
Copyright © Graham Durant-Law 2003

1

Specifying a Knowledge Management System

Graham Durant-Law

graham@durantlaw.info

Abstract: This paper proposes a methodology to decompose organisation or
enterprise complexity so that all requirements for a knowledge management
system are considered. The technique builds upon soft system methodologies and
‘hard’ system engineering approaches. It begins with the assumption that
objectives or outcomes are achieved in an environment that produces or has
constraints. These constraints either restrict the availability of solutions or
restrict how solutions can be employed. The solutions are real things in the real
world, and perform tasks to achieve objectives.

Keywords: Knowledge System Design Methodology, user requirements, system
requirements.

Introduction

Aristotle can be credited with the idea of ‘the whole is greater than the sum of its parts,’
however contemporary systems thinking is credited to Ludwig von Bertalanffy (Blauberg et
al., 1973). A system is an organised complexity of components that together form a unitary
whole and whose interactions reduce local entropy (Hitchins, 2003). Systems can be hard or
soft, and open or closed. A hard system is clearly defined with tangible boundaries and
evident purpose. An example is a computer. A soft system is complex, poorly defined, with
intangible boundaries, and often without singular purpose (Hitchins, 2003). The Australian
Health System is an example of a soft system. A closed system is unable to interchange with
any other system. On the other hand an open system is free to interchange with other systems
(Hitchins, 2003).

A knowledge management system is inherently a soft open system with open boundaries.
This means that boundaries are permeable and difficult to position. What may be useful to
one person in one part of an organisation may be useless to someone else in another
department. Any knowledge management initiative must therefore establish clear achievable
goals that deliver benefits to the organisation, or a sub-set of the organisation, and take into
account user and stakeholder requirements. Furthermore it must bring together the three
essential components described in the literature – people, process and technology1.

1 See for example, (Cho et al., 2000); (Delong & Fahey, 2000); (Davenport & Prusak, 1998); (Kannegieter, 2001); (Soo et
al., 2001); and (Tiwana, 2002).

Specifying a Knowledge Management System

Copyright © Graham Durant-Law 2003 2

The key to success is that a knowledge management system must be useful and solve a
problem, or problems. This means that the road to success lies in careful planning, using a
systems of systems2 approach, and the generation of sound requirements for each sub-system
(Stevens et al., 1998). Indeed Standish Group studies have found that 21% of all project
failures can be attributed to incomplete or changing requirements, followed by lack of user
involvement, lack of resources, unrealistic expectations and lack of executive support
(Standish Group, 2000). All this points to the need to have a sound methodology that allows
the thorough development of system and user requirements, because requirements generate a
clear understanding of what actually has to be delivered. This is common sense, but common
sense is often circumvented when the process is difficult or complex. It is further
compounded because ‘there is no standard and generally agreed requirements engineering
process’ (Damain et al., 2003).

This paper proposes a methodology to decompose organisation or enterprise complexity so
that all requirements for a knowledge management system are considered. The paper begins
with a short discussion on requirements, then suggests a model, and finally uses a
hypothetical example to illustrate how requirements might be specified for a knowledge
management system.

Requirements

Requirements detail the attributes or specifications of a product or service, and are usually
divided into user requirements and system requirements. User requirements describe what
the user wants from a product or service, and are the start point for the system requirements.
For example a requirement from a user perspective for a software interface might be
something like ‘the user shall be able to create graphic links to another module even if the
other module is not visible’ (Stevens et al., 1998). One the other hand system requirements
describe in detail the features the product or service must provide, and allow each part of the
design to be tested. System requirements provide an abstract model of what the future system
must do. They differ from user requirements in that they talk about the end product, and not
just the results that are needed. Furthermore they must define how the system interfaces with
the other systems around it (Stevens, 2002).

The characteristics of a good requirement are as follows (Stevens, 2002):

• it expresses a single, or atomic, stipulation in a complete sentence that is clear and
unambiguous;

• conjunctions that make multiple requirements and let out clauses are avoided;

• the to be verb ‘shall’ is used consistently as the link between the subject and predicate;

• where the condition is less absolute, verbs such as ‘should’ are used;

2 The systems of systems approach recognises that systems come together to form meta-systems, which fulfil functions
greater than the coupled systems. It also recognises that systems rarely stand alone.

Specifying a Knowledge Management System

Copyright © Graham Durant-Law 2003 3

• where possible either the user or the result is clearly stated;

• it is modular and able to stand alone;

• it is not in conflict with other requirements; and

• it is verifiable, traceable, and feasible.

All this sounds simple, but in practice writing requirements for a soft system is difficult
(Vencel, 1999). This arises for at least two reasons. Firstly, soft systems have boundaries
that are difficult to define and involve uncertainty (Checkland, 1993b). Furthermore
requirements analysis uses a reductionist approach with the depth of analysis correlating with
the complexity of the problem. This approach assumes that a complex system can be
decomposed into small components, and that each of these components has a complete set of
specifications. It further assumes that by reassembling the components the complex system is
reformed (Vencel, 1999). However, the dynamic nature of a soft system means that the
relationships between different components and factors often change, which results in
increasing complexity and a changing end-state (Shehata & Bowen, 1999).

Secondly, reality often differs from intent, or intent may result in unforseen outcomes. For
example, a company may implement a knowledge management system. The intent may be
that it provides a forum to pose and respond to questions, and to browse and seek knowledge.
However, the reality might be that it is not used, because it is perceived as adding a step in an
already under-resourced area. Often these human factors are difficult to predict, and
consequently are completely overlooked in the requirements development process. This
human dimension is particularly important because people have different perceptions of the
world, meaning that a problem for one person is not seen as a problem to another (Shehata &
Bowen, 1999). This means that in developing the requirements for a knowledge management
system the views of all of the people in the organisation must be considered.

Given that 21% of all project failures can be attributed to incomplete or changing
requirements, and that in practice writing requirements for a soft system is difficult, it follows
that a disciplined approach and a sound methodology is required. The next section introduces
one model that might be used to develop the requirements for a knowledge system initiative.

The Knowledge System Design Model

The Knowledge System Design Model (KSDM) is a hybrid of HolisTech’s ™ Holistic
Systems and Development Model3, and is currently being used by the author to define the
requirements for, and build, a knowledge management system for the Australian Defence
Force Capability Systems Division. It is a hybrid model that builds upon soft system
methodologies and ‘hard’ system engineering approaches4.

3 Patrick Byrne holds the copyright on the Holistic Systems and Development Model, which is the subject of a partially
complete systems engineering PhD thesis. The Holistic Systems and Development Model was most recently used by Patrick
and the author to analyse and propose changes to the RAN regulatory framework in 2002.

4 See for example (Braithwaite et al., 2002; Checkland, 1993a, 1993b; Rosenhead, 1993; Shehata & Bowen, 1999; Sparks,
1997; Staker, 2000, 2003; Stevens et al., 1998)

Specifying a Knowledge Management System

Copyright © Graham Durant-Law 2003 4

The KSDM is a disciplined methodology that utilises a very robust requirements development
process, which at its completion defines a comprehensive solution set. Importantly it brings
together people, process and technology, and facilitates the development of an architecture
from a conceptual system statement through objectives, into the real cost drivers of any
system, the solution space. It also provides auditable traceability from organisational goals
and objectives to be achieved in selected environments, to the actual objects or artefacts in the
real world that produce the required outputs.

The KSDM builds on the assumption that objectives or outcomes are achieved in an
environment that produces or has constraints. These constraints either restrict the availability
of solutions or restrict how solutions can be employed. The solutions are real thing in the
real world, and perform tasks to achieve objectives. By dealing with real things in the real
world complexity is immediately reduced. The KSDM is illustrated at Figure 1 and discussed
below. Whilst the KSDM is shown as a cycle with a start and end point in practice it is an
iterative process, with each space being examined many times as requirements in other spaces
become apparent.

Figure 1: Knowledge System Design Methodology

System Statement
The system statement comprises top-level user requirements that provide the initial guidance
to the development process, and set the scene for the development of processes within the
system, and between other systems. It has three mandatory parts and an option fourth
component. The first part is a broad statement of intent on what the system should achieve.
The second part outlines some of the broad characteristics expected in that system. The third
part is a statement of achievement, which provides some broad guidance on potential system
components and processes, and the end state for the system. The optional component is a
benchmark statement that directs the system architect to a tried and proven system in a
comparable organisation.

Specifying a Knowledge Management System

Copyright © Graham Durant-Law 2003 5

Objectives
The objectives space provides a list of the outcomes expected from the implementation of the
system. These may be articulated in the first instance by a series of identified problems, in
which case the objectives are to solve those problems. It is also preferable that measures of
effectiveness, the metric associated with objectives, are included for each objective. A
measure of effectiveness is a metric that answers the question ‘at what point will the objective
be considered to be accomplished or satisfied?’ Objectives start to define the processes that
are likely to be internal to the system.

Soft systems methodology tools such as mind-maps are useful to determine the top level
objectives, and to provide a framework for future decomposition. Figure 2 shows an example
of the first-cut of objectives captured using mind-mapping. Note that these objectives have
not yet been expressed as requirements.

Figure 2: Mind-mapping Objectives5

Environment
No real-world system ever operates independently (Stevens et al., 1998). The environment
space identifies the environment within which the system must operate, including the
interfaces with other systems, and the positioning of the system boundary. Too often this step
is done poorly. The product from this analysis is the interface control document. This
document defines all the interactions between the systems, and provides a description of the
organisational culture within which the system has to operate. For example it will specify
whether or not the system is expected to operate in a dispersed or fragmented environment.
Simple diagrams such as the one shown Figure 3 at enhance clarity.

5 This diagram was developed by the author in a workshop that examined the objectives for a future RAN regulatory system.

Specifying a Knowledge Management System

Copyright © Graham Durant-Law 2003 6

Figure 3: An Environment Diagram6

Constraints
The constraints space details any restrictions on the system that can be identified, including
how it should satisfy objectives. These restrictions may include statutory occupational health
and safety requirements, corporate policy requirements, security issues, or environmental
hazards that may influence the final design of the system. Constraints are normally, but not
exclusively, expressed as non-functional requirements.

Solutions
The solutions space is made up of components from the mnemonic PISHI7, which stands for
people, infrastructure, software, hardware, and information. This classification represents real
thing in the real world, and each of these things is linked together by processes so that an
output is realised to meet an objective. By dealing with real things in the real world
complexity is immediately reduced. Each of these things does tasks that meet or achieve the
objectives. Clearly this space captures all the necessary components of a knowledge
management system – people, process and technology.

The ability to write solid atomic requirements for solutions depends upon which component is
being addressed. For example writing requirements for hardware components is conceptually
easy because conventional systems engineering methodologies can be applied. Similarly
infrastructure requirements are relatively easy to define. However, the people, information
and software components are much more difficult. Again this where soft systems
methodologies should be applied to elicit as many requirements up front as possible. In

6 This diagram was developed by the author in a workshop that examined the operating environment for a future ADF health
capability.

7 The construct of PISHI has been derived from an incomplete systems engineering PhD thesis by Patrick Byrne, which I
have refined and adapted to fit into the Knowledge System Design Methodology.

Specifying a Knowledge Management System

Copyright © Graham Durant-Law 2003 7

practice the solution space will be visited many times as requirements in other spaces become
apparent.

Tasks
The task space identifies all those functional options of achieving each objective or output. In
other words, this space is populated with the answer to the question ‘what does the system
have to do to achieve the objectives or outputs?’ There may be more than one functional
option to achieve any particular objective.’ Tasks also help to define the processes that are
likely to be internal to the system.

A Hypothetical Example

This section uses the methodology outlined above to elicit the high-level requirements for a
knowledge management system. In so doing it gives a snapshot of how the KSDM might be
used. The example uses real world organisations, but is hypothetical in that a knowledge
management system has not yet been built. Furthermore whilst the methodology is discussed
in a linear way in practice the process is iterative, and produces many thousands of
requirements.

Situation
The Defence Health Capability Directorate (DHCD) desires a knowledge management system
so that future equipment acquisitions, doctrine developments and organisational change, are
better informed. DHCD aims to ‘achieve a world class military health service for the ADF by
fully harnessing the intellectual capital of the Defence Health Service and its customers8.’ In
particular it wants to harness the collective ideas, wisdom, and intellectual capacity of all
health specialists in the Reserve Force Consultative Groups (RFCGs). The knowledge in
these consultative groups is particularly important because these groups house a number of
pre-eminent medical specialists, with significant day to day clinical experience.

System Statement
The process begins with management defining in broad terms a systems requirement. The
statement must have a broad statement of intent, an outline of some of the expected
characteristics, and a statement of achievement. It is desirable that it has a benchmark
statement. The system statement requirements would read something like those shown in
Table 1.

8 The vision statement and the business objective were accessed from the Defence Health Service Branch intranet webpage.
(http://defweb2.cbr.defence.gov.au/dpehs)

Specifying a Knowledge Management System

Copyright © Graham Durant-Law 2003 8

Serial Defence Health Capability Directorate Knowledge Management System -
System Statement Requirements

Type

1 The system shall link the Defence Health Capability Directorate and the Reserve
Force Consultative Groups.

Intent

2 The system shall allow users to capture data so that future equipment acquisitions
are better informed.

Achievement

3 The system shall allow users to capture data so that future doctrine developments
are better informed.

Achievement

4 The system shall allow users to capture data so that future organisational changes
are better informed.

Achievement

5 The system shall allow users to exchange data by providing a common information
environment.

Characteristic

6 If existing software cannot be used commercial off the shelf software should be
used in preference to purpose built products.

Characteristic

7 The system should have many of the characteristics of the RAAF Aircraft Research
and Development Unit9.

Benchmark

Table 1: System Statement Requirements

Objectives
The next step is to map the high-level objectives. This step will require involvement from
throughout the organisation if it is to be successful. Rich pictures and mind-maps are useful
tools to capture multiple perspectives during this analysis. Typically the analysis will
produce requirements like those shown in Table 2.

Serial Defence Health Capability Directorate Knowledge Management System -
Objective Requirements

Type

1 The system shall provide central repositories of information for all organisations
involved in the business process.

Objective

2 The system shall facilitate the use of digitised explicit knowledge. Objective

3 The system should facilitate the use of non-digital explicit knowledge. Objective

4 The system should provide on-line collaboration tools. Objective

5 The system should provide agents to search academic databases like Medline. Objective

Table 2: Objective Requirements

9 See (Crompton & Murchland, 2002)

Specifying a Knowledge Management System

Copyright © Graham Durant-Law 2003 9

Environment
The next step is to consider the environment, including the organisation culture that the
system has to operate in. In this example the analysis might produce a diagram like the one
shown at Figure 4, and requirements like those shown in Table 3.

Figure 4: Environmental Boundary and Systems Interfaces

Serial Defence Health Capability Directorate Knowledge Management System –
Environment Requirements

Type

1 The system shall access information sources internal to the Defence Information
Environment.

Environment

2 The system shall access information sources external to the Defence Information
Environment.

Environment

3 The system should interface with Joint Project 2060. Environment

4 The system should interface with national tele-health initiatives. Environment

5 The system should interface with allied armies knowledge networks. Environment

Table 3: Environment Requirements

Specifying a Knowledge Management System

Copyright © Graham Durant-Law 2003 10

Constraints
The next step is to consider the constraints that arise from the environment, objective and
system statement analysis. Typically it will produce requirements like those shown in Table
4.

Serial Defence Health Capability Directorate Knowledge Management System –
Constraint Requirements

Type

1 The system shall prevent unauthorised users accessing the network. People
Constraint

2 The system shall operate on the Defence Restricted Network. Infrastructure
Constraint

3 The system should separate day to day business from the knowledge system
activities.

Software
Constraint

4 The system shall conform to Defence military standards for hardware. Hardware
Constraint

5 The system shall prevent information that should not leave the defence network
from permeating the system boundary.

Information
Constraint

Table 4: Constraint Requirements

Solutions
In practice the solutions space will be visited many times as requirements in other spaces
become apparent. This will inevitably produce many thousands of requirements; hence
diagrams should be used liberally to provide clarity. In this example a diagram like the one
shown at Table 5 might be used. Note that all the elements of the mnemonic PISHI are
represented. This analysis will typically produce requirements like those shown in Table 5.

Figure 5: High-level Solution Diagram

Specifying a Knowledge Management System

Copyright © Graham Durant-Law 2003 11

Serial Defence Health Capability Directorate Knowledge Management System -
Solution Requirements

Type

1 The system shall provide a human moderator to ensure that the aggregation of
unclassified data does not become classified information.

People
Solution

2 The system shall provide meeting rooms equipped with teleconference facilities in
each state.

Infrastructure
Solution

3 The system shall provide a knowledge warehouse using the Autonomy10 software
suite.

Software
Solution

4 The system shall use networked personal computers. Hardware
Solution

5 The system shall point to non-digital explicit information. Information
Solution

Table 5: Solution Requirements

Tasks
The final step is to consider all the tasks that arise from the system statement, objective,
environment, constraint and solution analysis. In practice this step is done concurrently with
the others, and is constantly revisited. Typically it will produce requirements like those
shown in Table 6.

Serial Defence Health Capability Directorate Knowledge Management System -
Task Requirements

Type

1 The system shall filter data to confirm it is relevant. Task

2 The system shall present information in a form that can be used by all users. Task

3 The system shall retrieve data from the knowledge warehouse. Task

4 The system shall index digital data. Task

5 The system shall correlate data to establish relationships. Task

Table 6: Task Requirements

10 Autonomy operates from a series of portals or windows that contain an application to do a variety of functions, including
automated retrieval of information, real-time analysis of the ideas involved in the content of any opened application, alert
capabilities, and automatic indexing. It has been extensively tested by the Defence Science and Technology Organisation.
((Alvino, 2003))

Specifying a Knowledge Management System

Copyright © Graham Durant-Law 2003 12

Conclusion

Knowledge management systems are inherently soft open systems with permeable
boundaries. Their open soft nature makes them susceptible to failure because of unrealistic
expectations resulting from poorly expressed, incomplete, or changing requirements. The
foregoing discussion has presented a model that allows the development of requirements for a
knowledge management system to be developed in a holistic and disciplined way, thereby
reducing the need to develop or modify requirements on the fly.

The model builds upon soft system methodologies and ‘hard’ system engineering approaches,
and is based on the assumption that objectives or outcomes are achieved in an environment
that produces or has constraints. These constraints either restrict the availability of solutions
or restrict how solutions can be employed. The solutions are real things in the real world,
and include people, infrastructure, software, hardware and information. All of these solutions
perform tasks to achieve or meet defined objectives.

The model examines the system from a conceptual system statement through objectives, into
the real cost drivers of any system, the solution space. The ability to write solid atomic
requirements for solutions depends upon which component is being addressed. For example
writing requirements for hardware components is conceptually easy because conventional
systems engineering methodologies can be applied. Similarly infrastructure requirements are
relatively easy to define. However, the people, information and software components are
much more difficult. Again this where soft systems methodologies should be applied to elicit
as many requirements up front as possible. That said by following the model in a disciplined
way one is more likely to consider all of the components of a knowledge system and write
precise atomic requirements. Research shows that the likelihood of success will increase by
at least 21% simply by examining and preparing requirements more thoroughly (Standish
Group, 2000). Clear requirements will allow management to understand and cost the
initiative, thereby reducing unrealistic expectations and increasing the chances of success.

References
Alvino, L. (2003). An overview of autonomy. Adelaide: Defence Science and Technology Organisation.

Blauberg, I., Sadovsky, V., & Yudin, E. (1973). Some problems of general systems development. In W. Grey &
N. Rizzo (Eds.), Unity through diversity: A festschrift for ludwig von bertalanffy. New York: Gordon
and Breach.

Braithwaite, J., Hindle, D., Ledema, R., & Westbrook, J. (2002). Introducing soft systems methodology plus
(ssm+): Why we need it and what it can contribute. Australian Health Review, 25(2), 191-199.

Checkland, P. (1993a). An application of soft systems methodology. In J. Rosenhead (Ed.), Rational analysis
for a problematic world: Problem structuring methods for complexity, uncertainty and conflict (pp.
101-120). Chichester: John Wiley and Sons.

Checkland, P. (1993b). Soft systems methodology. In J. Rosenhead (Ed.), Rational analysis for a problematic
world: Problem structuring methods for complexity, uncertainty and conflict (pp. 71-120). Chichester:
John Wiley and Sons.

Cho, G., Jerrell, H., & Landay, W. (2000). Know the way: How knowledge management can improve dod
acquisition. Fort Belvoir: Defense Systems Management College.

Specifying a Knowledge Management System

Copyright © Graham Durant-Law 2003 13

Crompton, R., & Murchland, P. (2002). Best practice in community building and information discovery.
Retrieved 5 March 2003, 2003

Damain, D., Jonker, C., Treur, J., & Wijngaards, N. (2003). A formal knowledge level process model of
requirements engineering. University of Calgary, Calgary.

Davenport, T. H., & Prusak, L. (1998). Working knowledge: How organisations manage what they know.
Boston: Harvard Business School Press.

Delong, D. W., & Fahey, L. (2000). Diagnosing cultural barriers to knowledge management. Academy of
Management Executive, 14(4), 113-127.

Hitchins, D. (2003). Putting systems to work. 2003

Kannegieter, T. (2001). Knowledge management: A framework for succeeding in the knowledge era. Sydney:
Standards Australia International Limited.

Rosenhead, J. (Ed.). (1993). Rational analysis for a problematic world: Problem structuring methods for
complexity, uncertainty and conflict. Chichester: John Wiley and Sons.

Shehata, M., & Bowen, S. (1999). Soft systems methodology. University of Calgary, Calgary.

Soo, C., Devinney, T., Midgley, D., Deering, A., & Kearney, A. (2001). Knowledge management: Philosophy,
process, pitfalls, and performance. 2003

Sparks, J. N. (1997). Soft operational research techniques for the acquisition and management of logistics.
Canberra: Department of Defence.

Staker, J. (2000). Knowledge based soft systems engineering for military systems of systems. Paper presented at
the SETE 2000.

Staker, J. (2003). Towards a knowledge based soft systems engineering method for systems of systems. Paper
presented at the Joint Systems Branch Conference, Salisbury.

Standish Group. (2000). What are your requirements?

Stevens, R. (2002). Get it right the first time: Writing better requirements. Oxford: Telelogic DOORS UK.

Stevens, R., Jackson, K., Brook, P., & Arnold, S. (1998). Systems engineering: Coping with complexity.
London: Prentice Hall.

Tiwana, A. (2002). The knowledge management toolkit: Orchestrating it, strategy, and knowledge platforms.
Upper Saddle River: Prentice Hall.

Vencel, L. (1999). Why is defining requirements so hard? Paper presented at the SETE 99.

