and Shiller (1981) finds that US stock prices
are excessively volatile, that is to say, inequality (7b) is grossly violated (i.e. SDR =
5.59). However, LeRoy and Porter (1981), using a slightly different formulation (see
Appendix), find that although the variance bound is violated, the rejection was of
borderline statistical significance.

We can rework the perfect foresight price, assuming the required real return kt , and
hence, δt = (1 + kt )

−1 varies over time. For example, we could set kt to equal the
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Figure 1 Actual stock price and perfect foresight stock price (US data 1871–1995)

actual real interest rate plus a constant risk premium, kt = rt + rp. Hence, kt varies in
each year, and P ∗

t is calculated as

P ∗
t = Dt+1

(1 + kt+1)
+ Dt+2

(1 + kt+1)(1 + kt+2)
+ · · · + (Dt+n + Pt+n)

(1 + kt+1) . . . (1 + kt+n)
(9)

with a terminal value equal to the end-of-sample actual price. However, even after
allowing for a time-varying real interest rate, the variance bound is still violated
(e.g. Mankiw, Romer and Shapiro 1991, Scott 1990). This can be seen to apply a
fortiori when we use more recent data for the United States in Figure 1. The perfect
foresight price with a time-varying real discount rate (equal to the real interest rate)
shows more variability than if we have a constant discount rate, but even here, the
actual price is far more volatile than the perfect foresight price. If we had included
data between 1995 and 2004, then the volatility of the actual price series relative to
the two perfect foresight price series is substantially larger even than that shown for
the 1990s.

We can turn the above calculation on its head. Knowing the variability in the actual
stock price, we can calculate the variability in real returns kt that would be necessary
to equate var(P ∗

t ) with var(Pt ). Shiller (1981) performs this calculation under the
assumption that Pt and Dt have deterministic trends. Using the detrended series, he
finds that the standard deviation of real returns needs to be greater than 4% p.a.
However, the actual historic variability in real interest rates at less than 1% p.a. is much
smaller than that required to ‘save’ the variance bounds test. Hence, the explanation
for the violation of the excess volatility relationship does not appear to lie with a
time-varying ex-post real interest rate.

Another line of attack, in order to ‘rescue’ the violation of the variance bound, is
to use the consumption-CAPM to provide a measure of the time-varying risk premium
(see Chapter 13). For power utility, the time-varying discount rate depends on the rate
of growth of consumption g the constant rate of time preference θ and the coefficient
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of relative risk aversion, γ . For simplicity, assume for the moment that dividends grow
at a constant rate, Dt = D0g

t . Hence, the perfect foresight price is

P ∗
t = D0g

t

[
C

γ
t

∞∑
s=0

(θg)sC
−γ
t+s

]
(10)

P ∗
t varies over time (Grossman and Shiller 1981), depending on the current level of

consumption relative to a weighted harmonic average of future consumption, C
−γ
t+s .

Clearly, this introduces more variability in P ∗
t than does the constant discount rate

assumption (i.e. where the coefficient of relative risk aversion, γ = 0).
Replacing the constant growth rate of dividends by actual, ex-post dividends while

retaining the C-CAPM formulation, Shiller (1989) recalculates the variance bounds
tests for the United States for the period 1889 to 1985 using γ = 4. A graph of Pt and
P ∗

t suggests that up to about 1950, the variance bounds test is not violated. However,
the relationship between the variability of actual prices and perfect foresight prices
is certainly not close in the years after 1950. On balance, it does not appear that the
assumption of a time-varying discount rate based on the consumption-CAPM (with
CRRA utility and no market frictions) can wholly explain observed movements in
stock prices.

Statistical Issues

In this section, we demonstrate the difficulties in testing the EMH-RVF hypothesis and
the ingenuity shown by researchers in tackling these problems. In a small way, these
studies provide a useful ‘case study’ in applied econometrics of time-series data.

Flavin (1983) and Kleidon (1986) point out that there are biases in small samples in
measuring var(Pt ) and var(P ∗

t ), which might invalidate some of the ‘first-generation’
variance bounds tests. Flavin (1983) analysed these tests under the constant discount
rate assumption and made two key points.

First, both var(P ∗
t ) and var(Pt ) are estimated with a downward bias in small samples,

the degree of bias depending on the degree of serial correlation in P ∗
t and Pt . Since P ∗

t

is more strongly autocorrelated than Pt , var(P ∗
t ) is estimated with greater downward

bias than var(Pt ). Hence, it is possible that the sample values yield var(P ∗
t ) < var(Pt )

in a finite sample, even when the null of the RVF is true. Second, Shiller’s use of the
sample average of prices as a proxy for terminal value of P ∗ at t + n also induces a
bias towards rejection.

There is a further issue surrounding the terminal price, noted by Gilles and LeRoy
(1991). The perfect foresight price is

P ∗
t =

∞∑
i=0

δiDt+i (11)

which is unobservable. The observable series P ∗
t |n should be constructed using the

actual price Pt+n at the end of the sample. However, there is still a problem since
the sample variance of P ∗

t |n understates the true (but unobservable) variance of P ∗
t .
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Intuitively, this is because P ∗
t |n is ‘anchored’ on Pt+n and hence does take account of

innovations in dividends that occur after the end of the sample (P ∗
t |n implicitly sets

these to zero but P ∗
t includes these, since the summation is to infinity). Clearly, this

problem is minimal if the sample is very large (infinite) but may be important in
finite samples.

Flavin’s (1983) criticisms of these ‘first-generation tests’ assumed, as did the authors
of these tests, stationarity of the series being used. Later work tackled the issue of the
validity of variance bounds tests when the price and dividend series are non-stationary
(i.e. have a stochastic trend). Intuitively, the problem posed by non-stationary series
is that the population variances are functions of time and, hence, the sample variances
are not correct measures of their population values. However, it is not obvious how
to ‘remove’ these stochastic trends from the data, in order to meaningfully apply the
variance bounds tests. It is to this issue that we now turn.

11.2 Volatility Tests and Stationarity
Shiller’s volatility inequality is a consequence purely of the assumption that the actual
stock price is an unbiased and optimal predictor of the perfect foresight price P ∗

t

P ∗
t = Pt + ut (12)

where ut is a random error term, E(ut |�t) = 0. Put another way, Pt is a sufficient
statistic to forecast P ∗

t . No information other than Pt can improve the forecast of P ∗
t

and, in this sense, Pt is ‘optimal’. The latter implies that the conditional forecast error
E[(P ∗

t − Pt)|�t ] is independent of all information available at time t or earlier. Since
Pt ⊂ �t , then Pt is independent of ut and cov(Pt , ut ) = 0. Using the definition of
covariance for a stationary series, it follows directly from (12)

cov(P ∗
t , Pt ) = cov(Pt + ut , Pt ) = cov(Pt , Pt ) + cov(Pt , ut ) = σ 2(Pt ) (13)

Since ρ(Pt , P
∗
t ) = cov(Pt , P

∗
t )/σ (Pt )σ (P ∗

t ), we obtain a ‘variance equality’

σ(Pt ) = ρ(Pt , P
∗
t ) σ (P ∗

t ) (14)

Since the maximum value of ρ = 1, (14) implies the familiar variance inequality

σ(Pt ) ≤ σ(P ∗
t ) (15)

Stationary series have a time-invariant and constant population mean, variance (standard
deviation) and autocovariance. The difficulty in applying (15) to a sample of data
is knowing whether the sample is drawn from an underlying stationary series in
the population.

It is also worth noting that the standard deviations in (15) are simple unconditional
measures. If a time-series plot is such that it changes direction often and hence crosses
its mean value frequently (i.e. is ‘jagged’), then in a short sample of data, we may
obtain a ‘good’ estimate of the population value of σ(Pt ) from its sample value.
However, if the variable moves around its mean in long slow swings, then one will
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need a long sample of data to obtain a good estimate of the ‘true’ population variance
(i.e. a representative series of ‘cycles’ in the data set are required, not just, say, one
quarter or one half of a cycle). In fact, stock prices are persistent and hence move in
long swings (see Figure 1) so a long data set is required to accurately measure the true
standard deviation (or variance) even if the price series is actually stationary.

If a series is non-stationary, then it has a time-varying population mean or variance
and hence (15) is undefined. We then need to devise an alternative variance inequality
in terms of a transformation of the variables Pt and P ∗

t into ‘new’ variables that are
stationary. The latter has led to alternative forms of the variance inequality condition.
The problem is that it is often difficult to ascertain whether a particular series is
stationary or not, from statistical tests based on any finite data set. For example,
the series generated as xt = xt−1 + εt is non-stationary, while xt = 0.98xt−1 + εt is
stationary. However, in any finite data set (on stock prices), it is often difficult to
statistically discriminate between the two, since in the regression xt = a + bx t−1 + εt ,
the estimate of ‘b’ is subject to sampling error and often one could take it as being
either 1 or 0.98. Also, the distribution of the test statistic that b = 1 is ‘non-standard’
and its finite sample distribution is often unknown.

Let us return now to the issue of whether (real) dividends and therefore (for a
constant δ) P ∗

t and Pt are non-stationary. How much difference does non-stationarity
make in practice when estimating the sample values of σ(Pt ) and σ(P ∗

t ) from a finite
data set? For example, in his early work, Shiller (1981) ‘detrended’ the variables Pt

and P ∗
t by dividing by a simple deterministic trend λt = ebt , where b is estimated from

the regression ln Pt = a + bt over the whole sample period. If Pt follows a stochastic
trend, then ‘detrending’ by assuming a deterministic trend is statistically invalid. The
question then arises as to whether the violation of the variance bounds found in Shiller’s
(1981) study is due to this inappropriate detrending of the data.

Kleidon (1986) and LeRoy and Parke (1992) examine variance bounds using Monte
Carlo simulation (MCS). For example, Kleidon (1986) assumes that expected dividend
growth is a constant and dividends follow a non-stationary (geometric) random walk
with drift

ln Dt = θ + ln Dt−1 + εt (16)

where εt is white noise. Given a generated series for Dt for m observations using (16),
one can use the DPV formula to generate a time series of length m for P ∗

t and for Pt

and establish whether var(Pt ) > var(P ∗
t ). This is the first ‘run’ of the MCS. Repeating

this ‘experiment’ m times, we can note how many times var(Pt ) > var(P ∗
t ). Since the

RVF is ‘true’ by construction, one would not expect the variance bound to be violated in
a large number of cases in the m experiments. (Some violations will be due to chance.)
In fact, Kleidon (1986) finds that when using the generated data (and detrending using
λt ), the variance bound is frequently violated. The frequency of violations is 90%,
while the frequency of ‘gross violations’ (i.e. VR > 5) varied considerably, depending
on the rate of interest (discount rate) assumed in the simulations. (For example, for
r = 7.5%, the frequency of gross violations is only about 5% but for r = 5%, this
figure rises dramatically to about 40%).

Shiller (1989) refined Kleidon’s procedure by noting that Kleidon’s combined as-
sumptions for the growth rate of dividends and the level of interest rates implied an
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implausible value for the dividend–price ratio. Shiller corrects for this so that in the
generated data, the dividend–price ratio equals its average historic level. Under the
null of the RVF, he finds that the gross violations of the variance ratio are substantially
less than those found by Kleidon.

Further, Shiller (1989) notes that in none of the above Monte Carlo studies is the
violation of the variance inequality as large as that actually found by Shiller (1981)
when using the ‘real world’ data. Shiller also points out that the ‘special case’ used
by Kleidon (and others), namely that (the log of real) dividends follow a random walk
with drift, may not be a correct time-series representation of actual data.

This debate highlights the problem in trying to discredit results, which use ‘real data’
by using ‘specific special cases’ (e.g. random walk) in a Monte Carlo analysis. These
Monte Carlo studies provide a highly specific ‘sensitivity test’ of empirical results, but
such ‘statistics of interest’ are conditional on a specific parametrisation of the model (e.g.
random walk). One might agree with Shiller (1989) that on a priori economic grounds,
it is hard to accept that investors believe that when faced with an unexpected increase
in current dividends, of z%, they expect that dividends will increase by z%, in all future
periods. However, the latter is implied by the random walk model of (log) dividends.

The outcome of all of the above arguments is that not only may the small-sample
properties of the variance bounds tests be unreliable but also if there is non-stationarity,
even tests based on large samples are incorrect. Clearly, all one can do in practice (while
awaiting new time-series data as ‘time’ moves on!) is to assess the robustness of the
volatility results under different methods of detrending. For example, Shiller (1989)
reworks some of his earlier variance inequality results using Pt/E

30
t and P ∗

t /E30
t ,

where the real price series are ‘detrended’ using a (backward) 30-year moving average
of real earnings E30

t . He also uses Pt/Dt−1 and P ∗
t /Dt−1 where Dt−1 is real dividends

in the previous year. Using a deterministic trend (Shiller 1981) estimated over the
whole sample period, uses information not known at time t . Therefore Shiller (1989)
in later work, detrends Pt and P ∗

t using a time trend estimated only with data up to
time t (that is, λt = exp[bt ]t , where the estimated bt changes as more data is included
by using recursive least squares).

The results using these various transformations of Pt and P ∗
t are given in Table 1.

The variance inequality (15) is always violated, but the violation is not as great as
in Shiller’s (1981) original study using a (fixed) deterministic trend. However, the
variance equality (14) is strongly violated in all of the variants.

Shiller (1989) repeats Kleidon’s Monte Carlo study using the random walk model for
(log) dividends. He detrends the artificially generated data on Pt and P ∗

t by a generated
real earnings series Et (generated earnings are assumed to be proportional to generated
dividends). He assumes a constant real discount rate of 8.32%, (equal to the sample
average annual real return on stocks). In a 1000 MCS runs, he finds that in 75.8% of
cases, σ(Pt/E

30
t ) exceeds σ(P ∗/E30

t ). One might expect in the generated data to find
about 95% of cases where σ(Pt/E

30
t ) > σ(P ∗

t /E30
t ) since the generated data ‘obey’

the fundamentals model by construction. Hence, when dividends are non-stationary,
there is a tendency for spurious violation of the variance bounds when the series are
detrended by E30

t . However, for the generated data, the mean value of VR = 1.443,
which although in excess of the ‘true’ value of 1.00, is substantially less than the 4.16
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Table 1 Variance bounds test1

Method of Detrending ρ σ(Pt*) ρσ(Pt*) σ(Pt )
2 VR

1 Time-varying deterministic n.a n.a n.a n.a 2.120
2 Using Dt−1

(a) constant discount factor 0.133 4.703 0.62 6.03 1.283

(b) time-varying discount factor 0.06 7.779 0.47 6.03 1.293

3 Using E30
t

(a) constant discount factor 0.296 1.611 0.47 6.706 3.773

(b) time-varying discount factor 0.048 4.65 0.22 6.706 1.443

Notes:
1If RVF holds, then σ(Pt ) = ρ(Pt , P

∗
t ) σ(P ∗

t ).
2In the second-last column, the σ(Pt ) is the standard deviation of the actual price.
3VR is mean value from MCS, where RVF holds.
Source: Figures taken from Shiller (1989, pp. 87–91).

observed in the real world data. (And in only one of the 1000 ‘runs’ did the ‘generated’
variance ratio exceed 4.16.)

Clearly, since E30
t and P ∗

t are long moving averages, they both make long smooth
swings, and one may only pick up part of the potential variability P ∗

t /E30
t in small

samples. The sample variance may, therefore, be biased downwards. Since Pt is not
smoothed, (Pt/E

30
t ) may well show more variability than P ∗

t /E30
t even though in a

much longer sample, the converse could apply. Again, this boils down to the fact that
statistical tests on such data can only be definitive if one has a long data set. The
Monte Carlo evidence and the results in Table 1 do, however, place the balance of
evidence against the EMH-RVF when applied to stock prices.

Mankiw, Romer and Shapiro (1991), in an update of their earlier 1985 paper
(Mankiw, Romer and Shapiro 1985), tackle the non-stationarity problem by consider-
ing the variability in P and P ∗ relative to a naive forecast P o. For the naive forecast,
they assume dividends follow a random walk and hence EtDt+j = Dt for all j . Using
the RVF, the naive forecast gives

P o
t = [δ/(1 − δ)]Dt (17)

where δ = 1/(1 + k) and k is the constant required return on the stock. Now consider
the identity

P ∗
t − P o

t = (P ∗
t − Pt) + (Pt − P o

t ) (18)

The RE forecast error is P ∗
t − Pt and hence is independent of information at time t

and hence of Pt − P o
t . Dividing (18) by Pt , squaring and taking expectations, we have

qt = E[(P ∗
t − P o

t )/Pt ]
2 − {E[(P ∗

t − Pt)/Pt ]
2 + E[Pt − P o

t )/Pt ]
2} (19)

and the inequalities are therefore

E[(P ∗
t − P o

t )/Pt ]
2 ≥ E[(P ∗

t − Pt)/Pt ]
2 (20a)

E[(P ∗
t − P o

t )/Pt ]
2 ≥ E[(Pt − P o

t )/Pt ]
2 (20b)
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The beauty of the above relationships is that each element of the expressions is likely to
be stationary, and deflating by Pt is likely to minimise problems of heteroscedasticity.
Equation (20a) states that the market price is a better forecast of the ex-post ‘rational
price’ P ∗

t than is the naive forecast, and the former should have a lower mean squared
error. Equation (20b) states that the ex-post rational price P ∗

t is more volatile around
the naive forecast P o

t than is the market price and is analogous to Shiller’s volatility
inequality. An alternative test of the EMH-RVF is that ψ = 0 in

qt = ψ + εt (21)

Using annual data 1871–1988 and an aggregate stock price index, Mankiw, Romer
and Shapiro (1991) find that equation (21) is rejected at only about the 5% level for
constant required real returns of k = 6 or 7% (although the model is strongly rejected
when the required return is assumed to be 5%). When M-R-S allow the required
equilibrium nominal return to equal the (nominal) risk-free rate plus a constant risk
premium (i.e. kt = rt + rp), the EMH-RVF using (19) is rejected more strongly than
for the constant real returns case.

In Mankiw, Romer and Shapiro (1991) just referred to, they also consider the type
of regression tests used by Fama and French (1988b). More specifically, consider the
following autoregression of (pseudo) returns:

[(P ∗n
t − Pt)/Pt ] = α + β[(Pt − P o

t )/Pt ] + ut (22)

where P ∗n
t is the perfect foresight price calculated using a specific horizon (n = 1,

2, . . .). Mankiw, Romer and Shapiro (1991) use a Monte Carlo study to demon-
strate that under plausible conditions that hold in real world data, estimates of β

and its standard error can be subject to very severe small-sample bias. These biases
increase as the horizon n is increased. However, when using their annual data set,
under the constant real returns case (of 5, 6, or 7% p.a.), it is still the case that
H0 : β = 0 is rejected at the 1 to 5% level, for most horizons between one and ten
years (see Mankiw et al). When P ∗

t is constructed under the assumption that equilib-
rium returns depend on the nominal interest rate plus a constant risk premium, then
H0 : β = 0 is only rejected at around the 5 to 10% significance levels for horizons
greater than five years overall. Mankiw et al. results suggest that the evidence that
long-horizon returns (i.e. n > 5 years) are forecastable as found by Fama–French are
not necessarily clear-cut, when the small-sample properties of the test statistics are
carefully examined.

The paper by Mankiw, Romer and Shapiro (1991) also tackles another problem
that has caused difficulties in the interpretation of variance bounds tests, namely the
importance of the terminal price Pt+n in calculating the perfect foresight price. Merton
(1987) points out that the end-of-sample price Pt+n picks up the effect of out-of-sample
events on the (within sample) stock price, since it reflects all future (unobserved) div-
idends. Hence, volatility tests that use a fixed end-point value for the actual price may
be subject to a form of measurement error if Pt+n is a very poor proxy for EtP

∗
t+n.

Mankiw et al. and Shiller (1989) point out that Merton’s criticism is of less importance
if actual dividends paid out ‘in sample’ are sufficiently high so that the importance
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of out-of-sample events (measured by Pt+n) is circumscribed. Empirically, the latter
case applies to the data used by Mankiw, Romer and Shapiro (1991) since they use
a long sample. However, they provide another ingenious yet simple counterweight to
this argument (see also Shea 1989). The perfect foresight stock price, equation (3),
can be calculated for different horizons (n = 1, 2, . . .) and so can qt . Hence, several
values of qn

t (for n = 1, 2, . . .) can be calculated in which many end-of-period prices
are used in a fixed sample of data. Therefore, they do not have to worry about a single
end-of-sample price dominating their results. In general, they find that the EMH has
greater support at short horizons (i.e. n = 1–5 years) rather than long horizons (i.e.
n > 10 years).

In a later paper, Gilles and LeRoy (1992) assume the dividend–price ratio is sta-
tionary and their variance inequality is σ 2(Pt |Dt) ≤ σ 2(P ∗

t |Dt). The sample estimates
of the variances (1871–1988, US aggregate index as used in Shiller 1981) indicate
excess volatility since σ 2(Pt |Dt) = 26.4 and σ 2(P ∗

t |Dt) = 19.4. However, they note
that the sample variance of σ(P ∗

t |Dt) is biased downwards for two reasons: first,
because (P ∗

t |Dt) is positively serially correlated (Flavin 1983) and, second, because at
the terminal date, the unobservable EtP

∗
t+n is assumed to equal the actual (terminal)

price Pt+n. Using Monte Carlo experiments, they find that the first source of bias is
the most important and is very severe. The Monte Carlo experiment assumes a random
walk for dividends; the value of σ 2(P ∗

t |Dt) in the Monte Carlo runs is 89.3 compared
to 19.4 using actual sample data. On the other hand, the sample value of σ 2(Pt |Dt) is
found to be a fairly accurate measure of the population variance. Hence, Gilles–LeRoy
conclude that the Shiller type variance bounds test ‘is indecisive’. However, all is not
lost. Gilles and LeRoy develop a test on the basis of the orthogonality of Pt and
P ∗

t (West 1988), which is more robust. This ‘orthogonality test’ uses the random walk
assumption for (log) dividends and involves a test statistic with much less bias and less
sample variability than the Shiller-type test. The orthogonality test rejects the present
value model quite decisively (although note that there are some nuances involved in
this procedure, which we do not document here). Thus, a reasonable summary of the
Gilles–LeRoy study would be that the RVF is rejected, conditional on the random
walk model of (log) dividends.

Scott (1990) follows a slightly different procedure and estimates

P ∗
t = a + bP t + εt (23)

where the EMH-RVF implies a = 0 and b = 1. Scott deflates P ∗
t and Pt by dividends in

the previous year so that the variables are stationary and ‘corrects’ for serial correlation
in the regression residuals. He finds that the above restrictions are violated for US stock
price data so that Pt is not an unbiased predictor of P ∗

t . The R
2

of the regression is very
low, so that there is little (positive) correlation between Pt and P ∗

t , while Pt provides
a very poor forecast of the ex-post perfect foresight price. (Note, however, that it is
the unbiasedness proposition that is important for the refutation of the EMH-RVF, not
the low R-squared.) The EMH, however, does imply that any information �t included
in (23) should not be statistically significant. Scott (1990) regresses (P ∗

t − Pt) on the
dividend–price ratio (i.e. dividend yield) and finds it is statistically significant, thus
rejecting informational efficiency.
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Shiller (1989) performs a similar regression deflating the prices by E30
t :

(P ∗
t /E30

t ) = a + b(Pt/E
30
t ) + εt

He finds that b̂ � 1. Also, using MCS, he finds that b̂ is downward biased but the bias
is not sufficient to account for the strong rejection of the RVF using the actual data.

11.3 Peso Problems and Variance Bounds Tests

In the presence of a ‘Peso problem’, the variance bound in a sample of data may be
violated even though the EMH-RVF is true. Suppose we have a sample of data in which
investors think there is a small probability of a high level of dividends in the future.
Investors’ expectations of dividends over this sample of data is a weighted average
of the ‘high’ dividends and the ‘normal’ level of dividends. However, suppose these
‘high’ dividends never occur. Then the out-turn for actual dividends Dt+j are lower than
investors’ true expectations (i.e. Dt+j < Et+j−1Dt+j ). Investors have made systematic
forecast errors within this sample period. If the sample period is extended, then we
might also observe periods when investors expect lower dividends (which never occur),
so Dt+j > Et+j−1Dt+j . Hence, over the extended ‘full’ sample, forecast errors average
zero. The Peso problem arises because we only ‘observe’ the first sample of data, and
the observed dividends are a biased measure of expected dividends. To illustrate the
Peso problem, consider an asset, which pays out a stream of dividend payments Dt+1,
all of which are discounted at the constant rate δ. For simplicity of notation, we can
think of period ‘t + 1’ as constituting m different periods (t = 0, 1, 2, . . . , m). Under
the RVF, the stock price is

Pt = δEtDt+1 (24)

where δ = constant discount factor. Suppose that 1 − π = probability being in regime-
1 (i.e. ‘normal dividends’) so the true expectation of investors is

EtDt+1 = πEt(Dt+1|Z2) + (1 − π)Et (Dt+1|Z1)

= π[Et(Dt+1|Z2) − Et(Dt+1|Z1)] + Et(Dt+1|Z1)

= π∇Dt+1 + Et(Dt+1|Z1) (25)

where Et(Dt+1|Z1) = expected ‘normal’ dividends in regime-1, Et(Dt+1|Z2) = ex-
pected dividends in ‘high’ regime-2, and we assume Et(Dt+1|Z2) > Et(Dt+1|Z1). To
simplify even further, suppose that in regime-1, dividends are expected to be constant
and ex-post are equal to D so that Et(Dt+1|Z1) = D. The key to the Peso problem is that
the researcher only has data for the period over which ‘high profits’ do not materialise
(i.e. over t = 0, 1, 2, . . . , m) but the possibility of high profits does influence investors’
‘true’ expectations and hence the stock price. Rational investors set the stock price

Pt = δEtDt+1 = δ[π∇Dt+1 + Et(Dt+1|Z1)]

= δπ[Et(Dt+1|Z2) − D] + δD (26)
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where we assume high profits do not occur and dividends actually remain at their
constant value D. Variability in the actual price Pt given by (26) will take place either
because of changing views about π or because of changing views about future divi-
dends, in the high profit scenario, Et(Dt+1|Z2). Hence, var(Pt ) > 0. But if high profits
never happen, then a constant level of dividends D will be paid out, and the researcher
will measure the ex-post perfect foresight price as the constant value P ∗

t = δD (for
t = 0, 1, 2, . . . , m) and hence var(P ∗

t ) = 0. Thus, we have a violation of the vari-
ance bound, that is, var(Pt ) > var(P ∗

t ), even though prices always equal fundamental
value as given by (26). This is a consequence of a sample of data, which may not
be representative of the (whole) population of data. If we had a longer data set, then
the expected event might actually happen and hence P ∗

t would vary along with the
actual price.

Consider the implications of the Peso problem for regression tests of P ∗
t on Pt

P ∗
t = α + βPt + wt (27)

where, with no Peso problems, we expect α = 0 and β = 1. Assume that ‘normal
dividends’ Et(Dt+1|Z1) vary over time but high profits do not occur, so the per-
fect foresight price measured by the researcher is P ∗

t = δD
(1)
t+1 (for t = 0, 1, 2, . . . ,m)

where D
(1)
t+1 is the out-turn value in regime-1. However, the actual price is

Pt = δEtDt+1 = δ[π∇Dt+1 + Et(Dt+1|Z1)] (28)

The regression of P ∗
t on Pt is then

(δD
(1)
t+1) = a + b{δ[π∇Dt+1 + Et(Dt+1|Z1)]} + wt (29)

Only if there is no expectation of a regime shift (i.e. ∇Dt+1 = 0), so that Et(Dt+1|Z1) =
D

(1)
t+1 − εt+1 is an unbiased forecast of the out-turn dividends, will the coefficient b = 1.

If π is time-varying, this will lead to bias in estimates of b as this leads to systematic
changes in the actual price Pt not matched by changes in the perfect foresight price
P ∗

t = (δD
(1)
t+1).

The Peso problem arises because of one-off ‘special events’ that could take place
within the sample period but in actual fact do not. It considerably complicates tests
of the EMH-RE hypothesis, which assume out-turn data differ from expectations by a
(zero mean) random error.

11.4 Volatility and Regression Tests
The easiest way of seeing the relationship between the volatility tests and regression
tests is to note that in the regression

P ∗
t = a + bP t + εt (30)

the coefficient b is given by

b = cov(Pt , P
∗
t )/σ 2(Pt ) = ρ(Pt , P

∗
t )σ (P ∗

t )/σ (Pt ) (31)
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Substituting for ρ from the variance equality (14) in (31), we see that if the variance
equality holds, then b = 1 in the regression (30). Now consider

P ∗
t = a + bP t + c�t + ηt (32)

Under the EMH-RVF, we expect H0 : a = c = 0, b = 1. If this proves to be the case,
then (31) reduces to

P ∗
t = Pt + ηt (33)

and hence the variance bounds test must also hold. The two tests are therefore equiv-
alent under the null hypothesis. As a slight variant, consider the case where c = 0 but
b < 1 (as is found in much of the empirical work above). Then, (32) reduces to

var(P ∗
t ) = b2 var(Pt ) + var(ηt ) (34a)

var(P ∗
t ) − var(Pt ) = (b2 − 1) var(Pt ) + var(ηt ) (34b)

where RE implies cov(Pt , ηt ) = 0. If b2 < 1, then the first term on the RHS of (34b)
is negative and it is possible that the whole of the RHS of (34b) is also negative.
Hence, b < 1 may also imply a violation of the variance bounds test. Next, consider
the long-horizon regressions of Fama and French (1988b)

ht,t+k = a + bh t−k,t + ηt+k (35)

pt+k = a + (b + 1)pt − bp t−k + ηt+k (36)

where we have used ht,t+k ≡ pt+k − pt . Under the null of constant expected returns,
we expect a 
= 0 and b = 0, hence

pt+k = a + pt + ηt+k (37)

For b = 0, the Fama–French regressions are consistent with the random walk model
of stock prices.

We have shown that under the null of market efficiency, regression tests using Pt

and Pt* should be consistent with variance bounds inequalities and with regressions
based on autoregressive models for long-horizon stock returns.

11.5 Summary

• Shiller’s (1981) original seminal work using variance bounds inequalities appeared
to decisively reject the RVF. Subsequent work in the 1980s pointed out deficiencies
in Shiller’s original approach (e.g. Kleidon 1986, Flavin 1983), but Shiller (1989)
rather successfully answered his critics.

• Later work (e.g. Mankiw, Romer and Shapiro (1991) and Gilles and LeRoy (1992)
has certainly demonstrated that violations of the RVF are statistically far from
clear-cut and judgement is required in reaching a balanced view on this matter.
To this author, the evidence cited, is on balance marginally against the EMH.
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• The intuitive appeal of Shiller’s volatility inequality and the simple elegance of the
basic insight behind this approach have become somewhat overshadowed by the
practical (statistical) issues surrounding the test procedures used, particularly prob-
lems of stationarity and small-sample bias. Recent advances in econometric method-
ology have allowed a more satisfactory treatment of problems of non-stationarity and
the modelling of time-varying risk premia, which are discussed in the next chapter.

Appendix: LeRoy–Porter and West Tests

The above tests do not fit neatly into the main body of this chapter but are important
landmarks in the literature in this area. We therefore discuss these tests and their
relationship to each other and to other material in the text.

The LeRoy and Porter (1981) variance bounds test is based on the mathematical
property that the conditional expectation of any random variable is less volatile than
the variable itself. Their analysis begins with a forecast of future dividends based on
a limited information set �t = (Dt ,Dt−1). The forecast of future dividends based on
�t is

P̂t = E(P ∗
t |�t) =

∞∑
i=1

δiE(Dt+i |�t) (A1)

The actual stock price Pt is determined by forecasts on the basis of the full information
set �t

Pt = E(P ∗
t |�t) (A2)

Applying the law of iterated expectations to (A2)

E(Pt |�t) = E[E(P ∗
t |�t)|�t)] = E(P ∗

t |�t) (A3)

Using (A1) and (A3):
P̂t = E(Pt |�t) (A4)

Since P̂t is the conditional expectation of Pt , then from (A4), the LeRoy–Porter vari-
ance inequality is

var(P̂t ) ≤ var(Pt ) (A5)

Assuming stationarity, the sample variances of P̂t and Pt provide consistent esti-
mates of their population values given in (A5). Given an ARMA model for Dt and a
known value for δ, the series Pt can be constructed using (A1). As in Shiller (1981),
the procedure adopted by LeRoy–Porter yields a variance inequality. However, the
LeRoy–Porter analysis also gives rise to a form of ‘orthogonality test’. To see this,
define the one-period forecast error of the $-return as

et+1 ≡ (Dt+1 + Pt+1) − E(Dt+1 + Pt+1|�t) (A6)

The Euler equation is
Pt = δE(Pt+1 + Dt+1|�t) (A7)
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Substituting (A6) in (A7) and iterating forward,

P ∗
t = Pt +

∞∑
i=1

δiet+i (A8)

where P ∗
t = ∑∞

i=1 δiDt+i . If et is stationary

var(P ∗
t ) = var(Pt ) + 2 cov

(
Pt,

∑
δiet+i

)
+ [δ2/(1 − δ2)] var(et ) (A9)

where the et+i are mutually uncorrelated under RE. Under RE, the covariance term is
zero, hence

var(P ∗
t ) = var(Pt ) + [δ2/(1 − δ2)] var(et ) (A10)

Equation (A10) is both a variance equality and an orthogonality test of the RVF. It
is perhaps worth noting at this juncture that equation (A9) is consistent with Shiller’s
inequality. If in the data, we find a violation of Shiller’s inequality, that is var(Pt ) ≥
var(P ∗

t ), then from (A9), this implies cov
(
Pt,

∑
δiet+i

)
< 0. Hence, a weighted aver-

age of one-period $-forecast errors is correlated with information at time t , namely Pt .
Thus, violation of Shiller’s variance bound implies that (a weighted average of) one-
period $-returns is forecastable. We have therefore provided a link between Shiller’s
variance bounds test and the predictability of one-period $-returns.

The West (1988) test is important because it is valid even if dividends are non-
stationary (but cointegrated with the stock price) and it does not require a proxy
for the unobservable P ∗

t . Like the LeRoy–Porter variance inequality, the West test
is based on a specific property of mathematical expectations – it is that the vari-
ance of the forecast error with a limited information set �t must be greater than
that based on the full information set �t . The West inequality can be shown to be a
direct implication of the LeRoy–Porter inequality. We begin with equation (A1) and
note that

δ(P̂t+1 + Dt+1) = δDt+1 + δE(δDt+2 + δ2Dt+3 + · · · |�t+1) (A11)

Applying the law of iterated expectations E[E(.|�t+1)|�t ] = E(.|�t) to (A11),

δE(P̂t+1 + Dt+1|�t) =
∞∑
i=1

δiE(Dt+i |�t) (A12)

Substituting for the LHS of (A12) from (A1)

E(P̂t+1 + Dt+1)|�t) = δ−1P̂t (A13)

Now define the forecast error of the $-return, based on information �t as

êt+1 ≡ P̂t+1 + Dt+1 − E(P̂t+1 + Dt+1|�t) (A14)
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Substituting from (A13) in (A14)

êt+1 = Pt+1 + Dt+1 − δ−1P̂t (A15)

Equation (A15) is the forecast error based on �t , while (A6) is the forecast error based
on �t (with �t ⊂ �t); hence, by the law of conditional mathematical expectations

var(êt+1) > var(et+1) (A16)

Equation (A16) is the West inequality and using US data West (1988) finds (A16) is
violated. Even if the level of dividends is non-stationary, the population variances
in (A16) are constant (stationary) and the sample variances provide consistent estima-
tors. However, unfortunately, the latter is only true if the level of dividends is non-
stationary (e.g. Dt+1 = Dt + wt+1). LeRoy and Parke (1992) investigate the properties
of the West test if dividends follow a geometric random walk (ln Dt+1 = ln Dt + εt+1),
and the reader should consult the original paper for further information.

The LeRoy–Porter and West inequalities are both derived by considering variances
under a limited information set and under the complete information set. Hence, one
might guess that these inequalities provide similar inferences on the validity of the RVF.
This is indeed the case, as we can now demonstrate. The LeRoy–Porter equality (A10)
holds for any information set and, therefore, it holds for �t , which implies

var(P ∗
t ) = var(P̂t ) + δ2

(1 − δ2)
var(êt ) (A17)

The LeRoy–Porter inequality (A5) is

var(P̂t ) ≤ var(Pt )

Substituting for var(P̂t ) from (A17) and for var(Pt ) from (A10), we obtain the West
inequality (A16).



12
STOCK PR ICES : THE VAR
APPROACH

Aims

• Develop a range of tests of the rational valuation formula RVF for stock prices using
the VAR methodology and provide illustrative examples of these test procedures.

• Demonstrate the relationship between tests using the VAR methodology, Shiller
volatility tests and tests of long-horizon returns such as Fama–French.

• Show that although one-period returns are hardly predictable; this may, neverthe-
less, imply that stock prices deviate significantly and for long periods from their
fundamental value, resulting in excess volatility in stock prices.

• Examine the relationship between stock price volatility and the degree of persistence
in one-period returns.

We have seen in Chapter 11 that a definitive interpretation of the results from several
types of variance bounds test on stock prices is dogged by the stationarity issue, namely,
the appropriate method of ‘detrending’ the series for the actual price Pt and the perfect
foresight price, P ∗

t . The VAR procedure tackles this problem head-on by explicitly
testing for stationarity in the variables, and it also allows several alternative metrics
for assessing the validity of the RVF.

The rational valuation formula RVF is non-linear in the required rate of return
(or discount factor); however, a linear approximation is possible. In applying the
VAR methodology to stocks, we are able to compare a time series of the ‘theoret-
ical’ (log) stock price p′

t with the actual (log of the) stock price pt to ascertain
whether the latter is excessively volatile. We can, therefore, compare results from
the VAR methodology with Shiller volatility tests. We noted that Fama and French
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(1988b) and others found that long-horizon returns (e.g. over 3–5 years) are ‘more
forecastable’ than short-horizon returns (e.g. over a month or over 1–3 years). Using
the linearisation of the RVF, we are able to derive a formula for long-horizon returns,
and the VAR methodology then provides complementary evidence to that of Fama
and French.

The RVF assumes that stock prices change only on the arrival of new information
or news about ‘fundamentals’: that is, the future course of either dividends or discount
rates. An interesting question is how much of the observed volatile movements in stock
prices are due to news about returns or news about dividends. To answer this question,
a key factor is whether one-period returns are persistent. By ‘persistent’, we mean that
the arrival of news about current returns has a strong influence on all future returns
and, hence, on all future discount rates. If persistence is high, we can show that news
about returns can have a large effect on stock prices even if one-period returns are
barely predictable. We also develop this theme further in the next chapter when we
investigate the source of a time variation in the risk premium.

12.1 Linearisation of Returns and the RVF

We begin with an overview of the RVF and rearrange it in terms of the dividend–price
ratio, since the latter variable is a key element in the VAR approach as applied to the
stock market. We then derive the Wald restrictions implied by the RVF and the rational
expectations assumption and show that these restrictions imply that one-period excess
returns are unforecastable.

We define Pt = stock price at the end of period t , Dt+1 = dividends paid during
period t + 1, Ht+1 = one-period holding period return from the end of period t to the
end of period t + 1. All variables are in real terms. Define ht+1 as

ht+1 ≡ ln(1 + Ht+1) = ln[(Pt+1 + Dt+1)/Pt ] (1)

The one-period return depends positively on the capital gain (Pt+1/Pt) and the dividend
yield Dt+1/Pt . Equation (1) can be linearised to give (see Appendix)

ht+1 ≈ ρpt+1 − pt + (1 − ρ) dt+1 + k (2)

where lower-case letters denote logarithms (e.g. pt = ln Pt), ρ = P/(P + D) linearisa-
tion parameter and empirically is calculated to be around 0.94 for annual data, while k

is a linearisation constant (and for our purposes, may be largely ignored). Equation (2)
is an approximation, but we will treat it as an accurate approximation. The (log)
dividend–price ratio is

δt = dt − pt (3)

and equation (2) becomes

ht+1 = δt − ρδt+1 + �dt+1 + k (4)
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Equation (4) for the one-period return undoubtedly looks a little strange and is not
terribly intuitive. It is an (approximate) identity with no economic content as yet.
It implies that if we wish to forecast one-period returns, we need to forecast the
future dividend–price ratio δt+1 and the growth in dividends during period t + 1. The
observant reader might also notice that (4) is a forward difference equation in δt and
since δt = dt − pt , it can be solved forward to yield an expression for the (logarithm
of the) price level of the stock: hence, it is a representation of the RVF in logarithms.

Solving (4) in the usual way using forward recursion (and imposing a transversality
condition) (see Campbell and Shiller 1988),

δt =
∞∑

j=0

ρj (ht+j+1 − �dt+j+1) − k/(1 − ρ) (5)

Equation (5) is also an identity (subject to the linear approximation). We now introduce
an economic input to equations (4) and (5). Under the EMH, if the (log) expected (real)
rate of return required by investors to willingly hold stocks is denoted re

t+j , then

Etht+j = re
t+j (6)

Then from (4),
δt − ρδe

t+1 + �de
t+1 + k = re

t+1 (7)

(note the superscript e on δt+1). Solving (7) forward

δt =
∞∑

j=0

ρj (re
t+j+1 − �de

t+j+1) − k/(1 − ρ) (8)

Virtually the same result is obtained if one takes expectations of the identity (4) and
solves recursively to give

δt =
∞∑

j=0

ρj (he
t+j+1 − �de

t+j+1) − k/(1 − ρ) (9)

where Etδt = δt as δt is known at time t . The only difference here is that he
t+j must

be interpreted as the expected one-period required rate of return on the stock. In
the empirical work to be discussed next, much of the analysis concentrates on using
VAR forecasting equations for the ‘fundamentals’ on the RHS of (2), namely one-
period returns and dividend growth and using (9) to give predicted values for the
dividend–price ratio, which we denote δ′

t . The predicted series δ′
t can then be compared

with the actual values δt . A forecast for the (log) stock price is obtained using the
identity p′

t = dt − δ′
t , and the latter can then be compared with movements in the actual

stock price, pt .
Equation (9) is a dynamic version of the Gordon Growth Model D/P = r − g

with the required rate of return and dividend growth varying period by period. So the
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question that we can now examine is whether the RVF holds when we allow both
time-varying dividends and time-varying discount rates.

Stock Prices and the VAR Methodology

Even when measured in real terms, stock prices and dividends are likely to be non-
stationary, but the dividend–price ratio and the variable (rt+1 − �dt+1) are more likely
to be stationary, so standard statistical results may be applied to (9). If the RVF is
correct, we expect δt to Granger cause (rt+j − �dt+j ), and because the RVF (9) is
linear in future variables, we can use a VAR to give forecasts of future equilibrium
returns and dividend growth. The vector of variables in the agent’s information set we
take to be

zt = (δt , rd t )
′ (10)

where rd t ≡ rt − �dt . Taking a VAR lag length of one for illustrative purposes, we
have

zt+1 =
(

δt+1

rd t+1

)
=

(
a11 a12

a21 a22

)(
δt

rd t

)
+

(
w1t+1

w2t+1

)
(11)

zt+1 = Azt + wt+1

The aij coefficients can be estimated by OLS with a GMM correction for the standard
errors if there is heteroscedasticity in the error terms. Additional lags are included in
the VAR to ensure the residuals are not serially correlated. A VAR with higher lags
can always be written as a first-order system (the companion form), so analysis of the
single-lag VAR is not restrictive. Defining e1′ = (1, 0) and e2′ = (0, 1), it follows that

δt = e1′zt (12a)

Etrd t+j = e2′Etzt+j = e2′(Aj zt ) (12b)

Substituting (12) in (8),

e1′zt =
∞∑

j=0

ρj e2′Aj+1zt = e2′A(1 − ρA)−1zt (13)

If (13) is to hold for all zt , then the non-linear restrictions (we ignore the constant term
since all data is measured as deviations from the mean) are

f (a) = e1′ − e2′A(I − ρA)−1 = 0 (14)

Post-multiplying (14) by (I − ρA), these become linear restrictions

e1′(I − ρA) − e2′A = 0 (15)
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These restrictions can be evaluated using a Wald test in the usual way. Thus, if the
RVF is true and agents use RE, we expect the restrictions in (14)–(15) to hold. The
restrictions in (15) are

(1, 0) = (ρa11, ρa12) + (a21, a22) (16)

that is,
1 = ρa11 + a21 (16a)

0 = ρa12 + a22 (16b)

One-Period Returns Are Not Forecastable

There is little or no direct intuition one can glean from the linear restrictions (16a),
but it is easily shown that they imply that expected one-period real excess returns
Et(ht+1 − rt+1) are unforecastable or equivalently that abnormal profit opportunities
do not arise in the market. Using (4) and ignoring the constant,

Et(ht+1 − rt+1|�t) = δt − ρEtδt+1 + Et(�dt+1 − rt+1) = δt − ρEtδt+1 − Et(rd t+1)

(17)

From (11),

Etδt+1 = a11δt + a12rd t and Et(rd t+1) = a21δt + a22rd t

Hence,

Et(ht+1 − rt |�t) = δt − ρ[a11δt + a12rd t ] − (a21δt + a22rd t ) (18)

= (1 − ρa11 − a21)δt − (a22 + ρa12)rd t

Hence, given the VAR forecasting equations, the expected excess one-period return is
predictable from information available at time t , unless the linear restrictions given
in the Wald test (16) hold. The economic interpretation of the non-linear Wald test is
discussed later in the chapter.

‘Theoretical’ Dividend–Price Ratio

We can define the RHS of (13) as the theoretical spread δ′
t and use our unrestricted

VAR estimates to obtain a time series for δ′
t

δ′
t =

∞∑
j=0

ρj (re
t+j+1 − �de

t+j+1) = e2′A(I − ρA)−1zt (19)

Under the RVF + RE, we expect movements in the actual dividend–price ratio δt to
mirror those of δ′

t , and we can evaluate this proposition by (i) time-series graphs of
δt and δ′

t (ii) the standard deviation ratio SDR = σ(δ′
t )/σ (δt ) should equal unity, (iii)
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the correlation coefficient corr(δ′
t , δt ) should equal unity. Instead of working with the

dividend–price ratio, we can use the identity p′
t = dt − δ′

t to derive a series for the
theoretical price level and compare this with the actual stock price using the metrics
in (i)–(iii) above.

Further Implications of the VAR Approach

The constructed variable p′
t embodies the investor’s best forecast of the DPV of future

dividends and time-varying rates of return (discount rates), given the information set
assumed in the VAR. It is, therefore, closely related to the expected value of the perfect
foresight price EtP

∗
t in the original Shiller volatility tests. The difference between the

two is that P ∗
t is calculated without recourse to specific VAR equations to forecast

the fundamental variables but merely invokes the RE unbiasedness assumption (i.e.
Dt+1 = EtDt+1 + wt+1). Put another way, p′

t is conditional on a specific statistical
model for dividends, whereas EtP

∗
t is not.

It is worth briefly analysing the relationship between the (log of the) perfect foresight
price p∗

t = ln(P ∗
t ) and the (log of the) theoretical price p′

t , in part so that we are clear
about the distinction between these two allied concepts. In doing so, we are able to
draw out some of the strengths and weaknesses of the VAR approach, compared to the
Shiller variance bounds tests and regression tests on the basis of P ∗

t . The log-linear
identity (2) (with ht+1 replaced by rt+1) can be rearranged to give

pt = ρpt+1 + (1 − ρ) dt+1 − rt+1 + k (20)

Equation (20) by recursive forward substitution gives a log-linear expression for the
DPV of actual future dividends and discount rates, which we note p∗

t .

p∗
t = (1 − ρ)

∞∑
j=0

ρjdt+j+1 −
∞∑

j=0

ρj rt+j+1 + k/(1 − ρ) (21)

Equation (21) uses actual (ex-post) values, hence, p∗
t represents the (log of the) perfect

foresight price. The EMH-RVF implies

pt = E(p∗
t |�t) (22)

Under RE, agents use all available information �t in calculating Etp
∗
t , but the the-

oretical price p′
t only uses the limited information contained in the VAR, which is

chosen by the econometrician. Investors ‘in reality’ might use more information than
is in the VAR. Does this make the VAR results rather ‘weak’ relative to tests based on
the perfect foresight price p∗

t and Shiller’s variance inequalities? In one sense yes, in
another sense no.

First, the VAR contains δt and that is why Shiller’s variance bound inequality
var(Pt ) ≤ var(P ∗

t ) is transformed into an equality, namely pt = p′
t in the VAR method-

ology. What is more, even if we add more variables to the VAR, we still expect the
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coefficient on δt to be unity. To see this, note that from (19)

δ′
t = e2′f (a)zt where zt = [δt , rd t ] (23)

f (a) = A(I − ρA)−1 (24)

For VAR lag length of one, f (a) is a (2 × 2) matrix, which is a non-linear func-
tion of the aij ’s of the VAR. Denote the second row of f (a) as the 2 × 1 vector
[f21(a), f22(a)] = e2′f (a) where f21 and f22 are scalar (non-linear) functions of the
aij parameters. Then from (23) we have

δ′
t = f21(a) δt + f22(a) rd t (25)

Since under the EMH δt = δ′
t , we expect the scalar coefficient f21(a) = 1 and that for

f22(a) = 0. These restrictions hold even if we add additional variables to the VAR.
All that happens if we add a variable yt to the VAR system is that we obtain an
additional term f3(a)yt , and the RVF implies that f3(a) = 0 (in addition to the above
two restrictions).

Thus, if the VAR restrictions are rejected on a limited information set, they should
also be rejected when a ‘larger’ information set is used in the VAR. The latter is true
as a matter of logic and should be found to be true if we have a large enough sample
of data. In this sense, the use of a limited information set is not a major drawback.
However, in a finite data set, we know that variables incorrectly omitted from the
regression by the econometrician, yet used by agents in forecasting, may result in
‘incorrect’ (i.e. inconsistent) parameter estimates. Therefore, in practice, using more
variables in the VAR may provide a stronger test of the validity of the RVF.

Thus, while Shiller’s variance bounds tests based on the perfect foresight price may
suffer from problems because of non-stationarity in the data, the results based on the
VAR methodology may suffer from omitted variables bias or other specification errors
(e.g. wrong functional form). Although there are diagnostic tests available (e.g. tests
for serial correlation in the error terms of the VAR, etc.) as a check on the statistical
validity of the VAR representation, it nevertheless could yield misleading inferences
in finite samples.

We are now in a position to gain some insight into the economic interpretation of the
Wald test of the non-linear restrictions in (14), which are equivalent to those in (25)
for our two-variable VAR. If the non-linear restrictions are rejected, then this may be
because of f22(a) �= 0. If so, then rdt influences

∑∞
j=0 ρj (he

t+j+1 − �de
t+j+1). To the

extent that the (weighted) sum of one-period returns is a form of multi-period return,
violation of the non-linear restrictions is indicative that the (weighted) return over a
long horizon is predictable. We do not wish to push this argument further at this point
since it is dealt with explicitly below, in the section on multi-period returns.

We can use the VAR methodology to provide yet another metric for assessing the
validity of the EMH-RVF. This metric is based on splitting the term rt − �dt into
its component elements so that zt = (δt , �dt , rt )

′. We can then decompose the RHS
of (19) into

δt = δ′
dt + δ′

rt (26)
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where
δ′

rt = e3′A(1 − ρA)−1zt (27a)

δ′
dt = e2′A(1 − ρA)−1zt (27b)

Hence, we expect corr(δt − δ′
dt , δ

′
rt ) = 1. If this correlation coefficient is substantially

less than 1, then it implies that the real expected returns δ′
rt are not sufficiently variable

to explain the movements in the dividend–price ratio (corrected for the influence of
future dividend forecasts δt – δ′

dt ).
As we shall see, a variance decomposition based on (26) is also useful in examining

the influence of the persistence in expected returns on the dividend–price ratio δt and
hence on stock prices (pt = dt − δt ). The degree of persistence in expected returns
is modelled by the size of certain coefficients in the A matrix of the VAR. We can
use (26) to decompose the variability in δt as follows

var(δt ) = var(δ′
dt ) + var(δ′

rt ) + 2 cov(δ′
dt , δ

′
rt ) (28)

where the RHS terms can be shown to be functions of the A matrix of the VAR.
However, we do not pursue this analysis here, and in this section, the covariance term
does not appear since we compare δrt with δt – δ′

dt .

Summary: RVF and VAR

We have covered rather a lot of ground but the main points in our application of the
VAR methodology to stock prices and returns are as follows.

(i) The linearised RVF implies a set of cross-equation restrictions on the parameters
of the VAR. These cross-equation restrictions ensure that one-period excess returns
are unforecastable and that RE forecast errors are independent of information at
time t .

(ii) From the VAR, we can calculate the ‘theoretical’ dividend–price ratio δ′
t and the

theoretical stock price p′
t = (dt − δ′

t ). Under the null of the EMH-RVF, we expect
δt = δ′

t and pt = p′
t . And these can be compared graphically.

(iii) The standard deviation ratio SDR = σ(δt )/σ (δ′
t ) and correlation (δt , δ

′
t ) should be

unity. δt is a sufficient statistic for future changes in rt − �dt and, hence, should
at a minimum, Granger cause the latter variable.

(iv) A measure of the relative strength of the importance of expected dividends (δ′
dt )

and expected future returns δ′
rt , in contributing to the variability in the divi-

dend–price ratio (δ′
t ) can be obtained from the VAR.

12.2 Empirical Results
The results we present are illustrative. They are, therefore, not a definitive statement
of where the balance of the evidence lies. Empirical work has concentrated on the
following issues.
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(i) The choice of alternative models for expected one-period holding period returns.

(ii) How many variables to include in the VAR, the appropriate lag length and the
temporal stability of the parameter estimates.

(iii) How to interpret any conflicting results between the alternative ‘metrics’ used,
such as the predictability of one-period returns in a single-equation study, and the
correlation, variance ratio statistics and Wald tests of the VAR methodology.

The RVF and Predictability of Returns

The seminal work of Campbell and Shiller (1988) uses annual data on an aggregate
US stock index and associated dividends for the period 1871–1986. They use four
different assumptions about the one-period required rates of return, which are:

(a) required real returns are constant (i.e. ht = constant).

(b) required nominal (or real) returns equal the nominal (or real) Treasury Bill rate
ht = rc

t .

(c) required real returns are proportional to consumption growth (i.e. ht = γ�ct , where
γ = coefficient of relative risk aversion).

(d) Required real (market) returns depend on a risk premium that equals the coefficient
of relative risk aversion times the (conditional) variance Vt of returns on the ‘market
portfolio’:

ht = γVt

Hence, in the VAR, ht is replaced by one of the above alternatives. Note that (b) is
the usual assumption of no risk premium, (c) is based on the consumption-CAPM,
while (d) has a risk premium loosely based on the CAPM for the market portfolio
(although the risk measure used, Vt equals squared ex-post returns and is a relatively
crude measure of the conditional variance of market returns).

Results are qualitatively unchanged regardless of the assumptions (a)–(d) chosen
for required returns, and, therefore, we mainly comment on results under assumption
(a), that is, constant real returns (Campbell and Shiller 1988, Table 4). The variables
δt , rt and �dt are found to be stationary I(0) variables. In a single-equation regression
of (approximate) log returns on the information set δt and �dt , we have

ht = 0.141δt

(0.057)

− 0.012�dt

(0.12)

(29)

1871–1986, R2 = 0.053 (5.3%), (.) = standard error

Only the dividend–price ratio is statistically significant in explaining annual (one-
period) real returns, but the degree of explanatory power is low (R2 = 5.3%). In
the VAR (with lag length = 1) using zt+1 = (δt+1, �dt+1) the variable δt+1 is highly
autoregressive, and most of the explanatory power (R2 = 0.515) comes from the term
δt (coefficient = 0.706, standard error = 0.066) and little from �dt . The change in
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real dividends �dt+1 is partly explained by �dt , but the dividend–price ratio δt is also
statistically significant with the ‘correct’ negative sign (see (5)). Hence, δt Granger
causes �dt is a weak test of the RVF. If we take the estimated A matrix of the VAR
and use (23) to calculate f21(a) and f22(a) of (25), then Campbell–Shiller find

δ′
t = 0.636

(0.123)

δt − 0.097
(0.109)

�dt (30)

Under the null of the EMH-RVF, we expect the coefficient on δt to be unity and that on
�dt to be zero: the former is rejected, although the latter is not. From our theoretical
analysis, we noted that if δ′

t �= δt then one-period returns are predictable, and, there-
fore, the VAR results are consistent with single-equation regressions demonstrating the
predictability of one-period returns (e.g. Fama and French 1988b). The Wald test of
the cross-equation restrictions is rejected, as is the result that the standard deviation
ratio is unity:

SDR = σ(δ′
t )/σ (δt ) = 0.637 (s.e. = 0.12) (31)

However, the correlation between δt and δ′
t is very high at 0.997 (s.e. = 0.006) and is

not statistically different from unity. It appears, therefore, that δt and δ′
t move in the

same direction, but the variability in actual δt is about 60% (i.e. 1/0.637 = 1.57) larger
than its theoretically predicted value δ′

t (under the RVF). Hence, the dividend–price
ratio and, stock prices are more volatile than ‘fundamentals’, even when we allow
dividends and the discount rate to vary over time.

Using the single-equation regression (29), the null that one-period returns are unfore-
castable is rejected at a 4.5% significance level, however, using the VAR methodology,
the Wald test of δt = δ′

t is rejected at a much higher level of 0.5%. Note that δ′
t is

a weighted average of all future one-period returns ht+1 and hence approximates
a long-horizon return. The strong rejection of the Wald test is therefore consistent
with the Fama–French results, where predictability is stronger for long- rather than
short-horizon returns. We return to this issue below.

The results also make clear that even though one-period returns are barely pre-
dictable, nevertheless, this may imply a fairly gross violation of the equality δt = δ′

t

(or pt = p′
t ). Hence, the actual stock price is substantially more volatile than predicted

by the RVF, even when one-period returns are largely unpredictable.
For the different expected return models, the correlation between (δt − δ′

dt ) and δ′
rt ,

for VAR lag lengths greater than one, is generally found to be low. Hence, a tentative
conclusion would be that expected future returns are not sufficiently volatile to explain
the variability in actual stock prices. In this variant of the model, variability of the stock
price is mostly due to variability in expected dividends although even the latter is not
sufficiently variable to ‘fully’ explain stock price variability (i.e. var(δt ) > var(δ′

t ) and
var(pt ) > var(p′

t )).
In a second study, Campbell and Shiller (1988, Chapter 8) extend the information

set in the VAR to include the (log) earnings–price ratio et where et = et − pt and
et = long moving average of the log of real earnings. The motivation for including et is
that financial analysts often use PE ratios (or earnings yield E/P) to predict future stock
returns. Indeed, Campbell–Shiller find that the earnings yield is the key variable in
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determining returns ht+1 and statistically it works better than the dividend–price ratio.
The VAR now includes the three ‘fundamental’ variables zt+1 = (δt+1,�dt+1, et+1)

′,
but the basic VAR results remain broadly unchanged.

It is clear particularly after the late 1950s that there is a substantial divergence
between the actual and theoretical price series, thus rejecting the RVF. There is excess
volatility in stock prices, and they often diverge substantially from their ‘fundamental
value’ p′

t even though actual one-period (log) returns ht and the theoretical return h′
t are

highly correlated (e.g. corr(ht , h
′
t ) = 0.915, s.e. = 0.064, see Shiller (1988, Table 2)).

The reason for the above results can be seen by using (19) and p′
t = dt − δ′

t to calculate
the theoretical price

p′
t = 0.256pt + 0.776et + 0.046dt − 0.078dt−1 (32)

Hence, pt only has a weight of 0.256 rather than unity in determining p′
t , and the

long-run movements in p′
t are dominated by the ‘smooth’ moving average of earnings

et . However, in the short run, pt is highly volatile, and this causes p′
t to be highly

volatile. By definition, one-period returns depend heavily on price changes, hence ht

and h′
t are highly correlated.

The Campbell–Shiller results are largely invariant to whether required real returns
or excess returns over the commercial paper rate are used as the time-varying discount
rate. Results are qualitatively invariant in various sub-periods of the whole data set,
1927–86 and for different VAR lag lengths. However, Monte Carlo results (Campbell
and Shiller (1989) and Shiller and Beltratti (1992)) demonstrate that the Wald test may
reject too often under the null that the RVF holds when the VAR lag length is ‘long’
(e.g. greater than 3). Notwithstanding the Monte Carlo results, Campbell and Shiller
(1989) note that in none of their 1000 simulations are the rejections of the Wald test
as ‘strong’ or the lack of correlation between (δt and δ′

t ) or (pt , p
′
t ) or (ht, h

′
t ) as low

as in the actual data set. This suggests that although biases exist in the VAR approach,
the violations produced with the actual data are much worse than one would expect
if the null hypothesis of the EMH-RVF were true.

Using aggregate data on UK stock prices (annual 1918–93) Cuthbertson, Hayes and
Nitzsche (1997) find similar results to Campbell and Shiller (1988) for the constant
excess returns model. However, the CAPM indicates that the excess market return
depends on market volatility that is Etht+1 − rt = γEtVt+1. Volatility is measured as
the squared market return, and the coefficient of relative risk aversion is chosen to
minimise the Wald statistic (γ = 2.5 is used but variants include γ in the range 1 to
10). It is found that volatility Vt Granger causes �dt+j and, hence, partly determines
the theoretical dividend–price ratio δ′

t . So time-varying volatility Vt imparts more
variability in δ′

t and, hence, it more closely matches movements in actual δt than does
the constant returns model.

For the constant excess returns model (Table 1), the ratio σ(δ′
t )/σ (δt ) is less than

its theoretical value of unity, and the Wald test is rejected for all forecast horizons (see
below). However, when the volatility term is included in the VAR, the point estimates
of σ(δ′

t )/σ (δt ) now exceed unity at all forecast horizons, but they are not statistically
different from unity (owing to the large standard errors). Also, the Wald test is not
rejected (Table 2).
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Table 1 Constant expected excess real returns (UK annual data 1918–1993)

Return Horizon (Years)

1 2 3.000 5.000 10.000 Infinity

(i) Wald statistic 16.137 24.722 33.227 43.281 48.484 48.725
(p-value) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

(ii) σ(δ′
t )/σ (δt ) 0.645 0.447 0.353 0.291 0.275 0.275

(s.e.) (0.144) (0.150) (0.146) (0.138) (0.133) (0.133)
(iii) corr(δt , δ

′
t ) 0.972 0.959 0.961 0.975 0.981 0.981

(s.e.) (0.020) (0.049) (0.052) (0.033) (0.021) (0.021)
(iv) corr(h1t ′h

′
1t ) 0.963 0.929 0.899 0.866 0.852 0.852

(s.e.) (0.027) (0.048) (0.076) (0.106) (0.113) (0.113)

Notes:
1. The statistics in this table were derived from a three-variable VAR, where δt , rt and �dt were entered
separately.
2. The raw data is from the Equity Gilt Study by Barclays-deZoete-Wedd (BZW), available from Barclays
Capital.
3. Standard errors are heteroscedasticity corrected.

Table 2 CAPM volatility model (γ = 2.5)

Return Horizon (Years)

1 2 3 5 10 Infinity

(i) Wald statistic 2.698 2.118 1.867 1.728 1.708 1.711
(p-value) (0.441) (0.548) (0.600) (0.631) (0.635) (0.635)

(ii) σ(δ′
t )/σ (δt ) 1.350 1.666 1.844 2.007 2.091 2.098

(s.e.) (0.331) (0.623) (0.803) (0.977) (1.067) (1.076)
(iii) corr(δt , δ

′
t ) 0.945 0.945 0.945 0.946 0.946 0.946

(s.e.) (0.053) (0.054) (0.054) (0.055) (0.055) (0.055)
(iv) corr(h1t h

′
1t ) 0.898 0.884 0.879 0.875 0.874 0.873

(s.e.) (0.127) (0.135) (0.138) (0.143) (0.144) (0.145)

Notes:
1. The ‘CAPM model’ has excess returns depending on market volatility Etht+1 − rt = γEtVt+1 where
Vt+1 = volatility (measured by the squared annual stock return).
2. The VAR contains the variables {δt ,�dt , Vt }.
3. Standard errors are heteroscedasticity corrected.

The CAPM volatility term does have incremental explanatory power in the VAR and
Vt is statistically significant in the VAR equations for �dt+1 and δt+1. The dramatic
change in the relationship between δ′

t and δt when volatility is included in the model
can be seen by comparing Figures 1 and 2.

Results for France and Germany (Cuthbertson and Hyde 2002) using the CAPM
volatility model (aggregate stock indices, monthly data June 73–June 96) are also supe-
rior to those for the constant excess returns model. For France (Figure 3a), the volatility
model supports the RVF, while for Germany, results are less supportive (Figure 3b).
Cuthbertson and Hyde interpret the latter result as being due to volatility in the German
market being less than in the French market and, hence, volatility in Germany is not large
enough to influence expected returns (see Chapter 29 on GARCH-in-mean models).
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Figure 1 Actual and ‘theoretical’ dividend–price ratio – constant returns model (UK data
1921–1993)
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Figure 2 Actual and theoretical dividend–price ratio – CAPM volatility model, γ = 2.5 (UK
data 1921–1993)

Cuthbertson, Hayes and Nitzsche (1997) note that the ‘alternative hypothesis’ when
using the VAR metrics is very general, namely that the market is inefficient. They,
therefore, use the VAR approach to test a specific alternative to efficiency, namely
short-termism in the UK stock market. The RVF can be written

δt =
4∑

j=0

xj+1EtYt+1+j + x6ρ5Etδt+5

where Yt+1+j ≡ ρj (ht+1+j − �dt+1+j ). Efficiency requires x = 1 and short-termism
(i.e. future ‘fundamentals’ are given less weight than under the EMH) implies x < 1.
Because the VAR methodology allows explicit time-series forecasts of Yt+1+j and δt+j ,
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(a) Comparison of actual and theoretical log dividend–
price ratios (market volatility-CAPM model:  France)
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(b) Comparison of actual and theoretical log dividend–
price ratios (market volatility-CAPM model: Germany)
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(i)     ldpr = actual log dividend–price ratio, ldpr′ (i = inf) is the theoretical log dividend–price ratio
        assuming an infinite forecast horizon in the RVF.

(ii)   The ‘market volatility–CAPM model’ assumes the expected excess market return depends on
        the conditional volatility of the market return (the latter is measured as squared past returns).

(iii)  The coefficient of relative risk aversion used is g = 4 for both France and Germany.
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Figure 3

we can estimate x in the above equation. Note that we can either truncate our forecast
of δt+j at (say) j = 5 years or we can use

Etρ
5δt+5 ≡ Et

∞∑
j=5

ρj (ht+1+j − �dt+1+j )

as our measure of Etρ
5δt+5. Using the VAR forecasts from the CAPM volatility model

(with γ = 2.5), the estimate of x is about 0.7 (s.e. = 0.07) for both of the above
variants, indicating short-termism. Thus, although the RVF is not rejected when we
assume excess market returns depend on market volatility, the EMH is rejected against
the specific alternative of short-termism.
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Cuthbertson, Hayes and Nitzsche (1999) using UK quarterly data (1965–92) on
aggregate stock returns, decisively reject the C-CAPM (i.e. Etht+1 − rt = γEt�ct+1)

using the VAR approach, but the CAPM volatility model performs well for γ > 3.
Next, they examine the returns on five market sectors (e.g. capital goods, consumer
goods, etc.) where the CAPM would suggest that the expected return for any sector i

depends on the covariance between the return on asset i and the market return:

Ethi,t+1 − rt = γ covt (hi,t+1, hm,t+1)

The time-varying conditional covariance is measured by the cross product (hihm)t+1,
and Cuthbertson and Galindo (1999) apply the VAR approach to sector returns. What
is surprising is that the sectoral results for the VAR metrics are much improved when
we assume sector returns depend on sector volatility rather than the covariance of
sector returns, with the market. This suggests that investors perceive each sector as
constituting ‘the market’. This may be because the investors ‘who make the market’
actually do concentrate on only one sector (i.e. sector experts) so it is the volatility
in that sector that is important to them and influences sector returns (i.e. market
segmentation).

As we shall see in Chapter 18, the above result can also be interpreted with evidence
from the behavioural finance literature. It has been observed (in experimental situations)
that people treat the outcomes of individual gambles separately from other elements
of their wealth (even given no institutional constraints). For example, when offered a
gamble, people treat it as a ‘stand-alone’ bet and do not aggregate it with other ‘bets’
they may currently be involved in. This is an example of ‘mental accounting’ known
as narrow framing. In our case, investors should treat all of their sectoral gambles
together and realise that the risk of a bet on any one sector depends on the covariance
of that sector’s return with the market return. But if they suffer from narrow framing,
they will perceive the risk of a bet on any one sector, in isolation. Then their perceived
risk is correctly measured by the variance of the sectoral return.

An interesting disaggregated study by Bulkley and Taylor (1996) uses the predic-
tions from the VAR, namely the theoretical price in an interesting way. First, a VAR
is estimated recursively over 1960–1980 for each company i and the predictions for
the theoretical price P ′

it are obtained. For each year of the recursive sample, the gap
between the theoretical value P ′

it and the actual price Pit is used to help predict com-
pany returns Ri over one- to ten-year horizons (with corrections for some company
risk variables zk):

Ri = α + γo(P
′
i /Pi) +

m∑
k=1

γkzk

Contrary to the EMH, they find that γo �= 0. They also rank firms on the basis of the
top/bottom 20 (or top/bottom 10) firms, in terms of the value of (P ′

t /Pt ) and formed
portfolios of these companies. The excess returns over three years on holding the top
20 firms, as ranked by the P ′

i /Pi ratio, would have earned returns in excess of those
on the S&P500 index, of over 7% p.a. They also find that excess returns cumulated
over five years suggests mispricing of the top 20 shares by around 25%.
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Shiller Volatility Tests and Multi-Period Returns

In our discussion of empirical work on Shiller’s volatility inequalities and the
Fama–French long-horizon regressions, we noted that Pt − P ∗

t (where P ∗
t = perfect

foresight price) is like a ‘long-horizon’ return. Hence, a regression of Pt − P ∗
t on

the information set �t should yield zero coefficients if long-horizon returns are
unforecastable. Fama–French use actual long-horizon returns over N periods RN

t+N

and find that these are predictable using past returns, particularly for returns measured
over a 3–5-year horizon. Fama–French use univariate-AR models in their tests.

Campbell and Shiller (1988, Chapter 8) are able to apply their linearised formula
for the one-period return to yield multi-period returns, and the latter can be shown
to imply cross-equation restrictions on the coefficients in the VAR. Hence, using the
VAR methodology, one can examine the Fama–French ‘long-horizon’ results in a
multivariate framework. The i-period return from t to t + i is

(1 + Hi,t ) ≡ (1 + H1,t+1)(1 + H1,t+2)(1 + H1,t+3) · · · (1 + H1,t+i )

where H1,t+j is the one-period return between t + j − 1 and t + j . Hence,

h∗
i,t =

i−1∑
j=0

h1,t+j+1 (33)

where h∗
i,t = ln(1 + Hi,t ). Equation (33) is unbounded as the horizon i increases, so

Campbell–Shiller prefer to work with a weighted average of the i-period log return

hi,t =
i−1∑
j=0

ρjh1,t+j+1 (34)

Using (34) and the identity (4) for one-period returns h1,t+1, we have

hi,t =
i−1∑
j=0

ρj (δt+j − ρδt+1+j − �dt+j+1 + k) (35)

= δt − ρiδt+i +
i−1∑
j=0

ρj�dt+j+1 + k(1 − ρi)/(1 − ρ)

Equation (35) is an (approximate) identity that defines the multi-period return hi,t

from period t to t + i in terms of δt , δt+1 and �dt+j . It does not have a great deal
of direct intuitive appeal but we can briefly try and interpret the first three terms
(The linearisation constant, the last term, is of no consequence.) The one-period return
depends on the current dividend–price ratio, and this accounts for the first term in (35).
The multi-period return must depend on dividends arising from t to t + i and, given
that we have anchored dt with the term δt (= dt − pt), it must therefore depend on
the growth in dividends – this is the third term on the RHS of (35). The second term
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is of decreasing importance as the return horizon increases (since ρiδt+i → 0 if δ is
stationary and 0 < ρ < 1). It appears because returns over a finite horizon depend on
the terminal (selling) price at t + i and hence on δt+i .

We are now in a position to see how a multivariate forecasting equation based
on a VAR may be compared with the Fama–French ‘long-horizon’, single-equation
regressions. A VAR in zt = (δt , �dt ) can be used to forecast the RHS of (35), which
is the theoretical return over i periods denoted h′

i,t . We can then compare the actual
‘i-period’ return hi,t with h′

i,t using graphs, the variance ratio, and the correlation
between hi,t and h′

i,t .
Although (35) can be used to provide a forecast of hi,t from a VAR on the basis of

δt and �dt , equation (35) does not provide a Wald test of restrictions on the A matrix,
since hi,t is not in the information set. However, a slight modification can yield a Wald
test for multi-period returns. We introduce the behavioural hypothesis that expected
one-period excess returns are constant

Et(h1,t − rt ) = c (36)

It follows that

Et(hi,t |�t) =
i−1∑
j=0

ρjEtrt+j+1 + c(1 − ρi)/(1 − ρ) (37)

Taking expectations of (35) and equating the RHS of (35) with the RHS of (37), we
have the familiar difference equation in δt that can be solved forward to give the
dividend–price ratio for i-period returns

δt =
i−1∑
j=0

ρjEt(rt+j+1 − �dt+j+1) + ρiEtδt+i + (c – k)(1 − ρi)/(1 − ρ) (38)

If we ignore the constant term, (38) is a similar expression to that obtained earlier,
except that the summation is over i periods rather than to infinity. It is the dynamic
Gordon model over i periods. Campbell and Shiller (1988) use (38) to form a Wald
test of multi-period returns for different values of i = 1, 2, 3, 5, 7 and 10 years and
also for an infinite horizon. For zt = (δt , rd t , et )

′, the restrictions are

e1′(I − ρiAi ) = e2′A(I − ρA)−1(I − ρiAi ) (39)

For i = 1 (or i = ∞), the above reduces to

e1′(I − ρA)′ = e2′A (40)

which is the case examined earlier in detail. If (40) holds, then post-multiplying by
(I − ρiAi) we see that (39) also holds algebraically for any i. This is a manifestation
of the fact that if one-period returns are unforecastable, so are i-period returns.

Campbell and Shiller, using the S&P index 1871–1987, find that the Wald test
is rejected only at about the 2 to 4% level for i = 1, but these tests are rejected
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much more strongly for i > 3 (i.e. at a level of 0.2 percent or less). This mirrors the
Fama–French single-equation results that multi-period returns are more forecastable
than single-period returns. Again, Cuthbertson, Hayes and Nitzsche (1999) on UK data
find similar results to the above for constant real and excess returns (see Table 1). But
as noted above, they find evidence that multi-period returns are not forecastable when
a measure of volatility is allowed to influence one-period returns as in the CAPM (see
results from the Wald test in Table 2).

Perfect Foresight Price and Multi-Period Returns

We now show that if the multi-period return hi,t+1 is forecastable, this implies that
the Shiller variance bound inequality is also likely to be violated. Because of the way
we defined the (weighted) multi-period return, hi,t+1 in (39), it is the case that hi,t+1

remains finite as i → ∞.

lim
i→∞ hi,t+1 = (1 − ρ)

∞∑
j=0

ρjdt+j+1 − pt + k/(1 − ρ) = ln P ∗∗
t − ln Pt + k/(1 − ρ)

(41)

We have written the first term on the RHS of (41) as ln P ∗∗
t because it is the log-

arithmic equivalent of the perfect foresight price P ∗
t in the Shiller volatility test. If

hi,t+1, the i-period return is predictable on the basis of information at time t (�t ), then
it follows from (41) that in a regression of (ln P ∗∗

t − ln Pt) on �t , we should also
find that �t is statistically significant. Therefore, ln P ∗∗

t �= ln Pt + εt and the Shiller
variance bound could be violated. Equation (35) for hi,t+1 for finite i is a log-linear
representation of ln P ∗

it − ln Pit when P ∗
it is computed under the assumption that the

terminal perfect foresight price at t + i equals the actual price Pt+i . The variable ln P ∗
it

is a close approximation to the variable used in the volatility inequality tests under-
taken by Mankiw, Romer and Shapiro (1991) where they calculate the perfect foresight
price over different investment horizons. Hence, tests on hit for finite i are broadly
equivalent to the volatility inequality of Mankiw et al. The two studies give broadly
similar results but with Campbell and Shiller (1988) rejecting the EMH more strongly
than Mankiw et al.

Violation of the volatility tests on the level of stock prices (from Shiller’s (1981)
early work), that is, var(Pt ) > var(P ∗

t ) is consistent with the view that long horizon
returns are forecastable. Failure of the Wald restrictions on the VAR in the multi-period
horizon case (39) and (40) can be shown to be broadly equivalent to a violation of
Shiller’s variance bounds tests for j → ∞ and refutation of the hypothesis that multi-
period returns are not predictable (as found by Fama and French (1988b) and Mankiw,
Romer and Shapiro (1991)).

Overall, the empirical results show that one-period returns, h1t stock prices pt and
the dividend–price ratio δt are generally too volatile (i.e. their variability exceeds
that for their theoretical counterparts h′

1t , p′
t and δ′

t ) to conform to the RVF under
rational expectations. This applies under a wide variety of assumptions for expected
returns.

Long-horizon returns (i.e. 3–5 years) are predictable, although returns over shorter
horizons (e.g. one month, one year) are barely predictable. Nevertheless, it appears to



S E C T I O N 1 2 . 3 / P E R S I S T E N C E A N D V O L AT I L I T Y 291

be the case that there can be a quite large and persistent divergence between actual
stock prices and their theoretical counterpart as given by the RVF. The VAR evi-
dence, therefore, frequently rejects the EMH-RVF under several alternative models of
equilibrium returns.

12.3 Persistence and Volatility

In this section, we wish to demonstrate how the VAR analysis can be used to examine
the relationship between the predictability and persistence of one-period returns and
their implications for the volatility in stock prices. We have noted that monthly returns
are not very predictable and single-equation regressions have a very low R2 of around
0.02. Persistence in a univariate model is measured by how close the autoregressive
coefficient is to unity. In this section, we show that if expected one-period returns are
largely unpredictable, yet are persistent, then news about returns can still have a large
impact on stock prices. Also, by using a VAR system, we can simultaneously examine
the relative contribution of news about dividends, news about future returns (discount
rates) and their interaction, on the variability in stock prices.

Persistence and News

Campbell (1991) considers the impact on stock prices of (i) changes in expected future
discount rates (required returns) and (ii) changes in expected future dividends. The
surprise or forecast error in the one-period expected return can be shown to be (see
Appendix)

ht+1 − Etht+1 = (Et+1 − Et)

∞∑
j=0

ρj�dt+j+1 − (Et+1 − Et)

∞∑
j=1

ρjht+1+j (42)

which in more compact notation is

vh
t+1 = ηd

t+1 − ηh
t+1 (43)

unexpected return in period t + 1 = news about future dividend growth

− news about future expected returns

Note that the LHS of (43) is the unexpected capital gain pt+1 − Etpt+1. The terms
ηd

t+1 and ηh
t+1 on the RHS of (43) represent the DPV of ‘revisions to expectations’. It

simply states that a favourable out-turn for the ex-post return ht+1 over and above that
which had been expected Etht+1 must be due to an upward revision in expectations
about the growth in future dividends �dt+j or a downward revision in future discount
rates, ht+j . If the revisions to expectations about either the growth in dividends or
the discount rate are persistent, then any news between t and t + 1 in either of these
will have a substantial effect on unexpected returns ht+1 − Etht+1 and, hence, on the
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variance of the latter. The RHS of (42) is a weighted sum of two stochastic variables
�dt+1+j and ht+1+j . The variance of the unexpected return, can be written

var(vh
t+1) = var(ηd

t+1) + var(ηh
t+1) − 2 cov(ηd

t+1, η
h
t+1) (44)

As we see below, we can decompose news about unexpected returns into the separate
‘news’ elements on the RHS of (44) once we assume some form of stochastic process
for ht+1 (and any other variables that influence ht+1), that is, a VAR system. Campbell
suggests a measure of the persistence in expected returns

Ph = σ(ηh
t+1)/σ (ut+1) (45)

where ut+1 is the innovation at time t + 1 in the one-period-ahead expected return,
ut+1 = (Et+1 − Et)ht+2, so ut+1 is a revision to expectations over one-period only.
Ph is therefore defined as

Ph = standard error of news about the DPV of all future returns

standard error of news about one-period-ahead expected returns

Ph may be interpreted as follows. Using (45), we see that an innovation in the one-
period expected return ut+1 of 1% will lead to a Ph percent change in all future discount
rates ηh

t+j and hence via (43) a Ph percent unexpected capital loss.

Univariate Case

It is useful to consider a simple case to demonstrate the importance of persistence in
explaining the variability in stock prices. Suppose expected returns follow an AR(1)
process

Et+1ht+2 = βEtht+1 + ut+1 (46)

The degree of persistence depends on how close β is to unity. It can be shown (see
Appendix) that

Ph = ρ/(1 − ρβ) ≈ 1/(1 − β) (for ρ ≈ 1) (47)

var(ηh
t+1)/ var(vh

t+1) ≈ [(1 + β)/(1 − β)]R2/(1 − R2) (48)

where R2 = the fraction of the variance of stock returns ht+1 that is predictable. For
β close to unity, it can be seen that the Ph statistic is large, indicating a high degree
of persistence.

We can now use equation (48) to demonstrate that even if one-period stock returns
ht+1 are largely unpredictable (i.e. R2 is low), then as long as expected returns are
persistent, the impact of news about future returns on stock prices can be large. Taking
β = 0.9 and a value of R2 in a forecasting equation for one-period returns as 0.025,
we have from (48) that

var(ηh
t+1) = 0.49 var(vh

t+1) (49)
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Also from (42) and (43)

var(pt+1 − Etpt+1) ≡ var(vh
t+1)

In this case, news about future returns var(ηh
t+1) explains 49% of the variance of one-

period unexpected returns vh
t+1 and hence 49% of the variability in stock prices. Hence,

the predictability of stock returns can be quite low, yet if the persistence in returns is
high, then news about returns can explain a large proportion of the variability in stock
price movements.

Campbell is able to generalise the above univariate model by using a multivariate
VAR system. The variables used are the monthly (real) return ht+1 on the value-
weighted NYSE Index, the dividend–price ratio, δt and the relative T-bill rate, rrt .
(The latter is defined as the difference between the short-term Treasury Bill rate and
its one-year backward moving average: the moving average element ‘detrends’ the I(1)
interest rate series.) The VAR for these three variables zt = (ht , δt , rr t ) in companion
form is:

zt+1 = Azt + wt+1 (50)

where wt+1 is the forecast error (zt+1 − Etzt+1). We can now go through the usual
‘VAR hoops’ using (50) and (42) to decompose the variance in the unexpected stock
return vh

t+1 into that due to news about expected dividends and news about expected
discount rates (returns). Using the VAR, we have (see Appendix)

ηh
t+1 = (Et+1 − Et)

∞∑
j=1

ρjht+1+j = e1′
∞∑

j=1

ρj Aj wt+1 = ρ(I − ρA)−1e1′Awt+1 (51)

Since vh
t+1 is the first element of wt+1 that is e1′wt+1, we can rewrite (51) and calculate

ηd
t+1 from the identity

ηd
t+1 = vh

t+1 + ηh
t+1 = (e1′ + ρ(1 − ρA)−1e1′A)wt+1 (52)

Given estimates of the A matrix from the VAR together with the estimates of the
variance–covariance matrix of forecast errors � = E(wt+1w′

t+1), we now have all the
ingredients to work out the variances and covariances in the variance decomposition.
The persistence measure Ph can be shown (see Appendix) to be

Ph = σ(λ′wt+1)/σ (e1′Awt+1) = [(λ′�λ)/(e1′A� ′A′e1)]1/2 (53)

where λ′ = ρ(I − ρA)−1e1′A and σ(.) indicates the standard deviation of the terms in
parentheses.

Results

An illustrative selection of results from Campbell (1991) is given in Table 3 for
monthly data over the period 1952(1)–1988(12). In the VAR equation for returns, ht+1
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Table 3 Variance decomposition of real stock returns: US data 1952(1)–1988(12)

R2
h var(ηd)/ var(vh) var(ηh)/ var(vh) −2 cov(ηd, ηh) corr(ηd, ηh)

0.065 0.127 0.772 0.101 −0.161
[0.000] (0.016) (0.164) (0.153) (−0.256)

Notes: R2 is the fraction of the monthly real stock returns that is forecast by the VAR and [.] is the marginal
significance level for the joint significance of the VAR forecasting variables. (.) = standard error. The VAR
lag length is one.
Source: Campbell (1991), Table 2.

is influenced by variables other than lagged returns ht , namely by the dividend–price
ratio and the relative bill rate, but even then, the R2 is relatively low, 0.065, compared
to those for the dividend yield (R2 = 0.96) and the relative bill rate (R2 = 0.55). The
persistence measure is calculated to be Ph = 5.7 (s.e. = 1.5), indicating that a 1% pos-
itive innovation in the expected return leads to a capital loss of around 6%, ceteris
paribus. (However, persistence is smaller in the earlier 1927(1)–1951(12) period with
Ph = 3.2, s.e. = 2.4). News about future returns var(ηh) account for over 75% of the
variance of unexpected returns, with news about dividends accounting for about 13%
(Table 3). This leaves a small contribution due to the negative covariance term, of
about 10%.

Campbell (1991) notes that these VAR results need further analysis, and he considers
the sensitivity of the variance decomposition to the VAR lag length, possible omitted
variables in the VAR, and unit roots in the dividend–price equation, which are likely
to affect the small sample properties of the asymptotic test statistics used. He finds the
following.

(i) The above results are largely invariant to the lag length of the VAR when using
either monthly returns or returns measured over three months.

(ii) The variance of news about future returns is far less important (and that for future
dividends is more important) when the dividend–price ratio is excluded from the
VAR.

(iii) Performing a Monte Carlo experiment with ht+1 independent of any other vari-
ables and a unit-root imposed in the dividend–price equation has ‘a devastating
effect’ on the bias in the variance decomposition statistics. In the artificially gen-
erated series where ht+1 is unforecastable, unexpected stock returns should only
respond to news about future dividends. Hence, var(ηd

t+1)/ var(vh
t+1) should equal

unity and the R-squared for the returns equation should be zero. But in the MCS
over the whole sample 1927–1980, the latter results are strongly violated (although
they are not rejected for the post-war period).

Cuthbertson and Galindo (1999) repeat the Campbell analysis on UK annual data
1918–1993 for the value-weighted BZW equity index. They include a wide array of
variables in the VAR, the key ones being the dividend–price ratio and a measure of
volatility. There is some evidence that persistence in volatility helps explain persistence
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in expected returns. However, in all these variants, the contribution of the news about
future returns to the movement in current returns is about four times that of news
about dividends (with the covariance term being statistically insignificant). These results
broadly mirror those of Campbell (1991) on US data.

The results in Campbell (1991) for the US aggregate stock market index
and Cuthbertson, Hayes and Nitzsche (1997, 1999) show that there is some evidence to
support the view that (in post-1950s data, in particular) stock returns in a multivariate
VAR system do appear to be (weakly) predictable and reasonably persistent. Of
course, this analysis does not provide an economic model of why expected returns
Etht+1 depend on variables like the dividend–price ratio and the relative bill rate, but
merely provide a set of statistical correlations that need to be explained. The results
of Campbell (1991) and Cuthbertson and Galindo (1999) also show that the variability
in stock prices is likely to be mainly due to news about future returns rather than news
about future dividend growth, although the relative importance of these two factors
is difficult to pin down at all precisely. This is because results from the variance
decomposition depend on the particular information set chosen (and whether dividends
have a unit root).

12.4 Summary

• The VAR methodology and the linearisation of the RVF allows one to investigate
the relationship between one-period returns, multi-period returns and the volatility
of stock prices, within a common theoretical framework that also explicitly deals
with the issue of stationarity of the data.

• Under a variety of assumptions about the determination of one-period returns, the
evidence strongly suggests that stock prices do not satisfy the RVF and the infor-
mational efficiency assumption of RE. These rejections of the EMH-RVF seem
conclusive and more robust than those found in the variance bounds literature. Stock
prices appear to be excessively volatile even when we allow time-varying discount
rates and dividend forecasts (using linear VAR models).

• Although monthly returns are barely predictable, the VAR approach indicates that
returns at long horizons are predictable – this is consistent with results from single-
equation return regressions.

• There is some evidence that sector returns depend on the variance of sector returns
and not on the covariance between sector returns and the market (i.e. the CAPM).
This can be interpreted as ‘narrow framing’ by investors or market segmentation by
stock analysts.

• There is some persistence in one-period returns so that although the latter are hardly
predictable, nevertheless, news about current returns can have quite a strong influence
on future returns and hence on stock prices. Stock prices are probably influenced
more by changes in expected future returns rather than changes in forecasts of
dividends – but both have some influence.
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Appendix: Returns, Variance Decomposition
and Persistence
In this appendix, we do three things. We show how to derive the Campbell–Shiller
linearised formula for stock returns and the dividend–price ratio. We then show how
these equations give rise to Campbell’s variance decomposition and the importance of
persistence in producing volatility in stock prices. Finally, we demonstrate how a VAR
can provide empirical estimates of the degree of persistence.

1. Linearisation of Returns

The one-period, real holding period return is

Ht+1 = Pt+1 − Pt + Dt+1

Pt

(A1)

where Pt is the real stock price at the end of period t and Dt+1 is the real dividend
paid during period t + 1. (Both the stock price and dividends are deflated by some
general price level, for example, the consumer price index.) The natural logarithm of
(one plus) the real holding period return we note as ht+1 and is given by

ht+1 = ln(1 + Ht+1) = ln(Pt+1 + Dt+1) − ln(Pt ) (A2)

If lower-case letters denote logarithms, then (A2) becomes

ht+1 = ln[exp(pt+1) + exp(dt+1)] − pt (A3)

The first term in (A3) is a non-linear function in pt+1 and dt+1. We linearise it by
taking a first-order Taylor series expansion around the geometric mean of P and D:

ln[exp(pt+1) + exp(dt+1)] = k + ρpt+1 + (1 − ρ) dt+1 (A4)

where
ρ = P/(P + D) (A5)

and, therefore, ρ is a number slightly less than unity and k is a constant. Using (A3)
and (A4) gives

ht+1 = k + ρpt+1 + (1 − ρ) dt+1 − pt (A6)

Adding and subtracting dt in (A6) and defining δt = dt − pt as the log dividend–price
ratio, we have

ht+1 = k + δt − ρδt+1 + �dt+1 (A7)

Equation (A7) can be interpreted as a linear forward difference equation in δ:

δt = −k + ρδt+1 + ht+1 − �dt+1 (A8)
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Solving (A8) by the forward recursive substitution method and assuming the transver-
sality condition holds,

δt =
∞∑

j=0

ρj [ht+j+1 − �dt+j+1] − k/(1 − ρ) (A9)

Equation (A9) states that the log dividend–price ratio can be written as the discounted
sum of all future returns minus the discounted sum of all future dividend growth rates
less a constant term. If the current dividend–price ratio is high because the current
price is low, then it means that in future, either required returns ht+1 are high or
dividend growth rates �dt+j are low or both. Equation (A9) is an identity and holds
almost exactly for actual data. However, we can treat it as an ex-ante relationship by
taking expectations of both sides of (A9) conditional on the information available at
the end of period t :

δt =
∞∑

j=0

ρj [Et(ht+j+1) − Et(�dt+j+1)] − k/(1 − ρ) (A10)

It should be noted that δt is known at the end of period t and, hence, its expectations
is equal to itself.

2 Variance Composition

To set the ball rolling, note that we can write (A10) for period t + 1 as

δt+1 =
∞∑

j=0

ρj [Et+1(ht+j+2) − Et+1(�dt+j+2)] − k/(1 − ρ) (A11)

From (A8), we have

ht+1 − �dt+1 − k = δt − ρδt+1 (A12)

Substituting from (A10) and (A11) and rearranging, we obtain

ht+1 − �dt+1 − k = Etht+1 +
∞∑

j=1

ρjEt(ht+j+1) −
∞∑

j=0

ρjEt(�dt+j+1) − k/(1 − ρ)

−
∞∑
i=0

ρi+1Et+1(ht+i+2) +
∞∑
i=0

ρi+1Et+1(�dt+i+2) + kρ/(1 − ρ)

(A13)
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The constant terms involving k and ρ cancel out in (A13). Substituting j = i + 1 in
the last two summations on the RHS of (A13) and rearranging, we obtain

ht+1 − Etht+1 =
∞∑

j=1

ρjEt(ht+j+1) −
∞∑

j=0

Et(�dt+j+1) −
∞∑

j=1

ρjEt+1(ht+j+1)

+
∞∑

j=1

ρjEt+1(�dt+j+1) + �dt+1 (A14)

Rearranging (A14), we obtain our key expression for unexpected or abnormal returns:

ht+1 − Etht+1 = (Et+1 − Et)

∞∑
j=0

ρj�dt+1+j − (Et+1 − Et)

∞∑
j=1

ρjht+1+j (A15)

Equation (A15) is the equation used by Campbell (1991) to analyse the impact of
persistence in expected future returns on the behaviour of current unexpected returns
ht+1 − Etht+1. Each term in (A15) can be written as

vh
t+1 = ηd

t+1 − ηh
t+1 (A16)(

unexpected returns
in period t + 1

)
=

(
news about future
dividend growth

)
−

(
news about future
expected returns

)

From (A16), we have

var(vh
t+1) = var(ηd

t+1) + var(ηh
t+1) − 2 cov(ηd

t+1, η
h
t+1) (A17)

The variance of unexpected stock returns in (A17) comprises three separate compo-
nents. The variance associated with the news about cash flows (dividends), the variance
associated with the news about future returns and a covariance term. Given this vari-
ance decomposition, it is possible to calculate the relative importance of these three
components in contributing to the variability of stock returns. Using (A6), it is also
worth noting that for ρ ≈ 1 and no surprise in dividends,

ht+1 − Etht+1 = pt+1 − Etpt+1

where pt is the (log) stock price. Hence, the LHS of (A15) is the unexpected or
‘surprise’ in the stock price.

Campbell also presents a measure of the persistence of expected returns. This is
defined as the ratio of the variability of the innovation in the expected present value
of future returns (i.e. standard error of ηh

t+1) to the variability of the innovation in the
one-period-ahead expected return. If we define ut+1 to be the innovation at time t + 1
in the one-period-ahead expected return, we have

ut+1 = (Et+1 − Et)ht+2 (A18)
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and Ph the measure of persistence of expected returns is defined as

Ph = σ(ηh
t+1)/σ (ut+1) (A19)

A. Expected Returns Follow AR(1) Process

We need to be able to model the expected stock return in order to carry out the variance
decomposition (A17) and to calculate the measure of persistence (A19). For exposition
purposes, we follow Campbell and initially we assume that the expected stock return
follows a univariate-AR(1) model. We then repeat the calculation using ht+1 in the
VAR representation. The AR(1) model for expected returns is

Et+1ht+2 = βEtht+1 + ut+1 (A20)

Using (A20), the expected value of ht+2 at time t is

Etht+2 = βEtht+1 (A21)

where we have used EtEt+1 and Etut+1 = 0. Equation (A20) minus (A21) gives

(Et+1 − Et)ht+2 = ut+1 (A22)

Leading (A21) one period and taking expectations at time t , we have

Etht+3 = βEtht+2 = β2Etht+1 (A23)

and similarly,
Et+1ht+3 = βEt+1ht+2 = β(βEtht+1 + ut+1) (A24)

Subtracting (A23) from (A24), we obtain

(Et+1 − Et)ht+3 = βut+1

In general, therefore, we can write

(Et+1 − Et)ht+j+1 = βi−1ut+1 (A25)

Using the definition of news about future returns, in (A15) and (A16) and using (A25),
we have

ηh
t+1 =

∞∑
j=1

ρjβj−1ut+1 = ρut+1/(1 − ρβ) (A26)

Hence, the variance of discounted unexpected returns is an exact function of the vari-
ance of one-period unexpected returns:

var(ηh
t+1) = [ρ/(1 − ρβ)]2 var(ut+1) (A27)
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Using (A27), the measure of persistence Ph in (A19) is seen to be

Ph = ρ/(1 − ρβ) ≈ 1/(1 − β)

Hence, if β is close to unity, which we can interpret as a high degree of persistence
in the AR(1) model, then Ph will also be large. Since pt+1 − Etpt+1 = −ηh

t+1 (when
ηd = 0) and ηh = [ρ/(1 − ρβ)]ut+1, then for the AR(1) case pt+1 − Etpt+1 = Phut+1.
Hence, a 1% increase in ut+1 leads to a Ph percent increase in ηh and hence a Ph

percent unexpected capital loss.
For the AR(1) case, we now wish to show that even if we can only explain a

small proportion of the variability in one-period returns ht+1 (i.e. returns are difficult
to forecast), yet if returns are persistent, then news about returns can be very impor-
tant in explaining stock price volatility. In short, the more persistent are expected
returns, the more important is the variance of news about future returns var(ηh

t+1) in
explaining unexpected returns ht+1 − Etht+1 (or unexpected capital gains or losses,
pt+1 − Etpt+1).

Define R2 to be the fraction of the variance of stock returns that is predictable,

R2 = var(Etht+1)/ var(ht+1) (A28)

1 − R2 = var(vh
t+1)/ var(ht+1) (A29)

R2/(1 − R2) = var(Etht+1)/ var(vh
t+1) (A30)

From (A20), the variance of Etht+1 is

var(Etht+1) = var(ut+1)/(1 − β2) (A31)

Substituting (A31) in (A30) and solving for var(ut+1), we obtain

var(ut+1) = (1 − β2) var(vh
t+1)R

2/(1 − R2) (A32)

Using (A32), equation (A27) can be written as

var(ηh
t+1)/ var(vh

t+1) = (1 − β2)[ρ/(1 − ρβ)]2R2/(1 − R2) (A33)

≈ [(1 + β)/(1 − β)]R2/(1 − R2)

The LHS of (A33) is one of the components of the variance decomposition that we are
interested in and represents the importance of variance of discounted expected future
returns relative to variance of unexpected returns (see equation (A17)).

For monthly returns, a forecasting equation with R2 ≈ 0.025 is reasonably repre-
sentative. The variance ratio VR in (A33) for β = 0.5, 0.75 or 0.9 is VR = 0.08, 0.18
or 0.49 respectively. Hence, for a high degree of persistence but a low degree of pre-
dictability, news about future returns can still have a large (proportionate) effect on
unexpected returns var(vh

t+1).
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B. Multivariate Case: VAR Model

The above univariate case neglects any interaction between news about expected
returns and news about dividends, that is, the covariance term in (A17). At a min-
imum, we require an equation to explain dividend growth. The covariance between
the forecast errors (i.e. news) for dividend growth and those for returns can then be
examined.

In this section, we assume the (m × 1) vector zt+1 contains ht+1 as its first element.
The other variables in zt+1 are known at the end of period t + 1 and are used to set
up the following VAR model

zt+1 = Azt + wt+1 and E(wt+1w′
t+1) = � (A34)

where A is the companion matrix. The first element in wt+1 is vh
t+1. First, note that

Et+1zt+j+1 = Aj+1zt + Aj wt+1 (A35)

Etzt+j+1 = Aj+1zt (A36)

Subtracting (A36) from (A35), we get

(Et+1 − Et)zt+j+1 = Aj wt+1 (A37)

Since the first element of zt is ht , if we pre-multiply both sides of (A37) by e1′, (where
e1′ is a (1 × m) row vector containing 1 as its first element with all other elements
equal to zero), we obtain

(Et+1 − Et)ht+j+1 = e1′Aj wt+1 (A38)

and hence,

ηh
t+1 = (Et+1 − Et)

∞∑
j=1

ρjht+1+j = e1′
∞∑

j=1

ρj Aj wt+1

= e1′ρA(I − ρA)−1wt+1 = λ′wt+1 (A39)

where λ′ = e1′ρA(1 − ρA)−1 is a non-linear function of parameters of the VAR. Since
the first element of wt+1 is vh

t+1, using (A16) and (A39), we can write

ηd
t+1 = e1′[I + ρA(1 + ρA)−1]wt+1 = γ ′wt+1 (A40)

It can be seen from (A39) and (A40) that both unexpected future returns and unex-
pected future dividends can be written as linear combinations of the VAR error terms
where each error term is multiplied by a non-linear function of the VAR parameters.
Setting j = 1 in (A38) and using (A18), we obtain

(Et+1 − Et)ht+2 = ut+1 = e1′Awt+1 (A41)
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Equations (A39) to (A41) can be used to carry out the variance decomposition and to
calculate the measure of persistence Ph, given the VAR model. In particular, we have

var(ηh
t+1) = λ′�λ (A42)

var(ηd
t+1) = γ ′�γ (A43)

var(vh
t+1) = e1′�e1 (A44)

cov(ηh
t+1, η

d
t+1) = λ′�γ (A45)

var(ut+1) = e1′AψA′e1 (A46)

Ph = [(λ′�λ)/(e1′A�A′e1)]1/2 (A47)

Once the ‘A’ parameters of the VAR and the covariance matrix � have been estimated,
the required variances and covariances can easily be calculated. One can use OLS
to estimate each equation in the VAR individually, but Campbell suggests the use
of the Generalised Method of Moments (GMM) estimator (Hansen 1982) to correct
for any heteroscedasticity that may be present in the error terms. The GMM point
estimates of parameters are identical to the ones obtained by OLS, although the GMM
variance–covariance matrix of all the parameters in the model will be ‘corrected’ for
the presence of heteroscedasticity (White 1984).

The standard errors of the variance statistics in (A42)–(A47) can be calculated
as follows. Denote the vector of all parameters in the model by θ (comprising
the non-redundant elements of A and �) and the heteroscedasticity adjusted
variance–covariance matrix of the estimate of these parameters by V. Suppose, for
example, we are interested in calculating the standard error of Ph. Since Ph is a
non-linear function of θ , its variance can be calculated as

var(Ph) =
(

∂Ph

∂θ

)′
V

(
∂Ph

∂θ

)
(A48)

The derivatives of Ph with respect to the parameters θ can be calculated numerically.
The standard error of Ph is then the square root of var(Ph).



13
SDF MODEL AND THE
C-CAPM

Aims

• Present a class of models known as (stochastic discount factor) SDF models.

• Show that the consumption-CAPM (C-CAPM) is a SDF model in which the discount
factor depends on the marginal utility of current and next periods consumption.

• Show the relationship between the C-CAPM and the ‘standard’ Sharpe–Lintner
CAPM from mean-variance portfolio theory.

• Demonstrate how interest rates, risky-asset returns and asset prices are interrelated
in the C-CAPM.

In the following, we discuss the consumption-CAPM (or C-CAPM), a more general
asset-pricing framework than the ‘standard’ mean-variance CAPM discussed in earlier
chapters. In this model, investors do not base their behaviour on the one-period mean
and standard deviation of returns as in the standard-CAPM, but the model is intertem-
poral, in that investors are assumed to maximise expected utility of current and future
consumption.

In the C-CAPM, financial assets allow the consumer to smooth her consumption
pattern over time, selling assets to finance consumption in ‘bad’ times and saving in
‘good’ times. Assets whose returns have a high negative conditional covariance with
consumption will be willingly held even though they have low expected returns. This
is because they can be ‘cashed in’ at a time when they are most needed, namely when
consumption is low, and, therefore, extra consumption yields high marginal utility.
This model associates an asset’s systematic risk with the state of the economy (i.e.
consumption).
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The SDF model is a generic model whereby asset returns Ri,t+1 or prices Pit can be
expressed as Et{Ri,t+1Mt+1} = 1 or Pit = Et{Mt+1Xi,t+1}, where Mt+1 is the stochas-
tic discount factor (or pricing kernel) and Xi,t+1 is the asset’s next period’s pay-off.
Specific SDF models arise because of different formulations of Mt+1 and in this chapter
we deal mainly with the C-CAPM. A key element of SDF models is that Mt+1 is the
same for all assets.

The C-CAPM is a SDF model in which, under power utility, the discount rate
is determined by consumption growth. Indeed, consumption, the risk-free rate, the
expected equilibrium return on risky assets and asset prices are all simultaneously
determined in the SDF model. In the SDF model, Mt+1 may be time-varying, giving
rise to a time-varying risk premium.

13.1 Consumption-CAPM
In the one-period standard-CAPM, the investor’s objective function is assumed to be
fully determined by the (one-period) standard deviation and expected return on the
portfolio. All investors choose risky-asset shares to maximise the Sharpe ratio. Equi-
librium returns then arise as a consequence that all agents have the same expectations
and all assets must be willingly held.

An alternative view of the determination of equilibrium returns is provided by the
C-CAPM. Here, the investor maximises expected utility that depends only on current
and future consumption (see Lucas 1978, Mankiw and Shapiro 1986, Cochrane 2001).
Financial assets play a role in this model in that they help to smooth consumption over
time. Securities are held to transfer purchasing power from one period to another. If an
agent had no assets and was not allowed to accumulate assets, then her consumption
would be determined by her current income. If she holds assets, she can sell some
of these to finance consumption when her current income is low. An individual asset
is therefore more ‘desirable’ if its return is expected to be high when consumption
is expected to be low. Thus, the systematic risk of the asset is determined by the
covariance of the asset’s return with respect to consumption (rather than its covariance
with respect to the return on the market portfolio as in the ‘standard’ CAPM).

As we shall see, the C-CAPM can be presented in a large number of equivalent
ways – some more intuitive than others. In short, it is subject to more costume changes
than a successful 1930s Hollywood musical, choreographed by Busby Berkeey. It is
a colourful, well-established model that appears regularly throughout the asset-pricing
and portfolio literature. The model has seen some intriguing developments (from Gold
Diggers of 1933 to Cabaret to Phantom of the Opera, to continue the tenuous metaphor)
in order that it more closely explains the empirical facts. At the end of the next few
chapters, you will be in a position to judge whether it is a mere entertaining theoretical
diversion or whether it also explains the ‘real world’ sufficiently well to make it useful
for analysis of asset returns and risk premia.

Notation

The dollar pay-off next period to holding an asset is Xt+1 ≡ Pt+1 + Dt+1, where Pt+1

is the (end-of-period) price and Dt+1 are dividends paid between t and t + 1. The gross
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return on an asset is defined as R∗
t+1 = Xt+1/Pt ≡ Rt+1 + 1. Hence, a gross return of

R∗ = 1.10 represents a ‘return’ (as normally expressed) of R = 0.10 (10%).

First-Order Condition

First, we present an intuitive argument to derive the FOC for an investor who is
concerned about maximising her lifetime utility from (real) consumption. (Utility is
time-separable – see Chapter 1.) Because investors care about real consumption, asset
returns are also in real terms. The first-order condition (FOC) for maximising expected
utility has the agent equating the utility loss from a reduction in current consumption,
with the additional expected gain in (discounted) consumption next period. Lower
consumption expenditure at time t allows investment in an asset that has an expected
positive return and therefore yields extra resources for future consumption. More for-
mally, a $1 reduction in (real) consumption today reduces utility by U ′(Ct ) but results
in an expected payout of EtR

∗
it+1 next period. When spent on next period’s con-

sumption, the discounted extra utility per (real) dollar is θU ′(Ct+1). The discount
rate θ = 1/(1 + tp), where tp is the subjective time preference rate and in annual
data θ ≈ 0.97. Hence, the present value of total extra utility expected next period is
Et{R∗

it+1θU ′(Ct+1)}. In equilibrium, we have

U ′(Ct ) = Et{R∗
it+1θU ′(Ct+1)} (1a)

or
Et{R∗

it+1Mt+1} = 1 (1b)

where
Mt+1 = θU ′(Ct+1)/U ′(Ct ) (1c)

Mt+1 is the marginal rate of substitution of current for future (discounted) consump-
tion and depends on agents’ preferences (‘tastes’) between consumption today and
consumption tomorrow. Equation (1b) holds for any two assets i and j , hence, we can
immediately derive the excess return version of the FOC

Et{(R∗
it+1 − R∗

jt+1)Mt+1} = 0 (1d)

where for a risk-free asset R∗
jt+1 = R∗

ft . Note that (1d) is unchanged if we measure
returns as real or nominal, since real returns equal nominal returns less the expected
inflation rate and the latter ‘cancels’ in (1d).

Two-period model

A slightly more formal derivation based on ‘peturbation’ ideas is as follows (Cochrane
2001). Consider the two-period case for simplicity, with a time-separable utility

max U = U(Ct ) + Et [θU(Ct+1)] (2)

(Somewhat cavalierly, we have used U on the left-hand side to represent ‘total util-
ity’ – we could have introduced another symbol here to avoid any confusion with the
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time t and t + 1 utility functions U(Ct ) and U(Ct+1) – but we think no confusion will
arise from this.) The constraints are

Ct = C̃t − PtN (3a)

Ct+1 = C̃t+1 + Xt+1N (3b)

where Ct = real non-durable consumption plus service consumption from durables
C̃t = consumption levels before purchase of the asset
Pt = price of (any) asset
N = number of units of asset purchased

Xt+1 ≡ Pt+1 + Dt+1 = pay-off at t + 1
θ = subjective discount factor (0 < θ < 1)

Time separability implies that marginal utility in any period does not depend
on consumption in other periods. For example, U = (Ct · Ct+1)

δ would not be time
separable-since ∂U/∂Ct = δCδ−1

t Cδ
t+1, marginal utility at t depends on Ct and Ct+1.

Additive separability (over time) implies U = f (Ct ) + θf (Ct+1), and this ensures that
∂U/∂Ct depends only on Ct and not on Ct+1.

Assume your consumption is optimal and there are no financial assets. We now
‘perturb’ you so you may now choose some of these assets. This enables us to establish
the first-order conditions for equilibrium returns for any asset and any individual. Any
asset purchase of N units reduces current consumption by PtN . However, if these N

units of the asset each pay-off $Xt+1 at t + 1, then these additional funds can be used
to increase consumption in t + 1 from its original level of C̃t to C̃t+1 + Xt+1N .

Using the constraints (3a) and (3b) and maximising (2) with respect to N

PtU
′(Ct ) = Et [θU ′(Ct+1)Xt+1] (4)

which can be rearranged to give the key pricing relationship for any asset:

Pt = Et(Mt+1Xt+1) (5)

where for the C-CAPM, the stochastic discount factor is

Mt+1 = θU ′(Ct+1)/U ′(Ct ) (6)

Mt+1 is also referred to as the pricing kernel and in the C-CAPM it is the marginal
rate of substitution (MRS) between current and future consumption. The latter is easily
seen by taking the total differential of (2) and setting it to zero:

dU = U ′(Ct )dCt + θU ′(Ct+1)dCt+1 = 0 (7)

If lifetime utility U is held constant, this implies

(
dCt

dCt+1

)
= −θU ′(Ct+1)

U ′(Ct )
(8)
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The gross return R∗ and (net) return R are

R∗
t+1 ≡ 1 + Rt+1 ≡ Xt+1/Pt (9)

Hence, from (5), we deduce that returns are determined as

1 = Et [Mt+1R
∗
t+1] (10)

which is the result obtained earlier. Note that (5) and (10) apply to any individual, and
do not require any special assumptions about utility (apart from addititive separability
and concavity) or any distributional assumptions about returns. Only when we come
to implement the model do we then use some of these additional assumptions.

Risk-Free Rate

What determines changes in the ‘risk-free’ rate? If a risk-free security is traded, then
we can take ‘R’ outside of the expectation in (10) so that

R∗
ft = 1/Et(Mt+1) (11)

If a risk-free security is not traded, then Rf in (11) is the ‘shadow’ risk-free rate (or
‘zero-beta’ rate). Equation (11) is not particularly intuitive – we need to ‘replace’ the
unobservable SDF in terms of some observable(s). One way to do this is to choose
an explicit form for the utility function, and we also assume consumption growth is
lognormally distributed.

Power utility and lognormal consumption growth

With power utility, we have

U(Ct) = 1

(1 − γ )
C

1−γ
t (12)

and note that as γ → 1 we have ‘log utility’, U(Ct) = ln(Ct ). From (6) and (12),

Mt+1 = θ(Ct+1/Ct )
−γ (13)

A standard statistical result is that if Z is lognormal, then ln Z ∼ N(µln Z, σ 2
ln Z) and

E[kZ] = exp[kµln Z + (1/2)k2σ 2
ln Z)] (14)

where k is a constant. Using (11), (13) and (14), the risk-free rate is given by (see
Appendix)

R∗
ft =

[
θ

{
exp

[
−γEt�ct+1 + γ 2

2
σ 2

t (�ct+1)

]}]−1

(15)
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where �ct+1 ≡ ln(Ct+1/Ct ). Taking logarithms

ln R∗
ft = − ln θ + γEt�ct+1 − γ 2

2
σ 2

t (�ct+1) (16)

Note that ln R∗
ft = ln(1 + Rf) ≈ Rf. (In continuous time where �c ≡ dC/C, the last

term in (16), disappears.) From (16), we can deduce the following relationship between
consumption growth and the risk-free rate:

(a) Real interest rates are high when expected consumption growth is high. High real
interest rates are required to lower consumption today in order to save today and
then increase consumption tomorrow.

(b) Real interest rates are high when θ is low (for given Et�ct+1). When people
are impatient and discount future consumption heavily, high real interest rates
are required to encourage saving (and hence additional consumption tomorrow,
Et�ct+1).

(c) Suppose consumption growth is expected to be highly volatile (for any given
expected level of consumption growth). Then you lose more utility as consump-
tion falls than you gain utility, from an equal rise in consumption. (This is the
curvature of the utility function and diminishing marginal utility.) Hence, with
higher volatility of consumption, people want to save more and real interest rates
are driven lower. This is a form of precautionary saving.

(d) If γ = 0 (i.e. linear utility function and hence no risk aversion), then the real rate
is constant and equal to the subjective discount factor, θ .

(e) As the curvature γ of the (power) utility function increases, the real rate is more
responsive to consumption growth. For example, higher expected consumption
growth now requires a higher real interest rate, because a high γ implies less
willingness to deviate from a smooth consumption path over time.

Note that in equation (16), consumption is endogenous, so we could also interpret
our ‘correlations’ in the opposite direction. For example, high interest rates lead to high
saving at t and hence higher consumption at t + 1 and hence high consumption growth.

Returns on Risky Assets

We now turn to the return and price of risky assets in the stochastic discount factor
model. What determines the movement in asset returns over time and what determines
the average return on risky asset i, relative to that on risky asset j? The key determinant
of both these effects is the size of the covariance between the stochastic discount factor
Mt+1 and the asset return. The C-CAPM in terms of returns for any risky asset i is
(where we drop some time subscripts for notational ease):

1 = Et(MR∗
i ) (17)



S E C T I O N 1 3 . 2 / C - C A P M A N D T H E ‘ S TA N D A R D ’ C A P M 309

For any two random variables x and y,

E(xy) = cov(x, y) + (Ex )(Ey) (18)

hence using (17) and (18):

1 = Et(M)Et(R
∗
i ) + covt (M, R∗

i ) (19)

Et(R
∗
i ) = 1

Et(M)
[1 − covt (R

∗
i , M)] (20)

Using R∗
f = 1/Et(M) = U ′(Ct )/θEtU

′(Ct+1) in (20) and noting that covt (M, R∗
i ) =

θ covt [U ′(Ct+1), R
∗
i ]/U ′(Ct ), we obtain a key equation that determines the excess

return on any risky asset i:

(EtR
∗
i − R∗

f )t+1 = −R∗
f covt (M, R∗

i ) = −covt [U ′(Ct+1), R
∗
i,t+1]

Et [U ′(Ct+1)]
(21)

Note that ‘Ct+1’ now appears in the numerator and denominator. The relative (expected
excess) return of two assets i and j differ only because the covariance of Ri or Rj

with (the marginal utility of) consumption is different. An asset whose return has a
negative covariance with U ′(Ct+1) and hence a positive covariance with Ct+1 will
have to offer a high expected return, in order that investors are willing to hold the
asset. This is because the asset pays off when consumption is high, and consumers
are already ‘feeling good’ and so the higher return gives them little additional utility.
Conversely, asset returns that co-vary negatively with consumption (i.e. positively with
U ′(Ct+1)) provide insurance and will be willingly held, even if they promise a low
expected return.

If we assume joint lognormality of consumption growth and asset returns, it can be
shown (see Appendix) that excess returns are given by

Et(r
∗
i,t+1 − r∗

ft ) + (1/2)σ 2
t (r∗

i,t+1) = − covt (mt+1,r
∗
i,t+1)

where r∗
i,t+1 = ln R∗

i,t+1, and so on. The second term is the Jensen effect and the covari-
ance term is the risk premium.

13.2 C-CAPM and the ‘Standard’ CAPM

The FOCs (5) or (10) of the SDF model hold for any individual with any utility
function that is time-separable and depends only on consumption. If we now assume
a representative agent (i.e. agents all have the same utility function), then the FOC
can be interpreted as an equation that determines equilibrium expected returns, and
the FOCs represent the consumption-CAPM (C-CAPM). Using R∗ = 1 + R in (21),
we have

EtRi,t+1 − Rf,t = − covt{U ′(Ct+1), Ri,t+1}
Et{U ′(Ct+1)} (22)
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What is the relationship between the standard-CAPM and the C-CAPM? The standard-
CAPM can be derived from the C-CAPM, if the return on the market portfolio Rm,t+1

of all risky assets is perfectly correlated with the marginal utility of consumption at
t + 1, U ′(Ct+1) (which implies perfect conditional correlation with Mt+1). The market
portfolio is also sometimes referred to as the wealth portfolio, since with no labour
income, it comprises all your wealth. A perfect linear relationship between U ′

t+1 and
Rm which, simplifying the notation a little, is:

U ′
t+1 = a + bRm (23)

where we have used the subscript m to denote the optimal portfolio from the mean-
variance model. It follows from (23) that

covt{U ′
t+1, Ri} = b cov(Ri, Rm) (24a)

covt{U ′
t+1, Rm} = b var(Rm) (24b)

vart (U
′
t+1) = b2 var(Rm) (24c)

therefore

ρ(U ′
t+1, Rm) = covt (U

′
t+1, Rm)√

var(U ′
t+1)

√
var(Rm)

= 1 (24d)

Applying (22) to the market portfolio (i.e. replacing Ri by Rm) and rearranging,

1

Et{U ′(Ct+1)} = −(EtRm − Rf)

covt{U ′
t+1, Rm} (25)

Substituting for Et [U ′(Ct+1)] from (25) in (22), then using (24a) and (24b), we obtain
the standard-CAPM

Et(Ri − Rf) = βtEt(Rm − Rf) (26a)

where

βt = covt (Ri, Rm)

vart (Rm)
(26b)

Hence, the standard-CAPM can be derived from the C-CAPM and we have not had to
assume any particular distribution of asset returns. However, we have had to make the
possibly unrealistic assumption that the marginal utility of consumption is perfectly
negatively (conditionally) correlated with the return on the market portfolio – so we
have gained a somewhat Pyrrhic victory here. All we have demonstrated is the link
between the C-CAPM and the standard-CAPM and shown that they are unlikely in
general to be consistent with each other. For example, if utility is quadratic, then
marginal utility is linear in consumption, and our assumption then implies a perfect
conditional correlation between Ct+1 and Rm,t+1, but this is unlikely to hold in the
data! Finally, note that all of the above results hold if we had assumed that the SDF
Mt+1 = at + btRm,t+1. This is the case since the denominator in Mt+1 is U ′(Ct ), and
this is non-stochastic (conditional on expectations formed at time t), and the time-
varying {at , bt} are also known at time t .
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It can be shown that the linear relationship Mt+1 = at + btRm,t+1 can be derived
under the following assumptions (Cochrane 2001):

1. two-period quadratic utility in Ct and Ct+1

2. one-period exponential utility and multivariate normal returns

3. log utility and normally distributed returns

4. infinite-horizon time-separable quadratic utility and iid returns

Note that none of the above allow for any labour income in the maximisation problem,
and cases (1) and (2) result in a conditional-CAPM since at and bt depend on variables
at time t (e.g. Ct , Rm,t ).

Two-Period Problem

Take the simplest case of two-period quadratic utility

max{− 1
2 (Ct − C)2 − 1

2θEt(Ct+1 − C)2}

Subject to

Ct+1 = Wt+1 = Rm,t+1(Wt − Ct)

Rm,t+1 =
n∑

i=1

αiRi,t+1

n∑
i=1

αi = 1

where Rm,t+1 represents the gross return (for compatibility with Chapter 15), C = a
constant and the budget constraint indicates that the ‘market portfolio’ is the return on
wealth Wt (which is exogenously given). The investor chooses Ct , Ct+1 and αi , the
portfolio weights in n assets. The SDF is

Mt+1 = θU ′(Ct+1)

U ′(Ct )
= θ(Ct+1 − C)

(Ct − C)

Substituting from the budget constraint for Ct+1 gives

Mt+1 = −θC

(Ct − C)
+ θ(Wt − Ct)

(Ct − C)
Rm,t+1

So, Mt+1 is a linear function of Rm,t+1 (conditional on Wt and Ct).
Take the second case above. We have already derived asset demand functions assum-

ing one-period negative exponential utility and multivariate normality in Chapter 1 and
here Ct+1 = Wt+1 so U(Wt+1) = −e−bW t+1 = e−bC t+1 . The budget constraint is Wt+1 =
Ct+1 = Af Rf + A′Rt+1, where Rt+1 is the vector of risky-asset returns and Wt =
Af + A′e. The optimal dollar amount held in the risky assets A = (A1, A2, . . . , An)

is given by
A = b−1
−1[E(R) − Rfe]
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where 
 = (conditional) variance–covariance matrix of the n risky asset returns, R, b

is the CARA coefficient and e is a vector of ones. Notice that A are the dollar amounts
held in the risky assets, which are independent of wealth. (The dollar demand for the
risk-free asset is Af = Wt − ∑n

i=1 Ai .) If all investors are ‘identical’, then

ER − Rfe = b
A = b cov(R, Rm)

where �A gives the covariance of each return with Rm = A′R + Af Rf and hence the
covariance with the investors overall portfolio return. Therefore, with negative expo-
nential utility in end-of-period wealth Wt+1 (or Ct+1), the C-CAPM gives the standard-
CAPM because consumption is again replaced by the market (wealth) portfolio.

Multi-Period Problem

Case ‘three’ above assumes log utility, U(C) = ln C. In Chapter 15, we show that in
an intertemporal consumption-portfolio model, log utility gives optimal consumption
proportional to wealth (assuming no stochastic labour income). Therefore, the return
on the wealth portfolio is proportional to consumption growth and the SDF, M is linear
in the return on the wealth portfolio. Log utility is another special case, where income
and substitution effects of a change in expected returns just offset each other, so that
C/W is independent of returns.

Finally, let us consider the fourth case above. As we shall see in the next few
chapters, the concept of a value function V (·) allows you to reformulate a multi-period
optimisation problem as a two-period problem since

V (Wt) = max(Ct ,αt )


U(Ct) + θEt


maxαt+1,αt+2...

Ct+1,Ct+2...
Et+1

∞∑
j=0

θjU(Ct+j+1)







can be written
V (Wt) = max(Ct ,αt ){U(Ct) + θEtV (Wt+1)}

where V (·) is the value function and ‘represents’ the utility to be derived from the
optimal consumption (Ct+1, Ct+2, . . .) in all future periods. To emphasise this point,
note that the value function V (Wt+1) = V [Rm,t+1(Wt − C̃t )], where C̃t is the optimum
level of consumption (from solving the FOC). So, the value function V (Wt) is the
achieved level of expected utility, if you invest your wealth optimally, and is a func-
tion of wealth because the higher the wealth, the more happiness you can potentially
achieve. V (·) may also be a function of other variables, and we discuss this possibility
below and in later chapters.

These equations ‘tell the same story’ mathematically. The first says you maximise
discounted lifetime utility and have to consider (for example) the marginal utility gain
from an extra pizza today against the loss in utility from not being able to consume an
extra bottle of wine in, say, 10 years time. But the interpretation of the second equation
is more appealing. You evaluate the increase in marginal utility from, say, a holiday
today in terms of its expected impact on the marginal utility you expect to lose from
the fall in wealth next period V ′(Wt+1) (rather than the effect on, say, U ′(Ct+j ), j =
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1, 2, 3, . . . which is the marginal utility loss from lower consumption in all future
periods – for example, not going to the cinema every week for the next four years or
more). It can be shown that if returns are iid, then maximising intertemporal quadratic
utility in consumption subject to the budget constraint Wt+1 = Rm,t+1(Wt − Ct) gives
a FOC similar to that for the two-period case

PtU
′(Ct ) = θEt [V

′(Wt+1)Xt+1] or Et(Mt+1Rm,t+1) = 1

where

Mt+1 = θ
V ′(Wt+1)

U ′(Ct )
= θ

V ′(Wt+1)

V ′(Wt)

V (.) is the value function and U ′(Ct ) = V ′(Wt) is the envelope condition. Note that
U ′(Ct ) = V ′(Wt) because at the optimum, the extra marginal utility from consump-
tion today must equal the marginal utility from any change in wealth. We discuss
the value function extensively in Chapter 15, but for now note that if the intertempo-
ral utility function in consumption is quadratic (i.e. depends on (Ct+j − C)2 terms),
then the value function is quadratic in wealth, given the budget constraint (with no
labour income) and assuming iid returns. However, in general, it is not true that any
(acceptable) functional form for utility (e.g. power) gives rise to the value function
V (Wt) having the same functional form. Hence, if this ‘mysterious’ value function is
quadratic in wealth,

V (Wt+1) = −(φ/2)(Wt+1 − W)2

Mt+1 = −θφ(Wt+1 − W)

U ′(Ct )
= −θφ

Rm,t+1(Wt − Ct) − W

U ′(Ct )

So Mt+1 is linear in Rm,t+1 (conditional on Ct and Wt). Notice that in order to
obtain Mt+1 linearly related to Rm,t+1, the value function must only contain the
wealth variable. If the marginal value of wealth depends on other variables (e.g.
Z = cumulative recent losses on risky assets), then we have V ′(Wt+1, Zt+1) and
Mt+1 = f (Rm,t+1, Zt+1), and the one-factor ‘standard-CAPM’ would no longer hold.
We investigate value functions that contain wealth and other variables in Chapters 14
and 15.

Note that in the above multi-period problem we assumed quadratic utility, which is
restrictive but, nevertheless, may be a reasonable approximation for small changes (i.e.
second-order Taylor series expansion). Why do we need the iid assumption to be able
to write V (Wt+1) as a function of wealth only? At time t = 0, the investor chooses
(C0, C1, C2, . . . , Ct , . . .) and asset shares (α0,α1, . . . ,αt , . . .) in order to maximise

V (Wt) ≡ Et

∞∑
j=0

θjU(Ct+j )

subject to

Wt+1 = Rm,t+1(Wt − Ct) Rm,t+1 = α′
tRt+1 α′e = 1
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where e = vector of ones, Rt = (R1, R2, . . . RN,Rf)
′. Note that there is no labour

income in the budget constraint. If risky-asset returns are not iid (and the risk-
free rate is not constant), then the optimal portfolio shares in risky assets α0t =
(α01, α02, . . . , α0n) may depend on some variable that helps forecast future returns,
Rt+1, Rt+2, . . .. For example, if a low dividend–price ratio (D/P ) today has predic-
tive power for future returns, then the value function depends not only on wealth but
also on the dividend–price ratio V (Wt, (D/P )t ). This is why we need the iid assump-
tion as well as quadratic utility in order that Mt+1 is linearly related to Rm,t+1. Then,
the SDF intertemporal consumption-portfolio model collapses to the standard-CAPM.
In Chapters 14 to 16, we analyse portfolio problems in which there are ‘state variables’
other than wealth, in the value function.

It is now possible to see the limitations of the standard–CAPM. The CAPM assumes
that investors are only concerned about their investment portfolio in isolation and not
how the returns on that portfolio might be linked with the wider economy, such as
income levels. For example, other things equal, one might expect that investors would
hold an asset with a low expected return if it paid off in recession periods (i.e. the
asset return and output were negatively correlated). The C-CAPM picks up such a
negative correlation via consumption growth. However, there may be variables other
than consumption that influence the individual’s utility, and this gives rise to factor
models (see below). That is enough of a ‘trailer’ for what is to come in later chapters,
so let us now return to the further implications of the SDF model for prices and then
move on to factor models.

13.3 Prices and Covariance

An equivalent analysis to the above can be conducted in terms of prices rather than
returns. We then find that prices depend on the expected pay-off plus a ‘risk premium’,
which is determined by the covariance between Mt+1 and the random pay-off Xt+1.

Using (18) in Pt = Et(MX) and substituting R∗
f = 1/E(M)

Pt = Et(Xt+1)

R∗
f

+ covt (Mt+1, Xt+1) (27a)

which after incorporating the definition of Mt+1 gives

Pt = Et(Xt+1)

R∗
f

+ covt [θU ′(Ct+1), Xt+1]

U ′(Ct )
(27b)

If there is no risk aversion (i.e. utility is linear in consumption) or if consumption is
constant, then the usual ‘risk-neutral’ formula applies:

Pt = Et(Xt+1)

R∗
f

(28)

So under risk-neutrality, the price of a risky asset is the expected present value of its
pay-off Xt+1 discounted using the risk-free rate. Under risk aversion, (27) applies, and
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the second term in (27a) or (27b) is a risk adjustment. For example, this is positive
for a positive covariance. If the pay-off Xt+1 is high when marginal utility is high
(i.e. consumption is low), then the asset will have a high current price. The latter
implies, for a given Et(Xt+1), a low expected return (between t and t + 1). So, (27b)
is consistent with (28). Basically, you are willing to pay more for an asset than the
expected pay-off discounted at the risk-free rate, if the asset has a high pay-off Xt+1

when marginal utility is high. This is the insurance principle again.
The relationship between returns and prices used above sometimes appears para-

doxical. But think about it. Since R∗
t+1 ≡ Xt+1/Pt , then a low price today, with a fixed

cash flow Xt+1 payable at t + 1, must imply a high return R∗
t+1.

13.4 Rational Valuation Formula and SDF
We can derive the Rational Valuation Formula for any asset, using the SDF equilibrium
condition

Et(R
∗
t+1Mt+1) = 1 (29)

and the definition
R∗

t+1 ≡ (Vt+1 + Dt+1)/Vt (30)

We then obtain
Vt = Et(Mt+1[Vt+1 + Dt+1]) (31)

Repeated forward substitution then yields (assuming the transversality condition holds)

Vt = Et

∞∑
j=1

Mt,t+jDt+j where Mt,t+j = Mt+1 Mt+2 · · ·Mt+j (32)

Mt,t+j is a possibly time-varying stochastic discount factor. Again, using (18), we can
replace the E(xy) term in (32) to give

Pt =
∞∑

j=1

EtDt+1

R∗
f,t+j

+
∞∑

j=1

covt (Dt+j ,Mt,t+j ) (33)

where 1/R∗
f,t+j ≡ Et(Mt,t+j ) is the j -period risk-free interest rate. Again, those assets

whose dividends have a negative covariance with marginal utility (and positive covari-
ance with consumption) have lower prices – and hence command a higher return (for
a given expected dividend stream).

13.5 Factor Models
Factor models assume that the SDF depends linearly on a set of n factors fi,t .

Mt+1 =
n∑

i=1

bi,tfi,t+1
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The linearity assumption could be explicitly derived (e.g. from two-period quadratic
utility in consumption, where consumption is the factor) or can be viewed as a Taylor
series approximation of a non-linear relationship. Also, if marginal utility contains
other state variables Uc(Ct , Zt ), then the Zt may also be related to the factors.

Conditional and Unconditional Models

We have seen above that, in general, the coefficients {at , bt} may be time-varying, and
for the standard-CAPM (i.e. one-factor model with the factor ft+1 = Rm,t+1)

Mt+1 = at + btR
∗
m,t+1

where R∗
m,t+1 is the gross return on the ‘market’ or ‘wealth’ portfolio (of all assets).

Using Et [R∗
i,t+1Mt+1] = 1, the conditional model is

1 = Et [(at + btR
∗
m,t+1)R

∗
i,t+1]

Taking unconditional expectations

1 = E(atR
∗
i,t+1) + E[bt(R

∗
m,t+1R

∗
i,t+1)]

Using E(xy) = (Ex)(Ey) + cov(x, y), we have

1 = E(at )E(R∗
i,t+1) + cov(at , R

∗
i,t+1) + E(bt )E(R∗

m,t+1R
∗
i,t+1) + cov(bt , R

∗
m,t+1R

∗
i,t+1)

Hence, the conditional-CAPM does not imply an unconditional-CAPM, that is,

1 	= E[{E(at) + E(bt )R
∗
m,t+1}R∗

i,t+1]

unless the covariance terms are zero, which, in general, they are not (e.g. for quadratic
utility at and bt depend on Ct , and the latter may not be uncorrelated with R∗

i,t+1 or
R∗

m,t+1). Of course, if a and b are constant over time, then the conditional model does
imply that the unconditional model holds, since

1 = Et [(a + bR∗
m,t+1)R

∗
i,t+1]

implies
1 = E[(a + bR∗

m,t+1)R
∗
i,t+1]

One problem in implementing the factor model is that we would like the coefficients
at and bt to be constant because then the Euler equation can be estimated using a
constant coefficient GMM approach

E[(a + bft+1)R
∗
i,t+1] = 1
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One ‘trick’ to mitigate this problem is to assume that {at , bt} depend on a set of
variables zt observable at time t , (e.g. dividend–price ratio) so that

Mt+1 = a(zt ) + b(zt )ft+1

If a and b are linear in zt , then

Mt+1 = a0 + a1zt + b0ft+1 + b1(ztft+1)

and instead of a one-factor model with time-varying coefficients, we now have a three-
factor model, but with fixed (constant) coefficients, and we can apply standard GMM
regression techniques. In practice, we might include several z variables, and the model
would then have cross-product terms between all the z’s and all the factors fjt .

The so-called latent factor literature assumes that unobserved processes can be spec-
ified for the factors, while a more common approach is to choose a small number of
explicit variables that are thought to influence future consumption (e.g. output growth,
inflation). Another strand in this literature assumes that fi are ‘factor mimicking portfo-
lios’ that pick up systematic sources of risk (e.g. the Fama–French three-factor model
can be interpreted in this way). One rationale for using factor mimicking portfolios
is the fact that consumption (the ‘correct’ variable in the C-CAPM) is measured with
error, and the chosen factors might better measure variables that influence current and
future consumption. However, the scope for ‘fishing’ expeditions and data mining are
considerable in this area. Also, if investors use conditioning information that is omit-
ted by the econometrician, then it is obvious that testing the underlying C-CAPM is
fraught with difficulties of interpretation and one can always claim that rejection of
the conditional C-CAPM is due to ‘unobservable’ factors (Hansen and Richard 1987).

If we view these factor models as special cases of the C-CAPM, then excess returns
on risky assets are determined by all the covariances of the factors with the asset return.
They are also common factors – any factor that determines the return on asset i should
also influence the expected return of asset j . Of course, the standard-CAPM can be
viewed as a factor model, where the single factor is the return on the market portfolio.

13.6 Summary

• In the SDF model, the key equations for the risk-free return, the return on any risky
asset i and the price of any risky asset, which apply for any individual, are

R∗
ft = 1/Et(Mt+1)

1 = Et(R
∗
i,t+1Mt+1)

Pit = Et(Xi,t+1Mt+1)

where Mt+1 is the stochastic discount factor. For the C-CAPM, Mt+1 =
θU ′(Ct+1)/U(Ct ). Adding the representative agent assumption implies the above
equations determine equilibrium returns.
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• In the C-CAPM, the risk premium depends on the (conditional) covariance between
the asset return i and the SDF. The risk premium may be time-varying.

• In the C-CAPM, with power utility and under joint lognormality of consumption
growth and asset returns, the risk premium for asset i depends on the conditional
covariance between observable consumption growth and the return on asset i. Also
the (real) rate of interest is negatively related to the conditional variance of con-
sumption (the precautionary savings effect) and positively related to the expected
growth in consumption.

• The C-CAPM implies that asset prices depend on expected dividends and future
stochastic discount factors, Mt,t+j .

• The standard-CAPM can be viewed as a special case of the C-CAPM, where there
is perfect correlation between the SDF, Mt+1 and the market return Rm. However,
there is no reason why this assumption should hold in general, although it could
be seen as a first-order Taylor series approximation of a non-linear relationship or
explicitly derived under restrictive assumptions (e.g. two-period quadratic utility).

• Factor models assume that the MRS, Mt+1 depends linearly on a set of factors (which
may be more accurately measured than consumption). This allows expected returns
to depend on all the conditional covariances between the factors and the asset return.

• As Cochrane (2001) makes clear, the C-CAPM as represented in the above three
equations does not assume normally distributed returns, iid returns, two-period
investors, quadratic utility or the absence of labour income. Of course, to make the
model more tractable or interesting, we may invoke some of these latter assumptions.

Appendix: Joint Lognormality and Power Utility

Joint lognormality is a frequently used simplifying assumption in SDF models. Here,
we show how it can be used to obtain more tractable and intuitive results for risky-asset
returns and the risk-free rate.

A. Joint Lognormality

To show:
When the stochastic discount factor Mt+1 and the gross return on any asset R∗

t+1 are
jointly lognormal, then

Et(Mt+1R
∗
t+1) = 1 (A1)

implies the equilibrium no-arbitrage condition

Et(ln R∗
t+1 − ln R∗

ft ) + 1
2σ 2

t (ln R∗
t+1) = − covt (ln Mt+1, ln R∗

t+1) (A2a)

or
Et(r

∗
t+1 − r∗

ft ) + (1/2)σ 2
t (r∗

t+1) = − covt (mt+1, r
∗
t+1) (A2b)
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where lower-case letters are logarithms and σ 2(r∗
t+1) is the Jensen effect and the covari-

ance term is the risk premium. Thus, the expected excess return on any risky asset
depends (negatively) on the covariance between the stochastic discount factor and the
asset’s return.

Proof :
Let ln X ∼ N(µ, σ 2), where µ = E(ln X) and σ 2 is the variance of ‘ln X’. Hence,

X is lognormal and a standard result is

E(X) = e(µ+σ 2/2) ≡ eE(ln X)+σ 2(ln X)/2 (A3)

where σ 2(ln X) is the variance of ‘ln X’. From (A3), taking logarithms,

ln E(X) = E(ln X) + σ 2(ln X)/2 (A4)

Let X = (Mt+1R
∗
t+1), then from (A4) and (A1), taking conditional expectations,

ln Et [Mt+1R
∗
t+1] = Et [ln(Mt+1R

∗
t+1)] + σ 2

t (ln[Mt+1R
∗
t+1])/2 = 0 (A5a)

hence

Et(mt+1) + Et(r
∗
t+1) + σ 2

t (mt+1)/2 + σ 2
t (r∗

t+1)/2 + covt (mt+1, r
∗
t+1) = 0 (A5b)

When R∗ is the non-stochastic risk-free rate,

Et(r
∗
t+1) = r∗

ft

σ 2
t (r∗

ft ) = cov(mt+1, r
∗
ft ) = 0

Equation (A5b) gives an equation for the risk-free rate:

Et(mt+1) + r∗
ft + 1

2σ 2
t (mt+1) = 0 (A6)

or,
r∗

ft = −Et(mt+1) − (1/2)σ 2
t (mt+1)

Subtracting (A6) from (A5b) then gives the required equilibrium no-arbitrage condi-
tion (A2a) or (A2b) for any risky asset i under the lognormality assumption:

Et(r
∗
t+1 − r∗

ft ) + (1/2)σ 2
t (r∗

t+1) = − covt (mt+1, r
∗
t+1) (A2b)

Note that if mt+1 and r∗
t+1 are conditionally homoscedastic so that vart (x) = Et(x −

Etx)2 = var(x − Etx)2, we can drop the t subscripts on the variance and covariance
terms (but not on Et(r

∗
t+1 − r∗

ft )). Comparing (A2) with the no-arbitrage equation with-
out assuming lognormality (see equation (21)), that is,

EtR
∗
t+1 − R∗

ft = −R∗
ft covt (Mt+1,R

∗
t+1) (A7)
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the key qualitative difference is the additional term in (A2) of (1/2)σ 2(r∗
t+1), which

is the Jensen inequality term (JIT). It arises from taking expectations of a non-linear
function since E[f (x)] 	= f [E(x)] unless f (x) is linear.

B. Lognormality Plus Power Utility

We now incorporate the assumption of power utility and derive equations for the
expected return on the risk-free asset and for any risky asset. With power utility,
we have

Mt+1 = θ(Ct+1/Ct )
−γ (A8)

mt+1 = ln θ − γ�ct+1 (A9)

The condition variance is

σ 2
t (mt+1) = γ 2σ 2

t (�ct+1) (A10)

Substituting (A9) and (A10) in (A6), the equilibrium risk-free rate under lognormality
and power utility is

r∗
ft = − ln θ + γEt(�ct+1) − γ 2

2
σ 2

t (�ct+1) (A11)

which is equation (16) in the text. Turning now to the risky-asset return, from the
definition of conditional covariance and using (A9), we have

covt (mt+1, r
∗
t+1) ≡ Et [(mt+1 − Etmt+1)(r

∗
t+1 − Etr

∗
t+1)] = −γ covt (�ct+1, r

∗
t+1)

(A12)

The unobservable covariance in the left-hand side of (A12) is now represented by the
observable covariance between consumption growth and the asset return (scaled by
γ , the coefficient of relative risk aversion or inverse of the intertemporal elasticity of
substitution). We are nearly there. Taking (A2b)

Et(r
∗
t+1 − r∗

ft ) + (1/2)σ 2
t (r∗

t+1) = − covt (mt+1, r
∗
t+1) = γ covt (�ct+1, r

∗
t+1) (A2b)

and using the approximations r∗
t+1 ≡ ln R∗

t+1 ≈ Rt+1 and σ 2
t (r∗

t+1) ≈ σ 2
t (Rt+1) and

covt (�ct+1, r
∗
t+1) ≈ covt (�Ct+1/Ct , Rt+1), we have the approximation that under log-

normality and power utility

Et(Rt+1 − Rf,t ) + 1
2σ 2

t (Rt+1) = γ covt (�Ct+1/Ct , Rt+1) (A13)

The second term is the Jensen effect, and the risk premium depends on the conditional
covariance between consumption growth and the return on the risky asset. The higher
the covariance between consumption growth and the return on the risky asset, the
higher the expected return on the risky asset will be, if agents are willingly to hold this
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asset. But if we consider the log of the expected ratio of gross returns, we eliminate
the need for the Jensen inequality term since

ln{Et(R
∗
t+1/R

∗
f,t )} = γ covt (�ct+1, Rt+1) (A14)

Covariances are ‘king’ in stochastic discount factor models, since they determine con-
ditional expected returns on risky assets or portfolios of risky assets.





14
C-CAPM: EV IDENCE
AND EXTENS IONS

Aims

• Determine whether the C-CAPM fits the stylised facts of near non-predictability of
stock returns over short horizons, yet stronger predictability over longer horizons.

• Examine whether the C-CAPM fits the stylised facts of a high average equity risk
premium for aggregate stock returns and a low mean value and volatility of the risk-
free rate. These two stylised facts constitute the so-called equity premium puzzle and
the risk-free rate puzzle.

• To see if estimates of the Euler equations/FOCs of the C-CAPM give ‘reasonable’
parameter estimates for the degree of risk aversion.

• Analyse whether more general (i.e. non-separable) utility functions that contain addi-
tional state variables such as wealth, or past consumption, improve the empirical
performance of the stochastic discount factor (SDF) model.

14.1 Should Returns be Predictable in the C-CAPM?

Is the stochastic discount factor (SDF) model consistent with the stylised fact that
returns over short horizons (e.g. intraday, over one day, or one week) are virtually
unpredictable and hence price follows a martingale process? Remember that Pt is a
martingale, if

Pt = EtPt+1 or Pt+1 = Pt + εt+1 (1)
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where Etεt+1 = 0 and εt+1 is independent of Pt . For a martingale, the return (with
zero dividends) is EtPt+1/Pt = 1, a constant, and if in addition εt is iid, then prices
follow a random walk. The first-order condition for the SDF model is

PtU
′(Ct ) = Et [θU ′(Ct+1)(Pt+1 + Dt+1)] (2)

Hence, the SDF model implies P is a martingale if

(a) investors are risk-neutral (i.e. U(C) is linear so U ′(C) = constant) and

(b) no dividends are paid between t and t + 1 and

(c) θ is close to 1

The C-CAPM is consistent with the stylised facts of near unpredictability of intra-
day and daily stock, bond and spot-FX price changes, since the above assumptions
(a)–(c) are not unreasonable over short horizons. Of course, if daily price changes
are definitely unpredictable, this would invalidate ‘technical analysis’ (e.g. chartism,
candlesticks, neural networks) as a method of making money (corrected for risk and
transactions costs).

Longer Horizons

Long-horizon stock returns (e.g. over one- to five-year horizons) appear to exhibit
some predictability (although the relationships uncovered are not necessarily stable
over different time periods). Is the C-CAPM consistent with this stylised fact? In
terms of returns, the C-CAPM for any risky-asset return R gives

EtR
∗
t+1 − R∗

f,t = − covt (Mt+1, R
∗
t+1)

Et(Mt+1)
= −

[
σt (Mt+1)

Et(Mt+1)

]
σt (R

∗
t+1)ρt (Mt+1, R

∗
t+1) (3)

where R∗
t+1 ≡ (1 + Rt+1), and so on. If we now assume (for simplicity) power utility

and lognormal consumption growth, then

EtR
∗
t+1 − R∗

f,t ≈ [γtσt (�ct+1)]σt (R
∗
t+1)ρt (Mt+1, R

∗
t+1) (4)

Both of the above equations hold when R∗
t+1 is replaced by Rt+1. There is no

reason why any of the conditional moments on the right-hand side of (4) might not
vary over time. However, variables that forecast return volatility do not seem to also
forecast expected returns (e.g. Schwert 1989), and interpreting ρt is a little fraught.
Hence, key contenders for explaining changes in equilibrium excess returns over time
include either time-varying risk aversion γt or time-varying volatility of consumption.
As we shall see, time-varying risk aversion has been widely used to ‘explain’ observed
time-varying excess returns within the framework of the SDF approach.

However, note that all those ‘kitchen sink’ time-series regression equations that
claim ‘returns are predictable’ cannot be mapped one-to-one into changes in γt or
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σt (�ct ). The best one can say is that the variables used in these return predictability
equations (e.g. dividend–price ratio, price inflation, yield spreads, etc.) are ‘indicative’
of changes in γt or σt (�ct+1). But this is not very reassuring or scientific!

Hansen–Jagannathan Bounds and the Sharpe Ratio

The SDF model implies a lower bound for the discount factor, which can be compared
with the observed Sharpe ratio, to provide a test of the SDF model, with a specific
utility function. The ‘flexibility’ of this approach is that the bound can be calculated
for a wide variety of possible utility functions and for various values for the risk-
aversion parameter. For example, this enables us to see what alternative values of
the risk-aversion parameter are consistent with a given utility function. If for a given
utility function, no values of the risk-aversion parameter are ‘intuitively acceptable’,
we can discard this particular utility function from further consideration – anyway, that
is the purists’ version of this approach. In this section, we drop the time subscripts for
convenience (i.e. E ≡ Et , M ≡ Mt+1).

Using cov(R∗
i , M) ≡ ρiM σ(R∗

i )σ (M) and substituting in 1 = E(MR∗
i ),

1 = E(MR∗
i ) = E(M)E(R∗

i ) + ρiM σ(R∗
i )σ (M) (5)

Rearranging and using E(M) = 1/Rf,

ER∗
i − R∗

f

σ(R∗
i )

≡ E(R∗e
i )

σ (R∗e
i )

= −ρiM
σ(M)

E(M)
(6)

where R∗e
i is the excess return. The term on the left is the Sharpe ratio for an asset

or portfolio of risky assets. For any portfolio i, equation (6) gives the Hansen and
Jagannathan (1991) bound for the discount factor. Since ρiM has an absolute maximum
value of 1,

σ(M)

E(M)
≥ |E(R∗e

i )|
σ(R∗e

i )
(7)

Given that the right-hand side is measurable, then equation (7) provides a lower
bound for the behaviour of the SDF for any asset i (and is a simple version of the
‘Hansen–Jagannathan bound’ – see below). We can also see what (7) implies for those
‘special’ portfolios that lie on the ‘efficient frontier’ where the latter now applies to
the case where we have a riskless asset – this is the wedge-shaped region in Figure 1
(the upper portion of which is the equivalent of the CML). We can now connect our
SDF approach with the standard-CAPM, mean-variance model.

First, all asset returns lie within the wedge-shaped region. By combining risky assets
into a portfolio with minimum variance for any given level of expected return, we
obtain mean-variance efficient portfolios (when we have a riskless asset). All returns on
the wedge-shaped frontier are perfectly correlated with the SDF, M so that |ρiM | = 1.
Returns on the upper portion (i.e. equivalent of the CML) are perfectly negatively corre-
lated with M and hence positively correlated with consumption and from (6) command
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s (R∗)

ER∗

Rf
∗

Ri
∗

Slope = s (M)/EM

Mean-variance frontier

Asset returns

Mean-variance frontier (CML)

Idiosyncratic risk

Asset returns

Figure 1 Mean-variance frontier (with risk-free asset)

the highest expected return. Conversely, those assets (or portfolios) on the lower por-
tion of the wedge have ρiM = +1 and hence have lower expected returns because Ri

and consumption are perfectly negatively correlated, and these assets provide insurance
against changes in consumption.

Any two returns on the wedge-shaped mean-variance frontier (Rmv ,1, Rmv ,2) are
perfectly correlated with each other (because each is perfectly correlated with M) and
hence

Rmv,1 = Rf + δ(Rmv,2 − Rf)

M = a + bRmv,j and Rmv,j = c + dM

where j = any portfolio on the mean-variance efficient frontier. The last two equations
demonstrate that any return on the frontier (i.e. Rmv,j ) contains all the pricing infor-
mation in the pricing kernel or SDF, M . Finally, it can be shown that the expected
excess return on any asset i is proportional to its beta with any return on the efficient
frontier βi,mv

ERi − Rf = βi,mv(ERmv − Rf)

A graph of the cross section of (average) returns ERi (i = 1, 2, . . . , N) is linearly
related to βi,mv. Since the above equation also applies to Rmv, which has a beta of
unity, the factor risk premium λM = ERmv − Rf. From (3), for any asset i, we have

EtRi,t+1 − Rf = − covt (Mt+1, Ri,t+1)

Et(Mt+1)
= covt (Mt+1, Ri,t+1)

vart (Mt+1)

(− vart (Mt+1)

Et(Mt+1)

)
= βi,MλM

where βi,M is the coefficient of Ri regressed on M , while λM is independent of
any asset i and can be interpreted as the market price of risk. For power utility
Mt+1 = β(Ct+1/Ct )

−γ , it can be shown (by taking a Taylor series expansion of the
above equation):

EtRi,t+1 − Rf ≈ βi,�Ct+1 [γ vart (�Ct+1)]

So the SDF model with power utility implies that the market price of risk depends
positively on γ and the riskiness of consumption. The direct parallels between the
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standard-CAPM (mean-variance model) and the SDF model should be apparent in the
above equations. The SDF model has Mt+1 as a generic variable, for which the market
return Rmv is a special case. (Note that in all of the above equations, we can replace
R by R∗.)

Let us now return to the implications for the Sharpe ratio for any portfolio that lies
on the efficient frontier (CML). From (6), with |ρiM | = 1, we have

SRmv =
∣∣∣∣E(R∗

mv) − R∗
f

σ(R∗
mv)

∣∣∣∣ = σ(M)

E(M)
= σ(M)R∗

f (8)

Hence, all portfolios on the efficient frontier have the same Sharpe ratio and the
‘fundamentals’ that determine the size of the Sharpe ratio are the risk-free rate and
the volatility of the SDF. Since both of these variables may move over time, we also
expect the measured Sharpe ratio to vary. Using power utility where U ′(C) = C−γ

and assuming consumption growth is lognormal,

σ(M)

E(M)
= σ {(Ct+1/Ct )

−γ }
E{(Ct+1/Ct )−γ } = [exp{γ 2σ 2(�ct+1)} − 1]1/2 ≈ γ σ(�c) (9a)

Hence, from (8) and (9a), a high observed Sharpe ratio for assets or portfolios on the
efficient frontier is consistent with the C-CAPM if consumption growth is volatile or
γ is large. Both of these are indicators of ‘riskiness’ in the economy. Also, the Sharpe
ratio moves over time with the changing conditional volatility of consumption growth.
For any asset i that is not on the efficient frontier (CML), the Sharpe ratio (from (6))
under power utility and lognormality should equal

SRi ≈ −ρiM γ σ(�c) (9b)

14.2 Equity Premium Puzzle

The Mehra and Prescott (1985) seminal article on the equity premium puzzle is based
on the SDF model and requires the following assumptions.

(i) Standard preferences (e.g. power utility) over consumption.

(ii) Agents maximise lifetime utility that depends only on consumption and utility is
time-separable.

(iii) Asset markets are complete – agents can write insurance contracts against any
contingency (e.g. spells of unemployment).

(iv) Trading in assets takes place in a frictionless market and therefore is costless (i.e.
brokerage fees, taxes, etc., are insignificant).

It can be shown that assumptions (iii) and (iv) imply a ‘representative agent’ so that
individual consumption moves the same as per capita consumption (on non-durables
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and services). Note that a sufficient condition for a representative agent model is
that all individuals have identical preferences (utility functions) and ownership of
production possibilities, so they then have identical consumption. But this is not a
necessary assumption – the key is that asset markets are complete and markets fric-
tionless (Constantinides 1982).

Let us assume the S&P500 index Rm is always on the upper portion of the efficient
frontier, so that ρiM = −1. Over the last 50 years (i.e. post-WWII), the average real
return was around 9% p.a. with a standard deviation of 16% p.a. and the average real
risk-free rate was 1% p.a., giving SR = 0.5. The standard deviation of the growth in
consumption is about 1% p.a. For the C-CAPM in (9a) to ‘fit’ these stylised facts
requires a risk-aversion coefficient of γ = 50. From experiments on gambles, γ is
thought to be in the range 3–10, so the prediction of the C-CAPM for the equity
premium is way off the mark. This is known as the equity premium puzzle.

How Risk-Averse Are You?

It is rather difficult to pin down an acceptable range for the degree of risk aversion either
by introspection or from experimental economies where people are presented with a
range of ‘bets’ under laboratory conditions. One way to investigate the plausibility of
different values of γ , the coefficient of relative risk aversion, is to examine the certainty
equivalent amount (as outlined in Chapter 1) for various bets. Suppose we assume
power utility and an initial level of annual consumption (or income) of C0 = $50,000.
How much would you pay per annum to avoid a fair bet that gave you plus or minus
$y p.a. (for the rest of your life)? For power utility, the answer is the value $z, which
satisfies

(C0 − z)1−γ = 1
2 (C0 + y)1−γ + 1

2 (C0 − y)1−γ

which gives

z = C0


1 −

[
1

2

(
1 + y

C0

)1−γ

+ 1

2

(
1 − y

C0

)1−γ
] 1

1−γ




It can be shown that for small bets, this can be approximated by

z

y
= γ

2

(
y

C0

)
(

amount to avoid bet

size of the bet

)
= γ

2

(
size of the bet

C0

)

where γ is the local curvature, γ = −CU ′′(C)/U ′(C). Hence, for small bets, power
utility is not unreasonable, since if the size of the bet y is small in relation to the initial
consumption level C0, then the amount you would pay to avoid the bet is also small
(relative to the size of the bet).

This is shown in Table 1 where we use the above equation for z and find that even
with γ = 50, you would pay a relatively small amount of $5 to avoid a fair bet that
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Table 1 Dollar amount you would pay to avoid a fair bet

Amount of Bet Risk Aversion γ
($)

2 10 50 100 250

10 0.002 0.01 0.05 0.1 0.25
100 0.2 1.0 5.0 9.9 24.0
1,000 20 99 435 655 863
10,000 2000 6,920 9,430 9,718 9,888
20,000 8,000 17,600 19,573 19,789 19,916

Notes:

(i) The initial level of consumption (income) is $50,000 p.a., and we assume power
utility (i.e. constant coefficient of relative risk aversion, γ ).

(ii) The GAUSS program can be found on the web site for the book.

could change your initial consumption (wealth) of $50,000 by plus or minus $100.
This is because for small bets, the local curvature of the utility function is close to
being linear (i.e. risk-neutral). However, if the bet were plus or minus $10,000 (or
larger), then with γ = 50, you would pay nearly the full $10,000 (i.e. $9430) to avoid
the bet. You are very risk-averse to large bets (this is the basis of the Rabin (2000)
paradox). Note that even if you have a high initial level of consumption (income) of
$300,000, then with γ = 50, you are still willing to pay a hefty $6092 to avoid the
$10,000 fair bet. You are willing to pay less than the consumer who starts off with
C0 = $50,000 because the utility function is ‘flatter’ at higher initial levels of con-
sumption (i.e. diminishing marginal utility). The numbers generated in Table 1 using
probabilities of, say, car theft or your house burning down could be compared with
insurance premiums actually paid and γ adjusted to match these premia. It is found
that people are willing to pay substantially more than actuarially fair values to insure
against these risks, implying low values for γ . So we are still left with the puzzle of
why people are so risk-averse when it comes to stocks.

The above results do not crucially depend on the functional form of the utility
function. As long as utility is an increasing concave function of wealth (consump-
tion), expected utility appears reasonable for small bets but absurd for large bets.
To see this in a slightly different way, consider the following proposal. Suppose
we know that Mr Monty Casino will always turn down a 50:50 gamble of losing
$10 or gaining $11 and he is a risk-averse expected utility maximiser (i.e. utility
is an increasing concave function of wealth). Now we offer Mr Monty Casino a
50:50 bet where he could lose $100 and gain $Y. What is the maximum $Y we
can offer so that we know he will take this bet? Well, $2000 for a ‘win’ seems not
unreasonable. Certainly, casual introspection would suggest Mr Casino would take
the bet for $20,000 to win and certainly for $1 million or $1 billion to win (remem-
ber he can only lose $100). In fact, as an expected utility maximiser, if he rejects
the 50:50, lose $10/gain $11, then he will always refuse a 50:50, lose $100/gain
any amount. This is the Rabin paradox (Rabin 1998, 2000, Rabin and Thaler 2001),
and the result seems absurd and makes one very uneasy about using expected util-
ity on the basis of only the level of wealth as a criterion when considering large
bets.
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The latter conclusion cannot be overturned by considering repeated bets of the
same type. If a person turns down one fair bet to lose X or gain Y , then expected
utility implies the person will turn down an offer to play many of these same gam-
bles (Samuelson 1963). Neither can the Rabin paradox be (qualitatively) overturned by
considering different initial wealth levels. For example, if an expected utility maximis-
ing ‘rich person’ turns down a 50-50 bet of lose $10,000/gain $11,000, then she will
also turn down at 50:50 bet of lose $100,000/gain ∞. The above conceptual difficulties
with risk-averse expected utility maximisation as a description of behaviour has led to
alternative utility functions where utility depends on changes in wealth, where losses
are much more ‘painful’ than gains (e.g. loss aversion or disappointment aversion) and
where individuals consider gains and losses in isolation (i.e. ‘narrow framing’). We
discuss these in later chapters.

The problem with evidence from ‘experiments’ in the laboratory is that individual’s
choices violate the axioms of expected utility (an issue we take up later) and ‘bets’
that are far outside one’s usual experience are hard to evaluate. (This applies a fortiori
when individuals are asked how much they would pay to reduce the probability of
avoiding particular types of risk such as a car accident or a crash in a metro system
or aircraft.)

If we accept the axioms of expected utility, then high values for risk aversion are not
totally at variance with introspection and this would help resolve the equity premium
puzzle. But as we see below, a high γ can introduce other problems, namely reconciling
the low level and variability of the risk-free rate (as observed in nearly all developed
economies). An alternative to a high γ with respect to wealth bets is to assume that
investors also worry about variables other than just consumption and this is explored
further below.

Finally, note that the S&P500 may not lie on the efficient frontier of all assets,
since it comprises only a subset of possible investments, and the data indicates a
correlation coefficient of about 0.2 (rather than the ‘theoretical’ unity) between the
S&P500 and aggregate consumption, hence ρim = 0.2. But using (9b) (with power
utility), this would imply a value of γ = 250 to ‘fit the facts’. This makes the puzzle
even more difficult to explain.

Using Individual Consumption

If the C-CAPM applies to every investor, the representative agent assumption allows
us to use aggregate consumption in testing the model. But only a small proportion of
US citizens hold stocks and it is the correlation between consumption growth of these
active traders with asset returns that determines the risk premium. Empirically, the
correlation between the consumption of active traders and stock returns is higher than
that for aggregate consumption, but it is still not high enough to solve the equity pre-
mium puzzle (Mankiw and Zeldes 1991). Indeed, moving to individual (non-durable)
consumption does not solve the equity premium problem because

(a) although individual consumption is more subject to idiosyncratic shocks, it is hard
to believe that it varies by around σ(�ci,t+1) = 50% p.a.;
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(b) individual consumption growth will be less correlated with the market return than is
aggregate consumption growth (where ρiM ≈ 0.2) and makes it even more difficult
to satisfy (9b).

Risk-Free Rate Puzzle: Is γ = 50 Acceptable?

The so-called ‘equity premium puzzle’ is now really considered as two puzzles. One
is the fact that the observed (real) equity premium of around 8% p.a. is too high to be
explained by a model with ‘standard preferences’ unless the risk-aversion parameter γ

is ‘unacceptably’ high. The second is the risk-free rate puzzle (Weil 1992): when risk
aversion is high, the standard C-CAPM model gives an equilibrium risk-free rate that
is higher and more volatile than that found in the data (where the mean real T-bill
rate is around 1% p.a.). So, even if a high risk aversion coefficient is accepted, so that
the observed equity premium is explained by the model, it then does not fit the facts
concerning movements in the risk-free rate. To see this, note that with power utility,
lognormality and θ = 0.99:

ln R∗
ft ≈ Rft = ln θ + γEt (�ct+1) − γ 2

2
σ 2

t (�ct+1) (10)

where Rft is the risk-free rate (expressed as a decimal). What does the C-CAPM imply
for the risk-free rate for γ = 50? (We ignore the final term that disappears in the
continuous-time version of the model and is an inappropriate approximation when γ

is large.) For γ = 50,

Rft = −0.01 + 50(0.01) = 0.49 (49% p.a.) (11)

Annual consumption growth is approximately iid, so we have used the unconditional
expectations, E(�c) = 0.01 and σ(�c) = 0.01. Here, the real interest rate predicted
by the C-CAPM (with power utility and lognormality) is about 50% p.a. and clearly
does not resemble the average real interest rate of around 1% p.a. found in the data
for many developed economies (if we include the last term, then the model predicted
interest rate is 36.5%).

Also if γ = 50, then when consumption growth is 1% above or below its average
level, the model predicts real interest rates will move about plus or minus 50% points
(e.g. a situation could arise whereby you pay someone else 50% p.a. in real terms to
borrow from you!). Hence, γ = 50 implies that aversion to intertemporal substitution
of consumption is so high that massive swings in interest rates are required to induce
additional saving today (and hence higher consumption tomorrow).

Cochrane (2001) has a nice example to illustrate what γ = 50 implies for real
interest rates. If you earn $50,000 p.a. and you normally spend 5% ($2500) on an
annual vacation, then you will voluntarily skip this year’s vacation only if interest
rates rise to about

Rft ≈ (52,500/47,500)50 − 1 = 14,800% p.a. (12)



332 C H A P T E R 1 4 / C - C A P M : E V I D E N C E A N D E X T E N S I O N S

In reality, you might be willing to postpone your vacation for a somewhat lower
interest rate than this! Thus, with time-separable power or logarithmic or exponential
utility functions, the equity premium puzzle arises because the C-CAPM cannot explain
both the observed high average return (and Sharpe ratio) for risky assets together with
relatively low real interest rates that also exhibit low volatility.

14.3 Testing the Euler Equations of the C-CAPM

Cross-Section Evidence

The C-CAPM can be tested using either cross-section or time-series data. A cross-
section test of the C-CAPM is based on

ERi = a0 + a1βc,i (13)

where a0 = (1 − EM )/EM , a1 = αθ cov(Rm, �c)/EM , βc,i = cov(Ri, �c)/ var(�c).
Equation (13) is the security market line (SML) for the C-CAPM. Average returns
are linear in βc,i . In cross-section data, EM and cov(Rm, �c) are constant, hence a1

should be the same for all stocks i. We use the sample mean for ERi and the sample
estimate for βci , for each stock i or portfolio i. Mankiw and Shapiro (1986) test the
CAPM and C-CAPM using cross-section data on 464 US companies over the period
1959–1982. They find that the standard-CAPM clearly outperforms the C-CAPM, since
when Ri is regressed on both βmi and βci , the former is statistically significant, while
the latter is not. Breeden, Gibbons and Litzenberger (1989) find similar results for
industry and bond portfolios, while Cochrane (1996) finds that the C-CAPM performs
worse than the standard-CAPM, using a cross section of size-sorted portfolio returns.
However, it is worth remembering that the CAPM ‘prices’ assets assuming the market
return is given – the CAPM does not proffer any economic explanation of the return
on the market, whereas the C-CAPM does, since it assumes the latter depends on
the volatility of consumption growth. Put another way, in principle, the C-CAPM or
SDF model tries to explain all asset returns in terms of the underlying sources of
economic risk (such as consumption), and not in terms of other asset returns – a rather
tall order.

Time-Series Evidence

With power utility, the Euler equations/FOCs for the risky and risk-free asset in the
C-CAPM are

eit+1 ≡ θEt{(Ct+1/Ct )
−γ (R∗

it+1 − R∗
ft )} = 0 (14a)

eft+1 ≡ θEt{(Ct+1/Ct )
−γ R∗

ft } = 1 (14b)

After invoking the law of iterated expectations to give unconditional expectations,
the simplest test of the FOCs is to take sample averages (over time) of ei and ef (and
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their standard errors), for different values of γ . Kocherlakota (1996) reports that for
an aggregate stock index, a value of γ ≥ 8.5 (given θ = 0.99) is required for the first
sample moment to be statistically zero – this is the ‘equity bit’ of the equity premium
puzzle. Unfortunately, for γ = 8.5 (and θ = 0.99), then ef is statistically different from
1, so the representative consumer can gain by shifting consumption from the future to
the present (i.e. increasing savings) – this is the risk-free rate puzzle.

Direct tests of (14) using conditional expectations in a non-linear time-series regres-
sion provide estimates of γ (with θ often imposed). Using only risky-asset returns, the
FOC is

{(Ct+1/Ct )
−γ θR∗

it+1 − 1} = εit+1 (15a)

Since (15a) holds for all risky assets (or portfolios), it implies a set of cross-equation
restrictions, since the parameters (θ , α) appear in all equations. This model does not
perform well for a wide range of alternative assets included in the portfolio (e.g.
portfolios comprising just US equities or US equities plus US bonds, or portfolios
consisting of equities and bonds in different countries; see, inter alia, Hodrick 1987,
Cumby 1990, Smith 1993). In Smith’s (1993) study, which uses an ‘international’
basket of assets, the parameter restrictions in (15a) are often found to hold, but the
parameters themselves are not constant over time.

We can also apply equation (15a) to the aggregate stock market return Rm and
noting that (15a) applies for any return horizon t + j , we have, for j = 1, 2, . . .

{(Ct+j /Ct )
−γ R∗

m,t+j − 1} = εt+j (15b)

Equation (15b) can be estimated on time-series data and because it holds for hori-
zons, j = 1, 2, . . . and so on, we again have a system of equations with ‘common’
parameters (θ , α). Equation (15b) for j = 1, 2, . . . are similar to the Fama and French
(1988b) regressions using returns over different horizons, except here we implicitly
incorporate a time-varying expected return. Flood, Hodrick and Kaplan (1986) find
that the performance of the C-CAPM model deteriorates, in statistical terms, as the
time horizon is extended. Hence, they find against (this version of) the C-CAPM.
Overall, the conditional C-CAPM with power utility is a poor representation of the
time-series behaviour of asset returns in terms of formal statistical tests on γ and
cross-equation restrictions.

Hansen–Jagannathan Bounds

For the S&P500, the Hansen–Jagannathan (H–J) bound implies

σ(M)

E(M)
≥ |E(R∗e

i )|
σ(R∗e

i )
≈ 0.5

With E(M) = 1/R∗
f ≈ 0.99, then the above implies that σ(M) ≈ γ σ(�c) > 50% p.a.

and with σ(�c) ≈ 1% p.a., this implies γ = 50. As noted above, if we recognise that
the correlation between aggregate consumption growth and the return on the S&P500 is
around 0.2, then this implies γ = 250.
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Value function

The equity premium puzzle is about the smoothness or absence of volatility in real
consumption. You may be tempted to think of utility depending on wealth rather than
consumption and ‘the wealth portfolio’ is undoubtedly more volatile than consumption,
given investment in the stock market. In the previous chapter, we noted that the value
function V (W) is a key element of the FOCs in an intertemporal model, and the H–J
bound becomes

ER − Rf

σ(R)
≤ −WV ww

Vw

σ(�w)

where σ(�w) = σ(Rm) ≈ 16% p.a. for an investor who holds the market portfolio of
stocks. If we wish to explain the market Sharpe ratio of 0.5, then the lower bound on
the local risk-aversion parameter over wealth has to be

−WV ww

Vw

= 0.5

0.16
= 3.125

which seems much more plausible than the value of 50 or more discussed above.
However, as we see in Chapter 15, if returns are iid and V depends only on wealth
(e.g. no labour ‘income’), then in an intertemporal consumption model, consumption
is proportional to wealth, hence σ(�c) = σ(�w). Hence, explaining the high Sharpe
ratio by invoking the high volatility in stock market wealth and low (local) risk aversion
over wealth, requires the volatility of consumption growth to be 16% p.a. – clearly not
supported by the data. Hence, using wealth in place of consumption does not solve the
equity premium puzzle – the puzzle reappears as implying an implausible volatility for
real consumption.

A test of the C-CAPM is possible by extending the H–J bound to several assets
taken together. When we have several assets, the H–J bound can be used to put limits
on the values of the SDF and, in particular, the risk-aversion coefficient (for a particular
utility function) that are acceptable, given the empirical variance–covariance matrix
of returns. The H–J bound for several assets can be shown to be (see Appendix)

σ 2(M) ≥ [P − (EM )(EX )]′�−1[P − (EM )(EX )] (16)

where P = N × 1 vector of asset prices, X = N × 1 vector of asset pay-offs, � =
(N × N) variance–covariance matrix of pay-offs. By dividing through by the initial
price, the P vector becomes a vector of ones e1 and X is replaced by R∗, a vector of
gross asset returns, so that

σ 2(M) ≥ [e1 − (EM )(ER∗)]′
∑−1

R
[e1 − (EM )(ER∗)] (17)

It is easily seen that (17) collapses to the single risky-asset case in (7) – see Appendix.
To illustrate how the H–J bound can reveal information on possible values for the
risk-aversion coefficient that are acceptable, given the empirical variance–covariance
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Figure 2 Hansen–Jagannathan bounds (German data)

of returns, we proceed as follows. Suppose we have time-series data on the real return
on a stock index and the real risk-free rate, so that ER∗ is a (2 × 1) vector.

If we substitute the sample average return R
∗

for ER∗ and the sample
variance–covariance matrix of returns �R in the right-hand side of (17), we
have a scalar that is quadratic in EM (i.e. RHS = a0 + a1E(M) + a2[E(M)]2 =
f (EM , (EM )2), where the ai depend on the estimates R

∗
,�R . We now calculate

σ(M) = [a0 + a1E(M) + a2(EM )2]1/2 and plot EM versus σ(M) for alternative values
of EM, which is shown as the U-shaped parabola A–A′ (Figure 2). This provides the
admissible lower bound for σ(M), EM combinations.

Now let us see if the H–J lower bound holds for a particular utility function over
consumption and reasonable values of the risk-aversion parameter. First, consider
time-separable power utility (which has a constant coefficient of relative risk aver-
sion γ ) where Mt+1 = θ(Ct+1/Ct )

−γ . Assume θ = 0.97 is known, which on annual
data implies a real discount rate of 3%. Use sample data on consumption growth to
calculate M and standard deviation σ(M) for any given γ . So, we have M = f1(γ )

and σ(M) =
∑

(Mt − M)2

T − 1
= f2(γ ). We can plot points in {σ(M), EM } – space for

alternative values of γ (Figure 2, curve B–B′, indicated by ‘triangles’). The curve
B–B′ shows combinations of M and σ(M) for different values of γ (given the TS-
CRRA power utility function). Values of γ for curve B–B′ that satisfy the bound are
points above and within the U-shaped curve A–A′. As an example, consider results
for Germany using aggregate annual (real) stock returns and the (real) risk-free rate as
our two assets (see Figure 2), for three alternative utility specifications (Cuthbertson
and Hyde 2004). For the familiar time-separable power utility function (TS-CRRA),
Figure 2 shows that the values of γ for which the curve B–B′ lies within the H–J lower
bound of the curve A–A′ are γ = 31 to 34 – very high coefficients of risk aversion.

Figure 2 also includes results for two alternative time non-separable habit-persistence
utility functions denoted by ‘TNS-HP’ and ‘Abel’ (Abel 1990). Even for these utility
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functions, it is found that curves such as B–B′ lie above and within the ‘lower bound’ (i.e.
curve A–A′) for values of γ > 8 and less than 10 for the two habit specifications – these
values of γ are also rather high. Several studies on US and UK data have found that for
power utility, the values of γ that are in the admissible region, are large and in the 10–25
range. Even with alternative utility functions such as ‘habit persistence’, the bound is
often violated for ‘reasonable’ values of γ (e.g. 2 to 4) – see Engsted (1998). Hence,
the C-CAPM fails to lie within the H–J bound, for reasonable risk–aversion parameters
and various utility functions, which depend on consumption growth or habit persistence
in consumption (Burnside 1994, Engsted 1998, Hansen and Jagannathan 1991). This is
a further manifestation of the equity premium puzzle and the failure of variants of the
C-CAPM.

The above results can be formally tested, and the relevant distribution theory for the
H–J bounds, including allowance for short-sale constraints, bid/ask spreads and other
market frictions can be found in Cochrane and Hansen (1992) and Hansen, Heaton and
Luttmer (1995), with an excellent account in Cochrane (2001).

14.4 Extensions of the SDF Model

The standard (power utility) SDF model does not simultaneously explain the high
equity premium and the risk-free rate puzzle. Possible avenues out of this impasse are
as follows.

(a) Power utility is OK, but we need to introduce non-separabilities where the marginal
utility of consumption (at time t) depends on other state variables (e.g. wealth, past
consumption).

(b) The basic SDF model is correct and utility just depends on consumption, but the
power utility function is incorrect. So, we need to try other functional forms.

(c) The last 50 years of US stock returns were largely ‘good luck’ rather than a payment
for risk. This is a kind of ‘Pesoproblem’ since we are arguing that the out-turn
data does not reflect ‘true’ ex-ante risk, as viewed by investors over the period
from about 1950 to 1999.

(d) Individual consumption is poorly measured by aggregate per capita consumption.

Luck and Mismeasurement of the Sharpe Ratio

Given the data we have, an estimate of the equity premium is subject to wide mar-
gins of error. Taking the excess return to be 8% p.a. and σ = 16% for the S&P500
and using a reasonable (‘ball-park’) approximation that returns are iid, the standard
error of the expected (average) return R is σ/

√
T . Hence with T = 50 years of data, a

two-standard deviation confidence band for expected excess returns is 8% ± 2(2.3%),
that is, about 3.5 to 12.5%, a considerable range. For 20 years of data, the standard
deviation of expected returns is 3.6% (= 16/

√
20), so a mean return of 8% at the
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lower two-standard deviation bound is close to zero. However, relatively large uncer-
tainty in measuring expected returns could go either way for the equity premium
puzzle, since we could take either the upper or lower limit as being the ‘true’ mean
return.

Maybe the US data is atypical and really the United States just got lucky over the
last 50 years. After 1945, the United States has had a few major and debilitating wars
(e.g. the Cold War from 1945 to 1989, including the blockade of Berlin, the Korean
War in the 1950s, the Cuban missile crisis of 1962, Vietnam in the 1970s and the very
short Gulf War of 1992 and the Afghan and Iraq wars of 2001 and 2003). None of
these resulted in the use of nuclear weapons, and other countries that have obtained
‘the bomb’, such as Russia, China, Israel, Pakistan and India, have not used it. There
have been no major natural disasters, or nationwide political upheavals (e.g. race riots)
in the United States. There has been no foreign occupying force in the United States
since independence, and only two major acts of terrorism on US soil, the Oklahoma
bombing in 1995, for which Timothy McVeigh was convicted, and the attack on the
Twin Towers in New York on 9/11 in 2001.

The above ‘lucky’ scenario has not applied to many other countries around the
world. When measuring the equity premium from a ‘world investor’ point of view in
1900, perhaps we should also include average returns from Germany, Japan, China,
Russia and its satellite countries, all of whom suffered major wars/insurrection and
stock prices that never recovered. Also, post-WWII, returns from newly industrialised
economies of South America and the Far East should be included. The US figures may
therefore suffer from survivorship bias. Unfortunately, high-quality continuous data on
‘other markets’ are often not available over a long run of years.

Jorion and Goetzmann (1999) have attempted to measure expected returns and the
standard deviation of returns across many countries for a long time series of data
(1920–1996). Although it is difficult to generalise, they find that the real return in the
United States is 4.3% p.a., whereas in all other markets (some of which ceased trading
for some periods), it was a mere 0.8% p.a. However, holding a hypothetical world
index gives a real return of around 4.3% p.a. because it is dominated by the United
States. Dimson, Marsh and Staunton (2002) rework the historic data over 1900–2000
for 16 countries and find an equity risk premium of 5.8% p.a. for the United States
and of 4.8% for the United Kingdom (geometric averages), while it is 5% for all
16 countries – so, over this period, the United States is not particularly atypical, and
survivorship bias appears to be relatively small. The relatively low figures found for
the US equity premium by Dimson et al. are due to slightly different index construction
and use of a longer time period.

Suppose we assume a ‘true’ expected excess return as low as 3% p.a. (rather than
around 8% p.a.) so the Sharpe ratio is 0.2 (= 3/16). Then the C-CAPM (with power
utility) and given σ(�c) = 0.01 still requires a risk-aversion parameter of around 20
(or 100 if we consider the correlation ρiM = 0.2). So, even if the 50-year historic
average excess return of 8% p.a. in the United States is a ‘Pesoproblem’ (i.e. good
luck), we still need a risk-aversion coefficient in excess of 20. But the high and volatile
interest rates that this implies for the C-CAPM with power utility are not found in the
data. Hence, the risk-free rate puzzle still remains.
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The crux of the problem is that we need a model where the mean of the SDF
R∗

f = 1/E(M) does not vary very much over time, in order to ‘explain’ the low
volatility of interest rates, while we require a high σ(M) to explain the observed Sharpe
ratios (see equation (7)). In effect, we lack one degree of freedom since the one-state
variable in the model, namely consumption, cannot explain these two contradictory
facts. We need another state variable in the utility function that can co-vary with
the stochastic discount factor. There are a number of candidates for an additional
state variable such as leisure, foreign consumption, past levels of consumption and
financial wealth.

In addition, we require our model to explain the stylised fact of long-horizon pre-
dictability. For example, returns are higher following a low value for the price–dividend
ratio. Also, stock prices are low in recessions and empirically are followed by high
future returns, hence the Sharpe ratio varies counter-cyclically (i.e. SR is high in reces-
sions and low in booms) – our chosen model needs to explain these stylised facts.

Non-Separability

If the marginal utility of consumption depends on another variable Z as well as con-
sumption Uc(C, Z), then expected returns will depend on the covariances between Zt

and Ri,t , as well as the consumption covariance. However, note that this would not
happen if U(C, Z) was separable, that is, U(C, Z) = f (C) + g(Z). There are various
forms of non-separability to consider:

(i) additional state variables like leisure or wealth in the utility function.

(ii) habit-persistence effects – so past values as well as current values of consumption
appear in the utility function.

(iii) so-called non-state separable utility functions, where marginal utility of consump-
tion in one state (‘hot’) is affected by the level of consumption in another state
(‘cold’) – Epstein and Zin (1989).

Wealth in the Utility Function

Bakshi and Chen (1996) provide an intertemporal model, where utility also depends
on a social wealth index St = Wt/Vt , where Wt = individual’s wealth, Vt = social
wealth index (i.e. being middle class). They call this the ‘spirit of capitalism’ model
since utility depends not only on consumption but also independently on your ‘wealth
status’, relative to that of others (a kind of ‘keeping up with the Jones’s’). One form
of (non-separable) utility function they use is

U(Ct , Wt, Vt ) = C
1−γ
t

(1 − γ )

(
Wt

Vt

)−λ

(18)

which reduces to the standard case for λ = 0. The solution for expected returns from
the intertemporal problem is

ERi − Rf = γ σic + λσiw − λσiv (19)
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Because of the difficulty in measuring the appropriate social wealth index Vt , tests
of the Euler equation assume V is constant and the last term in (19) disappears. The
FOCs are

Et{Mt+1, Ri,t+1} = 1 (20)

where

Mt+1 = θ

(
Ct+1

Ct

)−γ

R−λ
W,t+1

[
1 + λ

γ − 1

(
Ct+1

Wt+1

)]

The wealth portfolio is taken to be an aggregate stock market index, and Ri are
different size-based portfolios. The estimates of γ for the different portfolios are in the
range 2.3–3.08 (with λ in the range of 0.75–1.27), and the over-identifying restrictions
are not rejected when more than two risky portfolios are simultaneously included in
the test (see Bakshi and Chen 1996, Table 3). In addition (for λ = 2), the model does
not violate the H–J bounds, when the coefficient of relative risk aversion γ is between
6 and 8.

Clearly, it is the high covariance between RW and Ri that allows the model to give
a low estimate of γ , while still explaining ‘volatile’ movements in Ri . Also, there is
some leeway in ‘acceptable’ values of λ, which is not really pinned down a priori
(apart from λ > 0). The model solves the equity premium bit of the ‘puzzle’ with
low γ , but there does not seem to be any tests of the risk-free rate Euler equation
presented – so we do not know about the other half of the puzzle.

Separating ‘States’ and ‘Time’: Epstein–Zin

In the standard power utility function, the ‘curvature parameter’ γ plays a dual role.
First, increasing γ makes individuals want to smooth consumption over different
dates – they dislike volatile growth in consumption and want to smooth their con-
sumption path. But, second, a higher γ also makes individuals want consumption in
different states of the world to be similar – they dislike risk. The parameter γ is both the
coefficient of relative risk aversion and also equals the reciprocal of the intertemporal
elasticity of substitution.

Epstein and Zin (1989, 1991) propose a generalised expected utility (GEU) function,
Ut = U [Ct, Et(Ut+1)], a special case of which is a constant elasticity function of
current consumption and future utility.

Ut =
[
(1 − δ)C

1−1/ψ
t + δEt{U 1−γ

t+1 }1/λ
]1/(1−1/ψ)

(21)

where λ = (1 − γ )/(1 − 1/ψ). The degree of risk aversion is determined by γ , while
the elasticity of intertemporal substitution is ψ , so these can now be different. In
principle, one parameter γ can be used to explain the equity premium and the other ψ

to explain the low level and variability in the risk-free rate. If γ = 1/ψ , we have the
standard power utility. The budget constraint in real terms (with no labour income) is
Wt+1 = (1 + Rm,t+1)(Wt − Ct) with Rm,t+1 = ∑n

j=1 αj,tRj,t+1 and
∑n

j=1 αj,t = 1. All
invested real wealth Wt consists of equity, bonds, real estate, and so on. Unfortunately,
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the FOCs contain the unobservable EtUt+1 but if consumption growth is iid, the FOCs
can be written

δE{(Ct+1/Ct )
−γ (Ri,t+1 − Rf,t )} = 0 (22a)

δ[E(Ct+1/Ct )
1−γ ](γ−1/ψ)/(1−γ )E{(Ct+1/Ct )

−γ R∗
f,t} = 1 (22b)

which avoids the use of the unobservable market return, where the latter includes
human capital, housing wealth as well as stock market wealth – Kocherlakota (1996).
Equation (22a) is the same as the standard FOC (with power utility), so risk aversion
γ still has to be high to explain the equity premium. But given γ , we can choose ψ

in (22b) to exactly match the sample moments, so there is no risk-free rate puzzle with
these GEU preferences.

We can explore recursive utility a little further, which will give us some insights
into intertemporal models we meet in the next chapter. If we are willing to accept that
only the market return enters the budget constraint Wt+1 = (1 + Rm,t+1)(Wt − Ct),
then Campbell, Lo and MacKinlay (1997) show that the recursive utility function with
lognormality in consumption and asset returns gives:

ln Mt+1 = (1 − γ )

(1 − ψ)
�ct+1 − (1 − γψ)

(1 − ψ)
r∗
m,t+1 (22c)

r∗
f,t = − ln δ + (λ − 1)

2
σ 2

m − λ

2ψ2
σ 2(�c) + 1

ψ
Et�ct+1

(22d)

Et(r
∗
i,t+1 − r∗

f,t ) + σ 2
t (r∗

i )

2
= (λ/ψ)σt (r

∗
i , �c) + (1 − λ)σt (r

∗
i , r∗

m) (22e)

where λ = (1 − γ )/(1 − 1/ψ) and lower-case letters indicate logs (i.e. ln R∗ ≡ r∗).
These equations show that the recursive utility model nests the C-CAPM with power
utility (i.e. when γ = 1/ψ and hence λ = 1) and the standard static CAPM with power
utility λ = 0 (i.e. γ = 1, so consumption is proportional to wealth and λ = 0, so the
only term in the above equation is λσt (r

∗
i , �c) = λσt (r

∗
i , r∗

m), where r∗
m is the return

on the total wealth portfolio). However, in general, the average excess return on any
risky asset i depends on the covariance between consumption growth and the asset
return (C-CAPM) and on the covariance between the market return and the asset
return.

Time-Varying Risk Premium

Estimation of the Euler equations (22a) and (22b) provide a test of these SDF mod-
els, but it does not give a time series of the risk premium – for this, we need an
explicit reduced form solution in terms of observable variables and a model of time-
varying conditional covariances. Let us see how we might do this using GARCH
models to mimic the time-varying risk premium. The SDF model can be expressed as
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above in real terms (equations 22d and 22e) or in nominal terms. The nominal budget
constraint is

W nom
t+1 = (1 + Rnom

m,t+1)(W
nom
t − PtCt )

or Wt+1 = (1 + Rnom
m,t+1)

(1 + πt+1)
(Wt − Ct)

where P = consumer price index, W nom is nominal wealth, W is real wealth, (1 +
Rt+1) = (1 + Rnom

t+1 )/(1 + πt+1) and (1 + πt+1) = Pt+1/Pt . Using nominal returns, the
Epstein–Zin utility function and joint lognormality (Campbell, Lo and MacKinlay
1997, Smith, Sorensen and Wickens 2003) gives

Et(R
nom
i,t+1 − Rnom

f,t ) + 1

2
σ 2

t (Rnom
i ) = − (1 − γ )

(1 − ψ)
covt (�ct+1, R

nom
i,t+1)

− ψ(1 − γ )

1 − ψ
covt (πt+1, R

nom
i,t+1)

+ (1 − ψγ )

(1 − ψ)
covt (R

nom
m,t+1, R

nom
i,t+1)

In trying to implement the above, the problem is in finding an adequate measure
of the market return on all assets. If we make the (rather heroic) assumption that the
market portfolio consists of a fixed weighted average of the return on equity and the
risk-free rate, then

Rnom
m,t+1 = θRnom

i,t+1 + (1 − θ)Rnom
f,t

and

Et(R
nom
i,t+1 − Rnom

f,t ) +
[

1

2
− θ(1 − ψγ )

1 − ψ

]
σ 2

t (Rnom
i,t+1) = − (1 − γ )

(1 − ψ)
covt (�ct+1, R

nom
i,t+1)

− ψ(1 − γ )

1 − ψ
covt (πt+1, R

nom
i,t+1)

Note that ct ≡ ln Ct is real consumption but all the other variables are in nominal
terms. Let β2 = −(1 − γ )/(1 − ψ) and β3 = −ψ(1 − γ )/(1 − ψ), then estimation of
the above equation gives estimates for γ = β2 − β3 + 1 and ψ = β3/β2 and there are
no restrictions on the coefficient for σt (R

nom
i,t+1).

Factor Models

Factor models assume that the SDF depends linearly on a set of k factors fi,t .

ln Mt+1 =
k∑

j=1

βjfj,t+1
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If the factors are jointly lognormally distributed with equity returns (denoted i), then
the SDF approach gives the no-arbitrage condition

Et(r
∗
i,t+1 − r∗

f,t ) + σ 2
t (r∗

i )

2
=

k∑
j=1

βjσt (r
∗
i , fj ) (22f)

This is the most general SDF model since the bj are unrestricted, but we have
the practical problem of deciding on the factors to use. The C-CAPM with power or
Epstein–Zin (recursive CES utility) give specific coefficients on the covariance terms
(for example, as in equation 22e). The ‘static’ CAPM can be interpreted as a very
restrictive SDF model to explain the expected excess return on asset i, where we have
only one factor, the market return and the covariance term γ σt (r

∗
i , rm). If we are trying

to explain the excess return on some aggregate equity index Et(r
∗
i,t+1 − r∗

f,t ) and, in
addition, we assume the market portfolio consists of a fixed weighted average of the
return on equity and the risk-free rate, then the covariance term γ σt (r

∗
i , r∗

m) becomes
a variance term γ σt (r

∗
m, r∗

m). These restrictive assumptions allow us to interpret the
static CAPM of Chapter 5 (Section 5.4) as an SDF model.

In general, the key result of the SDF model is that expected excess returns depend
on one or more covariance terms (which may be time-varying). This is also true of the
C-CAPM and static CAPM models. Since the advent of ARCH and GARCH models
in the 1990s (see Chapter 29), there are voluminous empirical studies that look at
the relationship between asset returns (particularly on some aggregate equity index)
and the variance of the returns, but, in general, these would be inconsistent with
the no-arbitrage conditions of the SDF model, which implies the use of covariances.
Empirically, the use of the conditional variance to explain expected returns was popular
because it only required the use of univariate ARCH/GARCH processes, whereas
implementing the SDF approach requires the use of multivariate processes. Of course,
if the SDF model is empirically poorly determined, then as a data description, the use
of the variance term is defensible.

The Euler equation approach does not give a time series for the risk premium, since
the latter is implicit in the FOCs of the Euler equation rather than explicit as in the
‘reduced form’ results of the SDF model given above. In both the Euler equation and
reduced form approaches, ancillary simplifying assumptions (e.g. power utility) have
to be made. A time series for the risk premia covariance terms in SDF models can
be obtained using multivariate ARCH/GARCH models, although there are difficulties
of ‘convergence’ if there are a large number of parameters to estimate. According
to the SDF model, the conditional covariances from the GARCH processes should be
statistically significant in the mean equation for expected returns (e.g. see (22e)), hence
these are referred to as multivariate GARCH in mean MGM models.

Smith, Sorensen and Wickens (2003), using monthly data 1975(6)–2001(12) for
both the United Kingdom and United States, estimate the mean return equation for
aggregate equity returns Et(R

nom
i,t+1 − Rnom

f,t ) along with the multivariate GARCH process
for a vector of variables x = {Rnom

i,t+1 − Rnom
f,t , πt+1,�ct+1,�yt+1}′, where yt (the log

of aggregate output) is included as an additional ‘factor’. The MGM model for the
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expected returns equation can be written

xt+1 = α + �xt + Bg t + εt+1

where εt+1|�t ∼ D(0, Ht ) and gt = vec(Ht+1). The vec operator converts the lower
triangle of a symmetric matrix into a vector and ‘D’ stands for ‘distribution’ and
usually either normal or Student’s t-distribution (to incorporate fat tails) are used (see
Chapter 29). The mean return equation also contains a dummy variable for the crash
of October 1987. In the general SDF model, the first row of � should be zero and the
first row of B is (−1/2, β11, β12, β13, . . .), which then represents equation (22f).

The covariance terms Ht+1 can be estimated using a multivariate GARCH model
(see Chapter 29) and Smith, Sorensen and Wickens (2003) use a restricted VECM
(1,1)-BEKK model (Engle and Kroner 1995):

Ht+1 = V ′V + A′(Ht − V ′V )A + F ′(εtε
′
t − V ′V )F

In the most general SDF model, the covariances terms are between Rnom
i,t+1, the market

return on equity, and the {πt+1,�ct+1, �yt+1} variables. The time-varying risk premia
as modelled in the GARCH covariance terms explain some of the movement in excess
equity returns, but the estimate of γ = β2 − β3 + 1 and ψ = β2/β1 in the Epstein–Zin
C-CAPM model are both unacceptable. For example, for the United States, γ̂ = 783
and ψ̂ = −118 and for the United Kingdom γ̂ = 844 and ψ̂ = −4.5. The power utility
model gives similar results to the Epstein–Zin formulation, and, therefore, both variants
of the C-CAPM are not supported by the data. In the general SDF model (with no
restrictions on the size or sign of the covariance terms in the mean return equation),
Smith, Sorensen and Wickens (2003) find that in the mean return equation, the time-
varying covariance terms on consumption (t-statistic ≈ 2.9 for US and 1.57 for UK)
and inflation (t-statistic ≈ 1.7 for US and 2.8 for UK) are just statistically significant,
but those on output and the variance of the market return are not (the latter rules out
the static CAPM). The proportion of movements in excess returns explained by the
SDF risk premia is around 4%.

Overall, modelling the time-varying covariance terms with observable factors (i.e.
inflation, consumption and output) and a (restricted) GARCH model using UK or
US monthly data is extremely difficult, and even with a fairly general ‘data-based’
SDF model, it is difficult to find statistically significant covariance effects on expected
equity returns.

SDF Model without Consumption Data

Campbell (1993) demonstrates how the above excess return equation can be represented
without using consumption data and only using returns. The idea is based on a log-
linearisation of the wealth constraint

�wt+1 ≈ r∗
m,t+1 + k + (1 − 1/ρ)(ct − wt)

where r∗
m,t+1 = ln R∗

m,t+1, and so on, ρ = 1 − exp(c − w) and k is a linearisation con-
stant. (Note we have defined ρ here to be compatible with Campbell’s notation.)
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Iterating the above equation forward and using the above log-linear equations for r∗
f,t

and r∗
i,t+1, Campbell shows that

ct − wt = (1 − ψ)Et


 ∞∑

j=1

ρj r∗
m,t+j


 + k∗

where k∗ depends on covt (r
∗
m, �c). Clearly, ψ > 1 implies the substitution effect of

expected returns dominates the income effect and the consumption–wealth ratio falls
as Er∗

m,t+j increases (and vice versa for ψ < 1). If ψ = 1, the consumption–wealth
ratio is independent of expected returns. If we push on a little further, we obtain a nice
‘intuitive’ equation for excess returns. From the above equation, it is straightforward
to derive

ct+1 − Etct+1 = (wt+1 − Etwt+1) + (1 − ψ)(Et+1 − Et)


 ∞∑

j=1

ρj r∗
m,t+j+1




= (r∗
m,t+1 − Etr

∗
m,t+1) + (1 − ψ)(Et+1 − Et)


 ∞∑

j=1

ρj r∗
m,t+j+1




where the last substitution comes from the log-linear budget constraint. Again, ψ > 1
or ψ < 1 is crucial in determining the impact of revisions in expected future returns
(Et+1 − Et ) on the variability in consumption. More importantly, however, the above
equation indicates that the covariance of any asset return i with consumption can be
represented by the covariance between the return i and the market return (i.e. the
wealth portfolio), and it can be shown that

Et(r
∗
i,t+1 − r∗

f,t ) + σ 2
t (r∗

i )

2
= γ σt (r

∗
i,, r

∗
m) + (γ − 1)σt (r

∗
i , hm)

where

σ(r∗
i , hm) ≡ covt


r∗

i,t+1, Et+1


 ∞∑

j=1

ρj r∗
m,t+1+j


 − Et


 ∞∑

j=1

ρj rm,t+1+j







We have replaced covariances of r∗
i with consumption growth, with (i) covariances

with the market return and (ii) covariances with news about future market returns,
while ψ disappears from the excess return equation.

The above equation is a discrete time version of Merton’s (1973) continuous-time
model where asset expected returns depend on ‘hedge portfolios’ that represent changes
in the investment opportunity set (i.e. the covariance term σt (r

∗
i , hm)). Also, it is clear

from the previous equation what special circumstances are required for the covariance
of the asset’s return with the market to be a sufficient statistic to price the asset (i.e.
the model reduces to the static CAPM). These conditions are:

(i) the investment opportunity set is constant, σt (r
∗
i , hm) = 0 or

(ii) the coefficient of relative risk aversion, γ = 1 or
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(iii) rm follows a univariate stochastic process, then news about future returns is per-
fectly correlated with current returns – hence σt (r

∗
i , rm) contains all information

about σt (r
∗
i , hm).

As we shall see in the next chapter, the assumption that the investment opportunity set
is constant (i.e. returns are iid ) or that γ = 1 (log utility) are important ‘special cases’
in intertemporal models.

For the market return, the above equation becomes

Et(r
∗
m,t+1 − r∗

f,t ) + σ 2
t (r∗

m)

2
= γ σ 2

t (r∗
m) + (γ − 1)σt (r

∗
m, hm)

Note that if (i) γ = 1 or (ii) γ 
= 1 and the market return is unforecastable (i.e.
σt (r

∗
m, hm) = 0), then the risk premium can be measured using the historic Sharpe

ratio. If γ > 1 and σt (r
∗
m, hm) < 0 (i.e. long-run mean reversion), then the Sharpe ratio

overstates the risk premium.

International CAPM

If we apply Campbell’s model to investment in foreign assets, the real return in local
currency depends on the local price level and the change in the real exchange rate.
If returns are nominal, then (local currency) inflation is an additional variable to be
considered. If we take country-1 as the numeraire currency, then the real return to
country-j ’s investor is (see Chapter 1)

R∗
p,t+1 = R

nom,1
p,t+1

P 1
t

P 1
t+1

Qt

Qt+1

where R
nom,1
p,t+1 = nominal return of country-j investor’s portfolio expressed in country-

1’s currency, P 1
t = price level in currency 1 and Qt = real exchange rate (good-

1/good-j ). It follows, after taking logs,

r∗
p,t+1 = r

nom,1
p,t+1 − π1

t+1 − �qt+1

where π ≡ ln(P 1
t+1/P

1
t ). If purchasing power parity (PPP) holds, then the real return to

investor-j is simply the nominal return in currency-1 less the inflation rate in currency-
1. But if PPP does not hold, the real return depends on the real exchange rate. The
(real) budget constraint for an international investor is

Wt+1 = R∗
p,t+1(Wt − Ct)

This can be linearised as indicated above (Campbell 1993) and consumption substituted
out of the equation for expected returns. With recursive utility, the expected returns
equation for asset-i (Ng 2004) is

Et(r
nom
i,t+1 − rnom

f,t ) + σ 2
t (rnom

i )

2
= γVi,m + (1 − γ )Vi,q + Vi,π + (γ − 1)(Vi,hm − Vi,hq)
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where Vi,m = covt (r
nom,1
i,t+1 , r

nom,1
m,t+1 − π1

t+1) is the covariance between the asset-i
return and the real market return. Also, Vi,q = covt (r

nom,1
i,t+1 , �qt+1), and Vi,hm =

cov(r
nom,1
i,t+1 , hm), where hm is news about future real market returns (i.e. hm =

(Et+1 − Et)
∑∞

k=1 ρk(r
nom,1
m,t+k+1 − π1

t+k+1) and finally, Vi,hq = cov(r
nom,1
i,t+1 , hq) where hq

is defined analogously to hm but is ‘news’ about future values of �qt+k+1.
It is clear from the above equation that this ‘international-CAPM’ is similar in struc-

ture to Campbell’s (1993) ‘domestic-CAPM’, but there are additional covariance terms
due to the international variable (�qt+1) and the inflation rate πt+1, because returns
are in nominal terms. The coefficient restrictions on the ‘V ’ terms are also obvious.
Vi,hm and Vi,hq are intertemporal hedging terms, but if ‘domestic’ equity returns and
real exchange rates are not predictable, these variables equal zero and the model is
a ‘static’ ICAPM (where returns depend only on covariances with the market return,
real exchange rate changes and inflation). Of course, when PPP holds, Vi,q = Vi,hq = 0,
and the model reduces to Campbell’s (1993) ‘domestic-CAPM’. Finally, if γ = 1, the
standard (static) CAPM applies. Ng (2004) attempts to implement this international-
CAPM (without consumption) for local equity returns and foreign exchange returns
for the United States, United Kingdom, Japan and Germany (July 1978–April 1998).
The market return is a world equity index. Surprises in hm and hq can be measured by
estimating a VAR in these (and other) variables, zt and future surprises then depend on
the estimated covariance matrix from the VAR (see Chapter 12). The expected equity
and FX returns rnom

i,t+1 are also assumed to depend on the z variables.
Ng (2004) finds that the intertemporal hedging terms Vi,hm and Vi,hq are (statistically)

important in determining the cross section of asset returns. However, Ng also finds that
the γ (Vi,hm − Vi,hq) term is proportional to the γVi,m + (1 − γ )Vi,q + Vi,π term so the
latter terms are sufficient to explain the cross section of returns and the model collapses
to a ‘static’ international CAPM. Therefore, the dynamic hedging terms add little from
an empirical perspective, and the model also cannot explain average returns on the
high book-to-market country portfolios of Fama and French (1998).

14.5 Habit Formation

We now turn to another form of non-separability, namely, habit persistence, which
has proved very useful in analysing the equity premium and risk-free rate puzzles. In
habit-formation models, it is not the absolute level of consumption that is important but
consumption relative to some previous benchmark level. This seems a reasonable start-
ing point since casual introspection suggests people worry about a fall in consumption
relative to its past level, even though after the fall, the absolute level of consumption
may be the second or third highest for the past 20 years. Also, social insurance con-
tracts (e.g. payouts from car, personal accident and unemployment insurance) rarely
insure the full value and therefore protect against a fall in value.

Habit-persistence models are usually representative agent models where the non-
separable utility function is of the form U(Ct , Zt ) with Zt = f (Ct−1, Ct−2, . . .). The
exact form of U(Ct , Zt ) can vary, for example, as follows.
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Individual habit persistence

U = (Ci,t − λCi,t−1)
1−γ

1 − γ
λ > 0 (23)

‘Keeping up with the Jones’s’

U = C
1−γ

i,t Cλ
t Cλ

t−1

(1 − γ )
(24)

where Ci,t is an individual’s consumption and Ct is aggregate consumption (Constan-
tinides 1990, Heaton 1995, Abel 1990, Gali 1994). In implementing these models, the
problem is that the FOCs contain terms of the form θE{(U ′

t+1/U ′
t )(Ri,t+1 − Rf,t )} = 0.

But U ′
t+1 depends on the investor’s ability to predict future consumption growth, which

is unobservable unless we make the ancillary assumption that consumption growth is
iid. Neither of these models simultaneously explains both the equity premium and the
risk-free rate puzzles.

The habit-persistence model of Campbell and Cochrane (1999) we examine in fur-
ther detail to gain an insight into why some of these models can explain a high
equity premium with standard preferences and a low ‘power coefficient’ γ , while still
predicting the low level and volatility of interest rates. The reason is that the local
curvature – CU ′′(C)/U ′(C) depends not only on γ but also on how far consumption
is above (or below) its habit level – local curvature or ‘risk aversion’ can, therefore,
be high in recessions (i.e. current consumption below habit level). The low-power
coefficient gives a low level and variability of interest rates (i.e. a low intertempo-
ral elasticity of substitution). But investors still find stocks risky, not because of low
consumption but because they dislike recessions, which give high local curvature and
hence high risk aversion. Put another way, investors dislike stocks because they pay
off poorly in recessions.

Campbell–Cochrane: Habit-Persistence C-CAPM

As noted above, a key factor in the Campbell–Cochrane model is that the (local)
curvature of the power utility function depends on the current level of consumption
relative to its habit level of the recent past. What determines utility is not a high or
low absolute level of consumption but high or low current consumption relative to its
recent average value. The ‘new’ state variable is, therefore, a ‘weighted average of
past consumption’ or ‘habit’, Xt , and the power utility function is non-separable in Ct

and Xt (so that it cannot be written Ut(Ct , Xt ) = U(Ct ) + U(Xt)):

Ut =
∞∑
t=0

θ t (Ct − Xt)
1−γ − 1

1 − γ
(25)

where Ut(Ct ,Xt ) = [(Ct − Xt)
1−γ − 1]/(1 − γ ). This utility function embodies ‘keep-

ing up with the Jones’s’ since each individual’s habit is determined by everyone else’s
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past consumption (Abel 1990). Also,

Uc(Ct , Xt) = (Ct − Xt)
−γ = (StCt )

−γ (26)

where St ≡ (Ct − Xt)/Ct = 1 − Xt/Ct and St is the ‘surplus consumption ratio’. St

is a recession indicator: as Ct falls towards its previous average level, St rises. The
curvature (i.e. loosely risk aversion) of the utility function is

ηt = −CtUcc(Ct , Xt)

Uc(Ct , Xt)
= γ

St

(27)

Hence, even if the ‘power coefficient’ γ is small (e.g. γ = 2), ηt will be large when
current consumption is close to previous ‘habit levels’, Xt . Not only that, but as we
move into a recession, St falls and ηt rises, implying increased risk aversion in a
recession. The Sharpe ratio for this model (see equation (4)) is

EtRt+1 − r

σt (Rt+1)
= ηtσt (�ct+1)ρt (�ct+1, Rt+1) (28)

where r = ln R∗
f . A high average ηt implies we can explain a high average Sharpe

ratio. Also, even if σt and ρt are constant, since ηt rises in a recession, the model
explains the counter-cyclical pattern in the Sharpe ratio. The SDF is

Mt+1 ≡ θ
Uc(Ct+1,Xt+1)

Uc(Ct ,Xt )
= θ

(
Ct+1 − Xt+1

Ct − Xt

)−γ

= θ

(
St+1Ct+1

StCt

)−γ

(29)

With ‘small’ γ = 2, we can have low ‘aversion’ to intertemporal substitution so
consumers will be willing to switch consumption between t and t + 1, with small
changes in interest rates (while the ‘large’ ηt ‘gives the high equity premium’). Indeed,
in this model,

rt = − ln Et(Mt+1) = − ln θ + γg − 1

2

(
γ

S

)2

σ 2
t (�c) (30a)

S = σ(�c)

√
γ

(1 − φ)
and g = Et(�ct+1) (30b)

The parameter φ (= 0.87) is the degree of persistence in s = ln S. Directly from (30a),
‘small’ γ = 2 implies a small responsiveness of r to changes in consumption growth, g.

There are two opposing forces at work in keeping interest rates relatively stable. As
we enter a recession, Ct falls towards Xt and marginal utility Uc = (C − X)

−γ
t rises.

In our earlier model, this led to increased borrowing (so you could consume more
when Uc was high) and interest rates were driven up. The countervailing force in this
model is that in a recession, risk aversion ηt is high and this leads to an increase in
precautionary saving, which tends to lower interest rates. These two effects tend to
cancel each other out, leading to near-constant interest rates.

Essentially, what Campbell–Cochrane have cleverly done is to introduce non-
linearities in the response of Mt+1 to consumption growth (see (29)). The log of the
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surplus consumption ratio st+1 follows a slow mean reverting AR(1) process with a
non-linear response λ(st ) to shocks in consumption growth vt+1:

�ct+1 = g + vt+1 vt+1 ∼ niid(0, σ 2) (31)

st+1 = (1 − φ)s + φst + λ(st )vt+1 (32a)

where

λ(st ) = 1

S

√
1 − 2(st − s) − 1 (32b)

The rather complex process in (32) ensures that consumption is always above habit
since S = es > 0. The process for st+1 in (32) when substituted in (29) for ln Mt+1

gives
mt+1 = a + b(st ) + d(st )�ct+1 (33)

where b(st ) and d(st ) are non-linear functions of st and the parameters θ, γ, φ. Hence,
mt+1 responds not only to consumption growth �ct+1 (as in the non-habit C-CAPM)
but the sensitivity of mt+1 to �ct+1 depends on the state of the economy, st .

What about relative returns (ERi /ERj ) in this model? With γ = 2, then from the
definition of Mt+1 in (29), a large value for ERi /ERj must come from the (St+1/St )

−γ

term, that is the covariance of Ri or Rj , with consumption relative to habit – a kind
of ‘recession’ variable. In the non-habit C-CAPM, relative returns are determined
by assets’ return covariances with consumption growth, per se, and not consumption
relative to its recent average level. This subtle distinction makes a major difference to
the predictions of the model.

Calibration and Simulation

There are no formal statistical tests since this is a calibration model. It is assessed
by simulation and then checking the model output with the stylised facts found in
real world data. Using past data, values for the underlying ‘fundamental values’ are
taken to be g = 1.89, σ = 1.9, r = 0.94. The parameter φ = 0.87 is chosen so the
model produces the autocorrelation of the price–dividend ratio found in the data. Also
γ = 2 is used and S = 0.57 follows. The model is then simulated 10,000 times using
vt+1 ∼ niid(0, σ 2) and various statistics calculated. A reasonable value of θ = 0.89 is
used, which generates a (mean) interest rate of 0.94% and a Sharpe ratio of 0.5. From
simulations of the model, we can obtain a generated data series for stock prices Pt and
returns. A regression of the return over different horizons on the price–dividend ratio
shows a negative coefficient and R-squared that both increase (in absolute terms) with
horizon and is close to those found in the real world data. So the model ‘simulates’
the return predictability, the high Sharpe ratio and low level and volatility of real
interest rates found in real world data. But note that the equity premium is explained
by assuming high risk aversion (i.e. ηt is high when Ct is close to habit Xt ). However,
the risk-free rate is decoupled from ηt and depends on γ , which can be small, so it
gives low variability in the risk-free rate.
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The marginal utility of consumption is given by

Uc = C
−γ
t

(
Ct − Xt

Ct

)−γ

so consumers dislike low consumption (as in the standard model) but they also dislike
recessions (i.e. when consumption is low relative to its recent past level). Stocks
are risky partly because consumption is volatile (but not very much) but mainly
because bad stock returns tend to happen in recessions (i.e. are correlated with the
habit variable).

Campbell and Cochrane (1999) use the above model to throw light on why
the C-CAPM performs so badly relative to the standard-CAPM or the conditional-
CAPM – that is where forecasting variables like the dividend-price ratio also affect
asset returns (Cochrane 1996). They generate returns and consumption data from
the habit-formation model at high frequency so with only one shock in the model,
consumption growth, returns and the SDF are perfectly positively conditionally
correlated by construction. This is because over small time horizons, the non-linearities
in the model virtually disappear. However, as the time interval is extended the response
of consumption growth, returns and the discount factor respond differently to the
‘shock’ and are therefore imperfectly unconditionally correlated and, for example, the
dividend–price ratio predicts future returns. The standard-CAPM and the conditional-
CAPM predict the cross section of returns better than the habit C-CAPM, even though
the latter is the true model. This is because the market return is better unconditionally
correlated with the true SDF as it is affected when the dividend–price ratio changes,
whereas consumption growth is not. Of course, this establishes a prima facie case
for the habit–consumption model but does not demonstrate it is the correct model of
asset returns.

14.6 Equity Premium: Further Explanations

Incomplete Markets

General equilibrium incomplete markets models are rather complex and are often solved
numerically, and it is often difficult to extract the intuitive aspects of the models.
Nevertheless, in this section, we compare the complete markets SDF model with two-
period and infinite horizon incomplete markets models. The latter focus on individual
consumption, whereas SDF models usually invoke the ‘representative agent’, and hence
it is aggregate consumption and its correlation with asset returns that is the key driving
variable for expected returns.

Suppose individuals can insure themselves and hence offset any individual idiosyn-
cratic shocks. For example, faced with unemployment, the individual either has an
insurance contract that pays off in this ‘bad’ state or has sufficient financial assets
(savings) to ‘weather the storm’. Then an individual’s consumption will be similar to
aggregate per capita consumption. But then with standard preferences, we have the
equity premium puzzle again.
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The incomplete markets literature keeps the standard preferences but notes that
when markets are incomplete, individual consumption may vary more than per capita
consumption. Hence, individual consumption may be more highly correlated with stock
returns, thus requiring lower risk aversion to explain the observed equity premium. The
additional consumption variability in incomplete markets also implies that individuals
save more to self-insure against consumption shocks. This increased saving then lowers
the average risk-free rate. Hence, such models might be capable of explaining both
parts of the equity premium puzzle (Weil 1992).

Two-period general equilibrium models with incomplete markets are not sufficient
to capture the ‘self-insurance’, which is possible over long horizons. For example, if
I live for only two periods (and have zero bequests), then a negative income shock in
the second year will be fully reflected in lower individual consumption, thus increasing
the variability of one’s consumption. But if I expect to live for many years, then I can
smooth out my consumption by saving less in the ‘shock period’ and saving more in
the future when my income is high. This dynamic self-insurance reduces the impact
of idiosyncratic risk on individual consumption.

Kocherlakota (1996) provides a ‘neat’ intuitive example of dynamic self-insurance
in an incomplete markets infinite horizon model. This leads to smaller savings than in
the two-period incomplete markets case and hence is much less successful in generating
the low risk-free rate we require.

In this ‘model’, there is a continuum of identical infinitely lived agents with random
incomes that are independent of each other (so the variability in per capita income
is zero). Individuals cannot write insurance contracts against the variability in their
individual income. They can make risk-free loans to each other but cannot borrow more
than $B from each other. Assume initially that $B is not binding because (permanent)
income ymin/r never falls below $B. For every lender, there must be a borrower so
ymin > 0, if there is to be trade in equilibrium.

The probability of an uninsurable fall in consumption is smaller in the infinite
horizon case than the two-period case. Although aggregate net saving is zero, the
individual has a line of credit of ymin/r to ‘buffer’ a fall in consumption and only a
long sequence of negative income shocks could make this constraint binding. Hence,
most individuals will not face a binding constraint and, therefore, the extra saving
required for self-insurance, even with incomplete markets, will be less than in the
two-period model. Hence, the incomplete markets model with an infinite horizon give
savings levels that approach those found in the complete markets model and hence do
not ‘fit’ the ‘low’ observed risk-free rate.

In the above model, shocks to income are stationary and eventually die out. In the
incomplete markets model of Constantinides and Duffie (1996) shocks to individual
labour income are permanent. Dynamic self-insurance over an infinite horizon is then
impossible because the permanent income shock must be fully reflected in consumption.
If permanent income falls by $x, then to keep a smooth profile of consumption, the
latter must also fall by $x in every period. Hence, in this model, the risk-free rate may
be much lower than in the complete markets case.

The Constantinides and Duffie (1996) model is ingenious and is ‘reverse engineered’
to generate any equity premium, together with low and relatively constant interest
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rates and requires no transactions costs or borrowing constraints. As we have seen,
idiosyncratic risk, which is uncorrelated with asset returns, has no effect on equilibrium
returns. If we make idiosyncratic risk correlated with the market, individuals can trade
financial assets with each other to ‘remove’ the correlation. For example, if A gets
more labour income in a stock market boom and B gets more labour income when the
market is low, then A will sell assets to B, and such trades will remove the correlation
between the individual income shocks and asset returns and therefore will have no
effect on prices.

The way the C–D model generates ‘high risk’ (with low risk aversion) is very
subtle and basically depends on the non-linearity of marginal utility. Income shocks
are uncorrelated with returns so they cannot be traded away. But non-linear marginal
utility transforms these shocks into marginal utility shocks that are correlated with
asset returns and hence affect equilibrium returns. The C–D model is ‘engineered’ so
that when the market declines, the variance of idiosyncratic shocks rises.

The basic intuition (Cochrane 2000) can be seen by summing the usual FOC over
all N individuals (j = 1, 2, . . . , N)

0 = E{SN [(C(j)

t+1/C
(j)
t )−γ ](Rt+1 − Rft )} (34)

where SN = (1/N)
∑N

j=1 [(C(j)

t+1/C
(j)
t )−γ ] is the sum over j individuals and C(j) is

the consumption of individual j . If the cross-section variation in consumption growth
is lognormal,

0 = E

{
exp

[
−γ (SN�c

(j)

t+1) + γ 2

2
σ 2

N(�c
(j)

t+1)

]
(Rt+1 − Rft )

}
(35)

where σ 2
N(.) represents the variance of consumption growth across all individuals. The

σ 2
N(.) term introduces additional ‘priced’ risk, if it is correlated with asset returns.

Since the C–D model can be engineered to fit the stylised facts, its validity hinges
on the key assumptions that (i) shocks to individual labour income are permanent (ii)
whether cross-section uncertainty about individual income is higher when the market
is lower – that is, do you require a high equity premium because stock returns are low,
when income shocks are also ‘bad’. Evidence in Heaton and Lucas (1996) and Deaton
and Paxson (1994) on US cross-section data suggest that C–D’s assumptions do not
hold (e.g. the autocorrelation of undiversifiable income shocks may be around 0.5
rather than 1).

The C–D model and the various habit-persistence models, although very different
in structure, have one thing in common. Consumers do not fear a fall in returns and
wealth per se but a fall in wealth when they are already feeling ‘bad’. In the habit-
persistence models, bad times are when consumption is low relative to its recent past,
while in C–D, ‘bad’ is when individual labour market risk is high. Broadly speaking,
the additional state variable in both models could be described as a ‘recession variable’.

Trading Costs

It is possible that the additional cost of trading stocks over (risk-free) bonds drives
a wedge between these two returns. Suppose trading bonds is costless. Over an infi-
nite horizon, with constant dividends, the return on stocks is RS = D/P . It can be
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shown that if you hold stocks for ever, then the upper bound on the equity pre-
mium (Kocherlakota 1996) is

RS − Rf = τRf

where τ is the proportionate cost of trading stocks (relative to the zero cost assumed
for trading bonds). Thus, for Rf = 1%, the additional transactions cost would have to
be 600% to explain an equity premium of 6%. Clearly if an individual has a binding
borrowing constraint, you cannot smooth your consumption after a negative income
shock, without selling stocks (i.e. you cannot hold stocks for ever). If this happens fre-
quently and it is expensive to trade stocks, you may demand a higher equity premium,
but it is unlikely that this effect can account for the large observed equity premium.

Borrowing constraints can potentially lower the risk-free rate (compared with a
situation of no borrowing constraints). If people have a negative income shock and
their borrowing constraint is binding then they cannot borrow any further. Hence, given
that demand must equal supply in the bond (loan) market there are now more lenders
than borrowers and the interest rate must be lower (than in a model with no borrowing
constraints). But those facing a borrowing constraint could sell stocks and use the funds
to smooth their consumption. However, if they are also constrained in the stock market
(i.e. have no stocks), then the supply of stocks exceeds the demand (compared to a
no-constraints model) and the equity return would fall – hence, the equity premium
might be much the same in these models where some agents are constrained as it is in
the ‘no-constraints’ standard model (Kocherlakota 1996).

14.7 Summary
• The C-CAPM is consistent with near-zero predictability in stock, bond and FX

returns over very short horizons (e.g. up to 1 month). The C-CAPM allows pre-
dictability of returns over longer horizons as conditional forecasts of consumption
and return volatility change over time (and possibly the coefficient of risk aversion
also changes). However, variables used in empirical return predictability regressions
are often not directly related to the moments of the C-CAPM.

• The C-CAPM with power utility (over the level of consumption) cannot explain the
observed high risk premium on stocks (i.e. the equity premium puzzle) together with
the low mean level and variability in the risk-free rate (i.e. the risk-free rate puzzle).

• The equity premium puzzle also manifests itself in the failure of the C-CAPM
to explain the observed Sharpe ratio (for, say, the S&P500), the multi-asset H–J
bound and the cross-section and time-series behaviour implied by the C-CAPM
Euler equation.

• Attempts to ‘solve’ the equity premium puzzle using the SDF model have met with
some but not complete success, most notably by introducing additional state variables
(e.g. wealth, habit consumption) into the utility function.

• Similarly, ‘solving’ the equity premium puzzle using an incomplete markets approach
is possible, but the required assumption of permanent shocks to individual income
would not be widely accepted.
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Appendix: Hansen–Jagannathan Bound

Consider a regression projection of Mt on a set of N asset pay-offs Xt (N × 1):

Mt − E(M) = (Xt − E(X ))′β + εt (A1)

where Mt is a scalar, whilst X and β are both (N × 1). Using (A1), and the fact that
E(εt ) = E(εtX ) = 0,

(Mt − E(M))(Xt − E(X )) = (Xt − E(X ))(Xt − E(X ))′β + (Xt − E(X ))εt (A2)

Hence:
E(MtX ) = E(M)E(X ) + �β (A3)

where � = cov(X , X ′). Since M correctly prices all the assets P = E(MtX ) and
from (A3), we solve for β:

β = �−1[P − E(M)E(X )] (A4)

From (A1) and noting that in a regression εt is uncorrelated with Xt by construction,
then

σ 2(M) = σ 2{(Xt − E(X ))′β} + σ 2(ε) = σ 2(z) + σ 2(ε) (A5)

where z = Xt − E(X )′β, hence Ez = 0 and

σ 2(z) ≡ E(z′z) = β ′�β (A6)

Substituting for β from (A4):

σ 2(z) = [P − E(M)E(X )]′�−1[P − E(M)E(X )] (A7)

Substituting (A7) in (A4) and noting that σ 2(ε) > 0, we obtain the inequality found in
the text

σ 2(M) ≥ [P − E(M)E(X )]′�−1[P − E(M)E(X )] (A8)

Dividing through by P (element-by-element), the P vector becomes a vector of
ones = e1 and the X vector, a vector of gross returns R∗, hence:

σ 2(M) ≥ [e1 − E(M)E(R∗)]′�−1
R [e1 − E(M)E(R∗)] (A9)

where �R is now the variance–covariance matrix of returns. When we have only one
risky asset, we set e1 = 1, �R = σ 2(R∗), and given E(M) = 1/R∗

f , (A9) reduces to
the Sharpe ratio version of the Hansen–Jagannathan bound, equation (7) in the text:

σ(M)/E(M) ≥ E(R∗ − R∗
f )/σ (R∗) (A10)



15
INTERTEMPORAL ASSET
ALLOCAT ION: THEORY

Aims
• Solve a two-period consumption-portfolio model in which agent’s utility is time-

separable and depends only on consumption. Assets are used to carry over wealth
from one period to the next (and labour income does not enter the budget constraint).
Agents simultaneously choose desired consumption and the desired amounts to hold
in risky and risk-free assets.

• Show that in the two-period model, the general solution has consumption and asset
shares, depending on current wealth and a forecast of next period’s expected returns
on the risky assets (as well as the risk-free rate and a measure of risk aversion).

• Extend the model to the multi-period case where agents at time t decide on their
optimal consumption path (Ct , Ct+1, . . . , CT ) and their optimal asset proportions
(αt , αt+1, . . . , αT ) for all future periods. The general form of the solution (for time-
separable utility) is the same as for the two-period case, and consumption and asset
shares depend on current wealth and all future expected returns.

• For the special case of power utility and iid returns, the solutions for consumption
and asset shares are the same in the two-period case as in the multi-period case
(i.e. independent of horizon). The consumption–wealth ratio and asset shares are
both independent of wealth but depend on expected asset returns. For log utility, the
consumption–wealth ratio is independent of wealth (as for power utility) but now
is also independent of expected returns.

• To show how the FOCs of the SDF model, E{Ri,t+1Mt+1} = 1 can be derived from
the multi-period portfolio-consumption optimisation problem.
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15.1 Two-Period Model
The model assumes individuals wish to maximise utility that depends only on consump-
tion today and tomorrow. Individuals choose the optimal amounts of consumption Ct

and Ct+1 and the amounts to hold in a set of risky assets and a risk-free asset.
We present this two-period model in some detail because it turns out that the solution

technique used is also applicable in a multi-period model (with some minor modifi-
cations). The solution technique involves a backward recursion, that is, we first solve
the model for the final period (t + 1) and only then do we proceed to solve for period
t (i.e. today). This will allow us to see the role played by the value function and the
Bellman equation, which are used in the multi-period framework. As we shall see,
even in a two-period model, a simple closed form solution for consumption and asset
holdings is often difficult to obtain. This is why portfolio-consumption models are
often tested using some form of Euler equation or first-order conditions (FOC), as
we saw in Chapter 14 on the C-CAPM. Of course, one can always solve these FOCs
for consumption and asset holdings using numerical techniques, although such results
are not immediately interpretable. But, given a numerical solution technique, we can
always change an exogenous or state variable (e.g. the level of wealth) and measure
its effect on equilibrium consumption and asset holdings.

Although our two-period model is an equilibrium model, it is not a general equi-
librium model because the fundamental sources of changes in asset returns (e.g.
productivity and physical investment), that is, the supply side of the economy, are
not explicitly modelled.

To aid economic interpretation of the model, we assume power utility (and for γ = 1,
logarithmic utility). Two key results using this particular class of utility functions are
that consumption is proportional to wealth and asset shares are independent of wealth.

The Model

Individuals choose consumption (Ct , Ct+1) and asset shares αi to maximise two-period
(time-separable) utility:

max U = U(Ct ) + θEtU(Ct+1) 0 < θ < 1 (1)

where Et is the expectations operator. (Somewhat cavalierly, we have used U on the
left-hand side to represent ‘total utility’ – we could have introduced another symbol
here to avoid any confusion with the time t and t + 1 utility functions U(Ct )and
U(Ct+1)–but we think no confusion will arise from this.) There is no labour income,
so the budget constraint is

Wt+1 = Rt+1(Wt − Ct) (2)

where Wt is the initial endowment of real wealth and Rt+1 is the gross (real) return
on the asset portfolio (we cease using R∗

t+1 for the gross return, for notational ease).
Hence,

R =
n∑

i=1

αiRi where
n∑

i=1

αi = 1 (3)
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and αi = proportion of wealth held in asset i. Assume a risk-free asset with return Rf

(the nth asset) then take m = n − 1 and αn = 1 − ∑m
i=1 αi . So, once we have solved

for the optimal values of αi (i = 1, 2, . . . , m), the optimal value for the share of the
risk-free asset follows from the above identity. Portfolio returns are

R = αnRf +
m∑

i=1

αiRi =
(

1 −
m∑

i=1

αi

)
Rf +

m∑
i=1

αiRi

= Rf +
m∑

i=1

αi(Ri − Rf) (4)

We have incorporated the constraint
∑n

i=1 αi = 1 into equation (4) so that the coeffi-
cients on αi (i = 1, 2, . . . , m) are now unconstrained. To solve the dynamic program-
ming problem, we require an end-point condition that (without loss of generality) is
taken to be a zero bequest, so that

Wt+2 = 0 and hence Ct+1 = Wt+1 (5)

The maximand (1) can be written

max U = U(Ct ) + θU(Wt+1) = U(Ct) + θEtU(Rt+1[Wt − Ct ]) (6)

We have now incorporated the budget constraint (2) in (6), and this little ‘trick’ implies
we do not need to use Lagrange multipliers in solving the model. Note that the portfolio
return Rt+1 is a function of the αi . Assuming power utility,

U(C) = C1−γ /(1 − γ ) 0 < γ < 1 (7a)

U ′(C) = C−γ (7b)

Since Ct+1 = Wt+1, note that

U ′(Ct+1) = U ′(Wt+1) = W
−γ

t+1 (7c)

We already know the general form of the solution to the maximisation problem, which
is that the ‘choice variables’ for the individual Ct and αit (i = 1, 2, . . . , m) must
depend on the exogenous or state variables, that is, Wt and EtRi,t+1 plus of course
any parameters such as γ and θ . Hence, the general closed-form solutions will be of
the form

Ct = h(Wt, Etf (Ri,t+1), Rf, θ, γ )

αit = g(Wt, Etf (Ri,t+1), Rf, θ, γ )

where f and g are (possibly) non-linear functions (which are often difficult or impos-
sible to derive analytically).
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Optimal consumption: power utility

The FOC for Ct from (6) is

∂U

∂Ct

= 0 = U ′(Ct ) + θEt

(
∂U

∂Wt+1

) (
∂Wt+1

∂Ct

)
(8a)

assuming power utility using (7b) and (2)

0 = C
−γ
t + θEt{W−γ

t+1(−Rt+1)} (8b)

Substituting for Wt+1 from (2) and rearranging(
Wt − Ct

Ct

)
= [θEt{R(1−γ )

t+1 }]1/γ = Et [f (Rt+1(αi), γ, θ)] (9)

where f (.) is a non-linear function of Rt+1, which is itself a function of the asset
shares αi and the individual asset returns (Rit+1 , Rft ). Rearranging,

C∗
t = 1

[1 + Etf (Rt+1(αit ), θγ )]
Wt (10)

Hence, optimal consumption is proportional to wealth and depends on the investment
opportunity set, that is, expected returns on all the non-risky assets and the risk-free
asset. The consumption–wealth ratio depends on Et [f (Rt+1, Rf, θ, γ )] so the impact
of the expected portfolio return, Rt+1, on current consumption depends on income
and substitution effects (see below) – a higher expected return tends to reduce current
consumption (substitution effect) but it also increases next period’s wealth (income
effect), which tends to lower current consumption. As we shall see, for the special
case of γ = 1, these two effects just cancel each other, and consumption is indepen-
dent of expected returns. Note that (10) is not the ‘full’ closed form solution for Ct

because Rt+1 depends on the αi decision variables.

Optimal asset shares

The FOC for αi is

∂U

∂αi

= 0 = θEt

(
∂U

∂Wt+1

) (
∂Wt+1

∂αi

)
≡ θEt

{
Uw

∂Wt+1

∂αi

}
i = 1, 2, . . . , n (11)

Using (2) and (4) and the power utility function for U(Wt+1),

0 = θEt{W−γ

t+1(Wt − Ct)(Ri − Rf)} (12)

Substituting for Wt+1 from (2)

0 = θEt{[Wt − Ct)Rt+1]−γ [(Wt − Ct)(Ri,t+1 − Rf)]}
0 = Et{R−γ

t+1(Rit+1 − Rf)} (13)
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since the θ(Wt − Ct)
1−γ can be taken out of the expectation (as it is known at time t)

and then it ‘cancels out’. Remember that Rt+1 depends on αi , so substituting from (4),

0 = Et

{[
Rf +

m∑
i=1

αit (Rit+1 − Rf)

]−γ

(Rit+1 − Rf)

}
(14a)

There are m equations of the form (14a) that can be solved to give the optimal values
for αit . Schematically, the solution to (14a) can be represented

α∗
it = g(Et [f (Rk,t+1)], Rft , γ ) for k = 1, 2, . . . , m (14b)

Equation (14) is more exciting than it looks at first sight. Suppose there is only one
risky asset i, so that (14) is the conditional expectation of a non-linear function of
the single random variable Ri . Once we know the probability density function for Ri ,
we can calculate the expected value and obtain the solution for αit . When we have
m risky assets, the optimal solution for any αit depends on the conditional expected
(one-period) returns on all of the m risky assets. We therefore need to know the mul-
tivariate distribution of one-period returns. Heuristically, equation (14) can be directly
solved for αit = g(f (EtRk), Rf, γ ) for k = 1, 2, . . . ,m. A key result from (14) is that
the proportion held in risky asset i is independent of current wealth (and hence of pre-
vious savings-consumption decisions). So, once we have the solutions α∗

it , we can use
these in (10) to immediately solve for (C∗

t /Wt) as a non-linear function of expected
returns on all assets. This ‘separability’ property arises for any isoelastic utility func-
tion such as power utility (and hence logarithmic utility, γ = 1). The fact that α∗

it is
independent of current wealth is useful when seeking to aggregate over individuals’
assets holdings – although this need not detain us here. Note, however, that, in gen-
eral, the FOCs imply that the α∗

i depend on both wealth and expected returns ERi

and hence (10) and (14b) have to be solved simultaneously (e.g. this is the case for
quadratic utility).

Solution: power utility

• Asset shares depend only on expected returns (and γ ) and are independent of wealth.

• The consumption–wealth ratio depends only on expected returns and is also inde-
pendent of wealth (since the αi’s are independent of wealth – see (14b)).

It is worth noting that in equation (6), the maximand

U(Wt) = U(Ct ) + θEtU(Wt+1) (6)

can be interpreted as implying that at t , total utility U(Wt) depends on the exogenous
state variable Wt . Also (6) is a recursive equation. By solving backwards from t + 1,
we have found the optimal C∗

t and α∗
it and, hence, using (2), Wt+1 = Rt+1(Wt − Ct)

can be obtained. Hence, one could also calculate the optimal value of utility U(Wt)

in (6). This recursive relationship is very important in the multi-period framework since
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the latter can be viewed as a series of one-period problems like (6). In a multi-period
context, having obtained U(Wt), we substitute this value in the right-hand side for
Et−1(Wt ) and proceed to choose the optimal Ct−1 and αt−1 on the basis of similar
FOCs and then obtain a value for U(Wt−1). We continue the backward recursion until
we determine the optimal values Co, α0i at t = 0 for the multi-period case. This is
Bellman’s recursive optimal solution method in stochastic dynamic programming.

Solution: logarithmic utility, γ = 1

• Note that the general form of the FOCs for the αi in equation (14) are unchanged
when γ = 1, so the optimal α∗

i remains independent of the level of wealth.

• Consumption is not only proportional to wealth but is also independent of the invest-
ment opportunity set (i.e. expected returns). From the FOC (9), with γ = 1,

Ct = Wt

1 + θ
(15)

Here, the income and substitution effects of a change in expected returns just cancel
so that consumption remains unchanged.

Evaluating Expectations

Some readers might be a little perplexed about evaluating expectations terms in the
above non-linear functions. In principle, this is easy since for any continuous function
g(x) with probability distribution function f (x), the expected value of g(x) (e.g.
g(x) = x2) is

Et [g(x)] =
∫ ∞

o

g(x)f (xt |xt−1, xt−2, . . .) dx (16)

where x = Ri the gross return, so the integral is from 0 to ∞. The value of the
integral is obtained either analytically or (more usually) numerically. For example,
f (x) might be assumed to be the normal density function. The density function f (.) is
the conditional density, since returns at t might depend on returns at t − 1 or earlier (i.e.
time-varying or predictable returns). In the special case of iid returns, the conditional
distribution is the same as the unconditional one.

To see that (16) just results in a known ‘number’, consider a simple discrete case
with only two possible outcomes for the gross return, namely, λ and 1/λ (with λ known,
e.g. λ = 1.1) and

Prob{Ri = λ} = 1/2 = Prob(Ri = 1/λ) λ>1 (17)

Then for g(R) = R, for example,

E[g(R)] = ER = (1/2)λ + (1/2)λ−1 = 1.0045 (18a)



S E C T I O N 1 5 . 1 / T W O - P E R I O D M O D E L 361

and for g(R) = R2,

E[g(R)] = ER2 = λ

2

2

+ λ

2

−2

= 1.0182 (18b)

So, now we know the solution technique for a consumption-portfolio problem over
two periods. These FOCs apply for every individual, and we have obtained optimal
values for C∗

t and α∗
it for each individual.

Hunt the C-CAPM/SDF Model of Equilibrium Returns

To move from FOCs for the individual to those for the market as a whole, we have
to make some assumptions about asset supplies and invoke the ‘representative agent’
assumption (i.e. identical utility functions). Then we can analyse the behaviour of
equilibrium asset returns.

In the previous section, we concentrated on getting closed-form solutions for con-
sumption and asset shares, but this model must have the FOCs for the C-CAPM/SDF
model ‘hidden away’ somewhere. Indeed, it does, as we can see by setting up the
maximisation problem using Lagrange multipliers. We have

max U = U(Ct ) + θEt{U(Ct+1)} (19)

where the budget constraint is

Ct+1 = Wt+1 = Rt+1(Wt − Ct) with Rt+1 =
n∑

i=1

αiRi,t+1 (20)

One asset may be risk free and the constraint is:

n∑
i=1

αi = 1 (21)

The Lagrangian is

U(Ct ) + θEt{U(Ct+1)} + λ

(
1 −

n∑
i=1

αi

)
(22)

Using (20) and differentiating (22) in turn with respect to Ct , then αi , the FOCs are

U ′(Ct ) = θEt{U ′(Ct+1)Rt+1} ≡ θEt

{
U ′(Ct+1)

n∑
i=1

αiRi,t+1

}
(23)

θEt{U ′(Ct+1)Ri,t+1} − λ/(Wt − Ct) = 0 i = 1, 2, . . . , n (24)

From (24), we see that the investor chooses between assets i and j to equalise expected
marginal utilities at t + 1

Et{U ′(Ct+1)Ri,t+1} = Et{U ′(Ct+1)Rj,t+1} (25)



362 C H A P T E R 1 5 / I N T E R T E M P O R A L A S S E T A L L O C AT I O N : T H E O RY

Multiplying (24) by αi , summing from 1 to n and then substituting in (23) gives

U ′(Ct ) =
n∑

i=1

αi[λ/(Wt − Ct)] = λ/(Wt − Ct) (26)

Substituting (26) in (24) gives the FOC as represented in the SDF model

θEt

{
U ′(Ct+1)

U ′(Ct )
Ri,t+1

}
= Et{Mt+1Ri,t+1} = 1 i = 1, 2, . . . , n

The above equation subsumes the FOC for the risk-free rate RfEt(Mt+1) = 1. The only
difference between this and our previous ‘perturbation approach’ (see Chapter 11)
is that we have introduced an explicit budget constraint and explicitly solved the
constrained maximisation problem. Hence, all the results in Chapter 11 hold for this
consumption-portfolio model.

It is perhaps worth noting that introducing (non-stochastic) exogenous labour income
Yt would have implied a budget constraint

Ct+1 ≡ Wt+1 = Rt+1(Wt + Yt − Ct)

and the key FOCs remain unchanged (but Wt + Yt replaces Wt ).

15.2 Multi-Period Model

The agent acts as a price-taker in asset markets and then chooses today’s consumption
and asset shares to maximise lifetime utility. As we shall see, this multi-period problem
can be transformed into a sequence of two-period problems by invoking the concept
of a value function. The value function is a recursive relationship that can be ‘solved
backwards’ from the terminal date and is often referred to as the Bellman equation in
the stochastic dynamic programming literature. So, at t , to calculate today’s optimal
values, you have to calculate all the optimal values ‘backwards’ from T to t . However,
having chosen the optimal C∗

t , C∗
t+1, and so on, at time t, there will be new information

that arrives between t and t + 1. Hence, at t + 1, we recalculate the new optimal value,
C̃∗

t+1, which will not usually be equal to that chosen at time t , for period t + 1 (i.e.
C∗

t+1 �= C̃∗
t+1). The general closed-form solution at t to the intertemporal problem will

be of the form

Ct = f (Wt, EtRt+j,γ, θ, T − t) (27a)

αit = g(Wt,EtRt+j,γ, θ, T − t) (27b)

where γ represents parameter(s) from an intertemporal utility function. Closed-form
solutions are often not possible, but for power and logarithmic (γ = 1) time-separable
utility functions, we can make some progress in this direction. These intertemporal
models are sometimes easier to deal with in continuous time, but for consistency (and
perhaps added realism), we will only use discrete time.
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Preferences and Budget Constraint

The individual is assumed to maximise a time-separable utility function that depends
(only) on current consumption Co and all future consumption (C1, C2, . . .) and the
current period is t = 0

U = E0

T −1∑
t=0

U(Ct , t) + B(WT , T ) (28)

where B(.) is the bequest function at time T . We are going to use power utility since
although this is a very special case, it does save ‘miles’ (kilometres) of algebra and
allows us to see inside the ‘black box’ of the FOCs. For power utility, we have

U(Ct , t) = θ tC
1−γ
t /(1 − γ ) (29a)

B(WT , T ) = θT W
1−γ

T /(1 − γ ) (29b)

To simplify the notation, we will drop the separate time variable t , so, for example,
U(Ct , t) ≡ U(Ct). The budget constraint is

Wt+1 = Rt+1(Wt − Ct) (30)

and the portfolio return is

Rt+1 =
m∑

i=1

αit (Ri,t+1 − Rft ) + Rft (31)

with αit being the asset shares to be determined and Ri are the m = n − 1 risky asset
returns. The risk-free asset share is given by αn = 1 − �m

i=1αi . The solution technique
closely follows that for the two-period case analysed above, although the algebra does
get a little detailed and involved – ‘so hold on to your summation and expectations
operators’. Note that although we present the solution for m values of αit , the math
would go through (a little neater) if we had just one risky asset (and one risk-free asset).

The Value Function

To solve these multi-period problems, we introduce the value function J (Wt) (some-
times called the derived utility of wealth function) defined as

J (Wt) = max Et

{
T −1∑
s=t

U(Cs) + B(WT )

}
(32)

Note that J (Wt) is the maximised value of the utility function at time t. Hence, optimal
decisions are taken from any time t ≥ 0 onwards. The value function will allow us to
express the multi-period problem as a sequence of two-period problems. It follows that

J (WT ) = B(WT ) (33)
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At T − 1, the individual chooses CT −1, αT −1 to maximise

J (WT −1) = max︸︷︷︸
CT −1,αT −1

{U(CT −1) + ET −1B(WT )} (34)

Substituting from (30) and noting from (31) that Rt+1 is a function of αit , (34) becomes

J (WT −1) = max
CT −1,αT −1

{U(CT −1) + ET −1{B(RT (αi,T −1)(WT −1 − CT −1))}} (35)

and we have a familiar two-period problem. The FOC for CT −1 gives

0 = U ′(CT −1) + ET −1{BW(WT )(∂WT /∂CT −1)} (36)

where BW = ∂B/∂WT = θT W
−γ

T for power utility and from (30)

∂WT /∂CT −1 = −RT (37)

Hence, (36) can, in general, be written

0 = U ′(CT −1) − ET −1{BW(WT )RT (αi)} (38a)

= U ′(CT −1) − ET −1

{
BW(WT )

[
m∑

i=1

αi,T −1(Ri,T − Rf) + Rf

]}
(38b)

The FOC for αi after differentiating (34) and using (30) and (31) is

0 = ET −1{BW(WT )(Ri,T − Rf)} (i = 1, 2, 3, . . . , m) (39)

Multiplying (39) by αi and summing over i = 1, 2, . . . , m

ET −1{
m∑

i=1

αiRi,T BW(WT )} = RfET −1{BW(WT )} (40)

or

0 = ET −1{BW(WT )

m∑
i=1

αi(Ri,T − Rf)} (41)

Substituting from (41) in the FOC for consumption (38b), an alternative expression is

U ′(CT −1) = RfET −1{BW(WT )} (42)

In principle, the single FOC (38b) and the m FOCs (39) are m + 1 equations in m + 1
unknowns, namely, CT −1 and the m values αi,T −1. These can be solved for the optimal
asset shares and consumption at T − 1. Let us do this for the special case of power
utility where

BW(WT ) = ∂

∂WT

θT W 1−α
T /(1 − α) = θT W

−γ

T (43a)

U ′(CT −1) = θT −1C
−γ

T −1 (43b)
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Substituting (43a) and (43b) in the FOC, (38a) and using (30) and (31) to ‘substitute
out’ WT , we obtain after some manipulation

θT −1C
−γ

T −1 = θT (WT −1 − CT −1)
−γ ET −1{R1−γ

T (αi)} (44)

or
C∗

T −1

WT −1
= 1

1 + [θET −1{R1−γ

T (αi)}]1/γ
(45)

Where RT (αi) indicates that RT is a function of the asset shares. As in the two-period
case, with power utility, we find that optimal consumption is proportional to wealth
and also depends on expected returns. Note that for log utility γ = 1, consumption is
proportional to wealth but independent of changing investment opportunities (i.e. the
expected return on assets) – as in the two-period model. Using power utility, let us
turn to the FOC for asset shares, equation (40), reproduced here:

ET −1{Ri,T BW(WT )} = ET −1{RfBW(WT )} (46a)

Using (43a)
ET −1{Ri,T W

−γ

T } = ET −1{RfW
−γ

T } (46b)

Now substitute WT = (WT −1 − CT −1)RT from (30) and for RT from (31) and after
cancelling terms in (WT −1 − CT −1), we obtain

ET −1

[
(Ri − Rf)

(
m∑

i=1

αi,T −1(RiT − Rf) + Rf

)−γ ]
= 0 i = 1, 2, . . . , m (47)

Equations (47) are m equations in the m unknowns αi and can be solved for

α∗
i,T −1 = g(ET −1Ri,ET −1Rj , . . . , Rf) (48)

once we have the density function for returns. As in the two-period problem, α∗
i

are independent of wealth – therefore, all power utility investors hold the same asset
proportions. Of course, power utility is a very special case and, in general, αi,T −1

would also be a function of wealth. Asset proportions also depend on expected returns
but if returns are iid, then αi,t is the same regardless of the planning horizon of the
investor, T − t . This special case is often referred to as myopic behaviour, because
in a multi-period model, optimal asset proportions are identical to those of a one-
period investor.

Having solved for α∗
i,T −1 from (47), these can be substituted in (45) to solve for

C∗
T −1/WT −1. Again, as with the two-period case, with power utility, we do not need

to solve for α∗
T −1 and C∗

T −1 simultaneously.

Recursions Unlimited

Since we have optimal values for C∗
T −1 and α∗

i,T −1, we have an optimal value for
J (WT −1) from (34). Using the value function (34), we can set out the optimisation
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problem for T − 2

J (WT −2) = max︸︷︷︸
CT −2,αT −2

ET −2{U(CT −2) + U(C∗
T −1) + B(WT )} (49)

At T − 2, WT −2 is known, and the principle of optimality states that at T − 2, we can
choose CT −2, αiT−2 and given this outcome at T − 2, the remaining decisions for T − 1
must be optimal. Furthermore, using iterated expectations, ET −2ET −1(X) = ET −2(X),
we can write (49) as

J (WT −2) = max


U(CT −2) + ET −2


 max︸︷︷︸

CT −1,αi,T −1

ET −1
[
U(C∗

T −1) + B(WT )
]


 (50)

J (WT −2) = max{U(CT −2) + ET −2[J (WT −1)]} (51)

where J (WT −1) is calculated using the optimal values C∗
T −1, W

∗
i,T −1 found at T − 1.

Intuitively, (51) has the utility function dependent on this period’s consumption CT −2

and next period’s wealth WT −1. If I consume more at T − 2, then wealth next period
will be lower and hence there is a trade-off.

Equation (51) is a recursion for J (.), and the solution to (51) will be of the same
form as that for (34), which we have already noted. Hence, in general, for any t =
0, 1, 2, . . . , T − 1, the optimality conditions by analogy with (42) and (39) with JW

replacing BW are

U ′(Ct ) = RftEtJW (Wt+1) = JW(Wt) (52a)

Et{Rit+1JW(Wt+1)} = RftEt{JW(Wt+1)} for i = 1, 2, 3, . . . , m, assets (52b)

The only part of the above results we have not explicitly derived is the envelope
condition in (52a), namely

U ′(Ct ) = JW(Wt) (52c)

This representation of the FOC for consumption implies that along the optimum path, a
dollar saved that adds to wealth should give the same marginal utility as a dollar spent
on consumption. The envelope condition is obtained by totally differentiating the value
function (51) and then substituting using the FOCs, and this is done in Appendix I.

The FOCs in (52a) and (52b) look rather ‘neat’ and succinct, but for any given
utility function, the solution still has to be worked out, and a closed-form solution is
generally only possible for a small subset of admissible utility functions. In general,
optimal asset proportions and consumption at any time t will both depend on wealth,
expected returns from t to T − 1 and the parameters of the utility function. A complete
closed-form solution is often difficult or impossible to derive. Therefore, the model is
often empirically tested using regression techniques based only on the FOC/Euler
equation, as we have seen in earlier chapters.

Even in the case of log utility, the solution for the optimal weights αi in (47) or (52b)
is not straightforward even with only one risky asset, since we have to evaluate the
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expectation of the non-linear function of returns. However, the solution for optimal Ct

(see Appendix II) can be shown to be

Ct = 1 − θ

(1 − θT −t+1)
Wt (53)

Hence, log utility individuals plan to consume their wealth ‘smoothly’ throughout their
remaining lifetime (t to T).

Also if returns are iid, then with power utility, asset demands are independent of
the horizon of the investor – this is referred to as myopic behaviour, because in a
multi-period model where the investor is forward looking, optimal asset proportions
are identical to those of a one-period investor.

After having conscientiously followed the above derivation, the reader might be a
little deflated to learn that the above was worked out by Samuelson (1969) – some
time ago. But the general ideas behind the solution technique of stochastic dynamic
programming and the value function are still used to help find admissible trial solutions
in many intertemporal stochastic models. However, in many cases, at the end of the day,
a numerical solution is often all that can be obtained (see Barberis, Huang and Santos
2001). For example, with log utility, we know the explicit solution for consumption
is (53). In contrast, a numerical solution would give a single value for Ct , given that
Wt is a known input. Then, by numerically re-solving for Ct , given different input
values for Wt , we could deduce the linear relationship given by (53) (i.e. we would
plot alternative input values for Wt against the resulting numerical optimum values
for Ct). Hence, in more complex cases, we have a computable equilibrium model
on which we can perform ‘what if’ numerical simulations. Indeed, we can obtain the
optimal consumption path Ct, Ct+1, . . . , CT and the optimal asset proportions in the
current and all future periods once we have the state variable Wt and a ‘forecast’ of
expected returns (in all future periods). Knowing the optimal C∗

t and α∗
it for all t , we

also know the lifetime utility from (28) or recursive use of the Bellman equation.
These types of model are very prevalent in economics, usually where there is an

intertemporal element and constraints on behaviour. For example, the design of ‘opti-
mal’ tax, pensions and welfare benefits packages requires the government to set tax
and benefit rates for those in work and for retirees. Constraints might include a lifetime
budget constraint (including benefit income and state pension payments), a minimum
level of benefit (i.e. in any period), together with assumptions about labour supply and
the return on assets. The tax-benefit rates that maximise some lifetime utility function
(of consumption and leisure) can then be calculated and lifetime utility compared under
alternative policy scenarios (e.g. different income tax rates, or degree of risk aversion).
Hence, it is important to understand the intuitive and technical issues behind this class
of models, and we have made a start with our consumption-portfolio model and in the
following section, we discuss these issues further.

The ‘expectations’ must be calculated numerically. In the above model, the only
‘exogenous’ stochastic variables are asset returns. If we add ‘uncertain’ labour income
into the budget constraint, we have to deal with any correlation between returns
and labour income when calculating expectations – this considerably complicates the
numerical solution procedure (Campbell and Vicera 1999).



368 C H A P T E R 1 5 / I N T E R T E M P O R A L A S S E T A L L O C AT I O N : T H E O RY

15.3 SDF Model of Expected Returns
As with our two-period model, we can examine the FOCs of our intertemporal con-
sumption-portfolio choice model and derive FOCs of the equations representing the
SDF formulation. It is here that the ‘succinct forms’ of the FOCs in terms of the value
function are useful and give us the solution we require almost immediately (so perhaps it
was worth the effort in deriving them). The FOCs for consumption and asset shares are

U ′(Ct ) = JW(Wt) = RftEt{JW(Wt+1)} (54)

Et{Ri,t+1JW(Wt+1)} = RftEt{JW(Wt+1)} i = 1, 2, . . . , m (55)

The envelope condition in (54) holds for all t , hence

U ′(Ct+1) = JW(Wt+1) (56)

Substituting (56) in (54) and rearranging, we obtain the SDF equation for the risk-free
rate

RftEt (Mt+1) = 1 (57)

where Mt+1 = U ′(Ct+1)/U ′(Ct ) is the SDF or pricing kernel. (Note that here we
have ‘absorbed’ θ in Mt+1 since U(Ct ) = θ tf (Ct ), where f (Ct ) is the ‘usual’ utility
function, for example, f (Ct ) = ln Ct .)

For the risky assets, we make the same substitution of (56) in (55) and then use (54)
to give

Et{Ri,t+1U
′(Ct+1)} = U ′(Ct ) i = 1, 2, . . . , m (58)

E{Ri,t+1Mt+1} = 1 (59)

Hence, unbeknown to us, the SDF model that we have been discussing at length in
Chapters 10 and 11 is consistent with our intertemporal consumption-portfolio model.
It is also worth noting that (58) is itself a recursion and it holds for any investment
horizon, since

U ′(Ct ) = Et{Ri,t+1U
′(Ct+1)} = Et{Ri,t+1Ri,t+2U

′(Ct+2)} (60)

hence
1 = Et{Ri,t,t+2Mt,t+2} (61)

where Xt,t+2 = Xt,t+1Xt+1,t+2 and X = Ri or M .

15.4 Summary

• The multi-period consumption-portfolio problem with time-separable utility and one
state variable (wealth) can be solved recursively working ‘backwards’ from time T ,
using the value function/Bellman equation.
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• In general, the optimal asset shares (for the risky and riskless assets) and optimal
consumption–wealth ratio depend on wealth, expected returns and the degree of
risk aversion.

• For the special case of isoelastic marginal utility (i.e. power and log utility), the
optimal FOCs can be solved independently of each other, first for asset shares and
then for the consumption–wealth ratio. But, in general, these two sets of FOCs must
be solved simultaneously (at each point in time).

• For power utility, optimal asset shares and the consumption–wealth ratio are both
independent of wealth but depend on expected returns. For logarithmic utility γ = 1,
the consumption–wealth ratio is also independent of expected returns (and just
depends on θ and time, T − t).

• The FOCs or Euler equations for the SDF model (i.e. C-CAPM) can be derived
from the FOCs of the consumption-portfolio problem.

Appendix I: Envelope Condition for
Consumption-Portfolio Problem
We derive the envelope condition as follows. The value function (also called the Bell-
man equation) at T − 1 is

J (WT −1) = max︸︷︷︸
CT −1,αiT−1

{U(CT −1) + ET −1B(WT )} (A1a)

Now assume we have solved for the optimal values of {CT −1, αT −1} and substituted
these values back into the value function. Using these optimal values in (A1a), the
Bellman equation at T − 1 is

J (WT −1) = U(CT −1) + ET −1{B(WT )}

= U(CT −1) + ET −1B

{[
m∑

i=1

αi(Ri − Rf) + Rf

]
(WT −1 − CT −1)

}
(A1b)

where the ‘max’ can now be dispensed with as {CT −1, αT −1} now represent the
optimal values. Take the total differential of J (WT −1) with respect to WT −1, not-
ing that dB(WT ) = (∂B/∂WT )dW T and dW T depends on WT −1, αi,T −1 and CT −1

since

WT = (WT −1 − CT −1)RT (αt,T −1) (A2)

JW(T −1) = U ′(CT −1)
∂CT −1

∂WT −1
+ ET −1

{
BW(T )

×
[

∂WT

∂WT −1
+ ∂WT

∂CT −1

∂CT −1

∂WT −1
+

m∑
i=1

∂WT

∂αi

∂αi

∂WT −1

]}
(A3)
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where JW(T −1) ≡ ∂J (WT −1)

∂WT −1
. Using the definition

WT =
[

m∑
i=1

αi(Ri,T − Rf) + Rf

]
(WT −1 − CT −1) ≡ RT (WT −1 − CT −1) (A4)

to calculate the partial derivatives, we have

JW(T −1) = U ′(CT −1)
∂CT −1

∂WT −1
+ ET −1

{
BW(T )

[
RT

(
1 − ∂CT −1

∂WT −1

)]

+BW(T )(WT −1 − CT −1)

m∑
i=1

(Ri,T − Rf)
∂αi

∂WT −1

}
(A5)

This really looks a mess but note that the FOCs (38a) and (39) for the optimal values
of {CT −1, αT −1} derived in the text are

ET −1{BWRT } = U ′(CT −1) (A6a)

ET −1{BW(Ri,T − Rf)} = 0 (A6b)

Also note that anything dated at T − 1 is known and can be taken out of the expecta-
tions sign. Hence, we obtain

JW(T −1) ≡ U ′(CT −1)
∂CT −1

∂WT −1
+ ET −1

{
U ′(CT −1)

(
1 − ∂CT −1

∂WT −1

)
+ 0

}
(A7)

simplifying
JW(T −1) = U ′(CT −1) (A8)

This is the envelope condition we require, which is discussed in the text. Also from (42)
in the text, another version of the FOC is that U ′(CT −1) = RfET −1(BW) and hence we
also note that

JW(T −1) = RfET −1{BW(T )} (A9)

A full proof would require that we show that (A8) and (A9) hold for a general value
of t and not just for T − 1, but we do not pursue that here.

Appendix II: Solution for Log Utility

It is instructive to solve the multi-period problem for optimal consumption and asset
shares to see how the value function (Bellman equation) plays a pivotal role. We do
this for the most tractable case, namely log utility. We know from the text that the
FOCs for optimal C and αi can be solved independently and that C/W is independent
of expected returns and hence of α∗

i – the latter considerably simplifies the solution
for C/W since we do not have to know the explicit optimal solution for αi .



A P P E N D I X I I : S O L U T I O N F O R L O G U T I L I T Y 371

The steps we require are:

(i) solve the FOCs for C∗
T −1, α

∗
T −1.

(ii) substitute solutions (C∗
T −1, α

∗
T −1) into the Bellman value function and calculate

the optimal J (WT −1).

(iii) use the FOCs at T − 1, which include terms in JW(WT −1), to solve for optimal
(C∗

T −2, α
∗
T −2) and continue this recursion.

We have

B(WT ) = θT ln WT (A1)

U(CT −1) = θT −1 ln CT −1 (A2)

RT =
m∑

i=1

αi(Ri,T − Rf) + Rf (A3)

WT = (WT −1 − CT −1)RT (A4)

The FOCs (A6a) at T − 1 for consumption is

Uc(C
∗
T −1) = θT −1C−1

T −1 = θT ET −1{BW(WT )RT } = θT (WT −1 − CT −1)
−1 (A5)

which implies
C∗

T −1 = WT −1/(1 + θ) (A6)

For log utility, C∗
T −1 is independent of ET −1[RT (αi)], which means we do not have to

solve for α∗
i to find C∗

T −1. However, the FOCs (A6b) for the asset shares are

0 = ET −1{(Ri,T − Rf)BW(WT )} = ET −1{(Ri,T − Rf)/RT (α∗
i )} i = 1, 2, . . . , m

(A7)

where we have used (A1) and (A4) and cancelled the non-stochastic term in
θT /(WT −1 − CT −1).

After evaluating the expectation in (A7), these m equations can be solved for the
m unknowns α∗

i (T − 1), and the solution is independent of wealth.

Solving for J(WT−1) at optimal {C∗
T−1, α∗

T−1}
Now we calculate the value function at T − 1

J (WT −1) = max︸︷︷︸
{CT −1,wT −1}

{U(CT −1) + ET −1 [B(WT )]}

= max︸︷︷︸
{CT −1,wT −1}

{θT −1 ln CT −1 + ET −1(θ
T ln WT )} (A8)

Now substitute for C∗
T −1, α

∗
i,T −1, and, hence, we can ‘remove’ the ‘max’ in the previous

expression

J (WT −1) = θT −1 ln[WT −1/(1 + θ)] + θT ET −1{ln[(WT −1 − C∗
T −1)RT ]} (A9)
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Substitute again for C∗
T −1 = WT −1/(1 + θ) in (A9)

J (WT −1) = θT −1(1 + θ) ln WT −1 + k(θ) + θT ET −1[ln RT (α∗
i,T −1)] (A10)

where k(θ) = −θT −1 ln(1 + θ) + θT ln(θ/(1 + θ)).
The important aspect to bear in mind is that we know from the FOCs that RT (α∗

i,T −1)

is independent of WT −1 and therefore

JW(WT −1) = θT −1(1 + θ)/WT −1 (A11)

First-order conditions at T − 2

At T − 2, the FOC for consumption is

Uc(C
∗
T −2) = RfET −2JW(WT −1) (A12)

θT −2/C∗
T −2 = ET −2{θT −1(1 + θ)Rf/WT −1}

= ET −2

{
θT −1(1 + θ)Rf

(WT −2 − C∗
T −2)RT −1

}
(A13)

It looks from (A13) as if C∗
T −2 depends on RT −1 and, hence, on α∗

i,T −1. However, we
can show that for log utility RfET −2{1/RT −1} = 1 and assume for the moment this is
true. Then, (A13) solves for

C∗
T −2 = WT −2

(1 + θ + θ2)
(A14)

Generalising this recursion for any t < T − 1,

Ct = Wt

(1 + θ + θ2 + θT −t )
=

[
(1 − θ)

1 − θT −t+1

]
Wt (A15)

It remains to prove our assertion that for log utility

RfET −2{1/RT −1} = 1 (A16)

One expression for the FOC for consumption (see equation (42)) at T − 1 is

Uc(C
∗
T −1) = ET −1{BW(WT )Rf} (A17a)

θT −1/C∗
T −1 = θT RfET −1{1/(WT −1 − C∗

T −1)RT } (A17b)

Substituting C∗
T −1 = WT −1/(1 + θ) and rearranging, we obtain

RfET −1{1/RT (α∗
i )} = 1 (A18)
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This will also hold for ET −2{1/RT −1} since the form of the FOC is the same as at
T − 1. This completes the last part of the proof.

Note that we have not explicitly solved for α∗
it (t = T − 1, T − 2, . . .) as this

requires evaluating the expectations terms. Also, for power utility (γ �= 1), the solution
for C∗

t depends on expected returns and hence α∗
i,t . Therefore, although a solution is

still possible in closed form, it is a little more complex.





16
INTERTEMPORAL ASSET
ALLOCAT ION: EMPIR ICS

Aims

• Introduce stochastic labour income into the intertemporal consumption-portfolio
model. This gives rise to a hedging demand for risky assets, which depends on
the correlation between shocks to returns and shocks to labour income.

• Investigate conditions whereby risky-asset shares depend on the horizon of the
investor.

• Analyse the implications of allowing social security contributions to be invested in
the stock market.

• Examine the quantitative impact of predictability in returns for optimal asset
allocation.

• Show how uncertainty about the parameters of the prediction equation for stock
returns influences optimal asset shares.

• Investigate the implications of alternative preference specifications on the demand
for assets.

16.1 Retirement and Stochastic Income

Intertemporal portfolio-consumption models are becoming extremely popular
in analysing consumption and asset choices in a variety of settings, for example, when
in work and when retired and also in the design of state and private pension systems. In
this section, we give no more than a summary of these models, which illustrates their
relationship with the relatively simple approaches discussed so far and the sensitivity of
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their conclusions to slight changes in assumption about key parameters – in particular,
the introduction of stochastic labour income, which introduces a hedging demand for
risky assets.

An interesting issue is whether portfolio-consumption models are consistent with
the standard advice given in the popular press that people in employment should invest
more in risky assets (and less in safe assets) than people who are retired. Also, for
people in work, a 60–40 split between risky and the riskless asset is often cited as a
useful ‘rule of thumb’.

Our simple intertemporal model with time-separable power utility (and no
labour income) has risky asset shares (α), depending on (conditional) expected
returns. Samuelson (1969) and Merton (1969, 1971) demonstrate that for the horizon
of the investor (i.e. T − t) to have no effect on risky-asset shares in an intertemporal
consumption-portfolio choice model, requires rather special circumstances. These
include power utility, iid returns on assets and the absence of labour income. This
equivalence between the single-period and multi-period solutions is often referred to
as the myopic portfolio choice solution. Hence, under these assumptions, asset shares
do not differ between working and retirement years.

Bodie, Merton and Samuelson (1992) include certain labour income in the intertem-
poral consumption-portfolio model (with power utility and iid returns). Labour income
is a non-tradeable asset (i.e. you cannot borrow against future labour income, and
human capital is the value today of this future income). In this model, certain labour
income acts like a risk-free asset and ‘crowds out’ the latter, leading to an increased
share held in the risky assets. Hence, αe > αr, where e = ‘in employment’ and r =
‘in retirement’. The certain labour income in employment implies that more will be
invested in the risky asset (than in retirement, when labour income is assumed to
be zero).

If labour income is uncertain but uncorrelated with risky returns, the tilt towards
risky assets is less than in the certain income case (Viceira 2001). But when stochastic
income is uncorrelated with returns, households with high human capital (i.e. high
expected future income) will hold more risky assets than those with low human capital.

Viceira (2001) addresses the portfolio-consumption problem when income is stochas-
tic and may be contemporaneously correlated with risky-asset returns. We now have
an additional state variable, labour income, and this can give rise to a hedging demand
for risky assets (first noted by Merton (1971) in an intertemporal model with time-
varying expected returns). Hedging demand arises from the desire to reduce lifetime
consumption risk, and here this risk arises from the correlation between returns and
income. If shocks to income are negatively related to shocks to returns, then stocks
are ‘desirable’ since they provide a return when income is low and hence help smooth
out consumption.

In Viceira’s model, agents maximise expected intertemporal power utility subject to
a budget constraint

max
{ct ,αt }∞0

E

∞∑
t=0

θ tU(Ct ) (1a)

Wt+1 = (Wt + Yt − Ct)Rp,t+1 (1b)
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0 < θ < 1 is the discount factor and Yt is employment (labour) income, which is zero
in the retirement state. Labour income is uninsurable – you cannot write claims against
your future income. There are no labour supply decisions, so income is exogenous.
The portfolio return is

Rp,t+1 = αt (R1,t+1 − Rf) + Rf (2)

where R1,t+1 = exp(r1,t+1) is the return on the single risky asset, Rf = exp(rf) is the
risk-free rate and αt the risky-asset share. The share held in the riskless asset is (1 − αt).
The natural logarithm of income is a random walk with drift g, and expected excess
(log) returns (r1,t+1 − rf) are assumed constant

Yt+1 = Yt exp(g + εt ) (3a)

r1,t+1 − rf = µ + ut+1 (3b)

vart (ut+1) = σ 2
u , vart (Yt+1) = σ 2

ε , covt (ut+1, εt+1) = σεu (3c)

The error term ut+1 is independent of the employment/retirement state. In addition,
consumption growth and asset returns are assumed jointly lognormal.

The employment–retirement state is random. Employment occurs with a probability
π e and retirement with probability π r = 1 − π e (0 < π r < 1), with retirement being
irreversible, and labour income in retirement is zero. After retirement, there is a constant
probability of death πd, so people live 1/πd years after retirement, while the expected
number of years to retirement is 1/(1 − π e).

Because there is zero income in the retirement state (denoted by superscript r), we
have our standard model with Euler equation

1 = Et{θ r(Cr
t+1/Cr

t )
−γ Ri,t+1} (4)

where θ r = (1 − π r)θ and Ri,t+1 can be either i = 1, f or p, that is, the risky asset,
the risk-free asset or the portfolio return. Viceira provides approximate solutions on
the basis of a second-order Taylor series expansion, so that precautionary savings
effects (i.e. volatility terms) are included (Campbell and Viceira 1999). This provides
some useful intuitive insights and allows a closed-form solution for both consumption
and asset shares. For the retirement state, optimal (log) consumption and portfolio
shares are

cr
t = br

0 + br
1wt (5a)

αr
t = µ + σ 2

u /2

γ br
1σ

2
u

(5b)

where

br
1 = 1 (5c)

br
0 = ln

{
1 − exp

[(
1

γ
− br

1

)
Etr

r
p,t+1 + 1

γ
ln θ r + 1

2γ
(1 − br

1γ )2 vart (r
r
p,t+1)

]}
(5d)
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We can relate (5a) to our earlier result (see Samuelson (1969) and equation (45) in
Chapter 15) (

C

W

)
t

= 1

1 + [θ rEt(R
1−γ

p,t+1)]
1/γ

It can be shown that when Rp,t+1 is lognormal, the above reduces to Viceira’s solution
ct − wt = br

0 (see Viceira 2001, Appendix B). The constant term b0 depends on γ , θ ,
expected returns and the conditional variance of returns. But if γ = 1 (log utility), then
from (5d), the (log) consumption–wealth ratio depends only on θ and is independent
of expected returns and the variance of returns. This mirrors our earlier result for log
utility where we found (C/W)t = [(1 − θ)/(1 − θT −t+1)].

From (5d), consumption–wealth ratio is increasing in the time preference rate,
− ln θ ≈ tp, and the relationship between the consumption–wealth ratio and expected
portfolio returns depends on the ‘dividing line’ for constant CRRA investors of whether
γ is greater than or less than unity (i.e. log utility). For log utility investors, (C/W)t

is independent of returns. For more risk-averse (retired) investors (i.e. γ > 1), the
(C/W)t ratio is increasing in expected portfolio returns (see (5a) and (5d)), because
the income effect of an increase in Erp on wealth outweighs the substitution effect
(i.e. save more today). The impact of vart (rp,t+1) on (C/W)t is zero for γ = 1 but
otherwise has a negative impact – the greater the uncertainty about rp, the lower is
(C/W) and the higher is today’s saving (i.e. precautionary savings).

Since returns are iid (and labour income is zero), the risky-asset share αr
t is the same

in all retirement periods (i.e. the usual myopic result). But αr
t is higher, the higher is

the expected return µ and the lower is volatility in returns σ 2
u .

Hedging Demand

So far so good, as this reproduces our earlier results. But what about consumption and
asset shares in the employment state? In the employment state, there is a probability
you will stay employed and receive labour income and a probability you will enter
retirement, hence the Euler equation is

1 = Et{[π eθ e(Ce
t+1/Ce

t )
−γ + (1 − π e)θ e(Cr

t+1/Cr
t )

−γ ]Rit+1} (6)

for i = 1, f or p and θ e = θ , while θ r = (1 − π r)θ . The solution for (log) consumption
and the risky-asset share is

ce
t − yt = be

0 + be
1(wt − yt ) (7a)

αe = µ + σ 2
u /2

γ b1σ 2
u

− π e(1 − be
1)

b1

σεu

σ 2
u

(7b)

where 0 < be
1 < 1, b1 = π ebe

1 + (1 − π e) and be
1 is a constant that is an increasing

function of g (income growth) and also depends on the variance of income growth, the
variance of portfolio returns and the covariance between these two. The dependence
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of αe on the expected number of years until retirement, that is, (1 − π e)−1, implies
that asset shares (of the employed) do depend on the ‘horizon’ considered.

Consider the special case σεu = 0 so income shocks are uncorrelated with shocks
to asset returns. Then it can be shown that αe > αr. Also it can be shown that
the longer are expected years to retirement, the larger is αe, even when returns are
iid (see Viceira 2001, Table 1). Illustrative results for γ = 2 and 5 are shown in
Table 1. For γ = 5, as years to retirement increase from 5 to 35, then αe increases
from 42 to 76%, whereas αr (for γ = 2) is 34%. For any given fixed number of
years to retirement, an increase in risk aversion (γ ) leads to a lower value for αe

(and αr).
The optimal solution is therefore consistent with our rule of thumb that those in

work should hold more in risky assets than those who are retired. But is this rule of
thumb robust? No, it is not if we consider the hedging demand, that is the second term
on the RHS of (7b). The ‘hedging term’ is β = σεu/σ

2
u , which is the regression slope

of labour income shocks on unexpected stock returns. As shocks to income and returns
become more positively correlated, αe falls – you hold less risky assets because when
income is low, asset returns are also low, so the latter are less useful in smoothing
consumption. Comparing panel A with panel B in Table 1 demonstrates how a positive
correlation between labour income and stock returns reduces αe (for any given time
to retirement and any γ ).

Conversely, if σεu < 0, then risky assets are a good hedge against unfavourable
income shocks, so the hedging demand is positive (and then αe > αr). This hedging
demand, which did not appear in our earlier simpler model with no stochastic labour
income, can have a powerful impact on αe, and these hedging effects are larger,
the longer the expected time to retirement. However, for a correlation of plus 25%
between income and asset return shocks (and γ between 2 and 12), it is the case
that αe > αr (but αe − αr is much smaller than for the zero correlation case) – see
Viceira 2001, Table 1, Panel B. There are other interesting results for this model based
on numerical simulations. But we now turn to another variant of the model, which
addresses the question of whether to allow social security contributions to be invested
in stocks as well as risk-free assets.

Table 1 Percentage portfolio shares αe as γ and expected time to retirement vary

Expected Time to Retirement (Years)

CRRA (γ ) 35 20 10 5 αr

Panel A: Corr(r1, t+1, �yt+1) = 0%

2 294 190 140 115 90
5 76 61 49 42 36

Panel B: Corr(r1, t+1, �yt+1) = 25%

2 255 175 133 111 89
5 63 52 44 39 36

Source: Adapted from Viceira 2001, Table 1.
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Social Security and Pensions

The US social security fund is currently invested in risk-free bonds. However, if indi-
viduals can borrow to invest in equities, they can achieve a portfolio that is just as
risky as if the retirement account were invested in equities. Hence, a shift to social
security contributions being invested in equities will only add to welfare if some (poor)
people are unable to borrow or face high fixed costs of equity market participation.

The idea in Campbell and Viceira (1999) is to measure the ex-ante lifetime welfare
gains from a system in which ψ% of social security contributions are invested in stocks
and 1 − ψ in the riskless asset, where ψ can vary between 0 and 100%. Returns are
iid, and shocks to returns may be contemporaneously correlated with income shocks.
The income process is more complex than that in Viceira with deterministic life-cycle
effects (e.g. humped-shaped earnings with age) and permanent and transitory shocks.
The investor cannot borrow against future labour income or retirement wealth and can-
not short stocks. Disposable income after forced saving in social security contributions
of ψYit is

Y d
it = (1 − ψ)Yit (8)

Retirement contributions ψYit can be invested in stocks R1 or in the risk-free asset, as
can liquid wealth WL

it for each individual i:

WR
i,t+1 = RR

p,i,t+1(W
R
it + ψYit ) (8a)

WL
i,t+1 = RL

p,t,t+1[WL
it + (1 − ψ)Yit − Cit ] (8b)

Rk
p,i,t+1 = αk

itR1,t+1 + (1 − αk
it )Rf (8c)

where k = L (liquid wealth) or R (retirement wealth). Intertemporal power utility
(weighted by the conditional probability of being alive) over consumption is the max-
imand, and the individual chooses αL

it , which depends on the state variables [WL
it +

(1 − ψ)Yit ] and WR
it . We can obtain numerical optimal solutions for αL

it and Cit for
alternative values of both ψ , which determines the social security contributions, and
for αR

it , the proportion of these contributions that are invested in equities. The fixed
‘end point’ is to ensure that the average (across individuals) of the replacement ratio
of income in retirement is 60%. Hence, more investment of social security retirement
funds in equities with mean return µ = 6% p.a. with the real rate of interest at 2%
p.a. (i.e. equity premium of 4% p.a.), implies that a cut in social security contributions
is possible (given the fixed replacement ratio of 60%). In fact, changing αR from 0 to
50% allows ψ to fall from 10 to 6%.

Campbell et al. find a modest welfare gain equivalent to 3.7% of consumption if
half (rather than zero) of the social security contributions are invested in equities, but
this falls to 0.5% if the social security tax rate is held constant. The authors recognise
the limitations of even this rather complex model. First, the equity premium is held
constant even when more of retirement wealth is invested in stocks. In fact, the effect
of a lower equity premium on welfare depends on whether this arises from a fall in
the return on risky assets R1 or a higher risk-free rate r . Quite obviously, a fall in R
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or rise in r reduces any welfare gains from the switch of social security contributions
from bonds to equities.

The model embodies a ‘self-financing’ social security retirement system, so there is
no redistribution between households. Some cohorts suffer rather low terminal values
of social security retirement wealth, which would yield only a very low annuity value
on retirement. This might induce others to speculate on possible bail-outs of such
people, which might in turn impact on their consumption–savings pattern. Returns are
iid, so there are no market-timing possibilities (see the following section), and housing
wealth is excluded. Also, idiosyncratic labour income shocks are uncorrelated with
returns, and labour supply is exogenous. Nevertheless, the model provides a useful
first step in evaluating and thinking about a key policy area.

16.2 Many Risky Assets
We have seen that the introduction of an additional stochastic variable (i.e. labour
income) gives rise to hedging demands for risky assets. Now we allow the investor to
hold more than one risky asset (Campbell and Viceira 1999) so that hedging demand
arises because of the conditional correlation between different asset returns. Our model
also allows predictability in asset returns on the basis of a VAR system. Campbell,
Chan and Viceira (2003) assume an infinitely level investor with Epstein–Zin recursive
preferences, no labour income and no portfolio constraints (e.g. short-selling is allowed,
and there are no borrowing constraints). The beauty of the approach is that Campbell
et al. provide approximate analytic solutions so we can get some intuitive feel for what
is going on. The utility function is

U(Ct , Et(Ut+1)) =
[
(1 − δ)C

1−γ

θ
t + δ(Et (U

1−γ

t+1 ))
1
θ

] θ
1−γ

(9)

where γ > 0 is the coefficient of relative risk aversion, ψ > 0 is the elasticity of
intertemporal substitution, 0 < δ < 1 is the discount factor and θ = (1 − γ )/

(1 − ψ−1). For time-separable power utility, γ = ψ−1 so θ = 1. Log utility has
γ = ψ−1 = 1.

The budget constraint and portfolio real return are

Wt+1 = (Wt − Ct)Rp,t+1 (10a)

Rp,t+1 ≡
k−1∑
i=1

αi,t (Ri,t+1 − Rk,t+1) + Rk,t+1 (10b)

where the kth asset is the benchmark asset (e.g. nominal T-bill), but it may not be
riskless in real terms (i.e. there is inflation risk). The portfolio return and budget
constraint are log-linearised, and the Euler equation for asset i = 1, 2, . . . , k − 1 is

Et(ri,t+1 − rk,t+1) + 1

2
vart (ri,t+1 − rk,t+1)

= θ

ψ
(σi,c−w,t − σk,c−w,t ) + γ (σi,p,t − σk,p,t ) − (σi,k,t − σk,k,t ) (11)
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where lower-case letters are logarithms. The expected excess return on asset i therefore
depends upon conditional covariances between the return on asset i and (i) the (log)
consumption-wealth ratio c-w, (ii) the portfolio return and (iii) the benchmark asset k.
The variance term in (11) is the Jensen inequality term, and (11) is exact if consumption
and asset returns are jointly lognormally distributed, which is the case when ψ =
1. It can be shown that when asset returns (and any forcing variables such as the
dividend–price ratio) are driven by a linear VAR system with homoscedastic errors,
that the covariances just referred to are linear functions of the state variables zt in the
VAR. The homoscedasticity implies that the state variables only predict changes in
expected returns and do not predict changes in risk (but the risk, mean return link may
not be very strong empirically – Chacko and Viceira 1999). Solving the Euler equation
gives optimal risky-asset shares:

αt = 1

γ

∑−1

xx

[
Et(xt+1) + 1

2
vart (xt+1) + (1 − γ )σk,x

]

+ 1

γ

∑−1

xx

[
−

(
θ

ψ

)
(σi,c−w,t − σk,c−w,t

]
(12)

where xt+1 is the vector of excess returns ri − rk (for i = 1, 2, . . . , k − 1) with covari-
ance matrix

∑
xx . The terms in square brackets are linear functions of the zt variables

for the VAR, where zt = [rk,t , xt , st ] and st are the ‘non-returns’ variables in the VAR
(e.g. dividend–price ratio). Hence, asset shares vary over time as the variables in the
VAR signal predictability.

The first term on the RHS of (12) is the myopic component of asset demands since
it only depends on next period’s (excess) return xt+1 and also does not depend on
ψ , the elasticity of intertemporal substitution. For a logarithmic investor, γ = 1 and
θ = 0, hence the second bracketed term, the hedging demand, equals zero, leaving
only the myopic demand. Also, if investment opportunities are constant, then over
time, the hedging component is zero for any value of γ . If, in addition, the benchmark
asset is not risky, then σk,x = 0, and we obtain the familiar static solution (with the
Jensen term) for asset shares, αt = γ −1 ∑−1

xx [Etxt+1 + (1/2) vart (xt+1)]. In general,
however, asset returns vary because of changing forecasts of both Et(xt+1) and the
covariance terms (which depend linearly on zt ). The consumption growth equation
is

Et
ct+1 = ψ ln(δ) + 1

2

θ

ψ
vart (
ct+1 − ψrp,t+1) + ψEt(rp,t+1) (13)

In (13), consumption growth is higher, (i) the higher is δ (i.e. the less weight given
to current consumption) (ii) the higher is the expected return on the portfolio and
(iii) the lower is vart (
ct+1 − ψrp,t+1) for θ > 0 – which holds for power utility
since θ = 1.

With recursive preferences, only in special cases (Giovannini and Weil 1989) can
we obtain closed-form solutions, and these are listed below for comparison with our
earlier results.
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• For constant iid returns (i.e. the VAR only contains a constant), the investor con-
sumes a fixed proportion of her wealth, which depends on her own rate of time
preference, relative risk aversion and intertemporal substitution ψ and the invest-
ment horizon, T − t (Bhamra and Uppal 2002). Also there is a myopic portfolio
rule – that is, the investor chooses αt as if her investment horizon were just one
period (and αt is independent of ψ).

• If expected returns are time varying but γ = 1, then the myopic portfolio rule applies
but the consumption–wealth ratio is time varying. If γ = 1 and ψ = 1, then the
consumption–wealth ratio is also constant.

• If ψ = 1 but γ �= 1, then the consumption–wealth ratio is constant (=1 − δ), but
the optimal portfolio rule is not myopic.

Campbell, Chan and Viceira (2003) solve the model numerically, first using three
risky assets: stocks, nominal bonds and bills. If the VAR only contains a constant term
(i.e. returns are iid ) and we set γ = 1, then optimal portfolio shares are myopic and only
depend on the variance–covariance matrix

∑
xx , and the (constant) expected excess

returns on each asset. In this case, investors are long in stocks and bonds with more
being held in stocks because of their higher unconditional expected return (i.e. high ex-
post equity premium). Moving from this baseline case, they include several variables
in the VAR and consider cases where γ �= 1. Here, hedging demand influences both
the mean value of αt and the sensitivity of αt to changes in the state variables zt . For
conservative investors with risk aversion γ > 1 (i.e. risk tolerance = 1/γ < 1), stock
demand is always greater than the myopic portfolio demand, so the hedging demand
is positive (and is a humped-shaped function of 1/γ ). In fact, stocks are a good hedge
for their own future returns since (in the VAR) the shocks to the dividend–price ratio
are negatively correlated with shocks to stock returns, and this increases the hedging
demands for stocks (when γ > 1). They also find that shocks to nominal bonds returns
are positively correlated with shocks to stock returns, and this encourages investors
(with intermediate levels of risk aversion) to short bonds in order to hedge their long
stock positions. When an additional asset, namely inflation linked bonds, is added to the
list of assets, these are held long in large amounts by extremely conservative investors,
in order to hedge real interest rate risk and because they provide a good hedge for
stocks (i.e. negative correlation between shocks to indexed bonds and shocks to stock
returns). A summary of some of the main intertemporal consumption–portfolio models
is provided in Table 2.

16.3 Different Preferences

We noted in a previous chapter that loss aversion (LA) preferences, when added to
a power utility function (over multiperiod consumption – Barberis and Huang 2001),
can help in explaining the equity premium puzzle with a ‘reasonable’ value of the risk
aversion parameter. One of the reasons for introducing loss aversion is that a constant
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relative risk aversion (CRRA) utility function (e.g. power utility) in the level of con-
sumption has a number of problems.

First, it gives low values for the equity premium. Second, if the expected return
on stocks is positive, then all investors hold stocks – yet in most countries, relatively
few people invest in the stock market. The only way we can produce low stock mar-
ket participation for CRRA investors is to assume very large fixed entry costs for
investors (Campbell and Viceira 1999, Liu and Loewenstein 2002). Third, CRRA and
the expected utility framework are at odds with the ‘Rabin puzzle’ (Rabin 2000). The
latter arises because expected utility investors, if they turn down a ‘small’ gamble where
they could lose $100 or gain $110 with equal probability (and for any initial wealth
level), they will also turn down 50:50 bets of losing $1000 or gaining any amount
of money – this is known as a Rabin gamble (Rabin 2000). For example, with CRRA
preferences and γ = 10, an investor would turn down the 111/110 gamble. However,
her willingness to pay (i.e. difference between the certain wealth from not gambling
minus the certainty equivalent of the gamble) to avoid a gamble of losing $1000 or
gaining over $1m (with equal probability), is only about $280. The marginal utility
of additional wealth for CRRA utility asymptotes as wealth increases and becomes
virtually zero very fast – hence the CRRA investor would reject the Rabin gamble for
a very small payment.

Unlike standard expected utility investors, LA utility investors do not necessarily
have to have a highly concave utility function in order to dislike the 100/110 gamble.
This is because the utility function is discontinuous at the reference point. Loss aversion
means they can hate to lose the $100, but for gains, the utility function need not have
high curvature. Although, as we have seen, LA helps explain the equity premium
puzzle, Ang and Bekaert (2001) point out some drawbacks of LA preferences. These
include the arbitrary nature of the ‘reference point’ (against which we measure gains
and losses) and how we choose to update it. They also show that when applied to
portfolio theory, it is possible to obtain some ‘strange’ results for the share of risky
assets (e.g. there may be no finite optimal weight, α∗ and α∗ may be less than zero
for a zero risk premium).

Ang and Bekaert (2001) suggest using disappointment-aversion (DA) prefer-
ences (Gul 1991), which imply aversion to losses, but the reference point is endoge-
nous, being defined as outcomes above or below the certainty equivalent. The CRRA
utility function is a special case of DA preferences. Because DA preferences embody
loss aversion, they avoid the Rabin puzzle. For example, a DA investor with γ = 2,
who weights utility losses 1.18 more than for an equal gain, will reject the 100/110
gamble but will be willing to take on the large Rabin gamble (i.e. will pay as much
as $3664 to bet on a 50:50 chance of a gain of $25,000 or a loss of $2000).

In a model where investors maximise utility of terminal wealth and have DA pref-
erences, we can explain why participation in the stock market may be low – people
dislike losses more than an equal gain and, hence, many choose not to hold stocks
at all (if they have a reasonable degree of loss aversion of around 1.66). In con-
trast, CRRA utility never gives a zero allocation to stocks (for ER − r > 0) and for
α∗ = 5%, γ must be as high as 36. Disappointment aversion is also consistent with
home bias if bear markets across countries are positively correlated, since DA investors
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dislike negative skewness and would tend to reduce international holdings of stocks.
DA investors would also want to insure against downturns and hence would purchase
put-protected products. The application of DA utility to practical issues in portfolio
allocation is relatively new and it remains to be seen if such preferences can explain
a wide range of phenomena.

16.4 Horizon Effects and Uncertainty

So far, we have said only a little about how the investor’s horizon might influence her
choice between stocks and bonds (i.e. the risk-free asset). In the static mean-variance
model, the optimal risky-asset proportions are determined by conditional expected
returns relative to the variance of portfolio returns, but the horizon is chosen exoge-
nously by the investor. It is a one-period maximisation problem. Each period, the
investor can form new forecasts, and this will result in ‘new’ asset proportions. In the
special case that returns are iid (and, hence, expected portfolio returns and the covari-
ance of returns are constant), risky-asset proportions will not change from period to
period. Hence, optimal asset proportions will also be the same for two investors with
different horizons. Intuitively, this arises because iid (log) asset returns imply that
expected returns and portfolio variance both increase in proportion to the investment
horizon (i.e. ERT = T µ and σ 2

T = T σ 2). In any case, the mean-variance model is
not intertemporal, so it is not particularly useful for investigating horizon effects in a
coherent way.

Barberis and Huang (2001) investigates horizon effects in a model with power utility
(we take γ = 10) where agents at time T choose asset proportions to maximise utility
of end-of-period wealth EU (WT +H ) and so the portfolio is not rebalanced between T

and T + H . (Also, there is no labour income in the model.)

Buy and Hold, IID Returns

With power utility, iid returns and continuous rebalancing, optimal asset shares are
independent of horizon H (Samuelson 1969). In part, this is due to the fact that for
iid returns, long-horizon mean returns Hµ and variance Hσ 2 both scale linearly with
horizon H . With a buy-and-hold strategy and no parameter uncertainty, this result con-
tinues to hold, and for γ = 10, we find α∗ ≈ 40% (see Figure 1). If we now introduce
parameter uncertainty, α∗ depends negatively on horizon H , with α∗(H = 1) ≈ 35%
and falls monotonically to α∗(H = 10) ≈ 20% (Barberis and Huang 2001, Figure 1).
The reason for this is that if Rt = µ + εt but µ is uncertain and is updated using Bayes
rule, this introduces additional risk at long horizons and returns no longer appear to
be iid from the investor’s perspective. For example, if there are a few good (bad)
returns, Bayesian updating increases (decreases) the agents’ estimate of µ and, hence,
introduces positive autocorrelation in returns. The latter implies σ 2

T > T σ 2 and, hence,
the share held in stocks α falls as the investor’s horizon lengthens.
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Figure 1 ‘Buy and hold’: no predictability (γ = 10)

Buy-and-Hold: Predictability in Returns

The prediction equations for stock returns and the dividend–price ratio are

rt+1 = µ + βzt + εr,t+1

zt+1 = δ + φzt + εz,t+1

The distributions we require depend on the value of the dividend yield zT at time T ,
the beginning of the buy-and-hold period. The variance of returns over multi-period
horizons now depends on the contemporaneous covariance between the errors in the
returns equation and the dividend yield, since, for example,

varT (rT +1 + rT +2) = 2σ 2
r + (β2σ 2

z + 2βσr,z)

Empirically, on US data, (β, φ) > 0 and σr,z < 0, and the term in parentheses is found
to be negative. Hence, predictability, but with no parameter uncertainty, implies that
long-horizon conditional variance grows slower than linearly with the investor’s hori-
zon (i.e. σ 2

H < Hσ 2).
Remember we saw above that with no parameter uncertainty and no predictability

(i.e. iid returns), α∗ is independent of horizon. However, with no parameter uncer-
tainty but with predictability (and γ = 10), optimal α∗ rises rapidly with horizon from
α∗(H = 1) ≈ 40% to α∗(H = 10) ≈ 90% (see Figure 2). This result arises for two
reasons. First, the dividend–price ratio at T predicts high returns in the future and,
second, because σ 2

H < Hσ 2, stocks look less risky to a long-horizon investor. Both of
these tend to increase stock holdings for a long-horizon investor.

However, if we now account for parameter uncertainty, the optimal α∗ (see
Appendix) still rises with horizon (up to year 7), then falls a little and asymptotes at a
much lower value, α∗(H = 10) ≈ 55%, compared to the ‘no uncertainty’ case, where
α∗(H = 10) ≈ 90% (Figure 2). The reasons for this drop in the optimal α∗(H = 10)
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Figure 2 ‘Buy and hold’: predictability in returns (γ = 10)

Table 3 Horizon effects and uncertainty: buy-and-hold

Risky-Asset Demands Reason

Panel 1: IID Returns

1A No parameter
uncertainty

α independent of horizon µH = Hµ, σ 2
H = Hσ 2

Expected return and variance both
scale with horizon

1B Parameter
uncertainty
(µ, σ 2)

α falls with horizon σ 2
H increases faster than horizon
because of estimation risk

Panel 2: Predictability (rt+1 = µ + βzt+1 + εt+1 and zt+1 = δ + φzt + vt+1)

2A No parameter
uncertainty

α increases strongly with
horizon

(i) High zt signals high future
returns

(ii) σr,z < 0 then σ 2
H < Hσ 2

2B Parameter
uncertainty

α tends to increase with
horizon but less strongly
than for no uncertainty case

(i) Uncertainty about µ makes
σ 2

H > Hσ 2 – tends to reduce α

(ii) True predictive power of zt is
uncertain – tends to reduce α at
longer horizon (compared to no
uncertainty case)

Note: Investor at t = 0 chooses α to maximise U(WH ) with power utility and γ = 10.

at long horizons are twofold. With no uncertainty, σ 2
H grows less than linearly with

horizon, which tends to increase the demand for stocks. But with parameter uncertainty
and concave utility (i.e. risk aversion), any possible ‘downside’ effect of uncertainty
about returns has a greater effect than the (equally likely) upside. The investor is,
therefore, uncertain whether the dividend yield does ‘slow down’ the conditional
variance over long horizons. The second effect is that uncertainty about the mean return
makes the conditional variance grow more quickly with horizon – hence making stocks
look more risky and reducing α∗ relative to the no uncertainty case. These results are
summarised in Table 3.
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Dynamic Asset Allocation: Rebalancing Every Year

When returns are predictable and mean-reverting but there is no uncertainty, an investor
(with γ > 1) who rebalances her portfolio will allocate more to stocks at longer hori-
zons, as a hedge against changes in expected returns (Merton 1973). Barberis and
Huang (2001) shows that with predictability and parameter uncertainty (but no learn-
ing between the rebalancing periods), asset shares α∗ usually increase with horizon,
but at a much slower rate than for the certainty case.

Barberis’ model assumes the investor knows the functional form of the returns and
dividend process and that their underlying true parameters are constant. In practice,
this is unlikely to hold, and this additional uncertainty may further reduce the optimal
allocation to stocks, at long horizons, for an investor who takes account of parameter
uncertainty.

Overall, estimation risk can substantially alter optimal asset allocations compared
to the no uncertainty case – hence, results from the latter may not adequately explain
actual portfolio behaviour and must be interpreted with due caution.

16.5 Market Timing and Uncertainty
In the previous section, we answered the question ‘what proportions are held in the
risky asset by two investors with different investment horizons’ (when both investors
either do or do not take into account parameter uncertainty). In contrast, market timing
is about altering one’s portfolio at each point in time, on the basis of an observed
signal (e.g. dividend–price ratio) at time T .

Campbell and Viceira (1999) directly address the market-timing issue in the intertem-
poral (consumption) utility model with continuous rebalancing (and with no labour
income). A VAR in returns and the dividend–price ratio provides ‘predictability’. The
Campbell–Viceira model results in very strong market timing, with the allocation to
stocks moving from −50 to 220%, as the dividend–price ratio moves from minus two
to plus one standard deviation from its mean. This strong market timing is also a fea-
ture of other forecasting schemes (Brennan, Schwartz and Lagnado 1997) and different
methodologies (Gallant, Hansen and Tauchen 1990, Brandt 1998).

Clearly, the major omission in these market-timing results is the uncertainty sur-
rounding the prediction of expected returns. Barberis and Huang (2001) also looks at
this problem, where agents maximise EU (WT +H ) (rather than intertemporal consump-
tion) and there is no intermediate trading (i.e. buy-and-hold strategy).

With no parameter uncertainty, the higher the initial dividend yield (i.e. the lower are
current prices), the higher the allocation to stocks at any given horizon, and α∗ continues
to rise monotonically with horizon. However, with parameter uncertainty (and γ = 10),
the higher dividend yield at T has hardly any effect on α∗(H = 10), that is, at long
horizons (but it does have an effect at shorter horizons). This insensitivity is because
the true forecasting power of the dividend yield is uncertain, and the ‘signal’ cannot be
relied upon over long horizons. Hence, with no parameter uncertainty, α∗(H = 10) is
very sensitive to the initial value of the dividend yield but is very insensitive when the
investor takes account of parameter uncertainty. (Also, with uncertainty, the risky-asset
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share can be negatively related to horizon if the initial dividend–price ratio is very
high – so long-horizon investors hold less stocks than short horizon investors.)

Put another way, incorporating parameter uncertainty greatly reduces the optimal
proportion allocated to stocks, for any given deviation of the dividend–price ratio from
its mean. With ‘uncertainty’, the optimal allocations (for γ = 10) are in the relatively
narrow range of 30–50% over different horizons, compared to 30–100% (maximum)
with no parameter uncertainty.

Market timing in these models also implies that you will often miss upturns in the
market (e.g. 1995–2000), which would be picked up by a passive index-tracking fund.
So another risk here, which is not factored into the market-timing model, is that you
may lose your job before your market-timing strategy is seen to pay off!

So, although predictability suggests strong market-timing effects on portfolio alloca-
tion, this appears to be substantially reduced when parameter uncertainty is incorporated
into the decision problem.

16.6 Stochastic Parameters

If returns are iid and the investor has power utility, then asset demands αt from
optimising over intertemporal (additive) utility from consumption, are independent
of the investor’s horizon (Samuelson 1969). If future returns are predictable (e.g.
from the dividend–price ratio) so investment opportunities are time-varying, then
there is an intertemporal hedging demand (Merton 1971). As we have seen, Barberis
and Huang (2000) uses utility of end-of-period wealth and introduces uncertainty
about the parameters of the prediction equation, but there is no time variation in
the unknown parameters themselves (e.g. the mean return is unknown by the investor,
but its true value never changes). Xia (2001), using a continuous-time intertempo-
ral consumption model, allows the parameters δt and βt of the prediction equation
(e.g. Rt+1 = δt + βtzt ) to vary over time (the dynamics of both parameters are mean-
reverting diffusion processes) and then calculates the optimal asset shares – which
contain a hedging demand. Xia (2001) shows that the hedging demand is very complex
under learning, with stochastic parameters. Asset shares depend on the usual myopic
term (ER − r)/γ σ 2

R plus the hedging demand, which consists of three elements (which
are additive). The first part of the hedging demand depends upon (zt − z), where zt is
the predictor variable – this disappears when there is no uncertainty about the unknown
parameter β. The second hedging component depends on σz,R and is zero if there is no
correlation between the predictor variable z and the risky-asset return. Finally, the third
component depends on σβ,R , which is the need to hedge against stochastic variation
in the (unknown) parameter β.

It can be shown that σβ,R may increase or decrease with horizon, depending on the
current value of zt . Hence, the conventional advice that young investors should hold
more in equities is not generally valid (Xia 2001).

As we have seen, when there is no parameter uncertainty, an investor maximising
intertemporal utility of consumption over a long horizon (T − t), will aggressively
market time and move into stocks, with a response that is monotonic in the current
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predictor variable zt . With learning, this response is attenuated and is no longer mono-
tone in the zt variable. This is because with learning, the hedging demand from the
parameter uncertainty is negative and may eventually dominate the expression for
∂αt/∂zt .

Therefore, in this stochastic parameter environment, the hedging effect depends on
the current estimate of the unknown parameters, the degree of uncertainty about this
estimate, the current value of the predictive variable zt and the investor’s horizon
(T − t). The Xia (2001) model provides a good example of the sensitivity of results
in this area to the model of learning used. Even here, the investor knows quite a lot,
namely, the functional form of the prediction equation Rt+1 = f (zt ) and the dynamic
process for zt (taken to be mean-reverting, that is, an Ornstein–Uhlenbeck process
in continuous time). Also the investor envisages no regime changes in the prediction
equation. So there is still some way to go in modelling a ‘reasonable’ learning process
and embedding it in an intertemporal consumption-portfolio choice model.

16.7 Robustness

In the previous section, we have concentrated on parameter or estimation uncertainty.
Another type of uncertainty is when an investor uses a particular model of asset returns
(e.g. mean-reverting process) but is aware that an alternative model may also explain
returns. Robustness refers to the fact that investors then choose their asset allocations to
insure against the worst-case alternative model. They want their chosen model to deliver
a good outcome, assuming it holds exactly but also to deliver a reasonable outcome if
an alternative model is the correct description of reality. The investor is worried about a
worst-case outcome (across alternative models), and this can be interpreted as a form of
maxmin expected utility – you minimise the possibility of undesirable outcomes (Roy
1952). Thus, the investor suffers from uncertainty aversion across models yet could
still have a low value for the CRRA parameter γ .

Maenhout (2001) addresses this robustness issue in a model where the investor
chooses consumption and asset shares to maximise intertemporal (power) utility of
consumption (and there is no labour income). However, the investor considers alter-
native models for stock returns (that are ‘similar’ or ‘close’ to each other) where a
parameter θ measures the strength of preference for robustness (θ = 0 gives standard
expected utility maximisation). For power utility and iid returns, a ‘robust investor’
holds optimal risky-asset shares

α∗ = 1

(γ + θ)

(
ER − r

σ 2

)

Therefore, a desire for robustness reduces the demand for the risky asset (compared to
the expected utility case). Also, the consumption–wealth ratio depends on θ as well as
(ER − µ)/σ 2 and γ . If returns are predictable (e.g. mean-reverting), then robustness
gives rise to a positive hedging demand for the risky asset (even for logarithmic
investors, γ = 1) whereas a hedging demand usually only occurs in the expected utility
framework for γ �= 1. Note that ‘robust investors’ do not learn about their environment,
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they merely insure against worst-case outcomes. Again, the idea of robustness, which
made a prominent, if somewhat short, appearance in the context of maxmin outcomes
for choosing alternative macroeconomic models, has yet to prove its usefulness in the
area of portfolio selection.

Conclusions

The above analysis indicates the complexities of intertemporal models and the sen-
sitivity of optimal asset shares to the predictability in returns and to their hedging
components (i.e. covariances between shocks to different state variables). If results are
very sensitive to particular assumptions, the practical value of such models may be
questioned. Put another way, all models are stylised descriptions of reality and, there-
fore, sometimes, relatively innocuous assumptions may be crucial to the key results.
However, it is only through careful analysis of alternative models that we can get some
idea of the limitations of the analysis, and recent work is providing much information
on these issues. Perhaps a key feature of this complex and challenging area is the many
different possibilities one has to consider, most of which we have discussed in this
chapter. These include the following.

• Using a finite or infinite horizon model in discrete or continuous time.

• Simplification to obtain interpretable closed form solutions (e.g. Merton 1971, Kim
and Omberg 1996, Campbell and Viceira 1999, 2000) or more complex models
that often require intensive numerical solution techniques or approximate solutions
(which may not be valid if we move far from the initial conditions).

• Choice of utility function (e.g. power versus Epstein–Zin recursive utility or loss-
aversion preferences) and its arguments (e.g. consumption, losses and gains or end-
of-period wealth (e.g. Brennan, Schwartz and Lagnado 1997).

• Imposition of constraints (e.g. no short sales, borrowing limits, bankruptcy, and
so on – Brennan, Schwartz and Lagnado 1997), which generally implies ‘complex’
numerical solutions.

• Choice of the number of state variables (e.g. how many assets, inclusion of stochastic
labour income, or stochastic parameter uncertainty).

• Whether to allow predictable asset returns and whether to assume agents know the
parameters of the prediction equations or they have to learn about these parameters,
which may also be time-varying. What form of updating of parameters to use – purely
data-based schemes (e.g. recursive OLS, Kalman Filter), regime switches or Bayesian
learning?

16.8 Summary
• The introduction of a state variable other than returns, such as stochastic labour

income, considerably complicates the solutions of the intertemporal consumption-
portfolio model and introduces a hedging demand. If shocks to returns and labour
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income are negatively (positively) correlated, this increases (reduces) the demand
for the risky asset. With a negative correlation, the risky-asset acts as a hedge against
unexpected falls in labour income, allowing a smoother path for consumption and,
hence, the demand for the risky asset is higher. Hedging demands also arise when
returns (‘the investment opportunity set’) are time-varying.

• Loss aversion (e.g. disappointment aversion preferences) can explain why many
investors do not participate in the stock market at all – their fear of losses makes it
rational for them to avoid such risky bets, with high utility losses when the market
falls. This result can only be obtained in standard power utility models if there are
very high fixed entry costs to participation. Also loss-aversion utility avoids the
Rabin paradox, whereby if investors avoid a small (50–50) gamble, they will not
enter a gamble where they could lose relatively little but gain an infinite amount
of money.

• Parameter uncertainty considerably reduces the demand for risky assets at any hori-
zon, compared to the ‘no uncertainty’ case. This also appears to be the case when
‘model uncertainty’ and a robust maxmin criterion is used in asset-allocation deci-
sions. Also, where returns are predictable, parameter uncertainty implies asset shares
do not rise at a very fast rate and to very high levels as the investor’s horizon
lengthens – as is the case with predictability but no parameter uncertainty.

• If there is predictability in stock returns, the value of the predictor variable (e.g.
dividend–price ratio) can have very strong positive (market-timing) effects on the
demand for stocks. However, this seems to be considerably attenuated when there
is parameter uncertainty.

Appendix: Parameter Uncertainty
and Bayes Theorem

Barberis and Huang (2001) very clearly sets out the issues in determining the optimal
asset share in an intertemporal model under estimation uncertainty, using Bayes rule.
Several aspects of this methodology are widely used, so we outline the key features of
this approach. In order to determine the optimal asset allocation today (e.g. between
one risky stock and one riskless asset), we have to forecast assets returns one or
more periods ahead. Suppose initial wealth at time T is WT and we wish to invest to
maximise utility from terminal wealth with a horizon H periods ahead. If WT = $1
and α is allocated to stocks, then

WT +H = (1 − α) exp(rfH) + α exp(rfH + rT +1 + rT +2 + · · · + rT +H )

where rf = real risk-free rate, rT is the (per period) real stock return (both continuously
compounded). With CRRA utility,

U(WT +H ) = (WT +H )1−γ

1 − γ
(A1)
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The simplest case is a buy-and-hold strategy where the investor chooses α (at time T

and holds this portfolio to time T + H) and maximises ET U(WT +H ), which can be
written

max
α

ET

[(1 − α) exp(rfH) + α exp(rfH + RT +H )]

1 − γ

1−γ

(A2)

where RT +H = rT +1 + rT +2 + · · · + rT +H . Suppose we believe that stock returns are
generated by

rt+1 = µ + βzt + εt+1 (A3)

where zt = dividend–price ratio (and is AR(1) say) and εt is iid (0, σ 2) and θ = (µ, β).
If we assume the investor believes the OLS coefficients θ are estimated without error
so that θ̂ = θ), then the investor’s problem is

max
α

∫
U(WT +H )p(RT +H |z, θ̂) dRT +H (A4)

where p(RT +H |z, θ̂) is the probability density function, given z = (z1, z2, . . . , zT ),
the observed values of z up to today (= T ) and assuming θ is precisely given by θ̂ .
But (A4) does not take into account the uncertainty surrounding the estimate of θ and,
hence, the uncertainty in future forecasts of RT +H arising from this source. A useful
way of taking account of the uncertainty about θ is to use Bayes concept of a posterior
distribution p(θ |z) that summarises the uncertainty about θ , given the data observed
so far. The predictive distribution is the probability distribution based only on the data
sample observed and not on any fixed value of θ

p(RT +H |z) =
∫

p(RT +H |θ, z)p(θ |z) dθ (A5)

Notice that the integration is over possible values of θ . The investor then solves

max
α

∫
U(WT +H )p(RT +H |z) dRT +H (A6)

The posterior distribution p(θ |z) is proportional to the prior distribution p(θ) and the
likelihood function for θ

p(θ |z) ∝p(θ)L(θ ; z) (A7)

The likelihood reflects the best estimate of θ using only the data on z, while the prior
distribution is the investor’s view of θ before examining the data (e.g. from theoretical
considerations, such that it would be ‘unreasonable’ if θ lay outside a certain range).

No Parameter Uncertainty: Returns IID

To illustrate the calculation of these alternative distributions, consider the simplest case
where stock returns are iid

rt = µ + εt εt ∼ iid(µ, σ 2)
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How can we evaluate the integral in (A4)? The p.d.f. conditional on fixed (known)
parameters is p(RT +H |z, θ) ≡ p(RT +H |r, µ, σ ), where rT +j = µ + εT +j for (j =
1, 2, . . . , H). Hence, RT +H = rT +1 + rT +2 + · · · + rT +H is normally distributed with
mean Hµ and variance Hσ 2. The integral in (A4) is evaluated numerically by
simulation. Suppose we have some function g(y) and wish to evaluate∫

g(y)p(y) dy

where p(y) is the p.d.f. The integral is approximated by

(1/m)

m∑
i=1

g(y(i))

where y(1), . . . , y(m) are independent draws from the probability density function p(y).
Given empirical values for µ and σ 2, we, therefore, draw m = 1 million values (say)
from N(µ, σ 2) to give R

(i)
T +H ∼ N(µH, Hσ 2) and evaluate the sum in (A4) as

EU (WT +H ) = 1

m

m∑
i=1

{(1 − α) exp(rfH) + α exp(rfH + R
(i)
T +H )}1−γ

(1 − γ )
(A8)

for a given α. We then search over a grid of values for α(j) = {0, 0.01, 0.02, . . . , 0.98,

0.99} to determine the optimal α(j) that maximises EU (WT +H ). Note that we constrain
our solutions for α to exclude the possibility of short-selling (α < 0) or buying on
margin (α > 1). (Barberis and Huang (2001) uses the posterior means of µ and σ 2 and
as the ‘fixed values’ for these variables – see below). The above can be repeated for
different horizons H to see how the optimal α varies with horizon (although for iid
returns and no parameter uncertainty, we expect α to be independent of horizon-but
this will not necessarily be the case with uncertain parameters). Similarly, we can solve
for α∗ for different values of the risk-aversion parameter γ .

Parameter Uncertainty: Returns are IID

We have to evaluate (A6), which requires the predictive distribution in (A5). To eval-
uate the latter, we first require the posterior distribution p(θ |z) = p(µ, σ 2|r). In con-
structing the posterior distribution, we can use either an informed prior (i.e. some initial
guess for µ = µ0) or a diffuse (uninformative) prior such as

p(µ, σ 2)∝1/σ 2 (A9)

For this diffuse prior, it can be shown that the posterior distribution p(µ, σ 2|r) is

σ 2|r ∼ IG

(
T − 1

2
,

1

2

T∑
t=1

(rt − r2)

)
(A10a)

µ|σ 2, r ∼ N(r, σ 2/T ) where r =
T∑

t=1

rt (A10b)
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The posterior distribution for µ is the maximum likelihood estimate when we have a
diffuse prior. Equation (A10b) says that the best estimate of µ is the sample mean,
and this estimate has a variance (σ 2/T ). If σ 2 is known by the investor, this would be
the end of the story. But if σ 2 is not known, it too must be estimated from available
data (t = 1, 2, . . . , T ) and this is given in (A10a) where the posterior distribution of
σ 2 is an inverse gamma (IG) distribution. If one were sampling from the posterior
distribution at any time T (so T and r are known), then we would first make a draw
from the inverse gamma distribution (A10a) to obtain σ (i) (for i = 1) and then use this
value to draw from the normal distribution for µ(i) in (A10b). If this is repeated many
times, i = 1, 2, . . . , m (where m may have to be as high as one million for the required
degree of accuracy), we obtain an accurate representation of the posterior distribution.

Given that the ‘true’ µ is constant, then from (A10b), we see that the posterior
delivers an accurate value for µ as T → ∞ (since the variance σ 2/T approaches
zero), although in our case T is fixed by the length of data available to the investor
when she makes her buy-and-hold decision. In the case of an informative prior, the
posterior distribution becomes more complex. However, intuition suggests that the
posterior distribution of θ should be a weighted average of the prior values θ0 and the
sample data estimates θ̂ and this is the case.

We now have m = 1 million values of (µ, σ 2) drawn from the posterior p(µ, σ 2|r)
where r = (r1, r2, . . . , rT ) and now we sample one point from N(Hµ, Hσ 2) for each
of these 1 million pairs (µ, σ 2). This gives us 1 million values from the predictive
distribution for the uncertainty case, p(RT +H |z) in (A5), which are then averaged to
give EU(WT +H ) in (A8) for a given α. Equation (A8) is again maximised with a grid
search over α(j).

The 1 million values of (µ, σ 2) from the posterior distribution for monthly returns
when averaged give µ̂ = 0.0065 (std. dev. = 0.0039) and a mean estimate of σ 2 of
0.0019 (std. dev. = 0.0003). The mean is estimated with considerable error, while the
estimate of σ 2 is more precise, as we might expect. (These values are used for the
known ‘true’ µ and σ 2 when drawing from N(µ, σ) for the ‘no parameter uncertainty
case’ described earlier).

Rebalancing

Barberis and Huang (2001) also repeats the above analysis when investors rebalance
their portfolio annually, so they maximise

max
α

Et0

(
W

1−γ

k

1 − γ

)

where t0 is the decision period that moves forward every k = 12 months. The investor
now has different degrees of uncertainty about the parameters at each rebalancing
period, as well as different ‘initial values’ for the dividend yield. Solving this problem
is far more complex and requires dynamic programming using the Bellman equation,
which is solved by backward induction (Barberis and Huang 2001).



17
RATIONAL BUBBLES
AND LEARNING

Aims

• Show how explosive rational bubbles and periodically collapsing bubbles arise as
solutions to the Euler equation and how one tests for the presence of these ‘exoge-
nous’ bubbles.

• Demonstrate how bubbles may also depend on fundamentals such as dividends and
how one might test for the presence of these ‘intrinsic bubbles’.

• Show how models with ‘recursive learning’ about either the dividend or the returns
process can lead to more volatility in prices (than under RE) and also give returns
that are predictable, even if the RVF holds.

• Demonstrate how ‘self-referential’ models of learning converge to a rational expec-
tations equilibrium and how such models can generate prices that are more volatile
than those in a ‘pure’ RE model (i.e. where agents know the parameter values).

17.1 Rational Bubbles

The idea of self-fulfilling ‘bubbles’ or ‘sunspots’ in asset prices has been discussed
almost since organised markets began. Famous documented ‘first’ bubbles (Garber
1990) include the South Sea share price bubble of the 1720s and the Tulipomania
bubble in the seventeenth century. In the latter case, the price of tulip bulbs rocketed
between November 1636 and January 1637 only to suddenly collapse in February
1637 and by 1639, the price had fallen to around 1/200th of 1% of its peak value.
The increase in stock prices in the 1920s and subsequent ‘crash’ in 1929, the US/UK



398 C H A P T E R 1 7 / R AT I O N A L B U B B L E S A N D L E A R N I N G

stock market rises of 1994–2000 and subsequent crash of 2000–2003 and the rise
of the dollar spot FX-rate between 1982 and 1985 and its subsequent fall over the
next few years have also been interpreted in terms of self-fulfilling bubbles. Keynes
(1936) of course is noted for his observation that stock prices may not be governed
by an objective view of ‘fundamentals’ but by what ‘average opinion expects average
opinion to be’. His analogy for the forecasting of stock prices was that of trying to
forecast the winner of a beauty contest. Objective beauty is not necessarily the issue,
what is important is how one thinks the other judges’ perceptions of beauty will be
reflected in their voting patterns.

Rational bubbles arise because of the indeterminate aspect of solutions to rational
expectations models, where the process governing stock prices is encapsulated in the
Euler equation. The price you are prepared to pay today for a stock depends on the
price you think you can obtain at some point in the future. But the latter depends
on the expected price even further in the future. The Euler equation determines a
sequence of prices but does not ‘pin down’ a unique price level unless somewhat
arbitrarily, we impose a terminal condition (i.e. the transversality condition) to obtain
the unique solution. However, in general, the Euler equation does not rule out the
possibility that the price may contain an explosive bubble. (There are some subtle
qualifications to the last statement and, in particular, in the representative agent model
of Tirole (1985), he demonstrates uniqueness for an economy with a finite number of
rational, infinitely lived traders, and Tirole (1985b) demonstrates that bubbles are only
possible when the rate of growth of the economy is higher than the steady-state return
on capital.)

While one can certainly try and explain prolonged rises or falls in stock prices as
being due to some kind of irrational behaviour such as ‘herding’ or ‘market psychol-
ogy’, nevertheless, recent work emphasises that such sharp movements or ‘bubbles’
may be consistent with the assumption of rational behaviour. Even if traders are per-
fectly rational, the actual stock price may contain a ‘bubble element’, and, therefore,
there can be a divergence between the stock price and its fundamental value.

Euler Equation and the Rational Valuation Formula

We investigate how the market price of stocks may deviate, possibly substantially,
from their fundamental value even when agents are homogeneous and rational and the
market is informationally efficient. To do so, we show that the market price may equal
its fundamental value plus a ‘bubble term’ and yet the stock is still willingly held by
rational agents and no excess profits can be made. To simplify the exposition, assume
(i) agents are risk-neutral and have rational expectations and (ii) investors require a
constant (real) rate of return on the asset EtRt+i = k. The Euler equation is

Pt = δ(EtPt+1 + EtDt+1) (1)

where δ = 1/(1 + k). This may be solved under RE by repeated forward substitution

Pt = P f
t =

∞∑
i=1

δiEtDt+i (2)
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where we assume the transversality condition holds (i.e. lim(δnEtDt+n) = 0, as n → ∞).
The transversality condition ensures a unique price given by (2) which we denote as the
fundamental value P f

t . The basic idea behind a rational bubble is that there is another
mathematical expression for Pt that satisfies the Euler equation, namely

Pt =
∞∑
i=1

δiEtDt+i + Bt = P f
t + Bt (3)

and Bt is the ‘rational bubble’. Thus, the actual market price Pt deviates from its
fundamental value P f

t by the amount of the rational bubble Bt . So far, we have not
indicated any properties of Bt : clearly, if Bt is large relative to fundamental value,
then actual prices can deviate substantially from their fundamental value.

In order that (3) should satisfy (1), we have to place some restrictions on the
dynamic behaviour of Bt and we determine these restrictions by establishing a poten-
tial contradiction. We do so by assuming (3) is a valid solution to (1), and this then
restricts the dynamics of Bt . Start by leading (3) by one period and taking expectations
at time t

EtPt+1 = Et [δEt+1Dt+2 + δ2Et+1Dt+3 + · · · + Bt+1]

= [δEtDt+2 + δ2EtDt+3 + · · · + EtBt+1] (4)

where we have used the law of iterated expectations Et(Et+1Dt+j ) = EtDt+j . The
RHS of the Euler equation (1) contains the term δ(EtPt+1 + EtDt+1), and using (4),
we can see that this is given by

δ[EtDt+1 + EtPt+1] = δEtDt+1 + [δ2EtDt+2 + δ3EtDt+3 + · · · + δEtBt+1] (5)

Substituting the definition of P f
t from (2) in the RHS of (5), we have

δ[EtDt+1 + EtPt+1] = P f
t + δEtBt+1 (6)

Substituting from (6) into (1),

Pt = P f
t + δEtBt+1 (7)

But we now seem to have a contradiction since (3) and (7) cannot, in general, both be
solutions to (1). We can make these two solutions (3) and (7) equivalent if

EtBt+1 = Bt/δ = (1 + k)Bt (8)

Then, (3) and (7) collapse to the same expression and satisfy (1). An alternative
approach to showing the bubble must be a martingale is to note that from (1), we can
write Pt + Bt = δ(EtPt+1 + EtDt+1 + EtBt+1), providing Bt = EtBt+1. More gener-
ally, (8) implies

EtBt+m = Bt/δ
m (9)



400 C H A P T E R 1 7 / R AT I O N A L B U B B L E S A N D L E A R N I N G

Hence (apart from the known discount factor), Bt must behave as a martingale: the
best forecast of all future values of the bubble depends only on its current value. While
the bubble solution satisfies the Euler equation, it violates the transversality condition
(for Bt �= 0) and because Bt is arbitrary, the stock price in (3) is non-unique.

What kind of bubble is this mathematical entity? Note that the bubble is a valid
solution, providing it is expected to grow at the rate of return required for investors to
willingly hold the stock, from (8), we have E(Bt+1/Bt) − 1 = k. Investors do not care
if they are paying for the bubble (rather than fundamental value) because the bubble
element of the actual market price pays the required rate of return, k. The bubble is a
self-fulfilling expectation.

Consider a simple case where expected dividends are constant and the value of the
bubble at time t , Bt = b (> 0) a constant. The bubble is deterministic and grows at
the rate k, so that EtBt+m = (1 + k)mb. Thus, once the bubble exists, the actual stock
price at t + m, even if dividends are constant, is from (3)

Pt+m = δD

(1 − δ)
+ b(1 + k)m (10)

Even though fundamentals (i.e. dividends) indicate that the actual price should be
constant, the presence of the bubble means that the actual price can rise continuously,
since (1 + k) > 1.

In the above example, the bubble becomes an increasing proportion of the actual
price since the bubble grows but the fundamental value is constant. In fact, even when
dividends are not constant, the stock price always grows at a rate that is less than the
rate of growth of the bubble (= k) because of the payment of dividends

(EtPt+1/Pt) − 1 = k − EtDt+1/Pt (11)

In the presence of a bubble, the investor still uses all available information to forecast
prices and rates of return. Hence, forecast errors are independent of information at time
t and excess returns are unforecastable. Tests of informational efficiency are, therefore,
useless in detecting bubbles. However, the bubble does not allow (supernormal) profits,
since all information on the future course of dividends and the bubble is incorporated
in the current price: the bubble satisfies the fair game property.

Our bubbles model can be extended (Blanchard 1979) to include the case where the
bubble collapses with probability (1 − π) and continues with probability π

Bt+1 = Bt(δπ)−1 with probability π (12a)

= 0 with probability 1 − π (12b)

This structure also satisfies the martingale property. These models of rational bubbles,
it should be noted, tell us nothing about how bubbles start or end; they merely tell
us about the time-series properties of the bubble once it is under way. The bubble is
‘exogenous’ to the ‘fundamentals model’ and the usual RVF for prices.

As noted above, investors cannot distinguish between a price rise that is due solely
to fundamentals or because of the bubble. Individuals do not mind paying a price over
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the fundamental’s price as long as the bubble element yields them the required rate
of return next period and is expected to persist. One implication of rational bubbles
is that they cannot be negative (i.e. Bt < 0). This is because the bubble element falls
at a faster rate than the stock price. Hence, a negative rational bubble ultimately ends
in a zero price. Rational agents realise this and they, therefore, know that the bubble
will eventually burst. But by backward induction, the bubble must burst immediately,
since no one will pay the ‘bubble premium’ in the earlier periods. Thus, if the actual
price Pt is below fundamental value P f

t , it cannot be because of a rational bubble.
If negative bubbles are not possible, then if the bubble is ever zero, it cannot restart.
This arises because the innovation (Bt+1 − EtBt+1) in a rational bubble must have a
zero mean. If the bubble started again, the innovation could not be mean zero since
the bubble would have to go in one direction only, that is, increase, in order to start
up again.

In principle, a positive bubble is possible since there is no upper limit on stock
prices. However, in this case, we have the rather implausible state of affairs where
the bubble element Bt becomes an increasing proportion of the actual price and the
fundamental part of the price becomes relatively small. One might conjecture that this
implies that individuals will feel that at some time in the future, the bubble must burst.
Again, if investors think that the bubble must burst at some time in the future (for
whatever reason), then it will burst now. To see this, suppose individuals think the
bubble will burst in the year 2030. They must realise that the market price in the year
2029 will reflect only the fundamental value because the bubble is expected to burst
over the coming year. But if the price in 2029 reflects only the fundamental value, then
by backward induction, this must be true of the price in all earlier years. Therefore,
the price now will reflect only fundamentals. Thus, it seems that in the real world,
rational bubbles can really only exist if each individual’s horizon is shorter than the
time period when the bubble is expected to burst. The idea here is that one would pay
a price above the fundamental value because one believes that someone else will pay
an even greater price in the future. Here, investors are myopic, and the price at some
future time t + N depends on what they think, and other investors think, the price
will be.

17.2 Tests of Rational Bubbles
It is relatively easy to demonstrate that violation of Shiller’s variance-bound inequality
cannot be taken to imply the presence of rational bubbles. Intuitively, this is because
the terminal price PN used in the test will contain any bubble element. More for-
mally, note that in calculating the perfect foresight price, an approximation to the
infinite horizon discounting in the RVF is used, and the calculated perfect foresight
price is P ∗

t

P ∗
t =

N∑
i=1

δiDt+i + δNPt+N (13)

where PN is the actual market price at the end of the data set. The variance bound
under the null of constant (real) required returns is var(Pt ) � var(P ∗

t ). However, a
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bubble is incorporated in this null hypothesis. To see this, note that with a rational
bubble,

Pt = P f
t + Bt (14)

and Et(Bt+N) = (1 + k)NBt = δ−NBt . If we now replace PN in (13) by a term con-
taining the bubble Pt+N = P f

t+N + Bt+N , then

EtP
∗
t = P f

t + δNEtBt+N = P f
t + Bt (15)

Hence, even in the presence of a bubble, we have from (14) and (15) that Pt = EtP
∗
t .

An early test for bubbles (Flood and Garber 1980) assumed a non-stochastic bubble that
is Pt = P f

t + (Bo/δ
t ), where Bo is the value of the bubble at the beginning of the sample

period. Hence, in a regression context, there is an additional term of the form (Bo/δ)
t .

Knowing δ, a test for the presence of a bubble is then H0 : Bo �= 0. Unfortunately,
because (1/δ) > 1, the regressor (1/δ)t is exploding, and this implies that tests on Bo

depend on non-standard distributions, and correct inferences are therefore problematic.
(For further details, see Flood, Garber and Scott 1984.)

An ingenious test for bubbles is provided by West (1987a). The test involves cal-
culating a particular parameter by two alternative methods. Under the assumption of
no bubbles, the two parameter estimates should be equal within the limits of statistical
accuracy, while in the presence of rational bubbles, the two estimates should differ.
A strength of this approach (in contrast to Flood and Garber 1980, Flood, Garber and
Scott 1984) is that it does not require a specific parameterisation of the bubble process:
any bubble that is correlated with dividends can in principle be detected. To illustrate
the approach, note first that δ can be estimated using (instrumental variables) estimation
of the ‘observable’ Euler equation

Pt = δ(Pt+1 + Dt+1) + ut+1 (16)

where ut+1 = −δ[(Pt+1 + Dt+1) − Et(Pt+1 + Dt+1)]. Now assume an AR(1) process
for dividends

Dt = αDt−1 + vt |α| < 1 (17)

Under the no-bubbles hypothesis, the RVF and (17) give

Pt = �Dt + εt (18)

where � = δα/(1 − δα) and εt arises because the econometrician has a subset of the
true information set. An indirect estimate of �, denoted �̂, can be obtained from the
regression estimates of δ from (16) and α from (17). However, a direct estimate of �

denoted �̂∗ can be obtained from the regression of Pt on Dt in (18). Under the null
of no bubbles, the indirect and direct estimates of � should be equal.

Consider the case where bubbles are present and hence Pt = P f
t + Bt = �Dt + Bt .

The regression of Pt on Dt now contains an omitted variable, namely, the bubble and
the estimate of �, denoted �̂τ , will be inconsistent:

plim�̂τ = � + plim
(
T −1

∑
D2

t

)−1
plim

(
T −1

∑
DtBt

)
(19)
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If the bubble Bt is correlated with dividends, then �̂τ will be biased (upwards if
cov(Dt , Bt ) > 0) and inconsistent. But the Euler equation and the dividend forecasting
equations still provide consistent estimators of the parameters and hence of �̂. There-
fore, in the presence of bubbles, �̂ �= �̂τ (and a Hausman (1978) test can be used to
detect any possible change in the coefficients).

The above test procedure is used by West (1987a) whose data consists of the Shiller
(1981) S&P index 1871–1980 (and the Dow Jones index 1928–78). West finds a
substantive difference between the two sets of estimates, thus rejecting the null of
no bubbles. However, this result could be due to an incorrect model of equilibrium
returns or dividend behaviour. Indeed, West recognises this and finds the results are
reasonably robust to alternative ARMA processes for dividends but in contrast, under a
time-varying discount rate, there is no evidence against the null of no bubbles. Flood,
Hodrick and Kaplan (1994) point out that if one iterates the Euler equation for a second
period, the estimated (‘two-period’) Euler equation is not well specified, and estimates
of δ may, therefore, be biased. Since the derivation of the RVF requires an infinite
number of iterations of the Euler equation, this casts some doubt on the estimate of δ

and, hence, on West’s (1987a) results.
West (1988a) develops a further test for bubbles, which again involves comparing

the difference between two estimators, on the basis of two different information sets.
One limited information set �t consists of current and past dividends, and the other
information set is the optimal predictor of future dividends, namely the market price Pt .
Under the null of no bubbles, forecasting with the limited information set �t ought to
yield a larger forecast error (strictly, innovation variance), but West finds the opposite.
This evidence refutes the no bubbles hypothesis, but, of course, it is also not necessarily
inconsistent with the presence of fads.

Some tests for the presence of rational bubbles are based on investigating the sta-
tionarity properties of price and dividend data. An exogenous bubble introduces an
explosive element into prices, which is not (necessarily) present in the fundamentals
(i.e. dividends or discount rates). Hence, if the stock price Pt ‘grows’ faster than Dt ,
this could be due to the presence of a bubble term Bt . These intuitive notions can
be expressed in terms of the literature on unit roots and cointegration. Using the RVF
(under the assumption of a constant discount rate), if Pt and Dt are unit root processes,
then they should be cointegrated.

If dividends (or log dividends) are integrated of order one I(1) and Pt = [δ/(1 −
δ)]Dt , then Pt must be I(1) and cointegrated with Dt and zt = Pt − δ/(1 − δ)Dt is
stationary I(0). Using aggregate stock price and dividend indexes, Diba and Grossman
(1988) find that �Pt and �Dt are stationary and Pt and Dt are cointegrated, thus
rejecting the presence of explosive bubbles of the type represented by equation (8).

Unfortunately, the interpretation of the above tests has been shown to be potentially
misleading in the presence of what Evans (1991) calls periodically collapsing bubbles.
The type of rational bubble that Evans examines is one that is always positive but can
‘erupt’ and grow at a fast rate before collapsing to a positive mean value, when the
process begins again. The path of the periodically collapsing bubble (see Figure 1) can
be seen to be different from a bubble that grows continuously.
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Figure 1 Bubble component. Source: Evans (1991). Reproduced by permission of the Amer-
ican Economic Association

Intuitively, one can see why testing to see if Pt is non-stationarity I(1) might not
detect a bubble component like that in Figure 1. The (Dickey–Fuller) test for stationar-
ity essentially tries to measure whether a series has a strong trend or an unconditional
variance that is non-constant. Clearly, there is no strong upward trend in Figure 1,
and although the variance alters over time, this may be difficult to detect particularly
if the bubbles have a high probability of collapsing (within any given time period).
If the bubbles have a very low probability of collapsing, we are close to the case of
‘explosive bubbles’ (i.e. EtBt+1 = Bt/δ) examined by Diba and Grossman, and here
one might expect standard tests for stationarity to be more conclusive.

Heuristically (and simplifying somewhat), Evans proceeds by using MCS to generate
a series for a periodically collapsing bubble. Adding the bubble to the fundamentals
P f

t (e.g. under the assumption that Dt is a random walk with drift) gives the generated
stock price series, which is then subject to standard tests for the presence of unit roots.
He finds that the results of his unit root tests depend crucially on π , the probability (per
period) that the bubble does not collapse. For values of π < 0.75, more than 90% of the
simulations erroneously indicate that �Pt is stationary and Pt and Dt are cointegrated.
Hence, ‘periodically collapsing bubbles’ are often not detectable using standard unit
root tests. (The reason for this is that ‘standard tests’ assume a linear autoregressive
process, whereas Evans’ simulations involve a complex non-linear bubble process.)
Thus, the failure of Diba and Grossman to detect continuously explosive bubbles
in stock prices does not necessarily rule out other types of rational bubble. Clearly,
more sophisticated statistical tests of non-stationarity are required to detect periodically
collapsing bubbles (see, for example, Hamilton 1994).

17.3 Intrinsic Bubbles

One of the problems with the type of bubble discussed so far is that the bubble is a deus
exmachina and is exogenous to fundamentals such as dividends. The bubble term arises
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as an alternative solution (strictly the homogeneous part of the solution) to the Euler
equation for stock prices. Froot and Obstfeld (1991) suggest a different type of bubble
phenomenon, which they term an intrinsic bubble. ‘Intrinsic’ is used because the bubble
depends (in a non-linear deterministic way) on fundamentals, namely the level of (real)
dividends. The bubble element, therefore, remains constant if ‘fundamentals’ remain
constant but increases (decreases) along with the level of dividends. For this form of
intrinsic bubble, if dividends are persistent, so is the bubble term, and stock prices will
exhibit persistent deviations from fundamental value. In addition, the intrinsic bubble
can cause stock prices to overreact to changes in dividends (fundamentals), which is
consistent with empirical evidence.

To analyse this form of intrinsic bubble, assume a constant real required rate of
return r (in continuous time). The Euler equation is

Pt = e−rEt (Dt+1 + Pt+1) (20)

which implies a fundamentals price P f
t (assuming the transversality condition holds)

given by

P f
t =

∞∑
k=1

e−r(k)Et(Dt+k) (21)

However, Pt = P f
t + Bt is also a solution to the Euler equation if Bt is a martingale,

Bt = e−r [EtBt+1] The ‘intrinsic bubble’ is constructed by finding a non-linear function
of dividends such that Bt is a martingale and hence satisfies the Euler equation, where

B(Dt) = cDλ
t c > 0, λ > 1 (22)

If log dividends follow a random walk with drift parameter µ and conditional variance
σ 2, that is, ln(Dt+1) = µ + ln(Dt ) + εt+1, then the bubble solution P̂t is

P̂t = P f
t + B(Dt) = αDt + cDλ

t (23)

where α = (er − eµ+σ 2/2)−1. The fundamentals solution P f
t = αDt is a stochastic ver-

sion of Gordon’s (1962) growth model, which gives P f
t = (er − eµ)−1Dt under cer-

tainty. It is clear from (23) that stock prices overreact to current dividends compared
to the ‘fundamentals only’ solution (i.e. ∂P f

t /∂Dt = α) because of the bubble term
(i.e. ∂Pt/∂Dt = α + cλDλ−1

t ). Froot and Obstfeld simulate the intrinsic bubble in (22)
assuming reasonable values for (r , µ, σ 2), estimated values for c and λ (see below) and
with εt+i being iid. They compare the pure fundamentals path, the intrinsic stochastic
bubble path P̂t given by (23) and, in addition, an intrinsic bubble that depends on time
as well as dividends, which gives rise to a path for prices denoted P̃t

P̃t = aD t + bD te
(r−µ−σ 2/2)t (24)

The intrinsic bubble in (24) depends on time and allows a comparison with parametric
bubble tests, which often invoke a deterministic exponential time trend (Flood and Gar-
ber 1990, Blanchard and Watson 1982, Flood and Garber 1994). The simulated values
of these three price series are shown in Figure 2, and it is clear that the intrinsic bubble
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Figure 2 Simulated stock price paths. Source: Froot and Obstfeld (1991). Reproduced by per-
mission of the American Economic Association

can produce a plausible-looking path for stock prices P̂t and one that is persistently
above the fundamentals path P f

t (although, in other simulations, the intrinsic bubble
P̂t can be above the fundamentals path P f

t and then ‘collapse’ towards P f
t ). From

Figure 2, we see that in a finite sample, the intrinsic bubble may not look explosive
and, therefore, it may be difficult to detect using statistical tests. (The time-dependent
intrinsic bubble P̃t , on the other hand, yields a path that looks explosive, and this is
more likely to be revealed by standard tests.)

Froot and Obstfeld test for the presence of intrinsic bubbles using a simple trans-
formation of (23).

Pt/Dt = c0 + cDλ−1
t + ηt (25)

where the null of no bubble implies H0 : c0 = α and c = 0 (where α = er − eµ+σ 2/2).
Using representative values of er = 1.09 (p.a.) for the real S&P index, while for real
dividends process, µ = 0.011, σ = 0.122, then the sample average value for α equals
14. Under the null of no bubbles, Pt and Dt should be cointegrated with cointegration
parameter c0 = α, of about 14. In a simple OLS cointegrating regression of Pt on Dt ,
Froot and Obstfeld find that Pt = � + 37Dt and hence Pt overreacts to dividends. In
addition, Pt − 14Dt is not stationary and, therefore, Pt and Dt are not cointegrated. The
‘fundamentals only’ solution Pt = αDt also implies that ln Pt and ln Dt are cointegrated
with a cointegration parameter of unity. However, estimates reveal this parameter
to be in the range 1.6–1.8 and that (ln Pt − ln Dt ) may not be stationary. Hence,
taken at face value, these tests tend to reject the (no-bubble) fundamentals model.
However, Froot and Obstfeld note that the OLS cointegrating parameter could be
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heavily biased (Banerjee, Dolado, Galbraith and Hendry 1993) and that the power and
size of these tests are problematic.

Froot and Obstfeld then consider a direct test for the presence of intrinsic bubbles
on the basis of estimation of (25). A representative result is

(P/D)t = 14.6
(2.28)

+ 0.04
(0.12)

D
1.6(1.1)
t (26)

Annual data: 1900–1988, R-squared = 0.57, (.) = Newy–West standard errors.
Although there are some subtle small sample econometric issues involved in testing

for c = 0 and λ − 1 = 0 in (25), the evidence above is, in part, supportive of the
existence of an intrinsic bubble. The joint null, that c and λ − 1 equal zero is strongly
rejected. However, the empirical evidence is not decisive since we do not reject the
null that c = 0. One can simulate values for the fundamentals price P f

t = 14.6Dt , and
the price with an intrinsic bubble P̂t given by (23) and compare these two series with
the actual price Pt . The path of the intrinsic bubble (Figure 3) is much closer to the
actual path of stock prices than is P f

t . The size of the bubble can also be very large as
in the post-World War II period. Indeed, at the end of the period, the bubble element
of the S&P index appears to be large.

Finally, Froot and Obstfeld assess the sensitivity of their results to different dividend
models (using Monte Carlo methods) and to the addition of various alternative functions
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by permission of the American Economic Association
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for Dt or other deterministic time trends in the regression (22). The estimates of the
basic intrinsic bubble formulation in (23) are quite robust.

Driffell and Sola (1998) repeat the Froot–Obstfeld model assuming dividend growth
undergoes regime shifts, in particular, that the (conditional) variance of dividend
growth varies over the sample. A graph of (real) dividend growth for the United
States shows relatively low variance between 1900 and 1920, followed by periods
of fairly rapid ‘switches’ in variance over 1920–1950 and then relatively low and
constant variance post-1950. Driffell and Sola use the two-state Markov switching
model of Hamilton (1989) to model dividend growth, and this confirms the results
given by ‘eyeballing’ the graph. They then have two equations of the form (23)
corresponding to each of the two states, of ‘high’ and ‘low’ variance. However,
their graph of the price with an intrinsic bubble is very similar to that of Froot
and Obstfeld (see p̂t , Figure 3), so this particular variant does not appear to make
a major difference.

There are a number of statistical assumptions required for valid inference in the
approach of Froot and Obstfeld (some of which we have mentioned). For this reason,
they are content to state that ‘the results above merely show that there is a coherent
case to be made for bubbles’. They would probably agree that the evidence is also
consistent with other hypotheses.

Econometric Issues

There are severe econometric problems in testing for rational bubbles, and the inter-
pretation of the results is problematic. Econometric problems that arise include the
analysis of potentially non-stationary series using finite data sets, the behaviour of
asymptotic test statistics in the presence of explosive regressors as well as the standard
problems of obtaining precise estimates of non-linear parameters (for the intrinsic
bubbles) and corrections for heteroscedasticity and moving average errors. Tests for
rational bubbles are often contingent on having the correct equilibrium model of
expected returns: we are, therefore, testing a joint hypothesis. Rejection of the no-
bubbles hypothesis may simply be a manifestation of an incorrect model based on
fundamentals.

Another difficulty in interpreting results from tests of rational bubbles arises from
the Peso problem, which is really a form of ‘omitted variables’ problem. Suppose
investors in the market had information, within the sample period studied by the
researcher, that dividends might increase rapidly in the future, but in the actual data,
the event did not occur and dividends increased at their ‘normal’ rate. In the sam-
ple of data, the stock price would rise substantially (because of the RVF), but there
would only be a moderate increase in dividends. Stock prices would look as if they
have overreacted to (current) dividends and, more importantly, such a rise in price
might be erroneously interpreted as a bubble. This problem of interpretation is prob-
ably most acute when there are very large price changes such as the long bull run
of the 1990s (the ‘new economy’ idea) followed by the crash of 2000–2003. When
we turn to periodically collapsing bubbles, it appears unlikely that standard tests will
detect such phenomena.
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17.4 Learning

In this section, we do not cover the extensive literature on dynamic learning and con-
vergence to RE equilibrium (see Evans and Honkapohja 2001) but instead concentrate
on approaches to learning that directly address the question of excess volatility and
return predictability. Our ‘baseline model’ is still the ‘pure’ RE approach where agents
know the ‘true’ structure of the economy (up to a white noise error process). However,
we contrast results from the standard RE model with those from simple learning pro-
cesses. In these learning models, agents are ‘rational’ but unlike RE, they do not know
the true parameters of the equations for dividends or returns and have to estimate them
from limited data. We assume agents optimally update their estimates of the true pop-
ulation parameters as more data arrives. They then use these weakly rational forecasts
(based on a limited information set) in the RVF to obtain an estimate of the ‘price
under learning’. The latter can then be compared with the observed price (and stock
returns), to see if the ‘learning model’ mimics the real data better than the ‘pure’ RE
approach. We discuss the complementary issue of the impact of learning on portfolio
choice in a later chapter.

Gordon Growth Model

A simple but intuitive learning model is that of Barsky and DeLong (1993), who use the
simple Gordon (1962) growth model, where (real) stock prices Pt = Dt+1/(R − gt ),
where R is the (known) required real rate of return and gt is the expected ‘steady
state’ growth rate of dividends based on information up to time t . Barsky and DeLong
(1993) use this model to calculate fundamental value Vt = Dt+1/(R − gt), assuming
that agents have to continually update their estimate of the future growth in dividends.
They then compare Vt with the actual S&P500 stock price index Pt over the period
1880–1988.

For the simplest case of a constant value of (R − g)−1 = 20, which equals the
average P/D ratio, then Vt = 20Dt+1. Even here, the broad movements in Vt over a
long horizon of 10 years are as high as 67% of the variability in Pt (see Barsky–DeLong
1993, Table III, p. 302), with the pre-World War II movements in the two data series
being even closer.

The simple exogenous learning process for dividend growth they propose is the
familiar ‘adaptive expectations’

Et�dt+1 = θEt−1�dt + (1 − θ)�dt 0 < θ < 1 (27)

or
Et�dt+1 − Et−1�dt = (1 − θ)[�dt − Et−1�dt ] (28)

The change in expectations between t − 1 and t depends on the previous periods
forecast error, with adjustment parameter (1 − θ). If θ is large (e.g. 0.95), new infor-
mation on dividend growth has little impact on the change in expectations. The adaptive
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expectations forecasting scheme can be shown to be rational if dividend growth �dt+1

follows an IMA(1,1) process

�dt+1 = �dt + (εt+1 − θεt ) (29)

To see this, take expectations of (29) and also lag one period

Et�dt+1 = �dt − θεt (30a)

Et−1�dt = �dt−1 − θεt−1 (30b)

From (30a) and (30b)

Et�dt+1 − θEt−1�dt = �dt − θ�dt−1 − θ(1 − θL)εt (31)

From (29), we have �dt − �dt−1 = (1 − θL)εt , and using this in (31), we obtain (28)
as required

Et�dt+1 − θEt−1�dt = (1 − θ)�dt (32)

By backward substitution, (27) can also be written

Et�dt+1 = (1 − θ)

t−1∑
i=0

θ i�dt−i + θ t�d0 (33)

Subtracting (30b) from (30a) and using the IMA process (29), we obtain another for-
mulation of adaptive expectations

Et�dt+1 = Et−1�dt + (1 − θ)εt (34)

Equations (27), (32), (33) and (34) are all equivalent expressions. Equation (33)
demonstrates that the one-period-ahead forecast of �dt+1 depends on a long (geometric)
distributed lag of past dividend growth – hence, forecasts change only slowly.
Equation (34) tells a similar story since for θ ≈ 0.95, revisions to forecasts of
dividend growth depend very little on new information εt – ditto for equation (28).
Barsky – DeLong 1993, note that estimates of the IMA(1,1) process (29) give values
of θ in the range 0.95–1, and even in large samples, it is impossible to say whether
(1 − θ) is a small positive number or zero.

They use (28) to update forecasts of Et�dt+1 each time period and assume this
mimics agents’ views of the ‘steady-state’ growth rate gt . These changing values of
gt then give a series for Vt = Dt+1/(R − gt ), which is more volatile than assuming a
constant g. They find the volatility of 10-year changes in Vt is as high as 76% of the
volatility in Pt (see Barsky–DeLong 1993, Table III, p. 302). However, it should also
be noted that although long swings in Pt are in part explained by this model, changes
over shorter horizons such as one year or even five years are not well explained, and
movements in the (stationary) price–dividend ratio are also not well explained. Hence,
at best, the above evidence is broadly consistent with the view that real dividends and
real prices move together in the long run (and hence are likely to be cointegrated), but
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price and fundamental value can diverge quite substantially over a number of years
even when the model incorporates an elementary learning process for dividend growth.

Constant Discount Rate

Timmermann (1993) investigates the impact of learning on price volatility and pre-
dictability using a MCS and compares these results with the RE model (both mod-
els have a constant discount rate). The learning model is very similar to that of
Barsky – DeLong, but the MCS allows us to judge the possible distribution of out-
comes rather than giving just a point estimate. Constant expected dividend growth is
assumed

ln Dt = µ + ln Dt−1 + εt εt ∼ niid(0, σ 2) (35)

Hence, in the standard constant returns (discount rate) model with rational expectations,
the stock price is

P RE
t = (1 + g)

(R − g)
Dt = kD t (36)

where (1 + g) = exp(µ + σ 2/2). Under RE, the volatility in prices is proportional to
the volatility in dividends, and expected returns (being constant) are not forecastable
using the dividend–price ratio. However, in the data, we know that prices are more
volatile than dividends, and the dividend–price ratio forecasts future returns. Can a
simple adaptive learning model for dividends ‘fit the facts’, even in a model with
constant expected returns? To analyse this issue, consider a standard adaptive learning
process for µ and σ 2 for sample size n

µ̂t = (n − 1)

n
µ̂t−1 + � ln Dt

n
(37a)

σ̂ 2
t = (n − 1)

n2

[
nσ̂ 2

t−1 + (µ̂t−1 − � ln Dt)
2] (37b)

Conditional forecasts for dividends are

ÊtDt+i = Dt exp(iµ̂t + iσ̂ 2
t /2) (38)

which substituted in the RVF gives a non-linear function for ‘prices under learning’

P̂t =
{

exp(µ̂t + σ̂ 2
t /2)

1 + R − exp(µ̂t + σ̂ 2
t /2)

}
Dt for µ̂t + σ̂ 2

t /2 < ln(1 + R) (39)

With estimates of µ, σ from the regression (35), together with an estimate of R, we
can simulate the dividend series under RE and compute P RE

t .
Similarly, given starting values µ̂1 and σ̂1, (37), (38) and (39) give simulated val-

ues ‘under learning’ for P̂t and hence P̂t /D̂t and the asset return (1 + R̂t ) ≡ (P̂t +
D̂t )/P̂t−1. In the MCS, the following rule was adopted for (39) to rule out non-finite
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stock prices: if µ̂t + σ̂ 2
t /2 � ln(1 + R), use µ̂t−1 and σ̂ 2

t−1 in place of [µ̂t , σ̂
2
t ]. These

simulations are repeated 1000 times, and the empirical distribution of the regression
coefficient of R̂t+1 on (D̂/P̂ )t obtained. Of course, as n increases, P̂t approaches the
time series for P RE

t since µ̂t and σ̂ 2
t converge on their population values µ and σ .

Timmermann (1993) finds that learning increases the volatility of stock prices (rela-
tive to the simulated RE prices) and even in a ‘large’ sample of 100 (years), the gross
violation of Shiller’s variance ratio (i.e. of five or more) with learning still exceeds
10% – even though the model has a constant discount rate and is ‘rational under the
learning rule’. For sample sizes of 40, the gross violation of Shiller’s volatility ratio
is as high as 30–50%. For the learning model, the proportion of return regressions
with a statistically significant coefficient on (D/P) is around 40–60% for sample sizes
n = 40 − 500, and these simulated returns are also serially correlated – a feature of
the actual data.

Hence, observed ‘excess volatility’ and return predictability may not be the result
of a time-varying risk premium (i.e. changing expected returns) but are capable of
being explained with a constant discount rate, if one allows agents to learn about the
population parameters (of the dividend process).

Why does learning generate predictability? Suppose agents’ current forecast of div-
idend growth µ̂t is below its true level µ. Prices will be below their ‘RE level’ and,
hence, measured D/P will be high. As µ̂t rises towards µ, then via (39), prices will rise
(faster than under RE) and this generates positive future returns, which are correlated
with today’s D/P ratio. Intuitively, to see how learning generates ‘extra’ volatility in
prices is not so straightforward (see Timmermann 1993) but clearly there may be more
movement in µ̂t , σ̂

2
t than in their fixed population values µ, σ 2. Also, under RE, a div-

idend innovation will lead to a proportionate adjustment in prices, but under learning,
the estimate of the growth rate µ̂t will also increase, giving ‘extra’ volatility to prices.

Timmermann (1996) repeats the above approach, this time assuming dividends are
trend stationary (in either levels or logs)

Dt+1 = µ + γ t + ρDt + εt+1 εt+1 ∼ niid(0, σ 2) (40)

This is important because Shiller’s (1981, 1989) empirical results show a gross viola-
tion of the variance ratio under the assumption of stationary dividends, whereas Kleiden
(1986) shows that gross violations are more likely if dividends are non-stationary, even
if RE holds. Using recursive OLS on (40) Timmermann generates stock prices under
learning P̂t for different sample lengths, so that eventually the learning parameters con-
verge on their true values (µ, ρ, γ, σ 2). He finds that under learning and a stationary
dividend process, the MCS produces a large number of gross violations of Shiller’s
variance ratio, even in large samples. Returns are also predictable from the (D/P) ratio
and are autocorrelated. Hence, once again, Shiller’s gross violation using real data may
reflect learning in an otherwise rational model (with a constant discount rate).

Veronesi (2003) extends the above approach by combining learning about the drift
rate of dividends with a Peso problem. In the sample of data {0, T}, there is actually
no change in the drift (growth) rate of dividends but there is a very small ex-ante
probability (λ = 0.005), that is, once in 200 years, that the growth rate would fall
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5% for the duration of 20 years (e.g. as might have been the case around the 1930s
recession). There is also a small probability µ = 0.05 that once in a ‘recession’, the
economy would revert back to its normal growth rate. Agents must learn about the
growth rate by observing past realisations. There is, therefore, uncertainty about the
drift and about whether the economy has entered a long recession. If they observe some
negative dividend innovations, the conditional probability of being in the ‘normal state’
falls from π(t) close to unity towards π(t) = 0.5, the point of maximum uncertainty.
As investors become more uncertain, they react more strongly to news, hence, they
expect returns to be more volatile and, therefore, raise their discount rate. Investors
are assumed to maximise expected intertemporal utility using a constant absolute risk
aversion (CARA) function over consumption (U(C) = e−γC), so that demand for the
risky asset is independent of wealth. The RE equilibrium price is a convex function of
π(t), which is very steep when π(t) is close to unity and flat for π(t) close to zero.
Hence, there is an asymmetric effect of the stock price, namely a very large reaction to
bad news in good times and a smaller reaction to good news in bad times. Dividends
are assumed to follow a Brownian motion (i.e. the continuous-time equivalent of a
random walk) and, therefore, it can be shown that the posterior probability π(t) also
follows a Brownian motion where the drift rate depends on λ and µ.

The qualitative results of the model are consistent with a number of stylised facts
about stock returns and volatility, which can be reproduced by a Monte Carlo simulation
after calibrating the model (e.g. risk-free real rate of 3% p.a. and an implied coefficient
of relative risk aversion = γw, of around 3). Relative to the baseline ‘no-learning, no
Peso problem case’ that is a constant and known dividend growth, the model delivers
a relatively high equity premium (from 0.77 to 3%), a GARCH(1,1) model with high
persistence and with an asymmetric effect to positive and negative news (i.e. leverage
effect). There is also an overreaction of prices to dividends because of changes in π(t),
providing an additional impact of dividends on prices, which implies the elasticity
exceeds unity. In the ‘baseline case’, prices move proportionately to dividends (with
volatility of 6.5%) but with learning, the volatility of stock prices rises relative to the
volatility of dividends, from 6.5% p.a. to around 21%. Hence, Peso problems where
investors have to learn about the dividend growth rate can reproduce many of the
stylised facts of stock returns even though the probability of a regime shift is very
small (but it must be relatively large and persist for many years).

Learning in an Equilibrium Model

Timmermann (1993, 1996) above shows that parameter uncertainty and learning can
produce predictability and excess volatility. Lewellen and Shanken (2002) extend this
approach in an equilibrium model with fully rational agents, who update parameter
estimates using Bayes rule. As well as reproducing Timmermann’s earlier results, the
model shows that even though returns are predictable using past data and profits
can be earned using ‘outside-sample’ predictions (on past data) nevertheless, when
looking forward, regressions estimated from past data do not help forecast ex-ante
future returns. This is because predictability is actually caused by learning (and is not
assumed as part of the model). So the predictability in the data is not perceived by
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the fully rational investors, who believe expected returns are constant, nor can it be
exploited by investors to earn abnormal profits. This is a profound conclusion since it
implies that perhaps the most crucial type of tests of the EMH we examine, namely
the presence of exploitable risk-adjusted profit opportunities based on past data, are
uninformative. This paradoxical result arises in part because of the difference between
results from repeated gambles (i.e. a frequentist interpretation of past profits) and the
conditional nature of investment decisions that depend on observed dividends at a point
in time.

The structure of the model closely resembles that of DeLong, Shleifer, Summers and
Waldmann (1990a), and the reader might first like to review this model in Chapter 19,
before proceeding further. Our learning model has individuals living for two periods,
with overlapping generations. The investor has one-period constant absolute risk aver-
sion (CARA) utility function in end-of-period (second period) wealth U(w) = −e−2γw,
which gives rise to optimal asset shares, α∗

t :

α∗
t = 1

2γ
[vars

t (pt+1 + dt+1)]
−1[Es

t (pt+1 + dt+1) − (1 + r)pt ] (41)

where γ > 0 is the risk-aversion parameter, superscript s indicates the subjective dis-
tribution of investors using whatever information they view as relevant, pt = price of
the risky asset (not the log of the price) and dt = the level of dividends. The risk-free
rate is r , and the risk-free asset is in perfectly elastic supply, whereas the supply of
each risky asset is (normalised) to unity. The true distribution (unknown to investors)
of dividends dt is niid over time, with constant mean δ and variance σ 2

dt ∼ N true(δ, σ 2) (42)

so estimation risk goes to zero as t → ∞. In the first-period, individuals decide on their
allocation of exogenously given wealth. We assume only one risky asset (as we do not
discuss the implications of the model for the CAPM and the cross-sectional behaviour
of asset returns – for this, see Lewellen and Shanken 2002). Since the supply of the
risky asset is unity, from (41), the equilibrium price in terms of next period’s price is

pt = 1

(1 + r)
[Es

t (pt+1 + dt+1) − 2γ vars
t (pt+1 + dt+1)] (43)

Under perfect information (i.e. no uncertainty), the equilibrium price (pt = p, a con-
stant) is

p = δ

r
− 2γ σ 2

r
(44)

The simplest assumption about parameter uncertainty is that investors have no prior
view about δ (i.e. ‘diffuse prior’) so that their estimate of δ depends solely on past
data. (We also assume σ 2 is known.) Using Bayes rule, the posterior distribution of δ

at time t is N(dt , (1/t)σ 2) and the subjective ‘predictive distribution’ is

dt+1 ∼ N s

(
dt ,

(
t + 1

t

)
σ 2

)
(45)
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The investor’s best forecast of δ is the average dividend dt (using data up to time t).
The uncertainty about the mean of dt is reflected in the forecast of its variance. Rational
investors are Bayesian but also forward looking, so solving the price equation forward
gives the closed form solution for current prices

pt = dt

r
− 2γ f (t)σ 2 (46)

where f (t) is a deterministic function of time, which converges to 1/r as t → ∞.
Hence, the parameter uncertainty case, (46), collapses to the certainty case, (44), as
t → ∞ (because the true δ and σ 2 are constant).

We are now in a position to analyse the subjective distribution and the true distri-
bution of returns, under Bayesian learning. Actual price changes that are determined
by actions of our Bayesian investors are

pt+1 − pt = 1

r
(dt+1 − dt ) + 2γ [f (t) − f (t + 1)] (47)

Ignoring the deterministic term, investors believe prices follow a martingale

Es
t (pt+1 − pt) = 0 (48)

since investors cannot predict changes in (subjective) expected dividends. However,
actual prices are time-varying as investors update their view about dt as new data
arrives.

If we assume the true mean level of dividends is δ = 0.05 (5% p.a.) with σ 2 = 0.10
(10% p.a.), then we can generate a price series under learning using (47), where dt

is determined from random draws from an N(0.05, 0.10) distribution. The perfect
information case has equilibrium pt = 1 (for all t), whereas we find that the imperfect
information case has prices wandering around ‘1’ in long swings. But as t → ∞,
the price approaches its fundamental value of unity (since Bayesian learning with
constant parameters converges on the true parameters). These simulated prices do not
‘look like’ a random walk because they depend on dt = d0 + d1 + · · · + dt (where
dt ∼ N(δ, σ 2), which moves in long swings but with the price eventually converging
to the constant true mean value δ. Hence, excess volatility is observable in the data.
However, changes in prices are completely unpredictable by our Bayesian investors.
Given the realisation of prices (under learning), it can be shown that we would observe
negative serial correlation in ‘absolute’ returns cov(Rt , Rt+1) < 0 where Rt+1 = dt+1 +
pt+1 − pt . Also, a high dividend today predicts lower future returns next period (i.e.
cov(dt , Rt+1) < 0), and there is mean reversion over long horizons (because price
eventually equals fundamental value). The econometrician would, therefore, ‘discover’
these properties in the data even though all investors are rational and perceive no
predictability in prices.

Let us now turn to the question of why we might find a profitable trading rule using
‘outside-sample’ tests on past data, even though a Bayesian investor always perceives
zero expected profits. Suppose the trading rule is to hold the risky (riskless) asset
if dt < K(> K), for some arbitrary constant K for the filter rule. On the basis of
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repeated sampling (i.e. frequentist view) using past data, if dt < K , then on average
dt will also be less than the true mean δ and, hence, realised dividends and, thus,
prices next period, will on average be higher. But the Bayesian investor has to base
her decisions, conditional on past dividends that are a single draw from the dividend
process. The investor’s view of δ is always centred on dt , and dt is equally likely to
be above or below δ. Repeated sampling is irrelevant to the Bayesian.

The above is the simplest version of the Lewellen and Shaken model, and they
also allow informative priors, known regime changes for δ and they investigate the
implications of the model for tests of cross-section variation in returns (where the
CAPM can be rejected even though investors are mean-variance efficient). Thus, a
model with rational investors and parameter uncertainty is consistent with the stylised
facts, although this does not prove that learning is responsible for these outcomes.
Parameter uncertainty therefore makes the interpretation of tests of market efficiency
extremely hazardous. More rigorous tests of the EMH on ‘real data’ requires not only
a model of equilibrium returns but also a model which mimics Bayesian updating and
a reasonable ‘prior’ – a daunting task.

Although we do not pursue it here, it is worth noting that when asset demands
are derived from an intertemporal model with learning, the parameter uncertainty acts
like another state variable (e.g. like stochastic labour income) and gives rise to an
intertemporal hedging demand (which is not present in the asset demand functions of
the Lewellen–Shanken model). We briefly discuss this rather complex issue in our
later chapter on intertemporal portfolio models.

Self-Referential Learning

In the above models, dividends follow an exogenous time-invariant process and agent’s
estimates of the dividend process and, hence, prices (via the RVF) eventually converge
to their true values. Suppose now that there is some feedback from prices to divi-
dends – the convergence of the learning process is no longer guaranteed, and there
may be multiple RE equilibria. Self-referential learning models deal with this prob-
lem (Marcet and Sargent 1989).

We can think of agents having a recursive estimate of a set of parameters ρ̂t , so the
data is generated by some function T (ρ̂t ). If zt are the observable state variables used
by agents, then a general representation of the dynamics of zt is

zt = T (ρt )zt−1 + V (ρt )ut (49)

where ut is a ‘shock’ whose impact on zt may depend on agents’ parameter estimates
V (ρt ). The RE solution is a fixed point ρ of T (ρ) where T (ρ) = ρ. Stability of
convergence to RE depends on the stability of the differential equation

∂ρt

∂t
= T (ρt ) − ρt (50)

Local stability can be found by linearising round the fixed point

∂ρt

∂t
= T ′

ρ(ρ)(ρt − ρ) (51)
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and depends on the real parts of the eigenvalues of T
′
ρ(ρ). Intuitively, the estimated

parameters ρt must lie ‘close to’ the equilibrium parameters, and agents’ prior views
must, therefore, rule out estimates that would not move them towards equilibrium.
Clearly, self-referential learning requires more sophisticated agents than does simple
(OLS) adaptive learning, where feedback is ignored.

In the context of stock prices, stability of self-referential learning imposes restric-
tions on the parameters in the reduced form for prices given by the RVF. To sketch
this, suppose we estimate a VAR for dividends and prices (Timmermann 1994) and
use the forecasts

D̂t+1 = φ̂1tDt + λ̂1tPt (52a)

P̂t+1 = ĉ1tPt + ĉ3tDt (52b)

Suppose the underlying true dividend process with constant parameters is

Dt = φ1Dt−1 + λ1Pt−1 + ut (52c)

The Euler equation is

Pt = θEt [Pt+1 + Dt+1] 0 < θ < 1 (53)

Substituting (52a) and (52b) in (53) and using (52c) to eliminate Dt ,

Pt = θ

1 − θ ĉ1t − θλ̂1t

{[λ1(ĉ3t + φ̂1t )]Pt−1 + [φ1(ĉ3t + φ̂1t )]Dt−1 + (ĉ3t + φ̂1t )ut}
(54)

Note that (54) contains a mixture of the true (constant) underlying coefficients (φ1, λ1)

and the estimated values from (52a) and (52b). The RE price depends on (Pt−1, Dt−1)

but because of agents incomplete knowledge of the parameters, Pt depends on all
lagged values of P and D, as the parameters are sequentially updated. With learning (as
opposed to RE), ‘history matters’ for the dynamics. The state ‘vector’ is zt = (Pt , Dt)

and ρt = (φ̂1t , λ̂1t , ĉ1t , ĉ3t ), which can be estimated using OLS in the bivariate VAR.
Rational expectations imply that agents’ forecasts, given their information as encap-
sulated in (52a) and (52b), should equal the coefficients of the true data generation
process represented by (52c) and (54) By comparing (54) with (52b), the fixed points
for the price equation are the solutions to

T11(ρ) = θλ1(c3 + φ1)

1 − θc1 − θλ1
= c1 (55a)

T12(ρ) = θφ1(c3 + φ1)

1 − θc1 − θλ1
= c3 (55b)

For the dividend equation, we simply have

φ1t = φ1 and λ1t = λ1 (55c)



418 C H A P T E R 1 7 / R AT I O N A L B U B B L E S A N D L E A R N I N G

and these parameters are not influenced by learning and converge to their true values.
The ‘fixed point’ equations (55) embody the usual RE non-linear cross equation restric-
tions. Convergence to RE then depends on the eigenvalues of the derivatives of the
price equation at the fixed points in (55a) and (55b). Timmermann (1994) estimates the
VAR represented by (52a) and (52b) using UK aggregate stock price data (1926–1986)
and evaluates the eigenvalues of the linearised differential equations. He finds that for
the system in levels (52), the eigenvalues indicate a non-convergent learning process
but when estimated in first differences, one of the fixed points is stable, so agents could
‘learn’ and approach the RE equilibrium. Clearly, these two contradictory results may
be a manifestation of the non-stationarity of the variables in the levels equations.

In a later paper (Timmermann 1996), the VAR is estimated recursively on US data
(S&P500) and (54) used to generate Pt under self-referential learning (using a MCS).
It is found that compared to exogenous adaptive learning (i.e. recursive OLS on the
dividend equation only), the self-referential learning price series is not much more
volatile than the RE price series, in a finite sample of data. Perhaps this is not too
surprising, given that the self-referential learning model has to lie ‘close to’ the RE
model, if convergence is ultimately to arise. So, the ‘exogenous’ OLS learning model
‘fits’ more closely the empirical stylised fact of excess volatility than does the self-
referential model.

Regime Changes and Learning

We now turn to a study of US stock prices using the Campbell–Shiller VAR method-
ology, which deals with regime changes and how forecasts of dividends and future
expected returns might differ, depending on what regime the agent believes she is in.
The causes of excess volatility and the relative importance of future dividends and
expected returns in explaining movements in stock prices can be contrasted with the
‘single-regime’ fixed coefficient VAR approach.

We have already noted that (log) dividends are borderline non-stationary and there
may be regime changes (e.g. periods of ‘high’ and ‘low’ dividend growth) in the
observed data series. Agents, therefore, have to learn about what regime they are in, and
this may influence their future forecasts of dividend growth. This is the idea in Evans
(1998), who examines the Campbell–Shiller linearised RVF assuming the VAR used
for forecasting the change in ‘fundamentals’ (rt − �dt) and the dividend–price ratio
δt have a two-state Hamilton (1989) regime switching representation. For the US
annual data 1871–1991, forecasts from the switching VAR are very different from
those in a standard (constant parameter) VAR. Simplifying considerably, the switch-
ing VAR allows more volatility in the forecasts of the fundamentals (because of the
regime switches) and, hence, explains more of the observed variability in the (log)
dividend–price ratio, δt , where

δt = Ẽt

∞∑
i=1

ρi−1(rt+i − �dt+i ) + constant (56)

and rt = interest rate, ρ = constant and the expectation Ẽt depends on the expected
future regime. An individual’s forecast error will depend on the RE forecast error and
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the error in forecasting the future regime – the latter will not be zero in small sam-
ples. Since switching induces a small sample correlation between investors’ forecast
errors and the dividend–price ratio δt , it is, therefore, possible in this framework that
Shiller’s variance bound is violated, even though the RVF holds. The regime-switching
VAR model implies that over 60% of the variability in δt is due to variability in the
fundamentals (r − �d), (compared to 35% for the standard VAR), and only 14% is
due to changes in expected returns. (An extended version of the model allows agents
to learn which regime they are currently in, but this does not greatly affect the empir-
ical results.) Hence, as an explanation of movements in stock prices (i.e. δt ), ‘cash
flows’ are relatively more important and time-varying expected returns less so in the
switching model (compared to a model with no regime switches). This illustrates the
difficulty in reaching a consensus on what are the ‘stylised facts’ (i.e. the importance
of cash flows versus time-varying expected returns) when different models are used.
In the regime-switching model, there can also be predictability in ex-post stock returns
over long horizons.

Non-Recurring Structural Breaks

In the Barsky and DeLong (1993) and early models incorporating learning, the underly-
ing or population parameters (e.g. dividend growth rate) are constant. In Evans (1998),
dividends switch between two recurring states, and the only problem investors face is
to solve the filtering problem of identifying the current but unknown state. The latter
seems reasonable when thinking in terms of stages of the business cycle for example,
but there may be rare occasions (e.g. 1929–32, the two World Wars) when the div-
idend process undergoes large one-off ‘breaks’ that herald a new regime that does
not recur. Timmermann (2001) argues that after such ‘breaks’, investors are subject to
considerable uncertainty and because historical data is of little use, these breaks are
likely to cause large revisions to expectations. If investors have full information about
the break (e.g. higher growth rate in dividends), this will result in a single outlier in
the returns process at the time of the break. Timmermann, therefore, proposes that
agents slowly learn about the break (i.e. incomplete information), and this has impor-
tant implications for the distribution of returns (e.g. skewness, kurtosis, autocorrelation,
volatility clustering).

Timmermann’s approach is to set up a model where the low frequency breaks in
dividends are governed by a Markov switching process with an expanding set of non-
recurring states. The model is then solved for the stock price under full information,
Bayesian learning (i.e. conditional on knowing the underlying state) and a ‘filtering
model’ where state probabilities are updated through Bayes rule. A constant coefficient
of relative risk aversion, power utility function is used so that the Euler equation for
stock prices is (with Ct+1 = Dt+1)

Pt = δEt [(Pt+1 + Dt+1)(Dt+1/Dt)
−γ ] (57)

with real dividends given by

ln Dt+1 = ln Dt + µt+1 + σt+1εt+1 (58)
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where µt+1, σt+1 can change at break points and εt+1 ∼ N(0, 1) so the growth rate of
dividends is gt+1 ≡ exp(µt+1 + σ 2

t+1/2) − 1.
After a break, the new mean growth rate gt+1 is drawn from a uniform density

function G(.) with upper and lower limits [g, g]. In the simulations, the minimum and
maximum (real) dividend growth rates are −4% p.a. and 6% p.a. respectively, giving
an average growth rate of 1% p.a. with (fixed) monthly volatility σ = 1.5% p.m. (5.2%
p.a.), which matches that in the data (1871–1999). The real discount rate δ = 7.5% p.a.
and the (fixed) probability of switching between regimes is π = 0.997, which implies
that the drift of the dividend process changes about once every 30 years (giving an
average of about 4–5 switches over the 1871–1999 simulation period).

We know that monthly stock returns (S&P500) are subject to high volatility, skew-
ness, fat tails, first-order serial correlation and volatility clustering (ARCH) effects. In
the simulated model with no breaks (π = 1), none of these features ensues – since Pt

is then governed by a stationary fixed parameter stochastic process. With breaks, but
with full information (and γ = 0) volatility, skewness and kurtosis increase because
of outliers in returns caused by the breaks, but there is no volatility clustering.

Under Bayesian learning, the model gives average volatility of 3.3%, close to the
sample estimate of 4.1% and the skewness, kurtosis and volatility clustering (for
γ < 0.5) are also similar to that found in the data, but there is not much serial
correlation in returns. Timmermann also uses the simulated data to test the one over-
identifying restriction of the Euler equation (49) using Z = (constant, dividend yield,
lagged return) as instruments in the GMM estimator. He finds that with ‘breaks’ and
learning, the rejection frequency for Hansen’s J-test at the 5% critical value is nearer
10% in most cases.

Once again, we find that numerous ‘stylised facts’ about returns are consistent with
a model where breaks in the dividend process occur, and agents have to slowly update
their forecasts of future dividends.

17.5 Summary

• Mathematically, rational bubbles arise because, in the absence of a transversality con-
dition, the Euler equation yields a solution for stock prices that equals fundamental
value plus a ‘bubble term’, where the latter follows as a martingale process.

• In the presence of a bubble, stock returns are unpredictable and, therefore, RE
orthogonality tests cannot be used to detect rational bubbles.

• In the early literature, bubbles were exogenous to fundamentals (i.e. dividends). The
‘origin’ of the bubble cannot be explained, and only the time path of the bubble is
given by these models.

• Standard unit root and cointegration tests may be able to detect continuously explod-
ing bubbles but are unlikely to detect periodically collapsing bubbles.

• Intrinsic bubbles depend, in a non-linear deterministic way, on economic fundamen-
tals (e.g. dividends) yet still satisfy the Euler equation. Evidence for intrinsic bubbles
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is based, in part, on direct estimation of bubble solutions, where price depends on
specific non-linear parametric function of dividends. Evidence for intrinsic bubbles
is somewhat inconclusive.

• If prices are determined by the RVF, but agents recursively update their estimates of
the true (fixed) parameters of the dividend process, then ‘prices under learning’ will
be more volatile than prices under ‘pure’ RE, even if expected returns are constant.
Also, with recursive updating of parameters, simulated returns are autocorrelated
and can be predicted from the dividend–price ratio – this mimics the real data.

• Models in which there are rare but extreme ‘structural breaks’ and where agents have
to learn about the new parameters after these non-recurring regime changes can also
mimic the stylised facts of high volatility, skewness, kurtosis, autocorrelation and
volatility clustering of returns found in the real data.

• If agents are rational and use Bayesian updating of the parameters, then an equilib-
rium model can also reproduce the stylised facts noted above and, in particular, one
may find profitable trading rules in past data, even though investors could not have
detected these ex-ante.

• Under ‘self-referential’ learning, convergence to a ‘pure’ RE equilibrium for prices
depends on the size of parameters in the learning model. US data (S&P500) do not
give much additional volatility in the stock price series than a pure RE model and,
hence, self-referential learning does not appear to explain the ‘stylised fact’ of high
volatility in actual stock prices (under a constant discount rate).

• Models that incorporate different switching regimes for the fundamental variables
present agents with a ‘filtering problem’ – agents have to ascertain the probabil-
ity of being in a particular regime in order to forecast future dividends. In the
Campbell–Shiller VAR methodology, this can give rise to different forecasts (e.g.
for dividend growth) to the ‘fixed coefficient’ VAR and, hence, different conclu-
sions about the relative importance of dividend growth versus time-varying expected
returns in explaining stock price movements.





18
BEHAVIOURAL F INANCE
AND ANOMALIES

Aims
• Show how behavioural finance differs from the standard efficient markets approach.

• Demonstrate how risk aversion, finite investment horizons and systematic risk can
lead to mis-pricing.

• Show how noise traders survive in the market.

• Assess the evidence from psychological experiments on individual and group
behaviour.

• Outline the main anomalies found in stock markets and how behavioural finance
might ‘explain’ such potential profitable opportunities.

18.1 Key Ideas
A particular market can only be declared inefficient relative to a specific chosen model,
usually based on ‘fundamentals’. Efficiency is a joint hypothesis of the correct model
and immediate elimination of any discrepancy between the actual price and the fun-
damentals (or model determined) price. A model is not a perfect description of reality
and, therefore, there is always a ‘residual’ – some element of the complete data set
that is not explained by the model. If these ‘residuals’ have a systematic pattern, we
would classify them as anomalies or puzzles. Behavioural finance seeks to explain
these anomalies either by some kind of non-standard behaviour (e.g. irrationality or
non-standard preferences) or the inability of the rational investors to equate fair value
(i.e. fundamentals price) with the actual price. ‘Noise traders’ is the generic term given
to any ‘non-fundamentals’ traders.
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In many behavioural finance models, investors may still maximise expected utility
(say) subject to budget and other constrains (e.g. no short-selling), but the utility
function chosen and the way investors form expectations may be non-standard. In other
types of behavioural model, there are two distinct groups, the rational fundamentals
traders and the ‘irrational’ noise traders.

There is a vigorous debate on how far either the rational fundamentals approach
(with incorporation of transactions costs) or the alternative behavioural approach can
‘explain’ the empirical facts, using assumptions that can be generally accepted as
‘reasonable’. For example, when considering the performance of a soccer player (e.g.
David Beckham), the ‘fundamentals supporters’ might say, ‘Well, he didn’t score quite
as many goals as predicted by my individual profit maximising model, because the
playing field is not perfectly smooth.’ The behavioural modeller might say, ‘He didn’t
score many goals because he experiences a much greater loss in self-esteem when
the other side scores than when he himself scores.’ (That is, he has an additional
variable in his utility function than just his goals scored and he suffers from ‘loss-
aversion’.) Alternatively, the behavioural modeller might say that the objective function
of maximising goals scored and, hence, individual profits, is correct. But the opposition
are irrational (e.g. jealous of his celebrity glamour status, off the field) and, hence, act
as ‘noise footballers’ and want to unfairly injure him, so he ‘goes forward’ less than
in a completely rational world where all teams ‘play by the rules’. This approach
recognises that the outcome of the soccer match depends on the interaction between
‘rational’ (intertemporal profit maximising) soccer players and the irrational ‘noise
footballers’ and whether the former then begin to imitate the latter. (You may have
noticed a certain amount of ‘tit-for-tat’ behaviour on the soccer field in that when
one side begin to commit offences, the other side get rattled and also commit crazy
offences directly in front of the referee – for example, when Beckham was sent off in
the 1998 England–Argentina World Cup game.)

Because of the possibility of model error, much of the evidence against the efficient
market hypothesis (EMH) is based on so-called ‘anomalies’ rather than evaluating
sophisticated statistical tests of models based on fundamentals (e.g. regression tests
of the CAPM, Shiller volatility tests, etc.). To minimise model error, one element of
the literature looks for situations where there are price anomalies between very close
substitutes (e.g. twin shares, ADRs, closed-end funds) that should have been arbitraged
away. Another part of the anomalies literature looks for trading rules that earn money
corrected for risk and transactions costs – this requires statistical measures of risk that
may be contentious and, hence, still involve some ‘model error’. Two key questions
that behavioural models need to answer are:

• why does mis-pricing persist in the market?

• how do noise traders survive in the market?

In behavioural models, there are ‘no free lunches’ (i.e. excess profits corrected for
risk and transactions costs). But this does not imply that ‘the price is right’ (i.e. price
equals discounted expected cash flows, in which the expectation is over the correct
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distribution and the discount rate is based on an acceptable preference specification).
Essentially, ‘the price is right’ is a shorthand for the EMH. But in some behavioural
models, prices do not equal fundamental value because the rational traders are inhibited
in some way from arbitraging away any mis-pricing caused by the noise traders.

Note that the EMH does not require that all participants in the market are ‘efficient’
and well informed. There can be a set of irrational or ‘noise’ traders in the market who
do not quote prices equal to fundamental value. All the EMH requires is that there are
sufficient ‘smart money’ traders around, who recognise that Pt will eventually equal
fundamental value Vt . So, if some irrational traders quote Pt < Vt , the smart money
will quickly move in and purchase stocks from the irrational traders, thus pushing Pt

quickly towards Vt .
Take a simple case in which all soccer clubs are financed by share issues (readers who

are interested in other sports can substitute their own teams and players). Assume that
noise traders initially purchase Real Madrid shares at a fair price of ¤25. Now assume
that after a few hours, consuming alcohol in numerous bars, the noise traders, as a group,
irrationally feel unduly pessimistic about the ability of Real Madrid’s manager. Hence,
they sell shares and push down the price of Real Madrid with the final price settling at
P = ¤20, below the unchanged fundamental value of V = ¤25. The noise traders have
sold at below ¤25 and, hence, lose money. Fully informed rational traders (e.g. Mrs.
Victoria Beckham?) should now step in and buy Real’s shares while simultaneously
hedging their bets by short-selling a (correctly priced) close substitute security that has
similar cash flows to Real Madrid, in future states of the world. Let this substitute security
be shares in Barcelona F.C. (their historic rivals). If the general market for soccer shares
falls (e.g. loss of lucrative TV deals), then the ‘long-short’ rational trader still makes a
profit when the mis-pricing is corrected. The general market fall implies a loss on Real
Madrid of, say, ¤1 but a gain of around ¤1 on the short position in Barcelona. But when
the mis-pricing of Real Madrid is corrected, the ‘long-short’ trader will gain her ¤5 per
share. This is because if rational traders enter the market and buy at ¤20, they begin to
push the price up towards the fair value of V = ¤25 and, in the process, make a profit.
(This profit is at the expense of the noise traders.) The noise traders’ initially purchased
at a fair price of ¤25 but sold at below ¤25 (to the rational traders) and, hence, they
should be ‘forced out’ of the market by the rational guys (i.e. Darwinian survival of the
fittest). The price of Real Madrid will rise to its fundamental value very quickly if there
are enough rational traders with sufficient funds willing to enter the market. However,
the above scenario may not ensue for the following reasons.

Fundamental Risk
Short-selling of the substitute security may protect the rational trader from most of
the (football) industry (systematic) risk but specific risk (e.g. news that Beckham, who
currently plays for Real Madrid, has broken his leg) still remains. So the ‘arbitrage’ is
not riskless.

Noise-Trader Risk and Finite Horizon
Even if Barcelona F.C. is a perfect substitute for Real Madrid, it is still possible for
noise traders to become even more pessimistic about the abilities of Real Madrid’s
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manager and, hence, for Real’s price to fall further (below ¤20). This is the noise-
trader risk faced by the rational traders. If rational traders have long horizons and
prices eventually do converge to fundamental value, then they will not worry about
noise traders’ risk, they just have to wait longer for their arbitrage profits and ride out
any short-term losses. But, professional portfolio managers generally have relatively
short horizons and manage other people’s money, so there is a separation of ‘brains
and capital’ (Shleifer and Vishny 1997), and, hence, arbitrage opportunities may not
be eliminated.

Short-Selling

Most pension and some mutual fund managers are not allowed to short-sell. Hedge
funds can short-sell, but they would need access to a plentiful supply of (Barcelona)
shares from their broker. Also, they need to be able to borrow Barcelona shares for as
long as it takes the mis-pricing to be corrected. If not, they may have to repurchase
Barcelona shares in the market at an unfavourable price – known as being ‘bought-in’.
Also, if foreign shares are involved, shorting these (e.g. shares in Inter Milan) may be
difficult, and brokerage fees and bid-ask spreads need to be factored in to the arbitrage
calculation. (As well as the possibility that the Italian football ‘market’ is not a close
substitute for the market risk of Real Madrid shares.)

Model Risk

The rational traders cannot be sure that Real Madrid is underpriced at ¤20 because
their estimate of the fundamentals price of ¤25 (e.g. using the Gordon growth model)
may be incorrect. This ‘model risk’ may limit the positions taken by the rational
arbitrageurs.

Beauty Contest

If rational investors have finite horizons, then they will be concerned about the price at
some future time N . But, if they base their expectations of EtPt+N on expected future
dividends from t + N onwards, then we are back to the infinite horizon assumption
of the rational investor (see Chapter 4). However, if we allow heterogeneous agents
in our model, then if agents believe the world is not dominated by rational investors,
the price at t + N will depend in part on what the rational investor feels the irrational
investors’ views of Pt+N will be (i.e. Keynes’ beauty contest). This general argu-
ment also applies if rational investors know that other rational investors use different
models of equilibrium asset returns. Here, we are rejecting the EMH assumption that
all investors instantaneously know the true model. In these cases, rational investors
may take the view that the actual price is a weighted average of the rational valua-
tion (or alternative rational valuations) and the effect on price of the irrational traders
(e.g. technical traders, such as chartists and those who use candlestick charts or neutral
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networks – see Cuthbertson and Nitzsche 2001a). Hence, price might not always equal
fundamental value.

Learning Costs

If there are learning costs in finding the true model or in obtaining all the informa-
tion, this may limit the number of rational traders who are in a position to spot and
hence eliminate the mis-pricing of Real Madrid shares. It may be that there are enough
arbitrageurs, with sufficient funds in the aggregate, so that even over a finite horizon,
risky profitable opportunities are arbitraged away. The force of the latter argument is
weakened, however, if we recognise that any single arbitrageur is unlikely to know
either the fundamental value of a security or to realise when observed price changes
are due to deviations from the fundamental’s price. Arbitrageurs as a group are also
likely to disagree amongst themselves about fundamental value (i.e. they have hetero-
geneous expectations), and this could increase the general uncertainty they perceive
about profitable opportunities, even in the long term. The smart money may, therefore,
have difficulty in identifying any mis-pricing in the market. Hence, if funds are limited
(i.e. a less than perfectly elastic demand for the underpriced securities by arbitrageurs)
or horizons are finite, it is possible that profitable risky arbitrage opportunities can
persist in the market for some time.

If one recognises that ‘information costs’ (e.g. man-hours, machines, buildings) may
be substantial and that marginal costs rise with the breadth and quantity of trading, then
this also might provide some limit on arbitrage activity in some areas of the market. For
example, to take an extreme case, if information costs are so high that dealers either
concentrate solely on bonds or solely on stocks (i.e. complete market segmentation),
then differences in expected returns between bonds and stocks (corrected for risk)
might not be immediately arbitraged away.

Necessary and Sufficient Conditions

A great deal of the analysis of financial markets relies on the principle of arbitrage (e.g.
see Shleifer and Summers 1990). Arbitrageurs (or smart money or rational speculators)
continually watch the market and quickly eliminate any divergence between the actual
price and fundamental value and, hence, immediately eliminate any profitable opportu-
nities. If a security has a perfect substitute, then arbitrage is riskless. Riskless arbitrage
ensures that relative prices are equalised. However, if there are no close substitutes so
that arbitrage is risky, then arbitrage may not pin down the absolute price levels of
stocks (or bonds) as a whole.

The risk in taking an arbitrage position only occurs if the smart money has a
finite horizon. The smart money may believe that prices will ultimately move to their
fundamental value and, hence, in the long term, profits will be made. However, if
arbitrageurs have to either borrow cash or securities (for short sales) to implement their
trades and, hence, pay per period fees or report their profit position on their ‘book’ to
their superiors at frequent intervals (e.g. monthly, quarterly), then an infinite horizon
certainly cannot apply to all or even most trades undertaken by the smart money.
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First, consider the case in which there is no close substitute security and, hence, the
arbitrageur is exposed to fundamental risk. Then mis-pricing can persist if (see Barberis
and Thaler 2003):

(i) arbitrageurs are risk averse and

(ii) fundamental risk is systematic.

Condition (i) ensures that no one arbitrageur will be willing to wipe out the mis-
pricing by taking a large position and (ii) ensures mis-pricing is not wiped out by a
large number of investors, each taking a small position in the mis-priced security.

If a perfect substitute security exists (i.e. identical cash flows in all states of the
world) and the two securities have different prices, then there is no fundamental or
model risk but only noise-trader risk. The arbitrageur can be completely sure of the
mis-pricing. For this mis-pricing to persist, we require:

(i) arbitrageurs are risk averse and have short horizons

(ii) noise-trader risk is systematic.

In (i), we require a ‘short horizon’ to prevent a single (wealthy!) arbitrageur from
waiting for the certain mis-pricing to be corrected. Again, condition (ii) is required so
that lots of small investors cannot diversify away the risk of the mis-priced security.

18.2 Beliefs and Preferences

Above, we have explained why risky arbitrage may be limited and insufficient to
keep actual prices of stocks in line with their fundamental value. We now discuss the
experimental evidence on individual’s beliefs and preferences (see Barberis and Thaler
2003, Shleifer and Summers 1990 and Shiller 1989 for a summary).

Psychological experiments tend to show that individuals make systematic (i.e. non-
random) mistakes. Subjects are found to overreact to new information (news), and they
tend to extrapolate past price trends. They are over-confident, which makes them take
on excessive risk.

Behavioural psychology provides experimental evidence that people are not rational
in forming their forecasts. A Bayesian approach in which the individual weights her
prior beliefs and recent information to produce a best forecast is often optimal. But,
in practice, individuals seem to attach too much weight to recent data and can be
over-confident about their forecasting ability.

When agents do not know the true data-generating process, they often believe that
small samples reflect the ‘population’ (i.e. the ‘law of small numbers’ or ‘sample size
neglect’). For example, if David Beckham scores in three consecutive soccer matches,
he is on a ‘hot streak’ and people erroneously increase their subjective probability that
he will score in the next game. But this estimate may not be at all representative of



S E C T I O N 1 8 . 2 / B E L I E F S A N D P R E F E R E N C E S 429

his average scoring rate for the whole of the previous season to date, and in reality,
there may be no serial correlation in his scoring pattern. Even when they know the true
data generation process (e.g. coin toss), after five heads in a row, they might place a
probability greater than 1/2 that the next play will result in ‘tails’ (e.g. see the opening
scene of Tom Stoppard’s play Rosencrantz & Guildenstern are Dead ). This is referred
to as the gambler’s fallacy.

People also anchor too much on an initial position. When asked to estimate the
percent of African countries there are in the United Nations, people’s responses were
influenced by the initial random number x (where 0 < x < 100) they were given. Those
who were asked to compare their estimate with x = 10% replied ‘25%’, while those
who were asked to compare with x = 60% estimated 45% (on average). There are also
memory biases whereby a more recent or more salient event will influence people’s
views on probable outcomes. For example, people who have recently experienced a car
theft will overestimate the probability of car theft in their city (compared to someone
who has not experienced a car theft).

Ellsberg Paradox

There are a large number of experiments that show that individuals often do not follow
the basic axioms of expected utility theory when deciding between alternative gambles
even when they know the true probability distribution of outcomes. Even allowing
the use of subjective probabilities rather than objective probabilities does not appear
to rescue expected utility, when describing rational choice under uncertainty (Savage
1964). Ellsberg (1961) provides an experiment that demonstrates that individuals do
not behave rationally according to the axioms of expected utility. There are two urns,
each containing a mix of red and blue balls. Urn 1 contains 100 balls but with an
unknown number of red and blue balls. Urn 2 contains 50 red and 50 blue balls, so the
probability of either a red or blue ball drawn at random is 1/2. The subjects are aware
of the above and are asked to choose between one of two gambles, with a payment of
$100 for guessing correctly. The first choice is:

(a) ball drawn at random from Urn 1: $100 if red, $0 if blue

(b) ball drawn at random from Urn 2: $100 if red, $0 if blue.

Subjects tend to choose B, where the probabilities are known and equal to 1/2.
Choice of B rather than A implies they think p (red in Urn 1) < 1/2.

The next choice subjects are presented with is:

(c) ball drawn at random from Urn 1: $100 if blue, $0 if red

(d) ball drawn at random from Urn 2: $100 if blue, $0 if red.

Subjects tend to choose D over C, where the probabilities are known. But this implies
that they believe p(blueinUrn1) < 1/2, which in turn implies p(redinUrn1) > 1/2.
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The latter contradicts the choice of B over A, which we found implies p(redinUrn1) <

1/2. This is the Ellsberg paradox. The experiment also suggests that people particu-
larly dislike situations where they do not know the probability distribution of possible
outcomes. The latter is referred to as ambiguity aversion and has been observed in a
wide variety of experimental situations, particularly when participants are made aware
of their lack of knowledge before choosing between alternative bets – for example,
bets on sporting events by non-sports fans (Fox and Tversky 1995).

Mental Accounting

How can we encapsulate how people might assess the utility of particular outcomes
in the stock market? There are several possibilities. Suppose you begin with financial
wealth of $1000 and take two bets, the first results in a gain of $200 and the second
a loss of $50. The standard lifetime utility approach (ignoring discounting) would
imply that U = U(1000) + U(1200) + U(1150) where U(.) is a non-linear concave
function over the wealth outcomes in each period (e.g. power utility). The change in
utility for each bet is then U(1200) – U(1000) and U(1150) – U(1200) respectively.
Alternatively, the investor might only be concerned about terminal wealth U(1150) at
retirement, say, in which case the utility of intermediate positions is irrelevant, only
U(1150) matters. Another possibility is that the investor has a baseline utility level U0

and is concerned only about gains and losses relative to this baseline starting point. This
is a form of mental accounting, known as narrow framing, since the investor is only
concerned about outcomes from the stock market and does not aggregate these with
other elements of wealth (e.g. changes in income or in the value of her housing wealth).
Here, lifetime utility is measured as U0 + U(+100) + U(−50). This also raises the
possibility that U(−50) may be given a higher weighting than, say, U(+50) so that the
utility from a gain followed by an equal loss is U(+50) + λU(−50) with λ > 1 – this
is loss-aversion. The impact of loss-aversion on lifetime utility clearly depends on the
frequency with which investors monitor their portfolios – if you evaluate your portfolio
frequently (e.g. once per month), you will note more periods of negative stock returns
than if you evaluate your portfolio every, say, five years (see Rabin and Thaler 2001).

Yet another alternative is that any gains or losses are measured not in absolute terms
but relative to an initial level of utility that the investor slowly adjusts as their wealth
either rises or falls – the idea is that gains or losses are measured relative to ‘habit levels’
of wealth – this idea appears in the Campbell–Cochrane consumption habit persistence
model (Chapter 14) and is applied to wealth bets by Barberis, Shleifer and Wurgler
(2001) – see Chapter 19. Indeed, all of the above formulations have been used in the
literature, sometimes in conjunction with the usual power utility function.

18.3 Survival of Noise Traders

If we envisage a market where there are smart speculators who tend to set prices equal to
fundamental value and noise traders who operate on rules of thumb, a question arises as
to how the noise traders can survive in this market. If noise traders hold stocks when the
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price is above the fundamental value, then the smart money should sell these assets to
the noise traders, thus pushing down the price. As the price falls towards its fundamental
value, the noise traders lose money and tend towards bankruptcy, while the smart money
can, if they wish, buy back the stocks at the lower price. On the other hand, if the noise
traders hold assets whose price is below the fundamental value, then the smart money
should purchase such assets from the noise traders, and they will then make a profit as the
price rises towards the fundamental value. Hence, the net effect is that the noise traders
lose money and, therefore, should disappear from the market, leaving only the smart
money. When this happens, prices should then reflect fundamentals.

Of course, if there were an army of noise traders who continually entered the
market (and continually went bankrupt), it would be possible for prices to diverge
from fundamental value for some significant time. But one might argue that it is
hardly likely that noise traders would enter a market where previous noise traders
have gone bankrupt in large numbers. However, entrepreneurs often believe they can
succeed where others have failed. To put the reverse argument, some noise traders will
be successful over a finite horizon, and this may encourage others to attempt to imitate
them and enter the market, ignoring the fact that the successful noise traders had in
fact taken on more risk and just happened to get lucky – this is survivorship bias.

Can we explain why an existing cohort of noise traders can still make profits in a
market that contains smart money? The answer really has to do with the potential for
herding behaviour. No individual smart money trader can know that all other smart
money traders will force the market price towards its fundamental value in the period
of time for which he is contemplating trading the stock. Thus, any strategy that the
sophisticated traders adopt, given the presence of noise traders in the market, is certainly
not riskless. There is always the possibility that the noise traders will push the price
even further away from fundamental value, and this may result in a loss for the smart
money. Thus, risk-averse smart money may not fully arbitrage away the influence
of the noise traders. If there are enough noise traders who follow common fads, then
noise-trader risk will be pervasive (systematic). It cannot be diversified away and must,
therefore, earn a reward or risk premium in equilibrium. Noise trading is, therefore,
consistent with an average return that is greater than that given by the fundamental’s
model. If noise traders hold a large share of assets subject to noise-trader risk, they may
earn above average returns and survive in the market. For example, if noise traders are
more active in dealing in shares of ‘distressed firms’, this may explain why such firms
earn an above average return corrected only for CAPM-beta risk. It is because the
noise-trader risk is greater for such stocks, and this is reflected in their higher return.

The impact of noise traders on prices may well be greater when most investors
follow the advice given in finance textbooks and passively hold the market portfolio.
If noise traders move into a particular group of shares on the basis of ‘hunch’, the
holders of the market portfolio will do nothing (unless the movement is so great as to
require a change in the ‘market value’ proportions held in each asset). The actions of
the noise traders need to be countered by a set of genuine arbitrageurs who are active
in the market. In the extreme, if all investors hold the market portfolio but one noise
trader enters the market wishing to purchase shares of a particular firm, then its price
will be driven to infinity.
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Arbitrageurs may not only predict fundamentals but may also divert their energies to
anticipating changes in demand by the noise traders. If noise traders are optimistic about
particular securities, it will pay arbitrageurs to create more of them (e.g. junk bonds,
dot-coms, telecom firms, mutual funds, oil stocks) via, for example, the expansion of
the activities the securities business of investment banks. Suppose a conglomerate has
interests in the oil market and noise traders are temporally attracted by ‘oil’. Then it
may pay the conglomerate to split off its oil division and issue new oil shares that are
currently in vogue with noise traders at abnormally high prices.

Arbitrageurs will also behave like noise traders in that they attempt to pick stocks
that noise-trader sentiment is likely to favour: the arbitrageurs do not necessarily counter
shifts in demand by noise traders. Just as entrepreneurs invest in casinos to exploit gam-
blers, it pays the smart money to spend considerable resources in gathering information
on possible future noise-trader demand shifts (e.g. for dot-coms in the 1990s). Hence,
some arbitrageurs may have an incentive to behave like noise traders. For example, if
noise traders are perceived by arbitrageurs to be positive feedback traders, then as prices
are pushed above fundamental value, arbitrageurs get in on the bandwagon themselves
in the hope that they can sell out ‘near the top’. They, therefore, ‘amplify the fad’. Arbi-
trageurs may expect prices in the longer term to return to fundamentals (perhaps aided
by arbitrage sales) but in the short term arbitrageurs will ‘follow the trend’. This evi-
dence is consistent with findings of positive autocorrelation in returns at short horizons
(e.g. weeks or months) as arbitrageurs and noise traders follow the short-term trend and
negative correlation at longer horizons (e.g. over three or more years) as some arbi-
trageurs take the ‘long view’ and sell the overpriced shares. Also, if ‘news’ triggers off
noise-trader demand, then this is consistent with prices over-reacting to ‘news’.

Group Behaviour

We examine why a market might contain a substantial number of noise traders who fol-
low simple ‘rules of thumb’ and follow waves of investor sentiment (herding behaviour)
rather than act on the basis of fundamentals. In order that noise traders as a group are
capable of influencing market prices, their demand shifts must broadly move in unison
(i.e. be correlated across noise traders).

Experiments on group behaviour (Shiller 1989) include Sherif’s (1937) ‘autokinetic
experiment’, where individuals in total darkness were asked to predict the movement of
a pencil of light. In the experiment with individuals, there was no consensus about the
degree of movement (which in fact was zero). When a group of individuals performed
the same experiment but this time each individual could hear the views of the others,
then a consensus emerged (which differed across groups) about the degree of move-
ment. In an experiment by Asch (1952), individuals acting alone compare lengths of
line segments. The experiment is then repeated with a group in which all other mem-
bers of the group are primed to give the same wrong answers. The individual, when
alone, usually gave objectively correct answers but when faced with group pressure,
the ‘individual’ frequently gave ‘wrong’ answers. After the experiment, it was ascer-
tained that the individual usually knew the correct answer but was afraid to contradict
the group. If there is no generally accepted view of what is the correct or fundamental
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price of a given stock, then investors may face uncertainty rather than risk (i.e. they
do not know the true conditional distribution of returns). This is likely to make them
more susceptible to investor sentiment.

Models of the diffusion of opinions are often rather imprecise. There is evidence that
ideas can remain dormant for long periods and then be triggered by some seemingly
trivial event. The news media obviously play a role here, but research on persuasion
often finds that informal face-to-face communication amongst family, friends and co-
workers is of greater importance in the diffusion of views than is the media. There are
mathematical theories of the diffusion of information based on models of epidemics.
In such models, there are ‘carriers’ who meet ‘susceptibles’ and create ‘new carriers’.
Carriers die off at a ‘removal rate’. The epidemic can give rise to a humped-shaped
pattern if the infection ‘takes off’. If the infection does not take off (i.e. because of
either a low infection rate or a low number of susceptibles or a high removal rate),
then the number of new carriers declines monotonically. The difficulty in applying such
a model to investor sentiment is that one cannot accurately quantify the behavioural
determinants of the various variables (e.g. the infection rate) in the model, which are
likely to differ from case to case.

Shiller (1989) uses the above ideas to suggest that the bull market of the 1950s and
1960s may have something to do with the speed with which general information about
how to invest in stocks and shares (e.g. investment clubs) spread amongst individuals.
He also notes the growth in institutional demand (e.g. pension funds) for stocks over
this period, which could not be offset by individuals selling their own holdings to keep
their total savings constant. This is because individuals’ holdings of stocks were not
large or evenly distributed (most being held by wealthy individuals): some people in
occupational pension funds simply had no shares to sell.

Herding behaviour or ‘following the trend’ has frequently been observed in the
housing market, in the stock market crash of 1987 (see Shiller 1990) and in the foreign
exchange market (Frankel and Foot 1986 and Allen and Taylor 1989). Summers (1986)
and Shleifer and Summers (1990) show that a time series for share prices that is
artificially generated from a model in which price deviates from fundamentals in a
persistent way does produce a time series that mimics actual price behaviour (i.e. close
to a random walk), so that some kind of persistent noise-trader behaviour is broadly
consistent with the observed data.

Of course, it is always possible that as people learn through repetition, they will
adjust their ‘rule of thumb’ biases. Also, experts may be less (or more) prone to biases
than ‘Joe Public’, and large incentives may also reduce such biases. However, it appears
that biases do remain, and in a world that has a structure that changes over time, such
biases certainly may persist as learning is then a continuing process.

18.4 Anomalies

Calendar Effects

The weekend effect refers to the fact that there appears to be a systematic fall in
stock prices between the Friday closing and Monday opening. One explanation of the
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weekend effect is that firms and governments release ‘good news’ between Monday
and Friday but wait until the weekend to release bad news. The bad news is then
reflected in ‘low’ stock prices on Monday. However, in an efficient market, some
agents should recognise this and should (short) sell on Friday (price is ‘high’) and
buy on Monday (price is ‘low’), assuming that the expected profit more than covers
transactions costs and a payment for risk. This action should lead to a ‘removal’ of
the anomaly.

The so-called January effect is a similar phenomenon. The daily rate of return on
common stocks appears to be unusually high during the early days of the month of
January. For the United States, one explanation is due to year-end selling of stock in
order to generate capital losses, which can then be offset against capital gains to reduce
tax liability. (This is known as ‘bed and breakfasting’ in the UK.) In January, investors
purchase stock to return to their original portfolio holdings. Again, if the EMH holds,
this predictable pattern of price changes should lead to purchases by non-tax payers
(e.g. pension funds) in December when the price is low and selling in January when
the price is high, thus eliminating the profitable arbitrage opportunity. The January
effect seems to take place in the first five trading days of January (Keane 1983) and
also appears to be concentrated in the stocks of small firms (Reinganum 1983). There
are numerous other calendar effects in the anomalies literature (e.g. turn of the year,
holiday effects, week of the month effects). The question is whether these statistically
significant effects, when taken in isolation, remain when dependencies operating across
different calendar effects are accounted for.

Data-Snooping Bias

In a salutary paper, Sullivan, Timmermann and White (2001) note the vast number of
studies that find calendar effects in stock returns and address the problem of whether
this is due to ‘chance’ (data mining). They use over 100 years of daily returns data
(on the S&P500 and its futures index) to examine a huge set of up to 9500 possible
calendar rules, including some that were not reported in the literature. (Those reported
in the literature tend to be only the ‘successful’ ones and, hence, bias the results.)
The basic idea is to take account of the problem that the size of a test, based on a
search for the largest possible t-statistic for predictability, can be very different from
its nominal value. They use White’s (2000) ‘bootstrap snooper’, which provides p-
values for the ‘success’ of a calendar effect, once the effects of data mining have
been accounted for. They find that the best calendar rule (from either the ‘large’ or
‘small’ set considered) does not yield a statistically significant (‘reality check’) p-
value for ‘predictability’, where the latter is taken to be either the mean return or the
Sharpe ratio.

Also, the performance of the best in-sample calendar rule gives an inferior out-of-
sample performance. Hence, after accounting for data snooping, they find no significant
calendar effects. Broadly speaking, the data-snooping idea is an attempt to get around
a type of survivorship bias problem because researchers that fail to find predictability
may not get published (or even submit their research). So, in the journals, we may see
a disproportionate number of articles that demonstrate predictability.
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The Small-Firm Effect

Between 1960 and the middle of the 1980s, small-capitalized companies earned on
average a higher rate of return than the overall stock market index in many indus-
trialised countries (Dimson, Marsh and Staunton 2002). Of course, according to the
CAPM, this could be due to the higher risks attached to these small firms that should
be reflected in their higher CAPM-beta values. However, we noted in Chapter 8 that
small-firm stocks do not lie on the CAPM-security market line (Reinganum 1982, 1983,
Cochrane 2001). The small-firm effect seemed to disappear in the late 1980s after the
anomaly had been documented in the academic and professional literature – so, eventu-
ally, the market ‘removed’ this anomaly (Cochrane 2001, Dimson, Marsh and Staunton
2002).

Winner’s Curse: ‘Buy the Dogs, Sell the Stars’

We have noted that there is evidence of mean reversion in stock returns over long hori-
zons (3–5 years). A key issue for the validity of the EMH is whether such predictability
can lead to excess profits net of transactions costs and risk. A seminal example of this
approach is DeBondt and Thaler (1985). They take 35 of the most extreme ‘winners’
and 35 of the extreme ‘losers’ over the five years from January 1928 to December
1932 (based on monthly return data from the universe of stocks on the NYSE) and
form two distinct portfolios of these companies’ shares. They follow these companies
for the next five years, which constitutes ‘the test period’. They repeat the exercise 46
times by advancing the start date by one year each time. Finally, they calculate the
average ‘test period’ performance (in excess of the return on the whole NYSE index),
giving equal weight (rather than value weights) to each of the 35 companies. They find
(Figure 1) the following.

(i) Five-year returns for the ‘loser portfolio’ are about 30%, while losses for the
‘winner portfolio’ are around 10%.

(ii) Excess returns on the ‘loser portfolio’ tend to occur in January (i.e. ‘January
effect’).

(iii) There is long horizon mean reversion (i.e. a price fall is followed by a price rise
and vice versa).

It is worth emphasising that the so-called ‘loser portfolio’ (i.e. one where prices have
fallen dramatically in the past) is in fact the one that makes high returns in the future:
a somewhat paradoxical definition of ‘loser’. An arbitrage strategy of buying the ‘loser
portfolio’ and short-selling the ‘winner portfolio’ (i.e. ‘buy the dogs’ and ‘sell the stars’)
beats the passive strategy of holding the S&P500 (see DeBondt and Thaler 1987).

Bremer and Sweeney (1991) find that the above results also hold for very short
time periods. For example, for a ‘loser portfolio’ comprising stocks where the one-day
price fall has been greater than 10%, the subsequent returns are 3.95% after five days.
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Figure 1 Cumulative excess returns for ‘winner’ and ‘loser’ portfolios. Source: DeBondt and
Thaler (1989). Reproduced by permission of the American Economic Association

They use stocks of large firms only. Therefore, they have no problem that the bid-ask
spread is a large percentage of the price (which could distort the results). Also, they
avoid problems with ‘the small-firm effect’ (i.e. smaller firms are more ‘risky’ and,
hence, require a greater than average equilibrium excess return). Hence, Bremer and
Sweeney also seem to find evidence of supernormal profits.

Other studies that demonstrate profits to ‘contrarian strategies’ over long hori-
zons include Chopra, Lakonishok and Ritter (1992) for the United States, Richards
(1995, 1997) who uses national stock market indexes, and Lakonishok, Shleifer and
Vishny (1994).

One explanation of the above results is that ‘perceived risk’ of the ‘loser portfolio’
is judged to be ‘high’, hence requiring a high average excess return in the future if
one is to hold them. The measurement of risk in early studies is sometimes relatively
crude or non-existent and is often measured using Jensen’s alpha or the Sharpe ratio
in later studies.

Twin Shares

Froot and Dabora (1999) analyse the case of Royal Dutch and Shell, who agreed
to merge cash flows on a 60:40 basis but remained as separate companies. If price
equals fundamental value, then the price ratio of these two shares should be Royal
Dutch/Shell = 1.5. But underpricing and overpricing are found to have been as large
as 35% and 15% respectively, and the mis-pricing is persistent. Here, there is little
or no fundamental risk, and short-selling is not difficult. Of course, noise-trader risk
remains, and this (plus the short horizon of rational traders) could be the cause of
the persistent mis-pricing. Hence, there is ‘no free lunch’ but ‘prices are not right’.
However, they were ‘right’ by 2001 when the shares sold at a ratio of 1.5, so the mis-
pricing did eventually disappear. It is also the case that Royal Dutch, which is traded in
the United States, and Shell, which is traded in the United Kingdom, co-move closely
with the S&P500 and the FTSE index respectively, thus de-linking ‘fundamental’ cash
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flows from prices and suggesting systematic noise-trader risk in the two markets or,
put slightly differently, a ‘preferred habitat’ in specific stocks. (We meet this idea
again when discussing ‘style investing’ in stocks and the expectations hypothesis of
the term structure.)

ADRs

ADRs are foreign shares held in trust by US financial institutions and traded in New
York. The shares also trade in their ‘home’ stock market, where their price often differs
from their New York price. There is a near perfect substitute, so if the ADR in New
York is at a premium to the actual share in the home stock market, then arbitrageurs
should short-sell the ADR and purchase in the domestic stock market. But persistent
price deviations are observed even where there are no restrictions to US ownership of
the shares on the ‘home’ market. Presumably, this anomaly is due to noise-trader risk,
limiting such arbitrage.

Index Effect

When stocks are included (excluded) from the S&P500 index, there is often a large
increase (decrease) in their price. Here, there is a price change that is independent of
any (observed) change in fundamental value. In other words, ‘no news moves prices’,
which violates the RVF and the EMH. Wurgler and Zhuravkaya (2002) shows that the
price jump is largest for those stocks with the worst substitute securities (i.e. stocks for
which arbitrage is the most risky). Indeed, ‘good’ substitute securities are hard to find
since Zhuravkaya finds that the R-squared of returns with the ‘best’ substitute security
are usually below 25%. Hence, the anomaly may be due to the presence of systematic
fundamental risk (plus risk aversion).

Closed-End Funds

Closed-end funds issue a fixed number of shares, and trading in the shares of the
closed-end fund then takes place between investors. The cash raised by the fund is
used to purchase a ‘basket’ of investments, usually in stocks and bonds. The shares
that comprise the ‘basket’ in the closed-end fund are generally also traded openly on
the stock market. The value of the fund, the net asset value (NAV), ought, therefore,
to equal the market value of the individual shares in the fund. But this is often not
the case.

Closed-end fund share prices often differ from NAV. When initially created, closed-
end funds sell at above NAV; when they are terminated, they sell at NAV, and during
their life, they usually trade at a discount to NAV, which on average is about 10% but
varies over time. Also, the discounts on very different types of closed-end funds tend
to move together. This violates the EMH, because investors could buy the closed-end
fund’s shares at the discount price (say) and at the same time short-sell a portfolio of
stocks that are identical to that held by the fund. The investor would thereby ensure
she eventually earned a riskless profit equal to the discount.



438 C H A P T E R 1 8 / B E H AV I O U R A L F I N A N C E A N D A N O M A L I E S

Several reasons have been offered for such closed-end fund discounts. First, closed-
end fund members face a tax liability (in the form of capital gains tax) if the fund
should sell securities after they have appreciated. This potential tax liability justifies
paying a lower price than the market value of the underlying securities. Second, some
of the assets in the closed-end fund are less marketable (i.e. trade in ‘thin’ markets).
Third, agency costs in the form of management fees might also explain the discounts.
However, Malkiel (1977) found that the discounts were substantially in excess of what
could be explained by the above reasons, while Lee, Shleifer and Thaler (1990) find that
the discounts on closed-end funds are primarily determined by the stocks of small firms.

There is a further anomaly. At the initial public offering, the closed-end fund shares
incur underwriting costs, and the shares in the fund are, therefore, priced at a premium
over their true market value. The value of the closed-end fund then generally moves
to a discount within six months. The anomaly is why any investors purchase the initial
public offering and thereby pay the underwriting costs via the future capital loss. Why
do investors not just wait six months before purchasing the fund at the lower price?

Ideas from behavioural finance are consistent with many of these facts. If noise-
trader risk is systematic, then it will be ‘priced’ and, hence, the closed-end fund price
will be below NAV (see the DeLong, Shleifer, Summers and Waldmann (1990b) model
in the next chapter). At liquidation of the fund, any noise-trader risk will disappear
and, hence, price will equal NAV. Initial overpricing of the funds may be due to
entrepreneurs creating additional funds when noise traders ‘favour’ this type of invest-
ment. The strong co-movement of the discount across diverse funds (given that the
funds’ underlying cash flow ‘fundamentals’ are not highly correlated) may be due
to general movements in noise-trader sentiment about all such funds. Bodurtha, Kim
and Lee (1993) find that closed-end funds containing German equities but traded in
the United States co-move more with the United States than the German stock market,
again demonstrating a de-linking of cash flows and value, which tells against the EMH.

Lee, Shleifer and Thaler (1991) also show that closed-end funds and small stocks
are both largely held by individual (US) investors and the closed-end fund discount
and returns on small stocks are strongly positively correlated, which is suggestive of
systematic noise-trader behaviour. More recently, Gemmill and Thomas (2002) run a
bivariate VECM where investor flows and the discount are cointegrated (so the two
are related in the long run), and this disequilibrium error correction term affects (i.e.
Granger causes) ‘flows’ rather than changes in the discount. The results are from a
monthly time series (1991–97) of 158 UK equity funds and provides further evidence
of the influence of investor sentiment on the discount – across many different funds.

Co-Movement in Stock Returns

In the efficient markets approach, co-movement in returns is because of co-movement
in cash flows (or in the discount rate), caused by a common factor influencing news
about future earnings (e.g. sale of TV rights for Spanish league soccer, causing co-
movement in returns of Real Madrid and Barcelona soccer clubs) or the discount rate.
However, as we have seen with returns on Royal Dutch and Shell, according to the
EMH, these should be perfectly positively correlated, but they are not.
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To counter the efficient markets view, Barberis and Shleifer (2003) note that ‘noise-
trader’ investors may have ‘preferred habitats’ of stocks such as small-cap, banking, and
so on, whose cash flows happen to be largely uncorrelated. However, if noise-trader
sentiment is systematic, then such ‘categories’ should exhibit high co-movement of
returns, and new stocks included in these categories should begin to move more with
that category than before. Barberis, Shleifer and Wurgler (2001) show that this is the
case when stocks are added to the S&P500 since their beta with the S&P500 increases,
while their beta with stocks outside the S&P500 falls. These observed changes seem
to have little to do with a change in cash flow co-movement, since inclusion in the
S&P500 signifies no information about correlation between cash flows.

Optimal Diversification?

Assuming mean-variance portfolio theory is the ‘correct’ method (or model) for
investors’ portfolio choices, it is found that US and Japanese investors place too great
a proportion (usually in excess of 90%) in domestic assets and not enough in foreign
assets. Indeed, portfolio choice models that include human capital often imply that
investors should short domestic stocks because they are highly correlated with their
human capital. This is the home-bias problem.

Grinblatt and Keloharju (2001) and Huberman (2001) also find there is a home-
bias problem within countries, whereby investors place too much of their stock
market wealth in firms that are located close to them geographically. Grinblatt and
Keloharju (2001) find that Finnish investors hold and trade mainly Finnish stocks,
while Huberman (2001) finds that investors hold many more shares in their local
Regional Bell Operating Company (RBOC) shares than in out-of-state RBOC shares.

It has been found that 401(K) pension plans have a strong bias towards holding
own-company stock (Benartzi 2001) even though ‘own-company’ returns are highly
correlated with the individual’s own labour income. This became widespread knowl-
edge when it was revealed after the collapse of Enron that a large number of its
employees held their defined contribution pension plans mainly in Enron shares and
who unfortunately lost substantial amounts of money. Benartzi and Thaler (2001) find
that diversification by individuals often follows a simple 1/n rule. Individuals allocate
1/n of their savings to each investment choice offered and appear to disregard the
different effective allocations to stocks and bonds that this entails. An example will
clarify this process. When offered a choice between (A) a ‘stock plus bond fund’ and
(B) a ‘stock plus balanced fund’ (where the latter has 50% stocks and 50% bonds) and
(C) a ‘bond and balanced fund’, they choose a 50:50 split from within each separate
fund offered. Applying the 1/n rule exactly to choice ‘A’ gives an effective stock-bonds
allocation (S, B) = (50%, 50%), for choice ‘B’ gives (S, B) = (67%, 33%) and for
choice ‘C’ (S, B) = (33%, 67%). When participants are actually offered choices ‘A’ or
‘B’ or ‘C’, they follow the 50:50 rule fairly closely, resulting in an average allocation
to stocks for ‘A’, ‘B’ and ‘C’ of 54%, 73% and 35% respectively.

It follows from the 1/n rule that in 401(K) funds that predominantly offer stock
funds, individuals will end up mechanically allocating more to stocks. Benartzi and
Thaler (2001) examine 170 retirement savings plans, which are divided into three
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groups: ‘low’, ‘medium’ and ‘high’ categories, depending on the fraction of funds that
are stock funds. For example, if the 1/n rule is used, then we expect to see the ‘low’
category, which contains funds with relatively few stock funds (and a large number
of bond funds) to result in an effective allocation to stocks, which is rather low. In
the ‘low’, ‘medium’ and ‘high’ categories, they find the actual allocation to stocks is
36%, 65% and 85% respectively, which broadly follows the 1/n rule (i.e. the more
stock relative to bond funds in your ‘plan’, the more you end up holding stocks, even
though in principle any allocation to stocks is possible).

In terms of ‘rational behaviour’ with full information, the above is difficult to
explain. From psychological experiments, we know that people do not like situations in
which they feel they do not know the objective probability distribution of possible out-
comes and they may, therefore, feel more ‘familiar’ with domestic stocks or stocks of
the company where they work. This is an example of ‘ambiguity aversion’ – you avoid
situations where you have little confidence in the probability distribution of outcomes.

Buying and Selling

One direct way of assessing the EMH is to see if ‘active’ investors do make ‘good’
investment decisions over repeated trades. Odean (1999) and Barber and Odean (2000)
find that the average return of investors (of a large brokerage firm) underperform a set
of standard benchmarks. In addition, across all investors, the average annual return
on stocks that they buy performs worse than those that they sell, and investors are
more likely to sell stocks that have risen rather than those that have fallen relative
to their initial purchase price. (Whereas the latter should be more prevalent given tax
offsets for losses.) Also, those that trade often (i.e. relatively more men than women)
earn lower average returns. In short, investors trade too often and are bad stock-
pickers – they would be better holding a diversified passive benchmark portfolio. It
may be that active stock-pickers and frequent traders are simply overconfident and a
cohort of new overconfident people continually enter the market. Their reluctance to
sell ‘losers’ (sometimes called the disposition effect) may be because of the fact that
they do not like to admit to having made an error. (This can be rationalised in terms
of a ‘kinked’ utility function over gains and losses – see Barberis and Thaler 2003.)

This disposition effect has also been observed in the housing market, where people
in a ‘bear market’ who are selling at a loss relative to their purchase price, set their
price about 30% higher than vendors of similar properties who are not selling at a loss
(since they purchased some time ago). What is more, the loss-averse sellers actually
do obtain higher prices than the other vendors (Genesove and Mayer 2001).

Investment Styles

There are many investment styles advocated by gurus in the financial press and by
investment houses. Two of the most popular styles over the past ten years have been
‘value stocks’ (also referred to as a ‘value-growth’ strategy) and a ‘momentum strat-
egy’ – but how are these defined? A crucial difference between these two strategies
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lies in the time period over which you decide to form your portfolio and the length
of time you hold the portfolio. A ‘value-growth’ investment scenario buys long-term
losers (‘the dogs’) and short-sells long-term winners (‘the stars’) – it is, therefore, a
contrarian or reversal strategy and relies for its success on long horizon mean rever-
sion in stock returns (noted in the statistical tests of Chapter 4). The evidence for mean
reversion could be based on univariate autoregressions or Fama–French’s long horizon
returns or variance ratio statistics. Alternatively, mean reversion could be due to long
horizon return predictability where the predictor variable itself is mean reverting (e.g.
D/P ratio or book-to-market).

Value-Growth Strategy

DeBondt and Thaler’s (1985) ‘buy the dogs’ strategy, where ‘the dogs’ are (say) the
decile portfolio that have fallen the most over the last four years and then sell after at
least one year is an example of a ‘value strategy’ consistent with univariate statistical
tests. Jegadeesh and Titman (1993) and Fama and French (1996) also provide similar
examples but with different definitions of ‘value stocks’. For example, an alternative
definition of ‘the dogs’ are stocks with high book-to-market value (BMV). Of course,
if ‘the dogs’ have high CAPM-betas, this would be fine for the EMH, but unfortunately
this is not so. As we have seen, using average (cross-section) returns, Fama and French
(1996) find that the average return from ‘the dogs’ portfolio (and the average returns on
the other deciles) can be explained by their relative (high-minus-low) HML-betas (i.e.
Fama–French’s ‘dogs’ have high ‘HML-betas’). Fama and French (1996) show that
going long ‘the dogs’ and short-selling ‘the stars’ gives an average monthly return of
0.75–1.6%. But ‘buying the dogs’ can also yield higher Sharpe ratios than holding the
market portfolio, although the extra ‘bang’ per unit of risk varies over different years.

Lakonishok, Shleifer and Vishny (1994) and Ali, Hwang and Trombley (2003) find
that short-selling in July of each year, the bottom quintile of US stocks sorted by
BMV (after correcting for size) and buying the top quintile (and rebalancing each
year), gives average returns of around 8%, 21% and 30% over the subsequent one-,
two- and three-year horizons. To implement this strategy, you have to have funds
or credit lines to sustain losses and also the ability to short-sell. It remains a risky
strategy. One explanation of the book-to-market effect is that it is due to mis-pricing
caused by market participants underestimating future earnings for high BMV stocks
and overestimating earnings for low BMV stocks (La Porta, Lakonishok, Shleifer and
Vishny 1997, Skinner and Sloan 2002). But why do arbitrageurs not move in and
exploit this opportunity and eliminate the mis-pricing?

Risk and Mis-pricing

So, are the predictable ‘long horizon’ returns from the BMV effect due to the high
ex-ante risk of the strategy or due to mis-pricing over long horizons? This is a difficult
question to answer as it requires an acceptable model of risk and an assessment of
transactions costs (which should not be high as this is a ‘long horizon’ investment
strategy). Ali, Hwang and Trombley (2003) seek to throw some light on this question
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by looking at the cross section of three-year average BMV quintile returns for the
United States, with various measures of transactions costs and the risk of the portfolio,
over the period 1976–97. (They repeat these annual cross-section regressions every
year and use the Fama and MacBeth (1973) procedure to test the statistical significance
of the independent variables, with a Newy–West correction for non white noise errors.)

The proxy variables for transactions costs are the average trading volume, the (aver-
age) percent bid-ask spread (= (bid − ask)/0.5(bid + ask)) and the frequency of zero
daily returns (i.e. illiquid stocks). Short-selling costs (i.e. the possibility of a ‘short
squeeze’ if brokers request immediate return of stocks) are picked up by the proportion
of common stock held by institutional investors. The less a stock is held by institutional
investors, the less likely a short squeeze can be met from alternative lenders of the
stocks and the higher the perceived cost of arbitrage. Measures of investor sophistica-
tion include the number of analysts covering the stock and the number of institutional
owners of the stock.

An explicit variable is used to measure the risk of arbitrage, namely, the variance
of the residuals from the market model estimated using daily returns over the previous
250 days. The idea here is that stocks with relatively high specific risk are unlikely to
be correctly priced because arbitrageurs generally have poorly diversified portfolios,
since they ‘follow’ only a small number of stocks. Hence, specific risk is important to
arbitrageurs since it cannot be hedged (unlike systematic risk), and arbitrageurs with
finite horizons are less likely to take positions in stocks with high specific risk and hence
remove any pricing ‘anomalies’ (Shleifer and Vishny 1997). The ‘variance variable’
is found to be statistically significant (even when all other variables are included in
the cross-section regression), indicating some role for ‘limited arbitrage’. Put slightly
differently, Ali, Hwang and Trombley (2003) find that the 10% of stocks with the
greatest return volatility produce a three-year return of 51.3%, for a portfolio long in
the highest BMV quintile and short in the lowest BMV quintile. The corresponding
return for the lowest volatility decile is only 1.7%, and this pattern appears in 20 of
the 22 separate years of the study. Of course, this risky arbitrage explanation cannot
be definitive since if the high BMV variable does capture increased risk of financial
distress, the latter could be stronger for firms with high volatility of returns.

The composition of any portfolio of ‘value stocks’ will overlap considerably for
most definitions of ‘value’. For example, for low price, low P/E ratios, high BMV and
low market value (‘size’), the set of firms might substantially overlap in each decile
(particularly the lowest and highest), since it is mainly ‘price’ that drives movements
in all these variables. In other words, the additional explanatory power or extra pre-
dictability in using one rather than another definition of value may be quite small,
although book-to-market does particularly well across a wide range of studies. Of
course, within the APT framework, you may be willing to accept that the HML-beta
is a valid measure of risk. Hence, the fact that ‘buying the dogs’ gives higher returns
than the market is not a problem, since these stocks have high betas for the BMV
‘risk factor’. In other words, the Fama–French three-factor model (i.e. market beta,
SMB-beta and HML-beta) explains the cross section of returns sorted on the basis of
book-to-market. Indeed, we noted earlier that it is the HML-beta that provides most of
the cross-section explanatory power.
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What is certain is that trying to ‘beat the market’ over any return horizon with any
strategy seems highly risky. With value stocks, you have to buy firms whose price
has been falling for some years, and many of these firms are ‘distressed’ and close to
bankruptcy. At the same time, you have to short-sell stocks that have been increasing
in price over several years and are the current paragons of corporate virtue and virility.
In addition, you may be ‘buying the dogs’ in a recession period and you will have to
hold your position for between say one and four years and in the intervening period,
your position might make losses. This strategy takes a very brave individual and if that
individual is employed by an investment bank, he may get fired before the strategy
is seen to yield good positive returns (e.g. after the bursting of the ‘dot.com bubble’
in 2000, some analysts who had sold stock in 1998 or 1999 were vindicated, but
by then they had also lost their jobs). Maybe, in such circumstances, there is more
perceived risk around than is picked up by our ex-post measures (i.e. betas), so that,
in reality, the excess return to value investing was a just reward for the additional
risk taken, not to mention transactions costs and possible high costs associated with
short-selling.

Bull Run

To underscore the possibility of limited arbitrage, ask yourself what you might have
done in 1999 after observing the bull run in the United States and United Kingdom
from 1995. Suppose your analysis of ‘fundamentals’ implied the S&P500 was currently
overpriced (Shiller 1999). You would need to short the S&P500 and buy a ‘similar’
correctly priced index (e.g. the ‘Russell 2000’ of small stocks) and wait. You would
have faced fundamental risk if any ‘news’ about large companies in the S&P500 was
not highly correlated with ‘news’ about small companies. You face noise-trader risk
(i.e. the S&P500 could rise even more) and model risk (i.e. are you really sure the
S&P500 is overpriced relative to fundamentals?). If you had held your position for
six months or even a year, its value may have fallen dramatically. Of course, if you
had been able to ‘hang on’ to 2002–2003, your strategy would have been vindicated,
but by that time, you may have had a nervous breakdown or lost your job, or both!
Alternatively, you could have taken the bold decision of John Ralfe, the manager of
the pension fund of Boots (the UK drug store/chemists) who, by 2001, had moved all
funds out of equities into bonds – which ex-post, can be viewed as possibly the best
‘one-off’ market timing ‘call’ of the last 50 years. (In fact, the move into long-term
bonds, including index-linked bonds, may have been more a desire to match the time
profile of pension liabilities with the fund’s cash flows.)

Momentum Strategy

Here, the portfolio formation time period is small, usually based on the return over
the previous year (or less), and the holding period is also ‘short’, usually one year.
The momentum strategy is to buy short-term ‘winners’ and sell (short) the short-term
‘losers’. You buy the ‘top decile’ of stocks that have risen the most over the past year



444 C H A P T E R 1 8 / B E H AV I O U R A L F I N A N C E A N D A N O M A L I E S

and finance your purchases by selling the bottom decile that has risen the least. (This
is also called a relative strength strategy.) The strategy is repeated each month, and
each ‘portfolio’ is held for the subsequent year. Fama and French (1996) report the
average monthly US returns from this momentum strategy of 1.3% p.m. (15.6% p.a.)
for the July 1963 to December 1993 period and 0.38% p.m. (4.56% p.a.) over the
January 1931 to February 1963 period. Clearly, a successful momentum strategy in
beating the market return only occurred in the 1963–93 period, perhaps demonstrating
some fragility for this strategy.

Recently, Jegadeesh and Titman (2001) re-examine the momentum strategy, initially
cited in their 1993 paper. They use all stocks from the NYSE/AMEX but exclude NAS-
DAQ stocks (and stocks priced below $5). At the end of each month, stocks are ranked
into decile portfolios on the basis of their returns over the previous six months (i.e.
month 5 to month 0) and these portfolios are then equally weighted. Each portfolio is
held for six months (i.e. month 1 to month 6) following the ranking month. The ranking
based on the ‘previous six months’ needs a little clarification by way of an example.
The December ‘winner’ portfolio consists of 10% of the stocks with the highest returns
over the previous June to November, the previous May to October, and so on, end-
ing with the previous January to June period. These are ‘overlapping’ portfolios, and
the maximum ‘look back’ time is actually one year. The momentum portfolio is self-
financing since the loser portfolio P10 (i.e. lowest returns over the past six months)
is short sold and the winner portfolio P1 is purchased. The portfolios are rebalanced
every month. The average return of the past winners P1 over 1965–97 is 1.67% p.m.
and of the past losers P10 is 0.58% p.m., hence, the winners outperform the losers by
1.09% p.m. (t-stat = 5.65) and this holds over the sub-periods 1965–89 and 1990–97.

To assess the performance of the actual momentum returns relative to their expected
return, they undertake a time-series regression of the monthly returns of each of the P1 to
P10 decile portfolios on either the excess market return RM (only) or the Fama–French
‘three-factor’ returns RM , RSMB , RHML, which then gives a ‘Jensen’s alpha’. For the
market return factor (only), the alphas are largest for P1 (0.54% p.m.) and smallest for
P10 (−0.57 p.m.), and the difference in alphas at 1.1% p.m. (t = 4.59) is statistically
significant. Similarly, for the Fama–French three-factor model, the difference in alphas
is 1.29% p.m. (t = 7.8). Hence, the P1–P10 momentum strategy appears to generate
statistically significant abnormal returns.

Jegadeesh and Titman (2001) also examine the returns to the momentum portfolios
over a ‘post-holding period’ (i.e. months 13 to 60). The cumulative momentum returns
for all of the P1 to P10 portfolios peaks at around 12% p.a. after one year (i.e. an average
of 1% p.m.) and subsequent returns are nearly always negative, so that cumulative returns
after month 60 are only about 1% per annum – this is long horizon mean reversion.

The above result is consistent with the Barberis, Shleifer and Vishny (1998) model
of ‘conservatism bias’ where individual’s underweight new information when updat-
ing their priors, so prices adjust slowly to new information. Once the information is
fully incorporated, stock returns are no longer predictable, so the post-holding period
excess returns are zero. The evidence is also consistent with models incorporating ‘self-
attribution bias’ (Daniel, Hirshleifer and Subrahmanyam 1998), where informed traders
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attribute the ex-post short-term ‘winners’ to superior skill and ex-post ‘losers’ to bad
luck. This overconfidence means they purchase more ‘winners’ and slowly push prices
above fundamental value. Rational traders then eventually step in, and the gains of the
winner portfolio are eventually reversed. Hong and Stein (1999) in their model to explain
short-term momentum and long horizon return reversal, have two groups of investors.
Noise traders base their decisions on past returns, while rational traders use ‘fundamentals
news’ about cash flows. But information is transmitted with a delay, so prices initially
under-react to news, and this produces momentum returns. The noise traders then observe
the momentum returns and push the price of past winners above fundamental value, which
eventually leads to price reversals. Each set of agents uses information rationally, but
the information flow to the noise traders arrives with a lag, and each type of trader uses
separate information sets (i.e. ‘news about dividends’ and past returns) – we discuss these
models in more detail in the next chapter.

Although the data is consistent with these behavioural models, Jegadeesh–Titman
note that the negative returns in the post-holding period occur mainly in the fourth
year after portfolio formation, and this appears to be a rather ‘long lag’. Also, most
of the return reversal occurs in the month of January while the momentum profits
in the six-month holding period all occur outside the month of January. This is a
peculiar asymmetry.

Overall, the fact that the successful momentum strategy outlined in Jegadeesh and
Titman (1993) is found to hold on new data from the 1990–97 period weakens the
argument that the original 1993 results are due to data-snooping biases. Whether these
profits continued in the 2000–2002 stock market meltdown remains to be seen.

Daniel and Titman (2000) extend the above approach by using a three-way sort of
US returns (1963:07–1997:12). All stocks on NYSE, AMEX and NASDAQ are sorted
into quintiles on the basis of market capitalisation (‘size’), book-to-market (‘value’)
and prior one-year returns (‘momentum’), which gives 125 (5 × 5 × 5) portfolios.
Each of the 125 portfolios is value weighted and rebalanced once per year. This
is an obvious extension of the Fama and French (1993) two-way sort on ‘size’ and
‘value’.

The strategy adopted then involves buying the {high-value, high-momentum} port-
folio and selling the {low-value, low-momentum} portfolio, which we denoted as the
‘HH–LL’ strategy. This ‘sorting’ produces stunning results of positive returns in 31 out
of the 34 years, with an average return of 1.04% p.m. (12.64% p.a.), which is statisti-
cally different from zero (t = 5.66). The CAPM-market beta of HH–LL is −0.258 and
Jensen’s α is 1.17% p.m. (t = 6.6). Hence, the HH–LL portfolio produces significant
abnormal returns and provides insurance against the market return.

Also, when the monthly returns RHH −LL are regressed on a mutual fund (excess)
return index RMF or on (RMF – RM), the (Jensen) alphas are both positive at around
1.1 (and statistically significant). The former indicates that if the HH–LL portfolio is
added to the mutual fund, the Sharpe ratio can be increased, while the latter indicates
that adding the HH–LL portfolio would increase expected return without increasing
the tracking error of the mutual fund (relative to the market portfolio of all stocks).
The increase in the (squared) Sharpe ratio depends on the size of α2

i /σi where αi is
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the intercept and σi is the residual standard deviation of the regression of the ‘new’
excess return Ri on the chosen excess (market) return (Jobson and Korkie 1984). They
also show that if the HH–LL portfolio comprises 2% of the mutual fund portfolio,
the average Sharpe ratio of this ‘augmented’ mutual fund portfolio {SRaug = (Rp −
Rf )/σ(Rp − Rf )} increases from 4 to 12% (i.e. by a factor of 3) – although this may
require short positions in some securities in the HH–LL portfolio. Also, the ‘Sharpe
ratio’ for the tracking error {SRtrk = (Rp − Rm)/σ(Rp − Rm)} increases from 0.12 to
1, indicating a better return-risk performance when a ‘2% tilt’ towards the HH–LL
portfolio is added to the mutual fund. Again, it will be interesting to see if this HH–LL
strategy continued to be successful in the crash period of 2000–2002.

The momentum strategy is based on the small positive autocorrelations found in
short horizon returns that manifest themselves in monthly return autoregressions with
Rsq ≈ 0.0025 (1/4%). Cochrane (2001) notes that individual stock returns have σ =
40% p.a. and, therefore, the top decile average return is E(R|R > x) = ∫ ∞

x
r f (r)dr/∫ ∞

x
f (r)dr . From the normal distribution,

∫ ∞
x

f (r)dr = 0.10 implies x = 1.2816σ . The
average return of the top decile therefore works out at E(R|R > x) = 1.76 standard
deviations above the mean. Taking a mean return of 10% p.a. and σ = 40% p.a.
implies that the top and bottom decile portfolios have average annual returns of
around 80% and minus 60% p.a. He then shows that only a small amount of con-
tinuation in momentum will give the 1% monthly return of the above studies. To
see this, note that the monthly standard deviation of individual returns is around
σmth = 40%/

√
12 = 11.55%, and the standard deviation of predictable monthly returns

is σ(R̂) = √
Rsqσmth = √

0.0025(11.55%) = 0.58% p.m. Hence, under normality, the
highest decile will earn 1.76 × 0.58% ≈ 1% p.m. above the mean return of all stocks.
Hence, the ‘buy-winners, short-losers’ momentum strategy should earn about 2% p.m.
yet it only earns at best around 1.5% p.m. (see above). Put another way, the highest
decile momentum portfolio has typically increased in price by about 80% in the pre-
vious year, and the loser portfolio declined by 60%. It, therefore, only takes a small
amount of positive autocorrelation for this to result in (say) a 1% monthly average
return over the next year, but that 1% is not exceptional (Cochrane 2001).

Transactions Costs

On investigating momentum stocks, it is found that the gains primarily come from
shorting small illiquid stocks between November and December (i.e. tax loss selling)
and transactions costs are therefore likely to be high, which may outweigh the gains
noted (Carhart 1997, Moskowitz and Grinblatt 1999). In Jegadeesh and Titman (1993),
profits from momentum trading are adjusted for average trading costs because of mean
commission rates and market impact effects (Berkowitz, Logue and Noser 1988). But
this average does not take account of the cross-section differences in transactions costs
(e.g. small stocks have higher transactions costs) and their time variation. The figures
used also exclude bid-ask spreads, taxes and short-sale costs. The momentum strategy
is trading-intensive, requiring four trades (buy-sell and sell-buy) every six months, so
with average abnormal returns (i.e. alpha estimate) over six months of around 6%, this
profit could be wiped out if costs per trade exceeded 1.5%.
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Lesmond, Schill and Chunsheng (2004) undertake a detailed assessment of the above
trading costs (including the fact that not all of the momentum portfolio is ‘turned
over’ every six months) and find that momentum strategies on US stocks do not earn
profits after correcting for all transactions costs. They investigate the performance
of Jegadeesh and Titman (1993, 2001) and Hong, Lim and Stein (2000), P1 (best
performers) and P3 (worst performers) portfolios, using the 30–70 percentile break
points. Transactions costs for the P1 (best performers) and P3 (worst performers)
portfolios are found to be around 4.5% and 5% respectively (every six months), whereas
the average figure used by Jegadeesh and Titman (1993, 2001) was 0.5%. These ‘new’
transactions costs imply that the average six-month momentum abnormal returns for
the P1–P3 strategy of about 6% (per six months) barely cover transactions costs (and
returns net of transactions costs are usually not statistically significant). It remains
to be seen whether a more detailed look at transactions costs for other documented
successful momentum strategies (e.g. in non-US markets, bond markets and other
sectors – see Rouwenhorst 1998, Gebhart, Hvidkjaer and Swaminathan 2001, Lewellen
2002) also imply near zero (net) momentum returns.

The empirical anomalies that have been documented certainly cast doubt on the
EMH – it may be possible to make supernormal profits because of some predictability
in stock returns. However, it must be noted that many of the above anomalies are
most prominent amongst small and ‘distressed’ firms (e.g. January and ‘size’ effects,
‘value-growth’ and momentum strategies, discounts on closed-end funds). It may be
that ex-ante perceived risk is higher than that measured ex-post, so these anomalies may
not yield excess returns corrected for perceived risk. While some anomalies do persist,
others disappear (e.g. small-firm effect). Certainly, the anomalies literature has given
the EMH a ‘bit of a hard time’. If you look hard and are willing to take on substantial
risk over repeated gambles (i.e. lose some cash on the way to your financial nirvana), it
is possible to find profitable opportunities in the stock market over specific time periods.
This may result in excess profits even after correction for risk (and transactions costs),
but there still appear to be no blindingly obvious ‘free lunches’ around. It is difficult
to ‘beat the market’ by stock picking and although my MBA students did not believe
this in the bull run of the 1990s, they tend to believe it a little more since 2000.

18.5 Corporate Finance
When should managers issue new shares? Under the EMH, there is no advantage in
‘market timing’ share issues. Market price always equals the present value (PV) of
future profits from existing and planned investment projects of the firm. But if there is
systematic noise-trader optimism about the PV of possible future investments, this will
be reflected in a high share price. Managers should then take advantage of this irrational
overpricing and issue new shares at this time. However, managers should not use these
funds for fixed investment since the ‘true’ NPV of new fixed investment projects is
zero (in equilibrium). The funds should be invested either in other firms that have
positive NPV projects or in cash. Conversely, ‘irrationally’ undervalued shares should
be repurchased by the managers, but again fixed investment should remain unchanged.
The above argument can be tempered by real-world considerations, however, since if
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new funds raised are not used for new investment, the noise traders may try to remove
the managers. Also, the managers may invest more in order to empire build rather than
maximising shareholder value.

Baker and Wurgler (2000) find evidence that firms with high market-to-book ratios
do not use new equity funds to increase investment but to add to cash balances. Also,
the share of new equity issues (amongst total equity plus new bond-issues) is higher
when the stock market is high – reflecting the market timing view. Finally, market-to-
book is also a good predictor of new equity issues in a cross section of firms. Firms
with high market-to-book issue more equity, while those with low market-to-book
repurchase their shares.

Over time, if two (otherwise) identical firms (e.g. size, industry, fraction of tangible
assets, etc.) have different degrees of noise-trader sentiment so their average market-to-
book values are different, then the market timing idea would imply different equity-to-
debt ratios (i.e. a different capital structure). Consistent with this, Baker and Wurgler
(2002) find that a firm’s maximal historic market-to-book ratio is a good predictor of
the ‘equity to total capital’ ratio in a cross section of firms. It is also the case that
survey evidence points to a market timing view of equity issues since over 65% of
CFOs say they make equity issues on the basis of their view of overvaluation in their
share price.

While the above evidence is consistent with the noise-trader idea, it is also broadly
consistent with a pecking-order rule for capital structure with no irrationality. Suppose
managers think a ‘high’ stock price is due to rational investors marking the price up
because of genuine positive NPV investment opportunities. Then if internal funds (and
bond finance) are exhausted, the manager will rationally issue more equity when the
stock is ‘high’ – as in the noise-trader case. However, the crucial difference between
the two scenarios is that in the rational case, more fixed investment will definitely take
place, whereas in the noise-trader model (but with rational managers) extra investment
will not take place (since NPV < 0) unless of course, the managers engage in a ‘game’
with the noise traders. Hence, there is no clear-cut difference in predictions here,
and discrimination between these two stories is likely to be highly problematic and
contentious.

Irrational Managers

Let us relax the assumption that managers are rational but instead assume that they are
overconfident about their own abilities. Roll’s (1986) ‘hubris hypothesis’ of takeover
activity assumes takeovers have no intrinsic synergy gains but occur because bidders
are overconfident and overestimate the synergies available. It follows that the price of
the target will rise and that of the bidder will fall by a similar amount. So there will
be much takeover activity but no overall synergy gains – there is some evidence to
suggest this may be correct (see Demodoran 2000).

Managerial optimism also explains the pecking-order view of financing investment
projects. If an optimistic manager thinks the equity market persistently undervalues her
firm, then she will use internal funds and debt markets before resorting to equity mar-
kets to finance expansion. So, fixed investment should be more closely linked to cash
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flows rather than say Tobin’s Q and there is some evidence for this (e.g. Cuthbertson
and Gasparro 1993).

18.6 Summary

• Behavioural finance is consistent with the ‘no free lunch’ proposition but argues that
this may not imply ‘the price is right’.

• Persistent mis-pricing can occur when there are no close substitutes (for a stock), if
arbitrageurs are risk averse and fundamental risk is systematic. Alternatively, mis-
pricing is possible when there is no fundamentals risk as long as arbitrageurs are
risk averse, have short horizons and there is systematic noise-trader risk.

• Evidence from psychological studies can be adduced in favour of the behavioural
finance approach.

• The anomalies literature has unearthed many potential cases where abnormal profits
may be made. In many cases, strategies for beating the market (e.g. weekend and
January effects, value-growth and momentum strategies) require the investor to hold
risky positions, and it is still much debated whether such profits would survive
transactions costs and adjustments for ex-ante risks.

• Other anomalies (e.g. ADRs, twin shares, index effect, closed-end funds) seem to
persist and involve little risk, so here the empirics give stronger support to the
behavioural finance view.





19
BEHAVIOURAL MODELS

Aims

• Show how rational traders and noise traders interact to give equilibrium prices that
diverge from fundamental value and how rational traders may cause excess volatility.

• Examine how short-termism could lead to mispricing.

• Show how investors’ misperceptions about either available public or private infor-
mation about earnings can lead to post-earning announcement drift, momentum and
overreaction of stock prices.

• Analyse how noise traders (e.g. momentum traders, style investors) and fundamentals
traders interact to produce underreaction followed by overreaction in stock prices
and cross-correlations between different classes of stocks.

• Demonstrate how a non-standard utility function incorporating both consumption
and ‘other variables’, in an intertemporal optimising model where investors suffer
from loss aversion, can explain the ‘stylised facts’ of stock returns (such as excess
volatility, predictability and the equity premium puzzle).

So far, we have been discussing the implications of noise traders in fairly general
terms, and now it is time to examine more formal models. One set of models assumes
noise traders and rational traders interact to give equilibrium prices that clear the
market. A second broad approach assumes all agents are identical but have non-standard
preferences – here, utility depends on the change in wealth as well as the level of
consumption, and agents may fear losses more than gains. These models often assume
intertemporal utility maximisation as in the ‘standard approach’.
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19.1 Simple Model
Shiller (1989) provides a simple piece of analysis in which stylised empirical results
can be explained by the presence of noise traders. The proportionate demand for shares
by the smart money is Q and is based (loosely) on the mean-variance model

Qt = (EtRt+1 − ρ)/θ (1)

If EtRt+1 = ρ, demand by the smart money equals zero. If Qt = 1, the smart money
holds all the outstanding stock, and this requires an expected return EtRt+1 = ρ + θ .
Hence, θ is a kind of risk premium to induce the smart money to hold all the stock.

We now let (Yt/Pt ) equal the proportion of stock held by noise traders. In equi-
librium, the proportions held by the smart money and the noise traders must sum
to unity

Qt + (Yt/Pt ) = 1 (2)

substituting (1) in (2)
EtRt+1 = θ [1 − (Yt/Pt )] + ρ (3)

Hence, the expected return as perceived by the smart money depends on what they
think is the current and future demand by noise traders: the higher is noise trader
demand, the higher are current prices and the lower is the expected return perceived
by the smart money. Using (3) and the definition

EtRt+1 = Et [(Pt+1 + Dt+1)/Pt − 1] (4)

we obtain
Pt = δEt(Pt+1 + Dt+1 + θYt ) (5)

where δ = 1/(1 + ρ + θ). Hence, by repeated forward substitution,

Pt =
∞∑
t=0

δt (EtDt+1 + θEtYt+1) (6)

If the smart money is rational and recognises demand by noise traders, then the
smart money will calculate that the market clearing price is a weighted average of
fundamentals (i.e. EtDt+1) and future noise trader demand EtYt+1. The weakness of
this ‘illustrative model’ is that noise trader demand is completely exogenous. However,
as we see below, we can still draw some useful insights.

If EtYt+1 and, hence, aggregate noise trader demand is random around zero, then
the moving average of EtYt+1 in (6) will have little influence on Pt , which will be
governed primarily by fundamentals. Prices will deviate from fundamentals but only
randomly. On the other hand, if demand by noise traders is expected to be persistent
(i.e. ‘large’ values of Yt are expected to be followed by further large values), then
small changes in current noise trader demand can have a powerful effect on current
price, which might deviate substantially from fundamentals over a considerable period
of time.
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Shiller (1989) uses the above model to illustrate how tests of market efficiency
based on regressions of returns on information variables known at time t have low
power to reject the EMH when it is false. Suppose dividends (and the discount rate)
are constant and hence the EMH (without noise traders) predicts that the stock price
is constant. Now suppose that the market is actually driven entirely by noise traders.
Let noise trader demand be characterised by

Yt = ut−1 + ut−2 + ut−3 + · · · + ut−n (7)

where ut is white noise. Equation (7) has the property that a unit increase in ut at time
t generates changes in Y in future periods that follow a ‘square hump’ that dies away
after n periods. Using (6), price changes (Pt+1 − Pt) only arise because of revisions
to expectations about future noise trader demand that are weighted by δ, δ2, δ3, and so
on. Because 0 < δ < 1, price changes are heavily dominated by ut (rather than by past
ut−j ). However, as ut is random, price changes in this model, which by construction
is dominated by noise traders, are nevertheless largely unforecastable.

Shiller generates a �Pt+1 series using (6) for various values of the persistence in Yt

(given by the lag length n) and for alternative values of ρ and θ . The generated data for
�Pt+1 is regressed on the information set consisting only of Pt . Under the EMH, we
expect the R-squared of this regression to be zero. For ρ = 0, θ = 0.2 and n = 20, Shiller
finds R2 = 0.015. The low R-squared supports the constant returns EMH, but it results
from a model where price changes are wholly determined by noise traders. In addition,
the price level can deviate substantially from fundamentals even though price changes
are hardly forecastable. He also calculates that if the generated data includes a constant
dividend price ratio of 4%, then the ‘theoretical R-squared’ of a regression of the return
Rt+1 on the dividend price ratio (D/P )t is 0.079. Hence, empirical evidence that returns
are only weakly related to information at time t is not necessarily inconsistent with prices
being determined by noise traders (rather than by fundamentals). Overall, Shiller makes
an important point about empirical evidence. The evidence using real world data is not
that stock returns are unpredictable (as suggested by the EMH) but that stock returns are
not very predictable. However, the latter evidence is also not inconsistent with possible
models in which noise traders play a part.

If the behaviour of Yt is exogenous (i.e. independent of dividends) but is stationary
and mean reverting, then we might expect returns to be predictable. An above-average
level of Y will eventually be followed by a fall in Y (to its mean long-run level).
Hence, prices are mean reverting, and current returns are predictable from previous
period’s returns.

In addition, this simple noise trader model can explain the positive association
between the dividend–price ratio and next period’s return on stocks. If dividends vary
very little over time, a price rise caused by an increase in EtYt+1 will produce a fall
in the dividend price ratio. If Yt is mean reverting, then prices will fall in the future,
so returns Rt+1 also fall. Hence, (D/P )t is positively related to returns Rt+1 as found
in empirical studies. Shiller also notes that if noise trader demand Yt+1 is influenced
either by past returns (i.e. bandwagon effect) or past dividends, then the share price
might overreact to current dividends compared to that given by the first term in (6),
that is, the fundamentals part of the price response.
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19.2 Optimising Model of Noise
Trader Behaviour

In the ‘neat’ model of DeLong, Shleifer, Summers and Waldmann (1990b), both smart
money and noise traders are risk averse and maximise utility of terminal wealth. There
is a finite horizon, so that arbitrage is risky. The (basic) model is constructed so
that there is no fundamental risk (i.e. dividends are known with certainty) but only
noise trader risk. The noise traders create risk for themselves and the smart money
by generating fads in the demand for the risky asset. The smart money forms optimal
forecasts of the future price on the basis of the correct distribution of price changes, but
noise traders have biased forecasts. The degree of price misperception of noise traders
ρt represents the difference between the noise trader forecasts and optimal forecasts

ρt ∼ N(ρ∗, σ 2) (8)

If ρ∗ = 0, noise traders’ forecasts agree with those of the smart money (on average). If
noise traders are on average pessimistic (e.g. bear market), then ρ∗ < 0, and the stock
price will be below fundamental value and vice versa. As well as having this long-run
view ρ∗ of the divergence of their forecasts from the optimal forecasts, ‘news’ also
arises so there can be abnormal but temporary variations in optimism and pessimism,
given by a term (ρt − ρ∗). The specification of ρt is ad hoc but does have an intuitive
appeal based on introspection and evidence from behavioural/group experiments.

In the DeLong et al model, the fundamental value of the stock is a constant and is
arbitrarily set at unity. The market consists of two types of asset: a risky asset and a
safe asset. Both noise traders and smart money are risk averse and have mean-variance
preferences, so their demand for the risky asset depends positively on expected return
and inversely on the noise trader risk (see Appendix I). The noise trader demand also
depends on whether they feel bullish or bearish about stock prices (i.e. the variable
ρt). The risky asset is in fixed supply (set equal to unity), and the market clears to give
an equilibrium price Pt . The equation that determines Pt looks rather complicated, but
we can break it down into its component parts and give some intuitive feel for what
is going on:

Pt = 1 + µ

r
ρ∗ + µ

(1 + r)
[ρt − ρ∗] − 2γµ2σ 2

r(1 + r)2
(9)

where µ = the proportion of investors who are noise traders, r = the riskless real rate
of interest, γ = the degree of (absolute) risk aversion, σ 2 = the variance of noise trader
misperceptions. If there are no noise traders, µ = 0 and (9) predicts that market price
equals fundamental value (of unity). Now let us suppose that at a particular point in
time, noise traders have the same long-run view of the stock price as does the smart
money (i.e. ρ∗ = 0) and that there are no ‘surprises’ (i.e. no abnormal bullishness or
bearishness), so that (ρt − ρ∗) = 0.

We now have a position in which the noise traders have the same view about
future prices as does the smart money. However, the equilibrium market price still
does not solely reflect fundamentals, and the market price is less than the fundamental
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price – given by the last term on the RHS of equation (9). This is because of the
presence of noise trader risk, since their potential actions may influence future prices.
The price is below fundamental value so the smart money (and noise traders) may
obtain a positive expected return (i.e. capital gain) as compensation for the noise
trader risk. This mispricing is probably the key result of the model and involves a
permanent deviation of prices from fundamentals. We refer to the effect of the third
term in (9) as the amount of ‘basic mispricing’.

Turning now to the second term in equation (9), we see, for example, that the noise
traders will push the price above fundamental value if they take a long-term view that
the market is bullish (ρ∗ > 0). The third term reflects abnormal short-term bullishness
or bearishness. These terms imply that at particular time periods, the price may be
above or below fundamentals.

If ρt − ρ∗ is random around zero, then the actual price would deviate randomly
around its ‘basic mispricing’ level. In this case, stock prices would be ‘excessively
volatile’ (relative to fundamentals where volatility is zero). From (9), the variance of
prices is

Et(Pt − EtPt )
2 = µ2 vart (ρt − ρ∗)

(1 + r)2
= µ2σ 2

(1 + r)2
(10)

Hence, excess volatility is more severe, the greater is the variability in the mispercep-
tions of noise traders σ 2, the more noise traders there are in the market µ and the
lower is the cost of borrowing funds r . To enable the model to reproduce persistence
in price movements and, hence, the broad bull and bear movements in stock prices that
we observe, we need to introduce ‘fads’ and ‘fashions’. Broadly speaking, this implies,
for example, that periods of bullishness are followed by further periods of bullishness,
which can be represented by a random walk in ρ∗

t

ρ∗
t = ρ∗

t−1 + ωt (11)

where ωt ∼ N(0, σ 2
w). (Note that σ 2

ω is different from σ 2, in the previous equation.) At
any point in time, the investor’s optimal forecast of ρ∗ is its current value. However,
as ‘news’ ωt arrives, noise traders alter their views about ρ∗

t , and this ‘change in
perceptions’ persists over future periods. It should be clear from the second term
in (9) that the random walk in ρ∗

t implies Pt will move in long swings, and, hence,
there will be ‘bull and bear’ patterns in Pt .

Fortune (1991) assumes for illustrative purposes that ωt and (ρt − ρ∗) are niid and
uses representative values for r, µ, γ , in (9). He then generates a time series for Pt

shown in Figure 1. The graph indicates that for this one simulation, price falls to 85%
of fundamental value (which itself may be rising) with some dramatic rises and falls
in the short run.

An additional source of persistence in prices could be introduced into the model
by assuming that σ 2 is also autoregressive (e.g. ARCH and GARCH processes). It is
also not unreasonable to assume that the ‘conversion rate’ from being a smart money
trader to being a noise trader may well take time and move in cycles. This will make
µ (i.e. the proportion of noise traders) exhibit persistence and, hence, so might Pt . It
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Figure 1 Simulated 50-year stock price history. Source: Fortune (1991), Fig. 6, p. 34. Repro-
duced by permission of The Federal Reserve Bank of Boston

follows that in this model, prices may differ from fundamentals for substantial periods
of time because arbitrage is incomplete. Also, persistence in ρt − ρ∗ could be mean
reverting. This would imply that prices are mean reverting and that returns on the
stock market are partly predictable from past returns or from variables such as the
dividend–price ratio.

Can Noise Traders Survive?

DeLong et al show that where the proportion of noise traders is fixed in each period (i.e.
µ is constant), it is possible (although not guaranteed) that noise traders do survive,
even though they tend to buy high and sell low (and vice versa). This is because
they are over-optimistic and underestimate the true riskiness of their portfolio. As a
consequence, they tend to ‘hold more’ of the assets subject to bullish sentiment. In
addition, if noise trader risk σ 2 is large, the smart money will not step in with great
vigour to buy underpriced assets because of the risk involved.

The idea of imitation can be included in the model by assuming that the conversion
rate from smart money (s) to noise traders (n) depends on the excess returns earned
by noise traders over the smart money (Rn − Rs)

µt+1 = µt + ψ(Rn − Rs)t (12)

where µ is bounded between 0 and 1. DeLong et al also introduce fundamental risk
into the model. The per period return on the risky asset becomes a random variable,
r + εt where εt ∼ N(0, σ 2

ε ). In this version of the model, the probability of noise trader
survival is always greater than zero. This is because of what they call the ‘create space’
effect, whereby risk is increased to such an extent that it further inhibits risk-averse
smart money from arbitraging any potential gains. (The latter result requires ψ to be
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‘small’, since otherwise the newly converted noise traders may influence price, and
this would need to be predicted by the ‘old’ noise traders who retire.)

Closed-End Funds

We have noted that closed-end funds often tend to sell at a discount and this discount
varies over time, usually across all funds. Sometimes, such funds sell at a premium.
Using our noise trader model, we can get a handle on reasons for these ‘anomalies’. Let
the risky asset be the closed-end fund itself and the safe asset the actual underlying
stocks. The smart money will try to arbitrage between the fund and the underlying
stocks (e.g. buy the fund and sell the stocks short, if the fund is at a discount). However,
even if ρt = ρ∗ = 0, the fund (risky asset) will sell at a discount because of inherent
noise trader risk (see (9)). Changes in noise trader sentiment (i.e. in ρ∗ and ρt − ρ∗)
will cause the discounts to vary over time and as noise trader risk is systematic, we
expect discounts on most funds to move together.

In the noise trader model, a number of closed-end funds should also tend to be
started at the same time, namely when noise trader sentiment for closed-end funds is
high (i.e. ρ∗ > 0, ρt > 0). When existing closed-end funds are at a premium, it pays
the smart money to purchase shares (at a relatively low price), bundle them together
into a closed-end fund and sell them at a premium to optimistic noise traders.

Changes in Bond Prices

Empirically, when the long-short spread (R − r) on bonds is positive, then long rates
tend to fall, and the prices of long bonds increase. This is the opposite of the pure
expectations hypothesis of the term structure. The stylised facts of this anomaly are
consistent with our noise trader model, with the long bond being the risky asset (and
the short bond the safe asset). When Rt > rt , then the price of long bonds as viewed
by noise traders may be viewed as abnormally low. If noise trader fads are mean
reverting, they will expect bond prices to rise in the future and, hence, long rates R to
fall. This is what we observe in the empirical work. Of course, even though the noise
trader model explains the stylised facts, this leaves us a long way from a formal test
of the noise trader model in the bond market.

Overall, the key feature of the DeLong et al model is to demonstrate the possibility
of underpricing in equilibrium. The other effects mentioned above depend on one’s
adherence to the possibility of changes in noise trader sentiment, which are persistent.
However, ‘persistence’ is not the outcome of an optimising process in the model,
although it is an intuitively appealing one.

Short-Termism

In a world of only smart money, the fact that some of these investors take a ‘short-
term’ view of returns should not lead to a deviation of price from fundamentals. The
argument is based on the implicit forward recursion of the rational valuation formula.
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If you buy today at time t , in order to sell tomorrow, your return depends (in part) on
the expected capital gain and, hence, on the price you can get tomorrow. But the latter
depends on what the person you sell to at t+1 thinks the price will be at t+2, and so
on. Hence, a linked chain of short-term ‘rational fundamental’ investors performs the
same calculation as an investor with an infinite horizon.

With a finite investment horizon and the presence of noise traders, the above argu-
ment does not hold. True, the longer the horizon of the smart money, the more willing
she may be to undertake risky arbitrage based on divergences between price and fun-
damental value, the reason being that in the meantime, she receives the insurance of
dividend payments each period and she has a number of periods over which she can
wait for the price to rise to fundamental value. However, even with a ‘long’ but finite
horizon, there is some price resale risk. The share in the total return from dividend
payments over a ‘long’ holding period is large but there is still substantial risk present
from uncertainty about price in the ‘final period’.

We note from the noise trader model that if a firm can make its equity appear less
subject to noise trader sentiment (i.e. to reduce σ 2), then its underpricing will be less
severe and its price will rise. This reduction in uncertainty might be accomplished by:

(a) raising current dividends (rather than investing profits in an uncertain long-term
investment project. For example, R&D expenditures)

(b) swapping into debt and out of equity

(c) share buybacks.

Empirical work by Jensen (1986) and many others has shown that items (a)–(c) do
tend to lead to an increase in the firm’s share price, and this is consistent with our
interpretation of the influence of noise traders just described. It follows that in the
presence of noise traders, one might expect changes in capital structure to affect the
value of the firm (contrary to the Modigliani–Miller hypothesis).

Destabilising Rational Traders

In the DeLong, Shleifer, Summers and Waldmann (1990b) model in the previous
section, the rational traders always move prices back towards fundamentals but not
sufficiently to eliminate the mispricing of the ‘momentum’ noise traders. Suppose we
accept the presence of momentum traders who buy (sell) after a price rise (fall). The
anecdotal evidence for this is quite strong. Some chartists are known to chase ‘trends’,
while stop-loss orders lead to selling after a price fall, as does forced liquidation of
your short position if you face increased margin calls that you cannot meet. Portfolio
insurance can also lead to selling (buying) after a price fall (rise). For example, if you
have sold (written) a call option (to a customer), then you hedge the position by buying
stocks (i.e. delta hedging). If stock prices subsequently fall, the delta of the written
call also falls and your new hedge position requires that you sell some of your stocks.
(Strictly, portfolio insurance applies to replication of a ‘stock plus put’ portfolio with
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a ‘stock plus futures’ portfolio, but our delta hedge example gives a similar result.)
So, portfolio insurance logically implies that you sell stocks after a price fall (and
buy stocks after a price rise) – see Cuthbertson and Nitzsche (2001b). There is also
experimental evidence (Andreassen and Kraus 1990) where economics students, when
faced with actual stock price data, tend to sell after a small price rise (and vice versa)
but buy after a run of price rises (i.e. momentum).

DeLong, Shleifer, Summers and Waldmann (1990a) use the analytic framework devel-
oped above but now allow the rational traders (who are aware of momentum buying by
noise traders) to anticipate momentum behaviour. Hence, rational traders also buy after
a price rise. The rational traders hope to ‘ride the wave’ caused by the momentum
traders but to sell before price begins to fall back to its fundamental value. The short-run
behaviour of arbitrageurs is, therefore, destabilising and creates even larger short-run
positive autocorrelation in returns (after the arrival of new fundamental’s news), but
returns are mean-reverting over long horizons (i.e. negative autocorrelation).

Space constraints dictate that we cannot develop the model fully here but merely
sketch out the salient features. The model has four time periods (0, 1, 2, 3) and three
types of trader. Rational traders maximise end-of-period wealth (consumption) and
have mean-variance asset demands (i.e. proportional to next period’s expected return
and inversely related to the variance of returns). Momentum traders’ demand depends
on the previous period’s price change, while the ‘passive investors’ demand for the
risky asset depends on last period’s price (i.e. a mechanical buy low–sell high strategy).
The market clears in each period and there is a noisy signal about fundamentals (i.e.
dividends) that influences the demand of the rational traders and, hence, their view
of future actions by momentum traders. Good public news at time t = 1 about (end-
of-period-3) dividends leads to a rise in prices due to the fundamentals traders. In
turn, this causes an increase in demand by momentum traders at t = 2 and, finally, a
fall in prices in period-3, back to their fundamental level. There can be overshooting
even if rational traders do not anticipate future increased momentum traders’ demand,
but the overshooting is exacerbated if rational traders ‘jump on the bandwagon’. So,
an increase in the number of forward-looking rational traders entering the model can
increase the ‘overshooting’.

The model is consistent with anecdotal evidence about the ‘players’ in the mar-
ket. Investment banks have ‘insider’ information about customer order flow and may
use this to anticipate future demands by momentum traders (see Chapter 29 on market
microstructure). A stronger variant of this is ‘front running’, where market makers pur-
chase (sell) on their own account before executing the buy (sell) orders given to them
by their customers. (This attracted the attention of the New York Attorney General, Eliot
Spitzer, in 2003.) In the United States, ‘Investment Pools’ often generate interest in ‘hot-
stocks’, so as to attract momentum investors. Soros’ (1987) investment strategy in the
1960s and 1970s could also be viewed as betting on future crowd behaviour when he took
(successful) long horizon bets on stocks involved in conglomerate mergers throughout
the 1960 and in Real Estate Investment Trust stocks throughout the 1970s. In September
1992, he also successfully implemented a short horizon strategy of selling the pound
sterling, from which he is reputed to have made $1 billion over a few weeks (although
whether this was ‘chasing trends’ or a fundamental misalignment is debatable).
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Evidence from survey data on FX forecasting services (Frankel and Froot 1988)
indicates that during the mid 1980s the ‘inexorable’ rise of the USD (with unchanged
interest differentials) led forecasters to predict both a rise in the US dollar over one
month and a depreciation by the end of the year. Their recommendation to investors
was to buy today, even though they thought the USD was overpriced relative to funda-
mentals. The DeLong, Shleifer, Summers and Waldmann (1990a) model demonstrates
that this is a perfectly rational statement.

Is it the case that momentum traders are really dumb, should lose money and,
hence, be forced out of the market? This criticism can be answered by assuming that
additional momentum traders (e.g. using new techniques such as neutral networks and
genetic algorithms) enter the market or existing momentum traders return with new
backers. (If you read the Financial Times or Wall Street Journal, you will have noted
this occurs quite frequently, although with the recent tougher environment on Wall
Street, this may occur less often in the future.) Also, if lots of momentum traders lose
money over the same period, they can claim ‘everybody did badly’, and they may retain
their investment mandates. There is evidence to suggest that pension fund mandates
are not altered because of absolute losses but because of worse losses than your com-
petitors – so some momentum traders may remain in the market. Also, such mandates
are decided by a wide variety of factors other than ‘return’ (e.g. management costs,
provision of analysts’ research and investment ‘style’). The earlier model of DeLong,
Shleifer, Summers and Waldmann (1990b) shows that noise traders may carry more
market risk than the rational traders, so even if they make judgement errors, they can
earn positive returns.

19.3 Shleifer–Vishny Model: Short-Termism

The underpricing of an individual firm’s stock is not a direct result of the formal
noise trader model of DeLong et al since this formal model requires noise trader
behaviour to be systematic across all stocks. However, the impact of high borrow-
ing costs on the degree of mispricing in individual shares has been examined in a
formal model by Shleifer and Vishny (1990). They find that current mispricing is
most severe for those stocks where mispricing is revealed at a date in the distant
future (rather than, say, next period). Suppose physical investment projects with uncer-
tain long horizon payoffs are financed with shares whose true value is only revealed
to the market after some time. In the Shleifer–Vishny model, these shares will be
severely underpriced. It follows that the firm might be less willing to undertake such
long horizon, yet profitable projects and short-termism on the part of the firm’s man-
agers might ensue. That is, they choose less profitable short-term investment projects
rather than long-term projects since this involves less current undervaluation of the
share price and less risk of them losing their jobs from a hostile takeover or man-
agement reorganisation by the Board of Directors. This is a misallocation of real
resources. We begin our description of this model by considering the infinite horizon
case where the smart money is indifferent as to when the actual price moves to its
fundamental value.
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Timing of Arbitrage Profits in a Perfect Capital Market

If the smart money can borrow and lend unlimited amounts, then she does not care
how long it takes a mispriced security to move to its fundamental value. In Table 1,
we consider a simple case of underpricing where the cost of borrowing, r , and the
fundamentals return on the security (i.e. dividend return, q) are identical at 10%. If
the mispriced security moves from $5 to its fundamental value of $6 after only one
period, the price including the dividend payout is $6(1 + q) = $6.60 in period-1. At
the end of period-1, the arbitrageur has to pay back the loan plus interest, that is
$5(1 + r) = $5.50. If the price only achieves its fundamental value in period-2, the
arbitrageur receives $6(1 + q)2 = $7.26 at t + 2 but has to pay out additional interest
charges between t + 1 and t + 2. However, in present value terms, the arbitrageur has
an equal gain of $1 regardless of when the mispricing is irradicated. Also, with a
perfect capital market, she can take advantage of any further arbitrage possibilities that
arise since she can always borrow more money at any time.

In the case of a finite horizon, fundamentals and noise trader risk can lead to losses
from arbitrage. If suppliers of funds (e.g. banks) find it difficult to assess the ability
of arbitrageurs to pick genuinely underpriced stocks, they may limit the amount of
funds to the arbitrageur. Also, they may charge a higher interest rate to the arbitrageur
because they have less information on her true performance than she herself does (i.e.
the interest charge under asymmetric information is higher than that which would occur
under symmetric information).

If r = 12% in the above example, while the fundamentals return on the stock remains
at 10%, then the arbitrageur gains more if the mispricing is eliminated sooner rather than
later (Appendix II). If a strict credit limit is imposed, then there is an additional cost to
the arbitrageur, namely that if money is tied up in a long horizon arbitrage position, then
she cannot take advantage of other potentially profitable arbitrage opportunities.

An arbitrageur earns more potential dollar profits the more she borrows and takes
a position in undervalued stocks. She is, therefore, likely to try and convince (signal
to) the suppliers of funds that she really is ‘smart’ by engaging in repeated short-term
arbitrage opportunities since long horizon positions are expensive and risky. Hence,
smart money may have an incentive to invest over short horizons rather than eliminating
long horizon arbitrage possibilities.

Table 1 Arbitrage returns: perfect capital market

Assumptions:
Fundamental value = $6
Current price = $5
Interest rate, r = 10% per period
Return on risky asset, q = 10% per period (on fundamental value)
Smart money borrows $5 at 10% and purchases stock at t = 0.

Selling Price Repayment of Loan Net Gain DPV of Gain
(including dividends) (at r =10%)

Period-1 6(1 + q) = $6.60 5(1 + r) = $5.50 $1.10 $1
Period-2 6(1 + q)2 = $7.26 5(1 + r)2 = $6.05 $1.21 $1
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The formal model of Shleifer and Vishny (1990) has both noise traders and smart
money (see Appendix II). Both ‘short’ and ‘long’ assets have a payout at the same
time in the future but the true value of the short asset is revealed earlier than that
for the ‘long’ asset. In equilibrium, arbitrageurs’ rational behaviour results in greater
current mispricing of ‘long assets’, where the mispricing is revealed at long horizons.
The terms ‘long’ and ‘short’, therefore, refer to the date at which the mispricing
is revealed (and not to the actual cash payout of the two assets). Both types of
asset are mispriced, but the long-term asset suffers from greater mispricing than the
short asset.

In essence, the model relies on the cost of funds to the arbitrageur being greater
than the fundamentals return on the mispriced securities. Hence, the longer the arbi-
trageur has to wait before she can liquidate her position (i.e. sell the underpriced
security), the more it costs. The sooner she can realise her capital gain and pay
off ‘expensive’ debts, the better. Hence, it is the ‘carrying cost’ or per period cost
of borrowed funds that is important in the model. The demand for the long-term
mispriced asset is lower than that for the short-term mispriced asset and, hence,
the current price of the long-term mispriced asset is lower than that for the short-
term asset.

Investment projects that have uncertain payoffs (profits) that accrue in the distant
future may be funded with assets whose true fundamental value will not be revealed
until the distant future (e.g. the Channel Tunnel between England and France, where
passenger revenues were to accrue many years after the finance for the project had
been raised). In this model, these assets will be (relatively) strongly undervalued.

The second element of the Shleifer and Vishny (1990) argument that yields adverse
outcomes from short-termism concerns the behaviour of the managers of the firm.
They conjecture that managers of a firm have an asymmetric weighting of mispricing.
Underpricing is perceived as being relatively worse than an equal amount of overpric-
ing. This is because either underpricing encourages the Board of Directors to change
its managers or managers could be removed after a hostile takeover on the basis of
the underpricing. Overpricing, on the other hand, gives little benefit to managers who
usually do not hold large amounts of stock or whose earnings are not strongly linked to
the stock price. Hence, incumbent managers might underinvest in long-term physical
investment projects.

A hostile acquirer could abandon the long-term investment project, hence improv-
ing short-term cash flow and current dividends, all of which reduce uncertainty and
the likely duration of mispricing. She could then sell the acquired firm at a higher
price, since the degree of underpricing is reduced when she cancels the long-term
project. The above scenario implies that some profitable (in DPV terms) long-term
investment projects are sacrificed because of (the rational) short-termism of arbi-
trageurs, who face ‘high’ borrowing costs or outright borrowing constraints. This is
contrary to the view that hostile takeovers involve the replacement of inefficient (i.e.
non-value maximising) managers by more efficient acquirers. Thus, if smart money
cannot wait for long-term arbitrage possibilities to unfold, they will support hostile
takeovers that reduce the mispricing and allow them to close out their arbitrage position
more quickly.
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19.4 Contagion

Kirman’s (1993a) ‘cute’ model is very different to that of DeLong et al in that it
explicitly deals with the interaction between individuals, the rate at which individu-
als’ opinions are altered by recruitment and hence the phenomenon of ‘herding’ and
‘epidemics’. The basic phenomenon of ‘herding’ was noted by entomologists. It was
noted that ants, when ‘placed’ equidistant from two identical food sources that were
constantly replenished, were observed to distribute themselves between each source in
an asymmetric fashion. After a time, 80% of the ants ate from one source and 20%
from the other. Sometimes a ‘flip’ occurred, which resulted in the opposite concentra-
tions at the two food sources. The experiment was repeated with one food source and
two symmetric bridges leading to the food. Again, initially, 80% of the ants used one
bridge and only 20% used the other, whereas intuitively one might have expected that
the ants would be split 50–50 between the bridges. One type of recruitment process
in an ant colony is ‘tandem recruiting’, whereby the ant that finds the food returns
to the nest and recruits by contact or chemical secretion. Kirman notes that Becker
(1991) documents similar herding behaviour when people are faced with very similar
restaurants in terms of price, food, service, and so on, on either side of the road. A
large majority choose one restaurant rather than the other even though they have to
‘wait in line’. Note that here, there may be externalities in being ‘part of the crowd’,
which we assume does not apply to ants.

We have already noted that stock prices may deviate for long periods from fun-
damental value. A model that explains ‘recruitment’ and results in a concentration at
one source for a considerable time period and then a possibility of a ‘flip’ clearly
has relevance to the observed behaviour of speculative asset prices. Kirman makes
the point that although economists (unlike entomologists) tend to prefer models based
on optimising behaviour, optimisation is not necessary for survival (e.g. plants survive
because they have evolved a system whereby their leaves follow the sun but they might
have done much better to develop feet, which would have enabled them to walk into
the sunlight). Kirman’s model of recruitment has the following assumptions.

(i) There are two views of the world, ‘black’ and ‘white’, and each agent holds one
(and only one) of them at any one time.

(ii) There are a total of N agents, and the system is defined by the number (= k) of
agents holding the ‘black’ view of the world.

(iii) The evolution of the system is determined by individuals who meet at random
and there is a probability (1 − δ) that a person is converted (δ = probability not
converted) from black to white or vice versa. There is also a small probability
ε that an agent changes his ‘colour’ independently before meeting anyone (e.g.
due to exogenous ‘news’ or the replacement of an existing trader by a new trader
with a different view).

(iv) The above probabilities evolve according to a statistical process known as a
Markov chain, and the probabilities of a conversion from k to k + 1, k − 1 or
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‘no change’ is given by

k →



k + 1 with probability p1 = p(k, k + 1)

no change with probability = 1 − p1 − p2

k − 1 with probability p2 = p(k, k − 1)

where

p1 =
[

1 − k

N

] [
ε + (1 + δ)k)

N − 1

]

p2 = k

N

[
ε + (1 − δ)(N − k)

N − 1

]

In the special case ε = δ = 0, the first person always gets recruited to the second
person’s viewpoint, and the dynamic process is a martingale with a final position at
k = 0 or k = N . Also, when the probability of being converted (1 − δ) is relatively
low and the probability of self-conversion ε is high, then a 50–50 split between the
two ensues. Kirman works out what proportion of time the system will spend in each
state (i.e. the equilibrium distribution). The result is that the smaller the probability of
spontaneous conversion ε relative to the probability of not being converted δ, the more
time the system spends at the extremes, that is, 100% of people believing the system is
in one or other of the two states. (The required condition is that ε < (1 − δ)/(N − 1),
see Figure 2.) The absolute level of δ, that is, how ‘persuasive’ individuals are, is not
important here but only that ε is small relative to (1 − δ). Although persuasiveness
is independent of the number in each group, a majority once established will tend to
persist. Hence, individuals are more likely to be converted to the majority opinion of
their colleagues in the market, and the latter is the major force in the evolution of the
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Figure 2 100,000 meetings every fiftieth plotted: ε = 0.002, δ = 0.8. Source: A. Kirman
(1993a). The Quarterly Journal of Economics. 1993 by the President and Fellows of Harvard
College and the Massachusetts Institute of Technology. Reproduced by permission
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system (i.e. the probability that any single meeting will result in an increase in the
majority view is higher than that for the minority view).

Kirman (1991) uses this type of model to examine the possible behaviour of an
asset price such as the exchange rate, which is determined by a weighted average
of fundamentalists’ and noise traders’ views. The proportion of each type of trader
wt depends on the above evolutionary process of conversion via the Markov chain
process. He simulates the model and finds that the asset price (exchange rate) may
exhibit periods of tranquillity followed by bubbles and crashes as in Figure 3. In a later
paper, Kirman (1993a) assumes the fundamentals price pft follows a random walk and
hence is non-stationary, while the noise traders forecast by simple extrapolation. The
change in the market price �pt+1 is

�pt+1 = wt�pf,t+1 + (1 − wt)�pn,t+1 (13)

where the noise trader forecast is extrapolative

�pn,t+1 = pt − pt−1 (14a)

and the fundamentals forecast

�pf,t+1 = υ(pt − pt) (14b)

is an error correction model around the long-run equilibrium pt . The weights wt depend
on the parameters governing the rate of conversion of market participants. The weights
are endogenous and incorporate Keynes’ beauty queen idea. Individuals meet each
other and are either converted or not. They then try and assess which opinion is in the
majority and base their forecasts on who they think is in the majority, fundamentalists
or noise traders. Thus, the agent does not base her forecast on her own beliefs but on
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Figure 3 Simulated exchange rate for 100 periods with S = 100. Source: Kirman (1991) in
Taylor, M.P. (ed.) money and financial markets, Figure 17.3, p. 364. Reproduced by permission
of Blackwell Publishers
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what she perceives is the majority view. The model is then simulated and exhibits a
pattern that resembles a periodically collapsing bubble. When the noise traders totally
dominate, prices are constant, and when the fundamentalists totally dominate, prices
follow a random walk. Standard tests for unit roots are then applied (e.g. Dickey and
Fuller 1979, Phillips and Perron 1988) and cointegration tests between pt and pt

tend (erroneously) to suggest there are no bubbles present. A modification of the test
by Hamilton, which is designed to detect points at which the system switches from
one process to another, was only moderately successful. Thus, as in the cases studied
by Evans (1991), when a periodically collapsing bubble is present, it is very difficult
to detect.

Of course, none of the models discussed in this chapter are able to explain what
is a crucial fact, as far as public policy implications are concerned. That is to say,
they do not tell us how far away from the fundamental price a portfolio of particular
stocks might be. For example, if the deviation from fundamental value is only 5% for
a portfolio of stocks, then even though this persists for some time, it may not represent
a substantial misallocation of investment funds, given other uncertainties that abound
in the economy. Noise trader behaviour may provide an a priori case for public policy
in the form of trading halts, during specific periods of turbulence or of insisting on
higher margin requirements. The presence of noise traders also suggests that hostile
takeovers may not always be beneficial for the predators since the actual price they
pay for the stock of the target firm may be substantially above its fundamental value.
However, establishing a prima facie argument for intervention is a long way short of
saying that a specific government action in the market is beneficial.

19.5 Beliefs and Expectations
Investors might have mistaken beliefs about their forecasts of earnings, and Barberis,
Shleifer and Vishby (1998) show how this can produce post-earnings announcement
drift, short-run momentum, long-run mean reversion and price–earnings ratios that help
forecast future returns. It is a more elaborate model than that of Barsky and DeLong
(1993), who simply assume that dividend growth is forecast using an IMA(1,1) model
(i.e. adaptive expectations), and this implies prices move more than proportionately to
changes in current dividends (see Chapter 17).

Systematic errors following announcements of public information are made, because
investors sometimes think earnings are in a ‘mean-reverting’ regime and sometimes in
a ‘trending’ regime, when, in fact, earnings follow a random walk. The investor has
to work out in what earnings regime she thinks the economy is operating and then
determine her investment decisions.

The model assumes risk-neutral investors and a form of ‘representativeness’, that
is, when an investor sees a small run of positive earnings, she (erroneously) applies
the ‘law of small numbers’ and forecasts high earnings growth in the future. After all,
earnings do not appear to be ‘average’ since investors mistakenly believe this would
manifest itself in some periods of bad and good earnings news, even in a short sample.

However, when there is a single positive earnings announcement, conservatism dom-
inates, and investors believe earnings will partly fall back to normal (i.e. some mean
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reversion) and, therefore, prices underreact to positive news. Further positive news will
lead to a diminution of ‘conservatism’, and the law of small numbers will then apply, and
there will be post-earnings price drift and momentum. The investor may then believe she
is in the trending regime, and the P–E ratio increases above its equilibrium value, given
by the random walk model of earnings. Prices are now too high (relative to fundamen-
tals) as the growth in earnings does not materialise (since true earnings follow a random
walk). Hence, there is long-term mean reversion in prices, future returns are lower and
predictable from the previous high level of the P–E ratio.

Dispersion of Opinions

The Barberis, Shleifer and Vishny (1998) model deals with misperceptions about public
information. What about the assimilation of private information? Suppose individual
investors undertake private research on a company and they all hold diverse views,
which are known by all. Investors who are bullish will buy the share, while those who
are bearish will want to short-sell the stock. If the latter are not allowed to short-sell
(e.g. pension funds and most mutual funds), then those stocks that have the greatest
diversity of views will have ‘greater optimism’ reflected in their price (Miller 1977).
Therefore, price–earnings ratios will be too high and will result in low subsequent
returns, when the sellers finally enter the market. Here, predictability from the P–E
ratio does not require systematic bullishness or bearishness (as in DeLong, Shleifer,
Summers and Waldmann 1990a), merely dispersion of opinions.

Tests of the above require some measure of dispersion of opinion. Diether, Malloy
and Scherbina (2002) uses dispersion of analysts forecasts of current earnings and groups
stocks into quintiles on the basis of this measure. Then the high dispersion quintile is
followed by subsequently lower average returns than for the low dispersion quintile of
stocks. Chen, Hong and Stein (2001) use the fraction of mutual funds that hold a particular
stock as a measure of dispersion of opinion and find lower subsequent returns for stocks
with high dispersion.

Overconfidence

What if investors are overconfident about their own private information about a firm?
If the private information is ‘good’, then prices will be above fundamentals (earn-
ings) and P–E ratios will be high. Subsequent public information will ‘reveal’ this
overpricing and future returns will be low and predictable from the P–E ratio. Daniel,
Hirshleifer and Subrahmanyan (1998) combine this overconfidence idea with ‘self
attribution bias’ in order to explain post-earnings announcement drift and momentum
effects. The investor treats public information in an asymmetric way. If overconfi-
dence on positive private news is then followed by positive public news, the investor
‘attributes’ this to her skill, and she becomes even more overconfident and pushes prices
up even further. If positive private news is followed by bad public news, the investor
retains her private views for the moment. The net effect is greater overconfidence and
momentum. In the Barberis, Shleifer and Vishny (1998) ‘mistaken expectations’ model
and the above ‘overconfidence model’, most of the correction to stock prices should
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come when investors find out their private information really is incorrect – that is, at
earnings announcement dates. This is consistent with the evidence in Chopra, Lakon-
ishok and Ritter (1992) and La Porta, Lakonishok and Shleifer (1997), who find that
certain stock portfolios (e.g. value or growth stocks) earn low average returns on days
of the year close to earnings announcements.

19.6 Momentum and Newswatchers
An interesting model involving the interaction of heterogeneous agents is that of Hong
and Stein (1999). Momentum traders base their investment decisions only on past price
changes while ‘newswatchers’ only observe private information which diffuses grad-
ually across the newswatcher population. Both sets of agents are boundedly rational
since they do not use all information available. If there are only newswatchers then
prices respond monotonically and there is underreaction as news slowly becomes assim-
ilated into prices, but there is no overreaction until we introduce momentum traders.
After some good news at time t , prices slowly rise due to the increased demand of
newswatchers. This leads to increased demand by some momentum traders at t + 1,
which causes an acceleration in prices and further momentum purchases. Momentum
traders make most of their profits early in the ‘momentum cycle’. Momentum traders
who buy later (at t + i for some i > 1) lose money because prices overshoot their long-
run equilibrium and, therefore, some momentum traders buy after the peak (i.e. there is
a negative externality imposed on the ‘late’ momentum traders). The dynamics are the
outcome of a market clearing equilibrium model, but the bounded rationality assump-
tion (e.g. momentum traders only use univariate forecasts and do not know when the
‘news’ arrives) is crucial in establishing both short horizon positive autocorrelation
and long horizon price reversals (i.e. overshooting).

If we allow the introduction of fully informed ‘smart money’ traders into the model,
the above conclusions continue to hold as long as the risk tolerance of the smart money
traders is finite. (When the risk tolerance of the smart money is infinite, then prices
follow a random walk.)

The model, therefore, yields predictions that are consistent with observed profits
from momentum trading (Jegadeesh and Titman 1993, 2001), which may be due to the
slow diffusion of initially private information. The ‘events literature’ demonstrates that
observed public events (e.g. unexpectedly good earnings, new stock issues or repur-
chases, analysts recommendations) lead to post-event price drift (in the same direction
as the initial event) over horizons of 6–12 months. The Hong–Stein model can only
generate this price drift if newswatchers after observing public news require additional
private information before they are able to translate public news into views about
future valuation. Otherwise, newswatchers would be able to immediately incorporate
the public news into prices.

The basic structure of the model is rather complex, and we can only highlight
the main features here. The newswatchers purchase a risky asset that pays a single
liquidating dividend DT , some time later at T , where

DT = DO +
T∑

j=0

εj
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where the εj s are iid(0, σ 2). So that private information moves slowly through the
newswatcher population, we assume there are z groups of newswatchers so that each
dividend innovation εj = ε1

j + ε2
j + · · · + εz

j (with each sub-innovation having a vari-
ance of σ 2/z). As we shall see, if there are z newswatchers, then each dividend
innovation at time t takes until time t + z–1 for every newswatcher to have assim-
ilated this news. So private information takes t + z–1 time periods to become fully
public. The way this is modelled is as follows. At time t , newswatcher group-1 observes
ε1
t+z−1, group-2 observes ε2

t+z−1, and so on, so each group observes a fraction 1/z of the
innovation εj . Then at t+1, group-1 observes ε2

t+z−1, group-2 observes ε3
t+z−1, and so

on, through to group z, which now observes εz
t+z−1. At time t+1, each sub-innovation

of εt+z−1 has now been seen by a fraction 2/z of newswatchers, and the information
has spread further. Hence, εt+z−1 becomes totally public by time t + z − 1, but the dif-
fusion of information is slow (and depends on z the number of newswatchers, which is
a proxy for the rate of information flow). On average, all the newswatchers are equally
well informed.

Each newswatcher has constant (= γ ) absolute risk aversion (CARA) utility and at
time t , their asset demands are based on a static optimisation (i.e. buy and hold until
T ) and, most importantly, they do not condition on past prices (they are, therefore,
boundedly rational). Without loss, the riskless rate is assumed to be zero, and the
newswatchers have an infinite horizon.

Momentum traders also have CARA utility but have finite horizons. At each time
t , a new group of momentum traders enters the market and holds their position until
t + j . Momentum traders base their demand on predictions of Pt+j − Pt and make
forecasts on the basis of �Pt−1 only (i.e. univariate forecast). If momentum traders are
allowed to forecast prices on the basis of a distributed lag of past prices (with different
weights on each lag), then the results from the model would not go through – this is
the bounded rationality assumption again. The order flow demand Ft from generation
t momentum traders is

Ft = A + φ�Pt−1

There are j momentum traders at t , and their demand is assumed to be absorbed by
the newswatchers (who act as market makers). So if Q = fixed supply of risky assets,
then the newswatchers must absorb St , where

St = Q −
j∑

i=1

Ft+1−i = Q − jA −
j∑

i=1

φ�Pt−i

It can then be shown that equilibrium prices (which clear the market) are given by

Pt = [Dt + {(z − 1)εt+1 + (z − 2)εt+2 + . . . εt+z−1}/z] − Q + jA +
j∑

i=1

φ�Pt−i

where φ in equilibrium can be shown to depend on the coefficient of risk tolerance
1/γ of the momentum traders. The term in square brackets indicates that prices are
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autocorrelated. The model is solved numerically, and sensitivity analysis provides the
following qualitative results.

(i) Overshooting is greatest for the holding period horizon j = 12 months, where the
overshooting is around 34%.

(ii) As risk tolerance increases, momentum traders respond more aggressively to past
price changes, equilibrium φ increases, and there is greater overshooting.

(iii) As the information diffusion parameter z increases (so that private news travels
‘slower’), then momentum traders are more aggressive (i.e. φ increases) and their
profits higher, as short-run continuation is more pronounced. Also overshooting
increases, leading to larger negative autocorrelations in the reversal phase

The result in (i) is consistent with the findings of Jegadeesh and Titman (1993,
2001), where momentum profits occur up to horizons of around 12 months. The last
result (iii) provides a further test of the model, providing we can isolate stocks where
information diffusion is likely to be relatively slow. Hong, Lim and Stein (2000) use
‘firm size’ and ‘analysts’ (residual) coverage’ (i.e. coverage after correcting for firm
size) as proxies for slow information dissemination. They find that six-month momen-
tum profits decline with market cap and with increased analysts’ coverage. Also, in
low analyst coverage stocks, momentum profits persist for horizons of about two years
as opposed to less than one year in high coverage stocks.

The above model gets one a long way with a minimum of assumptions, but there
are some limitations of the model. The newswatchers are time inconsistent in that
they decide their asset demands in a static framework at t , but they then change their
demands as they absorb the demands of the momentum traders. The newswatchers are
not allowed to participate in ‘frontrunning’. If newswatchers were to condition their
demand on past prices, then they would know that good news would lead to increased
momentum demand and they would buy more aggressively at time t to benefit from
the forecast momentum demand. This would mitigate any underreaction (but it would
not entirely eliminate it).

The model has underreaction to private news but this does not necessarily imply
underreaction to public news (e.g. earnings announcements) found in the data. How-
ever, if the assimilation of this public news takes time as private agents undertake
their respective calculations of its implications for prices, then the model can deliver
post-event drift. Of course, if momentum traders are allowed to observe this public
news, they may trade more quickly, in which case there may be no eventual over-
reaction to public news and, hence, no price reversals. However, it should be noted
that representative agent models cannot yield predictions of the type (i)–(iii) above as
they only condition on public news that is immediately available.

19.7 Style Investing
In the previous chapter, we noted the prevalence of ‘style investing’. Casual empiricism
suggests that many mutual funds are based on styles (e.g. value-growth, momentum,
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small cap, tech stocks, real estate, etc.). It may be the case that investors allocate
their wealth across a limited number of styles and are not particularly concerned
about the allocation to individual stocks within any given style category. Certainly,
there are economies of monitoring and transactions cost to style investing, compared
to building a portfolio on the basis of the analysis of individual stocks (Bernstein
1995, Swensen 2000). We have already encountered models that rely on the inter-
action of momentum traders and some form of rational traders or arbitrageurs as
in DeLong, Shleifer, Summers and Waldmann (1990a) and Hong and Stein (1999),
where the demands for stocks by momentum (noise) traders depend on their abso-
lute past performance. Barberis and Shleifer (2003), in their model of style investing,
assume that momentum investors’ demand for stocks of a particular style X depend
on past returns on X relative to past returns on the alternative style Y (e.g. X = old
economy stocks, Y = new economy stocks). Hence, momentum investors move into
stocks in style-X and out of style-Y , if past returns on X exceed those on Y . This
increases the returns on assets in style-X and decreases the returns on assets in
style-Y . There is negative autocorrelation across asset returns in the two different
styles, at short lags. But Y eventually rises back towards its fundamental value and,
hence, at long lags, the autocorrelation between �Px,t and �Py,t−k (for large k) will
be positive.

There are arbitrageurs or fundamental traders in the model whose demand depends
on their estimate of expected returns based on fundamentals (i.e. final dividends). The
arbitrageurs also act as market makers for the ‘switchers’, absorbing their changing
demands. The model delivers a market clearing price for all assets but because the
fundamental traders are boundedly rational and do not know the time-series properties
of the change in demand of the switchers, the market clearing price differs from that
when there are only fundamentals traders.

From this description, one can see that the broad set-up of the equilibrium model
has features in common with Hong and Stein (1999), but the different behavioural
assumptions of the switchers and fundamental traders does lead to some different
predictions. Before we examine the latter, we briefly present the main elements of the
model, and we derive the equilibrium market price for assets in style-X and style-Y .

There are 2n(= 100, say) risky assets in fixed supply (and the risk-free asset has
infinitely elastic supply and a zero return). Each risky asset is a claim to a single
liquidating dividend to be paid at a future time

Di,T = Di,0 + εi,1 + εi,2 + . . . + εi,T

where εit are announced at time t and εt = (ε1,t , ε2,t . . . ε2n,t )
′ ∼ N

(
0,

∑
D

)
and iid

over time. There are two styles X and Y with assets 1 to n in style-X and n + 1
through 2n in style-Y . The return (= price change) to style-X is

�Px,t = Px,t − Px,t−1 where Px,t = n−1
∑
i∈X

Pi,t

Each asset’s shock εit depends on a market factor (= m, common to both styles), one style
factor (s = either X or Y ) and an idiosyncratic cash flow shock, specific to a single asset i.
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Each of these factors has a unit variance and is orthogonal to the other factors so that

∑ij

D
= cov(εit , εjt ) =




1 i = j

ψ2
m + ψ2

s i, j in the same style i �= j

ψ2
m i, j in different styles




The demand by switchers depends on the relative past performance of the two styles.
For assets i in style-X, the number of shares demanded is

NS
i,t = 1

n

t−1∑
k=1

θk−1

(
�Px,t−k − �Py,t−k

2

)
= NS

x,t

n

with 0 < θ < 1 giving declining weights on past relative performance. Symmetrically,
for assets j in style-Y

NS
j,t = 1

n

t−1∑
k=1

θk−1

(
�Py,t−k − �Px,t−k

2

)
= NS

y,t

n

The above assumes that style investors move their demand from one style to another
(e.g. value to growth stocks) within the same asset class (i.e. stocks) and do not move
funds out of other asset classes (e.g. cash, bonds, FX) when they wish to switch styles.
This may be largely true of institutional investors who have fairly constant ‘strategic’
asset allocations across alternative asset classes. Also, transactions costs might imply
that a favoured style is financed from sales of one (or a few) badly performing ‘style’
rather than many. There may also be ‘rules of thumb’ that result in natural twin styles
(e.g. value versus growth), so when one style is doing well, the ‘twin style’ nearly
always does badly.

The fundamental traders maximise expected end-of-period utility of wealth using
a CARA utility function. Hence, when returns are normally distributed, optimal asset
demands are linear in expected returns.

NF
t = (1/γ )(V F

t )−1[EF
t (Pt+1) − Pt ]

where V F
t ≡ varF

t (Pt+1 − Pt), NF
t = (N1, N2, . . . N2n)

′
, Pt = (P1, P2 . . . P2n)

′
and γ is

the degree of absolute risk aversion. If the fixed supply of the 2n assets is given by the
vector Q = NF

t + NS
t , then substituting NF

t = Q − NS
t in the above equation gives

Pt = EF
t (Pt+1) − γV F

t (Q − NS
t )

Iterating forward and noting that EF
T −1PT = EF

T −1(DT ) = DT −1, then

Pt = Dt − γV F
t (Q − NS

t ) − EF
t

T −t−1∑
k=1

γV F
t+k(Q − NS

t+k)
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where Dt = (D1,t , . . . , D2n,t )
′
. The covariance matrix V F is assumed to be time-invari-

ant (= V ) and has the same structure as the cash flow covariance matrix
∑

D . The
term EF

t (NS
t+k) is assumed to be constant so that fundamental traders are boundedly

rational and do not calculate the time-series properties of NS
t+k but merely absorb some

of the demands by the switchers. Dropping all the non-stochastic terms gives

Pt = Dt + γ VN S
t

with the price of asset i in style-X

Pit = Dit +
(

ψ

n

) t−1∑
k=1

θk−1

(
�Px,t−k − �Py,t−k

2

)

where ψ depends directly on γ and on the parameters of the covariance structure
of

∑
D

= V . The price of asset j in style-Y is the same form as the above equation
but with the sign on (�Px − �Py) reversed (i.e. symmetry). With only fundamental
traders Pt = Dt but with switchers, price deviates from fundamentals, and the deviation
is persistent if θ is close to 1.

The model is calibrated with ψm = 0.25, ψs = 0.5, θ = 0.95 and λ = 0.093 (so
that equilibrium return volatility broadly matches US data) and, in turn, this gives
φ = (ψ/n)−1 = 1.25. They take n = 50 so there are 50 assets in each style (X and Y )

and Dio = 50 for all i.

Predictions and Co-Movement

First, consider the co-movement of style returns. If there is a one-time cash flow shock
to style-X (i.e. εi,1 = 1, εi,t = 0 for t > 1, ∀i ∈ X), then Px follows a long damped
oscillation around its (new higher) fundamental value, with Px initially overshooting
its long-run equilibrium and then slowly mean reverting. This positive autocorrelation
at short horizons and negative autocorrelation at long lags is also predicted by other
momentum models (e.g. Hong and Stein 1999, DeLong, Shleifer, Summers and Wald-
mann 1990a). The reason for this is straightforward. Good news about cash flows in
assets of style-X lead to price rises, which stimulate the demand of switchers, pushing
prices above fundamental value. A new ‘feature’ of this style approach is that the
prices of assets in style-Y initially fall as they are sold to help finance purchases of
assets in style-X (i.e. symmetry effect). This makes style-Y look even worse relative
to style-X returns, so there is increased momentum sales of style-Y assets and, hence,
Y ’s prices also overshoot. Note that the price of Y moves without any cash flow news
about the stocks in Y and the autocorrelation across styles is negative at short horizons.
Eventually, fundamental traders sell the overpriced stocks in style-X and price moves
to its long-run fundamental level. Bad news about stocks in style-X or good news
about style-Y would accelerate this process.

So, style-X imposes a negative externality on assets in style-Y , the magnitude of
which depends on how investors finance purchases in X. If they sell small amounts
from many other different style portfolios, then the externality will be less than if they
just sell from the single twin-style assets in Y .
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It follows from the above analysis that if (say) only one asset in style-X expe-
riences a one-time positive cash flow, then the price of other assets in style-X will
also experience increases (unrelated to cash flows), while stocks in style-Y will again
experience a fall in price (again unrelated to cash flows). In the Hong and Stein (1999)
and DeLong, Shleifer, Summers and Waldmann (1990a) models, good news about asset
i(i ∈ X) only affects the price of asset i and not the prices of other assets in the same
style (i ∈ X), nor assets belonging to style-Y . The predictions of these models differ
in this respect.

The above results are consistent with the success of investing in small caps between
1979 (Banz 1981) and around 1983, after which returns on small caps were poor. Data
snooping could also set off changes in returns unrelated to cash flow news, while the
poor returns on some styles (e.g. value stocks in the US in 1998 and 1999), even
though cash flows were good (Chan, Karceski and Lakonishok 2000), may have been
due to an increased demand for stocks viewed as being in alternative styles (e.g. large
growth stocks).

Investors move into all securities in a particular style category, if the past style return
has been relatively good. Hence, there may be positive co-movement in individual asset
returns within a particular style category, which is unrelated to common sources of cash
flows. This is consistent with the co-movement in prices of closed-end funds, even when
their net asset values are only weakly correlated (Lee, Shleifer and Thaler 1991) – this
would not be predicted by DeLong, Shleifer, Summers and Waldmann (1990a) and Hong
and Stein (2003) where individual asset returns are driven by underlying cash flows, nor
in certain learning models (Veronesi 1999, Lewellen and Shanken 2002). Of course, other
models are capable of explaining some co-movement that is unrelated to cash flows. For
example, in Kyle and Xiong (2001), after banks suffer trading losses, they may sell stocks
to restore their capital base. This is consistent with the financial crisis of 1998 where
aggregate stock prices in different countries fell simultaneously (even though different
countries had different economic fundamentals), but it is not a strong candidate to explain
co-movement in sub-categories of stocks (e.g. small caps).

According to the fundamentals approach, prices of Royal Dutch and Shell, which
are claims to the same cash flow stream, should move very closely together. But Froot
and Dabora (1999) show that Royal Dutch moves closely with the US market, while
Shell moves mainly with the UK market. Royal Dutch is traded mostly in the United
States and Shell mostly in London and, hence, they may ‘belong to’ these two ‘styles’.
Similarly, if a stock is added to the S&P500 index (i.e. ‘a style’), then in the future,
one might expect it to co-vary more with the S&P500 and its correlation with stocks
outside the S&P500 to fall (Barberis Shleifer and Wurgler 2001).

Finally, Barberis and Shleifer show that a momentum strategy based on style, that
is, buy into styles that have good recent performance, should offer Sharpe ratios that
are at least as good as momentum strategies based on the momentum performance
of individual assets. This is consistent with the momentum strategies based on indus-
try portfolios (Moskowitz and Grinblatt 1999) and on size-sorted and book-to-market
sorted momentum portfolios (Lewellen 2002).

Even when more sophisticated arbitrageurs are introduced into the model so they
understand the time-variation in the momentum traders’ demands NS

t , this does not
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necessarily reduce the size and persistence in the mispricing. This arises because as
in the model of DeLong, Shleifer, Summers and Waldmann (1990a), the arbitrageurs
do not sell when the price is above fundamental value – they buy, knowing that the
increasing demand by feedback traders will raise the price even further, after which
the arbitrageurs exit at a profit. In other words, the arbitrageurs mimic the behaviour
of the momentum traders after a price rise (or fall).

The style model we have discussed above provides an analytic framework in which
boundedly rational arbitrageurs and momentum style investors inter-react and gives
new predictions compared to models based purely on momentum in individual stocks.

19.8 Prospect Theory
Prospect theory is a descriptive model of decisions under risk, based on the psycholog-
ical experiments of Kahneman and Tversky (1979). They noted that individuals take
gambles that violate the axioms of expected utility theory. Their experiments indicate
that individuals are concerned about changes in wealth (rather than the absolute level
of wealth) and they are much more sensitive to losses than to gains – known as loss
aversion. Note, however, that although prospect theory moves away from the standard
expected utility function that just depends on consumption, there are many other alter-
native objective functions one could use, which do not invoke expected utility. These
include disappointment aversion (Gul 1991), maximising the minimum expected utility
when using alternative distributions for returns (Gilboa and Schmeidler 1989, Camerer
and Weber 1992), using weighted utility (Chew 1989) or rank-dependent utility (Segal
1989) and using robust rules (Anderson, Hansen and Sargent 2000).

In the models below, which incorporate the prospect theory approach, there are no
exogenous noise traders interacting with the smart money. Instead, it is a fully optimising
approach, but agents have a non-standard utility function: lifetime utility depends not
only on consumption but also on recent gains and losses on risky assets (i.e. the change in
stock market wealth). This is the ‘narrow framing’ assumption since gains and losses on
other assets are ignored and even though investors have long horizons, they are worried by
annual gains and losses. There is experimental evidence to back up the idea that losses
influence people’s asset allocation. Thaler, Tversky, Kahneman and Schwartz (1997)
show stock and bond returns (generated from two normal distributions calibrated, to
mimic actual returns) to three groups of investors; the first is shown monthly observations,
the second, annual observations and the third group, returns only over (non-overlapping)
five-year periods. At the end of each of their respective horizons, they are asked to
allocate their funds between stocks and bonds and told whether they made gains or
losses. After 200 months worth of observations, each group is asked to make a final
allocation, which is to apply over the next 400 months (i.e. about 33 years). Subjects who
were given monthly observations would have observed more losses than those shown
annual or five-year returns, and they find that this group allocates proportionately less of
their funds to stocks in the final allocation.

In a one-period model, Benartzi and Thaler (1995) show that loss aversion can
produce a high equity premium but in their intertemporal model Barberis, Ming and
Tano (2001) find that they need an additional effect, a form of integral control that they
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refer to as prior losses (Thaler and Johnson 1990). The idea is very straightforward
and intuitively plausible, namely that if you have suffered losses over several previous
periods (i.e. cumulatively), then a loss in the current period will be relatively more
painful so that your risk aversion increases. The converse also applies, so that after
a series of gains (e.g. in a casino), individuals become more willing to gamble, since
they are now ‘playing with the house money’ – that is, the casino’s money, not their
‘own’. Barberis, Ming and Tano (2001) show that loss aversion plus ‘prior losses’ can
explain the stylised facts of a high equity premium and high volatility of stock returns,
the low level and volatility of interest rates and the predictability in stock returns (e.g.
a low price–dividend ratio leads to higher future returns).

Clearly, the idea of time-varying risk aversion is similar to that in the Campbell–
Cochrane habit persistence model, but it is cumulative changes in wealth rather than
cumulative levels of past consumption that lead to changing risk aversion. As we
shall see, Barberis et al use the calibration approach and show that with ‘reasonable’
parameter values, the model yields time-series behaviour for stock returns and the
interest rate that are consistent with the stylised facts.

Empirical evidence indicates a tendency for investors to sell winning rather than
losing stocks (Shefrin and Statman 1985, Odean 1998), and this is broadly consistent
with prior loss and loss aversion, although these studies assume utility gains, and losses
only occur when they are realised via a sale of stock. In Barberis et al, utility gains
and losses occur even when gains and losses are not realised.

The Model

There are two assets, a risk-free rate in zero net supply paying a gross rate of R∗
f,t and

a risky asset paying R∗
t+1 (between t and t+1). The risky asset has a total supply of

one unit and is a claim on a dividend sequence {Dt}. There is a continuum of infinitely
lived agents, each endowed with one unit of the risky asset at t = 0, which they hold
at all times. In ‘Economy I’, agents consume the dividend stream (Lucas 1978), and
aggregate consumption Ct equals aggregate dividends Dt , which, therefore, have the
same stochastic process (i.e. iid lognormal)

ct+1 − ct = gc + σcεt+1 εt+1 ∼ niid(0, 1) (15)

In ‘Economy II’, consumption and dividends are separate stochastic processes that
are still individually iid but with different means and standard deviation and non-zero
correlation between their respective errors – see below.

Utility is a power function of consumption, with an additional function v(.) reflecting
the dollar gain or loss Xt+1 experienced between t and t+1.

U = Et

[ ∞∑
t=0

θ t C
1−γ
t

1 − γ
+ btθ

t+1v(Xt+1, zt )

]
(16)

where γ > 0 is the coefficient of relative risk aversion over consumption, υ(Xt+1, zt )

is the utility from gains and losses and zt represents prior gains or losses. If there are
no prior gains or losses, zt = 1 (which is further explained below). The term bt is an
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exogenous scaling factor. An annual horizon is chosen. If St = $100 is the reference
level, then

Xt+1 = St (R
∗
t+1 − R∗

f,t ) (17)

so for R∗
t+1 = 1.20 and R∗

f = 1.05, then Xt+1 = $15. The Kahneman and Tversky
(1979) loss aversion utility function chosen is a piecewise linear function

v(Xt+1, zt = 1) =
{

Xt+1

λXt+1

Xt+1 ≥ 0
Xt+1 < 0

(18)

where λ > 1 to reflect loss aversion and here there are no prior gains or losses. This
utility function is consistent with the experimentally observed risk aversion for small
wealth bets. The usual smooth utility functions (e.g. power) calibrated to match indi-
viduals’ risk aversion over small bets lead to absurd results over larger gambles. For
example, Rabin (2000) shows that an expected utility maximiser who turns down a
50:50 bet of losing $100 or gaining $110 will also turn down a 50:50 bet of losing
$1000 and gaining any (including an infinite) amount of money. Loss aversion avoids
this ‘Rabin paradox’.

In Barberis et al, it is the expected utility of v(Xt+1) that is important, and they
assume equal subjective probabilities of gains and losses (rather than Kahneman and
Tversky’s (1979) non-linear transformation of these probabilities). From (17) and (18),
utility depends on returns

v(Xt+1, zt = 1) = v[St (R
∗
t+1 − R∗

f,t )] = St v̂(R∗
t+1) (19)

where

v̂(R∗
t+1, zt = 1) =

{
R∗

t+1 − R∗
f,t

λ(R∗
t+1 − R∗

f,t )
for

R∗
t+1 ≥ R∗

f,t

R∗
t+1 < R∗

f,t

(20)

The scaling term bt in (16) is required so that as wealth St increases over time, it does
not dominate the utility function. We can use either aggregate consumption or wealth
as the scaling factor, and Barberis et al choose the former (which is exogenous to the
individual investor).

bt = b0C
−γ

t b0 > 0 (21)

For b0 = 0, utility in (16) reverts to the familiar power function over consumption
only, while the larger is b0, the greater the weight given to utility from wealth changes
(i.e. returns) rather than to consumption.

Prior Outcomes

The idea that risk aversion is lower (higher) after a sequence of gains (losses) comes
from responses to survey questions (Thaler and Johnson 1990) such as the following.

1. You have just won $30. Choose between:
(a) a 50% chance to gain $9 and a 50% chance to lose $9 [8%]

(b) no further gain or loss [1%]
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2. You have just lost $30. Choose between:
(a) a 50% chance to gain $9 and a 50% chance to lose $9 [3%]

(b) No further gain or loss [6%]

The percentage of respondents choosing each option is shown in parenthesis and,
therefore, you are much less willing to gamble after you have lost $30.

Gertner (1993) also shows that this ‘playing with the house money’ effect also
works for larger bets, where the participants in a TV game show have to place bets
on whether the next card drawn at random will be higher or lower than the card
currently showing. Linville and Fisher, using survey evidence, find that people prefer
unpleasant events to occur far apart rather than close together and they also pre-
fer a ‘bad’ followed by a ‘pleasant’ event to occur close together so one cushions
the other.

To implement the descriptive notion of prior outcomes, we require a historic bench-
mark level Zt for the risky asset and then St − Zt measures how much you are ‘up’
or ‘down’. When St > Zt , the investor becomes less risk averse than usual. The state
variable measuring prior outcomes is zt = Zt/St , and a value of zt < 1 represents
substantial prior gains and, hence, less risk aversion. Utility is determined by Xt+1

and zt , so we now have v(Xt+1, zt ). The functional form for v(Xt+1, zt ) is simple but
ingenious and incorporates (a) utility loss depends on the size of prior gains or losses
and (b) prior gains are penalised less (in utility terms) than prior losses. We set R∗

f = 1
for simplicity (see Barberis, Ming and Tano 2001 for the case of R∗

f �= 1) and we split
returns into two parts, relative to a benchmark level.

Suppose we begin with a benchmark level of Zt = $90 and St = $100, so zt = 0.9
and we have prior gains. If stock prices fall in t+1 to StR

∗
t+1 = $80, we do not penalise

all of the loss of $20 by λ = 2.0, say. The loss from $100 to the benchmark Zt = $90
is only penalised with a weight of 1 and the loss below the benchmark (i.e. from $90
to St+1 = $80) is penalised at λ = 2.0. Hence, the overall disutility of the $20 loss is

Change in utility = (90 – 100)(1) + (80 − 90)2.0 = −30 (22)

Change in utility = (Zt − St )(1) + (StR
∗
t+1 − Zt)λ = St (zt − 1)(1) + St (R

∗
t+1 − zt )λ

(23)

If losses are small enough, StR
∗
t+1 > Zt or, equivalently, R∗

t+1 > zt , then the entire
loss is only penalised at the lower rate of 1. Consider the impact on utility in two
cases: prior losses and prior gains.

Case A: prior gains: zt ≤ 1

v(Xt+1, zt ) =
{

St (R
∗
t+1 − 1)

St (zt − 1) + λSt(R
∗
t+1 − zt )

R∗
t+1 ≥ zt

R∗
t+1 < zt

(24)

Hence, if St = $100, Zt = $90 and StR
∗
t+1 = $90, then R∗

t+1 = zt = 0.9 and current
returns of R∗

t+1 − 1 = −10% just offset the historic prior gains of 10% and receive
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a utility loss weight of 1. But if StR
∗
t+1 = $80, then R∗

t+1 = 0.8 < zt = 0.9, and the
current loss of 20% implies the value of StR

∗
t+1 = $80 is below its historic reference

level of Zt = $90, and the ‘pain’ in terms of utility loss is greater (i.e. λ comes into
play in (24)).

Case B: prior losses zt > 1

A similar scenario applies when we begin from a situation of prior losses, except we
assume that any further loss inflicts even greater pain so that here we make λ an
increasing function of prior losses

λ(zt ) = λ + k(zt − 1) for zt > 1 and k > 0 (25)

and

v(Xt+1, zt ) =
{

Xt+1

λ(zt )Xt+1

Xt+1 ≥ 0
Xt+1 < 0

(26)

Let λ = 2 and suppose k is set at 10. Let Zt = $110 and St = $100, which implies
prior losses of $10 and zt = 1.1. So when zt increases from 1.0 to 1.1 (i.e. higher prior
losses), the pain of additional losses is now penalised at λ(zt ) = 2.0 + 10(0.1) = 3
rather than λ = 2.0. The only further ‘realistic’ requirement is that zt should move
sluggishly relative to St so that when St rises (falls), Zt rises (falls) but by less than St .

zt+1 = η

(
zt

R

R∗
t+1

)
+ (1 − η) 1 > η > 0 (27)

where R = constant and η measures the degree of sluggishness. Now η can be varied,
so that η = 0 implies zt+1 = 1 so that Zt tracks St one-for-one, while η = 1 implies
zt+1 responds sluggishly. For η �= 1, when R∗

t+1 > R, then zt+1 falls relative to zt .

Optimisation

The intertemporal optimisation problem is

max Et

{ ∞∑
t=0

[
θ t

(
C

1−γ
t

1 − γ

)
+ b0θ

t+1C
−γ

t v(Xt+1, zt )

]}
(28)

where Xt+1 = St (R
∗
t+1 − R∗

f,t ) and the ‘wealth’ constraint (with no labour income) is

Wt+1 = (Wt − Ct)R
∗
f,t + St (R

∗
t+1 − R∗

f,t ) (29)

The model is calibrated and then simulated to see if it produces the stylised facts in the
real world data, with particular reference to the equity premium puzzle. Some of the
parameters are chosen using historic average values, some based on behavioural studies,
while others are chosen to ‘match’ certain properties found of the data. The ‘base-
line’ solution is obtained numerically, using consumption growth gc = 1.84% p.a. with
σc = 3.79%, risk aversion (over consumption) γ = 1.0 and the time preference rate
θ = 0.98. These parameters ensure that the equilibrium risk-free rate R∗

f − 1 = 3.86
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(see (31)) equals that found in the data and, hence, ensures there is no ‘risk-free rate
puzzle’.

A range of values for k are used, with increasing values of k indicating the increased
pain of a loss when it follows earlier losses. For example, k = 3 allows average loss
aversion to remain around 2.25. Suppose zt is initially equal to one and the stock market
falls by 10%. Then, with η = 1, for example, zt moves to 1.1, and any additional losses
are penalised at 2.25 + 3(0.1) = 2.55 – only a slight increase in ‘pain’ (see (25)). But
with the pain of a loss k = 50, the above implies that if the stock market falls by 10%,
then (with η = 1) any additional losses are penalised with a weight of 2.25 + 5 = 7.25.
As we see below, increasing k tends to increase the simulated equity premium and
bring it closer to that observed in the data. The constant R is set at a level to ensure
the unconditional mean of zt = 1. Simulation results are given for various values of
b0, since we have no priors on the likely value for this parameter.

The loss aversion parameter λ is taken to be 2.25. The parameter η controls the
persistence in zt and, hence, the persistence in the price–dividend ratio: η = 0.9 (i.e.
sluggish response) is chosen so that the simulated price–dividend ratio has autocorre-
lation properties close to that found in the data.

The numerical solution procedure is complex and uses an iterative technique since
the state variable zt+1 is a function of both the dividend–price ratio and εt+1 and
is of the form zt+1 = h(zt , εt+1). Using Monte Carlo simulation, 10,000 draws of
εt+1 give a series for zt+1, which in turn can be used to simulate returns and the
dividend–price ratio.

Results: ‘Economy I’

When dividends have exactly the same stochastic process as consumption, results on the
average equity premium and its volatility are not very impressive. For b0 = 2, k = 3,
the simulated equity premium is 0.88% p.a. (s.d. = 5.17% p.a.), while in the real data,
these are 6.03% p.a. (s.d. = 20.02). Even when b0 is increased to 100 (giving the prior
loss part of the utility function more weight) and k to 50 (i.e. higher loss aversion for
any given prior losses), the simulated mean equity premium only rises to 3.28% p.a.
(s.d. = 9.35).

Results: ‘Economy II’

We now turn to ‘Economy II’ where dividends follow

dt+1 − dt = gd + σdεt+1 with gd = 1.84%p.a. and σd = 12%p.a.

and the correlation between shocks to consumption and dividend growth is taken to
be 0.15. The model-generated ‘statistics of interest’ are shown in Table 2 along with
their empirical counterparts.

For b0 = 2, k = 3, the model generates an equity premium of 2.62% p.a. (s.d. =
20.87), which is better than for ‘Economy I’ but still less than the empirically observed
6.03% p.a. (s.d. = 20.02). If we increase the pain due to prior losses so that b0 = 2
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Table 2 Model-generated statistics and empirical values Economy II (Barberis, Ming and Tano
2001)

Model Values Empirical Values
b0 = 2
k = 3

b0 = 2
k = 10

Excess Stock Return (Equity
Premium)

Mean 2.62 5.02 6.03
Standard deviation 20.87 23.84 20.02
Sharpe ratio 0.13 0.21 0.30
Average loss aversion 2.25 3.5 –

Price–Dividend Ratio

Mean 22.1 14.6 25.5
Std. Dev. 2.25 2.5 7.1

Return Autocorrelations

Lag-1 −0.07 −0.12 0.07
-2 −0.03 −0.09 −0.17
-3 −0.04 −0.06 −0.05
-4 −0.04 −0.04 −0.11
-5 −0.02 −0.03 −0.04

Corr {(P/D)}t , (P/D)t−k

k = 1 0.81 0.72 0.70
k = 3 0.53 0.38 0.45
k = 5 0.35 0.20 0.40

Regression

Rt,t+k = αk + βk(D/S)t
β1 4.6(2%) 4.4(6%) 4.2(7%)
β2 8.3(4%) 7.5(10%) 8.7(16%)
β3 11.6(5%) 9.7(12%) 12.3(22%)
β4 13.7(6%) 11.5(14%) 15.9(30%)
(%) =% R-squared of regression

but now k = 10, the model delivers an equity premium of 5.02% p.a. (s.d. = 23.84)
much closer to that in the real data but accompanied by only a modest increase in the
average level of loss aversion from 2.25 to 3.5.

The solution for the stock return can be written

Rt+1 = 1 + f (zt+1)

f (zt )
egd+σdεt+1

so allowing a separate process for dividends with σd = 12% (whereas σc = 3.79%)

provides the extra volatility in stock returns. Intuitively, the higher volatility arises
because if there is a positive dividend innovation, this leads to higher stock prices and
a higher return. But this increases prior gains so the investor is less risk averse, which
lowers the rate at which future dividends are discounted, thus leading to even higher
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prices and greater movement (volatility) in returns. (The reverse applies for a negative
dividend innovation, with the added ‘kicker’ if there are prior losses.) Since returns are
more volatile on average and the investor experiences more losses, the loss aversion
requires a higher equity premium. Note that without the assumption of prior outcomes
(i.e. set zt to zero), the model with b0 = 2 generates a very small equity premium of
around 2% (s.d. = 12%), and this only rises to 2.88% (s.d. = 12%) for b0 = 100.

The model uses as one input a low correlation of innovations in dividends and con-
sumption growth of 0.15 – close to that in the actual data of around 0.1. The model then
generates a low correlation between consumption and stock returns. This is because
returns respond to dividend news and any change in risk aversion due to changes in
returns. In the model, both of the latter are largely driven by shocks to dividends
that have a low correlation with consumption – hence, returns and consumption are
only weakly correlated in the model (and in the real world data). This low correlation
between consumption growth and stock returns is not present in the Campbell and
Cochrane (2000) habit persistence model where changes in risk aversion and, hence,
returns, are driven by consumption, implying a high correlation between these variables.

Long horizon predictability also arises from the slowly changing degree of risk
aversion, due to the sluggish response to prior gains or losses (see Table 2). A positive
dividend innovation leads to rising prices, hence lower risk aversion and even higher
prices. The price–dividend ratio will now be high. The investor is now less risk averse
and, therefore, subsequent desired returns will be lower. Hence, the price–dividend
ratio helps predict future returns, which is consistent with the empirical work of Camp-
bell and Shiller (1988). Hence, investor’s risk aversion changes over time because of
prior losses or gains, so expected returns also vary over time in the model, which leads
to predictability. The price–dividend ratio in the model is also highly persistent and
autocorrelated (Table 2).

The model also produces negatively autocorrelated returns since high prices (returns)
lead to lower risk aversion and, hence, lower returns in the future (Table 2). Negatively
autocorrelated returns imply long horizon mean reversion (e.g. Poterba and Summers
1988, Fama and French 1988a, Cochrane 2001 – as noted in earlier chapters).

What about the risk-free rate? In this model, the risk-free rate is decoupled from
the prospect theory portion of the utility function and is given by the standard Euler
equation

1 = θR∗
f Et [(Ct+1/Ct)

−γ ] (30)

where Ct is aggregate consumption and in equilibrium

ln R∗
f = − ln θ + γgc − (γ 2/2)σ 2

c (31)

The mean of the risk-free rate and its volatility are primarily determined by (γgc)
and the volatility of consumption growth, where gc = 1.84% and σc = 3.79%. Hence,
the model implies a low value for the mean of the risk-free rate, with relatively low
volatility. Although the Euler equation for Rf is decoupled from the prospect theory
utility function, it is the latter that allows more volatility in the return on the risky
asset. The Euler equation is

1 = θEt [R
∗
t+1(Ct+1/Ct)

−γ ] + b0θEt [v̂(R∗
t+1, zt )] (32)
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and the average return on the risky asset depends on changes in wealth relative to prior
losses, as well as the ‘standard’ aggregate consumption growth term.

Note in Table 2 that the model explains the average price–dividend ratio but not its
volatility, which has a standard deviation of 2.25–2.5% in the model but 7.1% in the
data. Additional state variables (e.g. consumption relative to habit) would increase the
volatility of the models’ price–dividend ratio, but this is left for further work.

Is it the loss aversion parameter λ or the prior loss parameter zt that generates the
key results in ‘Economy II’? The solution for returns (given zt = 0) is

R∗
t+1 = Pt+1 + Dt+1

Pt

= 1 + ft+1

ft

egd+σdεt+1

where ft is the dividend–price ratio, which does not now depend on zt . The volatility
in Rt+1 now depends only on the volatility of log dividend growth σd of 12%, which is
not sufficient to match the data. Hence, prior losses are needed in the utility function,
in order to change the degree of loss aversion and, hence, move expected returns more
than cash flows by allowing changes in the discount rate. So the key factor in this
model is that returns must move more than cash flows. Note, however, that changes
in loss aversion are not the only possible reason for this result. One could also have
changing perceptions of risk or ‘overreaction’ to dividend news or perhaps, learning
about some key parameters in the model (e.g. the mean rate or volatility of dividend
growth) – these are issues for future research.

The basic conceptual ideas behind this prospect theory model are rather similar
(but not identical) to those in the Campbell–Cochrane (2000) habit persistence model.
Both models require utility to depend on a state variable relative to its recent past. For
Campbell–Cochrane, this is excess consumption St = (Ct − Xt)/Xt , and changing risk
aversion is most sensitive when Ct is close to Xt (i.e. close to habit consumption). In
Barberis et al, it is current stock returns relative to recent prior gains or losses (i.e. the
zt variable) that is important. In both models, the variables St and zt are assumed to
be sluggish, since some ‘sluggishness’ is required to ‘fit’ the observed persistence in
the dividend–price ratio, which gives rise to long horizon predictability.

In both models, risk aversion changes over time, depending on their respective state
variables. Campbell–Cochrane use only consumption (relative to habit) in the utility
function, while Barberis et al have utility depending on consumption and (prior) returns
(i.e. changes in wealth). The Barberis et al model has a low value for γ = 1.0, but
you need the additional (prior) loss aversion term in the maximand to fit the stylised
facts found in the data. The Campbell–Cochrane model requires a high degree of risk
aversion (which depends on consumption relative to habit), but the utility function is
‘more conventional’ and parsimonious. Broadly speaking, since these are calibration
models and both broadly mimic the stylised facts, which model you favour depends in
part on how realistic you find the assumptions of each model. But that takes us outside
the realms of positive economics. These are both interesting models and maybe they
can be usefully extended to include other elements such as learning behaviour and
even the addition of some non-rational traders.

The reader should be aware that there are now a plethora of behavioural mod-
els incorporating, for example, systematic forecasting errors for earnings using public
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information (Barberis, Shleifer and Vishny 1998), initial overconfidence about one’s
forecasts based on private information, which is tempered by the arrival of pub-
lic information (Daniel, Hirshleifer and Subrahmanyan 1998) as well as the models
described above. A key debate is how ‘unifying’ these models are, since their assump-
tions are often tailored to explain a particular phenomenon (e.g. underreaction fol-
lowed by price reversals) to the exclusion of other phenomena (e.g. covariation). On
the other hand, standard intertemporal expected utility maximisation models are also
‘amended’ to more closely explain particular ‘anomalies’ (e.g. the equity premium
puzzle). The debate is also clouded by the different techniques used to test the models
(e.g. standard hypothesis tests on parameters versus calibration and simulation). An
excellent overview of these issues can be found in Barberis and Thaler (2003).

19.9 Summary
• There has been an explosion in the behavioural finance literature in recent years,

resulting in a wide variety of models that attempt to explain observed anomalies (e.g.
closed-end fund discounts, momentum profits) and the ‘stylised facts’ (e.g. equity
premium, predictability in stock returns). The explicit models are usually not tested
by using regression techniques and formal hypothesis tests but by some form of
calibration and simulation.

• Some behavioural models amend the standard utility function to include variables
other than consumption, for example changes in wealth due to stock market fluctu-
ations, and where investors may suffer from ‘loss aversion’.

• Other behavioural models concentrate on the interaction between rational or smart
money traders and noise traders who (often) are assumed to base investment deci-
sions on past price movements. The timing of private and public information on
future cash flows between ‘newswatchers’ and momentum traders is often crucial in
producing short-term momentum profits and long-term price reversals and, hence,
predictability. Cross correlations amongst stock returns (whose cash flows are not
correlated) can be rationalised in a model of style investing.

• The DeLong et al model has rational agents and noise traders maximising expected
end-of-period wealth, but the noise traders can be irrationally optimistic or pes-
simistic about future returns. This noise trader risk implies that equilibrium price
can be permanently below the fundamentals price (even when the noise traders have
the same expectations as the rational traders).

• The Shleifer–Vishny model highlights the interaction between the costs of borrowing
(to purchase shares) and the time information about a firm’s future prospects is
revealed. Mispricing is greater, the longer the time it takes to reveal to the market
the success of the firm’s investment decisions. This might encourage short-termism
by managers in their choice of investment project.

• Some noise trader models such a Kirman (1993a) rely on contagion and conversion
of opinion to generate rapid and large price movements, which are broadly consistent
with the observed data.
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• Prospect theory assumes individuals care about gains and losses, as well as the level
of consumption and investors suffer from loss aversion. In Barberis, Ming and Tano
(2001), individuals maximise lifetime utility from consumption and changes in wealth.
The model is then calibrated (from observed consumption and dividend data) and
simulated. The predictions of the model ‘fit’ a number of stylised facts, which include
a low level and volatility in the risk-free rate, long horizon predictability of stock returns
and a relatively high equity premium (but lower than that observed in the real data).

• There has been tremendous progress in producing a wide variety of ‘behavioural
models’, which will continue to influence our views of the underlying causes of
observed phenomena such as excess volatility, the equity risk premium, stock return
predictability and the anomalies literature.

Appendix I: The DeLong et al
Model of Noise Traders
The basic model of DeLong, Shleifer, Summers and Waldmann (1990b) is a two-
period overlapping generations model. There are no first-period consumption or labour
supply decisions: the resources agents have to invest are, therefore, exogenous. The
only decision is to choose a portfolio in the first period (i.e. when young) to maximise
the expected utility of end-of-period wealth. The ‘old’ then sell their risky assets
to the ‘new young’ cohort and use the receipts from the safe asset to purchase the
consumption good. The safe asset ‘s’ is in perfectly elastic supply. The supply of the
uncertain/risky asset is fixed and normalised at unity. Both assets pay a known real
dividend r (= riskless rate) so there is no fundamental risk. One unit of the safe asset
buys one unit of the consumption good and, hence, the real price of the safe asset
is unity.

The proportion of noise traders NT is µ, with (1 − µ) smart money SM operators
in the market. The SM correctly perceives the distribution of returns on the risky asset
at t+1. NT can be ‘bullish’ or ‘bearish’ and misperceive the true price distribution.
The NT average misperception of the expected price is denoted ρ∗ and at any point
in time, the actual misperception ρt is

ρt ∼ N(ρ∗, σ 2) (A1)

Each agent maximises a constant absolute risk aversion utility function in end-of-period
wealth, W

U = − exp(−2γW) (A2)

If returns on the risky asset are normally distributed, then maximising (A2) is equiva-
lent to maximising

EW − γ σ 2
w (A3)

where EW = expected final wealth, γ = coefficient of absolute risk aversion. The SM,
therefore, chooses the amount of the risky asset to hold, λs

t , by maximising

E(U) = c0 + λs
t [r + tP

e
t+1 − Pt(1 + r)] − γ (λs

t )
2
t σ

2
pt+1 (A4)
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where c0 is a constant and t σ
2
pt+1 is the one period ahead conditional expected variance

of price

t σ
2
pt+1 = Et(Pt+1 − EtPt+1)

2 (A5)

The NT have the same objective function as the SM but her expected return has an
additional term λn

t ρt (and, of course, λn
t replaces λs

t in (A4)). These objective func-
tions are of the same form as those found in a simple two-asset, mean-variance model
(where one asset is a safe asset). Setting ∂E(U)/∂λt = 0 in (A4), gives the famil-
iar mean-variance asset demand functions for the risky asset for the SM and the
NTs

λs
t = EtRt+1/2γ (tσ

2
pt+1) (A6)

λn
t = EtRt+1

2γ (tσ
2
pt+1)

+ ρt

2γ (tσ
2
pt+1)

(A7)

where EtRt+1 = r + tP
e
t+1 − (1 + r)Pt . The demand by NTs depends in part on their

abnormal view of expected returns as reflected in ρt . Since the ‘old’ sell their risky
assets to the young and the fixed supply of risky assets is 1, we have

(1 − µ)λs
t + µλn

t = 1 (A8)

Hence, using (A6) and (A7), the equilibrium pricing equation is

Pt = 1

(1 + r)
(r + tPt+1 − 2γ tσ

2
pt+1 + µρt) (A9)

The equilibrium in the model is a steady state where the unconditional distribution of
Pt+1 equals that for Pt . Hence, solving (A9) recursively,

Pt = 1 + µ(ρt − ρ∗)
(1 + r)

+ µρ∗

r
− 2γ tσ

2
pt+1

r
(A10)

Only ρt is a variable in (A10), hence

t σ
2
pt+1 = σ 2

pt+1 = µ2σ 2/(1 + r)2 (A11)

where from (A1), ρt − ρ∗ = N(0, σ 2). Substituting (A11) in (A10), we obtain the
equation for the price level given in the text

Pt = 1 + µ(ρt − ρ∗)
(1 + r)

+ µρ∗

r
− 2γµ2σ 2

r(1 + r)2
(A12)

Appendix II: The Shleifer–Vishny Model
of Short-Termism
This appendix formally sets out the Shleifer and Vishny (1990) model whereby long-
term assets are subject to greater mispricing than short-term assets. As explained in the
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text, this may lead managers of firms to pursue investment projects with short horizon
cash flows in order to avoid severe mispricing and the risk of a takeover.

There are three periods 0, 1, 2, and firms can invest either in a ‘short-term’ invest-
ment project with a $ payout of Vs in period-2 or a ‘long-term’ project also with a
payout only in period-2 of Vg. The key distinction between the projects is that the
true value of the short-term project becomes known in period-1, but the true value
of the long-term project does not become known until period-2. Thus arbitrageurs are
concerned not with the timing of the cash flows from the project but with the timing
of the mispricing and in particular, the point at which such mispricing is revealed. The
riskless interest rate is zero, and all investors are risk neutral.

There are two types of trader, noise traders NT and smart money SM (arbitrageurs).
Noise traders can either be pessimistic (Si > 0) or optimistic at time t = 0 about the
payoffs Vi from both types of project (i = s or g). Hence, both projects suffer from
systematic optimism or pessimism. We deal only with the pessimistic case (i.e. ‘bearish’
or pessimistic views by NTs). The demand by noise traders for the equity of a firm
engaged in project i (= s or g) is

q(NT , i) = (Vi − Si)/Pi (A1)

For the bullishness case, q would equal (Vi + Si)/Pi . Smart money (arbitrageurs) face
a borrowing constraint of $b at a gross interest rate R > 1 (i.e. greater than one plus the
riskless rate). The SM traders are risk neutral so they are indifferent between investing
all $b in either of the assets i. Their demand curve is

q(SM , i) = nib/Pi (A2)

where ni = number of SM traders who invest in asset i (= s or g). There is a unit
supply of each asset i so equilibrium is given by

1 = q(SM , i) + q(NT , i) (A3)

and, hence, using (A1) and (A2), the equilibrium price for each asset is given by

P e
i = Vi − Si + nib (A4)

It is assumed that nibi < Si so that both assets are mispriced at time t = 0. If the SM
invests $b, at t = 0, she can obtain b/P e

s shares of the short-term asset. At t = 1, the
payoff per share of the short-term asset Vs is revealed. There is a total $ payoff in
period-1 of Vs(b/P e

s ). The net return NRs in period-1 over the borrowing cost of bR is

NRs = Vsb

P e
s

− bR = bVs

(Vs − Ss + nsb)
− bR (A5)

where we have used equation (A4). Investing at t = 0 in the long-term asset, the SM
purchases b/P e

g shares. In period t = 1, she does nothing. In period t = 2, the true
value Vg per share is revealed, which discounted to t + 1 at the rate R, implies a $
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payoff of bV g/PgR. The amount owed at t = 2 is bR2, which when discounted to
t + 1, is bR. Hence, the net return in period-1 NRg is

NRg = bVg

PgR
− bR = bVg

R(Vg − Sg + ngb)
− bR (A6)

The only difference between (A5) and (A6) is that in (A6) the return to holding the
(mispriced) long-term share is discounted back to t = 1 since its true value is not
revealed until t = 2. In equilibrium, the returns to arbitrage over one period, on the
long and short assets, must be equal (NRg = NRs) and, hence, from (A5) and (A6)

(Vg/R)

P e
g

= Vs

P e
s

(A7)

Since R < 1, then in equilibrium, the long-term asset is more underpriced (in percent-
age terms) than the short-term asset (when the noise traders are pessimistic, Si > 0).
The differential in the mispricing occurs because payoff uncertainty is resolved for
the short-term asset in period-1 but for the long-term asset, this does not occur until
period-2. Price moves to fundamental value Vs for the short asset in period-1 but for
the long asset not until period-2. Hence, the long-term fundamental value Vg has to be
discounted back to period-1, and this ‘cost of borrowing’ reduces the return to holding
the long asset.



20
THEORIES OF THE TERM
STRUCTURE

Aims

• Analyse zero coupon and coupon paying bonds, spot yields, continuously com-
pounded spot yields, the holding period yield and the yield to maturity.

• Show how the rational valuation formula may be applied to the determination of
bond prices.

• Examine various models of the term structure, including the (pure) expectations
hypothesis, liquidity preference hypothesis, market segmentation hypothesis and pre-
ferred habitat models.

• Explain the shape of the yield curve.

One reason for interest in the relationship between long rates and short rates is that
most central banks at some time or another attempt to influence short-term interest
rates as a lever on the real economy, in an attempt to ultimately influence the rate of
inflation. This is usually accomplished by the monetary authority either engaging in
open market operations (i.e. buying or selling bills) or threatening to do so. Changes
in short rates (with unchanged inflationary expectations) may influence real inventory
holdings and consumers’ expenditure (particularly on durable goods). Short-term inter-
est rates may have an effect on interest rates on long maturity government bonds; this
is the yield curve or term structure relationship. If government loan rates influence
corporate bond rates, then the latter may affect real investment in plant and machin-
ery. Hence, monetary policy can influence real economic activity both directly and
indirectly (see Cuthbertson and Nitzsche (2001a)).
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If the central bank’s interest rate policy is seen as a credible anti-inflation strategy,
then a rise in short rates is likely to lead to lower expectations of future inflation
and lower future short-term interest rates and, hence, lower long rates – this may
produce a downward sloping yield curve. On the other hand, if nominal short rates are
increased in response to a higher level of inflation, then long rates might rise as people
expect higher inflation in the future – this may produce an upward sloping yield curve.
Unexpected changes in domestic short rates may also influence capital flows and the
exchange rate – this link is subject to much uncertainty – but if operative, interest rate
policy can then influence price competitiveness, the volume of net trade (exports minus
imports) and the level of output and employment. We deal with the link between short
rates and the exchange rate in Chapter 24.

Financial economists are interested in the behaviour of bond prices and interest
rates as a test-bed for various behavioural hypotheses about market participants and
market efficiency. Bond prices may shed light on the validity of the EMH, the results
of which may be compared with tests based on stock returns and stock prices (as
discussed in earlier chapters). The nominal stock price under the EMH is equal to the
DPV of expected dividend payments. Similarly, the nominal price of a government
bond may be viewed as the DPV of future nominal coupon payments. However, since
the nominal coupon payments are known with certainty, the only source of variability
in bond prices under rational expectations is news about future one-period interest rates
(i.e. the discount factors). In the bond market, tests of the EMH tend to concentrate
on the behaviour of ‘yields’ rather than prices. For example, Shiller’s variance bounds
tests compare Pt and the perfect foresight stock price P ∗

t , while the VAR methodology
compares Pt and the theoretical price P ′

t . Similarly, in the bond market, we can compare
the perfect foresight yield R∗

t or the perfect foresight yield spread S∗
t with their actual

values Rt and St , respectively. These issues are discussed in the next chapter, after
dealing here with some basic concepts and developing theories of the term structure.

20.1 Prices, Yields and the RVF

The investment opportunities provided by bonds can be summarised not only by the
holding period yield but also by spot yields and the yield to maturity. Hence, the
‘return’ on a bond can be defined in a number of different ways, and in this section,
we clarify the relationship between these alternative measures. We then look at various
hypotheses about the behaviour of participants in the bond market on the basis of the
EMH, under alternative assumptions about expected ‘returns’.

‘Plain vanilla’ coupon paying bonds provide a stream of income called coupon
payments C t+i , which are known (in nominal terms) for all future periods, at the
time the bond is purchased. In most cases, Ct+i is constant for all time periods, but
it is sometimes useful to retain the subscript for expositional purposes. Most bonds,
unlike stocks, are redeemable at a fixed date in the future (= t + n) for a known
price, namely, the par value, redemption price or maturity value, Mn. There are some
bonds that, although they pay coupons, are never redeemed, and these are known as
perpetuities (e.g. 2 1

2 % Consols, issued by the UK government).
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A bill (e.g. Treasury Bill) has no coupon payments but its redemption price is fixed
and known at the time of issue. The return on the bill is, therefore, the difference
between its issue price (or market price when purchased) and its redemption price
(expressed as a percentage). A bill is always issued at a discount (i.e. the issue price
is less than the redemption price) so that a positive return is earned over the life of
the bill. Bills are, therefore, often referred to as pure discount bonds or zero coupon
bonds. Most bills that are traded in the market are for short maturities (i.e. they have a
maturity at issue of three months, six months or a year). Coupon paying bonds, on the
other hand, are usually for maturities in excess of one year with very active markets
in the 5–15 year band. In this chapter, we shall be concerned only with (non-callable)
government ‘fixed coupon’ bonds and bills and we shall assume that these carry no
risk of default (i.e. corporate bonds are not considered).

Because coupon paying bonds and stocks are similar in a number of respects, we
can apply many of the analytical ideas, theories and formulae we derived for the stock
market to the bond market.

Spot Yields/Rates

The spot yield (or spot rate) is that rate of return that applies to funds that are borrowed
or lent at a known risk-free interest rate over a given horizon. For example, suppose
you can lend funds (to a bank, say) at a rate of interest r(1), which applies to a one-
year loan between t = 0 and t = 1. For an investment of $P , the bank will pay out
M1 = $P(1 + r(1)) after one year. Suppose the bank’s rate of interest on ‘two-year
money’ is r(2), expressed at an annual compound rate. Then, $P invested will accrue
to M2 = $P(1 + r(2))2 after two years. Thus, today’s quoted spot rate for year−n,
therefore, assumes that the $P s invested today are ‘locked-in’ for n years.

In principle, a sequence of spot rates can be calculated from the observed market
price of pure discount bonds of different maturities. If the observed market price of
bonds of maturity n = 1, 2, . . . are P

(1)
t , P

(2)
t . . . and so on, then each spot yield can

be derived from (1 + r
(n)
t )n = M/P

(n)
t .

An equivalent way of viewing spot yields is to note that they provide a discount
rate applicable to money accruing at specific future dates, with no risk of default. If
you are offered $M = $1 payable in n years, then the DPV of this sum is M/(1 +
r(n))n – indeed, this is today’s ‘fair price’ of a zero coupon bond that matures in n

years
p

(n)
t = ln P

(n)
t = ln M − n ln(1 + r

(n)
t ) (1)

We can also express the price in terms of a continuously compounded rate (see
Chapter 1), which is defined as rct = ln(1 + rt ), hence

p
(n)
t = ln P

(n)
t = ln M − n[rct ] or P

(n)
t = M exp(−rct n) (2)

In practice, (discount) bills or pure discount bonds often do not exist at the long end of
the maturity spectrum (e.g. over one year). However, spot yields at longer maturities
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can be approximated using data on coupon paying bonds (although the details need
not concern us here; see McCulloch 1971, 1990).

If we have an n-period coupon paying bond and market-determined spot rates exist
for all maturities, then the market price of the bond is determined as

P
(n)
t = Ct+1

(1 + r
(1)
t )

+ Ct+2

(1 + r
(2)
t )2

+ · · · + Ct+n + Mt+n

(1 + r
(n)
t )n

=
n∑

i=1

Vi (3)

where M = maturity (redemption) value and Vi = Ct+i/(1 + r
(i)
t )i for i = 1, 2, . . . ,

n − 1 and Vn = (Ct+n + Mn)/(1 + r
(n)
t+n)

n. The market price is the DPV of future
coupons (and maturity value) where the discount rates are spot yields. If the above
formula does not hold, then riskless arbitrage profits can be made by coupon stripping.
To illustrate this point, consider a two-period coupon bond and assume its market
price P

(2)
t is less than V1 + V2. But the current market price of two zero coupon bonds

with payouts of Ct+1 and (Ct+2 + Mt+2) will be V1 and V2, respectively. The coupon
paying bond can be viewed as two zero coupon bonds. If P

(2)
t < V1 + V2, then one

could purchase the two-year coupon bond and sell a claim on the ‘coupon payments’
in years 1 and 2, that is Ct+1 and (Ct+2 + Mt+2), to other market participants. If zero
coupon bonds are correctly priced, then these claims could be sold today for V1 and
V2, respectively. Hence, an instantaneous riskless profit of (V1 + V2 − P

(2)
t ) can be

made. In an efficient market, the increased demand for the two-year coupon paying
bond would raise P

(2)
t , while sales of the coupons would depress prices of one- and

two-year zero coupon bonds. Hence, this riskless arbitrage would lead to the restora-
tion of the equality in (3). Finally, note that as a matter of definition, the ‘flat yield’
is C/Pt and the coupon rate on the bond is C/M .

Holding Period Return, HPR

If one holds a coupon paying bond between t and t + 1, the return is made up of the
capital gain plus any coupon payment. For bonds, this measure of ‘return’ is known
as the (one-period) holding period return (or yield):

H
(n)
t+1 = P

(n−1)
t+1 − P

(n)
t + Ct

P
(n)
t

(4)

where for a ‘zero’, Ct = 0 and the HPR is just the capital gain. Note that in the
above formula, the n-period bond becomes an (n − 1)-period bond after one period.
(In empirical work on long-term bonds (e.g. with n > 10 years), researchers often use
P

(n)

t+1 in place of P
(n−1)

t+1 since for data collected weekly, monthly or quarterly, they are
approximately the same.)

The definition of Ht+1 in (4) is the ex post (or actual) HPR. As investors at time
t do not know Pt+1, they will have to form expectations of Pt+1 and, hence, of the
expected HPR. (Note that future coupon payments are usually known at time t for all
future periods.)
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Yield to Maturity (Redemption Yield)

For coupon paying bonds, the rate that is quoted in the market is the yield to maturity
YTM. Investors know the current market price of the bond Pt , the stream of (annual)
coupon payments, C, the redemption (or maturity) value of the bond (= M) and its
maturity date, n. Now assume that the coupon payments at different horizons are
discounted using a constant discount rate at time t , 1/(1 + yt ). Note that yt , the YTM,
has a subscript t because it may vary over time (but it does not vary in each period
in the DPV formula). If we now equate the DPV of the coupon payments with the
current market price, we have

Pt = C

(1 + yt )
+ C

(1 + yt )2
+ · · · + C + M

(1 + yt )n
(5)

The bond may be viewed as an investment for which a capital sum Pt is paid out today,
and the investment pays the known stream of dollar receipts (C and M) in the future.
The constant value of yt , which equates the LHS and RHS of (5), is the ‘internal rate
of return’ on this investment, and for a bond, yt is referred to as the yield to maturity or
redemption yield on the (n-period) bond. Clearly, one has to calculate yt each time the
market price changes. The financial press generally report bond prices, coupon rates
and yield to maturity. It is worth noting that the yield to maturity is derived from the
market variables (Pt , C, M , n), and it does not determine the price in any economic
sense. In fact, equation (3), using spot rates rt+i , determines the bond price, and Pt is
then used by the financial community to calculate yt using (5). The reason for quoting
the YTM in the market is that it provides a ‘single number’ for each bond of a given
maturity (whereas (3) involves a sequence of spot rates). The yield to maturity on an
n-period bond and another bond with m periods to maturity will generally be different
at any point in time, since each bond may have different coupon payments C, which
are discounted over different time horizons (i.e. n and m). It is easy to see from (5)
that bond prices and redemption yields move in opposite directions and that for any
given change in the redemption yield yt , the percentage change in price of a long-bond
is greater than that for a short-bond. Also, the yield to maturity formula (5) reduces to
Pt = C/yt for a perpetuity (i.e. as n → ∞).

Although redemption yields are widely quoted in the financial press, they are a
somewhat ambiguous measure of the ‘return’ on a bond. When calculating the yield to
maturity, it is implicitly assumed that agents are able to reinvest the coupon payments
at the constant rate yt in all future periods, over the life of the bond. To see this,
consider the yield to maturity for a two-period bond given by (5), rearranged

(1 + yt )
2Pt = C(1 + yt ) + (C + M) (6)

The LHS is the terminal value (in two years’ time) of $Pt invested at the constant
annualised rate yt . The RHS consists of the amount (C + M) paid at t + 2 and an
amount C(1 + yt ) that accrues at t + 2, after the first year’s coupon payments have
been reinvested at the rate yt . Since (5) and (6) are equivalent, the DPV formula
assumes that the first coupon payment is reinvested after year-1 at a rate yt . However,
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there is little reason to argue that investors believe that they will be able to reinvest
all future coupon payments at the constant rate yt . Note that the issue here is not that
investors have to form a view of future reinvestment rates for their coupon payments
but that they choose to assume, for example, that the reinvestment rate applicable on
a 20-year bond, between, say, years 9 and 10, will equal the current yield to maturity
yt on the 20-year bond.

There is another way to examine the problem of using the yield to maturity as a
measure of the return on a coupon paying bond. Consider two bonds with different
coupon payment streams C

(1)
t+i , C

(2)
t+i but the same price, maturity date and maturity

value. Using (5), this will imply two different yields to maturity y1t and y2t . If an
investor holds both of these bonds in his portfolio and he believes equation (5), then
he must be implicitly assuming that he can reinvest coupon payments for bond-1
between time t + j and t + j + 1 at the rate y1t and at the different rate y2t for bond-
2. But in reality, the reinvestment rate between t + j and t + j + 1 will be the same
for both bonds and will equal the one-period spot rate applicable between these years
(which is unknown at time t).

Notwithstanding the above, the YTM is usually considered a useful approximation
of the average annual percentage return on the bond, if it is held to maturity. However,
because of the above defects in the concept of the yield to maturity, yield curves based
on this measure are usually difficult to interpret in an unambiguous fashion.

20.2 Theories of the Term Structure
We examine theories of the term structure in terms of the one-period HPR and then
using spot yields. In the next chapter, we show more formally how the HPR equation
can be linked to spot yields on long- and short-bonds.

Expectations Hypothesis

If all agents are risk neutral and concerned only with expected return, then the expected
one-period HPR (over, say, one month or one quarter) on all bonds, no matter what
their maturity, would be equalised and would be equal to the known (safe) return rt

on a one-period asset (e.g. 1-month Treasury Bill).

EtH
(n)
t+1 = rt (for all n) (7)

This is the pure expectations hypothesis (PEH) where the ‘term’ or risk premium is
zero for all maturities. All agents at the margin are ‘plungers’. For example, suppose a
bond with three years to maturity has an unexpected HPR in excess of that on a bond
with two years to maturity. Agents would sell the two-year bond and purchase the
three-year bond, thus pushing up the current price of the three-year bond and reducing
its one-period HPR. The opposite would occur for the two-period bond and, hence, all
holding period returns would be equalised. If we now add the assumption of rational
expectations,

H
(n)
t+1 − rt = η

(n)
t+1 (for all n) (8)
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Hence, one test of the PEH (+ RE) is that the ex post excess holding period yield
should have a zero mean, be independent of all information at time t (�t) and, hence,
the residual η

(n)
t+1 should be serially uncorrelated (but can be heteroscedastic).

It seems reasonable to assert that because the return on holding a long-bond (for
one period) is uncertain (because its price at the end of the period is unknown at t),
the excess HPR ought to depend on some form of ‘reward for risk’ or term premium
T

(n)
t .

EtH
(n)
t+1 = rt + T

(n)
t (9)

Without a model of the term premium, equation (9) is a tautology. The simplest (non-
trivial) assumption to make about the term premium is that it is (i) constant over
time and (ii) independent of the term to maturity of the bond (i.e. T

(n)
t = T ). This

constitutes the expectations hypothesis (EH) (Table 1). Obviously, this gives similar
predictions as the PEH, namely, no serial correlation in the excess HPR and that the
latter should be independent of �t . Note that the excess HPR is now equal to a constant
for all maturities. For the EH + RE and a time invariant term premium, we obtain the
variance inequality

var(H (n)
t+1) ≥ var(rt ) (10)

Thus, the variance of the one-period HPR on an n-period bond should be greater than
or equal to the variance of the one-period safe rate. Equivalently, the variance of the
excess HPR should be the same for different maturity bonds.

Liquidity Preference Hypothesis, LPH

Here, the assumption is that the term premium does not vary over time but it does
depend on the term to maturity of the bond (i.e. T

(n)
t = T (n)). For example, bonds

with longer periods to maturity may be viewed as being more ‘risky’ than those with
a short period to maturity, even though we are considering a fixed holding period for
both bonds. This might arise because the price change is larger for any given change
in the yield, for bonds with longer maturities. Consider the case where the one-month
HPR on 20-year bonds is more volatile than that on ten-year bonds. Here, one might
require a higher expected return on the 20-year bond in order that it is willingly held in
the portfolio, alongside the ten-year bond. If this difference in price volatility depends
only on the difference in the term to maturity, then this could give rise to a liquidity
premium that depends only on n.

The liquidity preference hypothesis asserts that the expected excess HPR is a con-
stant for any given maturity, but for those bonds that have a longer period to maturity,
the term premium will increase. That is to say the expected excess HPR on a ten-year
bond would exceed the expected excess HPR on a five-year bond, but this gap would
remain constant over time. Thus, for example, ten-year bonds might have expected
excess returns 1% above those on five-year bonds, for all time periods. Of course,
in the data, actual ten-year excess returns will vary randomly around their expected
HPR because of (zero mean) forecast errors in each time period. Under the liquidity
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Table 1 The term structure: A summary

All yields are continuously compounded spot yields

1. Pure Expectations Hypothesis, PEH
(a) Expected excess return is zero
(b) The term premium is zero for all maturities

EtH
(n)
t+1 − rt = 0 R

(n)
t − Et(rt+j

′s) = 0

2. Expectations Hypothesis or Constant Term Premium
(a) Expected excess return equals a constant that is the same for all maturities
(b) The term premium is constant and the same for all maturities

EtH
(n)
t+1 − rt = T R

(n)
t − Et(rt+j

′s) = �(n)

where T and �(n) are the one-period and n-period term premia.

3. Liquidity Preference Hypothesis
(a) Expected excess return on a bond of maturity n is a constant but the value of the

constant is larger the longer the period to maturity
(b) The term premium increases with n, the time period to maturity

EtH
(n)
t+1 − rt = T (n) R

(n)
t − Et(rt+j

′s) = �(n)

where T (n) > T (n−1) . . . and so on.

4. Time-Varying Risk
(a) Expected excess return on a bond of maturity n varies both with n and over time
(b) The term premium depends on maturity n and varies over time

EtH
(n)
t+1 − rt = T (n, zt ) R

(n)
t − Et(rt+j

′s) = �(n, zt )

where T (.) is some function of n and a set of variables zt .

5. Market Segmentation Hypothesis
(a) Excess returns are influenced at least in part by the outstanding stock of assets of

different maturities
(b) The term premium depends in part on the outstanding stock of assets of different

maturities

EtH
(n)
t+1 − rt = T (z

(n)
t ) R

(n)
t − Et(rt+j

′s) = �(z
(n)
t )

where z
(n)
t is some measure of the relative holdings of assets of maturity ‘n’ as a

proportion of total assets held.

6. Preferred Habitat Theory
Bonds that mature at dates that are close together should be reasonably close substitutes
and, hence, have similar term premia.
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preference hypothesis,

EtH
(n)
t+1 − rt = T (n) T (n) > T (n−1) > · · · (11)

Again, under RE, the liquidity preference hypothesis predicts that excess HPRs are
serially uncorrelated and independent of information at time t . Thus, apart from a fairly
innocuous constant term, then using regression analysis, the main testable implications
of the PEH, EH and the liquidity preference hypothesis (LPH) are identical. For the
PEH, we have a zero constant term, for the EH, we have T = constant and for the
LPH, we have a different constant for each bond of maturity n. Because the PEH, EH
and the LPH are so similar, we may often refer to them simply as the EH. As we shall
see in the next section, the key distinction is between the EH (with a zero or constant
term premium over time) and a model that allows the term premium to vary over time.

Market Segmentation Hypothesis

The market segmentation hypothesis may be viewed as a reduced form or market
equilibrium solution of a set of standard asset demand equations. To simplify, suppose
we have only two risky assets, that is, bonds Bx and By with their respective demand
functions

(Bx/W)d = f1(EtHx,t+1 − rt , EtHy,t+1 − rt , Z) (12a)

(By/W)d = f2(EtHx,t+1 − rt , EtHy,t+1 − rt , Z) (12b)

where W = financial wealth, Z = any other variables that influence demand, r = the
safe return on Treasury Bills and EtHx,t+1 = expected holding period return on bonds
of maturity x. The demand function for T-Bills is given as a residual from the budget
constraint

(TB/W) = 1 − (Bx + By)/W (13)

and need not concern us. If we now assume that the supply of Bx and By are exogenous,
then market equilibrium rates are given by solving (13)

EtHx,t+1 − rt = g1[Bx/W,By/W,Z] (14a)

EtHy,t+1 − rt = g2[Bx/W,By/W,Z] (14b)

Hence, the expected excess HPRs on two bonds of different maturities depend on the
proportion of wealth held in each of these assets. This is the basis of the market seg-
mentation hypothesis. In general, the demand functions (12) contain many independent
variables Z; for example, the variance of returns, real wealth, price inflation and lagged
values of these variables.

Preferred Habitat Hypothesis

The preferred habitat theory is, in effect, agnostic about the determinants of the term
premium. It suggests that we should only compare ‘returns’ on government bonds of
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similar maturities, and one might then expect excess holding period yields to move
closely together.

20.3 Expectations Hypothesis

The EH can also be derived in terms of spot yields where R
(n)
t and rt are per-period

rates. Consider investing $A in a (zero coupon) bond with n years to maturity. The
terminal value of the investment is

TV = $A(1 + R
(n)
t )n (15)

where R
(n)
t is the annual (compound) rate on the n-period long-bond. Next, consider

the alternative strategy of reinvesting $A and any interest earned in a series of ‘rolled-
over’ one-period investments, for n years. Ignoring transactions costs, the expected
terminal value Et (TV ) of this series of one-period investments is

Et(TV ) = $A(1 + rt )(1 + Etrt+1)(1 + Etrt+2) . . . (1 + Etrt+n−1) (16)

where rt+i is the rate applicable between periods t + i and t + i + 1. The investment
in the long-bond gives a known terminal value since this bond is held to maturity.
Investing in a series of one-year investments gives a terminal value that is subject
to uncertainty, since the investor must guess the future values of the one-period spot
yields, rt+j . However, under risk neutrality, the terminal values of these two alternative
strategies will be equalised:

(1 + R
(n)
t )n = (1 + rt )(1 + Etrt+1)(1 + Etrt+2) . . . (1 + Etrt+n−1) (17)

The equality holds because if the terminal value corresponding to investment in the
long-bond exceeds the expected terminal value of that on the sequence of one-year
investments, then investors would at time t buy long-bonds and sell the short-bond.
This would result in a rise in the current market price of the long-bond and, given a
fixed maturity value, a fall in the long (spot) yield R

(n)
t . Simultaneously, sales of the

short-bond would cause a fall in its current price and a rise in rt . Hence, the equality
in (17) would be quickly (instantaneously) restored.

We could define the expected ‘excess’ or ‘abnormal’ profit on a $1 investment in
the long-bond over the sequence of rolled-over short investments as

Et(AP t ) ≡ R
(n)
t − Et(rt+j

′s) (18)

where Et(rt+j
′s) represents the RHS of (17). The PEH applied to spot yields, therefore,

implies that the expected excess or abnormal profit is zero. We can go through the
whole taxonomy of models in terms of Et(AP t ) in the same way as we did for holding
period yields. These are summarised in Table 1 and need no further comment here.
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Taking logarithms of (17) and using the approximation ln(1 + z) ≈ z for z close to
zero, we obtain the approximate linear relationship

R
(n)
t = (1/n)[rt + Etrt+1 + Etrt+2 + · · · Etrt+n−1] (19)

In terms of continuously compounded rates, the same analysis yields

A exp(R
(n)
t n) = Et [A exp(rt ) exp(rt+1) . . . exp(rt+n−1)] (20)

where R
(n)
t and rt+i are now continuously compounded rates. Taking logarithms, we

obtain
R

(n)
t = (1/n)Et [rt + rt+1 + rt+2 + · · · + rt+n−1] (21)

which is an exact relationship, only if we ignore Jensen’s inequality, which states
E[f (x)] �= f (Ex ). So, in fact, (21) is not exact since we are taking expectations of
Et(exp rt+j ) �= exp(Etrt+j ). However, Campbell (1986) shows that for all practical
purposes, we can ignore Jensen’s inequality.

Forward Rates

Forward rates can be calculated from the appropriate spot rates. For example, a two-
year investment at R

(2)
t must give the same return as a one-year spot investment at

rt followed by a forward investment between t and t + 1, at a forward rate f12,t

(see Cuthbertson and Nitzsche 2001a). Since the forward rate is known at time t , it is
a riskless investment. Using continuously compounded (annual) rates,

2R
(2)
t = rt + f12,t (22)

f12,t = 2R
(2)
t − rt (23)

Comparing (23) with (21), the EH implies

Etrt+1 = f12,t or, equivalently, Etrt+1 − rt = (f12,t − rt ) (24)

so the forward rate is an unbiased predictor of the future spot rate. Forward rates can
be calculated for all horizons. Under RE, tests of the EH can be based on forward rate
regressions for different maturities, (m,n):

r
(n−m)
t+m − rt = α + β(fmn,t − rt ) + εt+m (n > m) (25)

Under the null of the EH, α = 0, β = 1.

Yield Curve

The PEH forms the basis for an analysis of the (spot) yield curve. For example,
viewed from time t , if short rates are expected to rise (i.e. Etrt+j > Etrt+j−1 for
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all j ), then from (19), the long rate R
(n)
t will be above the current short rate, rt . The

yield curve – a graph of R
(n)
t against time to maturity, n – will be upward sloping since

R
(n)
t > R

(n−1)
t > · · · > rt . The converse applies, so the yield curve is downward sloping

for Etrt+j < Etrt+j−1 (for all j). Since expected future short rates are influenced by
expectations of inflation (i.e. Fisher effect), the yield curve is likely to be upward
sloping when inflation is expected to increase in future years and downward sloping
if the central bank has a credible anti-inflation strategy. If there is a small monotonic
liquidity premium that depends only on the term to maturity n, where T (n) > T (n−1) >

· · ·, then the basic qualitative shape of the yield curve will remain as described above
(see Cuthbertson and Nitzsche 2001a). The yield curve can also be analysed within the
context of the stochastic discount factor (SDF) model – where an explicit risk premium
influences the shape of the yield curve (see chapter 23).

20.4 Summary

• The yield to maturity, although widely quoted in the financial press, is a somewhat
misleading measure of the average annual ‘return’ on a bond over its life, since it
assumes coupons can be reinvested at the current YTM.

• The one-period HPR on coupon paying bonds consists of a capital gain plus a coupon
payment. In an efficient market, the bond price can be viewed as the present value
of known future coupon payments (plus the redemption value) discounted using
spot rates.

• The EH (plus RE) implies that the expected excess holding period return (EtH
(n)
t+1 −

rt ) is constant and, hence, independent of information at time t , �t .

• Alternative theories of the term structure are, in the main, concerned with whether
term premia are (a) zero, (b) constant over time and for all maturities, (c) constant
over time but differ for different maturities, (d) depend on the proportion of wealth
held in ‘long debt’. These assumptions give rise to the pure expectations hypothesis
PEH, the expectations hypothesis EH, the liquidity preference hypothesis LPH and
the market segmentation hypothesis, respectively. Time-varying term premia can
be introduced into the EH equations in an ad hoc way and more formally in the
SDF approach.

• The expectations hypothesis EH applied to spot yields implies that the long rate
is a weighted average of expected future short rates. Agents are risk neutral and
equalise expected returns over all investment horizons. Hence, no abnormal profits
can be made by switching between ‘longs’ and ‘shorts’ and the EMH under risk
neutrality holds.

• The yield curve is a graph (at a point in time) of (spot) yields on bonds R
(n)
t against

their time to maturity, n. The shape of the yield curve is determined primarily by
investors’ expectations of future short rates. If future short rates are expected to rise
(or fall), then the yield curve will be upward (or downward) sloping.



21
THE EH – FROM THEORY
TO TEST ING

Aims

• Analyse several tests of the expectations hypothesis (EH) of the term structure (i.e.
assuming a time invariant or zero term premium).

• Show that under the EH, the expected excess one-period HPR (for a bond of any
maturity) is independent of any information available when the forecast was made.
(The latter is sometimes referred to as the local expectations hypothesis, but we will
not use this term.)

• Demonstrate that under the EH, the long-rate equation implies that the current yield
spread (between the long rates and short rates) is an optimal predictor of next period’s
change-in-long rates.

• Show that the EH can be written in terms of the future-short-rate equation, which
implies that the spread is an optimal predictor of future changes in short rates, over
the life of the ‘long-bond’. If the actual spread moves more than the expected future
change in short rates, this is referred to as the over-reaction hypothesis.

• Derive tests of the EH on the basis of an explicit VAR forecasting scheme.

• Show how the EH implies variance bounds test on yields (or the spread).

There has been much debate about whether the tests of the EH are consistent with
each other and with the absence of arbitrage opportunities (Cox, Ingersoll and Ross
1981, McCulloch 1993, Fisher and Gilles 1998). Campbell (1986) shows that any
differences are likely to be empirically irrelevant, while Longstaff (2000b) shows that
these forms of the EH can hold generally without arbitrage opportunities, when markets
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are not complete. We, therefore, refer to all our tests as versions of the EH, noting that
a constant term premium makes little difference to the theoretical model or the tests
employed. A key distinction is whether we allow for a time-varying term premium,
and this is examined at a later point.

21.1 Alternative Representations of the EH

The EH implies that the expected return on different maturity bonds, over any holding
period, should be equalised. For example, the return (i.e. capital gain) on holding any
n-year zero coupon bond over a one-year horizon should equal the known yield on a
riskless one-year bond. An equivalent formulation is possible in terms of spot yields
on different maturity bonds. For example, if yields on ten-year bonds are currently
above those on one-year bonds, this does not imply that ten-year bonds earn more
over a ten-year horizon. In such circumstances, the PEH implies that one-year yields
are expected to rise in the future (i.e. over the next one to nine years) so that expected
returns on a series of one-year investments equal the higher yield on the ten-year bond.
So, the EH can be represented in a large number of equivalent ways, and one of our
tasks is to point out these interrelationships.

For completeness, in the derivation that follows, we include a risk premium. We
show how the EH can be represented in a variety of ways, all of which are derived
from the version of the EH in which the (continuously compounded ) expected HPR
equals the risk-free one-period rate plus a risk premium:

Eth
(n)
t+1 ≡ Et [ln P

(n−1)
t+1 − ln P

(n)
t ] = rt + T

(n)
t (1)

The log bond price is
ln P

(n)
t = −R

(n)
t n (2)

Using (1) and (2), we immediately obtain the following:

Change-in-long-rate equation

(n − 1){EtR
(n−1)
t+1 − R

(n)
t } = βLS

(n)
t + T

(n)
t (3)

where under the EH, βL = 1 and under the PEH, T
(n)
t is zero. Equation (1), although

based on the HPR, implies a term structure relationship in terms of future short rates.
Substituting S

(n)
t = R

(n)
t − rt in (3), the EH gives the forward difference equation

nR(n)
t = (n − 1)EtR

(n−1)
t+1 + rt + T

(n)
t (4)

Leading (4) one period,

(n − 1)R
(n−1)
t+1 = (n − 2)Et+1R

(n−2)
t+2 + rt+1 + T

(n−1)
t+1 (5)
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Taking expectations of (5) using EtEt+1 = Et and substituting in (4),

nR(n)
t = (n − 2)EtR

(n−2)

t+2 + Et(rt+1 + rt ) + Et(T
(n−1)

t+1 + T
(n)
t ) (6)

Continually substituting for the first term on the RHS of (6) and noting that
(n − j)EtR

(n−j)

t+j = 0 for j = n, we obtain the following:

Long rates are a weighted average of future short rates

R
(n)
t = EtR

∗(n)
t + Et�

(n)
t (7)

where

R
∗(n)
t = (1/n)

n−1∑
i=0

rt+i perfect foresight long rate (8a)

�
(n)
t = (1/n)

n−1∑
i=0

T
(n−i)
t+i average risk premium (8b)

Hence, the n-period long rate equals a weighted average of expected future short
rates rt+i plus the average risk premium on the n-period bond, �

(n)
t . This formulation

was introduced earlier, and we now see that it is an alternative representation of the
HPR equation (1), as is the change in the long-rate equation (3). The variable R

∗(n)
t

is referred to as the perfect foresight long rate since it is a weighted average of the
out-turn values for one-period short rates, rt+i . Subtracting rt from both sides of (7),
we obtain an equivalent expression as follows.

Future-short-rate equation

EtS
∗(n,1)
t = S

(n,1)
t + Et�

(n)
t (9)

where

S
(n,1)
t = R

(n)
t − rt actual spread (10a)

S
∗(n,1)
t =

n−1∑
i=1

(1 − i/n)Et�rt+i perfect foresight spread (10b)

Invoking rational expectation (RE), a test of the EH is the regression

S
∗(n,1)
t = α + βSS

(n,1)
t + γ�t + υt+n−1 (11)

where �t is a vector of variables known at time t and υt+n−1 is a weighted aver-
age of the n − 1, RE forecast errors for the future short rates (rt+j = Etrt+j + ηt+j ).
Under the EH, we expect βS = 1 and γ = 0. Equation (9) states that the actual spread
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S
(n,1)
t between the n period and one-period rate equals a weighted average of expected

changes in future short rates plus a term premium. The variable S
∗(n,1)
t is known as the

perfect foresight spread. As we shall see, the variables in (7), namely, R
(n)
t and rt+i , are

usually found to be non-stationary, whereas �rt+i and S
(n,1)
t are found to be stationary

I(0) variables. Hence, econometric tests on (9) can be based on standard distributions
(whereas those on (7) cannot). Equations (7) and (9) are general expressions for the
term structure relationship, but they are non-operational unless we assume a specific
form for the term premium.

It is perhaps worth bearing in mind that for n = 2m (e.g. six-month and three-month
bonds), the long-rate and short-rate regressions (3) and (9) are equivalent. Also, if (3)
holds for all (n,m), then so will (9). However, if (3) is rejected for some subset
of values of (n, m), then equation (9) does not necessarily hold, and, hence, it pro-
vides independent information on the validity of the EH. In early empirical work,
the above two formulations were mainly undertaken for n = 2m, in fact, usually for
three- and six-month pure discount bonds (e.g. Treasury Bills) on which data is readily
available. Hence, the two regressions are statistically equivalent. Results are, how-
ever, available for other maturities (i.e. n �= 2m), and we report some of these in the
next chapter.

Variance Bounds Tests

The ‘future-short-rate’ equation (9) provides a variance bounds test, which is equivalent
to the regression (11) under the null of the EH (with a constant term premium). We
can calculate the perfect foresight spread S

∗(n,1)
t = ∑n−1

i=1 (1 − i/n)�rt+i using past
data and compare it with the actual spread S

(n,1)
t . Indeed, the EH (with constant term

premium) implies
var(S∗(n,1)

t ) ≥ var(S(n,1)
t ) (12)

since var(υt+n−1) ≥ 0 and under RE, cov(S
(n,1)
t , υt+n−1) = 0. Standard tests on the

variance bound using spreads will be valid if the change in interest rates and the spread
are both stationary I(0) variables, which is thought to be the case. On a historic note,
this type of volatility test was originally done on the levels of interest rates (Shiller
1989). The perfect foresight long rate is

R∗
t = 1

n
[rt + rt+1 + rt+2 + · · · + rt+n−1] (13)

Under the EH + RE (i.e. rt+i = Etrt+i + ηt+i), we have

R∗
t = Rt + wt (14)

where wt = (1/n)
∑n−1

i=1 ηt+i and Et(ηt+i |�t) = 0. Using past data, we can construct
a time series for R∗

t . Under RE, agents’ forecasts are unbiased and, hence, the sum
of the forecast errors wt should be close to zero for large n. Hence, for long-term
bonds, we expect the perfect foresight rate R∗

t to track the broad swings in the actual
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long-rate Rt . Clearly, under the RE, the forecast error wt is independent of �t and,
hence, it is independent of Rt . Hence, from (14), we have

var(R∗
t ) ≥ var(Rt ) (15)

since by RE, cov(Rt , wt ) = 0 and var(wt ) ≥ 0. Also, under the null of the EH,

R∗
t = a + bRt + c�t + εt (16)

we expect b = 1 and c = 0. These ‘early’ volatility tests were certainly innovative
at the time, but if ‘raw’ data on the levels of interest rates are used and these are
non-stationary (which is likely), then the variances are undefined and the tests suspect.
Then the same tests can be undertaken with the spread St and the perfect foresight
spread S∗

t , where we expect var(S∗
t ) ≥ var(St ).

It is obvious from equations (3) and (11) that the OLS regression coefficient on
the spread will be inconsistent if we ignore a time-varying term premium (and it is
correlated with the spread). This inconsistency will be greater, the greater the variance
of the term premium relative to the variance of the spread and the greater is the corre-
lation between these two variables. It has also been shown (Walsh 1998) that even if
the EH is true but the monetary authorities alter the short rate in response to changes
in the spread, the regression coefficient on the spread will be inconsistent.

Equation (11) indicates that the actual spread S
(n)
t is an optimal predictor of expected

future changes in short rates EtS
∗(n)
t , but only if the term premium is time invari-

ant. The distinction between the expected one-period term premium EtT
(n)
t and the

average of future term premia Et�
(n)
t will be important in some of the arguments

presented below.
The EH applied to spot yields assumes investors are risk neutral and base their

investment decision only on expected returns. The inherent variability or uncertainty
concerning returns is of no consequence to their investment decisions. In terms of our
equations, the EH implies T (n) = �(n) = 0 for all n.

Instead of ‘replacing’ Etrt+j by the out-turn values rt+j to form the perfect foresight
spread S∗

t , we could use an explicit equation to forecast the rt+j ’s. As we shall see, this
forecast is known as the theoretical spread denoted S ′

t . We now have several methods
for testing the EH, as follows, which are equivalent under the null.

• The excess HPR regression

• The change-in-long-rate regression

• The change-in-future short-rate regression using out-turn values – the perfect fore-
sight spread

• The change-in-future short-rate regression using an explicit forecasting equation – the
theoretical spread

• Variance bounds tests
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21.2 VAR Approach

In this section, we discuss the following.

• How the EH gives rise to cross-equation parameter restrictions in the VAR forecast-
ing equation(s).

• How the VAR equations can be used to provide a time-series forecast of future
short rates – the theoretical spread S ′

t – which can then be compared with the actual
spread St using a variance ratio statistic and correlation coefficient.

When multiperiod forecasts of future short rates are required, we can use the Camp-
bell–Shiller (C–S) vector autoregression (VAR) approach. We illustrate the approach
using a simple example. The EH applied to a three-period horizon gives

Rt = 1
3 (rt + Etrt+1 + Etrt+2) (17)

which may be re-parameterised to give

St = 2
3�Etrt+1 + 1

3�Etrt+2 (18)

where St = Rt − rt is the long-short spread, Et�rt+1 = (Etrt+1 − rt ) and Et�rt+2 =
(Etrt+2 − Etrt+1). Now assume that both St and �rt may be represented as a bivariate
vector autoregression (VAR) of order one (for simplicity):

St+1 = a11St + a12�rt + ω1t+1 (19a)

�rt+1 = a21St + a22�rt + ω2t+1 (19b)

or in vector notation,
zt+1 = Azt + ωt+1 (20)

where zt+1 = (St+1, �rt+1)
′, A is the (2 × 2) matrix of coefficients aij , and ωt+1 =

(ω1t+1, ω2t+1)
′. From (20), the optimal prediction of future z’s using the chain rule of

forecasting is:

Etzt+1 = Azt (21a)

Etzt+2 = EtAzt+1 = A2zt (21b)

Now let e1′ = (1, 0) and e2′ = (0, 1) be 2 × 1 selection vectors. It follows that

St = e1′zt (22a)

Et�rt+1 = e2′Etzt+1 = e2′Azt (22b)

Et�rt+2 = e2′Etzt+2 = e2′A2zt (22c)
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Substituting the above in the PEH equation (18),

St = e1′zt = (
2
3 e2′A + 1

3 e2′A2
)

zt (23)

Cross-Equation Restrictions in the VAR

If (23) is to hold for all values of zt , then the following non-linear restrictions between
the coefficients aij must hold.

f (a) = e1′ − e2′[(2/3)A + (1/3)A2] = 0 (24)

where f (a) is defined as the set of restrictions. A test of the EH plus the forecasting
scheme represented by the VAR simply requires one to estimate the unrestricted VAR
equations and apply a test statistic on the basis of the restrictions in (24).

Wald and Likelihood Ratio Tests

It is worth giving a brief account of the form of the Wald test at this point. After
estimating our (2 × 2) VAR, we have an estimate of the variance–covariance matrix
of the unrestricted VAR system:

∑
=

[
σ 2

1 σ12

σ21 σ 2
2

]
(25)

If there is no heteroscedasticity, the variances and covariances of the error terms
are calculated from the residuals from each equation (e.g. σ 2

1 = ∑
t ŵ2

1t /n, σ12 =∑
t ŵ1t ŵ2t /n) – otherwise we use a GMM correction for heteroscedasticity. The

variance–covariance matrix of the non-linear function f (a) in (24) is given by

var[f (a)] = fa(a)′
∑

fa(a) (26a)

where fa(a) is the first derivative of the restrictions with respect to the aij parameters.
The Wald statistic is

W = f (a){var[f (a)]}−1f (a)′ (26b)

There is little intuitive insight one can obtain from the general form of the Wald test
(but see Buse 1982). However, the larger is the variance of f (a), the smaller is the
value of W . Hence, the more imprecise the estimates of the A-matrix, the smaller is W

and the more likely one is ‘to pass’ the Wald test (i.e. not reject the null). In addition,
if the restrictions hold exactly, then f (a) ≈ 0 and W ≈ 0. It may be shown that under
the standard conditions for the error terms, W is distributed asymptotically as central
χ2 under the null with r degrees of freedom, where r = number of restrictions. If W

is less than the critical value χ2
c , then we do not reject the null f (a) = 0.

In principle, we can also use a likelihood ratio test. This compares the ‘fit’ of
the unrestricted two-equation system with that of the restricted system. Denote the
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variance–covariance matrix of the unrestricted VAR as
∑

u and the restricted system∑
r , where the restrictions (24) are imposed. The likelihood ratio test is computed as

LR = n. ln

[(
det

∑
r

)/ (
det

∑
u

)]
(27)

where n = number of observations and ‘det’ indicates the determinant of the covari-
ance matrix det

∑ = σ 2
1 σ 2

2 − (σ12)
2. If the restrictions hold in the data, then we do

not expect much change in the residuals and, hence, det
∑

r ≈ det
∑

u so that LR ≈ 0.
Conversely, if the data do not comply with the restrictions, we expect the ‘fit’ to
be worse and the restricted residuals to be larger (on average) than their equiva-
lent unrestricted counterparts and det

∑
r /det

∑
u and, hence, LR will be large. LR

is distributed asymptotically as (central) chi-squared under the null, with q degrees
of freedom (where q = number of parameter restrictions). Thus, we reject the null if
LR > χ2

c (q) where χ2
c (q) is the critical value. Unfortunately, the LR test requires us to

estimate the VAR under the rather complex cross-equation restrictions in (23). Clearly,
this is not straightforward here (but see Bekaert, Hodrick and Marshall 1997) and,
therefore, in this literature, the Wald test is usually used, even given its deficiencies.

The VAR–Wald test procedure is very general. It can be applied to more complex
term structure relationships and can be implemented with high-order lags in the VAR.
Campbell and Shiller (1991) show that under the EH, the spread between n-period and
m-period bond yields (n > m) denoted S

(n,m)
t may be represented

S
(n,m)
t = Et

k−1∑
i=1

(1 − i/k)�mr
(m)
t+im (28)

where �mrt = rt − rr−m and k = n/m (an integer). For example, for n = 4, m = 1,
S

(4,1)
t = R

(4)
t − r

(1)
t and

S(4,1) = Et

(
3
4�r

(1)
t+1 + 2

4�r
(1)
t+2 + 1

4�r
(1)
t+3

)
(29)

A VAR of higher order is of the form

St+1 = (a11St + a12�rt) + (a13St−1 + a14�rt−1)

+ (a15St−2 + a16�rt−2) + · · · + ω1t+1 (30a)

�rt+1 = (a21St + a22�rt) + (a23St−1 + a24�rt−1)

+ (a25St−2 + a26�rt−2) + · · · + ω2t+1 (30b)

However, having obtained estimates of the aij in the usual way, we can rearrange the
above ‘high lag’ system into a first-order system. For example, suppose we have a
VAR of order p = 2, then in matrix notation, this is equivalent to


St+1

�rt+1

St

�rt


 =




a11 a12 a13 a14

a21 a22 a23 a24

1 0 0 0
0 1 0 0







St

�rt

St−1

�rt−1







ω1t+1

ω2t+1

0
0


 (31)
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Equation (31) is known as the companion form of the VAR and may be compactly
written as

Zt = AZt−1 + ωt+1 (32)

where Z′
t+1 = [St+1, �rt+1, St , �rt ]. Given the (2p × 1) selection vectors e1′ = [1, 0,

0, 0], e2′ = [0, 1, 0, 0], we have

S
(n,m)
t = e1′Zt (33a)

�r
(m)
t = e2′Zt (33b)

Et�r
(m)
t+j = e2′Aj Zt (33c)

where, in our example, n = 4, m = 1, p = 2. If (33) is substituted into the general
short-rate equation (9), the VAR non-linear restrictions can be shown to be

f (a) = e1′ − e2′A[I − (m/n)(I − An)(I − Am)−1](I − A)−1 = 0 (34)

For our example, this gives

f ∗(a) = e1′ − e2′A[I − (1/4)(I − A4)(I − A)−1](I − A)−1 = 0 (35)

Interpretation of Cross-Equation Restrictions

Let us return to the three-period horizon EH to see if we can gain some insight behind
the non-linear restrictions of the (2 × 2) VAR. We have from (19b) and (19a),

EtSt+1 = a11St + a12�rt (36a)

Et(�rt+2) = a21EtSt+1 + a22Et�rt+1 (36b)

Using the above equations and (19b),

Et(�rt+2) = a21(a11St + a12�rt) + a22(a21St + a22�rt)

= (a21a12 + a2
22)�rt + a21(a11 + a22)St (37)

Using (19b) and (37) in the EH equation (18),

St = 2
3 (a21St + a22�rt ) + 1

3 [(a21a12 + a2
22)�rt + a21(a11 + a22)St ]

= [
2
3a22 + 1

3 (a21a12 + a2
22)

]
�rt + [

2
3a21 + 1

3a21(a11 + a22)
]
St

= f1(a)�rt + f2(a)St (38)

Equating coefficients on both sides of (38), the non-linear restrictions are

0 = f1(a) = 2
3a21 + 1

3 (a2
21 + a22a11) (39a)

1 = f2(a) = 2
3a22 + 1

3a22(a21 + a12) (39b)
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It has been rather tedious to derive these conditions by the long-hand method of
substitution and it is far easier to do so in matrix form. The matrix restrictions in (34)
for n = 3, m = 1 must be equivalent to those in (39), and this is left as a simple exercise
for the reader. As before, the non-linear cross-equation restrictions (39) ensure that

(i) expected (abnormal) profits based on information t in the VAR are zero

(ii) the EH equation (18) holds

(iii) the error in forecasting �rt+1, �rt+2 using the VAR is independent of information
at time t or earlier. The latter is the orthogonality property of RE.

Theoretical Spread, S′
t and the Actual Spread, St

Campbell and Shiller (1991) suggest some additional ‘metrics’ for measuring the empir-
ical success of the EH, and we outline these for the three-period case (i.e. n = 3,
m = 1)

St = 2
3Et�rt+1 + 1

3Et�rt+2 (40)

The RHS of (40) may be measured as a linear prediction from the VAR, the theoretical
spread S ′

t :

S ′
t = e2′[(2/3)A + (1/3)A2]z t = f (A)zt = f1(a)�rt + f2(a)St (41)

The theoretical spread is the econometricians’ ‘best shot’ at what the true (RE) forecast
of (the weighted average of) future changes in short-term interest rates will be. If the
EH (40) is correct, then f2(a) = 1 and f1(a) = 0 and, hence, S ′

t = St , and the actual
spread St should be highly correlated with the theoretical spread. In the data set, the
latter restrictions will (usually) not hold exactly and, hence, we expect S ′

t from (41)
to broadly move with the actual spread St . Hence, under the null hypothesis of the
PEH + RE, the following ‘statistics’ provide useful metrics against which we can
measure the success of the PEH (see Engsted 2002).

• In a graph of St and S ′
t against time, the two series should broadly move in unison

but with ‘spikes’ in St larger than those in S ′
t .

• In the regression, S ′
t = α + βSt + vt , we expect α = 0 and β = 1.

• Either the variance ratio VR or the standard deviation ratio (SDR) should be unity
as should the correlation between St and S ′

t :

VR = var(St )/ var(S ′
t ) or SDR = σ(St )/σ (S ′

t ) and corr(St , S
′
t ) = 1 (42)

Sometimes, we will refer to SDR rather loosely as the ‘variance ratio’ since both give
similar inferences. The over-reaction hypothesis implies SDR > 1 or β > 1, since then
the actual spread moves more than the (weight average) of expected future short rates
(i.e. the theoretical spread S ′

t ).
The EH equation (40) implies that St is a sufficient statistic for future changes in

short rates and, hence, St should ‘Granger cause’ changes in interest rates. This implies
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that in the VAR equation, (19b) for �rt+1, lagged values of St should (as a group),
contribute in part to the explanation of �rt+1 (so-called block exogeneity tests can be
used here).

Suppose Rt and rt are I(1) variables and, hence, �rt+j is I(0). If the EH is correct,
then from (18), the spread St = Rt − rt must also be I(0). Hence, Rt and rt must be
cointegrated, with a cointegration parameter of unity.

It is worth noting that if the econometrician believes that the ‘exact’ RE model (40)
is correct then St and S ′

t would be equal in all time periods. The latter statement does
not imply that rational agents do not make forecasting errors – they do. However, St is
set in the market with reference to the expected value of future interest rates. But, if we
have a ‘non-exact’ RE equation then St − S ′

t is a measure of this stochastic deviation
(i.e. an error term in (40)).

An advantage of the VAR approach over the perfect foresight spread is that it
avoids using overlapping data, in which corrections to standard errors (using GMM)
can be problematic in small samples. One disadvantage of the VAR is that an explicit
forecasting scheme for (St , �rt ) is required and if misspecified, our statistical results
are biased. Also, the Wald test has poor small-sample properties, and it is not invariant
to the precise way the non-linear restrictions are formed (e.g. Gregory and Veall 1985).
Also, the Wald test may reject the null hypothesis of the EH + RE because of only
‘slight deviations’ in the data from the null hypothesis. For example, if f1(a) = 1.03
in (39) but the standard error on f1(a) is 0.003, one would reject H0 : f1(a) = 1 (on
a t-test) but an economist would still say that the data largely supported the EH.

One word of warning. Do not confuse the perfect foresight spread S∗
t with the

theoretical spread S ′
t used in the VAR methodology. The perfect foresight spread S∗

t is
a constructed variable that ‘replaces’ the expectations variables by their actual values.
It is the spread that would ensue if agents forecast with 100% accuracy. On the other
hand, the theoretical spread is an explicit forecast of future interest rates based on the
econometricians’ best guess of the variables investors might actually use in forecasting
future short rates.

21.3 Time-Varying Term Premium – VAR
Methodology
Testing the EH while allowing for a time-varying risk premium requires a three-
variable VAR that not only contains the spread and the change in short rates (as
used above) but also includes the excess holding period return. The latter variable
(see equation (1)) may capture (with error) some of the movements in the (stationary)
term premium (Tzavalis and Wickens 1997). Consider the three-variable VAR system
comprising

Zt = [St , �rt , ht − rt−1] (43)

which contains stationary variables. It follows that there exists a trivariate Wold rep-
resentation (Hannan 1970), which may be approximated by a VAR of order p, which
in companion form is

Zt+1 = AZt + vt+1 (44)
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Equation (1) implies that the expected excess holding period return Etht+1 − rt is a
constant, only if the term premium is time invariant, and in terms of the VAR, this
implies (since all variables are expressed as deviations from means):

e3′A = 0 (45)

This is the only additional restriction compared to our two-variable VAR, and the other
restrictions (34), (39a)–(39b) implied by the short-rate equation still hold in the three-
variable case. If any of (39a)–(39b) are rejected, this is indicative that expectations
about future average term premia, �

(n)
t = (1/n)

∑
T

(n−i)
t−i are time varying (see (9)).

Surprises in future short rates and term premia

We are now in a position to assess how far ‘surprises’ or ‘news’ in the one-period
holding period return eh t+1 = ht+1 − Etht+1 are due to ‘news’ about future interest
rates or ‘news’ about future changes in the term premium T

(n)
t and, hence, how impor-

tant the latter may be in accounting for any empirical rejections of the PEH (i.e. which
assumes a constant or zero term premium).

An unanticipated change in the holding period return must be due to an unanticipated
change in the long rate (see (1) and (2)). The long rate changes either because of a
revision to expectations about future short rates or revisions to the future (one-period)
term premia (see (7)). From equations (1)–(3), we obtain (see Tzavalis and Wickens
1997)

‘Surprise’ in the
holding period return

= ‘News’ about
future rates

+ ‘News’ about
future term premia

eh(n, t+1) = −er(n, t+1) − eT (n, t+1) (46)

where

eh (n)
t+1 ≡ h

(n)
t+1 − Eth

(n)
t+1 = [h(n)

t+1 − rt ] − [Eth
(n)
t+1 − rt ] (47a)

er (n)
t+1 = (Et+1 − Et)

n−1∑
i=1

i∑
j=1

�rt+j (47b)

eT (n)
t+1 = (Et+1 − Et)

n−1∑
i=1

T
(n−i)
t+i (47c)

The intuition behind equation (46) is as follows. For an n-period bond, if there is
an unexpected rise in its one-period return (ht+1 − Etht+1), this must be due to an
unexpected fall in long rates R

(n)
t , which in turn may be due to an unexpected fall in

current or future short rates (i.e. the er (n)
t+1 term in equation (47b)). Alternatively, the

unexpected rise in ht+1 could be caused by an unexpected fall in agents’ perceptions
of the average of future risk premia (i.e. the term eT

(n)
t+1 in equation (47c)).

Empirically, how can we assess the relative importance of variations in expecta-
tions about future term premia? From equations (47a) to (47c) and using the VAR
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equation (44), we see that ‘surprises’ depend on the residuals from the VAR. In partic-
ular, the term v3,t+1 = e3′vt+1 is the error term in the third equation of the VAR and
represents the surprise in the excess holding period return ht+1 − Etht+1. Also,

eT (n)
t+1 = −er (n)

t+1 − eh(n)
t+1

= e2′[(n − 1)I + (n − 2)A + (n − 3)A2 + · · · + (n − (n − 1))An−2]

× v2,t+1 − v3,t+1 (48)

The first term is merely the weighted sum of the surprises in future short rates [i.e.
(Et+1 − Et)

∑n−1
i=1

∑i
j=1 �rt+j ] where e2′ ‘picks out’ the second element in the error

term vt+1, which corresponds to the surprise in short rates. The A-matrix represents
the degree of persistence in news about future short rates. From (46), if news about
future term premia are very small (i.e. eT (n)

t+1 ≈ 0), then the surprise in the one-period
return eh(n)

t+1 wholly reflects ‘news’ about future short rates so, eh t+1 = −er t+1 and the
following metrics should apply.

σ(er, eh) = 1 (49a)

ρ(er, eh) = −1 (49b)

In addition, from equations (46), (47a) and (1), we obtain

h
(n)
t+1 − rt = T

(n)
t − er (n)

t+1 − eT (n)
t+1 (50)

To the extent that the variables in the VAR adequately proxy the term premium T
(n)
t ,

the residual from the one-period holding period regression equation (1) picks up the
influence of news about short rates and news about the term premium. If eT (n)

t+1 ≈ 0,
then ‘(1 – R-squared)’ of the excess return equation in the VAR (i.e. the third equation)
indicates the proportion of the excess holding period return that is due to variation in
news about future short rates.

21.4 Summary

• The EH implies that the spread S
(n,m)
t between the n-period (spot) yield R

(n)
t and the

m-period spot yield R
(m)
t is an optimal predictor of both the expected future change

in the long rate (over one period) and expected future changes in short rates and
gives rise to the following regression tests.

Long-rate equation

((n − m)/m)[R(n−m)
t+m − R

(n)
t ] = α + βLS

(n,m)
t + γ�t + εt+m

Future-short-rate equation

S
(n,m)∗
t = α + βSS

(n,m)
t + γ�t + ηt
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where the perfect foresight spread S
(n,m)∗
t = (1/k)

∑k−1
i=0 �mR

(m)
t+im, for k = n/m, an

integer. Under the EH + RE, we expect βS = βL = 1 and γ = 0. A constant, non-zero
term premium implies α �= 0.

• The future-short-rate equation can be tested by using out-turn values for �rt+j

and forming the perfect foresight spread S∗
t in a single-equation regression or by

invoking an explicit forecasting equation for the �rt+j and using the theoretical
spread S ′

t – the latter is the VAR approach.

• In the VAR approach, the EH implies S ′
t = St and, hence, σ(S ′

t ) = σ(St ) and
corr(S ′

t , St ) = 1. The EH also implies cross-equation restrictions between the
parameters of the VAR.

• Using the excess HPR in the VAR, we can gain some insight into the behaviour of
the time-varying term premium.

• Variance bounds inequalities were originally used to test the EH, but these have
now largely been superseded by the above regression-based tests.



22
EMPIR ICAL EV IDENCE
ON THE TERM
STRUCTURE

Aims

• Examine the type and quality of data used in testing term structure models.

• Examine properties of long and short rates and issues of cointegration.

• Analyse early work on variance bounds tests, comparing the time-series behaviour
of the long rate and the perfect foresight spread.

• Present evidence on whether the forward rate provides an unbiased forecast of future
spot rates.

• Present results from single-equation tests of the expectations hypothesis EH using
the ‘change-in-long-rate’ and the ‘change-in-short-rate’ equations.

• Provide a detailed case study of various tests of the EH, using the VAR methodology,
including the possibility of a time-varying term premium.

• Analyse why the various tests of the EH, which are equivalent under the null, give
different inferences in practice.

In this chapter, we examine tests of the EH using variance bounds, single-equation
regressions and the VAR methodology. For the most part, we concentrate on the EH
with a time-invariant term premium, but towards the end of the chapter, we look at
models that try to explicitly account for a time-varying term premium – but these are
not based on the no-arbitrage SDF approach – an issue we take up in Chapter 23.
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22.1 Data and Cointegration

The ‘quality’ of the data used in empirical studies varies considerably. This can make
comparisons between different studies somewhat hazardous. The yield data used by
researchers might represent either opening or closing rates (on a particular day of
the month) and may be ‘bid’ or ‘offer’ rates or an average of the two rates. The
next issue concerns ‘timing’. If we are trying to compare the return on a three-year
bond with the rolled-over investment on three one-year bonds, then the yield data on
the long-bond for time t must be measured at exactly the same time as that for the
short rate and the investment horizons should coincide exactly. In other words, the
rates should represent actual (spot) dealing rates on which one could undertake each
investment strategy.

As we noted in the previous chapter, tests of the expectations hypothesis, in prin-
ciple, require data on spot yields. The latter are usually not available for maturities
greater than about two years and have to be estimated from data on the prices of
coupon paying bonds: this can introduce further approximations.

Cointegration Properties of Interest Rates

Given that long rates Rt and short rates rt are found to be I(1), �R and �r are
I(0) by construction. A weak test of the PEH + RE implied by the ‘future-short-rate’
or ‘long-rate’ equations (see previous chapter) is that Rt and rt are cointegrated with
a cointegration parameter of unity. Alternatively, the EH implies that the spreads St =
Rt − rt should be I(0). While it is often found to be the case that, taken as a pair, any
two interest rates are cointegrated and each spread S

(n,m)
t is stationary, this cointegration

procedure can be undertaken in a more comprehensive fashion. If we have q interest
rates that are I(1), then the EH implies that there are (q − 1) linearly independent
spreads that are cointegrated. We can arbitrary normalise on the one-period rate R(1) ≡
r so that for Xt = {r, R(2), . . . R(q)}, the EH implies restricted cointegrating vectors
of the form {1, −1, 0, . . . 0}, {1, 0, −1, 0, . . . 0}, and so on. Also, some of the (q − 1)
spreads should enter the vector ECM that explains the change in the set of interest
rates �Xt . The Johansen (1988) procedure allows one to test for these cointegrating
vectors simultaneously in a vector error correction model VECM of the form

�Xt = θ(L)�Xt−1 + γ ′Xt−1 + εt (1)

where γ is a (q × q) matrix of parameters and (below) R = {R(2), . . . R(q)}

�Xt = θ(L)�Xt−1 + α′
1(R

(1) − β ′
1R)t−1 + α′

2(R
(1) − β ′

2R)t−1

+ · · · + α′
q−1(R

(1) − β ′
qR)t−1 + εt

First, we test to see if the number of cointegrating vectors in the system equals q − 1
and then test the joint null for the cointegrating parameter restrictions implied by the
EH. Both are somewhat ‘minimal’ tests of the validity of the EH. Shea (1992) and Hall,
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Anderson and Granger (1992) find that although we cannot reject the presence of q − 1
cointegrating vectors on US data, nevertheless, it is frequently the case that some of
the {1, −1, 0, . . . 0}, {1, 0, −1, 0, . . . 0}, and so on, type restrictions are rejected by the
data. Putting subtle statistical issues aside (of which there are many, not least small sam-
ple properties), a key consideration in interpreting these results is whether the VECM
is an adequate representation of the data generation process for interest rates (e.g.
are the parameters constant over the whole sample period?). If the VAR is accept-
able but some of the restrictions are numerically (and statistically) far from the form
{1, −1, 0, . . . 0}, {1, 0, −1, 0, . . . 0}, etc, then the EH is rejected for the whole matu-
rity spectrum. However, the EH may still hold for some subset of yields (e.g. at the
very short end – see Cuthbertson 1996, Cuthbertson, Hayes and Nitzsche 1998) or for
particular subsets of the data set (see Hall, Anderson and Granger 1992).

Recently, Hansen (2002) tests the cointegration restrictions implied by the EH on
US data but assuming there are structural changes at known times. He finds a struc-
tural break in the 1979–1982 period of monetary base control when interest rates
rose dramatically and were extremely volatile. After taking account of this structural
break in the dynamics of the VECM, he finds constant cointegrating vectors that
satisfy the EH. Rather than posit a structural break, Seo (2003) can be interpreted
as ‘getting rid of the 1979–1982 data problem’ by abandoning the linear VECM
and using a non-linear target threshold model TAR. In the linear VECM, the coin-
tegrating parameters are already very close to their EH values of {1, −1, 0, . . . 0},
{1, 0,−1, 0, . . . 0}, and so on, and in the TAR model, this is still the case, but the
latter allows the dynamic response of changes in Rt or rt to differ, depending on
whether the spread Rt−1 − rt−1 is above an upper threshold, below a lower threshold
or between the two thresholds. The TAR model for the US provides some incre-
mental explanatory power for the cointegration VECM compared with the linear
VECM over the period 1973–1995. Sarno and Thornton (2003) undertake a similar
study to Seo (2003) on daily US data 1974–1999 in a bivariate non-linear asymmet-
ric VECM using the Federal Funds (FF) rate and the Treasury Bill (TB) rate. The
cointegrating vector (over the whole sample) is z = FF − 1.15TB + 0.5, and this dis-
equilibrium term appears separately for positive and negative deviations. In addition,
there is an ESTAR term in z, to account for any symmetric non-linear effects on
�F or �TB . These non-linear effects reduce the residual variance by about 20%
(i.e. about a 10% reduction in the standard error of the regression, compared to
the linear VECM). Most of the adjustment takes place via the FF rate and as the
authors note, this is a little surprising because the FF rate is targeted by the Federal
Reserve and, therefore, one might expect the TB rate to adjust more to the dise-
quilibrium in z. If agents can accurately forecast policy changes in the FF rate and
move the TB rate ahead of changes in FF, then this would show up in the data
as a strong lagged response of the FF rate to the disequilibrium – but this would
require the market to accurately forecast policy changes and that seems unlikely.
It would be interesting to examine how far these non-linear effects are due to the
volatile movements in interest rates in the monetary targeting period of 1979–1982.
(In the following, we will see that the 1979–1982 period in the United States affects
many different types of test of the EH but is also relatively easily and satisfactorily
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dealt with using simple dummy variables.) The above results may be summarised
as follows.

(i) For the most part, long and short rates are cointegrated, with a cointegration
parameter close to or equal to unity.

(ii) Spreads do tend to Granger cause future changes in interest rates for most matu-
rities (i.e. some of the αi in (1) are statistically significant).

(iii) There are dynamic non-linearities in the relationship between US interest rates,
but it remains to be seen how robust these are to different sample periods and
how far they bias the estimates in linear models. These models do not provide
detailed tests of the EH except for the somewhat weak test that interest rates are
cointegrated and that the cointegrating vectors are of the form {1,−1, 0, . . . 0},
{1, 0, −1, 0, . . . 0}, and so on (Balke and Fomby 1997).

Whatever the results from cointegration tests in finite samples, the implication of not
taking the spread to be stationary implies that its (unconditional) variance approaches
infinity as the time horizon lengthens or equivalently that long rates and short rates
eventually permanently drift apart over time – it would be a brave economist who
would posit such behaviour, since it implies that the risk premium is also non-stationary
and is, therefore, unbounded.

22.2 Variance Bounds Tests

If the EH + RE holds and the term premium depends only on n (i.e. is time invariant),
then the variance of the actual long rate should be less than the variability in the perfect
foresight long rate, var(R(n)∗

t ). Hence, the variance ratio

VR = var(R(n)
t )/ var(R(n)∗

t ) (2)

should be less than unity. However, in initial variance bounds tests by Shiller (1979)
using US and UK data on yields to maturity 1966–1977 and by Pesando (1983) on
Canadian bonds, these researchers find that the VR exceeds unity. This result was
confirmed by Singleton (1980), who provided a formal statistical test of (2) (i.e. he
computed appropriate standard errors for VR).

If we assume that a time-varying term premium T
(n)
t can be added to the EH, then

the violation of the variance bounds test could be due to variability in T
(n)
t . If this is

the case, the variability in the term premium would have to be large in order to reverse
the empirical results from these variance bounds tests.

However, there are some severe econometric problems with the early variance
bounds tests discussed above. First, if the interest rate series have stochastic trends
(i.e. are non-stationary), then their variances are not defined and the usual test statis-
tics are inappropriate. Second, even assuming stationarity, Flavin (1983) demonstrates
that there may be substantial small-sample bias in the usual test statistics used. To
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overcome the latter problem, Shiller (1989, Chapter 13) used two very long data sets
for the United States (1857–1988) and United Kingdom (1824–1987) to compare Rt

and the long moving average of short rates, namely the perfect foresight long rate R∗
t .

To mitigate problems of non-stationarity in the level of interest rates, Shiller (1989)
performs the following regression.

R∗
t − Rt−1 = α + β(Rt − Rt−1) + vt (3)

Shiller finds for the United States, β̂ = 1.156 (s.e. = 0.253) and for the United King-
dom, β̂ = 0.347 (s.e. = 0.178). For the United States, we can accept the EH, since β̂

is not statistically different from unity but for the United Kingdom, the EH is rejected
at conventional significance levels. Overall, for this long data set using the yields to
maturity, the EH (with constant term premium) holds up quite well for the United
States but not for the United Kingdom.

Using more recent data, we have graphed Rt and R∗
t for the United States and

United Kingdom in Figures 1a and 1b. ‘By eye’, it would appear that the variability
in Rt and R∗

t for the United States (Figure 1a) is broadly comparable up to 1979. In
1979, the United States introduced monetary base control, which lasted until 1982,
after which inflation, and hence interest rates, followed a downward trend. Clearly, the
1979–1982 period is problematic for the EH, although even after 1982, the variability
in Rt appears greater than that of R∗

t .
For the United Kingdom (Figure 1b), it is clear that the 1970–1985 period appears

very problematic for the EH as actual long rates Rt move much more than the perfect
foresight long rate R∗

t , and this pattern persists (although it is attenuated somewhat) up
until the last few years of (historically) low and fairly stable interest rates. Of course,
the level of long rates is very close to a random walk and the two figures contain a
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Figure 1 (a) Actual and perfect foresight yield (USA: 1954–2004). (b) Actual and perfect
foresight yield (UK: 1964–2004)
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Figure 1 (continued )

relatively short data set so our ‘casual empiricism’ provides only a ‘ball park’ estimate
of what is going on.

22.3 Single-Equation Tests
Excess Holding Period Return

Under the EH, the excess holding period return (EHPR) should be independent of
all information at time t , and any liquidity premium should depend only on maturity
and increase with time to maturity. If we take an unconditional average of the HPR
on US bonds (1953–1997) of 1 to 5 years’ maturity, it is found (Cochrane 2000)
that the HPR(1) = 5.8 (σ1 = 2.83), whereas for HPR(5) = 6.4 (σ5 = 6.6). Given an
average short rate of around 5% over this period, the excess HPR does not increase
appreciably and by much less than the standard deviation of the HPR. The Sharpe
ratio (SR) = EHPR/σ (EHPR) for bonds is, therefore, much less than for stocks and
is relatively constant over different maturities. Broadly similar results hold for other
G10 countries. Thus, at ‘first blush’, the EH appears reasonable. However, the picture
becomes less favourable after examination of tests based on conditional (rather than
unconditional) expectations.

Forward Rate Regressions

Under the EH, the one-period forward rate at time t , applicable to period n to n + 1,
should be an unbiased predictor of the one-period out-turn spot rate at t + n:

R
(1)
t+n = α∗ + β∗f (n)

t + ηt+n (4a)
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where β∗ = 1. Running regressions like (4a) for different forward rates n = 2, 3, . . .

gives β∗ and R-squared very close to unity. But, unfortunately, this does not validate
the EH because r and f are non-stationary so we may have a spurious regression
problem. It is more sensible and statistically valid to see if the current forward-spot
spread forecasts changes in interest rates, since these variables are stationary:

R
(1)
t+n − R

(1)
t = α + β(f

(n)
t − R

(1)
t ) + ηt+n (4b)

where R
(1)
t = rt is the current short rate. Regressions like (4b) give dramatically dif-

ferent results. The R-squared drops to around 0.005 (1/2%) for n = 1 year and to about
0.10 (10%) for n = 4 years. The β coefficient in (4b) is around 0.3 (s.e. = 0.30) for
n = 1 year, rising to 0.75 (s.e. = 0.30) for n = 4 years.

One of the problems with (4b) is the ‘loss of data’ when using long maturities. For
example, if n = 15 years, we lose 180 months of observations at the end of the sample.
Equation (5) also has serially correlated disturbances. Backus, Foresi, Mozumdar and
Wu (2001) suggests an alternative to (5). The EH implies

f
(n)
t = EtR

(1)
t+n + rp(n)

t (5a)

f
(n−1)
t+1 = Et+1R

(1)
t+n + rp(n−1)

t+1 (5b)

where rp(n)
t is the risk premium for period t + n and f

(n)
t is the one-period forward

rate for n periods ahead, which should be an unbiased forecast of the one-period spot
rate at t + n. Note that the forward rate in (5b), beginning at t + 1 and for a horizon
of n − 1, ‘coincides in time’ with R

(1)
t+n. From (5a) and (5b), using the law of iterated

expectations (i.e. EtEt+1 = Et) and assuming a time-invariant term premium gives a
regression test of the EH on the basis of the term premia of forwards rates:

f
(n−1)
t+1 − R

(1)
t = δ

(n)
0 + δ

(n)
1 (f

(n)
t − R

(1)
t ) + ε

(n)
t (6)

R
(1)
t is included so that the regression variables are stationary and under the EH,

we expect δ
(n)
1 = 1. The advantage of (6) is that using say a ten-year horizon, the

one-period forward rate in the dependent variable is observable at month 119 ahead
and there is no truncation of the data (i.e. loss of data). Also we avoid the use of
overlapping data in (6), whereas in (5a), this tends to ‘distort’ the (GMM) standard
errors, in small samples.

Using US data 1976–1998, Backus, Foresi, Mozumdar and Wu (2001) and Chris-
tiansen (2003) find δ

(n)

1 is around 0.95 for maturities n = 1 to 25 years, but statistically
different from unity. However, when the 1979–1982 period of US monetary base
control is excluded and the data period is 1987–1998 then δ

(n)
1 is around 0.98–1.0 for

n = 1 to 25 and is not statistically different from unity, thus supporting the EH.
Hence, on US data, for maturities in excess of one year, the EH works rather well on

the basis of these forward rate regressions once we exclude the period of very volatile
interest rates in the 1979–1982 monetary base control experiment.



522 C H A P T E R 2 2 / E M P I R I C A L E V I D E N C E O N T H E T E R M S T R U C T U R E

Pure Discount Bonds/T-Bills

A great deal of the early empirical work on the EH was undertaken using three- and
six-month T-Bills (i.e. pure discount (zero coupon) bonds). The long-rate, short-rate
and the EHPR equations are very simple. Using quarterly data, we have the following.

Change-in-long-rate

(R
(3)
t+1 − R

(6)
t ) = αL + βLS

(6,3)
t + εt+1 (7)

where S
(6,3)
t = R

(6)
t − R

(3)
t and αL is the constant term premium. (Note that the six-

month bond becomes a three-month bond after three months.)

Change-in-short-rate

(1/2)�R
(3)
t+1 = αS + βSS

(6,3)
t + εt+1 (8)

This is the regression of the perfect foresight spread, S
(6,3)∗
t = (1/2)�R

(3)
t+1 on the

actual spread, S
(6,3)
t .

HPR regression

Ht+1 − R
(3)
t = co + c1
t + εt+1 (9)

Since the variables on the RHS of all three equations are dated at time t , they are uncor-
related with the RE forecast error εt+1 and, hence, OLS on these regression equations
yields consistent parameter estimates (but a GMM correction to the covariance matrix
may be required). Under the EH, we should find

H0 : βL = βS = 1 and c1 = 0

Regressions using either of the above three equations give similar inferences as the
estimated parameters are exact linear transformations of each other (for n = 2 m).
On US quarterly data, 1963(1)–1983(4) Mankiw and Summers (1984) finds βL =
−0.407 (s.e. = 0.4), which has the wrong sign. Simon (1989), using US weekly data on
Treasury Bills, 1961–1988, finds βS = 0.04 (s.e. = 0.43), although for one of the sub-
periods chosen, namely the 1972–1979 period, he finds βS = 0.8 (s.e. = 0.34), which
is not statistically different from 1. Both studies find that the expectations hypothesis
is rather strongly rejected.

Mankiw and Summers (1984) seeks to explain the failings of the EH by considering
the possibility that the expectations of rt+1 by market participants as a whole consists
of a weighted average of the rationally expected rate (Etrt+1) of the ‘smart money’
traders and a simple naive myopic forecasting scheme (i.e. noise traders) based simply
on the current short rate. If r̃ e

t+1 denotes the market’s average expectation, then Mankiw
assumes

r̃ e
t+1 = wr t + (1 − w)(Etrt+1) (10)
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where 0 < w < 1. The EH then becomes

Rt = (1/2)rt + (1/2)r̃e
t+1 + φ (11)

Substituting (10) in (11) and rearranging gives an equation similar to (8) but where
βs = (1 + w)/(1 − w) > 1. However, incorporating this ‘mixed’ expectations scheme
does not rescue the expectations hypothesis, since Mankiw finds βs is negative. In
a later paper, Mankiw and Miron (1986) investigate why the EH using three- and
six-month bills fails so abysmally post-1915 but appears to perform much better in
the period 1890–1914. Estimating over four sub-periods between 1915 and 1979,
Mankiw–Miron find βS is approximately zero and the R-squared is very low (<0.06).
For 1890–1914 (quarterly data), they find some improvement

�rt+1 = −0.57
(0.14)

+ 1.51(Rt − rt )

(0.18)

(12)

The R-squared = 0.40 and although βS is positive, one still cannot accept the null that
βs = 2. They suggest that the reason for the improvement in the performance of the
EH in the pre-1915 period, which is prior to the setting up of the Federal Reserve, is
that Et�rt+1 is more variable. After 1915, the Fed attempted to smooth interest rates,
which can be represented as Et�rt+1 = 0, that is, rt+1 follows a random walk (strictly
speaking, a martingale). Hence, post-1915, the spread would have no predictive power
for future changes in interest rates. If there is a time-varying term premium that is
correlated with the spread, then the OLS β̂S is inconsistent, that is, plimβ̂s �= βs . This
‘bias’ is smaller, the greater the variance of Et(�rt+1). When �rt+1 is unpredictable,
σ 2(Et�rt+1) = 0 and plimβ̂ = 0. The estimated value of β̂ approaches its true value
as the variance of Et�rt+1 increases. Mankiw–Miron show that in a simple predictive
equation for �rt+1

�rt+1 = θ1(L)rt + θ2(L)Rt + εt+1

The R-squared decreases from 0.4 for the 1890–1914 period to around zero for the
post-1915 period, thus confirming the above conjecture that the EH performs better in
the pre-1915 period because interest rates are more predictable.

Another possible reason for the poor performance of the EH at short maturities
is that the monetary authorities may increase short rates in response to the size of
the long-short spread – where the latter signals a higher expected future inflation and,
hence, the need for contractionary monetary policy. Kugler (2002) finds evidence that
there is a change in the parameter of this reaction function in the United States in the
1979–1982 period, and he attributes the poor performance of the EH to this effect.

22.4 Expectations Hypothesis: Case Study

For pedagogic purposes, we first consider in some detail the study of Cuthbertson
and Nitzsche (2003) on UK spot rates (recently constructed by the Bank of Eng-
land – Anderson, Breedon and Deacon 1996, Anderson and Sleath 1999). The spot



524 C H A P T E R 2 2 / E M P I R I C A L E V I D E N C E O N T H E T E R M S T R U C T U R E

rates are calculated from coupon bonds whose prices are collected contemporaneously
and represent rates on which actual trades could take place (except for brokerage fees,
which are small). The maturities considered are for 2, 3, . . . , 10 years inclusive and also
for 15, 20 and 25 years. The data set runs from February 1975 and is sampled monthly.
Unless stated otherwise, hypothesis tests are assessed using a 5% significance level.

The data set also allows us to avoid the approximation made in much of the
earlier work using long rates, namely, to approximate h

(n)
t+1 = [ln P

(n−1)
t+1 − ln P

(n)
t ]

by [ln P
(n)
t+1 − ln P

(n)
t ], when we do not have data on ln P

(n−1)
t+1 . It has been shown

by Bekaert, Hodrick and Marshall (1997) that this approximation can cause bias in
regression tests of the EH, particularly for the ‘change in the long-rate equation’ (6).
As with all studies of the EH at the long end of the market (where observed zero
coupon yields are not available), there is some approximation error in our data, since
the yield curve is fitted, although this does of course minimise the influence of ‘outliers’
in the raw data itself.

The analysis is undertaken using both the one-month and the three-month rate as a
representative short rate, but as qualitative results did not differ for these two rates, we
only report results using the one-month short rate. Graphs of the two-year rate and the
25-year rate relative to the one-month T-Bill rate are shown in Figures 2 and 3 and
clearly each of the two series moves together in the long run, and there is considerable
variability in the spread.

The key equations are

(n − 1){EtR
(n−1)
t+1 − R

(n)
t } = βLS

(n)
t + T

(n)
t (13)

S
∗(n,1)
t ≡

n−1∑
i=1

(1 − k/n)Et�rt+i = βsS
(n,1)
t + �

(n)
t (14)

where βL = βs = 1 under the EH with constant term premia.
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Figure 2 UK interest rates (2 year, 1 month)
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Figure 3 UK interest rates (25 year, 1 month)

Table 1 ‘Long-rate equation’: (n − 1)R
(n−1)
t+1 − R

(n)
t = α + βL(R

(n)
t − rt ) + εt+1

Interest Rate α β R2-Statistic
Maturities

Coeff. s.e. Coeff. s.e.

(2 year, 1 month) −0.5352 0.9189 0.4506 0.7136 0.0013
(3 year, 1 month) −0.9921 1.3083 0.9113 0.8619 0.0038
(4 year, 1 month) −1.4752 1.6742 1.1470 0.9934 0.0045
(5 year, 1 month) −1.9116 2.0365 1.1502 1.1172 0.0036
(6 year, 1 month) −2.2625 2.4053 0.9562 1.2374 0.0020
(7 year, 1 month) −2.5293 2.7808 0.6229 1.3540 0.0007
(8 year, 1 month) −2.7351 3.1601 0.2027 1.4660 0.0001
(9 year, 1 month) −2.9152 3.5407 −0.2666 1.5730 0.0001
(10 year, 1 month) −3.0958 3.9218 −0.7610 1.6751 0.0007
(15 year, 1 month) −4.4868 6.0238 −3.4832 2.1930 0.0085
(20 year, 1 month) −6.7220 9.6725 −7.5456 3.0920 0.0197
(25 year, 1 month) −9.7165 16.4440 −14.4373 4.6790 0.0312

Notes:
Equations are estimated over the period January 1976 to November 1999 by GMM with White (1980)
correction to the standard errors, due to the presence of heteroscedasticity. Asymptotic standard errors
are reported.

Single-Equation Regression

For the coefficient on the spread βL in the long-rate regressions (Table 1), we cannot
reject the EH that this coefficient is unity for n = 2 to 10 years but the null is rejected
for n = 15, 20 and 25. The βL coefficients are positive and close to unity for n = 3
to 6, but then decline, becoming negative at longer maturities. The above is consistent
with the presence of bias in the OLS results, caused by a time-varying term premium
(see the VAR results below) for n = 15, 20, 25. However, the most striking aspect of
these results is the relatively large standard errors for β and the low R-squared of the
regressions. Except for n = 15, 20, 25, we could also accept the null that the spread
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Table 2 ‘Future-short-rate equation’:
∑

(1 − i/n)�rt+i = α + βS(R
(n)
t − rt ) + εt

Sample Period Maturity of α β R2-Statistic
Long Rates
(in Months) Coeff. s.e. Coeff. s.e.

Feb. 75–Dec. 99 n = 24 −0.1559 0.3418 0.8794 0.1995 0.3032
Feb. 75–Dec. 98 n = 36 −0.3722 0.4382 0.9791 0.2123 0.3749
Feb. 75–Dec. 97 n = 48 −0.5959 0.4944 1.0746 0.2086 0.4676
Feb. 75–Dec. 96 n = 60 −0.8110 0.5193 1.1158 0.1937 0.5442
Feb. 75–Dec. 95 n = 72 −1.0175 0.4901 1.1251 0.1496 0.6097
Feb. 75–Dec. 94 n = 84 −1.1999 0.4222 1.1391 0.1038 0.6698
Feb. 75–Dec. 93 n = 96 −1.3703 0.3491 1.1816 0.0816 0.7360
Feb. 75–Dec. 92 n = 108 −1.5519 0.3047 1.1533 0.0699 0.7810
Feb. 75–Dec. 91 n = 120 −1.6416 0.2457 1.0978 0.0696 0.8105

Notes:
Equations are estimated over sample period stated in column 1 by GMM with Newey-West (1987) correction
to the standard errors, due to the presence of heteroscedasticity and a moving-average error of order n − 1.
Asymptotic standard errors are reported. Equations are only reported for nmax = 120 (10 years) because of
the lack of degrees of freedom caused by having to truncate the data to accommodate future changed in
the short rate, given our finite data set.

has no predictive power for next period’s change in long rates. The small-sample
results in Bekaert, Hodrick and Marshall (1997, Table 6) indicate that the OLS βL is
biased upwards with a mean value from the empirical distribution of βL ≈ 2 when the
true βL = 1, implying a stronger rejection of the EH for n = 15, 20, 25 if these bias
corrections broadly apply in our data.

Results using the perfect foresight spread (14) in the future-short-rate equation
(Table 2) are much more favourable to the EH. Indeed, the βS coefficients for n =
2–10 years are all close to unity, with reasonably small (asymptotic) standard errors.
(Note that we cannot estimate this equation for maturities longer than 10 years because
of the loss of data as we model future changes in short rates over long horizons. This
problem is not present in the VAR results below.) The above qualitative results would
not alter if we applied the bias corrections in Bekaert, Hodrick and Marshall (1997,
Table 6 – see below) since the finite sample upward bias for βS is quite small (and
Bekaert et al also find that empirical distribution for βS is a little more dispersed than
the asymptotic distribution).

VAR Analysis

The unit root/cointegration properties of UK interest rates have been extensively
examined (see for example, Taylor 1992, MacDonald and Speight 1991, Cuthbertson
1996, Cuthbertson, Hayes and Nitzsche 1996), and each element of z = [St ,�rt , ht −
rt−1] used in the VAR analysis is stationary. Also the A-matrix of VAR coefficients
has the largest eigenvalue in the range of 0.92–0.97 (for our sample of maturities),
indicating a dynamically stable VAR for forecasting future short rates.

The three-variable VAR has zt = [St , �rt , ht − rt−1]. The restriction that the excess
holding period return Etht+1 − rt is not time varying, namely e3′A = 0 is rejected only
for the very long maturities n = 15, 20 and 25 years, at the 5% level of significance or
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Table 3 Are excess one-period returns time varying?

Interest Rate Maturities Wald Test

H0 : e3′A = 0

Statistic p-value

(2 year, 1 month) 2.41 0.49
(3 year, 1 month) 3.42 0.33
(4 year, 1 month) 5.57 0.13
(5 year, 1 month) 6.69 0.08
(6 year, 1 month) 5.89 0.12
(7 year, 1 month) 4.30 0.23
(8 year, 1 month) 3.03 0.39
(9 year, 1 month) 2.39 0.50
(10 year, 1 month) 2.31 0.51
(15 year, 1 month) 7.83 0.05
(20 year, 1 month) 8.37 0.04
(25 year, 1 month) 8.06 0.04

Notes:
The sample period is from January 1976 to November 1999. The standard
errors are heteroscedastic-robust (White, 1980). The null hypothesis for a
non-time varying (one-period) term premium is H0 : e3′A = 0. The test
statistic is asymptotically distributed as χ 2 with 3 degrees of freedom
(critical values at the 5% and 10% level of significance are 7.815 and
6.25, respectively).

better (Table 3). This implies that the variables in the VAR may provide a noisy proxy
for a time-varying term premium for these longer maturities.

Turning now to the VAR-metrics. The theoretical spread S ′
t is the prediction of future

short rates using the VAR: S ′
t = f (A)zt . A graph of the actual spread St and the theoretical

spread S ′
t for n = 2 years shows a reasonably close correspondence (Figure 4), but that
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Figure 4 UK actual and theoretical spread (2 year, 1 month)
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for n = 25 years does not (Figure 5), with clear visual evidence of ‘overreaction’ of the
spread relative to expected changes in future short rates.

The results in Table 4 that provide metrics for the relationship between the actual
spread St and the theoretical spread S ′

t indicate that for n = 2 to 10 years, the VAR
restrictions are not rejected (using a Wald test), the correlation coefficients between the
actual and theoretical spread are very close to unity and the standard deviation ratios
are not statistically different from unity. Technically, the correlation coefficients are
significantly different from unity, given their asymptotic standard errors are so small.
But in Bekaert, Hodrick and Marshall (1997, Table 6), the small sample empirical
standard deviation of ρ(S ′

t , S) is around 0.10, and this would lead to non-rejection of
the EH on our data.

For n = 2 to 10, our results stand in sharp contrast to the ‘clear’ rejections of the EH
on US data at the long (and short) end of the maturity spectrum (Campbell and Shiller
1991, Bekaert, Hodrick and Marshall 1997). However, for n = 15, 20, 25, the VAR-
metrics on the UK data also indicate rejection of the EH, and this is consistent with
the presence of a time-varying term premium for these maturities (i.e. the restriction
e3′A = 0 is rejected).

News and the Term Premium

The rejection of the restriction e3′A = 0 (for n = 15, 20, 25 years, Table 3) suggests
that the one-period risk premium T

(n)
t is time varying. However, results from Table 4

in which we compare the actual spread St and the theoretical spread S ′
t suggests that

the variation in average future premia �
(n)
t = (1/n)

∑
T

(n)
t+i is relatively small. Can we

reconcile these two pieces of evidence?
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Table 4 Actual spread St and theoretical spread S′
t

Interest Rate Wald Test ρ(St , S
′
t ) σ(S′

t )/σ (St )
Maturities

H0 : St = S′
t

Value p-value Value Std. error Value p-value

(2 year,
1 month)

2.43 0.49 0.9043 0.0092 0.7527 0.2116

(3 year,
1 month)

3.25 0.35 0.9276 0.0074 0.8059 0.2321

(4 year,
1 month)

4.88 0.18 0.9385 0.0068 0.8236 0.2519

(5 year,
1 month)

5.67 0.13 0.9442 0.0063 0.8213 0.2666

(6 year,
1 month)

5.04 0.17 0.9474 0.0058 0.8099 0.2772

(7 year,
1 month)

3.80 0.28 0.9494 0.0053 0.7936 0.2862

(8 year,
1 month)

2.76 0.43 0.9508 0.0050 0.7736 0.2946

(9 year,
1 month)

2.22 0.53 0.9508 0.0048 0.7496 0.3015

(10 year,
1 month)

2.22 0.53 0.9532 0.0047 0.7242 0.3062

(15 year,
1 month)

8.20 0.04 0.9595 0.0049 0.5865 0.2885

(20 year,
1 month)

10.63 0.01 0.9608 0.0054 0.4445 0.2403

(25 year,
1 month)

22.55 0.00 0.9507 0.0094 0.3268 0.2015

Notes:
The sample period is from January 1976 to November 1999. The null that the actual spread St is a sufficient
statistic for future changes in short rates (i.e. the theoretical spread, S′

t ) is denoted H0 : St = S′
t and implies

cross-equation restrictions on the A-matrix of the VAR that are tested using the Wald statistic. The variables
in the VAR are Z = [St ,�rt , ht − rt−1]. The test is asymptotically χ 2 distributed with 3 degrees of freedom
(critical values at the 5% and 10% level of significance are 7.815 and 6.25, respectively).

In Table 5, we compare the time-series behaviour of the unexpected return eh t+1 ≡
ht+1 − Etht+1 with ‘news’ about future changes in interest rates er t+1. For all matu-
rities up to 10 years, the standard deviation ratio σ(er)/σ (eh) and the correlation
coefficient ρ(er, eh) are very close to +1 and −1 respectively, which indicates that
nearly all of the variation in the unexpected return eh t+1 is due to news about future
short rates er t+1 and very little is due to ‘news’ about the future average term pre-
mium �

(n)
t . For maturities of 15, 20 and 25 years, the correlation coefficient declines

somewhat, but except for the 25-year maturity, we still do not reject that this metric
is −1, while its standard deviation ratio is 0.8128 (asymptotic standard error of 0.14).

If eT (n)
t+1 ≈ 0, then ‘(1 – R-squared)’ of the excess return equation in the VAR (i.e.

the third equation) indicates the proportion of the excess holding period return that is
due to variation in news about future short rates. The ‘R-squared’ for the (ht+1 − rt )

equation in the VAR (Table 6) is in the range 0.01–0.05 (except for n = 20, 25 when it
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Table 5 ‘News’ about future short rates (er t+1) and one-period returns (eh t+1)

Interest Rate ρ(er t+1, eh t+1) σ (er t+1)/σ (eh t+1)

Maturities
Statistic Std. Error Statistic Std. Error

(2 year, 1 month) −0.9931 0.0186 0.9512 0.0742
(3 year, 1 month) −0.9982 0.0101 1.0072 0.0797
(4 year, 1 month) −0.9994 0.0066 1.0509 0.0808
(5 year, 1 month) −0.9993 0.0083 1.0704 0.0795
(6 year, 1 month) −0.9979 0.0166 1.0656 0.0777
(7 year, 1 month) −0.9941 0.0314 1.0444 0.0765
(8 year, 1 month) −0.9870 0.0521 1.0164 0.0772
(9 year, 1 month) −0.9759 0.0773 0.9892 0.0827
(10 year, 1 month) −0.9607 0.1049 0.9673 0.0952
(15 year, 1 month) −0.8300 0.2070 0.9680 0.2051
(20 year, 1 month) −0.6492 0.2292 0.9831 0.2114
(25 year, 1 month) −0.4971 0.2288 0.8128 0.1416

Notes:
The sample period is from January 1976 to November 1999. The null hypothesis is that unexpected one-
period excess returns eh = ht+1 − Etht+1 are solely due to news about future short rates (er). The null
implies: ρ(er, eh) = −1 and σ(er)/σ (eh) = 1. The variables in the VAR are Z = [St ,�rt , ht − rt−1].

rises to 0.11 and 0.14 respectively). This indicates that variations in news about future
short rates account for nearly all (i.e. about 95–99%) of the variation in ex-post excess
returns, and there is relatively little variation in expected excess returns. The latter is
of course subject to the major qualification that the variables in the VAR adequately
mimic changes in expected returns. Table 6 also shows the Ljung–Box statistics for
the VAR equations for the spread, change in short rate and excess holding period
return and indicate that serial correlation is only a problem for the latter equation for
maturities of 20 and 25 years – this may imply some variation in the term premium
that is not adequately modelled by the included variables.

Variations in the one-period term premium T
(n)
t do have a statistically significant

effect on one-period returns for n = 10, 15, 25 since we do not reject e3′A = 0
(Table 3) and, hence, could lead to biased estimates of βL at these maturities and
a rejection of the EH. However, future changes in short rates over a long horizon
(Table 2) depend on the average of all future expectations of T

(n)
t+i (i = 1, 2, . . . , n), of

which the current value T
(n)
t+1 only has a weight of (1/n). Our results suggest that there

is no strong persistence in T
(n)
t+i and, hence, the variability in the average future risk

premium �
(n)
t = (1/n)Et

∑
T

(n)
t+i is small, relative to changes in expectations about

future short rates. Hence, changes in future short rates over many periods dominate
changes in future average risk premia �(n) even at long maturities and this is why the
metrics comparing St and S ′

t (see Table 4) broadly support the EH under the null of a
negligible average time-varying risk premium.

Summary: UK Data

For ‘short’ maturity bonds (n = 2 to 10 years), the EH with a constant term premium is
supported by the UK data and it, therefore, follows that for these maturities, unexpected
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Table 6 Summary statistics VAR: Z = [St , �rt , ht − rt−1]

Interest Rates Q-statistics R-squared

St – eqn �rt – eqn (ht − rt−1) – eqn St �rt (ht − rt−1)

Q(1) Q(6) Q(1) Q(6) Q(1) Q(6)

(2 year,
1 month)

0.49 4.38 0.63 10.3 0.02 8.09 0.8378 0.1127 0.0097

(3 year,
1 month)

0.34 3.93 0.73 10.5 0.07 10.4 0.8758 0.1160 0.0165

(4 year,
1 month)

0.34 4.10 0.79 10.9 0.12 10.2 0.8940 0.1121 0.0274

(5 year,
1 month)

0.40 3.89 0.82 11.3 0.13 8.08 0.9036 0.1064 0.0321

(6 year,
1 month)

0.50 3.89 0.82 11.5 0.11 6.33 0.9087 0.1003 0.0283

(7 year,
1 month)

0.65 4.22 0.80 11.6 0.08 5.48 0.9117 0.0948 0.0200

(8 year,
1 month)

0.82 4.57 0.78 11.6 0.06 5.14 0.9139 0.0900 0.0121

(9 year,
1 month)

0.97 4.64 0.74 11.5 0.04 5.00 0.9161 0.0860 0.0076

(10 year,
1 month)

1.08 4.32 0.71 11.4 0.02 5.00 0.9186 0.0825 0.0075

(15 year,
1 month)

0.98 1.84 0.43 9.59 0.81 10.6 0.9318 0.0631 0.0547

(20 year,
1 month)

0.12 1.54 0.12 6.90 3.72 20.2 0.9332 0.0344 0.1118

(25 year,
1 month)

0.08 6.68 0.05 5.99 2.14 35.6 0.9163 0.0251 0.1413

Notes:
The sample period is from January 1976 to November 1999. The lag length of the VAR has been chosen
to be p = 1 for all maturities. The Ljung–Box Q-statistics are reported for lag lengths of 1 and 6 months,
with critical values (at 5% significance level) of 3.84, 12.59 respectively.

changes in holding period returns depend solely on revisions to forecasts about future
short rates.

Testing the EH while allowing for a time-varying risk premium requires a three-
variable VAR, which not only contains the spread and the change in short rates (as
used in earlier work) but also includes the excess holding period return, where the
latter variable may capture movements in the (stationary) term premium. With this
modification (as suggested by Tzavalis and Wickens 1997), our results support the
presence of a (stationary) time-varying term premium that influences the one-period
excess holding period return, but only for long maturity bonds (n = 15, 20, 25 years).

However, the one-period term premium T
(n)
t is not persistent and, hence, has a

relatively small impact on the average term premium �
(n)
t = (1/n)Et

∑
T

(n)
t+i , relative

to changes in expectations about future short rates. This time-varying average term
premium, therefore, does not cause severe bias in the OLS estimate of βS and in the
VAR-metrics. The latter results are also consistent, with the spread being an optimal
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predictor of future short rates as suggested by the EH (i.e. with a near time-invariant
average term premium).

Nevertheless, the presence of a time-varying term premium for n = 10, 15, 20 is
sufficient to lead to a rejection of the EH for the change-in-long-rate equation (Table 2)
because the one-period term premium T

(n)
t has a direct impact on the change in long

rates and, hence, may severely bias the OLS coefficient βL on the spread. Thus, by
invoking the possibility of a time-varying term premium at very long maturities, we
are able to go some way to reconciling the results from various tests of the EH on
UK data.

22.5 Previous Studies
At the short end of the maturity spectrum, Cuthbertson (1996), using a two-variable
VAR [z = (St , �rt )] investigates the EH for maturities up to one year, using UK
spot rate data, while Cuthbertson, Hayes and Nitzsche (1998, 2000) for German data
and Cuthbertson and Bredin (2000, 2001) for Ireland at the short and long end broadly
find in favour of the EH. (The occasional failure of the Wald test of cross-equation
restrictions is the only downside in these results – but see the following for possible
biases here.)

Taylor (1992) uses UK data on fairly long maturities of 5, 10 and 15 years over the
period January 1985 to November 1989. Taylor reports strong rejections of the Wald
restrictions (p-values of 0.00), a rejection of the restriction that the variance ratios
equal unity, the smallest value being 1.5 (with an s.e. = 0.14). These results are in
sharp contrast to those reported by Cuthbertson and Nitzsche (2003) above for the
2–10-year maturities. The difference in results may be due to Taylor’s use of the yield
to maturity rather than spot yields.

US and Other Countries

There is a great deal of evidence on the EH for the United States. Campbell and
Shiller (1991) and Bekaert, Hodrick and Marshall (1997) provide an overview based
on applying the VAR methodology to monthly data on spot rates (derived from a cubic
spline-fitting technique on coupon paying bonds). In general, for a wide variety of
maturities from 1 to 12 months and for 2-, 3-, 4-, . . . , 10-year maturities, they find
evidence against the EH. Although the spread predicts future changes in short rates in
the right direction, actual movements in the spread are greater than that required under
the null that the EH is the correct model. This is the over-reaction hypothesis and
implies that the actual spread is not an unbiased predictor of future changes in short
rates. For example, Campbell and Shiller (1991) use monthly data on US government
bonds for maturities of up to five years, including maturities for 1, 2, 3, 4, 6, 9, 12, 14,
36, 48 and 60 months for the period 1946–1987. Their data are, therefore, towards the
short end of the maturity spectrum. Generally speaking, they find little or no support for
the EH at maturities of less than one year from the regressions of the perfect foresight
spread S∗

t on the actual spread St , their β values being in the region 0 to 0.5 rather
than close to unity. Similarly, the values of corr(St , S

′
t ) are relatively low, being in
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the range 0–0.7, and the values of the VR = σ 2(St )/σ
2(S ′

t ) are in the range 2–10,
for maturities of less than one year. At maturities of four and five years, Campbell
and Shiller (1991) find more support for the EH since the variance ratio VR and the
correlation between St and S ′

t are close to unity. However, Campbell and Shiller do not
directly test the VAR cross-equation restrictions, but this has been done subsequently
by Shea (1992), who, in general, finds they are rejected.

Updating Campbell and Shiller’s (1991) work, Bekaert, Hodrick and Marshall
(1997) for US data report estimates of the spread coefficient in the long-rate equation
of −0.8 (one-year maturity) to −2.3 (five-year maturity) and for the future-short-rate
equation of 0.33 (one-year maturity) to 0.57 (five-year maturity). On the basis of
asymptotic p-values, the EH (for n = 1, 3, 5 years) is rejected at better than a 4%
significance level. While the VAR-metric that the correlation between S′ and S is unity
is not rejected, that for the standard deviation ratio between S ′ and S being unity is
clearly rejected (at better than a 3% significance level for the asymptotic test), with
this ratio for all three maturities being around 0.4.

Bekaert, Hodrick and Marshall (1997) also undertake a MCS study of the small-
sample properties of the above tests, under the null that the EH is true (and using a
VAR-GARCH data generation process for the short rate). They find severe upward bias
in the coefficients on the spread in the long-rate regressions (e.g. an OLS value of +2.6
is obtained for the five-year maturity, when the true-βL = 1), a moderate upward bias
on the spread coefficient of the future-short-rate regression (e.g. a value of βs = 1.4
rather than unity at the five-year maturity). Although the dispersion of the small-sample
empirical distributions is higher than their asymptotic values, nevertheless, the above
small-sample results strengthen the rejection of the EH on the basis of the ‘long-rate’
and ‘short-rate’ equations. Interestingly, they find that the VAR-metrics ρ(S ′

t , St ) = 1
and SDR = σ(S ′

t )/σ (St ) = 1 suffer virtually no bias (although the empirical standard
deviations for the SDRs are slightly smaller, compared to their asymptotic values).
However, again, they find that these small-sample Monte Carlo results strengthen the
rejection of the EH on US data.

In a later paper, Bekaert, Hodrick and Marshall (2001) use a Monte Carlo simulation
to investigate the small-sample properties of the coefficients on the spreads in the
‘change in long rates’ and ‘future change in short rates’ equations, under the null
that the EH is true but incorporating regime switches in the data generation process
for the short rate. This model mimics ‘Peso problems’ that might bias the regression
coefficients. They find that Peso effects cause substantial upward bias in the regression
coefficients and, not surprisingly perhaps, also increase the dispersion of the small-
sample distributions (compared to the asymptotic distributions). But now, the evidence
against the EH weakens considerably. When they also add a small time-varying term
premium into the model (which is correctly priced), the small-sample distributions
for βs and βL become even more dispersed, skewed and biased in the direction of
explaining the data (e.g. some negative values for βL in the long-rate equations emerge
in the 2.5% tail). However, these Monte Carlo simulation results cannot explain the
observed regression results for the longer five-year maturity rates used.

Harris (2001) uses a panel data approach on US data to account for the possibility
of a time-varying term premium TVP causing bias in the OLS estimate of the spread
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coefficient βL in the long-rate equation (13). Using a one-factor model of the term
premium, which is captured by time-specific fixed effects in the panel data regression,
enables an unbiased estimate of the OLS coefficient. Without accounting for a TVP,
the average value of the coefficient on the spread in (13) is βL = −3.2 (averaged over
1–13-year maturities), while in the panel regression, its value is −1.98 (s.e. = 0.213).
While this is indicative of the presence of a TVP leading to biased OLS estimates
in (13), the incorporation of a TVP does not rescue the EH because the βL coefficient
is still statistically significantly different from unity.

Mankiw and Miron (1986) argue that the EH is likely to perform better empirically
under a policy of monetary targeting rather than interest-rate smoothing. Kugler (1988),
using US, German and Swiss monthly data on one- and three-month Euromarket deposit
rates, found support for the EH only on German data (for the period of March 1974
to August 1986), which he interprets as broadly consistent with the Mankiw–Miron
hypothesis. Similarly, Engsted (1996), using Danish money market rates and for longer
maturity bonds (Engsted and Tanggaard 1995), finds considerable support for the EH
providing the variation in interest rates is relatively large (i.e. in the post-1992 ERM
‘crisis period’). This is to be expected, given the analysis of Mankiw and Miron (1986):
if interest-rate stabilisation results in random walk behaviour for short rates, then the
expected change in short rates is zero, and the spread has no predictive power for
future short rates, contrary to the EH (see also Rudebusch 1995).

Although it is clear from Mankiw and Miron (1986) that econometric tests of the EH
require sufficient variability in expected changes in short rates, it is also the case that
very large (unpredictable) changes may increase agents’ perceptions of the riskiness in
holding bonds and thus invalidate the EH because of the presence of a time-varying
term premium (see Engle, Lilien and Robins 1987, Hall, Anderson and Granger 1992,
Tzavalis and Wickens 1995). The presence of a time-varying term premium (modelled
using the HPR in a three-variable VAR) seems to assist in explaining results using US
data, where term premium effects at long horizons appear to be ‘stronger’ than in the
UK data (see Tzavalis and Wickens 1997).

In contrast to results at the long end of the maturity spectrum, Tzavalis and Wick-
ens (1997), using monthly US data (1970–1986) on maturities of 3-, 6- and 12-month
T-Bills, find considerable support for the EH using the VAR methodology (as long as
the period of monetary base control 1979–1982 is omitted), as does Longstaff (2000a)
using US repo rates at the very short end of the maturity spectrum (i.e. overnight
to three months). When testing the validity of the EH on US data, the modelling of
the 1979–1982 period when interest rates were highly volatile and, therefore, one
might expect to observe time-varying term premia, is clearly important. Driffell and
Sola (1994) use the VAR framework (using only three- and six-month US rates)
with Hamilton (1988) Markov switching between two regimes. They also include
a white noise error term in the future-short-rate equation St = (1/2)Et�rt+1 + ut ,
which results in less restrictive cross-equation VAR restrictions (than if ut = 0). After
finding that by including the period 1979–1982 the EH fails, they repeat the VAR
procedure, assuming 1979–1982 is a different regime. Now the EH cross-equation
restrictions are accepted, and the Hamilton procedure gives a probability of 1 that all
of the 1979–1982 period is a different regime (to the rest of the data). Hence, the
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Hamilton filter is almost equivalent to including a {. . . 0, 0, 1, 1, 1, . . . 0, 0 . . .} dummy
for this period.

Investigating the 1979–1982 period along slightly different lines, Tzavalis and
Wickens (1995) show that a GARCH model adequately picks up the conditional volatil-
ity of excess HPR over this period. However, when a dummy variable taking the value
1 in the 1979–1982 period is included in the GARCH (1,1) specification, the condi-
tional volatility no longer has a ‘mean’ effect on (ht+1 − rt ), although GARCH effects
in the residuals of this equation are still in evidence (but with less persistence). Thus,
any tests of the EH on US data must be wary of the influence of the 1979–1982
period. The propensity for the EH to ‘fail’ when interest rates are highly volatile is
also seen in other countries, such as Hong Kong (1992–2000), at the short end of the
maturity spectrum (i.e. 3–12-month maturities). Gerlach (2003) finds that a GARCH
variance term, when added to the change-in-short-rate equation, is statistically sig-
nificant, implying a time-varying term premium may be present in the Hong Kong
market, which allows a move to non-rejection for βs = 1 (although βs is measured
with considerable error and has a large standard deviation).

Why Such Divergent Results?

Can we account for those divergent results for the EH across different maturities
and even across different countries? Usually, stronger support for the EH is given by
the perfect foresight regressions in comparison with those from the VAR approach
(particularly the rejection of the VAR cross-equation restrictions). One reason for this
is that the perfect foresight regressions that use (14) implicitly allow potential future
events (known to agents but not to the econometrician) to influence expectations,
whereas the VAR approach requires an explicit information set known both to agents
and the econometrician at time t or earlier. The market for short-term instruments is
often heavily influenced by the government’s monetary policy stance and in ‘second
guessing’ the timing of interest rate changes by central banks. In periods of government
intervention (influence), any purely ‘backward-looking’ regressions might be thought
to provide poor predictors of future changes in interest rates: however, the rational
expectations assumption rt+j = Etrt+j + ωt+j only requires unbiasedness and may
suffer less from this effect. Hence, on this count, one might expect the perfect foresight
regressions to perform better than the VAR approach and to yield relatively greater
support for the EH (if it is indeed true).

The frequency of the data collection, the extent to which rates are recorded contem-
poraneously (i.e. are they recorded at the same time of day?) and any approximations
used in calculating yields or changes in bond prices might explain the conflicting results
in each of the above studies. Most importantly, Bekaert, Hodrick and Marshall (1997)
show that small-sample biases in test statistics could account for different inferences,
particularly for the Wald test and for the long-rate equation, but less so with the variance
ratio and correlation statistics of the VAR methodology. So, MCS and bootstrapping
of ‘test statistics’ also go some way in explaining divergent empirical results.

Kozicki and Tinsley (2001) raise the possibility that standard univariate time-series
representations of the short rate (as in a random walk representation) are biased because
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they fail to take account of shifts in market perceptions of the policy targets for inflation,
which provide a bound on long horizon forecasts of possible future short rates. They,
therefore, impose this ‘end-point’ restriction on forecasts of the short rate at long
horizons, and agents slowly learn about the new monetary policy regime. With these
forecasts plus the EH, they can predict long rates at each point in time. There is a
close relationship between the predicted long rate and the actual long rate for US data
for 1960–1995 (see their Figures 2–4). The VECM forecasts of the short rate have an
error correction term that keeps long rates and short rates from continually diverging,
so it is not clear if the Kozicki and Tinsley (2001) critique carries as much weight
when using the VECM method.

Empirical results on a wide set of data tend to be ‘mixed’. However, overall, if
we had to draw conclusions from this vast array of evidence, we would argue that
the EH generally does pretty well for maturities up to five years, except in periods of
extreme turbulence (e.g. US monetary base control 1979–1982), which might constitute
a regime change and cause severe Peso problems. Of course, in the past, changes in
nominal yields (and spreads) have been quite large. In a period of low and fairly stable
yields, a time-varying term premium may provide a relatively large contribution to
changes in yields. We will have to wait and see.

22.6 Summary
• Variance bounds tests using the level of long rates and the perfect foresight long

rate suffer from non-stationarity problems that can be overcome by using the perfect
foresight spread and the actual spread – because spreads are stationary variables.

• If long rates and short rates are I(1), then the EH implies that (long-short) spreads
are stationary and spreads should Granger cause changes in future rates. Using
stationary variables means standard test procedures can be used, although small
sample problems may still be present.

• The VAR methodology provides statistical tests of the EH based on a comparison of
the actual spread St and perfect foresight spread, S ′

t (i.e. a forecast of future changes
in short rates).

• Under the null that the EH is true, the ‘metrics’ provided by the VAR approach
include correlation and variance ratio tests, ρ(S ′

t , St ) = 1 and SDR = σ(S ′
t )/σ (St ) =

1 and a test of cross-equation restrictions on the parameters of the VAR.

• MCS and bootstrapping the empirical distribution of the various statistics used
to test the EH indicate that the asymptotic test statistics are often misleading in
finite samples.

• Empirical results on the validity of the EH, using the change in long rates and change
in short rates (single equation) regressions and results from the VAR approach are
somewhat mixed. Except for US data, the majority of these tests generally support
the EH, although there may be some turbulent periods when a time-varying term
premium seems important (e.g. USA 1979–1982).



23
SDF AND AFF INE TERM
STRUCTURE MODELS

Aims

• Show how the stochastic discount factor SDF approach gives rise to term structure
equations that contain explicit risk premia, depending on conditional covariances.

• Demonstrate how affine models can be used to explain the shape and movements in
the yield curve.

A bond is a risky asset when the holding period is less than the maturity of the
bond, since its resale value is uncertain. Unlike a stock, a bond (usually) has a terminal
date that fixes its redemption value at par, so no transversality condition applies. This
fixed terminal value is useful when using the SDF approach to determine the price of
a long-bond or its (spot) yield.

23.1 SDF Model

As we shall see, the SDF approach introduces a specific risk premium on long-bonds.
The long rate depends not just on expected future short rates as in the EH but also
on a risk premium, which varies with the conditional covariances between the SDF
and a sequence of long rates of differing maturities. In principle, these conditional
covariances can be estimated using a GARCH-in-mean approach, with observable
factors (e.g. consumption growth), but this methodology has not been widely applied
in empirical work.

To make the SDF model tractable, an affine or linear structure is often assumed,
whereby the price of the bond depends linearly on a single latent factor zt or multiple
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factors zit . In the single-factor model, although zt is initially an unobservable factor,
under certain assumptions it can be shown to depend linearly on the observable short
rate. This enables an explicit form for the shape and position of the yield curve to be
derived and, hence, provides an SDF-affine model of the term structure of interest rates.
These affine models are discussed below in discrete time, but they can also be derived in
continuous time or using a lattice approach (see Cuthbertson and Nitzsche 2001b for an
introduction). The key difference between the EH and the SDF-affine approach is that
the latter incorporates a risk premium that is consistent with no-arbitrage opportunities
along the yield curve.

To develop the SDF model of interest rates, we begin with the usual equilibrium
condition (FOC)

Et [Mt+1(1 + Hn,t+1)] = 1 (1)

where

(1 + Hn,t+1) ≡ Pn−1,t+1/Pn,t (2)

Pn,t = e−n.Rn,t and Rn,t = (−1/n)pn,t (3)

(1 + Hn,t+1) is the holding period yield on an n-period zero coupon bond and Rn,t

is the spot yield on this bond, paying $1 at maturity. Taking logarithms and using
hn,t+1 = ln(Pn−1,t+1/Pn,t ),

hn,t+1 = pn−1,t+1 − pn,t = nRn,t − (n − 1)Rn−1,t+1 (4)

where pn,t = ln Pn,t . When n = 1, the bond is risk-free and from (1),

(1 + rt )EtMt+1 = 1

In Appendix I, we show that the FOC (1), under the assumption that Pn,t and Mt+1

are jointly lognormal, gives the by now familiar equilibrium no-arbitrage condition.

Et(hn,t+1 − rt ) + 1
2Vt(hn,t+1) = − covt (mt+1, hn,t+1) (5)

where mt+1 = ln Mt+1 and Vt(.) is the conditional volatility. The second term on the
left-hand side is the Jensen effect and ‘covt ’ is the term (risk) premium. In Appendix I,
the equilibrium yield for the n-period bond is shown to be

Rn,t = 1

n

n−1∑
i=0

Etrt+i − 1

2n

n−1∑
i=0

(n − i − 1)2Vt(Rn−i−1,t+i+1)

− 1

n

n−1∑
i=0

(n − i − 1) covt (mt+i+1, Rn−i−1,t+i+1) (6)

The first term on the right-hand side is the (risk neutral) ‘expectation hypothesis’, but
in the SDF model, the long rate also depends on a conditional variance term (i.e.
a Jensen effect) and covariance terms, which constitute the risk premium. The SDF
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model embodies the no-arbitrage condition but even under risk neutrality covt (., .) = 0,
the ‘EH’ does not hold because of the Jensen effect. However, the latter is found to
be empirically negligible. Hence, the EH (and tests discussed in previous chapters)
assumes the covariance terms are negligible relative to expected movements in the
short rate.

Nominal rates rt are determined by the real rate rr t and expected inflation Etπt+1,
so the shape of the yield curve given by (6) is influenced by the latter two variables
as well as the term premium (and Jensen effect). Note, however, that (5) and (6) are
currently of little use since we have not yet defined the determinants of the SDF.

Testing the SDF Model: Observable Factors

A direct way of testing the SDF model (under lognormality) for hn,t+1 in (5) is to
assume a linear relationship between mt+1 and a set of observable factors zit :

mt+1 = a +
m∑

i=1

bizi,t+1 (7)

and the no-arbitrage condition for the log holding period return (HPR) becomes

Et(hn,t+1 − rt ) + (1/2)Vt (hn,t+1) = −�m
i=1bi covt (zi,t+1, hn,t+1) (8)

The choice of the observable factors is rather arbitrary, but they might include consump-
tion growth (C-CAPM), inflation and the change in the short rate and the long-short
spread. Other variables that might influence bond risk might include the ‘usual sus-
pects’ such as the change in the exchange rate, money supply and real output growth.
The difficulty is in modelling the conditional covariances. One could attempt to use a
multivariate GARCH model, for example using two long rates (n = 1, 2), we have

xt+1 = (h1,t+1 − rt , h2,t+1 − rt , z1t , z2t . . .)′

xt+1 = α + Bxt + Dvech(Ht+1) + εt+1 εt+1|�t ∼ N(O, Ht+1)

Consider n = 1, 2, then the HPR equation (8) implies the restrictions e1′B = e2′B = 0,
where (e1, e2) are vectors with unity in the (first, second) position and zeros elsewhere.
This ensures that hn,t+1 − rt does not depend on its own lagged values. In addition, the
first row of D is {−1/2, 0, −d13} and the second row is {0,−1/2, −d23}. This ensures
only the variance term enters the equations for hj,t+1 − rt (j = 1, 2), and d13 and d23

pick up the conditional covariance terms. In general, the difficulty is in restricting
the ‘size’ of D since, in principle, it contains variances and covariances between all
the variables in xt+1. Although ad hoc restrictions can be placed on D (e.g. constant
correlations across the εi, εj ’s), the large number of parameters to be estimated (par-
ticularly if the number of maturities is more than three) means the model is not usually
attempted. This is one of the problems of multi-factor SDF models – how to simulta-
neously estimate all the conditional covariances. This problem would be compounded
if one tried to use stochastic volatility models (which allows an error term to be added
to the volatility process).
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Note that with power utility over consumption and using nominal returns, we have

mt+1 = ψ − (crra)�ct+1 − πt+1 (9)

where πt+1 = inflation and only these two variables could appear in the analysis. In the
literature, there is little direct testing with observable factors, possibly because of the
difficulties of estimation, possibly because consumption and HPRs are known to have
a very low conditional covariance. However, an important exception is Balfoussia and
Wickens (2003), who apply the above multivariate GARCH-in-mean (MGM) model
using US monthly data 1970–1998. The GARCH equations are ‘diagonal’ so that
each conditional covariance only depends on its own past values and on its own past
surprises. For the C-CAPM, we have z1t = �ct+1 and z2t = πt+1 (see equation (9)),
and the HPR for maturity n is:

Et(hn,t+1 − rt ) + (1/2)Vt (hn,t+1) = (crra) covt (hn,t+1, �ct+1) + covt (hn,t+1, πt+1)

Hence, the parameter on covt (hn,t+1,�ct+1) is the coefficient of relative risk aver-
sion, and the coefficient on covt (hn,t+1, πt+1) should be unity. The constancy of these
coefficients across maturities (i.e. across the equations for hn,t+1 − rt for different
n) provides a further test of the model. Note that although crra is constant across
equations, the term premia differ across maturities (and over time) because the ‘size’
of the estimated conditional covariance terms (from the GARCH processes) differ for
different maturities. Unfortunately, the C-CAPM does not perform well on the US
data, with the estimated value of crra equal to 36 (but not statistically significant in
any of the HPR equations). Also, the coefficients on the covt (hn,t+1, πt+1) term do
not equal unity and are not constant across equations. When adding additional macro-
economic factors to give a more general SDF model (see equations (7a) and (8)), the
coefficients on the conditional covariance terms are then unrestricted. Now the term
covt (hn,t+1, πt+1) is statistically significant in the equations for the conditional mean
returns, Ethn,t+1 − rt , but the coefficients on these covariance terms are not constant
across different maturities. The latter results also apply to the consumption covariance
terms (in the model using the HPRs on five different maturity bonds).

Using equation (8) and estimates of the time-varying covariance terms from the
MGM model, we can estimate

hn,t+1 = α + βrt + γφn,t + εn,t+1

or equivalently, the change-in-long-rate equation,

(n − 1)(R
(n−1)
t+1 − R

(n)
t ) = δ + µ(R

(n)
t − rt ) + υφn,t − εn,t+1

where φn,t is the sum of the covariance terms in (8). According to the EH, α = 0, β = 1
or δ = 0, µ = 1. If the MGM model provides a good estimate of the time-varying risk
premium, then we would also expect γ = 1 or υ = −1. Because hn,t+1 and rt are
near unit root processes, omission of the term premium φn,t in the HPR equation
should not bias β̂ by very much, providing φn,t is I(0) (i.e. β̂ is super consistent).
On the other hand, the variables in the change-in-long-rate equation are I(0) and,
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therefore, omitting φn,t might cause substantial bias in µ. Unfortunately, including
the MGM estimate of φn,t in the latter equation leads to µ moving further away
from +1 (for most maturities) and, hence, the failure of the EH on US data is not
rescued by using an MGM model and the SDF approach. Balfoussia and Wickens
(2003) have established that the relationship between excess HPRs and conditional
covariances (modelled using a specific parameterisation of a MGM model) is not
sufficiently statistically well determined and stable to explain time-varying term premia
in US HPRs of different maturities. As noted in the previous chapter, the inclusion
of the 1979–1982 period when interest rates were highly volatile may be problematic
in MGM models, which are known to be sensitive to ‘outliers’. In the above SDF
approach, we used observable factors, and one of the problems is knowing which factors
to use in the empirical model, since our analysis gives little guidance on this (only
the inflation factor is a fairly obvious choice). An alternative is to use unobservable
factors that can be incorporated in latent affine factor models.

23.2 Single-Factor Affine Models
An alternative method of obtaining measures of term premia is the use of affine models
of the term structure. The Vasicek (1977) and Cox, Ingersoll and Ross (1985) are
special cases of the SDF model where the conditional covariances of the HPR with
the factors are linear functions of the factors themselves. The single-factor Vasicek
model implies that the shape of the yield curve and the risk premium depend only
on the time to maturity and the shape of the yield curve is fixed through time. The
single-factor Cox, Ingersoll and Ross model also fixes the shape of the yield curve but
allows the risk premium to move over time due to changes in the short rate. Greater
flexibility in the shape of the yield curve requires multi-factor affine models (see the
survey by Piazzesi 2002).

The most tractable and simple assumption to adopt (so let us adopt it!) for the
functional form for the bond price is that it is a linear function of some (as yet
undefined) factor zt

pn,t = −[An + Bnzt ] (10)

For the moment, equation (10) is completely arbitrary. It states that bonds of all matu-
rities (n) only move over time when the single-factor zt changes and the quantitative
impact of any change in zt on pn,t depends only on the maturity of the bond.

What we hope to show is that our affine (linear) assumption plus the no-arbitrage
SDF conditions (1) are consistent with predicting the stylised facts about the observed
yield curve. These include the following.

(i) The yield curve is usually observed to be an upward sloping, smooth curve that
‘flattens’ out at long maturities.

(ii) When it moves up or down, the yield curve mostly preserves its upward sloping
shape and yields of different maturities move by broadly (but not exactly) the
same amount (i.e. near parallel shifts in the yield curve).

(iii) Occasionally, the yield curve is observed to be downward sloping.
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(iv) Occasionally, the upward sloping yield curve has a ‘humped shape’ at medium-
term maturities.

Solution of these affine models proceeds via the following steps.

(a) Begin with the assumption that pn,t is linear in zt with coefficients An,Bn.

(b) Assume a ‘plausible’ linear time-series model (TSM) for the relationship between
mt+1 and zt that can be estimated (usually by Kalman filter methods).

(c) Deduce the restrictions on An, Bn as functions of the parameters, which are implied
by the no-arbitrage SDF model.

(d) Substitute these expressions for An, Bn into the linear equation for pn,t . We now
have the no-arbitrage equilibrium relationship for pn,t and that for Rn,t follows
from Rn,t = (−1/n)pn,t (for all maturities n).

(e) Investigate whether the equilibrium ‘theoretical’ yield curve is consistent with the
stylised facts noted above.

There are two popular ad hoc TSMs to explain the joint behaviour of mt+1 and zt ,
and these are given below.

A. Cox–Ingersoll–Ross model (CIR)

−mt+1 = zt + λet+1 (11a)

(zt+1 − µ) = θ(zt − µ) + et+1. (11b)

where et+1 = σ
√

zt εt+1 with εt+1 ∼ iid(0, 1) and, hence, Vt(et+1) = σ 2zt .

B. Vasicek model

Equations in (11a) + (11b) apply but et is homoscedastic, that is, et+1 = σεt+1.

Solution: CIR model

Using either of the above TSM in the no-arbitrage equation (1) gives, after much
tedious manipulation (see Appendix II), solutions for An and Bn and, hence, for
pn,t,Rn,t and the risk premium. An and Bn are functions of the parameters, namely
(µ, φ, λ, σ 2, n). The short rate rt is found to be an exact linear function of zt , which
enables us at any point to substitute the unobservable zt with the observable rt . In gen-
eral, this substitution of zt by rt is not usually possible. In Appendix II, we demonstrate
that for the Cox–Ingersoll–Ross (CIR) model,

rt = (1 − 1
2λ2σ 2)zt (12)

Et(hn,t+1 − rt ) = ( 1
2B2

n−1σ
2 + λBn−1σ

2)zt (13)

where the first term on the right in (13) is the Jensen effect, the second term is the
risk premium

rp t = − covt (mt+1,pn−1,t+1) = λBn−1σ
2zt (14)
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Finally, long rates for different maturities can be shown to depend linearly on the
single-factor zt and, hence, on the short rate rt :

Rn,t = (−1/n)pn,t = 1
n
[An + Bnzt ] = An

n
+ Bn

n

(
1 − 1

2
λ2σ 2

)rt (15)

Solution: Vasicek model

We only give the solution for the yield curve and the term (risk) premium

Rn,t = 1
n

[
An − 1

2λ2σ 2Bn

] +
(

Bn

n

)
rt (16)

rp = λ
(1 − θn−1)σ 2

(1 − θ)
(17)

where the An and Bn again depend on the parameters (λ, µ, θ , n, σ 2). It is easily seen
from (15) and (16) that the shape of the yield curve in the CIR and Vasicek models
depends on n, and the curve moves up and down with changes in the short rate, rt .
The CIR and Vasicek models both imply that the shape of the yield curve over time
is constant, but in practice, we know that it changes shape (e.g. sometimes upward
and sometimes downward) sloping. Hence, these ‘single-factor’ affine models do not
fit the facts. In addition, in the Vasicek model, the risk premium does not change over
time, but only with maturity – a somewhat restrictive result.

There have been two broad approaches to provide tractable SDF models that ‘fit’
more of the ‘stylised facts’. The most obvious generalisation is to extend the affine
approach to include multiple factors. Even with just two factors, the shape of the yield
curve can alter as the two factors move differently. The second broad development is
to take a multi-factor model (usually for tractability limited to three factors) and to
add observable macroeconomic factors such as inflation and real activity.

23.3 Multi-Factor Affine Models
There are now several factors zi and the above equations hold with z as a vector (with
parameters now in matrix form). The complexity of these models and the number of
parameters to be estimated can increase rapidly, so simplifications are often imposed.
For example, if the adjustment matrix θ in (11b) is taken to be diagonal and the vector
error term et+1 = �

√
Stεt+1 has � independent of θ and St (= diag zit ) is diagonal,

then equation (10) is additive in zit :

Ethn,t+1 − rt = (1/2)

m∑
i=1

B2
i,n−1σ

2
i zit +

m∑
i=1

λiBi,n−1σ
2
i zit (18)

where the risk premium is the final term. However, the short rate now depends on a
linear combination of the zit , and we can no longer ‘replace’ the zit by the observable
rt . If there are more than n yields (including the short rate), then the n factors are not
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a unique linear combination of the m yields, and some form of principal components
is needed to ‘assign’ the observable m yields (m < n) amongst the n-unobservable
factors. However, because there are more factors, the shape of the yield curve can
be more flexible and, usually, two or three factors are sufficient to approximate the
different observed shapes of the yield curve. If there are fewer yields than factors, then
the model is not an observable factor model.

Empirical Results

Gong and Remolona (1997) and Dai and Singleton (2003) have estimated two- and
three-factor CIR affine models, while Jagadeesh and Pennacchi (1996) estimate a
single-factor and a two-factor Vasicek model (using Eurodollar futures contracts – a
highly liquid market). In models with more than one factor, the ‘short rate’ cannot
‘replace’ the factor, so estimation is complex. Two- and three-factor models gen-
erally reject the one-factor model in hypothesis tests, but they often retain some
implausible effects (e.g. state variables with an exceptionally long half life and some-
times negative short rates). Ang and Piazzesi (2003) add macro-factors ‘inflation’
and ‘real output’ that are formed as principal components from a larger set of macro-
variables. These two macro-factors are included in the unobservable three-factor model,
which is applied to bond yields of 1, 6, 12, 36 and 60 months. All the factors are
assumed independent of each other. These observable macro-factors as well as the
zit (i = 1, 2, 3) influence the short rate and the shape of the yield curve. It still
remains to be seen whether the affine approach can adequately model all the ‘stylised
facts’.

The affine approach can also be applied to index bonds that give a linear term
structure equation for both the nominal long rate R

(Nom)
n,t and real long rate R

(real)
n,t of

the form

R
(j)
n,t = 1/n

[
n−1∑
i=0

(Et r
(j)

t+i + Etφ
(j)

t+i )

]
(19)

where j = Nom or real and φ represents the term premium and the Jensen term.
Using the Fisher equation rNom

t = rreal
t + Etπt+1, where πt+1 is the rate of inflation,

we obtain

(1/n)

n−1∑
i=0

Etπt+i = R
(Nom)
n,t − R

(real)
n,t − (1/n)

n−1∑
i=0

Etφ
π
t+i (20)

Expected (average) inflation is determined by the difference between nominal and real
yields less the inflation risk premium φπ ∼= φNom − φreal . For example, Remolona,
Wickens and Gong (1998) find the inflation risk premium is time varying with an
average level of around 1% p.a. in the United Kingdom for the 1990s.

23.4 Summary
• The SDF model (under lognormality) implies that the excess HPR is not constant but

depends on a (possibly) time-varying conditional covariance term (and a Jensen effect).
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• The SDF model is more general than the EH (which assumes risk neutrality). In the
SDF model, the long rate depends not only on expected future short rates but also
on the covariance terms between the SDF and the n-bond yields. Empirical tests of
the EH assume these covariances (and the Jensen effect) are negligible relative to
changes in expected future short rates.

• Affine models of the term structure are a particular form of SDF model, where
the (log) of the SDF (mt+1) is assumed to be linear in a set of factors, zit . Affine
models usually give explicit closed-form solutions for long-bond yields Rn,t from
which we may infer the shape and changing position of the yield curve. Except in
some simple cases, affine models contain unobservable factors that require complex
estimation techniques.

• Empirically, the SDF model of the excess HPR using observable covariances has
not been widely examined, probably because of the difficulty in estimating ‘large’
GARCH-in-mean models. Empirically, affine models, usually with two or three
factors, have been able to explain some aspects, but not all, of the shape of the
yield curve.

Appendix I: Math of SDF Model
of Term Structure
The discrete time versions of the SDF model presented below rely heavily on Smith
and Wickens (2002). In this section, we establish the no-arbitrage equation for prices
and yields of different maturities and for the holding period return. The risk premia in
these equations depend on the covariance between the SDF and the appropriate price
or return under consideration. For the SDF model, the no-arbitrage condition is

Et [Mt+1(1 + hn,t+1)] = 1 (A1)

or
Pn,t = Et [Mt+1Pn−1,t+1] (A2)

For n = 1, the bond is risk-free, hence,

(1 + rt )Et [Mt+1] = 1 (A3)

This defines Et(Mt+1) = 1/(1 + rt ) in terms of the risk-free rate. If Pn,t and Mt+1 are
jointly lognormal, then from (A2),

pn,t = Et(mt+1 + pn−1,t+1) + 1
2Vt(mt+1 + pn−1,t+1)

= Etmt+1 + Etpn−1,t+1 + 1
2 [Vt(mt+1) + Vt(pn−1,t+1)

+ 2 covt (mt+1, pn−1,t+1)] (A4)

Using po,t = 0 in (A4), the price of a one-period bond is

p1t = Et(mt+1) + 1
2Vt(mt+1) (A5)
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Subtracting (A3) from (A4), the no-arbitrage equation for prices, which is also the
excess HPR, is

Et(pn−1,t+1) − pn,t + p1,t + 1
2Vt (pn−1,t+1) = − covt (mt+1, pn−1,t+1) (A6a)

Et(hn,t+1 − rt ) + (1/2)Vt (pn−1,t+1) = − covt (mt+1, pn−1,t+1) (A6b)

Using ln Pn,t = −n ln(1 + Rn,t ) ≈ −nRn,t , (A6) can be expressed in terms of yields.

− (n − 1)Et(Rn−1,t+1) + nRn,t − rt + (n − 1)2

2
Vt(Rn−1,t+1)

= (n − 1) covt (mt+1,Rn−1,t+1) (A7)

Equation (A7) is the ‘change-in-long-rate’ equation we noted for the EH. The EH
assumes a constant risk premium, whereas the SDF model has a risk premium given
by the covt (., .) term, and the Vt(.) term is a Jensen inequality term (JIT).

A further substitution in (A7) for hn,t = −(n − 1)Rn−1,t+1 + nRn,t gives the no-
arbitrage expected excess holding period return:

Et(hn,t+1 − rt ) + 1
2Vt(hn,t+1) = − covt (mt+1, hn,t+1) (A8)

Equations (A6)–(A8) are alternative representations of the no-arbitrage condition (A1)
under joint lognormality. The covariance term is the risk premium, and variance terms
appear because of the Jensen effect. Finally, forward recursion on (A7) gives the famil-
iar expression for the long rate in terms of expected future short rates, plus the term
premium (and Jensen effects).

Rn,t = 1

n

n−1∑
i=0

Etrt+i − 1

2n

n−1∑
i=0

(n − i − 1)2Vt(Rn−i−1,t+i+1)

− 1

n

n−1∑
i=0

(n − i − 1) covt (mt+i+1, Rn−i−1,t+i+1) (A9)

Equation (A9) points to the rather obvious fact that the pure expectations hypothesis
is a special case of the SDF model (under lognormality), where the risk premium
covt (.) is zero and Jensen effects are inconsequential. Of course, until we can model
the stochastic discount factor mt+i+1 and, hence, the covariance terms, the model
remains non-testable.

Appendix II: Single-Factor Affine Models
One way of deriving explicit equations for the shape of the yield curve is to assume
mt+1 is linearly related to a single-factor zt (which we see below can sometimes be
measured by the observable short rate). In these affine models, pn,t is assumed to be
a linear function of the factor zt .

pn,t = −[An + Bnzt ] (A10)
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hence

Rn,t = −1

n
pn,t = An

n
+ Bn

n
zt (A11)

and
rt = −p1,t = A1 + B1zt (A12)

We now derive the (recursive) restrictions on An and Bn in order to satisfy the no-
arbitrage condition (A1) of the SDF model. We then compare the resulting equation for
the excess HPR, Ethn,t+1 − rt with (A6b), to obtain an explicit expression for the risk
premium in terms of An and Bn. We assume an arbitrary yet reasonable and tractable
TSM for mt+1 and zt – the well-known Cox, Ingersoll and Ross (1985) CIR model.

−mt+1 = zt + λet+1 (A13a)

(zt+1 − µ) = θ(zt − µ) + et+1 (A13b)

where et+1 = σ
√

ztεt+1, with εt+1 ∼ iid(0, 1) and Vt (et+1) = σ 2zt . In this model, the
conditional mean of mt+1 is equal to zt [see (A13a)]. The factor zt is assumed to be
autoregressive around a long run mean value of µ [see (A13b)], and the speed of mean
reversion is determined by θ . We now proceed to derive the formula for pn,t by consid-
ering the right-hand side terms in (A4). Substituting from (A13a), (A13b) and (A10),

Et(mt+1 + pn−1,t+1) = −[zt + An−1 + Bn−1Etzt+1]

= −[zt + An−1 + Bn−1(µ(1 − θ) + θzt )] (A14)

and

Vt(mt+1 + pn−1,t+1) = Vt(λet+1 + Bn−1et+1) = (λ + Bn−1)
2σ 2zt (A15)

Substituting (A14) and (A15) in the no-arbitrage equation (A4) and using the ‘affine
equation’ (A10) for pn,t , we have the rather complex equation

pn,t = −[An + Bnzt ] = −[(1 + θBn−1)zt + An−1 + Bn−1µ(1 − θ)]

+ 1
2 (λ + Bn−1)

2σ 2zt (A16)

Equating the constant term and the terms in zt on the right- and left-hand sides gives
the recursive formulae for An and Bn:

An = An−1 + Bn−1µ(1 − θ) (A17a)

Bn = 1 + θBn−1 − 1
2 (λ + Bn−1)

2σ 2 (A17b)

Since ln Po,t = po,t = 0, Ao, Bo = 0, and these are starting values to use in the recur-
sions (A17). For n = 1, we have

B1 = 1 − 1
2λ2σ 2 and A1 = 0 (A18)
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so that
rt = −p1,t = A1 + B1zt = (1 − 1

2λ2σ 2)zt (A19)

Hence, the short rate is linearly related to zt and we can ‘replace’ the unobservable
zt in the above expressions (A10) and (A11) for pn,t , Rn,t with the observable short
rate, rt . The holding period yield is defined in terms of (log) prices, and substituting
from (A16), (A19),

Et(hn,t+1 − rt ) ≡ Et(pn−1,t+1) − pn,t − p1,t

= 1
2B2

n−1σ
2zt + λBn−1σ

2zt (A20)

From (A6b),

Ethn,t+1 − rt = − 1
2Vt(pn−1,t+1) − covt (mt+1, pn−1,t+1) (A6b)

Comparing (A20) with (A6b), we see that the first term is the Jensen effect and the
second term is the risk premium − covt (mt+1, pn−1,t+1), both of which depend on zt .
It is worth noting that if mt+1 is non-stochastic (i.e. λ = 0), then the risk premium
is zero. Again in (A2), we can ‘replace’ zt with rt , using (A19) so the excess HPR
depends linearly on rt , as does the risk premium. It should not be too surprising that
in a ‘linear world’ driven by one factor, the latter is the temporal driving variable
for (log) prices, long rates and the term premium (only the latter result should not be
entirely intuitive). The Vasicek model can be solved in exactly the same fashion as
above, but we do not pursue that here.



24
THE FORE IGN
EXCHANGE MARKET

Aims

• Provide a brief overview of alternative exchange rate regimes.

• Show how price competitiveness can be represented in terms of purchasing power
parity, PPP, and the law of one price, LOOP.

• Demonstrate how riskless arbitrage determines the forward rate – this is covered-
interest parity, CIP.

• Show that if risky arbitrage opportunities are eliminated (by risk-neutral speculators),
this gives rise to uncovered interest parity, UIP.

• Analyse the relationship between CIP, UIP and forward rate unbiasedness FRU and
that between UIP, PPP and real interest parity, RIP.

24.1 Exchange Rate Regimes

The behaviour of the exchange rate, particularly for small open economies that under-
take a substantial amount of international trade, has been at the centre of macro-
economic policy debates for many years. There is no doubt that economists’ views
about the best exchange rate system to adopt have changed over the years. It is worth-
while briefly outlining the main issues.

After World War II, the Bretton Woods arrangement of ‘fixed but adjustable ex-
change rates’ applied to most major currencies. As capital flows were small and
often subject to government restrictions, the emphasis was on price competitiveness.
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Countries that had faster rates of inflation than their trading partners were initially
allowed to borrow from the International Monetary Fund (IMF) to finance their trade
deficit. If a ‘fundamental disequilibrium’ in the trade account developed, then after
consultation, the deficit country was allowed to fix its exchange rate at a new lower
parity. After a devaluation, the IMF would also usually insist on a set of auster-
ity measures, such as cuts in public expenditure, to ensure that real resources (i.e.
labour and capital) were available to switch into export growth and import substi-
tution. The system worked relatively well for a number of years and succeeded in
avoiding the re-emergence of high tariffs and quotas that had been a feature of 1930s
protectionism.

The US dollar was the anchor currency of the Bretton Woods system, and it was
initially linked to gold at a fixed price of $35 per ounce. The system began to come
under strain in the middle of the 1960s. Deficit countries could not persuade sur-
plus countries to mitigate the competitiveness problem by a revaluation of the surplus
countries currency. There was an asymmetric adjustment process that invariably meant
the deficit country had to devalue. The possibility of a large-step devaluation allowed
speculators a ‘one-way bet’ and encouraged speculative attacks on those countries that
were perceived to have poor current account imbalances, even if it could be reason-
ably argued that these imbalances were temporary. The United States ran large current
account deficits which increased the amount of dollars held by third countries. (The
US extracted ‘seniorage’ by this means). Eventually, the amount of externally held
dollars exceeded the value of gold in Fort Knox when valued at the ‘official price’ of
$35 an ounce. At the official price, free convertibility of the dollars into gold became
impossible. A two-tier gold market developed (with the free market price of gold very
much higher than the official price) and eventually, convertibility of the dollar into
gold was suspended by the US authorities. By the early 1970s, the pressures on the
system were increasing as international capital became more mobile and differential
inflation rates between countries increased and caused large deficits and surpluses on
current accounts. By 1972, most major industrial countries had de facto left the Bretton
Woods system and floated their currencies.

In part, the switch to a floating exchange rate regime had been influenced by mone-
tary economists. They argued that control of the domestic money supply would ensure a
desired inflation and exchange rate path. In addition, stabilising speculation by rational
agents would ensure that large, persistent swings in the real exchange rate, and hence
in price competitiveness, could be avoided by an announced credible monetary policy
(usually in the form of money supply targets).

Towards the end of the 1970s, a seminal paper by Dornbusch (1976) showed that
if FOREX dealers are rational yet goods prices are ‘sticky’, then exchange-rate over-
shooting could occur. A contractionary monetary policy could result in a loss of price
competitiveness over a substantial period with obvious deflationary consequences for
real trade, output and employment. Although in long-run equilibrium the economy
would move to full employment and lower inflation, the loss of output in the transition
period could be more substantial in the Dornbusch model than in earlier monetary
models, which assume that prices are ‘flexible’. (We examine monetary models of
exchange rate determination in Chapter 27).
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The volatile movement in nominal and real exchange rates in the 1970s led
some European countries to consider a move back towards more managed exchange
rates, which was eventually reflected in the workings of the Exchange Rate
Mechanism (ERM) from the early 1980s. European countries that joined the ERM
agreed to try to keep their bilateral exchange rates within announced bands around a
central parity. The bands could be either wide (±6%) or narrow (±2.25%). Unofficially,
the Deutsch Mark (DM) became the anchor currency. In part, the ERM was a device
to replace national monetary targets with German monetary policy as a means to
combat domestic inflation. Faced with a fixed exchange rate against the DM, a high-
inflation country has a clear signal that it must quickly reduce its rate of inflation
to that pertaining in Germany. Otherwise, unemployment would ensue in the high-
inflation country, which is a ‘painful mechanism’ for reducing inflation. The ERM
allowed countries to realign their (central) exchange rates in the case of a fundamental
misalignment. However, when a currency hits the bottom of its band because of a
random speculative attack, all the central banks in the system may try to support the
weak currency by coordinated intervention in the FOREX market.

The perceived success of the ERM in reducing inflation and exchange rate volatility
in the 1980s led the G10 countries to consider a policy of coordinated intervention
(i.e. the Plaza and Louvre accords) to mitigate ‘adverse’ persistent movements in their
own currencies. The latter was epitomised by the ‘inexorable’ rise of the US dollar
in 1983–1985, which seemed to be totally unrelated to changes in economic funda-
mentals. Recently, some economists have suggested a more formal arrangement for
currency zones and currency bands for the major currencies along the lines of the rules
in the ERM.

In the early 1990s, the ERM came under considerable strain. Increasing capital
mobility and the removal of all exchange controls in the ERM countries facilitated a
speculative attack on the Italian lira, sterling and the franc around 16 September 1992
(known as Black Wednesday). Sterling and the lira left the ERM and allowed their cur-
rencies to float. About one year later, faced with further currency turmoil, most ERM
bands were widened to ±15%. The reasons for a move to monetary union in Europe are
complex, but one is undoubtedly the desire to ‘remove’ the problem of floating or quasi-
managed exchange rates. The move to monetary union was formally started at a meeting
of EU leaders on 10 December 1991 at Maastricht in the Netherlands, where ‘conver-
gence criteria’ were set out for entry into the common currency as well as the timetable.

In January 1999, 11 EU countries formed a Monetary Union and irrevocably locked
their exchange rates against the Euro, and full implementation of euro ‘notes and
coins’ in retail transactions began in January 2002. The EU countries that entered
‘Euroland’ in 1999 were Austria, Belgium, Finland, France, Germany, Ireland, Italy,
Luxemborg, Netherlands, Portugal and Spain, with Greece joining in 2002. By and
large, these countries met the ‘Maastricht’ inflation and interest rate targets, but meeting
the maximum 3% budget deficit criterion took some ‘creative accounting’. A large
number of countries also failed the debt ratio criterion (e.g. Belgium and Italy had
debt–GDP ratios in excess of 100%). So, the Maastricht criteria were in the end
merely ‘guidelines’ for entry. The EU countries that initially stayed out were the
United Kingdom, Denmark, Greece (joined 2002) and Sweden.
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The euro started life as the currency used by the initial 11 participating European
countries. It is used for invoicing commercial transactions and there are many financial
assets (e.g. loans, stocks, bonds, futures, swaps and derivatives) that are now denom-
inated in euros. The euro is a rival to the US dollar, and it may eventually become
an important vehicle and reserve currency. However, it has experienced a continuous
fall against the US dollar from 1.17 USD per euro in January 1999 to around 0.83
USD per euro in October 2000, a fall of around 30% in under two years. Since then,
it has reversed and in 2003, was back around its initial level of 1.1. Nominal and real
exchange rates of major ‘economies’ certainly move around considerably.

Outside of Europe, the years 1997–1999 saw great currency turmoil in the Far
East, where banking crises in Thailand, Indonesia, Malaysia and Japan have resulted
in depreciations of around 30–40% of some of these currencies against the US dol-
lar. The immediate reason for the withdrawal of foreign capital appears to be the
‘excess’ foreign currency borrowing by domestic banks. This foreign currency was
then switched into local currency loans (many of which were used in property specu-
lation), and these became ‘non-performing’. Hence, it was (correctly) thought that the
banks that were unhedged could not pay back the interest and capital on the foreign
currency loans, and this triggered a general capital outflow.

Also, in 1998, the Russian rouble depreciated sharply against the US dollar, again
because bank loans to Russia denominated in foreign currency seemed to be liable
to default. Growth in the Russian economy was virtually non-existent, there were
massive falls in tax receipts (and a disintegration of the tax collecting system) and,
hence, many public sector workers had wage arrears in excess of six months. The
Brazilian ‘real’ became the next victim in 1999, when Brazil too had to devalue in
the face of speculative pressure, which the IMF and the granting of loans from the
United States were unable to stem. This set of events has led to calls in the G10 for a
‘new economic order’ or a ‘new financial architecture’ that involves a more proactive
role for the IMF in trying to avert currency crises or at least mitigating their adverse
impact on countries.

One of our main tasks in this part of the book is to examine why there is such con-
fusion and widespread debate about the desirability of fixed versus floating exchange
rates and the move to common currency areas. It is something of a paradox that
economists are usually in favour of ‘the unfettered market’ in setting ‘prices’ but in
the case of the exchange rate, perhaps the key ‘price’ in the economy, there are widely
divergent views.

24.2 PPP and LOOP

Law of one price (LOOP) is an equilibrium condition in the market for individual
homogeneous tradeable goods and forms a basic building block for several models
of the exchange rate on the basis of economic fundamentals. It is a ‘goods arbitrage’
relationship. For example, if applied solely to the domestic economy, it implies that a
‘Lincoln Continental’ should sell for the same price in New York City as in Washington
DC (ignoring transport costs between the two cities). If prices are lower in New York,
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then demand would be relatively high in New York and low in Washington DC. This
would cause prices to rise in New York and fall in Washington DC, hence equalising
prices. In fact, the threat of switch in demand would be sufficient for well-informed
traders to make sure that prices in the two cities are equal. The LOOP applies the same
arbitrage argument across countries, the only difference being that one must convert
one of the prices to a ‘common currency’ for comparative purposes. Purchasing power
parity (PPP) assumes that the LOOP applies using some aggregate price index (e.g.
wholesale goods price index or the consumer price index, CPI) but because we spend
little time discussing index number problems, then in what follows, you can think of
LOOP and PPP as equivalent.

Absolute PPP

If domestic tradeable goods are perfect substitutes for foreign goods and the goods
market is ‘efficient’ (i.e. there are low transactions costs, perfect information, per-
fectly flexible prices, no artificial or government restrictions on trading, etc.), then
‘middlemen’ or arbitrageurs will act to ensure that the price is equalised in a com-
mon currency. If the foreign currency price is P ∗ dollars and S is the exchange rate
(domestic currency per unit of foreign currency, say, sterling per dollar), then the
price of a foreign import in domestic currency (sterling) is SP∗. Domestic produc-
ers of a close (perfect) substitute for the foreign good and arbitrageurs in the market
will ensure that domestic (sterling) prices P equal the import price in the domestic
currency, SP∗:

P = SP∗ or p = s + p∗ (1)

where p = ln P , and so on. Here is a simple example. Harrods, the department store
in London, sells ‘hampers’, that is, a ‘fixed’ basket of goods (e.g. containing paté,
champagne, etc.), and so does Saks in New York. If the Saks’ hamper costs $200 and
the spot rate is £0.6667 per $ (1.5 $ per £), then the price of the Saks’ hamper to a
UK resident is £133.34. PPP implies that the price of the Harrods’ hamper will also
be set at £133.34 by arbitrageurs, otherwise a near riskless profit could be made by
shipping hampers (e.g. after purchasing on the World Wide Web) between the two
countries. If the LOOP always holds and the price of the Saks’ hamper rises to $210,
then the price of the Harrods’ hamper will rise to £140 (if S remains at 0.6667 £s
per $).

Relative PPP

Relative PPP assumes P and SP∗ may not be equal but P moves proportionately with
SP∗ so P = k (SP∗) and, hence,

�p = �s + �p∗ (2)

PPP may also be viewed as an equilibrium condition for the current account of the
balance of payments (for given levels of domestic demand and world trade). This is
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simply because if PPP holds over time, then it means that there is no incentive for
domestic residents to switch demand from tradeable goods of the foreign country (i.e.
imports) to domestically produced substitutes (or vice versa).

The real exchange rate is a measure of price competitiveness and is the price of
domestic, relative to foreign goods (in a common currency).

Sr = P ∗S/P (3)

Given our earlier analogy, the real exchange rate is initially Sr
o = (P ∗S)/P = ($200)

(0.6667)/£133.34 = 1 implying that a Harrods’ hamper and Saks’ hamper cost the same
in sterling for a UK resident (and the same in USD for a US resident). It follows from
the definition of the real exchange rate that if PPP holds, then the real exchange rate
or price competitiveness remains constant. But in reality, the real exchange rate is far
from constant and moves in very long ‘mean reverting’ swings, indicating that price
competitiveness does not hold over substantial periods of time.

If goods arbitrage were the only factor influencing the exchange rate, then the
exchange rate would obey PPP

s = p − p∗ (4a)

or
�s = �p − �p∗ (4b)

Hence, movements in the exchange rate would immediately reflect differential rates of
inflation, and the latter is often found to be the case in countries suffering from hyper-
inflation (e.g. Germany in the 1920s, some Latin American countries in the 1980s,
economies in transition in Eastern Europe and Russia after 1990). However, one might
expect goods arbitrage to work rather imperfectly in complex industrial economies
with moderate inflation and a wide variety of heterogeneous tradeable goods. Hence,
PPP may hold only in the very long run in such economies.

Evidence on PPP

Absolute PPP implies that prices of the same goods should sell for the same price
in different countries. For example, the price of gold in USD should be the same
if the gold is sold in the United Kingdom, the Euro area or the United States. Of
course, absolute PPP might not hold for some tradeable goods because of tariff barriers,
differential tax rates on goods and because profit margins vary depending on the degree
of competition. The latter underlies the ‘pricing to market’ (PTM) hypothesis (Krugman
1978) where some goods, when sold in foreign markets, are set equal to the local price
and, hence, are immune to exchange rate changes. Knetter (1989, 1993) finds this is
particularly true for German and Japanese firms (e.g. German beer exported to the
United Kingdom has a different price to that exported to the United States). Persistent
price differentials could also be due to menu costs of changing prices by firms or
because consumers face fixed costs when switching between products. There is also
the problem of classifying what are similar goods. Even the ‘eating experience’ of
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McDonald’s ‘Big Mac Hamburgers’ vary depending on restaurant space, queuing time,
whether the ketchup is free and how the burger is bundled with other items (e.g. milk
shakes, Cola, etc.). Also, some goods (viz. cars and electrical goods) have different
national standards (e.g. 110 volts versus 250 volts), different information gathering
costs, non-tariff barriers, environmental standards and different warranty or after-sales
service. For example, insurance and transport costs have been estimated to be of the
order of 10% but with large variations across countries. Finally, when producers can
price discriminate, exporters may ‘price-to-market’ in the exporting country.

There does seem to be a lack of goods arbitrage because absolute prices are not
equalised across countries. Engel and Rogers (1996), using 14 disaggregated price
indices for 23 cities in the United States and Canada, show:

(i) within one country, the relative price of the same goods between two cities is a
positive function of the distance between them.

(ii) when comparing across countries for the same goods, the price differential is
much greater than in (i) and the ‘border effect’ on price differentials is equivalent
to adding between 2,500 and 23,000 miles between domestic cities.

(iii) the cross-border price differentials are much more persistent than their within
country equivalents.

Parsely and Wei (1996) and Rogers and Jenkins (1995) find similar results to Engel
and Rogers (1996) and, also find that the persistence of price differentials is much
greater across borders than within the same country. Engel (1993) demonstrates the
absence of absolute PPP. He notes that for 2000 pairwise comparisons, the (conditional)
variances of the relative prices of similar goods in the United States and Canada
are much more volatile than the relative prices of very different goods within either
country. Also, studies of fairly homogeneous products (e.g. screws, nuts and bolts,
paper and glass, German beer exported to the United States and United Kingdom)
show an absence of absolute PPP.

Aggregate Price Indices

Absolute PPP is usually tested with aggregate price indices, but there are difficulties
here. The indices often do not cover the same bundle of goods in each country, and the
bundle changes over time as new goods are added. When using time-series data, one
also has to assume that absolute PPP holds in the base year. Strictly, only tradeable
goods (e.g. at wholesale manufacturers’ prices) should be included in the PPP index
(unless one has a theory connecting tradeables and non-tradeables prices, when an
index like the CPI can then be used).

One way to test absolute PPP is to undertake a test for cointegration between the
spot rate and relative prices

st = αpt − α∗p∗
t + εt
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An ADF test of the OLS residuals from the above equation can be used to test the null
of no cointegration, γ ≥ 0:

�ε̂t = γ ε̂t−1 +
m∑

i=1

δi�ε̂t−i + ut

against the alternative γ < 0. (The above equation may include a constant
term – critical values for γ vary, depending on the precise form of this equation.) We
cannot test the {1, −1} restrictions on the parameters in a single-equation framework,
given the bias in the OLS standard errors. Using the Johansen (1988) procedure in a
trivariate VAR system or using the Phillips and Hansen (1990) modified OLS estimator
allows test of the restrictions. In general, such tests are favourable to the existence
of a cointegrating vector and, hence, for mean reversion in the interwar or earlier
periods (for industrialised countries) but less favourable for the post-1973 float period
(see Sarno and Taylor 2002 for an overview).

Random Walk

The problem of univariate unit-root tests is their low power (particularly if the root
is as large as 0.95) in rejecting the false null. For example, using MCS with a
root (1 − γ ) = 0.95, then even with T = 100 annual observations, the power of the
Dickey–Fuller t-test τ̂ = γ̂ /s.e.(γ̂ ) is only around 12%. This means that the proba-
bility of never being able to reject the unit root is around 88%, even though we have
a stationary process. Therefore, it is not hard to see why early tests of PPP using
standard univariate unit-root tests on aggregate price indices and post-1973 data found
it difficult to reject the null of a random walk for the real exchange rate except for
hyper-inflation countries.

Power can be increased by increasing the span of data (although not by increasing
the frequency of observation, for example, from annually to monthly, within a given
time span – Shiller and Perron 1985). Studies, therefore, extend the data set. Using
over a century of data and employing unit-root tests, the consensus has moved towards
the view that for moderate inflation countries, the real exchange rate is probably mean
reverting over the long run (Cheung and Lai 1994, Lothian and Taylor 1996) even
after taking account of the possibility of structural breaks and different exchange rate
regimes over such a long period of data (e.g. periods of ‘fixed’, floating and managed
floating regimes).

However, the above studies find that the real exchange rate is also very persistent at
around 15% p.a., implying a half-life of 3–5 years (i.e. it takes 3–5 years for a shock
to the real exchange rate to move halfway to its final long-run value) – see Rogoff
(1996) for a summary. Recent studies show that even for the post-WWII period, mean
reversion in the real exchange rate is found in panel data (i.e. testing PPP using more
than 100 countries) and again the half-life is around four years (Frankel and Rose
1995). Panel data increases the power of the unit-root test, but it still remains possible
that some countries in the panel do not exhibit mean reversion, since the portmanteau
test may be dominated by a few countries where PPP does hold in the long run. Of
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course, the opposite is also possible, that is, we do not reject the null of non-stationarity,
but this may be because of only one non-stationary real exchange rate, with the rest
being stationary. Taylor and Sarno (1998) and Sarno and Taylor (1998) address these
problems and find that G5 real exchange rates against the US dollar are mean reverting
(using the Johansen procedure) in the post-1973 floating period. Although standard
unit-root tests are far from infallible, the conclusion around the mid-1990s was that
real exchange rates are very persistent but probably mean reverting (see Ardeni and
Lubian 1991, Grilli and Kaminsky 1991, Rogoff 1996).

The above empirical results may be put into context when one considers an alter-
native approach to PPP working via the wage–price inflationary spiral. We show in
the appendix that a rise in foreign (import) prices or a depreciation of the domestic
currency raises production costs for the domestic industry and, hence, domestic prices
and wages. The resulting equation that explains domestic inflation is

�p = b1

1 − b1
[f + b1(χw − χp) + a2(y − y)] + �(p + s) (5)

where y − y = deviation of output from its natural rate, f = ‘wage push’ factors,
χw = exogenous growth in real wages, χp = growth in labour productivity. It follows
that PPP holds if

f + b1(χw − χp) + a2(y − y) = 0 (6)

Hence, PPP holds when output is at its natural rate, ‘wage push’ factors ‘f ’ are zero
and real wages grow at the rate of labour productivity. One can see that the factors
in (6) involve rather complex, slowly varying long-term economic and socio-political
forces, and this may account for the difficulty in empirically establishing PPP even in
a very long span of data.

Pricing to market PTM for some goods (e.g. automobiles, electronics) will also lead
to deviations from PPP (Krugman 1978). If some producers invoice their exported
goods in foreign currency, then any change in the exchange rate will initially leave
relative prices unchanged and, hence, the LOOP will be violated, and real and nominal
exchange rates will move together. However, PTM, although it occurs for some goods,
does not seem to be widely adopted (except for the United States) – Goldberg and
Knetter (1997).

Unit Roots and Non-Linearities

There are some approaches that suggest that the real exchange rate will not be mean
reverting. Rogoff (1996) notes that the Harrod, Samuelson and Balassa (HSB) effect
predicts that PPP might not always hold, since fast-growing countries should have
appreciating real exchange rates. In its simplest form, the HSB effect assumes pro-
ductivity growth is faster in the tradeables relative to the non-tradeables sector. The
LOOP holds in the tradeables sector but faster productivity growth raises wages
in the tradeables sector in line with productivity (but tradeables prices stay con-
stant since unit costs have not changed). A competitive labour market then leads to
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wage rises in the non-tradeables sector and because productivity here is unchanged,
non-tradeables prices rise. The latter leads to a rise in the aggregate price index (e.g.
CPI) and, given an unchanged exchange rate (since tradeables prices are unchanged),
PPP using aggregate prices is violated and the domestic real exchange rate increases.
This fits some countries like Japan and the yen–USD exchange rate (1945–1996)
but not for many other industrialised countries and, overall, the evidence on the
HSB effect is very mixed (e.g. deGregorio, Giovannini, Wolf, Gordon and deMe-
nil 1994).

Others (e.g. Krugman 1990) argue that cumulative current account deficits should
influence real exchange rates as they represent a kind of portfolio balance effect,
redistributing wealth across countries. Another strand in the literature (Froot and Rogoff
1991) suggests that because government expenditure is mainly in non-traded goods,
this would lead to a change in the relative price of services to tradeables and, hence,
an increase in the real exchange rate.

Models of PPP that incorporate transactions costs (Dumas 1992, Sercu, Uppal and
vanHulle 1995) emphasise that within a no-arbitrage ‘transactions cost band’, the real
exchange rate may follow a random walk but outside this band, potential profits to arbi-
trage are large enough to induce mean reverting behaviour. Overall, the real exchange
rate follows a non-linear process that is mean reverting. Time aggregation will tend to
smooth any discontinuous adjustment between the two regimes for individual goods
and if we aggregate over goods with different arbitrage costs, it seems likely that
aggregate price indices used in testing PPP will exhibit a smooth non-linear process.

An alternative view giving rise to non-linearities (Kilian and Taylor 2003) is that
there are heterogeneous expectations about the ‘correct’ level for the exchange rate.
Hence, when the rate is close to equilibrium and opinions are diffuse, the fundamentals
traders will be influenced by noise traders (e.g. charts and technical analysis), and
this causes unit-root behaviour in the exchange rate. When the exchange rate moves
substantially from equilibrium, then more fundamentalists recognise the disequilibrium
and move the exchange rate back towards equilibrium (see also DeGrauwe, Dewachter
and Embrechts (1993) for a similar model that gives non-linear ‘chaotic’ behaviour for
the exchange rate).

Nevertheless, although long-run PPP based on standard unit-root tests is now largely
accepted as an empirical fact, there is still a PPP puzzle. The puzzle is that the volatility
of both real and nominal exchange rates is about the same over short horizons, sug-
gesting that all ‘the action’ is in the nominal exchange rate rather than relative prices.
This implies that money and financial shocks (i.e. nominal shocks) should be important
here rather than real shocks (e.g. to productivity and preferences, which are thought
to be not particularly volatile). But we would expect these nominal shocks to die out
completely after about two to three years as sticky wages and prices adjust – but, in
fact, the real deviations from PPP exist for over five years. This is the puzzle, that is,
what is causing these large and long swings in the real exchange rate?

One way out of the above predicament is to assume that the exchange rate fol-
lows a mean reverting non-linear process, generates simulated data using a Monte
Carlo experiment and examines the power (i.e. the ability to reject a false null) of
conventional unit-root tests. Taylor (2001) shows that under these circumstances there
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is substantial upward bias in the estimated half-life. He also shows that when the true
model is AR(1) but the data used in the unit-root test is time aggregated (e.g. the true
AR(1) model is monthly but the data is sampled annually), the half-life again increases
substantially.

Recent empirical work uses explicit non-linear models for the real exchange rate
(e.g. Obstfeld and Taylor 1997, Michael, Nobay and Peel 1997 – for the interwar
period). For example, Taylor, Peel and Sarno (2001) use the ESTAR model (outlined
in Chapter 4) on four bilateral exchange rates against the US dollar for the post-1973
period. A simplified version of the ESTAR model (assuming an AR(1) process) is

zt = (π0 + π1zt−1) + (π∗
1 zt−1)F (zt−j ) + εt

where F(zt−j ) = 1 − exp[−γ (zt−j − c)2/σ 2
z ]. F(zt−1) is U-shaped and bounded

between zero and unity. If zt−j = c, then F = 0, and the equation for zt becomes a
linear AR(1) model. As (zt−1 − c) → ∞, the disequilibrium is very large and F = 1,
so we have a different AR(1) model with the coefficient on zt−1 being (π1 + π∗

1 ). In the
model, π1 ≥ 0 is admissible, but we must have (π1 + π∗

1 ) < 0. For small deviations, zt

could follow a unit root (or even explosive) process but for large deviations, the process
is mean reverting. One can immediately see why conventional (linear) univariate unit-
root tests might give misleading inferences if the ESTAR model is the true model.
Somewhat paradoxically, non-rejection of a unit root, when the ESTAR model is true,
may indicate that the real exchange rate has been close to equilibrium. Not surprisingly,
it can be shown using MCS that the power of univariate tests is low when the alternative
of the ESTAR model is true, but panel unit-root tests do have more power (against the
false null of a unit root).

In non-linear models, the half-life after a shock to the real exchange rate depends
on the initial disequilibrium position and on the size of the shock. Using MCS, Taylor,
Peel and Sarno (2001) show that when shocks are small, the ESTAR model delivers
a half-life of around three to five years but for largest shocks, the half-life is below
three years. This goes some way to resolving the puzzle of the ‘glacial’ (Rogoff 1996)
half-life found in linear models of adjustment to PPP.

Over the years, there has been increased ‘technical firepower’ applied to testing PPP,
and this has undoubtedly nudged the evidence in favour of mean reversion and long-
run PPP. However, given index number problems and low power of unit-root tests,
most economists and policy makers would have taken the view that real exchange rates
were probably mean reverting even before the latest developments outlined above. The
policy problem has always been the persistent and substantial rises in the real exchange
rate that can mean devastation for industries in the tradeable’s sector, even though their
productivity and unit labour costs (in the domestic currency) are unchanged – coupled
with the fact that this situation may not be symmetric when the real exchange rate falls
and market share cannot be completely recaptured (i.e. hysteresis). What is certainly
true is that international goods markets appear to be far less integrated than national
goods markets – the latter is one reason often cited for joining a common currency area
like EMU, where ‘price transparency’ encourages intra-country trade and generates less
price dispersion because of increased competition.
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24.3 Covered-Interest Parity, CIP

There are two main types of ‘deal’ on the foreign exchange (FX) market. The first
is the ‘spot’ rate, which is the exchange rate quoted for immediate delivery of the
currency to the buyer (actually, delivery is two working days later). The second is the
forward rate, which is the guaranteed price agreed today at which the buyer will take
delivery of currency at some future period. You can hedge future receipts or payments
of foreign currency by using the forward market today to ‘lock in’ a known exchange
rate, for some future date. For most major currencies, highly traded forward maturities
are for one to six months ahead and, in exceptional circumstances, three to five years
ahead. The market-makers in the FX market are mainly the large banks, and they are
over-the-counter (OTC) trades.

The relationship between spot and forward rates can be derived as follows. Assume
that a UK Corporate Treasurer has a sum of money, £A, that he can invest in the
United Kingdom or the United States for one year, at which time, the returns must be
paid to his firm’s shareholders. We assume the forward transaction carries no default
risk. Therefore, for the treasurer to be indifferent as to where the money is invested, it
has to be the case that returns from investing in the United Kingdom equal the returns
in sterling from investing in the United States. The return from investing in the United
Kingdom will be A(1 + r) where r is the UK rate of interest. The return in sterling
from investing in the United States can be evaluated using the spot exchange rate,
S(£/$) and the forward exchange rate, F for one year ahead. Converting the A pounds
into dollars will give us A/S dollars that will increase to (A/S)(1 + r∗) dollars in one
year’s time if r∗ is the US rate of interest. If the forward rate for delivery in one year’s
time is F(£/$), then the UK Corporate Treasurer can ‘lock-in’ an exchange rate today
and receive, with certainty, £(A/S)(1 + r∗)F in one year’s time. Equalising returns,
we have

A(1 + r) = (A/S)(1 + r∗)F (7)

which becomes
F/S = (1 + r)/(1 + r∗) (8)

or
f − s = r − r∗ (9)

where f = ln F and s = ln S and we have used the approximation ln(1 + r) = r ,
where r is measured as a decimal. The above equations represent the ‘covered-interest
parity’ (CIP) condition, which is an equilibrium condition based on riskless arbitrage.
If CIP does not hold, then there are forces that will quickly restore equilibrium. For
example, if r > r∗ and f = s, there is a riskless arbitrage profit to be made. Today, US
residents would purchase UK T-Bills, pushing their price up and interest rates down.
US residents would also have to buy sterling spot and sell dollars forward today, hence,
spot sterling would appreciate (i.e. s falls) and f would rise, thus tending to restore
equality in (9). In fact, because the transactions are riskless, arbitrageurs ensure the
quoted forward rate equals s + r − r∗.



S E C T I O N 2 4 . 4 / U N C O V E R E D I N T E R E S T PA R I T Y, U I P 561

Using continuously compounded interest rates F = Se(r−r∗)T where T = time to
maturity (in years) of the forward contract. Hence, (9) then becomes an exact relation-
ship (rather than an approximation).

24.4 Uncovered Interest Parity, UIP

We can repeat the scenario in the previous section but this time assuming the UK
Corporate Treasurer is willing to make a forecast for the exchange rate that will prevail
in one year’s time Se

t+1, when she converts her dollar investment back into sterling. If
the Corporate Treasurer is risk neutral, she is concerned only with the expected return
from the two alternative investments. Hence, she will continue to invest in the United
States rather than the United Kingdom until expected returns are equalised.

Se
t+1/St = (1 + rt )/(1 + r∗

t ) (10)

se
t+1 − st = rt − r∗

t (11)

where st+1 = ln St+1. (Equation (11) is exact if continuously compounded rates are
used). Uncovered Interest Parity (UIP) can be interpreted as the condition for equilib-
rium on the capital account under the assumption of risk neutrality, since if UIP holds,
there is no incentive to switch speculative funds between the two countries. The UK
Corporate Treasurer knows that she is taking a risk because the value of the exchange
rate in one year’s time is uncertain; however, she ignores this risk when undertaking
her portfolio allocation decision.

Let us now relax the risk neutrality assumption by invoking the CAPM. For the
UK Treasurer, the risk-free rate is r , and the expected return on a ‘round trip’ risky
investment in the United States is

1 + EtRt+1(UK −→ US) ≡ Se
t+1(1 + r∗

t )/St (12)

From the CAPM,
EtRt+1 − rt = βi(EtRm,t+1 − rt ) (13)

where βi is the beta of the foreign investment (which depends on the covariance
between the market portfolio and the US portfolio). EtRm,t+1 − rt is the expected
return on the market portfolio of assets held in all the different currencies and assets
(i.e. the world portfolio). The RHS of (13) is a measure of the risk premium as given
by the CAPM. For the moment notice that, if we assume βi = 0, then (13) reduces to
UIP. The CAPM is a special case of the SDF model applied to domestic and foreign
asset returns (see Chapter 13).

Returning to the UIP equation (11), it is obvious that if this does not hold, there
is an incentive for risk-neutral speculators to switch funds between countries. If the
latter happens very quickly (or the threat of it happening is prevalent), then UIP will be
maintained at all times. Clearly, the UIP condition assumes that the market is dominated
by risk-neutral speculators and that neither risk-averse ‘rational speculators’ nor noise
traders have a powerful influence on market prices.
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24.5 Forward Rate Unbiasedness, FRU

From (9) and (11), if CIP and UIP hold simultaneously, the forward rate is an unbiased
predictor of the future spot rate

ft = Etst+1 (14)

Note that unbiasedness holds regardless of the expectations formation process for Es t+1

(i.e. one need not assume rational expectations) but it does require risk neutrality (so
that UIP holds). If any two of the relationships from the set UIP, CIP and forward rate
unbiasedness (FRU) are true, then the third will also be true.

Under risk neutrality, if FRU does not hold, there would be (risky) profitable oppor-
tunities available by speculating in the forward market. Whether (14) holds because
there is active speculation in the forward market or because CIP holds and all specu-
lation occurs in the spot market so that UIP holds, does not matter for the EMH. The
key feature is that there are no unexploited profitable opportunities.

24.6 Real Interest Rate Parity

If UIP and PPP hold, then

�se
t+1 = se

t+1 − st = (r − r∗)t (15)

�se
t+1 = �pe

t+1 − �p∗e
t+1 (16)

It follows that
rt − �pe

t+1 = r∗
t − �p∗e

t+1 (17)

and, hence,
PPP + UIP ⇒ Real Interest Rate Parity, RIP

Again, if any two conditions from the set of UIP, PPP and real interest parity (RIP)
are true, then the third is also true. Given relatively high information and adjustment
costs in goods markets, it is not too surprising that PPP only holds over a relatively
long time period (say, 5–10 years). Indeed, we know that in the short run, movements
in the real exchange rate are substantial. Hence, even under risk neutrality (i.e. UIP
holds), one might take the view that expected real interest rate parity would only hold
over a rather long horizon. Note that it is expected real interest rates that are equalised.
However, if over a run of years, agents are assumed not to make systematic errors
when forecasting inflation and exchange rate changes, then actual average real interest
rates would be equalised.

The RIP condition also goes under the name of the international Fisher hypothesis.
It may be considered as an arbitrage relationship based on the view that ‘capital’ (i.e.
investment funds) will flow between countries to equalise the expected real return in
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each country. One assumes that a representative basket of goods (with prices p and
p∗) in each country gives equality utility to the international investor (e.g. a ‘Harrods’
hamper’ in the United Kingdom is perceived as equivalent to a ‘Saks’ hamper’ from
New York). International investors then switch funds via purchases of financial assets
or by direct investment to where they yield the highest expected return in real terms.
This arbitrage leads to an equalisation of expected real rates of return. Note that the
investor’s returns accrue in terms of the consumption goods of one particular country.
Hence, if real returns are earned in the United Kingdom, say, but you wish to consume
US goods (e.g. a Saks’ hamper produced in the United States), you have to exchange
sterling for dollars at the end of the investment period. However, under RIP, price
competitiveness holds so you can obtain the same purchasing power (or set of goods)
in the United States as in the United Kingdom.

It is worth emphasising that all the relationships discussed above are equilibrium
conditions. There is no direction of causality implicit in any of these relationships.
Thus, in the case of UIP, we cannot say that interest differentials ‘cause’ expecta-
tions of changes in the exchange rate (or vice versa). Of course, we can expand our
model to include other equations where we explicitly assume some causal chain. For
example, suppose we assert (on the basis of economic theory and evidence about
government behaviour) that exogenous changes in the money supply by the central
bank ‘cause’ changes in domestic interest rates. Then, given the UIP condition, the
money supply also ‘causes’ a change in the expected rate of appreciation or deprecia-
tion in the exchange rate. The exogenous change in the money supply influences both
domestic interest rates and the expected change in the exchange rate. Here, ‘money’
is causal (by assumption) and the variables in the UIP relationship are jointly and
simultaneously determined.

In principle, when testing the validity of the three relationships UIP, CIP and FRU
or the three conditions UIP, PPP and RIP, we need only test any two (out of three),
since if any two hold, the third will also hold. However, because of data availability
and the different quality of data for the alternative variables, evidence on all three
relationships in each set has been investigated.

24.7 Summary

• If PPP holds, then price competitiveness and the real exchange rate are constant
over time. Also, goods cost the same whether they are purchased in the domestic
economy or in the foreign country.

• Evidence suggests that the real exchange rate moves in long swings, which implies
that price competitiveness is restored only after 5–10 years.

• If the forward rate is given by Ft = St (1 + rt )/(1 + r∗
t ), then no riskless arbitrage

profits can be made. This is the CIP condition.

• UIP implies that the expected rate of depreciation of the domestic currency equals
the interest differential between the domestic and foreign country.
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• CIP and UIP imply that the forward rate is an unbiased forecast of the future spot
rate (i.e. FRU holds).

• UIP and PPP imply that real interest rates are equalised across different countries.

Appendix: PPP and the Wage–Price Spiral

In the wages version of the expectations augmented Phillips curve, wage inflation,
�w, is determined by price inflation, �p, and excess demand (y − y). To this, we
can add the possibility that workers may push for a particular growth in real wages
χw on the basis of their perceptions of their productivity. There may also be other
forces f (e.g. minimum wage laws, socio-economic forces) that may influence wages.
It is often assumed that prices are determined by a mark-up on unit wage costs and
domestic import prices of raw materials. Hence, our wage–price model is

�w = χw + a1�p + a2(y − y) + f (A1)

�p = b1(�w − χp) + b2�pm (A2)

where χp is the trend growth rate of labour productivity. Imports are assumed to
be predominantly homogeneous tradeable goods (e.g. agricultural produce, oil, iron
ore, coal) or imported capital goods. Their foreign price is set in world markets and
converted into domestic import prices as follows.

�pm = �p∗ + �s (A3)

Substituting (A1) into (A2), we obtain

�p = (1 − a1b1)
−1[b1(χw − χp) + b2�pm + a2b1(y − y) + b1f ] (A4)

Equation (A4) is the price expectations augmented Phillips curve (PEAPC) that relates
price inflation to excess demand (y − y) and other variables. If we make the reasonable
assumptions that in the long run there is no money illusion (a1 = 1), that is, a vertical
long-run PEAPC, and there is homogeneity with respect to total costs (b1 + b2 = 1),
then (A4) becomes

�p = [b1/(1 − b1)][f + b1(χw − χp) + a2(y − y)] + �(p∗ + s) (A5)

Assume that the terms in square brackets are zero. Then the long-run secular influences
on domestic prices are p∗ and s, and PPP will hold, that is,

�p = �p∗ + �s (A6)

A rise in foreign prices p∗ or a depreciation of the domestic currency (i.e. s rises) leads
to a rise in domestic prices (via (A2)), which in turn leads to higher wage inflation
(via (A1)). The strength of the wage–price feedback, as wage rises lead to further price
rises, and so on, depends on the size of a1 and b1. Under the homogeneity assumptions
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a1 = 1 and b1 + b2 = 1, the strength of the feedback is such that PPP holds in the
long run. That is to say, a 1% depreciation of the domestic currency (or rise in foreign
prices) eventually leads to a 1% rise in the aggregate domestic price index, ceteris
paribus. Of course, PPP will usually not hold in the short run in this model either
because of money illusion a1 < 1 or less than full mark-up of costs b1 + b2 < 1 or
because of the influence of the terms in square brackets in equation (A5).





25
TEST ING CIP, U IP
AND FRU

Aims

• Show how tests of covered interest parity (CIP) require careful attention to data, as
covered arbitrage is (virtually) riskless.

• Examine tests of forward rate unbiasness (FRU) and uncovered interest parity (UIP)
both in a single-equation and VAR framework.

• Analyse how ‘Peso problems’ complicate the ‘interpretation’ of tests of FRU.

In this chapter, we discuss the methods used to test covered and uncovered interest
parity and the forward rate unbiasedness proposition. We find that there is strong
evidence in favour of covered interest parity for most maturities and time periods
studied. Tests of forward rate unbiasness, FRU (or uncovered interest parity, UIP)
generally find against the hypothesis and we explore some tests using survey data to
ascertain whether this is due to a failure of risk neutrality or RE. In this chapter, we
discuss both ‘single-equation tests’ of FRU over a one-period horizon and tests over
multi-period horizons using the VAR framework.

25.1 Covered Interest Arbitrage

Let us consider whether it is possible, in practice, to earn riskless profits via covered
interest arbitrage. In the real world, the distinction between bid and offer rates both for
interest rates and for forward and FX-spot rates is important when assessing potential
riskless profit opportunities. In the strictest definition, an arbitrage transaction requires
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no capital: the agent borrows the funds. Consider a UK investor who borrows £A in
the Euro-sterling market at an offer rate ro

£ . At the end of the period, the amount owing
will be

Z1 = A

(
1 + ro

£
D

365

)
(1)

where A = amount of borrowed (£), Z1 = amount owed at end of period (£), ro
£ =

offer rate (proportionate) on Euro-sterling loan, and D = number of days funds are
borrowed.

Now consider the following set of transactions. The investor takes his £A and
exchanges sterling for dollars at the bid rate, Sb (US dollars per pound sterling) in the
spot market. So Sb is the spot market bid for sterling. He invests these dollars in a
Euro-dollar deposit that pays the bid rate, rb

$ . He simultaneously switches these dollars
into sterling at the forward rate F o (on the offer side). All these transactions take place
instantaneously. The amount of sterling he will receive with certainty at the end of D

days is given by

Z2(UK → US ) = A · Sb[1 + rb
$ (D/360)]

F o
(2)

Note that the day count convention in the United States and followed in (2) is to
define ‘one year’ as 360 days. The percentage excess return ER to investing £A

in US assets and switching back into sterling on the forward market is therefore
given by

ER(£ → $) = 100

(
Z2 − Z1

A

)
= 100

[
Sb

F o

(
1 + rb

$

D

360

)
−

(
1 + ro

£
D

365

)]
(3)

Hence, if you arbitrage from sterling to US dollars using £M , then you will earn a
sterling profit of £(M · ER/100) with certainty at the end of the period. Looking at the
covered arbitrage transaction from the point of view of a US resident, we can consider
the covered arbitrage return from moving out of dollars into sterling assets at the spot
rate, investing in the United Kingdom and switching back into dollars at the current
forward rate. This must be compared with the cost of borrowing in dollar-denominated
assets in the United States. A similar formula to that given in (3) ensues:

ER($ → £) = 100

[
F b

So

(
1 + rb

£
D

365

)
−

(
1 + ro

$

D

360

)]
(4)

Given riskless arbitrage, one would expect that ER(£ → $) and ER($ → £) are both
zero. Covered arbitrage involves no ‘price risk’, the only risk is credit risk due to
failure of the counterparty to provide either the interest income or deliver the forward
currency. If we are to adequately test the CIP hypothesis, we need to obtain simulta-
neous ‘dealing’ quotes on the spot and forward rates and the two interest rates. There
have been many studies looking at possible profitable opportunities due to covered
interest arbitrage but not all use simultaneous dealing rates. However, Taylor (1987,
1989a) has looked at the CIP relationship in periods of ‘tranquillity’ and ‘turbulence’
in the foreign exchange market and he uses simultaneous quotes provided by foreign
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exchange and money market brokers. We will, therefore, focus on this study. The rates
used by Taylor represent firm offers to buy and sell and as such they ought to represent
the best rates (highest bid, lowest offer) available in the market, at any point in time.
In contrast, rates quoted on the Reuters screen are normally ‘for information only’ and
may not be actual trading rates. Taylor uses Eurocurrency rates and these have very
little credit counterparty risk and, therefore, differ only in respect of their currency of
denomination.

Taylor also considers brokerage fees and recalculates the above returns under the
assumption that brokerage fees on Eurocurrency transactions represent about 1/50th
of 1%. For example, the interest cost in borrowing Euro-dollars taking account of
brokerage charges is ro

$ + 1/50, while the rate earned on any Euro-dollar deposits is
reduced by a similar amount, rb

$ − 1/50.
He estimates that brokerage fees on spot and forward transactions are so small

that they can be ignored. In his 1987 study, Taylor looked at data collected every
10 minutes on the trading days of the 11th, 12th and 13th November 1985. This
yielded 3500 potential arbitrage opportunities, and he found that after allowing for
brokerage costs, there were no profitable covered arbitrage opportunities. The results,
therefore, strongly support covered interest parity and the efficient markets hypothesis.
In a second study, Taylor (1989a) re-examined the same covered interest arbitrage
relationships but this time in periods of ‘market turbulence’ in the FOREX market.
The historic periods chosen were the 1967 devaluation of sterling in November of that
year, the 1972 flotation of sterling in June of that year as well as some periods around
the General Elections in both the United Kingdom and the United States in the 1980s.
The covered interest arbitrage returns were calculated for maturities of 1, 2, 3, 6 and
12 months. The general thrust of the results is as follows.

• In periods of ‘turbulence’, there were some profitable opportunities to be made.

• The size of the profits tend to be smaller in the floating rate period than in the fixed
rate period of the 1960s and became smaller as participants gained experience of
floating rates, post-1972.

• The frequency, size and persistence over successive time periods of profitable arbi-
trage opportunities increase as the time to maturity of the contract is lengthened.
Hence, there are larger and more frequent profit opportunities at a 12-month rather
than a one-month forward transaction.

Let us take a specific example. In November 1967, a £1 million arbitrage into dollars
would have produced only £473 profit, but just after the devaluation of sterling (i.e. a
period of turbulence), there were sizeable riskless returns of about £4000 and £8000
on riskless arbitrage at the three-month and six-month maturities respectively. Capital
controls (on UK sterling outflows) that were in force in the 1960s cannot account for
these results since Euro-sterling deposits/loans were not subject to such controls. In
periods of turbulence, returns sometimes persist over a number of days at the long end
of the maturity spectrum, while at the short end of the maturity spectrum, profits are
much smaller.
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The reason for small yet persistent returns over a one-month horizon may well be
due to the fact that the opportunity cost of traders’ time is positive. There may not
be enough traders in the market who think it is worth their time and effort to take
advantage of very small profitable opportunities. Given the constraint of how much
time they can devote to one particular segment of the market, they may prefer to
execute trades with larger expected returns, even if the latter are risky (e.g. speculation
on the future spot rate). It may even be more worthwhile for them to fill in their
dealers’ pads and communicate with other traders rather than take advantage of very
small profitable opportunities. The riskless returns available at the longer end of the
market are quite large and represent a clear violation of market efficiency. Taylor puts
forward several hypotheses as to why this may occur, all of which are basically due
to limitations on the credit positions dealers can take in the foreign exchange market.

Market makers are generally not free to deal in any amount with any counterparty
that they choose. Usually, the management of a bank will stipulate which other banks
it is willing to trade with (i.e. take on credit risk), together with the maximum size of
liabilities that the management of the bank consider it is prudent to have outstanding
with any other bank, at any point in time. Hence, there is a kind of liquidity constraint
on covered arbitrage. Once the credit lines are ‘full’, no further business can be con-
ducted with that bank (until outstanding liabilities have been unwound). This tends to
create a preference for covered arbitrage at the short end of the market, since funds
are ‘freed up’ relatively frequently.

Banks are also often unwilling to allow their foreign exchange dealers to borrow
substantial amounts from other banks at long maturities (e.g. one year). For example,
consider a UK foreign exchange dealer who borrows a large amount of dollars from a
New York bank for covered arbitrage transactions over a one-year horizon. If the UK
bank wants dollar loans from this same New York bank for its business customers, it
may be thwarted from doing so because it has reached its credit limits. If so, foreign
exchange dealers will retain a certain degree of slackness in their credit limits with other
banks, and this may limit covered arbitrage at the longer end of the maturity spectrum.
Another reason for self-imposed credit limits on dealers is that central banks often
require periodic financial statements from banks, and the central bank may consider the
short-term gearing position of the commercial bank when assessing its ‘soundness’. If
foreign exchange dealers have borrowed a large amount of funds for covered arbitrage
transactions, this will show up in higher short-term gearing.

Taylor notes that some of the larger banks are willing to pay up to 1/16th of 1% above
the market rate for Euro-dollar deposits as long as these are in blocks of over $100 million.
Hence, Taylor recognises that there may be some mismeasurement in the Euro-dollar rates
he uses and, hence, profitable opportunities may be more or less than found in his study.

Taylor finds relatively large covered arbitrage returns in the fixed exchange rate
period of the 1960s; however, in the floating exchange rate period, these were far
less frequent and much smaller. For example, in Table 1, we see that in 1987 there
were effectively no profitable opportunities in the one-month maturities from sterling
to dollars. However, at the one-year maturity, there are riskless arbitrage opportunities
from dollars into sterling on both the Monday and Tuesday. Here, $1 million would
yield a profit of around $1500 at the one-year maturity.
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Table 1 Covered arbitrage: percentage excess returns (1987)

1 Month 6 Month 1 Year

(£ → $) ($ → £) (£ →$) ($ → £) (£ → $) ($ → £)

Monday −0.043 −0.016 −0.097 −0.035 −0.117 −0.162
8th June 1987–12 noon
Tuesday −0.075 −0.064 −0.247 +0.032 −0.192 0.150
9th June 1987–12 noon

Source: Data summary from Taylor 1989a, Table 3.

Taylor’s study does not take account of any differential taxation on interest receipts
from domestic and foreign investments, and this may also account for the existence
of persistent profitable covered arbitrage at maturities of one year. It is unlikely that
market participants are influenced by the perceived relative risks of default between,
say, Euro-sterling and Euro-dollar investments, and hence this is unlikely to account
for arbitrage profits even at the one-year maturities. Note that one cannot adequately
test CIP between assets with different credit risk characteristics (either ‘market price
risk’ or credit risk). For example, studies that compare covered transactions between
Euro-sterling deposits and US corporate bonds are unlikely to be very informative
about forward market efficiency and CIP.

Note that CIP can hold even if no trades actually take place. It is the threat of
riskless arbitrage that ensures CIP. This is in part reflected in the fact that if you go
to a bank for a forward quote, it calculates the forward rate it will offer you by using
the CIP relationship. That is to say it checks on the values of r£, r$ and St and then
quotes you a rate Ft calculated using

Ft = St

(1 + r$)

(1 + r£)
(5)

where we have ignored the bid-offer distinction. It would clearly be irrational or down
right stupid if a bank quoted a rate for Ft different from that given by the CIP equation.
Looking at potentially profitable trades using data on which market makers may have
undertaken actual trades is clearly a useful way of testing CIP. However, many early
studies of CIP run the regression

(f − s)t = a + b(r$ − r£)t + εt (6)

The null of CIP is H0 : a = 0, b = 1, and if there are transactions costs, these may
show up as a �= 0. Since (r$ − r£)t is endogenous then 2SLS or IV rather than OLS
should be used when estimating (6). However, these regression tests of CIP have a
number of acute problems. The regressions generally do not distinguish between bid
and offer rates, do not explicitly (or carefully) take account of transactions costs and
often the rates are not sampled contemporaneously. Also, even if you do not reject the
null a = 0, b = 1, this merely implies that CIP holds on average, but this does not
imply that it holds continuously. For these reasons, we do not report these regression
tests.
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Clinton (1988) points out that deviations from CIP should be no greater than the
minimum transactions costs in the two deposit markets and the foreign exchange swap
market (i.e. the practical implementation of a forward transaction – see Cuthbertson
and Nitzsche 2001b). This neutral band he estimates as +0.06% p.a. from parity over
the 1985–1986 period.

Balke and Wohar (1998) and Peel and Taylor (2002) examine the dynamic behaviour
of deviations from CIP using non-linear TAR models. Peel and Taylor (2002) use weekly
inter-war data and estimate a neutral bandwidth of 50 basis points (on an annual basis)
and some moderate persistence outside of the bands. Balke and Wohar (1998) for United
States–United Kingdom, January 1974–September 1993 find (asymmetric) mean rever-
sion outside the neutral band, which also has less persistence than inside the band.
Overall, the evidence suggests that for the recent data periods, arbitrage profits from CIP
seem to be relatively infrequent or small.

25.2 Uncovered Interest Parity

The actual (ex-post) return to a domestic investor (e.g. ‘Euro resident’) investing ¤1 in
a foreign risk-free (US) bond at an annual interest rate r∗ and converting the proceeds
back to domestic currency one year later is (1 + r∗)(St+1/St ), where S = domestic
price of one unit of foreign exchange (e.g. ¤ per $). When investing in the United
States, the excess return for a domestic investor (over a risk-free investment in domestic
assets) is

1 + Rt+1 = (1 + r∗)St+1

(1 + r)St

ln(1 + Rt+1) ≈ Rt+1 = (r∗ + �st+1) − r (7)

using ln(1 + x) ≈ x and ln St = st . The return to foreign investment is the foreign
interest rate plus the expected appreciation of the foreign currency. Ex-ante, the
(approximate) expected excess return to foreign investment is

EtRt+1 = (r∗ + Et�st+1) − r (8)

where Et�st+1 ≡ Etst+1 − st and st+1 is the only stochastic variable. Note that �st+1 >

0, that is, a rise in s implies an appreciation of the foreign currency (a depreciation in
the domestic currency). The investment in the foreign asset is risky because the future
foreign currency receipts are not ‘covered’ in the forward market. If investors are
risk neutral and care only about expected returns, then arbitrage ensures that expected
excess returns EtRt+1 = 0 and we have the UIP condition

r − r∗ = Et�st+1 (9)

UIP implies that you cannot make money on average by switching funds between, say,
the United States and Europe. You will win some ‘bets’, but these will be matched by
bets that make losses, and the net gains average out to zero. Consider now a US resident
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investing in ‘Euroland’. To the US resident, the foreign interest rate is the Euro-rate,
and let r∗ = 6% with domestic US rates r = 2%. Then if UIP holds, the extra return in
Euros the US investor makes (relative to US interest rates) will be offset (on average)
by a depreciation of 4% in the Euro against the USD. Put another way, high interest
rates in a foreign country (i.e. in Europe relative to the US) should not imply high
returns to foreign investment but should signal an equal expected depreciation of the
foreign currency.

Certainly, for high-inflation countries (e.g. South America in the 1980s, South East
Asia in the late 1990s, Eastern European economies in the early 1990s) the broad
predictions of the unconditional UIP relationship were borne out. Countries with rel-
atively high interest rates also had depreciating currencies. The UIP relationship also
broadly holds unconditionally (i.e. taking averages over many years) for moderate infla-
tion countries such as the United Kingdom, Germany, Switzerland and Japan (Engel
1996). However, the latter is a very weak test of UIP since what is important is a test
involving conditional expectations, that is, whether there are temporary periods when
profits can be made by switching, based on known interest differentials at a point in
time. A suitable regression is

�st+1 = α + β(r − r∗)t + γ�t + εt+1 (10)

where �t are any variables known at time t . If UIP + RE holds, we expect α = γ = 0,
β = 1 and εt+1 to be serially uncorrelated. It is generally found that β �= +1 and
in fact β is usually negative and of the order of −1.0 to −4.0 for various cur-
rencies (when the USD is the numeraire currency), time periods and different hori-
zons for �st+1 (e.g. monthly, quarterly, annual). As we shall see below, (10) is
the FRU equation, since under CIP, we can replace (r − r∗)t with the forward pre-
mium fp t .

Empirically, β < 0, and this implies that in periods when the interest differential
in favour of the foreign country is high, the foreign currency tends to appreciate,
(�st+1 > 0) giving a positive dollar return to the US investor who borrows in dollars
and lends in foreign currency. Hence, UIP is rejected. However, the R-squared in
these annual regressions is usually quite low (i.e. of the order of 0.035) so such ‘bets’
are highly risky, although they do ‘pay off’ (in terms of positive returns) over a run
of ‘bets’.

Note that the above regression (10) with β < 0 does not imply that you make money
on average by holding bank deposits in countries that simply have interest rates that
are higher than in the United States (e.g. highly risky countries like Russia, Indonesia,
Brazil, Argentina and Turkey in the 1990s). This is because the ‘intercept’ may offset
the impact of the interest differential term. Equation (10) says you make money by
holding bank deposits in countries that have higher interest rates than normal, relative to
the United States (i.e. the regression Y = α̂ + β̂X can be written (Y − Y ) = β̂(X − X),
and it is X − X = (r − r) − (r∗ − r∗) that wholly determines movements in Y around
its mean value). Under RE and risk neutrality, the above results are inexplicable. Of
course, if we believe that countries with above-average interest rates are countries
that also tend to have monetary instability, political unrest, a weak and non-diversified
export base (e.g. only a few different agricultural exports), then the high expected return
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to investing in these countries may be a payment for this systematic risk – however,
we still have to measure this risk, an issue we return to in later chapters (unfortunately
with not much success).

Note that, in general, UIP does not imply that the exchange rate is a martingale and,
therefore, unforecastable. UIP only implies the spot rate is a martingale (Etst+1 = st ) if
relative interest rates r∗

t − rt are zero in all time periods. Clearly, this is nonsense, since
relative interest rates do vary over time. Also, studies that demonstrate cointegration
amongst either a set of exchange rates or exchange rates and other macro-variables
do imply that exchange rates are predictable (Granger–Engle theorem) – but this does
not necessarily violate market efficiency. As we noted above, UIP implies that by
observing today’s relative interest rates, we can predict changes in the spot rate, but
this does not imply we earn excess returns. (Since EtRt+1 = 0, under UIP.)

Early empirical work tested equation (10) by regressing �st+1 − (rt − r∗
t ) on a wide

variety of economic variables available at time t or earlier. Frankel (1979) found that
for the DM/$ rate on quarterly data over the 1970s, all additional variables tried were
insignificant. Haache and Townend (1981), using monthly data on the sterling effective
rate (July 1972–February 1980), found that relative interest rates have unit coefficient
but lagged values of the change in the exchange rate and a measure of credit expansion
are also significant. (Similar results were obtained for the £/$ rate.) Cumby and Obstfeld
(1981), using weekly data (July 1974–June 1978) on six major currencies against the
dollar, also found that lagged values of the dependent variable �st+1 − (rt − r∗

t ) of
up to 16 weeks are statistically significant for six bilateral currencies against the USD.
Hence, UIP is rejected.

If we accept CIP, then the above regressions for UIP are equivalent to regressing
�st+1 − fp t ≡ st+1 − ft on known variables at time t – this is FRU, which is discussed
in the next section.

25.3 Forward Rate Unbiasedness, FRU
Using covered interest parity rt − r∗

t = ft − st in (9) and rational expectations st+1 =
Etst+1 + εt+1, we obtain forward rate unbiasedness , FRU:

st+1 = ft + εt+1 or, Et�st+1 = fp t (11)

where fp t = (f − s)t is the forward premium. FRU + RE is usually tested in an
equation of the form

EtRt+1 = α + δfp t + γ�t + εt+1 (12)

or, equivalently,
Et�st+1 = α + βfp t + γ�t + εt+1 (13a)

where �t are any variables known at time t . FRU implies α = δ = γ = 0 and β = 1,
while RE implies Et(εt+1|�t) = 0, which includes the assumption that εt+1 is serially
uncorrelated. Hence, FRU + RE implies

Et�st+1 = fp t (13b)
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Note that all of the previous equations and the next could be equally represented for
the forward rate for any maturity k, so that (13b) becomes

Et�st+k = fpk
t

where Et�st+k ≡ Etst+k − st is the k-period change in the exchange rate and fpk
t =

f k
t − st is the forward premium for currency delivery in the contract k periods from

today. To simplify the notation, we consider only the ‘one-period’ ahead case wherever
possible.

Simple Risk Premium

We can define the risk premium as

rp t ≡ ft − Etst+1 = fp t − Et�st+1 (14)

The forward premium now consists of two parts – the expected depreciation and the
risk premium. Under risk neutrality, ft = Etst+1, so the expected profit from forward
market speculation is zero. But if ft > Etst+1, then the investor has to pay a premium
(above its expected price Etst+1) to buy the foreign currency in the forward mar-
ket – this is a payment for incurring risk and allows the dealer providing the foreign
currency to earn an expected profit. Risk neutrality implies rp t = 0. Note that rp t is a
definition of the risk premium, but we have not associated it with any ‘fundamental’
economic variables – we do this later. Assuming CIP, the above can also be written

Return to foreign investment R = (r∗
t + Et�st+1) − rt + rp t = 0

Arbitrage by borrowing the domestic currency at rt and investing in foreign assets now
requires an additional payment of rp t before arbitrage ceases.

Let us examine how a time-varying risk premium could lead to bias and inconsis-
tency in OLS estimates of β. Rearranging (14) and assuming RE, the regression to test
FRU is now

Et�st+1 = α + βfp t + γ�t + (εt+1 − rp t ) (15)

If rp t and fp t in equation (15) are correlated, then the OLS estimator is inconsis-
tent. This is the standard ‘errors in variables’ problem in econometrics. ‘Correct’ (i.e.
asymptotically unbiased) estimates may be obtained using an instrumental variables
technique, with the covariance matrix estimated using GMM if heteroscedasticity is
present.

Time-Series Properties

Empirically, the spot rate is a non-stationary I(1) variable, and hence �st+1 is I(0).
The RE forecast error must be stationary I(0) – if it were not, it would be forecastable
from past information. It follows that under FRU + RE, the forward premium must be
stationary and the cointegrating vector between st+1 and ft should be {1, −1}. Note that
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FRU + RE implies the cointegrating vector {1, −1}, but a finding of cointegration per
se between ft and st+1 does not necessarily imply FRU + RE. To see this, rearrange
�st+1 = α + β(f − s)t + εt+1, when β �= 1 so the null of FRU + RE is not true.

(st+1 − ft ) = α + (β − 1)(f − s)t + εt+1 (16)

If (f − s)t and εt+1 are stationary, then st+1 − ft must be stationary and, hence, co-
integrated. But equation (16) holds for β �= 1, so cointegration does not imply FRU.

There have been hundreds (if not thousands) of stationarity/cointegration tests on
spot and forward rates both as single equations and where the forward-spot relationships
for different currencies (usually against the USD) are stacked in a VAR-ECM, Johansen
system and tests for multiple cointegrating {1,−1} vectors undertaken – see Engel
(1996) for a summary. The results of these tests are not unambiguous. Some studies
find fp t is not stationary, particularly using the univariate test, while others do reject
non-stationarity – particularly those employing panel unit-root tests where forward pre-
mia at, say, 1-, 3-, 6-, and 12-month maturities appear in a Johansen VECM system
(e.g. Barkoulas, Baum and Chakraborty 2003). In fact, fp t is highly persistent with a
‘near’ unit root. Generally, (st+1 − βft ) is found to be I(0), so st+1 and ft are cointe-
grated, but the cointegrating vector is not always found to be {1, −1}. Those who are
familiar with the myriad of cointegration and stationarity tests will be aware that such
tests in small samples can be rather sensitive to the specific test statistics employed,
and the power of such tests against ‘reasonable’ alternative hypotheses is often very
low (although better for panel unit-root tests). This author finds it hard to believe that
the forward premium is non-stationary, since it is hard to believe that f and s would
eventually drift infinitely far apart. Of course, if we abandon FRU + RE and incor-
porate a risk premium, then fp t could be non-stationary if rp t is also non-stationary
(see equation 15) – but the latter seems equally implausible, based on introspection
(but see Lewis and Evans 1999). The only sensible way forward is to concentrate on
equations like (13) and use MCS or bootstrapping when testing β = 1, to obtain the
empirical distribution of β. This can be done under alternative views about stationarity
or otherwise of fp t .

Tests

The finding of a negative β in (13a) is a robust result across many time periods from
the 1920s to the present, across many currencies (usually against the USD) and for
alternative horizons for the forward rate (e.g. one-month, three-months, one-year). The
average value across many studies is about minus one, with values usually in the
range −0.8 to −4.1. This is the forward premium puzzle. These results apply in single-
equation studies (e.g. Fama 1984, Meese and Rogoff 1983, McCallum 1994), when
several exchange rates are included (using a SURE estimator) and when a bivariate
VAR with z = {�st+1, fp t} is used (Baillie and McMahon 1989, Bekaert and Hodrick
1993). Flood and Rose (1996) find that under fixed exchange rates, β is positive
(= 0.58) but significantly less than one, while floating exchange rate countries have
β significantly less than one. Bekaert and Hodrick (1992) find that (st+1 − ft ) is
predictable using the forward premium, and the degree of predictability increases with
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the (forward rate) horizon, reaching an R-squared of 30–40% at the one-year horizon.
This refutes FRU + RE.

Note that if the spot rate follows a random walk, then the estimated value of β will
be close to zero regardless of whether the market is efficient. Also, if the spot rate is
a random walk, then ft = Etst+1 = st , the forward premium is zero and susceptible
to measurement errors in the regression (13). Hence, when the spot rate is close to a
random walk, there will be difficulties in obtaining precise estimates of β. To mitigate
this problem, we could regress (st+1 − ft ) on �t – but empirically the coefficient on
�t is found to be non-zero (using GMM standard errors) for most currencies, again
refuting FRU (Hansen and Hodrick 1980).

The forward rate ft and st+1, which are both I (1), are usually found to be co-
integrated, but this does not imply FRU, that is, β = 1 (e.g. McFarland, McMahon
and Ngama 1994), neither does refutation of FRU imply that forward premia do not
help in forecasting future changes in the exchange rate. Given cointegration between ft

and st , the Engle–Granger theorem implies that the term structure of forward premia
(i.e. f k

t − st for forward horizons k = 1, 2, 3 . . .) should help predict changes in spot
rate �kst+k (over horizons k) and Clarida and Taylor (1997) demonstrate this in a
Johansen VECM framework. Sarno and Valente (2004a,b) extend this approach by
including a three-state Markov switching process for the parameters of the VECM and
the covariance matrix of error terms. This is an MS-VECM model – see Chapter 4. The
one-step ahead ‘predictive densities’ for the weekly change in each of eight bilateral
spot-USD exchange rates (1985–2003) for the MS-VECM model are closer to the
actual realisations of the change in spot rates than the ‘predictive densities’ for the
linear-VECM or random walk models. (No other forecast diagnostics such as outside
sample sign tests and MAE and RMSE for the competing models are given.) As noted
in Chapter 4, we know that the conditional distribution of the change in exchange
rates is non-normal so it is not too surprising that a model that allows non-normality
is an improvement on models that do not have this property. Note also that these
‘cointegration’ results, while interesting as a relatively parsimonious representation of
the dynamics, have little direct bearing on the validity or otherwise of FRU.

Jensen Inequality Terms (JIT)

It is worth noting that FRU + RE is slightly different if we consider real returns
(profits) to forward market speculation

Et

[
Ft − St+1

P $
t+1

]
= 0 (17)

where P $ is the dollar price level for US consumers (and F is measured as dollars per
unit of foreign currency). Assuming conditional lognormality, (17) becomes

Etst+1 = ft − 0.5 vart (st+1) + covt (st+1, p
$
t+1) (18)

The last two terms are Jensen inequality terms (JIT). So, even for a risk-neutral US
investor, FRU does not hold when we incorporate the JIT. It also follows that risk
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neutrality does not imply UIP unless we again ignore the JIT terms. If we ignore
the covariance term, which empirically is very small, one could estimate (18) using
a GARCH-in-mean model for vart (st+1). Bekaert and Hodrick (1993) and Baillie and
Bollerslev (1989) have found that the coefficient on vart (st+1) is not statistically dif-
ferent from zero and omitting it from (18) does not affect estimates of β which remain
negative. In general, JIT in the FX market are thought to be small and can be ignored
in practice.

FRU: RE Versus Risk

The rejection of FRU + RE could be due to a failure of rational expectations or of risk
neutrality. If the estimate of β is −1, Et�st+1 = (−1)fp t and sd(Et�st+1) = sd(fp t ).
Using rp t ≡ fp t − Et�st+1 and the RE assumption that expectations are independent
of information at time t (i.e. fp t ), then

sd(rp t ) = 2 sd(Et�st+1) and sd(ft − Etst+1) = 2 sd(Et�st+1)

Given that �st+1 is highly volatile, this implies, that a highly volatile risk premium is
required to explain the forward premium puzzle. Also, the predictable component of
the excess return has a greater variation than the expected depreciation itself. These
two ‘stylised facts’ become important when assessing the validity of certain general
equilibrium models of the forward market, which we undertake in later chapters. It can
also be shown that, given the following two regressions,

st+1 − st = α + β(ft − st ) + εt+1

ft − st+1 = γ + δ(ft − st ) + vt+1

and using (14),

β = var(Et�st+1) + cov(rp t , Et�st+1)

var(rp t ) + var(Et�st+1) + 2 cov(rp t , Et�st+1)

δ = var(rp t ) + cov(rp t , Et�st+1)

var(rp t ) + var(Et�st+1) + 2 cov(rp t , Et�st+1)

δ − β = [var(rp t ) − var(Et�st+1)]/ var(fp t )

Note that, given the estimated β is negative, this implies that the risk premium and the
expected depreciation must be negatively correlated. Following Fama (1984), if rp t is
highly variable, then the forward premium will be a poor predictor of the expected
change in the spot rate. A positive value for δ − β indicates that the variance of the
risk premium is greater than the variance of expectations about Et�st+1, and δ − β

provides a quantitative guide to the relative importance of the time variation in the risk
premium under the maintained hypothesis that RE holds.

Studies (e.g. Fama 1984, Koedijk and Ott 1987) usually find that δ − β > 0 with
β < 0 and δ > 0. Fama (1984) finds a range for δ − β of 1.6 (for Japanese yen) to
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4.2 (for the Belgian franc). Hence, under the null of RE, the FRU proposition fails
because the (linear additive) risk premium is time varying.

It is worth repeating that a limitation of the above analysis is that the potentially
time-varying risk premium rp t is assumed to depend linearly only on the time-varying
forward premium fp t and is not based on any well-founded economic theory. Also, the
results assume that RE holds so that any violation of the null hypothesis is attributed
to a time-varying risk premium. What we require is a method that allows the failure of
FRU to be apportioned between a violation of RE and variations in the risk premium.

Survey Data

By using survey data on agents’ expectations of the future spot rate, Frankel and Froot
(1987), Froot and Frankel 1989 show how one can apportion the rejection of the null
of FRU, between that due to a failure of RE and that due to a failure of risk neutrality.
Consider the usual forward premium regression

�st+1 = α + βfp t + εt+1 (19)

where εt+1 = Etst+1 − st+1 ≡ Et�st+1 − �st+1 is the RE forecast error. The OLS
regression coefficient β is given by

β = cov(�st+1, fp t )/ var(fp t ) (20)

It is easy to show by substituting for �st+1 from (19) in (20) that

β = 1 − βRE − βRN (21)

where

βRE = − cov(εt+1, fp t )/ var(fp t ) (22)

βRN = 1 − cov(Et�st+1, fp t )/ var(fp t ) (23)

Under the assumption of RE, the forecast error εt+1 is independent of the information
set �t and, hence, fp t so that βRE = 0. Also, regardless of how expectations are formed
under FRU, the expected rate of appreciation Et�st+1 will equal the forward premium
fp t so that cov(Et�st+1, fp t ) = 1 and, hence, βRN = 0 (i.e. risk neutrality holds). If
RE and risk neutrality hold, then βRE and βRN = 0 and, hence, from (21), β = 1, as
one would expect.

If we have survey data on Etst+1, we can construct a data series for εt+1 =
st+1 − Etst+1 along with the sample analogues of βRE and βRN or equivalently run
the regressions

Etst+1 − st = α + βRE (ft − st ) + ωt+1

ft − st+1 = γ + βRN (ft − st ) + vt+1

These equations provide evidence on the importance of the breakdown of either RE or
risk neutrality in producing the result β �= 1.
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Let us remind ourselves of some problems that arise in using survey data. The first
question is whether the data is qualitative (e.g. respondents answer ‘up’, ‘down’, or
‘same’) or quantitative (e.g. respondents answer ‘my forecast of the exchange rate
for sterling in 91 days is 1.4 Euro/£’). If qualitative data is used, then different meth-
ods used to transform the data generally give different quantitative results for Etst+1.
Hence, we can have different sets of quantitative data purporting to measure the same
expectations. Also, our quantitative data may be either for individuals or for aver-
ages (or median value) over a group of individuals. In principle, RE applies to an
individual’s expectations and not to an average taken over a set of individuals.

There is also the question of whether the respondents are likely to give correct,
thoughtful answers and whether the individuals surveyed remain as a fixed cohort
or change over time. Also, when dealing with the FRU proposition, the individual’s
estimate of Etst+1 must be taken at the same time as ft (and st ). Finally, there is the
problem of whether the horizon of the survey data (on Etst+1) exactly matches the
out-turn figure for st+1. These problems bedevil attempts to draw very firm conclusions
from studies on the basis of survey data. Different conclusions by different researchers
may be due to such ‘quality differences’ in the survey data used.

Let us return to the study by Frankel and Froot (1986, 1987), Froot and Frankel (1989)
who use quantitative survey data on US respondents. They calculate βRE and βRN and
using (21), they find that β �= 1 (in fact, β is negative) and that this is primarily attributed
to a failure of RE (i.e. βRE is non-zero). This broad conclusion holds over five (main)
currencies and over horizons of one, three and six months, for data from the mid-1970s
and 1980s. In fact, βRE is usually not statistically different from unity, although Bekaert
and Hodrick (1992) notes that the R-squared in this regression is far from unity, as it should
be if risk factors are inconsequential. MacDonald and Torrance (1988), using quantitative
survey data on UK respondents in 1985/86, also obtain similar results to Frankel–Froot.

Taylor (1989b) uses qualitative survey data on UK respondents, which he transforms
into quantitative data for the period 1981–1985. He finds the opposite of the above results,
namely that the failure of β �= 1 is mainly due to βRN �= 0. However, this evidence is
fairly weak since for three out of the four exchange rates studied, βRE = βRN = 0 and in
only one case is βRN > 0. In fact, βRN = 1.4(t = 0.15) for the sterling effective rate, but
it is difficult to interpret results using the effective rate since this is a ‘basket’ of currencies
(each of which has a set of bilateral forward rates). On balance, the evidence based on
regressions using survey data (in particular, see Froot and Frankel (1989)) indicate that
the FRU puzzle may be mainly due to systematic forecast errors but there is also some
variation in the risk premium.

The failure of FRU may be due to the fact that agents are not (Muth) rational and,
therefore, do make systematic forecast errors. However, it could equally be due to the
fact that agents take time to learn about new exchange rate processes and while they
are learning, they make systematic errors because they do not know the true model. This
learning could persist for some time if either the fundamentals affecting the exchange rate
are continually changing or the influence of noise traders on the market varies over time.
Alternatively, there may also be a ‘Peso problem’, and a failure of FRU may occur even
when agents are rational, because the econometrician does not measure these expectations
correctly, in a specific finite sample – these issues are discussed in the following section.
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25.4 Testing FRU: VAR Methodology
We can test FRU over multi-period horizons by invoking RE and replacing Et�st+m

with the out-turn value �st+m and regressing it on the forward premium where f
(m)
t is

the forward rate for horizon m. However, in this section, we use the VAR methodology
to give an explicit forecast of Et�st+m. We have discussed single-equation tests of FRU
and we now wish to ‘extend’ these tests for forward rates over multi-period horizons.
Consider

�st+1 = a11�st + a12fp t + w1t+1 (24)

In the one-period case when the forward rate refers to delivery at time t + 1, then
FRU implies H0 : a11 = 0, a12 = 1. Note that the EMH also implies that the forecast
error is independent of the limited information set �t = (�st , fp t )

�st+1 − Et�st+1 = a11�st + (a12 − 1)(f − s)t + w1t+1 (25)

where Et�st+1 = fp t under the null. In the one-step ahead case, we require only
equation (24) to test FRU. However, we now consider a two-step ahead prediction
(which is easily generalised).

Two-period case

Suppose we have quarterly data but we are considering forward rates ft for six months
ahead, hence FRU is

Etst+2 − st = Et�2st+2 = fp t (26)

The forecast two periods ahead is

Et�2st+2 ≡ Et�st+2 + Et�st+1 (27)

Leading (24) one-period forward, we see that to forecast Et�st+2, we require a forecast
of Et(fp t+1). Hence, we require an equation to determine fp, which we take to be

fp t+1 = a21�st + a22fp t + w2t+1 (28)

Equations (24) and (28) are a simple bivariate vector autoregression VAR. If (st , ft )

are I(1) variables but (st , ft ) have a cointegrating parameter (1,–1), then fp t = ft − st

is I(0) and all the variables in the VAR are stationary. Such stationary variables may
be represented by a unique infinite moving average (vector) process, which may be
inverted to yield an autoregressive process.

The FRU hypothesis (26) implies a set of non-linear cross-equation restrictions
amongst the parameters of the VAR, and these restrictions ensure that the two-
period forecast error implicit in (26) is independent of information �t = (�st , fp t ).
Using (27), (24) and (28),

Et�2st+2 = Et�st+2 + Et�st+1

= a11(a11�st + a12fp t ) + a12(a21�st + a22fp t ) + (a11�st + a12fp t ) (29)
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Collecting terms and equating the resulting expression for Et�2st+2 with fp t

Et�2st+2 = θ1�st + θ2fp t = fp t (30)

where

θ1 = a2
11 + a12a21 + a11 (31a)

θ2 = a11a12 + a12a22 + a12 (31b)

It is clear that (30) can only hold for all values of �st and fp t if

θ1 = 0 and θ2 = 1 (32)

The forecast error for the spot rate between t and t + 2, under FRU, is

�2st+2 − Et�2st+2 = [θ1�st + θ2fp t + ηt+1] − fp t (33)

where the term in parenthesis is derived from the VAR and ηt+1 depends on
wt+1(for i = 1, 2). If θ1 and θ2 are unrestricted, then the expected value of the forecast
error will, in general, depend on (�st , fp t ), that is, information at time t . It is only if
θ1 = 0 and θ2 = 1 that the orthogonality property of RE holds. In a previous chapter,
we noted that these restrictions can be tested using either a Wald or a likelihood
ratio statistic. Considering the latter (which is tractable here), the restrictions can be
rearranged to give

a21 = −a11(1 + a11)/a12 (34a)

a22 = [1 − a12(1 + a11)]/a12 (34b)

Substituting for a21 and a22 in (28), the restricted VAR equations are

�st+1 = a11�st + a12fp t (35a)

fp t+1 =
[−a11(1 + a11)

a12

]
�st +

[
1 − a12(1 + a11)

a12

]
fp t (35b)

The log-likelihood value from the restricted system (35a + 35b) can be compared with
that from the unrestricted system (24) + (28). If the difference in log-likelihoods is
large (or small), then the restrictions are rejected (or not rejected).

We will quickly demonstrate how the above problem (with VAR lag length p = 1)
can be represented in matrix form and how it can be generalised. The matrix form of
the unrestricted VAR is

zt+1 = Az t + wt+1 (36)

where zt+1 = (�st+1, fp t+1) and A(2 × 2) = {aij }. Let e1 = (1, 0) and e2 = (0, 1) so
that

�st = e1′zt (37a)

fp t = e2′zt (37b)
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It follows that

Etzt+2 = EtAz t+1 = A2zt (38)

Et(�2st+1) = Et(�st+2 + �st+1) = e1′(A2 + A)zt (39)

From (26), FRU implies

e1′(A + A2)zt = e2′zt hence e2′ − e1′(A + A2) = 0 (40)

where

A2 =
(

a2
11 + a12a21, a11a12 + a12a22

a21a11 + a22a21, a21a12 + a2
22

)
(41)

It is easy to see that (40) are the same restrictions as we worked out earlier in (31),
‘by substitution’. Generalising, a forward prediction of �st+m for any horizon m is
given by

Et�mst+m =
m∑

i=1

Et�st+i (42)

and, hence, FRU for an m-period forward rate fp(m)
t is

Et�mst+m =
m∑

i=1

e1′Aizt = fp(m)
t (43)

The FRU restrictions for an m-period horizon are

f (A) = e2′ − e1′
m∑

i=1

Ai = 0 (44)

The VAR predictions Et�mst+m in (43) give a time series for the ‘theoretical forward
premium’ (over m periods), which can be compared with the actual forward premium
(using graphs, variance ratios and correlation coefficients), as with our earlier VAR
expositions.

Uncovered Interest Parity

The uncovered interest parity (UIP) condition can also be applied over a multi-period
horizon, and the VAR approach used in exactly the same way as described above. The
multi-period UIP condition is

Et�mst+m ≡ Et(st+m − st ) = (r − r∗)t

For example, if we have quarterly data, the interest differential on one-year bonds
should equal the expected change in the exchange rate over the subsequent four quarters
(i.e. m = 4). The above UIP equation is similar to the FRU equation except we have
(rt − r∗

t ) on the RHS and not fp(m)
t . However, it should be obvious that the analysis
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for a VAR in �st and (rt − r∗
t ) goes through in exactly the same fashion as for FRU.

Of course, if CIP holds, then using rt − r∗
t is equivalent to using fp t and testing FRU.

Recent Empirical Results

Recent studies are virtually unanimous in finding rejection of the VAR restrictions
when testing FRU (or the equivalent UIP hypothesis) – assuming a time-invariant risk
premium. The rejection of FRU is found to hold at several horizons (e.g. three, six,
nine and 12 months) over a wide variety of alternative information sets, across different
currencies and over several time spans of data (see, for example, Hakkio 1981, Baillie
and McMahon 1989, Levy and Nobay 1986, Taylor 1989c).

Term Structure of Forward Premia

Some studies have combined tests of covered interest parity CIP, with the EH of the
term structure of interest rates applied to both domestic and foreign interest rates. Of
course, if you believe (from other evidence) that CIP always holds (and we do!), then
this is a test of the EH holding simultaneously in two (or more) countries. By way of
illustration, consider the covered interest parity CIP relationships (in logarithms) for
three- and six-month interest rates and forward rates but using monthly data

fp(3)
t = f

(3)
t − st = d

(3)
t (45a)

fp(6)
t = f

(6)
t − st = d

(6)
t (45b)

where d
(i)
t = r

(i)
t − r

∗(i)
t (i = 3, 6). If the EH holds in both the domestic and foreign

country,
d

(6)
t = (d

(3)
t + Etd

(3)
t+3)/2 (46)

where the subscript t + 3 applies because we use monthly data. The above equations
imply a term structure of forward premia:

fp(6)
t = (fp(3)

t + Et fp
(3)
t+3)/2 (47)

Equation (47) is conceptually the same as that for the term structure of spot yields on
zero coupon bonds, discussed in Chapter 22. Clearly, given any VAR involving fp(6)

t

and fp(3)
t (and any other relevant information variables), (47) will imply the by now

familiar set of cross-equation restrictions.
There have been a number of VAR studies applied to (47), and they usually resound-

ingly reject the expectations hypothesis of the term premia in forward rates (e.g.
see Sarno and Taylor 2002). Since we have strong independent evidence that cov-
ered interest parity holds for most time periods and most maturities, rejection of the
restrictions implicit in the VAR parameters applied to (47) is most likely due to a failure
of the EH of the term structure to hold in both the domestic and foreign countries.



S E C T I O N 2 5 . 4 / T E S T I N G F R U : VA R M E T H O D O L O G Y 585

Testing UIP and the EH

A similar analysis to the above can be used to simultaneously test the expectations
hypothesis of the term structure of interest rates in two countries and the UIP relation-
ship between these two countries. (Again note that if CIP holds, then testing UIP is
equivalent to testing FRU.) The EH for any two countries is

Et

n−1∑
i=1

(1 − i/n)�r
j

t+i = (R
j
t,n − r

j
t ) j = 1, 2

where rj = short (one-period continuously compounded) rate for country j , R
j
t,n is the

long rate for country j . The UIP relationship is

Etst+1 − st = rk
t − r

j
t

where st = (log) currency j per unit of currency k. All we now require is a vector
zt ≡ (�st , �rk

t ,�r
j
t , R

j
t,n − r

j
t , Rk

t,n − rk
t ) in the VAR, and we can undertake separate

tests of the implied cross-equation restrictions for each of the above three equations
separately or any combination of the three. Note that the VAR, even if it has only one
lag, involves estimating 25 parameters – these parameters are consistent but biased.

Bekaert and Hodrick (2001) undertook the above tests using a bilateral USD exchange
rate with either UK pound sterling (GBP) or the Deutsche Mark (DM) together with one-
month and 12-month interest rates (monthly data, January 1975–July 1997). They used
single-equation regressions tests, the Wald test of the non-linear VAR parameter restric-
tions, and they also develop a Lagrange multiplier (LM) test, which requires constrained
estimates of the VAR under the null. The latter is not easy, but Newey and McFadden
(1994) show how (approximate) values for the constrained parameters can be obtained
from the unconstrained estimates. In addition, Bekaert and Hodrick find the empirical
distribution of the test statistics by bootstrapping the residuals.

They confirm earlier results that the Wald test suffers from extreme size distortions,
whereas the LM test does not. For example, when simultaneously testing the VAR
restrictions for all three arbitrage relationships for German–US data, the Wald and LM
test statistics are 47.7 and 21.34, hence one test decisively rejects the null, and the other
does not (based on the asymptotic 5% critical value of 25). But the empirical 5% critical
values from the bootstrap where the joint null of the EH and UIP is true are 47.5 and
22.1, so the joint restrictions are now just about acceptable at a 5% significance level.
This very careful study emphasises the need to use empirical bootstrap distributions
and when one does, any rejections of the EH of the term structure or the UIP condition
are found to be much less dramatic than when using the asymptotic results.

Frictions and Data

The FRU proposition assumes investors have sufficient funds to bring ft in line with
Etst+1. But in the real world, it may be that restrictions on borrowing, short-sales and
transactions costs prevent this happening. There is some evidence (He and Modest
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1995, Luttmer and Nishiotis 1995, Goodhart and Taylor 1992) that these effects could
be substantial, but the general consensus appears to be that they are unlikely to be
large enough to ‘explain’ the FRU observed in the data, where β̂ < −1.

Recently, Breuer and Wohar (1996) carefully examined the data issues surround-
ing tests of FRU. They ensure the spot rate at t + 1 (i.e. the spot value date) exactly
matches the delivery date in the forward contract (i.e. the ‘forward value date’). They
also examine whether using ‘bid forward/ask spot’ (and vice versa) affects the results,
compared to using averages of bid and ask. For example, they find that after implement-
ing these refinements, the FRU hypothesis is still decisively rejected. Using one-month
forward rates for Germany, the United Kingdom, Switzerland and Japan (against the
USD) over 1974–1993, the estimates of β are mostly in the range from −0.6 to −2.0
and the null that β = 1 is rejected with p-values around 0.001 (0.1 of 1%).

25.5 Peso Problems and Learning
In previous sections, we have noted that the simplifying assumptions of risk neutrality
and RE are not consistent with the empirical results on FRU. In this section, we
examine two reasons for the apparent empirical failure of FRU. First, we analyse how
the Peso problem can complicate the interpretation of tests of the EMH and then move
on to discuss learning.

Peso Problem

The failure of the FRU in empirical tests may be due to the Peso problem. The Peso
problem leads the researcher to measure expectations incorrectly, hence forecasts may
appear biased and not independent of information at time t .

In the mid-1970s, the Mexican Peso was on a notionally fixed exchange rate against
the US dollar. But it traded consistently at a forward discount for many years, in
anticipation of a devaluation (which eventually occurred in 1976). Prima facie, the fact
that the forward rate for the Peso was persistently below the out-turn value for the spot
rate (in, say, three months’ time) implies persistent profitable arbitrage opportunities
for risk-neutral speculators.

The Peso problem arises from the fact that there could be unobservable (and hence
unquantifiable) events that may occur in the future but in our sample of data never
actually do occur. It is completely rational for an investor in forming her expectations
to take account of factors that are unobservable to the econometrician. However, if
the event never occurs in the sample of data examined by the econometrician, then
we could erroneously infer that the agent’s expectations are biased. Hence, the econo-
metrician may believe that she has unearthed a refutation of RE but in fact she has
not.

To illustrate the problem further, let us consider the Peso problem in a fairly simple
way. If the Mexican government’s fixed exchange rate policy is entirely credible (call
this ‘regime-1’) and has been adhered to for a number of years, then for time periods
{t = 0, 1 . . . t1} in regime-t1.

Etst+1 = st (48)
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Hence, under ‘complete credibility’ survey data on expectations, Etst+1 would be
unbiased forecasts of future spot rates st+1 {t = 0, 1, . . . t1}.

Now suppose that foreign investors begin to think the government’s commitment
to a fixed exchange rate has weakened and that there is a non-zero probability π that
the Peso will be devalued and a probability (1 − π) that it will remain ‘fixed’. This
new regime we denote as ‘partial’ credibility. A rational investor would then form
expectations

Etst+1 = πEt(st+1|Z2) + (1 − π)Et (st+1|Z1)

= π[Et(st+1|Z2) − Et(st+1|Z1)] + Et(st+1|Z1)

= π∇st+1 + Et(st+1|Z1) (49)

for periods t = {t1 + 1, t1 + 2, . . . , T }, where Et(st+1|Z1) = exchange rate under the
fixed exchange rate, regime-1, Et(st+1|Z2) = exchange rate under the devaluation pos-
sibility and ∇st+1 ≡ [Et(st+1|Z2) − Et(st+1|Z1)]. Since a devaluation is expected in
the partial credibility regime, Et(st+1|Z2) > Et(st+1|Z1). Suppose, however, that dur-
ing the partial credibility regime the Mexican government does not alter the exchange
rate. The out-turn data in the partial credibility regime will, therefore, be st , the exist-
ing fixed parity. Hence, even survey data collected over this partial credibility period
(which accurately measures Etst+1) will not equal the (constant) out-turn value st ,
since from (41), using Et(st+1|Z1) = st ,

Etst+1 = π[Et(st+1|Z2) − st ] + st �= st (50)

Now suppose the regime shift does occur, then even here the ex-post forecast error
does not equal its value under RE:

w̃t+1 = s
(2)
t+1 − Etst+1 = [s(2)

t+1 − Et(st+1|Z2)] − (1 − π)∇st+1

= εt+1 + (1 − π)∇st+1

where εt+1 is the RE forecast error if agents know for certain the regime shift has
occurred. Hence, the ex-post forecast error, which is observable if we have survey
data on expectations, is non-zero and biased. Also, if π varies over time (e.g. due to
changing economic information), then a regression of w̃t+1 on information at time t

will, in general, yield a non-zero coefficient. Hence, we have an apparent refutation
of the informational efficiency assumption of RE because the forecast error is not
independent of information at time t . Notice that even if π , the probability of the
unobserved event is small, the ‘bias’ in the forecast error w̃t+1 can still appear large if
the potential change in the spot rate under the new regime is thought to be large – that
is, ∇st+1 is large.

Now let us consider the problems caused when we try to test for FRU. In the partial
credibility regime, investors think a devaluation of the Peso is likely so Et(st+1|Z2) >

Et(st+1|Z1) (remember that st is in units of Pesos per US dollar and hence an increase
in st is a devaluation of the Peso). Under FRU, speculation in the forward market
ensures

ft = Etst+1 (51)
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But from (50), if we remain in regime-1 so Et(st+1|Z1) = st then ft > st and fp t =
(f − s)t �= 0. In the partial credibility regime, fp t will change if π changes but if the
devaluation never occurs, then �st+1 = 0 and a regression test of FRU would fail even
though (51) holds.

The Peso problem, therefore, arises because one is testing a hypothesis with a finite
data set, in which there are unobservable events that could potentially occur but do not.
If there is instantaneous learning, then when the regime shift actually occurs and is
widely known, the term ∇st+1 = 0, and forecast errors equal the RE forecast error from
this period onward – hence, the Peso problem is a small-sample problem. Of course,
it could be a ‘repeating’ small-sample problem if potential ‘new’ regimes occur.

In principle, we can get around the Peso problem by using accurate survey data on
expectations when testing Etst+1 = ft . But using survey data has its own problems
(see above). It is possible that Peso problems are fairly prevalent. Clearly, a longer data
set is likely to mitigate the Peso problem but perhaps not irradicate it entirely. Hence,
the apparent rejection of FRU can always be attributed to ‘hidden’ Peso problems.

Learning

If agents take time to learn about their new environment, this can also generate forecast
errors displaying serial correlation and with a non-zero mean, even when agents use
rational expectations. Suppose there are two possible regimes Z1 and Z2 (Lewis 1989a,
1995), then the expected exchange rate is

Etst+1 = πtEt(st+1|Z1) + (1 − πt )(Etst+1|Z2)

If there has been a regime shift at m < t , then agents will slowly update their proba-
bilities using a Bayesian updating rule

πt = πt−1L(�st , �st−1, . . . �sm+1|Z1)

πt−1L(�st , �st−1, . . . �sm+1|Z1) + (1 − πt−1)L(�st , �st−1, . . . �sm+1|Z2)

where L(.|.) are the likelihoods of the observed data, given the old or new regimes
are in force and πt is the posterior probability of no regime shift. If the data are
from the new regime, then the likelihood L(.|Z1) will fall as additional data from
the new regime are assimilated and πt approaches zero. However, while agents are
learning about the new regime, they will attach non-zero probabilities to each regime,
even though in reality only one of the regimes is in force – this gives rise to non-zero
forecast errors. Suppose in reality the economy has switched to regime-Z2, then the
forecast error is

s
(2)
t+1 − Etst+1 = [s(2)

t+1 − Et(st+1||Z2)] − πt [Et(st+1|Z1) − Et(st+1|Z2)]

= εt+1 − π∇st+1

and the ex-post forecast error is non-zero. Lewis (1989b) attributes about half of the
rise in the US dollar in the early 1980s to agents using Bayesian learning.

Studies examining Peso problems (Lewis 1988, 1991) and regime shifts in exchange
rates (e.g. Engel and Hamilton 1990, Kaminsky 1993) certainly establish the possibility
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that the US dollar during the 1980s could be due to such phenomena. The problem
is that the FRU result β < −1 applies across many data periods and currencies and it
is difficult to believe that there are so many potential regime shifts that agents do not
eventually learn or that Peso problems are endemic.

25.6 Summary

• Riskless arbitrage opportunities in the FX market sometimes do appear at relatively
long horizons (one year) but for the most part, there are no large persistent profitable
opportunities and CIP holds.

• Single-equation regressions, panel data regressions and the VAR approach suggest
that FRU (and UIP) do not hold, but one cannot conclusively apportion this rejection
of FRU between a ‘failure’ of risk neutrality and of RE.

• Because of a presumption of frequent and possibly substantial central bank interven-
tion in forward and spot markets, Peso problems are likely to be present. However,
they are virtually impossible to quantify, and this makes it difficult to interpret
whether the fairly decisive rejection of FRU imply a rejection of the EMH.





26
MODELL ING THE FX
R ISK PREMIUM

Aims
• Show from the empirical result in the FRU regression that β < −1 (rather than

β = +1) implies several inequalities between variables that any model of the risk
premium must satisfy in order to ‘fit the facts’.

• Present empirical tests of the C-CAPM-SDF model, the latent variable and affine
models of the relationship between FX returns for different currencies.

• To demonstrate how cash-in-advance models of FX returns can be solved and cali-
brated so that ‘statistics of interest’ from this ‘artificial economy’ approach can be
compared with real world data.

Just because investors hold foreign currency assets, it does not imply they require
a risk premium, because most of this risk might be diversifiable. It is only when the
risk on an asset covaries with some underlying pervasive source of variation (e.g. the
market portfolio, the marginal rate of substitution in consumption) that the risk becomes
undiversifiable and, therefore, commands an additional return. In any case, there is a
paradox when considering two assets, foreign and domestic. If a US resident views
holding Euro bonds as having exchange rate risk, then the expected return (in USD)
on Euro bonds would exceed the return on safe domestic US bonds. But from the Euro
residents’ viewpoint, they would then be getting a lower return on their domestic assets
than on (risky) US assets. Hence, the risk premium on foreign assets must be negative
for Euro residents, if it is positive for US investors (ignoring Jensen inequality terms).
It follows that the risk premium must depend on the relative riskiness of domestic and
foreign assets. We look at various models that attempt to measure this time-varying
risk premium.
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26.1 Implications of β < 1 in FRU Regressions

We show that the strong empirical finding that plim(β̂) < 0 in the FRU regression
can be used to infer certain relationships between variables, which any theory of the
risk premium must satisfy (Fama 1984). These empirical results are useful in assess-
ing the validity of SDF, affine and cash-in-advance models of the FX risk premium
later in this chapter. FRU + RE requires α = 0, β = 1, and E(εt+1|�t) = 0 in the
regression

�st+1 = α + β fp t + εt+1 (1a)

β = cov(�st+1, fp t )/var(fp t ) (1b)

where st = log of spot rate (domestic per unit of foreign currency), fp t ≡ ft − st and
ft = log of the forward rate. We define the risk premium as

rp t ≡ ft − Etst+1 = fp t − Et�st+1 (2)

Under RE,
�st+1 = Et�st+1 + εt+1 (3)

and εt+1 is independent of information at time t , hence

cov{fp t , �st+1} = cov{fp t , Et�st+1} (4a)

Using (4a) and substituting for Et�st+1 from (2),

cov{fp t , �st+1} = var(fp t ) − cov{fp t , rp t}

Substitute for fp t from (2) in the covariance term

cov{fp t , �st+1} = var(fp t ) − cov{Et�st+1, rp t} − var(rp t ) (4b)

Using (4b) in (1b),
plim(β̂) = 1 − βrp (5)

where

βrp = cov{Et�st+1, rp t} + var(rp t )

var(fp t )
(6)

Empirically, we find that plim(β̂) < 0, hence, βrp > 1, which from (6) gives

cov{Et�st+1, rp t} + var(rp t ) > var(fp t ) (7)

But from (2),

var(fp t ) = var(Et�st+1 + rp t ) = var(Et�st+1) + var(rp t ) + 2 cov{Et�st+1, rp t}
(8)
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Using (7) and (8), βrp > 1 implies

cov{Et�st+1, rp t} + var(Et�st+1) < 0 (9)

Since var(Et�st+1) > 0, then (9) implies our first inequality, namely the expected
change in the spot rate is negatively related to movements in the risk premium (i.e.
the speculative forward profit ft − Etst+1):

cov{Et�st+1, rp t} < 0 (10)

where rp t ≡ ft − Etst+1. From (9), we also require

|var(Et�st+1)| < | cov{Et�st+1, rp t}| = |ρσ(Et�st+1)σ (rp t )| (11)

Since |ρmax| = 1, the above implies the second inequality, namely the variance of the
risk premium must exceed the variance of the expected change in the spot rate:

var(rp t ) ≡ var(ft − Etst+1) > var(Et�st+1) (12)

We will revisit these two inequalities in what follows.

26.2 Consumption-CAPM
The C-CAPM can be used to model speculative returns in the FX market. Note that
the excess nominal return to foreign investment using the spot market is Rs,t+1 ≡
(�st+1 + r∗ − r), where r∗

t = foreign interest rate and r = domestic interest rate. It is
also possible to speculate in the forward market with return RF,t+1 = st+1 − ft . But
if CIP holds, then ft = st + rt − r∗

t and Rs,t+1 = RF,t+1. When testing the CAPM,
these two different ways of measuring the speculative return are used. The FOC/Euler
equation for any two assets i and j is

U ′(Ct ) = θEt{Ri,t+1 U ′(Ct+1)} = θEt{Rj,t+1 U ′(Ct+1)} (13a)

Rearranging (13a) and using US dollar and Euro returns,

0 = Et{(R$
t+1 − R¤

t+1)Mt+1} (13b)

where R$ = real return on $-assets
R¤ = real return on Euro-assets

Mt+1 = θU ′(Ct+1)/U ′(Ct ) = θ(Ct+1/Ct )
−γ for power utility

S = exchange rate (= domestic per unit of foreign currency, $ per ¤)
Ct = domestic (US) real consumption

The C-CAPM uses real returns and, hence, equation (13b) can be written for any
currency j :

0 = Et

{(
(Fjt − Sj,t+1)P

$
t

Sj,tP
$
t+1

)
Mt+1

}
(14)
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where here P $
t is the dollar price level. The intuition behind (14) is that the forward

contract requires no investment at t , hence (Ft – St+1)/St is the return from forward
speculation. Note that U ′(Ct+1)/P

$
t+1 is the marginal utility per USD. The repre-

sentative investor’s preferences in (13a) do not depend on her location. Under joint
lognormality and power utility, (14) gives for any currency j (see Kaminsky and Periga
1990, p. 54),

Et�sj,t+1 − fpj,t =−0.5 vart (�sj,t+1) − covt (�sj,t+1, π
$
t+1) + γ covt (�sj,t+1, �ct+1)

(15)

where πt+1 = ln(Pt+1/Pt ). Note that it is only the exchange rate terms that have the
j subscript because prices and consumption refer solely to the domestic economy
(investor). Since rp t ≡ fp t − Et�st+1, the ‘risk premium’ depends on the first two
Jensen inequality terms, while the ‘true’ risk premium is the +γ cov(�sj,t+1,�ct+1)

term (which is zero for γ = 0).
Tests of the C-CAPM are based on the FOCs such as (14) or on an explicit solution

(under lognormality) like (15). The difficulty with the latter is the need to measure
time-varying conditional covariances – a notoriously difficult task if the number of
covariance terms is greater than around two (see below).

Mark (1985), Hodrick (1989) and Modjtahedi (1991) have estimated equation (14)
jointly on a number of currencies (against the USD) with monthly, three-monthly and
six-monthly forward rates, assuming power utility and using aggregate per capita US
(non-durables and services) consumption. The (overidentifying) cross-equation restric-
tions on γ are rejected, and γ̂ is of the order of 40–70, way outside an acceptable
range. Similar results apply when the pound sterling is the numeraire currency and UK
consumption data is used.

Kaminsky and Periga (1990) estimate equation (15) for the German mark, yen and
pound sterling (against the USD). The ‘RE residuals’ are assumed to follow a mul-
tivariate GARCH model (BEKK (see Engle and Kroner (1995))). The five variables
used were

z′
t+1 = [�c$

t+1, π
$
t+1, (st+1 − ft )

j , (st+1 − ft )
k, (st+1 − ft )

m] (16)

where j, k, m = yen, pound, mark (against the USD) and the five-equation system is

zt+1 = A0 + A1(L)zt + Dvec(Ht+1) + υt+1 (17)

Ht+1 is the covariance matrix of errors and vec(Ht+1) stacks the lower portion of H , the
error covariances in a vector vec{Ht+1} = {h(1, 1), h(1, 2) . . . h(1, 5), h(2, 2), h(2, 3)

. . . h(2, 5), h(3, 3), h(3, 2) . . . h(3, 5), h(4, 4), h(4, 5), h(5, 5)} – 15 conditional vari-
ance–covariances in all. The restrictions imposed by (15) on the (15 × 15) matrix D
are d(3, 3) = d(4, 4) = d(5, 5) = γ ; d(3, 10) = d(4, 13) = d(5, 15) = −1; d(3, 7) =
d(4, 8) = d(5, 9) = −0.5, with all other d(i, j ) = 0. The non-zero values of {dij } ‘pick
out’ the effect of the conditional variance and covariance terms in (15) on the mean
values of (�st+1 − fp t ) for the three currencies (against the USD). They do not reject
the joint hypothesis that the three coefficients on vart (�sj,t+1) are −0.5, and those on
cov(�st+1, π

$
t+1) are −1. The coefficient of relative risk aversion is found to be constant
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across the three currencies. However, the residuals υt+1 should not be forecastable from
information at time t . But they find that for the yen and British pound sterling (but not
for Germany), the residuals are predictable using the forward discount and, therefore,
the model does not explain all of the ‘risk premium’ ft − Etst+1. Most damning is the
result that the estimate of γ is in excess of 350. Hence, the ex-ante returns from forward
market speculation ft − Etst+1 are too volatile to be explained by cov(�st+1, �ct+1)

unless γ is very large – a result similar to that for the C-CAPM applied to the equity
premium. Backus, Gregory and Telmer (1993) use habit consumption ct − λct−1 in the
utility function, which then ‘appears’ in Mt+1, but this also fails to rescue the model.

SDF Model of FX Returns (C-CAPM)

Smith and Wickens (2002) estimate the C-CAPM of the excess return to foreign invest-
ment along the lines of Kaminsky and Periga (1990) but they use a simpler form of
GARCH process, which has constant correlations. Essentially, this allows them to
estimate the GARCH processes as univariate equations rather than using maximum
likelihood in a multivariate model (which is always difficult in a highly parame-
terised system). The covariances are then given by ρij σi,tσj,t , where the time-varying
standard deviations are from the univariate GARCH processes. These covariances are
then used in the returns equation, which again is estimated by single-equation tech-
niques.

The C-CAPM for the excess return to foreign investment for US domestic investors
is of the form

EtRt+1 + 0.5Vt(Rt+1) = kus covt (�cUS
t+1, Rt+1) + covt (�pUS

t+1, Rt+1) (18)

where Rt+1 = (�st+1 + r∗
t − rt ). The spot rate st is measured as domestic per unit of

foreign currency (here $ per £). Hence, the larger the conditional covariance of the
depreciation of the USD with the growth of US consumption and with US inflation,
the greater the risk premium for US investors in foreign bonds. A similar equation
holds for UK domestic investors:

EtRt+1 − 0.5Vt(Rt+1) = −kuk covt (�cuk
t+1, Rt+1) − covt (�puk

t+1, �cuk
t+1) (19)

Adding these two equations, the Vt(.) term disappears and ERt+1 depends on the
covariances for both the United Kingdom and United States consumption and inflation:

EtRt+1 = 0.5{kus covt (�cUS
t+1, Rt+1) + covt (�pus

t+1, Rt+1) − kuk covt (�cuk
t+1, Rt+1)

− covt (�puk
t+1, �cuk

t+1)} (20)

Using USD-pound sterling and monthly data 1975(1)–1997(12), none of the covariance
terms of the C-CAPM is statistically significant, and the coefficient of relative risk
aversion is of the wrong sign and very large. Smith and Wickens (2002) then generalise
the model by assuming the SDF may be influenced (linearly) by variables in the
monetary model. Additional covariances between returns and the following variables,
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namely, consumption, output and money growth, now appear in the expected returns
equation, which becomes

Rt+1 = γ1Rt + γ2fp t + γ3Vt(Rt+1) + φusZus
t+1 + φukZuk

t+1 + εt+1 (21)

where Rt and fp t and Vt(Rt+1) have been added to create a general model, but we
expect γi = 0 (i = 1, 2, 3) if the SDF model holds and Zus

t+1, Z
uk
t+1 represent the covari-

ance terms for the US and UK variables. Some support is found for the conditional
covariance terms entering the equation for mean (expected) returns, but the evidence is
not strong. Also, contrary to the model, the lagged return and forward premium remain
statistically significant. Hence, the ‘monetary factors’ in the SDF model have little sup-
port, and the forward premium puzzle remains (Mark and Wu (1998) and Engel (1996)
reach similar conclusions).

Conditional covariances are often modelled in a multivariate GARCH framework.
But the number of parameters to estimate can be large even with just a few covariance
terms (see Chapter 29), unless some arbitrary restrictions are placed in the GARCH
parameters. This would seem to limit the usefulness of the GARCH approach in SDF
asset-pricing models.

Latent Variables and the Intertemporal C-CAPM

Latent variable models ‘substitute out’ the conditional covariance terms of the C-
CAPM by assuming they are linear functions of a set of observable variables, zt . The
C-CAPM for any asset j can be expressed

Et(Rj,t+1 − R0,t+1) = − covt (Mt+1, Rj,t+1)

E(Mt+1)
(22)

where R0 is the return on an asset with a zero covariance with Mt+1 (R0 plays the
same role as the risk-free rate in the ‘domestic’ C-CAPM). Now take Rb,t+1 as the
return on the mean-variance frontier, which is a weighted average of R0,t+1 and the
minimum variance return. Then, it can be shown (Hodrick 1987)

Et(Rj,t+1 − R0,t+1) = βj,tEt (Rb,t+1 − R0,t+1) (23)

where βj,t = covt (Rb,t+1, Rj,t+1)/vart (Rb,t+1).
Although βj,t can be time varying, it is reasonable that βj,t /βi,t is constant (= λ), so

that expected relative returns Et(Ri,t+1 − R0,t+1)/Et(Rj,t+1 − R0,t+1) = λ, a constant.
(This is broadly equivalent to the ‘domestic’ CAPM where relative returns on assets i

and j depend on their relative betas.)
We are now in a position to demonstrate the restrictions implicit in this model, if

we assume relative returns for assets i and j depend linearly on a set of observable
variables zkt

Ri,t+1 − R0,t+1 =
n∑

k=1

αkzkt + ui,t+1 (24a)

Rj,t+1 − R0,t+1 =
n∑

k=1

δkzkt + uj,t+1 (24b)
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The latent variable model implies the restrictions αk/δk = λ for k = 1, 2, . . . n. Tests
often use (Sj,t+m − Fj,t+m)/Sj,t as the return to speculation in the forward market on
currency j (over any future horizon, e.g. m = 1 or 3 months) as the dependent variable.
The z variables might include the forward discount and past forecast errors. Several
studies (e.g. Hansen and Hodrick 1983, Campbell and Clarida 1987, Huang 1989,
Lewis 1990) find conflicting evidence on the validity of the cross-equation restric-
tions, but the model tends to perform better at the three-month than the one-month
horizon. Cumby and Huizinga (1992) provide a further test of the model that predicts
that fitted values from the regressions (18) using different currencies should be highly
correlated (perfectly correlated if there were no estimation error). They find these corre-
lations are in the range 0.33–0.65 and statistically different from unity – thus rejecting
the model.

Giovanni and Jorion (1987), Mark (1988) and Cumby (1988) all try various statis-
tical models of the time variation in the beta of equation (17) and, in general, they
fail to reject the restrictions, which suggests support for these models. However, Engel
(1996, p. 163) argues that this failure to reject the null is due to the low power of
the tests. That is, the ‘alternative’ and the ‘model’ are both pretty awful (i.e. ‘explain’
very little), so imposing the restrictions does not reduce the ‘fit’ too much.

26.3 Affine Models of FX Returns
As with affine models of the term structure, we can apply the affine (linear) structure
to provide forcing variables z1t , z2t for the domestic and foreign economies. These are
used in the FOCs to generate equations for the variables of interest, namely, the change
in the spot rate and the forward premium. To get the general idea, consider a one-factor
model where the factors are independent and country specific and are linearly related
to the SDF, mt+1. In a CIR structure,

−mt+1 = z1t + λσ
√

z1t ε1,t+1 (25)

−m∗
t+1 = z2t + λσ

√
z2t ε2,t+1 (26)

zit+1 − µ = θ(zit − µ) + σ
√

zitεi,t+1 for i = 1, 2 (27)

Above, for simplicity, we assume the parameters λ, σ, θ are the same for both countries.
For this case, it can be shown that the short rate for each country is linear in z:

ri,t = (1 − 0.5(λσ )2)zit for i = 1, 2 (28)

and the FX variables are given by

fp t = [
1 − 0.5(λσ )2] (z1t − z2t ) (29a)

Et�st+1 = (z1t − z2t ) (29b)

ft − Etst+1 = −0.5(λσ )2(z1t − z2t ) (29c)

Given β < 1 in the FRU equation, we know this requires that the risk premium and
the expected depreciation of the spot rate are negatively correlated. But it is easy to see



598 C H A P T E R 2 6 / M O D E L L I N G T H E F X R I S K P R E M I U M

from (29b) and (29c) that the risk premium rp t ≡ ft − Etst+1 and the expected rate of
depreciation are negatively correlated in our affine model. However, our model predicts
that the beta value in the FRU regression of Et�st+1 on fp t is 1/[1 − 0.5(λσ )2], which
is positive and greater than one – see (29a) and (29b). But this contradicts the empirical
evidence that β < 1 and, hence, our CIR one-factor affine model is rejected. Backus,
Foresi and Telmer (2001) try a two-factor model with interdependent factors and for
some parameterisations, this can be made to give a negative β, but only at the expense of
some unacceptable distributional properties for the unobserved factors and the forward
premium. In short, affine models of the SDF have not so far explained the forward
premium puzzle.

26.4 FRU and Cash-in-Advance Models
Cash-in-Advance (CIA) models take the standard FOCs of the C-CAPM plus purchas-
ing power parity (PPP) relationship but impose the inequality restrictions that agents
must have sufficient domestic or foreign currency to purchase their desired consumption
levels in each country. It is an endowment economy. Standard cash-in-advance models
with time-separable preferences over consumption seek to explain all the stylised facts
of forward-spot behaviour, which are:

(i) the forward discount is persistent but with a relatively low volatility.

(ii) the expected forward speculative profit ft − Etst+1 has a higher volatility than
the forward premium.

(iii) the spot rate has a higher volatility than either (ft − Etst+1) of fp t , and is close
to a martingale process.

(iv) FRU is violated since in �st+1 = α + βfp t + εt+1, we find β̂ ≈ −1, whereas it
should be plus 1.

Note that the expected forward speculative profit ft − Etst+1 is usually measured
by the fitted values from a regression of ft − st+1 on the forward premium. Remember,
we earlier found that the coefficient β can be written

β = covt{Et�st+1, ft − Etst+1} + vart (Et�st+1)

vart (fp t )
(30)

It can be shown that a negative beta requires

(a) covt{.} < 0 (see equation 10)

and

(b) vart (ft − Etst+1) > vart (Et�st+1) (see equation 12)

Standard Cash-in-Advance Models

In the standard CIA model, agents maximise intertemporal separable utility that
depends on consumption in two countries by two households. Agents must hold money
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(cash) of each country, in order to purchase consumption goods in that country. The
first-order conditions are

St = U ′
2t /P

2
t

U ′
1t /P

1
t

q
j
t = θEt

[
(U ′

j,t+1/P
j

t+1)

(U ′
j,t /P

j
t )

]
(j = 1, 2 countries)

Ft

St

= q2
t

q1
t

where U ′ is marginal utility, P j = goods price in country, j = (1, 2), q
j
t = bond price,

St = spot rate, Ft = forward rate and θ = discount factor. The first equation is the PPP
condition, where the real exchange rate equals the marginal rate of substitution of home
and foreign goods. The second equation gives the nominal price q

j
t of home and foreign

bonds for j = 1, 2 countries and the third equation is the CIP relationship. Since the
quantity theory of money holds, prices are proportional to that country’s money supply
so the change in the spot exchange rate depends on relative money supply growth in
the two countries. Via the bond pricing equation (and the assumption that real and
nominal shocks have zero covariance), the forward discount ln(Ft/St ) also depends on
relative monetary growth. However, relative monetary growth is persistent and, hence,
the standard CIA model predicts the change in the spot rate and the forward discount
are both persistent. But in the data, the change in the spot rate is approximately white
noise and, therefore, the standard CIA model cannot explain the stylised facts.

Moore and Roche (2002) extend the standard CIA model by assuming that all
portfolio decisions are made before the realisation of monetary shocks. This allows the
ratio of bond prices to affect the real exchange rate (together with the marginal rate of
substitution):

St = Et

(
U ′

2,t+1/P
2
t+1

U ′
1,t+1/P

1
t+1

)(
q1

t

q2
t

)

This allows the model to predict both a higher volatility for the spot rate and less
persistence since the influence of (persistent) relative money supplies can be attenuated
by the volatile changes in bond prices. When the model is calibrated assuming an
AR(1) process for money and consumption growth, it does reduce the autocorrelation
in the spot rate and increase its volatility compared to the ‘standard’ model, but the
predictions of the simulated calibrated model are still largely at odds with the data.

The standard cash-in-advance model can explain either (i) or (ii) above but not both,
and it does not explain the failure of FRU with β < 0 (Bekaert 1996).

Habit Persistence

Moore and Roche (2002) then examine whether the ‘stylised facts’ can be repro-
duced by a standard CIA model that is modified by incorporating habit persistence
á la Campbell and Cochrane (2000), and they are able to explain (i) and (ii) but
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unfortunately not (iii). It is worth examining this approach in more detail because it pro-
vides a ‘case study’ of these types of ‘calibration’ or ‘artificial economy’ models. We
will not derive the model ‘line-by-line’ as many of the results are two-country versions
of the Campbell and Cochrane (1999) type model, which we have already discussed.

Broadly speaking, this approach proceeds as follows.

(a) Set up the constrained optimisation problem and derive the FOCs of the relationship
between the endogenous variables in the system (e.g. consumption growth, asset
returns, money supply).

(b) Choose some variables as exogenous and model them as simple stochastic pro-
cesses that broadly mimic the time-series properties found in the data. For example,
in an endowment economy, assume consumption growth is niid with constant
mean. This is the ‘calibration’.

(c) Simulate the exogenous variables in this artificial economy and derive the time
path of the endogenous variables (e.g. spot rate, forward rate, interest rates) using
the FOCs and calculate ‘statistics of interest’. Usually, the latter are ‘moments’
like means, variances and correlations between key variables, but this could be
extended to skewness, kurtosis and regression relationships (e.g. regression of the
change in the spot rate on forward premium).

(d) Repeat ‘(c)’ for m = 1000 times and calculate the average values of the statistics
of interest and compare them with those found in the real world data. If, in the
‘artificial economy’, the statistics of interest are close to those in the real data,
then the model is deemed a success.

One can also change the time-series properties of the forcing variables (e.g. model
consumption growth as a stationary AR(1) process) and repeat the whole procedure to
determine how sensitive are the statistics of interest to such ‘reasonable’ alternatives.

The model has two countries, two goods and, hence, two monies. The habit-
intertemporal, power utility function of the representative agent is

∞∑
t=0

θ tU(C1
it , C

2
it ) =

∞∑
t=0

θ t (X1
it )

1−γ

1 − γ
+ θ t (X2

it )
1−γ

1 − γ
(31)

where X
j

it = (C
j

it − H
j

it )/C
j

it for superscript j = 1, 2 countries and i = 1, 2 households.
C

j

it is the consumption of goods of country-j by households of country-i, Hj

it is habit
consumption, X

j

it is surplus consumption where X
j

it = 0 is the worst possible state. The
cash-in-advance constraint is that money Nj of country-j is needed to buy country-j ’s
goods (either by residents or foreigners).

N
j

it ≥ P
j
t C

j

it i = 1, 2 and j = 1, 2 (32)

P
j
t is country-j ’s prices in country-j ’s money. For positive interest rates, (32) is an

equality. At end of period t (beginning of t + 1), domestic households’ holdings of
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domestic currency are
N1

1t+1 ≥ P 1
t C1

t + B1
1t − FtG

1
t (33)

The first term is the receipts from the consumption endowment, the second term arises
from redemption of nominal bonds and the third term is the number of contracts of
foreign currency held long (G1

t > 0) and Ft is the one-period forward rate (domestic
per unit of foreign currency). Domestic holdings of foreign currency are

N2
1t+1 ≥ B2

1t + G1
t (34)

There are similar equations for foreign households’ holdings of domestic and foreign
currency

N1
2t+1 ≥ B1

2t + FtG
2
t (domestic currency) (35)

N2
2t+1 ≥ P 2

t C2
t + B2

2t − G2
t (foreign currency) (36)

where G2
t >0 is a short position in forward foreign exchange for the foreign country.

Equilibrium in the goods, money and forward markets is

C
j
t = C

j

1t + C
j

2t j = 1, 2 (37a)

N
j
t = N

j

1t + N
j

2t j = 1, 2 (37b)

G1
t = G2

t (37c)

There is perfect international risk pooling, so equilibrium consumption is half of the
current endowment, Ci

jt = 0.5Y i
t , where Y i

t is the endowment of the ith country at time
t . The usual FOCs are

Et

[
θ(1 + r

j
t )

U ′(Cj

t+1)P
j
t

U ′(Cj
t )P

j

t+1

− 1

]
= 0 j = 1, 2 (38)

where for j = (1, 2) we have U ′(Cj ) = (CjXj )−γ and r
j
t (j = 1, 2) are the nominal

rates of interest in the two countries. A further FOC is PPP:

StP
2
t

P 1
t

= U ′(C2
t )

U ′(C1
t )

= (C2
t X

2
t )

−γ

(C1
t X

1
t )

−γ
(39)

where St is the spot rate, and the forward rate is given by

Ft

St

= (1 + r1
t )

(1 + r2
t )

(40)

The forcing variables in the model are consumption growth, which is niid

C
j

t+1

C
j
t

= (1 + µ
j

t+1) (41)

µ
j

t+1 = µj + υ
j

t+1 υ
j

t+1 = N(0, σ 2
υj ) j = 1, 2 (42)
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and monetary growth whose mean growth follows an AR(1) process

N
j

t+1

N
j
t

= (1 + π
j

t+1) j = 1, 2 (43)

π
j

t+1 = (1 − ρ)πj + ρπ
j
t + u

j

t+1 u
j

t+1 = N(0, σ 2
uj ) (44)

The correlation between real shocks υt and monetary shocks ut is assumed to be zero
(in the baseline model), and parameters are the same across countries. Surplus con-
sumption, as in Campbell and Cochrane (1999), is a ‘persistent’ AR(1) process with
adjustment parameter φ, and λ(x) is a non-linear function of the surplus consump-
tion ratio

x
j

t+1 = (1 − φ)xj + φx
j
t + λ(x

j
t )υ

j

t+1 j = 1, 2 (45)

It is this relationship that is crucial for the models’ ‘new’ predictions compared to
the standard cash-in-advance model. The non-linear function λ(x

j
t ) can magnify any

shocks υt+1 to real consumption growth, and φ > 0.9 imparts persistence.
It can be shown (basically from (38)) that the real rate rr is constant (in both

countries) and that the nominal rate is given (for each country) by

r
j
t = rr j + [(1 − ρ)π + ρπ

j
t − µj ] − [0.5(σ 2

n + (1 − 2γ [1 − 2λ(x
j
t )]σ 2

υ ))] (46)

Using ft − st = r1
t − r2

t in (46), the forward premium is

fp t = [ρ(π1
t − π2

t )] + [γ σ 2
υ {λ(x1

t ) − λ(x2
t )}]

≈ [ρ(π1
1 − π2

t )] − [γ (1 − φ)(X/γ )(x1
t − x2

t )] (47)

where the last term in (47) is a linearisation of λ(xt ). By substituting the cash-in-
advance equality from (32) in the PPP equation (39) and taking logs and substituting in
the exogenous processes for consumption, money and surplus consumption, we obtain

�st+1 = [ρ(π1
t − π2

t ) + (u1
t+1 − u2

t+2) + (1 − γ )υ2
t+1] + [γ (�x1

t+1 − �x2
t+2)] (48)

The expected forward profit is given by ‘(47) minus the expected value of (48)’ and
this can be shown to be

ft − Es t+1 = γ (1 − φ)

(
1 − X

γ

)
(x1

t − x2
t ) (49)

In equations (46), (47) and (48), if we set λ(x
j
t ) = 0, then the model collapses to the

standard cash-in-advance model (with no habit), so essentially λ(xt ) provides an addi-
tional ‘risk premium’.

In (46), the first term in square brackets is monetary growth less real consumption
growth and can be viewed as expected inflation. When surplus consumption is low,
λ(xt ) is high, and the nominal rate is high to compensate for the increased inflation
risk. In (47), the ρ(π1

t − π2
t ) term is the differential inflation rate (i.e. money growth)
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and the influence of habit (x1
t − x2

t ) on fp depends crucially on the initial level of the
home country’s surplus consumption ratio, relative to the foreign surplus consumption
ratio. The ‘new’ element in equation (48) for �st+1 is that it depends on the differential
growth in surplus consumption, and this is why the spot rate may be highly volatile in
this model. Note that in the standard model, Et�st+1 is determined solely by differential
inflation rates (π1

t − π2
t ).

We are in a position to calculate the variances and covariances for the key variables
of the model, given that the steady state value of surplus consumption is

X
j = συj

√
γ/(1 − φ) (50)

The unconditional variance of the forward discount, change in spot rate and expected
forward profit using (40) with (47), (48) and (49) are:

var(fpt ) = 2

(
ρ2σ 2

u

1 − ρ2
+ γ (1 − φ)σ 2

υ σ 2
x

)
(51a)

var(�st+1) = 2

(
σ 2

u

1 − ρ2
+ (1 − φ)2γ 2σ 2

x + σ 2
υ

(
1 − γ

X

)2
)

(51b)

var(ft − Etst+1) = 2(1 + φ)2γ 2

(
1 − X

γ

)2

σ 2
x (51c)

where σ 2
x is the unconditional variance of x

j
t (j = 1, 2). The habit model adds terms in

σx and γ/X to the standard model and can be seen to increase the absolute volatilities
of the spot rate return, forward discount and expected forward profit (for X < 1, γ /X >

2). The relative volatilities are such that the spot return volatility (51b) increases more
than either the forward discount volatility (51a) or the volatility of the expected forward
profit (51c). But the volatility of the expected forward profit increases more than the
volatility of the forward discount. All these qualitative volatility inequalities conform
to those found in the real world data, but it remains to show whether they match the
size of the actual moments in the real data. It can also be shown that ‘habits’ increase
the persistence of the forward discount and decrease the persistence of the spot return
(for φ > ρ and σ 2

υ terms relatively small).
Now let us turn to the β coefficient in the FRU regression (1a).

β = cov(Etst+1 − st , ft − Etst+1) + var(Et�st+1)

var( fp t )

For β to be negative, we require the covariance term to be (i) negative and (ii) larger
in absolute value than var(Et�st+1). The second condition (Fama 1984) is equivalent
to var(ft − Etst+1) > var(Et�st+1).

In the cash-in-advance model, both Et�st+1 and ft − Etst+1 depend on x1
t − x2

t ,
the difference between home and foreign log surplus consumption ratios. But �st+1

is more sensitive to habits than ft − Es t+1, and movements in the latter are, there-
fore, dominated by Etst+1, and this creates the negative correlation cov(Et�st+1, ft −
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st+1) < 0, a necessary condition for β < 0. But unfortunately, the model also pre-
dicts that var(Et�st+1) > var(ft − Etst+1), and this implies that β > 1 in the habit
model – which is completely at odds with the empirical data. The model increases the
volatility of the spot return �st+1, and much of this is due to an increased volatility of
the expected spot return. To enable β < 0, we require var(�st+1) > var(ft − Etst+1) >

var(Et�st+1), and the last inequality is violated by the habit model.
The above are analytic results, but one can simulate the exogenous stochastic pro-

cesses in a multivariate model and numerically calculate the moments and compare
them with those from real world data. Moore and Roche (2002) find considerable
correspondence between the Monte Carlo ‘moments’ and the empirical moments for
the UK, US and Japanese bilateral rates. For example, for the US–UK, the artificial
economy model gives a volatility of the spot return, the expected forward profit and
the forward discount as 9.5%, 1.09% and 1.04% respectively. Also, for the artificial
economy, the persistence (i.e. AR(1) coefficient) in the spot return is −0.01 and for the
forward premium 0.66, while the value of β in the FRU regression is 1.79 (Moore and
Roche 2002, Table 6). The estimated beta for the FRU regression using the calibrated
model for the alternative bilateral rates lies in the range 0.96–2.1, but this is far from
its real world value of around minus 1 or lower. Therefore, what the model requires
to ‘fit’ the data is a mechanism that delivers a high unconditional var(�st+1) but a
moderate volatility in Et�st+1 – in other words, a high volatility of surprises in the
spot return. Unfortunately, the model as it currently stands does not resolve the FRU
puzzle, even allowing for a time-varying risk premium.

Real and Nominal Exchange Rates

Although CIA models have to date not ‘solved’ the forward premium puzzle, they can
broadly mimic the stylised facts of (i) the high volatility in real and nominal exchange
rates and the high correlation between them, as well as and (ii) the persistence in real
exchange rates and near random walk behaviour of nominal exchange rates.

Standard CIA models (i.e. utility depends on the level of consumption in the
two countries) with the assumption of sticky prices can explain the above stylised
facts (Chari, Kehoe and McGrattan 2001, Bergin and Feenstra 2001). The sticky price
assumption allows persistence in the real exchange rate while also allowing the near
random walk behaviour of nominal exchange rates (which is driven in part by rel-
ative monetary growth). These models require a large value for γ (i.e. a low value
for the elasticity of intertemporal substitution) in order to generate high volatility in
the nominal exchange rate (see equation (31) with X

j
t = 1, that is a standard utility

specification).
Even if we assume perfectly flexible prices, the above stylised facts can be explained

by a CIA model if we allow the persistence in the real exchange rate to arise from
persistence in habit formation as in equation (45). To see this, note that the real Sr and
nominal exchange rate S are given by

Sr
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Taking logarithms and using p1
t − p2

t = (n1 − n2) − (y1 − y2),

Sr
t = (y1

t − y2
t ) + γ (x1

t − x2
t )

St = (γ − 1)(y1
t − y2

t ) + γ (x1
t − x2

t ) + (n1
t − n2

t )

There is perfect international risk pooling, so equilibrium consumption is half of the
current endowment, Ci

jt = 0.5Y i
t , where Y i

t is the endowment of the ith country at time
t . Compared to the standard utility function, the habit persistence model introduces the
(log of the) surplus consumption ratio xt into the determination of real and nominal
exchange rate (Moore and Roche 2002). Without the habit persistence term xt , the γ

needs to be greater than unity to generate a positive correlation between the real and
nominal exchange rate and to generate large volatility in the nominal spot rate (Chari,
Kehoe and McGrattan 2001). By including the habit term xt , which is highly persistent
(φ ≈ 0.97), we can obtain the stylised facts without price stickiness or a large value
for γ (Moore and Roche 2002). The near random walk behaviour of the nominal
rate is in part due to the near random walk behaviour of relative consumption (i.e.
endowment) and relative money supply growth (which has a low persistence as a
series for the monetary base is used and not, say, broad money, which would be
highly autoregressive).

The CIA approach using either sticky prices and a standard utility function over
consumption or flexible prices and a habit persistence utility function has had some
success in mimicking the stylised facts of the time-series properties (i.e. first two
moments) of real and nominal exchange rates. Note, however, that these models take
the time-series process for consumption (and money) as given and infer the properties
of exchange rates – they are endowment models and not general equilibrium models.
There is also some flexibility in what they choose to be ‘money’ in their calibration
exercise that gives the researcher some degree of flexibility in ‘fitting the facts’, since
there are few formal tests possible (e.g. parameter restrictions). But as noted above,
no CIA model explains the forward premium puzzle but neither do other approaches.

26.5 Summary
• The C-CAPM model, when tested using either the FOCs or explicitly modelling

conditional covariances or using a latent variable approach, performs poorly across
a number of currencies and time periods.

• CIA models have the usual FOCs for the C-CAPM, but domestic and foreign cur-
rency is needed prior to consumption purchases. Data on FX returns, and so on, are
generated for this ‘artificial’ economy. To ‘test’ the model, the ‘artificial data’ is
used to generate ‘statistics of interest’ (e.g. variances and covariances) that are then
compared with actual ‘statistics’ using the real data.

• CIA models explain some of the stylised facts on forward and spot rates, but they
do not explain the FRU result that β < 0. Indeed, the habit persistence CIA model
generates an artificial economy in which β > 1.





27
EXCHANGE RATE AND
FUNDAMENTALS

Aims

• Show how relative money supplies influence the spot rate via the PPP relationship.
This is the basis of the flex-price monetary model, FPMM.

• Analyse how exchange rate overshooting arises from a model with ‘sticky’ goods
prices and ‘smart’ speculators. These are sticky-price monetary models, SPMM.

• Show how the uncovered interest parity (UIP) relationship can give rise to a forward-
looking monetary model.

• Examine illustrative empirical tests of monetary models of the exchange rate using
cointegration techniques, dynamic error correction models, ECM, and including
outside-sample forecasting performance.

• Outline the key features of the ‘new open-economy macroeconomics’.

27.1 Monetary Models

There are a large number of alternative models based on ‘economic fundamentals’ that
have been used to analyse movements in the spot exchange rate. We can do no more
than sketch the main ideas in this chapter. It is probably correct to say that monetary
models in their various forms have dominated the theoretical and empirical exchange
rate literature, and we discuss a number of these such as the flex-price and sticky-price
monetary models and the Frankel real interest rate model. As we shall see, these models
have been far from successful in explaining movements in exchange rates. Indeed, there
is no consensus amongst economists on the appropriate set of economic fundamentals
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that influence exchange rates and this, in part, is why policy makers have sought to
limit exchange rate movements by cooperative arrangements such as Bretton Woods
and the ERM in Europe and in the latter case, a move to full currency union, EMU.
The flex-price monetary model (FPMM) concentrates on the current rather than the
capital account and assumes prices are flexible and output is exogenously determined
by the supply side of the economy. Under floating rates, the FPMM predicts a close
relationship between rapid monetary growth and a depreciating exchange rate (and
vice versa) – which, for example, is broadly consistent with events in Italy, the United
Kingdom, Germany and Japan in the first half of the 1970s and in some Latin American
countries in the 1970s and 1980s. In fact, in terms of its predictions, the textbook
Mundell–Fleming model under the assumption of a full-employment level of output
yields similar results to the FPMM.

Unfortunately, the FPMM failed to adequately explain the large swings in the real
exchange rate (i.e. price competitiveness) that occurred in a number of small open
economies, such as those of the United Kingdom, the Netherlands and Italy in the sec-
ond half of the 1970s and early 1980s. The FPMM takes ‘money’ as the only asset of
importance and, hence, ignores other asset flows in the capital account of the balance of
payments. Once we recognise the importance of capital flows, which have obviously
increased due to the gradual dismantling of exchange controls, we have to address
the question of expectations. Speculative short-term capital flows respond to relative
interest rates between the domestic and foreign country but also depend upon expec-
tations about exchange rate movements. The sticky-price monetary model (SPMM)
invokes the rational-expectations hypothesis to deal with exchange rate expectations,
and it is usually assumed that uncovered interest parity (UIP) holds. Price adjustment
in the goods market is slow and is determined by excess demand working via the price
expectations augmented Phillips curve (PEAPC). The combination of sticky prices and
high capital mobility implies that changes in monetary (and fiscal) policy can cause
‘large’ swings in the nominal and real exchange rate and possibly lead to exchange
rate overshooting.

A recurring theme in the exchange rate literature concerns the response of the
exchange rate to a change in domestic interest rates. The FPMM predicts that a
depreciation ensues after a rise in domestic interest rates, while the SPMM yields
the opposite conclusion. The real interest rate monetary model (RIMM) clarifies this
exchange rate–interest rate nexus.

Finally, a defect of the SPMM is its implicit assumption of the perfect substitutabil-
ity of domestic and foreign assets and failure to analyse explicitly the stock flow
interactions arising from current account imbalances. This is remedied in the portfolio
balance model of exchange rates (PBM).

Flex-Price Monetary Model

The FPMM relies on the PPP condition and a stable demand for money function. The
(logarithm) of the demand for money is assumed to depend on (the logarithm of) real
income, y, the price level, p, and the level of the (bond) interest rate, r . We assume a
similar ‘foreign’ demand for money function. Monetary equilibria in the domestic and



S E C T I O N 2 7 . 1 / M O N E TA RY M O D E L S 609

foreign country are given by

ms = p + φy − λr (1a)

ms∗ = p∗ + φ∗y∗ − λ∗r∗ (1b)

where foreign variables are starred. In the FPMM, the domestic interest rate is exoge-
nous – a rather peculiar property. This assumption implies that the domestic interest
rate is rigidly linked to the exogenous world interest rate because of the assumption of
‘perfect capital mobility’ and a zero expected change in the exchange rate. Given that
output is also assumed fixed at the full-employment level (i.e. the neoclassical supply
curve), then any excess money can only influence the ‘perfectly flexible’ domestic
price level one for one: hence the ‘neutrality of money’ holds.

Equilibrium in the traded goods ‘market’ (i.e. the current account) ensues when
prices in a common currency are equalised, in short, when PPP holds:

s = p − p∗ (2)

The world price, p*, is exogenous to the domestic economy, being determined by
the world money supply, and s is the (logarithm) of the spot exchange rate (domestic
per unit of foreign currency). The domestic money supply determines the domestic
price level and, hence, the exchange rate is determined by relative money supplies.
Algebraically, substituting (1) in (2) and rearranging,

s = (ms − ms∗
) − φy + φ∗y∗ + λr − λ∗r∗ (3)

Possible transmission mechanisms underlying (3) are (i) an increase in the domestic
money supply leads to an increased demand for foreign goods (and assets), an excess
demand for foreign currency and a depreciation in the domestic exchange rate; produc-
ers then ‘arbitrage’ domestic prices upwards to match the new level of import prices
of tradeable goods. Alternatively, (ii) excess money balances cause an excess demand
for domestic goods, followed by a rise in domestic prices via the Phillips curve. This
is followed by a switch to relatively cheap foreign goods, causing downward pressure
on the domestic exchange rate.

It is worth noting that the effect of either a change in output or the domestic interest
rate on the exchange rate in the FPMM is contrary to that found in a Keynesian
model. A higher level of output or lower domestic interest rates in the FPMM causes
an increase in the domestic demand for money. The latter allows a lower domestic
price level to achieve money market equilibrium and, hence, results in an appreciation
in the exchange rate (see, for example, Frenkel, Gylfason and Helliwell 1980, Gylfason
and Helliwell 1983). Now, a rise in nominal interest rates may ensue either because
of a tight monetary policy or because of an increase in the expected rate of inflation,
π (Fisher hypothesis):

r = ψ + π (4)

where ψ is the real interest rate. Adding this relationship to the FPMM (3), we see that
a high expected rate of domestic inflation is associated with a high nominal interest
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rate and a depreciation in the domestic exchange rate (i.e. s has a ‘high’ value). Thus,
the interest rate–exchange rate relationship appears somewhat less perverse when the
Fisher hypothesis is added to the FPMM to yield what one might term the hyperin-
flation – FPMM. The latter terminology arises because r is dominated by changes in
π in hyperinflations (e.g. as in Germany in the 1920s). This is all very well, but one
might be more disposed to view that the change in s, rather than its level, depends on
the expected rate of inflation, as in the Frankel (1979) ‘real-interest’ model discussed
below.

The FPMM may be tested by estimating equations of the form (3) for the exchange
rate or by investigating the stability of the PPP relationship and the demand for money
functions. As far as equation (3) is concerned, it worked reasonably well empirically
in the early 1970s floating period for a number of bilateral exchange rates (see Bilson
1978), but in the late 1970s, the relationship performed badly other than for coun-
tries with high inflation (e.g. Argentina and Brazil). The increase in capital mobility
in the 1970s may account for the failure of the FPMM where the exchange rate is
determined solely by relative prices (PPP). Although there are difficulties in testing
the PPP relationship, we have noted that it only holds in the long run. Also, the
instability in money demand functions in the 1970s–1990s in the G10 economics is
well documented (see Cuthbertson 1991a,b, 1997), and this would imply a failure of
the FPMM.

In the latter half of the 1970s, the FPMM ceased to provide an accurate description of
the behaviour of exchange rates for a number of small open economies. For example,
in the United Kingdom over the period 1979–1981, the sterling nominal effective
exchange rate (i.e. the rate against a basket of currencies) appreciated substantially even
though the UK money supply grew rapidly relative to the growth in the ‘world’ money
supply. However, more startling, the real exchange rate (i.e. price competitiveness or
the terms of trade) appreciated by about 40% over this period, and this was followed
by an equally sharp fall over the 1981–1984 period. The FPMM can only explain
changes in the real exchange rate by differential short-run lags in the response of
domestic (and foreign) price levels to changes in relative money supplies. Faced with
the kind of evidence cited above, these lags appeared to be highly variable or, in other
words, the FPMM failed to explain this phenomenon adequately.

SPMM: Dornbusch Overshooting

The SPMM provides an explanation of exchange rate overshooting (Dornbusch 1976)
and short-run changes in real output. The model is able to resolve the conundrum found
in the FPMM where one obtains the counter-intuitive result that a rise in domestic
interest rates leads to a depreciation in the domestic currency. In the SPMM, if the
rise in nominal rates is unexpected and, hence, constitutes a rise in real interest rates,
the conventional result, namely an appreciation in the exchange rate, ensues.

Like the FPMM, the SPMM is ‘monetarist’ in the sense that the neutrality of money
is preserved in the long run by invoking a vertical neoclassical supply curve for output
(or equivalently a vertical long-run Phillips curve). However, PPP holds only in the
long run and, hence, short-run changes in the real net trade balance are allowed.
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Key elements in the SPMM are the assumption of a conventional, stable demand for
money function and UIP. Agents in the foreign exchange market are assumed to form
rational expectations about the future path of the exchange rate: they immediately act
on any new information, and this is what makes the exchange rate ‘jump’ and undergo
frequent changes. In addition, in the SPMM, the capital account and the money market
‘clear’ in all periods but the goods market, where prices are sticky, does not. It is
this combination of ‘flex-price’ and ‘fix-price’ markets that can produce exchange rate
overshooting.

We present a simplified account of the Dornbusch (1976) model, beginning with a
description of the main behavioural assumptions, followed by an analysis of the impact
of a tight monetary stance on the economy.

The UIP relationship expresses the condition for equilibrium on the capital account.
Foreign exchange speculators investing abroad expect a return of r∗ + µ percent, where
r∗ = foreign interest rate, µ = expected appreciation of the foreign currency (depre-
ciation in the domestic currency). With perfect capital mobility and risk neutrality,
equilibrium requires

r = r∗ + µ (5)

Suppose we begin with r = r∗ = 10% and hence µ = 0. Expectations about the ex-
change rate are assumed to be regressive. If the actual rate lies below the long-run
equilibrium rate, s, then agents expect the actual rate to rise towards the long-run rate,
that is, for the spot rate of the domestic currency to depreciate, in the future:

µ = θ(s − s) 0 < θ < 1 (6)

This ‘expectations equation’ may be made fully consistent with rational expectations
in that this regressive formula allows expectations to be correct ex post, given the other
equations in the Dornbusch model. Equilibrium in the money market implies

ms = md = −λr + φy + p (7)

In the goods market, aggregate demand AD is given by

AD = δ(s − p + p∗) − σr + γy + γ ′ (8)

The first term represents the impact of the real exchange rate on net trade volumes
(i.e. exports minus imports), the second is interest elastic real (investment) expenditures
(−σ r), the third, the consumption function (γ y) net of expenditure effects on imports
and the final term, exogenous demand factors such as government expenditure (γ ′). The
‘supply side’ is represented by a vertical long-run Phillips curve. The rate of inflation
responds to excess demand in the goods market; prices adjust slowly to equilibrium
(0 < 	 < 1):


p = 	(AD − y) = 	[δ(s − p + p∗) − σr + γy + γ ′ − y] (9)

where y is the full-employment level of output.
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Flexible prices: long run

We begin in equilibrium in the goods and money markets and assume UIP holds
(i.e. r = r∗andµ = 0). Consider a reduction of 1% in the money supply. If prices are
perfectly flexible, a fall of 1% in the price level will restore money market equilibrium
(with an unchanged level of interest rates in the long run). In addition, if the exchange
rate appreciates by 1%, the real exchange rate remains constant, and real aggregate
demand continues to match aggregate supply. In the long run, the interest rate is
unchanged and, therefore, real investment is unchanged. With unchanged interest rates,
the exchange rate is expected to remain constant in the future and UIP holds. After a
monetary contraction of 1%, prices fall by 1% and the exchange rate will appreciate by
1% in order to maintain price competitiveness (PPP). This is the ‘long-run’ outcome.

Fixed prices: short-run overshooting

In contrast, now assume prices and output are sticky in the short run. With y and
p ‘sticky’, a decrease in the money supply requires a rise in r to ‘clear’ the money
market (dr = −(1/λ)dm s), equation (7). The rise in r causes a potential capital inflow
that can be stopped only if the domestic exchange rate is expected to depreciate, thus
re-establishing UIP. But according to equation (6), an expected depreciation of the
domestic currency requires the actual spot rate immediately to appreciate above its
long equilibrium value. Hence, the exchange rate ‘overshoots’ its long-run value.

The economics behind this actual appreciation today is as follows. If ms falls by
1% and λ = 1/2, then the interest rate r rises by 2% to clear the money market (with
y and p fixed in the short run). The higher interest rate, with unchanged expectations
about the spot rate, leads to a capital inflow into the domestic economy (i.e. UIP does
not hold at the moment). The increased demand for domestic currency pushes up the
actual spot rate today. How far will the spot rate rise until foreign speculators stop
purchasing the domestic currency? The interest differential in favour of the domestic
economy is 2%. Therefore, the spot rate rises today until it is 2% above its known
long-run value, since rational speculators will then believe that it will fall by 2% over
the coming year. This expected 2% fall in the domestic currency just offsets the 2%
higher domestic interest rates they receive, and now UIP holds. Hence, if the spot
rate was initially 100, then after the rise in domestic interest rates of 2%, it would
immediately jump to 103, before slowly falling to its long-run value of 101 by the end
of the year (i.e. a long run appreciation of 1%). Hence, the exchange rate overshoots
its long-run value, since it immediately moves from 100 to 103 before ending up at
101. It does not rise monotonically from 100 to 101. It is all beautifully consistent,
which it has to be, since agents are rational and know the true model of the economy
(up to a set of white noise errors).

It is useful to present a simplified account of the mathematics behind this result.
Because of the vertical Phillips curve, output is fixed in the long run, and the neutrality
of money implies dp = dms . As PPP also holds in the long run, ds = dp = dms

(where a bar over a variable indicates its long-run value). Turning to the short run,
assume p and y are fixed, so that any short-run disequilibrium in the money market
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is taken up by adjustments in r:

dr = − dms/λ (10)

To preserve UIP in the short run, the expected appreciation in the exchange rate µ

must equal the interest differential dr (note that dr∗ = 0):

dµ = dr = − dms/λ (11)

From the expectations equation (6) and using (11) above, the short-run change in the
exchange rate is

ds = ds − dµ/θ = [1 + (θλ)−1] dms (12)

Since θλ > 0, the initial change in the spot rate of [1 + (θλ)−1]dms exceeds the ‘unit’
long-run change: ds = dms . It is clear that ‘overshooting’ is in part due to the restrictive
channels through which monetary policy is forced to operate. Initially, all adjustment
in the money market is via the interest rate, only in the long run does the price
level equilibrate the money market and the interest rate return to its original level.
Although it may not be immediately apparent from the above analysis, the assumption
of risk neutrality is of crucial importance for overshooting. Note that, in contrast to
the prediction of the FPMM, the response of the exchange rate to the interest rate is
as one might intuitively expect: an unanticipated jump in the interest rate (consequent
on a fall in the money supply) leads to an appreciation of the domestic currency.

Frankel Real Interest Monetary Model, RIMM

Frankel (1979) provides a general model for analysing the impact of changes in the
interest rate on the exchange rate and we refer to this as the ‘real interest monetary
model’. It provides a Dornbusch relationship with respect to the nominal interest rate
(∂s/∂r < 0) and a hyperinflation FPMM with respect to the expected rate of inflation
(∂s/∂π > 0). Also, the exchange rate may overshoot its long-run equilibrium value.

Frankel’s model assumes uncovered arbitrage but modifies the Dornbusch expec-
tations equation for the exchange rate by adding a term reflecting relative expected
secular inflation (π − π∗). The ‘expectations equation’ is

se − s = θ(s − s) + (π − π∗) (13)

and UIP yields
se − s = r − r∗ (14)

The expected rate of depreciation (se − s) depends upon the deviation of the exchange
rate from its equilibrium value, which as we know, gives Dornbusch-type results. In
addition, if s = s, the expected rate of depreciation is given by the expected infla-
tion differential between the domestic and foreign currency: as we shall see, this term
generates hyperinflation FPMM results. Frankel shows that the expectations equation
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is consistent with rational expectations. (We do not deal with this aspect.) Combin-
ing (13) and (14) and rearranging, we have

s − s = (1/θ)[(r − π) − (r∗ − π∗)] (15)

The movement in the spot rate around its equilibrium value is determined by the relative
real interest differential. In long-run equilibrium, s = s, which implies r − r∗ = π −
π∗; and the term in square brackets may be rewritten as [(r − r∗ − (r − r∗)]. It is only
when a tight monetary policy raises the nominal interest differential (r − r∗) above its
long-run level (r − r∗) given by relative expected inflation that the ‘current’ exchange
rate appreciates above its long-run equilibrium level (s − s > 0).

We now assume that PPP holds in the long run, and with the usual demand for
money functions (with φ = φ∗, λ = λ∗ for simplicity), we obtain an expression for the
long-run exchange rate (as in the FPMM):

s = p − p∗ = m − m∗ − φ(y − y∗) + λ(r − r∗)

= (m − m∗) − φ(y − y∗) + λ(π − π∗) (16)

where we have used r − r∗ = π − π∗ (the ‘international Fisher effect’ that is implicit
in the hyperinflation FPMM). The crucial elements in the Frankel model are the
expectations equation (13) and the distinction between the short-run and long-run deter-
minants of the exchange rate. Substituting for s from (15) in (16), we obtain Frankel’s
(‘reduced-form’) exchange rate equation

s = m − m∗ − φ(y − y∗) − (1/θ)(r − r∗) + [(1/θ) + λ](π − π∗)

= m − m∗ − φ(y − y∗) + α(r − r∗) + β(π − π∗) (17)

where α = −(1/θ) and β = (1/θ) + λ. We can now characterise our three competing
models in terms of the parameters α and β.

It is evident from Table 1 that in the Frankel model, we obtain a Dornbusch-type
result (∂s/∂r < 0) if interest rates increase while inflation expectations remain con-
stant. This situation is likely to correspond to an unanticipated change in the money
supply, which has an immediate impact on interest rates (to ‘clear’ the money market)
but is not immediately perceived as permanent and, hence, does not influence π . On the
other hand, an equal increase in the nominal interest rate, r , and inflationary expecta-
tions π cause a depreciation in the exchange rate (β + α > 0) – an FPMM-type result.
Hence, by adding an ancillary assumption to the Dornbusch-type model, namely (13),

Table 1 The Frankel real interest rate model

Model Parameters

Frankel α < 0, β > 0; |β| > |α|
FPMM α > 0, β = 0
FPMM-hyperinflation α = 0, β > 0
Dornbusch-SPMM α < 0, β = 0



S E C T I O N 2 7 . 1 / M O N E TA RY M O D E L S 615

an anticipated increase in the money supply becomes likely to lead to an expected and
actual depreciation of the domestic currency. Implicitly, the Frankel model highlights
the possible differential response of the exchange rate to anticipated and unanticipated
changes in the money supply and interest rates.

Portfolio Balance Model

The FPMM and SPMMs make two important simplifying assumptions: all domestic and
foreign assets are perfect substitutes and any wealth effects of a current account surplus
or deficit can be ignored. The portfolio balance model of exchange rates explores the
consequences of explicitly relaxing these assumptions (see e.g. Branson 1977, Isard
1978, Dornbusch and Fischer 1980). The level of the exchange rate in the portfolio
balance model (PBM) is determined, at least in the short run, by supply and demand
in the markets for all financial assets (e.g. money, domestic and foreign bonds). In the
PBM, a surplus (deficit) on the current account represents a rise (fall) in net domestic
holdings of foreign assets. The latter affects the level of domestic wealth and, hence,
the desired demand for assets, which then affects the exchange rate. Thus, the PBM
is an inherently dynamic model of exchange rate adjustment that includes interactions
between the current account, the rate of asset accumulation, asset demands and the
price level. In the simplest PBM, there are conventional demand functions for domestic
money M , domestic bonds B and foreign bonds held by domestic residents B*:

M/W = m(r, r∗ + Et
st+1)

B/W = B(r, r∗ + Et
st+1)

SB∗/W = B∗(r, r∗ + Et
st+1)

where r = domestic interest rate, r∗ = foreign interest rate and Et
st+1 = expected
depreciation of the domestic currency. Domestic money and bonds and foreign bonds
are gross substitutes. Domestic wealth consists of domestic money and bonds and
foreign bonds, and the change in foreign bonds is governed by the current account
surplus T (S/P ) since the capital account must equal the current balance in equilibrium:

W = M + B + SB∗

Ḃ∗ = T (S/P ) + r∗B∗

A devaluation improves the trade balance T ′ > 0. The model can be solved either
assuming static or rational expectations, and overshooting of the exchange rate is
possible. Note that goods prices are indeterminate in the model (and long-run neutrality
is usually assumed). The ‘theoretical’ PBM ignores the demand for equity, but it is
useful in analysing the impact of open market operations on the exchange rate.

Testing the PBM is difficult because of data limitations. Direct tests involve esti-
mating the asset demand functions (e.g. Lewis 1988, Cuthbertson and Galindo 1999).
An alternative is to solve the PBM, which gives a reduced form equation for the
exchange rate that depends on assets other than money, namely domestic and net
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foreign bonds (usually measured by the cumulative current account position). Both of
these approaches have achieved only moderate success and are not particularly robust
over different currencies and time periods (Frankel 1982a, Rogoff 1984).

Forward-Looking Models

Including UIP in the FPMM, we have

Etst+1 − st = rt − r∗
t (18)

st = pt − p∗
t = (m − m∗)t − φ(y − y∗)t + λ(r − r∗)t (19)

substituting for r − r∗ from the UIP condition and rearranging, we have

st = [1/(1 + λ)]zt + [λ/(1 + λ)]Etst+1 (20)

where zt = (m − m∗)t − φ(y − y∗)t . By repeated forward substitution,

st = [1/(1 + λ)]
∞∑
i=0

[λ/(1 + λ)]iEtzt+i (21)

where we have imposed a transversality condition. From (21), the spot rate only
changes if there is new information or news about the future path of zt+i . In the
Dornbusch-SPMM, we can introduce inertia into the system if prices respond with a
lag to excess demand Xt in the goods market.

pt − pt−1 = δXt (22)

Excess demand is high when the real exchange rate depreciates (i.e. st increases)

Xt = q1(st + p∗
t − pt) (23)

Using UIP and the money demand equations, this gives rise to a similar form to (21)
except that there is now inertia in the exchange rate

st = θ1st−1 + λ

∞∑
j=0

θ
j

2 Etzt+j 0 < (θ1, θ2) < 1 (24)

where zt depends on relative money supplies and real output. The portfolio balance
model PBM may also be represented in the form (24) by noting that here we can
amend the UIP condition to incorporate a risk premium that depends on relative asset
holdings in domestic Bt and foreign bonds B∗

t .

rt − r∗
t = Etst+1 − st + f (Bt/B

∗
t ) (25)

The resulting equation (25) for the exchange rate now has relative bond holdings in
the vector of fundamentals, zt .



S E C T I O N 2 7 . 2 / T E S T I N G T H E M O D E L S 617

Forecasts of the future values of the fundamentals zt+j depend on information at
time t and, hence, equation (25) can be reduced to a purely backward-looking equation
in terms of the fundamentals (if we ignore any implicit cross-equation RE restrictions),
and this is often how such models are empirically tested in the literature. However,
one can also exploit the full potential of the forward terms in (24), which imply cross-
equation restrictions, if one is willing to posit an explicit set of VAR forecasting
equations for the fundamental variables.

27.2 Testing the Models

As one can see from the analysis in the previous section, tests of SPMM involve
regressions of the spot rate on relative money stocks, interest rates, and so on, while
tests of the PBM also include other asset stocks. If we ignore hyperinflation periods,
then these models have not proved successful in predicting movements in bilateral spot
rates, particularly in post-1945 data. Some of the models do work reasonably well over
short sub-periods but not over the whole period. Meese (1990) provides an early study
of the performance of such models. He estimates a general equation that, in the main,
subsumes all of the above theories:

st = a0 + a1(L)(m − m∗)t + a2(L)(y − y∗)t + a3(L)(r − r∗)t

+ a4(L)(π − π∗)t + a5(L)(F − F ∗)t + εt (26)

where F = stock of foreign assets held by domestic residents and F* = stock of domes-
tic assets held by foreign residents. Meese (1990) repeats the earlier tests of Meese and
Rogoff (1983) by running equation (26) up to time period t and then using it to fore-
cast out-of-sample for horizons of one, six and 12 months. New data is then added,
and the estimation and forecasting process is repeated. The forecasts use actual future
values of the RHS variables. He then compares the root mean square forecast errors
from (26) with those from a benchmark provided by the ‘no change’ prediction of the
random walk model of the exchange rate. Meese finds that the forecasts using economic
fundamentals in (26) are in all cases worse than those of the random-walk hypothesis.

Meese (1990) dismisses the reasons for the failure of these models based on funda-
mentals as mismeasurement of variables, inappropriate estimation techniques or even
omitted variables (since so many alternatives have been tried). He suggests that the
failure of such models may be due to weakness in their underlying relationships such
as the PPP condition, and the instability found in money demand functions and the
mounting evidence from survey data on expectations that agents’ forecasts do not obey
the axioms of rational expectations.

PPP-LOOP

Some of the variables in (26) are likely to be I(1) and, hence (to avoid statistical prob-
lems), more recent studies examine the cointegration properties of the data and establish
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cointegration between st and relative prices (PPP) and between st and ‘fundamentals’
such as money supply and output. Using data from the post-Bretton Woods float, single-
equation tests of PPP have generally found that relative prices and nominal exchange
rates are not cointegrated (Rogoff 1996). It is well known that standard tests take the
null hypothesis as ‘no cointegration’, and the power to reject the null is extremely low
in a short data span (the power of unit-root tests depends on the span of data and not
its frequency, so one cannot increase ‘power’ by using quarterly data, say, rather than
annual data). One way of overcoming this problem is to use longer spans of data, and
studies that use about a century of data do find considerable support for long-run PPP
(e.g. Lothian and Taylor 2000, Taylor 2001).

Other studies of PPP use panel data, since it has been found that this increases
the power of cointegration tests and many panel studies using only the post-Bretton
Woods data find support for long-run PPP (e.g. Frankel and Rose 1996, Taylor and
Sarno 1998). One difficulty in interpreting these panel results is that when the null of
no cointegration is rejected, we do not know whether PPP applies to all countries in the
panel or only to a few. However, even given the somewhat conflicting evidence from
alternative cointegration tests, most economists would accept that PPP holds in the
long run (5–10 years), although deviations from PPP can be very large and persistent.

Monetary Fundamentals

Mark (1995) examines the usefulness of ‘fundamentals’ in explaining changes in the
(log) exchange rate over short and long horizons. Mark (1995) takes the monetary
model as determining fundamentals zt = (m − m∗) − α(y − y∗), and the exchange rate
adjusts slowly to disequilibrium in the fundamentals:

st+k − st = δk + βk(st − zt ) + εt+k

Mark uses quarterly data on the US Dollar against the Canadian Dollar, Deutsche Mark,
Yen and Swiss Franc, 1973–1991. The above exchange rate equation is a simple form
of error correction model, with an error correction term (s − z)t . Mark finds that the
R2 in the above regression and the value of βk increase as the horizon k increases
from 1 to 16 quarters. This is the same phenomenon we noted for long horizon stock
returns. Mark finds that out-of-sample forecasts at long horizons (k = 16) outperform
the random-walk model for DM, Yen and Swiss Franc. The above analysis is not a test
of a ‘fully specified’ monetary model but demonstrates that ‘monetary fundamentals’
may provide a useful predictor of the exchange rate over long horizons (although not
necessarily over short horizons).

Mark (1995) recognises that OLS estimates of βk are biased (Stamburgh 1999). To
assess the degree of bias, he undertakes a MCS in a model where st follows a random
walk, while fundamentals zt (e.g. money supply) are a persistent AR(1) process.


st = α0 + ε1t

zt = γ0 + γ1zt−1 + ε2t

Using representative values for the parameters, he generates a series for st and zt and
performs the above error correction model on this ‘artificial data’. He finds that the
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mean value of the OLS estimates βk in the artificial data are positive when they should
be zero, since 
st is a random walk by construction. This gives him a measure of
the bias in the real data (see Chapter 2). For example, if the mean value of βk in
the MCS is 0.20, while in the real data it is 0.205, then the bias adjusted beta, adj-
βk = 0.205 − 0.20 = 0.005. Hence, the seemingly large β̂k = 0.205 in the real data is
misleading because it is biased, and a bias corrected value would be 0.005. The above
would then indicate that fundamentals in the real data have hardly any effect on future
changes in the spot rate. After bias-adjusting the betas obtained using the real data (and
using empirical standard errors), Mark finds that fundamentals have some explanatory
power at long horizons (> 4 years) but not at short horizons (< 4 years).

Cointegration tests can be applied to monetary models of the exchange rate, where
in the long run,

st = (m − m∗)t − φ(y − y∗)t + λ(r − r∗)t (27)

and UIP implies
(r − r∗)t = Et
st+1 (28)

Under RE, the forecast error is I(0) (otherwise it is predictable from information known
at t) and empirically st+1 is I(1), hence (28) implies r − r∗ is I(0). In (28), if r − r∗

is I(0), then it cannot cointegrate with st , which is I(1), hence the statistical long-run
relationship between st and monetary fundamentals is

st = (m − m∗)t − φ(y − y∗)t (29)

where we expect the coefficient on (m − m∗) to be unity. The coefficient on (y − y∗)
will be unity only if the income elasticity of the demand for money is unity in both
countries. Of course, it is possible that for some countries, st , (m − m∗) and (y − y∗)
are all I(0), in which case the issue of cointegration does not arise.

Groen (2000) and Mark and Sul (2001), using post-Bretton Woods data in a panel
of countries, find cointegration in (27) with φ = 1 and forecasts based on an error
correction model (ECM) generally outperform the random-walk model. Clearly, the
panel results of Mark and Sul (2001) supporting cointegration across the whole panel
of countries, may, nevertheless, ‘contain’ some countries where the monetary model
does not hold.

In contrast, Rapach and Wohar (2002) use over a century of annual data for 14
exchange rates (against the USD) and test for cointegration in (29). Results using a
battery of tests are mixed, with cointegration holding for France, Italy, Netherlands
and Spain and moderate support for Belgium, Finland, Portugal and Switzerland and
no support for Australia, Canada, Denmark, Sweden and the United Kingdom. Where
cointegration has been established, Rapach and Wohar then run a bivariate VECM:


st = {
st−j , 
fdm t−j } + α11zt−1 + ε1t (30a)


fdm t = {
st−j , 
fdm t−j } + α21zt−1 + ε2t (30b)

where ‘fundamentals’ fdm t = (m − m∗)t − (y − y∗)t and zt = (s − fdm)t . For Belgium,
Italy and Finland, α11 �= 0 and α21 = 0, so the fundamentals are weakly exogenous for
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these three countries (but not for others), and the disequilibrium in the ‘fundamentals’
drives changes in the exchange rate (and not vice versa). In fact, it is (m − m∗)t−1 that
is doing all the work here because if (y − y∗), which is I(0), is included separately, it is
not statistically significant.

Rapach and Wohar (2002) then use (30a) to provide ‘outside sample’ forecasts for

st , updating the parameters each year, using data up to t − 1 and forecasting one year
ahead. These forecasts are undertaken only for those countries for which zt is I(0) (i.e.
s, m and y cointegrate). The forecasts using fundamentals are compared to the ‘no
change’ random-walk prediction using a variety of metrics (e.g. mean square error,
MSE). They find that the monetary model outperforms the random-walk model for
some of the countries (Belgium, Italy and possibly Switzerland) where the ECM term
is statistically significant in the 
st equation. In contrast, when the ECM term is statis-
tically insignificant (e.g. France, Portugal, Spain), the forecast performance of (30a) is
inferior to the random walk ‘no change’ prediction. Also note that Rapach and Wohar’s
(2002) forecasting results allow the coefficients on the dynamics to alter every period
(i.e. they are not be constant) and we do not know the contribution of these short-run
‘delta’ terms relative to that of the ECM term, to the overall forecast performance. It
is not saying a lot if 
st = f (
st−j , 
fdm t−j ) provides a better forecast than simply

st = 0. It is the ECM term that embodies the long-run economic theory so it would
be interesting to know whether excluding this term leads to a major deterioration in
the forecast performance. Indeed, the Theil U statistics, U = RMSE fdm/RMSE RW , lie
mainly between 0.98 and 1.02, so the forecast improvement for the fundamentals model
over the random-walk model is rather marginal.

Overall, even this technically proficient ‘re-run’ of the monetary model gives far
from satisfactory results, and one cannot imagine a central banker using this model
when deciding on the monetary policy stance for the ‘moderate inflation’ countries
considered in the study.

Since PPP holds, it appears that the weakness of the monetary model lies with the
stability of the money demand relationship, and difficulties here have been well docu-
mented (e.g. see Cuthbertson 1997 and other articles therein). The above ‘tests’ assume
linearity, and it is possible that the effect of disequilibrium in the fundamentals on 
st

is non-linear. Indeed, Taylor and Peel (2000) find that zt = (s − fdm)t is stationary and
model these residuals from the cointegrating regression as a non-linear ESTAR model
and find (as with the dividend–price ratio for stocks) that ‘close to equilibrium’, the
exchange rate behaves as a random walk but well away from equilibrium, it is mean
reverting (around the monetary fundamentals).

Forward-Looking Models: The VAR Approach

In our analysis of the FPMM, we saw that the spot rate may be represented as a forward
convolution of fundamental variables

st = (1 + λ)−1
∞∑
i=0

[λ/(1 + λ)]iE(xt+i |�t) (31)
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where
xt = (mt − m∗

t ) − (φyt − φ∗y∗
t ) (32)

Subtracting xt from both sides of (31),

qt = st − xt =
∞∑
i=1

ψiEt(
xt+i |�t) (33)

where ψ = λ/(1 + λ), Et
xt+1 = xt+1 − xt and Et
xt+i = Et(xt+i − xt+i−1) for i >

1. We may somewhat loosely refer to qt = st – xt as the actual ‘exchange rate spread’.
If the economic fundamentals in xt are I(1), then 
xt+i in (33) is I(0) and, hence, st

and xt should be cointegrated and qt ∼ I(0). If we form a VAR in zt = (qt , 
xt )
′, then

it is easy to see that (33) implies

e1′zt =
∞∑
i=1

ψie2′Aizt = e2′ψA(I − ψA)−1zt (34)

The Wald restrictions implied by this version of the FPMM are

e1′ − e2′ψA(I − ψA)−1 = 0 (35a)

or
e1′(I − ψA) − e2′ψA = 0 (35b)

Equation (35b) is a set of linear restrictions that imply that the RE forecast error for
the spot rate is independent of any information available at time t other than that given
by the variables in xt . We can also define the ‘theoretic exchange rate spread’ q ′

t as

q ′
t = e2′ψA(1 − ψA)−1zt (36)

and compare this with the actual ‘spread’ qt . To implement the VAR methodology, we
need to have estimates of {φ, φ∗} to form the variable qt = st – xt and estimates of λ

to calculate ψ . An implication of the FPMM is that

st = (mt − m∗
t ) − (φyt − φ∗y∗

t ) + (λrt − λ∗r∗
t ) (37)

is a cointegrating relationship, given that all the variables are I(1). Estimates of (φ,φ∗,λ,
λ∗) can be obtained from cointegration regressions either single equation or using the
Johansen procedure. The variables qt = st – xt and 
xt can then be constructed and
used in the VAR.

MacDonald and Taylor (M–T) (1993) provide a good illustration of the implemen-
tation of this procedure. They use monthly data January 1976 to December 1990 on
the DM/Dollar rate. From the Johansen procedure, they find they do not reject the null
that the coefficients on relative money supplies and relative income are unity for the
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‘home’ (Germany) and ‘foreign’ (USA) variables and that the interest rate coefficients
are nearly equal and opposite:

st = (m − m∗)t + (yt − y∗
t ) + 0.049rt − 0.050r∗

t

They take λ = λ∗ = 0.05 and, hence, xt = (m–m*)t – (yt − y∗
t ). M–T find that the

Wald tests decisively reject the RE cross-equation restrictions. The variance of the
actual ‘spread’ qt exceeds the variance of the theoretical spread q ′

t given by (36) by a
factor greater than 100, and the forward-looking FPMM, therefore, performs abysmally.

As in the Rapach–Wohar approach, M–T note that the presence of a cointegrating
vector (32) implies that the spot rate may be represented as a dynamic ECM, and they
run a second-stage regression to estimate the short-run dynamic response of st . Their
preferred ECM is


st = 0.005
(0.003)

+ 0.24
st−2

(0.07)

− 0.42
2
mt

(0.23)

− 0.79
yt

(0.34)

− 0.008
2r∗
t

(0.003)

− 0.025qt−1

(0.013)

(38)

where R2 = 0.14, SE = 3.2%, (.) = standard error. The equation passes all the usual
diagnostic tests, although note that the R2 of 14% indicates that little of the variation in

st is explained by the equation. They then perform a ‘rolling regression’ and use (38)
to forecast over different horizons as the estimated parameters are updated. They find
that the RMSEs for the ECM are slightly less than those from the random walk, ‘no
change’ forecasts, for horizons of one, two, three, six, nine and 12 months. Again, note
that most of the statistical explanation in (38) appears to be due to the ad hoc dynamic
terms, and little of the statistical explanation seems due to the long-run error correction
term. The forecasts are likely to be dominated by the difference terms, which probably
approximate a random walk themselves, hence, the reason why the reported RMSEs
are approximately the same as those for the random-walk model. The M–T study is a
valiant attempt to correctly test a sophisticated version of the FPMM but the model is
clearly rejected for DM/$ spot rate.

Volatility of Spot Rate and Fundamentals

A novel approach to testing monetary models of the exchange rate is provided by Flood
and Rose (1995). They compare the volatility of the spot rate with the volatility in
‘economic fundamentals’ for periods of ‘fixed rates’ (e.g. Bretton Woods) and floating
rates. Not surprisingly, exchange rates are far more volatile in the floating rate periods.
If monetary models are correct, then one should observe a dramatic increase in volatility
in some of the economic fundamentals (e.g. relative money supplies) when a previously
‘fixed’ exchange rate is allowed to float. For nine industrialised (OECD) countries,
Flood and Rose find that although the conditional volatility of bilateral exchange rates
against the dollar alters dramatically across these exchange rate regimes, none of the
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economic fundamentals experience a marked change in volatility. Hence, one can
legitimately conclude that the economic fundamentals in the monetary models (e.g.
money supply, interest rates, inflation rates, output) do not explain the volatility in
exchange rates.

A more formal exposition of the Flood–Rose methodology in testing the FPMM
may be obtained from (3) with φ = φ*, λ = λ* and substituting for r − r∗ from the
UIP condition

st = TF t + λ(se
t+1 − st ) (39)

where TF t = (m − m∗)t − φ(y − y∗)t stands for ‘traditional fundamentals’. We define
‘virtual fundamentals’ as VF t = st − λ(r − r∗)t . Under the FPMM, equation (3), we
expect the variability in virtual fundamentals VF t to equal the variability in traditional
fundamentals TF t . To obtain a time series for TF t and VF t , all one requires is a
representative value for the structural parameters of the demand for money function λ

and φ. As reported above, Flood and Rose find that while the volatility of VFt increases
dramatically in the floating rate period, the volatility of traditional fundamentals TF t

changes very little. (This result is invariant to reasonable values of λ and φ and
also holds when they consider the SPMM.) Flood and Rose suggest that since few
macroeconomic variables undergo dramatic changes in volatility, which coincide with
changes in exchange rate regimes, it is unlikely that any exchange rate model based
only on economic fundamentals will prove adequate. For nine OECD countries, they
also correlate the average monthly variance of the exchange rate over successive two-
year horizons σ 2(S) against the variance of various macroeconomic variables. They
find that there is no correlation between σ 2(S) and either the variability in the money
supply or interest rates or FOREX reserves or stock prices and only a rather weak
negative correlation with the variance of output.

Rational Bubbles

Rational bubbles are possible in the forward-looking model, and we briefly discuss
these issues below. There are severe econometric difficulties in testing for rational
bubbles, and such tests are contingent on having the correct equilibrium model of asset
returns. Rejection of the no-bubbles hypothesis may be due to misspecification of the
underlying model involving fundamentals. The latter is particularly acute for monetary
models of the exchange rate since these provide a rather poor statistical representation
of movements in the spot exchange rate. The FPMM with a deterministic bubble term
results in an equation for the spot rate of the form

st = (1 + λ)−1
∞∑
i=0

[λ/(1 + λ)]iEtxt+i + B0[(λ + 1)/λ)]t (40)

where xt = set of monetary variables, B0 = value of bubble at t = 0. The null of no-
bubbles is H0 : B0 = 0. However, if the xt variables are a poor representation of the
true fundamentals, then the estimate of B0 may be different from zero, as it is the only
other candidate left to help explain the dependent variable. Testing B0 = 0 in (40) is
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also problematic because of the ‘exploding regressor’ problem. However, the test due
to West (1987a) avoids the latter problem and provides a test for any form of bubble,
whether stochastic or deterministic.

Meese (1986) uses the FPMM as his maintained fundamentals model for the $/DM
exchange rate (1973–1982) and rejects the no-bubbles hypotheses. West (1987b) uses a
second type of West (1987a) test and augments the FPMM of Meese to include money
demand errors that may pick up other potential ‘fundamentals’. He finds against the
presence of bubbles for the $/DM rate (1974–1984). Because of the poor empirical
performance of exchange rate models based on fundamentals, there is little one can
say with any degree of certainty about the presence or otherwise of rational bubbles in
FX rates.

27.3 New Open-Economy Macroeconomics
There has been a concerted effort over the last 10 years or so to embed macroeconomic
models with ‘sound’ microfoundations (Woodford 2003, Clarida, Gali and Gertler
1999), and this has had an impact on open-economy models (Obstfeld and Rogoff
2000). The basis for ‘rigorous microfoundations’ is usually interpreted by assuming
agents maximise an intertemporal utility function subject to a budget constraint. We
noted that this type of model has also come to the fore in the SDF approach, which
seeks to explain risky asset demands and the equity premium. Also, because we have an
explicit intertemporal utility function, this implies we can analyse alternative solutions
in terms of their impact on overall welfare.

In the following, we give a flavour of these open-economy models. As empirical
testing of such models and their use in policy analysis is as yet not widely established,
the interested reader is referred to Lane (2001) and Sarno and Taylor (2002) for more
information.

Like intertemporal consumption portfolio models, the new open-economy models
(NOEM) are stochastic general equilibrium models, which are usually calibrated and
simulated rather than estimated. In Obstfeld and Rogoff, ‘producer-consumer’ agents
maximise lifetime utility:

U =
∞∑
t=0

δt

[
σ

σ − 1
ln C

(σ−1)/σ
t + κ

1 − ε
ln

(
Mt

Pt

)1−ε

− k

µ
yt (z)

µ

]

Subject to the dynamic budget constraint (for all t),

Bt+1 − Bt + rB t + Mt − Mt−1

Pt

= pt(z)

Pt

− Ct − Tt

where Ct = aggregate consumption, Mt = money balances, Bt = internationally traded
riskless bond, r = real interest rate, Tt = tax receipts and y = real output. The term
in −y(z) in square brackets represents the fact that higher output implies less leisure,
hence, lower utility. The parameter z indexes the continuum of agents in the model.

In the model, the LOOP holds for individual goods with price pt(z), and PPP holds
for the aggregate price level (i.e. P = SP ∗). Real interest rate parity is assumed to
hold, which links the real rate to the nominal rate.
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With sticky prices in the short run, an increase in the money supply has real effects
in the short run, and in the long run, money is not neutral because there is wealth
accumulation via the current account. For example, with sticky prices, an increase in
the money supply leads to a fall in nominal interest rates and via UIP, a depreciation
in the exchange rate. The latter leads to higher exports (fewer imports), generating
an increased demand for output. Monopolistic competition implies with price above
marginal cost, producers supply the extra output demanded at unchanged prices. The
‘home’ current account moves into surplus in the short run, and this leads to a higher
level of long-run wealth. The latter implies that money is not neutral in the long
run (i.e. even after all price adjustments). There is no exchange rate overshooting in
the model, and in the long run, the exchange rate does not necessarily depreciate.
It can be shown that a monetary expansion is unambiguously welfare enhancing as it
mitigates the monopoly price distortion. We hope this very brief account of this general
equilibrium model demonstrates its versatility and the possibility of generating results
that may differ from those of the ‘standard’ monetary models discussed earlier.

A number of key issues have arisen in this literature, which include the question
of whether prices should be sticky in the currency of the buyer (local currency) or of
the seller (producer currency pricing) or whether stickiness should apply to wages or
prices (Betts and Devereux 2000). A statistical test (as opposed to calibration) of an
NOEM applied to ‘small’ open economies of Australia, Canada and the United Kingdom
has been undertaken by Bergin (2003) with mixed results. The model seeks to explain the
nominal exchange rate, the current account, prices, money and the real interest rate, with
shocks to technology, the foreign interest rate, foreign demand and changing tastes. A
restricted and unrestricted model are estimated and compared using a likelihood ratio test
(after estimation by maximum likelihood). Although the restricted model is not rejected
for two of the three countries considered, the model cannot beat a random walk when
forecasting the exchange rate or the current account for any of the three countries. Price
rigidities are important for the model since a version with flexible prices is rejected – but
this is hardly a major insight given what we know about the empirics of PPP.

At a theoretical level, this class of dynamic general equilibrium model has now been
extended in a number of directions, with more elaborate price stickiness mechanisms (e.g.
pricing-to-market versus staggered price setting), more elaborate preferences (e.g. non-
separability of consumption and leisure, changing the degree of substitution of home
and foreign goods), introducing capital goods and a time-varying risk premium. Not
surprisingly, changing the assumptions (including the parameters of the utility function)
changes some of the predictions of the model and, hence, ‘agreeing on a particular new
open-economy model is hardly possible at this stage’ (Sarno and Taylor 2002, p. 165).
The usual refrain here is ‘more research is needed in this area’, and that is certainly true
before this class of model is deemed acceptable for real world policy analysis.

27.4 Summary

It is important that the reader is aware of the alternative models used to try to explain
movements in spot exchange rates in terms of economic fundamentals, not least because
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these models have to some extent helped shape key economic policy decisions as we
noted in our opening remarks.

• It seems unlikely that any minor refinements to the traditional monetary models
would lead to dramatic improvements in their statistical performance. At present,
it would appear to be the case that formal tests of the various models lead one to
reject them.

• Over short horizons, say up to about one year, monetary fundamentals generally do
not help predict changes in the spot rate. Over longer horizons of four years, funda-
mentals do provide some (but not much) predictive power for some currencies (Mark
1995, Rapach and Wohar 2002) and the relationship may be non-linear (Taylor and
Peel 2000, Taylor, Peel and Sarno 2001).

• On balance, we must recognise that we are still very unsure of the underlying
determinants of the spot exchange rate in industrialised countries with moderate
inflation. But the concepts and ideas that underlie these models (e.g. PPP, UIP
relative money supplies) do still play a role in guiding policy makers – although
many factors other than the models discussed in this chapter are taken into account
by policy makers when setting interest rates.

• The new open-economy models provide a mechanism for analysing monetary policy
in an intertemporal equilibrium framework with imperfect competition and allow
welfare analysis of alternative policies. This is an interesting development but there is
as yet little consensus on the most appropriate model and little empirical verification.
Hence, policy conclusions remain extremely tentative.

• The absence of clear-cut policy implications on exchange rates arise because of the
statistical inadequacy of all of the ‘structural’ monetary models we have discussed
in this and previous chapters. To use an analogy, note that as far as explaining
the behaviour of the exchange rate is concerned, it is not that ‘the emperor has no
clothes’, it is that he has too many but none of them appear to fit very well. This has
resulted in policy makers trying to mitigate the severity of wide swings in the real
exchange rate either by coordinated central bank intervention or a move towards
currency zones or moving towards a common currency such as in the Euro zone.



28
MARKET R ISK

Aims
• Define the concept of Value at Risk (VaR) and demonstrate how we measure the

VaR of a single asset and a portfolio of assets for which the portfolio return is
a linear function of the individual asset returns and the returns are (multivariate)
normal. This method is known as the delta–normal or variance–covariance (VCV)
approach.

• Outline the limitations of calculating the VaR of option positions in terms of the
delta and delta + gamma approximations.

• Show how ‘mapping’ can reduce the number of inputs into the calculation for VaR
and how we can ‘map’ some non-linear instruments (e.g. bonds) into an approximate
linear framework and hence continue to use the VCV approach.

• Examine non-parametric methods of estimating portfolio-VaR, such as the historical
simulation approach and its extension using bootstrapping procedures.

• Demonstrate how the VaR for portfolios containing options can be calculated using
the delta method (i.e. linear approximation), the delta-gamma approximation and
Monte Carlo simulation.

• Analyse variants on the traditional VaR approach such as ‘stress testing’, ‘worse
case scenario analysis’ and ‘extreme value theory’.

In this chapter, we discuss market risk, that is, risk arising from price changes on
marketable assets such as stocks, bonds, foreign exchange, futures and options. A large
number of financial institutions (and some large industrial and commercial companies)
hold net positions in a wide variety of assets. For their own prudential reasons, financial
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intermediaries need to measure the overall ‘dollar’ market risk of their portfolio, which
is usually referred to as the Value at Risk (VaR). In addition, the regulatory authorities
use VaR to set minimum capital adequacy requirements to cover market risk. The
investment bank J.P. Morgan played a key role in developing the VaR approach, and
its material is published under the title Risk MetricsTM. If your knowledge of options
is rather poor, then you should consult Cuthbertson and Nitzsche (2001b) at this point.

28.1 Measuring VaR
What is VaR? If the daily VaR is found to be $100 m at a 5% critical value, this
implies that in only 1 day out of 20 will the financial institution lose more than $100 m.
It is worth noting at the outset that VaR can be measured in several different ways:
the variance–covariance method, historical simulation-bootstrapping techniques, Monte
Carlo simulation (MCS), stress testing and extreme value theory. Much of the material
discussed is based on the risk measurement methodology as set out in RiskMetricsTM

(1996), which emanates from J.P. Morgan.
The riskiness of a single asset is summarised in the probability distribution of its

returns. Often, there is no single acceptable measure of the riskiness of a particular dis-
tribution, although for the normal distribution, the standard deviation is frequently used.
The risk of a single asset whose returns are identically, independently and normally
distributed (i.e. niid ) can be (unambiguously) measured by its variance (or standard
deviation). For normally distributed returns, we can be 90% certain that the actual
return will equal the expected return plus or minus 1.65σ , where σ is the standard
deviation of the returns. Put another way, we expect the actual return to be less than
µ − 1.65σ or greater than µ + 1.65σ only 1 time in 20 (i.e. 5% of the time).

Further, if we assume the mean return is zero, we could take (1.65σ ) as a measure
of ‘downside risk’ (with 5% probability). Hence, if we hold a net position of $V0 in
one asset, then the $-downside ‘Value at Risk’ is

VaR = $V0(1.65σ) (1)

Suppose the calculated VaR of a portfolio of assets is $100 m over a 1-day horizon.
Then equivalent expressions for the VaR would be

The maximum amount I expect to lose in 19 out of 20 days is $100 m, or I expect to
lose more than $100 m only 1 day in every 20 days.

If asset returns are non-normal, then the 90% confidence region is not ±1.65σ . How-
ever, as we shall see, for many asset returns, the normality assumption is a reasonable
approximation.

VaR: Portfolio of Assets

For many asset portfolios, it is reasonable to assume a linear relationship between the
dollar change in the value of the portfolio dV p and the asset returns:

dV p =
n∑

i=1

N0,idP i =
n∑

i=1

V0,iRi =
n∑

i=1

V0,i (dP i/Pi) (2)
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where N0i is the number of assets i, V0,i = N0,i : P0,i is the $-(present) value held
in asset i and Ri is the return on asset i. The above holds exactly for equities and
is a reasonable approximation for several other securities (e.g. coupon paying bonds,
FRAs, FRNs, forwards, futures and swaps). It follows directly from equation (2) that
the $-standard deviation of the portfolio is given by the usual formula

σdV p =

 n∑

i=1

V 2
0,iσ

2
i +

∑
i �=j

∑
V0,iV0,j ρi,jσiσj




1/2

(3)

Equation (3) can be used to calculate the standard deviation of the portfolio regardless
of the form of the distribution of asset returns. But the standard deviation alone does
not allow us to determine the 5% lower ‘cut-off’ value unless we assume a specific
distribution for asset returns. In particular, if we add the assumption of (multivariate)
normally distributed asset returns, then the diversified VaR at the 5th percentile is
VaRp = 1.65σdV p , which can be more compactly written

Diversified VaRp = √
ZCZ′ (4)

where Z = [VaR1, VaR2, . . . , VaRn], the VaR of each asset taken separately is VaRi =
V0,i (1.65σi) and C is the correlation matrix. For example, the correlation matrix for
n = 3 assets would be

C =

 1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1




The linearity and normality assumptions are crucial here. The change in asset values is
sometimes perfectly consistent with linearity (e.g. stocks) and where it is not, we often
impose linearity as an approximation (i.e. we use a first-order Taylor series expansion).
Note that if the relationship between portfolio value dV p and asset returns is highly
non-linear (e.g. for stock options), then even if the returns of the underlying assets
(e.g. stocks) are themselves normally distributed, the distribution of the portfolio’s
value will not be normally distributed. Hence, for example, for a portfolio of options,
the complete distribution may be needed to accurately calculate the VaR (for any given
percentile) and we cannot simply use the ‘1.65σ ’ rule.

Providing we can use the linearity and (multivariate) normality assumptions, all
we need to calculated for the diversified VaR is the correlation matrix, the (present)
value of each asset holding V0,i and the return volatilities. This is known as the ‘vari-
ance–covariance’ (VCV) method.

The worse case VaR occurs when all the assets are assumed to be held long (i.e. all
V0,i > 0) and all asset returns are perfectly positively correlated (hence C = the unit
matrix where all elements = 1). Thus, from (4),

Worse case VaR = VaR1 + VaR2 + · · · + VaRn

Table 1 shows how the above formulae can be easily applied in matrix form. There are
three assets (stocks) with $10,000 held in each asset, but asset-2 has been sold short.
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Table 1 VaR for portfolio of 3 ‘spot’ assets

Assets Value of
Asset

Std.
Dev.

VaR Abs.
VaR

Correlation Matrix

1 10,000 5.41% 894 894 1 0.962 0.403
2 −10,000 3.04% −502 502 0.962 1 0.610
3 10,000 3.64% 600 600 0.403 0.610 1

Individual
VaRs

894 −502 600

Worse caseVaR 1996 Div. VaR 783

The correlations are all positive and quite high. The ‘worse case’ or undiversified VaR
is $1996 but the diversified VaR is much less at $783. This is because although asset-2
has a positive correlation with the other assets, it has been sold short, which effectively
creates a negative correlation in the portfolio.

Forecasting Volatility

The VCV method is a parametric method since we require forecasts of volatilities and
correlations. Many practitioners (e.g. RiskMetricsTM) use an exponentially weighted
moving average (EWMA) forecast for daily volatility:

σ 2
t+1|t = λσ 2

t |t−1 + (1 − λ)R2
t (5)

where R2
t is the daily squared return. The parameter λ = 0.94, which minimises the

past forecast errors (over a given horizon of, say, 100 days and across several asset
classes). Similarly, the forecast of covariance is

σ 2
xy,t+1|t = λσ 2

xy,t |t−1 + (1 − λ)XtYt (6)

where Xt , Yt are the daily returns on two assets X and Y . Hence, the forecast of
correlations is

ρxy = σxy/σxσy (7)

The above equations are recursions and can be updated daily as new data arrives on
Xt and Yt .

Longer horizons

What about forecasting volatility over horizons longer than one day? First and most
obvious, we could recalculate the standard deviation with ‘returns’ measured over
the required horizon – the direct method. For example, we would use monthly stock
returns over, say, the previous 36 months in equation (5) to calculate the monthly
standard deviation. A more widely used method is the ‘root T -rule’ (

√
T -rule). This

is based on the fact that if daily (log) price changes are identically and independently
distributed (over time), then

σT = √
T σ (8)
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where σ is the forecast of the daily standard deviation (we have suppressed the
time subscripts) and T is the number of trading days in the forecast horizon. For
example, over 25 business days (i.e. approximately 1 month), the standard deviation
is σ25 = √

25σ = 5σ . The direct method requires one to recompute all the variance
measures for all assets over any chosen ‘new’ horizon, so the square root rule is com-
putationally much less burdensome (and can be accurately used for volatilities up to a
horizon of about 1 month).

Delta and Full Valuation Methods

The Black and Scholes (1973) option price formulae apply to European options (i.e.
no early exercise). We consider only stock options, where the underlying asset in the
option contract is a stock of a particular company (which pays no dividends). The option
pricing formulae can be derived (using stochastic calculus) by assuming a lognormal
process for the stock price (see Cuthbertson and Nitzsche 2001b). The Black–Scholes
formula for the price of a European call option looks rather formidable:

C = SN (d1) − N(d2)PV = SN (d1) − N(d2)Ke−rT (9)

where d1 = ln(S/PV )

σ
√

T
+ σ

√
T

2
= ln(S/K) + (r + σ 2/2)T

σ
√

T

d2 = d1 − σ
√

T = ln(S/K) + (r − σ 2/2)T

σ
√

T

C is the price of call option (call premium)
r is the safe rate of interest for horizon T (continuously compounded)
S is the current share price
T is the time to expiry (as proportion of a year)

PV is the present value of the strike price (= Ke−rT )
σ is the annual standard deviation of the (continuously compounded) return

on the stock
N(·) is the cumulative normal distribution

A similar formula applies for a put option. For our purposes, all we need to note is
that the call (or put) premium is a non-linear function of the underlying stock price, S

(see Figure 1)
For a call, the call premium increases with S and the ‘delta’ of the call option is

defined as
�c = ∂C/∂S = N(d1) > 0

In Figure 1, we see that the true change in the option’s price when S moves from 50
to 51 is 0.4. The option’s delta is the slope of the line X − Y , and this provides a
first-order approximation to the true change in the option’s price (i.e. dC = �c dS ),
which is an underestimate of the true change. However, if we are willing to use
this first-order approximation, then dC /C0 = (S0/C0)�c(dS /S0) so that the return on
the option is linear in the return on the stock dS /S0 and, hence, we can apply the
variance–covariance method to calculating VaR. Of course, this approximation will be
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0

Value of call prior to expiry:
Black–Scholes

A
C0 = 9.6

C1 = 10
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Call premium

Call premium and stock price are positively related

B

Option’s delta 
= slope of line X–Y

X

Y

Figure 1 Black–Scholes option price: long call

a poor one if the change in S is large, and this is why we require alternative techniques,
such as Monte Carlo simulation (MCS), to obtain a more accurate VaR estimate for
portfolios containing options (see the following).

For a put option, the relationship between the put premium P and S is negative

�p = ∂P/∂S = N(d1) − 1 < 0

Note from Figure 1 that the value of the call option’s delta varies between zero (for
low values of S, that is, when the option is ‘well out-of-the-money’) to unity (for high
values of S – that is when the option is ‘well in-the-money’). Therefore, the value
of delta changes as S changes. This is known as the option’s gamma (see Figure 2),
which is the same for long calls and puts:

�(call or put) = ∂�

∂S
= ∂2f

∂S2
= N ′(d1)

Sσ
√

T
≥ 0 (10)
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Figure 2 Delta and gamma: long call
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where N ′(x) = e−x2/2

√
2π

� 0 and f = C or P . The explicit formulae for the option’s delta

and gamma are directly calculated from the Black–Scholes formulae. The ‘gamma’
represents the change in the curvature (that is the change in delta, at different values of
S). Clearly, � is fairly constant when the call is either very-in-the-money or (S � K) or
very-out-of-the-money (S � K) but can vary a great deal for a near-the-money option
(see Figure 2). To obtain a negative gamma, one must hold a short call or put.

Where portfolio value depends non-linearly on asset returns (e.g. options), a key
issue is whether one uses a linear (or second-order) approximation or one uses a
‘complete’ or ‘full’ valuation method. A second main issue is whether the underlying
asset returns are (multivariate) normally distributed.

To demonstrate the variance–covariance approach to measuring portfolio-VaR for
‘non-linear’ assets, consider the following. Let Ni be the number of assets of type i,
each with value of Vi . These assets Vi could be options where there is a non-linear
relationship between Vi and the underlying asset price S (e.g. stock price)

Vp =
n∑

i=1

NiVi (11)

If the value of each asset Vi depends on an underlying asset Si (e.g. an option on a
stock), then a first-order approximation to the change in portfolio value is

Change in value = (sensitivity to price changes)(change in prices)

dV p =
n∑

i=1

NiSi(∂Vi/∂Si)(dS i/Si) ≡
n∑

i=1

(V0, i�i)Ri (12)

where V0,i ≡ NiSi , ∂Vi/∂Si = �i and the ‘return’ on the underlying asset is Ri ≡
dS i/Si . This is known as the delta valuation method, since any first derivative is
loosely referred to as the delta of the asset (e.g. for options). For example, if Vi is the
option premium, then ∂Vi/∂Si = �i is the option’s delta. If we make the additional
assumption that asset returns dS i/Si are (multivariate) normally distributed, then we
can use the quantiles of the (standard) normal distribution to determine the VaR. Hence
the term delta–normal method. Note that the delta–normal method requires a forecast
of the variances and covariances of the returns on the underlying assets in the options
contracts. If we define the VaR of a single option position as VaRi ≡ 1.65(V0,i�i)σi ,
where σi is the standard deviation of the stock return, then (4) can be applied in the
usual way to give the diversified VaR. (Also note that (12) is a generalisation of (2)
since if Vi is the stock price, then ∂Vi/∂Si = 1 and NiSi = V0,i is the initial wealth
held in stock.)

However, the delta–normal method could be extremely inaccurate for options (par-
ticularly those which are ‘at-the-money’), since the option’s delta is only a first-order
approximation to the non-linear price response. So, for options, we could go one
step further and approximate the change in value of a portfolio of options using a
second-order (Taylor series) approximation

dV p =
n∑

i=1

NiSi�i(dS i/Si) + (1/2)�iS
2
i (dS i/Si)

2 (13)
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where �i is the gamma of an individual option. Calculating the change in value using
the above equation (not surprisingly) is called the delta–gamma method. However,
there is a problem in that the ‘appearance’ of the (dS i/Si)

2 term implies that the
change in value is no longer linear in returns and, hence, we cannot apply the known
‘cut-off’ points of the normal distribution (e.g. −1.65 for the 5% lower tail). As we
shall see, equation (13) can also be used to calculate the (approximate) change in the
value of an option portfolio, where the stock returns are generated using MCS.

Again, we can make some further approximations to ‘force’ non-linear pay-offs like
options into the variance–covariance approach. For expositional purposes, consider
a single option with Black–Scholes price P = f (S, r, y, σ, T − t). A second-order
Taylor series expansion gives

dP = df = ∂f

∂S
dS + 1

2

∂2f

∂S2
(dS)2 = �S

dS

S
+ 1

2
�S2

[
dS

S

]2

(14)

To apply our delta–gamma approximation properly, we need to fit a distribution that
matches that for df . Assuming dS /S is normal with mean zero and standard deviation
σ , it can be shown that the first three moments of df are

µdf ≡ E(df ) = (1/2)S2�σ 2

E(df 2) = S2�2σ 2 + (3/4)S4�2σ 4

E(df 3) = (9/2)S4�2�2σ 4 + (15/8)S6�3σ 6 (15)

Knowing the right-hand side values for �, � (from Black–Scholes), the current stock
price S and an estimate of σ (e.g. implied volatility or an EWMA or GARCH measure
of volatility), we can calculate µdf , E(df 2) and E(df 3). If we ignore E(df 3), then the
first two moments can be fitted to a normal distribution with mean µdf and variance
σ 2

df ≡ E(df 2) − [E(df )]2 and then we immediately know the VaR at the 5th percentile
is 1.65σdf . However, it is sometimes dangerous to ignore the E(df 3) term. But even
here, there are procedures available that allow one to take the first three moments
and obtain an explicit formula for the percentiles of the (unknown) distribution, using
the so-called Cornish–Fisher expansion (see Cuthbertson and Nitzsche 2001b). This
approach can be extended to apply to a portfolio of options.

But we still have problems, since the option portfolio’s values depend on changes
in other variables, since European call and put premia on a dividend-paying stock (or
on foreign currency or on futures options) under the Black–Scholes assumptions are
P = f (S, r, y, σ, T − t) where P is the option premium. So a Taylor series expansion
gives

dP = df = ∂f

∂S
dS + 1

2

∂2f

∂S2
(dS )2 + ∂f

∂σ
dσ + ∂f

∂r
dr + ∂f

∂y
dy + ∂f

∂t
dt

= �dS + 1
2�(dS)2 + � dσ + ρr dr + ρy dy + θ dt (16)

Including the additional linear terms in r , y and σ in the calculation of the VaR is
not a problem providing the assumption of multivariate normality holds. However, the
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latter assumption is not realistic particularly for r and for volatility σ . Hence, if we
want to assess the VaR of the option due to changes in volatility or if we require a
more accurate measure of VaR (e.g. under alternative distributions to the normal for
the underlying asset, S), then we must eschew the delta–gamma methodology and use
other methods such as Monte Carlo simulation from which we can obtain the VaR
from the complete distribution for the option premia outcomes (see the following).

So, if the value of an asset or portfolio of assets is highly non-linear in asset returns,
then we have to use the full valuation method :

Change in value = value at ‘new’ prices − value at initial prices

Generally speaking, the full valuation method is often used in conjunction with Monte
Carlo simulation to calculate the VaR of positions containing options.

28.2 Mapping Assets: Simplifications

Domestic Equity

Estimation of the variances and particularly the n(n − 1)/2 correlations for all n

stocks in a particular country in order to measure their VaR would be computationally
extremely burdensome. To simplify matters, one can make use of the single index
model (SIM), since this allows all of the variances and covariances between returns to
be subsumed into the n-asset betas. The individual asset returns are therefore ‘mapped’
into the market return. The SIM assumes the return on asset i is solely determined by
the market return (see Appendix II).

Ri = αi + βiRm + εi (17)

where Ri is the return on asset i, Rm is the market return, βi is the beta of stock i. The
εi are assumed to be temporarily niid. In addition, we make the crucial assumption
that there is no contemporaneous correlation across error terms, E(εiεj ) = 0. (Also,
Rm is independent of εi .) An estimate of βi can be obtained from a ‘risk measurement
service’ or by running a time-series regression of Ri on Rm (using, say, the last six
months of daily data). The return on the stock portfolio of n assets (with proportionate
weights wi) is

Rp =
n∑

i=1

wiRi = αp + βpRm +
∑

wiεi (18)

where αp = ∑
wiαi and βp = ∑

wiβι is the beta of the equity portfolio. Hence, the
return on the stock portfolio depends linearly on the market return and the portfolio
beta βp. It can be shown that the standard deviation of the portfolio of equities is given
by

σp = βpσm (19)

The specific risk of each stock εi is diversified away when held as part of a portfolio.
Hence, the terms �w2

i σ
2
εi

are small and can be ignored. Thus, to calculate σp, we only
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require estimates of βi for the n assets and an estimate of σm. We, therefore, dispense
with the need to estimate n values for σi and, more importantly, n(n − 1)/2 values
for the ρij . What we have done is ‘mapped’ the stock returns into their local (market)
index. This considerably reduces the computational burden of estimating the portfolio’s
VaR, which is given by

VaRp = V0,p1.65σp = V0,pβp(1.65σm) (20)

where V0,p is the dollar-total held in the portfolio. Noting that wi = (V0,i/V0,p), the
above equation can be represented in matrix form as

Diversified VaRp = √
ZCZ′ =

n∑
i=1

VaRi (21)

where VaRi = V0,i (βi1.65σi), Z = [VaR1, VaR2, . . . , VaRn] and here for the SIM, the
correlation matrix C = the unit matrix. This is because in the SIM, the only source of
systematic movement in each of the individual returns is the market return (Rm) since
E(εit , εjt ) = 0 and, hence, all asset returns move up and down together (albeit not by
the same amount).

The SIM is a factor model with only one factor, Rm. However, this approach could
be extended within the VaR ‘mapping’ framework by assuming several factors (e.g. the
three Fama-French factors) influence all n-asset returns. Then the correlations between
all the n-asset returns will only depend on the (3×3) correlation matrix of these
underlying ‘risk factors’ (and their betas).

VaR: Foreign Equities

If some stocks are held overseas, how do we calculate portfolio-VaR? This is done
by assuming the SIM holds within any single country and then applying the usual
variance–covariance approach to the foreign (local currency) return and the exchange
rate. Suppose a US-based investor holds a portfolio of German equities with a standard
deviation given by the SIM

σG = βpσDAX (22)

where σDAX is the standard deviation of the DAX (i.e. a market index for German
stocks) and βp is the beta of the German portfolio. Clearly, this portfolio is subject
to changes in the DAX and foreign exchange risk from changes in the Dollar–Euro
exchange rate. If the Euro value of the portfolio is V0,E , then the dollar value is
V0,$ = S0V0,E where S0 is the current exchange rate ($ per Euro). The change in the
dollar value of the portfolio is (approximately linear and) equal to

�Vp = V0,$(RG + RFX) (23)

where V0,$ is the initial $ value of German equity portfolio
RG is the return on German portfolio

RFX is the change in $–Euro exchange rate (measured in ($/Euro))
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The variance of the portfolio therefore depends on the correlation ρ between RG

and RFX (as well as their variances) and the Dollar–VaR is

VaRp = (1.65)σdV p = V0,$(1.65)(σ 2
G + σ 2

FX + 2ρσGσFX)1/2 (24)

Again, this may be expressed in matrix form as

V aRp = √
ZCZ′ (25)

where Z = [V0,$(1.65)σG, V0,$(1.65)σFX], C = (2×2) correlation matrix, with ρ12 =
ρG,FX. We can extend this approach to a two-asset portfolio consisting of domestic
and foreign assets. For example, if a US investor held V US

0,$ in US equities and V G
0,$ in

German equities, then the appropriate Z vector would be

Z = [V US
0,$ (1.65)σUS, V

G
0,$(1.65)σG, V G

0,$1.65σFX] (26)

The variable σus is the volatility of the US equity position that is calculated from
σus = βus

p σsp where βus
p is the portfolio beta of the US equities and σsp is the volatility

of the S&P equity index. In this case, the (3 × 3) correlation matrix would be

C =

 1 ρUS ,G ρUS ,FX

ρUS ,G 1 ρG,FX

ρUS ,FX ρFX,G 1




Using (26) puts the problem in exactly the same framework as the ‘domestic only’ case
since each individual asset has VaRi = V0,i (1.65)σi and Z = [VaR1, VaR2, . . . VaRn],
where for each foreign portfolio, there is also a corresponding bilateral exchange rate
σFX (against the US Dollar for a US resident).

If foreign portfolios are unhedged, then there can still be some risk reduction (and
hence a low VaR) if some of the spot-FX rates have low (or negative) correlations
with either the US Dollar or with stock market returns in different countries. If the
investor hedges the FX positions (using the forward market), then, clearly, any spot-FX
volatilities and correlations do not enter the calculation of VaR. Hence, it is not always
the case that hedging foreign currency assets gives a lower portfolio volatility than
not hedging.

Bonds

Bond prices and yields are non-linearly related. For a zero coupon bond,

Pit = Mie
−yi ti

where Pit = price of the bond at t , Mi = payment on the bond at time ti , yi =
(continuously compounded) spot yield at time t for period ti . A first-order
approximation is

dP i

Pi

= −ti dyi (27a)
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and
σi(dP/P ) = tiσ (dy i ) (27b)

where ti is the duration of a zero. Suppose at each time ti , we have total coupon
payments from k bonds of TC i = �k

j=1Cj . A set of coupon paying bonds is just a
series of zero coupon bonds and the value of a portfolio of coupon bonds with total
coupons TC i at each time ti is

VP,t =
n∑

i=1

TC ie
−yi ti =

n∑
i=1

V0,i (28a)

where V0,i ≡ TC ie
−yi ti is the present value (price) of the total coupon payments at ti .

Hence,

dV P,t =
n∑

i=1

V0,i (−ti dyi) =
∑

V0,i (dPi/Pi) (28b)

The change in value of the bond portfolio is linear in the change in prices of the zeros.
From (27b), we can calculate the standard deviation of bond returns σi(dP/P ), given
σ(dy i ), on the basis of an EWMA forecast. In addition, if we assume yield changes
are normally distributed and accept the duration approximation, we can use (28b) in
the usual way to calculate the VaR of a bond portfolio using the VCV method. We
have ‘mapped’ the non-linear yield-bond price relationship into a linear framework
(see Cuthbertson and Nitzsche 2001b for further discussion). The VaR of the bond
portfolio is

VaRp = 1.65σ(dV p) = √
ZCZ′

where Z = {VaR1, VaR2, . . . VaRn} and VaRi = 1.65V0,iσi , with σi = σ(dP i/Pi) the
standard deviation of the price of the zeros and C is the correlation matrix of zero
coupon bond returns (dP i/Pi).

28.3 Non-Parametric Measures
The approaches in the previous section in estimating variances and correlations assume
a specific parametric model for the volatility of returns (e.g. EWMA, ARCH and
GARCH) and when using the ‘delta method’ to calculate portfolio-VaR, normality
is also usually invoked. If returns are actually non-normal, this will produce biased
estimates/forecasts. If we do not wish to assume a particular distribution for returns,
we can instead use a non-parametric approach to estimate VaR, a popular one being
historical simulation. The actual daily profit (loss) figures �Vpt for an n-asset portfolio
at time t are

$�Vpt =
n∑

i=1

ViRit (29)

where Vi is the fixed $-value of asset i held by the investor today and Rit is the (pro-
portionate) historic daily return on asset i. The historic simulation method to estimate
the portfolio-VaR is extremely straightforward. It assumes that recent history will be
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representative of what might happen tomorrow. We take the n-asset returns and calcu-
late the change in portfolio value for each of, say, 1000 days of historic data, assuming
the amounts Vi remain unchanged. These 1000 values of $�Vpt are then arranged from
low to high. That value of $�Vpt which just has 1% of the ‘lower returns’ in the tail
is then taken to be the forecast VaR for the next day (at the 99% confidence level).
If the 10 lowest returns of the 1000 days are −$10 m, −$9.1 m . . .−$2.2 m, then the
forecast VaR for the next day for the 1% tail would be $2.2 m. One could also produce
a histogram for $�Vpt and hence obtain measures of skewness and excess kurtosis
(these allow us to assess any deviations from the normality assumption).

The historic simulation approach is non-parametric since variances and covariances
(between the n-asset) returns do not have to be explicitly estimated, they are implicit in
the historic asset returns and hence in the estimated portfolio-VaR. There is, therefore,
no model risk or parameter estimation risk. Any fat tails or autocorrelation (since the
revaluation is taken sequentially day 1, day 2, etc.) in the historic data are incorporated
in the portfolio-VaR and because we construct the empirical histogram, we do not need
to assume normality to find the lower tail cut-off point. The method can also be used to
estimate the VaR of non-linear positions either by invoking the ‘delta approximation’
(with the historic Ri as inputs for the underlying) or more satisfactorily, by revaluing
the options portfolio using the actual historic series for option prices, if these are
available. It is also possible to calculate a measure of the precision of the portfolio-
VaR estimate on the basis of the historic simulation method (e.g. using the historic
kernel approach of Butler and Schachter 1996).

A drawback of the historic simulation method is that accurate percentile estimates of
the VaR using this method (e.g. 1st percentile) require a long time series of data to be
accurate. Since tail events are ‘unusual’, we need quite a lot of data to reliably estimate
the tail. For example, if we are interested in the 1% lower tail, then in our historic data
set, this will only occur 1 in every 100 observations. On the other hand, the longer is our
historic data set, the more the ‘old’ data rather than the more recent data, will influence
our forecast of tomorrow’s VaR. Butler and Schachter (1996) indicate the possibility
of quite large standard errors on VaRs based on the historic simulation method (e.g.
between 6% and over 20%). There is also a certain lack of flexibility. For example,
one cannot easily answer the question as to how the estimated VaR changes if volatility
of one of the assets increases by 10% more than that observed in the ‘historic’ data
window. However, the non-parametric approach (e.g. using a 1000-day data window)
has been found for some cases to be more accurate than parametric approaches (e.g.
EWMA with the VCV method). For example, Mohoney (1996), using a portfolio of
equities and FX, finds that forecasts (one day ahead) using non-parametric estimates
yield out-turn values for portfolio-VaR that are very close to the 1% and even the
0.1% tail probabilities. (In contrast, the parametric EWMA and GARCH models tend
to understate the number of forecasts falling in the ‘extreme tails’ below the 5% level.)

An obvious key defect of the historic simulation approach is the complete depen-
dence of the results on the particular data set used. The data set used may contain
‘unusual events’ that are not thought to be likely to happen again in the immediate
future (e.g. Sterling leaving the ERM in 1992, the Asian crisis of 1997/1998, the
events of 9/11 in the United States). If so, the historic simulation estimate of VaR in
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the forecast period may be biased. Indeed, if we use, say, a 1000-day historic moving
data window, these ‘unusual events’ will remain in the VaR forecast for 1000 days. To
mitigate this problem, we could arbitrarily choose to use declining weights on returns
further in the past when calculating the historic simulation VaR for the portfolio. Of
course, such problems, to a greater or lesser extent, plague almost any method that
relies on past data to forecast the future, including the usual ‘variance–covariance’
VaR method (and also to a large extent in the Monte Carlo method described below).
As we shall see, stress testing can, in principle, explicitly limit any direct dependence
on past events/data (since the ‘scenario’ is chosen by the investigator). However, even
here, past events usually provide a guide as to which ‘scenarios’ to investigate.

A variant of the ‘pure’ historic simulation approach is the bootstrapping technique.
As described above, the historical simulation approach consists of ‘one draw’ from
the historic data set, in which the 1000 daily observations are sampled only once to
obtain the portfolio-VaR. The drawings are, therefore, without replacement and taken
in chronological order, day-1, day-2, and so on (thereby retaining any serial correlation
properties of the actual returns data). In the bootstrap approach, the T = 1000 returns
(on the n assets) are drawn with equal probability in random order and replaced.

We can think of each batch of n-asset returns for a specific day as being written on a
single sheet of paper corresponding to the n-vector R. Each day of historic data provides
n different numbers on separate sheets, each page being numbered from 1 to 1000,
corresponding to the 1000 days of historic data. We then draw m-numbers (m > n)
randomly from a uniform distribution of 1000 numbers, with replacement. For example,
suppose the m-uniform random numbers drawn (rounded up to whole numbers) are
{27, 700, 1, 990, 700, 43, 1 . . . 999}. Then we turn to pages 27, 700, 1, 990, 700 . . . 999
and write down the n-asset returns Rk , for pages k = 27, 700, 1, 990, 700, 43 . . . 999,
that appear on each of these pages. This would give a total of m vectors, each containing
n asset returns. We then revalue the portfolio using equation (27) for each of these
m days and complete the histogram and calculate the 1st percentile VaR. Hence, we
can ‘reproduce’ our 1000 returns on the n assets as many times as we like (in our
case, a total of m > n times). This mitigates the ‘lack of data’ problem of the historic
simulation method and hence, in principle, we can estimate the portfolio-VaR more
accurately (although in practice this may not always be the case – see Butler and
Schachter 1996).

If we thought that only the last 100 days of data is representative of what might
happen tomorrow, it would be very dangerous to take the single most negative value
of $�Vp as the forecast of the VaR for tomorrow, at the first percentile. However, we
could bootstrap m times from this 100 days of data (with replacement) and obtain a
more representative estimate of the 1% tail value.

The bootstrapping technique has similar advantages to the historical simulation
approach but still has the key defect that the original T = 100 historic observations
(say) still need to be ‘representative’ of what might happen tomorrow. Also, the ‘larger
simulated’ set of data comes at a price. Since bootstrapping ‘picks out’ each set of
daily returns at random (from the 100 historic ‘days’ of data), the simulated returns
will ‘lose’ any of the serial correlation that happens to be in the historic returns (i.e.
the bootstrap method implicitly assumes returns are independent over time). However,
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the latter can be solved by using a block-bootstrap whereby if day x is chosen (at
random), then the returns on days x − j to x + j are used to revalue the portfolio, for
this ‘draw’ of the bootstrap.

As the regulators allow financial institutions to choose their own ‘internal models’,
then the historic simulation approach may gain adherents, since although the raw data
input requirements are greater than the parametric-VaR approach, the computational
burden is somewhat smaller. However, the non-parametric approach is likely to be
complementary, rather than a substitute, for the parametric-VaR approach, which does
retain greater flexibility and ease of interpretation.

28.4 Monte Carlo Simulation
Monte Carlo simulation (MCS) is a very flexible parametric method that allows one
to generate the whole distribution of portfolio returns and hence ‘read off’ the VaR at
any desired percentile level. It is particularly useful for calculating the VaR for port-
folios that contain assets with non-linear pay-offs, such as options. It is a parametric
method because we assume a specific distribution for the underlying asset returns (e.g.
returns on stocks, bonds, interest rates and spot-FX) and, therefore, the variances and
correlations between these returns need to be estimated, before being used as inputs to
the MCS. However, one need not assume that the distribution is multivariate normal
(although this is often assumed in practice) and, for example, one could choose to
generate the underlying asset returns from a fat-tailed distribution (e.g. Student’s t-
distribution) or one that has a skewed left tail (e.g. jump diffusion process). However,
note that even if the underlying asset returns have a multivariate normal distribution,
the distribution of the change in value of a portfolio of options will, in general, not
be multivariate normal because of the non-linear relationship between the underlying
asset return and the option premia (e.g. as with the Black–Scholes formula). Within
the MCS framework applied to options, we can also choose whether to calculate the
change in value of the portfolio of options by using the full valuation method (e.g.
Black–Scholes), the ‘delta’ or ‘delta + gamma’ approximation or, indeed, other meth-
ods of calculating option premia (e.g. finite difference methods). Of course, measuring
VaR using the linear or ‘delta method’ may not be accurate when options that are
near the money are included in the portfolio, because in reality these have a non-linear
pay-off.

Stress testing (see the following) and MCS have common elements. Indeed, stress
testing is a bit like a ‘one-off’ or ‘limited’ MCS where the analyst decides on the path
of the underlying assets rather than this being wholly dictated by (an average of) past
data. Often, a stress test would consider ‘extreme’ values for the ‘underlying assets’
(e.g. very large falls in the exchange rate when holding a currency option) and then
we would work out the change in the value of the portfolio of options for these ‘new’
extreme values for the underlying. Of course, at best, this provides only a small number
of ‘extreme’ scenarios. In one sense, MCS improves on this by generating a whole
sequence of possible values for the underlying asset returns, which are then used to
calculate possible changes in a portfolio of options. In the following section, we begin
by showing how to measure the VaR of a single option using MCS and then move on
to consider the VaR for a portfolio that contains several options.
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Single Asset: Long Call

Suppose you hold a long call on a stock option with S0 = 100, K = 100, r = 0.05,
σ = 0.6 (60%) and with T − t = 1 year to maturity. The initial value of the call using
Black–Scholes (BS0) is 25.5. What is the VaR of this call over a 30-day horizon?
Using MCS, we simulate the stock price over 30 days assuming it follows a geometric
Brownian motion (GBM) with drift (µ = 0.05) – see Appendix I.

After 30 days, if the simulated stock price is S30, then the ‘new’ call premium
is given by the Black–Scholes equation V (1) = BS (S30, T − 30/365, . . .), where we
have assumed that the other inputs r = 0.05 and σ = 0.6 remain constant over the 30-
day horizon. The change in value for this first ‘run’ of the MCS is �V (1) = BS 30 −
BS 0. We now repeat the above for, say, m = 10,000 runs and obtain �V (i) for i =
1, 2, 3, . . . , 10,000. Finally, we order the values of �V from lowest to highest (or plot
them in a histogram – see Figure 3) and the 5% (1%) lower cut-off point gives the
VaR, which here is 14.5 (17.9), that is, about 57% (70%) of the initial call premium
C0 = 25.5. Even though stock returns are assumed to be normally distributed, the
histogram of the call premium is non-normal because of the curvature of the relationship
between the call premium and the stock price (see Figure 3). We chose to value the
option using a closed form solution, namely Black–Scholes (i.e. the full valuation
method). We could instead have approximated the change in the option premium using
either the linear ‘delta approximation’ or the ‘delta–gamma’ approximation. The choice
depends on the degree of accuracy versus the tractability of a particular valuation
approach. We discuss this further in the following section.

Multiple Assets

Consider a two-asset portfolio consisting of Ni assets with prices Vi . To make the
algebra simple, assume we hold N1 options on an underlying (stock) with price P1 and
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N2 options on a different stock, with price P2. Both stocks are ‘domestic’. If Ni > 0
(< 0), then the options are held long (short). Using MCS, what is the VaR over, say, a
five-day horizon? The Monte Carlo methodology to calculate the five-day VaR at the
5th percentile involves the following steps.

The initial value of the portfolio is

$V0 = N1V1 + N2V2 (30)

where V1, V2 are the initial prices of the options at t = 0. Let us assume we value the
options using the full valuation method and the appropriate Black–Scholes formula.
We can denote the initial option premia as Vi = BS 0(Pi, Ki, Ti), where K is the strike
price, Ti = time to maturity. We have suppressed the volatility of the option σ and the
domestic interest rate in this notation since we assume these remain unchanged over
the five-day horizon.

Using estimates of daily volatility and correlation, we take random drawings from a
(multivariate normal) distribution and generate a large number of paths (for illustrative
purposes, we choose 1000) for the two stock returns, which have the same correlation
structure as the historic data. This is the Monte Carlo simulation. If asset prices follow
a GBM with zero drift, then the one-day return on asset-1 and asset-2 (continuously
compounded) with measured daily standard deviations σ1 and σ2 respectively is

R1t = ln(P1t /P1t−1) = σ1z1 z1 ∼ niid(0, 1) (31a)

R2t = ln(P2t /P2t−1) = σ2z2 z2 ∼ niid(0, 1) (31b)

where Pit are the underlying stock prices. The random variables z1 and z2 have mean
zero, standard deviation of unity but with the correlation between z1 and z2 equal
to ρ (i.e. the one-day ahead forecast of the correlation coefficient between the two
stock returns). The expected return on each asset is assumed to be zero (since E(zi) =
0, i = 1, 2) and the variance of the return is σi since σ(zi) = 1. The random variables
zi are assumed to be (multivariate) normally distributed, which implies returns are
(conditionally) normally distributed. The return over a t = five-day horizon is given by

Rit+5 = ln(Pit+5/Pit ) = σi

√
tzi i = 1, 2 (32)

Translate the (1000 × 2) returns into (1000 × 2), ‘five-day ahead’ prices for the two
stocks using the above

√
T -rule:

Pi,t+5 = Pi,0 exp(σi

√
5zi) (33)

Using the appropriate Black–Scholes formula, calculate the 10,000 ‘new’ simulated
portfolio values and change in portfolio values.

$V
(1+2)
t+5 = N1V1,t+5 + N2V2,t+5 and $�V

(1+2)
t+5 = $V

(1+2)
t+5 − $V

(1+2)
0 (34)

where Vi,t+5 = BS i (Pi,t+5, Ti − 5/365). Plot a histogram of the 10,000 simulated val-
ues for the change in the $-value of the portfolio �V

(1+2)
t+5 and find the 5th percentile

cut-off point of the distribution.
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Approximations: Delta and ‘Delta + Gamma’

In the previous section, we used the full valuation method for the options. Alternatively,
one can approximate the change in value using the option’s delta �i (evaluated at the
initial stock price at t = 0). Let us compare the VaR over 30 days for our long call
using the full valuation method (Black–Scholes) with the VaR given by the delta and
‘delta + gamma’ approximations. For the delta approximation,

�Vi,t+30 = �i(Pi,t+30 − Pi) (35)

where Pi,t+30 is the simulated value of the stock price at t = 30. Using �i provides a
(linear) first-order approximation to the change in the call premium. The second-order
approximation incorporating the option’s gamma is

�Vi,t+30 = �i(Pi,t+30 − Pi) + 0.5�(Pi,t+30 − Pi)
2 (36)

This comparison is given in Table 2. At the 1% percentile, the full valuation method
gives a VaR of 17.9 (a fall of 70%), the delta approximation gives 21.1 (a fall of 83%),
which implies a substantial error, whereas the ‘delta + gamma’ method gives −17.8
(a fall of 69.9%), which is very close to that for the full valuation method.

In the above Monte Carlo simulation, we assume (conditional) normality of stock
returns. But if these distributions in reality have fat tails (or are not symmetric), then
the estimated VaR is likely to be an underestimate of the true VaR. We then need to
repeat the MCS, sampling from return distributions that are more representative of the
actual empirical data. When the option pay-off is ‘complex’ (e.g. path dependent) and
a closed form solution is not available, we have to use an alternative valuation method
within the MCS methodology (see Cuthbertson and Nitzsche 2001b).

Because of the limitations in the VaR calculations just discussed, they are often
supplemented by stress testing. Stress testing estimates the sensitivity of a portfolio
to ‘extreme movements’ in certain key returns. It, therefore, tells you how much you
will lose in a particular state of the world but gives no indication of how likely it is
that this state of the world will actually occur. Choice of ‘extreme movements’ may

Table 2 VaR delta and delta + gamma approximation

Inputs

Current stock price $100 Call premium (t = 0) $25.5
Volatility of stock 60% p.a. Strike price, K $100
Mean return of stock 5% p.a. Interest rate, r 5% p.a.

VaR horizon 30 days
Value at Risk

Percentile Full Valuation Delta Approximation Delta and Gamma
1% 17.9 (70.4%) 21.1 (82.7%) 17.8 (69.9%)
5% 14.5 (57.0%) 15.7 (61.8%) 13.9 (54.7%)

Notes:
Figures for the VaR are in $s and in parentheses is the percentage loss in value (i.e. $VaR/initial value
of call).
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be based on those that occurred in particular crisis periods (e.g. 1987 stock market
crash, the 1992 ‘crisis’ when sterling left the ERM, the 1997–1998 Asian currency
crisis, and the 2000–2003 stock market meltdown). The covariances and movement
in asset prices are based on these crisis periods – when correlations tend to increase
dramatically. The choice of inputs for the stress test(s) will depend on the financial
institution’s assessment of the likely source of the key sensitivities in the portfolio.
Clearly, stress testing can only be done for relatively simple portfolios since otherwise
the implicit correlations in the chosen scenario may be widely at variance with those
in the historic data or even for any conceivable future event. Note another danger of
stress testing, namely that a portfolio might actually benefit from ‘extreme’ movements
yet be vulnerable to ‘small’ movements (e.g. long straddle).

In general, stress testing has some limitations. The same stress-testing scenario is
unlikely to be informative for all institutions (portfolios). For example, a commodities
dealer is unlikely to find a stress test of a rise in all interest rates of 300 bp informa-
tive. One can also usefully turn the scenario approach ‘on its head’ and ask, ‘Given
my portfolio, what set of plausible scenarios (for interest rates, exchange rates, etc.)
will yield the worst outcome?’ Stress testing is, therefore, a useful complement to
the usual VaR calculations but both require considerable judgement in their practical
implementation.

28.5 Alternative Methods
Put somewhat simplistically, VaR is an attempt to encapsulate the market risk of a
portfolio of assets in a single figure with a given probability. This ‘single figure’ can
be calculated in a number of ways, depending on the modelling process chosen. For
example, in the so-called parametric approach, one often assumes normally distributed
returns, specific forecasts of volatilities and correlations and we also allow for certain
diversification effects. When the portfolio contains options, then the ‘parametric’ Monte
Carlo simulation method is often used. Clearly, these approaches are subject to ‘model
error’ since the estimated variances and covariances may be incorrect. In contrast,
in the ‘non-parametric’ historic simulation method, we ‘observe’ how the portfolio’s
value would have changed, given the actual historic data on returns. This often results
in a single VaR figure being reported, although the method can easily give the whole
distribution of portfolio returns. The method requires a substantial amount of data, and
the results can sometimes be highly dependent on the sample of historic data chosen.

Let us examine some of the problems of the above approaches, which are based in
some way on ‘averaging’ over a sample of recent data. For example, a portfolio with
market value V0 = $606 m and σ = 1% (per day) has a VaR of $10 m over one day
at the 5th percentile (= V01.65σ ). This indicates that for 19 days out of 20, losses are
not expected to exceed $10 m, while losses could exceed $10 m in about one day out
of every 20. However, the VaR figure gives no indication of what the actual losses on
this one day will be. If returns are (conditionally) normal, then the cut-off point for the
0.5% left tail is 3.2σ , giving a VaR of $19.4 m. So we can be ‘pretty sure’ losses will
not exceed $20 m. But even then, we cannot be absolutely sure of the actual dollar
loss because
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• even with the normal distribution, there is a small probability of a very large loss.

• actual returns have fatter tails than those of the normal distribution, so larger, more
frequent dollar losses (on average) will occur (relative to those calculated assum-
ing normality).

• correlations and volatilities can change very sharply. For example, in the first quarter
of 1993, the daily correlation between returns on the Nikkei-225 and the FTSE-
100 varied from +0.9 to −0.9 (Jackson, Maude and Perraudin 1997), and the daily
volatility on the Nikkei-225 in the first quarter of 1995 varied between 0.7 and 1.8%.

Worse Case Scenario

One way of handling (or at least mitigating) the aforementioned ‘size of loss prob-
lem’ is to use worse case scenario (WCS) analysis. Here, we do not simply calculate
the VaR at the 5th percentile cut-off point. Instead, we examine only the lower tail
outcomes and use these to calculate the worst case that we expect to occur in the
tail (Boudoukh, Richardson and Whitelaw 1995). The method, therefore, attempts to
answer the question ‘What is the average size of the maximum loss over the next
H-trading days, given that we end up in the tail?’, whereas VaR concentrates on the
frequency of a particular loss (e.g. a 1% VaR of $1 m implies in only 1 out of every
100 days will losses exceed $1 m). WCS is based on Monte Carlo simulation and gives
a higher figure for ‘risk’ than does VaR since it is based on the distribution of extreme
returns in the lower tail.

For example, Boudoukh, Richardson and Whitelaw (1995) report a 1% VaR of
−2.33% (standard deviations) but an average WCS loss of −2.51% and with a 1% tail
value for these ‘worse case’ outcomes of −3.72%. The key problems in using WCS
analysis are the increased computational costs of the Monte Carlo simulations and the
assumption (in a multi-asset portfolio) that correlations estimated from historic data
are applicable to extreme movements in returns, as represented in the tail.

Extreme Value Theory

Yet another method that concentrates on the tails of the distribution is the extreme value
(EV) approach. This method is used in the natural sciences for estimating maximum
extreme losses with a specific degree of confidence (e.g. for the failure of a dam or
nuclear power plant). In a very broad sense, the EV approach is a mixture of the
historical simulation approach together with estimation of the shape of the tail of the
distribution. Unlike the historic simulation approach, it uses data only from the lower
tail. It uses this data to estimate the shape of the tail, without imposing any specific
assumptions concerning the (rest of the) distribution. Danielsson and deVries (1997)
report that for percentiles below 5%, the VCV–VaR approach tends to underpredict
the occurrence of tail events, the historical simulation approach tends to overpredict,
while the EV approach performs well. Hence, the EV approach appears to be more
accurate the ‘smaller’ is the tail probability one is interested in.

All of the methods discussed (e.g. the variance–covariance parametric approach,
historic simulation approach, stress tests, Monte Carlo simulation, EV theory) generally
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assume the portfolio is held fixed over the holding period considered. This limitation
becomes more unrealistic the longer the time horizon over which VaR is calculated. For
example, while one may not be able to liquidate a position within a day (particularly
in crisis periods), this is not necessarily true over periods longer than, say, 10 days.
Another crucial dimension that is missing in all the approaches is the ‘bounce-back
period’. On a mark-to-market basis, estimated cumulative 10-day losses might be large,
but if markets fully recover over the next 20 days, the cumulative actual losses over
30 days could be near zero. It may, therefore, be worthwhile to examine the VaR
without using the

√
T scaling factor, but instead trying to get an explicit estimate of

volatilities over longer horizons (e.g. where returns might exhibit more mean reversion).
However, it requires a substantial amount of data to estimate, say, monthly return
volatility directly.

All in all, the statistical methods and the real time computational aspects used to
calculate VaR are impressive. However, it should by now be obvious that even when
measuring market risk (i.e. excluding credit risk, operational risk, etc.), a large element
of judgement is required for any of the chosen methodologies.

28.6 Summary
• If we assume returns are (multivariate) normally distributed and that portfolio value

is linearly related to asset returns, then the VaR (at any chosen percentile) is easily
calculated using the delta–normal or variance–covariance (VCV) method.

• If returns are independently (and identically) distributed, then we can use the
√

T -
rule for scaling up volatility forecasts over different horizons (i.e. σT = √

T σ , where
σ is the one-day forecast of volatility).

• Mapping ameliorates the ‘large data storage and measurement’ problem and allows
the VCV method to be used with some non-linear instruments (e.g. bonds). The
single index model (SIM) is used to simplify calculations of VaR for equities held
in a particular country. The VCV method can be usefully applied to stocks, bonds,
FX, swaps and futures.

• The VaR for portfolios containing ‘plain vanilla’ European options can be accurately
measured using Monte Carlo simulation (MCS), and this is usually supplemented
by stress testing.

• The historical simulation method is pretty accurate in predicting even the lower tail
cut-off points (e.g. between the 1st and 5th percentiles) but it requires a substantial
time series of data and is a little inflexible (e.g. difficult to do sensitivity analysis),
compared to the standard parametric variance–covariance method.

• Examination of the tails of the distributions as in WCS analysis and the EV approach
probably does not yield a great deal of ‘value added’ to compensate for their
increased complexity.

• Some form of stress testing provides a complementary view of market risk to that
provided by the parametric and non-parametric VaR approaches. But all methods
require considerable judgement when trying to ascertain the ‘true’ market risk.
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Appendix I: Monte Carlo Analysis and VaR

Call and put premia are non-linear functions of the underlying asset price. Monte
Carlo simulation can be used to obtain the VaR for a portfolio that contains options
(as well as other assets). If we want to assess the $-value of a portfolio consisting of
two or more assets, we must take into account the correlation between the returns on
each asset. We assume the (continuously compounded) returns on the underlying assets
(i.e. the change in prices) are multivariate normal and, therefore, the price levels are
multivariate lognormal. We will demonstrate the technique using a two-asset case, but
this can easily be generalised to the n-asset case and programmed into the appropriate
statistical software.

We assume asset returns Ri are multivariate normal, that is, R ∼ N(0, �). Assume
we have estimates/forecasts of the variance–covariance matrix of returns from which
we can construct the correlation matrix, C. For the (2 × 2) case, we have

� =
[

σ11 σ12

σ21 σ22

]
(A1)

and

C =
[

1 ρ

ρ 1

]
(A2)

where σ12 = σ21 and the correlation coefficient ρ = σ12/σ1σ2. A simple piece of matrix
algebra allows us to map the C-matrix into two (2 × 2) matrices ‘A’, such that

C = AA′ (A3)

and ‘A’ is the lower triangular matrix:

A =
[

1 0

ρ
√

1 − ρ2

]
(A4)

The A-matrix is the Choleski factorisation of C. It is easy to check that C = AA′. The
reason for the Choleski factorisation is that if ε(2 × 1) consists of two independent
N(0, 1) variables (i.e. mean zero, unit variance and zero covariance, ε ∼ N(0, I)), then
we can generate a set of standard normal variables Z:

Z = Aε (A5)

The constructed variables in Z will then have zero mean, unit variance but have a
correlation of ρ. Thus, Z has a correlation structure the same as that given by the
correlation matrix C. Once we have generated the zi , we can derive our two-asset
returns and prices levels over a t-period horizon using

P
(i)
t = P

(i)
0 exp(σi

√
tzi) (A6a)

Ri,t = ln(P
(i)
t /P

(i)
0 ) (A6b)
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It is now easy to show that the asset returns (equation (A6b)) over the horizon from
t = 0 to t have standard deviations of σi

√
t and a correlation coefficient of ρ. To see

this, note that from equation (A4) and equation (A5), we have

z1 = ε1 and (A7a)

z2 = ρε1 +
√

1 − ρ2 ε2 (A7b)

The variables z1 and z2 have ε1 in common. This is the source of the correlation between
z1 and z2 and, hence, between the two-asset returns. From equations (A6a) and (A6b),

R1t = σ1

√
T z1 (A8a)

and
R2t = σ2

√
T z2 (A8b)

To see that the simulated returns will have zero mean and correlation ρ, note that
Ez1 = Ez2 = 0, since E(ε1) = E(ε2) = 0. Hence,

var(z1) = var(ε1) = 1 (A9a)

var(z2) = ρ2 var(ε2) + (1 − ρ2) var(ε2) = 1 (A9b)

cov(z1, z2) = E(z1z2) = ρE(ε2
1) +

√
1 − ρ2E(ε1ε2) = ρ (A9c)

Since cov(ε1, ε2) = 0, the variance of returns over a T-day horizon are var(Ri) =
σ 2

i T var(zi) = σ 2
i T . The correlation between returns (over a T -day horizon) using

equations (A8a) and (A8b) is the same as the one-day correlation coefficient

ρT = cov(R1,t , R2,t )/σ1

√
T σ2

√
T = ρ (A9d)

One final nuance is worth mentioning. Above, we used the MCS to generate the one-
period return and then used the

√
T -rule to calculate the price at t + 5. Alternatively,

we can generate Pt+5 using either of the following recursions (which are discrete
approximations to a GBM).

Pt = [1 + µ�t + σεt

√
�t]Pt−1 (A10a)

and
Pt = Pt−1 exp[(µ − σ 2/2)�t + σεt

√
�t] (A10b)

We usually take σ to be the annual standard deviation, µ is the annual mean return
and �t is the time step (denoted as a fraction of a year (e.g. 1 day = 1/365)). In
our simplified example above, we used the second equation with σ = 1-day volatility,
�t = 1 day and µ = 0. The first equation, ‘the multiplicative form’, has a random
term that is N(0, 1) and only produces an approximation to a lognormal distribution
for P , whereas the second equation gives an exact lognormal for any size of step �t .
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In fact, if we are only interested in the value of P at a specific time T , we can obtain
PT in ‘one-step’ using

PT = P0 exp[(µ − σ 2/2)T + σεt

√
T ] (A11)

Practical Issues

Most statistic software produces uniform pseudo-random numbers, that is, numbers that
lie between 0 and 1 that occur with equal probability. These can then be ‘transformed’
into standard normal variables in a variety of ways. For example, if εi is a uniform
random number, then Zi = ∑12

i=1 εi − 6 will give a standard normal variable. The latter
method, however, gives too many values close to the mean, but this problem can be
mitigated by other ‘transformations’ (e.g. Box–Muller transformation).

Two key ‘numerical’ problems in our MCS are either, the simulated ‘pseudo’-
random numbers are not in fact random or, the Choleski decomposition fails numeri-
cally. Random number generators actually use a deterministic algorithm. They take a
particular ‘seed number’ as a starting point and generate numbers that appear random
(and pass tests for independence, etc.). For a given ‘seed number’, the set of random
numbers will be repeated. The problem is that as you increase the number of ‘runs’,
the random number generator may ‘choose’ a seed it has already used. This leads to
repetitions or cycles in your ‘random’ numbers and a spurious increase in accuracy
of your Monte Carlo results. Another problem is that standard MCS tends to produce
numbers that ‘cluster’, so additional observations do not provide new information and
for a ‘small’ number of runs, this tends to bias the results. However, so-called quasi-
Monte Carlo (QMC) techniques or low discrepancy sequences are designed to appear
random but avoid producing ‘clusters’, so the MCS becomes much more efficient
and can produce accurate results with substantially fewer ‘runs’. The idea is that the
‘quasi-random’ sample ‘remembers’ the previous sample and tries to position itself
away from any previous samples, thus ‘filling’ the sample space without any cluster-
ing. There are many ways to generate quasi-random samples, and the reader is referred
to the excellent book by Clewlow and Strickland (1998).

The second problem is that in order to undertake the Choleski decomposition, the
estimated variance–covariance matrix � must be positive semi-definite. This requires
that the number of observations is greater than the dimension of the covariance matrix
� and there is no perfect collinearity amongst the returns. If � is large, then near
perfect collinearity is a strong possibility and this is why we try to reduce the number
of returns by some form of ‘mapping’.

Appendix II: Single Index Model (SIM)

We wish to show how the variance of a portfolio using the SIM is

σp =
[

n∑
i=1

ωiβi

]
σm = βpσm (A1)
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where σp = portfolio standard deviation, σm = standard deviation of the market port-
folio and βp = ∑

i wiβi is the ‘beta’ of the portfolio. The SIM is represented by
equation (A2) together with the additional assumptions in (A3):

Ri = αi + βiRm + εi (A2)

E(εi) = 0 (A3a)

E(εiεj ) = σ 2
εi{= 0} for i = j {i �= j } (A3b)

cov(Rm, εi) = 0 (A3c)

Hence, it follows that

ERi = αi + βiERm (A4a)

σ 2
i = β2

i σ
2
m + σ 2

εi
(A4b)

σij = βiβjσ
2
m (i �= j) (A4c)

The portfolio expected return and standard deviation (variance) are defined as:

ERp =
∑

i

wiERi (A5a)

σ 2
p =

n∑
i=1

n∑
j=1

i �=j

ωiωjσij (A5b)

The above formula for portfolio variance requires n-variances and n(n − 1)/2 covari-
ances. For n = 150, this amounts to 11,325 ‘inputs’. To calculate ERi , we also require
an additional n = 150 values of αi , making a grand total of 11,475 inputs. To reduce
the number of inputs required, we utilise the SIM. Substituting from equation (A4a)
in (A5a), we get

ERp =
∑

i

(wiαi + wiβiERm) = αp + βpERm (A6)

where αp = ∑
i wiαi and βp = ∑

i wiβi . Substituting for σ 2
i and σij from equation

(A4) in (A5b) gives

σ 2
p =


 n∑

i,j

ωiωjβiβj


 σ 2

m +
n∑

i=1

ω2
i σ

2
εi = (�ωiβi)(�ωjβj )σ

2
m + �ω2

i σ
2
εi (A7)

σ 2
p = β2

pσ 2
m + �ω2

i σ
2
εi (A8)

Equation (A8) may be interpreted as

Total portfolio risk = market risk + specific risk (A9)

Calculation of ERp and σ 2
p under the SIM requires 3n estimates of αi , βi , σεi plus

estimates of σ 2
m and ERm, a total of 3n + 2 inputs (which for n = 150 assets = 452

inputs). This is a considerable saving on the general model equations (A5a) and (A5b).
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Specific risk is simply the (weighted) residual sum of squares from the regression (A2).
If we do not have a diversified portfolio, then the final term in (A8) is non-zero and
must be included to calculate σ 2

p . However, assume for the moment that ωi = 1/n for
all stocks in the portfolio, then

σ 2
p = β2

pσ 2
m + n−1(�σ 2

εi/n) (A10)

The final term in brackets is the average specific risk σ εi . Hence, the last term is
(1/n)σ εi and as n → ∞ this term goes to zero (n = 25 randomly selected shares is
enough to ensure this last term is small). Hence, in a well-diversified portfolio,

σp =
[

n∑
i=1

ωiβi

]
σm = βpσm (A11)

If Vi is the position in asset i, then the portfolio value is Vp = �n
i=1Vi and wi = Vi/Vp.

The VaR for the portfolio can be expressed in two equivalent ways:

VaRp = Vp(1.65)σp =
∑

i

Vi(1.65βi)σm =
n∑

i=1

VaRi (A12)

where VaRi ≡ Viβi(1.65σm). Or, equivalently,

VaRp =
n∑

i=1

VaRi = (ZCZ′)1/2 (A13)

where Z = [VaR1, VaR2, . . . , VaRn] and C is the unit matrix. RiskMetricsTM provides
estimates of σm, and the user provides values of Vi and estimates of the betas. A crucial
assumption in the SIM is E(εiεj ) = 0 that is the covariance of shocks to company
i (or industry i) and company j are contemporaneously uncorrelated. However, for
small positive correlations of εi and εj as found in practice in daily returns, specific
risk still falls quite rapidly as n increases.

Somewhat as a side issue, it is worth noting that under the assumptions of the
SIM, the correlations between stocks can be calculated from estimates of betas (and
variances).

ρij = σij

σiσj

= βiβjσ
2
m

σiσj

(A14)

where σi and σj are given by (A4b). Note that if the SIM fitted perfectly so that
σεi = 0, then ρ = 1 because each asset return is uniquely determined by Rm. How-
ever, in RiskMetricsTM, the correlation coefficients ρij are calculated directly because
RiskMetricsTM seeks to provide a common method of forecasting correlations for
stocks, bonds, FOREX, and so on, and the SIM may not be applicable for all asset
classes. Note that the so-called market model relaxes the assumption of the SIM that
cov(εi, εj ) = E(εiεj ) = 0. But in doing so, our simplified expression for portfolio
risk (A11) does not hold. Once E(εiεj ) �= 0, then all the covariances are required to
calculate σp.



29
VOLATIL ITY AND
MARKET
MICROSTRUCTURE

Aims

• Measure asset return volatility and examine the economic variables that might influ-
ence it.

• Ascertain the importance of time-varying risk premia, as modelled by ARCH and
GARCH processes, in determining expected asset returns – for stock, bond and spot-
FX returns.

• Examine the structure of the FX market, which might influence bid-ask spreads and
spot exchange rates.

• Show how survey data can be used to assess the rational expectations hypothesis
and the influence of different types of trader on price changes.

• Assess the ability of technical trading rules to earn ‘abnormal profits’ based on trades
using high frequency data.

As we have noted in previous chapters, ARCH and GARCH processes can be
used to model asset returns that depend on time-varying variances and covariances
(e.g. standard-CAPM, SDF models). In this chapter, we summarise some of these
approaches applied to stock, bond and FX returns. We show how persistence in the
risk premium can, in principle, lead to large swings in stock prices – as observed
in the data. Estimates of persistence in the risk premium may be sensitive to the
inclusion of other economic variables in the prediction equation for expected stock
returns, such as the dividend–price ratio, the risk-free interest rate and the volume of
trading in the market. Hence, we examine the robustness of the relationship between
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expected returns, time-varying variances and covariances. We provide examples of how
multivariate ARCH-GARCH are used in dynamic hedging using stock index futures, in
measuring time-varying risk premia across different maturity bonds and in measuring
covariances between stock and bond returns.

The rest of the chapter is devoted to market microstructure issues. Traditionally,
this area has concerned itself with the influence of different types of trading structure
on the behaviour of prices and returns over short horizons. Volatility is clearly part
of the story here, but this area also examines the determinants of the bid-ask spread
and whether ‘trading variables’ (e.g. order flow, size of trades) influence prices. We
also include a discussion of survey data under this heading since how agents forecast
future prices has a direct bearing on the assumption of rational expectations and the
possibility of destabilising speculation. Finally, technical trading rules (e.g. chartists,
filter rules, genetic algorithms) are usually applied to high frequency data and, therefore,
we examine whether these earn ‘abnormal profits’ over a run of bets.

29.1 Volatility

Let us remind ourselves of the ‘stylised facts’ concerning return volatility over horizons
of up to one month (i.e. intraday, daily, weekly and monthly returns). Return volatility
for stocks and spot FX appear to go through periods where changes (in either direction)
are large and other periods when changes are small. Also, when changes in returns are
small (large), they tend to remain small (large) for some time. There are also ‘outliers’,
that is, particularly large positive or negative returns, which occur more frequently than
would be the case if returns were normally distributed. Hence, the volatility of stock
returns over short horizons (e.g. up to 1 month) has the following properties.

(i) Volatility is time varying (i.e. periods of tranquillity and turbulence).

(ii) There is volatility clustering: large (small) changes in returns tend to be followed
by large (small) changes of either sign, for some considerable time – volatility is
autoregressive and persistent.

(iii) The unconditional distribution of returns has ‘fat tails’.

(iv) The (conditional) correlation between returns on different assets appears to vary
over time.

We require models to ‘explain’ these stylised facts, since time-varying variances
and covariances are crucial in implementing portfolio allocation and in measuring
‘riskiness’ (e.g. Value at Risk).

Measurement of volatility is not straightforward. A measure of the markets’ view
of volatility can be ‘extracted’ from the Black–Scholes equation (or other closed form
solutions) for options prices. The observed option’s price is Pt = f (St , σt , rt , T − t, K),
where f is a non-linear function. All variables except σt are known at t , so we can ‘back-
out’ the markets forecast of volatility (known as implied volatility), over the life of the
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option. A time series for implied volatility can be obtained for any underlying asset on
which there are traded options in liquid markets for which there is a closed form solution
(e.g. stock options, stock index options, futures options). Usually, implied volatilities are
used as a benchmark to compare against statistical measures of volatility, which is the
subject of this chapter.

One measure of volatility, the range estimator is defined as

ht = ln(high t /low t ) (1)

where ‘high’ and ‘low’ are the observed prices over the interval considered (e.g. over
one trading day). If there is autocorrelation in volatility, the following equation can be
estimated.

ht = α0 +
p∑

j=1

αjht−j + εt (2)

Alternatively, the squared (daily) return ht = (Rt − µ)2 could be used as an estimate
of volatility, where for monthly frequency or less, a reasonable approximation is to
set µ = 0. Clearly, ht in (1) uses only two data points within the day. As an alterna-
tive, one might choose to measure (daily) volatility as the sample average of squared
hourly returns.

Another simple but popular measure of the volatility in stock returns is to use
exponentially weighted moving average, EWMA. Here, volatility is time varying and
can be forecast using a moving window of past data. For example, when forecasting
daily volatility, the EWMA model is widely used in Value at Risk calculations:

ht+1 = λht + (1 − λ)R2
t (3)

The coefficient λ can be estimated or a value of λ chosen to minimise outside-sample
forecast errors across a range of asset returns (e.g. as in RiskMetrics who choose λ =
0.94 for daily data). By backward recursion, (3) implies that the forecast of volatility
is a long weighted average of past squared returns – so volatility is persistent.

Arch-GARCH

The simplest GARCH model is

Rt+1 = µ + εt+1 (4a)

ht+1 = α0 + α1ht + α2ε
2
t (4b)

ht+1 ≡ Et(Rt+1 − EtRt+1)
2 = E(ε2

t+1|�t) (4c)

ht+1 is the conditional variance of returns Rt+1 and equals E(ε2
t+1|�t), where �t

is information at time t . The GARCH(1,1) model (4b) assumes that the conditional
variance is autoregressive – this gives rise to volatility clustering. The unconditional
variance is constant and is given by

var(εt+1) = α0/[1 − (α1 + α2)] for (α1 + α2) < 1 (5)
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For (α1 + α2) = 1, the unconditional variance is undefined, and this model is known
as integrated or IGARCH(1,1). Note that the EWMA model is IGARCH if µ = 0.
An equivalent representation of the error term in (4a) is εt+1 = √

ht+1ut+1, where
ut+1 is iid with a zero mean and unit variance. The ‘standardised’ residuals υ̂t =
(ε̂t+1/

√
ĥt+1) should be random and can be tested for normality (e.g. Bera-Jarque test).

In practice, when using stock returns, it is usually found that υ̂t still exhibits some
leptokurtosis (i.e. fat tails) but less so than the εt . Estimation of GARCH(p, q) models
by maximum likelihood is now relatively standard and available in many econometric
software packages (e.g. TSP, EVIEWS, PCGIVE, MFIT, RATS, GAUSS-FanPac).

29.2 What Influences Volatility?

Schwert (1989) looks at possible sources for time-varying volatility. He examined how
far the conditional volatility in stock returns depends on its own past volatility and also
on the volatility in other economic variables (fundamentals) such as bond volatility and
the volatility in real output. If perceptions of risk are persistent, then an increase in risk
today will increase perceptions of risk in many future periods. Stock prices depend on
the risk premium via the rational valuation formula, RVF. Hence, if risk is persistent,
a small increase in perceived risk might cause a large fall in current stock prices.

Schwert (1989) examines conditional volatilities, namely, the volatility in stock
returns, conditional on having obtained the best forecast for stock returns. If the best
forecast for stock returns is denoted E(Rt+1|�t), then εt+1 = (Rt+1 − EtRt+1) is the
conditional forecast error. Since Etεt+1 = 0, the conditional variance of the forecast
error of returns is var(εt+1|�t) ≡ Et(Rt+1 − EtRt+1)

2. Schwert uses a simple measure
of conditional volatility. He assumes the best forecast of monthly stock returns Rt+1

is provided by an AR model (we exclude monthly dummies):

Rt+1 = α0 +
m∑

j=0

αjRt−j + εt+1 (6)

Schwert finds that the (absolute value) of the residuals ε̂t+1 from (6) exhibit serial
correlation, which he also models as an AR process:

|ε̂t+1| =
s∑

j=1

ρj |ε̂t−j+1| + ut+1 (7)

This is a (simple) form of autoregressive conditional heteroscedasticity ARCH, in
the forecast errors. From the ARCH regression, we obtain estimates of the ρj . The
predictions from (7), ε∗

t+1 = ∑s
j=1 ρ̂j |ε̂t−j+1|, then provide a time-varying estimate of

the conditional standard deviation of the forecast errors for stock returns. The above
method is used by Schwert to obtain the conditional volatility of other economic time
series. He uses equations (6) and (7) on monthly data for stock returns (an aggregate
index), for bond returns, inflation, short-term interest rates, the growth in industrial
production (output) and monetary growth.
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The sum of the ρj in (7) is a measure of persistence in volatility. For example,
for ρ = 0.95, a unit shock at time t (i.e. ut = 1) has an impact on εt+12 of 0.54
after 12 months and an impact on εt+24 of 0.3 after 24 months. However, if ρ = 0.5,
the impact of ut on εt+12 is nearly zero. A high value of ρ therefore implies a ‘long
memory’. All the series examined by Schwert for the United States are found to exhibit
persistence in volatility over the period 1859–1987 with the sum of the ρ in the region
of 0.8 to 0.85. Hence, in principle, the persistence in stock return volatility is mirrored
by persistence in volatility for other fundamental variables.

Now consider the possible relationship between the conditional volatility of stock
returns ε̂t+1 and the conditional volatility of the economic fundamentals, εit where
i = conditional volatility of output, bond rates, inflation, and so on. Schwert runs a
regression of stock return volatility |ε̂t | on its own lagged values and also on lagged
values of the |εit | for the fundamental variables. Any ‘reverse influence’, that is, from
stock volatility to the volatility in fundamentals such as output, can be obtained from
an equation with output volatility as the dependent variable. In fact, Schwert generally
estimates the stock return volatility equation together with the ‘reverse regressions’ in
a vector autoregressive VAR system.

Schwert’s results are mixed. He finds little evidence that volatility in economic
fundamentals (e.g. output, inflation) has a discernible influence on stock return volatility
(and the impact is not stable over time). However, there is a statistically significant
effect from interest rate and corporate bond rate volatility on stock volatility. Also, some
other ‘non-volatility’ economic variables do influence the monthly conditional stock
return volatility. These include the debt-equity ratio (leverage), which has a positive
impact, as does trading activity in the month. The latter is measured by the growth
rate in the number of trades or buy/sell orders and the number of trading days in the
month. Stock volatility is also shown to be higher during recessions than in economic
booms. Examination of the results from the ‘reverse regressions’ reveals that there is
some weak evidence that volatility in stock returns has incremental explanatory power
for the volatility in output. In Schwert’s study, much of the movement in stock return
volatility is not explained by the economic variables examined – the R-squared values
in the reported regressions are usually in the region of 0 to 0.3. Hence, much of the
monthly conditional volatility in stock returns is due to ‘news’.

Returns and Volatility

If the perceived risk premium on an aggregate stock index is adequately measured by
an ARCH model in conditional variance, then it follows that the future risk premium is,
in part, predictable. Persistence in variance implies an increase in variance today will
increase the perceived riskiness of stocks in all future periods and via the RVF, could
lead to a large change in the level of stock prices. Poterba and Summers (P–S) (1988)
is one of the first studies to investigate whether changes in investor’s perceptions
of risk are large enough to account for the very sharp movements in stock prices
that are actually observed. If their model can explain the actual movements in stock
prices, then as it is based on rational behaviour, stock prices cannot be excessively
volatile.
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P–S use a linearised approximation to the RVF, and they are able to show exactly
how the stock price responds to a surprise increase in the perceived riskiness of stocks.
The response depends crucially on the degree of persistence in conditional volatility. If
the degree of persistence in volatility is 0.5, then P–S calculate that a 1% increase in
volatility leads to only a 1.2% fall in stock prices. However, if the degree of persistence
is 0.99, then the stock price would fall by over 38% for every 1% increase in volatility:
a sizeable effect. Given that stock prices often do undergo sharp changes over a very
short period of time, then for the P–S model to ‘fit the facts’, we need to find a high
degree of persistence in volatility.

P–S treat all variables in the RVF in real terms, and Pt is the real S&P index
over the period 1928–1984. As P–S wish to focus on the impact of the risk premium
on Pt , they assume real dividends grow at a constant rate g, and the real risk-free
rate is constant. The intertemporal CAPM (Merton 1973, 1980) suggests that the risk
premium on the market portfolio is proportional to the conditional variance of forecast
errors on equity returns ht+1 ≡ Etσ

2
t+1, hence

EtRt+1 = rt + λht+1 = rt + rp t (8)

where λ is the market price of risk and rp t = λht+1. In Merton’s intertemporal CAPM,
λ depends on a weighted average of different consumers’ relative risk aversion param-
eters, which are assumed to be constant. P–S assume that conditional volatility can be
represented by ARMA model(s), and here we assume an AR(1) process:

ht+1 = α0 + α1ht + vt+1 0 > α1 > 1 (9)

where vt+1 is a white noise error. The vt+1 term provides the mechanism by which
we may (randomly) switch from a period of high volatility to one of low volatility as
vt+1 moves from positive to negative. A large value for α1 implies a high degree of
persistence in volatility. If ht follows an AR(1) process, then so will the risk premium:
rp t = λα0 + λα1rp t−1. To make the problem tractable, P–S linearise the RVF around
the mean value of the risk premium rp, which gives

∂[ln Pt ]

∂[ln(ht )]
= rp

[1 + r + rp − α1(1 + g)]
(10)

Thus, the response of Pt to a change in volatility ht increases with the degree of
persistence α1. P–S compute an unconditional volatility measure for the variance of
monthly stock returns based on the average daily change in the S&P Composite Index
over a particular month. Hence, for month t ,

ht =
m∑

i=1

s2
ti /m (11)

where sti = daily change in the stock index in month t and m = number of trading
days in the month. For example, an AR(1) model gives a value of α1 in the range
0.6–0.7. They also use estimates of implied volatility from options prices, which
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measure ex-ante or forward-looking volatilities and here they also find that there is
little persistence in volatility. P–S find that a 50% increase in volatility depresses the
share price by only a minuscule 0.7% (and the largest effect they find empirically is a
fall of 11%). Hence, within the P–S framework, persistence in volatility is too low to
explain the observed sharp movements in stock prices.

GARCH-in-Mean

Chou (1988) repeats the P–S analysis using an explicit model of conditional variances
based on a GARCH(1,1) model. This avoids the use of the P–S two-step estimation
technique that gives inconsistent estimates of the parameters (Pagan and Ullah 1988).
Chou assumes expected returns on the market portfolio are given by the CAPM

Rt+1 − rt = λht+1 + εt+1 (12)

where Rt+1 = return on the market portfolio, rt = risk-free rate and ht+1 is the condi-
tional variance:

Et(Rt+1 − EtRt+1)
2 = Et(ε

2
t+1) = ht+1 (13)

where εt+1|�t ∼ N(0, ht+1). According to the CAPM, the expected excess market
return varies directly with the conditional variance: large forecast errors (i.e. more
risk) require compensation in the form of higher expected returns. The GARCH(1,1)
model is

ht+1 = α0 + α1ε
2
t + α2ht (14)

The GARCH(1,1) model is a form of adaptive expectations in the second moment of
the distribution. The forecast of the conditional variance at t + 1 is ht+1 = α0 + (α1 +
α2)ht . By recursive substitution and the law of iterated expectations, the conditional
variance for all future periods t + s is

ht+s = α0[1 − (α1 + α2)
s+1]

1 − (α1 + α2)
+ (α1 + α2)

sht (15)

The αi are constrained to be non-negative so that the conditional variance is always
non-negative. If (α1 + α2) = 1, then a change in the current variance ht has a one-
for-one effect on all future expectations. If (α1 + α2) < 1, then the influence of ht

on ht+s dies away exponentially. Thus, (α1 + α2) measures the degree of persis-
tence in the conditional variance. If (α1 + α2) ≥ 1, then the unconditional variance
α0/[1 − (α1 + α2)] is not defined (and we have a non-stationary (explosive) series in
the conditional variance). Equations (12) + (14) constitute a ‘GARCH-in-mean’ or
GARCH-M model. Chou (1988) estimates these two equations simultaneously, using
maximum likelihood. The data is for weekly returns (Tuesday–Tuesday closing prices)
on the NYSE value weighted stock price index (with dividends reinvested) over the
period 1962 to 1985 (1225 observations).

Chou finds that the estimate of the market price of risk λ over various sub-periods
is not well determined statistically and borders on being statistically insignificant.
However, it has plausible point estimates in the range 3–6 (P–S obtain a value of
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3.5 and Merton 1973 finds a value of 3.2). The value of (α1 + α2) is very stable over
sub-periods and is around 0.98, indicating substantial persistence. It follows from our
previous discussion that observed sharp falls in stock prices can now be explained
using the RVF. Indeed, when (α1 + α2) = 1 (which is found to be largely acceptable
on statistical grounds by Chou), stock prices move tremendously and the elasticity
d(ln Pt)/d(ln ht) can be as high as (minus) 60.

Chou re-estimates his GARCH(1,1) model for different ‘return horizons’ using
returns over N = 5, 20, 50 and 250 trading days. He finds the estimates (α1 + α2)

are very stable at around 0.95 in all of these variants. As a point of comparison, Chou
calculates the P–S measure of variance (see equation (11)) using different values of
N . He then estimates hNt+1 = a0 + a1hNt + vt+1 for various values of N . He finds
that α1, the degree of persistence, varies tremendously, increasing from near zero for
N = 5 (working) days, to α1 = 0.6 for N = 20 days (i.e. 1 month) and to α1 = 0.9 for
N = 250 days (i.e. 1 year). This suggests that the P–S method may not have correctly
captured the true degree of persistence.

As a counterweight to the above, consider a slight modification of Chou’s model as
used by Lamoureux and Lastrapes (1990a). They assume that conditional volatility is
influenced both by past forecast errors (GARCH) and by the volume of trading, VOL
(i.e. number of buy/sell orders undertaken during the day):

ht+1 = α0 + α1ε
2
t + α2ht + γ VOLt

They model daily returns and, hence, feel it is realistic to assume constant expected
returns µ:

Rt+1 = µ + εt+1 εt+1 ∼ N(0, ht+1)

They estimate the equations for 20 actively traded companies using about one year
of daily data (for 1981 or 1982). When γ is set to zero, they generally find a similar
result to Chou, namely, strong, persistent GARCH effects (i.e. (α1 + α2) ≈ 0.8 to
0.95). When VOLt is added, they find that α1 = α2 = 0 but γ �= 0 and the residuals
are now normally distributed. Hence, conditional volatility ht+1 is not determined
by past forecast errors but by the volume of trading (i.e. the persistence in VOL
accounts for the persistence in ht+1). They interpret VOL as measuring the arrival of
new information and therefore conjecture that, in general, GARCH effects in other
studies are really measuring the persistence in the arrival of new information (see
the discussion on market microstructure, in the following). Thus, on this data set,
the Chou model is shown to be very sensitive introducing VOLt into the GARCH
process. However, Brooks (1998) demonstrates that market volume does not improve
outside-sample forecasts of volatility in a simple GARCH model. The sensitivity of
the GARCH-M model to specification changes is examined further in the following
section, as is the importance of VOL in the market microstructure models.

The CAPM and Dividends

The study by Attanasio and Wadhwani (1990) starts with the empirical observation
that, from previous work, we know that the expected excess return on an aggregate
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stock market index (which is assumed to proxy the market portfolio), depends on the
previous periods dividend–price ratio. The latter violates the EMH under constant
expected excess returns. Previous work in this area often assumed a constant risk
premium but then sometimes interpreted the presence of the dividend yield as indicative
of a time-varying risk premium. Attanasio and Wadhwani suggest that if we explicitly
model the time-varying risk premium, we may find that the dividend yield (= Zt) does
not influence expected returns. If so, this would support the CAPM

(Rm,t+1 − rt ) = λht + δZt + εt+1

where we expect λ > 0 and δ = 0. The time-varying conditional variance is assumed
to be determined by a GARCH(1,2) model (with the dividend yield added)

ht+1 = α0 + α1ht + α2ε
2
t + α3ε

2
t−1 + πZt

where α1 and π are constrained to be non-negative. Hence, the dividend yield affects
the conditional variance – this is not a violation of the CAPM. Using monthly data from
January 1953 to November 1988 on an aggregate US stock price series, a representative
result is (Attanasio and Wadhwani 1990, Table 2)

(Rm,t+1 − rt ) = − 0.035
(0.025)

+ 0.55Zt

(0.39)

− 4.05rt

(1.05)

+ 22.3ht+1

(11.3)

(16)

1953(1)–1988(11), R2 = 0.059, (.) = standard error

ht+1 = α0 + 0.015ε2
t

(0.03)

+ 0.022ε2
t−1

(0.04)

+ 0.87ht

(0.06)

+ 0.053Zt

(0.024)

(17)

In the CAPM equation (16), the conditional variance is found to be (just) statistically
significant and the dividend yield Zt is not, thus supporting the CAPM. However,
in (16), we report results when Attanasio–Wadhwani also include the short rate which
is statistically significant, and this rejects the CAPM. In the GARCH equation (17), the
dividend yield Zt has a statistically significant effect on the conditional variance, and
this would explain why previous researchers who assumed a constant risk premium
found Zt significant in the returns equation of the CAPM. Note that there is also
considerable persistence in the conditional variance since (α1 + α2 + α3) = 0.91.

Noise Trader Risk and Serial Correlation

Positive feedback (momentum) traders buy after a price rise and sell after a price fall
(e.g. use of ‘stop-loss’ orders or ‘portfolio insurers’). This gives rise to positive serial
correlation in returns. Negative feedback traders pursue the opposite strategy; they
‘buy low’ and ‘sell high’. Hence, a price fall would be followed by a price rise if
these traders dominated the market. (The latter would also be true for investors who
assign a constant share of market value wealth to each asset, since a price fall on asset
i will lead to a fall in its ‘value share’ in the portfolio and hence lead to additional
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purchases and a subsequent price rise.) The demand for stocks by noise traders Nt (as
a proportion of the total market value of stocks) may be represented

Nt = γRt−1 (18)

with γ > 0 indicating positive feedback traders and γ < 0 indicating negative feedback
traders and Rt−1 is the holding-period return in the previous period. Let us assume that
the demand for shares by the smart money is determined by a (simple) mean-variance
model:

St = (EtRt+1 − µ)/ψt (19)

where St = proportion of stock held by ‘smart money’, µ = expected rate of return (for
which demand by the ‘smart money’ is zero), ψt = measure of the perceived riskiness
of shares. We assume ψt is a positive function of the conditional variance ht of stock
prices: ψ = ψ(ht). Thus, the smart money holds more stock, the higher the expected
return and the smaller is the riskiness of stocks. If the smart money holds all the stocks,
then St = 1 and rearranging (19), we have the CAPM for the market portfolio where
the excess return EtRt+1 − µ depends on a risk premium, which is proportional to the
conditional variance of stock prices, ψt = ψ(ht ). Equilibrium in the market requires
all shares to be held:

St + Nt = 1 (20)

Substituting (18) and (19) in (20), rearranging and using the RE assumption,

Rt = µ + ψ(ht) − γψ(ht )Rt−1 + εt (21)

Thus in a market with smart money and noise traders, the serial correlation in Rt will
depend on the type of noise trader. Somewhat paradoxically, a positive feedback trader
(i.e. γ > 0) results in negative serial correlation in Rt (for any given constant level of
risk ht) and vice versa. A linear form for ψ(ht ) in equation (21) gives

Rt = µ + θht + (γ0 + γ1ht)Rt−1 + εt (22)

The direct impact of feedback traders at a constant level of risk is given by the sign
of γ0. However, suppose γ0 is positive (i.e. positive serial correlation in Rt) but γ1 is
negative. Then as risk ht increases, the coefficient on Rt−1, namely, γ0 + γ1ht , could
change sign, and the serial correlation in stock returns would move from positive to
negative as risk increases. This would suggest that as volatility increases, the market
becomes more dominated by positive feedback traders who, when they interact in the
market with the smart money, result in overall negative serial correlation in returns.

Sentana and Wadhwani (1992) estimate the above model using US daily data from
1855 to 1988, together with a complex GARCH model of the time-varying conditional
variance. Their GARCH model allows the number of non-trading days to influence
conditional variance (French and Roll 1986), although in practice, this is not found to be
statistically significant. The conditional variance is found to be influenced differentially
by positive and negative forecast errors (i.e. asymmetric GARCH). Ceteris paribus, a



S E C T I O N 2 9 . 2 / W H AT I N F L U E N C E S V O L AT I L I T Y ? 663

unit negative shock, εt , leads to a larger change in conditional variance than does a
positive forecast error.

The switch point for the change from positive serial correlation in returns to negative
serial correlation is ht > (−γ0/γ1), and they find γ0 = 0.09, γ1 = −0.01 and the switch
point is ht > 5.8. Hence, when volatility is low, stock returns at very short horizons
(i.e. daily) exhibit positive serial correlation but when volatility is high returns exhibit
negative autocorrelation. This model, therefore, provides some statistical support for
the view that the relative influence of positive and negative feedback traders may
vary with the degree of risk (but it does not explain why this might happen). As is
familiar in such studies of aggregate stock returns, Sentana–Wadhwani also find that
the conditional variance exhibits substantial persistence (with the sum of coefficients
on the GARCH parameters being close to unity). In the empirical results, θ is not
statistically different from zero, so that the influence of volatility on the mean return
on stocks only works through the non-linear variable, γ1htRt−1.

Lee, Jiang and Indro (2002) use weekly US data 1973 to 1995 to see if a ‘change
in investor sentiment index’ has a direct effect in an equation for expected returns (for
either the S&P500, NASDAQ or the DJIA index), and there is also a GARCH-in-mean
effect on expected returns. They also allow the change in sentiment index to directly
appear in the GARCH volatility model. They find that an increase in bearish sentiment
leads to an increase in volatility with the largest effect being on the NASDAQ (i.e. on
small stocks) and this then leads to a fall in expected returns, working via the volatility
term in the expected returns regression. There is also a direct impact of the change in
sentiment index on expected returns. These results are broadly consistent, with noise
traders influencing expected returns and their volatility (as in the DeLong et al model).

Bond Market

In a pioneering study, Engle, Lilien and Robins (1987) use a simple ARCH-in-mean
model to determine the excess holding period return (HPR) on US long-bills over
short-bills. The excess HPR is found to depend positively on the conditional variance
(coefficient = 0.687, t-stat = 5.2), and the ARCH volatility process is statistically
significant (although the sum of the coefficients at 1.6 is somewhat greater than unity).
Engle et al then include the yield spread (Rt − rt ) in the excess returns equation and
find it is statistically significant, so the CAPM is violated.

Although the results of Engle et al appear to demonstrate strong effects of the
conditional variance on expected equilibrium returns, Tzavalis and Wickens (1995)
demonstrate that this result is sensitive to the data period chosen and, in particular,
whether the period of extreme volatility in interest rates in 1979 to 1982 is included
(i.e. when monetary base targeting was in operation in the United States). Broadly
speaking, Tzavalis and Wickens (using monthly data) reproduce Engle et al’s results
using a GARCH(1,1) model but then include a dummy variable DV t taking the value
unity over the months 1979(10) and 1982(9) and zero elsewhere. They find that when
DV t is included, the degree of persistence in volatility falls, that is, (α1 + α2) in the
GARCH process is of the order of 0.3 rather than 0.9 (and the dummy variable is
highly significant and positive). In addition, the expected HPR is no longer influenced
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by the conditional variance so there is no GARCH-in-mean effect on expected returns.
Of course, the dummy variable merely increases the average level of volatility in the
1979–1982 period, and the reasons for such an exogenous shift remain unexplained.
Therefore, on the basis of intuitive economic arguments, one might still favour the
model without the dummy variable and take the view that persistence in volatility is
high only when the level of volatility is high. There may be a threshold effect so that
in periods of high volatility, volatility is highly persistent and influences equilibrium
expected returns. In contrast, in periods of low volatility, persistence is much lower,
and the relatively low value of the conditional variance does not have a perceptible
impact on equilibrium returns. Intuitively, the above seems plausible but clearly this
asymmetric threshold effect requires further investigation.

GARCH: Some Variants

There are probably more variants on the simple GARCH(1,1) process than there are
varieties of breakfast cereal. A number of variants introduce asymmetries into the
volatility process. The intuition is that after a surprise fall of x% in stock returns,
perceived volatility will increase more than after a surprise rise in stock returns of
an equal amount. Such asymmetries can be introduced either by adding ‘new’ eco-
nomic variables to the GARCH equation (e.g. gearing or leverage, that is, the debt to
equity ratio) or more usually by amending the GARCH process itself. For example,
the Glosten, Jagannathan and Runkle (GJR) (1993) model adds an indicator variable:

ht = α0 + α1ε
2
t−1 + α2ht−1 + γ (ε2

t−1Dt−1) (23)

where Dt−1 =
{

1 if εt−1 < 0
0 otherwise

A more complex asymmetric model is the EGARCH approach of Nelson (1991),
for example,

ln ht = α0 + α1 ln ht−1 + γ
εt−1√
ht−1

+
[

|εt−1|√
ht−1

−
√

2

π

]
(24)

Here, ht can never be negative (even if the parameters are negative) and the model
can be applied to a very general distribution (i.e. the GED) for εt , although conditional
normality is often used in practice. If γ < 0, then negative surprises in returns lead
to higher conditional volatility than equal positive surprises. These models applied to
daily, weekly and monthly stock returns generally find empirical evidence of some
asymmetries, but such effects are not particularly strong.

Forecasting Performance

How do the various GARCH models perform relative to other volatility models? Day
and Lewis (1992) estimate a GARCH-in-mean model

(Rt+1 − rt ) = λ0 + λ
√

ht + εt+1 (25)
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for the S&P100 returns using weekly data from March 1983 to December 1989. They
consider the GARCH(1,1) and EGARCH process. Within sample, they find little dif-
ference between GARCH(1,1) and EGARCH and for both, the ‘mean effect’ is not
statistically significant (i.e. λ = 0). However, a series for implied volatility (from
options prices) does add additional explanatory power when added to the GARCH
and EGARCH models – although the GARCH and EGARCH models themselves also
perform reasonably well ‘in-sample’.

A more stringent test of the models is provided by their outside-sample forecasting
performance. Using a rolling window, they update the models each week and then use
them to forecast volatility one week ahead. They choose two ex-post measures for
weekly volatility, either squared weekly returns (V w

t = R2
w,t ) or the variance of the

week’s daily returns (i.e. V d
t = ∑5

i=1 (Ri − µ)2 where Ri = daily return, µ = mean of
daily returns). These measures of ex-post weekly volatility are used as the dependent
variable in a regression on the one-week ahead forecasts. The alternative forecasts are
provided by either the two GARCH models or by the implied volatility (from options)
or from a simple historic moving average of volatility (i.e. V ma

t = ∑m
i=1 R2

t−i/m). The
results are disappointing since the implied volatility series and the two GARCH models
provide no statistical explanatory power for (the two) ex-post volatility series V w

t and
V d

t (R-squared ≈ 0.025). In fact, historic volatility V ma
t is the only variable to help

predict the two measures of ex-post (out-turn) volatility. Although, even here, the R-
squared is still low at around 0.038 – so volatility is extremely difficult to predict using
any method. This should not be too surprising, given that volatility is highly variable.
However, it does perhaps explain why in forecasting daily Value at Risk (VaR), by
the VCV method, financial institutions tend to stick with a simple forecasting equation
like EWMA.

It is perhaps worth mentioning stochastic volatility models at this point. These
include an additional stochastic term in the conditional variance equation that (most
simply) gives

yt+1 = µ + √
htεt+1 εt+1 ∼ N(0, 1) (26)

ln ht+1 = α0 + α1 ln ht + σuu
2
t+1 (27)

where ut ∼ N (0,1). Stochastic volatility models can be used with MCS to price options
where volatility (as well as the underlying asset) is assumed to be stochastic. Stochastic
volatility models can be estimated using Kalman filter techniques, but we do not discuss
this further (see Cuthbertson and Nitzsche 2001b, Ruiz and Shephard 1994).

29.3 Multivariate GARCH
In earlier chapters, we noted the use of multivariate GARCH in testing SDF mod-
els. The simplest multivariate GARCH model consists of two asset return equations
and, therefore, two conditional variances and one conditional covariance. The simplest
equation for the two mean returns is

Rt+1 − rt = µ + εt+1
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where Rt+1 − rt , µ and εt+1 are (2 × 1) vectors. Turning now to the GARCH process
for the conditional covariances of the (2 × 1) error term εt+1 = {ε1,t+1, ε2,t+1}′, even
here, there are a large number of parameters to estimate for the unrestricted model.
So, in practice, a priori (yet relatively ad hoc) restrictions are imposed to reduce the
number of parameters to a manageable level. The ‘VECH’ notation is usually used for
the multivariate GARCH process (Bollerslev, Engle and Wooldridge 1988) and here
continuing with the two-asset return case (with only one lag in the GARCH process),
we have

VECH (Ht+1) = C + A
[
VECH

(∑
t

∑′
t

)]
+ B[VECH (Ht )]∑

t
|�t−1 ∼ N(0, Ht) (28)

where Ht =
[

h11,t h12,t

h21,t h22,t

] ∑
t =

[
ε11,t ε12,t

ε21,t ε22,t

]
The VECH operator takes the upper (or lower) triangular portion of the matrix and

creates a single-column vector, for example, we could take

VECH (Ht ) = [h11, h22, h12]′t

VECH
(∑

t

∑′
t

)
= VECH

[
ε2

11 + ε2
12

ε21ε11 + ε22ε12

ε11ε21 + ε12ε22

ε2
21 + ε2

22

]
t

= [
ε2

11 + ε2
12, ε2

21 + ε2
22, ε11ε21 + ε12ε22

]′
t

VECH (Ht ) and VECH
(∑

t

∑′
t

)
are (3 × 1) vectors, A and B are (3 × 3) matrices

of coefficients and C is a (3×1) column vector. Without any restrictions, the VECH
model has, for example, h11, depending on lagged values of each of (h11, h22, h12) and
the three distinct error terms in VECH (

∑∑′
) above, making seven parameters in all

(including the constant c11). For example, the first equation for h11,t+1 is

h11,t+1 = c11 + a11(ε
2
11,t + ε2

12,t ) + a12(ε
2
21,t + ε2

22,t ) + a13(ε11,t ε21,t + ε12,t ε22,t )

+ b11h11,t + b12h22,t + b13h12,t

The two-asset system, therefore, has 3 × 7 = 21 parameters in the three GARCH-type
equations for (h11, h22, h12)t , quite a number to try to estimate (even for this simple
two-asset case). To simplify the model, we can impose the (arbitrary) restriction that
A and B are diagonal, so each conditional variance (covariance) is

hij ,t = αij + βij (εiεj )t−1 + γij hij ,t−1 (29)

and this reduces the number of parameters to estimate to nine (in the two-asset model).
We have to ensure that the estimated parameters give a positive semi-definite covari-
ance matrix, which is not guaranteed. ‘Positive definite’ implies the diagonal terms



S E C T I O N 2 9 . 3 / M U LT I VA R I AT E G A R C H 667

are positive and the off-diagonal elements are symmetric – desirable properties for
variances and covariances. A positive semi-definite covariance matrix also implies that
for any portfolio weights, the portfolio variance will be greater or equal to zero – again
a desirable property.

A slightly different model ensures the H matrix is always positive definite, and this
gives the ‘BEKK model’ (see Engle and Kroner 1995):

Ht+1 = C′C + A′H tA + B ′
(∑

t

∑′
t

)
B (30)

where for n = 3 assets (say) then C, A and B are (3 × 3) matrices and the quadratic
terms ensure positive definiteness. For n = 3 (assets), which would not be unusual
when implementing the SDF model and a single lag in the GARCH process on ht and
ε2
t (i.e. GARCH(p = 1, q = 1) or GARCH(1,1) as it is usually stated in this literature),

then the BEKK model requires estimation of n(n + 1)/2 + (p + q)n2 (n + 1)2/4 = 78
parameters. The vector error correction model formulation VECM(1,1)-BEKK of this
model is

Ht+1 = V ′V + A′(Ht − V ′V )A + B ′(εtε
′
t − V ′V )B

where V is the ‘long run’ or unconditional covariance matrix (which can be initialised
from sample averages). The other terms represent deviations around this long-run
equilibrium. (This equation is an error correction model ECM that we met in Chapter 2
but here applied to second moments.) For n = 3, the number of parameters to estimate
in the VECM-BEKK model is 3n2 = 27. We can further restrict this model so that V

is lower triangular and A and B to be lower triangular so the restricted VECM-BEKK
has 3n(n+1)/2 = 18 parameters to estimate. Finally, we can simplify the estimation
by imposing a constant correlation between εi,t+1 and εj,t+1

hij ,t+1 = ρij [hii ,t+1 hjj ,t+1 ]1/2 and hii ,t+1 = ci + αihii ,t + βiε
2
it

which has 3n + n(n − 1)/2 = 12 parameters to estimate. But as we are trying to model
time-varying variances and covariances, this is a somewhat restrictive version of a
multivariate GARCH process – it only allows covariances to vary over time if the vari-
ances are time varying (σij ,t = ρij σi,tσj,t ). Clearly, there is a major trade-off between
the number of covariances one can practically include in the multivariate GARCH
approach and the flexibility of the GARCH processes employed, and this has been
noted in various earlier chapters when modelling stock, bond and FX returns.

Futures Hedge

We can demonstrate the use of multivariate GARCH by considering a dynamic hedge
using stock index futures. It is easy to show (Cuthbertson and Nitzsche 2001b) that
the optimal number of stock index futures contracts to minimise the hedging error of
a well-diversified stock portfolio is

Nf,t = −
(

TVS 0

zF 0

)
βt (i.e. short Nf,t futures contracts) (31)
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where TVS 0 = cash value of your stock portfolio, F0 = current futures price, z = value
of an index point (e.g. $250 for the S&P500 futures contract) and

βt = h12,t+1/h22,t+1 (32)

h22 is the conditional variance of the change in futures price and h12 is the conditional
covariance between the change in stock price of the portfolio and the change in the
futures price. If the hedge was ‘perfect’, the change in value of the stock-futures port-
folio would be zero. The simplest hedge ratio is a static hedge where β is fixed and
is given by the OLS regression coefficient where �St/St−1 (i.e. stock index return)
is regressed on �Ft/Ft−1 (the futures index). Alternatively, one can estimate a mul-
tivariate GARCH model for (h11, h22, h12)t with a rolling window, use it to forecast
one period ahead and then use the minimum variance hedge ratio βt each period.
Results in Brooks, Henry and Persand (2002) using daily hedging suggest that the
static hedge reduces the variance of the out-of-sample hedging error by about 90%.
Using the BEKK-GARCH(1,1)-type model reduces the hedging error by a further 2%
or so, but adding GJR asymmetry effects provides no further improvement (Brooks,
Henry and Persand 2002, see also Cumby, Huizinga and Obstfeld 1983, Franses and
vanDijk 1996). These studies demonstrate that GARCH-type models provide a mod-
icum of improvement when used for dynamic futures hedging over the conventional
static (OLS) hedge ratio.

Bond Returns

Implementation of multivariate GARCH models often involves estimating a large num-
ber of parameters, and the estimation is highly non-linear, which can create additional
(convergence) problems. Because of these technical difficulties, particularly given a
finite data set, researchers usually place some limitation on the number of assets con-
sidered, and second, the parameters of the GARCH process are usually restricted in
some way.

The theoretical model of the bond market we outline in the following incorporates
bonds of varying maturities and also allows for time-varying risk premia. The basic
model used is the CAPM and, hence, time-varying premia are modelled via time-
varying covariances, using multivariate GARCH. Let us start with the returns equations.
For the market portfolio, the excess HPR (= ym,t+1) is proportional to the market price
of risk λ and the conditional variance of the market return:

ym,t+1 = λ vart (ym,t+1) + εm,t+1 (33)

where we assume εm,t+1 ∼ N(0, hm,t+1). For a bond of maturity n, the excess HPR
(= yn,t+1) depends on the conditional covariance:

yn,t+1 = λ covt (yn,t+1, ym,t+1) + εn,t+1 (34)

where
covt (yn,t+1, ym,t+1) = Et(εm,t+1εn,t+1) = hmn,t+1 (35)
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We can, therefore, rewrite (34) as

yn,t+1 = λhmn,t+1 + εn,t+1 (36)

For an n-period bond, its own conditional variance and its conditional covariance with
the market are modelled using GARCH(1,1) equations

hn,t+1 = α0 + α1hn,t + α2ε
2
n,t (37a)

hnm,t+1 = δ0 + δ1hnm,t + δ2εn,t εm,t (37b)

The GARCH conditional variance for the market is

hm,t+1 = γ0 + γ1hm,t + γ2ε
2
m,t (38)

If we have only one n-period bond and returns for the market portfolio, we already have
nine GARCH parameters to estimate plus the λ in the expected returns equation. As we
add more bonds of different maturities, the number of GARCH parameters increases
rapidly. Hence, Hall, Miles and Taylor (1989), who estimate the above model for bonds
of several maturities, assume the GARCH parameters for each maturity bond are the
same. Also, although they have bond data for several different countries, they assume
that the market portfolio consists only of domestic bonds (i.e. does not contain any
foreign bonds) – so this also cuts down on the number of GARCH covariance terms.
Data used is monthly. For the market portfolio of bonds, there is evidence of a GARCH
effect in variance as γ1, γ2 are non-zero. However, the conditional variance does not
appear to explain, statistically at least, much of the variation in the excess market HPRs,
ym,t+1, since in equation (33), λ is only statistically different from zero for Japan and
France (and we can accept λ = 0 for the United Kingdom, Canada, United States and
Germany). In general, Hall et al also find that the conditional covariance terms do not
influence HPRs on bonds of maturity n (for n = 1–3, 3–5, 5–7, 7–9, 10–15, and
greater than 15 years) in a number of countries (e.g. United Kingdom, Japan, United
States and Germany).

Hall et al also test to see whether information at time t , namely, lagged excess HPRs
and the yield spread, influence the excess HPR. In the majority of cases, they reject the
hypothesis that these two variables are statistically significant. However, particularly at
the short end of the market (e.g. 1–3 year bonds), they find that the time-varying own-
variance ht is quantitatively and statistically far more important than the time-varying
covariance term hnm,t , thus rejecting the CAPM.

There are many potential candidates to explain the rather mixed results across matu-
rities and countries found in the Hall et al study. First, the market portfolio is taken
to be all domestic bonds (e.g. no foreign bonds and no domestic or foreign equities
are included). Second, there are a large number of parameters to estimate, so Hall
et al assume that the parameters in the different GARCH equations for variances and
covariances are equal (i.e. αi = δi = γi , for i = 1, 2). This saves on degrees of free-
dom and mitigates possible difficulties in maximising a highly non-linear likelihood
function but may impose invalid restrictions.
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Despite some restrictive assumptions in the Hall et al study, it does suggest that
time-varying risk premia (which exhibit persistence) do exist in bond markets but they
are rather difficult to pin down empirically and the effects are not uniform across bonds
of different maturities and different countries. The study does highlight the difficulties
in using the multivariate GARCH-in-mean approach to model the CAPM with time-
varying variances and covariances. The number of parameters to be estimated and the
non-linearity of the maximisation procedure on a limited (and perhaps somewhat poor)
data set imply that any results are likely to involve wide margins of error and they
may not be terribly robust to slight specification changes.

Interaction: Stock and Bond Markets

In the CAPM, all agents hold the market portfolio of all assets in proportion to market
value weights. However, we know that most gains from diversification may be obtained
by holding around 25 assets. Given transactions cost, costs of collecting and monitoring
information, as well as the need to hedge projected outflows of cash against maturing
assets, holding a subset of the market portfolio makes sense for some individuals and
institutions. An investor might, therefore, focus his attention on the choice between
groups of assets and be relatively unconcerned about the specific set of assets within
a particular ‘block’. Thus, the investor might focus his decision on the returns from
holding of six-month bills, a group of long-bonds and a group of stocks. The latter
simplification is used by Bollerslev, Engle and Wooldridge (1988) when simultaneously
modelling the three-month HPR on these three broad classes of asset using the CAPM.
It is easily shown that if we have three broad assets categories that constitute the
market portfolio, then

cov(y1, yn) = cov

(
y1,

3∑
1

wjyj

)
= w1σ11t + w2σ12t + w3σ13t (39)

where w = value-weight of each asset in the market portfolio. Thus, we can split the
‘single’ CAPM covariance term into the above three components. The excess return
equations for the three assets are

yi,t+1 = α1 + λ


 3∑

j=1

wjhij ,t


 (40)

where the w are known and λ is the market price of risk, which according to the
CAPM, should be the same across all assets. Bollerslev et al estimate three excess
HPR equations of the form (40): one for six-month bills, another for 20-year bonds
and one for a stock market index. They model the three time-varying variance and
covariance terms using a multivariate diagonal VECH-GARCH(1,1) model, with the
terms (h11, h12, h22, h13, h23, h33) of the form

hij ,t+1 = αij + βij hij ,t + γij εitεjt (41)
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The broad thrust of the results on US data 1959(1)–84(2) is

(i) The excess holding period yield on the three assets does depend on the time-
varying conditional covariances since λ = 0.499 (s.e. = 0.16).

(ii) Conditional variances and covariances are time varying and are adequately mod-
elled using the diagonal VECH-GARCH(1,1) model.

(iii) Persistence in conditional variance is greatest for bills, then for bonds and finally
for stocks (βii + γii equals 0.91, 0.62 and 0.55 respectively).

When the own variance from the GARCH equations is added to (40), it is statisti-
cally insignificant (as one would expect under the CAPM). However, the CAPM does
not provide a ‘complete’ explanation of excess HPRs since when the lagged excess
HPR for asset i is added to (40), it is found to be statistically highly significant – this
rejects the standard-CAPM.

Volatility in Spot-FX Markets

There has been an enormous amount of work in modelling time-varying volatility in
the spot-FX market using ARCH and GARCH models. Early work using univariate
models (e.g. Engle and Bollerslev 1986, Diebold 1988, Baillie and Bollerslev 1989,
Bollerslev, Chou and Kroner 1992) established strong ARCH effects using intraday,
daily and weekly data with much weaker effects at a monthly horizon and with ARCH
effects largely disappearing at horizons over one month. We discussed in Chapter 23
the role of multivariate GARCH models where conditional covariances affect expected
returns to foreign exchange speculation. These GARCH effects represent time-varying
risk premia. Although the persistence in volatility (and covariances) is established
in these models, the statistical significance of GARCH-in-mean effects (i.e. the risk
premium) is not particularly robust across alternative currencies and time periods.

Volatility Contagion

Prevalent in the literature, which looks at persistence in volatility, is the idea that news
or new information in one market can affect volatility in another market. This is tested
by including the error terms ε2

j,t−1 (for markets j = 1, 2, . . . m) dated at t − 1, in the
GARCH(1,1) equation for volatility in market i, hit (i �= j). Engle, Ito and Lin (1990)
and Ito, Engle and Lin (1992) use the analogy of a meteor shower versus a heat wave.
A hot day in New York may be followed by another hot day in New York but not
usually by a hot day in Tokyo – this is the idea of ‘news’ as a heat wave. Alternatively,
a meteor shower in New York will almost certainly be followed by a meteor shower
in Tokyo – that is, news in one market ‘spills over’ into other markets (after a short
lag). Using intraday data in the USD-Yen exchange rate, Engle Ito and Lin find that
news is like a meteor shower and moves across different markets as they open around
the world.
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29.4 Market Microstructure – FX Trading

A great deal of the empirical work on market microstructure has concentrated on the
foreign exchange market. In part, this is because of availability of high quality, high
frequency data. Until very recently, the FX market was highly ‘decentralised’. Unlike
centralised markets (e.g. London Stock Exchange LSE, New York Stock Exchange
NYSE) where trades are made public within minutes, in the FX market, many deals
take place over the telephone, telex or computer network between two (or more)
counterparties and are not made public. The participants are market makers, brokers
and customers. About 100 market makers worldwide (typically large banks) stand
ready to buy and sell currencies (i.e. ‘two-way price’) at indicative screen prices up
to certain limits (limit orders). The market maker receiving a telephone call quotes
bid-ask prices, and the spread enables the market maker to earn a profit on a round trip
trade. The average time span for the inventory cycles of a trader may be around 10–15
minutes, and inventory risk is a crucial determinant of FX spread quotations (Lyons
1995, 1996). Lyons (1998b) finds that a dealer might average around $100,000 in
profits per day on a volume of $1 billion. ‘Customers’ are non-dealers who may be in
other banks, central banks or pension and mutual funds (including hedge funds). While
market makers may trade on their own account, brokers do not and make money by
keeping a ‘book’ of the market makers’ limit orders for buying and selling, from which
they quote the inside spread (i.e. best bid and ask prices for a particular limit order).
Brokers charge a fee for bringing market makers together and preserve the anonymity
of the two sides to the trade.

Customer trades in the spot market are relatively small (e.g. around 5% in the US)
and direct inter-dealer trades comprise about 40% of transactions, with brokered inter-
dealer trades around 55% of all spot trades. Credit risk is an issue in these trades, and
dealers will have prudential credit exposure levels with counterparties, and this is why
most FX trades are inter-dealer. The two main inter-dealer broking systems are Reuters
Dealing 2002-2 and Electronic Broking Services (EBS)-Spot Dealing System. These
systems keep track of net credit lines with correspondent banks, so traders know deals
can go ahead at posted prices (although the counterparty is anonymous).

There has been an explosion of interest in the microstructure approach to analysing
the foreign exchange market in recent years. The novelty of this approach being that
it analyses the actual trading process in the market – focusing on factors such as order
flow and bid-ask spreads. The attractions of this approach in the case of FX markets
are three-fold. First, the growth of electronic trading in the inter-bank market means
that high-quality microstructure data is now becoming available, whereas the informal
telephone-based market made it very difficult to track the trading process. Second, the
failure of more traditional models to predict or even explain FX movements (within
sample) makes the attraction of a new approach obvious – applied economists used
to calling an R-squared of 4% a success when it came to modelling FX rates are
now staggered by an R-squared of 60% or more achieved by microstructure models
(though the extent to which these R-squared values reflect a true explanation of FX
movements is a moot point). Third, one of the puzzles of FX markets is the staggering
amount of order flow it generates and so the microstructure approach holds out the
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hope of explaining this, as well as the more traditional FX market puzzles such as the
forward premium.

The growth of electronic trading in the FX market means that – for the inter-bank
(inter-dealer) community at least – the market is almost unrecognisable compared to that
described as recently as 1999 by Richard Lyons (1999). Whereas the market used to be
decentralised and opaque in the sense that telephone transactions were private to the
counterparties involved and no firm bid-ask prices were available before transactions
took place, now almost all trading in the major currencies takes place through one of
two electronic trading systems (EBS and Reuters-2002). The electronic systems are
effectively order books where market participants can either post prices and quantities,
which they are prepared to trade (limit orders), or ‘hit’ an existing limit order (a market
order). As a result, participants in this market can see firm bid and ask prices on their
trading screen (pre-trade transparency) and can see what transactions have recently taken
place and at what price (post-trade transparency). Unfortunately, final customers are still
left in the dark as only the inter-dealer community is allowed access to these trading
screens. Thus, for corporate customers, institutional investors and even hedge funds, the
market remains opaque since they can only access indicative bid and ask prices (through
systems such as Reuters’ FXFX) and have to phone a dealer to transact.

In 2001 (BIS 2001), daily global turnover in FX was around $1.2 trillion, with
forward transactions (outright forwards and FX swaps) covering about 65% of trades.
The US dollar is involved in around 90% of all transactions worldwide as it provides
the vehicle currency for cross trades between other currencies. The German Mark (now
the Euro) is the second most used currency, followed by the Yen and then Sterling.
The UK market takes around 31% of all trades, followed by the United States (16%),
Japan (9%) and Singapore (6%). Market makers provide ‘double auction’ prices (i.e.
they quote bid and ask prices) but the brokered market is a ‘single auction’ market
(i.e. quotes for either buy or sell but not both).

Although total turnover has declined somewhat since the 1998 survey (mainly due
to the introduction of the Euro), it is still the case that trading activity in the FX market
dwarfs that in the other major markets (i.e. bonds and equities). This high turnover,
coupled with the failure of many traditional FX models to explain either movements
in or the high volatility of FX rates, has led many to wonder if the act of trading
itself explains most of the movements in FX rates (rather than the more traditional
view that assumes that trading is simply a conduit for new information). Research on
this idea has been the most eye-catching area of the FX microstructure literature. The
determination of the size of the bid-ask spread, market volume and volatility has been
examined in the light of the market microstructure in FX described above.

Bid-Ask Spread

A low degree of transparency facilitated by inter-dealer trades may help reduce bid-ask
spreads. This arises because a large customer order (to buy or sell) can be dissipated
across a number of (uninformed) dealers prior to any information revelation about the
large imbalances of the dealer that undertook the initial trade with the customer. Hence,
low transparency leads to a high level of inter-dealer inventory risk sharing (before
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any price impact is felt) and hence lower spreads. Hau, Killeen and Moore (2002)
believe that this mechanism applied in the first year after the introduction of the Euro
on 1 January 1999. The ‘removal’ of currencies increased information about currency
imbalances amongst Euro dealers, and the increased inventory risk (i.e. prices move
against you while holding the currency) led to a widening of spreads. For example, the
switch from the German Mark to the Euro led to an increase in mean spreads against
the USD from 3.76 to 5.26 b.p., against the Yen from 5.1 to 8.3 b.p. and against
Sterling from 3.1 to 9.2 b.p (compared to the ‘former’ spreads against the DM vehicle
currency, in the pre-Euro period). It is also well known from other microstructure
studies that spreads and the volume of trading are inversely related (Hau, Killeen and
Moore 2002 confirm this for the first year of the Euro), while spreads are proportional
to exchange rate volatility (Glosten and Milgrom 1985, Admati and Pfleiderer 1998)
and to forecasts of inventory price risk (Bessembinder 1994).

Order Flow

The empirical importance of order flow as a proximate determinant of very short-run
movements in exchange rates has been recently established (Lyons 1999, Evans and
Lyons 1999). ‘Order flow’ is the net value of buyer-initiated orders less seller-initiated
orders, and changes represent the net demand for a currency. One interpretation is
that ‘order flow’ captures both private and public information available to market
participants and so gives a better picture of how prices are updated. In essence, this
approach assumes that some traders are better informed than others, so the market
attempts to infer the private information available to these traders by monitoring and
responding to order flow. Evans and Lyons (1999) show that order flow is a significant
determinant of changes in a number of bilateral daily exchange rates (over periods
of 4 months or less), and their out-of-sample forecasts over short horizons beat the
random walk model. Lyons (1995) and Bessembinder (1994) establish a link between
(proxies for) increased inventory carrying costs and a widening of spreads.

29.5 Survey Data and Expectations
We examine the use of survey data in assessing whether changing expectations might
cause destabilising exchange rate movements. If one were to read the popular press,
then one would think that foreign exchange dealers were speculators, par excellence.
Young men in striped shirts, wearing ‘sharp-suits’, are frequently seen on television,
shouting simultaneously into two telephones in order to quickly execute buy and sell
orders for foreign currencies. The obvious question that arises is, are these individuals
purchasing and selling foreign exchange on the basis of news about fundamentals or do
they in fact ‘chase trends’? If it is the latter, the question then arises as to whether they
can have a pervasive influence on the price of foreign exchange. As we have seen, there
has been a large number of technically sophisticated tests of market efficiency using
FRU. However, there has been remarkably little work done on the techniques used by
actual foreign exchange dealers and whether these might cause movements in exchange
rates, which are not related to news about fundamentals. A useful representative study
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by Allen and Taylor (1989) looks at a particular small segment of the foreign exchange
market, and they undertake a survey of chartists’ behaviour. Chartists study only the
price movements in the market and base their view of the future solely on past price
changes. Chartists believe that they can recognise patterns in past price movements,
which can be used to predict future movements and hence generate profitable trading
strategies. This of course would not be the case in an efficient market.

Individual chartists use a variety of methods to predict future price changes. For
example, they might use moving averages of past prices to try to predict future prices.
They may have very high frequency graphs of, say, minute-by-minute price movements
and they attempt to infer systematic patterns in these graphs. Consider, for example, the
idealised pattern given in Figure 1, which is known as ‘the head and shoulders reversal
pattern’. On this graph is drawn a horizontal line called the shoulder. Once the pattern
reaches point D, that is, a peak below the neckline, the chartist would assume this
signals a full trend reversal. He would then sell the currency, believing that it would
fall in the future and he could buy it back at a lower price. As another example, consider
Figure 2, the so-called ‘symmetric triangle’ indicated by the oscillations converging
on the point at A. To some chartists, this would signal a future upward movement.
Figure 3 shows the short moving average of the price series crossing the longer moving
average from below at point A and this is taken as a ‘buy signal’ (with the opposite
case at point B).
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Clearly, the interpretation of such graphs is subjective. As a group to influence the
market, most chartists must interpret the charts in roughly the same way, otherwise
all the chartists would do would be to introduce some random noise into prices but
no trends. It is well known that chartists also use survey data on ‘market sentiment’.
For example, if ‘sentiment’ is reported to be optimistic about the European economy,
the chartists may well try to step in early and buy Euros – this could also lead to
bandwagon effects.

Modelling Expectations Formation

We need to examine the heterogeneity in forecasts of the exchange rate in order to get a
handle on whether such forecasts might be destabilising. Heterogeneity in expectations
can be tested using

Se
j,t − Se

A,t = gj + εj,t (42)

where Se
j,t is the individual’s expectation and Se

A,t is the cross-section average fore-
cast. Ito (1990) and Elliot and Ito (1999) find considerable heterogeneity (i.e. gj �= 0)

for Japanese-based exchange rate forecasts, and similar results for other currencies are
found by MacDonald and Marsh (1996).

Next, we need to examine what type of forecasting process agents use, since this
determines whether bandwagon effects apply or expectations are mean reverting. The
extrapolative model gives a bandwagon effect (for βj,h>0):

Se
j,t,h − St = αj,h + βj,h(St − St−1) + δj,hZt + εj,t,h (43)

where Se
j,t,h is the expected exchange rate for individual j at time t for horizon h (e.g.

3 months). Zt may contain additional variables (e.g. time trend, crisis dummies) and
there may be additional lags, St−k − St−k−1, in the equation.

The regressive model is

Se
j,t,h − St = αj,h + dj,h(St − St ) + δj,hZt + εj,t,h (44)

with 0 < dj,h < 1 and St is a measure of the equilibrium exchange rate, which could
be a moving average of past rates or based on economic fundamentals (e.g. PPP).
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The adaptive model is

Se
j,t,h − Se

j,t−h,h = αj,h + (1 + fj,h)(St − Se
j,t−h,h) + δj,hZt + εj,t,h (45)

where 0 < (1 + f ) < 1. ‘Random effects’ models allow the ‘slope’ and intercept coef-
ficients to vary across individuals, while the ‘fixed effects’ models impose equal slope
coefficients across individuals.

Bénassy–Quérér, Larribeau and MacDonald (2002) use data on around 35 forecast-
ers for three currencies (DM/$, Yen/$, £/$) for h = 3- and 12-month horizons where
participants are surveyed weekly over the period from January 1990 to December 1994.
It is found that most forecasters use extrapolative forecasts but there is heterogeneity
as the parameters βj,h differ across different forecasters, although they are all negative
and around −0.3 to −0.41 at the 3- and 12-month horizons. The latter implies that a
rise in the exchange rate is followed by an expectation of a fall next period, and this
result is generally found in earlier studies (Cavaglia, Verschoor and Wolff 1993a,b,
Prat and Uctum 1994). Some forecasters do use the regressive and adaptive models,
so there is also heterogeneity in the models used. Apart from establishing some prima
facie evidence for heterogeneity of models used and of different parameter estimates
(for the same model across different forecasters), it is impossible to gauge the economic
significance of such heterogeneity.

When all three models are (additively) subsumed in a single equation, this indi-
cates that some individuals use different models at the two different horizons (i.e. 3
and 12 months) and no single model dominates across all forecasters (although the
regressive model now has most adherents).

The data set on which the Allen–Taylor study is based was conducted on a small
panel of chartists (between 10 and 20 responded every week) over the period June
1988–March 1989. They were telephoned every Thursday and asked for their expec-
tations with respect to the sterling–dollar, dollar–mark and dollar–yen exchange rates
for one and four weeks ahead, yielding about 36 observations per chartist per currency.
The survey also asked the chartist about the kind of information they used in making
their forecasts and to whom the information was passed (e.g. actual traders).

It was found that at the shortest horizons, say, intraday to one week, as much
as 90% of the respondents used some chartist input in forming their exchange rate
expectations. As the time horizon lengthens to three months, six months or one year,
the weight given to fundamentals increases, and 85% of the respondents judged that
over these longer horizons, ‘fundamentals’ were more important than chart analysis.
However, chart analysis was always seen as complementary to the analysis based on
fundamentals and, therefore, it is possible that chart analysis influences exchange rates
even at these longer horizons.

If one looks ex-post at the accuracy of the chartists’ forecasts taken as a whole,
then, in general, Allen and Taylor find the following.

• There is a tendency for the forecasts to miss turning points. On a rising or falling
market, the chartists’ expectations underestimate the extent of the rise or fall.

• Prediction errors are noticeably greater at the four-week horizon than at the one-
week horizon. Individual chartist’s forecasts for four-week ahead predictions are
generally unbiased, but they are biased for the one-week ahead predictions.
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• For all the chartists taken as a whole, they correctly predict the change in the
exchange rate over one-week and four-week horizons approximately 50% of the
time. This is what one would accept if their forecasts were purely due to chance.

However, the above results for all chartists neglect the possibility that individual
chartists might in fact do well and do consistently well over time. In fact, there are
differences in forecasting accuracy among the chartists and there are some chartists
who are systematically ‘good’. However, one cannot read too much into the last result
since the time period of the survey is fairly short and in a random sample of individuals,
one would always expect that a certain percentage would do ‘better than average’.

Again taking chartists as a whole, Allen and Taylor assess whether they outperform
alternative methods of forecasting (e.g. forecasts based on the random walk, ARIMA or
a VAR model using exchange rates, the interest rate differential and the relative stock
market performance). The results here are mixed. However, few individual forecasters
(apart from forecaster ‘M’) beat the random walk model. In most cases, the ARIMA
and VAR forecasts were worse than predictions of ‘no change’ based on the random
walk, and most chartists failed to beat any of these statistical forecasting models.
However, overall there is not much in it. All of the statistical forecasting methods
and the chartists’ forecasts had approximately the same root mean squared errors for
one-week and four-week ahead forecasts with, on balance, the random walk probably
doing best. However, there were some chartists (e.g. chartist ‘M’) who consistently
outperformed all other forecasting methods.

Since Allen and Taylor have data on expectations, they can correlate changes in
expectations with changes in the actual exchange rate. We are particularly interested in
whether chartists have bandwagon expectations. That is to say, when the exchange rate
increases between t − 1 and t , does this lead all chartists to revise their expectations
upwards? Allen and Taylor tested this hypothesis but found that for all chartists as a
group, bandwagon expectations did not apply. Thus, chartist advice does not appear
to be intrinsically destabilising in that they do not overreact to recent changes in the
exchange rate. Allen and Taylor also investigate whether chartists have adaptive or
regressive expectations. These are essentially mean-reverting expectations, and there
were some chartists who approximated this behaviour. Overall, the results seem to
suggest there are agents in the market who make systematic forecasting errors, but
there appears to be no ‘bandwagon’ effect from this behaviour and, at most, chartists
might influence short-run deviations of the exchange rate from fundamentals.

The Allen–Taylor study did not examine whether chartists’ forecasts actually
resulted in profitable trades, they merely looked at the accuracy of chartists’ forecasts.
However, a number of studies have been done (Goodman 1979, 1980, Levich 1980,
Bilson 1981) that have looked at ex-post evaluations of forecasting services, some of
which were provided by technical analysts (e.g. chartists). A major finding of these
studies is that certain foreign exchange advisory services do consistently outperform
the forward rate as a predictor of the future spot rate.

Surveys of participants in other FX markets generally point to the use of techni-
cal analysis at shorter horizons, with fundamentals playing an increasing role as the
forecast horizon lengthens (e.g. Lui and Mole 1998 for Hong Kong-based FX dealers,
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Cheung and Wong (1999, 2000) for FX markets in Hong Kong, Tokyo and Singapore,
and Menkhoff (1998) for German FX dealers).

Overall, survey data on FX traders points to the heterogeneity of expectations with
little evidence of strong bandwagon effects, which would lead to major destabilising
movements in spot rates over short horizons. This evidence makes any interpretation
of observed short-run changes in spot rates even more perplexing (e.g. is it risk or
Peso effects or just unexplained non-linear responses?).

Surveys are clearly useful in establishing how far technical trading is applied in
various markets, while quantitative and qualitative survey data on expectations can be
used to gauge the applicability of the rational expectations assumption. However, such
evidence does not establish how important such factors are in price determination, but
they do underpin other models that assume different types of trader, learning and some
form of bounded rationality.

29.6 Technical Trading Rules

Filter rules are also used to predict exchange rates. A simple filter rule is to buy
the currency when it rises k% above its most recent trough and selling whenever the
currency falls k% below its most recent peak. If the market is efficient and UIP holds,
then the interest cost of implementing this strategy should just equal any profits made
on changes in the spot rate. Early studies (e.g. Dooley and Shafer 1983, Levich and
Thomas 1993) do indicate profitable trades using filter rules over days or weeks and
more recently Engel and Hamilton (1990) show that the USD over the 1970s and 1980s
exhibited long trend-like swings, which could be exploited using ‘trend following’ filter
rules. Of course, substantial losses could be incurred in various sub-periods and such
profits are not riskless. So, using daily or weekly data, there is evidence that technical
trading rules can be profitable in the spot-FX market even after transactions costs,
and it is difficult to see how this might be compensation for risk (e.g. Levich and
Thomas 1993, Neely, Weller and Dittmar 1997). However, the trading frequency in
these studies is around three to 26 trades per annum. But survey evidence (Allen and
Taylor 1990, Cheung and Chinn 2001) indicates that technical analysis is widely used
over very short horizons, that is, over a few days and mainly for intraday trades (where
technical traders aim to have a net open position of zero at the end of the day). So is
it possible to make profits (ideally corrected for risk) over very short horizons?

Goodhart and Curcio (1992) use analysts’ support and resistance levels published by
Reuters, while Curcio, Goodhart, Guillaume and Payne (1997) examine filter rules using
intraday data but do not find profitable opportunities. Olsen & Associates of Zurich claim
their proprietary (unpublished) trading models, using five-minute data, do earn profits.

A recent study by Neely and Weller (2003) uses spot FX bid-ask data sampled at
half-hourly intervals (to avoid microstructure problems such as bid-ask bounce, Lyons
2001) for four currencies against the dollar (i.e. GBP, DEM, JPY and CHF). One fore-
casting model uses a genetic algorithm based on (i) St/St , where S = moving average
over previous two weeks, (ii) difference in nearby futures prices (US minus foreign
contract) and (iii) time of day, although the last two are found to be uninformative. The
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cumulative excess return for a signal zt at time t over the period from t = 0 to T is

r =
T −1∑
t=0

zt rt + n ln(1 − 2c)

where zt = +1(−1) for a long (short) position at t, rt is the continuously compound
return from holding a long position in foreign currency from t to t + 1 and n = number
of trades from t = 0 to t = T . The constant c = one-way transactions cost (i.e. between
one and five basis points). The genetic algorithm is estimated (i.e. ‘trained’) and
‘selected’ over two data periods (ending at 31 May 1996) to yield the highest value
for r . The ‘outside-sample’ forecasting period is then from 1 June 1996 to 31 Decem-
ber 1996.

An alternative model used by Neely and Weller is a linear autoregressive process,
together with a filter rule. For example, if you have a long position at t − 1, then you
only switch to a short position at t if the model predicts a fall greater than the size of the
filter f (= 1, 2, . . . or 5 basis points). If the genetic algorithm is trained assuming zero
transactions costs, then the ‘outside-sample’ predictions generate significant returns
of over 100% per annum. But this involves trading about every hour and implies a
breakeven transactions cost of around one basis point for a one-way trade – but the
actual cost is around 2 to 2.5 basis points for large FX trades, hence the forecasting
algorithm does not make profits after transactions costs. When the genetic algorithm is
‘trained’ using c = 1 or 2 b.p., then trading frequency in the out-of-sample period falls
sharply and again trading is not profitable after transactions costs. Similar results are
found when using the autoregressive filter rule, partly because the genetic algorithm
works mainly due to the lagged exchange rates (and not the other two variables) and,
therefore, closely mimics the autoregressive model. The evidence above, therefore,
points to there being ‘no free lunches’ to FX trading over short horizons.

Data-Snooping Bias

Sullivan, Timmermann and White (1999) note that a number of studies find that techni-
cal trading rules earn profits and address the problem of whether this is due to ‘chance’
(data mining). Results reported in the literature tend to be only the ‘successful’ ones
and, hence, bias the results. The basic idea is to take account of the problem that the
size of a test, based on a search for the largest possible t-statistic for predictability, can
be very different from its nominal value. They use White’s (2000) ‘bootstrap snooper’,
which provides p-values for the ‘success’ of a particular trading rule, once the effects
of data mining have been accounted for. Broadly speaking, the data-snooping idea is
an attempt to get around a type of survivorship bias problem (i.e. in the journals, we
see a disproportionate number of articles that demonstrate predictability).

Sullivan, Timmermann and White (1999) examine technical trading rules (e.g. filter
rules, moving averages, support and resistance levels) applied to daily data on the Dow
Jones Industrial Average DJIA over the last 100-year period and for the S&P500 futures
contract over the 1984–96 period. They consider over 8000 variants of these trading rules.
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There is evidence that over the 1976 to 1986 period, certain trading rules outperformed
the benchmark portfolio (i.e. holding cash) even after adjustment for data snooping. But
the probability that the best-performing trading rules outperformed the benchmark over
the out-of-sample 1987 to 1996 period is only 12% and is not statistically significant using
standard critical values. Hence, the market appears to have become more efficient over the
last 10 years, possibly due to cheaper and faster information processing. (We discussed
data-snooping biases for calendar rules on stock returns in the chapter on anomalies.)

An idea of the difference made by considering data snooping is the result that for
the S&P500 futures index, superior performance (over holding cash) of a particular
trading rule of 10% p.a. for 1984 to 1996 has a p-value of 0.04 when considered in
isolation. But given that this trading rule is chosen from a large universe of possible
trading rules, its data-snooping p-value is actually 0.90. This is a powerful illustration
of the possible influence of data mining (and why you should read Sullivan et al if
you think you have discovered a statistically significant trading rule that you think will
make you millions of dollars).

29.7 Summary

• The past 10 years have seen exponential growth in the number of empirical studies
examining the conditional volatility (covariances) of asset returns using ARCH and
GARCH processes. Empirically, for US data, only a small part of the conditional
volatility in stock returns is explained by past volatility and the volatility in economic
fundamentals (e.g. output, gearing).

• There is considerable evidence that the conditional variance of stock and FX returns
(for intraday, daily, weekly and monthly horizons) are persistent. At longer return
horizons, GARCH effects are usually not found.

• The high degree of persistence in conditional volatility of stock returns implies that
observed movements in stock prices may be consistent with the RVF with a time-
varying risk premium. However, the impact of conditional variances on expected
market returns has been difficult to establish at all precisely using GARCH-in-mean
models. This applies a fortiori for the effect of conditional covariances on returns
(for subsets of the market portfolio).

• It is possible that noise traders as well as smart money influence the expected return
on an aggregate stock market index, and the impact of noise traders may depend on
whether we are in a ‘high’ or ‘low’ volatility regime.

• Using GARCH-in-mean models, there appears to be only very weak evidence of a
time-varying term premium on the HPR for short-term zero-coupon bonds (bills). As
the variability in the price of bills is in most periods smaller than that of long-term
bonds (or equities), this result is perhaps not too surprising. When the short-term bill
markets experience severe volatility (e.g. United States, 1979–1982), the evidence
of persistence in time-varying term premia and the impact of the conditional variance
on expected return is much stronger.
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• Holding-period returns on long-term bonds d. o seem to be influenced by time-varying
conditional variances and covariances, but the stability of such relationships is open
to question.

• While ARCH and GARCH models provide a useful statistical basis for modelling
time-varying second moments, the complexity of some of the parameterisations, par-
ticularly in multivariate models, is such that precise estimates are often not obtained
in empirical work.

• Market microstructure studies, particularly in FX markets, have demonstrated the
importance of order flow as a proximate determinant of changes in spot-FX rates
and inventory holdings as a key determinant of bid-ask spreads.

• Noise traders (chartists) probably do influence spot-FX rates over short horizons but
survey evidence suggests that chartists and other FX-forecasters are unlikely to form
expectations that lead to destabilising movements in the exchange rate. However,
since survey data cannot measure the ‘market influence’ of forecasters (i.e. how
much are their forecasts backed with ‘real money’), any inferences can at best be
qualitative.

• The evidence that technical trading rules applied to high frequency data (e.g. intra-
day, daily returns) in the stock and spot-FX markets yield excess returns (after
transactions costs and an adjustment for risk) does not seem particularly strong.
You have to look very hard to find such potentially profitable ‘strategies’, and the
repeated gambles are often subject to high transactions costs and high risk.
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