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PREFACE

Although there are many textbooks on statistics, they usually contain only
a cursory discussion of regression analysis and seldom cover various gen-
eralizations of the classical regression model important in econometrics
and other social science applications. Moreover, in most of these textbooks
the selection of topics is far from ideal from an econometrician’s point of
view. At the same time, there are many textbooks on econometrics, but
either they do not include statistics proper, or they give it a superficial
treatment. The present book is aimed at filling that gap.

Chapters 1 through 9 cover probability and statistics and can be taught
in a semester course for advanced undergraduates or firstyear graduate
students. My own course on this material has been taken by both under-
graduate and graduate students in economics, statistics, and other social
science disciplines. The prerequisites are one year of calculus and an
ability to think mathematically.

In these chapters I emphasize certain topics which are important in
econometrics but which are often overlooked by statistics textbooks at this
level. Examples are best prediction and best linear prediction, conditional
density of the form f(x | x < y), the joint distribution of a continuous and
a discrete random variable, large sample theory, and the properties of the
maximum likelihood estimator. I discuss these topics without undue use
of mathematics and with many illustrative examples and diagrams. In
addition, many exercises are given at the end of each chapter (except
Chapters 1 and 13). I devote a lot of space to these and other fundamental
concepts because I believe that it is far better for a student to have a solid
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knowledge of the basic facts about random variables than to have a su-
perficial knowledge of the latest techniques.

I also believe that students should be trained to question the validity
and reasonableness of conventional statistical techniques. Therefore, I
give a thorough analysis of the problem of choosing estimators, including
a comparison of various criteria for ranking estimators. I also present a
critical evaluation of the classical method of hypothesis testing, especially
in the realistic case of testing a composite null against a composite alter-
native. In discussing these issues as well as other problematic areas of
classical statistics, I frequently have recourse to Bayesian statistics. I do so
not because I believe it is superior (in fact, this book is written mainly
from the classical point of view) but because it provides a pedagogically
useful framework for consideration of many fundamental issues in statis-
tical inference.

Chapter 10 presents the bivariate classical regression model in the
conventional summation notation. Chapter 11 is a brief introduction to
matrix analysis. By studying it in earnest, the reader should be able to
understand Chapters 12 and 13 as well as the brief sections in Chapters 5
and 9 that use matrix notation. Chapter 12 gives the multiple classical
regression mode] in matrix notation. In Chapters 10 and 12 the concepts
and the methods studied in Chapters 1 through 9 in the framework of the
i.i.d. (independent and identically distributed) sample are extended to the
regression model. Finally, in Chapter 13, I discuss various generalizations
of the classical regression model (Sections 13.1 through 13.4) and certain
other statistical models extensively used in econometrics and other social
science applications (13.5 through 13.7). The first part of the chapter is
a quick overview of the topics. The second part, which discusses qualitative
response models, censored and truncated regression models, and dura-
tion models, is a more extensive introduction to these important subjects.

Chapters 10 through 13 can be taught in the semester after the semester
that covers Chapters 1 through 9. Under this plan, the material in Sections
13.1 through 13.4 needs to be supplemented by additional readings.
Alternatively, for students with less background, Chapters 1 through 12
may be taught in a year, and Chapter 13 studied independently. At Stan-
ford about half of the students who finish a yearlong course in statistics
and econometrics go on to take a year’s course in advanced econometrics,
for which I use my Advanced Econometrics (Harvard University Press, 1985).
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It is expected that those who complete the present textbook will be able
to understand my advanced textbook.

I am grateful to Gene Savin, Peter Robinson, and James Powell, who
read all or part of the manuscript and gave me valuable comments. I am
also indebted to my students Fumihiro Goto and Dongseok Kim for care-
fully checking the entire manuscript for typographical and more substan-
tial errors. I alone, however, take responsibility for the remaining errors.
Dongseok Kim also prepared all the figures in the book. I also thank
Michael Aronson, general editor at Harvard University Press, for constant
encouragement and guidance, and Elizabeth Gretz and Vivian Wheeler
for carefully checking the manuscript and suggesting numerous stylistic
changes that considerably enhanced its readability.

I dedicate this book to my wife, Yoshiko, who for over twenty years has
made a steadfast effort to bridge the gap between two cultures. Her work,
though perhaps not conspicuous in the short run, will, I am sure, have a
long-lasting effect.
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‘I INTRODUCTION

1.1 WHAT IS PROBABILITY?

As a common word in everyday usage, probability expresses a degree of
belief a person has about an event or statement by a number between zero
and one. Probability also has a philosophical meaning, which will not be
discussed here. The two major schools of statistical inference—the
Bayesian and the classical—hold two different interpretations of prob-
ability. The Bayesian (after Thomas Bayes, an eighteenth-century English
clergyman and probabilist) interpretation of probability is essentially that
of everyday usage. The classical school refers to an approach that origi-
nated at the beginning of the twentieth century under the leadership of
R. A, Fisher and is still prevalent. The classical statistician uses the word
probability only for an event which can be repeated, and interprets it as the
limit of the empirical frequency of the event as the number of repetitions
increases indefinitely. For example, suppose we toss a coin 7 times, and a
head comes up r times. The classical statistician interprets the probability
of heads as a limit (in the sense that will be defined later) of the empirical
frequency 7/n as n goes to infinity. Because a coin cannot be tossed
infinitely many times, we will never know this probability exactly and can
only guess (or estimate) it.

To consider the difference between the two interpretations, examine
the following three events or statements:

(1) A head comes up when we toss a particular coin.

(2) Atlantis, described by Plato, actually existed.
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(3) The probability of obtaining heads when we toss a particular
coin is Y.

A Bayesian can talk about the probability of any one of these events or
statements; a classical statistician can do so only for the event (1), because
only (1) is concerned with a repeatable event. Note that (1) is sometimes
true and sometimes false as it is repeatedly observed, whereas statement
(2) or (3) is either true or false as it deals with a particular thing—one of
a kind. It may be argued that a frequency interpretation of (2) is possible
to the extent that some of Plato’s assertions have been proved true by a
later study and some false. But in that case we are considering any asser-
tion of Plato’s, rather than the particular one regarding Atlantis.

As we shall see in later chapters, these two interpretations of probability
lead to two different methods of statistical inference. Although in this
book I present mainly the classical method, I will present Bayesian method
whenever I believe it offers more attractive solutions. The two methods
are complementary, and different situations call for different methods.

1.2 WHAT IS STATISTICS?

In our everyday life we must continuously make decisions in the face of
uncertainty, and in making decisions it is useful for us to know the prob-
ability of certain events. For example, before deciding to gamble, we would
want to know the probability of winning. We want to know the probability
of rain when we decide whether or not to take an umbrella in the morn-
ing. In determining the discount rate, the Federal Reserve Board needs
to assess the probabilistic impact of a change in the rate on the unemploy-
ment rate and on inflation. It is advisable to determine these probabilities
in a reasonable way; otherwise we will lose in the long run, although in
the short run we may be lucky and avoid the consequences of a haphazard
decision. A reasonable way to determine a probability should take into
account the past record of an event in question or, whenever possible, the
results of a deliberate experiment.

We are ready for our first working definition of statistics: Statistics is the
science of assigning a probability to an event on the basis of experiments.

Consider estimating the probability of heads by tossing a particular coin
many times. Most people will think it reasonable to use the ratio of heads
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over tosses as an estimate. In statistics we study whether it is indeed
reasonable and, if so, in what sense.

Tossing a coin with the probability of heads equal to p is identical to
choosing a ball at random from a box that contains two types of balls, one
of which corresponds to heads and the other to tails, with p being the
proportion of heads balls. The statistician regards every event whose
outcome is unknown to be like drawing a ball at random from a box that
contains various types of balls in certain proportions.

For example, consider the question of whether or not cigarette smoking
is associated with lung cancer. First, we need to paraphrase the question
to make it more readily accessible to statistical analysis. One way is to ask,
What is the probability that a person who smokes more than ten cigarettes
a day will contract lung cancer? (This may not be the optimal way, but we
choose it for the sake of illustration.) To apply the box-ball analogy to this
example, we should imagine a box that contains balls, corresponding to
cigarette smokers; some of the balls have lung cancer marked on them
and the rest do not. Drawing a ball at random corresponds to choosing a
cigarette smoker at random and observing him until he dies to see
whether or not he contracts lung cancer. (Such an experiment would be
a costly one. If we asked a related but different question—what is the
probability that a man who died of lung cancer was a cigarette smoker’—
the experiment would be simpler.)

This example differs from the example of coin tossing in that in coin
tossing we create our own sample, whereas in this example it is as though
God (or a god) has tossed a coin and we simply observe the outcome.
This is not an essential difference. Its only significance is that we can toss
a coin as many times as we wish, whereas in the present example the
statistician must work with whatever sample God has provided. In the
physical sciences we are often able to conduct our own experiments, but
in economics or other behavioral sciences we must often work with a
limited sample, which may require specific tools of analysis.

A statistician looks at the world as full of balls that have been drawn by
God and examines the balls in order to estimate the characteristics (“pro-
portion”) of boxes from which the balls have been drawn. This mode of
thinking is indispensable for a statistician. Thus we state a second working
definition of statistics: Statistics is the science of observing data and making
inferences about the characteristics of a random mechanism that has generated the
data.
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Coin tossing is an example of a random mechanism whose outcomes
are objects called heads and tails. In order to facilitate mathematical
analysis, the statistician assigns numbers to objects: for example, 1 to heads
and 0 to tails. A random mechanism whose outcomes are real numbers is
called a random variable. The random mechanism whose outcome is the
height (measured in feet) of a Stanford student is another random vari-
able. The first is called a discrete random variable, and the second, a continu-
ous random variable (assuming hypothetically that height can be measured
to an infinite degree of accuracy). A discrete random variable is charac-
terized by the probabilities of the outcomes. The characteristics of a
continuous random variable are captured by a density function, which is
defined in such a way that the probability of any interval is equal to the
area under the density function over that interval. We use the term prob-
ability distribution as a broader concept which refers to either a set of
discrete probabilities or a density function. Now we can compose a third
and final definition: Statistics is the science of estimating the probability distri-
bution of a random variable on the basis of repeated observations drawn from the
same random variable.



2 PROBABILITY

2.1 INTRODUCTION

In this chapter we shall define probability mathematically and learn how
to calculate the probability of a complex event when the probabilities of
simple events are given. For example, what is the probability that a head
comes up twice in a row when we toss an unbiased coin? We shall learn
that the answer is %. As a more complicated example, what is the prob-
ability that a student will be accepted by at least one graduate school if
she applies to ten schools for each of which the probability of acceptance
is 0.1? The answer is 1 — 0.9'° = 0.65. (The answer is derived under the
assumption that the ten schools make independent decisions.) Or what is
the probability a person will win a game in tennis if the probability of his
winning a point is p? The answer is

PHL+ 41 — p) + 1001 — p)? + 20p(1 — p)%/[1 — 2p(1 — P}

For example, if p = 0.51, the formula gives 0.525.

In these calculations we have not engaged in any statistical inference.
Probability is a subject which can be studied independently of statistics; it
forms the foundation of statistics.

2.2 AXIOMS OF PROBABILITY

Definitions of a few commonly used terms follow. These terms inevitably
remain vague untl they are illustrated; see Examples 2.2.1 and 2.2.2.
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Sample space. The set of all the possible outcomes of an experiment.
Event. A subset of the sample space.
Simple event. An event which cannot be a union of other events.

Composite event. An event which is not a simple event.

EXAMPLE 2.2.1

Experiment: Tossing a coin twice.
Sample space: {HH, HT, TH, TT}.

The event that a head occurs at least once: HH U HT U TH.

EXAMPLE 2.2.2

Experiment: Reading the temperature (F) at Stanford at noon on
October 1.

Sample space: Real interval (0, 100).
Events of interest are intervals contained in the above interval.

A probability is a nonnegative number we assign to every event. The
axioms of probability are the rules we agree to follow when we assign
probabilities.

Axioms of Probability
(1) P(A) = 0 for any event A.
(2) P(S) =1, where S is the sample space.

(8) If{A},i=1,2,...,are mutually exclusive (thatis, A; N A4; = &
for all ¢ # j), then P(A4; U Ao U ...) = P(4;) + P(4y) +....

The first two rules are reasonable and consistent with the everyday use
of the word probability. The third rule is consistent with the frequency
interpretation of probability, for relative frequency follows the same rule.
If, at the roll of a die, A is the event that the die shows 1 and B the event
that it shows 2, the relative frequency of A U B (either 1 or 2) is clearly
the sum of the relative frequencies of A and B. We want probability to
follow the same rule.
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When the sample space is discrete, as in Example 2.2.1, it is possible to
assign probability to every event (that is, every possible subset of the
sample space) in a way which is consistent with the probability axioms.
When the sample space is continuous, however, as in Example 2.2.2, it is
not possible to do so. In such a case we restrict our attention to a smaller
class of events to which we can assign probabilities in a manner consistent
with the axioms. For example, the class of all the intervals contained in
(0, 100) and their unions satisfies the condition. In the subsequent discus-
sion we shall implicitly be dealing with such a class. The reader who wishes
to study this problem is advised to consult a book on the theory of
probability, such as Chung (1974).

2.3 COUNTING TECHNIQUES

2.3.1 Simple Events with Equal Probabilities

Axiom (3) suggests that often the easiest way to calculate the probability
of a composite event is to sum the probabilities of all the simple events
that constitute it. The calculation is especially easy when the sample space
consists of a finite number of simple events with equal probabilities, a
situation which often occurs in practice. Let n(A) be the number of the
simple events contained in subset A of the sample space S. Then we have

n(A)

P(A) = sy

Two examples of this rule follow.

EXAMPLE 2.3.1 What is the probability that an even number will show
in a roll of a fair die?

We have n(S) = 6; A = {2, 4, 6} and hence n(A) = 3. Therefore, P(A) =
0.5.

EXAMPLE 2.3.2 A pair of fair dice are rolled once. Compute the prob-
ability that the sum of the two numbers is equal to each of the integers 2
through 12.

Let the ordered pair (z, j) represent the event that : shows on the first
die and j on the second. Then § = {(z, j)] ,j=12,...,6)}, so that n(S)
= 36. We have



8 2 | Probability

n@@+j=2)=nl(11] =1,
n(i+j7=13) =n[(1,2), (2, D] =2,
n(@+j=4) =nl(1,3), 3, 1), (2,2)] =3,

and so on. See Exercise 2.

2.3.2 Permutations and Combinations

The formulae for the numbers of permutations and combinations are
useful for counting the number of simple events in many practical prob-
lems.

DEFINITION 2.3.1 The number of permutations of taking r elements from
n elements is the number of distinct ordered sets consisting of r distinct
elements which can be formed out of a set of n distinct elements and is
denoted by P;.

For example, the permutations of taking two numbers from the three
numbers 1, 2, and 3 are (1, 2), (1, 3), (2, 1}, (2, 3), (3, 1), (8, 2); therefore,
we have P} = 6.

THEOREM 2.3.1 P} = n!/(n — r)!, where n! reads » factorial and denotes
nn—1(n—2)---2- 1. (We define 0! = 1)

Proof. In the first position we can choose any one of n elements and in
the second position » — 1 and so on, and finally in the rth position we
can choose one of n — 7 + 1 elements. Therefore, the number of permu-
tations is the product of all these numbers. O

DEFINITION 2.3.2 The number of combinations of taking r elements from
n elements is the number of distinct sets consisting of r distinct elements
which can be formed out of a set of n distinct elements and is denoted
by C;.

Note that the order of the elements matters in permutation but not in
combination. Thus in the example of taking two numbers from three,
(1, 2) and (2, 1) make the same combination.
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THEOREM 2.3.2

!
n!
="
(n—n!r

Proof. It follows directly from the observation that for each combina-
tion, 7! different permutations are possible. QO

EXAMPLE 2.3.3 Compute the probability of getting two of a kind and
three of a kind (a “full house”) when five dice are rolled.

Let n; be the number on the ith die. We shall take as the sample space
the set of all the distinct ordered 5-tuples (n;, ng, n3, 1y, 15), so that n(S)
= 6°. Let the ordered pair (z, j) mean that ¢ is the number that appears
twice and j is the number that appears three times. The number of the
distinct ordered pairs, therefore, is Pg. Given a particular (7, j), we can
choose two dice out of five which show i: there are C3 ways to do so.
Therefore we conclude that the desired probability P is given by

Py C3
P = —5—=0.08858.

EXAMPLE 2.3.4 If a poker hand of five cards is drawn from a deck, what
is the probability that it will contain three aces?

We shall take as the sample space the set of distinct poker hands without
regard to a particular order in which the five cards are drawn. Therefore,
n(S) = CgQ. Of these, the number of the hands that contain three aces
but not the ace of clubs is equal to the number of ways of choosing the
two remaining cards out of the 48 nonaces: namely, Cs®. We must also
count the number of the hands that contain three aces but not the ace of
spades, which is also C;w, and similarly for hearts and diamonds. There-
fore, we must multiply c by four. The desired probability P is thus given
by

_4C¢ o4

In Example 2.5.1 we shall solve the same problem in an alternative way.
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2.4 CONDITIONAL PROBABILITY AND INDEPENDENCE

2.4.1 Axioms of Conditional Probability

The concept of conditional probability is intuitively easy to understand.
For example, it makes sense to talk about the conditional probability that
number one will show in a roll of a die given that an odd number has
occurred. In the frequency interpretation, this conditional probability can
be regarded as the limit of the ratio of the number of times one occurs
to the number of times an odd number occurs. In general we shall
consider the “conditional probability of A given B,” denoted by P(A | B),
for any pair of events A and B in a sample space, provided P(B) > 0, and
establish axioms that govern the calculation of conditional probabilities.

Axioms of Conditional Probability

(In the following axioms it is assumed that P(B) > 0.)
(1) P(A|B) = 0 for any event A.

(2) P(A|B) =1 for any event A D B.

(3) f{A,NBYi=1,2,...,are mutually exclusive, then
P(AiUAyU...|B) =P(A|B) + P(A2|B) +....

(4) If BD H and B D G and P(G) # 0, then

P(H |B) _ P(H)
P(G|B) ~ PG)

Axioms (1), (2), and (3) are analogous to the corresponding axioms of
probability. They mean that we can treat conditional probability just like
probability by regarding B as the sample space. Axiom (4) is justified by
observing that the relative frequency of H versus G remains the same
before and after B is known to have happened. Using the four axioms of
conditional probability, we can prove

THEOREM 2.4.1 P(A|B) = P(AN B)/P(B) for any pair of events A and
B such that P(B) > 0.

Proof. From axiom (3) we have

(241) P(A|B) = P(ANB|B) + P(AN B|B),
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where B denotes the complement of B. But from axioms (2) and (3) we
can easily deduce that P(C | B) = 0 if C N B = . Therefore we can elim-
inate the last term of (2.4.1) to obtain

2420  P(A|B) = P(AN B|B).

The theorem follows by putting H = AN B and G = B in axiom (4) and
noting P(B | B) = 1 because of axiom (2). Q

The reason axiom (1) was not used in the above proof is that axiom
(1) follows from the other three axioms. Thus we have proved that (2),
(3), and (4) imply Theorem 2.4.1. It is easy to show the converse. There-
fore we may postulate either axioms (2), (3), and (4) or, more simply,
Theorem 2.4.1 as the only axiom of conditional probability. Most text-
books adopt the latter approach.

If the conditioning event B consists of simple events with equal prob-
ability, Theorem 2.4.1 shows P(A | B) = n(A N B)/n(B). Therefore, the
counting techniques of Section 2.3 may be used to calculate a conditional
probability in this case.

2.4.2 Bayes’ Theorem

Bayes’ theorem follows easily from the rules of probability but is listed
separately here because of its special usefulness.

THEOREM 2.4.2 (Bayes) LeteventsA;, Ay, ..., A, be mutually exclusive
such that P(A4; U A, U ... U A,) =1 and P(4;) > 0 for each i. Let E be
an arbitrary event such that P(E) > 0. Then

P(E | A)P(A)

P(A,-IE)=n t=1,2,...,n
2 P(E| A)P(4)
j=1
Proof. From Theorem 2.4.1, we have
(2.4.9) P(A; | E) = P(—mf%;))})(—Ai) .
Since E N Ay, EN Ay, ..., EN A, are mutually exclusive and their union

is equal to E, we have, from axiom (3) of probability,
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(244)  P(E)= ), P(EN A).

j=1
Thus the theorem follows from (2.4.3) and (2.4.4) and by noting that
P(EN A) = P(E | Aj)P(A;) by Theorem 2.4.1. U

2.4.3 Statistical Independence

We shall first define the concept of statistical (stochastic) independence
for a pair of events. Henceforth it will be referred to simply as “inde-
pendence.”

DEFINITION 2.4.1 Events A and B are said to be independent if P(A) =
P(A| B).

The term “independence” has a clear intuitive meaning. It means that the
probability of occurrence of A is not affected by whether or not B has
occurred. Because of Theorem 2.4.1, the above equality is equivalent to
P(A)P(B) = P(AN B) or to P(B) = P(B| A).

Since the outcome of the second toss of a coin can be reasonably
assumed to be independent of the outcome of the first, the above formula
enables us to calculate the probability of obtaining heads twice in a row
when tossing a fair coin to be Y.

Definition 2.4.1 needs to be generalized in order to define the mutual
independence of three or more events. First we shall ask what we mean
by the mutual independence of three events, A, B, and C. Clearly we mean
pairwise independence, that is, independence in the sense of Definition 2.4.1
between any pair. But that is not enough. We do not want A and B put
together to influence C, which may be stated as the independence between
AN Band C, that is, P(A N B) = P(AN B|C). Thus we should have

P(ANBNC) =P[(AN B)|CIP(C) = P(AN B)P(C)
= P(A)P(B)P(C).
Note that independence between A N C and B or between B N C and A

follows from the above. To summarize,

DEFINITION 2.4.2 Events A, B, and C are said to be mutually independent
if the following equalities hold:
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245  P(AN B) = P(A)P(B).
@246) P(ANC) = P(A)P(C).
@47  P(BNC) = PB)PC).
248  P(ANBNC) = P(A)P(B)P(C).

We can now recursively define mutual independence for any number
of events:

DEFINITION 2.4.3 Events A}, Ay, ..., A, are said to be mutually inde-
pendent if any proper subset of the events are mutually independent and

P(AAN AN ...NA) = P(A)P(Ay) -+ - P(A,).

The following example shows that pairwise independence does not
imply mutual independence. Let A be the event that a head appears in
the first toss of a coin, let B be the event that a head appears in the second
toss, and let C be the event that either both tosses yield heads or both
tosses yield tails. Then A, B, and C are pairwise independent but not
mutually independent, because P(A N BN C) = P(AN B) = ¥, whereas
P(A)P(B)P(C) =%.

2.5 PROBABILITY CALCULATIONS

We have now studied all the rules of probability for discrete events: the
axioms of probability and conditional probability and the definition of
independence. The following are examples of calculating probabilities
using these rules.

EXAMPLE 2.5.1 Using the axioms of conditional probability, we shall
solve the same problem that appears in Example 2.3.4. In the present
approach we recognize only two types of cards, aces and nonaces, without
paying any attention to the other characteristics—suits or numbers. We
shall first compute the probability that three aces turn up in a particular
sequence: for example, suppose the first three cards are aces and the last
two nonaces. Let A; denote the event that the ith card is an ace and let N;
denote the event that the ith card is a nonace. Then, by the repeated
application of Theorem 2.4.1, we have
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(251)  P(A; N Ay N A3 N Ny N Nj)
= P(Ns| A1 N Ay N A3 N NYP(A; N Ay N A3 N Ny)
= P(Ns| A4 N Ag N A3 N NYP(Ny| A N Ay N Ag)
- P(A; N Ay N Ag)

= P(A))P(Ag| ADP(As| Ay N A9) P(N4| A; N Ay N As)
P(N5|A10A20A30N4)

4 8 2 48 47

There are C3 ways in which three aces can appear in five cards, and each
way has the same probability as (2.5.1). Therefore the answer to the
problem is obtained by multiplying (2.5.1) by C3.

EXAMPLE 2.5.2 Suppose that three events, A, B, and C, affect each other
in the following way: P(B|C) = Y%, P(B|C) = Y%, P(A| B) = %, P(A| B)
= 1. Furthermore, assume that P(A| B N C) = P(A|B) and that
P(A|BNC) =P(A|B). (In other words, if B or B is known, C or C does
not affect the probability of A.) Calculate P(A |C) and P(A | C).

Since A = (AN B) U (AN B), we have by axiom (3) of conditional
probability

(252) P(A|C)y=P(ANB|C) + P(AN B|C).
By repeated application of Theorem 2.4.1, we have

(2.5.3) PANB|C) = PANBNC)
P(C)
_P@A|BNOPBNC)
P(C)
= P(A|BNC)P(B]|C).

Therefore, by our assumptions,

(2.5.4) P(AN B|C)= P(A| B)P(B|C)

N =

N | =
| =
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Similarly,
(2.5.5) PANB|C)=PA|BPB|C)== —=="

Finally, from (2.5.2), (2.5.4), and (2.5.5) we obtain P(A | C) = %, . Calcu-
lating P(A| C) is left as a simple exercise.

EXAMPLE 2.5.3 Probability calculation may sometimes be counterintui-
tive. Suppose that there are four balls in a box with the numbers 1 through
4 written on them, and we pick two balls at random. What is the probability
that 1 and 2 are drawn given that 1 or 2 is drawn? What is the probability
that 1 and 2 are drawn given that 1 is drawn?

By Theorem 2.4.1 we have

P[(1and 2) N (1 or 2)]
P(1 or 2)

_ P and 2)
P(1lor?2)

(2.5.6) Pland 2|lor2) =

(S

Similarly,

P[( and 2) N 1]
P(1)

_ P and 2)
P

(2.5.7) Pland 2|1) =

The result of Example 2.5.3 is somewhat counterintuitive: once we have
learned that 1 or 2 has been drawn, learning further that 1 has been drawn
does not seem to contain any more relevant information about the event
that 1 and 2 are drawn. But it does. Figure 2.1 illustrates the relationship
among the relevant events in this example.

EXAMPLE 2.5.4 There is an experiment for which there are three out-
comes, A, B, and C, with respective probabilities p4, pp, and pc. If we try
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land 2
land3 1
land 4 lor2
Sample space
2and 3
2and 4
3and 4

FIGURE 2.1 Characterization of events

this experiment repeatedly, what is the probability that A occurs before B
does? Assume pc # 0.

We shall solve this problem by two methods.

(1) Let A; be the event that A happens in the ith trial, and define B;
and C; similarly. Let P be the desired probability. Then we have

(2.5.8) P=PA) + P(CiNA) + P(CiNCoN Ag) + ...
= P(A1) + P(C)P(A2) + P(C)P(Co)P(As) + ...

= pa+ pcpa + pepa + ...
__Pa
1—-p
(2) We claim that the desired probability is essentially the same thing
as the conditional probability of A given that A or B has occurred. Thus

P = pA ’
pat Pz
which gives the same answer as the first method. The second method is

an intuitive approach, which in this case has turned out to be correct,
substantiated by the result of the rigorous first approach.

(2.5.9)

EXAMPLE 2.5.5 This is an application of Bayes’ theorem. Suppose that
a cancer diagnostic test is 95% accurate both on those who do have cancer
and on those who do not have cancer. Assuming that 0.005 of the popu-
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lation actually has cancer, compute the probability that a particular indi-
vidual has cancer, given that the test says he has cancer.

Let C indicate the event that this individual actually has cancer and let
T be the event that the test shows he has cancer. Then we have by Theorem
2.4.2 (Bayes)

P(T | C)P(C)
P(T | C©)P(C) + P(T | C)P(C)

(25100 P(C|T) =

N 0.95 - 0.005
~ 0.95 - 0.005 + 0.05 - 0.995
_ 475
5450
= (.087.
EXERCISES

1. (Section 2.2)
Prove
A ANBUCO =ANB UAMNCOC).
(b) AUMBNC)=(AUB NAUCOQC.
c) A—-O)NB-C =(ANB —C.

2. (Section 2.3.1)
Complete Example 2.3.2.

3. (Section 2.4.1)
Show that Theorem 2.4.1 implies (2), (3), and (4) of the axioms of
conditional probability.

4. (Section 2.4.2)
Suppose that the Stanford faculty consists of 40 percent Democrats
and 60 percent Republicans. If 10 percent of the Democrats and 70
percent of the Republicans vote for Bush, what is the probability that
a Stanford faculty member who voted for Bush is a Republican?

5. (Section 2.4.3)
Fill each of the seven disjoint regions described in the figure below
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by an integer representing the number of simple events with equal
probabilities in such a way that

(a) (2.4.8) is satisfied but (2.4.5), (2.4.6), and (2.4.7) are not.

(b) (2.4.5), (2.4.6), and (2.4.7) are satisfied but (2.4.8) is not.

(c) (2.4.5), (2.4.6), (2.4.7), and (2.4.8) are all satisfied.

(Section 2.5)
Calculate P(A | C) in Example 2.5.2.

(Section 2.5)

If the probability of winning a point is p, what is the probability of
winning a tennis game under the “no-ad” scoring? (The first player
who wins four points wins the game.)

(Section 2.5)
Compute the probability of obtaining four of a kind when five dice
are rolled.

(Section 2.5)

If the probability of being admitted into a graduate school is 1/7 and
you apply to n schools, what is the probability that you will be admit-
ted into at least one school? Find the limit of this probability as n
goes to infinity.

(Section 2.5)

A die is rolled successively until the ace turns up. How many rolls are
necessary before the probability is at least 0.5 that the ace will turn
up at least once?



3 RANDOM VARIABLES AND
PROBABILITY DISTRIBUTIONS

3.1 DEFINITIONS OF A RANDOM VARIABLE

We have already loosely defined the term random variable in Section 1.2 as
a random mechanism whose outcomes are real numbers. We have men-
tioned discrete and continuous random variables: the discrete random vari-
able takes a countable number of real numbers with preassigned prob-
abilities, and the continuous random variable takes a continuum of values
in the real line according to the rule determined by a density function.
Later in this chapter we shall also mention a random variable that is a
mixture of these two types. In general, we can simply state

DEFINITION 3.1.1 A random variableis a variable that takes values accord-
ing to a certain probability distribution.

When we speak of a “variable,” we think of all the possible values it can
take; when we speak of a “random variable,” we think in addition of the
probability distribution according to which it takes all possible values. The
customary textbook definition of a random variable is as follows:

DEFINITION 3.1.2 A random variable is a real-valued function defined
over a sample space.

Defining a random variable as a function has a certain advantage which
becomes apparent at a more advanced stage of probability theory. At our
level of study, Definition 3.1.1 is just as good. Note that the idea of a
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probability distribution is firmly embedded in Definition 3.1.2 as well, for
a sample space always has a probability function associated with it and this
determines the probability distribution of a particular random variable.
In the next section, we shall illustrate how a probability function defined
over the events in a sample space determines the probability distribution
of a random variable.

3.2 DISCRETE RANDOM VARIABLES

3.2.1 Univariate Random Variables

The following are examples of several random variables defined over a
given sample space.

EXAMPLE 3.2.1 Experiment: A throw of a fair die.

Probability % 1 1 1 1 1
L] [ ] ® o e o e o
Sample space | e . ., . o I ° e
X 1 2 3 4 5 6
e
X = [1 if odd
*7 |0 if even 1 0

Note that X; can hardly be distinguished from the sample space itself. It
indicates the little difference there is between Definition 3.1.1 and Defini-
tion 3.1.2. The arrows indicate mappings from the sample space to the
random variables. Note that the probability distribution of X, can be
derived from the sample space: P(X; = 1) = % and P(X; = 0) = Y.
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EXAMPLE 3.2.2 Experiment: Tossing a fair coin twice.

Probability 3 : 1 1
Sample space HH HT TH TT

1
2

X (number of
headsin 1st toss)

Y (number of
headsin 2nd toss)

(XY) (L1) (1,0) (0,1) (0,0)

In almost all our problems involving random variables, we can forget
about the original sample space and pay attention only to what values a
random variable takes with what probabilities. We specialize Definition
3.1.1 to the case of a discrete random variable as follows:

DEFINITION 3.2.1 A discrete random variable is a variable that takes a
countable number of real numbers with certain probabilities.

The probability distribution of a discrete random variable is completely
characterized by the equation P(X = x;) = p;,1 = 1,2,..., n It means
the random variable X takes value x; with probability p;. We must, of
course, have X ;p, = 1; n may be ® in some cases. It is customary to
denote a random variable by a capital letter and the values it takes by
lowercase letters.
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3.2.2 Bivariate Random Variables

The last row in Example 3.2.2 shows the values taken jointly by two random
variables X and Y. Since a quantity such as (1, 1) is not a real number, we
do not have a random variable here as defined in Definition 3.2.1. But it
is convenient to have a name for a pair of random variables put together.
Thus we have

DEFINITION 3.2.2 A bivariate discrete random variable is a variable that
takes a countable number of points on the plane with certain probabilities.

The probability distribution of a bivariate random variable is deter-
mined by the equations P(X = x;,Y = yj) =ppi=1,2,...,n7=1,2,

., m. We call py; the joint probability; again, » and/or m may be « in
some cases.

When we have a bivariate random variable in mind, the probability
distribution of one of the univariate random variables is given a special
name: marginal probability distribution. Because of probability axiom (3) of
Section 2.2, the marginal probability is related to the joint probabilities
by the following relationship.

Marginal probability

PX=x)=2PX=x,Y=3), i=12,...,n
j=1

Using Theorem 2.4.1, we can define
Conditional probability

PX =x;,Y = y)

PX =x|Y=y)= PO =)
j

if P(Y = ) > 0.

In Definition 2.4.1 we defined independence between a pair of events.
Here we shall define independence between a pair of two discrete random
variables.

DEFINITION 3.2.3 Discrete random variables are said to be independent
if the event (X = x;) and the event (¥ = y,) are independent for all 4, j.
That is to say, P(X = x;,Y = y;) = P(X = x)P(Y = y;) for all 4, j.



3.2 | Discrete Random Variables 23

TABLE 3.1 Probability distribution of a bivariate random variable

Y
X N Y2 S I
x| pu 4% Pim Do
Xo | pa Poo DPom P20
X P nl pn2 an l’ no
[701 p02 pom

It is instructive to represent the probability distribution of a bivariate
random variable in an n X m table. See Table 3.1. Affixed to the end of
Table 3.1 are a column and a row representing marginal probabilities
calculated by the rules p;, = XL1p; and p,; = ZiZ1p;. (The word marginal
comes from the positions of the marginal probabilities in the table.) By
looking at the table we can quickly determine whether X and Y are
independent or not according to the following theorem.

THEOREM 3.2.1 Discrete random variables X and Y with the probability
distribution given in Table 3.1 are independent if and only if every row is
proportional to any other row, or, equivalently, every column is propor-
tional to any other column.

Proof. (“onlyif” part). Consider, for example, the first two rows. We have

P Pl | )Py _ Pl | %)
P2 Plxa|9)P0y)  Plxz )
If X and Y are independent, we have by Definition 3.2.3
P(ai|y) _ Pv))

P(xy ’)’j) P(x9)

which does not depend on j. Therefore, the first two rows are proportional
to each other. The same argument holds for any pair of rows and any pair
of columns.

(3.2.1) for every j.

(3.2.2)
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(“if” part). Suppose all the rows are proportional to each other. Then
from (3.2.1) we have
(3.2.3) P(x;| 3) = ca* P(x|y;) for every i, k, and j.
Multiply both sides of (3.2.3) by P(y,) and sum over j to get
(3.2.4) P(x;) = ¢y * P(x) for every iand k.
From (3.2.3) and (3.2.4) we have

P(x;| ) _ P(xy, | 3))
P(x;) P(x)

(3.2.5) for every i, j, and k.

Therefore
(3.2.6) P(x;| y)) = ¢; - P(x;) for everyiand j.

Summing both sides over i, we determine ¢; to be unity for every j.
Therefore X and Y are independent. O

We shall give two examples of nonindependent random variables.

EXAMPLE 3.2.3 Let the joint probability distribution of X and Y be given

0% % %

Then we have P(Y = 1| X =1) = (%)/(%) =% and PY =1|X = 0)
= (%) /(%) = %, which shows that X and Y are not independent.

EXAMPLE 3.2.4 Random variables X and Y defined below are not inde-
pendent, but X* and Y* are independent.

PX=1)=p 0<p<l1

PX=0=1-p

PY=1|X=1) =%

PY=0|X=1) ="
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P¥=-1]X=1)=Y
PY=1|X=0)=1Y%
PY=0|X=0)=Y
PY=-1|X=0) =%

Note that this example does not contradict Theorem 3.5.1. The word
function implies that each value of the domain is mapped to a unique value
of the range, and therefore X cannot be regarded as a function of X2

3.2.3 Multivariate Random Variables

We can generalize Definition 3.2.2 as follows.

DEFINITION 3.2.4 A T-variate discrete random variable is a variable that
takes a countable number of points on the T-dimensional Euclidean space

with certain probabilities.

The probability distribution of a trivariate random variable is deter-

mined by the equations P(X = x,Y = Y%l =z) =pap1=12,...,m
j=L2,...,mk=1,2...,q Asin Section 3.2.2, we can define
Marginal probability

m g
PX=x)=2, X PX=x,Y=y,Z=2), i=12...,n
j=1k=1

Conditional probability

PX=x,Y=y,7Z=z)
P(Z = z)

fP(Z=2%)>0

P(X=x,-,Y=yj|Z=zk)=

P(szi’ Y:y], Z=zk)
PY =y,Z=12)
if P(Y =y, Z = 2,) > 0.

P(X=xi|Y=yj,Z=zk)=

Definition 3.2.5 generalizes Definition 3.2.3.
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DEFINITION 3.2.5 A finite set of discrete random variables X, Y, Z, . ..
are mutually independent if

P(X=xi,Y=yj,Z=Zk,...)
= P(X=x)P(Y = y)P(Z=2) ... foralli jk ....

It is important to note that pairwise independence does not imply
mutual independence, as illustrated by Example 3.2.5.

EXAMPLE 3.2.5 Suppose X and Y are independent random variables
which each take values 1 or —1 with probability 0.5 and define Z = XY.
Then Z is independent of either X or Y, but X, ¥, and Z are not mutually
independent because

PX=1L,Y=1,Z=1)=PZ=1|X=1LY=1)PX=1LY=1)
=PX=1Y=1) =Y,
whereas
PX=1HPY =1)P(Z=1) =%

An example of mutually independent random variables follows.

EXAMPLE 3.2.6 Let the sample space S be the set of eight integers 1
through 8 with the equal probability of %3 assigned to each of the eight
integers. Find three random variables (real-valued functions) defined over
S which are mutually independent.

There are many possible answers, but we can, for example, define

X = for ¢ =< 4,

= otherwise.
for 3 =i =6,
otherwise.

h<
Il
S = O =

Z =1 forieven,
= 0 otherwise.

Then X, Y, and Z are mutually independent because
PX=1Y=1,Z=1)=Pi=4) =%
=PX=1PY =1)P(Z=1),
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PX=1Y=1,Z2=0=Pi=3)=%
=PX=1HPY=1)P(Z=0),

and so on for all eight possible outcomes.

3.3 UNIVARIATE CONTINUOUS RANDOM VARIABLES

3.3.1 Density Function

In Chapter 2 we briefly discussed a continuous sample space. Following
Definition 3.1.2, we define a continuous random variable as a real-valued
function defined over a continuous sample space. Or we can define it in
a way analogous to Definition 3.2.1: A continuous random variable is a
variable that takes a continuum of values in the real line according to the
rule determined by a density function. We need to make this definition
more precise, however. The following defines a continuous random vari-
able and a density at the same time.

DEFINITION 3.3.1 If there is a nonnegative function f(x) defined over
the whole line such that

331) Pl =X=uxy) = j *flx)da

for any x;, xo satisfying x; =< x, then X is a continuous random variable
and f(x) is called its density function.

We assume that the reader is familiar with the Riemann integral. For a
precise definition, see, for example, Apostol (1974). For our discussion it
is sufficient for the reader to regard the right-hand side of (3.3.1) simply
as the area under f(x) over the interval [x, x5].

We shall allow x; = —% and/or xo = . Then, by axiom (2) of prob-
ability, we must have [, f(x)dx = 1. It follows from Definition 3.3.1 that
the probability that a continuous random variable takes any single value
is zero, and therefore it does not matter whether < or = is used within
the probability bracket. In most practical applications, f(x) will be con-
tinuous except possibly for a finite number of discontinuities. For such a
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function the Riemann integral on the right-hand side of (3.3.1) exists, and
therefore f(x) can be a density function.

3.3.2 Conditional Density Function

Suppose that a random variable X has density f(x) and that [a, 8] is a
certain closed interval such that P(e = X = b) > 0. Then, for any closed
interval [x1, xo] contained in [a, 4], we have from Theorem 2.4.1

Plx; = X =< x9)

(3.3.2 Pxiy=X=x|la=X=b=
) (% 2 | Pa=X=1

Now we want to ask the question: Is there a function such that its integral
over [x;, x9] is equal to the conditional probability given in (3.3.2)? The
answer is yes, and the details are provided by Definition 3.3.2.

DEFINITION 3.3.2 Let X have density f(x). The conditional density of X
given a = X < b, denoted by f(x | a = X = b), is defined by

(3.3.3) f(x|aSXSb)=—b& fora=x=b,
J fx)dx
=0 otherwise,
provided that [% f(x)dx # 0.

We can easily verify that f(x | a = X < b) defined above satisfies
(3.3.4) Pxi=X=x]as=X=0b) =Jx2f(x|aSXSb)dx
*1

whenever [a, ] D [x1, x9], as desired. From the above result it is not
difficult to understand the following generalization of Definition 3.3.2.

DEFINITION 3.3.3 Let X have the density f(x) and let S be a subset of
the real line such that P(X € §) > 0. Then the conditional density of X
given X € S, denoted by f (x| S), is defined by

S(x)

for x € §,
PXES)

(3.3.5) fx|S) =

=0 otherwise.
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3.4 BIVARIATE CONTINUOUS RANDOM VARIABLES

3.4.1 Bivariate Density Function

We may loosely say that the bivariate continuous random variable is a
variable that takes a continuum of values on the plane according to the
rule determined by a joint density function defined over the plane. The
rule is that the probability that a bivariate random variable falls into any
region on the plane is equal to the volume of the space under the density
function over that region. We shall give a more precise definition similar
to Definition 3.3.1, which was given for a univariate continuous random
variable.

DEFINITION 3.4.1 If there is a nonnegative function f(x, y) defined over
the whole plane such that

(3.4.1) Py =X =xo, )3 =Y =y9 = Jyz in’f(x, y)dxdy
1

N x4

for any x;, xg, y1, y9 satisfying x; =< x9, 31 = yp, then (X, Y) is a bivariate
continuous random variable and f(x, y) is called the joint density function.

In order for a function f(x, y) to be a joint density function, it must be
nonnegative and the total volume under it must be equal to 1 because of
the probability axioms. The second condition may be mathematically
expressed as

(3.4.2) Jm ro fx, y)dxdy = 1.

If f(x, y) is continuous except possibly over a finite number of smooth
curves on the plane, in addition to satisfying the above two conditions, it
will satisfy (3.4.1) and hence qualify as a joint density function. For such
a function we may change the order of integration so that we have

(3.4.3) J” j f(x, y)dxdy = J Fz f(x, y)dydx .
N7 * X1 7N

We shall give a few examples concerning the joint density and the evalu-
ation of the joint probability of the form given in (3.4.1).
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EXAMPLE 3.4.1 If f(x, ) = xy¢ “™, x> 0, y > 0, and 0 otherwise, what
isP(X>1,Y <1)r
By (3.4.1) we have

— ([P @ty
(8.4.4) PX>1,Y<1)= J J xye dxdy
0J1

0 1 _
= j xe_xdx'fye dy.
1 0
To evaluate each of the single integrals that appear in (3.4.4), we need
the following formula for integration by parts:
b
(3.45) J” W yax = vve) - U@V(@ - f v i,

where U and V are functions of x. Putting U = —¢™*, V = x, a = 1, and
b = oin (3.4.5), we have

(3.4.6) wae_xdx = [—xe "7 + roe_xdx =¢l+ [—e "7 =2 "
1 1
Putting U = —¢ >,V =y, a=0,and 6 = 1 in (3.4.5) we have
1 1 _ _ _ _
(3.4.7) Jye—ydy= [—ye_y](l) + f e Ydy= —e Vy[—e Na=1-2""
0 0

Therefore from (3.4.4), (3.4.6), and (3.4.7) we obtain
(3848 P(X>1,Y<1) =2 "(1-2.

If a function f(x, y) is a joint density function of a bivariate random
variable (X, Y), the probability that (X, ) falls into a more general region
(for example, the inside of a circle) can be also evaluated as a double
integral of f(x, y). We write this statement mathematically as

649 PICLY) € S) = || fGa yyasay,

N

where S is a subset of the plane. The double integral on the righthand
side of (3.4.9) may be intuitively interpreted as the volume of the space
under f(x, y) over 8. If f(x, y) is a simple function, this intuitive interpre-
tation will enable us to calculate the double integral without actually
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double integral: I double integral: II double integral: 111

performing the mathematical operation of integration, as in the following
example.

EXAMPLE 3.4.2 Assuming f(x,y) = 1for 0 <x < 1,0 <y <1 and
= 0 otherwise, calculate P(X > Y) and P(X2 +¥V2 < 1).

The event (X > Y) means that (X, Y) falls into the shaded triangle in
Figure 3.1. Since P(X > Y) is the volume under the density over the
triangle, it must equal the area of the triangle times the height of the
density, which is 1. Therefore, P(X > Y) = Y. The event (X2 +Y? < 1)
means that (X, Y) falls into the shaded quarter of the unit circle in Figure
3.2. Therefore, P(X2 +V2< 1) = w/4. Note that the square in each figure
indicates the total range of (X, Y).

This geometric approach of evaluating the double integral (3.4.9) may
not work if f(x, y) is a complicated function. We shall show the algebraic
approach to evaluating the double integral (3.4.9), which will have a much
more general usage than the geometric approach. We shall consider only
the case where § is a region surrounded by two vertical line segments and
two functions of x on the (x, y) plane, as shown in Figure 3.3.

A region surrounded by two horizontal line segments and two functions
of y may be similarly treated. Once we know how to evaluate the double
integral over such a region, we can treat any general region of practical
interest since it can be expressed as a union of such regions.

Let S be as in Figure 3.3. Then we have
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FIGURE 3.4 Double integral

(3.4.10) f J £, y)dxdy = r [ J ‘:((; fx, y)dy] dx.
s

We shall show graphically why the right-hand side of (3.4.10) indeed gives
the volume under f(x, y) over S. In Figure 3.4 the volume to be evaluated

is drawn as a loaf-like figure.
The first slice of the loaf is also described in the figure. We have

approximately
(x,')

(3.411)  Volume of the ith slice = I £ S, vy - (e — x;-1),
[ZER]

i=1,2,...,n
Summing both sides of (3.4.11) over i, we get

&)

(3.412)  Volume = Z J SO, pdy - (2 — x;—-1).
i=1 J A

ki

But the limit of the right-hand side of (3.4.12) as n goes to ® is clearly
equal to the righthand side of (3.4.10).
The following examples use (3.4.10) to evaluate the joint probability.

EXAMPLE 3.4.3 We shall calculate the two probabilities asked for in
Example 3.4.2 using formula (3.4.10). Note that the shaded regions in
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Figures 3.1 and 3.2 are special cases of region S depicted in Figure 3.3.
To evaluate P(X >Y), weput f(x,y) =1,a=0,b=1, g(x) = %, and h(x)
= 0 in (3.4.10) so that we have

(3413) PX>Y)= f ! (dey) dx = Jlxdx -1
o\Jo 0 2

To evaluate P(X* + Y2 < 1), we put f(x,9) = 1,a =0,b =1, g(x) =
V1 — %2, and h(x) = 0 so that we have

(3414) PX*+Y?<1)= Jl (J“_xzdy)dx = f«ll — x2dx.
0 0 0

To evaluate the last integral above, we need the following formula for
integration by change of variables:

415 [* s = ﬁ“’fw(t)w'(t)dt,

if ¢ is a monotonic function such that &(¢;) = x; and ¢(f) = xo. Here,
¢'(#) denotes the derivative of ¢ with respect to ¢. Next, we shall put x =

cos 0. Then, since dx/d® = —sin 0 and sin%0 + cos?0 = 1, we have
/2
1 /2
(3.4.16) J N1 — x2dx = J sin®0d6 = _L sin 0 cos 6 + 1 0| = iy
0 0 2 2 0 4

EXAMPLE 3.4.4 Suppose f(x,9) =24 xyfor0 <x<1,0<y<]1 — x
and = 0 otherwise. Calculate P(Y < V5).

Event (Y < '%) means that (X, Y) falls into the shaded region of Figure
3.5. In order to apply (3.4.10) to this problem, we must reverse the role
of xand yand puta = 0,5 =%, g(y) =1 — y, k(y) = 0 in (3.4.10) so
that we have

1/2 -
(3.4.17) P Y<% =24j/ ¥ Jl yxdx dy=12J1/2y(l—y)2dy=£-
o “\Jo 0 16

3.4.2 Marginal Density

When we are considering a bivariate random variable (X, Y), the prob-
ability pertaining to one of the variables, such as P(x; = X = x9) or
P(y; =Y = yy), is called the marginal probability. The following relationship
between a marginal probability and a joint probability is obviously true.
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0.5

FIGURE 3.5 Domain of a double integral for Example 3.4.4

(3.4.18) P(xl =X= x2) = P(xl =X= X9, —00 < Y < 00)

More generally, one may replace x; = X = x5 in both sides of (3.4.18) by
x € S where § is an arbitrary subset of the real line.

Similarly, when we are considering a bivariate random variable (X, Y),
the density function of one of the variables is called the marginal density.
Theorem 3.4.1 shows how a marginal density is related to a joint density.

THEOREM 3.4.1 Let f(x, y) be the joint density of X and Y and let f(x)
be the marginal density of X. Then

(3419)  f(x) = J: fGx, y)dy.

Proof. We only need to show that the right-hand side of (3.4.19) satisfies
equation (3.3.1). We have

(3.4.20) sz [Jm fx, y)dy:l dx =P(x; = X < xy, —0 <Y <) by (341)
=P(x; =X =ux9) by (34.18). O
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3.4.3 Conditional Density

We shall extend the notion of conditional density in Definitions 3.3.2 and
3.3.3 to the case of bivariate random variables. We shall consider first the
situation where the conditioning event has a positive probability and
second the situation where the conditioning event has zero probability.
Under the first situation we shall define both the joint conditional density
and the conditional density involving only one of the variables. A gener-
alization of Definition 3.3.3 is straightforward:

DEFINITION 3.4.2 Let (X, Y) have the joint density f(x, y) and let S be
a subset of the plane such that P[(X,Y) € S] > 0. Then the conditional
density of (X, Y) given (X,Y) € S, denoted by f(x, y| S), is defined by

_ fy
4. S)=——
(3.421)  f(x,9]8) PLX.7) € 5] for (x, ) €S,

=0 otherwise.

We are also interested in defining the conditional density for one of the
variables above, say, X, given a conditioning event involving both X and
Y. Formally, it can be obtained by integrating f (x, y | S) with respect to y.
We shall explicitly define it for the case that S has the form of Figure 3.3.

DEFINITION 3.4.3 Let (X,Y) have the joint density f(x, y) and let S be
a subset of the plane which has a shape as in Figure 3.3.We assume that
P[(X,Y) € §] > 0. Then the conditional density of X given (X,Y) € S,
denoted by f (x| S), is defined by

J g(x) f(x, y)dy

h(x)

3.4.22 SH=—"
( ) fx]S) PLET) € 5]

fora =x =0,

=0 otherwise.

For an application of this definition, see Example 3.4.8.

It may be instructive to write down the formula (3.4.22) explicitly for
a simple case where a = —®, b = ®, h(x) = y;, and g(x) = y in Figure
3.3. Since in this case the subset S can be characterized as y; =Y = yy, we
have
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me@
(3423) fx|n=Y=y)= my@ '
f J f(x, ydydx

—® Jn

The reasonableness of Definition 3.4.3 can be verified by noting that when
(3.4.23) is integrated over an arbitrary interval [x;, x9], it yields the con-
ditional probability P(x; < X < xp| 1 =Y = y9).

Next we shall seek to define the conditional probability when the con-
ditioning event has zero probability. We shall confine our attention to the
case where the conditioning event S represents a line on the (x, y) plane:
that is to say, S = {(x, y) | y = y + cx}, where y and ¢ are arbitrary
constants.

We begin with the definition of the conditional probability P(x; = X =
x9| Y = 95 + ¢X) and then seek to obtain the function of x that yields this
probability when it is integrated over the interval [x;, x3]. Note that this
conditional probability cannot be subjected to Theorem 2.4.1, since
PY =9y +cX)=0.

DEFINITION 3.4.4 The conditional probability that X falls into [xq, x9]
given Y = y; + ¢X is defined by

(3.4.24) Poy=X= x2| Y =9y + X)
=lim Py = X < x|y + X =Y =y + cX),

2N
where y; < yo.

Next we have

DEFINITION 3.4.5 The conditional density of X given ¥ = y; + ¢X,
denoted by f(x |Y = y1 + ¢X), if it exists, is defined to be a function that
satisfies

x2

(8425 Py =X=ux|Y = 3y +X) = j flx|Y = n + cX)dx,

*)

for all x;, xo satisfying x; = xy.

Now we can prove
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THEOREM 3.4.2 The conditional density f(x|Y = y, + ¢X) exists and is
given by
flx, y1 + cx)

(3.426) f(x|Y =9y +cX) =+ ,
J S(x, 31 + cx)dx

provided the denominator is positive.

Proof. We have

(34.27) HmPax;=X=<uxy|p+cX=Y =<y +cX)

Y20
. +ex
f "’FZ f(x, ydydx
= lim 222 ‘y o by Theorem 2.4.1
o J J L x, y)dydx
—o Jytex

jx2f(x, 9+ cx)dx
*1

= by the mean value theorem of integration.
J' f(xy N + C’x)dx

—00

Therefore the theorem follows from (3.4.24), (3.4.25), and (3.4.27). Q

For an application of Theorem 3.4.2, see Example 3.4.9. An alternative
way to derive the conditional density (3.4.26) is as follows. By putting
a=—%b=0oo h(x) =9y + cx,and g(x) = y3 + cx in Figure 3.3, we have
from (3.4.22)

J " s y)dy

yytex

o0 J’y2+cx f(x, y)dydx

—J ytex

(34.28)  f(x|m +chYSy2+cX)=j

Then the formula (3.4.26) can be obtained by defining
(3.4.29) f(x|Y =y + ¢X) = lim f(x|y1 + X =Y =y, + cX).
y

2%

A special case of Theorem 3.4.2 where ¢ = 0 is important enough to
write as a separate theorem:
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J

yz - f(x!yl)

N

FIGURE 3.6 Joint density and marginal density

THEOREM 3.4.3 The conditional density of X given ¥ = y;, denoted by
f(x| y1), is given by

S, 91) ,
SO

provided that f(y;) > 0.

(3430)  f(x|y) =

Figure 3.6 describes the joint density and the marginal density appear-
ing in the righthand side of (3.4.30). The area of the shaded region

represents f(y;).

3.4.4 Independence
Finally, we shall define the notion of independence between two continu-

ous random variables.

DEFINITION 3.4.6 Continuous random variables X and Y are said to be
independent if f(x, y) = f(x)f(y) for all x and y.

This definition can be shown to be equivalent to stating

Pri=X=x,n=Y=py) =Pxi=X=x)P(y1 =Y = y)
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for all x;, x9, y1, y2 such that x; = xy, y1 =< y9. Thus stated, its connection
to Definition 3.2.3, which defined independence for a pair of discrete
random variables, is more apparent.

Definition 3.4.6 implies that in order to check the independence be-
tween a pair of continuous random variables, we should obtain the mar-
ginal densities and check whether their product equals the joint density.
This may be a time-consuming process. The following theorem, stated
without proof, provides a quicker method for determining independence.

THEOREM 3.4.4 Let S be a subset of the plane such that f(x, y) > 0 over
S and f(x, y) = 0 outside S. Then X and Y are independent if and only if
S is a rectangle (allowing — or  to be an end point) with sides parallel
to the axes and f(x, y) = g(x)h(y) over S, where g(x) and A(y) are some
functions of x and y, respectively. Note that if g(x) = ¢f(x) for some ¢,

h(y) = ¢ 'f(9).

As examples of using Theorem 3.4.4, consider Examples 3.4.1 and 3.4.4.
In Example 3.4.1, X and Y are independent because $ is a rectangle and
xye” "™ = x¢™* - y¢7? over S. In Example 3.4.4, X and Y are not indepen-
dent because S is a triangle, as shown in Figure 3.5, even though the joint
density 24xy factors out as the product of a function of x alone and that
of y alone over S. One can ascertain this fact by noting that f(%, %) =0
since the point (%, %) is outside of the triangle whereas both f(x = %)
and f(y = %) are clearly nonzero.

The next definition generalizes Definition 3.4.6 in the same way that
Definition 3.2.5 generalizes 3.2.3.

DEFINITION 3.4.7 A finite set of continuous random variables X, Y, Z,
... are said to be mutually independent if

f@pz ) =ffOfE .. ..

(We have never defined a multivariate joint density f(x, y, z, . . .), but the
reader should be able to generalize Definition 3.4.1 to a multivariate case.)

3.4.5 Examples

We shall give examples involving marginal density, conditional density, and
independence.
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EXAMPLE 3.4.5 Suppose f(x,9) = (%) + ) for0<x<1,0<y<

1 and = 0 otherwise. Calculate P(0 < X < 0.5|0 < Y < 0.5) and

P(0 < X < 05|Y = 0.5) and determine if X and Y are independent.
We have

PO<X<050<Y<05)
PO <Y <0.5)

(3431) PO<X<05|0<Y<05) =

By a simple double integration it is easy to determine that the numerator
is equal to Yj6. To obtain the denominator, we must first obtain the
marginal density f(y). By Theorem 3.4.1 we have

(3.4.32) f(y)=—f " +y )dx——Jr 2)’
Therefore

051 3 9 5
(3.433) PO <Y <0.5) Jo (2 5 ) ]dy 16

Therefore P(0 < X < 05|0 <Y <0.5) = Y%,
To calculate P(0 < X < 0.5|Y = 0.5), we must first obtain the condi-
tional density f(x | y). By Theorem 3.4.3,

_ (xy)_2(x +y)
(3.4.34) x|y =
A T
2 2
Putting y = 0.5 in (3.4.34), we have

3 12 ,
(3.4.35) f(x|Y=0.5)=5+7x.

Therefore

05(3 1
(3.4.36) P(0<X<0.5|Y=0.5)=J —+—2x2 dx=g-
o \7 7 7
That X and Y are not independent is immediately known because f(x, y)
cannot be expressed as the product of a function of x alone and a function

of y alone. We can ascertain this fact by showing that

3 1.3 5\(1,3
(3437 5 =+ 5 # (§ + §x2) (5 Ty y“’).
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EXAMPLE 3.4.6 Let f(x,y) be the same as in Example 3.4.4. That is,
f(x,9) = 24xyfor 0 <x <land 0 <y <1 — xand = 0 otherwise.
Calculate P(0 <Y < ¥ | X = ).

We have
1—x
(3.438) f(x) = 24J xydy=12x(1 — %)%, 0<x<1.
0
Therefore
_ Sy 2y
(3439 f(ylx) = = 50 for0<x<1, 0<y<1-x,
J(x) (1 —x)
=0 otherwise.
Therefore
/- 1/
(8.4.40) P0<Y<§|X=l =J34fy|x=l dy=f 28ydy= 1.
4 2 0 2 0

Note that in (3.4.40) the range of the first integral is from 0 to %, whereas
the range of the second integral is from 0 to %. This is because f(y | x =
%) = 8yonly for 0 < y < % and f(y|x = %) = 0 for Y% < y, as can be
seen either from (3.4.39) or from Figure 3.5. Such an observation is very
important in solving this kind of problem, and diagrams such as Figure
3.5 are very useful in this regard.

EXAMPLE 3.4.7 Suppose f(x, y) = Y% over the rectangle determined by
the four corner points (1, 0), (0, 1), (=1, 0), and (0, —1) and = 0 other-
wise. Calculate marginal density f(y).

We should calculate f(y) separately for y = 0 and y < 0 because the
range of integration with respect to x differs in two cases. We have

(3.4.41) f(y)=r f(x,y)dx=Jl y%dle—y ifosy=<1
—oo 1

-
and

(3.442)  f(y = r f(x, ydx = JHy %dx =14y if-1=9y<0.
. C1-y

Note that in (3.4.41), for example, f(x, y) is integrated with respect to x
from —o to % but % is integrated from y — 1to 1 — y, since f(x, y) = %
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t

FIGURE 3.7 Marginal density

if x is within the interval (y — 1, 1 — ) and = 0 if x is outside the interval.
Figure 3.7 describes (3.4.41) as the area of the shaded region.

EXAMPLE 3.4.8 Suppose f(x,y) = lfor0=x=<1land0=y=1 and
= 0 otherwise. Obtain f(x| X <Y).

This example is an application of Definition 3.4.3. Puta = 0, b = 1,
h(x) = x, and g(x) = 1 in Figure 3.3. Then from (3.4.22) we have

(3443) f(x|X<Y) = =2(1—x) forO0=sx=<1,

jlj dydx
0/ x

=0 otherwise.

EXAMPLE 3.4.9 Assume f(x,9) = lfor0 <x<1,0<y<land =0
otherwise. Obtain the conditional density f(x | Y = 0.5 + X).

This example is an application of Theorem 3.4.2. The answer is imme-
diately obtained by putting y; = %, ¢ = 1 in (3.4.26) and noting that the
range of X given Y = % + X is the interval (0, %). Thus
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(3.4.44) f(x|Y=%+Xj=2, f0r0<x<%,

=0 otherwise.

3.5 DISTRIBUTION FUNCTION

As we have seen so far, a discrete random variable is characterized by
specifying the probability with which the random variable takes each single
value, but this cannot be done for a continuous random variable. Con-
versely, a continuous random variable has a density function but a discrete
random variable does not. This dichotomy can sometimes be a source of
inconvenience, and in certain situations it is better to treat all the random
variables in a unified way. This can be done by using a cumulative distri-
bution function (or, more simply, a distribution function), which can be
defined for any random variable.

DEFINITION 3.5.1 The (cumulative) distribution function of a random
variable X, denoted by F(-), is defined by

(3.5.1) F(x) = P(X <x) for every real x.

From the definition and the axioms of probability it follows directly that
F is a monotonically nondecreasing function, is continuous from the left,
F(—) = 0, and F(») = 1. Some textbooks define the distribution func-
tion as F(x) = P(X = x). Then the distribution function can be shown to
be continuous from the right.

Let X be a finite discrete random variable such that P(X = x;) = p,,
i=1,2,...,n Then its distribution is a step function with a jump of
length p; at x; as shown in Figure 3.8. At each point of jump, the value of
the distribution function is at the solid point instead of the empty point,
indicating the fact that the function is continuous from the left.

The distribution function of a continuous random variable X with
density function f(-) is given by

352  F(x) =r f@t.



44 3 | Random Variables and Probability Distributions

pn

j 2

3 !

%, Xy Xn

FIGURE 3.8 Distribution function of a discrete random variable

From (3.5.2) we can deduce that the density function is the derivative of
the distribution function and that the distribution function of a continu-
ous random variable is continuous everywhere.

The probability that a random variable falls into a closed interval can
be easily evaluated if the distribution function is known, because of the
following relationship:

(3.5.3) Py =X =) = Pla) = X <) + P(X = x9)
= P(X <x9) — P(X <x) + P(X = x)
= F(xg) — F(x;) + P(X = x).

If X is a continuous random variable, P(X = x9) = 0; hence it may be
omitted from the terms in (3.5.3).

The following two examples show how to obtain the distribution func-
tion using the relationship (3.5.2), when the density function is given.

EXAMPLE 3.5.1 Suppose
(354)  fx) = %e"‘/ 2 for x > 0,

=0 otherwise.
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Then F(x) = 0if x = 0. For x > 0 we have
x 0 x
(3.5.5) F(x) = J f@)dt = J f®de + J f(®)dt
- —co 0

=0+ %ﬁ; e—t/th — [e—t/Q]sz 1—e x/2.
EXAMPLE 3.5.2 Suppose
(8.5.6) f(x) =2(1 —x) for0<x<1,

=0 otherwise.

45

Clearly, F(x) = O for x =0 and F(x) = 1 forx = 1. For 0 < x < 1 we have

x 0 x
857  Fx) = J_m F(odt = J  jwar+ JO F(dt

x 2x
=0+2J(1—t)dt=2[t——t-} = 9% — &%,
0 20

Example 3.5.3 gives the distribution function of a mixture of a discrete

and a continuous random variable.

EXAMPLE 3.5.3 Consider

358  F(x) =0, x =0,
=05 0<x=0.5,
= x, 05 <x=1,

=1, x> 1.

This function is graphed in Figure 3.9. The random variable in question
takes the value 0 with probability %4 and takes a continuum of values
between Y, and 1 according to the uniform density over the interval with

height 1.

A mixture random variable is quite common in economic applications.
For example, the amount of money a randomly chosen person spends on
the purchase of a new car in a given year is such a random variable because
we can reasonably assume that it is equal to 0 with a positive probability

and yet takes a continuum of values over an interval.

We have defined pairwise independence (Definitions 3.2.3 and 3.4.6)
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FIGURE 3.9 Distribution function of a mixture random variable

and mutual independence (Definitions 3.2.5 and 3.4.7) first for discrete
random variables and then for continuous random variables. Here we
shall give the definition of mutual independence that is valid for any sort
of random variable: discrete or continuous or otherwise. We shall not give
the definition of pairwise independence, because it is merely a special case
of mutual independence. As a preliminary we need to define the multi-
variate distribution function F(x;, x9, . . . , X,) for n random variables X3,
Xo, oo, X, by Fxg, %9, ..., %) = P(X] <, Xo < 9,...,X, <x,).

DEFINITION 3.5.2 Random variables X;, Xo, . .., X, are said to be
mutually independent if for any points x;, xg, . . . , X,,,

(8.5.9) F(xy, %9, ..., %) = F(x)F(%x9) ... F(x,).

Equation (3.5.9) is equivalent to saying
(35100 P(X;E€ES8,XE€S8,,...,X,ES)
= P(X; ESHP(X; €ESy) -+ PX, ESy)

for any subsets of the real line §;, Sy, . . ., S, for which the probabilities
in (3.5.10) make sense. Written thus, its connection to Definition 2.4.3
concerning the mutual independence of events is more apparent. Defini-
tions 3.2.5 and 3.4.7 can be derived as theorems from Definition 3.5.2.

We still need a few more definitions of independence, all of which
pertain to general random variables.

DEFINITION 3.5.3 An infinite set of random variables are mutually in-
dependent if any finite subset of them are mutually independent.
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DEFINITION 3.5.4 Bivariate random variables (X, Y;), (Xo,Y9), .. .,
(X, Y,) are mutually independent if for any points xy, xs, . . . , x, and yy,

y2, Ce ey yn)
(3511) F(xh )’1’ X9, )’2, ey Xy, J’n) = F(xl’ yl)F(xﬁx )’2) e F(xn7 yn)

Note that in Definition 3.5.4 nothing is said about the independence or
nonindependence of X; and Y;. Definition 3.5.4 can be straightforwardly
generalized to trivariate random variables and so on or even to the case
where groups (terms inside parentheses) contain varying numbers of
random variables. We shall not state such generalizations here. Note also
that Definition 3.5.4 can be straightforwardly generalized to the case of
an infinite sequence of bivariate random variables.
Finally, we state without proof:

THEOREM 3.5.1 Let ¢ and \ be arbitrary functions. If a finite set of

random variables X, Y, Z, . . . are independent of another finite set of
random variables U, V, W, . . ., then ¢(X, Y, Z, . . .) is independent of
WU, V,W,...).

Just as we have defined conditional probability and conditional density,
we can define the conditional distribution function.

DEFINITION 3.5.5 Let X and Y be random variables and let S be a subset
of the (x, y) plane. Then the conditional distribution function of X given S,
denoted by F(x | S), is defined by

(3512) F(x|S) = P(X <x|(X,Y) €S).

Note that the conditional density f(x | §) defined in Definition 3.4.3 may
be derived by differentiating (3.5.12) with respect to x.

3.6 CHANGE OF VARIABLES

In this section we shall primarily study how to derive the probability
distribution of a random variable Y from that of another random variable
X when 'Y is given as a function, say ¢(X), of X. The problem is simple if
X and Y are discrete, as we saw in Section 3.2.1; here we shall assume that
they are continuous.
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We shall initially deal with monotonic functions (that is, either strictly
increasing or decreasing) and later consider other cases. We shall first
prove a theorem formally and then illustrate it by a diagram.

THEOREM 3.6.1 Let f(x) be the density of X and let Y = ¢(X), where ¢
is a monotonic differentiable function. Then the density g(y) of Y is given
by

¢!

(3.6.1) g = fl& '] - |

where ¢! is the inverse function of ¢. (Do not mistake it for 1 over ¢.)

Proof. We have
(362 P <y) = Pld(X) <yl
Suppose ¢ is increasing. Then we have from (3.6.2)
(363) P(Y <y =P[X <o '(y]

Denote the distribution functions of Y and X by G(+) and F(-), respectively.
Then (3.6.3) can be written as

(364  G(y) = F[o '(»].

Differentiating both sides of (3.6.4) with respect to y, we obtain

d¢

(365) g = fld67 O] -
Next, suppose ¢ is decreasing. Then we have from (3.6.2)
(366) P(Y <jy) =P[X>db (9],

which can be rewritten as

367 GO =1-F[d (]

Differentiating both sides of (3.6.7), we obtain

de

(3.6.8) gly) =

The theorem follows from (3.6.5) and (3.6.8). QO
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The term in absolute value on the right-hand side of (3.6.1) is called the

Jacobian of transformation.
Since ddfl/dy = (dd/dx) ", we can write (3.6.1) as

fx)

[dy/dx] (or, mnemonically, g(y)|dy| = f(x)|dx]),

(3.6.9) gy =

which is a more convenient formula than (3.6.1) in most cases. However,
since the right-hand side of (3.6.9) is still given as a function of x, one
must replace x with cb_l(y) to obtain the final answer.

EXAMPLE 3.6.1 Suppose f(x) = 1 for 0 < x < 1 and = 0 otherwise.
Assuming ¥ = X?, obtain the density g(y) of Y.
Since dy/dx = 2x, we have by (3.6.9)

(3.6.10) g(y) = % y  0<x<1.

But, since x = \G, we have from (3.6.10)

(3.611)  g(y) = 0<y<l

1
2y
It is a good idea to check for the accuracy of the result by examining that
the obtained function is indeed a density. The test will be passed in this
case, because (3.6.11) is clearly nonnegative and we have

(3.6.12) [1 2—1—dy = [y} =1.
0

The same result can be obtained by using the distribution function and
without using Theorem 3.6.1, as follows. We have

3618) G(y) = P(Y <y) = P(X*<y) = P(X <\y)

N 5
=Jyf(x)dx=Jydx=\/y—.
0 0
Therefore, differentiating (3.6.13) with respect to y, we obtain

1
3.6.14 = —.
( ) gy Ny
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«— )= 0(%)

(2)
v+ Ay Ay
b
y dx Ax
Ax x+ Ax

g0) 0 x /
f(x)—> ]— (1)

FIGURE 3.10 Change of variables: one-to-one case

This latter method is more lengthy, as it does not utilize the power of
Theorem 3.6.1. It has the advantage, however, of being more fundamental.

Figure 3.10 illustrates the result of Theorem 3.6.1. Since Y lies between
yand y + Ay if and only if X lies between x and x + Ax, shaded regions
(1) and (2) must have the same area. If Ax is small then Ay is also small,
and the area of (1) is approximately f(x)Ax and the area of (2) is approxi-
mately g(y)Ay. Therefore we have approximately

(3.6.15)  g(y)Ay = f(x)Ax.

But if Ax is small, we also have approximately

(3.616) Ay = Z—i’Ax.

From (3.6.15) and (3.6.16) we have

f0)
db/dx

(3617)  g(y) =
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Since we can make Ax arbitrarily small, (3.6.17) in fact holds exactly. In
this example we have considered an increasing function. It is clear that
we would need the absolute value of dd/dx if we were to consider a
decreasing function instead.

In the case of a nonmonotonic function, the formula of Theorem 3.6.1
will not work, but we can get the correct result if we understand the
process by which the formula is derived, either through the formal ap-
proach, using the distribution function, or through the graphic approach.
EXAMPLE 3.6.2 Given f(x) = %, —1 <x <1, and

Y=X if X =0,
=Xx* ifX <0,

find g(y).
We shall first employ a graphic approach. In Figure 3.11 we must have
area (3) = area (1) + area (2). Therefore

(3.6.18)  g(y)Ay= f(x))Ax; + f(x9)Axy = %Axl + %Axg.
Therefore

(3.6.19) gw=%— =-+-—, 0<y<l

Figure 3.11 is helpful even in a formal approach. We have
(3.620) P(Y <y) = P(xg < X < x1)
= P(—Vy <X <y)
=P(X<y) — P(X < —y).
Therefore
(3.621)  G(y) = F(y) — F(—y).

Differentiating (3.6.21) with respect to y, we get

1 1 1
(3.6.22) = + f(—Vy) — ==+ ,
g = fO) + f(—=Vy) 5 2

The result of Example 3.6.2 can be generalized and stated formally as
follows.

0<y<1.
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2 3) Ay

g0)..~"
- Ax, Ax,

-1

\ 4
A
f(x)

$

FIGURE 3.11 Change of variables: non-one-to-one case

THEOREM 3.6.2 Suppose the inverse of y = ¢(x) is multivalued and can

be written as

(3623) x =@, =12...,n,
Note that n, indicates the possibility that the number of values of x varies
with y. Then the density g(-) of Y is given by

< [yl
(3.624) gy = 3 LN
&Y Ewwwl

where f(-) is the density of X and ¢’ is the derivative of ¢.

So far we have studied the transformation of one random variable into
another. In the next three examples we shall show how to obtain the
density of a random variable which is a function of two other random
variables. We shall always use the method in which the distribution func-
tion is obtained first and then the density is obtained by differentiation.
Later in this section we shall discuss an alternative method, called the
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Jacobian method, which is a generalization of Theorem 3.6.1; but the pre-
sent method is more fundamental and will work even when the Jacobian
method fails.

EXAMPLE 3.6.3 Assume f(x,9) = lfor0<x<1l,0<y<land =0
otherwise. Calculate the density function g(z) of Z = max(X,Y).

For any z, the event (Z = z) is equivalent to the event (X = 2, Y = z);
hence, the probability of the two events is the same. Since X and Y are
independent, we have

(3625) P(Z=2) =P(X=<2P{Y <2
=2 0<z<l.

Since the density g(z) is the derivative of the distribution function, we
conclude that g(z) = 2z, 0 <z < 1.

EXAMPLE 3.6.4 Let X and Y have the joint density f(x, y) = 1 for 0 <x
< 1and 0 < y < 1. Obtain the density of Z defined by Z = Y/X.
See Figure 3.12. Let F() be the distribution function of Z. Then
(3.6.26) F(z) = P(Y/X <z) = P¥ <zX)
=areaA=§ for 0 < z<1,

=1—-—areaB=1—-—— forz=1.
2z

Differentiating (3.6.26) with respect to z, we get

for 0 <z<1,

N |~

(3.627)  f(2) =

1
27

forz = 1.

EXAMPLE 3.6.5 Assume again f(x,y) = 1for0 <x<1,0<y<1and
= 0 otherwise. Obtain the conditional density f(x |Y = 0.5 + X).

This problem was solved earlier, in Example 3.4.9, but here we shall
present an alternative solution using the distribution function. The pre-
sent solution is more complicated but serves as an exercise. Define Z =
Y — X — 0.5. Then we have
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Y

N

0 1 X

FIGURE 3.12 Illustration for Example 3.6.4

(3628) F(z|x)=P(Z<z|X=x)=P¥<z+x+0.5)

=z + x + 0.5, —05 —x<z<0b —x.
Therefore
(8629 f@zlx) =1 —-05-x<z<05-x O0<x<I.
Therefore, from (3.6.29) and the marginal density of X,
(36300 f(x,2) =1, —05-x<z<05-x O0<x<L

The domain of the joint density f(x, z) is indicated by the shaded region
in Figure 3.13. From (3.6.30) we get
(1/2)~z 1

(3631) f(») = J dx==—1z2, -
0 2

1
<z<=
=3

N |~

1 3 3 1
= dx=2+4z -——2<z<—2-
J—(l/?)—z 2 2 2

Therefore, from (3.6.30) and (3.6.31), we finally get
(3632) f(x|Y=05+X)=f(x|Z=0)=2 for0<x<0.5,

=0 otherwise.
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FIGURE 3.13 Domain of a joint density

Theorem 3.6.3 generalizes Theorem 3.6.1 to a linear transformation of a
bivariate random variable into another.

THEOREM 3.6.3 Let f(x, xo) be the joint density of a bivariate random
variable (X, X9} and let (Y3, Y5) be defined by a linear transformation
(8.6.33) Y1 = anXi + aioXo

Yo = agi Xy + a9eXos.
Suppose aj1a99 — ajea91 F 0 so that (3.6.33) can be solved for X; and X as
(3.6.34) X1 = biY1 + bt

Xo= baY1 + baola.
Then the joint density g(y, y2) of (¥}, Y9) is given by

S(b11y1 + braye, baryr b22}’2)’
|‘111022 - 012021|

(3.6.35) g0y, %) =

where the support of g, that is, the range of (y;, y2) over which g is positive,
must be appropriately determined.
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The absolute value |a;ja99 — a19a91| appearing on the right-hand side of
(3.6.35) is called the Jacobian of transformation. That this is needed can be
best understood by the following geometric consideration. Consider a
small rectangle on the X;-X, plane, where the coordinates of its four
corners—counterclockwise starting from the southwest corner—are given
by (Xj, Xp), (X1 + AXy, Xo), (X + AX), Xo + AXy), and (X3, X + AX)).
The linear mapping (3.6.33) maps this rectangle to a parallelogram on
the Y)-Y; plane, whose coordinates are given by (a;;X; + @39Xs, a1 X; +
aeXs), (an X1 + a1eXo + a11AXy, anXi + ageXs + ag1AXy), (a11X; + 19X
+ a1AX) + a19AXs, a9 X) + a99Xs + agAX; + ageAXy), and (a1 X; +
a19X9 + a19AXy, a5 X1 + ageX9 + agAXs). The area of the rectangle is
AX;AXj,, and if we suppose for simplicity that all the a’s are positive and
that ajja99 — aj9a91 > 0, then the area of the parallelogram must be
(a11a22 — a12a91)AX;AXo.

Chapter 11 shows that a;1a99 — a;9a9) is the determinant of the 2 X 2

matrix

an Gz

ag1 A2
By using matrix notation, Theorem 3.6.3 can be generalized to a linear
transformation of a general n-variate random variable into another.

EXAMPLE 3.6.6 Suppose f(x1,x3) = dxxgfor 0 = % =1l and 0 = x9 =
1. 1If
(3.6.36) Yl = X1 + 2X2
Yo =X — Xy,
what is the joint density of (¥}, Y9)?
Solving (3.6.36) for X; and X5, we obtain

1 2
_6' X = _ Y + — i

1 1
Xo ==V, — ~Vs.
2 gl g2

Inserting the appropriate numbers into (3.6.35), we immediately obtain

4
(3638) gy, yo) = 97 (n + 2y2) (51 — y)-
q
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Ya

__1_

FIGURE 3.14 Illustration for Example 3.6.6

Next we derive the support of g. Since 0 = x; = 1 and 0 = xy = 1, we
have from (3.6.37)

1 2
.6. 0=_Y +-Ys=1
(3.6.39) 3 1 3 9

Os—Yl—%YQS 1.

QO | Pt

Thus the support of g is given as the inside of the parallelogram in Figure
3.14.

3.7 JOINT DISTRIBUTION OF DISCRETE AND
CONTINUOUS RANDOM VARIABLES

In Section 3.2 we studied the joint distribution of discrete random vari-
ables and in Section 3.4 we studied the joint distribution of continuous
random variables. In some applications we need to understand the char-
acteristics of the joint distribution of a discrete and a continuous random
variable.

Let X be a continuous random variable with density f(x) and let ¥ be
a discrete random variable taking values y,, ¢ = 1, 2, . . . , n, with prob-
abilities P(y;). If we assume that X and Y are related to each other, the
best way to characterize the relationship seems to be to specify either the
conditional density f(x | y;) or the conditional probability P(y;| x). In this
section we ask two questions: (1) How are the four quantities f(x), P(y,),
f(x|y), and P(y]|x) related to one another? (2) Is there a bivariate
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function §(x, ;) such that P(a= X =h Y ES) = IS U, ;) dx, where
1 is a subset of integers (1, 2,...,n) and S = {y;| i €I}

Note that, like any other conditional density defined in Sections 3.3 and
3.4, f(x | y;) must satisfy

b
610 [ ferl = Pa= x=<5]¥ =)
for any a = b.
Since the conditional probability P(y;| x) involves the conditioning

event that happens with zero probability, we need to define it as the limit
of P(y;| x = X < x + €) as € goes to zero. Thus we have

(8.7.2) P(y;| x) = lir% PY =y|lx=X=x+¢)
€

. PA=yp,x=X=x+e¢)
= lim
€0 Px=X=x+e¢)

by Theorem 2.4.1

— P(x5X5x+€|Y=J’i)P(Y=)’i) by Theorem
- 2.4.1
€0 Px=X=x+¢) i

f“ﬂﬂwm-HY=m

=] by (8.7.1
20 f e fbdt yG7D
_ Sflx ’ ) P(y:)

by the mean value theorem,
JS)
which provides the answer to the first question.
Next consider

(373) FZﬂﬂwmmm

¢ier

=Y Pla=X=0b|Y=yP¥ =9y by (3.7.1)
el

=Y Pa=X=bhY=y) by Theorem 2.4.1
€1
=Pla=X=bhYEYS) by probability axiom (3),
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where S = {y;|i € I}. Thus flx | ) P(y;) plays the role of the bivariate
function §(x, y;) defined in the second question. Hence, by (3.7.2), so
does P(y:| x)f (x).

EXERCISES

1. (Section 3.2.3)
Let X, Y, and Z be binary random variables each taking two values, 1
or 0. Specify a joint distribution in such a way that the three variables
are pairwise independent but not mutually independent.

2. (Section 3.4.3)
Given the density f(x,9) = 2(x + 9), 0 <x <1, 0 < y <-x, calcluate
(a) P(X<05,Y <0.5).
(b) P(X <0.5).
(c) P(Y <0.5).

3. (Section 3.4.3)
Let X be the midterm score of a student and Y be his final exam
score. The score is scaled to range between 0 and 1, and grade A is
given to a score between 0.8 and 1. Suppose the density of X is given
by
fly =1, 0<x<1

and the conditional density of Y given X is given by
fiylx) =2 +2(1 —x)(1~—y), 0<x<I1, 0<y<l.

What is the probability that he will get an A on the final if he got an
A on the midterm?

4. (Section 3.4.3)
Let the joint density of (X, Y) be given by

fl,y =2, 0<x<I1 0<y<1-—-=x

(a) Calculate marginal density f(x).
(b) Calculate P(0 <Y < ¥,{ X = 0.5).

5. (Section 3.6)
Given f(x) = exp(—x), x > 0, find the density of the variable
(a) Y=2X + 1.
(b) ¥ =X
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(c) Y=1/X.
(d) Y =log X. (The symbol log refers to natural logarithm through-
out.)

(Section 3.6)
Let X have density f(x) = 0.5 for =1 < x < 1. Define Y by

Y=X+1 if0<Xx<1
=-2X if-1<X<0.
Obtain the density of Y.

(Section 3.6)
Assuming f(x,y) = 1,0 <x <1, 0 <y <1, obtain the density of Z
=X-Y.

(Section 3.6)

Suppose that U and V are independent with density f(t) = exp(—1),
¢t > 0. Find the conditional density of X given Y if X = Uand Y =
U+V.



4 MOMENTS

4.1 EXPECTED VALUE

We shall define the expected value of a random variable, first, for a
discrete random variable in Definition 4.1.1 and, second, for a continuous
random variable in Definition 4.1.2.

DEFINITION 4.1.1 Let X be a discrete random variable taking the value
x; with probability P(x;), ¢ = 1, 2, . . . . Then the expected value (expectation
or mean) of X, denoted by EX, is defined to be EX = = ,x,P(x;) if the
series converges absolutely. We can write EX = X, x,P(x;) + Z_xP(x;),
where in the first summation we sum for ¢ such that x; > 0 and in the
second summation we sum for ¢ such that x; < 0. If X, x,P(x;) = o and
2_x;P(x;) = —, we say EX does not exist. If £, = o and Z_ is finite, then
we say EX = oo If X_ = —o and X, is finite, then we say EX = —oo.

The expected value has an important practical meaning. If X is the
payoff of a gamble (that is, if you gain x; dollars with probability P(x;)),
the expected value signifies the amount you can expect to gain on the
average. For example, if a fair coin is tossed and we gain one dollar when
a head comes up and nothing when a tail comes up, the expected value
of this gainble 1s b0 cents. It means that if we repeat this gamble many
times we will gain 50 cents on the average. We can formalize this statement
as follows. Let X; be the payoff of a particular gamble made for the ith
time. Then the average gain from repeating this gamble »n times is
n” "I ,X;, and it converges to EX in probability. This is a consequence of
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Theorem 6.2.1. For the exact definition of convergence in probability, see
Definition 6.1.2.

The quantity n_IZ?lei is called the sample mean. (More exactly, it is
the sample mean based on a sample of size n.) EX is sometimes called the
population mean so that it may be distinguished from the sample mean. We
shall learn in Chapter 7 that the sample mean is a good estimator of the
population mean.

Coming back to the aforementioned gamble that pays one dollar when
a head comes up, we may say that the fair price of the gamble is 50 cents.
This does not mean, however, that everybody should pay exactly 50 cents
to play. How much this gamble is worth depends upon the subjective
evaluation of the risk involved. A risk taker may be willing to pay as much
as 90 cents to gamble, whereas a risk averter may pay only 10 cents. The
decision to gamble for ¢ cents or not can be thought of as choosing
between two random variables X; and Xy, where X; takes value 1 with
probability % and 0 with probability %, and Xy takes value ¢ with probability
1. More generally, decision making under uncertainty always means choos-
ing one out of a set of random variables X(d) that vary as d varies within
the decision set D. Here X (d) is the random gain (in dollars) that results
from choosing a decision d.

Choosing the value of 4 that maximizes E£X(d) may not necessarily be
a reasonable decision strategy. To illustrate this point, consider the follow-
ing example. A coin is tossed repeatedly until a head comes up, and 2i
dollars are paid if a head comes up for the first time in the ith toss. The
payoff of this gamble is represented by the random variable X that takes
the value 2’ with probability 2. Hence, by Definition 4.1.1, EX = . Obvi-
ously, however, nobody would pay c dollars for this gamble. This example
is called the “St. Petersburg Paradox,” because the Swiss mathematician
Daniel Bernoulli wrote about it while visiting St. Petersburg Academy.

One way to resolve this paradox is to note that what one should maxi-
mize is not EX itself but, rather, EU(X), where U denotes the utility
function. If, for example, the utility function is logarithmic, the real worth
of the St. Petersburg gamble is merely E log X = log 2 - Zr—i (%)’ = log 4,
the utility of gaining four dollars for certainty. By changing the utility
function, one can represent various degrees of risk-averseness. A good,
simple exposition of this and related topics can be found in Arrow (1965).

Not all the decision strategies can be regarded as the maximization of
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FIGURE 4.1 A positively skewed density

EU(X) for some U, however. For example, an extremely risk-averse person
may choose the d that maximizes minX (d), where minX means the mini-
mum possible value X can take. Such a person will not undertake the St.
Petersburg gamble for any price higher than two dollars. Such a strategy
is called the minimax strategy, because it means minimizing the maximum
loss (loss may be defined as negative gain). We can think of many other
strategies which may be regarded as reasonable by certain people in
certain situations.

DEFINITION 4.1.2 Let X be a continuous random variable with density
f(x). Then, the expected value of X, denoted by EX, is defined to be EX =
JZ« xf(x)dx if the integral is absolutely convergent. If [ o xf(x)dx = ©and
f(lm xf(x)ydx = —o, we say the expected value does not exist. If Io xf (x)dx
= oand [°,, xf (x)dx is finite, we write EX = o, If . xf (x)dx = —o and
Jo xf(x)dx is finite, we write EX = —oo,

Besides having an important practical meaning as the fair price of a
gamble, the expected value is a very important characteristic of a prob-
ability distribution, being a measure of its central location. The other
important measures of central location are mode and median. The mode
is a value of x for which f(x) is the maximum, and the median m is defined
by the equation P(X = m) = Y. If the density function f(x) is bell-shaped
and symmetric around x = W, then @ = EX = m = mode(X). If the density
is positively skewed as in Figure 4.1, then mode (X) < m < EX. The three
measures of central location are computed in the following examples.
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EXAMPLE 4.1.1 f(x) = 2x °for x > 1. Then EX = [} 2x %dx = 2. The
median 7 must satisfy % = T 2x%dx = —m~> + 1. Therefore m = V2.
The mode is clearly 1.

EXAMPLE 4.1.2 f(x) = x 2for x > 1. Then EX = [T x 'dx = . Since
Yo = [T x 2dx = —m ' + 1, we have m = 2. The mode is again 1. Note
that the density of Example 4.1.2 has a fatter tail (that is, the density
converges more slowly to 0 in the tail) than that of Example 4.1.1, which
has pushed both the mean and the median to the right, affecting the mean
much more than the median.

Theorems 4.1.1 and 4.1.2 show a simple way to calculate the expected
value of a function of a random variable.

THEOREM 4.1.1 Let X be a discrete random variable taking value x; with
probability P(x;),t =1, 2, ..., and let $(-) be an arbitrary function. Then

411)  ESX) = Y, d(x)P(x).
i=1

Proof. Define Y = ¢(X). Then Y takes value ¢(x;) with probability P(x;).
Therefore (4.1.1) follows from Definition 4.1.1. Q4

THEOREM 4.1.2 Let X be a continuous random variable with density f(x)
and let &(-) be a function for which the integral below can be defined.
Then

412)  Ed(X) = ﬁwd)(x)f(x)dx.

We shall not prove this theorem, because the proof involves a level of
analysis more advanced than that of this book. If &(-) is continuous,
differentiable, and monotonic, then the proof is an easy consequence of
approximation (3.6.15). LetY = ¢(X) and denote the density of Y by g(y).
Then we have

(413)  EY = J :0 yg(y)dy = lim Zyg(y)Ay = lim Zd(x)f (x)Ax

- f " b s,
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Theorem 4.1.1 can be easily generalized to the case of a random variable
obtained as a function of two other random variables.

THEOREM 4.1.3 Let (X, Y) be a bivariate discrete random variable taking
value (x; y;) with probability P(x;, y;), 4,7 = 1,2, ..., and let d(-, -) be an
arbitrary function. Then

414 EGX,Y) =, 3 dlx;, y)P(x; 5).
i=1 j=1

The following is a similar generalization of Theorem 4.1.2, which we
state without proof.

THEOREM 4.1.4 Let (X, Y) be a bivariate continuous random variable
with joint density function f(x, y), and let (-, ) be an arbitrary function.
Then

(4.1.5) Ed(X,Y) = j _ I oodl)(x, yf(x, y)dxdy.

Note that given f(x, y), E$(X) can be computed either directly from
(4.1.5) above or by first obtaining the marginal density f(x) by Theorem
3.4.1 and then using Theorem 4.1.2. The same value is obtained by either
procedure.

The following three theorems characterize the properties of operator
E. Although we have defined the expected value so far only for a discrete
or a continuous random variable, the following theorems are true for any
random variable, provided that the expected values exist.

THEOREM 4.1.5 If ais a constant, Ea = a.

THEOREM 4.1.6 If X and Y are random variables and o and B are
constants, E(aX + BY) = aEX + BEY.

THEOREM 4.1.7 If X and Y are independent random variables, EXY =
EXEY.

The proof of Theorem 4.1.5 is trivial. The proofs of Theorems 4.1.6 and
4.1.7when (X, Y) is either discrete or continuous follow easily from Defini-
tions 4.1.1 and 4.1.2 and Theorems 4.1.3 and 4.1.4.
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Theorem 4.1.7 is very useful. For example, let X and Y denote the face
numbers showing in two dice rolled independently. Then, since EX = EY
= 7/2, we have EXY = 49/4 by Theorem 4.1.7. Calculating EXY directly
from Definition 4.1.3 without using this theorem would be quite time-con-
suming.

Theorems 4.1.6 and 4.1.7 may be used to evaluate the expected value
of a mixture random variable which is partly discrete and partly continu-
ous. Let X be a discrete random variable taking value x; with probability
P(x),i=1,2,....LetY be a continuous random variable with density
f(». Let W be a binary random variable taking two values, 1 and 0, with
probability p and 1 — p, respectively, and, furthermore, assume that W is
independent of either X or Y. Define a new random variable Z = WX +
(1 — W)Y. Another way to define Z is to say that Z is equal to X with
probability p and equal to Y with probability 1 — p. A random variable
such as Z is called a mixture random variable. Using Theorems 4.1.6 and
4.1.7, we have EZ = EWEX + E(1 — W)EY. But since EW = p from
Definition 4.1.1, we get EZ = pEX + (1 — p)EY. We shall write a gener-
alization of this result as a theorem.

THEOREM 4.1.8 Let X be a mixture random variable taking discrete
value x;,,7 =1, 2, ..., n, with probability p; and a continuum of values in
interval [a, b] according to density f(x): that is, if [a, 8] D [xy, %0, P(x; =
X =x9) = [ f(x)dx. Then EX = X7 x;p; + I? xf (x)dx. (Note that we must
have Z1p; + [5 f(x)dx = 1.)

The following example from economics indicates another way in which
a mixture random variable may be generated and its mean calculated.

EXAMPLE 4.1.3 Suppose that in a given year an individual buys a car if
and only if his annual income is greater than 10 (ten thousand dollars)
and that if he does buy a car, the one he buys costs one-fifth of his income.
Assuming that his income is a continuous random variable with uniform
density defined over the interval [5, 15], compute the expected amount
of money he spends on a car.

Let X be his income and let Y be his expenditure on a car. Then Y is
related to X by
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(4.1.6) Y=0 if5 =X <10,
=§ if10 = X = 15.

Clearly, Y is a mixture random variable that takes 0 with probability ', and
a continuum of values in the interval [2, 3] according to the density f(y) =
Y%. Therefore, by Theorem 4.1.8, we have

1

1 3
4.1.7 EY =0 -—+ = dy=
( ) 2 2,[2))))

5.

4

Alternatively, EY may be obtained directly from Theorem 4.1.2 by taking
& to be a function defined in (4.1.6). Thus

o 1 (15
(418  EY = f " o = 5 J * bl

[ [ ]

1 15 5
- + — = — .
10 [O Lo5d’“} 1

4.2 HIGHER MOMENTS

As noted in Section 4.1, the expected value, or the mean, is a measure of
the central location of the probability distribution of a random variable.
Although it is probably the single most important measure of the charac-
teristics of a probability distribution, it alone cannot capture all of the
characteristics. For example, in the coin-tossing gamble of the previous
section, suppose one must choose between two random variables, X; and
Xy, when X is 1 or 0 with probability 0.5 for each value and X5 is 0.5 with
probability 1. Though the two random variables have the same mean, they
are obviously very different.

The characteristics of the probability distribution of random variable X
can be represented by a sequence of moments defined either as

(4.2.1) kth moment around zero = EXk
or

(4.2.2) kth moment around mean = E(X — EX)k.
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Knowing all the moments (either around zero or around the mean) for
k=1,2,...,is equivalent to knowing the probability distribution com-
pletely. The expected value (or the mean) is the first moment around
zero. Since either " or (x — EX)* is clearly a continuous function of x,
moments can be evaluated using the formulae in Theorems 4.1.1 and 4.1.2.

As we defined sample mean in the previous section, we can similarly
define the sample kth moment around zero. Let X1, Xo, . . ., X, be mutually
independent and identically distributed as X. Then, n =L X is the
sample kth moment around zero based on a sample of size n. Like the
sample mean, the sample kth moment converges to the population kth
moment in probability, as will be shown in Chapter 6.

Next to the mean, by far the most important moment is the second
moment around the mean, which is called the variance. Denoting the
variance of X by VX, we have

DEFINITION 4.2.1
VX = E(X — EX)?
= EX® — (EX)°.

The second equality in this definition can be easily proved by expanding
the squared term in the above and using Theorem 4.1.6. It gives a more
convenient formula than the first. It says that the variance is the mean of
the square minus the square of the mean. The square root of the variance
is called the standard deviation and is denoted by 0. (Therefore variance is
sometimes denoted by o instead of V.) From the definition it is clear that
VX = 0 for any random variable and that VX = 0 if and only if X = EX
with probability 1.

The variance measures the degree of dispersion of a probability distri-
bution. In the example of the coin-tossing gamble we have VX, = % and
VXs; = 0. (As can be deduced from the definition, the variance of any
constant is 0.) The following three examples indicate that the variance is
an effective measure of dispersion.

EXAMPLE 4.2.1
X =a  with probability %,
= —a with probability %
VX = EX* = o’.
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EXAMPLE 4.2.2 X has density f(x) = 1/(2a), —a <x < a.

3 2
g_ Lfo o, 1 |x| _ o
VX = EX 20LJ x“dx { } 3

EXAMPLE 4.2.3 (same as Example 4.1.1). X has density f(x) = 93,
1 <«

—2j x dx—2[10gx]1

S VX =,

Note that we previously obtained EX = 2, which shows that the variance
is more strongly affected by the fat tail.

Examples 4.2.4 and 4.2.5 illustrate the use of the second formula of
Definition 4.2.1 for computing the variance.

EXAMPLE 4.2.4 A die is loaded so that the probability of a given face
turning up is proportional to the number on that face. Calculate the mean
and variance for X, the face number showing.

We have, by Definition 4.1.1,

(4.2.3) EX——(1+4+9+16+25+36)—1—;’

Next, using Theorem 4.1.1,
(424  EX®= 2%(1 + 8+ 27 + 64 + 125 + 216) = 21.

Therefore, by Definition 4.2.1,

169 20
(4.2.5) VX =21 o ?

EXAMPLE 4.2.5 X has density f(x) = 2(1 —x) for0 <x <land =0
otherwise. Compute VX.
By Definition 4.1.2 we have

1 o 1
(4.2.6) EX=2J (x — x%)dx = - -
0 3

By Theorem 4.1.2 we have
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(427) EX?=2 j ' — e = %.
0

Therefore, by Definition 4.2.1,

1
4.2.8 VX = - —
(4.2.8) 6

1.
18

©| =

The following useful theorem is an easy consequence of the definition
of the variance.

THEOREM 4.2.1 If a and B are constants, we have

V(eX + B) = VX,

Note that Theorem 4.2.1 shows that adding a constant to a random
variable does not change its variance. This makes intuitive sense because
adding a constant changes only the central location of the probability
distribution and not its dispersion, of which the variance is a measure.

We shall seldom need to know any other moment, but we mention the
third moment around the mean. It is O if the probability distribution is
symmetric around the mean, positive if it is positively skewed as in Figure
4.1, and negative if it is negatively skewed as the mirror image of Figure
4.1 would be.

4.3 COVARIANCE AND CORRELATION

Covariance, denoted by Cov(X, Y) or oxy, is a measure of the relationship
between two random variables X and Y and is defined by

DEFINITION 4.3.1 Cov(X,Y) = E[(X — EX)(Y — EY)] = EXY — EXEY.

The second equality follows from expanding (X — EX) (Y — EY) as the
sum of four terms and then applying Theorem 4.1.6. Note that because
of Theorem 4.1.6 the covariance can be also written as E[(X — EX)Y] or
E[(Y — EY)X].

Let (X1,Y)), (X9, Y9), ..., (X, 7Y,) be mutually independent in the
sense of Definition 3.5.4 and identically distributed as (X,Y). Then we
define the sample covariance by n~'Zi=1(X; — X)(¥; — V), where X and ¥
are the sample means of X and ¥, respectively. Using the results of Chapter
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6, we can show that the sample covariance converges to the population
covariance in probability.

It is apparent from the definition that Cov > 0if X — EX and Y — EY
tend to have the same sign and that Cov < 0 if they tend to have the
opposite signs, which is illustrated by

EXAMPLE 4.3.1
(X,Y) =(,1) with probability a/2,
= (=1, —1) with probability o/2,
= (1, 1)  with probability (1 — a)/2,
= (—1,1)  with probability (1 — a)/2.
Since EX = EY = 0,

Cov(X,Y) =EXY =a— (1 —a) = 2a — 1.

Note that in this example Cov = 0 if a = %, which is the case of inde-
pendence between X and Y. More generally, we have

THEOREM 4.3.1 If X and Y are independent, Cov(X,Y) = 0 provided
that VX and VY exist.

The proof follows immediately from the second formula of Definition
4.3.1 and Theorem 4.1.7. The next example shows that the converse of
Theorem 4.3.1 is not necessarily true.

EXAMPLE 4.3.2 Let the joint probability distribution of (X, Y) be given
by

1 % Yo %
0 YNe 0 Yo
-1 % % %
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Clearly, X and Y are not independent by Theorem 3.2.1, but we have
Cov(X,Y) = EXY = 0.

Examples 4.3.3 and 4.3.4 illustrate the use of the second formula of
Definition 4.3.1 for computing the covariance.

EXAMPLE 4.3.3

N

Let the joint probability distribution of (X, ¥) be given by

-1 0
1| % % A
0| % % %
% %

where the marginal probabilities are also shown. We have EX = V5, EY = %,
and EXY = Y,. Therefore, by Definition 4.3.1, Cov(X, Y) = ¥, — %6 = Y.

EXAMPLE 4.3.4 Let the joint density be

fl,y) =x+y for0<x<1 and 0<y<]1,

=0 otherwise.
Calculate Cov(X, Y).
We have
1 1
f(x)=j (x+y)dy=x+§
0

1 9 X 7
= + = =

- EY = 12 by symmetry
EXY rf(2+2x)dd 2[1 %q jld 1
o JoFITY y 0 oI 3
1 49 1 ..
..Cov(X,Y)—g 14~ 14 by Definition 4.3.1.
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Theorem 4.3.2 gives a useful formula for computing the variance of the
sum or the difference of two random variables.

THEOREM 4.3.2 V(X *7Y) =VX + VY = 2 Cov(X, Y).

The proof follows immediately from the definitions of variance and co-
variance.

Combining Theorems 4.3.1 and 4.3.2, we can easily show that the
variance of the sum of independent random variables is equal to the sum
of the variances, which we state as

THEOREM 4.3.3 LetX;,i=1,2,...,n, be pairwise independent. Then

i=1 =1

It is clear from Theorem 4.3.2 that the conclusion of Theorem 4.3.3 holds
if we merely assume Cov(X;, X;) = 0 for every pair such that i # j. As an
application of Theorem 4.3.3, consider

EXAMPLE 4.3.5 There are five stocks, each of which sells for $100 per
share and has the same expected annual return per share, p, and the same
variance of return, o®. Assume that the returns from the five stocks are
pairwise independent. (a) If you buy ten shares of one stock, what will be
the mean and variance of the annual return on your portfolio? (b) What
if you buy two shares of each stock?

Let X; be the return per share from the ith stock. Then, (a) E(10X))
= 10 by Theorem 4.1.6, and V(10X;) = 1000” by Theorem 4.2.1. (b)
E(2 2.,X;) = 10u by Theorem 4.1.6, and V(2Z._,X,) = 200 by Theorem
4.2.1 and Theorem 4.3.3.

A weakness of covariance as a measure of relationship is that it depends
on the units with which X and Y are measured. For example, Cov(Income,
Consumption) is larger if both variables are measured in cents than in
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dollars. This weakness is remedied by considering correlation (coefficient),
defined by
DEFINITION 4.3.2

Cov(X,Y)

Correlation(X,Y) = ox - Oy

Correlation is often denoted by pxy or simply p. It is easy to prove

THEOREM 4.3.4 If a and B are nonzero constants,

Correlation(aX, BY) = Correlation (X, Y).
We also have
THEOREM 4.3.5 |p| = 1.
Proof. Since the expected value of a nonnegative random variable is
nonnegative, we have
(431)  E[(X — EX) — \(Y — EY)]*=0 for any .
Expanding the squared term, we have

(4.3.2) VX + A\WY — 2\ Cov = 0 for any A.
y

In particular, putting A = Cov/VY into the left-hand side of (4.3.2), we
obtain the Cauchy-Schwartz inequality

_ Cov®

= 0.
% 0

(4.3.3) VX

The theorem follows immediately from (4.3.3). Q

If p = 0, we say X and Y are uncorrelated. If p > 0 (p < 0), we say X
and Y are positively (negatively) correlated.

We next consider the problem of finding the best predictor of one
random variable, Y, among all the possible linear functions of another
random variable, X. This problem has a bearing on the correlation co-
efficient because the proportion of the variance of Y that is explained
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by the best linear predictor based on X turns out to be equal to the square
of the correlation coefficient between Y and X, as we shall see below.

We shall interpret the word best in the sense of minimizing the mean
squared error of prediction. The problem can be mathematically formu-
lated as

(4.3.4) Minimize E(Y — o — BX)2 with respect to o and 3.

We shall solve this problem by calculus. Expanding the squared term, we
can write the minimand, denoted by S, as

4.35) S =EY? + o® + B’EX® — 2aEY — 2BEXY + 20BEX.

Equating the derivatives to zero, we obtain

(4.3.6) 9 _ 200 — 2EY + 2BEX =0
and
S 0
(4.3.7) % 2BEX? — 2EXY + 20EX = 0.

Solving (4.3.6) and (4.3.7) simultaneously for o and B and denoting the
optimal values by o* and B*, we get

Cov(X,Y)
4.3, * o= 2 0
(4.3.8) B VX
and
Cov(X,Y)
* — _
(4.3.9) o EY VX EX.

Thus we have proved

THEOREM 4.3.6 The best linear predictor (or more exactly, the minimum
mean-squared-error linear predictor) of Y based on X is given by o* +
B*X, where a* and B* are defined by (4.3.8) and (4.3.9).

Next we shall ask what proportion of VY is explained by a* + 3*X and
what proportion is left unexplained. Define Y = o* + B*X and U =Y —
Y. The latter will be called either the prediction error or the residual. We
have
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(43100 VP =(@*WX by Theorem 4.2.1

Cov(X, 2
JVX—Y)_ by (4.3.8)

= p’VY by Definition 4.3.2.
We have
(4311) VU =V(¥ — a* — B*X)
= VY + (B*)*’VX — 2B* Cov(X,Y) by Theorem 4.3.2

Cov(X, Y)?
=Vy - — 2 4.3.
VX by (4.3.8)
= (1 - pHVY by Definition 4.3.2.

We call VU the mean squared prediction error of the best linear predictor. We
also have

(4312) Cov(¥,U) = Cov(¥,Y — ¥)
= Cov(Y,Y) — V¥ by Definition 4.3.1
= B*Cov(X,Y) — VI by Definition 4.3.1
=40 by (4.3.8) and (4.3.10).

Combining (4.3.10), (4.3.11), and (4.3.12), we can say that any random
variable Y can be written as the sum of the two parts—the part which is
expressed as a linear function of another random variable X (namely, )
and the part which is uncorrelated with X (namely, U); a p* proportion
of the variance of ¥ is attributable to the first part anda 1 — p* proportion
to the second part. This result suggests that the correlation coefficient is
a measure of the degree of a linear relationship between a pair of random
variables.

As a further illustration of the point that p is a measure of linear
dependence, consider Example 4.3.1 again. Since VX = VY = 1 in that
example, p = 2a — 1. When a = 1, there is an exact linear relationship
between X and Y with a positive slope. When a = 0, there is an exact
linear relationship with a negative slope. When a = Y%, the degree of linear
dependence is at the minimum.
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A nonlinear dependence may imply a very small value of p. Suppose
that there is an exact nonlinear relationship between X and Y defined by
Y = X% and also suppose that X has a symmetric density around EX = 0.
Then Cov(X, Y) = EXY = EX’ = 0. Therefore p = 0. This may be thought
of as another example where no correlation does not imply indepen-
dence. In the next section we shall obtain the best predictor and compare
it with the best linear predictor.

4.4 CONDITIONAL MEAN AND VARIANCE

In Chapters 2 and 3 we noted that conditional probability and conditional
density satisfy all the requirements for probability and density. Therefore,
we can define the conditional mean in a way similar to that of Definitions
4.1.1 and 4.1.2, using the conditional probability defined in Section 3.2.2
and the various types of conditional densities defined in Section 3.3.2 and
3.4.3. Here we shall give two definitions: one for the discrete bivariate
random variables and the other concerning the conditional density given
in Theorem 3.4.3.

DEFINITION 4.4.1 Let (X,Y) be a bivariate discrete random variable
taking values (x;9,), 4, j = 1,2, ... . Let P(y]-| X) be the conditional
probability of ¥ = y, given X. Let &(-, ) be an arbitrary function. Then
the conditional mean of &(X,Y) given X, denoted by E[$(X,Y) | X] or by
Eyxd(X,Y), is defined by

(44l Egd(X,Y) = X &(X, 3)P0; | X).

j=1
DEFINITION 4.4.2 Let (X, Y) be a bivariate continuous random variable
with conditional density f(y | x). Let (-, -) be an arbitrary function. Then
the conditional mean of ¢(X,Y) given X is defined by

(442  Eyxd(X,Y) = f :¢(X, Nf(y| X)dy.

The conditional mean Eyxb(X,Y) is a function only of X. It may be
evaluated at a particular value that X assumes, or it may be regarded as a
random variable, being a function of the random variable X. If we treat
it as a random variable, we can take a further expectation of it using the
probability distribution of X. The following theorem shows what happens.
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THEOREM 4.4.1 (law of iterated means) E((X,Y) = ExEyxd(X,Y).
(The symbol Ey indicates that the expectation is taken treating X as a
random variable.)

Proof. We shall prove it only for the case of continuous random vari-
ables; the proof is easier for the case of discrete random variables.

(443) Ed(X,Y) = r

—o0

J:od)(x’ »f(x, y)dxdy.
B f : f :¢<x, Nf | %)f (x)dady.

_ J : U:d)(x, WO x)dy:l fx)dx.

= EXEYIXd)(X; Y). Q
The following theorem is sometimes useful in computing variance. It
says that the variance is equal to the mean of the conditional variance plus
the variance of the conditional mean.

THEOREM 4.4.2

(444) VO(X,Y) = ExVyxd (X, Y) + ViEyxd(X, Y).

Proof. Since
(4.4.5) Vyxd = E}'|xd>2 - (EY|X¢)2,
we have
(4.4.6) ExVyxd = Ed? — EX(EY[X¢)2-
But we have
(4.4.7) VxEpxd = EX(EY|X¢’)2 — (E$)™.
Therefore, by adding both sides of (4.4.6) and (4.4.7),
(448)  ExVyxd + VxByxd = BS* — (E)* = V4. Q

The following examples show the advantage of using the right-hand side
of (4.4.3) and (4.4.4) in computing the unconditional mean and variance.
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EXAMPLE 4.4.1 Suppose f(x) = 1 for 0 < x < 1 and = 0 otherwise and

f(y]%) = x7' for 0 < y < x and = 0 otherwise. Calculate EY.
This problem may be solved in two ways. First, use Theorem 4.4.1:

E(le)=ﬁ%dy=g

1
ExE(Y | X) = Ex gj -1

Second, use Definition 4.1.2:
1
[y =fOlof@="> 0<x<1, 0<y<x
11
f(y)=j S =logy 0<y<L
9

1 15 1] 1
EY = | (=ylogy)dy=—|5ylogy— 2y |=~"
JO( y log y)dy [Qy °g 4yL 7

EXAMPLE 4.4.2 The marginal density of X is given by f(x) = 1,0 <x <
1. The conditional probability of Y given X is given by

PY=1|X=1x =x

PY=0|X=x=1—x
Find EY and VY.

EY = ExEy|XY = EXX =

No| —

VY = VxEy|XY + Evale
=VyX + Ex(X — X?)
= ExX — (ExX)* = i :

The result obtained in Example 4.4.2 can be alternatively obtained
using the result of Section 3.7, as follows. We have
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(4.4.9) PY=1)=PFr=10<X<1)
=PO<X<1l|Y=DPY=1)

- L’) fG|Y = 1P = 1)dx

1

PY =1|x)f(x)dx by (3.7.2)

(=}

-

xdx

o

1

]

Therefore the mean and variance of ¥ can be shown to be the same as
obtained above, using the definition of the mean and the variance of a
discrete random variable which takes on either 1 or 0.

In the previous section we solved the problem of optimally predicting
Y by a linear function of X. Here we shall consider the problem of
optimally predicting ¥ by a general function of X. The problem can be
mathematically formulated as

(4.4.10)  Minimize E[Y — d)(X)]2 with respect to ¢.

Despite the apparent complexity of the problem, there is a simple solu-
tion. We have

(4411)  E[Y — $(X)1* = E{(IY - EY | X)] + [E(Y | X) — &(X)]P
= E[Y — E(Y | X)]* + E[E(Y | X) — $(X)1%,
where the cross-product has dropped out because
EyxllY — E(Y | X)IE(Y | X) — $(X)]) = 0.
Therefore (4.4.11) is clearly minimized by choosing $(X) = E(Y | X).

Thus we have proved

THEOREM 4.4.3 The best predictor (or more exactly, the minimum mean-
squared-error predictor) of ¥ based on X is given by E(Y | X).
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In the next example we shall compare the best predictor with the best
linear predictor.

EXAMPLE 4.4.3 A fair die is rolled. Let ¥ be the face number showing.
Define X by the rule

X =Y ifYiseven,
=0 ifY is odd.

Find the best predictor and the best linear predictor of Y based on X.
The following table gives E(Y | X).

X 0 2 4 6
EY|X) 3 2 4 6

To compute the best linear predictor, we must first compute the moments
that appear on the right-hand sides of (4.3.8) and (4.3.9): EY = 7/2, EX
= 2, EX® = EXY = 28/3, EY* = 91/6, VX = 16/3, VY = 35/12, Cov =
7/3. Therefore

o* =21/8, B*=17/16.
Put ¥ = (21/8) + (7/16)X. Thus we have

X 0 2 4 6

Y 2625 35 4375 525

where the values taken by Y and X are indicated by empty circles in Figure
4.2.

We shall compute the mean squared error of prediction for each pre-
dictor:

EY — V)2 =VY — Cov®/VX = 35/12 — 49/48
=91/48 =1.9.
E[Y — E(Y|X)]2 =(1/6) -4+ (1/6) -4 =4/3 = 1.3.
EXAMPLE 4.4.4 Let the joint probability distribution of X and Y be given

as follows: P(X = 1,Y = 1) = P;; = 0.3, P(X = 1,Y = 0) = P}y = 0.2,
P(X=0,Y=1)=Py =02 P(X=0Y=0) =Py = 0.8. Obtain the
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¥ E(Y|X)

Y 6 o

—

5 e
]

0 1 2 3 4 5 6 X

FIGURE 4.2 Comparison of best predictor and best linear predictor

best predictor and the best linear predictor of Y as functions of X and
calculate the mean squared prediction error of each predictor.
We have

EY|X =1) = Pu/(Pu+ Py
and
EX |X = 0) = Pot/(Po1 + Pop).
Both equations can be combined into one as
(4412)  E(Y|X) = [P1/ (P11 + P19)1X + [Po1/(Po1 + Poo)1(1 — X),

which is a linear function of X. This result shows that the best predictor
is identical with the best linear predictor, but as an illustration we shall
obtain two predictors separately.

Best predictor. From (4.4.12) we readily obtain E(Y | X) = 0.4 + 0.2X.
Its mean squared prediction error (MSPE) can be calculated as follows:
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(4.418) MSPE = E[Y — E(Y | X)]*
= ExEyx[Y* + E(Y | X)* — 2VE(Y | X)]
= EY* - Ex[E(Y | X)*]
=05 —0.26 = 0.24.
Best linear predictor. The moments of X and Y can be calculated as
follows: EX = EY = 0.5, VX = VY = 0.25, and Cov(X, Y) = 0.05. Inserting

these values into equations (4.3.8) and (4.3.9) yields B* = 0.2 and a* =
0.4. From (4.3.11) we obtain

Cov(X, Y)2

= 0.24.
VX 0.2

(4414) MSPE = VY —

EXERCISES

1. (Section 4.1)
A station is served by two independent bus lines going to the same
destination. In the first line buses come at a regular interval of five
minutes, and in the second line ten minutes. You get on the first bus
that comes. What is the expected waiting time?

2. (Section 4.2)
Let the probability distribution of (X, Y) be given by

Y
X 1 2

1| % %
2 |'% %
Find V(X | Y).

3. (Section 4.2)
Let X be the number of tosses required until a head comes up.
Compute EX and VX assuming the probability of heads is equal to p.

4. (Section 4.2) _
Let the density of X be given by
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10.

4 | Moments

flx) =x for0<x<1,
=2 —x for]l <x<2,
=0 otherwise.
Calculate VX.

(Section 4.3)
Let the probability distribution of (X, ¥) be given by

Y
X 1 0
L% %
0% %

(a) Show that X + ¥ and X — (20/19)Y are uncorrelated.
(b) Are X + Y and X — (20/19)Y independent?

(Section 4.3)
Let (X, Y) have joint density f(x,y) =x + yfor 0 <x < land 0 <
y < 1. Compute Cov(X, Y).

(Section 4.3)
Let (X, Y) have joint density f(x,y) = 2for0 <x <land 0 <y <
x. Compute VX and Cov(X, Y).

(Section 4.3)
Let EX = EY = 0, VX = VY = 2, and Cov(X, Y) = 1. Determine «
and f so that V(aX + BY) = 1 and Cov(aX + BY, X) = 0.

(Section 4.3)
Suppose X and ¥ are independent with EX =1, VX = 1, EY = 2, and
VY = 1. Define Z = X + Y and W = XY. Calculate Cov(Z, W).

(Section 4.4)

Let X, Y, and Z be random variables, each of which takes only two
values: 1 and 0. Given P(X = 1) = 0.5, P(Y = 1| X = 1) = 0.6,
PY=1|X=0)=04,P(Z=1|Y=1)=07,P(Z=1|Y=0) =
0.3, find EZ and E(Z | X = 1). Assume that the probability distribu-
tion of Y depends only on X and that of Z only on Y.
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12.

13.

14.

15.

16.

17.
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(Section 4.4)

Let X = 1 with probability p and 0 with probability 1 — p. Let the
conditional density of ¥ given X = 1 be uniform over 0 <y <1 and
given X = 0 be uniform over 0 < y < 2. Obtain Cov(X, 7).

(Section 4.4)
Let f(x,y) = 1for 0 <x <1and 0 <y < 1. Obtain E(X | X <Y).

(Section 4.4)
With the same density as in Exercise 6, obtain E(X |Y = X + 0.5).

(Section 4.4-Prediction)
Let the joint probability distribution of X and Y be given by

Y
X 2 1 0

2 02 01 0

1 01 02 01

0 0 01 02

Obtain the best predictor and the best linear predictor of Y as func-
tions of X and calculate the mean squared prediction error for each
predictor.

(Section 4.4—Prediction)
Suppose EX = EY = 0, VX = VY = 1, and Cov(X,Y) = 0.5. If we
define Z = X + Y, find the best linear predictor of Y based on Z.

(Section 4.4-Prediction)

Give an example in which X can be used to predict Y perfectly, but
Y is of no value in predicting X. Supply your own definition of the
phrase “no value in predicting X.”

(Section 4.4-Prediction)
Let X be uniformly distributed over [0, 1] and for some ¢ in (0, 1)
define

Y=1 ifX=gc
=0 ifX <ec.
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18.

19.

4 | Moments

Find the best predictor of X given Y, denoted X and compare the
variances V(X) and V(U), where U = X — X.

(Section 4.4-Prediction)

Suppose U and V are independent with exponential distribution with
parameter A. (T is exponentially distributed with parameter \ if its
density is given by A exp(—A\¢) for £ > 0.) Define X =U + Vand Y
= UV. Find the best predictor and the best linear predictor of Y given
X.

(Section 4.4—Prediction)

Suppose that X and Y are independent, each distributed as B(1, p).
(See Section 5.1 for the definition.)Find the best predictor and the
best linear predictor of X + Y given X — Y. Compute their respective
mean squared prediction errors and directly compare them.



5 BINOMIAL AND NORMAL
RANDOM VARIABLES

5.1 BINOMIAL RANDOM VARIABLES

Let X be the number of successes in n independent trials of some experi-
ment whose outcome is “success” or “failure” when the probability of
success in each trial is p. Such a random variable often appears in practice
(for example, the number of heads in 7 tosses) and is called a binomial
random variable. More formally we state

DEFINITION 5.1.1 Let{Y}, ¢ =1, 2,...,n, be mutually independent
with the probability distribution given by
(5.1.1) Y; =1 with probability p
= 0 with probability 1 — p = 4.
Then the random variable X defined by

(5.1.2) X=>Y
i=1
is called a binomial random variable. Symbolically we write X ~ B(n, p).

Note that ¥; defined in (5.1.1) is distributed as B(1, p), which is called
a binary or Bernoulli random variable.

THEOREM 5.1.1 For the binomial random variable X we have

(5.1.3) PX =k = C;:pkqn—k,
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(5.14)  EX = np,
and
(5.15) VX = npq.

Proof. The probability that the first £ trials are successes and the remain-
ing n — k trials are failures is equal to p*q"~* Since k successes can occur
in any of Cj combinations with an equal probability, we must multiply the

above probability by Cj to give formula (5.1.3). Using (5.1.2), the mean
and variance of X can be obtained by the following steps:

(5.1.6) EY;=»p for every i
(5.1.7) EY,2 =p for every i

(5.1.8) VY, = p — [)2 = pq for every i

(5.1.9) EX = Z EY;= np by Theorem 4.1.6

i=1
(51100 VX =Y VY; = npg by Theorem 4.3.3. Q
i=1

Note that the above derivation of the mean and variance is much
simpler than the direct derivation using (5.1.3). For example, in the direct
derivation we must compute

EX = Y, kCiphq" ™~

k=1

EXAMPLE 5.1.1 Let X be the number of heads in five tosses of a fair
coin. Obtain the probability distribution of X and calculate EX and VX.

In this example we have n = 5 and p = 0.5. Therefore by (5.1.3) we
have

k. 5k 5
(5.1.11) P(X=Fk)=C; [2] (2) 39
Evaluating (5.1.11) for each k, we have
(5.112) P(X =0) = P(X =5) =0.03125
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P(X=1)=PX =4 =0.15625
P(X=2)=P(X =3) =0.3125.
Using (5.1.4) and (5.1.5), we have EX = 2.5 and VX = 1.25.

5.2 NORMAL RANDOM VARIABLES

The normal distribution is by far the most important continuous distribu-
tion used in statistics. Many reasons for its importance will become appar-
ent as we study its properties below. We should mention that the binomial
random variable X defined in Definition 5.1.1 is approximately normally
distributed when n is large. This is a special case of the so-called central
limit theorem, which we shall discuss in Chapter 6. Examples of the
normal approximation of binomial are given in Section 6.3.

DEFINITION 5.2.1 The normal density is given by

_ 2
(5.2.1) f(x)=V2_chexp|:_%( UP«) } —o < x <o, g>0.

When X has the above density, we write symbolically X ~ N (., o).

We can verify [Z. f(x)dx = 1 for all p and all positive o by a rather
complicated procedure using polar coordinates. See, for example, Hoel
(1984, p. 78). The direct evaluation of a general integral [ Z f(x)ydx is
difficult because the normal density does not have an indefinite integral.
Such an integral may be approximately evaluated from a normal prob-
ability table or by a computer program based on a numerical method,
however.

The normal density is completely characterized by two parameters, W
and . We have

THEOREM 5.2.1 Let X be N(p, 02). Then EX = pand VX = o’

Proof. We have

2
- _1 _1{x—p
(5.2.2) EX —J_mmcxexp[ 2( e ) }dx
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x = P
g

- r o (02 + p) exp(—%*/2)dz by putting z =

= % rimz exp(—z2/2)dz + Jiw\/;_ﬂ exp(—z2/2)dz.
But we have
(5.2.3) r z exp(—z2/2)dz = - [exp(—z2/2)]°foo =0
and

(5.2.4) ro 1 exp(—z2/2)dz =1,
—®N2%

because the integrand in (5.2.4) is the density of N(0, 1). Therefore, from
(6.2.2), (5.2.3), and (5.2.4), we have EX = p. Next we have

2
SRR SN LA lix—n
(5.2.5) VX \lg_ng_m(x R) exp[— 2( P ] }dx

x— p
g

J 2 exp(— 2/2)dz by putting z =

2

\/2_ [z exp(— z/2)] ot O J'_m[_ exp(—22/2)dz

using integration by parts

=¢2 Q

From (5.2.1) it is clear that f(x) is symmetric and bell-shaped around
. EX = p follows directly from this fact. To study the effect of o on the
shape of f(x), observe

1
(5.2.6) = ——=>
S ==
which shows that the larger o is, the flatter f(x) is.
Theorem 5.2.2 shows an important property of a normal random vari-
able: a linear function of a normal random variable is again normal.
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THEOREM 5.2.2 Let X be N(p, 0'2) and let Y = o + BX. Then we have
Y ~ N(a + By, Bo%).

Proof. Using Theorem 3.6.1, the density g(y) of Y is given by

1 1 (y—a—BpY
(5.2.7) gly) = \/Q_ﬂ““ﬂo' exp[_ 2—82 [%) :I .

Therefore, by Definition 5.2.1, ¥ ~ N(a + Bp, %0?). QO

A useful corollary of Theorem 5.2.2 is that if X is N(, 02), then Z =
(X — w)/ois N(0, 1), which is called the standard normalrandom variable.
We will often need to evaluate the probability P(x; < X < x;) when X is
N(w, 0'2). Defining Z in the above way, we have

(5.28) P(x; < X < xg) = P[’“l = M<Z<"2;”‘].

The right-hand side of (5.2.8) can be evaluated from the probability table
of the standard normal distribution.

EXAMPLE 5.2.1 Assuming X ~ N(10, 4), calculate P(4 < X < 8).

(5.2.9) P(4<X<8)=P[4_210<X_10<8_IO]

2 2
=P(-3<Z<-1) whereZ ~ N(0,1)
=P(Z<-1) —P(Z<-3)
= 0.1587 — 0.0013

from the standard normal table
= 0.1574.
Sometimes the problem specifies a probability and asks one to deter-

mine the variance, as in the following example.

EXAMPLE 5.2.2 Assume that the life in hours of a light bulb is normally
distributed with mean 100. If it is required that the life should exceed 80
with at least 0.9 probability, what is the largest value that o can have?
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Let X be the life of a light bulb. Then X ~ N(100, 02). We must
determine o so as to satisfy

(5.210) P(X > 80) > 0.9.
Defining Z = (X — 100) /o, (5.2.10) is equivalent to

(5.2.11) P[Z > _TQOJ > 0.9.

From the standard normal table we see that
(5.212)  P(Z > —1.28) = 0.8997.
From (5.2.11) and (5.2.12) we conclude that we must have o < 15.6.

5.3 BIVARIATE NORMAL RANDOM VARIABLES

DEFINITION 5.3.1 The bivariate normal density is defined by

2
1 1 X — by

5.3.1 y) = _
B3 ) o T eXp{ 2<1—p2>[( x ]

Lo

THEOREM 5.3.1 Let (X, Y) have the density (5.3.1). Then the marginal
densities f(x) and f(y) and the conditional densities f(y | x) and f(x | y)
are univariate normal densities, and we have EX = py, VX = cr‘;z(, EY =
wy, VY = 0}2/, Correlation (X, Y) = p, and finally

o
(632  E¥|X)=p+pg X -0 VI[X) =il - ).
Proof. The joint density f(x, y) can be rewritten as

1
(5.33)  f(x,9) = V2w oN1—pt
Y

1 Oy 2
exp —5012/(1—_&){)’* wy =P, (6~ Mx)i|
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: 1 ex —L(x— )2
am oy Pl gel " MK
=fo f1,

where f; is the density of N(ux, ci) and fo is the density of N[py +
poyoy (% — px), oo(1 — p2)]. All the assertions of the theorem follow
from (5.3.3) without much difficulty. We have

(5634  f(x) = j:f2f1 dy

=f1 J : fody because f; does not depend on y

=fi because f9is a normal density.

Therefore we immediately see X ~ N(jx, o%). By symmetry we have ¥ ~
N(py, 0)2/). Next we have

[y _ fafa
%) i
Therefore we can conclude that the conditional distribution of Y given

X = xis N[py + poyox'(x — px), oo(1 — p?)]. All that is left to show is
that Correlation (X, Y) = p. We have by Theorem 4.4.1

(635  f(ylx = = fa.

(5.3.6) EXY = ExE(XY | X) = Ex[XE(Y | X)]
= Ex[Xpy + poyox X (X — px)]
= Mxpy T pOYCx.
Therefore Cov(X, Y) = poyox; hence Correlation(X, Y) = p. O
In the above discussion we have given the bivariate normal density
(5.3.1) as a definition and then derived its various properties in Theorem
5.3.1. We can also prove that (5.3.1) is indeed the only function of x and

y that possesses these properties. The next theorem shows a very important
property of the bivariate normal distribution.

THEOREM 5.3.2 If X and Y are bivariate normal and « and 8 are con-
stants, then aX + BY is normal.
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Proof. Because of Theorem 5.2.2, we need to prove the theorem only
for the case that § = 1. Define W = aX + Y. Then we have

(5.37) PW <t)= r f—”f(x, y)dydx

- J " [ f ol x)dy:| f()dx.

Differentiating both sides of (5.3.7) with respect to ¢ and denoting the
density of W by g(), we have

(5.3.8) g@) = J:Q f(@ — ox | x) f(x)dx

> 1 [_ 1
a J—«N?fn'cry\ll — p2? enp{ 2051 — p?)

Oy 2
[t_ Qpy — Hy_(PU—X"‘ Oij(x_ MX):I }
1 1 2
: S
Vom oy eXp{ 9gT " T ) } *

If we define (0%)? = a’0% + o + 2apoxoy and p* = (poy + aoy)/ob,
we can rewrite (5.3.8) as

(5.3.9) gty = Jw 1 exp {— 1
= NomoiV1 — (p*)? 20921 — (p%)°]

0';'5 2
t_aHX_HY_P*U—X(x_Hx)

1 1 9
o o exp I:—T._i(x— wx) :|dx
\ X
Ej_oofgfldx.

But clearly f3 is the density of N[apx + py + p*(o}/0ox)(x — px),
(0$)*(1 — p**)] and f, is that of N(ux,o%), as before. We conclude,
therefore, using Theorem 5.3.1 and equation (5.3.1), that g(¢) is a normal
density. O
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It is important to note that the conclusion of Theorem 5.3.2 does not
necessarily follow if we merely assume that each of X and Y is univariately
normal. See Ferguson (1967, p. 111) for an example of a pair of univariate
normal random variables which are jointly not normal.

By applying Theorem 5.3.2 repeatedly, we can easily prove that a linear
combination of nvariate normal random variables is normal. In particular,
we have

THEOREM 5.3.3 Let{X},i=1,2,...,n, be pairwise independent and
identically distributed as N(p, 7). Then X = (1/n)X-,X; is N(w, o°/n).

The following is another important property of the bivariate normal
distribution.

THEOREM 5.3.4 If X andY are bivariate normal and Cov(X, Y) = 0, then
X and Y are independent.

Proof. If we put p = 0 in (5.3.1), we immediately see that f(x, y) =
f(x)f(y). Therefore X and Y are independent by Definition 3.4.6. QO

Note that the expression for E(Y | X) obtained in (5.3.2) is precisely the
best linear predictor of ¥ based on X, which was obtained in Theorem
4.3.6. Since we showed in Theorem 4.4.3 that E(Y | X) is the best predictor
of Y based on X, the best predictor and the best linear predictor coincide
in the case of the normal distribution—another interesting feature of
normality.

In the preceding discussion we proved (5.3.2) before we proved Theo-
rems 5.3.2 and 5.3.4. It may be worthwhile to point out that (5.3.2) follows
readily from Theorems 5.3.2 and 5.3.4 and equations (4.3.10), (4.3.11),
and (4.3.12). Recall that these three equations imply that for any pair of
random variables X and Y there exists a random variable Z such that

1]
(53100 Y= py+p &—)’% (X — py) + oyZ,
EZ=0,VZ=1—- pz, and Cov(X, Z) = 0. If, in addition, X and Y are

bivariate normal, Z is also normal because of Theorem 5.3.2. Therefore
Z and X are independent because of Theorem 5.3.4, which implies that
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E(Z|X)=EZ=0andV(Z| X) =VZ =1 — p>. Therefore, taking the con-
ditional mean and variance of both sides of (5.3.10), we arrive at (5.3.2).

Conversely, however, the linearity of E(Y | X) does not imply the joint
normality of X and Y, as Example 4.4.4 shows. Examples 4.4.1 and 4.4.2
also indicate the same point. The following two examples are applications
of Theorems 5.3.1 and 5.3.3, respectively.

EXAMPLE 5.3.1 Suppose X and Y are distributed jointly normal with EX
=1, EY = 2, VX = VY = 14, and the correlation coefficient p = Y.
Calculate P(22 <Y < 3.2| X = 3).

Using (5.3.2) we have

E(Y|X)=2+%(X—1)
EY|X=38) =3

V(Y|X)=%[1 —ijzi-

Therefore, Y given X = 3 is N(3, ¥4). Defining Z ~ N(0, 1), we have
P(22<Y<382|X=3)=P(-16<Z<04)
=P(Z<04) — P(Z<-1.6)
= (0.6554 — 0.0548 = 0.6006.

EXAMPLE 5.3.2 Ifyou wish to estimate the mean of a normal population
whose variance is 9, how large a sample should you take so that the
probability is at least 0.8 that your estimate will not be in error by more
than 0.5?

Put X; ~ N(p, 9). Then, by Theorem 5.3.3,

%,-1yx N[ 9]
n_% i ”ﬂﬁ .
i=1

We want to choose 7n so that

P(X, — u| < 0.5) > 0.8.

Defining the standard normal Z = Vn (X, — p)/3, the inequality above is
equivalent to
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P[|Z| < 0'5\/;} > 0.8,

3

which implies n > 59.13. Therefore, the answer is 60.

5.4 MULTIVARIATE NORMAL RANDOM VARIABLES

In this section we present results on multivariate normal variables in
matrix notation. The student unfamiliar with matrix analysis should read
Chapter 11 before this section. The results of this section will not be used
directly until Section 9.7 and Chapters 12 and 13.

Let x be an n-dimensional column vector with Ex = p and Vx = 3.
(Throughout this section, a matrix is denoted by a boldface capital letter
and a vector by a boldface lowercase letter.) We write their elements
explicitly as follows:

X1 M1 011 012 Tin
X9 g T2 O O2n
X = ’ = 3 E =
Xn Wy Opn1 On2 O-nnJ
Note that g;; = Cov(x;, xj), i, j=1,2,...,n and, in particular, o; = Vx,,
1=1,2,..., n We sometimes write cri2 for o;;.

DEFINITION 5.4.1 We say x is multivariate normal with mean p and
variance-covariance matrix %, denoted N(p, %), if its density is given by

(5.4.1) f(x) = (271')_"/2|2|_1/Qexp [— % x—-p)'3S (x - u)} .

The reader should verify that in the case of n = 2, the above density is
reduced to the bivariate density (5.3.1).

Now we state without proof generalizations of Theorems 5.3.1, 5.3.2,
and 5.3.4.
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THEOREM 5.4.1 Letx ~ N(p, X) and partition X' = (y', z'), where y is
h-dimensional and z is k-dimensional such that A + k = n. Partition %
conformably as

s = [211 212:|’
o1 g
where 2%, = Vy = E[(y — Ey)(y — Ey)'], 290 = Vz = E[(z — Ez)(z —
Ez)'], 315 = E[(y — Ey) (z — Ez)'], and %y, = (25)'. Then any subvector
of x, such asy or z, is multivariate normal, and the conditional distribution
of y given z (similarly for z given y) is multivariate normal with

E(y|2z) = Ey + 315(3g) ' (z — Ez)
and

Vi(y l z) =3 — 212(222)_1221-

THEOREM 5.4.2 Let x ~ N(j, ) and let A be an m X n matrix of
constants such that m =< n and the rows of A are linearly independent.
Then Ax ~ N(Ap, ASA').

THEOREM 5.4.3 Suppose x ~ N(p, 2) and let y and z be defined as in
Theorem 5.4.1. If 315 = 0, y and z are independent. That is to say, f(x) =
fy)f(z), where f(y) and f(z) are the multivariate densities of y and z,
respectively.

EXERCISES

1. (Section 5.1)
Five fair dice are rolled once. Let X be the number of aces that turn
up. Compute EX, VX, and P(X = 4).

2. (Section 5.2)
Suppose X, Y, and W are mutually independent and distributed as
X~N(1,4),Y ~ N(2,9),W ~ B(l, 0.5). Calculate P(U < 5) where
U=WX+ (1 -W)Y.

3. (Section 5.2)
let X =SandY =T + TSQ, where § and T are independent and
distributed as N(0, 1) and N(1, 1), respectively. Find the best predic-
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tor and the best linear predictor of ¥ given X and calculate their
respective mean squared prediction errors.

. (Section 5.3)
Suppose U and V are independent and each is distributed as N (0, 1).
Define X and Y by

Y=X-1-U,
X=2Yyr-3-V.
Obtain E(Y | X) and V(Y | X).

. (Section 5.3)

Let (X;,Y;) be i.id. (independent and identically distributed) draw-
ings from bivariate normal random variables with EX = 1, EY = 2,
VX =4, VY = 9, and Cov(X,Y) = 2.75. Define X = %2,X,/36 and
¥ = x2,v,;/36. Calculate P(Y > 3 — 2X).

. (Section b.3)

Suppose (X,Y) ~ BN(0, 0, 1, 1, p), meaning that X and Y are bivari-
ate normal with zero means and unit variances and correlation p.
Find the best predictor and the best linear predictor of Y? given X
and find their respective mean squared prediction errors.



6 LARGE SAMPLE THEORY

We have already alluded to results in large sample theory without stating
them in exact terms. In Chapter 1 we mentioned that the empirical
frequency r/n, where r is the number of heads in n tosses of a coin,
converges to the probability of heads; in Chapter 4, that a sample mean
converges to the population mean; and in Chapter 5, that the binomial
variable is approximately distributed as a normal variable. The first two
are examples of a law of large numbers, and the third, an example of a
central limit theorem. In this chapter we shall make the notions of these
convergences more precise. Most of the theorems will be stated without
proofs. For the proofs the reader should consult, for example, Rao (1973),
Chung (1974), Serfling (1980), or Amemiya (1985).

6.1 MODES OF CONVERGENCE
Let us first review the definition of the convergence of a sequence of real

numbers.

DEFINITION 6.1.1 A sequence of real numbers {o,}, n = 1,2, ..., is said
to converge to a real number a if for any € > 0 there exists an integer N
such that for all » > N we have

(6.1.1) o, — af < e.

We write a, —> a as n — © or lim,_,, &, = a {n — © will be omitted if it
is obvious from the context).
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Now we want to generalize Definition 6.1.1 to a sequence of random
variables. If a, were a random variable, we could not have (6.1.1) exactly,
because it would be sometimes true and sometimes false. We could only
talk about the probability of (6.1.1) being true. This suggests that we
should modify the definition in such a way that the conclusion states that
(6.1.1) holds with a probability approaching 1 as n goes to infinity. Thus
we have

DEFINITION 6.1.2 (convergence in probability). A sequence of ran-
dom variables {X,}, n =1, 2, .. ., is said to converge to a random variable
X in probability if for any € > 0 and 8 > 0 there exists an integer N such
that for all n > N we have P(|X, — X|< €) > 1 — 5. We write X, 5 X as
n — © or plim, X, = X. The last equality reads “the probability limit of
X, is X.” (Alternatively, the if clause may be paraphrased as follows: if
lim P(|X, — X| <€) = 1 for any € > 0.)

Unlike the case of the convergence of a sequence of constants, for which
only one mode of convergence is sufficient, we need two other modes of
convergence, convergence in mean square and convergence in distribution, for
a sequence of random variables. There is still another mode of conver-
gence, almost sure convergence, but we will not use it here. A definition can
be found in any of the aforementioned books.

DEFINITION 6.1.3 (convergence in mean square) A sequence {X,} is
said to converge to X in mean square if lim,_., E(X, — X)2 = (. We write

x, 5 x.

DEFINITION 6.1.4 (convergence in distribution) A sequence {X,} is
said to converge to X in distribution if the distribution function F, of X,
converges to the distribution function F of X at every continuity point of
F. We write X, 4 X, and we call F the Lmit distribution of {X,}. If {X,} and
{¥,} have the same limit distribution, we write X, = Y.

The following two theorems state that convergence in mean square
implies convergence in probability, which, in turn, implies convergence
in distribution.
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THEOREM 6.1.1 (Chebyshev) X, > X =X, > X .
THEOREM 6.1.2 X, 5> X = X, 5 X.

Theorem 6.1.1 is deduced from the following inequality due to Chebyshev,
which is useful on its own:

Eg(X,
(612)  Plg(X,) =] = —5(2—),

€
where g(-) is any nonnegative continuous function. To prove Theorem
6.1.1, take g(x) to be x% and take X, of (6.1.2) to be X,, — X. Chebyshev’s
inequality follows from the simple result:

(613)  Eg(X,) = me g(x)fn(®)dx = € J . £ ax)d,

where f,(x) is the density function of X, and § = {x | gx) = €°}. Here we
have assumed the existence of the density for simplicity, but inequality
(6.1.2) is true for any sequence of random variables, provided that Eg(X,)
exists. The following two theorems are very useful in proving the conver-
gence of a sequence of functions of random variables.

THEOREM 6.1.3 LetX, be avector of random variables with a fixed finite

number of elements. Let g be a function continuous at a constant vector
- P P

point &. Then X, - a = g(X,) > g(a).

THEOREM 6.1.4 (Slutsky) If X, > X and Y, > a, then
G X, +Y,5X+aq,
(i) X,Y, > oX,
(i) (X,/Y,) > X/a, provided o # 0.

We state without proof the following generalization of the Slutsky theo-
rem. Suppose that g is a continuous function except for finite disconti-
nuities, plimY;, = a;,7=1,2,...,J,and {X;,},i = 1,2, ..., K, converge
jointly to {X;} in distribution. Then the limit distribution of g(Xi,, Xo,,
-« s Xk Y1 Yo, - - ., ¥pp) is the same as the distribution of g(Xi, Xo,
.. Xg, a3, ag, . . ., o). Here the joint convergence of {X;,} to {X}} is an
important necessary condition.
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6.2 LAWS OF LARGE NUMBERS AND
CENTRAL LIMIT THEOREMS

Given a sequence of random variables {X;}, i = 1, 2, . . ., define X, =
n'E1X;. A law of large numbers (LLN) specifies the conditions under
which X, — EX, converges to 0 in probability. This law is sometimes
referred to as a weak law of large numbers to distinguish it from a strong
law of large numbers, which concerns the almost sure convergence. We
do not use the strong law of convergence, however, and therefore the
distinction is unnecessary here.

In many applications the simplest way to show X, — EX,, 5 0is to show
X, — EX, 5 0 and then to apply Theorem 6.1.1 (Chebyshev). In certain
situations it will be easier to apply

THEOREM 6.2.1 (Khinchine) Let {X;} be independent and identically
distributed (i.i.d.) with EX; = . Then X, RN .

Note that the conclusion of Theorem 6.2.1 can be obtained from a
different set of assumptions on {X;} if we use Theorem 6.1.1 (Chebyshev).
For example, if {X;} are uncorrelated with EX; = w and VX, = o, then
X, 5 w; therefore, by Theorem 6.1.1, X, LA™

Now we ask the question, what is an approximate distribution of X,
when 7 is large? Suppose a law of large numbers holds for a sequence {X;}
so that X,, — EX,, 25 0. It follows from Theorem 6.1.2 that X, — EX, 50.
It is an uninteresting limit distribution, however, because it is degenerate.
It is more meaningful to inquire into the limit distribution of Z, =
(VX)) V%X, — EX,). For if the limit distribution of Z, exists, it should
be nondegenerate, because VZ, = 1 for all n. A central limit theorem
(CLT) specifies the conditions under which Z, converges in distribution
to a standard normal random variable. We shall write Z, — N (0, 1). More
precisely, it means the following: if F, is the distribution function of Z,,

6.21)  lim F,() = f \/21_ exp(—x%/2)dx.
n—0 —®© T

We shall state two central limit theorems—Lindeberg-Lévy and Liapounov.

THEOREM 6.2.2 (Lindeberg-Lévy) Let {X,} be i.i.d. with EX; = p and
VX, = ¢*. Then Z, — N(0, 1).
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THEOREM 6.2.3 (Liapounov) Let {X;} be independent with EX; = w,
VX, = o}, and E(|X; — ) = ms;. If

then Z, - N(0, 1).

These two CLTs are complementary: the assumptions of one are more
restrictive in some respects and less restrictive in other respects than those
of the other. Both are special cases of the most general CLT, which is due
to Lindeberg and Feller. We shall not use it in this book, however, because
its condition is more difficult to verify.

In the terminology of Definition 6.1.4, central limit theorems provide
conditions under which the limit distribution of Z, = (VX,) Y*(X, —
EX,) is N(0, 1). We now introduce the term asymptotic distribution, which
means the “approximate distribution when 7 is large.” Given the mathe-
matical result Z, > N (0, 1), we shall make statements such as “the asymp-
totic distribution of Z, is N(0, 1)” (written as Z, AN (0, 1)) or “the
asymptotic distribution of X,is N(EX,, VX,).” This last statement may also
be stated as “X,, is asymptotically normal with the asymptotic mean EX, and
the asymptotic variance VX,.” These statements should be regarded merely
as more intuitive paraphrases of the result Z, 5N (0, 1). Note thatitwould
be meaningless to say that “the limit distribution of X, is N(EX,, VX,).”

6.3 NORMAL APPROXIMATION OF BINOMIAL

Here we shall consider in detail the normal approximation of a binomial
variable as an application of the Lindeberg-Lévy CLT (Theorem 6.2.2). In
Definition 5.1.1 we defined a binomial variable X as a sum of i.i.d. Ber-
noulli variables {Y}}: that is, X = X_¥,, where ¥; = 1 with probability p
and = 0 with probability ¢ =1 — p. Since {Y,} satisfy the conditions of the
Lindeberg-Lévy CLT, with EY; = p and VY; = pg, we can conclude

X/m—p 4

(6.3.1) oy S N(O, 1).
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0 1 2 3 4 5

FIGURE 6.1 Normal approximation of B(5,0.5)

As we stated in the last paragraph of Section 6.2, we may replace 5
above by ~. Or we may state alternatively that X/n ~ N (p, pg/n) or that
X~ (np, npg). We shall consider three examples of a normal approxima-
tion of a binomial.

EXAMPLE 6.3.1 Let X be as defined in Example 5.1.1. Since EX = 2.5
and VX = 1.25 in this case, we shall approximate binomial X by normal
X* ~ N(2.5, 1.25). The density function f(x) of N(2.5, 1.25) is, after some
rounding off,

6.32)  f(x) = 2#8 exp[—(x — 2.5)%/2.5].

Using (5.1.12) and (6.3.2), we draw the probability step function of bi-
nomial X and the density function of normal X* in Figure 6.1. The figure
suggests that P(X = 1) should be approximated by P(0.5 < X* < 1.5),
P(X = 2) by P(1.5 < X* < 25), and so on. As for P(X = 0), it may be
approximated either by P(X* < 0.5) or P(—0.5 < X* < 0.5). The same
is true of P(X = b). The former seems preferable, however, because it
makes the sum of the approximate probabilities equal to unity. The true
probabilities and their approximations are given in Table 6.1.

EXAMPLE 6.3.2 Change the above example to p = 0.2. Then EX =1
and VX = 0.8. The results are summarized in Table 6.2 and Figure 6.2.

EXAMPLE 6.3.3 If 5% of the labor force is unemployed, what is the
probability that one finds three or more unemployed workers among
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TABLE 6.1 Normal approximation of B(5, 0.5)

X Probability Approximation
Oorb 0.03125 0.0367
lor4 0.15625 0.1500
2or3 0.31250 0.3133

TABLE 6.2 Normal approximation of B(5, 0.2)

k P(X =k) Approximation
0 0.3277 0.2877

1 0.4096 0.4246

2 0.2048 0.2412

3 0.0512 0.0439

4 0.0064

5 0.000S} 0.0026

N\

0 1 2 3 4 5

FIGURE 6.2 Normal approximation of B(5,0.2)
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twelve randomly chosen workers? What if 50% of the labor force is unem-
ployed?

Let X be the number of unemployed workers among twelve workers.
Then X ~ B(12, p), where we first assume p = 0.05. We first calculate the
exact probability:

(6.3.3) PX=3)=1-PX=0—-PX=1)—PX=2)

1_212_12i EH_%_I_?EIO
20 20 /1 20 20)120

= 0.02.

I

Next, approximating X by X* ~ N (0.6, 0.57), we have

* —
(6.3.4) P(X = 3)= P(X*>2.5) = P[X 0.6 < 2.5 O.GJ

N0.57 N0.57

= P(Z > 2.52) = 0.0059,

where Z is N(0, 1). This is a poor approximation.
Next, put p = 0.5. Then the exact probability is given by

12
1 12 1 1 12

(6.3.5) PX=3)=1- (5) —12 (§J — 66 (5) = 0.9807,

and the approximation using X* ~ N (6, 3) yields
(6.3.6) P(X = 3) = P(X* > 25) = P(Z > —2.02) = 0.9783,

which is a good approximation.

6.4 EXAMPLES

We shall give further examples of applications of the convergence theo-
rems of Section 6.1 and 6.2. There will be more applications in Chapter
7, as well.

EXAMPLE 6.4.1 Let {X;} be independent with EX; = u, VX, = (r?. Under
what conditions on cr? and {X;} does X = X" ,X,/n converge to p in
probability?
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We can answer this question by using either Theorem 6.1.1 (Chebyshev)
or Theorem 6.2.1 (Khinchine). In the first case, note E(X — p)? = VX
= n_QZ?ZIO'? . The required condition, therefore, is that this last quantity
should converge to 0 as n goes to infinity. In the second case, we should
assume that {X;} are identically distributed in addition to being inde-
pendent.

EXAMPLE 6.4.2 In Example 6.4.1, assume further that E{X; — p|* = ms.
Under what conditions on 0,2 does (X — w)/VVX converge to N(0, 1)?
The condition of Theorem 6.2.3 (Liapounov) in this case becomes

-1/2
(ms)"? lim n*/® [Z a?] = 0.

n- i=1
A sufficient condition to ensure this is

n
. —9/3 2
lim n~ ¥ 2 o; = ®,
n— i=1

EXAMPLE 6.4.3 Let {X,} beii.d. with a finite mean p and a finite variance
o®. Prove that the sample variance, defined as $2 = n_lZZ‘lel-Q - X
converges to o’ in probability.

By Khinchine’s LLN (Theorem 6.2.1) we have plim, s« n_lEZ’:lXiQ =
EX? and plim, e X = . Because Si is clearly a continuous function of

n_IZ;‘:lX? and X, the desired result follows from Theorem 6.1.3.

EXAMPLE 6.4.4 Let {X;} be i.i.d. with EX; = px ¥ 0 and VX = crf( and
let {Y,} be ii.d. with EY; = pyand VY, = crf,. Assume that {X;} and {Y;} are
independent of each other. Obtain the asymptotic distribution of ¥/X.

By Theorem 6.2.1 (Khinchine), X - wx and ¥ 5 px. Therefore, by
Theorem 6.1.3, ¥/X 5 py/myx. The next step is to find an appropriate
normalization of (¥/X — uy/px) to make it converge to a proper random
variable. For this purpose note the identity

7wy bx( oy - X )

6.4.1
( ) Mx X}.LX

Then we can readily see that the numerator will converge to a normal
variable with an appropriate normalization and the denominator will
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converge to (p,x)2 in probability, so that we can use (iii) of Theorem 6.1.4
(Slutsky). Define W; = pxY; — uyX;. Then {W,} satisfies the conditions of
Theorem 6.2.2 (Lindeberg-Lévy). Therefore

642  Z,=n 05" Y, (W, — EW) - N(0, 1),
=1

where 0‘24; = p,icfz + pﬁoi. Using (iti) of Theorem 6.1.4 (Slutsky), we

obtain from (6.4.1) and (6.4.2)

(6.4.3) Vn

Ow

Zn —4
=5 Ppx = NO, px).

Y W

X Mx

We therefore conclude

Y by o
6.44) — AN (—Y—W :
X 4

EXERCISES

1. (Section 6.1)
Give an example of a sequence of random variables which converges
to a constant in probability but not in mean square and an example
of a sequence of random variables which converges in distribution
but not in probability.

2. (Section 6.1)
Prove that if a sequence of random variables converges to a constant
in distribution, it converges to the same constant in probability.

3. (Section 6.2)
Let {X, Y}, i=1,2,..., n, be Li.d. with the common mean p > 0
and common variance o> and define X = n_lEZL]Xi and ¥ =
n_lZfL:lYi. Assume that {X;} and {Y;} are independent. Assume also
that ¥; > 0 for all <. Obtain the probability limit and the asymptotic
distribution of X + log ¥. At each step of the derivation, indicate
clearly which theorems of Chapter 6 are used.

4. (Section 6.3)
It is known that 5% of a daily output of machines are defective. What
is the probability that a sample of 10 contains 2 or more defective
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machines? Solve this exercise both by using the binomial distribution
and by using the normal approximation.

(Section 6.3)

There is a coin which produces heads with an unknown probability
p. How many times should we throw this coin if the proportion of
heads is to lie within 0.05 of p with probability at least 0.9?

(Section 6.4)

Let {X;} be as in Example 6.4.4. Obtain the asymptotic distribution of
@) X

(b) 1/X.

(c) exp(X).

(Section 6.4)

Suppose X has a Poisson distribution P(X = k) = ()\ke_x) /k! Derive the
probability limit and the asymptotic distribution of the estimator

_ -1+\1+4z,
2 b

>

based on a sample of size n, where Z, = n_IZELIX?. Note that EX =
VX = Nand V(X?) = 4\% + 607 + \.

(Section 6.4)

Let {X;} be independent with EX = p and VX = o®. What more
assumptions on {X,} are needed in order for & =3(X, - X%¥nto
converge to o’in probability? What more assumptions are needed for
its asymptotic normality?

(Section 6.4)
Suppose {X;} are ii.d. with EX = 0 and VX = g% < o,
(a) Obtain

plim 771 Y (X; + Xi41).
n—o® i=1
(b) Obtain the limit distribution of

n” 2 2 (X; + Xiv1)-

i=1
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10. (Section 6.4)

11.

Let {X,, Y;} be i.i.d. with the means px and py, the variances oi and
oy, and the covariance oxy. Derive the asymptotic distribution of

i
]

X+Y
Explain carefully each step of the derivation and at each step indicate

what convergence theorems you have used. If a theorem has a well-
known name, you may simply refer to it. Otherwise, describe it.

(Section 6.4)

Suppose X ~ N[exp(af), 1] and ¥ ~ N[exp(a), 1], independent of
each other. Let {X,, Y}, i = 1,2, ..., n be iid. observations on
(X,Y), and define X = n 271X, and ¥ = n 'ZX,Y,. We are to
estimate B by 8 = logX/logY. Prove the consistency of f (see Defini-
tion 7.2.5, p. 132) and derive its asymptotic distribution.
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Chapters 7 and 8 are both concerned with estimation: Chapter 7 with
point estimation and Chapter 8 with interval estimation. The goal of point
estimation is to obtain a single-valued estimate of a parameter in question;
the goal of interval estimation is to determine the degree of confidence
we can attach to the statement that the true value of a parameter lies
within a given interval. For example, suppose we want to estimate the
probability (p) of heads on a given coin toss on the basis of five heads in
ten tosses. Guessing p to be 0.5 is an act of point estimation. We can never
be perfectly sure that the true value of p is 0.5, however. At most we can
say that p lies within an interval, say, (0.3, 0.7), with a particular degree of
confidence. This is an act of interval estimation.

In this chapter we discuss estimation from the standpoint of classical
statistics. The Bayesian method, in which point estimation and interval
estimation are more closely connected, will be discussed in Chapter 8.

7.1 WHAT IS AN ESTIMATOR?

In Chapter 1 we stated that statistics is the science of estimating the
probability distribution of a random variable on the basis of repeated
observations drawn from the same random variable. If we denote the
random variable in question by X, the n repeated observations in mathe-
matical terms mean a sequence of n mutually independent random vari-
ables X1, Xo, . . ., X,,, each of which has the same distribution as X. (We
say that {X,} are i.i.d.)

For example, suppose we want to estimate the probability (p) of heads
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for a given coin. We can define X = 1 if a head appears and = 0 if a tail
appears. Then X; represents the outcome of the ith toss of the same coin.
If X is the height of a male Stanford student, X; is the height of the ith
student randomly chosen.

We call the basic random variable X, whose probability distribution we
wish to estimate, the population, and we call (X;, Xo, ..., X,) a sample of
size n. Note that (X, X, . . . , X,,) are random variables before we observe
them. Once we observe them, they become a sequence of numbers, such
as (1,1,0,0,1,...) or (5.9,6.2,6.0,5.8, .. .). These observed values will
be denoted by lowercase letters (xj, xo, . . . , x,). They are also referred to
by the same name, sample.

7.1.1 Sample Moments

In Chapter 4 we defined population moments of various kinds. Here we
shall define the corresponding sample moments. Sample moments are
“natural” estimators of the corresponding population moments. We define

Sample mean

M

XEl Xi'
n

1

i
Sample variance

5 2 K- 0=y 3 xE - (0

n

M:

S5 =

Ir

i=1

Sample kth moment around zero

M=

1
=Y x*
n

)
—

i

Sample kth moment around the mean

S|

> & - Xk
=1

If(X,Y),i=1,2,...,n are mutually independent in the sense of
Definition 3.5.4 and have the same distribution as (X, Y), we call {(X,, Y,)}
a bivariate sample of size # on a bivariate population (X, Y). We define
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Sample covariance

1< _ I o
72 X=X (- 1) = X XY, - XY
i=1

i=1
Sample correlation

Sample Covariance
SxSy

The observed values of the sample moments are also called by the same
names. They are defined by replacing the capital letters in the definitions
above by the corresponding lowercase letters. The observed values of the

sample mean and the sample variance are denoted, respectively, by ¥ and

sk

The following way of representing the observed values of the sample
moments is instructive. Let (xy, x9, . . . , %,) be the observed values of a
sample and define a discrete random variable X* such that P(X* = x;) =
1/n,i=1,2,..., n We shall call X* the empirical image of X and its
probability distribution the empirical distribution of X. Note that X* is always
discrete, regardless of the type of X. Then the moments of X* are the
observed values of the sample moments of X.

We have mentioned that sample moments are “natural” estimators of
population moments. Are they good estimators? This question cannot be
answered precisely until we define the term “good” in Section 7.2. But let
us concentrate on the sample mean and see what we can ascertain about
its properties.

(1) Using Theorem 4.1.6, we know that EX = EX, which means that
the population mean is close to a “center” of the distribution of
the sample mean.

(2) Suppose that VX = a? is finite. Then, using Theorem 4.3.3, we
know that VX = ¢°/n, which shows that the degree of dispersion
of the distribution of the sample mean around the population
mean is inversely proportional to the sample size n.

(3) Using Theorem 6.2.1 (Khinchine’s law of large numbers), we
know that plim, X = EX. If VX is finite, the same result also
follows from (1) and (2) above because of Theorem 6.1.1
(Chebyshev).
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On the basis of these results, we can say that the sample mean is a “good”
estimator of the population mean, using the term “good” in its loose
everyday meaning.

7.1.2 Estimators in General

We may sometimes want to estimate a parameter of a distribution other
than a moment. An example is the probability (p;) that the ace will turn
up in a roll of a die. A “natural” estimator in this case is the ratio of the
number of times the ace appears in 7 rolls to n—denote it by ;. In
general, we estimate a parameter 6 by some function of the sample.
Mathematically we express it as

(711 8 =Xy, Xy, ..., X).

We call any function of a sample by the name statistic. Thus an estimator is
a statistic used to estimate a parameter. Note that an estimator is a random
variable. Its observed value is called an estimate.

The p; just defined can be expressed as a function of the sample. Let
X, be the outcome of the ith roll of a die and define Y; = 1if X; = 1 and
Y; = 0 otherwise. Then [Jl = (1/m)Z;=,Y;. Since Y; is a function of X; (that
is, Y, is uniquely determined when X; is determined), [31 is a function of
X1, Xg, . . ., X,. In Section 7.3 we shall learn that p; is a maximum
likelihood estimator.

We stated above that the parameter p; is not a moment. We shall show
that it is in fact a function of moments. Consider the following six iden-
tities:

6
(712)  EX'=Yj*, k=0,1,2,...,5
j=1
where p; = P(X =j),j=1,2,...,6. When k = 0, (7.1.2) reduces to the
identity which states that the sum of the probabilities is unity, and the
remaining five identitiesfor k = 1, 2, . . . , 5 are the definitions of the first

five moments around zero. We can solve these six equations for the six
unknowns {p;} and express each p; as a function of the five moments. If
we replace these five moments with their corresponding sample moments,
we obtain estimators of {p;}. This method of obtaining estimators is known
as the method of moments. Although, as in this case, the method of moments
estimator sometimes coincides with the maximum likelihood estimator, it
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is in general not as good as the maximum likelihood estimator, because
it does not use the information contained in the higher moments.

7.1.3 Nonparametric Estimation
In parametric estimation we can use two methods.

(1) Distribution-specific method. In the distribution-specific method, the
distribution is assumed to belong to a class of functions that are
characterized by a fixed and finite number of parameters—for
example, normal—and these parameters are estimated.

(2) Distribution-free method. In the distribution-free method, the
distribution is not specified and the first few moments are
estimated.

In nonparametric estimation we attempt to estimate the probability
distribution itself. The estimation of a probability distribution is simple
for a discrete random variable taking a few number of values but poses
problems for a continuous random variable. For example, suppose we
want to estimate the density of the height of a Stanford male student,
assuming that it is zero outside the interval [4, 7]. We must divide this
interval into 3/d small intervals with length d and then estimate the
ordinate of the density function over each of the small intervals by the
number of students whose height falls into that interval divided by the
sample size n. The difficulty of this approach is characterized by a di-
lemma: if 4 is large, the approximation of a density by a probability step
function cannot be good, but if 4 is small, many intervals will contain only
a small number of observations unless n is very large. Nonparametric
estimation for a continuous random variable is therefore useful only when
the sample size is very large. In this book we shall discuss only parametric
estimation. The reader who wishes to study nonparametric density estima-
tion should consult Silverman (1986).

7.2 PROPERTIES OF ESTIMATORS

7.2.1 Ranking Estimators

Inherent problems exist in ranking estimators, as illustrated by the follow-
ing example.
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p=0 p=7% p=1 p=1

1/ 38 9
16 | 8 16
0
o 5 1 o0 3 1 0 % 1 0 % 1
S
w

FIGURE 7.1 Probability step functions of estimators

EXAMPLE 7.2.1

Population: X = 1 with probability p,
= 0 with probability 1 — p.

Sample: (X, Xo).

Estimators: T = (X; + X9)/2
S = X]
W = Y.

In Figure 7.1 we show the probability step functions of the three estimators
for four different values of the parameter p.

This example shows two kinds of ambiguities which arise when we try
to rank the three estimators.
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(1) For a particular value of the parameter, say, p = %, it is not clear
which of the three estimators is preferred.

(2) T dominates W for p = 0, but W dominates T for p = Y%.

These ambiguities are due to the inherent nature of the problem and
should not be lightly dealt with. But because we usually must choose one
estimator over the others, we shall have to find some way to get around
the ambiguities.

7.2.2 Various Measures of Closeness

The ambiguity of the first kind is resolved once we decide on a measure
of closeness between the estimator and the parameter. There are many
reasonable measures of closeness, however, and it is not easy to choose a
particular one. In this section we shall consider six measures of closeness
and establish relationships among them. In the following discussion we
shall denote two competing estimators by X and Y and the parameter by
0. Note that 0 is always a fixed number in the present analysis. Each of the
six statements below gives the condition under which estimator X is pre-
ferred to estimator Y. (We allow for the possibility of a tie. If X is preferred
to Y and Y is not preferred to X, we say X is strictly preferred to Y.) Or, we
might say, X is “better” than Y. Adopting a particular measure of closeness
is thus equivalent to defining the term better (The term strictly better is
defined analogously.)

1) P(X -0/ <|r—e) =1

(2) Eg(X — 6) = Eg(Y — 6) for every continuous function g(-)
which is nonincreasing for x < 0 and nondecreasing for x > 0.

(8) Eg(|X — 0|) = Eg([Y — 6|) for every continuous and
nondecreasing function g.

4) P(X - 9] >¢€) < P([Y — 0| > ¢) for every €.

(5) E(X — 0)2=< E(Y — 0)%

(6) P(X -0/ <[y —0)) =P(X —6>]|r— 0.

Criteria (1) through (5) are transitive; (6) is not. The reader should

verify this. Criteria (3) and (4) are sometimes referred to as wuniversal
dominance and stochastic dominance, respectively; see Hwang (1985). The
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M|>—l =

0

FIGURE 7.2 Illustration for Theorem 7.2.4

idea of stochastic dominance is also used in the finance literature; see, for
example, Huang and Litzenberger (1988).

THEOREM 7.2.1 (2) = (3) and (3) = (2). (Obvious.)
THEOREM 7.2.2 (3) = (5) and (5) % (8). (Obvious.)
THEOREM 7.2.3 (3) & (4).

Sketch of Proof. Define
he(z) =1 if |2 =€,
= (0 otherwise.

Then Eh (X — 0) = P(|X — 08| = €). Therefore, (4) is equivalent to stating
that Ek (X — 6) = Eh.(Y — 0) for every e. The theorem follows from the
fact that a continuous function can be approximated to any desired degree
of accuracy by a linear combination of step functions. (See Hwang, 1985,
for a rigorous proof.) Q

THEOREM 7.2.4 (4) ? (6), meaning that one does not imply the other.

Proof. Consider Figure 7.2. Here X (solid line) and Y (dashed line) are
two random variables defined over the sample space [0, 1]. The prob-
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ability distribution defined over the sample space is assumed to be such
that the probability of any interval is equal to its length. We also assume
that 8 = 0. Then, by our construction, X is strictly preferred to Y by
criterion (4), whereas Y is strictly preferred to X by criterion (6). O

THEOREM 7.2.5 (1) = (3) and (8) » (1).

Proof.

(1) = (8). Since g is nondecreasing, |[X — 6| = |Y — 8] = g(|X — 6)) =
g(|¥ — 6. Thus, 1 = P(IX — 6| = |V — 6]) = P[g(|X — 6]) = g(|¥ — 6])].
Therefore, Eg(|X — 6|) = Eg([Y — 6|) for every continuous and non-
decreasing function g.

(3) # (1). Consider X and Y, defined in Figure 7.2. We have shown
that X is preferred to Y by criterion (4). Therefore, X is preferred to Y by
criterion (3) because of Theorem 7.2.3. But P(|X — 8| = |[Y — 6]) =
PX<Y)<1. 0Q

THEOREM 7.2.6 (1) = (6) and (6) » (1).

Proof.

(1) = (6). The right-hand side of (6) is zero if (1) holds. Then (6)
must hold.

(6) 7 (1). Consider X and Y, defined in Figure 7.2. Clearly Y is pre-
ferred to X by criterion (6), but P([Y — 6] = |[X — 0]) = P(Y < X) < L.
a

THEOREM 7.2.7 (1) ? (2).

Proof. Consider estimators § and 7 in Example 7.2.1 when p = ¥%,. Then
T is preferred to S by criterion (1). Define a function gy in such a way
that go(—%) = go(—%) = 1 and go(¥%4) = %. Then T is not preferred to
S by criterion (2), because Egy(S — p) < Ego(T — p). This shows that (1)
does not imply (2). Next, consider X and Y, defined in Figure 7.2. Since
X —06>0andY — 6 > 0 in this example, criteria (2) and (3) are
equivalent. But, as we noted in the proof of Theorem 7.2.5, X is preferred
to Y by criterion (3). Therefore X is preferred to Y by criterion (2). But
clearly X is not preferred to Y by criterion (1). This shows that (2) does
not imply (1). O
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4 X
3
R SRR Y
1

0 3 1

FIGURE 7.3 Illustration for Theorem 7.2.9

THEOREM 7.2.8 (2) ? (6).

Proof. Consider any pair of random variables X and Y such that X — 6
>0 and Y — 6 > 0. Then, as already noted, (2) and (3) are equivalent.
But (3) and (4) are equivalent by Theorem 7.2.3, and (4) ? (6) by Theo-
rem 7.2.4. Q

THEOREM 7.2.9 (b) ? (6).

Proof. In Figure 7.3, X (solid line) and Y (dashed line) are defined over
the same sample space as in Figure 7.2, and, as before, we assume that 6
= 0. Then X is strictly preferred to ¥ by criterion (6). But E(X — (-))2 =
4+ % and E(Y — 0)® = 4; therefore Y is strictly preferred to X by criterion
(). Q

The results obtained above are summarized in Figure 7.4. In the figure,
an arrow indicates the direction of an implication, and a dashed line
between a pair of criteria means that one does not imply the other.
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FIGURE 7.4 Relations among various criteria

7.2.3 Mean Squared Error

Although all the criteria defined in Section 7.2.2 are reasonable (except
possibly criterion (6), because it is not transitive), and there is no a priori
reason to prefer one over the others in every situation, statisticians have
most frequently used criterion (5), known as the mean squared error We
shall follow this practice and define the term better in terms of this criterion
throughout this book, unless otherwise noted.

If § is an estimator of 6, we call E (é - 6)2 the mean squared error of the
estimator. By adopting the mean squared error criterion, we have elimi-
nated (though somewhat arbitrarily) the ambiguity of the first kind (see
the end of Section 7.2.1). Now we can rank estimators according to this
criterion though there may still be ties, for each value of the parameter.
We can easily calculate the mean squared errors of the three estimators
in Example 7.2.1: E(T — ¥)* = %9, E(S — ¥%)® = ¥4, and E(W — ¥)? =
V6. Therefore, for this value of the parameter p, W is the best estimator.

The ambiguity of the second kind remains, however, as we shall illustrate
by referring again to Example 7.2.1. The mean squared errors of the three
estimators as functions of p are obtained as

(721)  E@T — p)* == p(1l — p),

N | =
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722 ES —p?=p1 - p),

2

(723)  EW - p?= [% - p).

They are drawn as three solid curves in Figure 7.5. (Ignore the dashed
curve, for the moment.) It is evident from the figure that T clearly domi-
nates S but that T and W cannot be unequivocally ranked, because T is
better for some values of p and W is better for other values of p. When T
dominates § as in this example, we say that T is better than S. This should
be distinguished from the statement that T is better than S at a specific
value of p. More formally, we state

DEFINITION 7.2.1 Let X and Y be two estimators of 8. We say X is better
(or more efficient) than ¥ if E(X — 6)® < E(Y — 6)® for all 8 € O and
E(X — 8)2 < E(Y — 0)? for at least one value of § in ©. (Here © denotes
the parameter space, the set of all the possible values the parameter can
take. In Example 7.2.1, it is the closed interval [0, 1].)

il

= 1/8

E(T— p)’* = 1.3/16

- ~\>’/ = 0.8/16

1
1 1
3
-1 +/3 =089
1 ) S 1 1 -
14k = 079 < 1+4 =08

FIGURE 7.5 Mean squared errors of estimators in Example 7.2.1
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When an estimator is dominated by another estimator, as in the case of §
by T in the above example, we say that the estimator is inadmissible.

DEFINITION 7.2.2 Let @ be an estimator of 8. We say that 8 is inadmissible
if there is another estimator which 1is better in the sense of Definition
7.2.1. An estimator is admissible if it is not inadmissible.

Thus, in Example 7.2.1, S is inadmissible and T and W are admissible. We
can ignore all the inadmissible estimators and pay attention only to the
class of admissible estimators.

7.2.4 Strategies for Choosing an Estimator

How can we resolve the ambiguity of the second kind and choose between
two admissible estimators, 7 and W, in Example 7.2.1?

Subjective strategy. One strategy is to compare the graphs of the mean
squared errors for T and W in Figure 7.5 and to choose one after consid-
ering the a priori likely values of p. For example, suppose we believe a
priori that any value of p is equally likely and express this situation by a
uniform density over the interval [0, 1]. We would then choose the esti-
mator which has the minimum area under the mean squared error func-
tion. In our example, T and W are equally good by this criterion. This
strategy is highly subjective; therefore, it is usually not discussed in a
textbook written in the framework of classical statistics. It is more in the
spirit of Bayesian statistics, although, as we shall explain in Chapter 8, a
Bayesian would proceed in an entirely different manner, rather than
comparing the mean squared errors of estimators.

Minimax strategy. According to the minimax strategy, we choose the
estimator for which the largest possible value of the mean squared error
is the smallest. This strategy may be regarded as the most pessimistic and
risk-averse approach. In our example, T is preferred to W by this strategy.
We formally define

DEFINITION 7.2.3 Let § be an estimator of 0. It is a minimax estimator if,
for any other estimator 6, we have

max E® — 0)° < max E® — 0)%
(3] [¢]
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We see in Figure 7.5 that W does well for the values of p around Y,
whereas T does well for the values of p near 0 or 1. This suggests that we
can perhaps combine the two estimators and produce an estimator which
is better than either in some sense. One possible way to combine the two
estimators is to define

Xt Xyt 1

(7.2.4) VA 1

The mean squared error of Z is computed to be

2
(725)  EZ - p?= 21’17%

and is graphed as the dashed curve in Figure 7.5. When we compare the
three estimators 7, W, and Z, we see that Z is chosen both by the subjective
strategy with the uniform prior density for p and by the minimax strategy.
In Chapter 8 we shall learn that Z is a Bayes estimator.

7.2.5 Best Linear Unbiased Estimator

Neither of the two strategies discussed in Section 7.2.4 is the primary
strategy of classical statisticians, although the second is less objectionable
to them. Their primary strategy is that of defining a certain class of
estimators within which we can find the best estimator in the sense of
Definition 7.2.1. For example, in Example 7.2.1, if we eliminate W and Z
from our consideration, T is the best estimator within the class consisting
of only T and S. A certain degree of arbitrariness is unavoidable in this
strategy. One of the classes most commonly considered is that of linear
unbiased estimators. We first define

DEFINITION 7.2.4 0 is said to be an unbiased estimator of 0 if E® = 0 for
all § € 6. We call E6 — 0 bias.

Among the three estimators in Example 7.2.1, T and S are unbiased and
W and Z are biased. Although unbiasedness is a desirable property of an
estimator, it should not be regarded as an absolutely necessary condition.
In many practical situations the statistician prefers a biased estimator with
a small mean squared error to an unbiased estimator with a large mean
squared error.
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Theorem 7.2.10 gives a formula which relates the bias to the mean
squared error. This formula is convenient when we calculate the mean
squared error of an estimator.

THEOREM 7.2.10 The mean squared error is the sum of the variance
and the bias squared. That is, for any estimator 6 of 6,

(7.26) E® — 0)?=V0 + (E6 — 0)2

Proof. It follows from the identity
(727 E® — 0)> = E[(§ — EB) + (E§ — 0)1°
= E® — E§)® + (Eb — 0)>.
No}e that thfe secopd equality above holds because E [(é — E9) (Eé —-0)] =
(E6 —0)E® — E8) =0. Q

In the following example we shall generalize Example 7.2.1 to the case
of a general sample of size n and compare the mean squared errors of the
generalized versions of the estimators T and Z using Theorem 7.2.10.

EXAMPLE 7.2.2

Population: X = 1 with probability p,
= 0 with probability 1 — p.
Sample: (X3, Xo,.. ., X,).

Estimators: T = X

Y X, +1
zg==
n+ 2

Since ET = p, we have

(728  MSE(T) = VT = 1’(1 ra=p,
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where MSE stands for mean squared error. We have

. _1-2p
(7.2.9) Bias(Z) = g

7210 vz="£d D)
(n + 2)°

Therefore, using Theorem 7.2.10, we obtain

(n—pd—p+1
(n+ 2)2

From (7.2.8) and (7.2.11) we conclude that MSE(Z) < MSE(T) if and

only if

1 1 ,n-f—l ,n+1
2. - — = < <—
(7:2.12) 2 2 N2n+1 p 2n + 1

Since (n + 1)/(2n + 1) is a decreasing function of n, MSE(Z) < MSE(T)

for every n if
‘\’ <p< ‘\, (‘\' 0354}

As we stated in Section 7.1.1, the sample mean is generally an unbiased
estimator of the population mean. The same cannot necessarily be said of
all the other moments defined in that section. For example, the sample
variance defined there is biased, as we show in (7.2.13). We have

(7.211) MSE(Z) =

(7.2.13) EZ(X X —EZ[(X W — (X - w)*

i=1

= 2 Bl — W + (X - )’ — 20X — w)(X = w)]

n 2 2
=Z@+l_ﬂg
n

n
= (n — Do’

Therefore ES§( = (n — 1)0'2/ n. For this reason some authors define the
sample variance by dividing the sum of squares by » — 1 instead of n to
produce an unbiased estimator of the population variance.

The class of linear estimators consists of estimators which can be ex-
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pressed as a linear function of the sample (X, Xo,...,X,). All four
estimators considered in Example 7.2.1 are linear estimators. This class is
considered primarily for its mathematical convenience rather than for its
practical usefulness. Despite the caveats we have expressed concerning
unbiased estimators and linear estimators, the following theorem is one
of the most important in mathematical statistics.

THEOREM 7.2.11 Let{X;},i=1,2,..., nbeindependent and have the
common mean p. and variance ¢°. Consider the class of linear estimators
of p which can be written in the form X ,a,X; and impose the unbiased-
ness condition

(7214) EY aX;= p.
i=1
Then

(7215 VX =V [Z aiXi] for all {a;} satisfying (7.2.14)
i=1
and, moreover, the equality in (7.2.15) holds if and only if a; = 1/n for
all 7. (In words, the sample mean is the best linear unbiased estimator, or
BLUE, of the population mean.)

Proof. We have

0_2

(7.216) VX =

>

n

and

n

(7217 V (2 aiXi] =0’ dl
i=1

i=1
Now consider the identity

n

n 2 n
oy 2y, .1
(7.2.18) Z(a n] Y & anaﬁn

i=1 i=1 =1

The unbiasedness condition (7.2.14) implies Xi_;a; = 1. Therefore, noting
that the lefthand side of (7.2.18) is the sum of squared terms and hence
nonnegative, we obtain
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3=

(7.219) Y dl=
i=1

The equality in (7.2.19) clearly holds if and only if a; = 1/n. Therefore
the theorem follows from (7.2.16), (7.2.17), and (7.2.19). Q

(Note that we could define the class of linear estimators as ag + X_;a;X;
with a constant term. This would not change the theorem, because the
unbiasedness condition (7.2.14) would ensure that a; = 0.) We now know
that the dominance of T over S in Example 7.2.1 is merely a special case
of this theorem.

From a purely mathematical standpoint, Theorem 7.2.11 provides the
solution to minimizing 2,7':1@2 with respect to {g;} subject to condition
Yi-1a; = 1. We shall prove a slightly more general minimization problem,
which has a wide applicability.

THEOREM 7.2.12 Consider the problem of minimizing 2?:10? with re-
spect to {a;} subject to the condition X ,a;5; = 1. The solution to this
problem is given by

b;

=—,
>0
i=1

a;

Proof. Consider the identity

(72200 Y |a;— b =Zaf—2l=: -

i=1 i B2 i=1 z 52 i 52

where we used the condition Xi-1a:5; = 1 to obtain the second equality.
The theorem follows by noting that the left-hand side of the first equality
of (7.2.20) is the sum of squares and hence nonnegative. 0O
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(Theorem 7.2.11 follows from Theorem 7.2.12 by putting 4, = 1 for all 7.)
We shall give two examples of the application of Theorem 7.2.12.

EXAMPLE 7.2.3 Let X; be the return per share of the ith stock, i = 1, 2,
., m, and let ¢; be the number of shares of the ith stock to purchase.
Put EX; = p; and VX, = 0‘,2. Determine ¢; so as to minimize V(Z;—¢X;)
subject to M = X_ic;m;, where M is a known constant. Assume that X; are
uncorrelated.
If we put a; = ¢0; and b = p,/(Moy), this problem is reduced to the
minimization problem of Theorem 7.2.12. Therefore, the solution is

n 2
(7.2.21) c,:M(i;] 2[“—;] i=1,2 ..., n
g; i=1

o;

That is, ¢; is proportional to p;/ crf.

EXAMPLE 7.2.4 Letb,i=1,2, ..., n, be unbiased estimators of 0 with
variances (rf, i=1,2,...,n Choose {c} so that I/ ¢,0; is unbiased and
has a minimum variance. Assume that é,- are uncorrelated.

Since the unbiasedness condition is equivalent to the condition
Ziic;=1, the problem is that of minimizing o lol subject to
Zi_ic; = 1. Thus it is a special case of Example 7.2.3, where w; = 1 and

M = 1. Therefore the solution is ¢; = o, 2/ Z" 0; 2.

Theorem 7.2.11 shows that the sample mean has a minimum variance
(and hence minimum mean squared error) among all the linear unbiased
estimators. We have already seen that a biased estimator, such as W and Z
of Example 7.2.1, can have a smaller mean squared error than the sample
mean for some values of the parameter. Example 7.2.5 provides a case in
which the sample mean is dominated by an unbiased, nonlinear estimator.

EXAMPLE 7.2.5

Population: X has density f(x) = % for 0 <x <9,

= (0 otherwise.

Sample: (X3, X, ..., X,).
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. 0
Parameter to estimate: p = 5
Estimators: fi; = X

+
fig = ”2n1 7, whereZ = max(X;, Xa, . . . , X,).

An intuitive motivation for the second estimator is as follows: Since 0 is
the upper bound of X, we know that Z = 0 and Z approaches 0 as n
increases. Therefore it makes sense to multiply Z by a factor which is
greater than 1 but decreases monotonically to 1 to estimate 8. More
rigorously, we shall show in Example 7.4.5 that {iy is the biascorrected
maximum likelihood estimator.

We have EX? = 6—1f8x2dx = 02/3. Therefore VX = 92/12. Hence

o B
(7.222)  MSE(f) = VK = 1o

Let G(z) and g(z) be the distribution and density function of Z, respec-
tively. Then we have for any 0 < z < 0,

n
zZ

(72.98)  G() = P(Z<2) = P(X; <2)PXy<2)-+ P(X,<z) =2 .
On
Differentiating (7.2.23) with respect to z, we obtain
N a-1
(7.224) gl =—2z2"", 0<z<86.
a’n

Using (7.2.24), we can calculate

[¢]
(7.2.95) EZ = ﬁj fdz=—"_9

0" Jo n+1
and

0
(7.2.26) EZ% = ﬁj 2= g2

Therefore

(7.2.27) vVZ
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Since (7.2.25) shows that [y is an unbiased estimator, we have, using

(7.2.27),

n+1 6°
7.2.28 MSE (ji) = =
( ) () ( om ] dn(n + 9)
Comparing (7.2.22) and (7.2.27), we conclude that MSE (j19) = MSE({i;),
with equality holding if and only if n = 1.

7.2.6 Asymptotic Properties

Thus far we have discussed only the finite sample properties of estimators.
It is frequently difficult, however, to obtain the exact moments, let alone
the exact distribution, of estimators. In such cases we must obtain an
approximation of the distribution or the moments. Asymptotic approxima-
tion is obtained by considering the limit of the sample size going to infinity.
In Chapter 6 we studied the techniques necessary for this most useful
approximation.

One of the most important asymptotic properties of an estimator is
consistency.

DEFINITION 7.2.5 We say 6 is a consistent estimator of 0 if plim, ;e h =
0. (See Definition 6.1.2.)

In Examples 6.4.1 and 6.4.3, we gave conditions under which the sample
mean and the sample variance are consistent estimators of their respective
population counterparts. We can also show that under reasonable assump-
tions, all the sample moments are consistent estimators of their population
values.

Another desirable property of an estimator is asymptotic normality. (See
Section 6.2.) In Example 6.4.2 we gave conditions under which the sample
mean is asymptotically normal. Under reasonable assumptions all the
moments can be shown to be asymptotically normal. We may even say that
all the consistent estimators we are likely to encounter in practice are
asymptotically normal. Consistent and asymptotically normal estimators
can be ranked by Definition 7.2.1, using the asymptotic variance in lieu
of the exact mean squared error. This defines the term asymptotically better
or asymptotically efficient.
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7.3 MAXIMUM LIKELIHOOD ESTIMATOR:
DEFINITION AND COMPUTATION

7.3.1 Discrete Sample

Suppose we want to estimate the probability (p) that a head will appear
for a particular coin; we toss it ten times and a head appears nine times.
Call this event A. Then we suspect that the coin is loaded in favor of heads:
in other words, we conclude that p = Y is not likely. If p were %, event A
would be expected to occur only once in a hundred times, since we have
PA|lp=Y%) = CY (%)™ = 0.01. In the same situation p = % is more
likely, because P(A|p = %) = C5°(¥%)°(Y%) = 0.19, and p = %, is even
more likely, because P(A | p = %) = C3 (%0)° (Vio) = 0.39. Thus it makes
sense to call P(A | p) = Cgl,opg(l — p) the lkelihood function of p given event
A. Note thatitis the probability of event A given p, but we give it a different
name when we regard it as a function of p. The maximum likelihood estimator
of p is the value of p that maximizes P(A | p), which in our example is
equal to %,. More generally, we state

DEFINITION 7.3.1 Let (X}, Xy,...,X,) be a random sample on a dis-
crete population characterized by a vector of parameters 0 = (01,0, . . .,
0x) and let x; be the observed value of X;. Then we call

L=HP(Xi=xile)

i=1

the likelihood function of O given (x;, xy, . . . , x,), and we call the value of
0 that maximizes L the maximum likelihood estimator.

Recall that the purpose of estimation is to pick a probability distribution
among many (usually infinite) probability distributions that could have
generated given observations. Maximum likelihood estimation means
choosing that probability distribution under which the observed values
could have occurred with the highest probability. It therefore makes good
intuitive sense. In addition, we shall show in Section 7.4 that the maximum
likelihood estimator has good asymptotic properties. The following two
examples show how to derive the maximum likelihood estimator in the
case of a discrete sample.
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EXAMPLE 7.3.1 Suppose X ~ B(n, p) and the observed value of X is &.
The likelihood function of p is given by

(731)  L=Cip" — p™~.

We shall maximize log L rather than L because it is simpler (“log” refers
to natural logarithm throughout this book). Since log is a monotonically
increasing function, the value of the maximum likelihood estimator is
unchanged by this transformation. We have

(7.3.2) log L =log C; + klog p + (n — k) log(1 — p).
Setting the derivative with respect to p equal to 0 yields

dlog L _

op
Solving (7.3.3) and denoting the maximum likelihood estimator by p, we
obtain

n—k:
1_

0.

(7.3.3)

|
)

(7.3.4) p=

3 | x>

To be complete, we should check to see that (7.3.4) gives a maximum
rather than any other stationary point by showing that 8°log L/ 61)2 evalu-
ated at p = k/n is negative.

This example arises if we want to estimate the probability of heads on
the basis of the information that heads came up k times in n tosses.
Suppose that we are given more complete information: whether each toss
has resulted in a head or a tail. Define X; = 1 if the ith toss shows a head
and = O if it is a tail. Let x; be the observed value of X;, which is, of course,
also 1 or 0. The likelihood function is given by

(735  L=]]pa-p' ™
i=1

Taking the logarithm, we have

(7.3.6) log L = [Z xiJ log p + [n - Z xi] log(l — p).
i=1 i=1

But, since & = X x;, (7.3.6) is the same as (7.3.2) aside from a constant
term, which does not matter in the maximization. Therefore the maxi-
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mum likelihood estimator is the same as before, meaning that the extra
information is irrelevant in this case. In other words, as far as the estima-
tion of p is concerned, what matters is the total number of heads and not
the particular order in which heads and tails appear. A function of a
sample, such as I'_ x; in the present case, that contains all the necessary
information about a parameter is called a sufficient statistic.

EXAMPLE 7.3.2 This is a generalization of Example 7.3.1. Let X;, i = 1,
2, ..., n, be a discrete random variable which takes K integer values 1,
2, ..., K with probabilities py, po, . . . , px. This is called the multinomial
distribution. (The subsequent argument is valid if X, takes a finite number
of distinct values, not necessarily integers.) Letn;, j = 1, 2, . . ., K, be the
number of times we observe X = j. (Thus Z]K:lnj = n.) The likelihood
function is given by

K
137 L=c]]pp
j=1
where ¢ = nl/(nylng! - - - ngl). The log likelihood function is given by

K
(7.3.8) log L=1log ¢+ z n;log p;.

j=1
Differentiate (7.3.8) with respect to p, po, . . . , px—1, noting that px =
1—p1— po— ...~ px—1, and set the derivatives equal to zero:

dlog L _7m 7"k _

ap; P Pk
Adding the identity ng/px = ng/px to the above, we can write the K
equations as

(7.3.9) 0,0 j=12...,K-1

(7310) [)] = anj, ] = 1, 2, Ceey K,

where ¢ is a constant which does not depend on j. Summing both sides
of (7.3.10) with respect to j and noting that Ejl-ilpj =1 and E]K:ln]- =n
yields

3|~

(7.311) a=

Therefore, from (7.3.10) and (7.3.11) we obtain the maximum likelihood
estimator
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Nooj=1,2...,K

(7.8.12)  p; = gf

The die example of Section 7.1.2 is a special case of this example.

7.3.2 Continuous Sample

For the continuous case, the principle of the maximum likelihood estima-
tor is essentially the same as for the discrete case, and we need to modify
Definition 7.3.1 only slightly.

DEFINITION 7.3.2 Let (Xj, Xs, ..., X,) be a random sample on a con-
tinuous population with a density function f(-|9), where 0 = (01, 0o, ...,
0x), and let x; be the observed value of X;. Then we call L = II;_; f(x; | 0)
the lLkelthood function of 0 given (x, x9,...,x,) and the value of 0 that
maximizes L, the maximum Lkelihood estimator.

EXAMPLE 7.3.3 Let {Xj}, ¢ =1,2, ..., n be arandom sample on
N(p, 02) and let {x;} be their observed values. Then the likelihood func-
tion is given by

=1 1 2
7313) L= exp| —— (x; —
(7.3.13) E o p[ o (x; — ) }
so that
(7.314) log L= —— log(21T) > log o - — 2 (e —

0'11

Equating the derivatives to zero, we obtain
dlog L _ 1 x

(7.3.15) —g =5 Z - =0

and

(7.3.16)

dlog L _ no
3o° 207
The maximum likelihood estimator of p and ¢, denoted as i and 6%, are

obtained by solving (7.3.15) and (7.3.16). (Do they indeed give a maxi-
mum?) Therefore we have

Z - w?=0.

1
20* |
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n
2x=E

=1

(7317 =

3=

and
(7.318) &° = %Z (x; — ®)°

They are the sample mean and the sample variance, respectively.

7.3.3 Computation

In all the examples of the maximum likelihood estimator in the preceding
sections, it has been possible to solve the likelihood equation explicitly,
equating the derivative of the log likelihood to zero, as in (7.3.3). The
likelihood equation is often so highly nonlinear in the parameters, how-
ever, that it can be solved only by some method of iteration.

The most common method of iteration is the Newton-Raphson method,
which can be used to maximize or minimize a general function, not just
the likelihood function, and is based on a quadratic approximation of the
maximand or minimand. Let @(0) be the function we want to maximize
(or minimize). Its quadratic Taylor expansion around an initial value él
is given by

9Q

= 0(d 0
(7319)  QO) = Q@) + Z5| (© - 91)+__2

it

0 —8)%
e1

where the derivatives are evaluated at él. The second-round estimator of
the iteration, denoted 0y, is the value of 6 that maximizes the right-hand
side of the above equation. Therefore,

2
(13200 8y =8 —| % /ﬂ .
/00 [,

00
Next 6, can be used as the initial value to compute the third-round
estimator, and the iteration should be repeated until it converges.
Whether the iteration will converge to the global maximum, rather than
some other stationary point, and, if it does, how fast it converges depend
upon the shape of Q and the initial value. Various modifications have been
proposed to improve the convergence.
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7.4 MAXIMUM LIKELIHOOD ESTIMATOR: PROPERTIES

In Section 7.4.1 we show that the maximum likelihood estimator is the
best unbiased estimator under certain conditions. We show this by means
of the Cramér-Rao lower bound. In Sections 7.4.2 and 7.4.3 we show the
consistency and the asymptotic normality of the maximum likelihood
estimator under general conditions. In Section 7.4.3 we define the con-
cept of asymptotic efficiency, which is closely related to the Cramér-Rao
lower bound. In Section 7.4.4 examples are given. To avoid mathematical
complexity, some results are given without full mathematical rigor. For a
rigorous discussion, see Amemiya (1985).

7.4.1 Cramér-Rao Lower Bound

We shall derive a lower bound to the variance of an unbiased estimator
and show that in certain cases the variance of the maximum likelihood
estimator attains the lower bound.

THEOREM 7.4.1 (Cramér-Rao) Let L(Xy, Xy,...,X,|0) be the likeli-
hood function and let é(Xl, Xo, ..., X,) be an unbiased estimator of 9.
Then, under general conditions, we have

1
ER log L
E——
307

(7.4.1) V@) = -

The right-hand side is known as the Cramér-Rao lower bound (CRLB).

(In Section 7.3 the likelihood function was always evaluated at the
observed values of the sample, because there we were only concerned with
the definition and computation of the maximum likelihood estimator. In
this section, however, where we are concerned with the properties of the
maximum likelihood estimator, we need to evaluate the likelihood func-
tion at the random variables X;, Xo, . . . , X, which makes the likelihood
function itself a random variable. Note that FE, the expectation operation,
is taken with respect to the random variables X;, Xo, . . . , X,,.)
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Sketch of Proof. (A rigorous proof is obviously not possible, because the
theorem uses the phrase “under general conditions.”) Put X = § and Y

= dlog L/90 in Theorem 7.4.1. Then we have

_pologL _14dL 149L
742 EY=E— = =ET %~ JLaeLd
(oL, 9 _ ol _
—j%dx—%JMx—a 0,
where the integral is an n-tuple integral with respect to x;, xy, . . . , x,. We

also have

PlogL 3 dlogL _ 3 (l0L
7.4.3 E =E =E
(7.43) 902 30 00 30 | L 90

9 2
_Ei(%J+Eli£

|
|
]
hm‘)_-
Q)|Q.a
|t~
~—

|
by
TN
[=3)
)
[v,<]
t~
N——
. N

where the fourth equality follows from noting that E(1/L) (82L/ 892) =
f(°L/906%)dx = 9°/36%(fLdx) = 0. Therefore, from (7.4.2) and (7.4.3) we

have

9 log L .

(744) VY = EY? = -E 5
d0

We also have

dlog L 21 aL
(7.4.5) Cov(X,Y) = Eb 26 JO 730 — Ldx= 89 J 0Ldx
0 00
" b

Therefore (7.4.1) follows from the Cauchy-Schwartz inequality (4.3.3).

Q
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The unspecified general conditions, known as regularity conditions, are
essentially the conditions on L which justify interchanging the derivative
and the integration operations in (7.4.2), (7.4.3), and (7.4.5). If, for
example, the support of L (the domain of L over which L is positive)
depends on 6, the conditions are violated because the fifth equality of
(7.4.2), the fourth equality of (7.4.3), and the third equality of (7.4.5) do
not hold. We shall give two examples in which the maximum likelihood
estimator attains the Cramér-Rao lower bound.

EXAMPLE 7.4.1 Let X ~ B(n, p) as in Example 7.3.1. Differentiating
(7.3.3) again with respect to p, we obtain
PloglL_ X _ n-X

o (a-p?

(7.4.6) :
j4
where we have substituted X for k because here we must treat L as a
random variable. Therefore we obtain

(747)  CRLB = @.

Since V[A) = p(1 — p)/n by (5.1.5), the maximum likelihood estimator f)
attains the Cramér-Rao lower bound and hence is the best unbiased
estimator.

EXAMPLE 7.4.2 Let {X;} be as in Example 7.3.3 (normal density) except
that we now assume o is known, so that p is the only parameter to
estimate. Differentiating (7.3.15) again with respect to ., we obtain

2
d log L n
(7.4.8) g2 --=
I o
Therefore
o2
(7.4.9) CRLB = — -
n

But we have previously shown that V(X) = o>/ n. Therefore the maximum
likelihood estimator attains the Cramér-Rao lower bound; in other words,
X is the best unbiased estimator. It can be also shown that even if o? is
unknown and estimated, X is the best unbiased estimator.
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Q.6 — «— QO

b, — &

FIGURE 7.6 Convergence of log likelihood functions

7.4.2 Consistency

The maximum likelihood estimator can be shown to be consistent under
general conditions. We shall only provide the essential ingredients of the
proof. Suppose {X;} are i.i.d. with the density f(x, 0). The discrete case can
be similarly analyzed. Define

1

(1410)  Qu(0) = log L,(0) = = 3 log f(X,,0),

i=1
where a random variable X; appears in the argument of f because we need
to consider the property of the likelihood function as a random variable.
To prove the consistency of the maximum likelihood estimator, we essen-
tially need to show that Q,(0) converges in probability to a nonstochastic
function of 0, denoted Q(9), which attains the global maximum at the
true value of 0, denoted 6. This is illustrated in Figure 7.6. Note that Q,(0)
is maximized at 8,, the maximum likelihood estimator. If Q,,(8) converges
to Q(8), we should expect 8, to converge to 6,. (In the present analysis it
is essential to distinguish 0, the domain of the likelihood function, from
0o, the true value. This was unnecessary in the analysis of the preceding
section. Whenever L or its derivatives appeared in the equations, we
implicitly assumed that they were evaluated at the true value of the pa-
rameter, unless it was noted otherwise.)

Next we shall show why we can expect Q,(0) to converge to Q(6) and
why we can expect Q(0) to be maximized at 6;. To answer the first ques-
tion, note by (7.4.10) that Q,(8) is (1/n) times the sum of ii.d. random
variables. Therefore we can apply Khinchine’s LLN (Theorem 6.2.1),
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provided that E log f(X,, 8) < «. Therefore plim, » Q,(0) = Q(0) =
Elog f(X,, 0).
To answer the second question, we need

THEOREM 7.4.2 (Jensen) Let X be a proper random variable (that is, it
is not a constant) and let g(-) be a strictly concave function. That is to say,
glha + (1 — N)b] > Ag(a) + (1 — N)g(b) foranya < band 0 <A < 1.
Then

(7411)  Eg(X) < g(EX).  (Jensen’s inequality)

Taking g to be log and X to be f(X, 8)/f(X, 8y) in Theorem 7.4.2, we
obtain

fX, 6) < logEf(X’ 9)
S(X, 8o) (X, 80)

But the right-hand side of the above inequality is equal to zero, because

(74.12) Elog if 6 # 9.

X,0) (= f(x,6) e _
7.4. E—" = A , Bg)dx = L 0)dx = 1.
A1 B X 0y J—o»f(»c,e())f (%, ol j—wf ( O

Therefore we obtain from (7.4.12) and (7.4.13)
(7414 Elog f(X,0) < Elog f(X,08,) if6 # 0.

We have essentially proved the consistency of the global maximum likelihood
estimator. 'To prove the consistency of a local maximum likelihood estimator, we
should replace (7.4.14) by the statement that the derivative of Q(8) is zero
at 0;. In other words, we should show

9
7.415) —-ElogL=0.
( ) 30 g
But assuming we can interchange the derivative and the expectation

operation, this is precisely what we showed in (7.4.2). The reader should
verify (7.4.2) or (7.4.15) in Examples 7.4.1 and 7.4.2.

7.4.3 Asymptotic Normality

THEOREM 7.4.3 Let the likelihood function be L(Xj, X, . .. ,Xn| 0).
Then, under general conditions, the maximum likelihood estimator  is
asymptotically distributed as
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-1
(7416) OAN (e, - [E & log L] W .
36’ )
(Here we interpret the maximum likelihood estimator as a solution to the
likelihood equation obtained by equating the derivative to zero, rather
than the global maximum likelihood estimator. Since the asymptotic nor-
mality can be proved only for this local maximum likelihood estimator,
henceforth this is always what we mean by the maximum likelihood esti-

mator.)

Sketch of Proof. By definition, dlogl,/38 evaluated at § is zero. We expand
it in a Taylor series around 6, to obtain

_0dlog L
09

_OdlogL
b 00

2
y L8 Ll G gy,

9*

(7.417) 0

6o

where 0* lies between 6 and 6. Solving for (@ — 0g), we obtain
1 dlog L

162logL
Voo 90 g/ M 592

But we can show (see the paragraph following this proof) that

(7.418) n (B — 0y = —

e*

2
(ra19) LMoLl 4 O,E[——~a log / }
Nno 90 |, 90 s,
and
2 2
(7.4.20) %a 1°§L LA L loff ,
0% |, 3% |y

where we have simply written f for f(X;). But we have (the derivatives
being evaluated at §, throughout)

2 2
(7.4.21) E Q_E)_gl = —F ﬂ)ﬂ ,
902 00

as in (7.4.3). Therefore, by (iii) of Theorem 6.1.4 (Slutsky), we conclude
2 -1
(7422) Vn(®—0,) > N|o, - E%ﬁ .
00
We may paraphrase (7.4.22) as
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2 _l
(7.423) 62 N|o,, — nE% :
30

Finally, the conclusion of the theorem follows from the identity
2 2
nEa logf:Ea log L
36* 30

(7.4.24) a

The convergence result (7.4.19) follows from noting that

1 dlog L :Lz"“&logf(Xi)

Vo #® |, Vni 08
and that the right-hand side satisfies the conditions for the Lindeberg-Lévy

CLT (Theorem 6.2.2). Somewhat more loosely than the above, (7.4.20)
follows from noting that

18%log L| _ 1<~ 0" log f(X)
no80 | Mo 97 %

and that the right-hand side satisfies the conditions for Khinchine’s LLN

(Theorem 6.2.1).

A significant consequence of Theorem 7.4.3 is that the asymptotic
variance of the maximum likelihood estimator is identical with the
Cramér-Rao lower bound given in (7.4.1). This is almost like (but not
quite the same as) saying that the maximum likelihood estimator has the
smallest asymptotic variance among all the consistent estimators. There-
fore we define

(7.4.25)

i)

(7.4.26)

DEFINITION 7.4.1 A consistent estimator is said to be asymptotically
efficient if its asymptotic distribution is given by (7.4.16).

Thus the maximum likelihood estimator is asymptotically efficient essen-
tially by definition.

7.4.4 Examples

We shall give three examples to illustrate the properties of the maximum
likelihood estimator and to compare it with the other estimators.

EXAMPLE 7.4.3 Let X have density f(x) = (1 + 0)x>, 0 > —1,0<=x <
1. Obtain the maximum likelihood estimator of EX(= ) based on n
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observations X, X, . . ., X,, and compare its asymptotic variance with the
variance of the sample mean X.
We have
1 g41 6+1
7.4.27 =(1+ =—
Az p= (40 [ 8 e =g

Since (7.4.27) defines a one-to-one function and 6 > —1, we must have
0 < p < 1. Solving (7.4.27) for 6, we have

(7.428) 0= 1=2
p—1
The log likelihood function in terms of 6 is given by

(7.429) log L = nlog(l +60) + 6 2 log x;.

i=1
Inserting (7.4.28) into (7.4.29), we can express the log likelihood function
in terms of w as

(7.4.30) log L = nlog (1 E MJ + 1M_—2lu 2 log x;.
i=1

Differentiating (7.4.30) with respect to p yields
asy 8L m 1 S
o p(l —p) A —p) o

Equating (7.4.31) to zero, we obtain the maximum likelihood estimator

n

n-—Zlogxi

=1

Il

(7.432)

Differentiating (7.4.31) again, we obtain

2 _ n
3 log2 L_ _ (12 2;1,)112 + 2 g Z log x;.
o pd-—p)" 1A= p)yi=

Since we have, using integration by parts,

(7.4.33)

p—=1
m

b}

1
(7434) Elog X =(1+ e)J (x° log x)dx =
0

we obtain from (7.4.33)
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& log L _ n )
2
o il -
Therefore, by Theorem 7.4.3, the asymptotic variance of {1, denoted
AV(jn), is given by

(7.4.35) —E

2.0 2
(7.4.36) AV(@)=W.

Next we obtain the variance of the sample mean. We have

2 _ Voerg, _06+1 _ p
(7.4.37) EX"=(1+06) Jox dx 6r3 2-p
Therefore
n o _ w1l — )’

(7.438) VX = —p=0 .

2—-n 2—
Hence

e

(7439 vy=bLTB

(2= wn

Finally, from (7.4.36) and (7.4.39), we conclude

o
74400 VR —AV(R) =P o6 fro<p <1,
@2~ pn
There are several points worth noting with regard to this example,
which we state as remarks.

Remark 1. In this example, solving dlogL/dp. = 0 for p led to the
closedform solution (7.4.32), which expressed L as an explicit function
of the sample, as in Examples 7.3.1, 7.3.2, and 7.3.3. This is not possible
in many applications; in such cases the maximum likelihood estimator can
be defined only implicitly by the likelihood equation, as pointed out in
Section 7.3.3. Even then, however, the asymptotic variance can be obtained
by the method presented here.

Remark 2. Since [i in (7.4.32) is a nonlinear function of the sample, the
exact mean and variance, let alone the exact distribution, of the estimator
are difficult to find. That is why our asymptotic results are useful.

Remark 3. In a situation such as this example, where the maximum
likelihood estimator is explicitly written as a function of the sample, the
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consistency can be directly shown by using the convergence theorems of
Chapter 6, without appealing to the general result of Section 7.4.2. For
this purpose rewrite (7.4.32) as
(7.441) .t

n

1
1 —;Z;logXi

where X; has been substituted for x; because we must treat [ as a random
variable. But since {log X;} are i.i.d. with mean (. — 1)/p as given in
(7.4.34), we have by Khinchine’s LLN (Theorem 6.2.1)

(7.442)  plim 1 2 log X, =

n—o M.y

p- 1
T8
Therefore the consistency of {1 follows from Theorem 6.1.3.

Remark 4. Similarly, we can derive the asymptotic normality directly
without appealing to Theorem 7.4.3:

(7.443)  n (L — p) =

2
B

2
kN pﬂN{O, (1 M)}
= N0, p*(1 = p)’).
Therefore, we can state

) 21— w)?
(7.444) [N [,LL% .

The second equality with LD in (7.4.43), as defined in Definition 6.1.4,
means that both sides have the same limit distribution and is a conse-
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quence of (iii) of Theorem 6.1.4 (Slutsky). The convergence in distribu-
tion appearing next in (7.4.43) is a consequence of the Lindeberg-Lévy
CLT (Theorem 6.2.2). Here we need the variance of log X, which can be
obtained as follows: By integration by parts,

e
(7.445)  E(log X)* = g(l?—”‘)
18
Therefore
_ 2
(7.446) Vleg X = (1—;*)- :
18

Remark 5. 'We first expressed the log likelihood function in terms of p
in (7.4.30) and found the value of p that maximizes (7.4.30). We would
get the same estimator if we maximized (7.4.29) with respect to 6 and
inserted the maximum likelihood estimator of 8 into the last term of
(7.4.27). More generally, if two parameters 6; and 6, are related by a
one-to-one continuous function 8, = g(6y), the respective maximum like-
lihood estimators are related by él = g(ég).

EXAMPLE 7.4.4 Assuming o’ = plin Example 7.3.3 (normal density),
so that p is the sole parameter of the distribution, obtain the maximum
likelihood estimator of . and directly prove its consistency. Assume that
pF 0.

From (7.3.14) we have

n

(7.447)  log L= — glog @) — glog n? - % > (e — p)?
2

B i=1
=A+B+C,
where
DI
(7.448) A= - glog p = —
2n
Z X4
i=1
(7.449) B= ,

i

and C is a constant term that does not depend on the parameter .
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A

i

n

FIGURE 7.7 Illustration for function (7.4.48)

We shall study the shape of log L as a function of . The function A is
an even function depicted in Figure 7.7. The shape of the function B
depends on the sign of . x; and looks like Figure 7.8. From these two
figures it is clear that log L is maximized at a positive value of u when
T 1x; > 0 and at a negative value of p when £_x; < 0.

Setting the derivative of (7.4.47) with respect to w equal to zero yields

- w X k- W
dlog L n =l =1

=2y + =0,
alL 18 IJ«2 IJ«S

(7.4.50)

which can be written as

n n
(7.451)  npl +pd,x— O, %7 = 0.
=1 =1

There are two roots for the above, one positive, one negative, given by

n n 2 n 1/2
(7.452) = %[— nlY {n’Q [Z xiJ +4n' ), xf} J1
i=1 i=1

i=1

We know from the argument of the preceding paragraph that the positive
root is the maximum likelihood estimator if T x; > 0 and the negative
root if X_;x; < 0.
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}n:xi>0 ixi<0
i=1 ;

B B

FIGURE 7.8 Illustration for function (7.4.49)

Next we shall directly prove the consistency of the maximum likelihood
estimator in this example. We have, using Khinchine’s LLN (Theorem
6.2.1),

in

(7.453)  plim —

n—w

=p

and

DM

2
X

B

(7.454)  plim ln = 2p2

n—®

Therefore, by Theorem 6.1.3, we have

NP | 1
(7.455)  plim =5 (-p * Vou2) = 3 (—p = 3|

n—m
2{&?@ i >0
= {;2“‘ if u <0,

which shows that the positive root is consistent if p. > 0 and the negative
root is consistent if u < 0. But because of (7.4.53), the signs of L ;x; and
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p are the same with probability approaching one as n goes to infinity.
Therefore the maximum likelihood estimator is consistent.

EXAMPLE 7.4.5 Let the model be the same as in Example 7.2.5. The
likelihood function of the model is given by

(7.4.56) L= i for 8 = z,
en

= 0 otherwise,

where z = max(x;, x, . . . , x,,), the observed value of Z defined in Exam-
ple 7.2.5. Clearly, therefore, the maximum likelihood estimator of 8 is Z.
Since p. = 6/2, the maximum likelihood estimator of i is Z/2 because of
remark 5 of Example 7.4.3. Thus we see that {L; defined in that example
is the bias-corrected maximum likelihood estimator.

In this example, the support of the likelihood function depends on the
unknown parameter 0 and, therefore, the regularity conditions do not
hold. Therefore the asymptotic distribution cannot be obtained by the
standard procedure given in Section 7.4.3.

EXERCISES

1. (Section 7.1.2)
Let X; take three values 1, 2, and 3 with probabilities p;, p2, and ps.
Define Yﬁ =1if X;=jand Yﬁ =0if X;# 4,7 =1, 2, and 3. Further
define [3] =5 Xi1¥j;, j = 1, 2, and 3. Then show that i’j satisfies
n ' T XE = 25", k=0, 1, and 2.

2. (Section 7.1.2)
Let Xy, ..., X, be independent with exponential distribution with
parameter A.
(a) Find a method of moments estimate of A.
(b) Find a method of moments estimate of A different from the one
in (a).

3. (Section 7.2.2)
Suppose X; and X, are independent, each distributed as U(0, 0).
Compare max(X;, X9) and X; + X5 as two estimators of 6 by criterion
(6) in Section 7.2.2.
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(Section 7.2.2)
Show that criteria (1) through (5) are transitive, whereas (6) is not.

(Section 7.2.2)

Let X; and X5 be independent, each taking the value of 1 with
probability p and 0 with probability 1 — p. Let two estimators of p be
defined by T = (X; + X5)/2 and S = X;. Show that Eg(T — p) =
Eg(S — p) for any convex function g and for any p. Note that a
function g(-) is convex if for any a < band any 0 < X < 1, Ag(a) +
(I —N)g(b) = g[ha + (1 — M)b]. (A more general theorem can be
proved: in this model the sample mean is the best linear unbiased
estimator of p in terms of an arbitrary convex loss function.)

(Section 7.2.3)

Let X, X5, and X3 be independent binary random variables taking 1
with probability p and 0 with probability 1 — p. Define two estimators
1= Xand po = (X/2) + (1/4), where X = (X; + Xy + X35)/3. For
what values of p is the mean squared error of po smaller than that
of i)]?

(Section 7.2.3)

Let X; and Xy be independent, and let each take 1 and 0 with
probability p and 1 — p. Define the following two estimators of 6 =
p(1 — p) based on X; and Xo.

él = (X] + XQ - 2X1X2)/2
B2 = X1(1 — Xo).
Which estimator do you prefer? Why?

(Section 7.2.3)
Let Xy, X5, and X3 be independently distributed as B(1, p) and let
two estimators of p be defined as follows:

b1 = Xi(1 + Xy — Xs)
j)2:X1+X2_X3.

Obtain the mean squared errors of the two estimators. Can you say
one estimator is better than the other?
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(Section 7.2.5)

Suppose we define better in the following way: “Estimator X is better
than Y in the estimation of 8 if P(|X — 6] <€) = P(|Y — 6] <€) for
every € > 0 and > for at least one value of €.” Consider the binary
model: P(X; = 1) = pand P(X; = 0) = 1 — p. Show that the sample
mean X is not the best linear unbiased estimator. You may consider
the special case where » = 2 and the true value of p is equal to %,.

(Section 7.3.1)

Suppose we want to estimate the probability that Stanford will win a
football game, denoted by p. Suppose the only information we have
about p consists of the forecasts of n people published in the Stanford
Daily. Assume that these forecasts are independent and that each
forecast is accurate with a known probability m. If r of them say
Stanford will win, how would you estimate p? Justify your choice of
estimator.

(Section 7.3.1)
Suppose the probability distribution of X and Y is given as follows:

PX=1)=p PX=0=1-p P¥=1=Y%
PY =0) =%, and X andY are independent.

Define Z = X + Y. Supposing that twenty i.i.d. observations on Z yield
“Z = 27 four times, “Z = 1” eight times, and “Z = 07 eight times,
compute the maximum likelihood estimator of p. Note that we ob-
serve neither X norY.

(Section 7.3.1)

A proportion p of n jurors always acquit everyone, regardless of
whether a defendant has committed a crime or not. The remaining
1 — w proportion of jurors acquit a defendant who has not committed
a crime with probability 0.9 and acquit a criminal with probability 0.2.
If it is known that the probability a defendant has committed a crime
is 0.5, find the maximum likelihood estimator of w when we observe
that r jurors have acquitted the defendant. If » = 5 and r = 3, what
is your maximum likelihood estimator of w?

(Section 7.3.1)
Let X ~ B(n, p). Find the maximum likelihood estimator of p based
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on a single observation on X, assuming you know a priori that 0 < p
= 0.5. Derive its variance for the case of n = 3.

(Section 7.3.1)
Suppose the probability distribution of X and Y is given as follows:

PX;=1)=a, PX,=0=1-q
PY,=1|X,=1)=%, PY,=0[X,=1) =Y,
PY,i=1]X,=0) =% PE=0X=0 =%

(a) Given i.id. sample Y}, Yy, ...,Y,, find the maximum likelihood
estimator of a.

(b) Find the exact mean and variance of the maximum likelihood
estimator of o assuming that n = 4 and the true value of o is 1.

(Section 7.3.2)
Let X, ..., X, be a sample drawn from a uniform distribution
U6 — 0.5, 6 + 0.5]. Find the maximum likelihood estimator of 0.

(Section 7.3.2)

Suppose that X; — 6,7 =1, ..., n, are ii.d. with the common density
f(x) = (1/2)exp(—|x|) (the Laplace or double-exponential density).

(a) Show that the maximum likelihood estimator of 0 is the same as
the least absolute deviations estimator that minimizes ¥|X; — 0|.

(b) Show that it is also equal to the median of {Y}}.

(Section 7.3.2)

Let Xj, ..., X, be a sample from the Cauchy distribution with the
density f(x, 8) = {mw[l + (x — 6)*]}".

(a) Show that if n = 1, the maximum likelihood estimator of 0 is X;.
(b) Show that if n = 2, the likelihood function has multiple maxima,
and the maximum likelihood estimator is not unique.

(Section 7.3.2)
The density of X is given by

f(x) =3/(40) for0=x=9,
1/(40) for 6 < x = 20,

0 otherwise.



19.

20.

21.

22.

23.

| Exercises 155

Assuming that a sample of size 4 from this distribution yielded obser-
vations 1, 2.5, 3.5, and 4, calculate the maximum likelihood estimator
of 0.

(Section 7.3.2)
Let the density function of X be given by

f(x) = 2x/0 for0=x=29,
=2(x—1)/(0—-1) foro6<x=1,

where 0 < 6 < 1. Supposing that two independent observations on
X yield %1 and x9, derive the maximum likelihood estimator of 6.
Assume x; < x9.

(Section 7.3.2)
Show that . and 6? obtained by solving (7.3.15) and (7.3.16) indeed
maximize log L given by (7.3.14).

(Section 7.3.3)

Suppose that X3, . . ., X, are independent and that it is known that
(Xz-))‘ — 10 has a standard normal distribution, ¢ = 1, .. ., n. This is
called the Box-Cox transformation. See Box and Cox (1964).

(a) Derive the second-round estimator 5\2 of the Newton-Raphson
iteration (7.3.19), starting from an initial guess that 5\1 = 1.

(b) For the following data, compute XQ:

96, 125, 146, 76, 114, 69, 130, 119, 85, 106.

(Section 7.4.1)

Given f(x) = 0 exp(—0x),x > 0,6 > 0,

(a) Find the maximum likelihood estimator of 6.
(b) Find the maximum likelihood estimator of EX.

(c) Show that the maximum likelihood estimator of EX is best un-
biased.

(Section 7.4.1)
Suppose X ~ N(p, 1) and Y ~ N (2, 1), independent of each other.
Obtain the maximum likelihood estimator of p based on Ny i.i.d.
observations on X and Ny i.i.d. observations on Y and show that it is
best unbiased.
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(Section 7.4.2)

Let {Xy;} and {Xo}, ¢ = 1, 2, . . ., n, be independent of each other
and across ¢, each distributed as B(1, p). We are to observe X;; — X,
i=1,2,...,n Find the maximum likelihood estimator of p assuming
we know 0 < p = 0.5. Prove its consistency.

(Section 7.4.3)

Using a coin whose probability of a head, p, is unknown, we perform
ten experiments. In each experiment we toss the coin until a head
appears and record the number of tosses required. Suppose the
experiments yielded the following sequence of numbers:

1, 3, 4,1, 2, 2, 5, 1, 3, 3.

Compute the maximum likelihood estimator of p and an estimate of
its asymptotic variance.

(Section 7.4.3)

Let{X;},i=1,2,..., n, bearandom sample on N(j, p), where we
assume p > 0. Obtain the maximum likelihood estimator of p and
prove its consistency. Also obtain its asymptotic variance and compare
it with the variance of the sample mean.

(Section 7.4.3)

Let{X;},i=1,2,...,5,beiid. N(u,1) andlet {¥;},:=1,2,...,
5, be ii.d. N(p,2, 1). Assume that all the X’s are independent of all
the Y’s. Suppose that the observed values of {X;} and {Y}} are (—2, 0,
1,-3,-1) and (1,1, 0, 2, —1.5), respectively. Calculate the maxi-
mum likelihood estimator of p and an estimate of its asymptotic
variance.

(Section 7.4.3)

It is known that in a certain criminal court those who have not
committed a crime are always acquitted. It is also known that those
who have committed a crime are acquitted with 0.2 probability and
are convicted with 0.8 probability. If 30 people are acquitted among
100 people who are brought to the court, what is your estimate of the
true proportion of people who have not committed a crime? Also
obtain the estimate of the mean squared error of your estimator.
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(Section 7.4.3)

Let X and Y be independent and distributed as N(u, 1) and N(0, p),
respectively, where p > 0. Derive the asymptotic variance of the
maximum likelihood estimator of . based on a combined sample of
(X1, X9, ..., Xy) and (Y1, Yy, ..., Y,).

(Section 7.4.3)
Suppose that X has the Hardy-Weinberg distribution:

X =1 with probability u%
= 2 with probability 2u(1 — w),
= 3 with probability (1 — )%,

where 0 < p < 1. Suppose we observe X = 1 three times, X = 2 four
times, and X = 3 three times.

(a) Find the maximum likelihood estimate of .

(b) Obtain an estimate of the variance of the maximum likelihood
estimator.

(¢) Show that the maximum likelihood estimator attains the Cramér-
Rao lower bound in this model.

(Section 7.4.3)

In the same model as in Exercise 30, let N; be the number of times
X = {in N trials. Prove the consistency of fi; = YN1/N and of 1, =
1 — VN3/N and obtain their asymptotic distributions as N goes to
infinity.

(Section 7.4.8)

Let{Xj},¢i=1,2,..., n, beiid. with P(X > t) = exp(—NM\). Define
0 = exp(—\). Find the maximum likelihood estimator of 6 and its
asymptotic variance.

(Section 7.4.3)

Suppose f(x) = 0/(1 + x)'™*, 0 < x < =, § > 0. Find the maximum
likelihood estimator of 6 based on a sample of size n from f and
obtain its asymptotic variance in two ways:

(a) Using an explicit formula for the maximum likelihood estimator.
(b) Using the Cramér-Rao lower bound.

Hint: Elog (1 + X) =07, Viog (1 + X) =672
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(Section 7.4.3)

Suppose f(x) = o exp(—x/6), x = 0, 8 > 0. Observe a sample of
size n from f. Compare the asymptotic variances of the following two
estimators of 0:

(a) # = maximum likelihood estimator (derive it).

(b) & = V=x?/2n.

(Section 7.4.3)

Suppose f(x) = 1/(b — a) for a < x < b. Observe a sample of size n
from f. Compare the asymptotic variances of the following two esti-
mators of § = b — a:

(a) 6 = maximum likelihood estimator (derive it).

(b) & = 2V3Z(x; — ©2/n.

(Section 7.4.3)
Let the joint distribution of X and Y be given as follows:

PX=1=0, PX=0)=1-8,
PY=1|X=1 =6 P¥=0|X=1=1-8,
P¥=1|X=0)=05 P¥=0|X=0) =05

where we assume 0.25 = 6 = 1. Suppose we observe only ¥ and not
X, and we see thatY = 1 happens N times in N trials. Find an explicit
formula for the maximum likelihood estimator of 6 and derive its
asymptotic distribution.

(Section 7.4.3)

Suppose that P(X = 1) = (1 — 6)/3, P(X =2) = (1 + 8)/3, and
P(X = 3) = 1. Suppose X is observed N times and let N; be the num-
ber of times X = i. Define §; = 1 — (3N1/N) and 8, = (3N2 / N) — 1.
Compute their variances. Derive the maximum likelihood estimator
and compute its asymptotic variance.

(Section 7.4.3)

A box contains cards on which are written consecutive whole numbers
1 through N, where N is unknown. We are to draw cards at random
from the box with replacement. Let X; denote the number obtained
on the ith drawing.

(a) Find EX; and VX,.
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(b) Define estimator N = 2X — 1, where X is the average value of

the K numbers drawn. Find EN and VN.
(c) If five drawings produced numbers 411, 950, 273, 156, and 585,
what is the numerical value of N? Do you think N i a good estimator

of N? Why or why not?

(Section 7.4.3)
Verify (7.4.15) in Examples 7.4.1 and 7.4.2.



8 INTERVAL ESTIMATION

8.1 INTRODUCTION

Obtaining an estimate of a parameter is not the final purpose of statistical
inference. Because we can never be certain that the true value of the
parameter is exactly equal to an estimate, we would like to know how close
the true value is likely to be to an estimated value in addition to just
obtaining the estimate. We would like to be able to make a statement such
as “the true value is believed to lie within a certain interval with such and
such confidence.” This degree of confidence obviously depends on how
good an estimator is. For example, suppose we want to know the true
probability, p, of getting a head on a given coin, which may be biased in
either direction. We toss it ten times and get five heads. Our point estimate
using the sample mean is Y%, but we must still allow for the possibility that
p may be, say, 0.6 or 0.4, although we are fairly certain that p will not be
0.9 or 0.1. If we toss the coin 100 times and get 50 heads, we will have
more confidence that p is very close to %, because we will have, in effect,
a better estimator.

More generally, suppose that 8(X;, X, . . . , X,) is a given estimator of
a parameter 0 based on the sample X;, X5, ..., X,. The estimator )
summarizes the information concerning 6 contained in the sample. The
better the estimator, the more fully it captures the relevant information
contained in the sample. How should we express the information con-
tained in 6 about 8 in the most meaningful way? Writing down the ob-
served value of § is not enough—this is the act of point estimation. More
information is contained in 8: namely, the smaller the mean squared error
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of 8, the greater confidence we have that 8 is close to the observed value
of 6. Thus, given 8, we would like to know how much confidence we can
have that 0 lies in a given interval. This is an act of interval estimation and
utilizes more information contained in 8.

Note that we have used the word confidence here and have deliberately
avoided using the word probability. As discussed in Section 1.1, in classical
statistics we use the word probability only when a probabilistic statement
can be tested by repeated observations; therefore, we do not use it con-
cerning parameters. The word confidence, however, has the same practical
connotation as the word probability. In Section 8.3 we shall examine how
the Bayesian statistician, who uses the word probability for any situation,
carries out statistical inference. Although there are certain important
differences, the classical and Bayesian methods of inference often lead to
a conclusion that is essentially the same except for a difference in the
choice of words. The classical statistician’s use of the word confidence may
be somewhat like letting probability in through the back door.

8.2 CONFIDENCE INTERVALS

We shall assume that confidence is a number between 0 and 1 and use it
in statements such as “a parameter 8 lies in the interval [a, b] with 0.95
confidence,” or, equivalently, “a 0.95 confidence interval for 9 is [a, b].” A
confidence interval is constructed using some estimator of the parameter
in question. Although some textbooks define it in a more general way, we
shall define a confidence interval mainly when the estimator used to
construct it is either normal or asymptotically normal. This restriction is
not a serious one, because most reasonable estimators are at least asymp-
totically normal. (An exception occurs in Example 8.2.5, where a chi-
square distribution is used to construct a confidence interval concerning
a variance.) The concept of confidence or confidence intervals can be
best understood through examples.

EXAMPLE 8.2.1 Let X, be distributed as B(1,p),:=1,2, ..., n. Then
T=X2 N(p, p(1 — p)/n]. Therefore, we have

821 —L—P A No .
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Let Z be N(0, 1) and define

(8.2.2)

v = P(|Z] < k).

Then we can evaluate the value of vy, for various values of % from the
standard normal table. From (8.2.1) we have approximately

(8.2.3)

p

=Yg

Suppose an observed value of T is t. Then we define confidence by

(8.24)

o

|t_P| <k

= Y&>
pad—p)

n

which reads “the confidence that p lies in the interval defined by the
inequality within the bracket is ;" or “the <y confidence interval of p is
as indicated by the inequality within the bracket.”

Definition (8.2.4) is motivated by the observation that the probability
that T lies within a certain distance from p is equal to the confidence that
p lies within the same distance from an observed value of T. Note that this
definition establishes a kind of mutual relationship between the estimator
and the parameter in the sense that if the estimator as a random variable
is close to the parameter with a large probability, we have a proportionately
large confidence that the parameter is close to the observed value of the
estimator. Equation (8.2.3) may be equivalently written as

(825 P [[

K> K
n

n

which may be further rewritten as

(8.2.6)

where

(8.2.7)

P (T) < p < ho(T)] = Vi,

hla h’2 =

22 2
K> V T+k_ _ +k_ 2
oT + — = (2 ol B Rt £
2
2(1+k_]
n



8.2 | Confidence Intervals 163

Similarly, (8.2.4) can be written as
(8.2.8) Clhi(t) < p < hg(t)] = Vi

The probabilistic statement (8.2.6) is a legitimate one, because it concerns
a random variable T. It states that a random interval [2;(T), ho(T)] con-
tains p with probability +y,. Definition (8.2.8) is appealing as it equates the
probability that a random interval contains p to the confidence that an
observed value of the random interval contains p.

Let us construct a 95% confidence interval of p, assuming » = 10 and
t = 0.5. Then, since y; = 0.95 when k£ = 1.96, we have from (8.2.8)

(8.2.9) C(0.2366 < p < 0.7634) = 0.95.
If n = 100 and ¢ = 0.5, we have
(82.10)  C€(0.4038 < p < 0.5962) = 0.95.

Thus a 95% confidence interval keeps getting shorter as n increases—a
reasonable result.

Next we want to study how confidence intervals change as k changes for
fixed values of n and ¢. For this purpose, consider n(¢ — p)2/p(1 — p) as
a function of p for fixed values of n and ¢. It is easy to see that this function
shoots up to infinity near p = 0 and 1, attains the minimum value of 0 at
p = t, and is decreasing in the interval (0, ¢) and increasing in (¢, 1). This
function is graphed in Figure 8.1. We have also drawn horizontal lines
whose ordinates are equal to K and &*°. Thus the intervals (a, b) and
(a*, b*) correspond to the <y; and v+ confidence intervals, respectively. By
definition, confidence clearly satisfies probability axioms (1) and (2) if in
(2) we interpret the sample space as the parameter space, which in this
example is the interval [0, 1]. Moreover, Figure 8.1 shows that if interval
I, contains interval Iy, we have C(I;) = C(ly). This suggests that we may
extend the definition of confidence to a larger class of sets than in (8.2.4),
so that confidence satisfies probability axiom (3) as well. For example,
(8.2.4) defines C(a < p < b) = v, and C(a* < p < b*) = ypx, and we may
further define Cl(a < p < a*) U (b* < p < b)] = v — Yax.

Confidence is not as useful as probability, however, because there are
many important sets for which confidence cannot be defined, even after
such an extension. For example, C(a < p < a*) cannot be uniquely
determined from definition (8.2.4). This is definitely a shortcoming of the
confidence approach. In Bayesian statistics we would be able to treat p as
arandom variable and hence construct its density function. Then we could
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n(t— py N
p(1 — p)

e

K

p

0 a a t b b 1

FIGURE 8.1 Construction of confidence intervals in Example 8.2.1

calculate the probability that p lies in a given interval simply as the area
under the density function over that interval. This is not possible in the
confidence approach, shown above. In other words, there is no unique
function (“confidence density,” so to speak) such that the area under the
curve over an interval gives the confidence of the interval as defined in
(8.2.4). For, given one such function, we can construct another by raising
the portion of the function over (0,¢) and lowering the portion over
(t, 1) by the right amount.

EXAMPLE 8.2.2 LetX; ~ N(p,0%,i=1,2, ..., n, where p is unknown
and o? is known. We have T = X ~ N (., 0>/n). Define

(82.11) P IT—wl )2 Vi

\
n
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Therefore, given T = ¢, we define confidence

®212) C q <k|=v,.
g

n

Thus the greater the probability that T lies within a certain distance
from p, the greater the confidence that p lies within the same distance
from ¢. Note that (8.2.12) defines confidence only for intervals with the
center at t. We may be tempted to define N(t, o’/ n) as a confidence
density for p, but this is one among infinite functions for which the area
under the curve gives the confidence defined in (8.2.12). For example,
the function obtained by eliminating the left half of the normal density
N(t, 0%/n) and doubling the right half will also serve as a confidence
density.

Suppose that the height of the Stanford male student is distributed as
N(p, 0.04) and that the average height of ten students is observed to be
6 (in feet). We can construct a 95% confidence interval by putting ¢ = 6,
0 = 0.04, n = 10, and k = 1.96 in (8.2.12) as

0.2

8218) C|l6 — w] < —=-1.96 |=0.95.
[I W 7o ]

Therefore the interval is (5.88 < u < 6.12).

EXAMPLE 8.2.3 Suppose that X; ~ N(p, 0%, i = 1,2, ..., n, with
both w and o® unknown. Let T = X be the estimator of w and let §* =
n 'ZL 1 (X; — X)® be the estimator of ¢°. Then the probability distribution
oft, 1 = S_I(T — w) Vn — 1 is known and has been tabulated. It depends
only on n and is called the Student’s t distribution with n — 1 degrees of freedom.
See Theorem 5 of the Appendix for its derivation. Its density is symmetric
around 0 and approaches that of N(0, 1) as n goes to infinity. Define

8214) v = P(lt,—1| < k),

where <y, for various values of £ can be computed or read from the
Student’s ¢ table. Then we have

[T —wppin-1_,

(8215) P [—S— ]z Vi -
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Given T = t, § = s, we define confidence by

(8.2.16) o ['t

Consider the same data on Stanford students used in Example 8.2.2,
but assume that ¢ is unknown and estimated by S, which is observed to
be 0.04. Putting ¢t = 6 and s = 0.2 in (8.2.16), we get

8217 C (M < 2.262] = 0.95.

Therefore the 95% confidence interval of p is (5.85 < w < 6.15). Note
that this interval is slightly larger than the one obtained in the previous
example. The larger interval seems reasonable, because in the present
example we have less precise information.

EXAMPLE 8.2.4 Let X; ~ N(ux, 09, i =1, ..., ny letY; ~ N(y, 6°),
i=1,..., ny and assume that {X;} are independent of {Y;}. Then, as
shown in Theorem 6 of the Appendix,

X =) — (hx — py) nyny(ny + ny — 2
(8.2.18) arrng + my ~ 2) ~ by by -
anSX + ’ﬂyS)Q/ iy + ny
Thus, given the observed values X, 7, si, and sf,, we can define the vy
confidence interval for pux — py by

|('x - )’) (“’X p’}')| Vﬂxny(nx + ny — 2)

8.2.19 C
( 2 ) ny + Ny

nXsX Vngsd + nyss nysy = k} e
where v, = P(|t,,x+ny 9| < k). The assumption that X and Y have the same
variance is crucial, because otherwise (8.2.18) does not follow from equa-
tion (11) of the Appendix. See Section 10.3.1 for a method which can be
used in the case of crf( * 012/.

As an application of the formula (8.2.19), consider constructing a 0.95
confidence interval for the true difference between the average lengths
of unemployment spells for female and male workers, given that a random
sample of 35 unemployment spells of female workers lasted 42 days on
the average with a standard deviation of 2.5 days, and that a random
sample of 40 unemployment spells of male workers lasted 40 days on the
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average with a standard deviaton of 2 days. Since P(|t73| < 2) 0.95,
inserting k£ = 2, x = 42, j = 40, ny = 35, ny = 40, sk = (25)% and 55 =
9% into (8.2.19) yields

(8.220)  C(0.9456 < px — py < 3.0544) = 0.95.

EXAMPLE 8.2.5 LetX; ~ N(p,0),i=1,2, ..., n, with both p and o>
unknown, as in Example 8.2.3. This time we want to define a confidence
interval on ¢”. It is natural to use the sample variance defined by §* =
n—l):le(Xi - X)Q. Using it, we would like to define a confidence interval
of the form

(8.221) a+ b2 <o’ <c¢+ dSh

where we can get varying intervals by varying a, b, ¢, and 4. A crucial
question is, then, can we calculate the probability of the event (8.2.21) for
various values of a, b, ¢, and d? We reverse the procedure and start out
with a statistic of which we know the distribution and see if we can form
an interval like that in (8.2.21). We begin by observing nS/o? ~ X1,
given in Theorem 3 of the Appendix, and proceed as follows:

2 2 ) 2
(8.2.92) Pk1<£<k2=P oo 1 p 2™
ol Ry 8?2 R ko ky
Therefore, given the observed value $* of S2, a y-confidence interval is
defined by

2 2
ns

ns
8.2.23 M
( ) ks ko

where k; and ks are chosen so as to satisfy
(8.2.24) Pk < X2_1 < ko) = 7.

This example differs from the examples we have considered so far in that
(8.2.24) does not determine k; and ko uniquely. In practice it is customary
to determine these two values so as to satisfy

(8.2.95)  P(xi1<h) = POy > ky) = _;_l
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Given v, k; and kg can be computed or read from the table of chi-square
distribution.

As an application of the formula (8.2.23), consider constructing a 95%
confidence interval for the true variance o of the height of the Stanford
male student, given that the sample variance computed from a random
sample of 100 students gave 36 inches. Assume that the height is normally
distributed. Inserting n = 100, s = 36, k; = 74.22, and ko = 129.56 into
(8.2.23) yields the confidence interval (27.79, 48.50).

EXAMPLE 8.2.6 Besides the preceding five examples, there are many
situations where 7, as estimator of 0, is either normal or asymptotically
normal. If, moreover, the variance of T is consistently estimated by some
estimator V, we may define confidence approximately by

¢ — 6]
8.2.26 C|l—— <k |=P(Z|<k),
(8.2.26) [W (Z] < k)

where Z is N(0,1) and ¢ and v are the observed values of T and V,
respectively. If the situations of Examples 8.2.1, 8.2.3, 8.2.4, or 8.2.5 actu-
ally occur, it is better to define confidence by the method given under the
respective examples, even though we can also use the approximate
method proposed in this example.

As an application of the formula (8.2.26), consider the same data given
at the end of Example 8.2.5. Then, by Theorem 4 of the Appendix,

8227 S*2 N(d? o'/50).

Estimating the asymptotic variance o*/50 by 36°/50 and using (8.2.26),
we obtain an alternative confidence interval, (26.02, 45.98), which does
not differ greatly from the one obtained by the more exact method in
Example 8.2.5.

8.3 BAYESIAN METHOD

We have stated earlier that the goal of statistical inference is not merely
to obtain an estimator but to be able to say, using the estimator, where
the true value of the parameter is likely to lie. This is accomplished by
constructing confidence intervals, but a shortcoming of this method is
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that confidence can be defined only for a certain restricted sets of inter-
vals. In the Bayesian method this problem is alleviated, because in it we
can treat a parameter as a random variable and therefore define a prob-
ability distribution for it. If the parameter space is continuous, as is usually
the case, we can define a density function over the parameter space and
thereby consider the probability that a parameter lies in any given interval.
This probability distribution, called the posterior distribution, defined over
the parameter space, embodies all the information an investigator can
obtain from the sample as well as from the a priori information. It is
derived by Bayes’ theorem, which was proved in Theorem 2.4.2. We shall
subsequently show examples of the posterior distribution and how to
derive it. Note that in classical statistics an estimator is defined first and
then confidence intervals are constructed using the estimator, whereas in
the Bayesian statistics the posterior distribution is obtained directly from
the sample without defining any estimator. After the posterior distribution
has been obtained, we can define estimators using the posterior distribu-
tion if we wish, as will be shown below. The two methods are thus opposite
in this respect. For more discussion of the Bayesian method, see DeGroot
(1970) and Zellner (1971).

EXAMPLE 8.3.1 Suppose there is a sack containing a mixture of red
marbles and white marbles. The fraction of the marbles that are red
is known to be either p = % or p = %. We are to guess the value of p
after taking a sample of five drawings (replacing each marble drawn be-
fore drawing another). The Bayesian expresses the subjective a priori
belief about the value of p, which he has before he draws any marble,
in the form of what is called the prior distribution. Suppose he believes
that p = Y5 is as three times as likely as p = Y%, so that his prior distribu-
tion is

(8.3.1) Pp="%) =%
P(p="%) =Y.

Suppose he obtains three red marbles and two white marbles in five
drawings. Then the posterior distribution of p given the sample, denoted
by A4, is calculated via Bayes’ theorem as follows:
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P(p=%|AJsO.39.

This calculation shows how the prior information embodied in (8.3.1) has
been modified by the sample. It indicates a higher value of p than the
Bayesian’s a priori beliefs: it has yielded the posterior distribution (8.3.2),
which assigns a larger probability to the event p = Y%.

Suppose we change the question slightly as follows. There are four sacks
containing red marbles and white marbles. One of them contains an equal
number of red and white marbles and three of them contain twice as many
white marbles as red marbles. We are to pick one of the four sacks at
random and draw five marbles. If three red and two white marbles are
drawn, what is the probability that the sack with the equal number of red
and white marbles was picked? Answering this question using Bayes’ theo-
rem, we obtain 0.39 as before. The reader should recognize the subtle
difference between this and the previous question. In the wording of the
present question, the event (p = %) means the event that we pick the sack
that contains the equal number of red marbles and white marbles. Since
this is a repeatable event, the classical statistician can talk meaningfully
about the probability of this event. In contrast, in the previous question,
there is only one sack; hence, the classical statistician must view the event
(p = %) as a statement which is either true or false and cannot assign a
probability to it. The Bayesian, however, is free to assign a probability to
it, because probability to him merely represents the degree of uncertainty.
The prior probability in the previous question is purely subjective, whereas
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TABLE 8.1 Loss matrix in estimation

State of Nature

Decision p="Y% p="%
p="% 0 Yo
p="% Y1 0

the corresponding probability in the present question has an objective
basis.

Given the posterior distribution (8.3.2), the Bayesian may or may not
wish to pick either p = Y5 or p = % as his point estimate. If he simply
wanted to know the truth of the situation, (8.3.2) would be sufficient,
because it contains all he could possibly know about the situation. If he
wanted to make a point estimate, he would consider the loss he would
incur in making a wrong decision, as given in Table 8.1. For example, if
he chooses p = Y5 when p = Y% is in fact true, he incurs a loss yo. Thus
the Bayesian regards the act of choosing a point estimate as a game played
against nature. He chooses the decision for which the expected loss is the
smallest, where the expectation is calculated using the posterior distribu-
tion. In the present example, therefore, he chooses p = Y3 as his point
estimate if

833)  0.39y, < 0.61v.

For simplicity, let us assume y; = 7. In this case the Bayesian’s point
estimate will be p = V5. This estimate is different from the maximum
likelihood estimate obtained by the classical statistician under the same
circumstances. The difference occurs because the classical statistician ob-
tains information only from the sample, which indicates a greater likeli-
hood that p = % than p = Y5, whereas the Bayesian allows his conclusion
to be influenced by a strong prior belief indicating a greater probability
that p = Y. If the Bayesian’s prior distribution assigned equal probability
to p = Y5 and p = Y instead of (8.3.1), then his estimate would be the
same as the maximum likelihood estimate.

What if we drew five red marbles and two white marbles, instead?
Denoting this event by B, the posterior distribution now becomes
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21

LR

- 4 0
37

(834) P (p = % | B] = 1 = 0.41

37

L

'§+21 7'
4 2

W=

P(p=%|3jso.59.

In this case the Bayesian would also pick p = % as his estimate, assuming
Y1 = Y2 as before, because the information contained in the sample has
now dominated his a priori information.

EXAMPLE 8.3.2 Let X be distributed as B(n, p). In Example 8.3.1, for
the purpose of illustration, we assumed that p could take only two values.
It is more realistic to assume that p can take any real number between 0
and 1. Suppose we a priori think any value of p between 0 and 1 is equally
likely. This situation can be expressed by the prior density

835 f(pH =1 0<p<l.

Suppose the observed value of X is k and we want to derive the posterior
density of p, that is, the conditional density of p given X = k. Using the
result of Section 3.7, we can write Bayes’ formula in this example as

PX =k
©36)  fp|X =k = |Df@B)
JO P(X = k| p)f(p)dp

where the denominator is the marginal probability that X = k. Therefore
we have

[)k(l _ p)n—h
®37)  felX=k="1r, ek
Jop 1 —p)*dp

_(m+ e - p
El(n — k)!

where the second equality above follows from the identity

b, m n! m! .
(8.3.8) J y (1 —y)"dy= ————— for nonnegative integers
0

I +n+m! nand m.
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Using (8.3.7), the Bayesian can evaluate the probability that p falls into
any given interval. We shall assume that » = 10 and k& = 5 in the model
of Example 8.2.1 and compare the Bayesian posterior probability with the
confidence obtained there. In (8.2.9) we obtained the 95% confidence
interval as (0.2366 < p < 0.7634). We have from (8.3.7)

0.7634 %
(8.3.9) P(0.2366 < p < 0.7634) = 2772 j P’ — pydp
0.2366
0.7634
1 6 5 7 5 8 10 9 11
= =Ty 4+ = -
2772[61) 7P Tal Tt ” 111’}
0.2366
= 0.947.
From (8.2.8) we can calculate the 80% confidence interval
(8.3.10) C(0.3124 < p < 0.6876) = 0.8.
We have from (8.3.7)
(8.311)  P(0.3124 < p < 0.6876) = 0.8138.

These calculations show that the Bayesian inference based on the uniform
prior density leads to results similar to those obtained in classical infer-
ence.

We shall now consider the general problem of choosing a point estimate
of a parameter 0 given its posterior density, say, f1(0). This problem is a
generalization of the game against nature considered earlier. Let 6 be the
estimate and assume that the loss of making a wrong estimate is given by

(8312) Loss = (§ — 0)2

Then the Bayesian chooses 8 so as to minimize

8313) E®—0?%= r (® — 0)%f1(0)do.

Note that the expectation is taken with respect to 6 in the above equation,

since 0 is the random variable and 8 is the control variable. Equating the
derivative of (8.3.18) with respect to 8 to 0, we obtain

(8.3.14) 2 j T ®- 0)f1(8)de = 0.
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Note that in obtaining (8.3.14) we have assumed that it is permissible to
differentiate the integrand in (8.3.13). Therefore we finally obtain

(8.3.15) %{wWﬁm.

We call this the Bayes estimator (or, more precisely, the Bayes estimator
under the squared error loss). In words, the Bayes estimator is the expected
value of 8 where the expectation is taken with respect to its posterior
distribution.

Let us apply the result (8.3.15) to our example by putting 6 = p and
f1(p) = f(p | X = k) in (8.3.7). Using the formula (8.3.8) again, we obtain

m+1ﬂj

1, e E+1
kl(n — k)! Py =

0 n+ 2

(83.16) p=

This is exactly the estimator Z that was defined in Example 7.2.2 and found
to have a smaller mean squared error than the maximum likelihood
estimator k/n over a relatively wide range of the parameter value. It gives
a more reasonable estimate of p than the maximum likelihood estimator
when 7 is small. For example, if a head comes up in a single toss (k¢ = 1,
n = 1), the Bayesian estimate p = %; seems more reasonable than the
maximum likelihood estimate, p = 1. As n approaches infinity, however,
both estimators converge to the true value of p in probability.

As this example shows, the Bayesian method is sometimes a useful tool
of analysis even for the classical statistician, because it can give her an
estimator which may prove to be desirable by her own standard. Nothing
prevents the classical statistician from using an estimator derived following
the Bayesian principle, as long as the estimator is judged to be a good one
by the standard of classical statistics.

Note that if the prior density is uniform, as in (8.3.5), the posterior
density is proportional to the likelihood function, as we can see from
(8.3.7). In this case the difference between the maximum likelihood
estimator and the Bayes estimator can be characterized by saying that the
former chooses the maximum of the posterior density, whereas the latter
chooses its average. Classical statistics may therefore be criticized, from
the Bayesian point of view, for ignoring the shape of the posterior density
except for the location of its maximum. Although the classical statistician
uses an intuitive word, “likelihood,” she is not willing to make full use of
its implication. The lkelihood principle, an intermediate step between clas-
sical and Bayesian principles, was proposed by Birnbaum (1962).
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EXAMPLE 8.3.3 Let {X;} be independent and identically distributed as
N(w, 02), i=12,...,n, where o® is assumed known. Let x; be the
observed value of X;. Then the likelihood function of p given the vector
X = (%), %9,. .., x,) is given by

1Y 1 ¥ 2
(8.3.17) x = exp | — — (e — W) |-
S| w [ij p[ QGQE }
Suppose the prior density of w is N (o, \?); that is,

1 1 2
Bomn eXP[—ﬁ(u—uo)]

Then the posterior density of w given x is by the Bayes rule

(8.3.18)  f(w) =

(8.3.19) fl | X) = = fx | P«)f(l-‘«)
J_ fx | Wf(w)dw

1 « 2 1 2
=crexp|— —— 2, (& — p) :'CXP — —5 (ho ~ o)™ |,

{ o’ i-1 2%
where ¢; is chosen to satisfy [~ of (i | x)dp = 1. We shall write the exponent
part successively as

n

1 1
(8320)  — ¥ (x5~ )P - o o)

20° i=1

1 a2+ o |:H‘2 _ INZZx; + 2071 b+ )\QZx,»2 + 0293}
2 o\? a2 + o2 n\? + o

9 2

1 n\? + o® { AZx; + 0% A2Zx; + oo

_ 1 W - _
2 gA\? % + o? m? + ¢*

)\2fo + 02;.1,3}
2+ o?



176 8 | Interval Estimation

Therefore we have

2 + o? NZx; + 0'2p.0 ?
(8321) f(u|x)=cexp|————|p————1| |/
20°\? a\e + o>

where ¢; = (1/¥2m)(¥nA2 + o2 /o)) in order for f(p | x) to be a density.
Therefore we conclude that the posterior distribution of w given X is

2 2
A+ T, T
(8322) w|x~N T, s
N+ a2+ L
n n

E(p | x) in the above formula is suggestive, as it is the optimally weighted
average of ¥ and p,. (Cf. Example 7.2.4.) As we let X approach infinity in
(8.3.22), the prior distribution approaches that which represents total
prior ignorance. Then (8.3.22) becomes

2
(8323) w|x~N [‘, (’—J-

n
Note that (8.3.23) is what we mentioned as one possible confidence
density in Example 8.2.2. The probability calculated by (8.3.23) coincides
with the confidence given by (8.2.12) whenever the latter is defined.

Note that the right-hand side of (8.3.22) depends on the sample x only

through x. This result is a consequence of the fact that X is a sufficient
statistic for the estimation of w. (Cf. Example 7.3.1.) Since we have
X ~ N(p, n”'a?), we have

n

(8324) f(&|w) = \/21;_0 exp {— 2_"2 (% — p4)2] .
g

Using (8.3.24), we could have obtained a result identical to (8.3.21) by
calculating

F&| wf(w) '
TG W (e

(8.325)  f(n|x) = J

EXAMPLE 8.3.4 Let X be uniformly distributed over the interval
(9, 10.5). Assuming that the prior density of 6 is given by
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f(®) =5 for9.5 <6 <97,
= 0 otherwise,

calculate the posterior density of 8 given that an observation of X is 10.
We have

=101 0)7(8
(8.3.26) f(8|x=10) = 9.7f(x | 0)/(6)
Lsf(x =106 )f(0)d6

5
105 — 6
197 5
SR —; ]
Jgﬁ 10.5 — 6

1
(log 0.8)(10.5 — 6)

4.48

= b <9 <97,
105 — o for 9.5 < 9 < 9.7

One weakness of Bayesian statistics is the possibility that a prior distri-
bution, which is the product of a researcher’s subjective judgment, might
unduly influence statistical inference. The classical school, in fact, was
developed by R. A. Fisher and his followers in an effort to establish statis-
tics as an objective science. This weakness could be eliminated if statisti-
cians could agree upon a reasonable prior distribution which represents
total prior ignorance (such as the one considered in Examples 8.3.2 and
8.3.3) in every case. This, however, is not always possible. We might think
that a uniform density over the whole parameter domain is the right prior
that represents total ignorance, but this is not necessarily so. For example,
if parameters 8 and . are related by = p.”', a uniform prior over ,

fw) =1, for 1<p<2

=0 otherwise,

implies a nonuniform prior over 0:
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f(0) =072 for 1/2<0 <1,
=0 otherwise.

Table 8.2 summarizes the advantages and disadvantages of Bayesian school

vis-a-vis classical statistics.

TABLE 8.2 Comparison of Bayesian and classical schools

Bayesian school

Classical school

*Can make exact inference
using posterior distribution.

*Bayes estimator is good, even
by classical standard.

Bayes inference may be robust
against misspecification of
distribution.

Use prior distribution that
represents total ignorance.

*No need to obtain
distribution of estimator.

Use confidence intervals as
substitute.

If sample size is large,
maximum likelihood estimator
is just as good.

*Can use good estimator such
as sample mean without
assuming any distribution.

*QObjective inference.

*No need to calculate
complicated integrals.

Note: Asterisk indicates school’s advantage.

EXERCISES

1. (Section 8.2)

Suppose you have a coin for which the probability of a head is the
unknown parameter p. How many times should you toss the coin in
order that the 95% confidence interval for p is less than or equal to

0.5 in length?
2. (Section 8.2)

The heights (in feet) of five randomly chosen male Stanford students
were 6.3, 6.1, 5.7, 5.8, and 6.2. Find a 90% confidence interval for
the mean height, assuming the height is normally distributed.
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. (Section 8.2)
Suppose X; ~ N(9, 62), i=1,2,...,100. Obtain an 80% confidence
interval for 6 assuming ¥ = 10.

. (Section 8.2)

A particular drug was given to a group of 100 patients (Group 1), and
no drug was given to another group of 100 patients (Group 2).
Assuming that 60 patients of Group 1 and 50 patients of Group 2
recovered, construct an 80% confidence interval on the difference
of the mean rates of recovery of the two groups (p; — po).

. (Section 8.2)

If 50 students in an econometrics class took on the average 35 minutes
to solve an exam problem with a variance of 10 minutes, construct a
90% confidence interval for the true standard deviation of the time
it takes students to solve the given problem. Answer using both exact
and asymptotic methods.

. (Section 8.3)

Let X; and X, be independent and let each be B(1, p). Let the prior
probabilities of p be given by P(p = %) = 0.5 and P(p = %) = 0.5.
Calculate the posterior probabilities P1(p) = P(p | X;=1) and Py(p)
= P(p| X1 =1, Xy = 1). Also calculate P(p| Xo = 1) using P1(p) as
the prior probabilities. Compare it with Py(p).

. (Section 8.3)
A Bayesian is to estimate the probability of a head, p, of a particular

coin. If her prior density is f(p) = 6p(1 — p), 0 = p = 1, and two
heads appear in two tosses, what is her estimate of p?

. (Section 8.3)
Suppose the density of X is given by

f(x|98) =1/6 for0<=x=9,
=90 otherwise,
and the prior density of 6 is given by
f(8) =1/6° for6 =1,

=0 otherwise.
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10.

11.

12.

8 | Interval Estimation

Obtain the Bayes estimate of 0, assuming that the observed value of
Xis 2.

(Section 8.3)

Suppose that a head comes up in one toss of a coin. If your prior
probability distribution of the probability of a head, p, is given by
P(p="Y%) =%, P(p = %) =%, and P(p = %) = Y% and your loss
function is given by |p — p|, what is your estimate $? What if your prior
density of p is given by f(p) = 1for0 = p =17

(Section 8.3)
Let X ~ B(1, p) and the prior density of p is given by f(p) = 1 for
0 = p = 1. Suppose the loss function L(-) is given by

L) = —2¢ if —-1=<e=0,
=e f0=e=1,
where ¢ = p — p. Obtain the Bayes estimate of p, given X = 1.

(Section 8.3)
In the preceding exercise, change the loss function to L{e) = |e|.
Obtain the Bayes estimate of p, given X = 1.

(Section 8.3)
Suppose the density of X is given by

f(x|0) =0+2(1—-0)x forO0=x=<1
=0 otherwise,

where we assume 0 = 0 = 2. Suppose we want to estimate 6 on the
basis of one observation on X.

(a) Find the maximum likelihood estimator of 6§ and obtain its exact
mean squared error.

(b) Find the Bayes estimator of 6 using the uniform prior density of
0 given by

f(0) =05 for0=6=2,
=0 otherwise.

Obtain its exact mean squared error.
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14.

15.

16.
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(Section 8.3)
Let {X;} be i.i.d. with the density

flx|8) =1/8, 0=x=6, 1=<8,
and define {¥;} by
;=1 ifX; =1,
=0 ifX,<1.

Suppose we observe {Y;}, i = 1 and 2, and find ¥; = 1 and Y, = 0.
We do not observe {X}}.

(a) Find the maximum likelihood estimator of 6.

(b) Assuming the prior density of 6 is f(0) = 62 for 6 = 1, find the
Bayes estimate of 9.

(Section 8.3)
The density of X, given an unknown parameter A € [0, 1], is given
by

flx[N) = M) + (1 = Nfa(x),

where f1(-) and fo(-) are known density functions. Derive the maxi-
mum likelihood estimator of A based on one observation on X.
Assuming the prior density of N is uniform over the interval [0, 1],
derive the Bayes estimator of A based on one observation on X.

(Section 8.3)
Let the density function of X be given by

fx) = 2x/0 for0=x=90,
=2x—1)/(6—-1) forb<x=1,

where 0 < 0 < 1. Assuming the prior density f(0) = 60(1 — 9), derive
the Bayes estimator of 0 based on a single observation of X.

(Section 8.3)

We have a coin for which the probability of a head is p. In the
experiment of tossing the coin until a head appears, we observe that
a head appears in the kth toss. Assuming the uniform prior density,
find the Bayes estimator of p.



9 TESTS OF HYPOTHESES

9.1 INTRODUCTION

There are two kinds of hypotheses: one concerns the form of a probability
distribution, and the other concerns the parameters of a probability dis-
tribution when its form is known. The hypothesis that a sample follows
the normal distribution rather than some other distribution is an example
of the first, and the hypothesis that the mean of a normally distributed
sample is equal to a certain value is an example of the second. Throughout
this chapter we shall deal with tests of hypotheses of the second kind only.

The purpose of estimation is to consider the whole parameter space
and guess what values of the parameter are more likely than others. In
hypothesis testing we pay special attention to a particular set of values of
the parameter space and decide if that set is likely or not, compared with
some other set.

In hypothesis tests we choose between two competing hypotheses: the
null hypothesis, denoted Hy, and the alternative hypothesis, denoted H,. We
make the decision on the basis of the sample (X3, X,, .. ., X,)), denoted
simply as X. Thus X is an n-variate random variable taking values in E,, n-
dimensional Euclidean space. Then a test of the hypothesis H, mathemati-
cally means determining a subset R of E, such that we reject H, (and
therefore accept H,) if X € R, and we accept H, (and therefore reject
H)) if X € R, the complement of R in E,. The set R is called the region of
rejection or the critical region of the test. Thus the question of hypothesis
testing mathematically concerns how we determine the critical region.
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As we shall show in Section 9.3, a test of a hypothesis is often based on
the value of a real function of the sample (a statistic). If T(X) is such a
statistic, the critical region is a subset R of the real line such that we reject
H, if T(X) € R. In Chapter 7 we called a statistic used to estimate a
parameter an estimator. A statistic which is used to test a hypothesis is called
a test statistic. In the general discussion that follows, we shall treat a critical
region as a subset of E,, because the event T(X) € R can always be
regarded as defining a subset of the space of X.

A hypothesis may be either simple or composite.

DEFINITION 9.1.1 A hypothesis is called simple if it specifies the values
of all the parameters of a probability distribution. Otherwise, it is called
composile.

For example, the assumption that p = % in the binomial distribution is
a simple hypothesis and the assumption that p > % is a composite hy-
pothesis. Specifying the mean of a normal distribution is a composite
hypothesis if its variance is unspecified.

In Sections 9.2 and 9.3 we shall assume that both the null and the
alternative hypotheses are simple. Sections 9.4 and 9.5 will deal with the
case where one or both of the two competing hypotheses may be compos-
ite. In practice, the most interesting case is testing a composite hypothesis
against a composite hypothesis. Most textbooks, however, devote the great-
est amount of space to the study of the simple against simple case. There
are two reasons: one is that we can learn about a more complicated
realistic case by studying a simpler case; the other is that the classical
theory of hypothesis testing is woefully inadequate for the realistic case.

9.2 TYPE | AND TYPE Il ERRORS

The question of how to determine the critical region ideally should de-
pend on the cost of making a wrong decision. In this regard it is useful
to define the following two types of error.

DEFINITION 9.2.1 A Type I error is the error of rejecting H, when it is
true. A Type II error is the error of accepting H, when it is false (that is,
when H, is true).
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Sl By — « f(x| H)

FIGURE 9.1 Relationship between o and B

The probabilities of the two types of error are crucial in the choice of
a critical region. We denote the probability of Type I error by a and that
of Type II error by . Therefore we can write mathematically

(9.2.1) a =PX € R| Hy)
and
(9.2.2) B=PXER|H).

The probability of Type I error is also called the size of a test.

Sometimes it is useful to consider a test which chooses two critical
regions, say, R, and Ry, with probabilities 8 and 1 — 3 respectively, where
8 is chosen a priori. Such a test can be performed if a researcher has a
coin whose probability of a head is 8, and she decides in advance that she
will choose R, if a toss of the coin yields a head and R, otherwise. Such a
test is called a randomized test. If the probabilities of the two types of error
for R, and Ry are (ay, B;) and (oo, Be), respectively, the probabilities of
the two types of error for the randomized test, denoted as (x, B), are given
by

923) a =0y + (1 —3d)ay and B =8B, + (1 — 8)B,.

We call the values of (a, B) the characteristics of the test.

We want to use a test for which both a and B are as small as possible.
Making a small tends to make B large and vice versa, however, as illustrated
in Figure 9.1. In the figure the densities of X under the null and the
alternative hypotheses are f(x | Hy) and flx | Hy), respectively. If we con-
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sider only the critical regions of the form R = {x | x > ¢}, « and B are
represented by the areas of the shaded regions. An optimal test, therefore,
should ideally be devised by considering the relative costs of the two types
of error. For example, if Type I error is much more costly than Type Il
error, we should devise a test so as to make o small even though it would
imply a large value for B. Even if we do not know the relative costs of the
two types of error, this much is certain: given two tests with the same value
of a, we should choose the one with the smaller value of B. Thus we define

DEFINITION 9.2.2 Let (a4, B;) and (ay, B2) be the characteristics of two
tests. The first test is better (or more powerful) than the second test if o; =
ay and B; = By with a strict inequality holding for at least one of the =.

If we cannot determine that one test is better than another by Definition
9.2.2, we must consider the relative costs of the two types of errors.
Classical statisticians usually fail to do this, because a consideration of the
costs tends to bring in a subjective element. In Section 9.3 we shall show
how the Bayesian statistician determines the best test by explicit consid-
eration of the costs, or the so-called loss function. Definition 9.2.2 is useful
to the extent that we can eliminate from consideration any test which is
“worse” than another test. The remaining tests that we need to consider
are termed admissible tests.

DEFINITION 9.2.3 A test is called inadmissible if there exists another test
which is better in the sense of Definition 9.2.2. Otherwise it is called
admissible.

The following examples will illlustrate the relationship between o and B
as well as the notion of admissible tests.

EXAMPLE 9.2.1 Let X be distributed as B(2, p), and suppose we are to
test Hy: p = Y, against Hy: p = % on the basis of one observation on X.
Construct all possible nonrandomized tests for this problem and calculate
the values of o and B for each test.

Table 9.1 describes the characteristics of all the nonrandomized tests.
Figure 9.2 plots the characteristics of the eight tests on the «, § plane.
Any point on the line segments connecting (1)—(4)-(7)—(8) except the
end points themselves represents the characteristics of an admissible ran-
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TABLE 9.1 Two types of errors in a binomial example

Test R R a = P(R| Hy) B = P(R|H)
(1) %} 0,1,2 0 1
(2) 0 1,2 A %6
(3) 1 0,2 Y% %
4) 2 0,1 Y4 e
(5) 0,1 2 % %
(6) 0,2 1 Y %
(7) 1,2 0 Y% Y6
(8) 0,1,2 %) 1 0

. B

1) «(©
3
4
+(3)
. - (5)
2 4)
- (6)
1
4
7
(7 @)
o
o 3 3 3 !

FIGURE 9.2 Two types of errors in a binomial example

domized test. It is clear that the set of tests whose characteristics lie on
the line segments constitutes the set of all the admissible tests. Tests (2),
(3), and (5) are all dominated by (4) in the sense of Definition 9.2.2.
Although test (6) is not dominated by any other nonrandomized test, it
is inadmissible because it is dominated by some randomized tests based
on (4) and (7). For example, the randomized test that chooses the critical
regions of tests (4) and (7) with the equal probability of % has the
characteristics o= % and B = Y and therefore dominates (6). Such a
randomized test can be performed by choosing H, if X = 0, choosing H;
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if X = 2, and, if X = 1, flipping a coin and choosing H, if it is a head and
H, otherwise.

In Definition 9.2.2 we defined the more powerful of two tests. When we
consider a specific problem such as Example 9.2.1 where all the possible
tests are enumerated, it is natural to talk about the most powerful test. In
the two definitions that follow, the reader should carefully distinguish two
terms, size and level. In stating these definitions we identify a test with a
critical region, but the definitions apply to a randomized test as well.

DEFINITION 9.2.4 R is the most powerful test of size a if a(R) = o and for
any test Ry of size o, B(R) = P(R;). (It may not be unique.)

DEFINITION 9.2.5 R is the most powerful test of level o if a(R) = o and for
any test R; of level a (that is, such that a(R;) = o), B(R) = B(Ry).

We shall illustrate the two terms using Example 9.2.1. We can state:

The most powerful test of size Y is (4).

The most powerful nonrandomized test of level %3 is (4).

The most powerful randomized test of size %3 is % - (4) + Y4 - (7).
Note that if we are allowed randomization, we do not need to use the word
level.

EXAMPLE 9.2.2 Let X have the density

(9.2.4) fly=1—-0+x for 6 —1=x<9,
=14+0—x for 9=x=<6+1,
=0 otherwise.

We are to test Hy: 8 = 0 against H;: 8 = 1 on the basis of a single
observation on X. Represent graphically the characteristics of all the
admissible tests.

The densities of X under the two hypotheses, denoted by f,(x) and
f1(x), are graphed in Figure 9.3. Intuitively it is obvious that the critical
region of an admissible nonrandomized test is a halfline of the form
[t, ©) where 0 = ¢t = 1. In Figure 9.3, o is represented by the area of the
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FIGURE 9.3 Densities under two hypotheses

lightly shaded triangle and B by the area of the darker triangle. Therefore,
algebraically,

(9.2.5) a==(1-8?

2

B==t, O0=t=1

Nj= N =

Eliminating ¢ from (9.2.5) yields

1
2

(9.2.6) Bzéa—@aﬂ 0<a=<-—.
Equation (9.2.6) is graphed in Figure 9.4. Every point on the curve
represents the characteristics of an admissible nonrandomized test. Be-
cause of the convexity of the curve, no randomized test can be admissible
in this situation.

A more general result concerning the set of admissible characteristics
is given in the following theorem, which we state without proof.

THEOREM 9.2.1 The set of admissible characteristics plotted on the «,
plane is a continuous, monotonically decreasing, convex function which
starts at a point within [0, 1] on the B axis and ends at a point within
[0, 1] on the a axis.

9.3 NEYMAN-PEARSON LEMMA

In this section we study the Bayesian strategy of choosing an optimal test
among all the admissible tests and a practical method which enables us
to find a best test of a given size. The latter is due to Neyman and Pearson
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N =

NP,

1 1
2 2

FIGURE 9.4 A set of admissible characteristics

and is stated in the lemma that bears their names. A Bayesian interpreta-
tion of the Neyman-Pearson lemma will be pedagogically useful here.

We first consider how the Bayesian would solve the problem of hypothe-
sis testing. For her it is a matter of choosing between H, and H; given the
posterior probabilities P(H,| x) and P(H,| x) where x is the observed value
of X. Suppose the loss of making a wrong decision is as given in Table 9.2.
For example, if we choose H, when H, is in fact true, we incur a loss v,.

Assuming that the Bayesian chooses the decision for which the expected
loss is smaller, where the expectation is taken with respect to the posterior
distribution, her solution is given by the rule

(9.3.1) Reject Hy if v, P(Hy|x) < yoP(H,|x).
In other words, her critical region, Ry, is given by
9320 Ry = (x| viP(Hy|x) < y,P(H;| %)}

Alternatively, the Bayesian problem may be formulated as that of deter-
mining a critical region R in the domain of X so as to

©9.3%  Minimize $(R) = y,P(H,|X € R)P(X € R)
+ v2P(H,|X € R) P(X € R).
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TABLE 9.2 Loss matrix in hypothesis testing

State of Nature

Decision H, H,
Hy 0 Yo
H, Y1 0

We shall show that R, as defined by (9.3.2) is indeed the solution of
(9.3.3). Let R be some other set in the domain of X. Then we have

(9.34)  &(Ro) = iP(Hy| Ry N R))P(Ry N Ry)
+ v1iP(Hy| Ry N Ry)P(Ry N Ry)
+ YyoP(H;| Ry N Ry)P(Ry N Ry)
+ voP(H1| Ry N Ry)P(Ry N Ry)

and

(9.35)  &(R)) = \P(Ho| Ry N Ry)P(R; N Ry)
+ viP(Hy| Ry N Rg)P(R; N Ry)
+ veP(H1| Ry N Ro)P(R; N Ry)
+ voP(Hy| Ry 0 Re)P(R; N Ry).

Compare the terms on the right-hand side of (9.3.4) with those on the
right-hand side of (9.3.5). The first and fourth terms are identical. The
second and the third terms of (9.3.4) are smaller than the third and the
second terms of (9.3.5), respectively, because of the definition of R, given
in (9.3.2). Therefore we have

936)  d(Ry) < d(Ry).
We can rewrite ¢ (R) as
937  &(R) = WP(Ho)P(R| Hy) + voP(H))P(R| H))
= mea(R) + mB(R),

where my = v{P(H,), W = voP(H,), and P(H,) and P(H,) are the prior
probabilities for the two hypotheses. When the minimand is written in the
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form of (9.3.7), it becomes clear that the Bayesian optimal test R, is
determined at the point where the curve of the admissible characteristics
on the a, B plane, such as those drawn in Figures 9.2 and 9.4, touches the
line that lies closest to the origin among all the straight lines with the
slope equal to —my/m;. If the curve is differentiable as in Figure 9.4, the
point of the characteristics of the Bayesian optimal test is the point of
tangency between the curve of admissible characteristics and the straight
line with slope —ng/7;.

The classical statistician does not wish to specify the losses y; and y; or
the prior probabilities P(Hy) and P(H)); hence he does not wish to specify
the ratic my/7;, without which the minimization of (9.3.7) cannot be
carried out. The best he can do, therefore, is to obtain the set of admissible
tests. This attitude of the classical statistician is analogous to that of the
economist who obtains the Pareto optimality condition without specifying
the weights on two people’s utilities in the social welfare function.

By virtue of Theorem 9.2.1, which shows the convexity of the curve of
admissible characteristics, the above analysis implies that every admissible
test is the Bayesian optimal test corresponding to some value of the ratio
Mo/ . This fact is the basis of the Neyman-Pearson lemma. Let L(x) be
the joint density or probability of X depending on whether X is continuous
or discrete. Multiply both sides of the inequality in (9.3.2) by L(x) and
replace P(H;|x)L(x) with L(x | H;)P(H;), i = 0, 1. Then the Bayesian
optimal test Ry can be written as

L(x| Hy) >m}.

938 R, =
©-38) 0 {X‘L(X|H0) 1

Thus we have proved

THEOREM 9.3.1 (Neyman-Pearson lemma) In testing Hy: 0 = 0y against
H;: 6 = 0y, the best critical region of size « is given by

(9.3.9) R= x|L(X—|el)>c ,
L(x | 89)

where L is the likelihood function and ¢ (the critical value) is determined
50 as to satisfy

9.3.10)  P(R|6) = a,

provided that such ¢ exists. (Here, as well as in the following analysis, 6
may be a vector.)
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The last clause in the theorem is necessary because, for example, in
Example 9.2.1 the Neyman-Pearson test consists of (1), (4), (7), and (8),
and there is no c that satisfies (9.3.10) for o = %.

THEOREM 9.3.2 The Bayes test is admissible.

Proof. Let Ry be as defined in (9.3.2). Then, by (9.3.7),

(9.3.11)  moa(Ry) + MmPB(Ry) = moa(R) + MPB(R).

Therefore, it is not possible to have a(R) = a(R,) and B(R) = B(R,) with
a strict inequality in at least one. U

The Neyman-Pearson test is admissible because it is a Bayes test.

The choice of a is in principle left to the researcher, who should
determine it based on subjective evaluation of the relative costs of the two
types of error. There is a tendency, however, for the classical statistician
automatically to choose o = 0.05 or 0.01. A small value is often selected
because of the classical statistician’s reluctance to abandon the null hy-
pothesis until the evidence of the sample becomes overwhelming. We shall
consider a few examples of application of Theorem 9.3.1.

EXAMPLE 9.3.1 Let X be distributed as B(n, p) and let x be its observed
value. The best critical region for testing Hy: p = p, against Hy: p = p; s,
from (9.3.9),

(1 — n—x
(9.3.12) M— > ¢ for some c.

o1 = po)" "
Taking the logarithm of both sides of (9.3.12) and collecting terms, we
get

2! lL-p 1-p
(9.3.13) «x|log— — log ——— {> log ¢ — nlo, .
(gl’o gl_PoJ 8 51— o
Suppose p; > p,. Then the term inside the parentheses on the left-hand
side of (9.3.13) is positive. Therefore the best critical region of size a is

defined by

(9.814) x> d, where d is determined by P(X > d | Hy) = a.

If py < py, the inequality in (9.3.14) is reversed. The result is consistent
with our intuition.
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EXAMPLE 9.3.2 Let X; be distributed as N (., 02), it=1,2,...,n where
o” is assumed known. Let x; be the observed value of X;. The best critical
region for testing Hy: p = pg against Hy: . = p, is, from (9.3.9),

1
exp {— 997 (% — M1)2]

(9.3.15) > ¢ for some c.

1
€Xp [_ F (% — P'O)Qi|

Taking the logarithm of both sides of (9.3.15) and collecting terms, we
obtain

9316) (w1~ o) 2, %> 0% log ¢ + & (u] — pf).

i=1

Therefore if w; > o, the best critical region of size « is of the form
(9.3.17) x> d, where d is determined by P(X > d| Hy) = a.

If uy < pyo, the inequality in (9.3.17) is reversed. This result is also consis-
tent with our intuition.

In both examples the critical region is reduced to a subset of the domain
of a univariate statistic (which in both cases is a sufficient statistic). There
are often situations where a univariate statistic is used to test a hypothesis
about a parameter. As stated in Section 9.1, such a statistic is called a fest
statistic. Common sense tells us that the better the estimator we use as a
test statistic, the better the test becomes. Therefore, even in situations
where the Neyman-Pearson lemma does not indicate the best test of a
given size a, we should do well if we used the best available estimator of
a parameter as a test statistic to test a hypothesis concerning the parame-
ter. Given a test statistic, it is often possible to find a reasonable critical
region on an intuitive ground. Intuition, however, does not always work,
as the following counterexample shows.

EXAMPLE 9.3.3 Let the density of X be given by

9.3.18)  f(x, 0) = b e 0,

2(1 + x — 0)
1

= - ifx<o.
2(1 — x + 6)
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FIGURE 9.5 Densities in a counterintuitive case

Find the Neyman-Pearson test of Hy: 6 = 0 against H: 6 = 6, > 0. The
densities under H, and H; are shown in Figure 9.5. We have

LH) (1 -x?

= 5 ifx <O,
L(Hy) (1 —x+606)

(9.3.19)

1 + x)?

==Y _ ifo=x=9,
(1 —x+ 0)

A + x)?

:m 1fx>01

The Neyman-Pearson critical region, denoted R, is identified in Figure
9.6. The shape of the function (9.3.19) changes with 8,. In the figure it is
drawn assuming 6, = 1.

9.4 SIMPLE AGAINST COMPOSITE

We have so far considered only situations in which both the null and the
alternative hypotheses are simple in the sense of Definition 9.1.1. Now we
shall turn to the case where the null hypothesis is simple and the alterna-
tive hypothesis is composite.

We can mathematically express the present case as testing Hy: 6 = 6
against H;: 8 € O;, where O, is a subset of the parameter space. If ©,
consists of a single element, it is reduced to the simple hypothesis consid-
ered in the previous sections. Definition 9.2.4 defined the concept of the
most powerful test of size a in the case of testing a simple against a simple
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FIGURE 9.6 The Neyman-Pearson critical region
in a counterintuitive case

hypothesis. In the present case we need to modify it, because here the 3
value (the probability of accepting H, when Hj is true) is not uniquely
determined if ©; contains more than one element. In this regard it is
useful to consider the concept of the power function.

DEFINITION 9.4.1 If the distribution of the sample X depends on a
vector of parameters 6, we define the power function of the test based on
the critical region R by

(9.4.1) Q(6) = PXE R|0).

Using the idea of the power function, we can rank tests of a simple null
hypothesis against a composite alternative hypothesis by the following
definition.

DEFINITION 9.4.2 Let Q;(0) and Qy(0) be the power functions of two
tests respectively. Then we say that the first test is uniformly better (or
uniformly more powerful) than the second test in testing Hy: 6 = 0, against
Hy: 0 € 0;if Q;(0p) = Q9(8,) and

(9.4.2) 0:(6) = Qy(0) forall 6 € O,
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and
(9.4.3) 0Q:(8) > Q5(0) for at least one 8 € O,.

Note that Q(6,) is what we earlier called a, and if ©, consists of a single
element equal to 0;, we have Q(6;) =1 — B.

The following is an example of the power function.
EXAMPLE 9.4.1 Let X have the density
1
flx) = ry for0=x=29,

= (0 otherwise.

We are to test Hy: 6 = 1 against H;: 0 > 1 on the basis of one observation
on X. Obtain and draw the power function of the test based on the critical
region R = [0.75, ).
By (9.4.1) we have
0.75

(9.4.4) Q) =P(X=075]6)=1- 5

Its graph is shown in Figure 9.7.

The following is a generalization of Definitions 9.2.4 and 9.2.5. This
time we shall state it for size and indicate the necessary modification for
level in parentheses.

DEFINITION 9.4.3 A test R is the uniformly most powerful (UMP) test of
size (level) a for testing Hy: & = 6, against Hy: 8 € O, if P(R |8y) =
(=) a and for any other test R; such that P(R, | 60) = (=) a, we have
P(R|0) = P(R,|90) forany € O,.

In the case where both the null and the alternative hypotheses are
simple, the Neyman-Pearson lemma provides a practical way to find the
most powerful test of a given size a. In the present case, where the
alternative hypothesis is composite, the UMP test of a given size o may not
always exist. The so-called likelihood ratio test, however, which may be
thought of as a generalization of the Neyman-Pearson test, usually gives
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FIGURE 9.7 Power function

the UMP test if a UMP test exists; even when it does not, the likelihood
ratio test is known to have good asymptotic properties.

DEFINITION 9.4.4 Let L(x|0) be the likelihood function and let the
null and alternative hypotheses be Hy: 6 = 65 and H;: € Oy, where O
is a subset of the parameter space ©. Then the lkelihood ratio test of H,
against H is defined by the critical region

L(80)
sup L(0)
0,U0,
where ¢ is chosen to satisfy P(A < ¢ | Hy) = « for a certain specified value
of a. Sup, standing for supremum, means the least upper bound and is
equal to the maximum if the latter exists. Note that we have 0 = A =1
because the subset of the parameter space within which the supremum is
taken contains 6.

Below we give several examples of the likelihood ratio test. In some of
them the test is UMP, but in others it is not.

9.45) A

<c¢

>

EXAMPLE 9.4.2 Let X be distributed as B(n, p). We are to test Hy: p =
po against Hy: p > py, given the observation X = x. The likelihood function
is L(x, p) = Cep*(1 — p)" " If x/n =< py, clearly A = 1, which means that
H, is accepted for any value of o less than 1. If x/n > p, max s, Lix, p)
is attained at p = x/n. Therefore the critical region of the likelihood ratio
test is given by

po(1 — po)* ~

(e

9.46) A=

-<c for a certain c.



198 9 | Hypotheses

Taking the logarithm of both sides of (9.4.6) and dividing by —=, we
obtain

947)  tlogt+ (1—#)log (1 —#) — tlog po — (1 — #)log (1 — po)

log ¢
n

> —

B

where we have put ¢t = x/n. Since it can be shown by differentiation that
the left-hand side of (9.4.7) is an increasing function of ¢ whenever ¢ >
pos it is equivalent to

(9.4.8) % > d,

where d should be determined so as to make the probability of event
(9.4.8) under the null hypothesis (approximately) equal to a. (Note that
¢ need not be determined.)

This test is UMP because it is the Neyman-Pearson test against any
specific value of p > p, (see Example 9.3.1) and because the test defined
by (9.4.8) does not depend on the value of p.

EXAMPLE 9.4.3 Let the sample be X; ~ N(p, 02),1' =1,2,...,n, where
o? is assumed known. Let x; be the observed value of X;. We are to test
Hy: p = pg against Hy: o > pg. The likelihood ratio test is to reject H if

o] 2]

20 i=1

<.

(949) A

1 9
sup exp {— 5y (% — ) }
W=y 20 l:zl

If £ < po, then A = 1 because we can write Z(x; — p)2 = S(x — )2 +
n(w — %) therefore, we accept Hy. So suppose & > py. Then the denomi-
nator of A attains a maximum at . = %. Therefore, we have

2
(9410) (& — p)®> — 20—11;’5—6.
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Therefore, since ¥ > g, the likelihood ratio test in this case is charac-
terized by the critical region

(9.411) % > d, where d is determined by P(X > d | Hy) = o

For the same reason as in the previous example, this test is UMP.

EXAMPLE 9.4.4 The assumptions are the same as those of Example 9.4.3
except that H;: p # pg. Then the denominator in (9.4.9) is maximized
with respect to the freely varying p, attaining its maximum at p = %.
Therefore we again obtain (9.4.10), but this time without the further con-
straint that ¥ > py. Therefore the critical region is

(9.412)  |x — pol > 4,
where d is determined by P(|X — po| > d| Hy) = a.

This test cannot be UMP, because it is not a Neyman-Pearson test against
a specific value of .

Tests such as (9.4.8) and (9.4.11) are called onetail tests, whereas tests
such as (9.4.12) are called two-tail tests. In a two-tail test such as (9.4.12)
we could perform the same test using a confidence interval, as discussed
in Section 8.2. From Example 8.2.2 the 1 — a confidence interval of w is
defined by |¥ — | < d, where d is the same as in (9.4.12). Therefore, H,
should be rejected if and only if p, lies outside the confidence interval.

EXAMPLE 9.4.5 Consider the model of Example 9.3.3 and test Hy: 6 =
0 against Hy: 8 > 0 on the basis of one observation x. If x =< 0, then A =
1, so we accept Hy. Therefore assume x > 0. Then the numerator of A is
equal to 1/[2(1 + x)2] and the denominator is equal to %. Therefore the
likelihood ratio test is to reject Hy if x > d, where d is chosen appropriately.
This test is not UMP because it is not a Neyman-Pearson test, which was
obtained in Example 9.3.3. That the UMP test does not exist in this case
can be seen more readily by noting that the Neyman-Pearson test in this
example depends on a particular value of 0.

EXAMPLE 9.4.6 Suppose X has a uniform density over [0, 0], 0 <6 = 1.
We are to test Hy: 0 = 1, against H;: 6 # % on the basis of one observation
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FIGURE 9.8 Power function of a likelihood ratio test

x. Derive the likelihood ratio test of size %, draw its power function, and
show that it is UMP.

First, note that A = 0 for x € [0.5, 1]; therefore, [0.5, 1] should be part
of the critical region. Next assume that x € [0, 0.5). Then we have

(9.418) A =-="= .

Therefore we reject Hy if 2x < ¢, where ¢ should satisfy P(2X < ¢| Hy) =
Y. This implies that ¢ = %. We conclude that the critical region is [0, 0.25]
U [0.5, 1]. Its power function is depicted as a solid curve in Figure 9.8.
To show that this is UMP, first note that [0.5, 1] should be part of any
reasonable critical region, because this portion does not affect the size
and can only increase the power. Suppose the portion A of [0, 0.25] is
removed from the critical region and the portion B is added in such a way
that the size remains the same. Then part of the power function shifts
downward to the broken curve. This completes the proof.

In all the examples of the likelihood ratio test considered thus far, the
exact probability of A < ¢ can be either calculated exactly or read from
appropriate tables. There are cases, however, where P(A < ¢) cannot be
easily evaluated. In such a case the following theorem is useful.

THEOREM 9.4.1 Let A be the likelihood ratio test statistic defined in
(9.4.5). Then, —2 log A is asymptotically distributed as chi-square with the
degrees of freedom equal to the number of exact restrictions implied by



9.5 Composite against Composite | 201

H,. (For example, if there are r parameters and H, specifies the values of
all of them, the degrees of freedom are 7.)

9.5 COMPOSITE AGAINST COMPOSITE

In this section we consider testing a composite null hypothesis against a
composite alternative hypothesis. As noted earlier, this situation is the
most realistic. Let the null and alternative hypotheses be Hy: 6 € Oy and
H,: 0 € O,, where 6, and O, are subsets of the parameter space ©. Here
we define the concept of the UMP test as follows:

DEFINITION 9.5.1 A test R is the uniformly most powerful test of size
(level) a if supgeo, P(R |6) = (=) « and for any other test R; such that
supsco, P(R;|0) = (=) a we have P(R|6) = P(R;|8) for any 6 € O,.

For the present situation we define the likelihood ratio test as follows.

DEFINITION 9.5.2 Let L(x|0) be the likelihood function. Then the
likelihood ratio test of H, against H; is defined by the critical region

sup L(0)

©51) A= <
sup 1(6)
0,U0,

where ¢ is chosen to satisfy supg P(A < ¢|8) = o for a certain specified
value of a.

The following are examples of the likelihood ratio test.

EXAMPLE 9.5.1 Consider the same model as in Example 9.4.2, but here
test Hy: p = po against Hy: p > po. If x/n < py, A = 1; therefore, accept
H,. Henceforth suppose x/n > p,. Since the numerator of the likelihood
ratio attains its maximum at p = po, A is the same as in (9.4.6). Therefore
the critical region is again given by (9.4.8). Next we must determine d so
as to satisfy

(9.5.2) sup P (% >d| p] = a.
p=to
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But since P(X/n > d| p) can be shown to be a monotonically increasing
function of p, we have

(9.5.3) supP(%>d|pj=P[§>d|p0]-
p=to

Therefore the value of d is also the same as in Example 9.4.2.

This test is UMP. To see this, let R be the test defined above and let R,
be some other test such that sup,<, P(R; | p) = a. Then it follows that
P(R,| po) = a. But since R is the UMP test of Hy: p = p, against Hy: p >
Po, we have P(R; | p) = P(R|p) for all p > p, by the result of Example
9.4.2.

EXAMPLE 9.5.2 Let the sample be X; ~ N(u, ¢°) with unknown o?, i =
1,2,...,n We are to test Hy: . = g and 0 < o < against Hy: pu >
po and 0 < o? < o,

Denoting (., 02) by 6, we have

0 =1

954  L®) = (2m "}o?) "Zexp {— LQ Y (x; — u)g}

Therefore

(9.5.5) sup L(8) = (217)_"/2((‘72)_"/2exp L z (3 — o)
9, 2(_)'2 i=1

= 2m) ™ "%5%) exp = E:I )

where % = n”'Z" 1(x; — po)’. If x/n < po» A = 1; therefore, accept Hy.

Henceforth suppose x/n > p,. Then we have

(9.5.6) sup L(6) = (217)_"/2(6'2)_"/2exp [— ﬁ:l ,
PLSH 2

2

where 6° = n_IZ{Ll(xi — %)% Therefore the critical region is

(9.5.7) ((_)'2/6'2)_"/2 < ¢ forsome c,

which can be equivalently written as

X = Mo

V(&% /n)

(9.5.8) >k,
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where ? is the unbiased estimator of o® defined by (n — 1)_12i=1(x,- — X) 2,
Since the left-hand side of (9.5.8) is distributed as Student’s ¢t with n — 1
degrees of freedom, k can be computed or read from the appropriate
table. Note that since P(R | H,) is uniquely determined in this example
in spite of the composite null hypothesis, there is no need to compute the
supremum.

If the alternative hypothesis specifies . # o, the critical region (9.5.8)
should be modified by putting the absolute value sign around the left-
hand side. In this case the same test can be performed using the confi-
dence interval defined in Example 8.2.3.

In Section 9.3 we gave a Bayesian interpretation of the classical method
for the case of testing a simple null hypothesis against a simple alternative
hypothesis. Here we shall do the same for the composite against composite
case, and we shall see that the classical theory of hypothesis testing be-
comes more problematic. Let us first see how the Bayesian would solve
the problem of testing Hy: 8 < 0, against H;: 6 > 0,. Let L,(8) be the loss
incurred by choosing Hy, and L,(0) by choosing H;. Then the Bayesian
rejects Hy if

(9.5.9) rle(B)f(e | x)d0 <rmL2(6)f(6 | x)d9,
where f (8 | x) is the posterior density of 6. Suppose, for simplicity, that
L,(0) and Ly(9) are simple step functions defined by
9.5.10) L;(8) =0 for 6 > 6,

=y, for 0 =6,
and

Ly(0) =0 for 6 <8
= vy for 6 = 0.

In this case the losses are as given in Table 9.2; therefore (9.5.9), as can
be seen in (9.3.8), is reduced to

Lx|H
(9.5.11) Lx | Hy _ mo
Lix|Hy) ™

Recall that (9.5.11) is the basis for interpreting the Neyman-Pearson test.
Here, in addition to the problem of not being able to evaluate my/7);, the
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classical statistician faces the additional problem of not being able to make
sense of L(x | H,) and L(x | Hy).
The likelihood ratio test is essentially equivalent to rejecting H) if

sup L(x | 0)
89>8,
(9.5.12) — >
sup L(x | 0)
0=8,

A problem here is that the left-hand side of (9.5.12) may not be a good
substitute for the left-hand side of (9.5.11).

Sometimes a statistical decision problem we face in practice need not
and/or cannot be phrased as the problem of testing a hypothesis on a
parameter. For example, consider the problem of deciding whether or not
we should approve a certain drug on the basis of observing x cures in 7
independent trials. Let p be the probability of a cure when the drug is
administered to a patient, and assume that the net benefit to society of
approving the drug can be represented by a function U(p), nondecreasing
in p. According to the Bayesian principle, we should approve the drug if

(9.5.13) J :U(p)f(p | x)dp > 0,

where f(p| x) is the posterior density of p given x. Note that in this de-
cision problem, hypothesis testing on the parameter p is not explicitly
considered. The decision rule (9.5.13) is essentially the same kind as
(9.5.9), however.

Next we try to express (9.5.13) more explicitly as an inequality concern-
ing x, assuming for simplicity that f(p | x) is derived from a uniform prior
density: that is, from (8.3.7),

(9514)  f(p|x) = (n+ DCp"(1 — p)" ™.
Now suppose y > x. Then f(p|x) and f(p|y) cross only once, except
possibly at p = 0 or 1. To see this, put f(p | x) = f(p|y). If p # 0 or 1, this

equality can be written as

x

Ccr v
9515 —=[=—-1| =1
sl

The left-hand side of (9.5.15) is 0 if p = 1 and is monotonically increasing
as p decreases to 0. Let p* be the solution to (9.5.15) such that p* # 0 or
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1, and define A(p) = f(p|y) — f(p|x) and k(p) = f(p|x) — f(p|y). Then

we have

1 P
[ vompap [ viprpip
p* < 20 ,

1 p*

| wpap [orap

P 0
because the left-hand side is greater than U(p*), whereas the right-hand
side is smaller than U(p*). But (9.5.16) is equivalent to

(9.5.16)

0510 [ U | dp > U@ p | ap,

which establishes the result that the left-hand side of (9.5.13) is an increas-
ing function in x. Therefore (9.5.13) is equivalent to

(95.18) x> ¢,

where ¢ is determined by (9.5.13).

The classical statistician facing this decision problem will, first, para-
phrase the problem into that of testing hypothesis Hy: p = p, versus H;:
p < po for a certain constant p, and then use the likelihood ratio test. Her
decision rule is of the same form as (9.5.18), except that she will deter-
mine ¢ so as to conform to a preassigned size a. If the classical statistician
were to approximate the Bayesian decision, she would have to engage in
a rather intricate thought process in order to let her p, and « reflect the
utility consideration.

9.6 EXAMPLES OF HYPOTHESIS TESTS

In the preceding sections we have studied the theory of hypothesis testing.
In this section we shall apply it to various practical problems.

EXAMPLE 9.6.1 (mean of binomial) Itisexpected that a particular coin
is biased in such a way that a head is more probable than a tail. We toss this
coin ten times and a head comes up eight times. Should we conclude that
the coin is biased at the 5% significance level (more precisely, size)? What
if the significance level is 10%?

From the wording of the question we know we must put

(9.6.1) Hyp=% and Hyp:p>Y%.
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From Example 9.4.2, we know that we should use X ~ B(10, p), the
number of heads in ten tosses, as the test statistic, and the critical region
should be of the form

(9.6.2) R={cc+1,...,10},
where ¢ (the critical value) should be chosen to satisfy
(9.6.3) P(X € R|Hy) = q,

where o is the prescribed size. In this kind of question there is no need
to determine ¢ by solving (9.6.3) for a given value of a. In fact, in this
particular question there is no value of ¢ which exactly satisfies (9.6.3) for
either a = 0.05 or a = 0.1. Instead we should calculate the probability
that we will obtain the values of X greater than or equal to the observed
value under the null hypothesis, called the pvalue: that is,

964) P(X=8o0r9o0rl0|p="1) =45 %)+ 10 (B + (%)*°
= 0.055.

From (9.6.4) we conclude that H, should be accepted if & = 0.05 and
rejected if & = 0.1.

We must determine whether to use a one-tail test or a two-tail test from
the wording of the problem. This decision can sometimes be difficult. For
example, what if the italicized phrase were removed from Example 9.6.1?
Then the matter becomes somewhat ambiguous. If, instead of the itali-
cized phrase, we were to add, “but the direction of bias is a priori un-
known,” a two-tail test would be indicated. Then we should calculate the
p-value

(9.6.5) P(X=8o0or9orl0or0orlor2) =011,

which would imply a different conclusion from the previous one.

Another caveat: Sometimes a problem may not specify the size. In such
a case we must provide our own. It is perfectly appropriate, however, to
say “H, should be accepted if a < 0.055 and rejected if a > 0.055.” This
is another reason why it is wise to calculate the pvalue, rather than
determining the critical region for a given size.

EXAMPLE 9.6.2 (mean of normal, variance known) Suppose the height
of the Stanford male student is distributed as N (., 02), where o is known
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to be 0.16. We are to test Hy: w = 5.8 against H;: p = 6. If the sample
average of 10 students yields 6, should we accept H), at the 5% significance
level? What if the significance level is 10%?

From Example 9.3.2, we know that the best test of a given size o should
use X as the test statistic and its critical region should be given by

(9.6.6) X > ¢, where ¢ is determined by P(X > ¢ | Hp) = a.
Since X ~ N(5.8, 0.016) under H,, we have
9.6.7) P(X >6) = P(Z > 1.58) = 0.0571,

where Z is N (0, 1). From (9.6.7) we conclude that H, should be accepted
if o is 5% and rejected if it is 10%. Note that, as before, determining the
critical region by (9.6.6) and then checking if the observed value X falls
into the region is equivalent to calculating the pvalue P(X > x | Hy) and
then checking if it is smaller than a.

EXAMPLE 9.6.3 (mean of normal, variance unknown). Assume the
same model as in Example 9.6.2, except that now o® is unknown and we
have the unbiased estimator of variance & = 0.16. We have under H,

(9.6.8) =g, Student’s?with 9 degrees of freedom.

V10(X — 5.8)
G

Therefore, by Example 9.5.2, the critical region should be chosen as

V10(X - 5.8)
(9.6.9) — > ¢, wherecis determined by P (fy > ¢) = a.
We have
V10(X — 5.8) _
9.610) P . > m(g p 58) | = p(s, >1.58) = 0.074.

Therefore we conclude that H, should be accepted at the 5% significance
level but rejected at 10%.

EXAMPLE 9.6.4 (difference of means of normal, variance known)
Suppose that in 1970 the average height of 25 Stanford male students was
6 feet with a standard deviation of 0.4 foot, while in 1990 the average
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height of 30 students was 6.2 with a standard deviation of 0.3 foot. Should
we conclude that the mean height of Stanford male students increased in
this period? Assume that the sample standard deviation is equal to the
population standard deviation.

Let Y; and X, be the height of the ith student in the 1970 sample and
the 1990 sample, respectively. Define ¥ = (£2,Y,)/25 and X = (£}2,X,)/30.
Assuming the normality and independence of X; and Y;, we have

03 , (0.4)1
30 25 |’

(9.6.11) X—Y~N@w—ub

where py, py are the unknown means of X; and Y, respectively. Our
hypotheses can be expressed as

(96.12) Hyppy — py =0 and Hyp:pxy — py > 0.

We have chosen H; as in (9.6.12) because it is believed that the height of
young American males has been increasing during these years. Once we
formulate the problem mathematically as (9.6.11) and (9.6.12), we realize
that this example is actually of the same type as Example 9.6.2. Since we
have under H,

(96.13) P(X—Y >02) = P(Z > 2.063) = 0.02,

we conclude that H, should be accepted if a < 0.02 and rejected if a >
0.02.

EXAMPLE 9.6.5 (differences of means of binomial) In a poll 51 of 300
men favored a certain proposition, and 46 of 200 women favored it. Is
there a real difference of opinion between men and women on this
proposition?

Define Y; = 1 if the ith man favors the proposition and = 0 otherwise.
Similarly define X; = 1 if the /th woman favors the proposition and = 0
otherwise. Define py = P(Y; = 1) and px = P(X; = 1). If we define Y =
(221 ¥;)/300 and X = (£ X,) /200, we have asymptotically

px( = p) | pr(1 = m} ,

614 X-72 -
(96.14) N[l’x Pr 500 300
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where we have assumed the independence of X and Y. The competing
hypotheses are

9.615) Hy py — py =0 and Hy: px — py # 0.

Therefore this example essentially belongs to the same category as Exam-
ple 9.6.4. The only difference is that in the present example the variance
of the test statistic X — Y under H, should be estimated in a special way.
One way is to estimate py by 46/200 and py by 51/300. But since py = py
under H,, we can get a better estimate of the common value by pooling
the two samples to obtain (46 + 51)/(200 + 300). Using the latter
method, we have under H|

9.616) X —¥ 2 N(0,0.0013).

Since we have under H,

(9.6.17)

46 51
200 300

PlIE-7|>— - ‘j =P (Z|>166)=0.097,

we conclude that Hj should be accepted if o < 0.097 and rejected if o >
0.097.

EXAMPLE 9.6.6 (difference of means of normal, variance unknown)
This example is the same as Example 9.6.4 except that now we shall not
assume that the sample standard deviation is equal to the population
standard deviation. However, we shall assume cri = oy.

By Theorem 6 of the Appendix we have under H,

5 172
X-Y nyny(ng + ny — 2) /
~ tnx-f-ny 2

1/2 ny + n
(’I’Lxsi + ’/LyS)?/) X Y

(9.6.18)

Inserting ny = 30, ny = 25, X = 6.2, Y = 6, Sy = 0.3, and Sy = 0.4 into
(9.6.18) above, we calculate the observed value of the Student’s ¢ variable
to be 2.077. We have

9.6.19)  P(tz3 > 2.077) = 0.021.

Therefore we conclude that Hy should be accepted if a < 0.021 and
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rejected if a > 0.021. In this particular example the use of the Student’s
¢ statistic has not changed the result of Example 9.6.4 very much.

EXAMPLE 9.6.7 (difference of variances) In using the Student’s ¢ test
in Example 9.6.6, we need to assume (rf( = cr?(. Therefore, it is wise to test
this hypothesis. By Theorem 3 of the Appendix, we have

nxSx 2
(9.6.20) ~ Xny—1
Ox
and
2
nySy 2
(9.6.21) ~ Xny-1-
Oy

Applying Definition 3 of the Appendix and (9.6.21), we have, under the
null hypothesis 0% = o3,

(ny — DngSk

(9.6.22) ~F(ny — 1, ny — 1).

(nx = 1)nySy
Inserting the same numerical values as in Example 9.6.6 into the left-hand
side of (9.6.22) yields the value 0.559. But we have

(9.6.23)  P[F(29, 24) < 0.559] = 0.068.

Since a two-tail test is appropriate here (that is, the alternative hypothesis
is Ui +* crfz), we conclude that Hj should be accepted if a < 0.136 and
rejected if o > 0.136.

9.7 TESTING ABOUT A VECTOR PARAMETER

Those who are not familiar with matrix analysis should study Chapter 11
before reading this section. The results of this chapter will not be needed
to understand Chapter 10. Insofar as possible, we shall illustrate our results
in the two-dimensional case.

We consider the problem of testing Hy: 0 = 0, against H;: 0 # 0,, where
0 is a K-dimensional vector of parameters. We are to use the test statistic
6 ~ N(8,3), where X is a K X K variance-covariance matrix: that is, 3 =
E®O — 0)(0 — 0)". (Throughout this section a matrix is denoted by a
boldface capital letter and a vector by a boldface lower-case letter.) In
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0,

0,

FIGURE 9.9 Ciritical region for testing about two parameters

Section 9.7.1 we consider the case where 2 is completely known, and in
Section 9.7.2 the case where 2 is known only up to a scalar multiple.

9.7.1 Variance-Covariance Matrix Assumed Known

Consider the case of K = 2. We can write 8 = (6, 05)" and 0y = (8, 05)".
It is intuitively reasonable that an optimal critical region should be outside
some enclosure containing 6y, as depicted in Figure 9.9. What should be
the specific shape of the enclosure?

An obvious first choice would be a circle with 0, at its center. That would
amount to the test:

9.7.1) Reject H, if By — 019)% + (B3 — 099)% > ¢

for some ¢, where ¢ is chosen so as to make the probability of Type I error
equal to a given value a. An undesirable feature of this choice can be
demonstrated as follows: Suppose V8, is much larger than V@, Then a
large value of |(§2 — 0| should be more cause for rejecting H, than an
equally large value of |§; — 8,4|, for the latter could be a result of the large
variability of 8, rather than the falseness of the null hypothesis.

This weakness is alleviated by the following strategy:

(6, — 610)° . (8; — 0g9)°

2

(9.7.2) Reject Hy if 2
g 02

>c,
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where 0% = Vél and 03 = VGQ. Geometrically, the inequality in (9.7.2)
represents the region outside an ellipse with @, at its center, elongated
horizontally. We should not be completely satisfied by this solution either,
because the fact that this critical region does not depend on the covari-
ance, 03 = Cov(él, 62), suggests its deficiency.

We shall now proceed on the intuitively reasonable premise that if ot
= 0% and oy, = 0, the optimal test should be defined by (9.7.1). Suppose
that 3 is a positive definite matrix, not necessarily diagonal nor identity.
Then by Theorem 11.5.1 we can find a matrix A such that AXA' = I. By
this transformation the original testing problem can be paraphrased as
testing Hy: A® = A, against A® # A@, using A® ~ N(AQ,, I) as the test
statistic. Thus, by our premise, we should

9.73)  Reject H, if (A® — A8y’ (A® — A6, > c.

But ASA’ = I implies 3 = A7'(A") "', which implies ™' = A’A. There-
fore, using

(AD — AB;)' (AD — AQ)) = (0 — 0,)'A’A(0 — 0,)
= (06— 0)'27'(6 — 0,),
(9.7.8) can be written as
(9.74)  Reject Hy if (8 — 0,)'S7' (6 — 0,) > c.
In the two-dimensional case, where
oo
2 — I: 1 1221| ,
T12 02
(9.7.4) becomes

(9.7.5) Reject Hy if

a3(B; = 010)" + aF(By — 80)° — 2019(8; — 810)(By — 8s0) -,

2 92 2
0102 — 032

Note that (9.7.5) is reduced to (9.7.2) if o, = 0 and, further, to (9.7.1)
if o? = crg.

An additional justification of the test (9.7.4) is provided by the fact that
it is a likelihood ratio test. To see this, note that by (5.4.1) and (9.4.5),
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exp [_% ®—0y)=7'(0— 90)}
A=

max exp [—% 6 —0)37'(6 - e)}

But the maximand in the denominator clearly attains its unique maximum
at = 0.

Another attractive feature of the test (9.7.4) is the fact that
9.76) (0 —0))'=71(6 — 0)) ~ xk

under the null hypothesis, so that ¢ can be computed to conform to a
specified value of . This result is a consequence of the following impor-
tant theorem.

THEOREM 9.7.1 Suppose X is an n-vector distributed as N(p, A), where
A is a positive definite matrix. Then (x — WA x - )~ X2
Proof. Let H be the orthogonal matrix which diagonalizes A, that is,
H'AH = A,

where A is the diagonal matrix of the characteristic roots of A (see
Theorem 11.5.1). Following (11.5.4), define

A_1/2 — HA—I/QHI

where A™/? is the diagonal matrix obtained by taking the (—Y)th power
of each diagonal element of A. Then, we can easily show that

AVZAAY2 =1 and ATV2ATV2 = A7L.

Therefore, we obtain A7V 2(x — ) ~ N(0,I). By Definition 1 of the
Appendix, (x — |JL)’A_1/2A_1/2 (x—pn) ~ x2. Q

As an illustration of the above, consider a three-sided die (assume that
such a die exists) which yields numbers 1, 2, and 3 with respective prob-
abilities py, py, and ps. We are to test the hypothesis that the die is not
loaded versus the hypothesis that it is loaded on the basis of » independent
rolls. That is,

versus H;: not H,.

Qo] —

(9.7.7) Test Hy py = pg = ps =
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ool—

0

FIGURE 9.10 Critical region for testing the mean of a three-sided die

If we should be constrained to use any of the univariate testing methods
expounded in the preceding sections, we would somehow have to reduce
the problem to one with a single parameter, but that would not be entirely
satisfactory, as we shall show below. Suppose, for example, we decide to
test the hypothesis that the expected value of the outcome of the roll is
consistent with that of an unloaded die; namely,

(9.7.8) Test Hy: py + 2py + 3ps = 2 versus Hy: py + 2py + 3ps # 2.

Since ps = 1 — p; — po, the null hypothesis can be stated as 1 — 2p; — py
= 0. If we define f, and ps as the relative frequencies of 1 and 2 in = rolls,
a reasonable test would be to

(9.79)  Reject Hy if |1 — 2p — pof > ¢

for some ¢, which can be approximately determined from the standard
normal table because of the asymptotic normality of p, and p,. In Figure
9.10 the critical region of the test (9.7.9) is outside the parallel dashed
lines and inside the triangle that defines the total feasible region. A
weakness of the test (9.7.9) as a solution of the original testing problem
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(9.7.7) is obvious: an outcome such as f, = 0 and p, = 1, which is
extremely unlikely under the original null hypothesis, will lead to an
acceptance by this test.

Now we apply the test (9.7.5) to the original problem (9.7.7). We have,
under the null hypothesis,

(9.7.10) {pl} AN

12 -1
o ’977'_1 2

ol — Lo

Therefore (9.7.5) becomes

(9.7.11) Reject Hy

{3 b2

The lefthand side of the above inequality is asymptotically distributed as
x5 under the null hypothesis.

Since (9.7.10) holds only asymptotically, the test (9.7.11) is not identical
with the likelihood ratio test. In such a case, (9.7.11) is called the general-
ized Wald test.

Next we derive the likelihood ratio test and compare it with the gener-
alized Wald test. By Definition 9.4.4 the likelihood ratio test of the prob-
lem (9.7.7) is

3 Pl 1[)2 2173 3
where 7; is the number of times j appears in n rolls. In order to make use
of Theorem 9.4.1 we transform the above inequality to

9.7.13)  —2log A = 2 (nlog 3 + nylog py + nylog py + nslog ps)
> —2log d.

Noting that p; = n;/n and defining ¢ = —2log d, we can write (9.7.13)
equivalently as

9.7.14)  2n(log 3 + p, log p; + polog po + pslog ps) > .
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Wald Test Likelihood Ratio Test

FIGURE 9.11 The 5% acceptance regions of the generalized Wald test
and the likelihood ratio test

To show the approximate equality of the left-hand side of (9.7.11) and
(9.7.14), use the Taylor expansion

1 1 1 1 3 1Y
=_ —+ + —— |+
x log x log (log 3 IJ(x j 9 (x j

and apply it to the three similar terms within the parentheses of the
lefthand side of (9.7.14). Figure 9.11 describes the acceptance region of
the two tests for the case of n = b0 and ¢ = 6. Note that P(xg > 6) = 0.05.

9.7.2 Variance-Covariance Matrix Known up to a Scalar Multiple

There is no optimal solution to our problem if 2 is completely unknown.
There is, however, sometimes a good solution if 2, = 02Q, where Q is a
known positive definite matrix and o® is an unknown scalar parameter. In
this case it seems intuitively reasonable to reject H, if

®—0,)’Q (6 -0
>

(9.7.15)
6_2

¢,

where G is some reasonable estimator of o®. For what kind of estimator
can we compute the distribution of the statistic above, so that we can
determine ¢ so as to conform to a given size a?
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One solution is presented below. We first note (9.7.6). If we are given
a statistic W such that

(9.7.16) W Xar

o2
which is independent of X% in (9.7.6), we obtain by Definition 3 of the
Appendix

6 -0)'Q (8 — 09)/K

9.7.17) A ~ F(K, M).

Therefore, defining 6% = W/ M will enable us to determine ¢ appropriately.
Assuming the availability of such W may seem arbitrary, so we shall give
a couple of examples.

EXAMPLE 9.7.1 Suppose X ~ N(uy, 02) and Y ~ N(py, 0'2) are inde-
pendent of each other. We are to test

JMx| Mxo | B P xo
Hy: [H»y} |:P~YOJ versus H: {P«y:| # |:P‘Y0j|
on the basis of ny and ny independent observations on X and Y, respec-
tively. We assume that the common variance ¢° is unknown. Suppose that
X = ng'=% X, and ¥ = ny '2¥,¥;. We have, from Definition 1 and Theo-
rem 1 of the Appendix,

nx(X — pxo)® + my(¥ — pyo)” 5

(9.7.18) 2 ~ X2
o

and because of Theorems 1 and 3 of the Appendix,

x y

2 X=X+ D (v - P)

i=1 =1 9

(9.7.19) 9 ~ Xnyg+n,~2-
g

Therefore, by Definition 3 of the Appendix,

[nx(X — mxo)® + mp(¥ — py)’1/2
(9.7.20) ~ F(2, ny+ny— 2).

S-S - 1|/ (gt ng—2)

i=1 i=1
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We should reject Hj if the above statistic is larger than a certain value,
which we can determine from (9.7.20) to conform to a preassigned size
of the test.

EXAMPLE 9.7.2 Suppose that X ~ N(px, 0‘2), Y ~ N{py, 02), and Z ~
N(pz, 02) are mutually independent. We are to test Hy: py = pwy = Wz
versus H;: not H, on the basis of ny, ny, and n; independent observations
on X, Y, and Z, respectively. Let X, ¥, and Z be the sample averages based
on ny, ny, and ny observations, respectively. Similarly, let Si, S?/, and S% be
the sample variances based on ny, ny, and nz; observations, respectively.
Define A\; = px — Py, Ao = by — ez, Ay = X — ¥, and Ay = X — Z. Then
we have

(9.7.21) [ij ~ N{ Rﬂ , 02Q} ,

where
el
_ | mx Y X
Q=11 11
nx ny = ng

because of Theorem 9.7.1, we have under H,,

a A —~1 }\\l
(Ali )\Q)Q XQ 9
(9.7.22) 5 T Xe-
g

But, by Theorems 1 and 3 of the Appendix,

nyS% + nySe + nzS3
(9723) 02 -~ an+ny+n2_3.

Since the chi-square variables in (9.7.22) and (9.7.23) are independent,
we have

. A
(i, AQ ™! M /2

(nXSi + nyS?/ + nzS%)/ (nx+ny+nz_3)

(9.7.24) ~ F(2, ny+tny+nz;—3).
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EXERCISES

1. (Section 9.2)
Given the density f(x) = 1/6, 0 < x < 8, and 0 elsewhere, we are to
test the hypothesis Hy: 8 = 2 against H,: 0 = 3 by means of a single
observed value of X. Find a critical region of o = 0.5 which minimizes
B and compute the value of B. Is the region unique? If not, define
the class of such regions.

2. (Section 9.2)
Suppose that X has the following probability distribution:

X =1 with probability 0
2 26
3 1— 30

where 0 = 0 = 1/3. We are to test Hy: 0 = 0.2 against H: 6 = 0.25
on the basis of one observation on X.

(a) List all the nonrandomized admissible tests.

(b) Find the most powerful nonrandomized test of size 0.4.

(c) Find the most powerful randomized test of size 0.3.

3. (Section 9.3)
An estimator T of a parameter . is distributed as N(u, 4), and we
want to test Hy: w = 25 against H;: p = 30. Assuming that the prior
probabilities of Hy and H; are equal and the costs of the Type I and
IT errors are equal, find the Bayesian optimal critical region.

4. (Section 9.3)
Let X ~ N(j, 16). We want to test Hy: w = 2 against Hy: p = 3 on
the basis of four independent observations on X. Suppose the loss
matrix is given by

True state
Decision Hy H,
Hy 0 1
H] e
where ¢ is Euler’s ¢ (= 2.71 . . . ). Assuming the prior probabilities

P(Hy) = P(H,) = 0.5, derive the Bayesian optimal critical region.
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Calculate the probabilities of Type I and Type II errors for this critical
region.

(Section 9.3)

Let f(x) = 0 exp(—0x), x =0, 6 > 0. We want to test H,: 0 = 1 against
H;: 8 = 2 on the basis of one observation on X. Derive:

(a) the Neyman-Pearson optimal critical region, assuming o = 0.05;
(b) the Bayesian optimal critical region, assuming that P(H,) =
P(H,) and that the loss of Type I error is 2 and the loss of Type II
error is b.

(Section 9.3)

Supposing f(x) = (1 + 0)x°, 0 <x < 1,6 > 0, we are to test Hy: 0
= 0 against /,: 8 = 6; < 6,. Find the Neyman-Pearson test based on
a sample of size n. Indicate how to determine the critical region if
the size of the test is a.

(Section 9.3)

Let X be the outcome of tossing a three-sided die with the numbers
1, 2, and 3 occurring with probabilities p;, po, and ps. Suppose that
100 independent tosses yielded N, ones, Ny twos, and Nj threes.
Obtain a Neyman-Pearson test of Hy: py = po = % against Hy: p; =
Y% and py = %. Choose a = 0.05. You may use the normal approxi-
mation.

(Section 9.3)

We wish to test the null hypothesis that a die is fair against the
alternative hypothesis that each of numbers 1, 2, and 3 occurs with
probability Yo, 4 and 5 each occurs with probability %, and 6 occurs
with probability %.

(a) If number j appears N, times, j = 1,2,...,6,in N throws of the
die, define the Neyman-Pearson test.

(b) If N = 2, obtain the most powerful test of size /4 and compute
its 3 value.

(c) If Ny = 16, Ny = 13, Ng = 14, N, = 22, Ny = 17, and Ny = 18,
should you reject the null hypothesis at the 5% significance level?
What about at 10%? You may use the normal approximation.

(Section 9.4)
Given the density f(x) = 1/6, 0 < x < 0, and 0 elsewhere, we are to
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test the hypothesis Hy: 8 = 2 against H;: 6 > 2 by means of a single
observed value of X. Consider the test which rejects H, if X > .
Determine ¢ so that « = %, and draw the graph of its power function.

(Section 9.4)

Let X be the number of trials needed before a success (with prob-
ability p) occurs. That is, P(X = k) = p(1 — p)"_l, k=1,2,....Find
the power function for testing Hy: p = Y4 if the critical region consists
of the numbers k = 1, 2, 3. Compare it with the power function of
the critical region consisting of the numbers {1, 2, 8,9, . . .}.

(Section 9.4)
Random variables X and Y have a joint density

f(%)’):@_Q, 0=x=<9, 0=y=6, 01 =0=<1.

Find the uniformly most powerful test of the hypothesis 6 = 1 of size
a = 0.01 based on a single observation of X and Y. Derive its power
function.

(Section 9.4)

Suppose that a bivariate random variable (X, Y) is uniformly distrib-
uted over the square defined by 0 = x, y = 1, where we assume 0 =
6 < 1. We are to test Hy: 6 = 0.5 against Hy: § # 0.5 on the basis of
a single observation on (X, Y) with o = 0.25.

(a) Derive the likelihood ratio test. If you cannot, define the best test
you can think of and justify it from either intuitive or logical consid-
eration.

(b) Obtain the power function of the likelihood ratio test (or your
alternative test) and sketch its graph.

(c) Prove that the likelihood ratio test of the problem is the uniformly
most powerful test of size 0.25.

(Section 9.4)

Suppose (X,Y) have density f(x,5) = 1/(pA), 0 =x=pn, 0=y =N\,
0 <p <o and 0 < XA < oo, We are to test Hy: p = A = 1 versus
Hi: not Hy on the basis of one observation on (X, Y).

(a) Find the likelihood ratio test of size 0 < a < 1.

(b) Show that it is not the uniformly most powerful test of size a.
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(Section 9.4)
The density of X is given by

fx)y=0x—05)+1 for 2=0=2and0=x=1.

Obtain the likelihood ratio test of Hy: 6 = 2 against Hy: 6 < 2 on the
basis of one observation of X at a = 0.05. Show that this test is the
uniformly most powerful test of size 0.05.

(Section 9.4)
The joint density of X and Y is given by

flx,y) =207% forx+y=80,0=<x 0=y,
=0 otherwise.

We test Hy: 0 = 0.5 against H:  # 0.5, where we assume 0 < 6 = 1,
on the basis of one observation on (X, Y).

(a) Derive the likelihood ratio test of size 0.25.

(b) Derive its power function and draw its graph.

(c) Show that it is the uniformly most powerful test of size 0.25.

(Section 9.5)

Let X be uniformly distributed over [0, 0]. Assuming that the prior
density of 8 is uniform over [1, 2], find the Bayes test of Hy: 6 €
[1, 1.5] versus Hy: 8 € (1.5, 2] on the basis of one observation on X.
Assume that the loss matrix is given by

True state
Decision Hy H;

Hy 0 1
H, 2 0

(Section 9.5)
Random variables X and Y have a joint density

flx,9]0) =077 for0=x=80, 0=<y=<90, 01=<0=<1.

Find the Bayesian test of Hy: 6 = % against H: § < Y based on a
single observation of each of X and Y, assuming the prior density
f(6) =1/09for 0.1 = 6 = 1. Assume that the loss matrix is the same
as in Exercise 16.
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(Section 9.5)

Suppose that the density of X given 8 is f(x | 6) = 2%/0%, 0 = x < 9,
and the prior density of 0 is f(6) = 28, 0 < 6 < 1. Suppose that we
are given a single observation x of X.

(a) Derive the Bayes estimate of 6.

(b) Assuming that the costs of the Type I and II errors are the same,
show how a Bayesian tests Hy: 8 = 0.5 against H: § > 0.5.

(Section 9.5)

Let p be the probability that a patient having a particular disease is
cured by a new drug. Suppose that the net social utility from a
commercial production of the drug is given by

U = —05 for 0=p=05,
=2(p—05) for 0.5 <p=1.

Suppose that a prior density of p is uniform over the interval [0, 1]
and that x patients out of n randomly chosen homogeneous patients
have been observed to be cured by the drug. Formulate a Bayesian
decision rule regarding whether or not the drug should be approved.
If n = 2, how large should x be for the drug to be approved?

(Section 9.6)

One hundred randomly selected people are polled on their prefer-
ence between George Bush and Bill Clinton. How large a percentage
point difference must be observed for you to be able to conclude that
Clinton is ahead of Bush at the significance level of 5%?

(Section 9.6)

Thirty races are run, in which one runner is given a stimulant and an-
other is not. If twenty races are won by the stimulated runner, should
you decide that the stimulant has an effect at the 1% significance
level? What about at 5%?

(Section 9.6)

Suppose you roll a die 100 times and the average number showing
on the face turns out to be 4. Is it reasonable to conclude that the
die is loaded? Why?

(Section 9.6)
We throw a die 20 times, 1 comes up four times and 2 comes up seven
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times. Let p; be the probability that 1 comes up and py be the
probability that 2 comes up. On the basis of our experiment, test the
hypothesis p; = p, = % against the negation of that hypothesis.
Should we reject the hypothesis at 5%? What about at 10%?
24. (Section 9.6)
It is claimed that a new diet will reduce a person’s weight by an
average of 10 pounds in two weeks. The weights of seven women who
followed the diet, recorded before and after the two-week period of
dieting, are given in the accompanying table. Would you accept the
claim made for the diet?
Weight before Weight after
Participant (1bs) (1bs)
A 128 126
B 130 125
C 135 129
D 142 131
E 137 125
F 148 138
G 154 130
25. (Section 9.6)
The price of a certain food item was sampled in various stores in two
cities, and the results were as given below. Test the hypothesis that
there is no difference between the mean prices of the particular food
item in the two cities using the 5% and 10% significance levels.
Assume that the prices are normally distributed with the same vari-
ance (unknown) in each city.
City A CityB
n 18 9
x 10 9
n_IE(xi — 9_6)2 2 2
26. (Section 9.6)

The following data are from an experiment to study the effect of
training on the duration of unemployment. Let X be the duration of
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unemployment for those without training, and ¥ be the duration for
those with training:

x 35 42 17 55 24
y 31 37 21 10 28

Assuming the two-sample normal model with equal variances, can we
conclude that training has an effect at the 5% significance level? What
about at 10%?

(Section 9.6)

The accompanying table shows the yields (tons per hectare) of a
certain agricultural product in five experimental farms with and with-
out an application of a certain fertilizer. Other things being equal,
can we conclude that the fertilizer is effective at the 5% significance
level? Is it at the 1% significance level? Assume that the yields are
normally distributed.

Yield without Yield with
Farm fertilizer (tons) fertilizer (tons)

5 7
8
7

10

10

O Ow»
© 0 I O

28.

29.

(Section 9.6)

According to the Stanford Observer (October 1977), 1024 male stu-
dents entered Stanford in the fall of 1972 and 885 graduated. Among
the 1024 students were 84 athletes, of which 78 graduated. Would you
conclude that the graduation record of athletes is superior to that of
nonathletes at the 1% or 5% significance level?

(Section 9.6)

One pre-election poll, based on a sample of 5000 voters, showed
Clinton ahead by 23 points, whereas another poll, based on a sample
of 3000 voters, showed Clinton ahead by 20 points. Are the results
significantly different at the 5% significance level? How about at 10%?
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(Section 9.6)
Using the data of Exercise 26 above, test the equality of the variances
at the 10% significance level.

31. (Section 9.6)
Using the data of Exercise 27 above, test the equality of the variances
at the 10% significance level.
32. (Section 9.7)
Test the hypothesis p; = gy = pg using the estimators {1, {ig, and fis
having the joint distribution & ~ N(w, A), where " = ({i1, Lo, fi3),
"‘, = (p“l’ K2, p“?))! and
211
A=1|120].
101
Assume that the observed values of i, jip, and fu3 are 4, 2, and 1,
respectively. Choose the 5% significance level.
33. (Section 9.7)
There are three classes of five students each. The students all took
the same test, and their test scores were as shown in the accompanying
table. Assuming that the test scores are independently distributed as
N(p;, 02) forclass: =1, 2, 3, test Hy: w1 = pg = pg against Hy: not H,,.
Choose the size of the test to be 1% and 5%.
Score in
Class 1 Class 2 Class 3
8.3 7.8 7.0
8.1 7.3 6.8
7.3 7.0 6.7
7.3 6.6 5.8
7.0 6.3 5.7
34. (Section 9.7)

In Group 1, r; of n; students passed a test; in Group 2,7, of 7, students
passed the test. Students are homogeneous within each group. Let p,
and py be the probability that a student in Group 1 and in Group 2,
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respectively, passes the test. Assume that the test results across the
students are independent. We are to test Hy: p; = po = 0.5 against
Hy: not H,.

(a) Using the asymptotic normality of p; = r/m and py = ry/ny,
derive the Wald test for the problem. Given n; = 20, r; = 14, ny =
40, and 7, = 16, should you reject Hy at o = 0.05 or at a = 0.1?

(b) Derive the likelihood ratio test for the problem. Use it to answer
problem (a) above.

(Section 9.7)
In Exercise 25 above, add one more column as follows:

City C
n 9
i 8
n 'S (x; — %)* 3

Test the hypothesis that the mean prices in the three cities are the

same.



‘IO BIVARIATE REGRESSION MODEL

10.1 INTRODUCTION

In Chapters 1 through 9 we studied statistical inference about the distri-
bution of a single random variable on the basis of independent observa-
tions on the variable. Let {X,}, ¢ = 1,2, ..., T, be a sequence of inde-
pendent random variables with the same distribution F. Thus far we have
considered statistical inference about F based on the observed values {x,}
of {X,}.

In Chapters 10, 12, and 13 we shall study statistical inference about the
relationship among more than one random variable. In the present chap-
ter we shall consider the relationship between two random variables, x and
y. From now on we shall drop the convention of denoting a random
variable by a capital letter and its observed value by a lowercase letter
because of the need to denote a matrix by a capital letter. The reader
should determine from the context whether a symbol denotes a random
variable or its observed value.

By the inference about the relationship between two random variables
x and y, we mean the inference about the joint distribution of x and y. Let
us assume that x and y are continuous random variables with the joint
density function f(x, y). We make this assumption to simplify the following
explanation, but it is not essential for the argument. The problem we want
to examine is how to make an inference about f(x, y) on the basis of
independent observations {x,} and {y},¢ =1,2,...,T, on x and y. We call
this bivariate (more generally, mutivariate) statistical analysis. Bivariate
regression analysis is a branch of bivariate statistical analysis in which



10.1 | Introduction 229

attention is focused on the conditional density of one variable given the
other, say, f(y| x). Since we can always write f(x, y) = f(y| x)f(x), regres-
sion analysis implies that for the moment we ignore the estimation of f(x).

Regression analysis is useful in situations where the value of one vari-
able, y, is determined through a certain physical or behavioral process
after the value of the other variable, x, is determined. A variable such as
yis called a dependent variable or an endogenous variable, and a variable such
as x is called an independent variable, an exogenous variable, or a regressor. For
example, in a consumption function consumption is usually regarded as
a dependent variable since it is assumed to depend on the value of income,
whereas income is regarded as an independent variable since its value may
safely be assumed to be determined independently of consumption. In
situations where theory does not clearly designate which of the two vari-
ables should be the dependent variable or the independent variable, one
can determine this question empirically. It is wise to choose as the inde-
pendent variable the variable whose values are easier to predict.

Thus, we can state that the purpose of bivariate regression analysis is to
make a statistical inference on the conditional density f(y | x) based on
independent observations of x and y. As in the single variate statistical
inference, we may not always try to estimate the conditional density itself;
instead, we often want to estimate only the first few moments of the
density—notably, the mean and the variance. In this chapter we shall
assume that the conditional mean is linear in x and the conditional
variance is a constant independent of x.

We define the bivariate linear regression model as follows:

1011) y=a+Bx+w, t=12...,T,

where {y,} are observable random variables, {x,} are known constants, and
{u,} are unobservable random variables which are i.i.d. with Eu, = 0 and
Vu, = o’ Here, o, B, and o® are unknown parameters that we wish to
estimate. We also assume that x, is not equal to a constant for all ¢. The
linear regression model with all the above assumptions is called the clas-
sical regression model.

Note that we assume {x,} to be known constants rather than random
variables. This is equivalent to assuming that (10.1.1) specifies the mean
and variance of the conditional distribution of y given x. We shall continue
to call x, the independent variable. At some points in the subsequent
discussion, we shall need the additional assumption that {«,} are normally
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distributed. Then (10.1.1) specifies completely the conditional distribu-
tion of y given x.

The assumption that the conditional mean of y is linear in x is made
for the sake of mathematical convenience. Given a joint distribution of x
and y, E(y | x) is, in general, nonlinear in x. Two notable exceptions are
the cases where x and y are jointly normal and x is binary (that is, taking
only two values), as we have seen in Chapters 4 and 5. However, the
linearity assumption is not so stringent as it may seem, since if E(y* | x*)
is nonlinear in x*, where y* and x* are the original variables (say, con-
sumption and income), it is possible that E(y|x) is linear in x after a
suitable transformation—such as, for example, y = log y* and x = log x*.
The linearity assumption may be regarded simply as a starting point. In
Section 13.4 we shall briefly discuss nonlinear regression models.

Our assumption concerning {u,} may also be regarded as a starting
point. In Chapter 13 we shall also briefly discuss models in which {u,} are
serially correlated (that is, Ewu; ¥ 0 even if ¢ # s) or heteroscedastic (that is,
Vu, varies with ?).

We have used the subscript  to denote a particular observation on each
variable. If we are dealing with a time series of observations, ¢ refers to the
tth period (year, month, and so on). But in some applications ¢ may
represent the tth person, tth firm, fth nation, and the like. Data which are
not time series are called cross-section data.

10.2 LEAST SQUARES ESTIMATORS

10.2.1 Definition

In this section we study the estimation of the parameters «, B, and o° in
the bivariate linear regression model (10.1.1). We first consider estimating
a and B. The T observations on y and x can be plotted in a so-called scatter
diagram, as in Figure 10.1. In that figure each dot represents a vector of
observations on y and x. We have labeled one dot as the vector (y, x,). We
have also drawn a straight line through the scattered dots and labeled the
point of intersection between the line and the dashed perpendicular line
that goes through (y, x,) as (3, x;). Then the problem of estimating o and
B can be geometrically interpreted as the problem of drawing a straight
line such that its slope is an estimate of B and its intercept is an estimate
of a.

Since Eu, = 0, a reasonable person would draw a line somewhere
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B., %)

(9> %))

FIGURE 10.1 Scatter diagram

through a configuration of the scattered dots, but there are a multitude
of ways to draw such a line. Gauss in a publication dated 1821 proposed
the least squares method in which a line is drawn in such a way that the sum
of squares of the vertical distances between the line and each dot is
minimized. In Figure 10.1, the vertical distance between the line and the
point (y, x,) is indicated by 4. Minimizing the sum of squares of distances
in any other direction would result in a different line. Alternatively, we
can draw a line so as to minimize the sum of absolute deviations, or the
sum of the fourth power of the deviations, and so forth. Another simple
method would be simply to connect the two dots signifying the largest and
smallest values of x. We can go on forever defining different lines; how
shall we choose one method?

The least squares method has proved to be by far the most popular
method for estimating o, 8, and o in the linear regression model because
of its computational simplicity and certain other desirable properties,
which we shall show below. Still, it should by no means be regarded as the
best estimator in every situation. In the subsequent discussion the reader
should pay special attention to the following question: In what sense and
under what conditions is the least squares estimator the best estimator?

Algebraically, the least squares (LS) estimators of a and B, denoted by &
and B, can be defined as the values of o and B which minimize the sum
of squared residuals

T
1021)  S(, B)= D, (3 — a — Px)>.

t=1
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Differentiating $ with respect to o and  and equating the partial deriva-
tives to 0, we obtain

(10.2.2) %8 _ —2%(y; — oo — Bx) =0
Ja
and

where X should be understood to mean Z_; unless otherwise noted.
Solving (10.2.2) and (10.2.3) simultaneously for a and B yields the follow-

ing solutions:
Suy
-2,
Sx

(1025) &=7— fx,

(1024) B

where we have defined j = T_IZyt, £=T "Zx, s =T 'Zx? — #° and Suy =
T_lety[ — ¥y. Note that j and X are sample means, sZis the sample variance
of x, and s,, is the sample covariance.

It is interesting to note that (10.2.4) and (10.2.5) can be obtained by
substituting sample moments for the corresponding population moments
in the formulae (4.3.8) and (4.3.9), which defined the best linear unbiased
predictor. Thus the least squares estimates can be regarded as the natural
estimates of the coefficients of the best linear predictor of y given x.

We define

(102.6) 5 = & + Px, t=1,2,...,T,

and call it the least squares predictor of y,. We define the error made by the
least squares predictor as

(1027) 'Lit =5 — 5’;, t = 1, 2, e ey T,

and call it the least squares residual. In Section 10.2.6 below we discuss the
prediction of a “future” value of y; that is, y, where ¢ is not included in the
sample period (1,2,...,T).

So far we have treated o and  in a nonsymmetric way, regarding B as
the slope coefficient on the only independent variable of the model,
namely x,, and calling a the intercept. But as long as we can regard {x,} as
known constants, we can treat a and  on an equal basis by regarding o
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as the coefficient on another sequence of known constants—namely, a
sequence of T ones. We shall call this sequence of ones the unity regressor.
This symmetric treatment is useful in understanding the mechanism of
the least squares method.

Under this symmetric treatment we should call 3, as defined in (10.2.6)
the least squares predictor of y, based on the unity regressor and {x,}. There
is an important relationship between the error of the least squares pre-
diction and the regressors: the sum of the product of the least squares
residual and a regressor is zero. We shall call this fact the orthogonality
between the least squares residual and a regressor. (See the general defini-
tion in Section 11.2.) Mathematically, we can express the orthogonality as

(10.28) X4,= 0
and
(1029)  Zd,x,= 0.

Note that (10.2.8) and (10.2.9) follow from (10.2.2) and (10.2.3), respec-
tively.

We shall present a useful interpretation of the least squares estimators
& and f§ by means of the above-mentioned symmetric treatment. The least
squares estimator (3 can be interpreted as measuring the effect of {x,} on
{y:} after the effect of the unity regressor has been removed, and & as
measuring the effect of the unity regressor on {y} after the effect of {x,}
has been removed. The precise meaning of the statement above is as
follows.

Define the least squares predictor of x, based on the unit regressor as

(102100 % =%, t=12...,T

where ¥ is the value that minimizes (x, — v) that is, § = %. In other
words, we are predicting x, by the sample mean. Define the error of the
predictor as

(10211 xf=x-%, t=12,...,T

which is actually the deviation of x, from the sample mean since %, = x.
Then B, defined in (10.2.4), can be interpreted as the least squares
estimator of the coefficient of the regression of y on x; without the
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intercept: thatis, B minimizes (y, — B )2. In this interpretation it is more
natural to write B as

Zx'y
)

Reversing the roles of {x,} and the unity regressor, we define the least
squares predictor of the unit regressor based on {x;} as

(102.12) B =

(10218) 1,=8x, t=1,2,...,T,

where & minimizes 21 - Sxt)2. Therefore

2x,

};_xf .

We call it the predictor of 1 for the sake of symmetric treatment, even

though there is of course no need to predict 1 in the usual sense. Then,
if we define

(10.2.14) &=

(10215 1F=1-1,

we can show that &, defined in (10.2.5), is the least squares estimator of
the coefficient of the regression of y, on 17 without the intercept. In other
words, & minimizes Z(y, — a1})? so that

x1f e

=13

Note that this formula of & has a form similar to f as given in (10.2.12).
The orthogonality between the least squares residual and a regressor is

also true in the regression of {x,} on the unity regressor or in the regression
of the unity regressor on {x,}, as we can easily verify that

(10.2.16) & =

(10.2.17) Zxf=0
and

(10.2.18) X1fx, = 0.

10.2.2 Properties of & and f

First, we obtain the means and the variances of the least squares estimators
& and . For this purpose it is convenient to use the formulae (10.2.12)
and (10.2.16) rather than (10.2.4) and (10.2.5).
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Inserting (10.1.1) into (10.2.12) and using (10.2.17) yields
=xu,

(x)?

(10219) B-B =

Since Eu, = 0 and {x;'} are constants by our assumptions, we have from
(10.2.19) and Theorem 4.1.6,

(10220) EB = B.

In other words, Q is an unbiased estimator of B. Similarly, inserting
(10.1.1) into (10.2.16) and using (10.2.18) yields

A El;kut
(10.221) a—o=——
(1H°

>

which implies
(10.222) Ea = o.
Using (10.2.19), the variance of B can be evaluated as follows:

1

(102.23) VB =—"—"7=
[Z(x)*)?

V(Z xu,) by Theorem 4.2.1

2
=_ 9 Z(xt*)2 by Theorem 4.3.3

[Z(x#)?1?

2
g

Z(xF)?

Similarly, we obtain from (10.2.21)

0_2

(1

How good are the least squares estimators? Before we compare them
with other estimators, let us see what we can learn from the means and
the variances obtained above. First, their unbiasedness is clearly a desirable
property. Next, note that the denominator of the expression for V given
in (10.2.23) is equal to T times the sample variance of x,. Therefore under
reasonable circumstances we can expect VB to go to zero at about the
same rate as the inverse of the sample size T. This is another desirable
property. The variance of & has a similar property. A problem arises if x,

(102.24y Va =
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stays nearly constant for all ¢, for then both Z(x})? and X(1})? are small.
(Note that when we defined the bivariate regression model we excluded
the possibility that x, is a constant for all ¢, since in that case the least
squares estimators cannot be defined.) Intuitively speaking, we cannot
clearly distinguish the effects of {x,} and the unity regressor on {y} when
x, is nearly constant. The problem of large variances caused by a closeness
of regressors is called the problem of multicollinearity.

For the sake of completeness we shall derive the covariance between &
and B, although its significance for the desirability of the estimators will
not be discussed until Chapter 12.

EXxfuX1Fuy, 02Zx,* 1f

(10.2.25)  Cov(a, B) = ; = .
T)PE(AFE T)IE(1R?

Recall that in Chapter 7 we showed that we can define a variety of
estimators with mean squared errors smaller than that of the sample mean
for some values of the parameter to be estimated, but that the sample
mean is best (in the sense of smallest mean squared error) among all the
linear unbiased estimators. We can establish the same fact regarding the
least squares estimators, which may be regarded as a natural generalization
of the sample mean. (Note that the least squares estimator of the co-
efficient in the regression of {y} on the unity regressor is precisely the
sample mean of {y,}.)

Let us consider the estimation of B. The class of linear estimators of B
is defined by Xc,y, where {¢} are arbitrary constants. The class of linear
unbiased estimators is defined by imposing the following condition on {c,}:

(102.26) EX¢y=p  forall a and B.

Inserting (10.1.1) into the left-hand side of (10.2.26) and using Eu, = 0,
we see that the condition (10.2.26) is equivalent to the conditions

(10.2.27) Z¢, =0 and
(10.2.98)  Z¢x, = 1.

From (10.2.12) we can easily verify that Q is a member of the class of linear
unbiased estimators. We have

(102.29) V(Zcy) = 2>
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Comparing (10.2.29) and (10.2.23), we note that proving that B is the best
linear unbiased estimator (BLUE) of B is equivalent to proving

! =3¢ for all {¢) satisfying (10.2.27) and (10.2.28).
Z(xf)’

But (10.2.30) follows from the following identity similar to the one used
in the proof of Theorem 7.2.12:

(10.2.30)

* z %
(10231) X|e— | =32+ L g 2o
2(xF)? 2 ()
= ZC? - ! ’
(x)?

since Zex = 1 using (10.2.27), (10.2.28), and (10.2.11). Note that
(10.2.30) follows from (10.2.31) because the left-hand side of (10.2.31) is
the sum of squared terms and hence is nonnegative. Equation (10.2.31)
also shows that equality holds in (10.2.30) if and only if ¢, = x}/Z(x}) *—in
other words, the least squares estimator.

The proof of the best linear unbiasedness of & is similar and therefore
left as an exercise.

Actually, we can prove a stronger result. Consider the estimation of an
arbitrary linear combination of the parameters dja + dof3. Then d;& +
ng 1s the best linear unbiased estimator of dja + dof3. The results obtained
above can be derived as special cases of this general result by putting d,
= 0 and ds = 1 for the estimation of 3, and putting d; = 1 and dy = 0 for
the estimation of a. Because the proof of this general result is lengthy,
and inasmuch as we shall present a much simpler proof using matrix
analysis in Chapter 12, we give only a partial proof here.

Again, we define the class of linear estimators of dja + dof by Z¢,y,. The
unbiasedness condition implies

(10.232) ZXZ¢ = dy
and

(10.233)  X¢x, = do.
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The variance of Z¢y, is again given by (10.2.29). Define
di1f dox/*
(10.2.34) ¢f =A% 4 4%
AN 2’
Then the least squares estimator d,& + dof can be written as X¢ 9, and its

variance is given by 0'22(6;'< )2. The best linear unbiasedness of the least
squares estimator follows from the identity

T~ ) =2 - 2(cH

We omit the proof of this identity, except to note that (10.2.32) and
(10.2.83) imply Zccf = Z(cf)*

It is well to remember at this point that we can construct many biased
and/or nonlinear estimators which have smaller mean squared errors
than the least squares estimators for certain values of the parameters.
Moreover, in certain situations some of these estimators may be more
desirable than the least squares. Also, we should note that the proof of
the best linear unbiasedness of the least squares estimator depends on our
assumption that {«,} are serially uncorrelated with a constant variance.

10.2.3 Estimation of ¢

We shall now consider the estimation of o°. If {u,} were observable, the
most natural estimator of > would be the sample variance 7~ 'Zu;. Since
{u,} are not observable, we must first predict them by the least squares
residuals {4,} defined in (10.2.7). Then o? can be estimated by

(10.2.35) &% = %Eaf,

which we shall call the least squares estimator of o”. Although the use of
the term least squares here is not as compelling as in the case of & and f,
we use it because it is an estimator based on the least squares residuals.
Using &% we can estimate VB and Va given in (10.2.23) and (10.2.24) by
substituting &7 for o® in the respective formulae.

We shall evaluate E&% From (10.2.7) we can write

(10.2.36) 4, =u, — (& — o) — (B — B)x.

Multiplying both sides of (10.2.36) by 1, summing over ¢, and using
(10.2.8) and (10.2.9) yvields
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(10.2.837) Za? = Zud,,
from which we obtain

(10.2.38) T2 = Tu? — S(d, — w)™

Using (10.2.36) and (10.2.38), we have

_ TuX1u, + Txu, X u, .
ap e

Taking the expectation of (10.2.39) yields

(10.2.39) (i, — u)® = Zuu, — 4,)

% *
o | X1, + thxt‘

(102.40) EX(@, —u)’ =o
2197 TH?

But multiplying both sides of (10.2.15) by 1} and summing over ¢ yields

(10.241) XT(1H?==1F

because of (10.2.18). Similarly, multiplying both sides of (10.2.11) by x/
and summing over ¢ yields

(10.2.42)  I(x)? = Zafx,

because of (10.2.17). Therefore, we obtain from (10.2.40), (10.2.41), and
(10.2.42)

(10.243) EX(d, — w)? = 2¢°.
Finally, from (10.2.38) and (10.2.43) we conclude that
(10.2.44) EX4? = (T - 2)o>

Equation (10.2.44) implies that E6® = T"'(T — 2)0® and hence 6% is a
biased estimator of ¢°, although the bias diminishes to zero as T goes to
infinity. If we prefer an unbiased estimator, we can use the estimator
defined by

il
~2 t
10.2.45 = :
( ) O T

We shall not obtain the variance of &° here; in Section 10.3 we shall
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indicate the distribution of Zﬁf, as well as its variance, assuming the
normality of {w,}.

One purpose of regression analysis is to explain the variation of {y} by
the variation of {x}. If {y} are explained well by {x,}, we say that the fit of
the regression is good. The statistic 6° may be regarded as a measure of
the goodness of fit; the smaller the 6%, the better the fit. However, since 6*
depends on the unit of measurement of {y,}, we shall use the measure of

the goodness of fit known as R square, where
2 5*

(102.46) R =1— e

5

Here s is the sample variance of {y}; namely, s = T 'Z(y, — 52 This

statistic does not depend on the unit of measurement of either {y} or {x;}.
Since

(10.2.47) T6% = minX(y, — o — th)g
a' B

and

(10.2.48) Ts? = minX(y, — a)2,

~2 2
we have ¢° = g; therefore, 0 = R=1.

We can interpret R? defined in (10.2.46) as the square of the sample
correlation between {y,} and {x,}. From (10.2.5) and (10.2.7),

(10.249) 1y =y, — 5 — P(x: — %).

Therefore, using (10.2.11), we have

(10.250)  Za; = Xy, — y)* + P22(x)? — 2By,

Inserting (10.2.12) into the righthand side of (10.2.50) yields

Y, % 2
(10251) 522 = 3(y, — 5% — =¥
Z(xf)?
Finally, from (10.2.46) and (10.2.51) we obtain

&'y
)2~ )’
which is the square of the sample correlation coefficient between {y,} and

{x,}.

(10.2.52) R®=
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In practice we often face a situation in which we must decide whether
{} are to be regressed on {x;} or on another independent sequence {s,}.
That is, we must choose between two regression equations

(10253) 3 = oy + Pix, + uy,
and
(10.2.54) 9, = ag + PBos, + uy, .

This decision should be made on the basis of various considerations such
as how accurate and plausible the estimates of regression coefficients are,
how accurately the future values of the independent variables can be
predicted, and so on. Other things being equal, it makes sense to choose
the equation with the higher R%. In Section 12.5, we shall discuss this issue
further.

The statistic 6° is merely one statistic derived from the least squares
residual {4}, from which one could derive more information. Since {#,}
are the predictors of {u,}, they should behave much like {w}; it is usually
a good idea for a researcher to plot {4,} against time. A systematic pattern
in that plot indicates that the assumptions of the model may be incorrect.
Then we must respecify the model, perhaps by allowing serial correlation
or heteroscedasticity in {«;}, or by including other independent variables
in the right-hand side of the regression equation.

10.2.4 Asymptotic Properties of Least Squares Estimators

In this section we prove the consistency and the asymptotic normality of
the least squares estimators & and 3 and the consistency of &° under
suitable assumptions about the regressor {x,}.

To prove the consistency of & and B, we use Theorem 6.1.1, which states
that convergence in mean square implies consistency. Since both & and f3
are unbiased estimators of the respective parameters, we need only show
that the variances given in (10.2.23) and (10.2.24) converge to zero.
Therefore, we conclude that & and B are consistent if
(10.2.55)  lim £(1})* = »

To»
and

(10.256)  lim Z(x)*

Tow

I
8
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We shall rewrite these conditions in terms of the original variables {x,}.
Since X(1; )2 and (Zx;" )2 are the sums of squared prediction errors in
predicting the unity regressor by {x;} and in predicting {x,} by the unity
regressor, respectively, the condition that the two regressors are distinctly
different in some sense is essential for (10.2.55) and (10.2.56) to hold.
Given the sequences of constants {x,} and {z}, t = 1, 2, . . ., T, we measure
the degree of closeness of the two sequences by the index

by 2
(10257) p =\ ’:‘Z‘)2 :
thzzt

Then we have 0 < p = 1. To show p% = 1, consider the identity
(10.2.58)  X(x, — )\z,)2 = Ex,? + )\QEZ? — 2\Xxz.
Since (10.2.58) holds for any A, it holds in particular when

X2,

sz

(10259) X\ =

Inserting (10.2.59) into the right-hand side of (10.2.58) and noting that
the left-hand side of (10.2.58) is the sum of nonnegative terms and hence
is nonnegative, we obtain the Cauchy-Schwartz inequality:

2
(Zxzy) =0

(10.2.60) T % — ;
p

(See Theorem 4.3.5 for another version of the Cauchy-Schwartz inequal-
ity.) The desired inequality p% = 1 follows from (10.2.60). Note that p% =
1 if and only if x, = z, for all ¢t and p% = 0 if and only if {x,} and {(z} are
orthogonal (that is, Zx,z = 0).

Using the index (10.2.57) with z = 1, we can write

Tx,)>
(10.2.61) p%z( ‘)2
TZx;

>

(10.2.62) 2(1H% = (1 — pPT,
and

(10263) Z(x5H2 = (1 — pP)=«’.
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Finally, we state our result as

THEOREM 10.2.1 In the bivariate regression model (10.1.1), the least
squares estimators & and 3 are consistent if

(102.64) lim Za® = oo

To®

and

(10.265) lim pf < 1.
T—oo
Note that when we defined the bivariate regression model in Section
10.1, we assumed pr # 1. The assumption (10.2.65) states that pr # 1 holds
in the limit as well. The condition (10.2.64) is in general not restrictive.
Examples of sequences that do not satisfy (10.2.64) are x, = ¢ > and x, =
27", but we do not commonly encounter these sequences in practice.
Next we prove the consistency of &% From (10.2.38) we have
o Zul 1.
(10.2.66) &° = Tt - o X~ u)?.
Since {utz} are i.i.d. with mean 02, we have by the law of large numbers
(Theorem 6.2.1)
2

2 2
(10.2.67) plim T ="

Equation (10.2.43) and the Chebyshev’s inequality (6.1.2) imply
(10.2.68) plim %Z(d, -u)?=0.

Therefore the consistency of 62 follows from (10.2.66), (10.2.67), and
(10.2.68) because of Theorem 6.1.3.

We shall prove the asymptotic normality of & and . From (10.2.19) and
(10.2.21) we note that both § — B and & — a can be written in expressions
of the form

EZtut
Xz

where {z} is a certain sequence of constants. Since the variance of
(10.2.69) goes to zero if Zzt? goes to infinity, we transform (10.2.69) so that

(10.2.69)

3
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the transformed sequence has a constant variance for all 7. This is accom-
plished by considering the sequence

Iz,

oVIZz?

’

(10.2.70)

since the variance of (10.2.70) is unity for all 7. We need to obtain the
conditions on {z} such that the limit distribution of (10.2.70) is N (0, 1).
The answer is provided by the following theorem:

THEOREM 10.2.2 Let {1} beii.d. with mean zero and a constant variance
o as in the model (10.1.1). If

2

max z,
(10271)  lim ==X =,
T sz
then
)
(10.2.72) s NGO, 1).

oV 22

Note that if z, = 1 for all ¢, (10.2.71) is clearly satisfied and this theorem
is reduced to the Lindeberg-Lévy central limit theorem (Theorem 6.2.2).
Accordingly, this theorem may be regarded as a generalization of the
Lindeberg-Lévy theorem. It can be proved using the Lindeberg-Feller
central limit theorem; see Amemiya (1985, p. 96).

We shall apply the result (10.2.72) to B—PBandéa — a by putting z, =
x; and z = 1 in turn. Using (10.2.63), we have

max (xf)? max (x, — %)’ 4 max x>
(10.2.73) = =

2(x})? (1 - pHZx, (1 — pH)=a?

Therefore {x;} satisfy the condition (10.2.71) if we assume (10.2.65) and

max x-
(10.274) lim ==L — o,

Tox th?
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Next, using (10.2.61) and (10.2.62), we have

Zx; | o 2x,
max |1 + | — % — 2| — |%
ma_x(lt*)2 B Ex, th

(15 T(1 — pd)

(10.2.75)

1 2 max x2
- Pr t

=< —+
T(1—p%) (1—pF) IZxf

2|p7] max «; |2
NTA -p2) | =2 |

Therefore {1} satisfy the condition (10.2.71) if we assume (10.2.65) and
(10.2.74). Thus we have proved that Theorem 10.2.2 implies the following
theorem:

THEOREM 10.2.3 In the bivariate regression model (10.1.1), assume
further (10.2.65) and (10.2.74). Then we have

VEa5?
(10.276) — (&= ) > N(0, 1)

and

VE@)?

g

(10.2.77) (B — B) = N(O, 1).

Using the terminology introduced in Section 6.2, we can say that & and
B are asymptotically normal with their respective means and variances.
Note that the condition (10.2.74) is stronger than (10.2.64), which was
required for the consistency proof; this is not surprising since the asymp-
totic normality is a stronger result than consistency. We should point out,
however, that (10.2.74) is only mildly more restrictive than (10.2.64). In
order to be convinced of this fact, the reader should try to construct a
sequence which satisfies (10.2.64) but not (10.2.74).

The conclusion of Theorem 10.2.3 states that & and {3 are asymptotically
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normal when each estimator is considered separately. The assumptions of
that theorem are actually sufficient to prove the joint asymptotic normality
of & and f3; that is, the joint distribution of the random variables defined
in (10.2.76) and (10.2.77) converges to a joint normal distribution with
zero means, unit variances, and the covariance which is equal to the limit
of the covariance. We shall state this result as a theorem in Chapter 12,
where we discuss the general regression model in matrix notation.

10.2.5 Maximum Likelihood Estimators

In this section we show that if we assume the normality of {u,} in the model
(10.1.1), the least squares estimators &, B, and 67 are also the maximum
likelihood estimators.

The likelihood function of the parameters (that is, the joint density of

1, Y2 - - - » ¥r) is given by

T
1 1 2
10.2.78) L = - — —a—
( ) E \/2—“_0_ exp|: 20_2 (yt o Bx,) :|

= (2w Pexp | - —152(% —a = Bx)?|.
20
Taking the natural logarithm of both sides of (10.2.78), we have

(10.279) log L = T log 27 — T log o® — 1 (y, — o — Bx)>.
2 2 252
Since log L depends on o and B only via the last term of the right-hand
side of (10.2.79), the maximum likelihood estimators of « and B are
identical to the least squares estimators.
Inserting & and f into the righthand side of (10.2.79), we obtain the
so-called concentrated log-likelihood function, which depends only on o’

(10.2.80) log L* = T log 27 — T log 0 — L TH
2 2 9¢°2

Differentiating (10.2.80) with respect to o® and equating the derivative to
zero yields
dlogL* T 1

-—+

— i} =0.
do? 262 20¢

(10.2.81)
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Solving (10.2.81) for o* yields the maximum likelihood estimator, which
is identical to the least squares estimator ¢°. These results constitute a
generalization of the results in Example 7.3.3.

In Section 12.2.5 we shall show that the least squares estimators & and
B are best unbiased if {u,} are normal.

10.2.6 Prediction

The need to predict a value of the dependent variable outside the sample
(a future value if we are dealing with time series) when the corresponding
value of the independent variable is known arises frequently in practice.
We add the following “prediction period” equation to the model (10.1.1):

(10.282) 3, = a + B, + u,,

where Y and u, are both unobservable, Xy is a known constant, and Uy is

independent of {u}, t = 1,2, ..., T, with Eu, = 0 and Vu, = o’. Note

that the parameters o, 3, and o are the same as in the model (10.1.1).
Consider the class of predictors of y, which can be written in the form

(102.83) §, = & + By,

where & and f are arbitrary unbiased estimators of a and B, which are
linear in {y}, t = 1, 2, ..., T. We call this the class of linear unbiased
predictors of y,. The mean squared prediction error of j, is given by

(10.284)  E(yp— §,)° = Efu, —[(& + Pxy) — (@ + Bxp)]}
= ¢® + V(a + Bxy),

where the second equality follows from the independence of u, and {y},
t=12...,T
The least squares predictor of y, is given by

(10.2.85) 5, = & + Px,.

It is clearly a member of the class defined in (10.2.83). Since V(& + Bxp)
= V(& +Bx,) because of the result of Section 10.2.2, we conclude that the
least squares predictor is the best linear unbiased predictor. We have now
reduced the problem of prediction to the problem of estimating a linear
combination of a and f3.
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10.3 TESTS OF HYPOTHESES

10.3.1 Student’s t Test

In Section 9.5 we showed that a hypothesis on the mean of a nomral i.i.d.
sample with an unknown variance can be tested using the Student’s ¢
statistic. A similar test can be devised for testing hypotheses on o and 8
in the bivariate regession model. Throughout this section we assume that
{w} are normally distributed.

We shall consider the null hypothesis Hy: B = B, where B is a known
specified value. A hypothesis on « can be similarly dealt with. Since {3 is a
good estimator of B, it is reasonable to expect that a test statistic which
essentially depends on B is also a good one. A linear combination of
normal random variables is normally distributed by Theorem 5.3.2, so we
see from (10.2.19) that

VEE?
(10.3.1) e (B — Bo) ~ N(©, 1)
under the null hypothesis H,. Therefore, if o° were known, the distribu-
tion of B would be completely specified and we could perform the stand-
ard normal test. If o? is unknown, which is usually the case, we must use
a Student’s ¢ test. From Definition 2 of the Appendix we know that in
order to construct a Student’s ¢ statistic, we need a chi-square variable that
is distributed independently of (10.3.1). In the next two paragraphs we
show that o~ *Z4? fits this specification.

We state without proof that

DL
(1032)  —— ~ X7-9-

o
To prove (10.3.2) we must show that 0'—2212,2 can be written as a sum of
the squares of T — 2 independent standard normal variables. We can do
so by the method of induction, as in the proof of Theorem 3 of the
Appendix. Since this proof is rather cumbersome, we shall postpone it
until Chapter 12, where a simpler proof using matrix analysis is given.

We now prove that (10.3.1) and (10.3.2) are independent. Using

(10.2.5) and (10.2.11), we have

(10.3.3) = wu — @ — (B — Bxf.
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Therefore, using (10.2.19), we obtain

. * Z * *
(1034) E@—PByi, =o?|— =& % _g
X TEGH? )

since x; = 0 by (10.2.17). Equation (10.3.4) shows that the covariance
between f and 4, is zero; but since they are jointly normal, it implies their
independence by Theorem 5.3.4. Therefore, (10.3.1) and (10.3.2) are
independent by Theorem 3.5.1.

Using Definition 2 of the Appendix, we conclude that under H)

’ *42
& ([3 - Bo) ~tp_o (Student’s twith T — 2

(o}

(10.3.5)
degrees of freedom )

where & is the unbiased estimator of o® defined in (10.2.45). Note that
the left-hand side of (10.3.5) is simply B — By divided by the square root
of an unbiased estimate of its variance. We could use either a one-tail or
a two-tail test, depending on the alternative hypothesis.

The test is not exact if {#,} are not normal. Because of the asymptotic
normality given in (10.2.76), however, the test based on (10.3.5) is ap-
proximately correct for a large sample even if {u,} are not normal, pro-
vided that the assumptions for the asymptotic normality are satisfied.

A test on the null hypothesis o = ag can be performed using a similar
result:

215
(1036) _ ((X - ao) -~ tT—Z'
ag

10.3.2 Tests for Structural Change

Suppose we have two regression regimes

(10.8.7) Y = o+ Bix1, + wu,, t=1,2,...,T
and
(1038) y?t = a + BQXQt + Uz, L= 1: 2’ L] T?)

where each equation satisfies the assumptions of the model (10.1.1). We
denote Vuy, = cr% and Vug, = 03. In addition, we assume that {uy,} and {ug)
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are normally distributed and independent of each other. This two-regres-
sion model is useful to analyze the possible occurrence of a structural
change from one period to another. For example, (10.3.7) may represent
a relationship between y and x in the prewar period and (10.3.8) in the
postwar period.

First, we study the test of the null hypothesis Hy: 3; = B9, assuming
o7 = o3 under either the null or the alternative hypothesis. We can
construct a Student’s ¢ statistic similar to the one defined in (10.3.5). Let
Bl and BQ be the least squares estimators of B; and By obtained from
equations (10.3.7) and (10.3.8), respectively. Then, defining X3, = x5, — %
and x3, = x9, — %o as in (10.2.11), we have under H,

. -1/2
o] o5 - -
(10.3.9) + (B1 — B2) ~ N(O, 1).
T, Ty
S H Y
t=1

t=1

Let {d;,} and {4y} be the least squares residuals calculated from (10.3.7)
and (10.3.8), respectively. Then (10.3.2) implies

A2
Zult
t=1 9
(10.3.10) 5 ~ XT1—2
(1
and
Ty
A2
U9t
t=1 2
(10.3.11) o~ Xry-2-
09

Therefore, by Theorem 1 of the Appendix, we have

Tl T2
A2 2
Uy Ugy
=1 t=1 2
(10.3.12) 5 + P XT—4 »
(U g2

where we have set T} + Ty = T. Since (10.3.9) and (10.3.12) are inde-
pendent, we have by Definition 2 of the Appendix
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vT—4@y—m>

10.3.13 ~ir_4.
( ) o 2 T s
T . + T, A 2{ ult 2 u?t

* * =
Z (x12) z (x21) — + _2_
t=1 t=1 (5] g9

Setting o7 = o3 in (10.3.13) simplifies it to

B1 — B2)

6_2 6’2 1/2

(10.3.14) ~tr—4,

T T2
zmo Y @)
=1 =1

where 6% = (T — 4)'(z 4}, + T2 Jii5,). The null hypothesis can be tested
using (10.3.14) in either a one-tail or a two-tail test, depending on the
alternative hypothesis.

Before discussing the difficult problem of testing B; = B2 without as-
suming o3 = 03, let us consider testing the null hypothesis H: o =
o%. A simple test of this hypothesis can be constructed by using the
chi-square variables defined in (10.3.10) and (10.3.11). Since they are
independent of each other because {u;} and {ug,} are independent, we
have by Definition 3 of the Appendix

w@—me
(10.3.15) “l T, -2, Ts - 2.

ﬁwlmzw

Note that o and o3 drop out of the formula above under the null
hypothesis o7 = o3 . A one-tail or a two-tail test should be used, depending
on the alternative hypothesis.

Finally, we consider a test of the null hypothesis Hy: B; = B2 without
assuming o? = o3 . The difficulty of this situation arises from the fact that
(10.3.14) cannot be derived from (10.3.13) without assuming (rl = 02
Several procedures are available to cope with this so-called Behrens-Fisher
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problem, but we shall present only one—the method proposed by Welch
(1938). For other methods see Kendall and Stuart (1973).

Welch’s method is based on the assumption that the following is ap-
proximately true when appropriate degrees of freedom, denoted v, are
chosen:

(10.3.16) — -

+
Tl T2 9
2
t=1 t=1

where 57 = (T} — 2)7'2 43, and 63 = (Ty — 2~ 2,43, The assump-
tion that (10.3.16) is approximately true is equivalent to the assumption
that v€, where £ is defined by

<2 g -1
o1 02 0% Ug
10317y ¢ = - +

+
. *1\2 ik %42 4 * N2 ik k2
z (1p) Z (%9,) Z (%12 z (%x9,)
=1 t=1 =1 =1

’

is approximately distributed as X for an appropriately chosen value of v.
Then we can apply Definition 2 of the Appendix to (10.3.9) and (10.3.17)
to obtain (10.3.16).

The remaining question, therefore, is how we should determine the
degrees of freedom v in such a way that v€ is approximately X2. Since Ef
= 1 and since Ex2 = v by Theorem 2 of the Appendix, we have Ev§ =
Ex?,. We now equate the variances of v€ and x?,:

20} 205
T, 2 * T, 2
(T) - 2) {2 <xi‘t>2] (Tg — 2) {2 (x;‘f]
t=1 t=1
(10.3.18) V§ = . . > .
g1 09

Tl T2

*42 %42
z (10 z (%3,
t=1 t=1

Since V2 = 2v by Theorem 2 of the Appendix, we should determine v
by v = 2(VE)~". In practice, v must be estimated by inserting 62 and
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&3 into the righthand side of (10.3.18) and then choosing the integer
that most closely satisfies v = 2vE) !

EXERCISES

1. (Section 10.2.2)
Following the proof of the best linear unbiasedness of 3, prove the
same for &.

2. (Section 10.2.2)
In the model (10.1.1) obtain the constrained least squares estimator of B,
denoted by B based on the assumption @ = B. That is to say, B
minimizes S 1y, —B — Bx,) Derive its mean squared error without
assuming that @ = . Show that if in fact & = {3, the mean squared
error of B is smaller than that of the least squares estimator B

3. (Section 10.2.2)

In the model (10.1.1) assume that« = 0,3 =1, T = 3, and x, = ¢
fort = 1, 2, and 3. Also assume that {u,}, ¢ = 1, 2, and 3, are i.i.d. with
the distribution P(u, = 1) = P(u, = —1) = 0.5. Obtain the mean and
mean squared error of the reverse least squares estimator (minimizing
the sum of squares of the deviations in the direction of the x-axis)
defined by BR = E, 191 /Et 1y,xt and compare them with those of the
least squares estimator [3 = Z, 19/ ):, 1x¢ Create your own data by
generating {u;} according to the above scheme and calculate 8 and
B for T = 25 and T = 50.

4. (Section 10.2.4)
Give an example of a sequence that satisfies (10.2.64) but not
(10.2.74).

5. (Section 10.2.4)
Suppose that y, = y/ + w,and x, = %" + v, t + 1,2, ..., T, where {y/}
and {x/} are unknown constants, {3} and {x,} are observable random
variables, and {u,} and {v,} are unobservable random variables. Assume
(u, v,) is a bivariate i.i.d. random variable with mean zero and vari-
ances cri and 0,2, and covariance o, The problem is to estimate the
unknown parameter § in the relationship y/ = Bx, ¢ = 1,2, ..., T
on the basis of observations {y,} and {x,}. Obtain the probability limit
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of B = ZX ym/E %7, assuming limyoT 'Z (x¥)2 = ¢. This is
known as an errors-in-variables model.

(Section 10.2.4)
In the model of the preceding exercise, assume also that

limre T 5 1 =d # 0

and obtain the probability limit of
T
2 2 X -
t=1

(Section 10.2.4)

Consider a bivariate regression model y, = o + Bx, + w,, t = 1,2,.. .,
T, where {x,) are known constants and {«,} are i.i.d. with Eu, = 0 and
Vu, = o Arrange {x;} in ascending order and define x(;) = x9) <

= x(p). LetSbe T/2if T is even and (T + 1) /2if T is odd. Also define

1 _ 1
- Z x(t)’ X9 = T S Z X(t) B

t=§+1

O)

N

1
ZJ’(:)’ y2——T S 23’(0’
t:

t=8+1

where we assume limq_,o% = ¢ < limp_,,, % = d < . Prove the con-
sistency of B and & defined by

B="—" and &=3j — B#F.
X2 T X
Are these estimators better or worse than the least squares estimators
B and &? Explain.

(Section 10.2.6)

Consider a bivariate regression model y, = o + Bx, + u,, t = 1,2, ...,
5, where {x;} are known constants and equal to (2, 0, 2, 0, 4) and {u«,}
are i.i.d. with Ey, = 0 and Vu, = o®. We wish to predict y; on the basis
of observations (y1, yo, y3, y4). We consider two predictors of ys:

(1) %=a+ Bxs, where & and P are the least squares
estimators based on the first four observations on {x,} and {y,},
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Mux

(I + x)y,
1

(2) Js = & + Gxs, where a = ——— -
S a+x)’
t=1

Obtain the mean squared prediction errors of the two predictors. For
what values of @ and B is 5 preferred to ys?

-
o

9. (Section 10.3.1)
Test the hypothesis that there is no gender difference in the wage
rate by estimating the regression model
¥ = o + B + u, 1=1,2,...,mn,
where y; is the wage rate (dollars per hour) of the ith person and x;
= 1 or 0, depending on whether the ith person is male or female.
We assume that {u;} are iid. N(O, 02). The data are given by the
following table:
Number Sample mean  Sample variance
of people of wage rate of wage rate
Male 20 5 3.75
Female 10 4 3.00
10. (Section 10.3.2)
The accompanying table gives the annual U.S. data on hourly wage
rates (y) and labor productivity (x) in two periods: Period 1, 1972-
1979; and Period 2, 1980-1986. (Source: Economic Report of the Presi-
dent, Government Printing Office, Washington, D.C., 1992.)
Period 1
y: 370 394 424 4.53 4.86 5.25 5.69 6.16
x: 92.60 95.00 9330 9550 9830 99.80 100.40 99.30
Period 2
¥ 6.66 7.25 7.68 8.02 8.32 8.57 8.76
%x: 98.60 9990  100.00 10220 104.60 106.10  108.30
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(a) Calculate the linear regression equations of y and x for each
period and test whether the two lines differ in slope, assuming that
the error variances are the same in both regressions.

(b) Test the equality of the error variances.

(c) Test the equality of the slope coefficients without assuming the

equality of the variances.
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In Chapter 10 we discussed the bivariate regression model using summa-
tion notation. In this chapter we present basic results in matrix analysis.
The multiple regression model with many independent variables can be
much more effectively analyzed by using vector and matrix notation. Since
our goal is to familiarize the reader with basic results, we prove only those
theorems which are so fundamental that the reader can learn important
facts from the process of proof itself. For the other proofs we refer the
reader to Bellman (1970).

Symmetric matrices play a major role in statistics, and Bellman’s discus-
sion of them is especially good. Additional useful results, especially with
respect to nonsymmetric matrices, may be found in a compact paperback
volume, Marcus and Minc (1964). Graybill (1969) described specific ap-
plications in statistics. For concise introductions to matrix analysis see, for
example, Johnston (1984, chapter 4), Anderson (1984, appendix), or
Amemiya (1985, appendix).

11.1 DEFINITION OF BASIC TERMS

Matrix. A matrix, here denoted by a boldface capital letter, is a rectan-
gular array of real numbers arranged as follows:

ap  ape A1y
a1l a2 aom
(11.1.1) A=

A1 Gug * *© ° Qupy
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A matrix such as A in (11.1.1), which has n rows and m columns, is called
an n X m (read “n by m”) matrix. Matrix A may also be denoted by the
symbol {g;}, indicating that its 4, jth element (the element in the ith row

and jth column) is a;.

Transpose. Let A be as in (11.1.1). Then the transpose of A, denoted by
A’, is defined as an m X n matrix whose ¢, jth element is equal to a;. For
example,

222{123]
45 6
36

Note that the transpose of a matrix is obtained by rewriting its columns
as rOws.

Square matrix. A matrix which has the same number of rows and col-
umns is called a square matrix. Thus, A in (11.1.1) is a square matrix if
n=m.

Symmetric matrix. If a square matrix A is the same as its transpose, A is
called a symmetric matrix. In other words, a square matrix A is symmetric
if A" = A. For example,

o
St N W
SRRTINC

is a symmetric matrix.

Vector. An n X 1 matrix is called an n-component column vector, and a
1 X 7 matrix is called an n-component row vector. (A vector will be
denoted by a boldface lowercase letter.) If b is a column vector, b’ (trans-
pose of b) is a row vector. Normally, a vector with a prime (transpose sign)
means a row vector and a vector without a prime signifies a column vector.

Diagonal matrix. Let Abe asin (11.1.1) and suppose that n = m (square
matrix). Elements a);, a9, . . ., a,, are called diagonal elements. The
other elements are off-diagonal elements. A square matrix whose off-di-
agonal elements are all zero is called a diagonal matrix.
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Identity matrix. An n X n diagonal matrix whose diagonal elements are
all ones is called the identity matrix of size n and is denoted by I,.
Sometimes it is more simply written as I, if the size of the matrix is
apparent from the context.

11.2 MATRIX OPERATIONS

Equality. If A and B are matrices of the same size and A = {g;} and B
= {b;}, then we write A = B if and only if a;; = b;; for every i and j.

Addition or subtraction. If A and B are matrices of the same size and A
= {a;} and B = {b;}, then A * B is a matrix of the same size as A and B
whose i, jth element is equal to a;; * b;;. For example, we have

ann ag|, |bn biz| _ [en*bn annTbin|
agy ag bo1 boo a9 E by Az by
Scalar multiplication. Let A be as in (11.1.1) and let ¢ be a scalar (that
is, a real number). Then, we define cA or Ac, the product of a scalar and

a matrix, to be an n X m matrix whose i, jth element is ca;;. In other words,
every element of A is multiplied by ¢.

Matrix multiplication. Let A be an n X m matrix {g;} as in (11.1.1) and
let B be an m X r matrix {bij}. Then, C = AB is an n X r matrix whose
i, jth element ¢;; is equal to Z_,a;b;; . From the definition it is clear that
matrix multiplication is defined only when the number of columns of the
first matrix is equal to the number of rows of the second matrix. The
exception is when one of the matrices is a scalar—the case for which
multiplication was previously defined. The following example illustrates
the definition of matrix multiplication:

byy bog | =
Q91611 agoba) +agghsy a9 biotagebos tasgbss

b b2
apy ajp a3 a11b11ta19be; +ayshs;  a11b12t a19bost aisbse _
g1 Qg9 ags

b3y b3z
If A and B are square matrices of the same size, both AB and BA are

defined and are square matrices of the same size as A and B. However, AB
and BA are not in general equal. For example,
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1 2|13 1|_|55
0 1|1 2 1 2
3 1|1 2|/_ |3 7 )
1 2)|0 1 1 4

In describing AB, we may say either that B is premultiplied by A, or that
A is postmultiplied by B.

Let A be an n X m matrix and let I, and I, be the identity matrices of
size n and m, respectively. Then it is easy to show that LA = A and Al,, =
A

Leta’ be a row vector (ay, ay, . . . , a,) and let b be a column vector such
that its transpose b’ = (by, by, . . . , b,). Then, by the above rule of matrix
multiplication, we have a’b = X, a6, which is called the vector product of
a and b. Clearly, a'b = b’a. Vectors a and b are said to be orthogonal if
a’b = 0. The vector product of a and itself, namely a’a, is called the inner
product of a.

The proof of the following useful theorem is simple and is left as an
exercise.

THEOREM 11.2.1 If AB is defined, (AB)’ = B'A’.

11.3 DETERMINANTS AND INVERSES

Throughout this section, all the matrices are square and n X n.

Before we give a formal definition of the determinant of a square matrix,
let us give some examples. The determinant of a 1 X 1 matrix, or a scalar,
is the scalar itself. Consider a 2 X 2 matrix

A= %1 %2
a1 Gy
Its determinant, denoted by |A| or det A, is defined by
(11.3.1)  |A] = a11a22 — agare.
The determinant of a 3 X 3 matrix
a5 a1z a3

A=ay ag agy

as1 asgy dss
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is given by

oo Qs aiz a3 arig as

(11.32) |A] = ay; + ag

Qsy Qass ase Gsg Ggy ags

= a11a22a33 — A11d32d93 — 421A12033 T A91a32413
+ as1a12093 — G31a22413 -

Now we present a formal definition, given inductively on the assumption
that the determinant of an (n — 1) X (n — 1) matrix has already been
defined.

DEFINITION 11.3.1 Let A = {g;} be an n X n matrix, and let A;; be the
(n — 1) X (n — 1) matrix obtained by deleting the i/th row and the jth
column from A. Then we define the determinant of A, denoted by |A|, as

(113.3)  |A] =D (-1)""a,lA,.

i=1
The j above can be arbitrarily chosen as any integer 1 through n without
changing the value of |A|. The term (—1)*"/ |A;] is called the cofactor of the
element a;.

Alternatively, the determinant may be defined as follows. First, we write
A as a collection of its columns:

(11.34) A = (aj, ag,...,ay,),

where aj, ay, . . ., a, are n X 1 column vectors. Consider a sequence of n
numbers defined by the rule that the first number is an element of a; (the
first column of A), the second number is an element of a,, and so on,
chosen in such a way that none of the elements lie on the same row. One
can define n! distinct such sequences and denote the ith sequence, i = 1,
2,...,nl,byla1(4), as(3), . . ., a,(d)]. Let r; () be the row number of a; (i),
and so on, and consider the sequence [ry(¢), r9(2),. . ., 7,(¢)]. Let N(7)
be the smallest number of transpositions by which [r, (%), 79(2), . . . , 7,(7)]
can be obtained from (1, 2, . . ., n]. For example, in the case ofa 3 X 3
matrix, N = 0 for the sequence (aji, ag, ass), N = 1 for (ay1, asg, ass),
and N = 2 for (ag, ase, a13). Then we have

n!

1135) A = D, (— D" ())as(d) - - - a,().
i=1
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Let us state several useful theorems concerning the determinant.

THEOREM 11.3.1 [A] = |A/].

This theorem can be proved directly from (11.3.5). Because of the
theorem, we may state all the results concerning the determinant in terms
of the column vectors only as we have done in (11.3.3) and (11.3.5), since
the same results would hold in terms of the row vectors.

THEOREM 11.3.2 If any column consists only of zeroes, the determinant
is zero.

Theorem 11.3.2 follows immediately from (11.3.3). The determinant of
a matrix in which any row is a zero vector is also zero because of Theorem
11.3.1.

THEOREM 11.3.3 If the two adjacent columns are interchanged, the
determinant changes the sign.

The proof of this theorem is apparent from (11.3.5), since the effect of
interchanging adjacent columns is either increasing or decreasing N (z)
by one. (As a corollary, we can easily prove the theorem without including
the word “adjacent.”)

THEOREM 11.3.4 If any two columns are identical, the determinant is
ZEro.

This theorem follows immediately from Theorem 11.3.3.

THEOREM 11.3.5 |AB| = |A|[B| if A and B are square matrices of the
same size. ‘

The proof of Theorem 11.3.5 is rather involved, but can be directly
derived from Definition 11.3.1.

We now define the inverse of a square matrix, but only for a matrix with
a nonzero determinant.



11.3 | Determinants and Inverses 263
DEFINITION 11.3.2 The inverse of a matrix A, denoted by A"l, is the
matrix defined by

R SV
(1136) A a {(=1™|A),

provided that |A| # 0. Here (—1)*"/|A;] is the cofactor of a; as given in
Definition 11.3.1, and {(—1)""/|A,]} is the matrix whose i, jth element is
(—1)"Ay.

The use of the word “inverse” is justified by the following theorem.

THEOREM 11.3.6 A'A = AA™! = I for any matrix A such that |A| # 0.

This theorem can be easily proved from Definitions 11.3.1 and
11.3.2 and Theorem 11.3.4. It implies that if AB = I, then B = A™' and
B =A

THEOREM 11.3.7 If A and B are square matrices of the same size such
that [A| # 0 and |B| # 0, then (AB) ' = BT'A™".

The theorem follows immediately from the identity ABBT'A™" = L
THEOREM 11.3.8 Let A, B, C, and D be matrices such that

<)

is square and [D| # 0. (Note that A and D must be square, but B and C
need not be.) Then

AB

(11.37)  det = [D||A — BD " !C|.
CD

Proof. We have

e R
1138) [1 BD HA B}: {A BD"'C 0},
0 I [|CD C D

where 0 denotes a matrix of appropriate size which consists entirely of
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zeroes. We can ascertain from (11.3.5) that the determinant of the first
matrix of the left-hand side of (11.3.8) is unity and the determinant of
the right-hand side of (11.8.8) is equal to |JA — BD~'C| |D|. Therefore,
taking the determinant of both sides of (11.3.8) and using Theorem 11.3.5
yields (11.3.7). Q

THEOREM 11.3.9

-1 -1 -lppy-!
A B| _ E -E"'BD
CD -D !CcE™! F!

>

where E=A —-BD !CF=D-CA'B.E!'=A"1+A'BF'CA™! and

F'=D"'+ D'CE'BD, provided that the inverse on the left-hand
side exists.

Proof. To prove this theorem, simply premultiply both sides by

el

11.4 SIMULTANEOUS LINEAR EQUATIONS

Throughout this section, A will denote an n X n square matrix and X a
matrix that is not necessarily square. Generally, we shall assume that X is
n X K with K = n.

Consider the following 7 linear equations:

a;xy + appxe t -+ ayx, = 9
Ag1%] T AgoXg t -+ Ay, = ¥

(11.4.1)

Ap1X) + Gpo¥g + - - - + Ay = In

Define x = (x1, %9, .. .,%,) andy = (y, yo, . . ., ¥»)" and let A be as in
(11.1.1) with n = m. Then (11.4.1) can be written in matrix notation as

(1142) Ax=y.
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A major goal of this section is to obtain a necessary and sufficient condi-
tion on A such that (11.4.2) can be solved in terms of x for anyy. Using
the notation 3 (there exists), V (for any), and s.t. (such that), we can
express the last clause of the previous sentence as

VydxstAx=y.

Let us consider a couple of examples. The matrix

1 2
1143
( ) [2 4]

does not satisfy the above-mentioned condition because there is clearly no
solution to the linear system

(11.4.4) Lo2ppx ) _ 1y

_2 4 X'Q_ 1
But there are infinite solutions to the system
(11.4.5) L2yag (1

_2 4 xQJ 2

since any point on the line x; + 2xy = 1 satisfies (11.4.5). In general, if A
is such that Ax = y has no solution for some vy, it has infinite solutions for

some othery.
Next consider

11
11.4.6 .
( ) L 2}

This matrix satisfies the condition because x; = 2y; — 3, X9 = y2 — |
constitute the unique solution to

aven |1 =
I 2] |x ¥2

for any y; and y». It can be shown that if A satisfies the said condition, the
solution to Ax = y is unique.

We now embark on a general discussion, in which the major results are
given as a series of definitions and theorems.

DEFINITION 11.4.1 A set of vectors xj, Xy, . . . , X¢ is said to be linearly
independent if):filcl—xi = 0 implies¢; = Oforalli =1, 2, ..., K. Otherwise
it is linearly dependent.
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For example, the vectors (1,1) and (1, 2) are linearly independent
because

1 0
¢ + o =
1 1 2

L L L 4d

only for ¢; = ¢ = 0. But (1, 2) and (2, 4) are linearly dependent because

1 1 + C9 2 = 0
L2_J 4_ _0_
can be satisfied by setting ¢; = —2 and ¢ = 1.

DEFINITION 11.4.2 If the column vectors of a matrix (not necessarily
square) are linearly independent, we say the matrix is column independent
(abbreviated as CI); if the row vectors are linearly independent, we say the
matrix is row independent (RI).

THEOREM 11.4.1 Aisnot CI = [A| = 0.

Proof. Write A = (aj, ay,. . .,a,) and |A| = F(a;, ay, .. .,a,). Since A
is not CI, there is a vector x # 0 such that Ax = 0. But x # 0 means that
at least one element of x is nonzero. Assume x; # 0 without loss of
generality, where x; is the first element of x. From Definition 11.3.1, we

have

(11.48) F(Ax,ay,...,a,) = %A + xoF (ay, ag, a3,. . . , a,)
+ x3F(ag, ag, as,...,a,) + - -
+ x,F(a, ay, a3, . .., a,).

But the left-hand side of (11.4.8) is zero by Theorem 11.3.2 and the
right-hand side is x;|A| by Theorem 11.3.4. Therefore |A| = 0. Q

The converse of Theorem 11.4.1, stated below as Theorem 11.4.5, is
more difficult to prove; therefore, we prove three other theorems first.

THEOREM 11.4.2 IfX’'is K X n, where K < n, X’ is not CL
Proof. Assume K = n — 1 without loss of generality, for otherwise we

can affix n — 1 — K row vectors of zeroes at the bottom of X'. We prove
the theorem by induction.
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The theorem is clearly true for n = 2. Assume that it is true for n, and
consider n + 1. Is there a vector ¢ # 0 such that X'c = 0, where X’ is
nX (n+1)and ¢ = (¢1, €, . . ., €)' Write the nth row of X’ as (x,;,
Xp2s + + - » Xnn+1) and assume without loss of generality that x,,.+; # 0.
Solving the last equation of X'c = 0 for ¢,4+; and inserting its value into
the remaining equations yields » — 1 equations for which the theorem
was assumed to hold. So the prescribed ¢ exists. U

THEOREM 11.4.3 AisCl=Vydxst Ax =y.

Proof. Using the matrix (A, y) asX' in Theorem 11.4.2 shows that (A, y)
is not CI. Therefore there exists ¢ # 0 such that (A, y)c = 0. Since A is
Cl, the coefficient on y in ¢ is nonzero and solving for yyields Ax =y. Q

THEOREM 11.4.4 A|# 0o VyIxst Ax=y.

Proof. (=) If |A| # 0, A7! exists by Definition 11.3.2. Set x = A”ly.
Premultiplying both sides by A yields Ax = y because of Theorem 11.3.6.
(<) Let e; be a column vector with 1 in the ith position and 0
everywhere else. Then Ax; = ej, Axy = ey, . . . , AX, = e, may be summa-
rized as AX = I by setting X = (¥, X, . . . , X,) and noting that (e;, ey,
...,e,) = L Since |[I| = 1, |A| # 0 follows from Theorem 11.3.5. Q

Combining Theorems 11.4.3 and 11.4.4 immediately yields the converse
of Theorem 11.4.1, namely,

THEOREM 11.4.5 A is CI = |A| # 0.

From the results derived thus far, we conclude that the following five
statements are equivalent:

IA] # 0.

A~ exists.

Ais CL

Ais RI
Vydxst Ax =y.
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DEFINITION 11.4.3 If any of the above five statements holds, we say A is
nonsingular

If A is nonsingular, we can solve (11.4.2) forxasx = A”y. An alternative
solution is given by Cramer’s rule. In this method x,, the ith element of x,
is determined by

(11.49) x ==,

where B; is the n X n matrix obtained by replacing the ith column of A
by the vector y.

The remainder of this section is concerned with the relationship be-
tween nonsingularity and the concept called full rank; see Definition 11.4.5
below.

DEFINITION 11.4.4 For an arbitrary matrix X, we denote the maximal
number of linearly independent column vectors of X by CR(X) (read
“column rank of X”) and the maximal number of linearly independent row
vectors of X by RR(X) (read “row rank of X”).

THEOREM 11.4.6 Let an n X K matrix X, where K < n, be CI. Then,
RR(X) = K.

Proof. RR(X) > K contradicts Theorem 11.4.2. If RR(X) < K, there
exists a vector & # 0 such that Xa = 0 because of Theorem 11.4.2; but
this contradicts the assumption that X is CI. QO

THEOREM 11.4.7 CR(X) = RR(X).

Proof. Suppose that X is n X K, K = n, and CR(X) = r = K. Let X4
consist of a subset of the column vectors of X such that X, is » X r and
CI. Then by Theorem 11.4.6, RR(X;) = r. Let X;; consist of a subset of
the row vectors of X; such that X;; is r X r and RI. Then (X;;,Y) is RI,
where Yis an arbitrary » X (K — 7) matrix. Therefore RR(X) = CR(X).
By reversing the rows and columns in the above argument, we can similarly
show RR(X) = CR(X). Q

DEFINITION 11.4.5 CR(X) or, equivalently, RR(X), is called the rank of
X. If rank(X) = min(number of rows, number of columns), we say X is



11.4 | Simultaneous Linear Equations 269

full rank. Note that a square matrix is full rank if and only if it is nonsin-
gular.

THEOREM 11.4.8 An n X K matrix X, where K = n, is full rank if and
only if X'X is nonsingular.

Proof. To prove the “only if” part, note that X'Xc = 0 = ¢'X'Xc =0
= ¢ = 0. To prove the “if” part, note that Xc = 0 = X'Xc =0=¢ = 0.
Q

THEOREM 11.4.9 Let an n X K matrix X be full rank, where K < n.
Then there exists an n X (# — K) matrix Z such that (X, Z) is nonsingular
and X'Z = 0.

Proof. Because of Theorem 11.4.2, there exists a vector z; ¥ 0 such that
X'z, = 0. By the same theorem, there exists a vector zo ¥ 0 such that
(X, z1)'zo = 0, and so on. Collect these n — K vectors and define Z as

(z), 29, . . . , Zo-k). Clearly, X'Z = 0. We have
X’ X'X 0

11.4.10 JZ) = ,

(1410 MQ‘ ) {0 D}

where D = Z'Z is a diagonal matrix. Therefore, by Theorems 11.3.1 and
11.3.5,

11411 X, 2)]F = [X'X| |D|.
But since [X'X| # 0 and |D| # 0, |(X,Z)| # 0. Q

THEOREM 11.4.10 LetX be a matrix not necessarily square, and suppose
that there exists an n X (n — K) matrix Z of rank n — K such that Z'X
= 0. Then rank(X) = K. If W'X = 0 for some matrix W with » columns
implies that rank(W) = » — K, then rank(X) = XK.

Proof. Suppose rank(X) = r > K. Let S be r linearly independent
columns of X. Suppose Sc + Zd = 0 for some vectors ¢ and d. Premulti-
plying by S’ yields 8'Sc = 0. Therefore, by Theorem 11.4.8, ¢ = 0. Pre-
multiplying by Z' yields Z'Zd = 0. Again by Theorem 11.4.8, d = 0. Then
CR[(X, Z)] > n, which is a contradiction.

Next, suppose that rank(X) = r < K. Let S be as defined above. Then,
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by Theorem 11.4.9, there exists an n X (n — r) matrix W such that S'W
= 0 and rank(W) = n — r. But this contradicts the assumption of the
theorem. Therefore, rank(X) = K. O

THEOREM 11.4.11 For any matrix X not necessarily square, rank (BX) =
rank(X) if B is nonsingular (NS).

Proof. Let rank(BX) and rank(X) be r; and ry, respectively. By Theo-
rem 11.4.9 there exists a fullrank (n — 7r;) X 7 matrix Z’' such that
Z'BX = 0. Since B is NS, Z'B is also full rank. (To see this, suppose that
o'Z’'B = 0 for some a. Then a'Z’ = 0 because B is NS. But this implies
that @ = 0, since Z is full rank.) Therefore ry < r; by the first part of
Theorem 11.4.10. Also by Theorem 11.4.9, there exists a full-rank (n — 7o)
X n matrix Y’ such that Y'X = 0. We can write Y'X = Y'B'BX. Clearly,
Y'B ! is full rank. Therefore rn<reandr =r. Q4

11.5 PROPERTIES OF THE SYMMETRIC MATRIX

Now we shall study the properties of symmetric matrices, which play a
major role in multivariate statistical analysis. Throughout this section, A
will denote an » X n symmetric matrix and X a matrix that is not neces-
sarily square. We shall often assume that X is n» X K with K = n.

The following theorem about the diagonalization of a symmetric matrix
is central to this section.

THEOREM 11.5.1 For any symmetric matrix A, there exists an orthogonal
matrix H (that is, a square matrix satisfying H'H = I) such that

(11.51) H'AH = A,

where A is a diagonal matrix. The diagonal elements of A are called the
characteristic roots (or eigenvalues) of A. The ith column of H is called the
characteristic vector (or eigenvector) of A corresponding to the characteristic
root of A, which is the ith diagonal element of A.

Proof. See Bellman (1970, p. 54).
Note that H and A are not uniquely determined for a given symmetric

matrix A, since HAH = A would still hold if we changed the order of the
diagonal elements of A and the order of the corresponding columns of
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H. The set of the characteristic roots of a given matrix is unique, however,
if we ignore the order in which they are arranged.

Theorem 11.5.1 is important in that it establishes a close relationship
between matrix operations and scalar operations. For example, the inverse
of a matrix defined in Definition 11.3.2 is related to the usual inverse of
a scalar in the following sense. Premultiplying and postmultiplying
(11.5.1) by H and H' respectively, and noting that HH' = H'H = I, we
obtain

(11.52) A = HAH'.
Inverting both sides of (11.5.2) and using Theorem 11.3.7 yields
(1153) A™'=HA'H,

since H'H = I implies H™' = H'. Denote A by D();), indicating that it is
a diagonal matrix with \; in the ith diagonal position. Then clearly A™' =
D(\;"Y). Thus the orthogonal diagonalization (11.5.1) has enabled us to
reduce the calculation of the matrix inversion to that of the ordinary scalar
inversion.

More generally, a matrix operation f(A) can be reduced to the corre-
sponding scalar operation by the formula

(1154)  f(A) = HD[f(\)]H".
The reader should verify, for example, that
(11.55) A%(=AA) = HD(\?)H'.
Given a symmetric matrix A, how can we find A and H? The following
theorem will aid us.
THEOREM 11.5.2 Let A be a characteristic root of A and let h be the
corresponding characteristic vector. Then,
(11.5.6) Ah = Ah
and

(11.57)  |A = N = 0.

Proof. Premultiplying (11.5.1) by H yields
(11.58) AH = HA.
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Singling out the ith column of both sides of (11.5.8) yields Ah; = A,
where ), is the ith diagonal element of A and h; is the ith column of H.
This proves (11.5.6). Writing (11.5.6) as (A — A)h = 0 and using Theo-
rem 11.4.1 proves (11.5.7). Q

Let us find the characteristic roots and vectors of the matrix

1

By (11.5.7) we have

1-x 2

=(1-N*—4=0.
o 1-x TN

Therefore the characteristic roots are 3 and —1. Solving

1 2} {xl] = S{xl} and % + x5 =1
12 1] [x9 X9

simultaneously for x; and xy, we obtain x; = x9 = V2 i, Solving

-
1 2} [3’1} = (1) [J’l} and y% +y§ -1
12 1] [ Y

simultaneously for y; and yy, we obtain y = V2 ' and y, = —V27 L
(y1 = —=V2 ' and y, = V2! also constitute a solution.) The diagonaliza-
tion (11.5.1) can be written in this case as

11 11
V2 N2 |1 2]|V2 \/2_:{3 o}_
1 1|2 1|1 1] jo -1
V22 V22

The characteristic roots of any square matrix can be also defined by
(11.5.7). From this definition some of the theorems presented below hold
for general square matrices. Whenever we speak of the characteristic roots
of a matrix, the reader may assume that the matrix in question is symmet-
ric. Even when a theorem holds for a general square matrix, we shall prove
it only for symmetric matrices.

The following are useful theorems concerning characteristic roots.
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THEOREM 11.5.3 The rank of a square matrix is equal to the number of
its nonzero characteristic roots.

Proof. We shall prove the theorem for an » X n symmetric matrix A.
Suppose that n; of the roots are nonzero. Using (11.5.2), we have

rank(A) = rank(HAH')

rank(AH") by Theorem 11.4.11

rank (HA) by Theorem 11.4.7

rank(A) by Theorem 11.4.11
= ni. a

THEOREM 11.5.4 For any matrices X and Y not necessarily square, the
nonzero characteristic roots of XY and YX are the same, whenever both
XY and YX are defined.

Proof. See Bellman (1970, p. 96).

THEOREM 11.5.5 Let A and B be symmetric matrices of the same size.
Then A and B can be diagonalized by the same orthogonal matrix if and
only if AB = BA.

Proof. See Bellman (1970, p. 56).

THEOREM 11.5.6 Let \; and A, be the largest and the smallest charac-
teristic roots, respectively, of an n X n symmetric matrix A. Then for every
nonzero n-component vector X,

'

(1159) N = X‘,A‘X =\,.
X' X

Proof. Using (11.5.1) and HH' = I, we have

x'Ax _xHH'AHH'x _ z'Az
—_— - b
x'x x'HH 'x 7'z

(11.5.10)
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where z = H'x. The inequalities (11.5.9) follow from z’'(\MI — A)z = 0
and z' (A — \,)z= 0. Q

Each characteristic root of a matrix can be regarded as a real function
of the matrix which captures certain characteristics of that matrix. The
determinant of a matrix, which we examined in Section 11.3, is another
important scalar representation of a matrix. The following theorem estab-
lishes a close connection between the two concepts.

THEOREM 11.5.7 The determinant of a square matrix is the product of
its characteristic roots.

Proof. We shall prove the theorem only for a symmetric matrix A.
Taking the determinant of both sides of (11.5.2) and using Theorems
11.3.1 and 11.3.5 yields |A| = [H|*|A|. Similarly, H'H = I implies |H| = 1.
Therefore |A| = |A|, which implies the theorem, since the determinant of
a diagonal matrix is the product of the diagonal elements. O

We now define another important scalar representation of a square
matrix called the trace.

DEFINITION 11.5.1 The trace of a square matrix, denoted by the nota-
tion tr, is defined as the sum of the diagonal elements of the matrix.

The following useful theorem can be proved directly from the definition
of matrix multiplication.

THEOREM 11.5.8 Let X and Y be any matrices, not necessarily square,
such that XY and YX are both defined. Then, tr XY = tr YX.

There is a close connection between the trace and the characteristic
roots.

THEOREM 11.5.9 The trace of a square matrix is the sum of its charac-
teristic roots.

Proof. We shall prove the theorem only for a symmetric matrix A. Using
(11.5.2) and Theorem 11.5.8, we have
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(11511) trA=tHAH =oa AHH=tr A. Q

We now introduce an important concept called positive definiteness, which
plays an important role in statistics. We deal only with symmetric matrices.

DEFINITION 11.5.2 IfAisan n X n symmetric matrix, A is positive definite
if X’ Ax > 0 for every n-vector x such that x # 0. If xX’Ax = 0, we say that
A is nonnegative definite or positive semidefinite. (Negative definite and nonposi-
tive definite or negative semidefinite are similarly defined.)

If A is positive definite, we write A > 0. The inequality symbol should
not be regarded as meaning that every element of A is positive. (If A is
diagonal, A > 0 does imply that all the diagonal elements are positive.)
More generally, if A — B is positive definite, we write A > B. For non-
negative definiteness, we use the symbol =.

THEOREM 11.5.10 A symmetric matrix is positive definite if and only if
its characteristic roots are all positive. (The theorem is also true if we
negative,” or “nonpositive.”)

» &«

change the word “positive” to “nonnegative,

Proof. The theorem follows immediately from Theorem 11.5.6. U

THEOREM 11.5.11 A>0=A"!>0.

Proof. The theorem follows from Theorem 11.5.10, since the charac-
teristic roots of A™' are the reciprocals of the characteristic roots of A
because of (11.5.3). Q

THEOREM 11.5.12 Let A be an n» X n symmetric matrix and let X be an
n X K matrix where K < n. Then A = 0 = X'AX = 0. Moreover, if rank (X)
=K, then A > 0 = X'AX > 0.

Proof. Let ¢ be an arbitrary nonzero vector of K components, and
define d = Xc. Then ¢'X'AXc = d’Ad. Since A = 0 implies d’'Ad = 0, we
have X'AX = 0. If X is full rank, then d # 0. Therefore A > 0 implies
d'Ad > 0and X'AX >0. O
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THEOREM 11.5.13 Let A and B be symmetric positive definite matrices
of the same size. Then A=B=B ' =A™, andA>B=B"' >A""

Proof. See Bellman (1970, p. 93).

Next we discuss application of the above theorems concerning a positive
definite matrix to the theory of estimation of multiple parameters. Recall
that in Definition 7.2.1 we defined the goodness of an estimator using the
mean squared error as the criterion. The question we now pose is, How
do we compare two vector estimators of a vector of parameters? The
following is a natural generalization of Definition 7.2.1 to the case of
vector estimation.

DEFINITION 11.5.3 Let & and 8 be estimators of a vector parameter 0.
Let A and B be their respective mean squared error matrix; that is, A =
E® —0)(®—0)'and B = E(6 — 0) (6 — 0)'. Then we say that @ is better
than  if A < B for any parameter value and A # B for at least one value
of the parameter. (Both A and B can be shown to be nonnegative definite
directly from Definition 11.5.2.)

Note that if 0 is better than 0 in the sense of this definition, 8 is at least
as good as O for estimating any element of 6. More generally, it implies
that ¢ is at least as good as ¢’ for estimating ¢'® for an arbitrary vector
c of the same size as 0. Thus we see that this definition is a reasonable
generalization of Definition 7.2.1.

Unfortunately, we cannot always rank two estimators by this definition
alone. For example, consider
(115.12) A= 10 nd B=|2 0 }

01 0 05

or

(115.13) A= 2 1 and B = 20 .

|1 2] 10 2
In neither example can we establish that A = B or B = A. We must use
some other criteria to rank estimators. The two most commonly used are
the trace and the determinant. In (11.5.12), tr A < tr B, and in (11.5.13),
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|A| < |B|. Note that A < B implies tr A < tr B because of Theorem 11.5.9.
It can be also shown that A < B implies |A] < [B|. The proof is somewhat
involved and hence is omitted. In each case, the converse is not necessarily
true.

In the remainder of this section we discuss the properties of a particular
positive definite matrix of the form P = X(X'X)_1X', where X is an
n X K matrix of rank K. This matrix plays a very important role in the
theory of the least squares estimator developed in Chapter 12.

THEOREM 11.5.14 An arbitrary n-dimensional vector y can be written as
y =y1 + ys such that Py; = y; and Py, = 0.

Proof. By Theorem 11.4.9, there exists an n X (n — K) matrix Z such
that (X, Z) is nonsingular and X'Z = 0. Since (X, Z) is nonsingular, there
exists an n-vector ¢ such thaty = (X, Z)c = Xc¢; + Zc,. Set y; = Xc; and
Y2 = Zcy. Then clearly Py; = y; and Py, = 0. Q

It immediately follows from Theorem 11.5.14 that Py = y;. We call this
operation the projection of y onto the space spanned by the columns of
X, since the resulting vector y; = Xc; is a linear combination of the
columns of X. Hence we call P a projection matrix. The projection matrix
M = Z(Z'Z)"'Z’, where Z is as defined in the proof of Theorem 11.5.14,
plays the opposite role from the projection matrix P. Namely, My = ys.

THEOREM 11.5.15 I —-P=M.
Proof. We have

(115199 dA-P-MX,Z) = X,Z) — (X,0) — (0,Z) = 0.

Postmultiplying both sides of (11.5.14) by (X, Z)_1 yields the desired
result. O

THEOREM 11.5.16 P =P’ =P~
This can be easily verified. Any square matrix A for which A = Al s

called an idempotent matrix. Theorem 11.5.16 states that P is a symmetric
idempotent matrix.
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THEOREM 11.5.17 rank(P) = K.

Proof. As we have shown in the proof of Theorem 11.5.14, there exists
an n X (n — K) fullrank matrix Z such that PZ = 0. Suppose PW = 0 for
some matrix W with n rows. Since, by Theorem 11.5.14, W = XA + ZB
for some matrices A and B, PW = 0 implies XA = 0, which in turn implies
A = 0. Therefore W = ZB, which implies rank(W) = n — K. Thus the
theorem follows from Theorem 11.4.10. (An alternative proof is to use
Theorem 11.5.3 and Theorem 11.5.18 below.) QO

THEOREM 11.5.18 Characteristic roots of P consist of K ones and
n — K zeroes.

Proof. By Theorem 11.5.4 the nonzero characteristic roots of
X (X'X) X’ and (X'X) 'X'X are the same. But since the second matrix
is the identity of size K, its characteristic roots are K ones. U

THEOREM 11.5.19 Let X be an n» X K matrix of rank K. Partition X as
X = (X, X,) such that X; is n X K; and X, is n X Ky and K; + Ko = K.
If we define X§ = [I — X;(X1X;) 'X|1X,, then we have X(X'X) X’ =
X (XXX + XXX XY

Proof. The theorem follows from noting that

[XX'X) X' — XX, X)) 7'X] - XFX$'XH TXF1[X,,X3,Z] =0. Q

EXERCISES

1. (Section 11.2)
Prove Theorem 11.2.1.

2. (Section 11.3)
Using Theorem 11.3.3, prove its corollary obtained by deleting the
word “adjacent” from the theorem.

3. (Section 11.3)
Verify |AB| = |A| [B|, where
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A=[1 2} and B={2 1}-
3 4 11

(Section 11.3)

Prove A™' — (A + B)™' = A7'(A™ + B")T'A™! whenever all the
inverses exist. If you cannot prove it, verify it for the A and B given
in Exercise 3 above.

(Section 11.4)
Solve the following equations for x; for xy; first, by using the inverse
of the matrix, and second, by using Cramer’s rule:

L 2 x| (2]
?) 4 X9 1
(Section 11.4)

Solve the following equations for x), x9, and xg; first, by using the
inverse of the matrix, and second, by using Cramer’s rule:

1 -2 3% 1
1 1 =1||x|=]0
2 1 2 X3 1

(Section 11.4)
Find the rank of the matrix

N N =
—_— 00
QO bt

(Section 11.4)
Find the rank of the matrix

1212
123 4|
1256
2 40 2

(Section 11.5)
Find the characteristic vectors and roots of
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10.

11.

12.

13.

14.

15.
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| 8 V2
A‘[@ 2}

and compute A%,

(Section 11.5)
Compute

~05
5 2
2 2

(Section 11.5)
Prove Theorem 11.5.8.

(Section 11.5)
Let A be a symmetric matrix whose characteristic roots are less than
one in absolute value. Show that

A-A'=T+A+A+....

(Section 11.5)
Suppose that A and B are symmetric positive definite matrices of the
same size. Show that if AB is symmetric, it is positive definite.

(Section 11.5)
Find the inverse of the matrix I + xx’ where x is a vector of the same
dimension as L

(Section 11.5)
Define

1
X=1I1
1 -2

Compute X(X'X)_IX and its characteristic vectors and roots.



12 MULTIPLE REGRESSION MODEL

12.1 INTRODUCTION

In Chapter 10 we considered the bivariate regression model—the regres-
sion model with one dependent variable and one independent variable.
In this chapter we consider the multiple regression model—the regression
model with one dependent variable and many independent variables. The
multiple regression model should be distinguished from the multivariate
regression model, which refers to a set of many regression equations.

Most of the results of this chapter are multivariate generalizations of
those in Chapter 10, except for the discussion of F tests in Section 12.4.
The organization of this chapter is similar to that of Chapter 10.

The results of Chapter 11 on matrix analysis will be used extensively. As
before, a boldface capital letter will denote a matrix and a boldface
lowercase letter will denote a vector. We define the multiple linear regres-
sion model as follows:

K
(1211) 9= X Bas+u, t=1,2...,T,
i=1

where {y,} are observable random variables; {x;}, ¢ =1,2,...,Kand ¢ =
1,2,..., T are known constants; {u,} are unobservable random variables
which are 1.i.d. with Fu, = 0 and Vy, = ¢% and B1, Bos - . ., Bx and o? are

unknown parameters that we wish to estimate. We shall state the assump-
tion on {x,} later, after we rewrite (12.1.1) in matrix notation. The linear

regression model with these assumptions is called the classical regression
model.
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We shall rewrite (12.1.1) in vector and matrix notation in two steps.
Define the K-dimensional row vector X, = (X1, Xm,...,%x) and the
K-dimensional column vector B = (By, B2, . .-, Bx)'. Then (12.1.1) can
be written as

(121.2) y=xp+wu, t=12...,T.

Although we have simplified the notation by going from (12.1.1) to
(12.1.2), the real advantage of matrix notation is that we can write the T
equations in (12.1.2) as a single vector equation.

Define the column vectorsy = (y;, y2,. .., yr) and u = (uy, uy, . . ., uy)’
and define the T X K matrix X whose ¢th row is equal to x, so that X' =
(x4, X9, . . . , X7). Then we can rewrite (12.1.2) as

X111 X2 X1K
Xo1 X9 XoK

(12.1.3) y=XpB +u, where X =

| XT1 ¥T2 © C  XTK |
We assume rank(X) = K. Note that in the bivariate regression model this
assumption is equivalent to assuming that x, is not constant for all ¢.

We denote the columns of X by x(1y, Xy, . . . , X(x). Thus, X = [x(;), X(9),
... »Xg)]l. The assumption rank(X) = K is equivalent to assuming that
X1y, X@), - - -, X(g) are linearly independent. Another way to express this
assumption is to state that X'X is nonsingular. (See Theorem 11.4.8.)

The assumption that X is full rank is not restrictive, because of the
following observation. Suppose rank(X) = K; < K. Then, by Definition
11.4.4, we can find a subset of K; columns of X which are linearly inde-
pendent. Without loss of generality assume that the subset consists of the
first K; columns of X and partition X = (X, Xy), where X, is T X K; and
X,, T X Ks. Then we can write X, = XA for some K; X K, matrix A, and
hence X = X;(I, A). Therefore we can rewrite the regression equation
(12.1.3) as

y=Xip; +u,
where B, = (I, A)B and X, is full rank.
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In practice, x(; is usually taken to be the vector consisting of T ones.
But we shall not make this assumption specifically as part of the linear
regression model, for most of our results do not require it.

Our assumptions on {x,} imply in terms of the vector u

(12.1.4) Fu=0
and
(1215) FEuu' = o’L

In (12.1.4), 0 denotes a column vector consisting of T zeroes. We shall
denote a vector consisting of only zeroes and a matrix consisting of only
zeroes by the same symbol 0. The reader must infer what 0 represents
from the context. To understand (12.1.5) fully, the reader should write
out the elements of the T X T matrix wu'. The identity matrix on the
right-hand side of (12.1.5) is of the size 7, which the reader should also
infer from the context. Note that u'u, a row vector times a column vector,
is a scalar and can be written in the summation notation as ZtT=1ut2. Taking
the trace of both sides of (12.1.5) and using Theorem 11.5.8 yields Eu'u
= ¢°T.

12.2 LEAST SQUARES ESTIMATORS

12.2.1 Definition

The least squares estimators of the regression coefficients {8;},: =1, 2, ...,
K, in the multiple regression model (12.1.1) are defined as the values of
{B;} which minimize the sum of squared residuals

T K 2
(12.2.1) SPB) = z (}’t - Z Bixn] .
i=1

t=1

Differentiating (12.2.1) with respect to B; and equating the partial deriva-
tive to 0, we obtain

a5 T K
(1222) ~—=-23 |y, — X By |xx=0, k=12... K

B t=1 =1
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A

The least squares estimators {B;}, ¢ = 1, 2, ..., K, are the solutions to the
K equations in (12.2.2). We put 8; = B; in (12.2.2) and rewrite it as

~ 9 . .
B1Zxy + BoXxpxe +---+ BrxXxaXx = XXy
BlExthﬂ + BQExfg + -+ BszthtK = Xx9Y;
(12.2.8)

~ - . 9 _
BrZxgxn t+ BoXwgxg T + PrZxk = XXk Yo

where ¥ should be understood to mean ZtT=1, unless otherwise noted.
Using the vector and matrix notation defined in Section 12.1, we can write
(12.2.3) as

(1224) X'XB =Xy,

where we have defined p = (Bl, BQ, s EK) '. Premultiplying (12.2.4) by
(X'X) " yields

(1225 B = XX) Xy,

since we have assumed the nonsingularity of X'X.
We now show how to obtain the same result without using the summa-
tion notation at all. We can write (12.2.1) in vector notation as

(1226)  S(B) = (y — XB)'(y — XB) =y'y — 2y’ XB + B'X'XB.

Define the vector of partial derivatives

as aS oS oS Y
(12.2.7) — === = s |-

9P (aﬁl 985 aﬁh)
Then

M , ,
(12.2.8) % = —2X y + 2X XB

The reader should verify (12.2.8) by noting that it is equivalent to (12.2.2).
Equating (12.2.8) to 0 and solving for B yields (12.2.5).
Let1 = (1,1,...,1) be the vector of T ones and define x = (x;, xo,
., xr)". If we assume K = 2 and put X3y = 1 and Xy, = X, the multiple
regression model is reduced to the bivariate regression model discussed
in Chapter 10. The reader should verify that making the same substitution
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in (12.2.5) gives the least squares estimators & and B defined in Section
10.2.

As a generalization of (10.2.6) we define the least squares predictor of the
vector y, denoted by ¥, as

(1229 ¥ =XB.

As a generalization of (10.2.7) the vector of the least squares residuals is
defined by

(122.10) a=y—¥.

Defining P = X(X'X)'X’ and M = I — P, we can rewrite (12.2.9) and
(12.2.10) respectively as

(122.11) §=Py

and

(122.12) & = My.

The P and M above are projection matrices, whose properties were dis-
cussed in Section 11.5. Note that the decomposition of y defined by

(12213) y=9+1

is the same as that explained in Theorem 11.5.14. Premultiplying (12.2.12)
by X’ and noting that X'M = 0, we obtain

(122.14) X0 =0,

which signifies the orthogonality between the regressors and the least
squares residuals and is a generalization of equations (10.2.8) and
(10.2.9). Equation (12.2.13) represents the decomposition of y into the
vector which is spanned by the columns of X and the vector which is
orthogonal to the columns of X.

It is useful to derive from (12.2.4) an explicit formula for a subvector
of . Suppose we partition B’ = (81, Bs) where B, is a K;-vector and B, is
a Kgvector such that K; + Ky = K. Partition X conformably as X =
(Xj, Xg). Then we can write (12.2.4) as

12215) X1 Xff + X1 Xofls = X1 y
and

(122.16) X Xif; + X5 Xoffo = X5 .
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Solving (12.2.16) for B, and inserting it into (12.2.15) yields
(12217) B, = X1 MgX;) 'Xi Myy,

where M, = I — X5(X5 X;) ~'X;. Similarly,

(12218) B = (X2 MXy) ™ 'X; Myy,

where M; = I — X;(X{ X;) 'X}. In the special case where X; = 1, the
vector of T ones, and X, = x, formulae (12.2.17) and (12.2.18) are
reduced to (10.2.16) and (10.2.12), respectively.

12.2.2 Finite Sample Properties of

We shall obtain the mean and the variance-covariance matrix of the least
squares estimator f3.
Inserting (12.1.3) into the right-hand side of (12.2.5), we obtain

(12219) B=XX)"X'XB +uw =B + XX)'X'u

Since X is a matrix of constants (a nonstochastic matrix) and Fu = 0 by
the assumptions of our model, from Theorem 4.1.6,

(12.220) Ef =B + X'X) 'X'Eu = B.

In other words, the least squares estimator 8 is unbiased.
Define the variance-covariance matrix of 8, denoted as Vﬁ, by

(12.221) VP =EP — EB)(PB — EB)’.
Then, using (12.2.19) and (12.2.20), we have
(12222) VB =E@R-B)(B - B)

= EX'X) X'uw'X(X'X)™*

= (X'X) X' (Fuu)X(X'X) "’

= o?(X'X)7".

The third equality above follows from Theorem 4.1.6, since each element
of the matrix (X'X) 'X'uu’X(X'X)"! is a linear combination of the T*
elements of the matrix vu’. The fourth equality follows from the assump-
tion Euu’ = o°L

The ith diagonal element of the variance-covariance matrix V@ is equal
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to Vﬁi, the variance of the ith element of G The ¢, jth element of Vﬁ is
equal to Cov(f&i, Bj), the covariance between f?)l- and Qj. Note that VB is
symmetric, as every variance-covariance matrix should be. The reader
should verify that setting X = (1, x) in (12.2.22) yields the variances V&
and Vﬁ given, respectively, in (10.2.24) and (10.2.23) as the diagonal
elements of the 2 X 2 variance-covariance matrix. The off-diagonal ele-
ment yields Cov(&, B), which was obtained in (10.2.25).

Since we have assumed the nonsingularity of X'X in our model, the
variance-covariance matrix (12.2.22) exists and is finite. If X'X is nearly
singular, or more exactly, if the determinant X'X is nearly zero, the ele-
ments of Vf are large, as we can see from the definition of the inverse
given in Definition 11.3.2. We call this largeness of the elements of V{8
due to the nearsingularity of X'X the problem of multicollinearity. Next we
shall prove that the least squares estimator f3 is the best linear unbiased
estimator of B.

We define the class of linear estimators of B to be the class of estimators
which can be written as C'y for some T' X K constant matrix C. We define
the class of linear unbiased estimators as a subset of the class of linear
estimators which are unbiased. That is, we impose

(12.2.23) EC'y = .

By inserting (12.1.3) into the left-hand side of (12.2.23), we note that
(12.2.23) is equivalent to

(12224) C'X=1

Thus the class of linear unbiased estimators is the class of estimators which
can be written as C'y, where C is a T X K constant matrix satisfying
(12.2.24).

The least squares estimator f is a member of this class where C' =
X'X)"'x'.

The theorem derived below shows that $ is the best linear unbiased
estimator (BLUE), where we have used the word best in the sense of Defini-
tion 11.5.3.

THEOREM 12.2.1 (Gauss-Markov) Let B* = C'ywhere CisaT X K
constant matrix such that C'X = I. Then, B is better than B* if §* # f.

Proof. Since * = B + C'u because of (12.2.24), we have
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(12.2.25) VB* = EC'uu'C
= C'(Fuu’)C
= ¢*C'C
=XX) ! + ¢’[C - X'X)X'][C - XX'X)!.

To verify the last equality, multiply out the four terms within the square
brackets above and use (12.2.24). The last term above can be written as
0°Z'Z by setting Z = C — X(X'X) . But Z'Z = 0, meaning that Z'Z is a
nonnegative definite matrix, by Theorem 11.5.12. Therefore Vp* =
0'2(X’X)_1, meaning that VB* — (rQ(X'X)~1 is a nonnegative definite ma-
trix. Finally, the theorem follows from observing that a? (X'X) 1= V[§ and
using Definition 11.5.3. Q

Suppose we wish to estimate an arbitrary linear combination of the
regression coefficients, say d'B. From the discussion following Definition
11.5.3, we note that Theorem 12.2.1 implies that d’f is better (in the sense
of smaller mean squared error) than any other linear unbiased estimator
d’p*. In particular, by choosing d to be the vector consisting of one in the
ith position and zero elsewhere, we see that B, is the better estimator of
B; than B}. Thus the best linear unbiasedness of & and B proved in Section
10.2.2 follows as a special case of Theorem 12.2.1.

As we demonstrated in Section 7.2 regarding the sample mean, there
are biased or nonlinear estimators that are better than the least squares
for certain values of the parameters. An example is the ridge estimator
defined as (X'X + yI)”'X'y for an appropriately chosen constant v. The
estimator, although biased, is better than the least squares for certain
values of the parameters because the addition of yI reduces the variance.
The improvement is especially noteworthy when X'X is nearly singular.
(For further discussion of the ridge and related estimators, see Amemiya,
1985, chapter 2.)

12.2.3 Estimation of o?

As in Section 10.2.3, we define the least squares estimator &” as

.9 w'a
12.2.26 g =
( ) T

>
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using the least squares residuals & defined in (12.2.12). In deriving E67 it
is useful to note that
(12227) 9 =My =MZXB + u) = Mu
From (12.2.27) we obtain
(12.2.28) Ea'd = Eu'Mu since M® = M

= Etru'Mu since u'Mu is a scalar
= E tr Muu’ by Theorem 11.5.8

= tr M(Fuu’) by Theorem 4.1.6
=cuM since Euu’ = ¢’I

= o%(T — K) by Theorem 11.5.18.

Therefore, E6* = T (T — K)o% hence 6 is a biased estimator of o>
Note, however, that the bias diminishes to zero as T goes to infinity. An
unbiased estimator of ¢” is defined by

~9 a'da

12.2.29 = .
(12.2.29) T—X

See Section 12.4 for the distribution of @' under the assumption that {u,}
are normally distributed.

Using 6° defined in (12.2.26), we can define R by the same formula as
equation (10.2.46). If we define a T' X T matrix

11’

12230) L=1I-
(12.2.30) T

’

where 1 is the vector of T ones, we can write si = T_ly’Ly. Note that L is
the projection matrix which projects any vector onto the space orthogonal
to 1. In other words, the premultiplication of a vector by L subtracts the
average of the elements of the vector from each element. Using (12.2.27)
and (12.2.30), we can rewrite (10.2.46) as

a22s1 R =YL =My
y'Ly

Suppose that the first column of X is the vector of ones, and partition X
= (1,X,). Then, by Theorem 11.5.19,
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(122.82) L — M = LXy(X5 LX,) XL
Therefore,
¥ LX,(X31X,) " 'Xily

(12.233) R®= :
y'Ly

We now seek an interpretation of (12.2.33) that generalizes the intepre-
tation given by (10.2.52). For this purpose define y* = Ly, X3 = LX,, and

(122.34) ¥* = XFXFXH X'y~

Note that (12.2.34) defines the least squares predictor of y* based on
X3. So we can rewrite (12.2.33) as
*/ 5 )2
(12235) R®= &
(y* ,y*) . (}A,*,?*)

which is the square of the sample correlation coefficient between y* and
¥*. Because of (12.2.35) we sometimes call R, the square root of R2, the
multiple correlation coefficient.

See Section 12.5 for a discussion of the necessity to modify R® in order
to use it as a criterion for choosing a regression equation.

12.2.4 Asymptotic Properties of Least Squares Estimators

In this section we prove the consistency and the asymptotic normality of
B and the consistency of 6° under suitable assumptions on the regressor
matrix X.

THEOREM 12.2.2 In the multiple regression model (12.1.1), the least
squares estimator f is a consistent estimator of B if \;(X'X) — o, where
As(X'X) denotes the smallest characteristic root of X'X.

Proof. Equation (11.5.3) shows that the characteristic roots of X'x)™!
are the reciprocals of the characteristic roots of X'X. Therefore \(X'X)
— o implies NI(X'X) '] = 0, where \; denotes the largest characteristic
root. Since the characteristic roots of (X'X) ! are all positive, MNEXX)TY
— 0 implies tr (X'X)"! - 0 because the trace is the sum of the charac-
teristic roots by Theorem 11.5.9. Since VB = ¢*(X'X) !, as we obtained
in (12.2.22), tr (X'’X) "' — 0 implies tr V — 0, which in turn implies
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VBZ- —0fori=1,2,..., K. Our theorem follows from Theorem 6.1.1.
Q

Note that the assumption A(X'X) — ® implies that every diagonal
element of X'X goes to infinity as T goes to infinity. We can prove this as
follows. Let e; be the T-vector that has 1 in the ith position and 0 elsewhere.
Then, the ith diagonal element of X'X, x(',-)x(i) can be written as

Iy !
eiX Xei

(122.36)  Xgyxp = ——
€;€;

But the righthand side of (12.2.36) is greater than or equal to A(X'X) by
Theorem 11.5.6. Therefore A\ (X'X) — o implies x¢x; — ®.

The converse of this result is not true, as we show below. Suppose X has
two columns, the first of which consists of 7 ones and the second of which
has zero in the first position and one elsewhere. Then, we have
T-1 T

(12237 X'X = [ T T_l}

so that x;x;, — %, 7 = 1, 2. Solving

12238 det|L N T71i_g
T-1 T-\
for A, we find that the characteristic roots of X'X are 1 and 27 — 1.
Therefore we do not have A\(X'X) — . Using the results of Section 11.3,
we have from (12.2.87)
1

(12.289) (X'X) ' = {

T oT-1

T 1-T|
1-T T

Thus, in this example, the variance of the least squares estimator of each
of the two parameters converges to 0%/2 as T goes to infinity.

THEOREM 12.2.3 In the multiple regression model (12.1.1), 6* as
defined in (12.2.26) is a consistent estimator of o>

Proof. From (12.2.26) and (12.2.27) we have

R 13 ’P
(12240) s2=22_4-1u,

T T
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where P = X(X'X) X’ as before. As we showed in equation (10.2.67),

!
u'u 9
=o".

(12.2.41) plim

By a derivation similar to (12.2.28), we have Eu'Pu = oK. Therefore, by
Chebyshev’s inequality (6.1.2), we have for any €

' 2
(12.242) P (“ Pu. e2J< (’2K ,
T eT

which implies

u'Pu

= 0.

(12.2.43) plim

The consistency of 6? follows from (12.2.40), (12.2.41), and (12.2.43)
because of Theorem 6.1.3. Q

Let x; be the ith column of X and let X_; be the T X (K — 1)
submatrix of X obtained by removing x; from X. Define

' —1<r/
M-y =1 - X pX-X-9] Xy and x5 = Mpxg.
Using (12.2.17), we can write the ith element of f as
X'y
X' %Gy

Inserting (12.1.3) into the right-hand side of (12.2.44) and noting that
M _yX; = 0, we have

(12.2.44) B; =

XG5 .

(12.2.45) B, - B; =
X %G

Note that (12.2.45) is a generalization of equations (10.2.19) and
(10.2.21). Since (12.2.45) has the same form as the expression (10.2.68),
the sufficient condition for the asymptotic normality of (12.2.45) can be
obtained from Theorem 10.2.2.

The following theorem generalizes Theorem 10.2.2 and shows that the
elements of {3 are jointly asymptotically normal under the given assump-
tions. (For proof of the theorem, see Amemiya, 1985, chapter 3).
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THEOREM 12.2.4 In the multiple regression model (12.1.1), assume that

2
max x;

1=¢=T

(12.2.46) lim =0, =12,...,K.

T XX

Define Z = XS ', where S is the K X K diagonal matrix with [xgx)]"?
as its sth diagonal element, and assume that limz_,, Z'Z = R exists and is
nonsingular. Then S(f — B) — N(0, o R7Y.

12.2.5 Maximum Likelihood Estimators

In this section we show that if we assume the normality of {«,} in the model
(12.1.1), the least squares estimators B and & are also the maximum
likelihood estimators. We also show that 3 is the best unbiased estimator
in this case.

Using the multivariate normal density (5.4.1), the likelihood function
of the parameters § and o® can be written in vector notation as

(12247) L= (211'02)_T/2 exp [—ﬁ y—XB)(y— XB)} ,
g

which is a generalization of equation (10.2.77). Taking the natural loga-
rithm of (12.2.47) yields

T

(12248) log L = —g log 27w — 2

log o — — (y ~ XB)'(y - XB).
20

From (12.2.48) it is apparent that the maximum likelihood estimator of
B is identical to the least squares estimator f3. To show that the maximum
likelihood estimator of ¢ is the & defined in (12.2.26), the reader should
follow the discussion in Section 10.2.5 by regarding the 4, that appears in
equations (10.2.80) and (10.2.81) as that defined in (12.2.12).

To show that ﬁ is best unbiased under the normality assumption of u,
we need the following vector generalization.

THEOREM 12.2.5 (Cramér-Rao) Let 0* be any unbiased estimator of a
vector parameter 0 and let VO* be its variance-covariance matrix. Suppose
that 9°log /0090’ denotes a matrix whose 4, jth element is equal to
9 log L/90,06;. Then we have
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d* log L B
* = ,
(12.249) VO* = |:E 5090’ :|

where = is in the sense given in connection with Definition 11.5.2. The
right-hand side of (12.2.49) is called the Cramér-Rao (matrix) lower bound.

We put 8 = (B, 02)’ and calculate the Cramér-Rao lower bound for the
log L given in (12.2.48). We have

dlog L 1
12.2 =~ X'y— X'XB),
(2250) “E= = X'y - X'XP)

dlog L T 1
12.2.51 = -+ y-XB)y - XB),
( ) P 557 204()’ B)'(y B)
(12.2.52) ClogL _ 1y

y“n aBaB, 0.2 I

Plogl T 1
(12.2.53) =———<GG-XB)y—XB)

2
(12.254) 2 1°g;f = i‘t X'y — X'XB).

oBa(c") g

From (12.2.52), (12.2.53), and (12.2.54) we obtain

-1 2 r -1
FR log L _ o X'X) 0
9000’ 20*
T

(12.2.55) — {E
0

From (12.2.49) and (12.2.55) we conclude that if B* is any unbiased
estimator of B,
(12.256) VB* = o*(X’X) L.

But since the right-hand side of (12.2.56) is the variance-covariance matrix
of 8, we have proved the following generalization of Example 7.4.2.



12.2 | Least Squares Estimators 295

THEOREM 12.2.6 If uis normal in the model (12.1.1), the least squares
estimator [ is best unbiased.

12.2.6 Prediction

As in Section 10.2.6, we affix the following “prediction period” equation
to the model (12.1.1):

(12257) 3, = x, B + u,,

where y, and u, are both unobservable and x; is a K-vector of known
constants. We assume that u, is distributed independently of the vector u,
and Eu, = 0 and Vu, = o, Note that B and ¢” are the same as in (12.1.1).

Let B be an arbitrary estimator of B based on y and define the predictor

Yp of Yp by
(12558) 5, = x,.

We obtain the mean squared prediction error of j, conditional upon x,
as

(12259  E(y, — 5,)° = Elu, —x;,(B — B)17
=o® + x,EPR — B)(B — B)'x,.

The second equality follows from the independence of u, and u in view
of Theorem 3.5.1.

Equation (12.2.59) establishes a close relationship between the criterion
of prediction and the criterion of estimation. In particular, it shows that
if an estimator f is better than an estimator B* in the sense of Definition
11.5.3, the corresponding predictor j, = x, is better than y; = x,B* in
the sense that the former has the smaller mean squared prediction error.
Thus, by restricting B to the class of linear unbiased estimators, we imime-
diately see that the least squares predictor j, = xi',fi is the best linear
unbiased predictor of y,.

Let B and P* be the two estimators of B. In Section 11.5 we demon-
strated that we may not be always able to show either

EB - BB - B) =EPB* - B)B*—B)

or the reverse inequality; if not, we can rank the two estimators by the
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trace or the determinant of the mean squared error matrix. The essential
part of the mean squared prediction error (12.2.59),

’ = & ’
EB — BB — B) %y,
provides another scalar criterion by which we can rank estimators. One
weakness of this criterion is that x, may not always be known at the time
when we must choose the estimator.

In practice, we must often predict x, before we can predict y,. Accord-
ingly we now treat x, as a random vector and take the expectation of

x,E(B — B)(B — B)'x,. We assume that
(12.2.60) Ex,x, = %x’x,

which means that the second moments of the regressors remain the same
from the sample period to the prediction period. Using (12.2.58), we
obtain

(12.261)  E*3,E(B — B)B — B)'x, = tr E(B — B)(B — B) E*x,x,

- 1w B@ — BB -~ BX'X

-~ 1E@ - BX'XB - B),

where E* denotes the expectation taken with respect to x,,. The right-hand
side of (12.2.61) is a useful criterion by which to choose an estimator in
situations where the best estimator in the sense of Definition 11.5.3 cannot
be found. We shall call (12.2.61) plus o® the unconditional mean squared
prediction error.

12.3 CONSTRAINED LEAST SQUARES ESTIMATORS

In this section we consider the estimation of the parameters B and ¢ in
the model (12.1.1) when there are certain linear constraints about the
elements of B. We assume that the constraints are of the form

(123.1) Q'B =g,

where Q is a K X ¢ matrix of known constants and c is g-vector of known
constants. We assume ¢ < K and rank(Q) = q.
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Constraints of the form (12.3.1) embody many common constraints
which occur in practice. For example, if Q" = (I, 0) where I is the identity
matrix of size K; and 0 is the K; X K, matrix of zeroes such that K; + Ky
= K, the constraints mean that a K;-component subset of B is specified
to take certain values, whereas the remaining Ky elements are allowed to
vary freely. As another example, the case where Q' is a row vector of ones
and ¢ = 1 corresponds to the restriction that the sum of the regression
parameters is unity.

The study of this subject is useful for its own sake; it also provides a basis
for the next section, where we shall discuss tests of the linear hypothesis
(12.3.1).

The constrained least squares (CLS) estimator of B, denoted B, is defined
to be the value of 8 that minimizes the sum of the squared residuals:

(1232)  S(B) = (y — XB)'(y — XB),

subject to the constraints specified in (12.3.1). In Section 12.2.1 we showed
that (12.3.2) is minimized without constraint at the least squares estimator
f. Writing S(B) for the sum of the squares of the least squares residuals,
we can rewrite (12.3.2) as

(1233)  S(B) =SPB) + (B — BYXX(B — B).

Instead of directly minimizing (12.3.2) subject to (12.3.1), we minimize
(12.3.3) under (12.3.1), which is mathematically simpler.

Put  — B = 8 and Q'B — ¢ = v. Then the problem is equivalent to
the minimization of 8'X'X8 subject to Q'8 = vy. The solution is obtained
by equating the derivatives of

(12.34) 3'X'XS + 2A'(Q'3 — )

with respect to 8 and a g-vector of Lagrange multipliers A to zero. Thus,
(1235) X'X3+ QA =0

and

(1236) Q'8 =+.

Solving (12.3.5) for & gives

1237 &= —(X'X)"'QA.
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Inserting (12.3.7) into (12.3.6) and solving for A, we get

(1238 A= —-[Q(X'X)7'Ql M.
Finally, inserting (12.3.8) back into (12.3.5) and solving for 8, we obtain

(1239 8= XX)QIQXX) QY.

Transforming & and vy into the original variables, we can write the solution
as

(123100 BT =B - X'X)'QIQX'X)'Q1I QB - ©.

The corresponding estimator of o’ is given by

1
(123.11) ot = T XB")'y - XBH).
Taking the expectation of (12.3.10) under the assumption that (12.3.1) is
true, we immediately see that EB* = B. We can evaluate VB* from
(12.3.10) as

(12312) VB = ((X'X) " — (X'X)'Q[Q' (X'X) Q] 'Q' (X'X) 7).

Since the second term within the braces above is nonnegative definite, we
have VBJr < V. We should expect this result, for B ignores the constraints.
It can be shown that if (12.3.1) is true, the CLS B* is the best linear
unbiased estimator.

If {u,} are normal in the model (12.1.1) and if (12.3.1) is true, the
constrained least squares estimators g and ¢** are the maximum likeli-
hood estimators.

We can give an alternative derivation of the CLS B*. Theorem 11.4.9
assures us that we can find a K X (K — ¢) matrix R such that, first,
(Q, R) is nonsingular and, second, R'Q = 0. The R is not unique; any
value that satisfies these conditions will do. Finding R is easy for the
following reason. Suppose we find a K X (K — ¢) matrix S such that
(Q, S) is nonsingular. Then R defined by R = [I — Q(Q'Q) 'Q']S satis-
fies our two conditions.

Now define A = (Q, R)’. Using A we can transform equation (12.1.3)
as follows:

(12.313) y=Xp +u
=XAT'AB +u
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(o4
—ZI:a:|+u
=Zlc+Z2a+u,

where Z = XA}, a = R'B, Z, consists of the first ¢ columns of Z, and Z,
consists of the last K — g columns of Z. From (12.3.13),

(12314) y— Z;c = Zya + .

Since Z,, Z, and c are all known constants, equation (12.3.14) represents
a multiple regression model in which y — Z,c is the vector of dependent
variables and a (K — g)-vector a constitutes the unknown regression
coefficients. Thus, by the transformation of (12.3.13), we have reduced
the problem of estimating K parameters subject to ¢ constraints to the
problem of estimating K — ¢ parameters without constraint.

We can apply the least squares method to (12.3.14) to obtain

(12.3.15) & = (Z3Zs) 'Zo(y — Zyc)

and then estimate 3 by
C

(12.316) BT = A" {}
o

= RRX'XR) 'R'X'y + [I - RRX'XR) 'RX'X]QQ'Q) c.

In (12.3.16) we have used the same symbol as the CLS B+ because the
right-hand side of (12.3.16) can be shown to be identical to the right-hand
side of (12.3.10) if X'X is nonsingular. (The proof can be found in
Amemiya, 1985, chapter 1.)

12.4 TESTS OF HYPOTHESES

12.4.1 Introduction

In this section we regard the linear constraints of (12.3.1) as a testable
hypothesis and develop testing procedures. We shall call (12.3.1) the null
hypothesis. Throughout the section we assume the multiple regression
model (12.1.1) with the normality of u, since the distribution of the test
statistics we use is derived under the normality assumption. We discuss
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Student’s ¢ test, the F test, and a test for structural change (a special case
of the F test), in that order.

As preliminaries, we derive the distribution of |§ and 'h and related
results.

Applying Theorem 5.4.2 to ﬁ defined in (12.2.5), we immediately see
that 3 is normally distributed if y is normal. Using the mean and variance
obtained in Section 12.2.2, we obtain

(1241) B ~ N[B, o*(X'X)7"].
THEOREM 12.4.1 Leti be as defined in (12.2.12). In the model (12.1.1),
with the normality of u we have

a'a

(12.4.2) o~ Xo_x.
g

AL

Proof. If we define v = o 'u, we have v ~ N(0, I). Since &t = w'Mu
from (12.2.27), we can write

a'a

0_2

(12.4.3) = v'Mv.

Because of Theorem 11.5.18, there exists a T X T matrix H such that HH
=TI and

(1244) H'MH = [I 0},
00

where the right-hand side of (12.4.4) denotes a diagonal matrix that has
one in the first T — K diagonal positions and zero elsewhere. Therefore,

(124.5) v'Mv=vHH'MHH'v
, [I 0]
=w w
00
T-K
= z w?,
i=1

where w = H'v and wj; is the ith element of w. Since w ~ N(0,I),
ZZ-Tz_lef ~ x?«_ kx by Definition 1 of the Appendix. O

Next, let us show the independence of (12.4.1) and (12.4.2).
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THEOREM 12.4.2 In the model (12.1.1) with the normality of u, the
random variables defined in (12.4.1) and (12.4.2) are independent.

Proof. We need only show the independence of B and @ because of
Theorem 3.5.1. But since f§ and @ are jointly normally distributed by
Theorem 5.4.2, we need only show that 8 and @ are uncorrelated. This
follows from

(1246) EP - B’ = EX'X) ' X'wu'M
= (X'X)" X' (Eun’)M
= 2(X'X)"'X'M
=0. QO

12.4.2 Student’s t Test

The ¢ test is ideal when we have a single constraint, that is, ¢ = 1. The F
test, discussed in the next section, must be used if ¢ > 1.
Since 3 is normal as shown above, we have

(1247) Q' ~ N[¢, o*Q' (X'’X)'Q]

under the null hypothesis (that is, if Q' = ¢). Note that here Q' is a row
vector and ¢ is a scalar. Therefore,

QB¢
o Q!(XIX)—lg
The random variables defined in (12.4.2) and (12.4.8) are independent

because of Theorem 12.4.2. Hence, by Definition 2 of the Appendix, we
have

(12.4.8) ~ N(0, 1).

Qp-
T %
aVQ'(X'X) 'Q
Student’s ¢ with T — K degrees of freedom, where & is the square root of
the unbiased estimator of ¢ defined in equation (12.2.29). Note that the
denominator in (12.4.9) is an estimate of the standard deviation of the
numerator. The null hypothesis Q'8 = ¢ can be tested by the statistic
(12.4.9). We use a one-tail or two-tail test, depending on the alternative
hypothesis.

(12.4.9)
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The following are some of the values of Q and ¢ that frequently occur
in practice:

The ith element of Q is unity and all other elements are zero. Then the
null hypothesis is simply B; = c.

The ith and jth elements of Q are 1 and —1, respectively, and ¢ = 0.
Then the null hypothesis becomes 3; = B;.

Q is a K-vector of ones. Then the null hypothesis becomes Zfilﬁi =c.

12.4.3 The F Test

In this section we consider the test of the null hypothesis Q'B = c against
the alternative hypothesis Q'B # ¢ when it involves more than one con-
straint (that is, ¢ > 1). In this case the ¢ test cannot be used.

Again Q' — c will play a central role in the test statistic. The distribu-
tion of Q' given in (12.4.7) is valid even if ¢ > 1 because of Theorem
5.4.2. Therefore, by Theorem 9.7.1,

QB-9QXX)'QQB-¢ y

q-
0_2

(12.4.10)

If 0” were known, we could use the test statistic (12.4.10) right away and
reject the null hypothesis if the lefthand side were greater than a certain
value. The reader will recall from Section 9.7 that this would be the
likelihood ratio test if 8 were normal and the generalized Wald test if 8
were only asymptotically normal.

Since  and @ are independent as shown in the argument leading to
Theorem 12.4.2, the chi-square variables (12.4.2) and (12.4.10) are inde-
pendent. Therefore, by Definition 3 of the Appendix, we have

L= T-K (@B~ 9N QI QB — 9

12.4.11
( ) q 't

~ F(g, T—K).

The null hypothesis Q' = c is rejected if 1 > d, where d is determined
so that P(n > d) is equal to a certain prescribed significance level under
the null hypothesis.

Comparing (12.4.9) and (12.4.11), we see that if ¢ = 1 (and therefore
Q' is a row vector), the F statistic (12.4.11) is the square of the ¢ statistic
(12.4.9). This fact indicates that if ¢ = 1 we must use the ¢ test rather than
the F test, since a one-tail test is possible only with the ¢ test.

The F statistic can be alternatively written as follows. From equation
(12.3.3) we have
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(12412) S(B") - S(B) = (B - BYXX(B - 7).
From equations (12.3.10) and (12.4.12) we have
N . R A

(12413)  S(B") — S(B) = (Q'B — ¢)'[Q'XX)'QI(Q'B - ).
Therefore we can write (12.4.11) alternatively as
T -k SB")—SB)

9 SB)
Note that S (B+) — S(B) is always nonnegative by the definition of B+ and
B, and the closer Q'P is to ¢, the smaller S(B+) - S(ﬁ) becomes. Also
note that (12.4.14) provides a more convenient form for computation
than (12.4.11) if constrained least squares residuals can be easily com-
puted.

The result (12.4.14) may be directly verified. Using the regression equa-
tion (12.3.13), we have

(124.14) m= ~F(g, T — K).

(12.4.15) SP)=w[l—-ZZ'Z) 'Z'Tu~ x>_g

and

(12416) S(B™) =w'[I — Zo(ZsZo) 'Zilu ~ XF-k+q-

Therefore, by Theorem 11.5.19,

(12417)  S(BY) — S(B) = w'Z,(Z1Z) 'Z1u,

where Z; = [I — Zy(ZyZy) 'Z3)Z,. Finally, (12.4.15) and (12.4.17) are
independent because [I — Z(Z'Z) 'Z'1Z, = 0.

The F statistic m given in (12.4.11) takes on a variety of forms as we
insert specific values into Q and c¢. Consider the case where the B is
partitioned as ' = (B1, Bs), where B, is a K;-vector and B, is a Ky-vector
such that K; + Ko = K, and the null hypothesis specifies B3 = B, and
leaves B, unspecified. This hypothesis can be written in the form Q' =
c by putting Q" = (0, I), where 0 is the Ky X K; matrix of zeroes, I is the

identity matrix of size Ko, and ¢ = .. Inserting these values into (12.4.11)
yields

T-k (B2~ B'I0O, DX'X) (0, D' (By — Bo)

12.4.18 =
(12.4.18) m K, a0

~ F(K9, T — K).
We can simplify (12.4.18) somewhat. Partition X as X = (X, X,) conform-
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ably with the partition of B, and define M; = I — X;(X; X;) 'X]. Then,

by Theorem 11.3.9, we have

(12.4.19) [0, DX'X)70,1)']! = X5 M;Xo.

Therefore, we can rewrite (12.4.18) as

T-K Bz~ By)'XoMXo(B2 — B2)
Ko a0

(12.4.20) m = ~ F(Ky, T — K).

Of particular interest is a special case of (12.4.20) where K; = 1, so that
By 1s a scalar coefficient on the first column of X, which we assume to be
the vector of ones (denoted by 1). Furthermore, we assume 5 = 0. Then
M, in (12.4.19) becomes L = I — T"'11’. Also, we have from equation
(12.2.14),

(12.4.21) By = (XoLXs) 'XoLy.
Therefore (12.4.20) can now be written as

_T— K yLXyX3lXs) 'Xjly
= : ~ F(K —
K-1 o'

(12.422) 1, T — K).

Using the definition of R? given in (12.2.33), we further rewrite (12.2.22)
as

T-K R

12.4. =
(12423) M= T 1_R

~FK—-1,T - K),

since 't = y'Ly — y'LXo(X5LX,) "X Ly by (12.2.32).

12.4.4 Tests for Structural Change
Suppose we have two regression regimes
(12.424) y; =XiB; + uy

and

(12.4.25)  yy = Xofs + uy,

where the vectors and matrices in (12.4.24) have T, rows and those in
(12.4.25) have Ty rows; X, is a T} X K* matrix and X, is a Ty X K* matrix;
and u; and uy are normally distributed with zero means and the variance-
covariance matrix
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2
u ' ' O-IIT 0
E[ 1} (o, v2) = PR
Ug 0 O'QIT2

We want to test the null hypothesis B; = By assuming cr% = c§ (= 0'2).
This test can be handled as a special case of the F test presented in the
preceding section.

To apply the F test to the problem, combine equations (12.4.24) and
(12.4.25) as

(12426) y=XB + u,

y=[YI:|’ le:xl O:I’ B:|:Bl:|, uz[m]_

¥e 0 Xy B uy

Since o7 = o3 (= ¢?), (12.4.26) is the same as the model (12.1.1) with
normality. We can represent our hypothesis B; = B as a standard linear
hypothesis of the form (12.3.1) by putting T = T, + Ty, K = 2K*, g =

K*, Q' = (I, —I), and ¢ = 0. Inserting these values into (12.4.11) yields
the test statistic

where

Ty + Ty — 2K*

(12427) m= pom

(B — ) XXy + XeX9) 1T (B - Bo)
y/ = X(X;X)—lxl]y

~ F(K*, T1 + Ty — 2K™),

where B, = (XX,)"'Xiy1 and By = (X:X5) 'Xiys.

We can obtain the same result using (12.4.14). In (12.4.26) we com-
bined equations (12.4.24) and (12.4.25) without making use of the hy-
pothesis B; = Bo. If we do use it, we can combine the two equations as

(12.4.28) y=1ZB, + u,

where we have defined Z = (X1, Xy)". Let S(B) be the sum of the squared
residuals from (12.4.26), that is,

(12.429) S(B) =y'[I - XX'X) 'X'ly,
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and let § (B+) be the sum of the squared residuals from (12.4.28), that is,

(12.430) S(BY) =y'[I — Z2(Z'Z2) 'Z'ly.

Then using (12.4.14), we have

T, + Ty — 2k* S(B") — SB)
K* SB)

Even though (12.4.31) and (12.4.27) look very different, they can be
shown to be equivalent in the same way that we showed the equivalence
between (12.4.11) and (12.4.14).

The hypothesis B; = By is merely one of the many linear hypotheses
that can be imposed on the B of the model (12.4.26). There may be a
situation where we want to test the equality of a subset of f§; to the
corresponding subset of By. For example, if the subset consists of the first
K} elements of both B, and By, we put T = T| + Ty and K = 2K* as
before, but ¢ = Kf, Q' = (1,0, ~L 0), and ¢ = 0.

If, however, we wish to test the equality of a single element of 3; to the
corresponding element of By, we use the ¢ test rather than the F test for
the reason given in the last section. We do not discuss this ¢ test here, since
it is analogous to the one discussed in Section 10.3.2.

So far we have considered the test of the hypothesis B; = B, under the
assumption that oF = 05. We may wish to test the hypothesis o3 = o3.
before performing the F test discussed above. Under the null hypothesis
that cr% = cr§ (= 02) we have

(12.481) m =

M

(12.4.32) 2 ;y] ~ XF —k+
ag

and
oM

(12.4.33) YQ—;” ~ X, —k*-
g

Since these two chi-square variables are independent by the assumption
of the model, we have by Definition 3 of the Appendix

Ty — K* yiMyy;
Ti— K* yMay,
Unlike the F test developed in Section 12.3, we should use a two-tail test

here, since either a large or a small value of the statistic in (12.4.34) is a
reason for rejecting the null hypothesis.

(12.4.34)

~ F(T; — K*, Ty — K*).
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In Section 10.3.2 we presented Welch’s method of testing the equality
of regression coefficients without assuming the equality of variances in the
bivariate regression model. Unfortunately, Welch’s approximate ¢ test does
not effectively generalize to the multiple regression model. So we shall
mention two simple procedures that can be used when the variances are
unequal. Both procedures are valid only asymptotically, that is, when the

sample size is large.
The first is the likelihood ratio test. The likelihood function of the
model defined by (12.4.24) and (12.4.25) is given by

(12435) L= (211-)_(TI+T2)/2(0_%)~T1/2(0_§)_T2/2

(5]

© €Xp !:_ % (1 — X4B)'(n — XIBI):|

© €xXp |i’ ‘2‘1—2 (y2 — XoB2) (y2 — Xzﬁz)} :

g2

The value of L attained when it is maximized without constraint, de-
noted by L, can be obtained by evaluating the parameters of L at

Bi=f1, B2= B2
i=51= Tl_l()'l - XiB1) (1 — Xuf),
and 03 = 63 = Ty (y2 — Xoffo) (y2 — XoBo).

The value of L attained when it is maximized subject to the constraints
B1 = Bo, denoted by I, can be obtained by evaluating the parameters of
L at the constrained maximum likelihood estimates: ; = B, (= ), and
&?,and &3. These may be obtained as follows:

Step 1. Calculate

B = (61°XiX; + 62 X5Xy) (61 Xiy1 + G2 Xayo).
Step 2. Calculate

5t = T1 'y — XuB)' (y1 — XuB)
and

&5 = T3 '(y2 — Xaf)' (y2 — Xof).
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Step 3. Repeat step 1, substituting &7 and &3 for 6% and 63, respectively.

Step 4. Repeat step 2, substituting the estimates of 8 obtained in step 3
for .

Continue this process until the estimates converge. In practice, the
estimates obtained at the end of step 1 and step 2 may be used without
changing the asymptotic result (12.4.36) given below.

By Theorem 9.4.1, we have asymptotically (that is, approximately, when
both T and T, are large)

L o7 A
(12.4.36) —2log — =T;log — + Ty log — ~ xk*.
L &t &3
The null hypothesis B; = B9 is rejected when the statistic in (12.4.36) is

large.

The second test is derived by the following simple procedure. First,
estimate orf and crg by &% and aé, respectively, and define p = &,/G,.
Second, multiply both sides of (12.4.25) by p and define the new equation

(12.4.37)  y5 = X$Bs + ud,

where y5 = pys, X5 = pXp, and uf = pu,. Finally, treat (12.4.24) and
(12.4.37) as the given equations, and perform the F test (12.4.27) on
them. The method works asymptotically because the variance of uj is
approximately the same as that of u; when 74 and T are large, since p is
a consistent estimator of a;/09.

12.5 SELECTION OF REGRESSORS

In Section 10.2.3 we briefly discussed the problem of choosing between
two bivariate regression equations with the same dependent variable. We
stated that, other things being equal, it makes sense to choose the equa-
tion with the higher R’. Here, we consider choosing between two multiple
regression equations

(1251) y=XB +w
and
(1252) y =Sy + uy,

where each equation satisfies the assumptions of model (12.1.8). Suppose
the vectors B and vy have K and H elements, respectively. If H # K, it no
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longer makes sense to choose the equation with the higher R?, because
the greater the number of regressors, the larger R? tends to be. In the
extreme case where the number of regressors equals the number of ob-
servations, R® = 1. So if we are to use R® as a criterion for choosing a
regression equation, we need to adjust it somehow for the degrees of
freedom.

Theil (1961, p. 218) proposed one such adjustment. Theil’s corrected R?,
denoted R’ is defined by

(1258) 11— R?*= (1 — R,

T-K

where K is the number of regressors. Theil proposed choosing the equa-
tion with the largest R®, other things being equal. Since, from (12.2.31),

(1254) 1 - R*= ylﬂ
yLly
choosing the equation with the largest R%is equivalent to choosing the
equation with the smallest &%, defined in (12.2.29).
Theil offers the following justification for his corrected R’ Let &} and
&5 be the unbiased estimators of the error variances in regression equa-
tions (12.5.1) and (12.5.2), respectively. That is,

&1 =yl - XX'X) X'y /(T ~ K)
and

o5 =y'[I— S(S'S)”'S'ly /(T — H).
Then, he shows that
(1255) E@G2 —63)>0

if the expectation is taken assuming that (12.5.2) is the true model. The
justification is merely intuitive and not very strong.

An important special case of the problem considered above is when S
is a subset of X. Without loss of generality, assume X = (X;,Xy) and S =
X;. Partition B conformably as B’ = (Bi, Bs). Then, choosing (12.5.2)
over (12.5.1) is equivalent to accepting the hypothesis 3, = 0. But the F
test of the hypothesis accepts it if m < ¢, where 7 is as given in (12.4.20)
with B, set equal to 0. Therefore, any decision rule can be made equivalent
to the choice of a particular value of ¢. It can be shown that the use of
Theil’s R is equivalent to ¢ = 1.
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Mallows (1964), Akaike (1973), and Sawa and Hiromatsu (1973) ob-
tained solutions to this problem on the basis of three different principles
and arrived at similar recommendations, in which the value of ¢ ranges
roughly from 1.8 to 2. These results suggest that Theil’s R, though an
improvement over the unadjusted R?, still tends to favor a regression
equation with more regressors.

What value of ¢ is implied by the customary choice of the 5% sig-
nificance level? The answer depends on the degrees of freedom of the F
test: K — H and T — K. Note that K — H appears as Ky in (12.4.20). Table
12.1 gives the value of ¢ for selected values of the degrees of freedom. The
table is calculated by solving for ¢ in P[F(K — H,T — K) < ¢] = 0.05.
The results cast some doubt on the customary choice of 5%.

TABLE 12.1 Critical values of F test implied by 5% significance level

K- H T-K ¢
1 30 0.465
3 30 0.807
1 100 0.458
5 100 0.867
EXERCISES

1. (Section 12.2.2)
Consider the regression model y = X + u, where Lu = 0, Fuu’ =
I, and

[l 11 17
121 -1

Let f = (X'X) X'y and = ($'X)"'S'y, where

S =

111 17
1 23 4

Show directly that § is a better estimator than f, without using
Theorem 12.2.1.
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. (Section 12.2.2)

Consider the regression model y = Bx + u, where B is a scalar
unknown parameter, x is a T-vector consisting entirely of ones, u is a
T-vector such that Eu = 0 and Euu’ = ¢"I . Obtain the mean squared
errors of the following two estimators:

! I3

B==Y ana =27

XX ZX

where z' = (1,0,1,0,...,1,0). Assume that T is even. Which esti-
mator is preferred? Answer directly, without using Theorem 12.2.1.

. (Section 12.2.5)
Suppose the joint distribution of X and Y is given by the following
table:

X 1 0

1{ o B
01 05—a 05—-PB 0<a, B=05

\

(a) Derive an explicit formula for the maximum likelihood estimator
of o based on ii.d. sample (X, Y.}, ¢ = 1,2, ..., n, and derive its
asymptotic distribution directly, without using the Cramér-Rao lower
bound.

(b) Derive the Cramér-Rao lower bound.

. (Section 12.2.6)

In the model y = XB + uand y, = x;B + u,, obtain the unconditional
mean squared prediction errors of the predictors x,B and xi,B1,
where = (X'’X) 'X'yand B = (XiX;) 'Xly. We have defined X as
the first K; columns of X and x) » asthe first K; elements of x,',. Under
what circumstances can the second predictor be regarded as superior
to the first?

. (Section 12.3)
Show that R defined in the paragraphs before (12.3.13) satisfies the
two conditions given there.

. (Section 12.4.2)
Consider the regression model
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where ; and By are scalar unknown parameters and u ~ N(0, 0'214).
Assuming that the observed values of y’ are (2, 0, 1, —1), test the null
hypothesis 8, = B, against the alternative hypothesis B, > 3, at the
5% significance level.

7. (Section 12.4.3)
Consider the regression model y = XB + u, where y and u are
eight-component vectors, X is an 8 X 3 matrix, and B is a three-com-
ponent vector of unknown parameters. We want to test hypotheses
on the elements of 3, which we write as 81, B2, and B5. The data are
given by

2

00 4
XX=03 1> X'y=|5 yy=22
13 3

o <o

(a) Test By = B against By > B, at the 5% significance level.
(b) Test B; = By = B3 at the 5% significance level.

8. (Section 12.4.3)
Consider three bivariate regression models, each consisting of four
observations:
yi=al + Bx + uy,
yo = agl + Boxo + uy,
ys = asl + Bsxs + us,
where 1 is a fourcomponent vector consisting only of ones, and the

elements of u;, uy, and u; are independent normal with zero mean
and constant variance. The data are as follows:

1
o
xl_l
0

1 1
1 0

’ X2= O ’ Xg = O ’
0 -1
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= Yo =

OO
OO

[

(e

|
—_—0 O

Test the null hypothesis “0; = ay = ag and B; = By = Bs” at the 5%
significance level.

(Section 12.4.3)
In the following regression model, test Hy: o7 + 1 = g + By and Bs
= 0 versus H;: not H,,.

YI = 01Xy + Blzl + w and YQ = OlgX9 + B222 + Uy,

where u; and u, are independent of each other and distributed as
N(O0, 0215). Use the 5% significance level. The data are given as fol-
lows:

2 2 1 1
1 2 1 -1
= 3’ 2= 3; X—XQ— 1, Z=Z2: ].
N ] Y; 5 1 1 1 5
3 3 1 1
(Section 12.4.3)
Solve Exercise 35 of Chapter 9 in a regression framework.
(Section 12.4.3)
We want to estimate a Cobb-Douglas production function
logQ, =B, + Bolog K, + BglogL, + v, t=12,...,T,

in each of three industries A, B, and C and test the hypothesis that
B is the same for industries A and B and 3 is the same for industries
B and C (jointly, not separately). We assume that 3, varies among the
three industries. Write detailed instructions on how to perform such
a test. You may assume that the u, are normal with mean zero and
their variance is constant for all ¢ and for all three industries, and that
the K, and L, are distributed independently of the u,.



13 ECONOMETRIC MODELS

The multiple regression model studied in Chapter 12 is by far the most
frequently used statistical model in all the applied disciplines, including
econometrics. It is also the basic model from which various other models
can be derived. For these reasons the model is sometimes called the
classical regression model or the standard regression model. In this chapter we
study various other models frequently used in applied research. The mod-
els discussed in Sections 13.1 through 13.4 may be properly called regression
models (models in which the conditional mean of the dependent variable
is specified as a function of the independent variables), whereas those
discussed in Sections 13.5 through 13.7 are more general models. We have
given them the common term “econometric models,” but all of them have
been used by researchers in other disciplines as well.

The models of Section 13.1 arise as the assumption of independence-
or homoscedasticity (constant variance) is removed from the classical regres-
sion model. The models of Sections 13.2 and 13.3 arise as the assumption
of exogeneity of the regressors is removed. Finally, the models of Section
13.4 arise as the linearity assumption is removed. The models of Sections
13.5, 13.6, and 13.7 are more general than regression models.

Our presentation will focus on the fundamental results. For a more
detailed study the reader is referred to Amemiya (1985).

13.1 GENERALIZED LEAST SQUARES

In this section we consider the regression model

(13.1.1) y=XB +u,
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where we assume that X is a fullrank 77 X K matrix of known constants
and u is a T-dimensional vector of random variables such that Eu = 0 and

(13.1.2) Euu’ = 3.

We assume only that % is a positive definite matrix. This model differs
from the classical regression model only in its general specification of the
variance-covariance matrix given in (13.1.2).

13.1.1 Known Variance-Covariance Matrix

In this subsection we develop the theory of generalized least squares under
the assumption that 3 is known (known up to a scalar multiple, to be
precise); in the remaining subsections we discuss various ways the ele-
ments of % are specified as a function of a finite number of parameters
so that they can be consistently estimated.

Since % is symmetric, by Theorem 11.5.1 we can find an orthogonal
matrix H which diagonalizes X as H'XH = A, where A is the diagonal
matrix consisting of the characteristic roots of 3.. Moreover, since %, is
positive definite, the diagonal elements of A are positive by Theorem
11.5.10. Using (11.5.4), we define ¥ V* = HA™V?H', where A™% =
D{\; %), where \; is the ith diagonal element of A. Premultiplying
(18.1.1) by 372, we obtain

(13.13)  y* = X*B + u*,

where y* = 3%, X* = 372X, and u* = 27"%u. Then, by Theorem
4.1.6, Eu* = 0 and
(18.14) Eutu*’ = ES Vuuw/ (373

=3 V233 by Theorem 4.1.6

— 32y 2y l/2 g2

=1
(The reader should verify that 3'/*3'/? =3, that 3712512 — 1 and that
Y2y = 37Y? from the definitions of these matrices.) Therefore

(13.1.3) is a classical regression model, and hence the least squares esti-
mator applied to (13.1.3) has all the good properties derived in Chapter
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12. We call it the generalized least squares (GLS) estimator applied to the
original model (13.1.1). Denoting it by ¢, we have

(13.15) g = (X*X*) 'X*'y*

- (X'2_1/22_1/2X)—1X'2_1/22_1/2y

=X'3'x)7x'3 7.
(Suppose 2 is known up to a scalar multiple. That is, suppose % = aQ,
where a is a scalar positive unknown parameter and Q is a known positive
definite matrix. Then a drops out of formula (13.1.5) and we have ﬁc =
(X'Q7'X)"'X'Q"!y. The classical regression model is a special case, in
which a = 0% and Q = L)

Inserting (13.1.1) into the final term of (13.1.5) and using Theorem

4.1.6, we can readily show that

(13.1.6) Efc=8
and
1817 VBe = X'37'X)7

It is important to study the properties of the least squares estimator
applied to the model (13.1.1) because the researcher may use the LS
estimator under the mistaken assumption that his model is (at least ap-
proximately) the classical regression model. We have, using Theorem
4.1.6,

(13.18) Ef=p

and

(13.1.9) VB = EX'X) X'uu'X(X'X) "}
= X'X)'XIXXX)L

Thus the LS estimator is unbiased even under the model (13.1.1). Its
variance-covariance matrix, however, is different from either (13.1.7) or
(12.2.22). Since the GLS estimator is the best linear unbiased estimator
under the model (13.1.1) and the LS estimator is a linear estimator, it
follows from Theorem 12.2.1 that

(18.1.10)0  (X'X)"X'IXX'X)'= xX'37Ix)7

The above can also be directly verified using theorems in Chapter 11.
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Although strict inequality generally holds in (13.1.10), there are cases
where equality holds. (See Amemiya, 1985, section 6.1.3.)

The consistency and the asymptotic normality of the GLS estimator
follow from Section 12.2.4. The LS estimator can be also shown to be
consistent and asymptotically normal under general conditions in the
model (13.1.1).

If 3 is unknown, its elements cannot be consistently estimated unless
we specify them to be functions of a finite number of parameters. In the
next three subsections we consider various parameterizations of %. Let 0
be a vector of unknown parameters of a finite dimension. In each of the
models to be discussed, we shall indicate how 8 can be consistently esti-
mated. Denoting the consistent estimator by 8, we can define the feasible
generalized least squares (FGLS) estimator, denoted by ff, by

as.1.11)  Br = [X'2(0)7'X]17X'3(0) Yy,

where the dependence of 3, on 0 is expressed by the symbol %(8). Under
general conditions, ﬁp is consistent, and VT (B — B) has the same limit
distribution as VT (¢ — B).

13.1.2 Heteroscedasticity

In the classical regression model it is assumed that the variance of the
error term is constant (homoscedastic). Here we relax this assumption
and specify more generally that

q8.1.12) Vu,=a2, t=12...,T.

This assumption of nonconstant variances is called heteroscedasticity. The
other assumptions remain the same. If the variances are known, this model
is a special case of the model discussed in Section 13.1.1. In the present
case, X is a diagonal matrix whose tth diagonal element is equal to ol.
The GLS estimator in this case is given a special name, the weighted least
squares estimator.

If the variances are unknown, we must specify them as depending on a

finite number of parameters. There are two main methods of parameteri-

zation.

In the first method, the variances are assumed to remain at a constant
value, say, (rf, in the period ¢t = 1, 2, . .., T; and then change to a new
constant value of ¢3 in the period t =T, + 1, Ty +2,..., T.If Ty is

known, this is the same as (12.4.26). There we suggested how to estimate
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o2 and o3. Using these estimates, we can define the FGLS estimator by
the formula (13.1.11). If T is unknown, T; as well as ocf and crg can be
still estimated, but the computation and the statistical inference become
much more complex. See Goldfeld and Quandt (1976) for further discus-
sion of this case. It is not difficult to generalize to the case where the
variances assume more than two values.

In the second method, it is specified that

(13.1.13) o} = g(zia),

where g(-) is a known function, z; is a vector of known constants, not
necessarily related to x,, and a is a vector of unknown parameters. Gold-
feld and Quandt (1972) considered the case where g(-) is alinear function
and proposed estimating e consistently by regressing @? on z, where {4,
are the least squares residuals defined in (12.2.12). If g(-) is nonlinear,
4f must be treated as the dependent variable of a nonlinear regression
model—see Section 13.4 below.

Even if we do not specify o; as a function of a finite number of
parameters, we can consistently estimate the variance-covariance matrix
of the LS estimator given by (13.1.9). Let {#,} be the least squares residuals,
and define the diagonal matrix D whose ¢th diagonal element is equal to
42 . Then the heteroscedasticity-consistent estimator of (13.1.9) is defined by

(13.1.14) VB = X'X)"X'DXX'X)""

Under general conditions TV can be shown to converge to TV[. See
Eicker (1963) and White (1980).

13.1.3 Serial Correlation

In this section we allow a nonzero correlation between u, and u, for s # ¢
in the model (12.1.1). Correlation between the values at different periods
of a time series is called serial correlation or autocorrelation. It can be spe-
cified in infinitely various ways; here we consider one particular form of
serial correlation associated with the stationary first-order autoregressive model.
It is defined by

(13.1.15)  u, = puy—1 + &, t=12,...,T,

where {g;} are 1.i.d. with Eg; = 0 and Vg, = 02, and u, is independent of
€1, €9, . . ., &r With Eug = 0 and Vyy = /(1 — 09).
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Taking the expectation of both sides of (13.1.15) for ¢ = 1 and using
our assumptions, we see that Eu; = pEuy + Ee; = 0. Repeating the same
procedure for ¢t = 2, 3, ..., T, we conclude that

(13.1.16) FEu, = 0 for all ¢.

Next we evaluate the variances and covariances of {«}. Taking the variance
of both sides of (13.1.15) for ¢ = 1, we obtain

2 2

Vu1=p2- 2+02= 02-
—p 1—p
Repeating the process fort = 2, 3, .. ., T, we conclude that
2
(181.17) Vu, = 5 for all ¢.
1=p

Multiplying both sides of (13.1.15) by »,_; and taking the expectation, we
obtain

2
gp

1-p

(13.1.18) Ewuy_1 = for all ¢

because of (13.1.17) and because u,—; and & are independent. Next,
multiplying both sides of (13.1.15) by ,_, and taking the expectation, we
obtain

2 2

(13.119) Ewu_o = for all ¢.

1-p

Repeating this process, we obtain

.
o'p’
2

(18.1.20) Ewu,; = » t=1,2,...,T;,j=0,1,...,¢t — L

1-p

Note that (13.1.20) contains (13.1.17), (13.1.18), and (13.1.19) as special
cases. Conditions (13.1.16) and (13.1.20) constitute stationarity (more
precisely, weak stationarity).
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In matrix notation, (13.1.16) can be written as Fu = 0 and (13.1.20) is
equivalent to

1 o p2 ] pT—l
0 1 T-2
. p2 0 1 pT—3
(13.1.21) 3 (=Ew’) = 5
1-p
pT—l pT—2 1
It can be shown that
1 -p 0 0 0
—p 1+p° —p 0
2
_ 1|0 -p 1+p
(18.122) X7'=—
g
—p 1+p° —p
0 —p 1

If p is known, we can compute the GLS estimator of B by inserting 3~
obtained above into (13.1.5). Note that o need not be known because it
drops out of the formula (13.1.5).

The computation of the GLS estimator is facilitated by noting that

1
(131.23) 3 l=—2R’R,
g

where
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NI—p2 0 0 0|
—-p 1 0 0
] -p 1
(13124) R =
0O —p 1 O
0 0 —p 1

Using R, we can write the GLS estimator (13.1.5) as
(13.1.25) fc = (X'R'RX)'X'R'Ry.

Except for the first row, premultiplication of a T-vector z = (23, 2y, . . .,
zr)’ by R performs the operation z, — pz,_1,t = 2, 3, .. ., T. Thus the GLS
estimator is computed as the LS estimator after this operation is per-
formed on the dependent and the independent variables. The asymptotic
distribution of the GLS estimator is unchanged if the first row of R is
deleted in defining the estimator by (13.1.25).

Many economic variables exhibit a pattern of serial correlation similar
to that in (13.1.20). Therefore the first-order autoregressive model
(13.1.15) is an empirically useful model to the extent that the error term
of the regression may be regarded as the sum of the omitted independent
variables. If, however, we believe that {«,} follow a higher-order autoregres-
sive process, we should appropriately modify the definition of R used in
(13.1.25). For example, if we suppose that {u,} follow a pth order autoregres-
sive model

?
(13.1.26) w = X, pju—; + &
j=1

we should perform the operation z, — Elepjzt_j on both the dependent
and independent variables and then apply the LS method.
Another important process that gives rise to serial correlation is the

moving-average process. It is defined by

q
(18127 w = X, aje,
=0
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where {g;} are i.i.d. as before. Computation of the GLS estimator is still
possible in this case, but with more difficulty than for an autoregressive
process. Nevertheless, a moving-average process can be well approximated
by an autoregressive process as long as its order is taken high enough.
We consider next the estimation of p in the regression model defined
by (12.1.1) and (13.1.15). If {w}, t = 1, 2, . . . , T, were observable, we
could estimate p by the LS estimator applied to (13.1.15). Namely,

(13.1.98) p =

Since (13.1.15) itself cannot be regarded as the classical regression model
because %,—; cannot be regarded as nonstochastic, p does not possess all
the properties of the LS estimator under the classical regression model.
For example, it can be shown that p is generally biased. But it can also be
shown that p is consistent and its asymptotic distribution is given by

(18.1.29) VT (p — p) = N(0, 1 — p?).

Since {u,} are in fact unobservable, it should be reasonable to replace
them in (13.1.28) by the LS residuals %, = y, — x,B, where B is the LS
estimator, and define

(13.1.30) p =

It can be shown that p is consistent and has the same asymptotic distribu-
tion as p given in (13.1.29). Finally, inserting p into R in (13.1.24), we can
compute the FGLS estimator.

In the remainder of this section, we consider the test of independence
against serial correlation. In particular, we take the classical regression
model as the null hypothesis and the model defined by (12.1.1) and
(13.1.15) as the alternative hypothesis. This test is equivalent to testing
Hy: p = Oversus Hi: p # 0in (13.1.15). Therefore it would be reasonable
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to use (13.1.30) as the test statistic. It is customary, however, to use the
Durbin-Watson statistic

DM~

(G — 4-1)°
2
(18181) d= —

T
i
t=1

which is approximately equal to 2 — 2p, because its distribution can be
more easily computed than that of p. Before the days of modern computer
technology, researchers used the table of the upper and lower bounds of
the statistic compiled by Durbin and Watson (1951). Today, however, the
exact p-value of the statistic can be computed.

13.1.4 Error Components Model

The error components model is useful when we wish to pool time-series and
cross-section data. For example, we may want to estimate production
functions using data collected on the annual inputs and outputs of many
firms, of demand functions using data on the quantities and prices col-
lected monthly from many consumers. By pooling time-series and cross-
section data, we hope to be able to estimate the parameters of a relation-
ship such as a production function or a demand function more efficiently
than by using two sets of data separately. Still, we should not treat time-
series and cross-section data homogeneously. At the least, we should try
to account for the difference by introducing the specific effects of time
and cross-section into the error term of the regression, as follows:

(13.1.32) 92 = X + u,
and
(13133) uit=|.Li+)\t+8iz, i=1,2,...,N;t=1,2,...,7:

where p; and A, are the cross-section specific and time-specific compo-
nents.

In the simplest version of such a model, we assume that the sequence
{i:}, {\), and {e;} are ii.d. random variables with zero mean and are
mutually independent with the variances oﬁ, o}, and o2, respectively. In

order to find the variance-covariance matrix % of this model, we must first
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decide how to write (13.1.32) in the form of (13.1.1). In defining the
vector y, for example, it is customary to arrange the observations in the
following way: ¥ = (311, %12, « - - » 17> Y21, ¥22> + = s Y25« + - » INLs IND> - - -
ynt) - If we define X and u similarly, we can write (13.1.32) in the form of
(13.1.1). To facilitate the derivation of %, we need the following definition.

DEFINITION 13.1.1 LetA = {aij} be a K X L matrix and let B be an M
X N matrix. Then the Kronecker product A® B isa KM X LN matrix defined
by

auB ZZIQB alLB

GQIB deB aQLB
A®B =

aKlB aK2B aKLB

Let Jx be the K X K matrix consisting entirely of ones. Then we have

(13.1.34) 3 = o2A + 03B + o2lnr,

where A = Iy ® Jr and B = Jy ® Ir. Its inverse can be shown to be

1
(13.135) 37! = — (xp = 71A = NoB + v3]ar),

&

where
2, 2 2,-1
Y1 = O-}L(O-E + To'p.) >

ox(0: + Nod) 7},

Y2
vs = Y172(20% + To + Nop)(o? + To + Nog) .
From the above, B can be estimated by the GLS estimator (13.1.5), or
more practically by the FGLS estimator (13.1.11), using the consistent

estimators of v;, ys, and vys. Alternatively, we can estimate B by the so-called
transformation estimator

(13.1.36) Bo = (X'QX) 'X'Qy,
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where

1 1 1
(131.37) Q=1 TA NB + WJNT'
This estimator is computationally simpler than the FGLS estimator, be-
cause it does not require estimation of the 7’s, yet is consistent and has
the same asymptotic distribution as FGLS.
Remember that if we arrange the observations in a different way, we
need a different formula for 3.

13.2 TIME SERIES REGRESSION

In this section we consider the pth order autoregressive model

?
(1321) 3= p;%-; +e& t=p+lp+2 ..., T,
j=1
where {g;} are i.i.d. with Fg;, = 0 and Ve, = 02, and (y1, 3o, - - - , Jp) are
independent of (&,+1, €p+9, . - - , &r). This model differs from (13.1.26)
only in that the {y} are observable, whereas the {1} in the earlier equation
are not. We can write (13.2.1) in matrix notation as

(1322) y=Yp+e
by defining

Y = Op+1s Ypre, - - -5 90

£E= (8P+1’ 8[J+2, NS ST)’)
pP= (pl’ P2y . - - apﬁ)l9
i 1
Yo o Ip-1 N
Ypt1  p Y2
Y =
| -1 Jr-2 Ir—p]

Although the model superficially resembles (12.1.3), it is not a classical
regression model because Y cannot be regarded as a nonstochastic matrix.
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The LS estimator p = (Y’Y)_lY’y is generally biased but is consistent with
the asymptotic distribution

(13.23) p 2 Nlp, XYYV 1.

Since Theorem 12.2.4 implies that B A N[B, UQ(X'X)_I], the above result
shows that even though (13.2.2) is not a classical regression model, we
can asymptotically treat it as if it were. Note that (13.1.29), obtained
earlier, is a special case of (13.2.3).

It is useful to generalize (13.2.2) by including the independent variables
on the right-hand side as

(13.2.4) y =Yp + Zy + &,

where Z is a known nonstochastic matrix. Essentially the same asymptotic
results hold for this model as for (13.2.2), although the results are more
difficult to prove. That is, we can asymptotically treat (13.2.4) as if it were
a classical regression model with the combined regressors X = (Y, Z).
Economists call this model the distributed-lag model. See a survey of the
topic by Griliches (1967).

We now consider a simple special case of (13.2.4),

(13.25) 3, =py-1 T v& + &

This model can be equivalently written as

(13.2.6) 3 =v2Pz_j+ w,
j=0

where w, = pw,—1 + &. The transformation from (13.2.5) to (13.2.6) is
called the inversion of the autoregressive process. The reverse transformation
is the inversion of the moving-average process. A similar transformation
is possible for a higher-order process. The term “distributed lag” describes
the manner in which the coefficients on z_; in (13.2.6) are distributed
over j. This particular lag distribution is referred to as the geometric lag, or
the Koyck lag, as it originated in the work of Koyck (1954).

The estimation of p and <y in (13.2.5) presents a special problem if {g;}
are serially correlated. In this case, plim T! Z,T= 9%1-1& # 0, and therefore
the LS estimators of p and vy are not consistent.

In general, this problem arises whenever plim T7'X'u # 0 in the regres-
sion model y = X + u. We shall encounter another such example in
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Section 13.3. In such a case we can consistently estimate § by the instru-
mental variables (IV) estimator defined by

1327 By = (8'X)7'SY,

where S is a known nonstochastic matrix of the same dimension as X, such
that plim 77'S'X is a nonsingular matrix. It should be noted that the
nonstochasticness of S assures plim 7~'S'u = 0 under fairly general as-
sumptions on u in spite of the fact that the u are serially correlated. Then,
under general conditions, we have

(13.2.8) Br =~ N[B, (S'X)'S'TSX'S)™ 1],

where 2 = Fuu’. The asymptotic variance-covariance matrix above sug-

gests that, loosely speaking, the more S is correlated with X, the better.
To return to the specific model (13.2.5), the above consideration sug-

gests that z, and z,_; constitute a reasonable set of instrumental variables.

For a more efficient set of instrumental variables, see Amemiya and Fuller

(1967).

13.3 SIMULTANEOUS EQUATIONS MODEL

A study of the simultaneous equations model was initiated by the researchers
of the Cowles Commission at the University of Chicago in the 1940s. The
model was extensively used by econometricians in the 1950s and 1960s.
Although it was more frequently employed in macroeconomic analysis, we
shall illustrate it by a supply and demand model. Consider

(1331)  y; = viye + XiB1 + wy
and

(13.3.2)  yo = Yoy1 + XoBo + uy,

where y; and y; are T-dimensional vectors of dependent variables, X; and
X, are known nonstochastic matrices, and u; and u, are unobservable
random variables such that Fu; = Fu, = 0, Vu; = O'%I, Vu, = crgl, and
Eujuy = o,1. We give these equations the following interpretation.

A buyer comes to the market with the schedule (13.3.1), which tells him
what price (y;) he should offer for each amount (y;) of a good he is to
buy at each time period ¢, corresponding to the tth element of the vector.
A seller comes to the market with the schedule (13.3.2), which tells her
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how much (y,;) she should sell at each value (y;) of the price offered at
each ¢. Then, by some kind of market mechanism (for example, the help
of an auctioneer, or trial and error), the values of y; and y, that satisfy
both equations simultaneously—namely, the equilibrium price and quan-
tity—are determined.

Solving the above two equations for y; and y,, we obtain (provided that

Yive # 1):

1
(13.3.3) y, = 1_7%(&31 + Xov1B2 + up + yiug)
and

1
(13.3.4)  yy = T= %7, (X3P + XyyoB1 + ug + youy).

We call (13.3.1) and (13.3.2) the structural equations and (13.3.3) and
(13.3.4) the reduced-form equations. A structural equation describes the
behavior of an economic unit such as a buyer or a seller, whereas a
reduced-form equation represents a purely statistical relatic _.ship.

A salient feature of a structural equation is that the LS estimator is
inconsistent because of the correlation between the dependent variable
that appears on the right-hand side of a regression equation and the error
term. For example, in (13.3.1) y, is correlated with u; because y, depends
on u;, as we can see in (13.3.4).

Next, we consider the consistent estimation of the parameters of struc-
tural equations. Rewrite the reduced-form equations as

(1335 y, = Xm + v
and
(13.3.6) Y2 = X’ITQ + Vo,

where X consists of the distinct columns of X; and X, after elimination of
any redundant vector and r, 9, Vi, and v, are appropriately defined.
Note that 7r; and 7, are functions of y’s and f’s. Express that fact as

(133.7)  (w, W) = g(v1, Y2, B1, Ba).

Since a reduced-form equation constitutes a classical regression model,
the LS estimator applied to (13.3.5) or (13.3.6) yields a consistent estima-
tor of 71} or m,. If mapping g(-) is one-to-one, we can uniquely determine
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the estimates of y’s and P’s from the LS estimators of 77, and 115, and the
resulting estimators are expected to possess desirable properties. If map-
ping g(-) is many-to-one, however, any solution to the equation (1}, 75)
= g{(v1, Y2» B1, B2), where % and 775 are the LS estimators, is still consistent
but in general not efficient. If, for example, we assume the joint normality
of u; and uy, and hence of v; and v,, we can derive the likelihood function
from equations (13.3.5) and (13.3.6). Maximizing that function with re-
spect to ¥’s, B’s, and o’s yields a consistent and asymptotically efficient
estimator, known as the full information maximum lkelihood estimator.

A simple consistent estimator of y’s and PB’s is provided by the instru-
mental variables method, discussed in Section 13.2. Consider the estima-
tion of y; and B, in (13.3.1). For this purpose, rewrite the equation as

(13.3.8) y1 = Za + uy,

where Z = (y;,X) and a = (1, By)’. Let S be a known nonstochastic
matrix of the same size as Z such that plim T7'S'Z is nonsingular. Then
the instrumental variables (IV) estimator of a is defined by

(1339) &y = (S'2)7'S'y;.
Under general conditions it is consistent and asymptotically
(13.3.10) &y 2 Nla, o3 (S'Z)"'S'S@Z'S) 1.

Let X be as defined after (13.3.6), and define the projection matrix P
= X(X'X)"’X'. If we insert S = PZ on the righthand side of (13.3.9), we
obtain the two-sstage least squares (2SLS) estimator

(133.11) @y = (Z'PZ)”'Z'Py,.

This estimator was proposed by Theil (1953). It is consistent and asymp-
totically

(133.12) éos ~ Nla, 0(Z'PZ)"'].
It can be shown that
(13.3.13) plim T(Z'PZ)"" = plim T(S'Z)"'S'S(Z'S) ™.

In other words, the two-stage least squares estimator is asymptotically more
efficient than any instrumental variables estimator.
Nowadays the simultaneous equations model is not so frequently used
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as in the 1950s and 1960s. One reason is that a multivariate time series
model has proved to be more useful for prediction than the simultaneous
equations model, especially when data with time intervals finer than an-
nual are used. Another reason is that a disequilibrium model is believed
to be more realistic than an equilibrium model. Let us illustrate, again
with the supply and demand model. Consider

(13.3.14) D, = y\P, + x{,B1 + uy,
and
(13.3.15) S, = voP, + x0Bs + uy,

where D, is the quantity the buyer desires to buy at price P, and S, is the
quantity the seller desires to sell at price P,. We do not observe D, or §,,
but instead observe the actually traded amount Q,, which is defined by

(13.3.16) Q, = min (D, §,).

This is the disequilibrium model proposed by Fair and Jaffee (1972). The
parameters of this model can be consistently and efficiently estimated by
the maximum likelihood estimator. There are two different likelihood
functions, depending on whether the research knows which of the two
variables D, or §, is smaller. The case when the researcher knows is called
sample separation; when the researcher does not know, we have the case of
no sample separation. The computation of the maximum likelihood esti-
mator in the second instance is cumbersome. Note that replacing
(13.3.16) with the equilibrium condition D, = §, leads to a simultaneous
equations model similar to (13.3.1) and (13.3.2).

Although the simultaneous equations model is of limited use, estimators
such as the instrumental variables and the two-stage least squares are
valuable because they can be effectively used whenever a correlation
between the regressors and the error term exists. We have already seen
one such example in Section 13.2. Another example is the error-in-variables
model. See Chapter 11, Exercise 5, for the simplest such model and Fuller
(1987) for a discussion in depth.

13.4 NONLINEAR REGRESSION MODEL
The nonlinear regression model is defined by

(13.41)  y=f(B) +w, t=12...,T,
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where f,(+) is a known function, B is a K-vector of unknown parameters,
and {u,} are i.i.d. with Eu, = 0 and Vu, = o’ In practice we often specify
f+(B) = f(x, B), where x; is a vector of exogenous variables which, unlike
the linear regression model, may not necessarily be of the same dimension
as B.

An example of the nonlinear regression model is the Cobb-Douglas pro-
duction function with an additive error term,

(13.42) Q, = BKPLP + u,

where Q, K, and L denote output, capital input, and labor input, respec-
tively. Another example is the CES production function (see Arrow et al.,
1961):

(1343) Q= BilBoKE + (1 = Bo) Ly P17 P/Pe o+ .
We can write (13.4.1) in vector notation as
(1344) y=f£fP) + u

where y, f, and u are T-vectors having y, f;, and u,, respectively, for the tth
element.

The nonlinear least squares (NLLS) estimator of B is defined as the value
of B that minimizes

T
(13.45)  Sr(B) = Y, [y — f(B)I>

t=1

Denoting the NLLS estimator by 8, we can estimate o* by
I P
(13.46) o6 = T Sr(B).

The estimators  and &° can be shown to be the maximum likelihood
estimators if {«) are assumed to be jointly normal. The derivation is
analogous to the linear case given in Section 12.2.5.

The minimization of Sy(B) must generally be done by an iterative
method. The Newton-Raphson method described in Section 7.3.3 can be
used for this purpose. Another iterative method, the Gauss-Newton method,
is specifically designed for the nonlinear regression model. Let 8, be the
initial value, be it an estimator or a mere guess. Expand f,(B) in a Taylor
series around B = B, as

of, R
LA(B_Bl),

13.4.7 (B) = fuB) + =
(1347 fdB) = fi(B1) 3B’ |5,
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where df, / 9B’ is a K-dimensional row vector whose jth element is the
derivative of f, with respect to the jth element of B. Note that (13.4.7)
holds approximately because the derivatives are evaluated by B,. Inserting
(13.4.7) into the right-hand side of (13.4.1) and rearranging terms, we
obtain:

af. s 9fy
B |a B = B’
B4

The second-round estimator of the iteration, ﬁg, is obtained as the LS
estimator applied to (13.4.8), treating the entire left-hand side as the
dependent variable and df,/0B'|g, as the vector of regressors. The iteration
is repeated until it converges. It is simpler than the Newton-Raphson
method because it requires computation of only the first derivatives of f,,
whereas Newton-Raphson requires the second derivatives as well.

We can show that under general assumptions the NLLS estimator {3 is
consistent and

(13.48) 3, — fUBy) + . B+ u,.

(13.49) T(B—B)—> N |0, o’plim T o ot 1)
4. ,0°p B 9B’
The above result is analogous to the asymptotic normality of the LS
estimator given in Theorem 12.2.4. Note that 3f/3p’ above is just like X
in Theorem 12.2.4. The difference is that 3f/dp’ depends on the unknown
parameter 3 and hence is unknown, whereas X is assumed to be known.
The practical implication of (13.4.9) is that
of | of

-1
anlaBIﬁ:| ]

The asymptotic variance-covariance matrix above is comparable to for-
mula (12.2.22) for the LS estimator. We can test hypotheses about $ in
the nonlinear regression model by the methods presented in Section 12.4,
provided that we use 9f/9p’|g for X.

(134100 B2 N (B, 02[

13.5 QUALITATIVE RESPONSE MODEL

The qualitative response model or discrete variables model is the statistical model
that specifies the probability distribution of one or more discrete depend-
ent variables as a function of independent variables. It is analogous to a
regression model in that it characterizes a relationship between two sets
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of variables, but differs from a regression model in that not all of the
information of the model is fully captured by specifying conditional means
and variances of the dependent variables, given the independent variables.
The same remark holds for the models of the subsequent two sections.

The qualitative response model originated in the biometric field, where
it was used to analyze phenomena such as whether a patient was cured by
a medical treatment, or whether insects died after the administration of
an insecticide. Recently the model has gained great popularity among
econometricians, as extensive sample survey data describing the behavior
of individuals have become available. Many of these data are discrete. The
following are some examples: whether or not a consumer buys a car in a
given year, whether or not a worker is unemployed at a given time, how
many cars a household owns, what type of occupation a person’s job is
considered, and by what mode of transportation during what time interval
a commuter travels to his workplace. The first two examples are binary;
the next two, multinomial; and the last, multivariate.

In this book we consider only models that involve a single dependent
variable. In Section 13.5.1 we examine the binary model, where the de-
pendent variable takes two values, and in Section 13.5.2 we look at the
multinomial model, where the dependent variable takes more than two
values. The multivariate model, as well as many other issues not dealt with
here, are discussed at an introductory level in Amemiya (1981) and at a
more advanced level in Amemiya (1985, chapter 9).

13.5.1 Binary Model
We formally define the univariate binary model by
(1351) Py =1)=FxPB), i=12,...,n,

where we assume that y; takes the values 1 or 0, F is a known distribution
function, x; is a known nonstochastic vector, and 8 is a vector of unknown
parameters.

If, for example, we apply the model to study whether or not a person
buys a car in a given year, y; = 1 represents the fact that the ith person
buys a car, and the vector x; will include among other factors the price of
the car and the person’s income. As in a regression model, however, the
x; need not be the original variables such as price and income; they could
be functions of the original variables. The assumption that y takes the
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values 1 or 0 is made for mathematical convenience. The essential features
of the model are unchanged if we choose any other pair of distinct real
numbers.

Model (13.5.1) can be derived from the principle of utility maximization
as follows. Let Uy; and Uy, be the ith person’s utilities associated with the
alternatives 1 and 0, respectively. We assume that

(135.2) Uy = x;;B + uy; and Uy = xof + ug;,

where x;; and x,, are nonstochastic and known, and (uy;, %) are bivariate
iid. random variables, which may be regarded as the omitted inde-
pendent variables known to the decision maker but unobservable to the
statistician. We assume that the ith person chooses alternative 1 if and only
if Uy; > Uy;. Thus we have

= Plug — uy; < (x1; — Xq;)'Bl.

We obtain model (13.5.1) if we assume that the distribution function of
ug; — uy; is F and define x; = x3; — Xq;.

The following two distribution functions are most frequently used:
standard normal ® and logistic A. The standard normal distribution function
(see Section 5.2) is defined by

x 1
—o\ 27

and the logistic distribution function is defined by

(185.4) (x) = J exp(—7Y/2)dz

x

(1355)  A(x) =

1+

When @ is used in (13.5.1), the model is called probit; when A is used, the
model is called logit. The two distribution functions have similar shapes,
except that the logistic has a slightly fatter tail than the standard normal.

To the extent that the econometrician experiments with various trans-
formations of the original independent variables, as he normally would
in a regression model, the choice of F is not crucial. To see this, suppose
that the true distribution function is G, but the econometrician assumed
it to be F. Then, by choosing a function A(‘) appropriately, he can always

satisfy G(x;B) = F[h(x;B)].
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It is important to remember that in model (13.5.1) the regression
coefficients B do not have any intrinsic meaning. The important quantity
is, rather, the vector 9F/dx;. If one researcher fits a given set of data using
a probit model and another researcher fits the same data using a logit
model, it would be meaningless to compare the two estimates of . We
must instead compare d®/9x; with dA/0x;. In most cases these two deriva-
tives will take very similar values.

The best way to estimate model (13.5.1) is by the maximum likelihood
method. The likelihood function of the model is given by

1856) L=[]FaiBy11 - FxiB)1' >
i=1

When F is either ® or A, the likelihood function is globally concave in .
Therefore, maximizing L with respect to B by any standard iterative
method such as the Newton-Raphson (see Section 7.3.3) is straightfor-
ward. Although we do not have the i.i.d. sample here because x; varies
with 7, we can prove the consistency and the asymptotic normality of the
maximum likelihood estimator by an argument similar to the one pre-
sented in Sections 7.4.2 and 7.4.3. The asymptotic distribution of the
maximum likelihood estimator f is given by

1857 NT(B —B) > N©,A™Y,
where
B 21 P -y

where f is the density function of F.

13.5.2 Multinomial Model

We illustrate the multinomial model by considering the case of three
alternatives, which for convenience we associate with three integers 1, 2,
and 3. One example of the three-response model is the commuter’s choice
of mode of transportation, where the three alternatives are private car,
bus, and train. Another example is the worker’s choice of three types of
employment: being fully employed, partially employed, and self-employed.
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We extend (13.5.2) to the case of three alternatives as

(18.5.8) Uy = x1: B + uy
Ug = x9; P + ug;
Us; = Xéi B + us;,

where (uy;, us;, us;)are ii.d. It is assumed that the individual chooses the
alternative with the largest utility. Therefore, if we represent the ith per-
son’s discrete choice by the variable y;, our model is defined by

P(y; = 1) = P(Uy; > Ug;, Uy > Usy)
P(yl = 2) = P(U2l > Ull'; U2l > U3i)7 ]-’ 27 B (2

If we specify the joint distribution of (uy;, ug;, us;) up to an unknown
parameter vector 0, we can express the above probabilities as a function
of B and 0. If we define binary variables y; by y; = 1 if y; = j, j = 1, 2, the
likelihood function of the model is given by

(135100 L =[] Py% Py % (1 — Py = Poy)! %72,

i=1
where Py; = P(y; = 1) and Py; = P(y; = 2). An iterative method must be
used for maximizing the above with respect to § and 6.

One way to specify the distribution of the u’s would be to assume them
to be jointly normal. We can assume without loss of generality that their
means are zeroes and one of the variances is unity. The former assumption
is possible because the nonstochastic part can absorb nonzero means, and
the latter because multiplication of the three utilities by an identical
positive constant does not change their ranking. We should generally allow
for nonzero correlation among the three error terms. An analogous
model based on the normality assumption was estimated by Hausman and
Wise (1978). In the normal model we must evaluate the probabilities as
definite integrals of a joint normal density. This is cumbersome if the
number of alternatives is larger than five, although an advance in the
simulation method (see McFadden, 1989) has made the problem more
manageable than formerly.

McFadden (1974) proposed a joint distribution of the errors that makes
possible an explicit representation of the probabilities. He assumed that
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the errors are mutually independent (in addition to being independent
across 7) and that each is distributed as
(135.11) F(u) = exp(—e %).

This was called the Type I extreme-value distribution by Johnson and Kotz
(1970, p. 272). The probabilities are explicitly given by

exp(x); B) ,
exp(x); B) + exp(xg; B) + exp(xs; B)

(135.12)  P(y; = j) =

i=123:=12...,n

This model is called the multinomial logit model. Besides the advantage of
having explicit formulae for the probabilities, this model has the compu-
tational advantage of a globally concave likelihood function.

It is easy to criticize the multinomial logit model from a theoretical
point of view. First, no economist is ready to argue that the utility should
be distributed according to the Type I extreme-value distribution. Second,
the model implies independence from irrelevant alternatives, which can be
mathematically stated as

(13.5.18) PUs > U,) = P(Us > U, |Us > U, or Uy > Us,)

and similar equalities involving the two other possible pairs of utilities.
(We have suppressed the subscript i above to simplify the notation.) The
equality (13.5.13) means that the information that a person has not
chosen alternative 2 does not alter the probability that the person prefers
3 to 1. Let us consider whether or not this assumption is reasonable in
the two examples we mentioned at the beginning of this section.

In the first example, suppose that alternatives 1, 2, and 3 correspond
to bus, train, and private car, respectively, and suppose that a person is
known to have chosen either bus or car. It is perhaps reasonable to surmise
that the nonselection of train indicates the person’s dislike of public
transportation. Given this information, we might expect her to be more
likely to choose car over bus. If this reasoning is correct, we should expect
inequality < to hold in the place of equality in (13.5.13). This argument
would be more convincing if alternatives 1 and 2 corresponded to blue
bus and red bus, instead of bus and train, to cite McFadden’s well-known
example. Given that a person has not chosen red bus, it is likely that she
will also prefer car to blue bus (unless she happens to abhor the color red).
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In the second example, suppose that alternatives 1, 2, and 3 correspond
to fully employed, partially employed, and self-employed. Again, we would
expect inequality < in (13.5.13), to the extent that the nonselection of
“partially employed” can be taken to mean an aversion to work for others.

If, however, we view (13.5.12) as a purely statistical model, not necessar-
ily derived from utility maximization, it is much more general than it
appears, precisely for the same reason that the choice of F does not matter
much in (13.5.1) as long as the researcher experiments with various
transformations of the independent variables. Any multinomial model can
be approximated by a multinomial logit model if the researcher is allowed
to manipulate the nonstochastic parts of the utilities.

It is possible to generalize the multinomial logit model in such a way
that the assumption of independence from irrelevant alternatives is re-
moved, yet the probabilities can be explicitly derived. We shall explain the
nested logit model proposed by McFadden (1977) in the model of three
alternatives. Suppose that us is distributed as (13.5.11) and independent
of u; and u,, but u; and u, follow the joint distribution

(13.5.14)  F(uy, ug) = exp{—[e_"l/p +e7wPP o< p=1.

The joint distribution was named Gumbel’s Type B bivariate extremevalue
distribution by Johnson and Kotz (1972, p. 256). By taking either u; or uy
to infinity, we can readily see that each marginal distribution is the same
as (13.5.11). The parameter p measures the (inverse) degree of association
between u; and uy such that p = 1 implies independence. Clearly, if p =
1 the model is reduced to the multinomial logit model. Therefore it is
useful to estimate this model and test the hypothesis p = 1.

In a given practical problem the researcher must choose a priori which
two alternatives should be paired in the nested logit model. In the afore-
mentioned examples, it is natural to pair bus and train or fully employed
and partially employed.

For generalization of the nested logit model to the case of more than
three alternatives and to the case of higherlevel nesting, see McFadden
(1981) or Amemiya (1985, sections 9.3.5 and 9.3.6).

The probabilities of the above three-response nested logit model are
specified by

(185.15) P(y; = 1|y =1o0r2) = A[(x;; — x5)'B/p]
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and
(135.16) P(y; = 1or2) = Al(x9 — x3)'B + plogz],
where

z = exp[(xy; — x9.)'B/p] + 1.

13.6 CENSORED OR TRUNCATED REGRESSION MODEL
(TOBIT MODEL)

Tobin (1958) proposed the following important model:
(1361) 3y =xB+
and
(13.6.2) yp=xB+u ify>0
=0 ifyf >0, i=12,...,n,

where {u;} are assumed to be i.i.d. N(0, 02) and x; 1s a known nonstochastic
vector. It is assumed that {y;} and {x;} are observed for all i, but {y¥} are
unobserved if y; < 0. This model is called the censored regression model or
the Tobit model (after Tobin, in analogy to probit). If the observations
corresponding to yl’-k = 0 are totally lost, that is, if {x;} are not observed
whenever yf = 0, and if the researcher does not know how many obser-
vations exist for which 5] =< 0, the model is called the truncated regression
model.

Tobin used this model to explain a household’s expenditure (y) on a
durable good in a given year as a function of independent variables (x),
including the price of the durable good and the household’s income. The
above model is necessitated by the fact that there are likely to be many
households for which the expenditure is zero. The variable y; may be
interpreted as the desired amount of expenditure, and it is hypothesized
that a household does not buy the durable good if the desired expenditure
is zero or negative (a negative expenditure is not possible). The Tobit
model has been used in many areas of economics. Amemiya (1985),
p- 365, lists several representative applications.

If there is a single independent variable x, the observed data on y and
x in the Tobit model will normally look like Figure 13.1. It is apparent
there that the LS estimator of the slope coefficient obtained by regressing
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FIGURE 13.1 An example of censored data

all the y’s (including those that are zeroes) on x will be biased and
inconsistent. Although not apparent from the figure, it can further be
shown that the LS estimator using only the positive y’s is also biased and
inconsistent.

The consistent and asymptotically efficient estimator of B and ¢ in the
Tobit model is obtained by the maximum likelihood estimator. The like-
lihood function of the model is given by

(1363 L=T] 0 - ®xp/o)] [Jo "ol — x/B)/ol,
0 1

where @ and ¢ are the standard normal distribution and density functions
and Il and II; stand for the product over those ¢ for which y; = 0 and
9; > 0, respectively. It is a peculiar product of a probability and a density,
yet the maximum likelihood estimator can be shown to be consistent and
asymptotically normal. For the proof, see Amemiya (1973). Olsen (1978)
proved the global concavity of (13.6.3).

The likelihood function of the truncated regression model can be
written as

(1864) L=]] D(x;B /o) o by — x;B)/o].
1

Amemiya (1973) proved the consistency and the asymptotic normality of
this model as well.



13.5 | Censored or Truncated Regression Model 341

The Tobit maximum likelihood estimator is consistent even when {u;}
are serially correlated (see Robinson, 1982). It loses its consistency, how-
ever, when the true distribution of {u;} is either nonnormal or hetero-
scedastic. For discussion of these cases, see Amemiya (1985, section 10.5).

Many generalizations of the Tobit model have been used in empirical
research. Amemiya (1985, section 10.6) classifies them into five broad
types, of which we shall discuss only Types 2 and 5.

Type 2 Tobit is the simplest natural generalization of the Tobit model
(Type 1) and is defined by

(13.65) i = x1.B1 + wy;
ya; = X + ua;
and
(13.66)  yo; = y3; ify1; >0
=0 ifyfi=0, i=12,...,mn,

where (uy;, uy;) are i.i.d. drawings from a bivariate normal distribution with
zero means, variances o5 and 03. and covariance oyy. It is assumed that
only the sign of f; is observed and that yy; is observed only when yf; > 0.
It is assumed that xy; are observed for all ¢ but that x,; need not be observed
for those i such that y;; < 0.

The likelihood function of this model is given by

13.6.7)  L=[]PO%i=0) [0l > 0P > 0),
0 1

where Il and II; stand for the product over those ¢ for which y; = 0 and
yo; # 0, respectively, and f(- | y{; > 0) stands for the conditional density
of y3; given y{; > 0.

The Tobit model (Type 1) is a special case of the Type 2 Tobit, in which
y1; = y3:- Since a test of Type 1 versus Type 2 cannot be translated as a test
about the parameters of the Type 2 Tobit model, the choice between the
two models must be made in a nonclassical way. Another special case of
Type 2 is when u;; and uy; are independent. In this case the LS regression
of the positive yy; on Xy; yields the maximum likelihood estimators of By
and o3, while the probit maximum likelihood estimator applied to the
first equation of (13.6.5) yields the maximum likelihood estimator of

B./0;.
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In the work of Gronau (1973), yf represents the offered wage minus
the reservation wage (the lowest wage the worker is willing to accept) and
ys represents the offered wage. Only when the offered wage exceeds the
reservation wage do we observe the actual wage, which is equal to the
offered wage. In the work of Dudley and Montmarquette (1976), »;
signifies the measure of the U.S. inclination to give aid to the ith country,
so that aid is given if yyi is positive, and ys; determines the actual amount
of aid.

Type 5 Tobit is defined by

(13.6.8) 3% = x;B;+ uj,
z = iy + v,

yizy;lkiiletizmaxz}’;’ j=1125"')];i:1;2,"'1n;
J

where y;, x;;, s; are observed. It is assumed that (u, v;) are i.i.d. across i
but may be correlated across j, and for each ¢ and j the two random
variables may be correlated with each other. Their joint distribution is
variously specified by researchers. In some applications the maximum in
(13.6.8) can be replaced by the minimum without changing the essential
features of the model.

The likelihood function of the model is given by

(1369 L= Hf(y]"i | 2}; is the maximum)P;;
1

X Hf(y’é‘i | 2; is the maximum )Py, . . .
2

XHf(y}'; | z}'; is the maximum)Pp,
J
where I, is the product over those i for which z is the maximum and
p; = P(z;'; is the maximum).

In the model of Lee (1978), ] = 2, y = z, and 23 represents the wage
rate of the ith worker in case he joins the union and z3; in case he does
not. The researcher observes the actual wage rate y;, which is the greater
of the two. (We have slightly simplified Lee’s model.) The disequilibrium
model defined by (13.3.14), (13.3.15), and (13.3.16) becomes this type if
we assume sample separation. In the model of Duncan (1980), 2 is the
net profit accruing to the ith firm from the plant to be built in the jth
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location, and y}; is the input-output vector at the jth location. In the model
of Dubin and McFadden (1984), z} is the utility of the jth portfolio of the
electric and gas appliances of the ith household, and y}; (vector) consists
of the gas and electricity consumption associated with the jth portfolio in
the ith household.

13.7 DURATION MODEL

The duration model purports to explain the distribution function of a
duration variable as a function of independent variables. The duration
variable may be human life, how long a patient lives after an operation,
the life of a machine, or the duration of unemployment. As is evident
from these examples, the duration model is useful in many disciplines,
including medicine, engineering, and economics. Introductory books on
duration analysis emphasizing each of the areas of application mentioned
above are Kalbfleisch and Prentice (1980), Miller (1981), and Lancaster
(1990).

We shall initially explain the basic facts about the duration model in
the setting of the i.i.d. sample, then later introduce the independent
variables.

Denoting the duration variable by T, we can completely characterize the
duration model in the ii.d. case by specifying the distribution function

(18.71)  F(@) = P(T < 1).

In duration analysis the concept known as hazard plays an important role.
We define

(13.72) Hazard(t, t + At) = P <T <t+ At|T > ¢)

and call it the hazard of the interval (¢, t + Af). If T refers to the life of a
person, the above signifies the probability that she dies in the time interval
(¢, t + At), given that she has lived up to time ¢. Assuming that the density
function f(t) exists to simplify the analysis, we have from (13.7.2)

(18.7.3) Hazard(t, t + At) = SO At,
1 - F@®

where the approximation gets better as At gets smaller. We define the

hazard function, denoted A(t), by

__Jf@O
7. ) = 2
(18.7.4) () e
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There is a one-to-one correspondence between F(¢) and A (t). Since f(z)
= JF (t) /9t, (18.7.4) shows that A (¢) is known once F(¢) is known. The next
equation shows the converse:

(18.75) F@)=1- exp|:— J t )\(s)ds]
0

Therefore A(¢) contains no new information beyond what is contained in
F(t). Nevertheless, it is useful to define this concept because sometimes
the researcher has a better feel for the hazard function than for the
distribution function; hence it is easier for him to specify the former than
the latter.

The simplest duration model is the one for which the hazard function
is constant:

(13.7.6)  A(¢) = \.

This is called the exponential model. From (13.7.5) we have for this model
F() =1-¢Mand f@) = Ae ™. This model would not be realistic to use
for human life, for it would imply that the probability a person dies within
the next minute, say, is the same for persons of every age. The exponential
model for the life of a machine implies that the machine is always like
new, regardless of how old it may be. A more realistic model for human
life would be the one in which A(¢) has a U shape, remaining high for age
0 to 1, attaining a minimum at youth, and then rising again with age. For
some other applications (for example, the duration of a marriage) an
inverted U shape may be more realistic.

The simplest generalization of the exponential model is the Weibull
model, in which the hazard function is specified as

(1877 A = Mt™ L

When a = 1, the Weibull model is reduced to the exponential model.
Therefore, the researcher can test exponential versus Weibull by testing
a = 1 in the Weibull model. Differentiating (13.7.7) with respect to ¢, we
obtain

> >
(18.7.8) a=1& LA

< a <
Thus the Weibull model can accommodate an increasing or decreasing
hazard function, but neither a U-shaped nor an inverted U-shaped hazard
function.
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Lancaster (1979) estimated a Weibull model of unemployment dura-
tion. He introduced independent variables into the model by specifying
the hazard function of the ¢th unemployed worker as

(137.9)  N(2) = exp(x/B)as*".

The vector x; contains log age, log unemployment rate of the area, and
log replacement (unemployment benefit divided by earnings from the last
job). Lancaster was interested in testing a = 1, because economic theory
does not clearly indicate whether o should be larger or smaller than 1.
He found, curiously, that his maximum likelihood estimator of a ap-
proached 1 from below as he kept adding the independent variables,
starting with the constant term only.

As Lancaster showed, this phenomenon is due to the fact that even if
the hazard function is constant over time for each individual, if different
individuals are associated with different levels of the hazard function, an
aggregate estimate of the hazard function obtained by treating all the
individuals homogeneously will exhibit a declining hazard function (that
is, OA/3t << 0). We explain this fact by the illustrative example in Table
13.1. In this example three groups of individuals are associated with three
levels of the hazard rate—0.5, 0.2, and 0.1. Initially there are 1000 people
in each group. The first row shows, for example, that 500 people remain
at the end of period 1 and the beginning of period 2, and so on. The last
row indicates the ratio of the aggregate number of people who die in each
period to the number of people who remain at the beginning of the
period.

The heterogeneity of the sample may not be totally explained by all the
independent variables that the researcher can observe. In such a case it
would be advisable to introduce into the model an unobservable random
variable, known as the unobserved heterogeneity, which acts as a surrogate for
the omitted independent variables.

In one of his models Lancaster (1979) specified the hazard function as

a—1

(13.7.10)  N(f) = exp(xif + v)ot®

where {y;} are ii.d. gamma. If L;(v;) denotes the conditional likelihood
function for the ith person, given v;, the likelihood function of the model
with the unobserved heterogeneity is given by

(187.11) L= HELi(vi),
i=1
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where the expectation is taken with respect to the distribution of v;. (The
likelihood function of the model without the unobserved heterogeneity
will be given later.) As Lancaster introduced the unobserved heterogene-
ity, his estimate of a further approached 1. The unobserved heterogeneity
can be used with a model more general than Weibull. Heckman and
Singer (1984) studied the properties of the maximum likelihood estimator
of the distribution of the unobserved heterogeneity without parametri-
cally specifying it in a general duration model. They showed that the
maximum likelihood estimator of the distribution is discrete.
A hazard function with independent variables may be written as

(18.7.12)  Ni(t) = Ao(t) exp(xi).

where A\(?) is referred to as the baseline hazard function. This formulation
is more general than (13.7.9), first, in the sense that x depends on time
t as well as on individual ¢, and, second, in the sense that the baseline
hazard function is general. Some examples of the baseline hazard func-
tions which have been used in econometric applications are as follows:

A A
=1 -1
+ .

N Y2 )\2}

(13.7.13)  A(?) = exp |:'yo + v
Flinn and Heckman (1982)

k—1
(13.7.14)  Ao(t) = ﬂ‘t—k Gritz (1993)
1+ pt

(137.15)  Ao(t) = N exp(y;t + vot®).  Sturm (1991)

Next we consider the derivation of the likelihood function of the dura-
tion model with the hazard function of the form (13.7.12). The first step
is to obtain the distribution function by the formula (13.7.5) as

(137.16) F(f) = 1 — exp [— J "No(s) exp(x;sB)ds]
0
and then the density function, by differentiating the above as
! t 14
(13.7.17)  fi(t) = No(t) exp(x;B) exp [—Joxo(s) exp(xisB)ds] .

The computation of the integral in the above two formulae presents a
problem in that we must specify the independent variable vector x;; as a
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continuous function of s. It is customary in practice to divide the sample
period into intervals and assume that X; remains constant within each
interval. This assumption simplifes the integral considerably.

The likelihood function depends on a sampling scheme. As an illustra-
tion, let us assume that our data consist of the survival durations of all
those who had heart transplant operations at Stanford University from the
day of the first such operation there until December 31, 1992. There are
two categories of data: those who died before December 31, 1992, and
those who were still living on that date. The contribution of a patient in
the first category to the likelihood function is the density function evalu-
ated at the observed survival duration, and the contribution of a patient
in the second category is the probability that he lived at least until De-
cember 31, 1992. Thus the likelihood function is given by

(13.7.18) L =T/ [] (1 - Fuel,
0 1

where Il; is the product over those individuals who died before December
31, 1992, and II, is the product over those individuals who were still living
on that date. Note that for patients of the first category ¢; refers to the
time from the operation to the death, whereas for patients of the second
category {; refers to the time from the operation to December 31, 1992,
The survival durations of the patients still living on the last day of obser-
vation (in this example December 31, 1992) are said to be right censored.

Note a similarity between the above likelihood function and the likeli-
hood function of the Tobit model given in (13.6.3). In fact, the two models
are mathematically equivalent.

Now consider another sampling scheme with the same heart transplant
data. Suppose we observe only those patients who either had their opera-
tions between January 1, 1980, and December 31, 1992, or those who had
their operations before January 1, 1980, but were still living on that date.
Then (13.7.18) is no longer the correct likelihood function. Maximizing
it would overestimate the survival duration, because this sampling scheme
tends to include more long-surviving patients than short-surviving patients
among those who had their operations before January 1, 1980. The sur-
vival durations of the patients who had their operations before the first
day of observation (in this example January 1, 1980) and were still living
on that date are said to be left censored. In order to obtain consistent esti-
mates of the parameters of this model, we must either maximize the
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correct likelihood function or eliminate from the sample all the patients
living on January 1, 1980. For the correct likelihood function of the sec-
ond sampling scheme with left censoring, see Amemiya (1991).

We have deliberately chosen the heart transplant example to illustrate
two sampling schemes. With data such as unemployment spells, the first
sampling scheme is practically impossible because the history of unem-
ployment goes back very far.

We mentioned earlier a problem of computing the integral in (13.7.16)
or (13.7.17), which arises when we specify the hazard function generally
as (13.7.12). The problem does not arise if we assume

(18.719)  N(2) = No(t)exp(x;B).

The duration model with the hazard function that can be written as a
product of the term that depends only on ¢ and the term that depends
only on ¢, as above, is called the proportional hazard model. Note that
Lancaster’s model (13.7.9) is a special case of such a model. Cox (1972)
showed that in the proportional hazard model B can be estimated without
specifying the baseline hazard Ay (¢). This estimator of § is called the partial
maximum lkelihood estimator. The baseline hazard A\ () can be nonparamet-
rically estimated by the Kaplan-Meier estimator (1958). For an econometric
application of these estimators, see Lehrer (1988).

The general model with the hazard function (13.7.12) may be estimated
by a discrete approximation. In this case A;(f) must be interpreted as the
probability that the spell of the ith person ends in the interval (¢, ¢ + 1).
The contribution to the likelihood function of the spell that ends after &
periods is Hf; 11 [1 — N (£)INi(k), whereas the contribution to the likelihood
function of the spell that lasts at least for & periods is II f=1 (1 — N1
See Moffitt (1985) for the maximum likelihood estimator of a duration
model using a discrete approximation.

Next we demonstrate how the exponential duration model can be
derived from utility maximization in a simple job-search model. We do so
first in the case of discrete time, and second in the case of continuous
time.

Consider a particular unemployed worker. In every period there is a
probability A that a wage offer will arrive, and if it does arrive, its size is
distributed i.i.d. as G. If the worker accepts the offer, he will receive the
same wage forever. If he rejects it, he incurs the search cost ¢ until he is
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employed. The discount rate is 8. Let V() be the maximum utility at time
t. Then the Bellman equation is

(18.7.20) V(&) = A max[d7'W(2), (1 — 3)EV(t + 1) — ¢]
+ (1 -N[1~EV(E+ 1) — ¢l

Taking the expectation of both sides and setting EV(f) = V because of
stationarity,

(13721) V = 8 \E[max(W, R)] + 8 '(1 — MR,

where R = 8[(1 — 8)V — ¢] and W(¢) has been written simply as W because
of our i.i.d. assumption. Note that

(18.7.22) E[max(W, R)] = f :de(w) + RG(R).

Note further that V appears in both sides of (13.7.21). Solve for V, call the
solution V*, and define R* = 3[(1 — 8)V* — c], the reservation wage. The
worker should accept the wage offer if and only if W > R*. Define P =
P(w > R*). Then the likelihood function of the worker who accepted the
wage in the (¢ + 1)st period is

(13.7.23) L = (1 — AP)\P.

Many extensions of this basic model have been estimated in economet-
ric applications, of which we mention only two. The model of Wolpin
(1987) introduces the following extensions: first, the planning horizon is
finite; second, the wage is observed with an error. A new feature in the
model of Pakes (1986), in which W is the net return from the renewal of
a patent, is that W(¢) is serially correlated. This feature makes solution of
the Bellman equation considerably more cumbersome.

The next model we consider is the continuous time version of the
previous model. A fuller discussion of the model can be found, for exam-
ple, in Lippman and McCall (1976). The duration T until the wage offer
arrives is distributed exponentially with the rate A: that is, P(T > t) =
exp(—At). When it arrives, the wage is distributed i.i.d. as G. We define ¢
and 8 as before. The Bellman equation is given by

(13.7.24) V(¢) = max[d "W (¥, K1,
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where
(137.25) K = r{exp[——S(s—t)]EV(s) - cj " exp(—dm)dtihexp [~ N(s—1)]ds.
t 0
Taking the expectation of both sides and putting EV(¢) = V because of
stationarity, we have
(18.726) V = 8 'E[max(W, R)1,
where R = 8K. Solve (13.7.26) for V, call the solution V*, and define R*
accordingly. It is easy to show that R* satisfies
(13.727) R* = —c+ 3 '\ r (w — R*dG(w).
R*
Let f(¢) be the density function of the unemployment duration. Then we
have
(13.7.28)  f(¢) = AP exp(—APt),

where P = P(W > R¥*). Thus we have obtained the exponential model.
For a small value of AP, (13.7.28) is approximately equal to (13.7.23).






APPENDIX:
DISTRIBUTION THEORY

DEFINITION 1 (Chi-square Distribution) Let{Z},i=1,2,..., n, be
ii.d. as N(0, 1). Then the distribution of E;Lllf is called the chi-square
distribution, with n degrees of freedom and denoted by X5 .

THEOREM 1 If X ~ x% and ¥ ~ x2 and if X and ¥ are independent, then
X+ Y~ Xutm -

THEOREM 2 If X ~ x2 , then EX = nand VX = 2n.

THEOREM 3 Let {X;} be iid. as N(w, 0%, i =1, 2, ..., n Define
X, =n"' I 1X, Then
S G \2
(Xi - Xn)
=1 2
9 ~ Xn—-1-
g

Proof. Define Z; = (X; —p)/o. Then Z; ~ N(0, 1) and

1
() —

g

E

X — X2 =2, (Z — Z)
i=1

1

We shall show XL (Z; — Zn)2 ~ xi_l by induction. First, consider the case
n = 2. We have

2 _ Zi — 2,1
7. — 72 =2 _~21
@) z;l( 2) [ @}
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But since (Z; — Zy)/N2 ~ N(0, 1), the righthand side of (2) is X by
Definition 1. Therefore, the theorem is true for n = 2. Second, assume it
is true for » and consider n + 1. We have

n+1 _ 0 n 0 \[; _ 2
3 2= 2= Z =2+ | —2—(Zpe1 — Z) | -
() le(z +l) le( ) I:\/m( +1 )

But the first and second terms of the righthand side above are inde-
pendent because

4 E(Zi = Zo) (Znt1 = Zy) = 0.
Moreover, we can easily verify

i
5 — (7
) T T G

which implies by Definition 1 that the square of (5) is xi. Therefore, by
Theorem 1, the lefthand side of (3) is x3. O

- Z,)~ N(O, 1),

THEOREM 4 Let {X;} and X, be as defined in Theorem 3. Then
I % 5 20
- § X, - %)% 4 N[(r2, T]

DEFINITION 2 (Student’s t Distribution) LetY be N(0,1) and inde-
pendent of a chi-square variable X>. Then the distribution of VnY X5 18
called the Student’st distribution with n degrees of freedom. We shall denote
this distribution by ¢,,.

THEOREM 5 Let {X;} be ii.d. as N(0,1),i=1,2, ..., n Define X =
n =P X, and §? = n 1% (X, — X)% Then

X — pVn—1

S tne1.

Proof. Since X ~ N(p, n '6?), we have

X — wn
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Also, we have
7) Cov[(X; — X), X] = EX; — X)X = EX;X - EX?

= 1EX?—%ZEX?=O.

)
n =1
Since X; — X and X are jointly normal, (7) implies that these two terms
are independent by virtue of Theorem 5.3.4. Therefore, by Theorem 3.5.1,

(8) $% and Y are independent.

But we have by Theorem 3

2 (X = X,)
(9) i=1 9
5~ Xn-1-
o? '
Therefore, the theorem follows from (6), (8), and (9) because of Defini-

tion 2. O

THEOREM 6 Let {X;) be i.id. as N(ux 0%),i=1,2, ..., ny and let {¥;}
be ii.d. as N(uy, 0}2,), i=1,2,..., ny. Assume that {X;} are independent
of {Y}}. Let X and ¥ be the sample means and S% and S5 be the sample

. o 2 2
variances. Then if ¢y = oy,

X =1 — (ux — Wy nyny(ny + ny — 2) e
’ - tnx+ny—2

(nxS% + nySp)'/? nyx + ny

Proof. We have
X = 1) — (ux — uy)

(10)
(0_2 02 J1/2
Ix 7Y
ix Ny
and
nx ny
Y x-% Y, -9
i=1 i=1 9
(11) 9 + 9 -~ an+ny—2,

Ox Oy
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where (11) follows from Theorems 1 and 3. Moreover, (10) and (11) are
independent for the same reason that (8) holds. Therefore, by Definition
2,

(X_Y)‘(MX*P«Y). NP pr—Y

1/2 172
2 2 2 2
Ox n Oy nxSx + nySy
n n 2 2
x Ox oy

Finally, the theorem follows from inserting oi = 0}2/ into (12). Q

¢

(12)

ny+ny—2°

DEFINITION 3 (F Distribution) If X ~ x> andY ~ %2 andif X and Y
are independent, then (X/n)/(Y/m) is distributed as F with #» and m
degrees of freedom and denoted F(n, m). This is known as the F distri-
bution. Here n is called the numerator degrees of freedom, and m the
denominator degrees of freedom.
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criteria for ranking estimators, 118, 276,
296

critical
region, 182
value, 191

cross section, 230
cumulative distribution function. See
distribution function

decision making under uncertainty, 62
degrees of freedom:
chi-square, 353
E 356
Student’s ¢, 354
density function, 4, 27, 29
dependent variable, 229
determinant of matrix, 260, 261

diagonal matrix, 258
diagonalization of symmetric matrix, 270
discrete variables model, 332
disequilibrium model, 330, 342
distributed-lag model, 326
distribution function, 43
distributions:
Bernoulli (binary), 87
binomial, 87
Cauchy, 154
chi-square, 167-168, 213, 300, 353
exponential, 86, 344
F, 356
Gumbel’s Type B bivariate
extreme-value, 338
Hardy-Weinberg, 157
Laplace (double-exponential), 154
logistic, 334
multinomial, 135
normal: bivariate, 92, 99; multivariate,
97; standard, 91, 103, 334; univariate,
89
Poisson, 110
Student’s ¢, 165, 354
Type I extreme-value, 327
uniform, 130, 151
Weibull, 344
distribution-free method, 116
distribution-specific method, 116
duration models, 343
Durbin-Watson statistic, 323

eigen values and eigen vectors, 270
empirical
distribution, 114
image, 114
endogenous variable, 229
error components model, 323
error-in-variables model, 254, 330
estimator and estimate, 115
event, 6, 7
exogenous variable, 229
expectation, 61. See also expected value
expected value:
of continuous random variable, 63
of discrete random variable, 61
of function of random variables, 64
of mixture random variable, 66
rules of operation, 65



exponential distribution, 86, 344
exponential model, 344, 351

F distribution, 356
Ftest
for equality of two means, 217
for equality of three means, 218
for equality of variances, 210, 251, 306
in multiple regression, 302
for structural change, 306
feasible generalized least squares (FGLS)
estimator, 317
first-order autoregressive process, 318
full information maximum likelihood
estimator, 329
full-rank matrix, 269

Gauss-Markov theorem, 287
Gauss-Newton method, 331
generalized least squares (GLS) estimator,
316
generalized Wald test, 215, 302
geometric lag, 326
globally concave likelihood function:
probit and logit, 335
multinomial logit, 337
Tobit, 340
goodness of fit, 240
Gumbel’s Type B bivariate extreme-value
distribution, 338

Hardy-Weinberg distribution, 157
hazard, 343
hazard function:

definition, 343

baseline, 347

declining aggregate, 346
heteroscedasticity, 230, 317
heteroscedasticity-consistent estimator, 318
homoscedasticity, 314
hypothesis:

null and alternative, 182

simple and composite, 183

idempotent matrix, 277
identity matrix, 259
inadmissible

estimator, 124

test, 185

Subject Index 365

independence
between a pair of events, 12
among more than two events: pairwise,
12; mutual, 12
between a pair of random variables, 22,
23, 38 '
among more than two random
variables: pairwise, 26; mutual, 26, 39,
46
among bivariate random variables, 47
in relation to zero covariance, 71-72,
77, 95, 98
independence from irrelevant alternatives,
327
independent and identically distributed
(i.i.d.) random variables, 99, 103, 112
independent variable, 229
inner product, 260
instrumental variables (IV) estimator
in distributed-lag model, 327
in simultaneous equations model, 329
integral:
Riemann, 27
double, 30-32
integration:
by change of variables, 33
by parts, 30
interval estimation, 112, 160
inverse matrix, 263
iterative methods:
Gauss-Newton, 331
Newton-Raphson, 137

Jacobian method, 53
Jacobian of transformation, 49, 56
Jensen’s inequality, 142
job search model, 349
joint
density, 29
distribution between continuous and
discrete random variables, 57

Kaplan-Meier estimator, 349
Khinchine’s law of large numbers, 103
Koyck lag, 326

Kronecker product, 324

Laplace (double exponential)
distribution, 154
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law of iterated means, 78
laws of large numbers (LLN), 103
least squares (LS) estimator:
definition, 231, 283
finite sample properties, 234, 286
best linear unbiased, 237, 287
best unbiased, 295
consistency, 243, 290
asymptotic normality, 245, 292
under general error covariances, 316
least squares estimator of error variance:
definition, 238, 288
consistency, 243, 291

least squares predictor, 232, 247, 285, 295

least squares residual, 232, 285, 322
level of test, 187, 196, 201
Liapounov’s central limit theorem, 104
likelihood equation, 137, 143
likelihood function:
continuous case, 136
discrete case, 133
likelihood principle, 174
likelihood ratio test:
simple versus composite, 197
composite versus composite, 201
binomial, 197, 201
normal, 198, 202
vector parameter, 212, 215
multiple regression, 302
structural change, 307
limit distribution, 101, 104
Lindeberg-Lévy’s central limit theorem,
103
linear independence, 265
linear regression, 229
logistic distribution, 334
logit model, 334
loss function:
in estimation, 171
in hypothesis testing, 190, 203
squared error, 174

McFadden’s blue bus-red bus example,
337
marginal
density, 34
probability, 22-23, 25, 33
maximum likelihood estimator:
asymptotic efficiency, 144

asymptotic normality, 142
asymptotic variance, 144
binary model, 335
binomial, 134
bivariate regression, 246
computation, 137
consistency, 141
definition: continuous case, 136;
discrete case, 133
duration model, 348
global versus local, 142, 143
multinomial, 135
multinomial model, 336
multiple regression, 293
normal, 136
simultaneous equations model, 329
Type 1 Tobit model, 340
Type 2 Tobit model, 341
Type 5 Tobit model, 342
uniform, 151
mean, 61. See also expected value
mean squared error, 122
mean squared error matrix, 276
mean squared prediction error:
population, 75, 81-83
of least squares predictor, 247, 295
unconditional, 296
median, 63
method of moments, 115
minimax strategy
in decision making, 63
in estimation, 124
mode, 63
moments, 67-68
most powerful test, 185, 187
moving average process:
definition, 321
inversion of, 326
multicollinearity, 236, 287
multinomial
distribution, 135
models, 335
logit model, 337
normal model, 336
multiple correlation coefficient, 290
multiple regression model, 281
multivariate normal distribution, 97
multivariate random variable, 25
multivariate regression model, 281



negative definite matrix, 275
negative semidefinite matrix, 275
nested logit model, 338
Newton-Raphson method, 137
Neyman-Pearson lemma, 191
nonlinear least squares (NLLS) estimator,
331

nonlinear regression model, 330
nonnegative definite matrix, 275
nonparametric estimation:

definition, 116

of baseline hazard function, 349

of unobserved heterogeneity, 347
nonpositive definite matrix, 275
nonsingular matrix, 268
normal distribution:

bivariate, 92, 99

linear combination, 95, 98

multivariate, 97

univariate, 89

standard, 91, 103, 334
normal equation. See likelihood equation
null hypothesis, 182

one-tail test, 199, 206
optimal significance level. See selection of
regressors
orthogonal matrix, 270
orthogonality:
definition, 260
between LS residual and regressor, 233,
285

Pareto optimality, 191
partial maximum likelihood estimator, 349
permutation, 8
point estimation, 112
Poisson distribution, 110
pooling time series and cross section, 323
population:
definition, 112
mean, 62
moment, 68
positive definite matrix, 275
positive semidefinite matrix, 275
posterior
density, 172
distribution, 169
probability, 189

Subject Index 367

power function, 195
prediction. See best linear predictor; best
linear unbiased predictor; best
predictor; least squares predictor
prediction error, 75
prior
density, 172
distribution, 169
probability, 190
probability:
axioms, 6
distribution, 4, 20
frequency interpretation, 1, 6
limit (plim), 101
probit model, 334
projection matrix, 277, 285
proportional hazard model, 349
pvalue, 206

qualitative response model, 332

random variable:
definition, 4, 19
univariate: continuous, 4, 27; discrete, 4,
21; mixture, 45, 6667
bivariate: continuous, 29; discrete, 22
multivariate: continuous, 39; discrete, 25
randomized test, 184
rank of matrix, 268
reduced form, 328
region of rejection, 182
regressor. See independent variable
regularity conditions, 140
reservation wage, 342, 350
residual, 75. See also least squares residual
reverse least squares estimator, 253
ridge estimator, 288
rigk averter and risk taker, 62
R", 240, 289

St. Petersburg paradox, 62
sample, 113
correlation, 114
covariance, 70, 114
mean, 62, 113
moments, 68, 113
separation, 330, 342
space, 6
variance, 113, 127
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selection of regressors, 308
serial correlation, 230, 318
significance level, 205
simultaneous equations model,
327
size of test, 184, 187, 196, 201
skewness, 63, 70
Slutsky’s theorem, 102
standard
deviation, 68
normal distribution, 91, 103,
334
regression model. See classical
regression model
stationarity, 319
statistic, 115
stochastic dominance, 118
structural
change, 301, 304
equations, 328
Student’s ¢ distribution, 165, 354. See
also t statistic
sufficient statistic, 135, 176
supply and demand model, 327, 330
support of density function, 55
survival model. See duration model
syminetric matrix, 258, 270

¢ statistic
in testing for mean of normal, 207
in testing for difference of means of
normal, 209
in bivariate regression, 249
for structural change in bivariate
regression, 251
in multiple regression, 301
test for equality of variances. See F test
test of independence, 322
test statistic, 183, 193
Theil’s corrected R", 309
time series, 230

Tobit model:

Type 1, 339

Type 2, 341

Type 5, 342
transformation estimator, 324
transpose of matrix, 258
trace of matrix, 274
truncated regression model, 339
two-stage least squares (2SLS) estimator,

329

two-tail test, 199, 206
Type 1 extreme-value distribution, 327
Type I and Type II errors, 183

unbiased estimator:

definition, 125

of variance, 203, 239, 289
unemployment duration, 345, 349
uniform distribution, 130, 151
uniform prior, 173, 177
uniformly most powerful (UMP) test,

195-196, 201

univariate normal distribution, 89
universal dominance, 118
unobserved heterogeneity, 345, 347
utility maximization

in binary model, 334

in multinomial model, 336

in duration model, 349

variance:

definition, 68

rules of operation, 70, 73
variance-covariance matrix, 210
vector product, 260

Wald test. See generalized Wald test
weak stationarity, 319

Weibull model, 344

weighted least squares estimator, 317
Welch’s method, 252, 307
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