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Foreword

Structural equation models' have roots in the beginning of this century,
but it is within the last three decades that the interest in them has surged.
What are the “multiple indicators™ of this interest? First, we have
reached the point where the major social science statistical packages
are sure to include procedures to estimate structural equation models or
are seen to be incomplete. We have a number of stand-alone structural
equation modeling programs as well. Second, SEMNET, an active list
server devoted to structural equation modeling in the social and behav-
ioral sciences, exists. Third, major journals in a variety of social
sciences regularly carry applications using, or methodological pieces
on, structural equation modeling. Structural Equation Modeling: A
Multidisciplinary Journal is a new publication from Lawrence Erlbaum
Associates devoted to such models. Fourth, most major research uni-
versities and many other colleges and universities are offering courses
on structural equation modeling or are incorporating material on struc-
tural equation modeling into their other courses. In sum, interest in
structural equation modeling is strong.

Paralleling the growth in applications is the dynamic development
of the structural equation modeling methodology. Methodologists have
sought better understanding of fundamental aspects of modeling such
as model fit, the robustness of estimators, testing distributional require-
ments, and building and rebuilding models. These self-critical exami-
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xviii STRUCTURAL EQUATION MODELING

nations have led to new proposals and controversy. Much of the mate-
rial originates in fairly technical presentations. This slows the diffusion
of ideas from the specialized journals to the applied audience.

Structural Equation Modeling: Concepts, Issues, and Applications
helps to accelerate this diffusion. Rick Hoyle’s edited collection pro-
vides readers a largely nontechnical review of some of the major issues
facing researchers who wish to use structural equation modeling. It is
a timely book, not only because of the high level of interest in structural
equation modeling but also because it makes accessible, to a broad group
of structural equation modeling users, current methodological develop-
ments. In addition to his overview chapter, Hoyle has assembled a
useful set of chapters that present recent developments on specification
(see chapter by MacCallum), estimation and testing (Chou and Bentler;
West, Finch, and Curran; Hu and Bentler), philosophical underpinnings
(Mulaik and James), statistical power (Kaplan), software comparisons
(Byrne), writing up results from structural equation modeling analyses
(Hoyle and Panter), analyzing multitrait-multimethod data (Marsh and
Grayson), and examples of applications (Scott-Lennox and Lennox;
Hull, Tedlie, and Lehn; Stoolmiller, Duncan, and Patterson).

The chapters from Structural Equation Modeling: Concepts, Issues,
and Applications are practical and didactic. The methodological papers
emphasize key points from recent technical works. Those wanting to
consult the original sources can turn to the bibliography for a guide to
the statistical literature behind the summaries in the book chapters. The
practical emphasis of the book is reflected through all the chapters. For
instance, Byrne’s chapter compares LISREL and EQS, the two most
popular structural equation modeling software packages. Hoyle and
Panter’s chapter provides advice on writing up structural equation model-
ing results. These are key topics for the researcher but rarely are discussed.

Readers new to the structural equation modeling approach will find
the book a useful introduction to many aspects of structural equation
modeling. Experienced structural equation modeling researchers will
benefit from the summaries of recent methodological work and the bibli-
ography. The volume provides researchers interested in structural equa-
tion modeling a valuable overview of contemporary issues in modeling.

KENNETH A. BOLLEN

Center for Advanced Study in the Behavioral Sciences
Stanford, California

March 11, 1994

Foreword Xix
Notes

1. Sometimes structural equation models are called LISREL models, analysis of
covariance structures, or analysis of moment structures. Regardless of the name or
notation, the terms refer to general models that include confirmatory factor analysis,
classical simultaneous equation models, path analysis, multiple regression, ANOVA, and
other common techniques as special cases.

2. SEMNET is a structural equation modeling special interest group organized to
support the application of structural equation modeling across the social and behavioral
sciences. The internet address is listserv@ualvm.ua.edu (bitnet is listserv@ualvm). To .
subscribe, send the message SUBSCRIBE SEMNET first-name last-name.


R
Rectangle


Preface

The completion of this volume prompts vivid memories of two signifi-
cant days in its development: the day it was conceived and the day it was
born. The late Jeff Tanaka was a significant participant in both. The
volume was conceived on a balmy Wednesday afternoon in late June of
1992 at Highland Beach, Florida. Oceanside, over drinks, we discussed
the need for a book that we could recommend to students and researchers
interested in learning the structural equation modeling approach to
research design and data analysis. The discussion ended with a rough
sketch of such a book scribbled in my legal pad and an agreement to
complete a prospectus by early Fall. The book was born (i.e., the
prospectus was accepted) on Monday, November 2, 1992, the day before
Jeff died in a tragic automobile accident. The question of whether the
project would proceed after his death was never considered. The editors
at Sage and I agreed that the volume would stand as a tribute to Jeff and
a reminder of his considerable influence on students and researchers.

Many of the contributors to this volume knew Jeff well and enthusi-
astically accepted my offer to contribute chapters to a volume to honor
the memory of a valued colleague and friend. Those contributors who
did not know Jeff personally know of his important contributions to the
literature on structural equation modeling and reveal his influence in
their individual contributions. Collectively, we dedicate this volume to
the memory of Jeffrey S. Tanaka.

XX

Preface xxi

Jeff and I shared a vision of a volume on structural equation model-
ing that would bridge the gap between the technical literature that many
students and researchers find intractable and the cursory treatment that
structural equation modeling often receives in more general texts on
linear models. Toward that end, this volume, from its inception, was
intended for researchers, not methodologists and statisticians. Authors
were challenged to write chapters that accurately summarize the tech-
nical literature on key topics and issues relevant to the structural
equation modeling approach but to avoid technical jargon and notation
and minimize the use of matrix equations. Also, authors were chal-
lenged to reach a “bottom line”—a practical recommendation or set of
recommendations—without oversimplifying complex questions and
controversies yet to be resolved in the technical literature on structural
equation modeling. Although many of the authors are more accustomed
to contributing to that technical literature, they willingly accepted these
challenges and, as a result, produced a collection of informative, instruc-
tive, and surprisingly readable chapters directed toward researchers and
students in the social and behavioral sciences.

The volume is organized around two themes: (a) concepts and issues
and (b) applications. The first nine chapters define concepts and address
issues associated with primary aspects of the structural equation mod-
eling approach,; the final four chapters either review or illustrate spe-
cific applications of the structural equation modeling approach. Chapter
1 provides an overview of the structural equation modeling approach
with an emphasis on key concepts and issues. The material in that
chapter sets the stage for Chapters 2 through 7, which cover the basic
aspects of the structural equation modeling approach and are ordered
according to the typical steps involved in planning and executing a
structural equation modeling analysis. Chapters 8 and 9 cover practical
matters that are not often addressed in treatments of statistical models.
Chapter 8 describes and compares the most recent versions of the
primary statistical software packages for estimating structural equation
models; Chapter 9 addresses the task of writing manuscripts about
research conceptualized and analyzed as structural equation models.
Chapter 10 is a fitting bridge between the “concepts and issues” and
“applications” sections of the book. It provides a review and recommen-
dations regarding the use of structural equation modeling for construct
validation, a particularly fruitful application of structural equation
modeling. The final three chapters are primary research reports that
illustrate the material presented in earlier chapters. Thus, as a package,
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xxii STRUCTURAL EQUATION MODELING

the volume provides relatively complete coverage of fundamental as-
pects of the structural equation modeling approach with an emphasis on
application.
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1 The Structural Equation Modeling
Approach

Basic Concepts and
Fundamental Issues

RICK H. HOYLE

Structural equation modeling (SEM) is a comprehensive statistical
approach to testing hypotheses about relations among observed and
latent variables. Accounts of the statistical theory that underlies SEM
as currently practiced appeared in the early 1970s (e.g., Joreskog, 1973;
Keesling, 1972; Wiley, 1973). Yet, several years passed before SEM
began to receive widespread attention from social science researchers
(e.g., Bentler, 1980; Bielby & Hauser, 1977; Joreskog & Sérbom,
1979). With the increasing complexity and specificity of research
questions in the social and behavioral sciences (e.g., Hoyle, 1994a; Reis
& Stiller, 1992) and the appearance of flexible, user-friendly computer
software (e.g., Bentler, 1992a; Joreskog & Sérbom, 1993a; Muthén,
1988) has come increasing interest in SEM as a standard approach to
testing research hypotheses. In addition to the appearance of at least
three comprehensive texts on SEM (Bollen, 1989b; Hayduk, 1987;
Loehlin, 1987), numerous didactic and illustrative chapters, journal
articles, and special issues and sections of journals have appeared
(e.g., Bagozzi, 1982; Connell & Tanaka, 1987; de Leeuw, Keller, &
Wansbeek, 1983; Hoyle, 1994b; Judd, Jessor, & Donovan, 1986; Tanaka,
Panter, Winborne, & Huba, 1990).
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2 STRUCTURAL EQUATION MODELING

In this chapter I concisely outline the basic elements of the SEM
approach; each element is covered in greater detail in one or more of
the chapters that follow. The primary aim of this and all chapters in the
book is to provide researchers and students trained in basic inferential
statistics a nontechnical introduction to the SEM approach. Where
possible, the presentation refers to concepts from standard statistical
approaches in the social and behavioral sciences such as correlation,
multiple regression, and analysis of variance.

Model Specification

SEM begins with the specification of a model to be estimated.
Although the terms model and specification might be unfamiliar to
some readers, the concepts probably are not. At the most basic level, a
model is a statistical statement about the relations among variables.
Models take on different forms in the context of different analytic
approaches. For instance, a model in the correlation context typically
specifies a nondirectional relation between two variables. Of course,
more complex models are possible in the correlation context (e.g.,
partial and semipartial correlation, canonical correlation). The multiple
regression and analysis of variance (ANOVA) approaches lend them-
selves to models that specify directional relations, although direction-
ality cannot be tested statistically by those approaches.

Specification is the exercise of formally stating a model. Specifica-
tion, too, varies in form across different analytic approaches. In the
zero-order correlation context, the only model that can be specified
includes a single nondirectional relation between two variables. Be-
cause variance typically is partitioned in a standardized fashion in
ANOVA designs, researchers who use ANOVA rarely explicitly spec-
ify models. Research hypotheses that necessitate comparisons other
than those provided by the standard main effect and interaction tests
require explicit model specification (i.e., planned comparisons) on the
part of the investigator. Exploratory factor analysis begins with no
explicit model; however, decisions concerning such matters as how
many factors to extract, how to extract them, and which rotation method
to use involve implicit specification of a model.

The exercise of model specification is much more central in the SEM
approach. Indeed, no analysis can take place until the researcher has
specified a model of the relations among the variables to be analyzed.

Basic Concepts and Fundamental Issues 3

In SEM, model specification involves formulating a statement about a
set of parameters. In the SEM context, the parameters that require
specification are constants that indicate the nature of the relation be-
tween two variables. Although specification can be quite specific re-
garding both the magnitude and sign of parameters, parameters typi-
cally are specified as either fixed or free. Fixed parameters are not
estimated from the data and their value typically is fixed at zero. Free
parameters are estimated from the data and are those the investigator
believes to be nonzero. The various indexes of model adequacy, par-
ticularly the %2 goodness-of-fit test, indicate the degree to which the
pattern of fixed and free parameters specified in a model is consistent
with the pattern of variances and covariances from a set of observed data.

The pattern of fixed and free parameters in a structural equation
model defines two components of the general structural equation model:
the measurement model and the structural model. The measurement
model is that component of the general model in which latent variables
are prescribed. Latent variables are unobserved variables implied by
the covariances among two or more indicators. Often referred to as
factors, latent variables are free of random error and uniqueness asso-
ciated with their indicators. Confirmatory factor analyses make use of
only the measurement model component of the general structural equa-
tion model. The structural model is that component of the general
model that prescribes relations between latent variables and observed
variables that are not indicators of latent variables. The multiple regres-
sion model is a structural model without latent variables and limited to
a single outcome. When the measurement and structural components
are combined, the result is a comprehensive statistical model that can
be used to evaluate relations among variables that are free of measure-
ment error.

Relations between variables, observed or latent, in structural equa-
tion models are of three types. The association is a relation between
two variables treated within the model as nondirectional; it is identical
in nature to the relation typically evaluated by correlational analysis.
The direct effect, which is the building block of structural equation
models, is a directional relation between two variables; it is the type of
relation typically evaluated by ANOVA or multiple regression. Within
a model, each direct effect characterizes the relation between an inde-
pendent and a dependent variable, although the dependent variable in
one direct effect can be the independent variable in another. Moreover,
as in multiple regression, a dependent variable can be related to multi-
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4 STRUCTURAL EQUATION MODELING

ple independent variables, and, as in multivariate analysis of variance,
an independent variable can be related to multiple dependent variables.
The capacity to treat a single variable as both a dependent and an
independent variable lies at the heart of the indirect effect. The indirect
effect is the effect of an independent variable on a dependent variable
through one or more intervening, or mediating, variables (Baron &
Kenny, 1986). In the case of a single mediating variable, the mediating
variable is a dependent variable with reference to the independent variable
but an independent variable with reference to the dependent variable.
Thus the simplest indirect effect involves two direct effects. For in-
stance, if x has a direct effect on y, and y has a direct effect on z, then
x is said to have an indirect effect on z through y. The sum of direct and
indirect effects of an independent variable on a dependent variable is
termed the total effect of the independent variable.

A fundamental consideration when specifying models in SEM is
identification. Identification concerns the correspondence between the
information to be estimated—the free parameters—and the information
from which it is to be estimated—the observed variances and covari-
ances. More specifically, identification concerns whether a single,
unique value for each and every free parameter can be obtained from
the observed data. If for each free parameter a value can be obtained
through one and only one manipulation of the observed data, then the
model is just identified and has zero degrees of freedom. If a value for
one or more free parameters can be obtained in multiple ways from the
observed data, then the model is overidentified and has degrees of
freedom equal to the number of observed variances and covariances
minus the number of free parameters. If a single, unique value cannot
be obtained from the observed data for one or more free parameters,
then the model is underidentified and cannot be estimated. Thus a
restriction on model specification is that for any model to be estimated
it must be either just identified or overidentified. Determination of the
identification status of a model can be difficult. Computer programs
such as LISREL and EQS provide warnings when they encounter
underidentified models; however, they do not always provide informa-
tion about the location of the identification problem. Moreover, identi-
fication warnings can be misleading as they sometimes are triggered by
characteristics of the data rather than characteristics of the model.
MacCallum (Chapter 2) and Chou and Bentler (Chapter 3) provide
additional detail about the general problem of identification, and Bollen
(1989b) devotes extensive attention to evaluating identification.
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The decision making associated with model specification in SEM is
considerably more involved than specification of ANOVA and multiple
regression models. Yet, the range of relations that can be specified in
SEM far exceeds the range that can be specified in those and other more
narrow statistical models. In Chapter 2, MacCallum covers the basic
issues involved in model specification. Kaplan (Chapter 6) provides
additional information about specification in the context of considera-
tions about statistical power. These authors’ treatments reveal the
flexibility and comprehensiveness of the SEM approach (see also Hoyle
& Smith, 1994). Indeed, it will be apparent that correlation, multiple
regression, ANOVA, and factor analysis are themselves structural equa-
tion models (Tanaka et al., 1990). Thus SEM is a very general linear
statistical model that can be used to evaluate statistically most research
hypotheses of interest to social scientists.

Estimation

Once a model has been specified, the next task is to obtain estimates
of the free parameters from a set of observed data. Although single-
stage least squares methods such as those used in standard ANOVA or
multiple regression designs can be used to derive parameter estimates,
iterative methods such as maximum likelihood or generalized least
squares are preferred. Iterative methods involve a series of attempts to
obtain estimates of free parameters that imply a covariance matrix like
the observed one. The implied covariance matrix is the covariance
matrix that would result if values of fixed parameters and estimates of
free parameters were substituted into the structural equations, which
then were used to derive a covariance matrix. Iteration begins with a
set of start values, tentative values of free parameters from which an
implied covariance matrix can be computed and compared to the ob-
served covariance matrix. Start values either are supplied by the re-
searcher or, more commonly, are supplied by computer software, which
either derives start values from the data (e.g., LISREL) or assumes a
default value for all start values (e.g., EQS).

After each iteration, the resultant implied covariance matrix is com-
pared to the observed matrix. The comparison between the implied and
observed covariance matrices results in a residual matrix. The residual
matrix contains elements whose values are the differences between
corresponding values in the implied and observed matrices. Iteration
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continues until it is not possible to update the parameter estimates and
produce an implied covariance matrix whose elements are any closer in
magnitude and direction to the corresponding elements in the observed
covariance matrix. Said differently, iteration continues until the values
of the elements in the residual matrix cannot be minimized any further.
At this point the estimation procedure is said to have converged. Conver-
gence problems are not uncommon with models that have many free
parameters, with models estimated from ill-conditioned data (see Chapter
4), and, particularly, with multitrait-multimethod models (see Chapter 10).

When the estimation procedure has converged on a solution, a single
number is produced that summarizes the degree of correspondence
between the implied and observed covariance matrices. That number,
sometimes referred to as the value of the fitting function, approaches
zero as the implied covariance matrix more closely resembles the
observed covariance matrix. A perfect match between the two matrices
produces a value of the fitting function equal to zero. The value of the
fitting function is the starting point for constructing indexes of model fit.

Evaluation of Fit

A model is said to fit the observed data to the extent that the
covariance matrix it implies is equivalent to the observed covariance
matrix (i.e., elements of the residual matrix are near zero). The question
of fit is, of course, a statistical one that must take into account features
of the data, the model, and the estimation method. For instance, the
observed covariance matrix is treated as a population covariance ma-
trix, yet that matrix suffers from sampling error—increasingly so as
sample size decreases. Also, the more free parameters in a model the
more likely the model is to fit the data because parameter estimates are
derived from the data. To complicate matters further, the different
estimation methods vary in effectiveness as sample size and model
complexity vary (see Chapter 3).

The most common index of fit is the x? goodness-of-fit test, which
is derived directly from the value of the fitting function. It is the product
of the value of the fitting function and the sample size minus one, F(N -
1). That product is distributed as %2 if the data are multivariate normal
and the specified model is the correct one. At least one of those
assumptions, particularly the latter one, probably is violated in most
uses of SEM. As a result, considerable discussion has taken place about
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the validity of the X2 test as an index of fit. Chou and Bentler summarize
that discussion in Chapter 3.

Growing dissatisfaction with the x? goodness-of-fit test has led to
the generation of a growing number of adjunct fit indexes, descriptive
indexes of fit that often are intuitively interpreted. Bentler and Bonett
(1980) are credited with pioneering the logic that underlies adjunct fit
indexes in their normed fit index and their generalization of an extant
index (Tucker & Lewis, 1973), which they termed the nonnormed fit
index. Rather than comparing the implied and observed covariance
matrices, these indexes and numerous others that follow similar logic
(for reviews and comparisons, see Marsh, Balla, & McDonald, 1988;
Mulaik, James, Van Alstine, Bennett, Lind, & Stillwell, 1989; Tanaka,
1993) derive from the comparison between the fit of a specified model
and the fit of an independence, or null, model. The independence model
is one in which no relations among variables are specified. In other
words, all relational paths are fixed to zero and only variances are
estimated. Thus most adjunct fit indexes reflect the improvement in fit
of a specified model, which includes fixed and free structural parame-
ters, over the independence model, in which all structural parameters
are fixed at zero. Adjunct fit indexes are not statistics and, therefore,
cannot be used to conduct formal statistical tests of model fit. Instead,
they are treated as global indexes of model adequacy. For the most part,
adjunct fit indexes vary between zero and 1.0, and .90 is widely
accepted as a value such indexes must exceed before a model can be
viewed as consistent with the observed data from which it was esti-
mated. It is important to note that not all adjunct fit indexes foilow the
logic of the Bentler and Bonett (1980) indexes, although many vary
between zero and 1.0 (e.g., the goodness-of-fit and adjusted goodness-
of-fit indexes provided by LISREL). The use of multiple adjunct fit
indexes sampled from different classes is recommended (Bollen, 1989b;
Marsh et al., 1988; Mulaik et al., 1989; Tanaka, 1993).

An important distinction between the %2 goodness-of-fit test and
adjunct fit indexes concerns the magnitude of the value that indicates
acceptable fit of a model. The x? is, in reality, a “badness-of-fit” index;
therefore, smaller values indicate better fit. Indeed, a 2 value of zero,
which would result from a value of the fitting function equal to zero
(i.e., the residual matrix would contain all zeros), indicates a perfect fit.
Recall, however, that the 2 variate is a statistic and, therefore, its
values are evaluated relative to the number of degrees of freedom
available for the test (see Chapters 2 and 5). Adjunct fit indexes, on the
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other hand, are goodness-of-fit indexes, which means that larger values
are more desirable. Moreover, adjunct fit indexes are not statistics;
therefore, there is no definitive critical value.

A final aspect of evaluating fit involves comparing two or more
theory-based models of the same data. Such model comparison is
statistical in nature, not unlike the comparison of models in hierarchical
regression analysis. Model comparison requires the specification of two
nested models. Two models are nested if they both contain the same
parameters but the set of free parameters in one model is a subset of the
free parameters in the other. A Ay? statistic, parallel to the F-change
statistic consulted in hierarchical regression analysis, is used to deter-
mine which model better accounts for the observed data.

Model Modification

One of the more controversial aspects of SEM is modification, or
respecification, of a model (MacCallum, Roznowski, & Necowitz,
1992; Chapter 2, this volume). Model modification involves adjusting
a specified and estimated model by either freeing parameters that
formerly were fixed or fixing parameters that formerly were free. The
controversy surrounding model modification focuses more on the basis
for modifying a model that the general notion of model modification.
In that regard it parallels a similar point of discussion among ANOVA
users regarding the usefulness of post-hoc comparisons of means: The
act of comparing means is not at issue; rather the discussion centers
around the basis for formulating mean comparisons. In the SEM ap-
proach, model comparison is analogous to planned comparisons, and
model modification is analogous to post-hoc comparisons.

Model modification typically follows estimation of a model that

resulted in unfavorable indicators of fit. In the absence of other theory-
based models of the data, the basis for modification typically is an
inspection of parameter estimates, an evaluation of some form of the
residual matrix, or, in the spirit of stepwise regression, the use of
statistical searches for adjustments that will result in more favorable
indicators of fit. The most well-known of the statistical search strategies
makes use of the modification index provided by the LISREL program.
The modification index and the Lagrange multiplier test (provided by
the EQS program) provide information about the amount of y? change
that would result if parameters that formerly were fixed were free in a
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specified model. The EQS program also provides information about the
change in X2 that would result if formerly free parameters were fixed
by means of the Wald test. The Wald and Lagrange multiplier tests can
be used to evaluate x2 change as a result of respecifying one or many
parameters; the modification index can be used to evaluate respecifica-
tion of only one parameter at a time (see Byrne’s comparison of these
approaches in Chapter 8). Of course, such strategies sacrifice control
over Type I error and, therefore, lead to a situation in which idiosyn-
cracies of a particular data set might be interpreted as reliable findings
(MacCallum et al., 1992).

Interpretation

If either the %2 goodness-of-fit test or adjunct fit indexes indicate
acceptable overall fit of a specified model, then the focus moves to
specific elements of fit. Individual estimates of free parameters are
evaluated according to their difference from some specified null value,
typically zero. The ratio of each estimate to its standard error is distrib-
uted as a z statistic and, therefore, must exceed 1.96 before the estimate
can be considered reliably different from zero.

Tests and comparisons of parameter estimates involve unstandard-
ized estimates, whereas presentation of results often involves stan-
dardized estimates. Unstandardized parameter estimates retain scaling
information of the variables involved and can be interpreted only with
reference to the scales of those variables. Unstandardized estimates
indicate the number of units change in the dependent variable per unit
change in the independent variable when all remaining independent
variables are at their mean. Standardized parameter estimates are trans-
formations of unstandardized estimates that remove scaling information
and, therefore, invite informal comparisons of parameters throughout a
model. Standardized estimates index the number of standard deviations
change in the dependent variable per standard deviation change in the
independent variable when all remaining independent variables are at
zero (i.e., their mean in standard normal units). Standardized parameter
estimates correspond to effect-size estimates, which are increasingly
common adjuncts to standard statistical information from mean com-
parison procedures such as ¢ test and ANOVA.

The most challenging and poorly understood aspect of interpreting
SEM results concerns not the magnitude or direction of relations be-
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10 STRUCTURAL EQUATION MODELING

tween variables but, rather, the nature of those relations. SEM often is
described as a statistical means of testing causal hypotheses from
correlational data. Perhaps stemming from that naive characterization
of SEM, researchers often are too quick to infer causality from statisti-
cally significant relations in structural equation models (Cliff, 1983;
Freedman, 1987). In reality, SEM does nothing more than test the
relations among variables as they were assessed. In other words, SEM
cannot overcome the limitations associated with nonexperimental data
gathered in a single session.

So, what is the advantage of SEM over methods such as ANOVA or
multiple regression for testing causal hypotheses? Consider briefly the
necessary conditions for demonstrating a causal relation: association,
isolation, and directionality (Bollen, 1989b). The most elementary
condition is association; the cause and the effect must be related. In this
regard, SEM enjoys no particular advantage over other statistical meth-
ods. Second, the putative cause must be isolated from other causes (i.e.,
extraneous and confounding variables), a condition established in ex-
periments by random assignment to levels of the causal variable. Al-
though partial correlation, ANOVA, and multiple regression analysis
can be used to isolate putative causal variables from other variables,
SEM is more flexible and comprehensive than any of those approaches,
providing means of controlling not only for extraneous or confounding
variables but for measurement error as well.

The condition with regard to which SEM is most frequently misun-
derstood is directionality. Directional arrows in path diagrams (de-
scribed in the next section) are incorrectly interpreted by some as
indicating that directionality has been tested using SEM or is implied
by the investigator who has used SEM. In reality, SEM, like ANOVA
or regression, cannot be used to test the hypothesis of directionality.
Directionality is a form of association distinguished from nondirec-
tional association either by logic (e.g., income cannot cause biological
sex), theory (e.g., group cohesion affects group performance), or, most
powerfully, by research design (e.g., a manipulated variable to which
subjects are assigned randomly cannot be caused by a dependent vari-
able). The use of theory to justify an inference of directionality is the
most problematic because often there are competing theories that offer
different accounts of the association among two or more variables
(consider the plausible converse of the example cited in the previous
sentence).
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In the end, association in structural equation models is interpreted
no differently from association in ANOVA or multiple regression.
Directional arrows in path diagrams typically used to depict relations
in structural equation models should not be taken to indicate hypotheses
of causal direction unless explicitly designated as such (path diagrams
of ANOVA or regression designs would include directional arrows as
well). At the most generic level they distinguish between predictors and
outcomes, a distinction that may have more to do with the focus of the
research than concern over causal direction. Yet, if the study from
which those variables arise is designed appropriately, then a causal
interpretation of directional paths may be in order (see Martin, 1987;
Chapter 7, this volume).

Communication

There is considerable inconsistency in the way results of SEM
analyses are reported. Because of the large amount of statistical infor-
mation that emerges from analyses of structural equation models and
the variability in what portion of that information investigators include
in their reports, some writers have called for increased attention to the
communication of SEM results (e.g., Biddle & Marlin, 1987; Raykov,
Tomer, & Nesselroade, 1991; Chapter 9, this volume). Informative and
complete communication of SEM results is a challenging but essential
aspect of the SEM approach.

A primary form of communicating SEM hypotheses and results is
the path diagram. A path diagram is a pictorial representation of a
structural equation model. The three primary components of a path
diagram are rectangles, ellipses, and arrows. Rectangles are used to
indicate observed variables, which may be either indicators of latent
variables in the measurement model or independent or dependent vari-
ables in the structural model. Ellipses are used to indicate latent
variables, independent and dependent variables as well as errors of
prediction in the structural model and errors of measurement in the
measurement model. Arrows are used to indicate association and are of
two sorts. Straight arrows point in one direction and indicate direction
of prediction, from predictor to outcome. Curved arrows point in two
directions and indicate nondirectional association (i.e., correlation). In
addition, MacCallum (Chapter 2) advocates sharply curved arrows that
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12 STRUCTURAL EQUATION MODELING

begin and end with the same observed or latent variable and indicate
variance (i.e., a variable’s covariance with itself). In the path diagram,
the structural component of a model typically is arrayed so that direc-
tional arrows run from left to right. If the measurement component is
included in the diagram, it sometimes is necessary to orient relations
between indicators and their latent variables both vertically and horizon-
tally in order to avoid cluttering the structural portion of the diagram.

The most informative path diagram includes an indication of all
parameters in a model (Chapter 2, this volume). Such completeness is
rarely the case in practice, however. Paths indicating error of measure-
ment and error of prediction often are omitted from path diagrams and,
on occasion, indicators of latent variables are omitted. Although such
omissions are not, in principle, ill-advised, they may be misleading for
two reasons. First, they do not clearly indicate the model specified and
estimated. That problem is overcome by a caption that clearly specifies
which aspects of the specified model were omitted from the diagram.
Second, if, as is frequently the case, the path diagram is used to display
parameter estimates, not all parameter estimates are presented in an
incomplete path diagram. Thus, like an ANOVA display in which only
a portion of the means is presented, the path diagram that includes only
a portion of the parameter estimates raises questions about the status of
the unreported estimates.

An additional issue associated with the use of path diagrams con-
cerns precisely what the diagram should depict (Biddle & Marlin,
1987). A path diagram in a research report can depict one of the
following: (a) the model originally specified and estimated by the
investigator; (b) that portion of the original model for which parameter
estimates were significant; or (c) a model that resulted from one or more
modifications and reestimations of the original model. A virtue of the
path diagram that depicts the full originally specified model is that it
can be used as a basis both for presenting the conceptual hypotheses
and for describing the model initially specified and estimated. The
diagram that omits nonsignificant paths may be less cluttered than the
full diagram but it contributes to incomplete reporting of results. A
compromise between the full and partial diagrams is the diagram that
depicts all parameters in the original model but uses dashed lines to
indicate nonsignificant paths. The path diagram that depicts a model
derived through modifications to an initial model should not be the only
diagram provided as it belies the a priori specification and gives the
appearance of a reliable model despite inattention to Type I error.
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Of course, SEM results can be presented in other ways. For instance,
tables provide a means of conveying a considerable amount of informa-
tion in a limited space. Yet, unlike ANOVA tables, in which the design
is conveyed through the format of the table, SEM tables do not provide
information about the position of parameters in the model. On the other
hand, path diagrams provide a clear sense of where particular parame-
ters are located in a model, but they often become overly cluttered when
parameter estimates are included in the diagram. Hoyle and Panter
(Chapter 9) discuss further the virtues and drawbacks to various mecha-
nisms for communicating SEM results. The authors of the final three
chapters illustrate the use of tables and figures to communicate SEM
results.

A final issue associated with communication concerns notation.
Prior to the appearance of the EQS program, most SEM analyses were
done using the LISREL program. Early versions of that program re-
quired the specification of as many as eight matrices, each identified
by a Greek letter. Moreover, documentation associated with LISREL as
well as computer output from it relied heavily on matrix representation
of structural equation models; matrices and their elements were identi-
fied by Greek letters. As a consequence, early reports of SEM results
are replete with Greek letters and matrix notation. As the SEM approach
has entered the mainstream of statistical methods in the social and
behavioral sciences, the use of those devices has been replaced by
notation more consistent with notation used in other, more familiar,
statistical models and, in many cases, verbal labels. Authors contribut-
ing to this volume were urged to avoid Greek letters and matrix notation
in their presentations without compromising the completeness and
accuracy of their coverage. A growing consensus among SEM users is
that social and behavioral science researchers who use the SEM ap-
proach should do the same.

Summary and Recommendations

This brief survey of the basic concepts and issues associated with
the SEM approach to research design and data analysis highlighted
similarities and differences between SEM and standard approaches like
correlation, multiple regression, and ANOVA. To summarize, SEM is
similar to those approaches in four fundamental ways. First, both SEM
and those approaches are based on linear statistical models. Indeed,
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standard linear models such as ANOVA, multiple regression, and factor
analysis are special instances of the general structural equation model.
Second, statistical tests associated with SEM and standard statistical
approaches are valid only if certain assumptions about the observed
data are met. For SEM, those assumptions are independence of obser-
vations (common to all approaches) and multivariate normality. A
growing repertoire of estimation methods and mounting evidence that
the maximum likelihood method is reasonably robust to modest viola-
tions of the normality assumption have helped curb earlier criticisms
about the appropriateness of SEM for typical social and behavioral
science data (cf., Hu, Bentler, & Kano, 1992; see Chapters 3 and 4, this
volume). Third, neither SEM nor standard approaches offer statistical
tests of causality. By virtue of their capacity to evaluate association,
each approach can provide necessary but not sufficient evidence of
causality. The SEM approach enjoys some advantage over the more
restricted methods in evaluating causal hypotheses because of the
ability to specify models in which the putative cause is isolated from
extraneous influences and measurement error. None of the approaches
can be used to test directionality, a condition established through logic,
strong theory, or methodological strategies, not statistical design.
Fourth, for SEM or any of the standard statistical models, adjustments
to the initial statistical hypothesis after viewing the data dramatically
increase the likelihood of sample-specific results. Post-hoc adjustments
to statistical hypotheses tested by any statistical model necessitate
cross-validation.

SEM differs from standard approaches in three important ways.
First, the use of SEM requires formal specification of a model to be
estimated and tested. Unlike ANOVA, which, as typically used, evalu-
ates main effect and interaction hypotheses by default, and multiple
regression analysis, which permits specification only of direct effects
on a single outcome, SEM offers no default model specification and
places relatively few limits on what types of relations can be specified.
A frequently cited advantage of that characteristic of SEM is that it
requires researchers to think carefully about their data and to venture
hypotheses regarding each variable. Second, perhaps the most compel-
ling characteristic of SEM is the capacity to estimate and test relations
between latent variables. The isolation of concepts from uniqueness and
unreliability of their indicators increases the probability of detecting
association and obtaining estimates of free parameters close to their
population values. Third, an unfortunate distinction between SEM and
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standard statistical approaches is the ambiguity associated with tests of
structural equation models compared to the relatively straightforward
tests that accompany standard models. At the heart of this ambiguity is
the complex effect of data and model characteristics on the %2 variate
on which most indicators of model fit are based. The development of
new indexes of fit based on alternative distributions promises to curb
that ambiguity in the near future. For now, the most defensible strategy
for evaluating the fit of structural equation models is to consult fit
indexes from multiple classes of indexes (Chapter 5) and evaluate the
%2 goodness-of-fit test with reference to the statistical power of the test
given the characteristics of the model and the data (Chapter 6).

The SEM approach is a more comprehensive and flexible approach
to research design and data analysis than any other single statistical
model in standard use by social and behavioral scientists. Although
there are research hypotheses that can be efficiently and completely
tested by standard methods, the SEM approach provides a means of
testing more complex and specific hypotheses than can be tested by
those methods. The chapters that follow dissect the structural equation
model and, it is hoped, will demystify it for would-be users. Each
chapter was written with the researcher in mind and is an invitation to
consider thoughtfully the SEM approach to research design and data
analysis. Read on. A worthwhile challenge awaits.
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2 Model Specification

Procedures, Strategies,
and Related Issues

ROBERT C. MACCALLUM

Any application of structural equation modeling (SEM) must involve
the specification of one or more models to be evaluated. It is critical for
researchers using SEM to have a sound working knowledge of proce-
dures and strategies for model specification. This knowledge will allow
researchers to specify models in a technically correct manner so that
appropriate parameter estimates and measures of fit can be obtained and
evaluated. Furthermore, such knowledge will provide the basis for
employing strategies in model construction that will yield rigorous and
clear resolution of research objectives.

In the present chapter I provide a detailed presentation of procedures
for model specification as well as a discussion of related issues, such
as the existence of equivalent models. In addition, I discuss and offer
recommendations regarding strategies for model construction. I focus
on the general case of conventional linear structural equation models.
Although this presentation is almost entirely nonmathematical, readers
should be aware that there exist several different but closely related
mathematical frameworks for this general class of models (Bentler &
Weeks, 1980; Joreskog, 1974; McArdle & McDonald, 1984). Regard-
less of the framework employed, there also exists a variety of special
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cases of the general model, such as factor analysis, path analysis, and
simultaneous equation models. I focus here on the general class of
models, but readers should recognize that in any particular application
they may define a model that fits into one of many special cases. In
addition, there exists a variety of covariance structure models that do
not fit into the class of linear models represented by these frameworks;
e.g., the multiplicative model for multitrait-multimethod data (Browne,
1984b; Cudeck, 1988). Many of these models are quite important and
useful, but they fall outside the scope of the present chapter.

Model Specification Procedures

A linear structural equation model is a hypothesized pattern of linear
relationships among a set of variables. The purpose of such a model is
to provide a meaningful and parsimonious explanation for observed
relationships within a set of measured variables. That is, one observes
correlational relationships within a set of measured variables, and one
attempts to explain those relationships using a model that is substan-
tively meaningful and also is parsimonious in the sense of being sub-
stantially less complex than the observed data themselves. A critical
principle in model specification and evaluation is the fact that all of the
models that we would be interested in specifying and evaluating are
wrong to some degree. Models at their best can be expected to provide
only a close approximation to observed data, rather than an exact fit. In
the case of SEM, the real-world phenomena that give rise to our
observed correlational data are far more complex than we can hope to
represent using a linear structural equation model and associated as-
sumptions. Thus we must define as an optimal outcome a finding that
a particular model fits our observed data closely and yields a highly
interpretable solution. Furthermore, one must understand that even
when such an outcome is obtained, one can conclude only that the
particular model is a plausible one. There will virtually always be other
models that fit the data to exactly the same degree, or very nearly so,
thereby representing models with different substantive interpretation
but equivalent fit to the observed data. The number of such models may
be extremely large, and they can be distinguished only in terms of their
substantive meaning. In the absence of considering all possible such
models, a finding that a particular model fits observed data well and
yields an interpretable solution can be taken to mean only that that
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model provides one plausible representation of the structure that pro-
duced the observed data.

Let us now turn to some details of model specification. The set of
variables within a given model includes both measured variables (MVs)
and latent variables (LVs). An MV is simply a variable that is directly
measured, whereas an LV is a construct that is not directly or exactly
measured. LVs are routinely relevant and central in research in behav-
ioral sciences (and in many other disciplines as well). Constructs such
as intelligence, depression, and attitude are LVs. In the general class of
models, MVs typically serve as approximate measures, or indicators,
of LVs. For instance, the Beck Depression Inventory could serve as an
indicator of the LV depression. In a structural equation model it is
desirable for each such LV to be represented by several distinct indica-
tors. The LV, then, is defined in effect as whatever its multiple indica-
tors have in common with each other. LVs defined in this way are
equivalent to common factors in factor analysis and can be viewed as
being free of error of measurement. Without multiple indicators we rely
on single error-perturbed MVs to represent constructs of interest. This
approach is problematic in that constructs are not well defined and
estimates of effects among constructs are biased by the influence of
error of measurement.

Given a set of MVs and LVs, a model postulates a pattern of linear
relationships among these variables. Within the model there exist two
types of relationships: directional and nondirectional. Directional rela-
tionships represent hypothesized linear directional influences of one
variable on another. For instance, the notion that stress causes depres-
sion implies a directional influence between two LVs. Nondirectional
relationships represent hypothesized correlational associations between
variables, with no attempt to postulate direction of influence. For
example, the hypothesis that verbal ability and mathematical ability are
correlated represents a hypothesized nondirectional association be-
tween two LVs. Essentially, the task of model specification requires
that the researcher specify a pattern of directional and nondirectional
relationships among the variables of interest. Of course, it is not neces-
sary for there to be some type of relationship for each pair of variables.
In fact, in typical models, many pairs of variables are hypothesized to
be not directly associated by either type of relationship.

Each of these directional and nondirectional associations can be
thought of as having a numerical value associated with it. Numerical
values associated with directional effects are values of regression
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coefficients; that is, weights applied to variables in linear regression
equations. Numerical values associated with nondirectional relation-
ships are values of covariances between variables (or correlations, if
variables are standardized). These weights and covariances can be
thought of as parameters of the model. A major objective in applications
of SEM is to estimate the values of these parameters.

Each variable in the system can be designated as either an endo-
genous or an exogenous variable. An endogenous variable is one that
receives a directional influence from some other variable in the system.
That is, an endogenous variable is hypothesized to be affected by
another variable in the model. It may also emit a directional influence
to some other variable, but not necessarily. An exogenous variable is
one that does not receive a directional influence from any other variable
in the system. Exogenous variables are typically associated with one
another by nondirectional relationships, but such associations are not
required, and exogenous variables typically exert directional influences
on one or more endogenous variables.

An important feature of an endogenous variable involves the fact that
we generally do not view such a variable as being perfectly and com-
pletely accounted for by those variables hypothesized to exert direc-
tional influences on the endogenous variable in question. Therefore, we
generally define each endogenous variable as being influenced also by
an error term, which represents that part of the endogenous variable that
is not accounted for by the linear influences of the other variables in
the system. These error terms can be viewed as consisting partly of
random error and partly of systematic error that is not explained, but
could theoretically be explained by variables or effects not included in
the model. Note that the error terms themselves can be considered to be
LVs in that they are not directly observed. Also, in most applications,
the error terms will be exogenous variables, not receiving directional
influences from other variables. This last feature is not a requirement,
however, in that it is useful in some special situations to consider
directional influences among error terms.

In the general case, a model will involve a hypothesis about a pattern
of linear relationships among a set of LVs, with each LV measured by
multiple indicators. Relationships of a latent variable to its indicators
are usually defined as directional, from the LV to each indicator. For
example, the LV depression would be hypothesized to exert a linear
influence on each MV used as an indicator of that LV, such as the Beck
Depression Inventory and the Hamilton Depression Rating Scale. Pa-
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rameters associated with these linear effects are equivalent to factor
loadings in factor analysis; that is, they are regression coefficients
representing the linear influence of common factors on measured vari-
ables. The observed correlations among indicators of a given LV are
thus hypothesized as arising from the joint dependence of those indica-
tors on the LV. Note that each such indicator is an endogenous variable
in that it receives a directional influence from the LV it is measuring.
Therefore, we conventionally represent each indicator as being influ-
enced also by an error term. These error variables are analogous to
unique factors in factor analysis in that they represent that part of each
indicator not accounted for by the common factor(s).

An alternative view of relationships between LVs and indicators is
receiving attention in recent literature (Bollen & Lennox, 1991; Cohen,
Cohen, Teresi, Marchi, & Velez, 1990; MacCallum & Browne, 1993).
In this alternative view, some LVs could be defined as being influenced
by their indicators, rather than vice versa. For example, clinical and
social psychological researchers are often interested in the construct of
social support, represented by measures such as frequency of positive
social interactions in a given period of time. Rather than viewing social
support as a construct influencing such measures, it might be more
reasonable to view the MVs as giving rise to or influencing the con-
struct. In such a construction the MVs are called causal indicators.
Those indicators are then typically exogenous variables, thereby not
containing a specified error term, and the construct automatically be-
comes an endogenous variable. In the process of model specification it
is recommended that the researcher consider the nature of each LV of
interest and decide whether it is most appropriate to define its indicators
as effects of or causes of the LV and to specify the model accordingly.
Cohen et al. (1990) provide some guidance for making such determina-
tions. Bollen and Lennox (1991) discuss implications of this type of
model specification, and MacCallum and Browne (1993) discuss and
illustrate problematic issues that often will arise when causal indicators
are embedded in larger models in practice.

With regard to the relationship between MVs and LVs, it is also
important to note that MVs do not have to serve as indicators of LVs.
An MV can stand alone in a model as either an exogenous or an
endogenous variable. Some models, called path analysis and simulta-
neous equation models, contain only MVs and no LVs (other than error
terms associated with endogenous MVs). A model could also contain a
mixture of stand-alone MVs and LVs with multiple indicators. Re-
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searchers should be aware, though, that, without additional information
such as reliability estimates, MVs standing alone in a model are con-
sidered and specified to be free of error of measurement. Therefore, the
presence of such error in the measurements will contaminate estimates
of model parameters. Thus it is generally advantageous to employ LVs
with multiple indicators.

A model will also contain hypothesized relationships of LVs with
one another. Following principles stated earlier, such relationships can
be either directional or nondirectional, and each LV can be defined as
either exogenous or endogenous. An endogenous LV will generally be
specified as being influenced also by an error term representing that
part of the LV not accounted for by the linear influences specified in
the model. For example, if we hypothesize that stress causes depression,
depression will contain an error term representing that part of the
construct not accounted for by stress. Every error term in the model can
be viewed as an LV that exerts a linear influence on the variable with
which it is associated.

Let us now carefully consider the nature of all of the parameters in
a structural equation model. First, every exogenous variable in the
entire system (including every MV, LV, and error term that satisfies the
definition of an exogenous variable) will have a variance that is defined
as a model parameter. Endogenous variables also have variances, of
course, but those variances are not parameters. Rather, variances of
endogenous variables are implied by other variables and influences in
the model. For instance, in the example mentioned earlier, the variance
of depression is implied by the variances of stress and the error term,
and their influences on depression. That is, because depression is
modeled as a linear function of stress, plus an error term, the variance
of depression could be expressed algebraically as a function of the
variance of stress, the influence of stress on depression, the variance of
the errors, and the covariance of stress and error, which is zero. More
generally, the variance of any endogenous variable can be expressed
algebraically as a function of the variances of exogenous variables,
including error terms, and parameters associated with linear influences
in the model. Thus the variances of endogenous variables are not them-
selves parameters but are functions of other parameters in the model.

Next, any covariances (i.e., nondirectional associations among ex-
ogenous variables of any kind) would be parameters of the model. Such
parameters can involve exogenous variables only. It is not permissible
to specify nondirectional associations involving any endogenous vari-
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able because all such associations are implied by other variables and
influences in the model. Just as the variance of an endogenous variable
can be expressed as a function of other model parameters, so also can
covariances (or correlations) of endogenous variables with other vari-
ables. Thus such relationships are not specifiable as model parameters.
For example, if we hypothesize that stress causes both depression and
fatigue, we would not be permitted to specify a nondirectional associa-
tion between depression and fatigue. The model already implies a
relationship between these constructs in that both are influenced by a
common cause, stress. Specifically, the covariance between depression
and fatigue could be shown to be an algebraic function of the variance
of stress and the linear influence of stress on depression and fatigue.
Therefore, that covariance is determined by other parameters and can
not be specified as a distinct parameter. The same phenomenon holds
for all nondirectional relationships involving endogenous variables.

Finally, all directional effects specified in the model constitute a
third category of parameters. These directional effects include effects
of LVs on other LVs, LVs on their indicators, error terms on associated
variables, and so on. To summarize, we can define three classes of
parameters in a structural equation model: variances of exogenous
variables, covariances among exogenous variables, and weights repre-
senting directional linear influences among variables.

Each of these parameters is designated as being either a free parame-
ter, which means its value is unknown and to be estimated, or a fixed
parameter, which means it is provided with a specified numerical value
in the original model. For free parameters, it is also possible to define
constraints involving estimates of individual parameters or combina-
tions of parameters. For example, one can require that the estimate of
a given parameter be greater than or equal to zero or that estimates of
several parameters be equal. Such aspects of model specification must
be carefully justified based on theory or research objectives. For exam-
ple, equality constraints among parameters are especially useful in
longitudinal models and in models fit simultaneously to multiple sam-
ples. In longitudinal models, equality constraints can be used to formu-
late hypotheses of invariance of linear influences among variables at
different time points or across successive time intervals. In multisample
analyses, equality constraints are often used to test equality of model
parameters in separate groups of individuals.

Values of fixed parameters are generally defined based on require-
ments of model specification. A critical requirement is that we establish
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a scale for each LV in the model, including error terms. LVs are
constructs not directly measured and thus have no scale of measure-
ment. However, because we wish to estimate values of parameters
representing associations among LVs and between LVs and M Vs, it is
essential that each LV have a defined scale. For example, a regression
coefficient representing the predicted change in depression associated
with a one-unit increase in stress cannot be estimated without defining
a scale, or unit of measurement, for stress and depression, To resolve
this dilemma, we provide each LV with a scale in the model specifica-
tion process. This objective can be achieved in one of two ways. The
first is to fix the variance of each LV at a specified numerical value,
typically 1.0. Each such LV is thus defined as a standardized variable,
which can greatly simplify interpretation of subsequent parameter esti-
mates. Establishing a scale for each construct in this way allows us to
interpret coefficients associated with directional effects among LVs as
standardized regression weights, and those associated with nondirec-
tional relationships as correlations. If MVs have also been standardized
(i.e., if the model is fit to a correlation matrix) then coefficients asso-
ciated with relationships of LVs to MVs, or MVs to one another, can
also be interpreted as standardized. Thus this scaling procedure is
recommended for each substantive construct in the model. A second
procedure for establishing a scale for an LV is to fix the value of one
parameter associated with a directional influence emitted by the given
LV. This procedure is recommended for each error term in the model.
In effect, this means that we simply assign a value of 1.0 for the
influence of each error term on its associated endogenous variable.
Recall that in typical models the error terms are exogenous variables
and their variances are parameters to be estimated. Thus the estimate
of each such error variance parameter will tell us how much variance
in the associated endogenous variable is not accounted for by other
influences in the model.

One loose end in the procedure just described involves how to
establish a scale for an endogenous LV. The variance of an endogenous
LV is not a parameter but rather is implied by other variables and
influences in the model. For such a case we have two options. We could
use the second procedure just described and fix at 1.0 one parameter
representing an influence of that LV on another variable. This is
typically done by fixing at 1.0 the parameter representing the influence
of the LV on one of its indicators. An alternative is to fix the implied
variance of the endogenous LV at 1.0. Because that implied variance is
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not a parameter, however, this procedure actually represents the intro-
duction of a constraint on other parameter estimates. The second proce-
dure is much more desirable because it allows us to define endogenous
LVs as standardized, which simplifies interpretation of parameter esti-
mates. However, this approach is not widely available in SEM software.
It was introduced by Browne and Mels (1992) in their RAMONA
program. Lacking such software, one is limited to using the first proce-
dure just described for establishing a scale for an endogenous LV.

Path Diagrams

It is very common and useful in practice to represent models using
path diagrams. Although there are some standard conventions in con-
structing such diagrams, there are also variations in how certain details
of models are represented. For example, some researchers construct
diagrams so as to explicitly display error terms as LVs whereas others
do not do so. I find it useful to construct path diagrams so as to represent
all information about the model. Such an approach requires the re-
searcher to be completely explicit about model specification and also
can be quite helpful in converting the model into instructions for SEM
software. Therefore, I will describe a procedure for constructing com-
plete path diagrams for SEM.

It is standard convention to use squares or rectangles to represent
MYVs and circles or ellipses to represent LVs, including error terms.
Directional effects between variables are specified using single-headed
arrows, and nondirectional relationships are represented using double-
headed arrows. It is also useful to represent the variance of a variable,
as necessary, using a double-headed arrow from a variable to itself.
With one exception, each of these arrows, or paths, represents a parame-
ter of the model and has either a free or fixed value. The exception
involves cases in which we specify the variance of an endogenous LV
as being fixed at 1.0. Such a variance is not a parameter but is rather
implied by the model. Each path is then labeled using an appropriate
symbol for free parameters to be estimated, or a numerical value for
fixed parameters. In various mathematical frameworks for SEM (Bentler
& Weeks, 1980; Joreskog, 1974; McArdle & McDonald, 1984), these
parameters are denoted using mathematical symbols, usually Greek
letters. In the present introductory presentation, however, such notation
is not really necessary. A simple alternative to be used here is to
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represent fixed parameters by their numerical values and free parame-
ters by the symbol *.

Illustration

Toillustrate procedures for specification of a model and construction
of a corresponding path diagram, suppose we were to study relation-
ships among depression, functioning of the immune system, and physi-
cal illness. These three constructs could be considered LVs, and we
could obtain multiple measures of each. Depression could be measured
by conventional scales such as the Beck Depression Inventory and the
Hamilton Depression Rating Scale. Immune function could be assessed
by a variety of blood chemistry measures. Illness could be measured by
such measures as the frequency of physician-diagnosed infectious ill-
nesses, number of days in bed, and so on. Assume that we select three
appropriate indicators for each LV. For simplicity, the indicators for
depression will be called Depl, Dep2, and Dep3; the indicators for
immune function and illness will be labeled in a corresponding fashion.
Suppose finally that we hypothesize that depression influences immune
function which in turn influences illness.

From this information, and following the procedures and rules de-
fined earlier for model specification, we can construct a complete
structural equation model and corresponding path diagram. The dia-
gram is shown in Figure 2.1. The three LVs are shown as ellipses, with
single-headed arrows representing the hypothesized associations among
them. Those paths are labeled as * to represent the unknown values of
the corresponding parameters. Depression is an exogenous LV because
it receives no single-headed paths from other variables. Therefore, its
variance is a parameter of the model and is fixed at a value of 1.0 to
establish a scale. Immune function and illness are endogenous LVs.
Their variances are not model parameters but can be defined as fixed at
1.0, thereby establishing a constraint on other parameters. On the path
diagram those fixed variances are enclosed in parentheses to indicate
that they are not parameters. Because immune function and illness are
endogenous L Vs, it is conventional to specify associated residual terms,
which are shown in the diagram as LVs. The residual term e10 repre-
sents that part of the immune function construct that is not accounted
for by the linear influence of depression. The residual term e11 repre-
sents that part of the illness construct that is not accounted for by the
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Figure 2.1. Illustrative Model of Relationships Among Depression, Immune
Function, and Illness

direct linear effect of immune function, which subsumes the indirect
linear effect of depression, through immune function. The influence of
each of these error terms on their associated LVs is specified by a
single-headed arrow with a fixed weight of 1.0. Each of these residuals
is actually an exogenous LV and thus has a variance parameter associ-
ated with it. These variance parameters are labeled as * to indicate that
they are free parameters whose values are to be estimated.

Let us next consider the relationship of each LV to its indicators. The
three indicators of each LV are represented by appropriately labeled
rectangles in the path diagram. The depression construct exerts a linear
influence on each of its three indicators, as represented by the single-
headed paths with associated * labels. Each indicator is specified as
containing an error term, with each error term exerting a linear influ-
ence on the corresponding indicator, with an associated weight of 1.0,
and each error term also having a variance specified as a free parameter
and labeled as *. A corresponding structure is specified for the relation-
ship of the immune function and illness constructs to their respective
indicators.

The resulting path diagram shows all information about the specified
model. Every variable in the system, including error terms, is repre-
sented explicitly. Every parameter in the model is shown as having
either a free or fixed value, including variances of exogenous variables.
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In addition, it is specified that the scales of the two endogenous LVs
are established by setting their variances at 1.0. A count of the number
of free parameters in this model finds that number to be 22: there are
11 free regression weights and 11 free variances. However, the impo-
sition of two constraints implied by fixing the variances of immune
function and illness reduces the effective number of free parameters to
20. The effective number of parameters in a model can be defined as
the number of free parameters minus the number of constraints imposed
on those parameters.

This model represents a hypothesized pattern of linear relationships
among a set of LVs and MVs. The model is intended to account for the
relationships among the nine MVs. If we were to conduct a study
wherein we gathered data on these nine MVs from an appropriate
sample of people, we could compute the variances and covariances
among those nine MVs. For p variables, the number of such variances
and covariances is p(p + 1)/2; in this case, that number would be 45.
Thus the specified model can be viewed as an attempt to explain the
structure inherent in those 45 variances/covariances using a model
containing 20 free parameters. In this sense, the model is substantially
simpler than the data whose structure it is trying to explain.

Identification

An important but difficult issue inherent in the process of model
specification is the issue of identification. To have a basic under-
standing of this problem it is necessary first to understand fundamental
aspects of the process of parameter estimation. The model shown in
Figure 2.1 falls into a general class of linear structural equation models.
As mentioned earlier, there are several different but nearly equivalent
mathematical frameworks for representing such models. These frame-
works simply define the mathematical relationship between the model
parameters on the one hand and the variances/covariances of the MVs
on the other hand. Thus, if we knew the values of all of the parameters
for the model in Figure 2.1, it would be a relatively simple task to
compute the true variances/covariances of the nine MVs as implied by
that model and those parameter values. That is, in a purely theoretical
case wherein the model is correct and the parameter values are known,
we could compute the true variances/covariances of the MVs. In prac-
tice, however, we do not know the parameter values. Instead, we
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observe a sample of observations on the MVs and obtain sample vari-
ances/covariances. We then have the opposite problem. Given the
observed variances/covariances for the MVs, and given the specified
model, we want to find values of the model parameters that will
reproduce the observed variances/covariances. Unfortunately, in prac-
tice a solution cannot usually be found so as to yield exact fit of the
model to the observed data. Therefore, parameter values are estimated
from the sample data so as to obtain a solution wherein the variances/
covariances reconstructed from the parameter estimates for the speci-
fied model match the corresponding sample values as closely as possi-
ble. This is the primary task carried out by SEM computer programs.

During these computations, estimates of model parameters are ob-
tained using complex functions of sample variances/covariances. Thus,
for each free parameter, it is necessary that at least one algebraic
solution be obtainable expressing that free parameter as a function of
sample variances/covariances. Parameters satisfying this condition are
said to be identified, and parameters for which there is more than one
distinct such solution are said to be overidentified. For these classes of
parameters it is possible to find a unique solution. In SEM, models with
one or more overidentified parameters are of primary interest because
it is only for such models that the issue of correspondence between the
model and the data is meaningful. A model with no overidentified
parameters will always fit perfectly, thereby making it meaningless to
assess model plausibility by evaluating fit. Models containing over-
identified parameters generally will not fit data exactly, thus creating
the critically important possibility that a model could be found to fit
observed data poorly. Only when this possibility exists is a finding of
good fit meaningful. This issue is discussed further in the section on
disconfirmability.

For a given free parameter, if it is not possible to express the
parameter algebraically as a function of sample variances/covariances,
then that parameter is said to be unidentified. A model with one or more
unidentified parameters cannot be used in practice because estimates of
unidentified parameters are arbitrary and cannot be interpreted. Al-
though a mathematical example of this phenomenon is well beyond the
scope of this presentation, one can get a sense of the problem by
considering the equation, Bd?> = 1. If B and ¢ are parameters to be
estimated and this equation represents our entire set of information,
then there exists an infinite number of solutions for B and ¢, thus
rerdering those parameters unidentified. However, if we had other
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equations involving P and ¢ (e.g., B = 2), then the parameters could be
identified, or overidentified. To summarize, it is critical that models be
specified in such a way that all parameters are identified.
Unfortunately, determination of this property for any particular model
can be a very difficult task. There is no simple set of necessary and
sufficient conditions that provide a means for verification of identifi-
cation of model parameters; however, there are two necessary condi-
tions that should always be checked. First, as mentioned earlier, a scale
must be established for every LV in the model. If this condition is not
satisfied, one or more parameters will be unidentified. (Specifically, for
an exogenous LV, the variance of the LV as well as coefficients
associated with all paths emitted by the LV would be unidentified; for
an endogenous LV, the residual variance and coefficients associated
with all paths leading to or from the LV would be unidentified.) Second,
the effective number of model parameters, defined earlier, must not
exceed the number of sample variances/covariances for the MVs, which
is p(p + 1)/2. If this condition is violated, the researcher has fewer data
values than parameters to be estimated, which will cause lack of identi-
fication. These two conditions are necessary but not sufficient. Identifi-
cation problems can still arise even if these requirements are satisfied.
Although a rigorous verification of model identification can be achieved
only algebraically, SEM computer programs generally provide a check
for identification during the parameter estimation process. If a problem
is found, the programs point the user to one or more parameters that are
involved in an identification problem. Using this information, the user
can attempt to isolate the problem algebraically and determine whether
the model can be respecified in a meaningful way so as to eliminate the
problem. In no case should one proceed without resolving the problem.

Strategies and Related Issues
in Model Specification

DISCONFIRMABILITY

A critical issue in the specification and evaluation of any model in
this class is the degree of disconfirmability of the model. A model is
disconfirmable to the degree that it is possible for the model to be
inconsistent with observed data. If a model can fit any set of MV
variances/covariances perfectly, then the model is not disconfirmable
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at all. Such a model will generally have as many or more parameters
than there are MV variances/covariances. A model of this type is not
very interesting scientifically. It is as complex as the observed data and
thus serves no useful purpose in terms of explaining the structure
underlying the data in a parsimonious way. For a model to be discon-
firmable to any degree, the effective number of parameters must be less
than the number of MV variances/covariances, meaning that the model
will have positive degrees of freedom (df), because df equals the
number of MV variances/covariances minus the effective number of
parameters. Reasonably specified models with lots of parameters and
relatively low df often tend to fit data quite well and thus tend to be not
very disconfirmable. On the other hand, models with low numbers of
parameters relative to the number of MV variances/covariances will be
highly disconfirmable. For such models, bad fit to observed data is
entirely possible. Thus when good fit is found one can be more confi-
dent in drawing a conclusion that the model is a plausible representation
of the structure of the data. On the other hand, if a model is not
disconfirmable to any reasonable degree, then a finding of good fit is
essentially useless and meaningless. Therefore, in the model specifica-
tion process, researchers are very strongly encouraged to keep in mind
the principle of disconfirmability and to construct models that are not
highly parameterized. In addition, it is essential in the assessment of
model fit that one use fit measures that take into account in some
fashion the degree of disconfirmability of a model. Unless such indexes
are used, one will simply conclude that more highly parameterized
models are better because they fit data better. Researchers are thus
strongly urged to consider an index such as the root mean square error
of approximation (RMSEA; Browne & Cudeck, 1993; Steiger & Lind,
1980), which is essentially a measure of lack of fit per degree of
freedom.

EQUIVALENT MODELS

Another important issue in model specification is the problem of
equivalent models. Essentially, two models are equivalent if they fit
any set of data equally well. Such models cannot be distinguished
mathematically, differing only in terms of their substantive meaning
and the interpretability of solutions obtained when they are fit to data.
The issue of equivalent models can and should be addressed during
model construction. For a given model of interest, it is possible to
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construct alternative equivalent models by following some simple rules
developed by Lee and Hershberger (1990), who expanded on earlier
work of Stelzl (1986). These rules indicate conditions under which one
can replace one path with a different path without affecting goodness
of fit. (For example, in the simplest case of a model of the association
between two variables, one cannot distinguish among the following
models in terms of fit to the data: A — B; B — A; A & B. Fortunately,
when such relationships are embedded in larger overidentified models,
the direction of each such path is generally not arbitrary.) By following
these procedures, one can construct and consider the substantive mean-
ingfulness of alternative equivalent models. Ideally, one would find that
relatively few such models exist and that those that do are not substan-
tively meaningful. On the other hand, if one finds that it is possible to
generate a substantial number of such models, and if many of those
models seem substantively plausible, then there is relatively little point
in conducting a study of one’s original model and arguing for its
validity.

As noted by MacCallum, Wegener, Uchino, and Fabrigar (1993), the
existence of equivalent models raises a problem similar to a confound
in an experimental design. In the presence of such a confound there are
alternative equally good explanations of observed phenomena. One is
not free to ignore one explanation and support another without further
study. Likewise, in SEM one is not free to ignore the presence of
equivalent models and to assume that one’s specified model provides
the valid explanation of the data. The problem must be confronted.
MacCallum et al. (1993) show that the problem is a severe one in
practice, with equivalent models occurring routinely and often in very
large numbers, and they provide some recommendations on how to
address and manage the problem.

STRATEGIES

In empirical applications of SEM there are various strategies that
researchers employ for model construction and development. Jéreskog
and Sérbom (1993a) describe three distinct strategies: strictly confir-
matory, model generation, and model comparison. In the strictly con-
firmatory strategy, the researcher constructs one model of interest and
evaluates that model by fitting it to appropriate data. If the model yields
interpretable parameter estimates and fits the data well, it is supported
and considered a plausible model. If not, the model is not supported and
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no further steps are taken. This procedure is probably not used very
often in practice because it leaves little flexibility or opportunity to
address a negative outcome.

It is much more common for researchers to use a model generation
strategy. In this approach, a researcher begins with a specified model
and fits that model to appropriate data. The obtained solution is then
evaluated for the purpose of modifying the model to improve its parsi-
mony and/or its fit to the observed data. It might be possible to simplify
the model by deleting selected parameters without significantly altering
its fit to the data. More commonly, researchers might seek to improve
goodness of fit to the data by introducing additional parameters to the
model. Bollen (1989b) provides an excellent presentation of methods
available for achieving such objectives. Given a solution for the origi-
nal model, one can employ the Wald test to determine the degree to
which fit would deteriorate if any selected subset of free parameters
were deleted from the model (i.e., converted into fixed parameters with
values of zero). If one can determine a subset of free parameters that,
when deleted from the model, would produce little decrement in fit, one
could simplify the model accordingly. The result would be a simpler
model that would fit the data nearly as well as the original model.
Alternatively, one can employ the Lagrange Multiplier (LM) test to
determine the degree to which fit would improve if any selected subset
of fixed parameters were converted into free parameters. From this
perspective it might be possible to determine a subset of fixed parame-
ters that, when converted to free parameters, would substantially im-
prove model fit. One could introduce this set of free parameters into the
model and thereby obtain a model with more parameters than the
original model that would fit the data much better.

A very commonly used special case of the LM test is represented by
the modification index (MI). Some SEM computer programs provide a
value of the MI for each parameter in the model that is fixed at zero
(i.e., each potential path that is not present in the path diagram); the MI
represents the improvement in the overall x test of model fit that would
be achieved if that specific parameter were set free. A large Ml indicates
that if the corresponding parameter were introduced to the model, the
fit of the model would improve significantly. MIs are routinely used in
practice to modify models so as to improve their fit to data. Breckler
(1990) and MacCallum, Roznowski, and Necowitz (1992) reviewed a
total of 100 published applications of SEM and found that 37 of them
contained acknowledgments of having modified an initial model pri-
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marily using MIs alone. Furthermore, it is not unusual for this procedure
to be used to introduce a fairly substantial number of new parameters
to a model. MacCallum et al. (1992) cite several papers wherein more
than eight parameters were added to a model.

Although the model generation procedure is used widely in practice,
responsible researchers will approach it with caution. The methodologi-
cal literature provides many warnings that are too often ignored in
practice. In particular, it is of utmost importance that any modifications
made to an original model must be substantively meaningful and justi-
fiable. Of the 37 applications mentioned earlier that used the model
generation strategy, only six offered any substantive justification of
specific modifications. In the remaining 31, the model was altered
purely to improve its fit with no apparent effort to interpret specific
modifications. Another critical issue involves the necessity of validat-
ing modified models using new data. Because the model generation
process is data driven, with models modified to fit a particular set of
data better and then refit to the same data, a modified model must be
validated using data from a new sample. This warning is also routinely
ignored in practice. Of the 37 studies mentioned earlier, only four were
found to provide any information about validation of the model on new
data. If the model generation strategy is employed without attending to
these warnings, the generated model has relatively little meaning or
value. Some parameters in the model may have no substantive meaning,
and the model will have been evaluated using the same data employed
to modify it. It is imperative that researchers using this strategy begin
to attend to these issues. It would be appropriate for editors of journals
publishing applications of SEM to reject papers employing the model
generation strategy if authors ignore these concerns.

There are still other reasons to be concerned about use of the model
generation strategy in practice. Consider the ideal case in which a true
model exists that exactly accounts for the variances/covariances of the
MVs in the population of interest, but suppose that the model that is
evaluated in the sample is misspecified by the omission of one or more
parameters. Ideally, if model generation using the MI statistic works
well, MIs should lead the researcher to add the appropriate parameters
to the original model so as to lead to the true model. MacCallum (1986)
investigated this issue using simulated data. Using different models,
sample sizes, and strategies in a total of 160 sample data sets analyzed,
the model generation procedure using MlIs led from the misspecified
model to the correct model in only 22 cases. Thus, even under ideal


R
Rectangle

R
Rectangle


34 STRUCTURAL EQUATION‘MODELING

conditions, model modification procedures may routinely yield invalid
results.

An even more serious issue in model generation involves the prob-
lem of capitalization on chance. As noted earlier, model modifications
are based on results obtained from analysis of sample data, and modi-
fied models are evaluated by refitting them to the same data. Thus
specific modifications may well be determined in part by chance char-
acteristics of the observed sample, implying that modifications might
not generalize beyond the sample at hand. If the same model generation
strategy were followed beginning with the same model using a different
sample, or using the entire population, different modifications might be
made. MacCallum et al. (1992) studied this issue by conducting a
sampling study using two large empirical data sets. They drew repeated
subsamples of various sizes from the data sets, fit hypothesized models
in each sample, and then modified those models using MIs, following
procedures commonly used in practice. Model modifications were then
compared across subsamples. Results showed that the specific modifi-
cations that were selected were highly unstable from sample to sample
with sample sizes less than 400 and were not completely stable even
with sample sizes of 1200. Thus the outcome of the model modification
process appears to be very sensitive to characteristics of the sample at
hand, and generalization beyond that sample is highly suspect unless
sample size is extremely large.

Given the findings of these studies, researchers must be concerned
about use of the model generation strategy in practice. Users of this
strategy must acknowledge that they are engaging in exploratory model
development. There is not necessarily anything wrong with exploratory
model development as long as it is acknowledged in practice that that
is what is being done and that the outcome is a model that cannot be
supported without being evaluated using new data. Serious problems
arise when the model generation strategy is applied without any effort
to attach substantive meaning to model modifications and when the
resulting model is treated as if it has been confirmed because it fits the
observed sample data well. The model generation strategy is a legiti-
mate approach to model development if it is used responsibly, but such
use seems to be the exception rather than the rule in much of the applied
literature.

A third strategy for model specification is the model comparison
strategy. In this approach a researcher specifies a number of alternative
a priori models and fits each model to the same set of data. The multiple
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models may represent competing theoretical positions or may be con-
structed based on conflicting research findings. In the early stages of
model development in a particular domain, multiple models may simply
be a result of uncertainty about the anticipated pattern of relationships
among variables and may therefore reflect the exploratory character of
the research effort. In such circumstances it may be useful to construct
a variety of models ranging from relatively simple to relatively complex.

After each model is fit to an appropriate set of data, results are
evaluated and compared with respect to several characteristics. The
most obvious is goodness of fit, keeping in mind, as mentioned earlier,
that it is important to employ procedures for evaluating fit that take into
account model complexity. Researchers must not focus solely on fit,
however, because the model that fits the best might exhibit some
unattractive qualities. It is critical to examine parameter estimates for
interpretability and meaningfulness. A model that fits well but yields
nonsensical parameter estimates is of little value. It is also useful to
compare models based on cross-validity. Browne and Cudeck (1989)
and Cudeck and Henly (1991) encourage the use of a cross-validity
index for model comparison that provides an indication of how well a
solution obtained from a sample of a given size would fit in an inde-
pendently drawn sample. This approach to model comparison takes into
account the issue of sample size, and findings indicate that simpler
models tend to cross-validate best in small samples, with more complex
models cross-validating best in large samples (Browne & Cudeck,
1989).

To summarize issues related to these three strategies for model
specification and evaluation, the strictly confirmatory strategy is prob-
ably overly rigid in most settings and is not used much. The model
generation strategy appears to be heavily used but has very serious
shortcomings that are routinely ignored in practice. The model compari-
son strategy circumvents these shortcomings to a great extent and
provides a mechanism that is useful in a range of settings, from confir-
matory study of a small number of models to more exploratory study of
a larger range of models.

Conclusion

In empirical research in which SEM is to be employed, researchers
must carefully choose a strategy and specify one or more models in a
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fashion that is consistent with the objectives of the research. The model
comparison strategy, in particular, could probably be used to great
benefit much more frequently than it is currently applied. If the model
generation strategy is used, researchers must be mindful and actively
responsive regarding the warnings and problems discussed earlier. In
the specification of the particular model(s) to be evaluated, it is wise to
avoid highly parameterized models that tend to be not very disconfir-
mable, and it is also wise to avoid trying to fit any models to data for
very large numbers of variables. The structure of the variances/covari-
ances for a large set of MVs is commonly too complex to be fit well by
any parsimonious linear model. Finally, the process of the mechanical
specification of a particular model must be conducted with care so that
the model represented by the resulting path diagram and computer
program instructions corresponds accurately to the intended model.

3 Estimates and Tests in
Structural Equation Modeling

CHIH-PING CHOU

PETER M. BENTLER

In this chapter, we review the intimately related concepts of estimation
and testing of structural equation models. We also make recommenda-
tions about the usefulness of some of the alternatives that are available.
Because the existing literature on these topics is not very thorough and
is ambiguous in its results, we conducted our own study to provide a
solid foundation for our recommendations.

The structural equation model represents a series of hypotheses
about how the variables in the analysis are generated and related. The
parameters of the model are the regression coefficients and the vari-
ances and covariances of independent variables, as will be seen below.
These parameters are fundamental to interpreting the model, but they
are not known and need to be estimated from the data. Thus estimation
is a logical first step in the modeling process after model specification.
The statistical test of the adequacy of a model, or the goodness-of-fit
test statistic, is obtained simultaneously with the estimation. A goodness-
of-fit test statistic indicates the similarity between the covariance ma-
trix based on the estimated model, %(6), and the population covariance
matrix, X, from which a sample has been drawn. On the basis of this

AUTHORS’ NOTE: This research was supported by grants DA03976, DA01070, and
DAO00017 from the Nationa! Institute on Drug Use. We would like to acknowledge the
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definition, it is apparent that testing is a prerequisite to interpreting
modeling results. If a model cannot be considered consistent with the
population covariance matrix, as represented via sample data, there is
not much point to interpreting the model parameters.

The estimates of parameters as well as the goodness-of-fit y? test
statistic depend on the estimation procedure chosen. Different estima-
tion methods typically will yield somewhat different results for esti-
mates and model tests, and it would be desirable to have some guidance
about which methods tend to work well under various conditions en-
countered by researchers in practice. In Chapter 5, Hu and Bentler
concentrate on various approaches to the overall evaluation of a model.
Although we discuss model testing as well, we also address the impor-
tant problem of obtaining estimates that have good statistical proper-
ties. In particular, the estimates should be close to the true population
values of the parameters when the model analyzed is the true model,
and tests of the significance of a particular parameter should yield
adequate conclusions.

Because real psychological data are almost never normally distrib-
uted, we are particularly concerned with selecting an adequate estima-
tion and testing method when the observed variables are not multivariate
normally distributed. Although there are many varieties of estimation
and testing methods, to keep matters manageable we concentrate on the
three most commonly used estimation procedures: maximum likelihood
(ML), generalized least squares (GLS) derived under normal distribu-
tion assumptions, and the asymptotic distribution free (ADF) method.
Each method provides estimates, standard error estimates for the free
parameters, and a x> model test; any of these components may prove to
be adequate or inadequate in practice.

Maximum likelihood estimation has been the most commonly used
approach in structural equation modeling (SEM). The ML method can
be inadequate, however, because it is developed under the multivariate
normality assumption, which is usually violated in practice. Extensive
research has focused on the robustness of ML and other estimation
methods to investigate the impact of the violation of the distributional
assumption (Anderson & Gerbing, 1984; Boomsma, 1983; Browne,
1982, 1984a; Chou, Bentler, & Satorra, 1991; Harlow, 1985; Hu, Bentler,
& Kano, 1992; Muthén & Kaplan, 1985, 1992; Tanaka, 1984). ML
estimates have been found to be quite robust to the violation of normal-
ity. That is, the estimates are good estimates, even when the data are
not normally distributed. The GLS method, in contrast, has not been as
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intensively studied. Comparing the ML and GLS methods, Jéreskog and
Goldberger (1972) and Browne (1974) found that the GLS estimates are
likely to be negatively biased. The results reported for the ADF ap-
proach have not been consistent. The ADF estimates were found to be
biased by Browne (1984a), Chou et al. (1991), Harlow (1985), and
Tanaka (1984), but not by Muthén and Kaplan (1992).

To extend results of previous studies on the quality of estimates, we
report on extensive computer comparisons of the ML, GLS, and ADF
estimation methods in terms of test statistics, parameter estimates, and
standard errors under several nonnormal distribution conditions. In
addition, the scaled test statistic of Satorra and Bentler (1988a, 1994)
and robust standard errors are selected for comparison. These two new
statistics provided promising results under some nonnormal conditions
(Chou et al., 1991). We extend the work by Chou et al. (1991) and
Harlow (1985) as well as make broader comparisons on various estima-
tion methods. These estimation methods are compared in terms of the
accuracy of the estimates that they generate, in addition to the associ-
ated test statistics, under violation of distributional assumptions.

Basic Concepts in Estimation

IDENTIFICATION

The purpose of estimation is to obtain numerical values for the
unknown parameters. In order to obtain appropriate parameter estimates,
the issue of parameter identification must be addressed. Identification
(Bollen, 1989b; Johnston, 1984) involves the study of conditions to
obtain a unique solution for the parameters specified in the model. One
of the conditions required to obtain a solution is that the number of free
parameters, say g, needs to be equal to or smaller than the number of
nonredundant elements in the sample covariance matrix, usually known
as p°, which is equal to p(p + 1)/2, with p being the number of variables
in the covariance matrix. The requirement that g < p° is, however, only
a necessary condition for a model to be identified. The sufficient
condition to obtain an identified model is that each and every free
parameter is identified. This condition is, however, not as simple to
evaluate in practice as an examination of g < p" for the necessary
condition, and can become very complicated when the model is large
(i.e., contains many free parameters). It can be more easily detected
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using the computer programs for SEM, such as LISREL (Jéreskog &
Sérbom, 1993b) or EQS (Bentler, 1992a; Bentler & Wu, 1993). These
programs provide error messages such as that linear dependency exists
among parameters, or a matrix is not positive definite. Linear depen-
dency describes the situation in which a parameter is a function of other
parameters. More specifically, the solution of that parameter can be
determined once the solutions of other parameters are obtained. Conse-
quently, matrices associated with that parameter are no longer positive
definite, and their inverse cannot be computed.

The sufficient condition for obtaining a unique solution can be easily
demonstrated using the concepts of simultaneous equations in which
we solve for the unknown parameters in the equations. Assume that
there are three independent equations with two unknown parameters, x

and y:

x+y=5 G.1)
2x+y=8 (3.2)
x+2y=9 (33)

With only one equation, say Equation (3.1), one may obtain infinite
sets of solutions for x and y. The x parameter can take any value whereas
the y parameter is (5 — x). The solutions for (x, y) can therefore be
expressed as (¢, 5 — ¢), with ¢ being any constant. This demonstrates a
linear dependency condition in which the solution of y is totally depen-
dent on the solution of x. The above condition in which there are more
unknown parameters than the number of equations is called underiden-
tified. This situation occurs most frequently in modeling with latent
variables, in which the scale of a factor may not have been set. Further
restrictions are needed to obtain a unique solution for both x and y.

With two equations, say Equations (3.1) and (3.2), a unique solution
of (3, 2) can be obtained for (x, y). In the situation in which the number
of linearly independent equations is the same as the number of unknown
parameters, we have a just identified situation, and a unique and exact
solution that satisfies the equations can be obtained. Multiple regres-
sion models, and simple path analysis models with measured variables
only, are often just identified. This means we can get unique parameter
estimates, but the model itself cannot be tested.
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Overidentification is the condition in which there are more equations
than unknown independent parameters, say Equations (3.1), (3.2), and
(3.3) to solve for (x, y). With overidentification, there is no exact
solution. This condition at first seems unfortunate, but it is actually a
blessing in disguise. Although we may not obtain an exact solution, we
may define a criterion and obtain the most adequate solution as an
alternative. For example, we can have a criterion that yields the smallest
absolute difference from the constants. Under this criterion, we obtain
a solution of (2.333, 3.333) for (x, y) ranged between 2 and 4. A
different criterion of smallest squared difference yields a solution of
(2.273, 3.273). The advantage of the overidentification condition in the
context of SEM is that we can have a model test when we have an
overidentified model.

TESTING

The concepts of simultaneous equations are easily transferred to the
estimation procedures in SEM. The just identified or overidentified
conditions need to be satisfied for every parameter to obtain a proper
solution. With all ¢ parameters able to be estimated, the number of
degrees of freedom (df) for model testing is (p* — ¢). When df is
positive, we have a testable model. The test is usually based on a %2
distribution. Different estimation procedures can be selected for model
evaluation, but they will all have the same df. The estimation proce-
dures ML, GLS, and ADF are different in terms of the criteria that are
used to obtain the most appropriate solution when a model is overiden-
tified, as shown below.

PRACTICAL PROBLEMS

In addition to the issues of model identification, there are other
issues frequently encountered in practice that may still cause problems
in estimation procedures. Assume that the empirical data collected have
satisfied the fundamental statistical requirement that observations are
independently and identically distributed. One of the most commonly
encountered problems is that the sample covariance matrix is not
positive definite (Wothke, 1993). This problem usually is caused by
linear dependency among observed variables; that is, some variables
are perfectly predictable by others. Because the inverse of the sample
covariance matrix is needed in the process of computing estimators, no
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solutions can be obtained from the estimation procedure when variables
are linearly dependent. To avoid dependencies, variables need to be
carefully selected to eliminate redundancies before the model can be
estimated and tested.

Nonconvergence is another common problem encountered in esti-
mation. The estimation procedure consists of an iterative process of
computational cycles beginning with a set of starting values for the
parameters. The starting values can be either provided by the researcher
or generated by a computer program. Within each cycle, an improved
set of estimates can be obtained. The results from the current cycle are
then compared to those obtained from the previous cycle, and this
iterative process continues until some predetermined criteria have been
satisfied. The basic statistical criteria that must be met in order to stop
the iterative process will be discussed in the following section. In
practice, most computer programs automatically stop the iterative pro-
cess after a certain number of cycles to avoid excessive consumption
of computer time, which can be very expensive. Nonconvergence oc-
curs when the iterative process is terminated because of the practical
consideration of excessive computer time rather than any statistical
consideration. Consequently, nonconvergent results cannot be trusted.

Usually, nonconvergence is caused either by poor model specifica-
tion or by poor starting values. Starting values can be easily modified,
for example, randomly. If the model is a good one for the data, only in
rare circumstances will choice of start values make much difference. If
the model is poor, that is, if even the best estimates do not reproduce
the sample data well, start values may be important, in which case
improvement of the model is advisable. Discussions of other problems
commonly encountered in estimation can be found in Bentler and Chou
(1987), Bollen (1989b), or Bollen and Long (1993).

Statistical Theory

SEM is used to evaluate a substantive theory with empirical data
through a hypothesized model. The vast majority of structural equation
models are covariance structure models (Bollen, 1989b), in which the
empirical data to be studied consist of the p X p sample covariance
matrix, §, which is an unstructured estimator of the population covari-
ance matrix, 2. A structural equation model can be specified by a vector
of ¢ unknown parameters, 8, which in turn may generate a covariance
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matrix 3(0) for the model. The SEM null hypothesis is that 3, = 2(8).
Each estimation method, such as ML, GLS, or ADF, has its own
criterion to yield an estimator 9 for the parameters and a test statistic
to evaluate the null hypothesis.

In the sections that follow, the complicated statistical theories and
computational procedures in SEM are linked to the more understandable
process of solving simultaneous equations summarized earlier. An illus-
tration is provided using the EQS program (Bentler, 1992a). Manipula-
tion of matrices instead of individual equations will be presented to offer
a more complete picture of the process. The manipulation of matrices is
equivalent to dealing with a set of individual equations.

MODELS

The EQS program uses the Bentler-Weeks (1980) model. Every
variable in the model, whether observed or latent, is classified as either
an independent or a dependent variable. A dependent variable is a
variable in a path diagram that has a one-way arrow aiming at it. The
set of such variables is collected into the vector 7. All the remaining
variables are called independent variables, which are collected in the
vector £ Then the Bentler-Weeks model can be expressed as

n=pn+vE, (34

where £ is the vector for the independent variables, m is the vector of
the dependent variables, and the coefficient matrices B and y contain
the unknown path coefficients, or regression weights, represented by
one-way arrows in the path diagram of the model. In addition to p and
v, parameters can also be defined in ¢, the covariance matrix of §.
The EQS program does not confront the user with the matrix Equa-
tion (3.4) above; rather, the idea of simultaneous equations has been
adopted, and equations are individually specified for each variable
using a language involving V (measured variable), F (factor), E (error
residual), and D (disturbance, or factor residual) variables. Assume that
a confirmatory factor analysis (CFA) model has two factors and three
indicators for each factor. Each observed variable (V) considered as
dependent variable, therefore, has two variables aiming at it: a factor
(F) and a measurement error (E). In this CFA model, there are six Vs
in iy and two Fs and six Es in the £ vector. The B matrix is a zero matrix
and can be ignored, the vy matrix contains basically factor loadings and
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1s as coefficients associated with error residuals, and the ¢ matrix
consists of variances and covariances of Fs and Es that are independent
variables.

Based on the simultaneous equations in Equation (3.4), the covari-
ance matrix of the measured variables (Vs) can be computed. This can
be done symbolically as follows. With all the observed variables treated
as dependent variables in the model, the covariance matrix based on the

model is
30)=G(I~B) ' vyeyI-B)'G’, (3.5)

where G is a selection matrix containing 0 and 1 elements to select the
observed variables from all the dependent variables in . Equation (3.5)
can be expanded to p? equations, or one for each element in 3(0). By
considering only the nonredundant elements in %(0), which is a sym-
metric matrix, we can derive the p" independent equations containing
q parameters. Simultaneous equations such as Equations (3.1), (3.2),
and (3.3) can be defined by lining up the corresponding elements in
3,(0) as the functions of unknown parameters, and § as the constant. The
identification problem is to ensure that the unknown parameters 8, here
contained in matrices B, v, and ¢, can be uniquely solved for when the
structural equations specified in Equation (3.4) are transformed into the
p’ equations shown in Equation (3.5). Using a predetermined crltenon,
the g parameter estimates 8 can be obtained by solving these p* simul-
taneous equations. The LISREL program follows a similar procedure,
but involves more matrices (Joreskog & Soérbom, 1993b).

FITTING FUNCTIONS

Once the identification conditions have been satisfied for the p”
equations mentioned above, a criterion can be selected to obtain a
unique solution for the parameters. The criterion selected for parameter
estimation is also known as the discrepancy function, F = F(S, 2[8]).
The discrepancy function in SEM is conceptually similar to the criterion
defined for Equations (3.1), (3.2), and (3.3) to obtain the most appro-
priate solution. It provides a guideline to minimize the difference
between the population covariance matrix, X, as estimated by the
sample covariance matrix, S, and the covariance matrix derived from
the hypothesized model, 3(9).

Estimates and Tests in SEM 45

Different estimation methods in SEM have different distributional
assumptions and have different discrepancy functions to be minimized.
For example, the discrepancy function to be minimized for the ML
method is

Fyy = logI%(0)! + Trace [2(0)7'S] - log|SI-p . (3.6)

Forgoing further discussion of the statistical theory for ML, the above
function provides a way to measure the discrepancy between the 2(6)
and S. The solution for the parameters, 0, yielded by minimizing Fy,
implies that the smallest difference between § and 3(0) has been
obtained under that specific criterion.

GOODNESS-OF-FIT TEST

The goodness-of-fit test statistic, T, is used for hypothesis testing to
evaluate the appropriateness of an application of SEM and is equal to
the product of minimized F and (N — 1), where N is the sample size. If
the sample size is large enough, the minimized discrepancy function
times (N — 1) converges to a %2 variate with (p* — g) degrees of freedom.
This asymptotic goodness-of-fit % test statistic can then be used to
evaluate the SEM null hypothesis, Hy: 2(0) = 3. It should be noted that
the test statistic is only %2 distributed if the assumptions of large sample,
model specification, and distributions of variables are correct. For each
estimation procedure, the most appropriate parameter estimates and
standard errors are obtained at the minimum of the discrepancy function
for that specific procedure.

Hu et al. (1992) showed that these standard ML, GLS, and ADF test
statistics did not behave as well under violation of assumptions as had
previously been assumed. A scaled test statistic proposed by Satorra
and Bentler (1988a, 1994) performed even better than the standard
statistics (Chou et al., 1991; Hu et al., 1992). Both ML and GLS have
multivariate normal distributional assumptions. Their test statistics
may not have the ) distribution if the distributional assumption is false.
The idea of the scaled statistic is to modify the standard test statistics
to make them more approximately %2 distributed. As a function of the
standard goodness-of-fit %2 statistic T, the scaled test statistic can be
expressed as
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SCALEDT=c¢"'T, 3.

where the scaling constant c is an estimate of the average element of a
certain matrix. The computation of the scaling constant ¢ is compli-
cated. Conceptually, it is a product of two matrices containing fourth-
order moment information used to compute kurtosis; it represents the
deviation of the distribution of the data from the normal distribution.
Basically, if the data are normally distributed, ¢ = 1, whereas heavier-
tailed distributions tend to have ¢ > 1. In practice, T is taken as Ty . If
Ty is too large because of heavier than normal distributions, ¢! will
make the test statistic smaller. In Chapter 5, Hu and Bentler discuss the
performance of these statistics but do not discuss standard errors.

STANDARD ERRORS

Typically, standard errors can be derived from the parameter esti-
mates and the discrepancy function. These standard error estimates are
good estimates when the sample size is large, the model is correct, and
the distributional assumptions are satisfied. Thus the ADF standard
errors should be correct regardless of distribution, but this is not
necessarily true of ML and GLS standard errors. ML and GLS standard
errors may be substantially off the mark, typically underestimating
sampling variability when distributions have heavy tails.

Robust standard errors can be derived as a function of the usual
normal theory covariance matrix and the fourth-order moments of the
variables. The formula is complex but can be found in Arminger and
Schoenberg (1989), Bentler (1992a), and Bentler and Dijkstra (1985).

A New Study

To compare the performance of different estimation methods under
various distributional assumptions, we carried out a Monte Carlo study,
which is basically a computer sampling experiment. A simple confir-
matory factor-analytic model containing two correlated factors with
three variables marking each factor is used to evaluate the four estima-
tion methods described above. The true covariance matrix for the six
variables and their factor loadings and uniqueness obtained from Harlow
(1985) are presented in Table 3.1. The 13 distributions considered in
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TABLE 3.1 True Values for the Factor Analytic Model and Population
Covariance Matrix

Loadings Covariance Matrix
Variable F1 F2 Uniqueness Vi V2 V3 V4 | Z) V6
Vi 0.649 0.000 0.579 1.000
v2 0.709 0.000 0.498 0.460 1.000
V3 0.373 0.000 0.861 0.242 0.265 1.000
v4 0.000 0.831 0.309 0.132 0.144 0.076 1.000
V5 0.000 0.778 0.395 0.123 0.135 0.071 0.647 1.000
V6 0.000 0.897 0.195 0.142 0.155 0.082 0.746 0.698 1.000

NOTE: Correlation between F1 and F2 is 0.244.

Harlow (1985) are also used in this study to generate the observed
variables. The nonnormal distributions are characterized by skewness
and kurtosis. The skewness and kurtosis of the 13 conditions are
summarized in Table 3.2. Variables with specific covariance matrix,
skewness, and kurtosis are generated using the algorithm developed by
Vale and Maurelli (1983). Among the 13 conditions, only the first
condition assumes a multivariate normal distribution for all the vari-
ables. Conditions 2 through 7 are considered moderately nonnormal,
whereas Conditions 8 through 13 are considered extremely nonnormal.
Sample size has always been a major concern in the application of
SEM because small samples are more likely to yield unreliable results.
To avoid an excessive number of tables in this chapter, we concentrate
only on the relatively small but practically reasonable sample size of
200. Within each distributional condition, 100 samples were randomly
simulated. The overall performance across the 100 replications can then
be used for comparisons among different estimation methods and dis-
tributions. Consequently, a total of 13 (conditions) x 100 (replications)
= 1300 data sets were created. To extend the work of Chou et al. (1991)
and Harlow (1985), the two types of models investigated in their
research were also evaluated for each sample in this study. Model A
assumes that all the nonzero parameters in the true model (six factor
loadings, one factor covariance, and six uniqueness) are free parame-
ters, whereas Model B assumes the same except that the six factor
loadings are fixed. Model B is a less typical model that might arise
because of extensive prior research. There are 13 free parameters in
Model A (df = 8) and only 7 free parameters in Model B (df = 14).
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TABLE 3.2 Thirteen Distributional Conditions and Values for Skewness and Kurtosis

Extreme Nonnormality

V2

Moderate Nonnormality

\Z] Vs V6

V3

vi

V2 V3 V4 Vs V6

vi

Nonnormality Conditions

0.0
0.0

00 00 00 00 0.0
00 00 00 00 00

D

Multivariate normality

Symmetric Distributions

0.0
1.0
0.0

00 00 00 0.0
-1.0 -1.0 -10 -1.0

0.0
~-1.0

0.0

8)

00 00 00 00 0.0 0.0
-05 -05 -05

-0.5 -0.5 -0.5

2)

equal negative kurtosis

0.0
6.0

0.0

0.0
6.0

0.0

0.0
6.0

0.0

0.0

9)

0.0

0.0
1.0
0.0

0.0 00 0.0
1.0

0.0
0.0

0.0
1.0
0.0
-1.0

3)

equal positive kurtosis

6.0
0.0

6.0
0.0
50

6.0

0.0
2.0

1.0
0.0

1.0
0.0

1.0
0.0

10)

4)

unequal kurtosis

60 70 80

8.0

1.0 20 3.0

1.0

Nonsymmetric Distributions

-06 -07 -08 -05 -0.6 -07

0.0

-0.2 -03 -04 11

-03 -04 -05

5)

unequal skewness

0.0

00 00 0.0

0.0

0.0 0.0

0.0
0.5

0.0

0.0 0.0
0.4

0.2
1.0

and zero kurtosis
unequal positive skewness

1.75 2.0
6.0
1.0
3.0

1.5
6.0

0.0

14
6.0
1.5

1.2
4.0

6.0

12)

1.0
1.0

0.75
1.0

6)

6.0

6.0
-2.0

10 1.0

1.0

and equal kurtosis
unequal skewness and

2.0

-0.5

13)

1.0 -0.25 0.75 -1.25

1.0

00 -05

-1.0

7

7.0

-1.0

0.0 8.0

4.0

3.0

2.0

0.0

unequal kurtosis

NOTE: The twelve entries in each condition correspond to the skewness (top) and kurtosis (bottom).
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Comparisons are made among the goodness-of-fit ¥ test statistics,
parameter estimates, and standard errors across the different estimation
methods. The performance of these estimation methods are evaluated
on two criteria of accuracy: unbiasedness and the mean square errors
of estimates from the true values. Unbiasedness can be measured by the
absolute difference between estimates 6 and corresponding true values
8y. The mean square error (MSE) considers both the unbiasedness and
the variances of parameter estimates:

MSE = (6 - 85)% + Var (6), 3.8

where 0 is the true parameter value. Both criteria are used for goodness-
of-fit %? test statistics and parameter estimates across all 13 distribu-
tional conditions. The MSE criterion is not commonly used for the
comparisons of standard errors. Therefore, only the unbiasedness crite-
rion is used for comparing standard errors among estimation methods.

Comparisons are made in terms of the rank order of accuracy. For
the goodness-of-fit %> test, the four statistics Ty, TgLs, Tapp, and
SCALED T are compared to determine which is the most accurate.
Comparisons of parameter estimates can be made only among GLS,
ML, and ADF methods, but comparisons of standard errors may also
include the robust approach. To simplify the comparisons of a set of
parameter estimates and standard errors, the estimation methods are
compared in terms of the average rank of accuracy of all estimators
involved. For example, ML may rank first, or be the most accurate, for
parameter estimate 1 (9,) and be last in accuracy for parameter estimate
2 (9,). An average rank can be computed across the rank of all estima-
tors (13 for Model A and 7 for Model B). Thus the comparisons of
estimation methods on parameter estimates and standard errors are
based on the average rank. The unbiasedness of parameter estimates is
compared in terms of the frequencies of rejecting the null hypothesis
that they are equal to the true values.

RESULTS

The mean goodness-of-fit x? test statistics, standard deviations, and
frequencies of rejection of the null hypothesis across 100 samples for
the four estimation methods (Tgrs, Tmr, Tapr and SCALED T) under
the 13 conditions were computed. In general, all four test statistics
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performed similarly with Model A but yielded very different results
with Model B. The performance of SCALED T was much better than
TMLa TGLS’ and TADF' with TADF being the worst.

The frequencies of rejection of the null hypothesis were all very
close to the expected frequency of 5, or 5% of rejection for Model A.
The frequencies of rejection by the four test statistics ranged from 2 to
9. The mean 2 values for all four methods across all 13 conditions in
general were very close to the expected value of 8, with a minimum of
7.298 and a maximum of 9.040. All the standard deviations were also
close to the expected value of 4. The GLS method was more likely to
underestimate %2 values than were other methods. The standard devia-
tions for the 2 values also tended to be smaller than expected for GLS.
Both GLS and ML seem to be very robust to the violation of the
multivariate normality assumption under Model A.

Model B, however, showed quite different results for the four esti-
mation procedures. Examination of the test statistics revealed that
Conditions 9, 10, and 12 yielded very unsatisfactory results for GLS
and ML. For those three conditions, the null hypothesis was rejected
from 27 to 32 times by the GLS and ML methods. Means and standard

deviations were close to the expected values of 14 and 5.292, respec- ’

tively, across the 13 distributional conditions, except for Conditions 9,
10, and 12. This is an indication that both estimation methods are not
robust under all conditions. Results depend on the model as well as the
degree of nonnormality, especially with observed variables containing
extremely large kurtosis.

The method that should perform well under nonnormality, the ADF
method, did not perform well in general under all 13 conditions, reject-
ing the true null hypothesis more than 10 times for each of the 13
conditions. For conditions 7, 9, 10, 12, and 13, rejection frequencies
exceeded 20. The 2 values were consistently overestimated with larger
standard deviations.

The scaled test statistic, on the other hand, demonstrated very prom-
ising results. It did not seem to be affected by the nonnormal distribu-
tion of the variables. The frequencies of rejection of the null hypothesis
ranged from 3 to 9. The means for the 13 conditions were between 13.715
and 14.935 (with 14 as the expected value), and the standard deviations
were between 5.030 and 7.028 (with 5.292 as the expected value).

Further comparisons were made of the accuracy of the x? test statis-
tics across the four estimation methods. Both MSE and unbiasedness
were used as the criteria of accuracy to compare these methods. The
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TABLE 3.3 Rank Order of Accuracy of 12 Test Statistics Among Estimation
Methods
Moderate Nonnormality Extreme Nonnormality
MSE Unbiasedness MSE Unbiasedness
1) G,S,M,A M,S$,G,A
M,S.G.A S,GM,A
2) G,S,M,A M,S$,G,A 8) G.M,S,A M,S,G.A
M,S,G,A S.G,M,A M,S,G,A S,GM,A
3) G,S,M,A M,S.G,A 9) S,GAM G,S,\M,A
S.M,G.A S\M,G,A SM,G,A S,M,G,A
4) G,S\M,A S\M,G,A 10) G,S,AM M.,S,G,A
M,S,G,A S,M,G,A SM,G,A SMG,A
5) G,S,M,A G,M,S,A 11) G,SM,A G,S\M,A
M,S.G,A M,S.G.A M,S$,G.A SMG,A
6) G.SM,A S,M,A,G 12) S,A,GM S$.G,AM
S.M,G,A S.M,G,A SM,G.A SMAG
N G,S,M,A ASM,G 13) G,S\M,A G,M,S,A
S\M,G,A SM,G,A S\M,G,A SM,G,A

NOTE: Methods are rank ordered from the most accurate to the least accurate. The names of estimati

3 stimation
methods are shortened: G = GLS, M=ML, A = ADF, S =SCALED. The two rows for each cell are for Models
A and B, respectively.

four methods were rank ordered in terms of accuracy for each model
across all 13 distributional conditions. Results of the comparisons are
summarized in Table 3.3. The sequence of characters at each entry
represents the accuracy of each method, with the first one being the
most accurate and the last one the least accurate. Under the MSE
criterion, the GLS method consistently demonstrated its accuracy with
the goodness-of-fit test statistic with Model A, except in Conditions 9
and 12. This, however, could be due to the fact that GLS, in general,
underestimated the %2 values and also yielded smaller dispersion for the
x? variates. The unbiasedness criterion, which does not use the infor-
mation of dispersion, indicates that the ML and SCALED estimation
methods also provided very accurate test statistics. The ADF method
again showed relatively poor performance in estimating 2 values and
yielded only one most unbiased ¥ test statistic under Condition 7. For
Model B, the ML and SCALED estimation methods are superior to the
GLS and ADF methods in terms of the criterion of the mean square
error. Using the unbiasedness criterion, the SCALED method consis-
tently outperformed all other methods, except in Condition 5 where it
was ranked second.
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A
TABLE 3.4 Rank Order of Accuracy of Parameter Estimates (8) and
Standard Errors (SE) Among Estimation Methods

Moderate Nonnormality Extreme Nonnormality

MSI;E Unbia.\'elt\ine:: Unbiasedness MSI;E Unbiaselt\ine:s Unbiasedness
for @ for @ for SE for @ for® Jor SE
1) M,G,A MA,G G=M,R,A
M,G,A MAG M,G=R,A
2) M,G,A M,A,G R,A,GM 8) M,GA M,A,G R,A,GM
M,G,A M,A,G R,G,M=A M,AG M,A,G R,G,AM
3) M\G,A M,G,A M=R,G=A 9y AGM M,G,A R,AM,G
M,G,A M,G,A RM,A,G AGM M,G,A R,AM,G
4) M,G,A M,G,A R,AM,G 10) A,GM M,G,A R,AM,G
M,G=A M,G=A RM,A,G A,GM M,G,A R,AM,G
5) M,G,A M,G,A M,G,R,A 11) M,GA M,G,A RM,G,A
M,G,A M,A,G M,R,G,A M,G,A M,G,A RM,G,A
6) G,M,A M,G,A RM,AG 12) AGM M,G,A R,AM,G
M,G,A M,G,A R,AM,G AGM M,G,A R,AM,G
D MAG M,G,A R,AM,G 13) GMA M,G,A RMA,G
M,A,G M,G,A RAM,G A,G=M M,G,A RM,A,G

NOTE: Methods are ordered in terms of average rank of accuracy across all 8 or SE. The names of estimation
methods are shortened: G = GLS, M =ML, A = ADF, R = Robust. The two rows at each cell are for Models
A and B, respectively. The “=" indicates that there is a tie between two methods.

Comparisons of the parameter estimates and standard errors are more
complicated than the comparisons of %? values because each model has
only one %2 value but g parameter estimates and g standard errors. The
comparisons reported in Table 3.4 for parameter estimates and standard
errors are based on the average ranks of accuracy. The estimates of the
same parameter were first compared and rank ordered among the three
estimation methods: GLS, ML, and ADF. The average ranks across all
g parameters were then computed to decide the ranking of each method
summarized in Table 3.4. Similar steps were carried out for the com-
parisons of the standard errors. The robust standard errors were also
computed for comparison. The true values for the evaluation of the
accuracy of parameter estimates are those used for data simulation. For
standard errors, ML and ADF have been found to be downward, or
negatively, biased under extremely nonnormal conditions (Arminger &
Schoenberg, 1989; Chou et al., 1991). Expected standard errors are
derived from the population robust standard errors, estimated from the
“population” containing all 100 samples with N = 200 (subjects) x 100
(replications) and rescaling to the sample size of 200.
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TABLE 3.5 Percentages of Rejecting True Values by the Parameter
Estimates

Moderate Nonnormality Extreme Nonnormality
Model A Model B Model A Model B

1) 4.08 1.46 1.57 1.14
2.92 1.92 4.00 1.57
5.92 2.38 10.43 243

2) 354 1.38 6.57 0.86 8) 3.15 1.38 4.57 0.71
2.54 1.46 3.00 1.57 2.38 1.69 2.7 1.29
4385 2.77 9.29 243 4.00 2.69 7.1 2.29

3) 546 1.69 11.57 1.71 9) 13.00 577 23.14 1.29
4.31 2.85 6.71 343 11.62 6.85 17.00 11.00
7.31 1.77 13.14 1.71 1446 0.77 21.29 2.00

4) 6.08 1.92 1.00 229 10) 1254 5.62 21.71 7.00
4.92 2.62 700 4.14 10.77 6.38 16.00 10.29
7.08 1.77 11.71 2.29 13.62 1.15 20.00 2.14

5) 4.92 1.69 9.29 1.14 11) 562 2.15 929 086
3.23 2.08 5.14 1.43 4.15 2.62 543 2.00
5.92 2.23 11.00  2.00 623  2.38 12.86 2.00

6) 5.15 2.38 10.71 2.86 12) 1277  6.00 21.71 1.57
4.69 3.15 5.57 3.57 1062 6.69 1500 11.71
6.92 2.23 11.86 2.57 13.38 1.23 20.71 2.86

7 7.38 2.62 13.14 2.57 13) 8385 3.85 18.71 6.86
6.38 3.08 9.00 5.14 723 446 14.57 9.29
8.23 2.08 12.57 2.57 11.08 1.54 16.86  3.57

NOTE: Percentages are reported considering all parameter estimates (13 in Model A and 7 in Model B). Each
cell contains theee rows for GLS, ML, and ADF, respectively. The two entries at each row are the percentages
of upward rejection (negatively biased estimates) and downward rejection (positively biased estimates) of the
true values,

Comparisons based on the criterion in Equation (3.8) indicated that
ML seemed to have performed better than both the GLS and ADF
methods with both Models A and B. The ML method performed even
better with the unbiasedness criterion and consistently provided the
most unbiased estimates across all 13 distributional conditions.

In addition to the three estimation methods (GLS, ML, and ADF) the
robust standard errors are also included in the comparisons of standard
errors. Using unbiasedness as the criterion, the robust standard errors
seemed to yield the most unbiased standard errors, especially when the
distributions of the observed variables were extremely nonnormal.

Significance tests of the parameter estimates as deviations from the
corresponding true values are summarized in Table 3.5 at o, = .05 level.
For simplicity, percentages of upward and downward rejection of true
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values are reported for all parameters considered, instead of for each
parameter separately. Upward rejection indicates that true values are
rejected because they are above the upper end of the confidence interval
and parameter estimates are negatively biased. In downward rejection,
on the other hand, the true values are smaller than the lower end of the
confidence interval, and estimates are positively biased. The confi-
dence interval is computed based on the parameter estimates and stan-
dard errors obtained from each method for significance tests. If the
parameter estimates are asymptotically multivariate normally distrib-
uted with true values as the means, we would expect 2.5% of upward
rejection and 2.5% of downward rejection. In general, the results indi-
cate that the distributions of parameter estimates for all three methods
are not symmetric and are more likely to have heavier tails at the left
end. The distributions of the parameter estimates obtained from the
GLS and ADF methods depart more from the normal distribution than
those obtained for ML.

Summary and Recommendations

In this chapter, we used the concepts of simultaneous equations to
explicate the complicated process of the estimation procedure in SEM.
The issues of identification, model specification, hypothesis testing,
discrepancy function, and goodness-of-fit test statistics involved in the
estimation procedure were demonstrated using simultaneous equations.
Problems frequently encountered in practice also were mentioned, and
recommendations were made to deal with these problems.

It was pointed out in this chapter that researchers cannot simply
choose a default estimation method from their favorite computer pro-
gram and be assured that model tests, standard error estimates, and tests
of the significance of parameters are performing well. Performance of
the various estimation methods depends on the nature of the model and
the data. When the data are multivariate normally distributed and when
the sample size is large enough, the ML and GLS methods are certainly
preferred because of computational simplicity, accuracy, and correct-
ness of statistical results, but when data are nonnormal, the situation
changes completely. Our empirical study extended the efforts of Chou
et al. (1991) and Harlow (1985) to evaluate the performance of some
frequently used estimation methods, namely ML, GLS, and ADF, in
terms of accuracy of estimates, standard errors, and z test statistics. In
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addition, we evaluated both the Satorra-Bentler scaling correction for
the %2 test and the robust standard errors.

In general, the commonly used ML and GLS methods performed
quite well in generating reliable statistical results. The ADF method did
not perform as well as expected, even though it was developed specifi-
cally for nonnormally distributed data. Both the scaled test statistic and
the robust standard errors yielded the most satisfactory results, regard-
less of the distribution of the variables and the specific model type.
They should be more seriously considered when data are not multivari-
ate normal; they are routinely available in EQS (Bentler, 1992a; Bentler
& Wu, 1993).

Although our results are consistent with the recent literature, we
caution that the results obtained in our empirical study might be limited
in terms of generalizability. Researchers usually deal with additional
types of nonnormally distributed data and more complicated models.
Furthermore, the empirical results in this study also were obtained
under the null hypothesis. In practical application, model misspecifica-
tion could affect analytic processes and results in ways that might not
be consistent with the discussions or recommendations presented in this
chapter.
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Structural Equation Models
4 With Nonnormal Variables

Problems and Remedies

STEPHEN G. WEST
JOHN F. FINCH

PATRICK J. CURRAN

Over the past 15 years, the use of structural equation modeling has
become increasingly common in the social and behavioral sciences.
Enthusiastic recognition by researchers of the advantages of the stmcf-
tural equation modeling approach and an eagerness to imp!ement th1.s
potentially powerful methodology has also brought with it inappropri-
ate use of the technique. One major source of inappropriate usage has
been the failure of investigators to satisfy the scaling and normality
assumptions upon which estimation and testing are based. The com-
monly used approaches to estimating the parameters of structural equa-
tion models, maximum likelihood and normal theory generalized least
squares, assume that the measured variables are continuous and have a
multivariate normal distribution. In practice, current applications of the
structural equation modeling approach to real data often involve viola-
tions of these assumptions.

AUTHORS' NOTE: S. G. West was supported by NIMH grant PSOMH39246 during the
writing of this chapter. We thank Leona Aiken, William L. Cook, William R, Shadish, Jr., and
Rick Hoyle for their comments on an earlier version of this chapter.
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In some substantive areas, the measured variables used by researchers
are dichotomous or ordered categories (e.g., “agree,” “no preference,”
“disagree”) rather than truly continuous. In other areas, the measured
variables are continuous but their distributions depart dramatically from
normality (e.g., measures of amount of substance use). Micceri (1989)
analyzed over 400 large data sets, finding that the great majority of data
collected in behavioral research do not follow univariate normal distri-
butions, let alone a multivariate normal distribution. Yet researchers
often ignore these assumptions. For example, Breckler (1990) identi-
fied 72 articles in personality and social psychology journals that had
used structural equation modeling and found that only 19% acknowl-
edged the normal theory assumptions, and fewer than 10% explicitly
considered whether these assumptions had been violated.

Given that real data often fail to satisfy the underlying scaling and
normality assumptions, there has been growing interest in determining
the robustness of structural equation modeling techniques to violations
of the scaling and normality assumptions and in developing alternative
remedial strategies when these assumptions are seriously violated.
These topics are the focus of the present chapter.

Overview of Normal Theory Estimation

As discussed in Chapters 1 and 3, the objective of estimation is to
minimize the magnitude of the set of differences between each element
in § and the corresponding element in %(8). Recall that S is th(la\ sample
covariance matrix calculated from the observed data and 3(8) is the
covariance matrix implied by a set of parameter estimates ® for the
hypothesized model. Throughout the presentation below, all parameters
that are estimated will be grouped in a vector 0.

The two most commonly used estimation techniques are maximum
likelihood (ML) and normal theory generalized least squares (GLS).
Both techniques are based on the same set of assumptions, yield very
similar estimates, and have the same desirable statistical properties.
These techniques are discussed in more detail in Chapter 3 and by Bollen
(1989b); here we briefly review the assumptions and properties of the
GLS estimator to set the stage for our later discussion of nonnormality.

The generalized least squares fitting function, Fgr s, can be ex-
pressed as
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Fous=Yate [ (15 - 2w ]. 4.1

In this equation, S represents the observed covariance matrix, 2(6)
represents the covariance matrix implied by the hypothesized model,
W-! represents a weight matrix, and “tr” is the trace operator, which
takes the sum of the elements on the main diagonal of the matrix, here
the matrix resulting from the operations within the large brackets.
Minimization of this fitting function involves minimization of the
weighted squared discrepancies between S and 2(0). Like other mem-
bers of the class of weighted least squares procedures, GLS requires the
selection of the weight matrix. The most common choice for Wlis
S, which weights the squared discrepancies between § and X(0)
according to their variances and covariances with other elements. This
choice is based on two assumptions. First, E(s;;), the expected value of
the sample covariance between x; and x;, is assumed to equal g, the
corresponding covariance in the population. Second, the large sample
distribution of the elements of S is assumed to be multivariate normal.
If these assumptions are satisfied, GLS estimates have several desirable
statistical properties.

1. The parameter estimates are asymptotically unbiased: On average, in large
samples, they neither overestimate nor underestimate the corresponding
population parameter (i.e., E[8] = 8, where E[8] is the expected value of
the estimate of 9).

2. The parameter estimates are consistent: They converge in probability to
the true value of the population parameter being estimated as sample size
increases.

3. The parameter estimates are asymptotically efficient: With increasing N,
they have minimum variance.

4. (N — 1)FGLs approximates a chi-square distribution in large samples,
permitting tests of the fit of the model to the data.

Recall, however, that these desirable statistical properties of the GLS
estimator (and the ML estimator; see Bollen, 1989b) are contingent on
meeting several assumptions. These assumptions include that a very
large (asymptotic) sample size is employed, the observed variables are
continuous, the measured variables have a multivariate normal distri-
bution, and the model estimated is a valid one. When these assumptions
are not met, there is no guarantee in statistical theory that the desirable
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properties will continue to hold. Consequently, the robustness of the
estimators to violations of assumptions becomes an important issue for
empirical study.

Effects and Detection of Nonnormality

THEORETICAL BASIS FOR THE PROBLEM

Potential problems in estimation of structural equation models are
introduced when the distribution of the observed variables departs
substantially from multivariate normality. As can be seen from Equa-
tion 4.1, the parameter estimates are derived from information in S, the
sample covariance matrix, and W-1, the optimal weight matrix. When
the observed variables are (a) continuous but nonnormal, (b) dichoto-
mous, or (c) ordered categories, the information in S or W~! or both may
be incorrect. As a result, estimates based on S and W~! may also be
incorrect.

Continuous, Nonnormal Variables. As we saw in the discussion of
estimation, the variation in the measured variables is completely sum-
marized by the sample covariances only when multivariate normality
is present. If multivariate normality is violated, the variation of the
measured variables will not be completely summarized by the sample
covariances; information from higher-order moments is needed. In this
situation, S™! is no longer the correct estimator of W™, The parameter
estimatgs do remain unbiased and consistent (i.e., as sample size grows
larger, 8 converges to 0), but they are no longer efficient. These results
suggest that theoretically two important problems will occur with nor-
mal theory estimators (ML, GLS) when the observed variables do not
have a multivariate normal distribution. (a) The X goodness-of-fit test
is not expected to produce an accurate assessment of fit, rejecting too
many (> 5%) true models. (b) Tests of all parameter estimates are
expected to be biased, yielding too many significant results.

Coarsely Categorized Variables. Investigations of the effects of
coarse categorization of continuous variables (e.g., Bollen & Barb,
1981) have found that the Pearson correlation coefficient between two
continuous variables is generally higher in magnitude than the correla-
tion between the same variables when they have been divided up into a
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set of ordered categories. The greatest attenuation occurs when few
categories are employed (i.e., fewer than five) for either variable in-
volved in the correlation and when the categorized variables are skewed,
particularly in opposite directions. These findings imply that coarse
categorization of continuous variables can theoretically be expected to
lead to biased x2 tests of model fit, parameter estimates, standard errors,
and tests of parameter estimates.

DETECTING DEPARTURES FROM NORMALITY

Skewness and Kurtosis, Univariate and Multivariate. A number of
procedures are available for assessing the univariate and multivari-
ate normality of the measured variables. These procedures depend
on the calculation of higher order moments: A moment is defined as
(I/N )Z(x - u)", where N is sample size, x is an observed score, L is
the population mean, and & is the order of the moment (k = 1 for the
first-order moment; k = 2 for the second-order moment, etc.). When
univariate normality is satisfied, only the first- and second-order mo-
ments (mean and variance) are needed to describe fully the distribution
of the measured variables—the standardized third-order moment is 0
and the standardized fourth-order moment is technically 3 for a normal
distribution. Univariate distributions that deviate from normality, how-
ever, possess significant nonzero skewness and kurtosis that are re-
flected in the standardized third- and fourth-order moments, respec-
tively. Nonzero skewness is indicative of a departure from symmetry.
Negative skewness indicates a distribution with an elongated left-hand
tail; positive skewness indicates a distribution with an elongated right-
hand tail (relative to the symmetrical normal distribution). Kurtosis,
which is particularly important for statistical inference, indicates the
extent to which the height of the curve (probability density) differs from
that of the normal curve. Positive kurtosis is associated with distribu-
tions with long, thin tails, whereas negative kurtosis is associated with
shorter, fatter tails relative to the normal curve. To simplify interpreta-
tion, many computer packages subtract 3 from the standardized fourth-
order moment so that kurtosis will be 0 for a normal curve. We follow
this convention in reporting values of kurtosis in this chapter.

Examinations of the skewness and kurtosis of the univariate distri-
butions provide only an initial check on multivariate normality. If any
of the observed variables deviate substantially from univariate normal-
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ity, then the multivariate distribution cannot be multinormal. However,
the converse is not true: Theoretically, all of the univariate distributions
may be normal, yet the joint distribution may be substantially multi-
variately nonnormal. Consequently, it is also important to examine
multivariate measures of skewness and kurtosis developed by Mardia
(1970; see also D’ Agostino, 1986).

The Mardia measures construct functions of the third- and fourth-
order moments, which possess approximate standard normal distribu-
tions, thereby permitting tests of multivariate skewness and multivari-
ate kurtosis. The Mardia measure of multivariate kurtosis, which is
particularly important for structural equation modeling (Browne, 1982),
is available in the EQS (Bentler, 1992a) and PRELIS (Joreskog &
S6rbom, 1993c) computer software packages.

Outliers. Outliers are extreme data points that may affect the results
of structural equation modeling, even when the remainder of the data
are well distributed. Outliers typically occur because of errors in re-
sponding by subjects or data recording errors, or because a few respon-
dents may represent a different population from the target population
under study. Outliers can potentially have dramatic effects on the
indices of model fit, parameter estimates, and standard errors. They can
also potentially cause improper solutions, in which estimates of pa-
rameters are outside the range of acceptable values (e.g., Heywood
cases in which estimates of error variance are < 0; see Dillon, Kumar,
& Mulani, 1987). Possible corrective actions for outliers include check-
ing and correction of the data for the extreme case, dropping the
extreme case, redefinition of the population of interest, or respecifica-
tion of the model, with the appropriate remedy depending on the
apparent source of the outlier.

Two general approaches can be used to detect outliers in the context
of structural equation models. The first, a model-independent approach,
is to identify any deviant cases whose values diverge sharply from the
mass of data points. Univariately, this can be accomplished by visual
examination of the plots of each measured variable, identifying cases
that are several standard deviations from the mean of the distribution
and not close to other observations. Multivariately, leverage statistics,
such as Mahalanobis distance available in major regression diagnostic
packages, identify extreme points in multivariate space (see Chatterjee
& Yilmaz, 1992). Alternatively, Bentler (1989) has proposed identify-
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ing the cases that have the greatest contribution to Mardia’s measure of
multivariate kurtosis. Typically, all measured variables would be con-
sidered together in these analyses.

The second approach is to identify observed data points that are
extreme relative to their predicted value based on a specific model.
Bollen and Arminger (1991) have proposed a method based on factor
scores, which represent each case’s predicted score on the hypothetical
factor. These factor scores, in turn, are used to estimate a set of
predicted scores on the measured variables for each case. Raw residuals
representing the difference between the predicted and the observed
scores for each case on each measured variable are calculated. The
residuals are standardized (M = 0; SD = 1), using procedures described
in Bollen and Arminger (1991), and then plotted and visually examined
to detect possible outliers.

RESULTS OF EMPIRICAL STUDIES OF NONNORMALITY

Continuous, Nonnormal Variables. Several simulation studies have
assessed the performance of the normal theory ML and GLS estimators
for a variety of CFA models under diverse conditions of nonnormality
and sample size (Browne, 1984a; Curran, West, & Finch, 1994; Finch,
Curran, & West, 1994; Hu, Bentler, & Kano, 1992). In these studies,
the value of each parameter is set to a known value in the population.
This value is then compared with the mean of a large number of
empirical estimates to study the effects of specified levels of nonnor-
mality. The following conclusions have been reached:

1. ML and GLS estimators produce %2 values that become too large
when the data become increasingly nonnormal. For example, Curran
et al. (1994) investigated a three-factor, nine-indicator confirmatory
factor analysis model in which each measured variable was highly
nonnormal (skewness = 3; kurtosis = 21). Compared to the expected
%2 of 24, the mean of x2 from 200 simulations was 37.4 (approximate
50% overestimate) when sample size was 1000 in each simulation.
Compared to the expected Type 1 error rate of 5%, 48% of the true
models in the population were rejected under these conditions.

2. The GLS and particularly the ML estimator produce x? values that
are slightly too large when sample sizes are small, even when multi-
variate normality is present. For example, in the Curran et al. (1994)
study, when the sample size was 50 and the observed variables were
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multivariate normal, the mean ¥? of 200 simulations was 26.7 (10%
overestimate) and 12% of the true models in the population were
rejected. Simulations by Anderson and Gerbing (1984) and Boomsma
(1983) have also found that decreasing sample size and increasing
nonnormality lead to increases in the proportion of analyses that fail to
converge or that result in an improper solution (Heywood case).

3. Nonnormality leads to modest underestimation of fit indexes such
as the Normed Fit Index (NFI; Bentler & Bonett, 1980), the Tucker and
Lewis (1973) Index (TLI), and the Comparative Fit Index (CFI; Bentler,
1990). (See Tanaka, 1993, for an overview of fit indexes.) For example,
Curran et al. (1994) found that when using maximum likelihood esti-
mation with a sample size of 100, the mean CFI for a correctly specified
model was .97 (3% underestimate), compared to the expected value of
1.00 when each of the measured variables was highly nonnormal (skew-
ness = 3; kurtosis = 21). The TLI and the CFI are modestly underesti-
mated, whereas the NFI is severely underestimated at low sample sizes
(e.g., mean NFI = .81 vs. 1.00 expected at N = 50 under multivariate
normality; see also Marsh, Balla, & McDonald, 1988).

4. Nonnormality leads to moderate to severe underestimation of
standard errors of parameter estimates. For example, Finch et al. (1994)
studied the standard errors of parameter estimates in confirmatory
factor analysis models. When the measured variables were highly
nonnormal (skewness = 3; kurtosis = 21), the standard errors of corre-
lations between factors () were underestimated by about 25%, whereas
the standard errors of factor loadings (A) and the specific factors (error
variances; 0) were underestimated by approximately 50%. Such sub-
stantial underestimates in standard errors imply that tests of parameter
estimates will not be trustworthy under conditions of nonnormality.

Coarsely Categorized Variables, Several simulation studies (Babakus,
Ferguson, & Joreskog, 1987; Boomsma, 1983; Muthén & Kaplan, 1985)
have evaluated the performance of the normal theory ML and GLS
estimators when continuous normally distributed measured variables
are divided into ordered categories. Once again, a variety of CFA
models and rules for categorizing the continuous variables have been
utilized. These studies have led to the following conclusions:

1. The number of categories per se has relatively little impact on the
x? goodness-of-fit test when the distribution of the categorized vari-
ables is approximately normal. As the distributions of the categorized
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variables become increasingly and particularly differentially skewed
(e.g., variables skewed in opposite directions), the x? values become
inflated.

2. Factor loadings and factor correlations are only modestly under-
estimated as long as the distribution of the categorized variables is
approximately normal. However, underestimation becomes increas-
ingly serious as (a) there are fewer categories (€.g., two or three), (b)
the magnitude of skewness increases (e.g., > 1), and (c) there is a
differential degree of skewness across variables.

3. Estimates of error variances (specific factors) are more severely
biased than other parameter estimates by each of the influences noted
under (2). Relatedly, correlations may be spuriously obtained between
the error variances associated with items having similar degrees of
skewness. When there are only a small number (e.g., two) of categories,
the degree of skewness is determined by the percentage of subjects in
the study agreeing with (or passing) the item. Thus a set of items with
similar agreement rates (e.g., 15% to 20%) can give rise to a spurious
factor (so-called “difficulty factor”) reflecting only the common degree
of skewness among the items.

4. Estimated standard errors for all parameters are too low, particu-
larly when the distributions are highly and differentially skewed. This
means that tests of parameter estimates may not be trustworthy.

Remedies for Multivariate Nonnormality

ALTERNATIVE ESTIMATION TECHNIQUES

As we saw above, the problem of nonnormality can arise in two
different contexts: poorly distributed continuous variables or coarsely
categorized continuous variables. Estimation-based remedies to these
two problems differ. However, these techniques share the common goal
of yielding %2 tests and estimates of standard errors that more closely
approximate their true values.

The Asymptotically Distribution Free Estimator. Browne (1984a)
developed an alternative estimator that does not assume multivariate
normality of the measured variables. His “asymptotically distribution
free” (ADF) estimation procedure is based on the computation of a
general weight matrix, W, and GLS estimation. The key to ADF esti-
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mation is the use of an optimal weight matrix that consists of a combi-
nation of second- and fourth-order terms. W is a covariance matrix of
the elements in S, which contains both variances and covariances. Thus
the ADF weight matrix has many more elements than the normal theory
GLS weight matrix (§7'); however, it has the desirable property of
simplifying to the normal theory matrix (S”') under conditions of
multivariate normality (i.e., fourth-order moments = 0). Because of the
link to the normal theory GLS fitting function, the ADF estimator is
sometimes referred to as the arbitrary generalized least squares (AGLS)
estimator.

The ADF estimator produces asymptotically (large sample) unbiased
estimates of the x? goodness-of-fit test, parameter estimates, and stan-
dard errors. These are major theoretical advantages relative to the
normal theory-based ML and GLS estimators, which, as was shown
above, produce biased test statistics and standard errors under condi-
tions of multivariate nonnormality. However, the ADF estimator is
associated with two important practical limitations. First, the ADF
estimator is computationally demanding. The calculation of the ADF
fitting function requires the inversion of the ADF optimal weight
matrix. In CFA with p measured variables, Wis a p” X p* matrix, where
P’ is Yap(p + 1), the number of unique elements in S. For example, with
15 measured variables it is necessary to invert a 120 by 120 weight
matrix consisting of 14,400 unique elements. With more than 20 to 25
measured variables, implementation of the methodology becomes im-
practical, even given modern high speed computers (Bentler, 1989).
Second, the calculation of the matrix of fourth-order moments requires
a large sample size to produce stable estimates (Jéreskog & Sérbom,
1992). This sample-size based limitation is a serious one, as we will see
below.

SCALED y* Statistic and Robust Standard Errors. Although the
normal theory x* statistic does not follow the expected x® distribution
under conditions of nonnormality, it can be corrected or rescaled to
approximate the referenced x* distribution. Satorra and Bentler (see
Satorra, 1990) have developed the statistical theory underlying this
rescaling. The normal theory xz (from ML or GLS) is divided by a
constant k, whose value is a function of the model-implied residual
weight matrix, the observed multivariate kurtosis, and the degrees of
freedom for the model. As the degree of multivariaie kurtosis increases,
so does k, subsequently leading to a greater downward adjustment of
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the normal theory xz. The same theory underlying the SCALED xz
statistic can also be applied to the computation of robust standard
errors. These standard errors can theoretically be considered to be
adjusted for the degree of multivariate kurtosis. The SCALED x and
robust standard errors are available in the EQS program.

Bootstrapping. Modern, computationally intensive statistical meth-
ods provide a completely different approach to tests of goodness-of-fit
and parameter estimates. Rather than relymg on the theoretical distri-
butions of classical test statistics (e.g., x normal), we can imagine
taking repeated samples from a population of interest. For each sample,
we calculate the parameter estimates of interest resulting in an empirical
sampling distribution. In cases in which the assumptions of the classical
test statistics are severely violated, the empirical distribution that de-
scribes the actual distribution of the estimates from this population will
be substantially more accurate than the theoretical distribution.

Efron and his coworkers (e.g., Efron & Tibshirani, 1986; see Mooney
& Duval, 1993) have shown that the empirical sampling distribution
can often be reasonably approximated based on data from a single
sample. In the bootstrapping procedure, repeated samples of the same
size are taken from the original sample with replacement after each case
is drawn. To illustrate, imagine that the original sample consists of
cases (1, 2, 3, 4). Three possible bootstrap samples from this original
sample are (1,4, 1, 1), (2, 3, 1, 3), and (4, 2, 2, 4). Note that the elements
can be repeated in the bootstrap samples and that they are of the same
size as the original sample. By taking a large number of bootstrap
samples from the original sample, the mean and variance of the empiri-
cal bootstrap sampling distribution can be determined.

The bootstrap approach is simple conceptually and computationally,
given the increasing availability of software to implement bootstrap
resampling, including some of the structural equation modeling pack-
ages. Two related complexities arise in application. First, as Bollen and
Stine (1992, p. 207) emphasize: “The success of the bootstrap depends
on the sampling behavior of a statistic being the same when the samples
are drawn from the empirical distribution and when they are taken from
the original population.” Conditions under which this assumption ap-
pears to hold are discussed in Efron and Tibshirani (1986). Second, the
bootstrap is often more usefully applied to understand a portion or a
transformation of the statistic of interest. Bollen and Stine (1992) have
shown that the simple bootstrap approach to the %2 goodness-of-fit test
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for a properly specified model in CFA often produces inaccurate results
under conditions of multivariate normality. Even with a properly speci-
fied model in the population, the original sample will reflect some
sampling fluctuation (e.g., s;; in the sample will not, in general, equal
0;). The expected value of the x? for the set of bootstrap samples
constructed from the original sample will typically not be equal to the
expected value of the 2 (i.e., the df for the model) for a set of samples
taken from the population. Consequently, the bootstrap distribution will
follow a noncentral 2 distribution (which reflects the fluctuation pre-
sent in the original sample), rather than the usual central %2 distribution
specified by statistical theory. Bollen and Stine (1992) present a trans-
formation that is a complex function of the original data in the sample
and its covariance matrix that minimizes this problem. Evaluations of
Bollen and Stine’s approach have also shown reasonable performance
compared to the values expected from statistical theory for the %2 test
statistic and the standard errors of direct effects and indirect effects.
under conditions of multivariate normality.

Empirical Studies of Alternative Estimation Procedures. A number
of simulation studies have examined the performance of the ADF
estimator, the SCALED x statistic and robust standard errors, or both
(Chou & Bentler in Chapter 3, this volume; Chou, Bentler, & Satorra,
1991; Curran et al., 1994; Finch et al., 1994; Hu et al., 1992; Muthén
& Kaplan, 1985, 1992). To date, no large simulation studies have
investigated the performance of the bootstrapping approach with diverse
nonnormal distributions. The following conclusions may be reached
about the ADF and rescaling approaches: ¢

1. All studies have found that the ADF procedure produces %2
statistics that are far too high when sample sizes are small to moderate.
For example, in the Curran et al. (1994) study, in which the expected
x? was 24, when the sample size was 100, the ADF-based %> was 36.4
(50% overestimate) when the distribution was multivariate normal and
44.8 (approximate 90% overestimate) when all measured variables
were highly nonnormal (skewness = 3; kurtosis = 21). In contrast, the
corresponding values of the SCALED y? statistics were 25.2 (5%
overestimate) and 26.8 (10% overestimate), respectively. Under these
conditions, the ADF estimator rejected 68% of models that were true in
the population, whereas the SCALED 2 statistic rejected only 10% of
models that were true in the population,
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All studies have shown that very large samples are required for
adequate performance of the ADF-based y? statistic. Sample sizes of
1000 appear to be necessary with relatively simple models under typical
conditions of nonnormality (Curran et al., 1994). Perhaps 5000 cases
are necessary for more complex models, less favorable nonnormal
conditions, or both (Hu et al., 1992). The SCALED y? statistic appeared
to provide good estimates of %2 for samples of size 200 and higher.

2. Finch et al. (1994) found that when sample size was 100 and the
data were highly nonnormal (skewness = 3; kurtosis = 21), the ADF
estimates of the standard error underestimated the empirical standard
errors of the factor correlations by 25% and the standard errors of the
factor loadings and error variances (specific factors) by approximately
35%. The performance of the Satorra-Bentler robust standard errors
was only modestly better under these conditions, with the standard
errors being underestimated by approximately 20% for the factor cor-
relations and 25% for the factor loadings and specific factors. The
robust standard errors provided generally accurate estimates beginning
at a sample size of 200 for moderately nonnormal (skewness = 2;
kurtosis = 7) and 500 for highly nonnormal observed variables.

Coarsely Categorized Variables. As we saw eatlier, coarse catego-
rization of continuous variables produces bias not only in the xz test-
of-fit and standard errors of parameter estimates, but also in the parame-
ter estimates themselves. Muthén (1984) has developed an alternative
estimator, which he termed the CVM (for continuous/categorical vari-
able methodology) estimator. The CVM estimator permits the analysis
of any combination of dichotomous, ordered polytomous, and interval-
scaled measured variables. Unlike traditional normal theory methods,
the CVM estimator can yield unbiased, consistent, and efficient pa-
rameter estimates when observed variables are dichotomous or ordered
categories.

The CVM approach to estimation is based on a strong assumption:
A continuous normally distributed (M = 0, o2 = 1.0) latent response
variable, y', is assumed to underlie each measured variable, y. For
dichotomous variables, a response of “yes” would be observed if the
individual’s standing on the underlying normally distributed y" dimen-
sion is greater than a threshold value. A response of “no” would be
observed if the individual’s standing was below the threshold. Gener-
alizing to ordered categorical variables, the observed response category
is assumed to depend on the individual's standing on the normally
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distributed underlying y* variable, relative to a set of response thresh-
olds. In the case of a continuous measured variable, y and y" are
assumed to be equivalent.

Because the categorical and/or nonnormally distributed y variables
are assumed to be only approximations of the underlying normally
distributed y's, a distinction is drawn between the covariance structure
of the ys and the covariance structure of the underlying y's. When one
or more observed variables are categorical, the covariance structure of
the ys will differ from the covariance structure of the y's in important
respects. In general, measures of association between categorical vari-
ables will be attenuated relative to the underlying, continuous y's. A
solution in this case is to calculate measures of association between the
y"s based on tetrachoric, polychoric, and polyserial correlations be-
tween the measured y variables. The objective of the CVM approach,
then, is to reproduce this estimated covariance structure of the y"
variables.

Note that this approach will be theoretically reasonable only in some
cases. For example, for many attitude items, the researcher will be more
interested in the relationships among the normally distributed, continu-
ous underlying latent variables than in the simple relationships between
the observed “agree” versus “disagree” responses on the items. For
other continuously distributed variables such as current drug use (“yes”
vs. “no™), it is difficult to conceive of a normally distributed underlying
latent variable. Finally, some variables such as gender are inherently
categorical, so no continuous underlying variable could exist.

The CVM approach once again utilizes a weighted least squares
estimator (Muthén, 1984). The fitting function minimized by this esti-
mator is of the form

Fuis =[S —o@®) W [S- o(®)], “4.2)

where p is the number of measured variables, S is a p* X 1 vector
coRtaining the nonredundant elements of the sample covariance matrix,
o(9) is the corresponding p" % 1 vector from the model implied covari-
ance matrix X(0), and W-'is a p* x p* weight matrix. Here p° is defined
as Yap(p + 1). When S contains Pearson correlations (or covariances)
for normally distributed interval scaled measured variables, the fitting
function simplifies to the normal theory GLS estimator discussed pre-
viously. Muthén’s CVM approach is very general and can be applied to
ordered categories through the use of polychoric correlations and con-
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tinuous variables that have been censored or truncated through the use
of tobit correlations (Muthén, 1991). Combinations of these types of
variables can also be addressed.

Muthén’s CVM approach also has some significant limitations. Like
the ADF estimator, the estimation of the weight matrix places severe
practical limits on the number of variables that can be considered
(maximum is about 25). The use of the CVM estimator also requires
that large samples be used (at least 500-1000 cases, depending on the
complexity of the model). Nonetheless, simulation studies to date (see,
e.g., Muthén & Kaplan, 1985; Schoenberg & Arminger, 1989) have
shown good performance of the CVM estimator relative to ML, GLS,
and ADF estimators. The differences in performance are most apparent
under the conditions identified above when ML and GLS perform
poorly: The observed variables have a small number (two to three) of
categories and are highly (> 1 in magnitude) and differentially skewed.

REEXPRESSION OF VARIABLES

An alternative approach is to reexpress nonnormally distributed
continuous variables so as to produce distributions that more closely
approximate normality. The reexpressed variables can then be analyzed
using normal theory estimation techniques (e.g., GLS) without produc-
ing biased estimates of model fit or the standard errors of the relation-
ships between the reexpressed variables.

Item Parcels. A commonly used simple method of reexpression is
the construction of item parcels by summing or taking the mean of
several items that purportedly measure the same construct (e.g., Marsh,
Antill, & Cunningham, 1989). These parcels will typically exhibit
distributions that more closely approach a normal distribution than the
original items. Another perhaps less obvious advantage of item parcels
is that fewer parameters will need to be estimated in the measurement
model, implying that the estimates will be more stable in small samples.

Note, however, that the construction of item parcels is not without
its potential drawbacks (Cattell & Burdsal, 1975). Of most importance,
the construction of parcels may obscure the fact that more than one
factor may underlie any given item parcel. This problem leads to
considerable potential complication in the interpretation of relation-
ships and structure in models using item parcels. Moreover, the use of
too few measured variables (parcels) as indicators of a construct yields
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less stringent tests of the proposed structure of confirmatory factor
models. Identification problems are also more likely to occur if too few
itemn parcels are used per factor (i.e., < 3). In such cases, if the correla-
tion between factors is near 0, the model will not be identified.

Transformation of Nonnormal Variables. A transformation performs
an operation on observed scores that preserves the order of the scores
but alters the distance between adjacent scores. Linear transformations
(e.g., standardization) have no effect on either the distributions of
variables or the results of simple structural equation models that do not
impose equality constraints (see Cudeck, 1989). Nonlinear transforma-
tions potentially alter the distribution of the measured variables as well
as the relationships among measured variables, potentially eliminating
some forms of curvilinear effects and interactions between variables.
In the presentation below, we assume that all observed values of the
variable being transformed are greater than 0, a condition that can be
achieved by adding a constant to each observation.

Two classes of approaches to selecting an appropriate transformation
are available. First, a power function of the variable may be identified
that produces a new (transformed) variable that more closely approxi-
mates normality. Several sources (e.g., Daniel & Wood, 1980) offer
rules of thumb for selecting power transformations. Given positively
skewed distribytions, taking logarithmic, square root, or reciprocal
transformations (or, more generally, raising the scores on the measured
variable to a power less than 1.0) will typically result in distributions
that more closely approximate normality. Given negatively skewed
distributions, raising raw scores to a power greater than 1.0 will often
result in a more normally distributed transformed variable. Daniel and
Wood (1980) present plots that are highly useful in selecting a potential
transformation. Emerson and Stoto (1983) present a useful technique,
the transformation plot for symmetry, in which simple functions of
scores associated with specified percentile ranks are plotted. The slope
of the resulting graph helps identify the optimal power transformation.

A second class of approaches is useful when scatterplots suggest a
possible nonlinear relationship between pairs of variables. Box and Cox
(1964) suggested framing this as a nonlinear regression problem: The
slope (b,) and intercept (bg) of a linear regression equation, y* = by +
byx + e, are estimated simultaneously with the optimal power transfor-
mation (A) for the dependent variable. In practice, several regression
equations representing values of A over the range -2 to +2 (with the
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logarithmic transformation representing a value of 0) may be computed,
selecting the value of A for which R? is maximized as the optimal power
transformation. A more recent exploratory approach, the Alternating
Conditional Expectation (ACE) algorithm (see de Veaux, 1990), goes
one step further, finding the transformation of each variable that pro-
duces the maximum possible R? between y and x (or even a set of
predictors). The ACE algorithm finds optimal transformations that
maximize the linear relations between two variables, even when power
transformations are unsuccessful.

The Box-Cox and ACE approaches have considerable power when
applied to single regression equations; however, structural equation
analysts must recall that they are seeking a single transformation that
is applicable across a series of regression equations, some of which
involve latent variables. Consequently, Box-Cox and ACE must be
viewed as providing guidance, rather than a definitive solution in the
search for a single transformation that will improve the linearity of the
set of relations involving an initially problematic variable.

Several observations should be made about transformations. First,
the univariate skewness and kurtosis of the transformed data should
always be examined to assess the improvement, if any, in the distribu-
tion of the new variable. These indices are also useful in choosing
between competing transformations. Note that for some distributions of
observed variables, there will be no simple power transformation that
will substantially reduce the skewness and kurtosis. Second, the Mardia
measures of multivariate skewness and kurtosis for the original and
transformed variables should be compared for the set of original and
transformed variables. Recall that well-behaved univariate distribu-
tions are only a necessary and not a sufficient condition for multivariate
normality. Third, although the second approach to transformation, in-
creasing the linearity of relationships, does not directly address normal-
ity, linearizing transformations often have the additional benefit of
improving the distribution and homoscedasticity of errors of measure-
ment. Fourth, transformation of the data changes the original measure
y to a new measure y'. The new correlations or covariances are com-
puted between the y" transformed variables, not between the original
variables. Reflecting this change, fit statistics, parameter estimates, and
standard errors will be based on the y* variables and may differ, perhaps
substantially, from those based on the original variables. Fifth, the
application of the ACE algorithm to any measured variable or of
different power transformations to each measured variable can poten-
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tially result in considerable confusion in the interpretation of the trans-
formed results. Even more severe interpretational problems result when
different transformations are applied to the same measured variable
across studies. This is particularly problematic in the use of the ACE
algorithm because of its strong tendency to capitalize on chance rela-
tionships that cannot be expected to replicate across studies. In general,
the loss of metric associated with the transformation is an issue to the
extent that researchers wish to compare results across variables or
across studies. In addition, the original metrics of the measured vari-
ables may represent important units in some areas of social science (i.e.,
income in dollars). However, in other areas of social science, measures
are more often assessed in arbitrary metrics (e.g., seven-point Likert
scales), so it is less crucial to preserve the scale of measurement.

Conclusion and Recommendations

The effect of nonnormality on structural equation modeling depends
on both its extent and its source (poorly distributed continuous vari-
ables, coarsely categorized variables, or outliers). In general, the greater
the extent of nonnormality, the greater the magnitude of the problem.
Our presentation above has detailed the statistical effects of each of the
sources of nonnormality on x? goodness-of-fit statistics, parameter
estimates, and standard errors. These problems also have important
practical implications. Researchers obtaining inflated ¥ goodness-of-
fit statistics because of nonnormal data will be tempted to make inap-
propriate, nonreplicable modifications in theoretically adequate models
to achieve traditional standards of fit (MacCallum, Roznowski, &
Necowitz, 1992; Chapter 2, this volume). Underestimated standard
errors will produce significant paths and correlations between factors,
even though they do not exist in the population. Such “findings” can be
expected to fail to be replicated, contributing to confusion in many
research areas.

The choice among the remedial measures again depends on the
extent and source of the nonnormality, as well as the sample size.
Considering first the measures of goodness of fit and standard errors
for continuous, nonnormally distributed variables, both the ADF esti-
mator and the Satorra-Bentler SCALED %2 and robust standard errors
have shown very good performance, regardless of the degree of non-
normality in large samples when the model has been correctly specified.
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What is meant by “large samples” has varied across studies, but it is
clearly of the range of 1000 to 5000 cases. For sample sizes in the range
of approximately 200 to 500 cases, depending on the extent of nonnor-
mality, the Satorra-Bentler statistics appear to have the best properties.
For smaller sample sizes, we recommend normal theory ML or GLS
estimates when the distributions are not substantially nonnormal, and
the Satorra-Bentler statistics as the distributions begin to depart sub-
stantially from normality (e.g., skewness = 2; kurtosis = 7). Under these
conditions, the use of a more stringent level of o for tests of parameters
might also be considered. Particularly for smaller sample sizes, we also
recommend inspection of the CFI or Bollen’s (1989a) IFI, which have
only a small downward bias (3% to 4%), even under severely nonnormal
conditions. Note that these recommendations assume that the model has
been correctly specified.

For small sample sizes in particular, the two methods of reexpression
considered here may improve normal theory estimation techniques. The
construction of item parcels usually produces composite variables that
more closely approximate normality. The data reduction accomplished
in the process also yields a more favorable parameter-to-subject ratio,
which is likely to be particularly important in small samples (Bentler
& Chou, 1988). Transformations can also often yield new variables that
more closely approximate normal distributions. Identification of the
optimal normalizing transformation is less certain in small than in large
samples. The identification of an adequate transformation that is satis-
factory for normal theory estimation can be achieved in some, but not
all, data sets. Each of the reexpression methods has its own disadvan-
tages: Item parcels may obscure multifactorial structures; the loss of
the original metric from transformation may complicate the interpreta-
tion of the results. To date, little empirical work has been done specifi-
cally investigating the effect of reexpression techniques on the results
of structural equation modeling analyses.

Finally, the CVM estimator appears to provide the most appropriate
estimates of the model (%, parameter estimates, and standard errors with
coarsely categorized, skewed data. The primary advantage of the CVM
estimator over the competing normal theory and the Satorra-Bentler
statistics occurs as the number of ordered categories decreases. With
five or more categories, there is little or no benefit to using CVM; with
two categories, there is a substantial advantage given poorly distributed
observed variables. The CVM estimator appears to produce good re-
sults for ordered categories only with large samples (e.g., at least
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500-1000 depending on the complexity of the model being estimated).
In addition, the relationships provided by the CVM estimator are be-
tween latent, normally distributed variables rather than the original
measured variables, potentially complicating interpretation of the re-
sults, Coarsely categorized variables that cannot be conceptualized as
having an underlying normal distribution, or for which latent variables
cannot be constructed that have joint normal distributions, are not
appropriate candidates for the technique and are likely not appropriate
candidates for structural equation modeling,.

The remedies prescribed here address the majority of situations in
which nonnormality arises in practice. Most of the remedies are easy to
program and are increasingly available as options in the standard
computer packages for structural equation modeling (see Chapter 8, this
volume). These advances will make it easier for researchers to check
the distributional assumptions underlying normal theory estimation and
to select and implement alternative approaches when they are not met.
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5 Evaluating Model Fit

LI-TZE HU

PETER M. BENTLER

P
Despite the availability of various measures of model fit, applied
researchers often have difficulty determining the adequacy of a struc-
tural equation model because different aspects of the results point to
conflicting conclusions about the extent to which the model actually
matches the observed data. The two most popular ways of evaluating
model fit are those that involve the x* goodness-of-fit statistic and the
so-called fit indexes that have been offered to supplement the x test.
Both types of indexes can be used to evaluate a priori models or models
developed empirically through procedures of model modification. Our
discussion will concentrate on evaluating a priori models.

In this chapter, we consider the following issues: (a) the usefulness
of the x? statistic based on various estimation methods for model
evaluation and selection; (b) the conceptual elaboration of and selection
criteria for fit indexes; and (c) identifying some crucial factors that will
affect the magnitude of )2 statistics and fit indexes. We review previous
research findings as well as report results of some new, unpublished
research. It will be seen that a certain amount of care must be used when
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evaluating models with the %2 test and fit indexes. We conclude with a
brief summary of additional aspects of model fit.

The % Test

The conventional overall test of fit in covariance structure analysis
assesses the magnitude of the discrepancy between the sample and
fitted covariance matrices. Let § represent the unbiased estimator,
based on a sample of size N, of a p x p population covariance matrix
3, whose elements are hypothesized to be functions of a ¢ X 1 parameter
vector 0: 2 = 3(0). The parameters are estimated so that the discrepancy
between the sample covariance matrix § and the implied covariance
matrix 2(0) is minimal. A discrepancy function F = F [S, 3(0)] can be
considered to be a measure of the discrepancy between § and X(0)
evaluated at an estimator 8 and is minimized to yield F,,;,. Under an
assumed distribution and the hypothesized model 2(8) for the popula-
tion covariance matrix X, the test statistic T = (N — 1)F,;, has an
asymptotic (large sample) %2 distribution. The statistic T is often called
“the y? test.” A large T statistic relative to the degrees of freedom
associated with the model indicates that the model may not be a good
representation of the process that generated the data in the population.
In general, the Hy: % = 3(0) is rejected if the value of the T statistic
exceeds a T, in the %2 distribution at an o level of significance. The T
statistics derived from maximum likelihood (ML) and generalized least
squares (GLS) estimation methods under the assumption of multivariate
normality of variables are the most widely employed summary statistics
for assessing the adequacy of a structural equation model, but other T
statistics are available as well.

The ¥ test enjoyed substantial popularity at first, because it seemed
as if its use could make confirmatory factor analysis (Jéreskog, 1969)
become free of the many subjective decisions that were historically
associated with exploratory factor analysis (e.g., the number of factors
or the choice of rotational method). An objective test could thus replace
subjective judgment. This is not necessarily the way modeling is de-
scribed today; for instance, Jéreskog (1993) considers model generat-
ing analyses far more typical than model testing analyses despite the
fact that model testing is what generated enthusiasm for the techniques.

However, problems associated with goodness-of-fit 2 tests were
recognized quite early (e.g., Bentler & Bonett, 1980; Steiger & Lind,
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1980) and have attracted continuing discussion (e.g., Bentler, 1990;
Joreskog & Sorbom, 1988; Kaplan, 1990). One of the concerns has
centered on the sample size issue. The statistical theory for T is asymp-
totic; that is, it holds as sample size gets arbitrarily large. So 7 may not
be %2 distributed in a small sample and, therefore, it may not be correct
for model evaluation in practical situations. Also, w,lth the increased
statistical power of the test afforded by a large sample a trivial differ-
ence between the sample covariance matrix S and the fitted model $
may result in the rejection of the specified model. Furthermore, T may
not be %2 distributed when the typical underlying assumptlon of multi-
variate normality is violated. Therefore, the standard x? test may not be
a good enough guide to model adequacy, because a significant goodness-
of-fit 2 value may be a reflection of model misspecification, power of

the test, or violation of some technical assumptions underlying the -

estimation method.

PERFORMANCE OF x* TESTS
AS TESTS OF MODEL FIT

Because there are really many % tests, each depending on the choice
of F and hence T, some may perform better than others. Hu, Bentler,
and Kano (1992) examined the adequacy of six %2 goodness-of-fit tests
under various conditions. We mention these test statistics and how they
perform.

As noted above, ML and GLS statistics assume multivariate normal-
ity of the data (e.g., Browne, 1974; Joreskog, 1969). A violation of this
assumption can seriously invalidate normal-theory test statistics (see
Chapter 4). The recent theory of asymptotic robustness has found that
normal-theory based methods such as ML or GLS possibly can correctly
describe and evaluate a model with nonnormally distributed variables
(e.g., Amemiya & Anderson, 1990; Anderson & Amemiya, 1988; Browne
& Shapiro, 1988; Satorra & Bentler, 1990, 1991). This requires that the
latent variables (common factors, unique factors, or errors) that are
typically considered as simply uncorrelated must actually be mutually
independent, and common factors, when correlated, must have freely
estimated variance/covariance parameters. There is no practical test of
such assumptions.

Browne (1984a) introduced multivariate elliptical theory with dis-
tributional assumptions that are more general than normal. Elliptical
distributions are symmetric, with tails that can be identical to those of
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anormal distribution as well as heavier or lighter. In these distributions,
a kurtosis parameter, reflecting the assumed common kurtosis of the
variables, in addition to the usual normal-theory model parameters, is
needed to yield asymptotically optimal estimators and simple %2 goodness-
of-fit tests.

Kano, Berkane, and Bentler (1990) found that a simple adjustment
of the weight matrix of normal theory, using univariate (marginal)
kurtosis estimates of the variables, can result in optimal statistical
properties. Their heterogeneous kurtosis (HK) statistics specialize to
elliptical and normal-theory statistics when the variables have homo-
geneous kurtoses or no excess kurtosis, respectively.

When the assumptions underlying normal, elliptical, or heterogene-
ous kurtosis theory are false, the test statistics, T, based on these
assumptions can be corrected using a scaling factor developed by
Satorra and Bentler (1988a, 1988b, 1994). The Satorra-Bentler cor-
rected test statistic, called here the SCALED statistic, is computed on
the basis of the model, estimation method, and sample fourth-order
moments, and it holds regardless of the distribution of variables. Simi-
larly, asymptotic (large-sample) distribution-free (ADF) methods (e.g.,
Bentler, 1983; Browne, 1984a) make the promising claim that the test
statistics for model fit are insensitive to the distribution of the observa-
tions when the sample size is large.

Hu et al. (1992) evaluated the performance of the above six goodness-
of-fit test statistics when (a) distributional, (b) assumed independence,
and (c) asymptotic sample size requirements were violated. The de-
pendence condition is one in which two or more variables are function-
ally related, even though their linear combinations may be exactly zero.
In contrast, with relative normal data, linear relations of zero implies
independence. A confirmatory factor-analytic model based on 15 ob-
served variables with three common factors was studied. The results,
based on the Monte Carlo procedure, revealed several important impli-
cations for practice. Consistent with previous findings (e.g., Chou,
Bentler, & Satorra, 1991; Muthén & Kaplan, 1992), the theoretical
expectation that the ADF method would work well for any arbitrary
distribution was correct only when the sample size was extremely large
(at a sample size of 5000). With small sample sizes, ADF performed
poorly under all the conditions studied and therefore is not recommended
for practical application. With data generated to yield asymptotic ro-
bustness, normal-theory methods (ML, GLS) performed adequately;
however, at smaller sample sizes, ML rejected the true model too
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frequently, and it required a sample size of 2500 for the rejection rate
to approach nominal levels, whereas GLS seemed to perform much
better at the smaller sample sizes. Unfortunately, the practitioner can-
not trust normal-theory test statistics when there might be a dependence
among latent variates, because the normal-theory methods (ML, GLS)
essentially always rejected true models under that condition.

Both elliptical and heterogeneous kurtosis methods tended to accept
models more frequently than expected when the latent common and error
variates were independently distributed. When the latent variates were
dependent, the elliptical method tended to reject models more frequently
than expected, whereas the HK method accepted models too often.

The Satorra-Bentler SCALED statistic, based on a correction to the
ML 2 statistic, performed better than all other methods examined under
the dependence condition. It performed as well as the normal-theory
methods under the independence condition. Generally, it performed well
overall, but it had a tendency to overreject true models at smaller sample
sizes.

In a recent follow-up study, Hu and Bentler (1993) studied the
Satorra-Bentler scaling correction applied to the GLS 2 statistic rather
than the ML y? statistic (using METHOD = GLS, ROBUST in a special
version of EQS; Bentler, 1989). The results revealed that this SCALED
test statistic performed adequately even at smaller sample sizes and
seemed to be the most adequate test statistic for evaluating model fit
when sample size is small. With a relatively large sample size, both
ML- and GLS-based SCALED statistics performed about equally well,
and when sample size is extremely large, the ADF statistic also was an
appropriate statistic for model evaluation and selection.

NONCENTRAL 2 DISTRIBUTION

Suppose X, # %(0), that is, the null hypothesis is not true. Then T will
not be 2 distributed, but it may still be distributed as a “noncentral”
x? variate. A noncentrality parameter (A) and degrees of freedom (df)
are required for the specification of a noncentral x> distribution, which
can be denoted by x*(df, A). The noncentrality parameter A represents
a measure of the discrepancy between 3 and %(0) and can be considered
as a “population badness-of-fit statistic” (Steiger, 1989). Thus, the
larger the A, the farther apart the true alternative hypothesis from the
null hypothesis. The usual central 2 distribution is a special case of the
noncentral 2 distribution for which A = 0.
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Cudeck and Henly (1991) classified several types of error involved
in fitting a model based on discrepancies among different matrices. For
exg‘mple, the overall error is defined as the discrepancy between X, and
2(9), and error of approximation refers to the discrepancy between lack
of fit of the X and X(0). So, the noncentrality parameter is a measure
of the error of approximation. Because the measure of error of approxi-
mation can be estimated only from a sample, Steiger and Lind (1980;
also Steiger, 1989) have suggested that constructing a confidence inter-
val on a population noncentrality parameter will allow one to assess
(a) the badness-of-fit of a model in the population and (b) the precision
of the population badness-of-fit determined from the sample data. As
will be seen below, the noncentrality parameter also can be used to
generate noncentrality-based fit indexes.

Fit Indexes

In practice, only the central %2 distribution is used to test the sharp
null hypothesis % = X(0), and the Satorra-Bentler SCALED statistic
seems to perform quite well, as noted earlier. Nevertheless, even if
evaluating models with this statistic, the problem of excess power to
reject models because of very large sample size will remain. That is,
even if the discrepancy between estimated model and data is very small,
if the sample size is large enough, almost any model will be rejected
because the discrepancy is not statistically equal to zero. Stated differ-
ently, the strict null hypothesis 3 = %(0) almost surely will not be
exactly true, because the researcher surely will not know everything
there is to know about the data. Moreover, a x2 test offers only a
dichotomous decision strategy implied by a statistical decision rule and
cannot be used to quantify the degree of fit along a continuum with some
prespecified boundary.

Thus many so-called fit indexes have been developed to assess the
degree of congruence between the model and data (Akaike, 1974, 1987,
Bentler, 1983, 1990; Bentler & Bonett, 1980; Bollen, 1986, 1989a;
James, Mulaik, & Brett, 1982; Joreskog & S6rbom, 1981; Marsh, Balla,
& McDonald, 1988; McDonald, 1989; McDonald & Marsh, 1990;
Steiger & Lind, 1980; Tanaka & Huba, 1985; Tucker & Lewis, 1973).
Although there has been some discussion of using a fit index to test the
null hypothesis % = 3(0) (e.g., Maiti & Mukherjee, 1991), in our
opinion this defeats the purpose of fit indexes. Like R? in multiple
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regression, these indexes are meant to quantify something akin to
variance accounted for, rather than to test null hypotheses. In particular,
these indexes generally quantify the extent to which the variation and
covariation in the data are accounted for by a model. As noted by
Bentler and Bonett (1980), who introduced several of the indexes and
popularized the ideas, fit indexes were designed to avoid some of the
problems of sample size and distributional misspecification in the
evaluation of a model. Initially, it was hoped that these fit indexes
would more unambiguously point to model adequacy as compared to
the %2 test. This optimistic state of affairs is, unfortunately, also not
true. Issues such as sample size and complexity of the model also may
affect the magnitude of the fit indexes (e.g., Browne & Cudeck, 1993;
Gerbing & Anderson, 1993; Kaplan, 1990; Tanaka, 1993).

In this section, we review the adequacy of four types of fit indexes
derived from various estimation methods across different sample sizes.
We also reevaluate their adequacy under conditions such as violation
of underlying assumptions of multivariate normality and asymptotic
robustness theory, providing evidence from our own unpublished re-
search regarding the efficacy of the oft stated idea that a model with a
fit index greater than .90 should be acceptable (e.g., Bentler & Bonett,
1980).

TYPES OF FIT INDEXES

One of the most widely adopted dimensions for classifying fit in-
dexes is the absolute versus incremental distinction of fit indexes
(Bollen, 1989%a; Gerbing & Anderson, 1993; Marsh et al., 1988; Tanaka,
1993). An absolute fit index directly assesses how well an a priori
model reproduces the sample data. Although no reference model is
employed to assess the amount of increment in model fit, an implicit or
explicit comparison may be made to a saturated model that exactly
reproduces the observed covariance matrix. As a result, this type of fit
index is analogous to R? by comparing the goodness of fit to a compo-
nent that is similar to a total sum of squares. In contrast, an incremental
fit index measures the proportionate improvement in fit by comparing
a target model with a more restricted, nested baseline model. Incre-
mental fit indexes are also called comparative fit indexes. A null model
in which all the observed variables are uncorrelated is the most typically
used baseline model (Bentler & Bonett, 1980), although other baseline
models have been suggested (e.g., Sobel & Bohrnstedt, 1985).
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Further distinctions can be made among incremental fit indexes. We
shall define three groups of indexes, types 1, 2, and 3. The terminology
of type-1 and type-2 indexes follows Marsh et al. (1988), although our
specific definitions of these terms are not identical to theirs.! A type-1
index uses information only from the optimized statistics T used in
fitting baseline (T) and target (7r) models. T is not necessarily as-
sumed to follow any particular distributional form, although it is as-
sumed that the fit function, F, is the same for both models. Type-2 and
type-3 indexes are based on an assumed distribution of variables and
other standard regularity conditions. A type-2 index additionally uses
information from the expected values of T7 under the central %2 distri-
bution. A type-3 index uses type-1 information but additionally uses
information from the expected values of Tt and/or T under the relevant
noncentral %2 distribution. When the assumed distributions are correct,
type-2 and type-3 indexes should perform better than type-1 indexes
because more information is being used; however, note also that type-2
and type-3 indexes may use inappropriate information, because any
particular T may not have the distributional form assumed. For example,
type-3 indexes make use of the noncentral %2 distribution for Ty, but
one could seriously question whether this is generally its appropriate
reference distribution. A type-4 index, not studied further here, could
use expectations under various other distributional forms; an example
might be noncentral mixture distributions (1 — df) based on prior work
of Satorra and Bentler (1988a, 1994).

Type-1 Incremental Fit Indexes. Incremental fit indexes assess the
adequacy of a target model (77) in relation to a baseline model (T),
using the nonnegative statistic T in each case (presumably based on the
same statistical and mathematical assumptions). Bentler and Bonett’s
(1980) normed fit index (NFI) is the classic example:

NFI = (TB - TT)/TB (5-1)

Tg will usually be large. If Ty is only a trivial decrement to Tj, the fit
index is close to 0, but if T is very small, the fit index is close to 1.
More generally, NFI represents the proportion of total covariance
among observed variables explained by a target model when using the
null model as a baseline model (Mulaik, James, Van Alstine, Bennett,
Lind, & Stillwell, 1989). As developed by Bentler and Bonett (1980),
NFI can be computed even when the fit measures Ty and Tt are not
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presumed to be test statistics that have x? distributions, and, because
Tg 2 Tt for optimized indexes, it is “normed”—it has a 0-1 range.

A related type-1 index, which we shall call BL86, was developed by
Bollen (1986). It can be obtained by replacing each T in NFI by the ratio
of that T to its degrees of freedom (df). That is,

Type-2 Incremental Fit Indexes. The classic index first developed
by Tucker and Lewis (1973) under assumed normality and ML estima-
tion uses information from the expected value of Tt. In its final form,
it is similar to BL86, but one subtracts 1 in the denominator of BL86.
That is,

TLI = [(Tp/dfg) — (Tr/dfp))/[(Tp/dfg) — 1]. (5.3)

Tucker and Lewis’ original purpose for developing their index was to
quantify the degree to which a particular exploratory factor model is an
improvement over a zero factor model when assessed by maximum
likelihood. Generalizing Tucker and Lewis’ definition to all types of
covariance structure models under various estimation methods, Bentler
and Bonett called the generalized TLI the “nonnormed” fit index (NNFI),
because it need not have a 0-1 range, even if Ty 2 Tt. Another type-2
index was developed by Bollen (1989a), called here BL89, which
modifies the denominator of NFI by subtracting degrees of freedom:

BL89 = (Tp — Tr)/(Tp — dfy). (5.4)

We do not have space to summarize the rationales advanced for these
various indexes by their authors. In general, these rationales did not
involve first defining a population fit index parameter and then using
estimators of this parameter to define sample fit indexes. The more
recent noncentrality fit indexes use this more rational approach (Bentler,
1990; McDonald, 1989; McDonald & Marsh, 1990; Steiger, 1989).

Type-3 Incremental Fit Indexes. As noted above, with true or not
extremely misspecified null hypotheses, the errors of approximation are
small relative to the sampling errors in the matrix S, and a test statistic
T can be approximated in large samples by the noncentral ¥*(df, A)
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distribution (e.g., Satorra, 1989). The noncentrality parameters associ-
ated with a sequence of nested models (i.e.,,Mp, ... , Mj,...,Mr,...,
M:s) representing the degree of model misspecification are ordered Ap
2 Aj 2 At 2 As =0, with the parameter for the baseline model the largest
and that for the saturated model the smallest. Thus the population
counterpart to NFI is obviously (Bentler, 1990) given by

8=(s - A)/Ag. (5.5)

For a given baseline model, the smaller the misspecification of My (i.e.,
the smaller the Ag), the larger the 8. Thus a noncentrality fit index
assesses the reduction in the amount of misfit of a target model (My)
relative to a baseline model (Mp).

Of course, 8 is not operational unless consistent estimators of the
population As are used. Using a test statistic T to estimate the As would
bring us back to the NFI, but T is not a good estimator of A. Bentler’s
(1989, 1990) fit index (BFI) and McDonald and Marsh’s (1990) relative
noncentrality index, which are identical, estimate each noncentrality
parameter by the difference between its T statistic and the correspond-
ing degrees of freedom, that is,

BFI = [(T - dfg) — (Tt — dfp))/(Tp — dfp). (5.6)

A problem with BFI is that it can lie outside the 0-1 range. Bentler
proposed to modify BFI to avoid this problem, calling the resulting
index the comparative fit index,

CFI = 1 — max[(Tt — dfy), 0)/max[(T — dfy), (Tg — dfg), 0]. (5.7)

Whenever BFI is in the 0-1 range, BFI = CFI. See Goffin (1993) for
further details. Historically, the EQS program (Bentler, 1992a) has
favored evaluating model fit with incremental or comparative fit in-
dexes. In contrast, the LISREL program (J6reskog & Sorbom, 1988)
has favored absolute fit indexes, although the newest version of the
program (Joreskog & S6rbom, 1993a) provides both types.

Absolute Fit Indexes. Joreskog and Strbom (1984) proposed an
absolute fit index for ML methods:

GFly = 1 - [tr &7'S - D*r R 7'8)2). (5.8)
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They further developed a corresponding adjusted fit index to incorpo-
rate a penalty function for the inclusion of additional parameters:

AGFly = 1 — [p(p + 1)/2df](1 — GFly ). (5.9)

Joreskog and Sorbom (1984) define GFI as a measure of the relative
amount of variances and covariances in S that are accounted for by the
implied model X.. When S = 3, GFly, and AGFly;, have their maximum
value of 1. Their typical values are greater than zero, but it is possible
for them to be less than zero. The GLS versions of GFI and AGFI were
given by Tanaka and Huba (1985). These indexes have a general form,
first developed by Bentler (1983, egs. 3.5, 3.8) and studied by Tanaka
and Huba (1985, 1989).

Akaike’s Information Criterion (AIC; Akaike, 1987) was developed
to adjust for the number of parameters estimated. Cudeck and Browne
(1983) developed a rescaled version of AIC (called CAK here):

CAK = [Tr/(N — 1)] + [2¢/(N — 1)]. (5.10)

It is expected to be valid at all sample sizes. Based on a single calibra-
tion sample, Browne and Cudeck (1989) further developed a single
sample cross-validation index (called CK here):

CK = [Tr/(N - 1)] + [2¢/(N ~ p - 2)]. (5.11)

CK is expected to be a good approximation to a fit index that one could
obtain on cross-validation to a new sample. CAK and CK are intended
to be used to select one or more models from a set of plausible models,
and the goal is to identify models that will perform optimally in future
samples. In general, the smaller the values of CAK and CK, the better
the fit of the implied models.

McDonald’s (1989) Centrality Index (MCI, as called here) trans-
forms the rescaled noncentrality parameter:

MCI = exp{-W[(T1 — df /(N — 1)]}. (5.12)

MCI typically ranges from 0 to 1, but it may exceed 1 because of
sampling error.

In an effort to develop a fit index that will be independent of sample
size, Hoelter’s (1983) CN has been proposed to estimate an adequate

Evaluating Model Fit 87

sample size for accepting the fit of a given model for a %2 test. Hoelter
(1983) suggested that a CN value exceeding 200 indicates that a given
model is an adequate representation of the sample data. That is,

CN = {(zegie + Y2df— D¥[2T1/(N - D]} + 1. (5.13)

Note that z, is the critical z-value at a selected probability (o) level.

Given the availability of these various types of fit indexes, the
decision of choosing one or more appropriate fit indexes requires
careful consideration of some critical factors that might influence the
performance of fit indexes on evaluating model fit. Thus we examine
these issues and evaluate some of the most well-known fit indexes,
based on the criteria identified in the previous research and our own
unpublished research.

ISSUES IN ASSESSING FIT BY FIT INDEXES
AND SELECTION CRITERIA

There are three major problems involved in using fit indexes for
evaluating goodness of fit: (a) small sample bias, (b) estimation effects,
and (c) effects of violation of normality and independence. These are a
natural consequence of the fact that these indexes typically are based
on %2 tests. It does not seem profound to expect that a fit index will
perform better, generally speaking, when its corresponding X2 test
performs well. Because, as noted earlier, these ) tests may not perform
adequately at all sample sizes, and also because the adequacy of a >
statistic may depend on the particular assumptions it requires about the
distributions of variables, these same factors can be expected to influ-
ence evaluation of model fit.

Small Sample Bias. Estimation methods in structural equation mod-
eling are developed under various assumptions. One is that the model
is true (i.e., X = X[0]). We shall assume this is the case and not study
misspecification here. Another is the assumption that estimates and
tests are based on arbitrarily large samples, which will not be true in
practice. The adequacy of the test statistics is thus likely to be influ-
enced by sample size, perhaps performing more poorly in smaller
samples that are considered to be not “asymptotic” enough. In fact, the
relation between sample size and the adequacy of a fit index when the
model is true has long been recognized; for instance, Bearden, Sharma,
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and Teel (1982) found that the mean of NFI is positively related to
sample size and that NFI values tend to be far less than 1.0 when sample
size is small. Their early results pointed out the main problem: possible
systematic fit index bias. Bollen (1990) also noted that it may be
important to determine whether sample size N directly enters the calcu-
lation of a fit index. This feature has not turned out to be especially
important.

If the mean of a fit index, computed across various samples under
the same condition when the model is true, varies systematically with
N, such a statistic will be a biased estimator of the corresponding
population parameter. Or, stated differently, the decision for accepting
or rejecting a particular model may vary as function of sample size,
which is certainly not desirable.

Estimation Method Effects. Not much is known about estimation
effects. Even if the distributional assumptions are met, as noted above
different estimators yield x2 statistics that perform better or worse at
various sample sizes. This may translate into differential performance
of fit indexes based on different estimators; however, the overall effect
of mapping from x2 to fit index, while varying estimation method, is
unclear.

In pioneering work, Tanaka (1987) and La Du and Tanaka (1989)
found that given the same model and data, the NFI behaved erratically
across ML and GLS, whereas GFI behaved consistently across the two
estimation methods. Their results must be due to the differential quality
of the null model %2 used in the NFI computations because the GFI maps
the hypothesized model into an approximate 0-1 range. Based on these
results, Tanaka and Huba (1989) suggest that estimation-specific fit
indexes (e.g., GFI) are more appropriate than estimation-general fit
indexes (e.g., NFI) in finite samples. Tanaka and Huba’s (1989) find-
ings are based on normal-theory based estimation methods under lim-
ited conditions. Hu and Bentler (1993) further tested the generalizabil-
ity of such a suggestion.

Effects of Violation of Normality and Independence. An issue re-
lated to the adequacy of fit indexes that has not been studied is the
potential effect of violation of assumptions underlying estimation
methods—specifically, violation of distributional assumptions and the
effect of dependence of latent variates. Nothing is known about the
adequacy of fit indexes under conditions such as dependency among
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common and unique latent variates, along with violations of multivari-
ate normality, at various sample sizes. Using Monte Carlo methods, Hu
and Bentler (1993) examined the four types of goodness-of-fit indexes
(described in the previous section) derived from ML, GLS, and ADF
estimation methods under conditions in which the assumptions of multi-
variate normality and asymptotic robustness theory are violated. An
attempt was made to evaluate the “rule of thumb” conventional cutoff
criterion of .90 (Bentler & Bonett, 1980) that has been used in practice
to evaluate the adequacy of models. Considering any model with a fit
index above .90 as acceptable, and one with an index below this value
as unacceptable, we evaluated the rejection rates for most of the fit
indexes (except CAK, CK, and CN; a cutoff value of 200 was used for
CN). One might hope that about 5% of true models would be rejected
with this criterion by chance alone. The findings are used as a basis for
evaluating the fit indexes discussed here.

Reevaluation of Fit Indexes
As Alternative Measures of Model Fit

TYPE-1 INCREMENTAL FIT INDEXES

Bentler and Bonett’s Normed Fit Index (NFI). It has long been
documented that the mean of the sampling distribution of NFI (Equation
5.1) is positively associated with sample size and that NFI substantially
underestimates its asymptotic value at small sample sizes (e.g., Bearden
et al., 1982; Bollen, 1986, 1989a; Hu & Bentler, 1993). As was found
by Tanaka (1987) and La Du and Tanaka (1989), Hu and Bentler (1993)
reported that NFI behaved erratically across estimation methods under
conditions of small N. The mean values obtained from ML were sub-
stantially greater than those of GLS and ADF across various conditions.
NFI based on GLS and ADF tended to overreject models even at
moderate sample sizes. These effects became even more substantial
when the latent variates were dependent. NFI is not a good indicator for
evaluating model fit when N is small.

Bollen’s Fit Index (BL86). Like NFI, the sampling distributions of
BL86 (Equation 5.2) tended to increase with sample size (e.g., Bollen,
1986, 1989a; Hu & Bentler, 1993). Several findings also emerged in Hu
and Bentler’s (1993) study. BL86 obtained from ML behaved substan-
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tially differently from its counterpart obtained from GLS and ADF at
sample sizes of 1000 or less in various conditions. The asymptotic value
of BL86 was underestimated under dependence conditions to a greater
extent than under the independence conditions. At sample sizes of 1000
or less, the values of BL86 based on GLS and ADF rejected the true
models much too frequently in all seven conditions. This index is thus
not recommended as a good indicator for evaluating model fit.

TYPE-2 INCREMENTAL FIT INDEXES

Tucker-Lewis Index (TLI, Also NNFI). Although Anderson and
Gerbing (1984) and Marsh et al. (1988) found that the association
between TLI (Equation 5.3) and sample size is not substantial, this
finding holds only when the ML method is used and there is inde-
pendence among the latent variates (Hu & Bentler, 1993). Hu and
Bentler found that at sample sizes of 1000 or less, TLI based on GLS
was below its asymptotic value to a great extent. Under independence,
only the mean value of TLI based on ADF was related to the sample
size. At sample sizes of 250 or less, TLI based on ADF overrejected the
true model. At a sample size of 150, TLI from GLS rejected true models
too frequently. Under dependence, the mean values based on all three
estimations were related to sample size. TLI based on GLS and ADF
rejected models too frequently (85% to 95%) at sample sizes of 500 or
less. At a sample size of 150, TLI based on ML rejected 30% of the
models. When the latent common and error variates were independently
distributed, TLI performed relatively consistently across ML and GLS
methods at sample sizes of 250 or greater, but the mean values based
on ADF tended to be much smaller than those based on ML and GLS
at sample sizes of 250 or less. When the latent variates were dependent,
TLI behaved erratically across the three estimation methods at sample
sizes of 500 or less.

Bollen’s Fit Index (BL89). Bollen (1989a) reported a weak associa-
tion between the mean of the sampling distribution of BL89 (Equation
5.4) and the sample size. Hu and Bentler (1993) further reported that
the mean values based on GLS were more likely to be influenced by
sample size than those based on ML when latent variates are dependent.
The mean value of BL89 based on ADF was substantially related to
sample size in all seven conditions. BL89 behaved consistently across
ML and GLS methods at sample sizes of 250 or greater under inde-
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pendence, and it behaved erratically across ML, GLS, and ADF meth-
ods under dependence conditions.

TYPE-3 INCREMENTAL FIT INDEXES

Bentler's Fit Index and McDonald and Marsh's Relative Noncentral-
ity Index. Using the ML method, Bentler (1990) found no systematic
bias of BFI/RNI (Equation 5.6) and CFI (Equation 5.7) when sample
size was small. Hu and Bentler (1993) reported that although the mean
values and standard deviations were different between CFI and BFI,
with CFI being trivially smaller on average but sometimes substantially
less variable, the CFI and BFI behaved similarly across various condi-
tions. CFI (and BFI) performed only slightly inconsistently across ML,
GLS, and ADF at sample sizes of 250 or less when the latent common
and error variates were independently distributed. When the latent
variates were dependent, CFI (and BFI) behaved inconsistently across
three estimation methods at sample sizes of 500 or less. The mean value
of CFI (and BFI) based on ML was substantially greater than those
based on GLS and ADF at sample sizes of 250 or less under dependence
conditions. A relatively large percentage of fit indexes based on GLS
and ADF fell below the .90 cutoff value when the latent variates were
dependent. CFI (and BFI) based on ADF tended to overreject the true
models at sample sizes of 250 or less in all seven conditions.

Under independence, the mean values of CFI (and BFI) based on ML
and GLS were not associated with the sample size, but the mean value
derived from ADF was related to sample size. The sample size effect
on the values of CFI (and BFI) based on GLS and ADF was much
greater than that based on ML.

ABSOLUTE FIT INDEXES

Goodness-of-Fit Index (GFI) and Adjusted Goodness-of-Fit Index
(AGFI). Several studies have reported a positive association between
the means of the sampling distributions of GFI (Equation 5.8) and AGFI
(Equation 5.9) and sample size (e.g., Anderson & Gerbing, 1984; Marsh
et al., 1988; Bollen, 1986, 1989a, 1990). In spite of these findings,
Marsh et al. (1988) found that GFI appeared to perform better than any
other absolute index (e.g., AGFI, CAK, CN, RMR, etc.) studied by
them. GFI also underestimated its asymptotic value to a lesser extent
than the NFI. Hu and Bentler (1993) further found that GFI underesti-
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mated its asymptotic value at small sample sizes in each of the estima-
tion methods. The tendency of underestimation was greater when the
latent variates are dependent. Under the independence conditions, all
the models were accepted by GFI at a sample size of 250 or greater.
Evidently, the cutoff value of .90 is inadequate under these circum-
stances to assess adequately a model fit. Under dependency conditions,
GFI based on ML and GLS behaved poorly at sample sizes of 250 or
smaller. The cutoff tended to reject the true model far too frequently
than at an expected rejection rate of .05. GFI from ADF required a
sample size greater than 500 to ensure that its rejection rate approached
the nominal value.

When common and unique variates were distributed independent of
each other regardless of the form of the distribution of observed vari-
ables, GFI behaved consistently across ML and GLS at all sample sizes.
This finding is consistent with those of Tanaka (1987) and La Du and
Tanaka (1989). At a sample size of 250 or greater, GFI behaved
consistently across all three estimation methods. When the latent vari-
ates were dependent, GFI behaved inconsistently across three estima-
tion methods at sample sizes of 250 or smaller. The values of ML and
GLS converged at a sample size of 500 or greater; however, a minimum
sample size of 5000 was required for the value from ADF to converge
with those of ML and GLS.

When the latent variates were independent, AGFI performed consis-
tently across ML and GLS methods. At N > 250, AGFI behaved consis-
tently across all three estimation methods. When the latent variates
were dependent, AGFI behaved relatively consistently across ML and
GLS at N = 500. The value from ADF did not converge with those of
ML and GLS even at a sample size of 5000. Using the cutoff value of
.90 resulted in an underrejection of true models (except for the smallest
sample size) when latent variates were independent; however, at small
sample sizes it resulted in a overrejection of true models when latent
variates were dependent.

Information Criterion Indexes. Sample size was found to be sub-
stantially associated with CAK (Equation 5.10) and CK (Equation 5.11;
see also Browne & Cudeck, 1989; Cudeck & Browne, 1983). CAK and
CK performed relatively consistently across ML and GLS at all sample
sizes when the latent variates were independently distributed. They
behaved inconsistently at sample sizes of 500 or less when the latent
variates were dependent. The values of CAK and CK from ADF were
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inconsistent with those based on ML and GLS when sample size was
500 or less across all seven conditions (Hu & Bentler, 1993).

McDonald’s Centrality Index. Under the independence conditions,
the means of MCI (Equation 5.12) based on ML and GLS were not
associated with sample size (Hu & Bentler, 1993; McDonald, 1989;
McDonald & Marsh, 1990); however, Hu and Bentler (1993) reported
that sample size was related to the mean of MCI based on ADF under
independence and was also related to the mean of MCI based on all the
three estimation methods under dependence. MCI behaved consistently
across ML and GLS methods at various sample sizes under inde-
pendence conditions. It behaved erratically across the two methods at
sample sizes less than or equal to 500 under the dependency conditions.
The mean values of MCI from ADF were substantially different from
those based on ML and GLS in all seven conditions when sample size
was equal to or less than 250.

Using the .90 criterion for model acceptance, MCI from ML and GLS
tended to reject the true model far too frequently at sample sizes of 500
or less when the latent variates were dependent. On the other hand, the
.90 cutoff was useless for MCI from ML and GLS under dependence
conditions when N 2 250; all models were accepted. MCI from ADF
rejected true models too frequently at sample sizes equal to or less than
250 in all seven conditions.

Hoelter’s Critical N (CN). The mean of the sampling distribution of
CN (Equation 5.13) for a given model was positively related to the
sample size (e.g., Bollen & Liang, 1988; Hu & Bentler, 1993). Hu and
Bentler’s (1993) recent study revealed that, under independence con-
ditions, CN behaved less inconsistently across ML and GLS. At sam-
ple sizes of 250 or less, CN based on ADF behaved quite differently
from those based on ML and GLS. Under dependence, CN behaved
erratically across all three estimation methods at all sample sizes. At
a sample size of 150, CN performed poorly because the sample means
across replications substantially underestimated its asymptotic value,
leading to rejection of the true models far too often. CN accepted
almost all the models under the independence conditions with a sample
size of 250 or greater, as well as under dependence conditions with a
sample size of 500 or greater. A cutoff value that is substantially
greater than 200 would be required to evaluate appropriately the fit of
the model.
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OVERALL SUMMARY AND RECOMMENDATIONS

When common and error variates are distributed independently of
each other, all the fit indexes behaved less consistently than expected
across ML, GLS, and ADF at small sample sizes. Type-2 and type-3
incremental, as well as absolute, fit indexes behaved consistently across
ML and GLS. GFI performed rather consistently across all three esti-
mation methods. When common and error variates were dependent,
however, the performance of all four types of fit indexes was inconsis-
tent at even moderate sample sizes (Hu & Bentler, 1993).

The general finding seems to be a positive association between
sample size and the goodness-of-fit fit index size for type-1 incremental
fit indexes. Obviously, type-1 incremental indexes will be influenced
by the badness of fit of the null model as well as the goodness of fit of
the target model, and Marsh et al. (1988) as well as Hu and Bentler
(1993) reported a strong effect. On the other hand, the type-2 and type-3
incremental indexes seem to be substantially less biased. The results
for absolute indexes are mixed. The type-2 and type-3 incremental fit
indexes, in general, perform better than either the absolute or type-1
incremental indexes. This is true for the older indexes such as TLI, as
noted above, but appears to be especially true for the newer indexes
based on noncentrality (e.g., Bentler, 1990; Hu & Bentler, 1993). For
example, Bentler (1990) reported that BFI (RNI), CFI, and BL89
performed essentially with no bias, though by definition CFI must be
somewhat downward biased to avoid out of range values greater than 1
that can occur with RNI. This bias, however, is trivial, and it results in
lower sampling variability in the index.

Type-1 incremental fit indexes tended to underestimate their asymp-
totic values and overreject true models at small sample sizes. This was
especially true for indexes obtained from GLS and ADF, which, there-
fore, are not recommended for model evaluation. Although the perfor-
mance of NFI was substantially better than that of BL86 under most of
the conditions, it should be used with caution when sample size is small.

In most cases, all the fit indexes obtained from ML performed much
better than those obtained from GLS and ADF and should be preferred
indicators for model selection and evaluation. Specifically, when the
latent variates are distributed independently of one another, the follow-
ing ML-based fit indexes are recommended: MCI, BFI (or RNI), CFI,
BL89, and TLI (or NNFI). However, it should be noted that at extremely
small sample sizes (e.g., N = 50), the range of TLI (and NNFI) tends to
be so large that in many samples one would suspect model incorrectness
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and, in many other samples, overfitting (Bentler, 1990). Thus TLI (and
NNFI) is less preferred when sample size is extremely small. All four
types of fit indexes based on ADF, except GFI under independence, are
not recommended for model evaluation when sample size is relatively
small, because they tend to reject models far too frequently.

When the latent variates are dependent, most of the four types of fit
indexes overreject models at a sample size of 250 or less. When N 2
250, GLS-based GFI, as well as ML-based BFI, CFI, BL89, and TLI
performed relatively adequately in all seven conditions and are recom-
mended as alternative measures of model fit when sample size is large;
however, a cutoff criterion greater than .90 is required for model
evaluation or selection.

Although some of the ML-based fit indexes performed extremely
well under independence conditions, practitioners should be aware of
the possible existence of dependence of latent variates in their data.
Because the data-generating process is unknown for real data, one
cannot generally know whether the independence of factors and errors,
or the errors themselves, hold.

Finally, the rule-of-thumb to consider models acceptable if a fit
index exceeds .90 is clearly an inadequate rule. It does not work equally
well with various types of fit indexes, sample sizes, estimators, or
distributions. In fact, we are hardly able to point to a condition for which
it yields appropriate results.

Factors That May Affect the Magnitude of
xz Statistics and Fit Indexes

Previous studies and our two Monte Carlo studies revealed that
factors such as sample size, assumptions regarding the independence of
latent variates, and estimation methods may influence the adequacy of
performance of %2 goodness-of-fit statistic and fit indexes. Violation of
the multivariate normality assumption alone seems to exert less impact
on the performance of % statistic and fit indexes.

THE EFFECT OF SAMPLE SIZE
AND LATENT VARIATE DEPENDENCE

Sample size is a crucial factor in determining the extent to which
currently existing model evaluation procedures can be trusted. Of
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course, there is the predictable effect of power (see Chapter 6). At
smaller sample sizes, there may not be enough power to detect the
differences between several competing models using the x? statistic for
model selection or evaluation. On the other hand, at larger sample sizes
power is so high that even models with only trivial misspecifications
are likely to be rejected.

Furthermore, the effect of sample size depends on the dependence/
independence of latent variates for some, but not all, estimators as
shown by Hu et al. (1992) and Hu and Bentler (1993). Normal theory
statistics such as the ML and GLS j? statistics break down when the
assumption of independence among common and error variates is v1o-
lated. On the other hand, whereas the Satorra-Bentler SCALED x?
statistic continues to perform acceptably whether based on the ML or
GLS estlmator its best performance under various conditions is with
the GLS x? correction, especially when sample size 1s small. Disap-
pointingly, sample size has a substantial effect on the x? statistic based
on the ADF estimation regardless of the form of distribution of the
observed variables. ADF can be trusted only at the largest (> 5000)
sample sizes.

Sample size also has an important effect on the magnitude of many
of the fit indexes. Especially when the latent variates are dependent,
none of the fit indexes behaved adequately at small sample sizes.
Sample size exerts greater effect on the magnitudes of fit indexes when
the asymptotic assumption of independence among latent variates is
violated. A substantially larger sample size is required for the fit index
to behave adequately for a dependence condition than for an inde-
pendence condition.

THE EFFECT OF ESTIMATION METHODS

The performance of 2 statistics and fit indexes varies as a function
of estimation methods. The estimation method effect is greater when
the latent variates are dependent on each other. For example, the x2
statistics based on ML and GLS are inaccurate under the dependence
conditions, whereas the Satorra-Bentler SCALED test statistic proved
to be relatively adequate. A substantially larger sample size is required
for the 2 statistic based on ADF to be appropriate.

All ADF-based fit indexes behave poorly except GFI. In contrast, fit
indexes obtained from ML underestimate their asymptotic values to a
lesser extent. All fit indexes behave inconsistently at small sample sizes
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across ML, GLS, and ADF when the common and error variates are
dependent on each other. When the common and error variates are
independently distributed, type-2, type-3, and absolute fit indexes per-
form consistently across ML and GLS, whereas type-1 indexes behave
erratically across ML, GLS, and ADF at small sample sizes.

Conclusions

Although our discussion has been focused on the issues regarding
overall fit indexes, consideration of other aspects such as the adequacy
and interpretability of parameter estimates, model complexity, and
many other issues remain critical in deciding the validity of a model.
Thus we conclude with a brief discussion of three additional points that
are important in evaluating the validity of a model.

PENALTY OF MODEL COMPLEXITY

As noted by many researchers, for a given set of data and variables,
the goodness of fit of a more complex, highly parameterized model
tends to be greater than for simpler models because of the loss of
degrees of freedom of the complex model (e.g., Akaike, 1987; James
et al., 1982; J6reskog & S6rbom, 1981, 1984; Mulaik, 1990; Steiger &
Lind, 1980). Thus a good model fit indicated by fit measures may result
from (a) a correctly specified model that adequately represents the
sample data or (b) a highly overparameterized model that accounts for
the fit of the model in the sample, regardless of whether there is a match
between the specified model and the population covariance matrix.
Joreskog and S6rbom (1984) thus developed AGFI to adjust for the bias
of fit indexes resulting from model complexity. James et al. (1982;
Mulaik et al., 1989) also suggested penalizing complex models by
multiplying the fit indexes by a parsimony ratio. A parsimony ratio is
defined as the degrees of freedom of the target model relative to the
total number of relevant degrees of freedom in the data. Akaike’s (1987)
information criterion was developed to adjust the statistical goodness
of fit for the number of parameters estimated in the model. Based on
Akaike’s (1987) work, Browne and Cudeck (1989) and Cudeck and
Browne (1983) developed information criterion indexes to allow re-
searchers to select the less complex models for small sample sizes and
increasingly more complex models for larger sample sizes. Mulaik et al.
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(1989) described a type-2 parsimonious normed-fit index for examining
the relationship among the observed variables. They also developed an
incremental normed-fit index and a corresponding relative parsimony
ratio to assess the goodness of fit for a nested sequence of models (i.e.,
a series of covariance matrix-nested models; Mulaik et al., 1989).

It may be desirable to use model parsimony in addition to other
information such as the adequacy of parameter estimates, sampling
variability, and violation of assumptions when selecting the “best”
model from a set of alternative models.

EVALUATION OF RESIDUALS

If we consider the %2 test as a statistical method for evaluating
models, and the fit indexes as more descriptive than statistical, it is seen
that both approaches can work well and be trusted under some condi-
tions; however, they also break down and can be misleading. If, in spite
of a best attempt to work with these indexes, the researcher still has
difficulty in trusting these quantifications of the extent of model ade-
quacy, we suggest that a more traditional method also be used. This
method existed in exploratory factor analysis for many years before
structural equation modeling became popular: Namely, describe and
evaluate the residuals that result from fitting a model to the data. It is
best done in the metric of the correlation matrix, not the covariance
matrix, because correlations are always in the range of +1 to —1 and,
therefore, are easily interpreted. If the discrepancy between the ob-
served correlations and the model-reproduced correlations are very
small, clearly the model is good at accounting for the correlations, no
matter what the %2 test or fit indexes seem to imply. For example, if the
average of the absolute values of the discrepancy between observed and
reproduced correlations is .02, it is simply a fact that the model explains
the correlations to within an average error of .02. This is true whether
the correlations are large or small and whether the %? test is large or
small. If the largest discrepancy between observed and reproduced
correlations, among all the correlations, is also small, say .10, the model
is only marginally wrong for some variables. Of course, if the largest
discrepancy is quite large, say .40, clearly the model is not explaining
some of the correlations well at all. We suggest that this descriptive
information always accompany reports of model fit, to round out the
more popularly used %2 and fit indexes. Of course, it might be that the
size of such residuals also can depend on sample size and method of
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estimation, as has been found for the related RMR statistic (e.g., Marsh
et al., 1988), but that raises another complex topic that is best left for
another time.

DISCLAIMER ON MODEL MODIFICATION

Our discussion of statistical and descriptive measures of model fit
assumes that the estimates of model fit are large-sample consistent
estimates of their population counterpart definitions. That is, if the
sample size N were to increase without limit, the statistics we have
discussed would be appropriate measures of model adequacy. This
condition is met when any a priori model is evaluated by the procedures
described above. It is not met when procedures are used that empirically
modify a model to make it look as good as possible in a particular
sample. In such a case, all of the indexes discussed in this chapter will
appear unduly optimistic about the quality of a model (see Bentler &
Chou, 1987; MacCallum, 1986; Chapters 2 and 6, this volume).

Note

1. Their type-2 index has some definitional problems, and its proclaimed major
example is not consistent with their own definition. They define type-2 indexes as (Tt —
TB)/(E ~ Ts), where Tt is the value of the statistic for the target model, T3 is the value
for a baseline model, and E is the expected value of Tt if the target model is true. Note
first that E may not be a single quantity: Different values may be obtained depending on
additional assumptions, such as on the distribution of the variables. As a result, the
formula can give more than one type-2 index for any given absolute index. In addition,
the absolute values in the formula have the effect that their type-2 indexes must be
nonnegative; however, they state that an index called TLI (see below) is a type-2 index.
This is obviously not true because TLI can be negative.
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Statistical Power in _
Structural Equation Modeling

DAVID KAPLAN

In the standard practice of structural equation modeling, it is o.ften the
case that a proposed model is not consistent v&;ith the data as evidenced
by such standard tests as the likelihood ratio %°. When the nu}l hypothe-
sis implied by the model is rejected, usually an attempt 1s .m.ade. to
modify the model. The most common strategy of model modification
involves inspection of the modification index (MI; Sérbom, 1989) or,
equivalently, the Lagrange multiplier (LM) test (Bentler, 1986). Some-
times these statistics are used in combination with the expected parame-
ter change (EPC) statistic (see e.g., Kaplan, 1989a). Typically, tl}e
maximum MI or LM is employed, both indicating the largest drop in
the overall value of the test statistic when the fixed parameter assocl-
ated with that index is freed. If the model is not consistent with observed
data, then further modifications are considered.

In addition to modifying models by freeing fixed parameters, ana-
lysts often attempt to simplify models by removing (fixi.ng)'p.arameters
that are judged to be statistically or substantively nonsignificant. The
statistical judgment to fix a parameter is typically based on a.te.st
statistic associated with the free parameter. In LISREL, the test statlst.lc
is referred to as the “7-Value” (Joreskog & Sérbom, 1989), whereas in
EQS, the square of the “T- ~Value” is used and is referred to. as th'e “Wald
Test” (Lee, 1985). When a parameter is fixed, the result is an increase
in the overall model test statistic, and this increase is measured by the
Wald test. The Wald test is known to be asymptotically equivalent to
other related test statistics such as the LM and likelihood ratio (LR)
tests (see, e.g., Buse, 1982; Engle, 1984: Satorra, 1989).

100
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Regardless of how model modifications are conducted, an underly-
ing issue that pervades model assessment is that of statistical power.
Power enters into issues of model assessment in two related ways. First,
an analyst may be concerned that the model was rejected because of the
known sample size sensitivity of the likelihood ratio test and other
asymptotically equivalent tests such as generalized least squares (see,
e.g., Bollen, 1986; Chapter 5, this volume). This is a reasonable concern
because, if a model fits the data perfectly, the minimum of the fitting
function will be zero, and sample size will have no effect. But models
never fit data perfectly and will always contain specification errors of
varying magnitude. When a model contains small specification errors,
large sample sizes will magnify their effects, leading to rejection of the
null hypothesis. When a model contains large specification errors,
small sample sizes will mask their effects, leading to acceptance of the
null hypothesis. Later I will consider how one judges the size of
specification errors.

A second but somewhat less recognized problem in structural equa-
tion modeling is the increase in the probability of committing Type 1I
errors resulting from extended sequences of model modifications (see,
e.g., Kaplan, 1989b; MacCallum, Roznowski, & Necowitz, 1992). Typi-
cally, the a priori specification of fixed and free parameters implied by
the null hypothesis is guided by theoretical considerations. Therefore,
the investigator is initially concerned with not rejecting the null hy-
pothesis, as rejecting the null (perhaps simply because the sample size
was “large”) would imply that the model is wrong and that some new
specification is required. The new specification, as discussed above,
would be based on the sequential use of the MI or LM statistic. It can
be seen then that the problem is one of inflating the probability of
accepting the null hypothesis implied by the model when it is false—the
probability of a Type II error. This issue is analogous to following up
main effects in analysis of variance with uncontrolled post-hoc com-
parisons, only in that case the concern is with inflation of Type I errors.
Thus, to address the problem of capitalization on chance in finding a
well-fitting model, one needs to minimize Type II errors. One way to
do this is to choose modifications that have maximum power. This
strategy is discussed later in the chapter.

The purpose of this chapter is to present an overview of the issue of
power as it pertains to the practice of structural equation modeling.
Naturally, a discussion of power is intimately connected to other issues
of model testing and evaluation. Thus, for completeness, the relevant
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literature on model testing and evaluation will need to be included (see
also Chapter 5, this volume). The chapter is organized as follows. First,
I discuss the manner in which power can be evaluated. I examine how
power is calculated for the overall model test as well as for associated
tests of individual parameters. Next, I discuss power on several restric-
tions simultaneously. This section will be followed by a discussion of
the expected parameter change statistic, which has been suggested as
useful in supplementing power evaluations and judging the size of
misspecifications. Following the discussion on expected parameter
change, I explore the empirical evidence on power. In this section,
recent research into the factors that influence power beyond those of
sample size and specification error will be discussed. This is followed
by a discussion of power in multisample situations. The chapter will
close with some observations on the role of power in model assessment.

Calculation of Power

To begin, it is useful to review briefly hypothesis testing, parameter
estimation, and power in the structural equation modeling framework.
I focus on maximum likelihood estimation for simplicity and without
loss of generality. Structural equation models belong to a general class
of covariance structure models of the form ¥ = X(0), where X is a
population covariance matrix that can be expressed as a matrix valued
function of a parameter vector 0. In the typical practice of structural
equation modeling, a researcher specifies a null hypothesis, Ho, to be
tested against a general unrestricted alternative hypothesis, H;. The
specification of Hy yields a partitioning of @ into (05, 0¢), where 8y and
0;, are vectors of fixed and free parameters, respectively. Estimation of
the parameters of the model under Hy involves minimizing a specified
discrepancy function F(0) = F[S, 2(0)], where S is the unbiased sample
covariance matrix. The most common discrepancy function is maxi-
mum likelihood (ML).

Nearly a decade ago, Satorra and Saris (1985; see also Matsueda &
Bielby, 1986) recognized that the power associated with the likelihood
ratio test could be obtained in a relatively straightforward fashion.
Specifically, the power of the LR test is defined as Prob{LR > K,190,}
where K, is the critical value of the test at a nominal significance level,
o, and where the probability depends on the alternative parameter
vector 0,, which is assumed not to be far from the null hypothesis. The
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procedure for assessing the power of the test outlined by Satorra and
Saris (1985; see also Saris & Stronkhorst, 1984) is to specify an
alternative model, say H, (to distinguish it from the unrestricted alter-
native H; above), which consists of Hy with the implied restriction
dropped and replaced with a “true” alternative value to be tested. This
population covariance matrix contains the parameter estimates obtained
under Hy fixed at their estimated values plus the restriction to be tested.
This covariance matrix, say 3(0,), is tested under the original Hy
specification. If the resulting value of the test statistic differs from zero,
it is because of the misspecification. The obtained value of the % test
statistic corresponds to the noncentrality parameter (NCP), A, of the
noncentral %2 distribution. The noncentral %2 distribution is the distri-
bution of 2 when the null hypothesis is false. With A and the degrees
of freedom of the model in hand, the power of the test can be easily
obtained from tables such as those given in Saris and Stronkhorst (1984).

One disadvantage of the approach developed by Satorra and Saris
(1985) is that it requires the researcher to specify an alternative value
to be tested. Specifying an alternative value taken to be the “true”
alternative for the purposes of calculating power may be difficult to
carry out in practice. More recently, Satorra (1989) found that one could
calculate power without the need for specifying an alternative value.
Specifically, Satorra found that the MI could be used to approximate
the noncentrality parameter for each restriction in the model. This
finding was based on the known asymptotic equivalence between the
LM and LR tests (see, e.g., Buse, 1982) and the fact that the MI is
asymptotically equivalent to the LM test. Because there is an MI
associated with each fixed parameter, a unit degree-of-freedom assess-
ment of power can be obtained for each univariate restriction in the
model. In this case, one is asking whether, for a given fixed parameter,
the test is powerful enough to reject the null hypothesis, given that it is
false. Satorra (1989) has shown that approximating power using the MI
as the noncentrality parameter and approximating power using the
Saris-Satorra procedure are asymptotically equal.

Although it is typically the case that power is assessed for restric-
tions in the model, it is possible to assess the power for tests of free
parameters as well. Recall that for each free parameter estimated under
the null hypothesis there is an associated test statistic referred to as the
T-Value in LISREL and the Wald test in EQS. For each of these free
parameters, the null hypothesis is, by definition, false. Therefore, the
Wald test (or, equivalently, the squared T-Value) also approximates the
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noncentrality parameter of the noncentral % distribution and can be
used to obtain a unit degree-of-freedom assessment of the power asso-
ciated with the test for that parameter (Satorra, 1989). In this case,
interest might center on whether a test could not reject the null hypothe-
sis, because of a small estimated value or because of small sample size.
These issues are discussed later in the chapter.

Simultaneous Power Analysis

The approaches just discussed involve examining power for a single
parameter at a time. However, in multiparameter systems such as
structural equation models in which there are numerous restrictions,
multiple specification errors are to be expected. The aim, then, would
be to evaluate power simultaneously for restrictions on many parame-
ters. Recently, Saris and Satorra (1993) developed an approach for
assessing power for many parameter misspecifications simultaneously,
using what they referred to as isopower contours. They define an
isopower contour as a “set of (alternative) parameter values at which
the power of the test is constant” (p. 195). The procedure requires that
the researcher specify the power level of interest and the probability of
a Type I error. It then calculates an isopower contour via a quadratic
expression for the noncentrality parameter (Wald, 1943) and provides
points of low power sensitivity and high power sensitivity. Low sensi-
tivity is represented by the major axis of the contour because the point
at which the ellipse is cut by the major axis is the point farthest from
the null model. Similarly, high sensitivity is represented by the minor
axis because the point at which the ellipse is cut by the minor axis is
the point closest to the null model.

To take an example, suppose an investigator wishes to obtain the low
sensitivity points associated with high power. In this case, if the esti-
mated point is close to the null hypothesis for that parameter (say, zero),
then the test has high power because it was associated with the low
sensitivity direction. By comparison, if one obtained the high sensitiv-
ity points associated with low power and found that the values were
substantively far from the null hypothesis, then one would conclude that
the test has low power because the points were obtained in the high
sensitivity direction.

Saris and Satorra (1993) raised two important issues with respect to
this procedure. First, they noted that what constitutes high and low
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power is a matter of judgment related to the precision of the theory
under consideration. Second, they noted that for a given set of restric-
tions under investigation, their approach requires that the investigator
be confident that the remaining restrictions are correct. They point out
that their power calculations depend heavily on the validity of the
remaining restrictions, unless complete separability (independence)
holds for the restrictions under investigation and the remaining restric-
tions. Later, I discuss the issue of independence and separability as it
pertains to power.

Unfortunately, isopower contours are not currently available in stan-
dard computer software packages such as LISREL or EQS. Neverthe-
less, Saris and Satorra (1993) indicate that all the available components
are present in those software packages and could easily be implemented
if so desired.

Power and Expected Parameter Change

Returning to the single parameter case, Saris, Satorra, and S6rbom
(1987) found that one can approximate the size of a misspecified
parameter by examining the MI for the fixed parameter and conducting
a sensitivity analysis. In particular, they found that by calculating
power for a variety of alternative values of the misspecified parameter
and comparing the obtained noncentrality parameter associated with
each value with the MI for that parameter, the size of the misspecified
parameter could be approximated. They found that an examination of
the MI alone might lead to freeing a parameter that was small in
absolute value. In combination with a sensitivity analysis, however,
they were able to determine which parameter would yield a large value
if freed. Thus they argued for the importance of assessing the size of a
misspecified parameter.

To estimate the size of a misspecified parameter, Saris, Satorra, and
Sorbom (1987) developed an index of the expected change in the value
of a parameter if that parameter was freed. Following their discussion,
let 6; be a parameter that takes on the valug 6, (usually zero) under H,,
and let d6; = JInL(0)/90; evaluated at 6;, where InL(®) is the log
likelihood function. Saris, Satorra, and S6rbom show that the expected
change or shift in the parameter can be derived as

8; — 8= MI /d6; . (6.1)
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The proof of Equation (6.1) is given in Saris, Satorra, and Sérbom
(1987). Asymptotic theory for the EPC is given in Satorra (1989). The
EPC is now available in LISREL and EQS.

Saris, Satorra, and S6rbom (1987) discussed four possible outcomes
that might occur using the EPC statistic. First, a large MI might be
associated with a large EPC. In this case, one would be justified in
freeing the parameter, especially if there is a sound theoretical rationale
for doing so. Second, a large MI might be associated with a small EPC.
Here, Saris, Satorra, and Sérbom argue that it does not make sense to
free this parameter despite the large drop in y?, because the obtained
parameter estimate is likely to be trivial. As is discussed later, this case
can also occur because of sample size sensitivity. In the third situation,
a small MI might be associated with a large EPC. In this case, the
situation is ambiguous and might be due to sampling variability or the
fact that the test statistic is not sensitive to this parameter. A more
detailed power analysis might be necessary. Finally, the fourth outcome
might be a small MI associated with a small EPC. Clearly, there would
be little interest in freeing this parameter.

Clearly, the EPC statistic represents a shift of focus away from
improving model fit in terms of x* alone and toward removing large,
and perhaps theoretically important, misspecifications. However, be-
cause the metric of the observed variables is often arbitrary, it is
necessary to standardize the EPC in order to allow valid comparisons.
In the context of ML estimation of path analysis models using correla-
tion matrices, the EPC is in a standardized metric. In structural models
among latent variables, however, the metric problem is not removed by
simply using correlation matrices.

A standardized version of the EPC was originally proposed by
Kaplan (1989a). To standardize the EPC, it is necessary to recognize
that the same logic applies as when standardizing any free parameter.
For a general structural equation model, standardization of the EPC
requires the standard deviations of the endogenous and exogenous
constructs associated with the parameter of interest. For example, using
LISREL notation, the standardized expected parameter change (hereaf-
ter referred to as SEPC) associated with a fixed element of I'" (the
coefficient matrix relating endogenous variables to exogenous vari-
ables), say 0", would be calculated as [Var(§)/Var(q)] 7 03F, where
Var(§) is an appropriate diagonal element of ® and Var(w) is expressed
in terms of other model parameters. It should be noted that, even though
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the variances of the endogenous constructs are themselves functions of
other model parameters (see Chapter 2), the information is directly
obtainable from the output of LISREL. Thus SEPCs for the regression
of endogenous constructs on other endogenous constructs (contained in
B) can be easily obtained.

Having obtained the SEPC statistic, it is possible to compare values
for all fixed parameters of the model. Recently, however, Chou and
Bentler (1990) noted that the SEPC proposed by Kaplan (1989a) was
only partially standardized and thus sensitive to arbitrary scaling of
constructs. Chou and Bentler (1990) extended Kaplan’s work by offer-
ing a fully standardized version of the EPC and generalizing it to a
multivariate SEPC. An empirical study conducted by Chou and Bentler
(1990) demonstrated the utility of their expanded statistics.

Power-Based Model Evaluation

Recently, Kaplan (1990) argued for the evaluation of structural
equation models based on power considerations. Kaplan argued that the
typical approach to model evaluation in the presence of large sample
sizes and specification error has been to assume that a significant x>
was the result of a main effect of sample size. The standard response
has been the application of numerous alternative measures of model fit
now available in structural modeling software packages. If one can rule
out or explicitly model other factors that contribute to misfit such as
nonnormality and/or missing data (see Allison, 1987; Muthén, 1984;
Muthén, Kaplan, & Hollis, 1987), then the difficulty with the standard
response is that, in the presence of misfitting models, sample size
interacts with the degree of the specification error to affect the size of
the test statistic. To again borrow from ANOVA logic, main effects
cannot be unambiguously interpreted in the presence of interactions. In
other words, without a clear understanding of the single cause of the
misfit, the standard %? statistic should be taken seriously as a sign of
some complex problem with the model. This sentiment has been echoed
by Saris, den Ronden, and Satorra (1987).

By taking the value of the test statistic seriously, Kaplan argued for
a model modification strategy that would provide the investigator with
the information needed to choose modifications with power in mind.
Specifically, recall the four scenarios of model modification presented
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by Saris, Satorra, and Sérbom (1987) and discussed earlier. Clearly, one
would want to free a parameter associated with a large MI and large
SEPC, provided there is sufficient theoretical justification for doing so.
After modifications of this type are exhausted, it is possible that one
may be left with large Mls associated with small SEPCs. An example
of this was found by Kaplan (1989a) in the reanalysis of the total sample
of the Sewell, Haller, and Ohlendorf (1970) model. In this case, it could
be argued that the sensitivity of the test statistic is primarily due to
sample size rather than to some fundamental internal specification
error. That is, large MIs associated with small SEPCs may be taken as
an indicator of a main effect of sample size sensitivity. Continuing to
free parameters in this case would lead to an increase in Type II errors.

The rationale underlying this approach rests on the fact that the EPC
gives the expected size of the misspecification (i.e., the probable size
of the distance between Hy and H, for that parameter). If specification
errors are small and MlIs are large, then, all other things being equal,
the misfit is due to sample size sensitivity. Kaplan (1990) suggested
that at this point in the modeling process an investigator may wish to
use a sample size independent alternative fit index (see Chapter 5).

Three caveats were noted by Kaplan (1990) when engaging in the
type of power-based model evaluation and modification outlined in this
section. First, one-step modifications dictated by the MI-EPC approach
have been found to change the correlational structure of the parameter
estimates. The manner in which parameter estimates are correlated
moderates the effects of specification error and is known to be highly
model dependent (Kaplan & Wenger, 1993). This issue is discussed in
more detail later. Thus one must be confident that all of the important
internal errors have been removed before assessing the effects of
sample size. Second, external specification errors, in the sense of
omitted variables, are not addressed by this method. Theoretical devel-
opments in one’s substantive area should dictate what are the appropri-
ate set of variables. Third, what constitutes a large EPC is, naturally, a
matter of judgment. The SEPC is helpful in this regard but does not
replace substantive knowledge. Nevertheless, Kaplan (1990) argued
that this approach to model evaluation, which takes into account speci-
fication error and sample size sensitivity, offers the user a statistically
grounded, power-analysis based alternative for evaluating and modify-
ing covariance structure models.
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Studies of the Power Characteristics of
Structural Equation Models

Since the introduction of methods for calculating power for struc-
tural equation models by Satorra and Saris (1985), numerous studies
have been designed to examine power characteristics of prototype
models under typical conditions. Saris and Satorra (1987), for example,
studied how various model characteristics affect the power approxima-
tion procedure. They found that the LR test has unequal power for the
same size misspecification in different places within a model. This
means that only some misspecifications will be detected. Saris, Satorra,
and S6rbom (1987) replicated this finding and argued that, because the
overall model test examines multiple hypotheses, only a very elaborate
power study of many possible misspecifications could give enough
information to draw any conclusions. A power study of that scope could
become tedious for large models. Later in the chapter, I discuss the
underlying mechanism that explains some of the findings of Saris and
Satorra (1987).

In addition to the studies by Saris and his colleagues, Kaplan (1989c)
studied, among other things, the behavior of the power for the test of
single parameters as a function of different degrees of misspecification.
Utilizing a Monte Carlo methodology and a prototype structural equa-
tion model, Kaplan found results similar to those of Saris and his
colleagues—namely, that power depended quite heavily on the size of
the misspecified parameter, the sample size, and the location of the
parameter in the model.

It is not surprising to find that power is affected by the size of the
misspecified parameter and the sample size. These are known to be the
factors that influence power in other statistical procedures as well.
What is unusual, or at least unique to multiparameter systems such as
structural equation modeling, is that power depends on the location of
the parameter of interest within the model. It has been suggested by
Kaplan (1988, 1989a, 1989b) as well as Saris, Satorra, and S6rbom
(1987) that an explanation for this phenomenon resides in the pattern
of zero and nonzero elements in the estimated covariance matrix of the
estimates. These patterns, which are determined by the initial specifi-
cation of the model, appear to regulate the effects of specification error
as well as standard errors and ultimately power probabilities. Consid-
eration of the covariance matrix of the estimates and its role in model
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testing leads back to the classic study by Aitchison (1962) of asymp-
totically independent (Al) test statistics and separable hypotheses in
restricted maximum likelihood theory. Satorra (1989) alluded to the
importance of Al test statistics and separable hypotheses in the struc-
tural equation modeling setting, and Saris and Satorra (1993) noted that
their isopower contour approach discussed above also depends on
asymptotic independence and separability.

Recently, Kaplan and Wenger (1993) attempted to provide an em-
pirical demonstration of the role of Al test statistics and separable
hypotheses and, specifically, the role of the covariance matrix of the
estimates as it pertained to specification error, power, and model modi-
fication. Kaplan and Wenger studied the problem from the viewpoint
of an investigator wishing to assess, among other things, the post-hoc
power associated with a test of a free parameter. In this case, the
investigator would make use of the fact that the Wald test is distributed
as a noncentral y? statistic with 1 degree of freedom. This value, as was
noted above, can be used to assess the power associated with having
rejected the null hypothesis that the parameter in question is zero.

From this viewpoint, Kaplan and Wenger (1993) showed that the
simultaneous test of the hypothesis that two parameters are Zero (viaa
multivariate Wald test) would decompose into the sum of two univariate
Wald tests only if the covariance between the two parameters was zero.
This condition results in tests that are asymptotically independent,
which in turn implies that the associated hypotheses are separable
(Aitchison, 1962; Satorra, 1989).

Kaplan and Wenger (1993) extended this basic finding to testing
sequences of multivariate hypotheses. They considered the case in
which one may be interested in restricting two parameter vectors, say
0, and 05, on the basis of the multivariate Wald test. They allowed the
parameters in 8, to have zero asymptotic covariance with the parame-
ters in 05, yet share nonzero asymptotic covariances with the elements
of some other parameter vector, say 8,. In this case, Kaplan and Wenger
found that the test statistics associated with 8, and 8, are asymptotically
independent, but the value of the multivariate Wald test of the joint
hypothesis that 8, and 0 are zero would not asymptotically decompose
into the sum of the individual multivariate Wald test values, unless the
conditions of mutual asymptotic independence held—namely, all three
parameter vectors would have to have zero asymptotic covariances.

Kaplan and Wenger (1993) further noted that although Al could hold
for individual parameters within and between vectors 0, and 03, a
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restriction in 8; would manifest its effects in 8, because of its shared
nonzero covariance with 0,. They defined transitive hypotheses as those
hypotheses that exhibit the property of being asymptotically inde-
pendent yet not separable.

The importance of the study by Kaplan and Wenger (1993) for issues
of power rests on the fact that specification errors induce bias in
standard errors as well as in parameter estimates (Kaplan, 1989c).
Because test statistics are formed as ratios of parameter estimates to
their respective standard errors, it is not surprising to observe changes
in power probabilities as a result of specification error elsewhere in a
model. Kaplan and Wenger (1993) empirically demonstrated this by
using a prototype model and allowing two parameters to have identical
true values but different correlations with a third parameter. They found
that the separate restriction of the two parameters with identical true
values yielded different power probabilities for the third parameter—
even though the specification errors were of exactly the same magni-
tude. Because different parameters obviously reside in different loca-
tions within a model, the study of Kaplan and Wenger (1993) provided
empirical evidence for the observations of Saris and his colleagues and
of Kaplan.

Studies of Power in
Multisample Structural Equation Models

Up to now, the discussion of power in structural equation models has
focused on single-sample situations. Also of interest to the applied
investigator are multisample situations wherein group comparisons are
desired. Studies of the power characteristics of multisample structural
equation models have typically centered on the measurement part of the
model—namely on power in the multiple group confirmatory factor
analysis setting.

Multigroup confirmatory factor analysis (MGCFA) models have
become increasingly popular tools in education and psychology. The
methodology for engaging in MGCFA was originally developed by
Joreskog (1971), who provided the statistical framework for estimating
and testing multigroup models. His paper also provided a strategy of
hypot‘hesis testing that proceeds from simple tests of the equality of
covariance matrices to tests of increasingly restrictive hypotheses re-
garding the structure of the covariance matrix. MGCFA models have
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also been extended to estimation of factor mean differences (Sérbom,
1974, 1982).

It had been assumed for some time that testing multigroup hypothe-
ses required invariance of factor loadings. Muthén and Christofferson
(1981), however, alluded to the possibility of testing hypotheses when
only some of the loadings were invariant across groups—what was
termed partial measurement invariance. This strategy of multigroup
modeling allows for the specification of separate baseline models,
which may not be identical for both groups. Allowing for these differ-
ences, tests of partial measurement invariance can be conducted. Byrne,
Shavelson, and Muthén (1989) have illustrated establishing baseline
models and testing equality of factor covariance and mean structures under
partial measurement invariance in a model of adolescent self-concept.

An issue of importance to the focus of this chapter concerns the
power characteristics associated with multigroup models—particularly
tests of total and partial invariance under conditions of model misspe-
cification. In the case of MGCFA without a structure on the means,
Kaplan (1989c) studied the power of the likelihood ratio test under
partial measurement invariance. Using a six-variable, two-factor model
with a known specification error in one group, and varying the size of
the specification error and size of remaining free parameters, Kaplan
found that the power of the test was dependent on the size of the
misspecified parameter and the size of the free loadings, as well as on
the correlation between the misspecified parameter and the parameter
held invariant.

More recently, Kaplan and George (in press) studied the power
associated with testing factor mean differences under violations of
factorial invariance. Using the Wald test to assess the power asscociated
with true factor mean differences, the results showed that power was
most affected by the true differences between the factor means. More-
over, the size of the model was found to affect the power of the test, with
larger models giving rise to increased power probabilities. However,
the results of that study suggested that when sample sizes are equal, the

approximate power of the Wald test for factor mean differences is |

relatively robust against violations of factorial invariance. This finding
held across variations in the actual size of the factor mean differences.
By contrast, when the sample sizes were unequal, large changes in the
approximate power of the test were observed even under conditions of
factorial invariance, with power substantially decreasing as the sample
sizes become increasingly disparate. This finding was found to hold
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across conditions in which the group with the larger sample was asso-
ciated with the larger generalized variance (positive condition), and in
which the group with the larger sample was associated with the smaller
generalized variance (negative condition). No major differences were
observed with respect to positive or negative conditions of sample size,
except that the positive condition yielded uniformally higher approxi-
mate power probabilities compared to the negative condition. Similar
results were observed for the partial noninvariance case.

Two results reported by Kaplan and George (in press) can again be
explained by the underlying mechanism discussed by Kaplan and Wenger
(1993). The first result concerned the differentiation of the first- and
second-factor means in the partial noninvariance case, and the second
result concerned the direction of change in power for the total versus
partial noninvariance case. With respect to the first issue, for the total
noninvariance case, the covariances for the first p/2 loadings and the
first-factor mean were found to be equal to the last p/2 loadings and the
second-factor mean. In addition, the cross-covariances were also found
to be equal. As a result, equating the loadings for both groups induced
a specification error that was absorbed uniformally throughout the
means, such that there was no differentiation between the first- and
second-factor means. For the partial noninvariance case, the cross-
covariances were not equal, thus leading to a differential absorption of
the specification error and subsequent separation of the first- and
second-factor mean.

With respect to the second issue, the power for the total noninvari-
ance case was found to increase for increasing degrees of noninvari-
ance, whereas for the partial invariance case, the opposite result was
observed. For the total noninvariance case, it was observed that as the
degree of noninvariance increased, the covariances between the factor
loadings and factor means increased (as did the power), whereas for the
partial noninvariance case, the covariances between the factor loadings
and factor means decreased. It should be noted that these differences
were very small and, as such, did not represent a serious constraint on
the substantive conclusions of that study.

Framed in terms of decision errors, Kaplan and George (in press)
showed that the marginal effect of noninvariance was to slightly de-
crease the probability of a Type Il error. On the other hand, the marginal
effect of inequality of sample size led to a dramatic increase in Type II
error probabilities, even when the factorial invariance hypothesis was
true. This increase appeared to be slightly greater for the negative
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condition case. This finding held for both the total and partial nonin-
variance cases. Thus Kaplan and George (in press) concluded that if the
null hypothesis of equal factor means was rejected under conditions of
unequal sample size, the practitioner could be fairly confident that the
hypothesis is probably false. However, if the hypothesis was not re-
jected, the situation was somewhat ambiguous—owing to either the
effect of unequal sample sizes on the power of the test, lack of substan-
tive factor mean differences, or both.

When faced with a multisample problem, Kaplan and George (in
press) advised that if sample sizes are unequal, the practitioner may
wish to consider the alternative multiple indicator-multiple cause
(MIMIC) model approach to multigroup modeling discussed by Muthén
(1989). The MIMIC approach requires the formation of dummy vari-
ables representing group membership. Estimates of factor mean differ-
ences are obtained by regressing the factors on the dummy variables
using a regression based approach to structural equation modeling (see,
e.g., Muthén, 1984). One advantage of the MIMIC approach over the
standard approach examined in this chapter is that it can handle cases
in which the sample size in a given group may be too small to ensure
stable estimates of variances and covariances. Moreover, by creating
dummy variables representing group membership, the MIMIC approach
allows one to consider familiar models of main effects and interactions.
Kaplan and George (in press) noted, however, that the power charac-
teristics of the MIMIC approach relative to the standard approach are,
as yet, unknown. Nor is it clear how the MIMIC approach would fare
when group membership is highly unequal. Thus, if the practitioner
wishes to stay within the traditional multigroup modeling framework
of Jéreskog (1971) and Sérbom (1974, 1982), then he or she is advised
to examine the size of the factor mean differences as they pertain to the
substantive aspects of the research, as well as to test the hypothesis
utilizing a more liberal significance level. Of course, the choice of
significance level will depend on the willingness of the researcher to
commit Type I errors associated with the test of factor mean differences.

Conclusion
The purpose of this chapter was to present a general discussion of

current research on power in structural equation modeling. It is clear
that developments in assessing power in structural equation models
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have important implications for practice. Because power is intimately
connected to issues of hypothesis testing and model modification, an
immediate implication is that model evaluation must take place with
statistical power in mind. For example, the known sensitivity to sample
size of the overall goodness-of-fit test as well as single parameter tests
is primarily an issue of power. Sample size is not an issue when models
fit perfectly. Only when the null hypothesis is false does sample size
enter into issues of goodness of fit. Even then, the role of sample size
must be weighed against the size of the specification error. Small errors
are magnified by large samples and visa versa. Because power is
defined to be the probability of rejecting the null hypothesis when it is
false, and because a false null means that the alternative is “true” (i.e.,
a nonzero specification error that can be approximated by the EPC), one
must keep issues of power in mind when testing the fit of the model or
the statistical significance of individual parameters.

Power must also be kept at the forefront when modifying a model.
We have seen that sequential use of the modification index for freeing
parameters can result in a capitalization on Type II errors. The modifi-
cation strategy proposed by Kaplan (1990) was designed to help miti-
gate Type II errors by basing decisions on power associated with the
proposed modifications. The same holds true for fixing parameters on
the basis of the Wald test.

An important finding with respect to power is the role of asymptoti-
cally independent test statistics and separable hypotheses when evalu-
ating the power characteristics of a model (Kaplan & Wenger, 1993).
It must now be recognized that the outcome of any model modification
strategy and corresponding power evaluation depends, in a fundamental
way, on the initial pattern of zero and nonzero elements in the covari-
ance matrix of the estimates. This pattern is determined once the initial
specification of fixed and free parameters is assigned but can change
each time the model is modified. Such changes are difficult to anticipate
and suggest an unpredictability in the direction model modifications
might take, because each time a parameter is restricted (or relaxed) the
pattern of zero and nonzero values in the covariance matrix of the
estimates changes unless mutual asymptotic independence continues to
hold. Moreover, this pattern appears to interact with such factors as
sample size and size of specification errors (MacCallum et al., 1992;
Silvia & MacCallum, 1988). Because sample size and specification
errors are factors that influence power, it is clear that power is also
affected by this fundamental feature of structural equation models.
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The results of Kaplan and Wenger’s (1993) study have direct bearing
on model modification strategies available in structural equation mod-
eling computer software packages. For example, the current version of
EQS (Bentler, 1992a; see also Bentler, 1986) allows the user to examine
multivariate Wald tests in either an a priori or hierarchical a priori
fashion. In the latter case, a set of parameters is tested in the order
specified by the user. Kaplan and Wenger (1993) found that, unless the
tests were mutually asymptotically independent (MAI), the univariate
Wald tests did not sum to the multivariate Wald test. In other words, if
one were to fix all parameter estimates simultaneously, the result would
not be equal to that obtained by incrementally fixing the parameters
unless the test statistics were MAL A similar observation was made by
Chou and Bentler (1990) in the context of univariate versus multivariate
Lagrange multiplier tests.

A larger issue raised by Kaplan and Wenger (1993) concerns whether
one should evaluate univariate versus multivariate Wald tests when
contemplating restricting a parameter or set of parameters. The results
of their study demonstrated that restrictions in a model can change the
initial structure in ways that may have little to do with the substantive
theory that led to the specification of the model in the first place. A
multivariate approach to model modification would make it difficult to
observe artifactual changes among parameter estimates, standard er-
rors, and power probabilities resulting from lack of MAI among uni-
variate tests. It is important to note that this argument also holds for
sets of multivariate model modifications. That is, two or more sets of
multivariate restrictions must be MAI in order to trust that changes in
parameter estimates, standard errors, and power probabilities are not
artifactually induced by lack of MAI. This result is true even if MAI
holds within any given set of restrictions. Thus, in the unlikely event
that MAI can be determined from a visual inspection of the covariance
matrix of the estimates, Kaplan and Wenger (1993) advocate the more
prudent univariate sequential approach to model modification, whereby
restrictions (or inclusions) are made one parameter at a time, with
careful attention paid to changes in substantively important parameters
and power probabilities (see also Saris & Stronkhorst, 1984).

In conclusion, the work of Saris and Satorra (1993; Satorra, 1989;
Satorra & Saris, 1985) now makes it possible for power analyses to be
routinely applied to the structural equation modeling setting. The sub-
sequent investigations by Kaplan (1989a, 1990) and by Chou and
Bentler (1990) allow model evaluation and modification to be con-
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ducted within a framework that acknowledges the prominent role of
statistical power within structural equation modeling. As long as inves-
tigators choose to continue to apply Neyman-Pearson hypothesis test-
ing to structural equation models, then it must be recognized that all
models are, by definition, approximations to reality, and therefore false.
Under these conditions, the conclusions one draws regarding the ade-
quacy of one’s model for explaining a phenomenon are dependent on
statistical power. Assessing power, therefore, must now become a
routine part of establishing the statistical validity of an estimated
model.
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7 Objectivity and Reasoning in Science
and Structural Equation Modeling

STANLEY A. MULAIK

LAWRENCE R. JAMES

There are a number of ways to interpret the meaning of a structural
equation model. One way, known from ancient times as the doctrine of
“saving the appearances” (Losee, 1980), is to regard a model as simply
a procedure for the reproduction of some data having no substantive
basis in reality. A more frequently taken alternative approach seeks to
establish the objective validity of a substantive model and regards the
relations between latent variables in these models as causal rather than
merely predictive relations.

Our aim is to develop this alternative approach for the interpretation
of structural equation models as objective representations. We shall
interpret a structural equation model as a representation of an objective
state of affairs that stands in causal and/or criterial relationships with
the data, and thereby as a causal explanation of the data. It will not be
sufficient in this framework that the structural equation model merely
reproduces the data. Something more will be required: evidence sup-
porting the assertion that the state of affairs represented by the model
exists as represented, independently of the observer. In developing this
approach of models as objective representations, we will argue that it
is to be embedded within a conception of science as a social, normative,
dialectical, and dynamically changing practice, centered on the evolv-
ing concepts of subjectivity and objectivity, which grew out of meta-
phors in language that made possible the idea of self-consciousness.
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Understanding how to reason from empirical evidence to establish the
objectivity of a structural equation model will be the major focus of this
chapter; however, we will first briefly critically review some philo-
sophical positions that have frequently been inimical to objective and
causal interpretations of structural equation models to clear the way for
such interpretations.

Preliminary Considerations
From Contemporary Philosophy of Science

THE LEGACY OF LOGICAL POSITIVISM

The period between 1920 and 1965 may be thought of as the era of
logical positivism in Western science. Logical positivism was charac-
terized by the verifiability theory of meaning, which held in its extreme
forms that to be meaningful, propositions had to be potentially verifi-
able; that is, they had to be of a kind that, in principle, could be shown
to be either true or false. The positivists used this theory to dismiss
metaphysical, religious, and ethical propositions as meaningless, be-
cause they believed these could not be established as true or false. For
positivism, there were only two kinds of meaningful propositions:
(a) analytic propositions, such as tautologies, and mathematical and
logical propositions, whose truth could be determined by showing that
they followed logically from axioms and/or definitions and (b) empiri-
cal propositions whose truth is determined either directly by observa-
tion, known as observation statements (e.g., “The dial shows 190
pounds”), or indirectly by logical deduction from observation state-
ments (e.g., “John weighs more than the average person his size”). The
essential ideas of logical positivism were that (a) our knowledge of the
world rests ultimately on an incorrigible foundation of self-evidently
true observation statements and (b) formal logic ultimately is the
medium by which scientific propositions link diverse observation state-
ments together into scientific theories.

Although not a method unique to logical positivism, according to
logical positivism, science develops by use of the hypothetico-deductive
method. A hypothesis is formulated to explain some phenomenon by
showing that the phenomenon follows deductively from the hypothesis.
Scientists assess the validity of the hypothesis by empirically testing
other deductive consequences of the hypothesis. Science also forms
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inductive generalizations and tests these against additional observa-
tions (Bechtel, 1988; Dancy, 1985).

Carl Hempel (1965), one of the founders of the logical positivist
movement, formulated logical positivism’s concept of explanation: In
science, the explanation of an event is the logical deduction of the
specific event from true general laws and background conditions sur-
rounding the occurrence of the event. This form of explanation is known
as the deductive-nomological (D-N) concept of explanation. (Nomolog-
ical refers to “law.”)

In Hempel’s D-N formulation of explanation, the concept of causal-
ity as a form of explanation dropped out of consideration, replaced by
the logical operation of material implication. Hempel’s view of expla-
nation reinforced a negative attitude held by logical positivists and their
empiricist followers toward causality. British empiricism, a forerunner
of logical positivism, had long regarded causality with suspicion be-
cause of Hume's (1739/1968) contention that there is no referent in
experience for the causal connection. Causality had also been expelled
from science early in the development of logical positivism by the
physicist Moritz Schlick (1959), one of the Viennese founders of
logical positivism, primarily because, he declared, physics had aban-
doned determinism (Mulaik, 1987). Thus formal logical deduction was
the ideal explanatory form of logical positivism.

THE FALL OF LOGICAL POSITIVISM

Meaning as Use. After the middle 1950s, there developed a gradual
ground swell of opposition to logical positivism. First to fall was the
verifiability theory of meaning. Wittgenstein (1953), for example, ar-
gued that the meanings of propositions are not the things to which they
truly or falsely refer but the manner and place in which the propositions
are used in language and human social activities, with reference merely
one of these uses. So, propositions can be meaningful in other ways than
merely by referring to fundamental objects of experience.

Popper’s Argument Against the Verifiability of Theories. The veri-
fiability theory of meaning was further undermined by Popper’s (1959)
observation that theoretical propositions can never be determined to be
true on the basis of experience. Most scientists using the hypothetico-
deductive method proceed by formulating a hypothesis, H, and testing
it against some deduced consequence, C. They seem to argue:
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If H is true, then C is true.
C is true

Therefore, H is true.

But this form of argument is fallacious. The fallacy has a name: the
fallacy of affirming the consequent. The explanation of the fallacy is
that even if the consequence C of the hypothesis H is true, that does not
establish the truth of the hypothesis. The consequence C could be true,
even though the hypothesis H is false. There could be other reasons for
the truth of C.

Popper rejected the verifiability theory of meaning and the verifica-
tion theory of hypothesis testing. We cannot test theories in science, he
argued, to establish their truth. Rather, we can only test to see whether
a theory is false by showing consequences of the theory to be false. The
form of the argument against a hypothesis would then be

If H is true, then C is true.
C is false

Therefore, H is false.

This is known as the logical form of modus tollens or denying the
consequent. It is a valid form of inference.

The Falsifiability Criterion. Popper argued further that it is the mark
of science to formulate potentially falsifiable propositions and put them
to the test. Where propositions cannot be potentially falsified, then
science is not present. Popper sought to delimit valid science from
pseudoscience and other endeavors by his falsification criterion.

But Popper’s falsifiability criterion itself was shown to have short-
comings when it was recognized that one cannot absolutely falsify a
hypothesis by experience, either. Hypotheses in science are not tested
in isolation. The deduced consequence C often depends on other auxil-
iary theories, Ty, Ty, . . ., T}, taken in combination with the hypothesis
H. One may regard these other theories to be true (even though, as we
have pointed out, they never could have been established to be true).
The tests themselves also depend upon the truth of other auxiliary
theories about the observing instruments and descriptions, By, B,, . . .,
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B,,, of the setup of the experimental apparatus and of the background
conditions for the experiment. Thus the inference proceeds as follows:

If auxiliary theories Ti and T2 and . . . and T are true, and propositions B
and B2 and . . . and Bm concerning experimental background condi-
tions are true, and H is true, then C is true.

C is false

Therefore, H is false.

But this conclusion does not necessarily follow. This is also a
fallacious argument. H could still be true while one or more proposi-
tions about a background condition or one or more auxiliary theories
are false. It is not possible to determine from the falsity of C which
premise on which it is based is false. Although many scientists accept
the idea of the falsifiability criterion as essential to science, knowing
its limitations, they now modify it to a weakened disconfirmability
criterion, which merely presumes that auxiliary theories and back-
ground conditions are true, or on firmer ground than the hypothesis.
Thus, if C is false, they will doubt first the truth of the hypothesis before
doubting the auxiliary theories and background conditions.

With the inability to determine that a theory or hypothesis is abso-
lutely true or false from experience, we have a condition known as the
logical underdetermination of empirical theories from experience
(Garrison, 1986).

Defeasible Reasoning. How then are we to reason about general
theories using the findings of experience if our reasons for accepting or
rejecting a theory do not logically entail their conclusions? Pollock
(1986) argues that one of the most important discoveries of contempo-
rary epistemology is that we can reason with defeasible reasons. “Such
reasons,” he says, “are defeasible in the sense that, while they can
justify our believing their conclusions, that justification can be ‘de-
feated’ by acquiring further relevant information” (Pollock, 1986, p. 16).
We take this to mean something like the following: Suppose we perform
what we believe after careful empirical review is a controlled experi-
ment to test a hypothesis. Suppose we then obtain results supportive of
the hypothesis. That gives us a prima facie but defeasible reason to
believe the hypothesis. This reason is defeasible because someone may
next show empirical evidence that an extraneous variable, correlated
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with the experimental variable and a known cause of the dependent
variable, was not controlled for. That evidence defeats the reason to
accept the hypothesis, because it could be argued that this other variable
caused the differences in the dependent variable, not the experimental
variable. On the other hand, in this case it is not sufficient to defeat our
belief in the hypothesis by raising a skeptical doubt. “How can you be
sure,” the skeptic might ask, “that you have not left uncontrolled an
important extraneous variable?” Our answer should be, “Do you have
empirical evidence for such an extraneous variable in this situation?”
Positive evidence must be offered to defeat our reasons for accepting
the hypothesis; however, such a treatment of skeptical doubts should
not be used to turn away criticisms of the conclusions based on citing
prior experience of possible extraneous variables in the given experi-
mental situation. “Did you control for variable x?” the critic might ask,
and then cite support in prior experiences for raising the question:
“Variable x has turned up as an extraneous variable in similar experi-
mental situations before.” To defeat in turn this potential defeater of
our conclusion, we must be able to say something like, “We considered
that and found no evidence for its presence in this experiment.” But
even that counterevidence could be defeated by further investigation.
Defeasible reasoning is a normative framework for reasoning that
closely approximates the way individuals seem empirically to reason
informally (Kuhn, 1991). We will shortly show that it is a form of
dialectical reasoning (not to be confused with Hegel’s or Marx’s no-
tions of dialectical reasoning).

The Theory-Laden Nature of Observation. Many followers of logi-
cal positivism believed that basic observation statements were simple
and free of any theoretical content and hence, self-evidently true or
false. This guaranteed a theory-neutral basis in experience for adjudi-
cating between conflicting theories. But even as early as the turn of the
20th century, Gestalt psychologists had observed ambiguities in basic
perception. For example, Jastrow (1900) had produced a figure that was
interpreted alternatively by the same observers as both a duck and a
rabbit. Wittgenstein (1953) used Jastrow’s duck-rabbit to illustrate a
fundamental ambiguity in interpreting experience. Hanson (1958) ar-
gued that we are taught to see what we see. Furthermore, what we see
often reflects the theories we have been taught. An aquatic biologist
will see in ariver things a layman would overlook or ignore. A hydraulic

engineer will see something else. Hanson’s view was that we do not"
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first see a theory-neutral object and then impose an interpretation upon
it. Rather, we see the object directly as this or that kind of object,
depending upon our training and theoretical dispositions (Bechtel,
1988).

The Empirical Underdetermination of Theories. In the early 19th
century, many scientists believed science would progress by collecting
masses of facts and then going over these facts to find commonalities
and generalizations. For these scientists, theories were simply inductive
generalizations from the particulars. They regarded induction, the pro-
cess of generalizing from particulars, as a straightforward process,
totally driven by experience to determine a unique generalization.
Contemporary philosophy of science recognizes the ambiguity of in-
duction, of generalizing from specific items of experience. More than
one curve may be constructed to pass through a given set of points.

This can be illustrated in the mathematical and statistical realm by
Figure 7.1, where one is given five data points and presented with the
task of finding some curve that passes through these points to serve as
a way of generalizing beyond these points. There is no unique way to
fit a curve to a given set of data points (Hempel, 1965). Thus more than
one mathematical theory might be formulated to represent a way of
generalizing from a given set of data, and all these theories could fit the
data equally well. The major implication of the underdetermination or
nonuniqueness of generalizations from particulars of experience is that
experience alone is not sufficient to account for our knowledge.

The Normative and Social Basis for Knowledge. The ambiguity of
perception and the empirical underdetermination of theories have im-
plied a number of things to philosophers of science. The 18th century
philosopher Immanuel Kant argued that the senses are not alone respon-
sible for what we know. The knower himself contributes a priori forms
by which experience is to be organized and represented (Kant, 1781/
1965). Implicit in Kant’s argument is that there might be other forms
by which to represent experience than those we use. Wittgenstein
(1953) regarded the ambiguity of experience as an arena in which social
norms regulate the way communities of individuals represent what is
experienced. The implication is that social norms regulate a priori the
individual’s perception in ways that reduce ambiguity (Mulaik, 1993a).
Because specific forms of experience have to be taught, communicated,
justified, and maintained in language, he regarded grammar, the broad
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Figure 7.1. More Than One Curve May Be Constructed to Pass Through a Given
Set of Points

range of social norms governing the use of language, as imposing a
priori structures and constraints on the way we experience and commu-
nicate our experiences. The acquisition and justification of knowledge
is thus regarded as a social process.

That knowledge is acquired and justified in a social context is
another major achievement of postpositivistic science. From the intro-
spective meditations of Descartes in the 17th century through Leibniz,
Locke, Hume, and Mill, down to the logical positivists, like A. J. Ayer
of the 20th century, the acquisition and justification of knowledge was
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seen as a personal activity the individual conducted privately. Jason
(1989) characterizes this as the solipsistic concept of knowledge and
contrasts it with the social concept of knowledge.

Dialogue and Dialectic. Jason (1989) regards one of the major
impediments that the solipsistic concept of knowledge had on philo-
sophical understanding was the idea that reasoning is inferential rather
than dialectical (i.e., dialogue). Inference for the solipsist is regarded
as a timeless activity. One lays out all of one’s assertions before oneself
and then proceeds to see what assertions can be deduced from the
others. The inferential process drives the knower to seek premises for
knowledge in incorrigible foundations such as self-evident truths or
self-evident experiences. The goal is absolute truth and certainty. Dia-
lectic, on the other hand, is an activity that is memory bound and
proceeds through time between two parties, who may or may not be
distinct persons (Jason, 1989). Dialectic can take place between differ-
ent individuals, between the individual and nature (in asking questions
of nature), and within the individual, with himself as the other party.
The logic of dialectic, however, is acquired from the ethics of social
dialogue and is projected inward when the individual learns to carry on
a conversation with himself, or outward when treating the world of
nature metaphorically, as if it is another person in being able to provide
answers in response to questions. Dialectic also does not demand
absolute certainty, only reasonable certainty. Pollock’s (1986) defeasi-
ble reasoning, which we have already considered, does not demand
absolute certainty and is a form of dialectical reasoning.

Jason (1989) argues that dialectic is the logic of discovery as well as
of justification. Jason’s point is to counter Popper’s (1959) assertion
that there is no logic to discovery in science. Popper regarded our ways
of initially seeking to formulate hypotheses and theories as irrational,
a subject for psychology, perhaps, but not philosophy or logic. Logic,
the inferential variety, enters the picture only when we seek to justify
theories and hypotheses from experience. For Jason (1989), the dialec-
tic of science provides us with a broader logic that guides not only our
processes of discovery but our processes of justifying knowledge as
well. Scientists have many rational frameworks for seeking new knowl-
edge. Descartes (1637/1901) argued one should start by analyzing a
problem into its elemental, component parts. Then, one should reverse
the process and seek rules of synthesis, by which the components may
be combined again into the phenomenon that was to be understood. This
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strategy has guided many scientists to the present day. Descartes’s
method of analysis and synthesis is dialectic, in that it does not take
place all at once. As the researcher proceeds with the method, she and/or
her research community continually ask probing questions about whether
she has found the elementary components, and then whether she has
properly combined them to reproduce the phenomenon to be under-
stood. Bacon (1620/1858) and Mill (1874) put forth a method of elimi-
native induction: To determine the underlying causes of something,
consider a number of potential, hypothetical causes that are supported
by being present in the phenomenon to be understood. Then, eliminate
from further consideration those causes that are still present when the
phenomenon itself is absent. Or eliminate from further consideration
those causes that do not covary with the variation in the phenomenon.
This again involves a dialectical series of questions about each of the
potential causes (Jason, 1989).

No Private Rules. Wittgenstein (1953) undermined the solipsistic
foundations of logical positivism as well as traditional rationalism and
empiricism when he argued that there is no such thing as a private
language, or as following a rule in a logically private manner. The
phenomenalist who thinks he can make up a private rule to use a sign
to stand for a certain private sensation is mistaken. There is no way the
private individual can distinguish between seeming to be right in ap-
plying the rule and being right (Schulte, 1992). For that matter, the
individual cannot distinguish between making up the rule as he goes
along and using the same rule (Mulaik, 1993b). The essentially private
individual has no independent way to make these kinds of distinctions,
but being able to make these kinds of distinctions is essential to the use
of rules in social situations. In our dialogues with other persons, others
can provide independent confirmation or disconfirmation of our prop-
erly using a rule, or that we are using the same rule.

Objectivity Based on the Metaphor of Consciousness. Central to
science are the concepts of subjectivity and objectivity. Mulaik (1991)
drew upon the writings of Kant and Gaston Bachelard (Tiles, 1984) to
describe the role the concept of an object and objectivity play in
science. Mulaik held that,

The object of knowledge is not some noumenal thing in itself which we
know independently of experience, but rather is a concept which synthe-
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sizes appearances in (possibly) many different sensory modes and from
many points of view in such a way that one can state the rule how each
mode and point of view reveals the object in a different and even possibly
distorted but characteristic way. (p. 96)

More recently, Mulaik (in press) described how, central to the meta-
phors of consciousness, the subject-object relationship is a metaphor,
derived from a bodily image schema of proprioception and its intimate
relationship with object perception. In perception, we distinguish in-
variants resulting from our bodily actions (proprioception) from those
invariants we ascribe to “external” objects, which synthesize diverse
views of them, so that as our bodies and heads move, we can adjust for
such movements’ varying effects on our perceptions of objects.

This account of the relationship of subject to object, given as the
relationship between appearances, physical objects, and varying obser-
vational acts of the bodily subject, is itself but a metaphor for other
forms of the subject-object distinction. The self comes to “know” itself
(by reflection and through the reported observations of others) by those
acts it commonly performs in varying circumstances and their conse-
quences. It must know how things it does or the tools it uses to observe
an object will characteristically distort what is observed, and be able to
factor out the effects of its own actions to assess the independent
existence of what it regards as an object. But what is subject and what
is object is not an absolute determination but a dynamic, changing one,
shaped and developed through social dialogue and interaction with the
world within communities of individuals. What may be objective today
may reveal a subjective aspect tomorrow, and frequently it will take one
who breaks with the constraints of an outmoded community view of
objectivity and emphasizes her own subjectivity to be able to forge a
new concept of subjectivity and objectivity for the community (Mulaik,
1991, 1993b, 1994; Tiles, 1984).

Relevance to Structural Equation Modeling

We hold that structural equation models as mathematical models
represent objective states of affairs. There is, we assert, a language for
representing objective states of affairs, the language of objects (Mulaik,
1993b, 1994). Thus mathematical models will be constrained to repre-
sent within them the grammatical features of the object language, if they
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are to represent objective states of affairs. In the language of objects,
we speak about objects bearing properties, of how the properties of
objects cause or determine other properties of the same or other objects.
Formally speaking, objects are subjects, and their properties are predi-
cates. Whereas early 20th century logicians tended to regard properties
as logically independent of other properties, it was early on recognized
that, in our natural languages, properties come grouped together in
families, and only one property from a family is ever assigned to an
object at any one time (Wittgenstein, 1975). Thus families of properties
can be represented by variables, and the assignment of a specific value
to a variable in mathematics can represent the assignment of a specific
property to a given object (Mulaik, 1986, 1987).

Next, we assert that causality is the relation to represent depen-
dencies between the properties of objects in the object language. But
because properties of objects are logically grouped together as the
values of variables, causality takes the form of a functional relationship
between variables (James, Mulaik, & Brett, 1982). Philosophers have
been puzzled by how to implement causal relations in nondeterministic
contexts. Simon (1977) suggested in a passing remark the way a func-
tional relation concept of causality could be implemented in a prob-
abilistic context. Influenced by Simon’s remark, Mulaik (1986) realized
that Rasch’s (1960) item response model could be seen as a prob-
abilistic causal model, in which item difficulty and subject ability
jointly determine a specific probability distribution on the response
variable. Varying ability or varying item difficulty varies the prob-
ability distribution of outcomes on the response variable. Thus, Mulaik
(1986) concluded, in general, a probabilistic causal relation could be
represented by a functional relationship between an independent vari-
able whose values are the domain of the relation and a set of conditional
probability distributions that is the range of the relation, all defined on
the dependent variable. This placed probabilistic causality in the realm
of Markov processes, that is, processes involving sequences of random
variables, in which any particular variable is stochastically dependent
only on the variable immediately preceding it, and none preceding that.

Mulaik (1986, 1993b) deduced further that if a variable x is a
probabilistic cause of other variables yy, . . ., y,, and these are observed
in the absence of other causes of them, or conditional on other causes
of them, at a given value x; of the causal variable x, then a local
(conditional) independence holds; that is,
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FOL XD =F XD 21 x) o f (I x). (7.1

The local or conditional independence assumption is fundamental in
numerous probabilistic models (Anderson, 1959; Lazarsfeld, 1958;
Lord & Novick, 1968). More recently, a generalized variant of it has
been cited as the “Causal Markov condition” by Spirtes, Glymour, and
Scheines (1993). It corresponds to the assumption in structural equation
modeling of the independence of the disturbance variables, given all
prior relevant causes of a dependent variable (Mulaik, 1986). In other
words, once the exogenous causes of the system have been set to fixed
values, observed values of the dependent variables vary independently
over repeated observations. This condition is the analog of the condition
in deterministic models of causation, which state that fixing the exoge-
nous causes results in no change in the dependent variable once effects
have stabilized.

A FACETED DEFINITION OF THE CAUSAL RELATION

Drawing upon developments of the theory of causality in James et al.
(1982), Mulaik (1987) used Guttman’s method of “facet analysis”
(Gratch, 1973; Levy & Guttman, 1981; Shye, 1978) to analyze the
concept of causality into its component concepts or “facets,” then used
those facets to develop a faceted definition of causality: “Causality
concerns the objective (conception) of the manner by which the vari-
able (properties) of an (object) at a specified (point) in space and time
determine unidirectionally by a (functional relation) the variable (prob-
abilistic, nonprobabilistic) (properties) of an (object) at a later (point)
in space and time within a closed, self-contained system of interacting
(objects), defined in connection with a specific set of fixed background
(conditions)” (Mulaik, 1987, p. 25).

In the above definition, words in italics represent constant features
of the definition for all applications of the concept. Words in parenthe-
ses stand for variables or, if more than one word is contained in
parentheses, the values of variables, to indicate where the definition has
freedom to be applied in numerous ways. Aside from specifying the
functional relation nature of the causal relation between variables in
space and time, this definition also contains or implies epistemological
criteria that must be reasonably met to establish that the objective
conception of some causal relation applies to some empirical situation.

Objectivity and Reasoning in Science and SEM 131

BACKGROUND CONDITIONS

James et al. (1982) argued that to be objective causal models, struc-
tural equation models must reasonably satisfy a number of conditions.
Mulaik (1987) believed these conditions arise from applying the func-
tional relation concept of causality to empirical situations. Bollen
(1989b) has cited a similar set of conditions. Drawing upon James et al.
(1982) and Mulaik (1987), we briefly reformulate them here, adding a
few conditions for thoroughness.

A Formal Statement of the Structural Equation Model as a Model of
Objective States of Affairs. Objectivity first requires an explicit rule by
which evidence is to be evaluated. Objective states of affairs are to be
expressed in object language, that is, in terms of objects, their proper-
ties, and the causal (functional) relations between them.

Disconfirmability of the Model. To be objective, models must be
disconfirmable. Just-identified models cannot be disconfirmed by tests
of lack of fit because they will always perfectly reproduce the data. But
just-identified models are never unique. This does not mean that there
is no place for just-identified models in hypothesis testing, because they
can be used as alternative models against which more constrained
models are compared in tests of fit. Once a just-identified model is
specified, a more constrained, disconfirmable model may be constructed
from it by introducing overidentifying constraints into the model. In-
troducing overidentified constraints results in fewer parameters to es-
timate than data points available from which to estimate them. Thus
estimates of parameters can be inconsistent if estimable by different
aspects of the data, and this will indicate inappropriateness of the
constraints. The residual data, representing the difference between the
data and the reproduced data based upon the model, contains the
evidence for disconfirming the model, because it is not based upon that
aspect of the data used by the researcher to determine parameter esti-
mates, which happens to be the reproduced data. The degrees of free-
dom of the model represent the number of dimensions in which the data
are free to differ from the reproduced model and thus are a measure of
the disconfirmability of the model (Mulaik, 1990).

In linear models with latent variables, at least four indicators should
be introduced for each latent variable to provide for tests of the hypothe-
sis that, among the indicators of the latent variable, there is only one
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common factor. The use of four or more indicators of a given latent
construct using different methods of measurement establishes not only
criteria for but the independence of the construct from the researcher’s
methods of measuring it (Mulaik, 1994). For a given set of data, models
with excellent fit and more degrees of freedom are to be preferred,
because such models are subjected to more conditions of disconfir-
mability. For models of a given hypothesis tested by different sets of
data, the model to be preferred is the excellent fitting one with more
degrees of freedom (Carlson & Mulaik, 1993; James et al., 1982;
Mulaik, 1986, 1987, 1990; Mulaik, James, Van Alstine, Bennett, Lind,
& Stillwell, 1989).

Relevant Objects. Causal relations are functional relations between
the properties (either probabilistic or nonprobabilistic) of objects, and
the objects in question should be explicitly identified by identifying
their fixed properties (Mulaik, 1987). This practice is normally fulfilled
in psychological studies by describing the attributes of the subjects
chosen and by specifying the criteria for their inclusion in the study.
This requirement is closely involved with a requirement for closure,
because the subjects selected for study should not vary on variables
related to the dependent variables of the study, unless these variables
are explicitly represented in the model. Objects chosen for study should
also be causally homogeneous, so that the relations among their vari-
able attributes are accounted for by the same causal relations.

Coupling or Mediating Mechanisms. When formulating causal hy-
potheses, one should specify the mechanisms or media by which causal
influences are transmitted to their effects. To allow for an unambiguous
interpretation of negative evidence for the effect, one must show that
the mechanisms or media coupling the causes to the effects are intact
and uninterrupted, so that if the cause is present, the effect should also
appear.

Closure and Self-Containment. The functional relation concept of
the causal relation requires that for each value of the independent
variable, there corresponds only one value (or one probability distribu-
tion) of the dependent variable. If a model of an experimental situation
fails to represent the presence in the situation of other relevant causes
of the dependent variable, then for a given value of the independent
variable, there may occur more than one value (or probability distribu-

Objectivity and Reasoning in Science and SEM 133

tion) of the dependent variable, and a functional relation will then not
exist between the independent and dependent variable in the setting
studied. This can lead to biased and misleading results. Closure is
achieved in a number of ways: (a) inclusion in the model of all distinct
relevant causes in the situation; (b) isolation (Bollen, 1989b), that is,
shielding off the chosen independent and dependent variables from the
effects of extraneous variables; (c) holding constant extraneous vari-
ables; and (d) randomization to make exogenous variables independent
of other relevant causes in the system (cf. Carlson & Mulaik, 1993).
Methods (b) and (c) may yield misleading results if exogenous variables
interact nonlinearly with extraneous variables.

Causal Direction. A given causal model will specify which vari-
ables are independent variables, which are not, and which endogenous
variables are causes of other endogenous variables by fixing causal
directions between variables within a model. It is quite possible to fit
models with different directions of causation to the same correlational
data, and even achieve comparable fit (Lee & Hershberger, 1990;
MacCallum, Wegener, Uchino, & Fabrigar, 1993; Stelzl, 1991). Speci-
fying causal direction will be difficult and even problematic when
cross-sectional data involving variables measured essentially at the
same time are studied, less of a problem when selected causes clearly
precede effects in time.

Stability. Causes do not always produce their effects instantly. This
creates a problem of when to measure the effect in order to model the
causal relationship. The reasonable solution is to measure the effect
when it has achieved equilibrium in not changing further (Heise, 1975).
This often requires preliminary studies to determine when effects
achieve equilibrium. In some models, especially nonrecursive ones and
those with random shocks, equilibrium may be impossible (Dwyer,
1983, Ch. 11).

Probabilistic Conditions. Part of any probabilistic causal model is
the assumptions made about the probability distributions for the vari-
ables studied, and the concern is with the reasonableness of these
assumptions in representing the reality of the situation. For example,
the assumption of multivariate normality is frequently made and must
be considered a part of the formal statement of a model (see Chapter 4).
The reasonableness of this assumption may be challenged, and it is
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challenged frequently with polychotomous data. The issue then may be .

the extent to which assuming multivariate normality allows for a rea-
sonable approximation to the actual state of affairs.

Linearity. Linear structural equation models assume linearity or
additivity of effects. The researcher must assess the reasonableness of
this assumption, if only as a first approximation. Many phenomena may
not be accurately represented by linear models.

Defeasible Reasoning About Assumptions. Whether the scientific
community will accept a given structural equation model as satisfying
the background conditions we have described will depend upon defea-
sible reasoning from evidence in support of each condition. We stress
the use of defeasible reasoning to counter what we feel is an unreason-
able skepticism directed against the use of structural equation models.
Usually the skeptical critic (e.g., Freedman, 1987) begins with a dis-
cussion of a particular application of structural equation modeling and
then shows how the researcher who made the application failed to meet
the assumptions of the model. Frequently, an important relevant cause
was overlooked or not considered by the researcher, and the critic points
this out as evidence defeating the acceptance of the researcher’s model.
Or linearity was assumed when general experience with the phenome-
non in question suggests a nonlinear model is more appropriate. Such
criticisms are legitimate criticisms of that application. But the critic
does not stop there. The critic then goes on to observe that, all too
frequently, many researchers do not make an effort to evaluate the
assumptions of their models when testing structural equation models
against their data. Again, this may be a legitimate criticism, but one that
is easily dealt with by researchers making such efforts. So, to clinch his
case, the critic argues for a universal defect involving all applications
of structural equation modeling to a particular field X: He argues that
unlike in the physical sciences, there is in field X “no reliable method-
ology in place for identifying the crucial variables or discovering the
functional form of their relationships” (Freedman, 1987, p. 120), where
X may be econometrics, sociology, psychology, or biology. The per-
suasiveness of this argument depends on the degree to which you
believe there are, or always have been, methodologies in place in the
physical sciences for this purpose, and so the physical sciences have
been able to progress at a uniform, smooth rate in developing and
testing their models. But that, the critic asserts, is not to be expected in
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asocial science like field X. Hence, because to apply structural equation
modeling requires meeting certain difficult-to-assess assumptions in
field X, its usefulness is dubious in that field. Against such criticisms
one might argue that anyone who knows the history of the various
physical sciences, especially chemistry, knows that these fields initially
had difficulties in identifying the crucial variables and discovering the
functional forms of relationships, but this did not deter the formulation,
testing, and criticism of models. The presumption of such criticisms is
that, because we generally know abstractly what the general formal
requirements are for applying a causal model to experience, we should
be able to tell in any application of such models whether all these
assumptions are satisfied and, if we cannot, we should not use the
model. But that is not the way we reason with experience. We approach
experience dialectically, that is, with imperfect knowledge about our
assumptions, and gather evidence for or against our models gradually
over time, while debating among ourselves as we go along as to whether
we have or have not properly met our assumptions. To defeat our
models, we demand positive empirical evidence of lack of fit, or of the
inappropriateness of our background assumptions, and regard purely
skeptical doubts as irrelevant. Our reasoning is to defeasible conclu-
sions rather than to absolute certainties like those given in mathematics.

Evaluating Structural Equation Models With Nested Sequences of
Models. In testing a model, it is important to do so in a way that allows
the researcher to isolate where lack of fit arises within a model. James
et al. (1982) recommended using the following nested sequence of
models for this purpose:

1. The measurement model. This is a confirmatory factor analysis
model that treats the latent variables of the structural equation model
as common factors with no constraints on the correlations among the
factors. This model tests the measurement assumptions, relating the
indicators of the structural equation model to the latent variables. If this
model does not obtain satisfactory fit, there is no point in proceeding
to test the structural model until proper measurement of the latent
variables is achieved.

When a measurement model fails to fit, the researcher has a number
of options: (a) Use modification indexes to identify fixed parameters
that may be freed to achieve improved fit. This should be done cau-
tiously and accompanied with explicit reasons justifying why freeing
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the parameter produces a meaningful result (see Chapter 2). This may
be done most innocently when freeing up zero pattern loadings. It is far
more dangerous to free zero covariances among disturbance variables
without independent evidence for the causes of such covariances, be-
cause this violates the condition of local independence. (b) Perform an
exploratory common factor analysis of the indicator variables to deter-
mine if additional latent variables are required. Reformulate the mea-
surement model in a way that reflects how many degrees of freedom
were lost in performing the less constrained exploratory analysis. (c) If
these procedures fail to get reasonable fit for a measurement model, the
researcher is urged to construct new indicators, obtain new data, and
perform new confirmatory analyses until adequate fit is obtained.

2. The structural equation model. This is the model one sought to
study in the first place. It differs from the measurement model in
introducing additional constraints on the relations among the latent
variables. One wants this model to fit. If it does not, one can again
consider freeing up the structural coefficients, but only of those relating
latent variables to other latent variables. Remember, you lose one
degree of freedom for each parameter freed, implying that one less
condition will be tested in the ultimate model. There is no guarantee
that this process will produce a realistic model.

3. The uncorrelated factors model. This is a confirmatory factor
analysis model, just like the measurement model, but with the latent
variables constrained to be uncorrelated. This provides a simultaneous
test that the parameters corresponding to free structural parameters
relating latent variables to other latent variables are all zero. One wants
to reject this model. The aim is to establish that what one has regarded
as free parameters are also nonzero parameters. Remember that freeing
a parameter does not imply that it is nonzero. Alternatively, one can
perform tests individually on each of the free structural parameters,
using the standard errors of the parameter estimates given in the esti-
mation process. If the uncorrelated factors model fits, it means there
are no causal relations among the latent variables, and you are allowed
to go on to test the next model.

4. The null model or uncorrelated variables model. This model is
estimated primarily to provide goodness-of-fit indexes, based upon the
lack of fit of this model as a baseline of “worst fit” (see Chapter 5). If
the uncorrelated factor model was accepted, this allows one to test
whether there is any relationship between the indicators and the com-
mon factors. Again, one hopes to reject this model. The difference in
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lack of fit between this model and a saturated model that fits the data
perfectly represents relations among the variables not accounted for by
the uncorrelated variables model, which must be accounted for by some
less constrained model.

Conclusion

Reasoning about structural equation models takes place within the
framework of general philosophical assumptions. We briefly consid-
ered several philosophical frameworks such as logical empiricism,
Popper’s falsificationism, and several recent epistemologies that stress
the dialectic nature of reasoning with experience. We favor the more
recent epistemologies and provide arguments against these other posi-
tions because they are often the basis for criticisms and misunderstand-
ings of the use of structural equation modeling. We also argued that
causal models involve more specific assumptions about the nature of
causal relations. Causal relations concern the varying properties of
objects, and norms of the language of objects for the representation of
properties group the properties into sets of mutually exclusive proper-
ties known as variables. In a deterministic world, causal relations thus
take the form of functional relations between variables, but in a prob-
abilistic world, they take the form of functional relations, in which
independent variables determine probability distributions by which
values of dependent variables occur. The grammar of the language of
objects and the functional relationship form of causal relations together
imply certain general conditions, known as background assumptions,
that must be met when formulating and testing a causal model. Reason-
ing about causal models involves, in turn, reasoning about whether
these background assumptions are met; however, we remind researchers
that our reasoning about how the formal properties of our causal models
are satisfied in experience proceeds dialectically through time or defea-
sibly, rather than axiomatically and deductively. We also described a
nested sequence of models to consider when evaluating a given struc-
tural equation model, so that one can determine whether measurement
assumptions are met before testing theories about relationships among
latent constructs dependent on satisfying those assumptions, as well as
isolate where lack of fit arises in structural equation models.



R
Rectangle

R
Rectangle


One Application of
Structural Equation Modeling
From Two Perspectives

Exploring the EQS
and LISREL Strategies

BARBARA M. BYRNE

This past decade has seen rapid growth in the application of structural
equation modeling (SEM) to data representing a wide array of disci-
plines. (For reviews of applications and papers related to medical and
marketing research, e.g., see Bentler & Stein, 1992, and Bagozzi, 1991,
respectively.) Keeping pace with this research activity has been the
ongoing development and improvement of related statistical software
packages. Although there are now several computer programs designed for
the analysis of structural equation models (e.g., CALIS, SAS Institute,
1991; COSAN, McDonald, 1978; EZPATH, Steiger, 1989; LISCOMP,
Muthén, 1988), two stand apart from the rest in terms of their popularity
and widespread use. I refer, of course, to the EQS (Bentler, 1992a) and
LISREL (J6reskog & Sérbom, 1993b, 1993c) programs.

Although EQS and LISREL both address the same issues related to
SEM, they do so in sometimes subtle, albeit sometimes blatantly dif-
ferent, ways. The purpose of this chapter is to demonstrate a few of the
dual approaches to the analysis of covariance structures as they relate
to the same model and based on the same data. More specifically, using
both the EQS (version 4) and LISREL 8 (including PRELIS 2) pro-
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grams, I illustrate how to (a) test for the validity of a second-order factor
analytic model separately for each of two groups; (b) given findings of
inadequate fit, conduct post-hoc model-fitting to pinpoint sources of
misfit, followed by respecification and reestimation of the model; and
(c) test for its invariance across the groups. Additionally, given the
known kurtotic nature of the present data, I also describe the two
conceptually different approaches taken by EQS and LISREL in ad-
dressing such nonnormality. Because space limitations necessarily pre-
clude elaboration of basic principles and procedures associated with
both SEM and the two statistical packages, readers are referred to Byrne
(1989, 1994) for a nonmathematical approach to understanding these
processes.

The Data

Data to be used in this chapter are adapted from a study by Byrne,
Baron, and Campbell (1993) and comprise scores on the Beck Depres-
sion Inventory (BDI; Beck, Ward, Mendelson, Mock, & Erbaugh, 1961)
for 730 adolescents (grades 9-12) attending the same high school in
Ottawa, Canada. Listwise deletion of data that were missing completely
at random (Muthén, Kaplan, & Hollis, 1987) resulted in a final sample
size of 658 (males, n = 337; females, n = 321).

The BDI is a 21l-item scale that measures symptoms related to
cognitive, behavioral, affective, and somatic components of depression.
Although originally designed for use by trained interviewers, it is now
most typically used as a self-report measure (Beck, Steer, & Garbin,
1988). For each four-point Likert-scaled item, respondents select the
statement that most accurately describes their own feelings; higher
scores represent a more severe level of reported depression.

The study providing the basis for our work here is one of a series
conducted by Byme and Baron (1993, 1994; Byme, Baron, & Campbell,
1993, 1994; Byrne, Baron, Larsson, & Melin, 1993a, 1993b) in validat-
ing a higher-order factor structure of the BDI for nonclinical adoles-
cents. Their research has demonstrated strong support for a second-order
structure consisting of one higher-order general factor of depression
and three lower-order factors that they labeled Negative Attitude, Per-
formance Difficulty, and Somatic Elements. In the present chapter, we
examine this structure as it applies to males and females. Let us turn
now to a more detailed view of the model under study.
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The Hypothesized Model

The postulated model of BDI factorial structure is portrayed in
Figure 8.1 (pp. 142-143) in terms of both EQS and LISREL notation. It
represents a typical covariance structure model and can therefore be
decomposed into two submodels—a structural model and a measure-
ment model (see Chapter 1). The structural model defines the pattern
of relations among the unobserved factors and is typically identified in
schematic diagrams by the presence of interrelated ellipses, each of
which represents a hypothetical construct (or factor). Turning to Figure
8.1, we see a hierarchical ordering of ellipses such that if the page were
turned sideways, the “Depression” ellipse would be on top, with the
three smaller ellipses beneath it. Let us now review this diagram in
terms of both EQS and LISREL lexicon.

Figure 8.1 can be interpreted as representing one second-order factor
(Depression: F4; &), and three first-order factors (Negative Attitude:
F1; ,; Performance Difficulty: F2; n,; Somatic Elements: F3; 13). The
single-headed arrows leading from the higher-order factor to each of
the lower-order factors (F1,F4; F2,F4; F3,F4; Y11, Y22, Y33) are regression
paths that indicate the prediction of Negative Attitude, Performance
Difficulty, and Somatic Elements from a global Depression factor; they
represent the second-order factor loadings. Finally, the angled arrow
leading to each first-order factor (D1, D2, D3; €, L2, G3) represents
residual error in the prediction of the Negative Attitude, Performance
Difficulty, and Somatic Elements factors from the higher-order factor
of Depression.

The measurement model defines relations between observed vari-
ables and unobserved hypothetical constructs. In other words, it pro-
vides the link between item scores on an assessment instrument and the
underlying factors they were designed to measure. The measurement
model, then, specifies the pattern by which each item loads onto a
particular factor. This submodel can be identified by the presence of
rectangles, each of which represents an observed score. Turning to
Figure 8.1 again, we see that each rectangle represents an observed
score for one BDI item. The single-headed arrows leading from each
first-order factor to the rectangles (V1-V21; Ajj-A 3) are regression
paths that link each of the factors to their respective set of observed
scores; these coefficients (V,Fs; As) represent the first-order factor
loadings. For example, Figure 8.1 postulates that items 16, 18, 19, and
21 load onto the Somatic Elements factor. Finally, the single-headed
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arrow pointing to each rectangle (E1-E21; €,-€,,) represents observed
measurement error associated with the item variables.

One important omission in Figure 8.1 is the presence of double-
headed arrows among the first-order factors thereby indicating their
intercorrelation. This is because in second-order factor analysis, all
covariation among the first-order factors is explained by the second-
order factor.

Expressed more formally, the CFA model portrayed in Figure 8.1
hypothesized a priori that (a) responses to the BDI could be explained
by three first-order factors and one second-order factor of General
Depression, (b) each item would have a nonzero loading on the first-
order factor it was designed to measure and zero loadings on the other
two first-order factors, (c) error terms associated with each item would
be uncorrelated, and (d) covariation among the three first-order factors
;vould be explained fully by their regression onto the second-order
actor.

Assessment of Model Fit

The focal point in analyzing structural equation models is the extent
to which the hypothesized model “fits” or, in other words, adequately
describes the sample data (see Chapter 5). This assessment entails a
number of criteria, some of which bear on the fit of the model as a whole
and others on the fit of individual parameters. Traditionally, overall
model fit has been based on the xz statistic; however, given the known
sensitivity of x? to variations of sample size, numerous alternative
indexes of fit have been proposed and evaluated (for reviews, see
Gerbing & Anderson, 1993; Marsh, Balla, & McDonald, 1988; Tanaka,
1993; Chapter 5, this volume). Certain of these criteria, commonly
referred to as “subjective,” “practical,” or “ad hoc” indexes of fit, are
now commonly reported as adjuncts to the % statistic. I turn now to a
review of these as they relate to each of the two programs. (Although
both programs yield statistics related to the residual matrix, these are
not included here.)

EQS ANALYSES

EQS provides several goodness-of-fit indexes that address statistical
and practical fit, as well as model parsimony. First, it yields a %2 statistic
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for both the hypothesized and independence models; the latter argues
for complete independence of all variables (in this case, items) in the
model. EQS also provides an optional statistic called the SCALED 9?2
statistic (Satorra & Bentler, 1988a, 1988b). This statistic incorporates
a scaling correction for the % statistic when distributional assumptions
are violated.

Practical indexes of fit include the normed and nonnormed fit in-
dexes (NFI, NNFI; Bentler & Bonett, 1980) and the comparative fit
index (CFI; Bentler, 1990), a revised version of the NFI that overcomes
the underestimation of fit in small samples (i.e., given a correct model
and small sample, the NFI may not reach 1.0, Bentler, 1992a). Although
these three indexes of fit are provided in the EQS output, Bentler
(1992b) recommends the CFI to be the index of choice. Values for both
the NFI and CFI range from O to 1 and are derived from the comparison
of a hypothesized model with the independence model; each provides
a measure of complete covariation in the data, with a value greater than
.90 indicating an acceptable fit to the data (cf. Chapter 5). The NNFI
was originally designed to improve the NFI’s performance near 1.
However, because NNFI values can extend beyond the 0-1 range,
evaluation of fit is not as readily discernible as it is with the stan-
dardized indexes.

Finally, to address concerns of parsimony related to model fit, EQS
provides for the evaluation of both the independent and the hypothe-
sized models based on Akaike’s (1987) information criterion (AIC) and
Bozdogan’s (1987) consistent version of the AIC (CAIC); these criteria
take goodness of fit as well as number of estimated parameters into
account.

LISREL ANALYSES

Versions of the program up to and including LISREL 7 included as
standard output three indexes of model fit—the 2 statistic for the
hypothesized model, the goodness-of-fit index (GFI); an index of the
relative amount of variance and covariance jointly explained by the model;
and the adjusted GFI (AGFI), which takes into account the number of
degrees of freedom in the model (see Chapter 5). In the most recent
version (LISREL 8), however, the amount of model-fit information
provided in the standard output has been increased dramatically to
include all the goodness-of-fit measures that have been addressed in the
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literature (Joreskog & Sorbom, 1993b); in total, 32 evaluation criteria
are reported.

In this chapter, assessment of model fit for the EQS example, as it
relates to single-sample analyses, is based on the SCALED y? statistic
and CFI*, an analog of the CFI that is computed from SCALED x?
instead of 2 values (the SCALED %2 is not yet available for multigroup
analyses); the LISREL example is based on the y? statistic and the CFI.

Preliminary Analyses

These analyses are an essential prerequisite to SEM for several
reasons. First, it is important to know if there are missing data and, if
so, the reason why they are missing. Given a sufficiently large sample
size and data that are missing completely at random (Muthén et al.,
1987), listwise deletion is usually recommended when working with
SEM. Second, one critically important assumption of SEM is that the
data are multivariately normal. The extent to which they are not bears
on the validity of findings. Although it is unlikely that the maximum
likelihood estimates would be affected, nonnormality could lead to
downwardly biased standard errors that would result in an inflated
number of statistically significant parameters (Muthén & Kaplan, 1985;
Chapter 4, this volume). Finally, cases exhibiting extreme values of
multivariate kurtosis can serve to deteriorate model fit. It is therefore
important to identify and delete these outliers from the analyses.

Let us now examine sample statistics related to the present data; as
noted earlier, the data are complete for both sexes.

EXAMINATION OF SAMPLE STATISTICS

EQS Analyses. When raw score data are used as input, EQS auto-
matically provides univariate as well as several multivariate sample
statistics; further insight can be obtained through descriptive analyses
and the many graphical features now available in the new Windows
version (Bentler & Wu, 1993) of the program. The univariate statistics
represent the mean, standard deviation, skewness, and kurtosis. As
expected from previous work in this area (Byrne & Baron, 1993, 1994;
Byrne, Baron, & Campbell, 1993, 1994; Byrne et al., 1993a, 1993b),
several BDI items were found to be severely kurtotic; values ranged
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from 0.19 to 39.40 (M = 4.93) for males and from 0.15 to 10.43 (M =
1.92) for females.

The multivariate statistics reported by EQS represent variants of
Mardia’s (1970) coefficients of multivariate kurtosis; two reported
values bear on normal theory and two on elliptical theory. For adoles-
cent males, the normalized estimate of Mardia’s coefficient was 68.51,
whereas for adolescent females, it was 39.49; both are distributed in
very large samples from a multivariate normal population as a normal
variate so that large positive values, as shown here, indicate significance.

At this time, EQS is unique in its ability to identify multivariate
outliers. The program automatically prints out the five cases contribut-
ing most to Mardia’s multivariate kurtosis coefficient. Identification of
an outlier is based on the estimate presented for one case relative to
those for the other four cases; there is no absolute value upon which to
make this judgment, and it is possible that none of the five cases is
actually an outlier; this was the case here for both adolescent males and
adolescent females.

LISREL Analyses. Preliminary analyses for LISREL are performed
via its companion package, PRELIS. As with EQS, the input of raw data
that represent continuous variables allows for the reporting of univari-
ate statistics representing the mean, standard deviation, skewness, and
kurtosis. The standard output for ordinal variables, of course, differs
substantially from the output for continuous variables. Although the
present data are technically of ordinal measurement, they are treated as
if they were continuous for purposes of consistency with the EQS
analyses as well as those of the original study. (Although EQS/Win-
dows provides for the analysis of categorical variables, the current
version of the program requires a limit of 20 variables.)

In addition to reporting the minimum and maximum frequency val-
ues (information that is also presented in bar chart form), PRELIS 2
also provides for single tests of zero skewness and kurtosis, as well as
for an omnibus test of these two moments in combination; the single
skewness and kurtosis tests are reported as z-statistics, and the omnibus
test as a x? statistic.

For all continuous variables jointly, PRELIS 2 similarly tests for
multivariate normality. (For an extensive discussion of these tests, see
Bollen, 1989b.) Tests for multivariate normality related to the present
data revealed the following statistics for skewness (males, z = 84.56;
females, z = 61.36), kurtosis (males, z = 35.99; females, z = 25.42), and
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for third and fourth moments considered jointly (males, 12[2, N =337]
= 8445.74; females, x?[2, N = 321] = 4410.81).

TREATMENT OF NONNORMALITY

An important assumption underlying SEM is that the data are multi-
variate normal. Violation of this assumption can seriously invalidate
statistical hypothesis-testing such that the normal theory test statistic
may not reflect an adequate evaluation of the model under study
(Browne, 1982, 1984a; Hu, Bentler, & Kano, 1992; Chapter 4, this
volume). One approach to resolution of the problem has been the
development and use of asymptotic (large-sample) distribution-free
(ADF) methods for which normality assumptions are not required
(Browne, 1982, 1984a). (For an extensive discussion of other solutions
to the problem, see Bollen, 1989b.) This is the approach embraced by
LISREL in dealing with data that are nonnormal. The strategy involves
a two-step process. First, using PRELIS, the researcher recasts the data
into asymptotic matrix form. LISREL analyses are then based on this
matrix using weighted least squares (WLS) estimation. Nonetheless,
Joreskog and Sérbom (1988) note that the question of whether or not
this approach is superior to one that uses maximum likelihood (ML) or
general least squares (GLS) estimation is still open to conjecture;
furthermore, the question of how nonnormal the data must be before
this process is implemented has not yet been resolved.

One major limitation associated with this treatment of nonnormality
has been its excessively demanding sample size requirement. As a
consequence of a major change in the storage and computation of
asymptotic covariance matrices using PRELIS 2, however, the sample
size restriction is now somewhat less stringent. Nevertheless, users are
still cautioned that the minimum sample sizes specified by the program
(for a covariance matrix, k(k + 1)/2, where k equals the number of
variables) offer no guarantee of good estimates of the asymptotic
covariance matrix (Joreskog & Sorbom, 1993c).

Recently, however, Bentler and associates (Chou, Bentler, & Satorra,
1991; Hu et al., 1992) argued that it may be more appropriate to correct
the test statistic rather than use a different mode of estimation. As such,
Satorra and Bentler (1988a, 1988b) developed the SCALED %2 statistic,
which incorporates a scaling correction for the %2 statistic when dis-
tributional assumptions are violated; its computation takes into account
the model, the estimation method, and the sample kurtosis values. From
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a Monte Carlo study of six test statistics under seven distributional T I |°° 2 g g
conditions, Hu et al. (1992) reported the SCALED %2 to be the most §':., © o * M
reliable. This is the approach taken by the EQS program in the treatment g
of nonnormal data. In contrast to LISREL, then, EQS uses an estimation 2 3.« < 2 < 28 & ¥
method that assumes the data are multivariate normal but bases evalu- E ® z 8 zZg E & 7
ation of model fit on a test statistic that has been corrected to take E
nonnormality into account. §
R
Testing the Hypothesized Model g"g.
of BDI Structure g9 <9 <2< 5 8
z = z 8 Zzgz & §
(3] [ag] o™ o™
A summary of selected fit indexes for both the EQS and LISREL 2
analyses is presented in Table 8.1. Results are reported both for analy- Té' " .
ses that took the nonnormality of the data into account and for those & 2l 8 |2 B jw “  n £
based on normal theory estimation (i.e., data were considered to be 2| =, —‘Ea |°‘ E |°‘ a2 @ ,g
normally distributed). ML estimation was used for all analyses except ; § ) = H
those based on nonnormal data using LISREL 8§; the latter were based = |8 S.« < b <=8 5 8 :f;
on ADF estimation as recommended by Joreskog and Sérbom (1988). Z2ls ® z3 253 2 8 .
Not unexpectedly (see Hu et al., 1992; Joreskog & S6rbom, 1988), the § -E 8 §
LISREL model-fitting results based on ADF estimation are somewhat 3 $ g s
at odds with the findings based on ML estimation. Although the basic -§: ; . < w v = :3_’ g.
pattern is similar, the x? (as a measure of badness of fit) and CFI (as a s | £ S | o | dz & @ g g 2
measure of goodness of fit) values are excessively high. One possible o E-g,.«x 2 g &
explanation of the latter may lie with the enormous %2 value for the 3| E9q 28 B8, & 9 é 23
highly misspecified independence model; this of course, would lead to '§ 2 ; § § A § z § ﬁ s .a 9
an inflated CFI value. Interpretation of findings, then, are therefore o 1% - E s E
limited to the ML estimates and are based on the SCALED x?2 and CFI* E 5 ° % g3
for EQS, and on the x* and CFI for LISREL. 2 sl 2% S22 8 & |& xog
As indicated by the CFI* (EQS) and CFI (LISREL) values reported g é § -
in Table 8.1, goodness of fit for the initially hypothesized model of BDI 3 oy g2 &
structure was exceptionally good for males; it was somewhat less so for S 2 £ g & - .g
females. However, before turning to the problematic fit for adolescent s § Y] '§ f § E‘@ 3
females, let us first complete our evaluation of the hypothesized model g T8 ow g %% e 'g
for adolescent males by assessing the fit of individual parameters in the E 2 5 - 2 :.“Zo 2.5 5 _% 4
model. For both EQS and LISREL, there are two aspects of concern @ 3 3 FEFRE 3| 588 BEE
here: (a) the appropriateness of the estimates and (b) their statistical - % % E § E 3 E é g—ég gg ‘§
significance. Any differences between the two programs are noted later : o E ~ E I} § 3 '2 3 5 E'_ﬂ; §5 'g,E
in the discussion of these criteria. = 3 £ :n& 3 :n& 23882 gﬁ 33 ?Tg
< 3 <M@MAx
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FEASIBILITY OF PARAMETER ESTIMATES

The first step in assessing the fit of individual parameters is to
determine the plausibility of their estimated values. Any estimates
falling outside the admissible range signal that either the model is
wrong or the input matrix lacks sufficient information. Examples of
parameters exhibiting unreasonable estimates are (a) correlations greater
than 1.0, (b) standard errors that are abnormally large or small (a
standard error approaching zero usually results from the linear depen-
dence of the related parameter with some other parameter in the model;
such a circumstance renders testing for the statistical significance of
the estimate impossible), and (c) negative variances. Whereas LISREL
permits these estimates to be printed, EQS prevents their estimation by
constraining the value of the offending parameter to zero; the message
“PARAMETER XX,XX CONSTRAINED AT LOWER BOUND” will
appear on the output.

STATISTICAL SIGNIFICANCE
OF PARAMETER ESTIMATES

The test statistic here represents the parameter estimate divided by
its standard error; as such, it operates as a z-statistic in testing that the
estimate is statistically different from zero. Based on an « level of .05,
then, the test statistic needs to be greater than 1.96 in absolute value
before the hypothesis (that the estimate equals 0) can be rejected.
LISREL 7 and its predecessors referred to these values as “T-values.”
The output for LISREL 8, however, is consistent with that of EQS in
reporting these test statistics, and their standard errors, immediately
under each parameter estimate. One additional difference between the
two programs is that if the EQS user requests robust statistics (i.e.,
SCALED %%, the output will report two sets of test statistics and
standard errors—one for the original and one for the corrected %2
statistics.

For purposes of comparison across programs and estimation pro-
cesses, EQS and LISREL estimates are presented in Table 8.2. In
consideration of space, however, only the first-order factor loading
estimates are reported, and only as they pertain to adolescent males.
With respect to the previous point, note that aithough the ML estimate
(under normal theory) for item 19 was significant, it was not so when
multivariate kurtosis was taken into account by the robust statistics
reported by the EQS program.

Exploring the EQS and LISREL Strategies

TABLE 8.2 Summary of EQS and LISREL First-Order Factor Loading
Estimates for Adolescent Males
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Nonnormality Taken Into Account

Nonnormality Not Taken Into Account

BDI EQS" LISREL® EQS® LISREL*
hem F1I F2 F3 F1 F2 F3 FI F2 F3 Fl F2 F3
1 100 1.00 1.00 1.00
2 1.08 0.90 1.08 1.08
(.14) (.06) 12) 12)
3 110 0.82 1.10 1.10
(.18) (.06) 12) (.12)
5 087 0.76 0.87 0.87
.15) (.05) (.10) (.10)
6 106 1.04 1.06 1.06
.02) (.09) (15) (.15
7 116 1.00 1.16 1.16
(13) (.05) (12) 12)
8 1.30 1.10 1.30 1.30
(.18) 07 (.14) (.14)
9 0.79 0.72 0.79 0.79
(.16) (.06) (.10 (.10)
10 071 0.87 0.71 0.71
15 .10) (.18) 18)
14 090 0.72 0.90 0.90
(.18) (.07) (.12) (12)
4 1.00 1.00 1.00 1.00
11 0.61 1.07 0.61 0.61
(14) 15) (.14) 14
12 0.67 0.87 0.67 0.67
12) (.08) (.09) (.09)
13 1.01 1.50 1.01 1.01
(12) 12) 13 13
15 0.82 1.10 0.82 0.82
(.10 11 1D 11
17 0.80 0.92 0.80 0.80
(.10) (.09) 1 11
20 0.67 0.80 0.67 0.67
12) (.08) 10 (.10)
16 1.00 1.00 1.00 1.00
18 1.13 0.46 1.13 1.13
(27 (.06) (.26) (.26)
19 0.28° 0.16 0.28 0.28
.15) (.03) 12) 12)
21 0.58 0.12 0.58 0.58
(.29) .01) (.14) (-14)

NOTE: F1 = Factor 1 (Negative Attitude);

Elements). Standard errors in parentheses.
4. Baged on maximum likelihood estimation.

b. Based on the large-sample asymptotic matrix with weighted least squares estimation.

c. Not significant.

F2 = Factor 2 (Performance Difficulty); F3 = Factor 3 (Somatic
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Post-Hoc Model-Fitting
to Establish Baseline Models

When a hypothesized model is tested and the fit found to be inade-
quate, it is customary to proceed with post-hoc model-fitting to identify
misspecified parameters in the model. If multigroup equivalence is of
interest, it is particularly important that a baseline model be established
for each group separately before testing for their invariance across
groups. This model represents one that is most parsimonious as well as
statistically best fitting and substantively most meaningful. Identifica-
tion of misspecified parameters differs substantially between the EQS
and LISREL programs. Whereas EQS takes a multivariate approach
based on the Lagrange multiplier test (LM test), the LISREL approach
is univariate and is based upon the modification index (MI). Nonethe-
less, the objective of both tests is to determine if a model that better
represents the data would result with certain parameters specified as
free, rather than fixed, in subsequent runs.

Before putting these techniques into practice, however, one vitally
important caveat needs to be stressed with respect to use of both the
LM test and MIs in the respecification of models. It bears on two
factors: (a) that both techniques are based solely on statistical criteria
and (b) that virtually any fixed parameter (constrained either to zero or
to some nonzero value) is eligible for testing. Thus it is critical that the
researcher pay close heed to the substantive theory before relaxing
constraints as may be suggested by both the LM test and MI statistic;
model respecification in which certain parameters have been set free
must be substantiated by sound theoretical rationale (MacCallum, 1986;
Chapter 2, this volume). K

Let us now return to the problematic fit of BDI structure for adoles-
cent females and examine these differential post-hoc model-fitting
procedures within the context of the two statistical packages.

EQS ANALYSES

Examination of the multivariate LM %2 values related to the initially
hypothesized model (Model 1) for females revealed substantial im-
provement in model fit to be gained from the additional specification
of an error covariance between items 21 and 20, LM %2(1, N = 321) =
22.59 and the cross-loading (the loading of a single item on more than
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one factor) of item 20 on the higher-order factor of Depression, LM
x%2, N = 321) = 15.81 (i.e., item 20 loaded on F4 as well as on F2).

Because the loading of item 20 onto the Depression factor would lead
to a psychometrically ambiguous specification, the model was repa-
rameterized as a first-order CFA model in order to assess possible
misspecification at the lower structural level. Estimation of this model
replicated the misspecification of both the error covariance and item
20; the latter was shown to cross-load on Factor 1. Thus the hypothe-
sized model (Model 1) for females was respecified to include these two
additional parameters and then reestimated. That we were able to
reparameterize the model by respecifying multiple parameters in a
single run represents a major difference from the LISREL program, in
which only one parameter can be respecified at a time. As a conse-
quence, this respecified model represents Model 3 in Table 8.1, because
Model 2 is redundant with the EQS analyses.

To assess the extent to which each newly specified model exhibits
an improvement over its predecessor, we examine the difference in y?
(Ax?) between the two nested models. This differential is itself x2
distributed, with degrees of freedom equal to the difference in degrees
of freedom, and can thus be tested statistically; a significant sz indi-
cates a substantial improvement in model fit. As is evident in Table 8.1,
the inclusion of these two parameters in the model yielded a statistically
significant and substantial improvement in model fit, ASCALED %*2,
N = 321) = 31.33, ACFI* = .04. Closer scrutiny of the parameter
estimates, however, revealed the original loading of item 20 on Factor
1 to be nonsignificant. In the interest of parsimony, then, the model was
respecified with this parameter deleted. Because Model 4 was deemed
to be substantively reasonable (see Byrne et al., 1993, for an extended
explanation) and exhibited an excellent fit to the data, it was considered
the most plausible in representing the data for adolescent females.

LISREL ANALYSES

Consistent with the EQS analyses, the LISREL results based on ML
estimation also yielded a better-fitting model for males than for fe-
males, as indicated by CFI value less than .90 for females (Table 8.1).
A review of the MIs revealed two parameters to be potentially worthy
of estimation. The more prominent fixed parameter (MI = 22.60) rep-
resented the error covariance between items 21 and 20; the other (MI =
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17.04) represented the cross-loading of item 20 onto the Negative
Attitude factor. As shown in Table 8.1, three separate models (Models
2-4) were subsequently specified and estimated.

A review of results related to these models reveals each to yield a
highly significant improvement in model fit over its predecessor. As
with the EQS analyses, for statistical, psychometric, and theoretical
reasons, Model 4 was considered to be the most plausible in repre-
senting BDI data for adolescent females.

Testing for Invariance Across Gender

Having determined the baseline model for each sex, analyses pro-
ceeded next to test for their factorial equivalence across males and
females. At first blush, except for the differential loading pattern of
item 20 and the specification of an error covariance for females, one
might be quick to conclude that the BDI was factorially equivalent
across gender. Such a conclusion would be premature, however, be-
cause a similarly specified model in no way guarantees the equivalence
of item measurements and underlying theoretical structure; related
hypotheses must be tested statistically in a simultaneous analysis of
data from both groups. I turn now to these analyses as they are ad-
dressed separately within the EQS and LISREL programs.

EQS ANALYSES

Because we already know, prior to testing for cross-group invari-
ance, that item 20 is apparently perceived differently by adolescent
males and females, the factor loading for this item was not constrained
equal across gender; the error covariance is also unique to females and
is free to take on any value. Such specification addresses the issue of
partial measurement invariance in the testing of equivalence across
multiple samples (see Byrne, Shavelson, & Muthén, 1989).

In EQS, we can test for the invariance of both the first- and second-
order factor loadings simultaneously. This approach is made possible
in two important ways. First, it employs the multivariate LM test in the
evaluation of equality constraints and, second, it makes the detection
of misspecified constraints easy by providing probability values asso-
ciated with the LM y? statistic for each. A review of these statistics
revealed four constraints to be untenable. Probability values less than
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.05 were associated with items 8, 10, 12, and 18, thereby arguing for
their nonequivalence across adolescent males and females.

LISREL ANALYSES

Testing for invariance based on LISREL involved the testing of three
increasingly restrictive hypotheses, each nested within the one preced-
ing; these related to the equivalency of (a) number of underlying
factors, (b) first-order factor loadings, and (c) second-order factor
loadings. (For an elaboration of this procedure, see Byrne, 1989.)

Analyses involved specifying a model in which certain parameters
were constrained equal across gender, then comparing that model with
a less restrictive one in which the same parameters were free to take on
any value. As with model-fitting, the Ay? between competing models
provided a basis for determining the tenability of the hypothesized
equality constraints; a significant Ay? indicating noninvariance (i.e.,
nonequivalence). Turning to the summary of LISREL analyses shown
in Table 8.3, we see that the first invariance model (Model 1) tested for
the equivalence of an underlying three-factor structure (irrespective of
factor loading pattern) across males and females. This initial specifica-
tion simply tests for adequacy of model fit in a simultaneous analysis
of multigroup data and provides the criterion against which the two
subsequent invariance models are compared; given a CFI value of .92,
multigroup model fit was considered to be reasonably good. A second
model was then specified in which the pattern of lower-order factor
loadings was constrained equal across the two groups. (Note that item
20 was not constrained equal across groups.) Comparison of this model
(Model 2) with Model 1 yielded a statistically significant difference in
model fit (p < .01), thereby substantiating rejection of the hypothesis
that item measurements were equivalent across males and females.

Given findings of some gender specificity related to the lower-order
factors, the next task was to identify the BDI items contributing to this
noninvariance. This was accomplished by first testing separately for the
invariance of each BDI subscale (i.e., all items composing each sub-
scale were tested as a group). Given significant findings for any one of
these three tests, analyses proceeded next in testing for the invariance
of each item within each subscale. Finally, constraining all first-order
loadings known to be group-invariant, analyses then focus on the
second-order factor loadings. Because of limitations of space, results
related to these nested series of tests are simply summarized, as shown

] A —
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TABLE 8.3 Summary of LISREL Tests for Invariance Across Gender

Model

Model 1’ df CFI Comparison AY Adf

1 Baseline 604.18 373 92 _ _ _
multigroup model

2 All first-order 641.25 390 91 2vs. 1 37.07** 17
loadings invariant"

3 Item loadings 626.88 382 91 Jvs. 1 22.70** 9
for F1 invariant

4 TItem loadings 610.91 378 91 4vs.1 6.73 5
for F2 invariant

5 Item loadings 611.87 376 91 Svs. 1 7.69 3
for F3 invariant

6 All first-order 632.70 389 91 6vs.1 28.52* 16
loadings in_variamb
except items 8
and 20

7 Al first-order 627.85 388 91 7vs. 1 23.67 15
loadings invariant
except items
8, 19, and 20

8 Model 7 with 636.01 391 91 8vs. 7 8.16* 3

all second-order
loadings invariant
9 Model 7 with 628.41 390 91 9vs.7 0.56 2
second-order loadings
for F1 and F2 invariant®

NOTE: F1 = Factor 1 (Negative Attitude); F2 = Factor 2 (Performance Difficulty); F3 = Factor 3 (Somatic
Elements); CFI = Comparative Fit Index; sz =difference in xz values; Adf = difference in degrees of freedom.
a. Ilem 20 was not constrained equal across gender.

b. Equality conslraints were imposed separately for each item loading.

*p < .05, **p < .0l

in Table 8.3. Readers who may wish a more detailed description of this
model-testing procedure are referred to Byrne (1989, 1994; Byrne et al.,

1989).
Summary

Working from a common database and hypothesized model, this
chapter has provided an example of the EQS and LISREL strategies in
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testing for an invariant second-order factor structure across groups.
Along the way, similarities and differences between the two programs
were noted with respect to (a) approach to and information derived from
preliminary analyses of the data, (b) treatment of data that violate the
assumption of multivariate normality, (c) assessment of overall model
fit, (d) identification of parameter misspecification, (e) post-hoc model-
fitting, and (f) tests for multigroup invariance.

Although, substantively, results based on ML estimation were con-
sistent across the two programs, those bearing on the equality of BDI
measurement and structure across groups differed with respect to two
parameters—one first-order and one second-order loading. The discrep-
ancy in these findings is undoubtedly a consequence of the univariate
versus multivariate approach to the identification of misspecified equal-
ity constraints taken by LISREL and EQS, respectively. Of most con-
cern is the inconsistent finding related to the second-order loading of
F3 on F4..One explanation likely lies in the highly correlated structure
among the first-order factors for both males (mean r = .78) and females
(mean r =.76), which would not be taken into account in the univariate
test for invariance.

EQS and LISREL model fit statistics related to analyses that took
the nonnormality of the data into account were widely discrepant.
Whereas the EQS approach in correcting the %2 statistic yielded results
that were reasonable, the y? statistic and CFI value produced by LIS-
REL, based on the ADF estimator, were unreasonably high. These
findings support those reported by Hu et al. (1992), who found that
when sample size is small (N = 250 or less), the capability of the ADF
statistic in correctly assessing model fit is extremely poor; typically,
models that are in fact true are rejected far too frequently. Their Monte
Carlo study revealed that only when sample size approximates 5000
cases does the ADF statistic perform as a X2 variate. Given that most
practical applications of SEM involve substantially smaller sample
sizes, the SCALED 2 statistic produced by EQS appears to be the more
useful measure of model fit when the data are in violation of the
normality assumption.

Although this comparison of the EQS and LISREL programs has
highlighted only a few of their differential approaches to SEM applica-
tion, it is hoped that the issues addressed here will be helpful to readers
who may be relatively unfamiliar with the two programs and/or the
methodological procedures presented.
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9 Writing About
Structural Equation Models

RICK H. HOYLE

ABIGAIL T. PANTER

The increasing complexity of decision making about structural equat?on
models and comprehensiveness of computer software for estimating
them has created a significant burden for researchers in the social and
behavioral sciences. Researchers who choose to address substantive
research questions using the structural equation modeling (SEM) ap-
proach are faced with the task of sifting through the large amount of
output routinely generated by SEM software and deciding how to present
information in a way that permits a reasoned evaluation and under-
standing of their analysis, yet does not overwhelm or confuse read.ers,
Our goal in this chapter is to provide a set of general recommendations
that promote effective and complete communication of res.ult§ f-rom
SEM analyses. The requirements of particular journals and disciplines
as well as theoretical and technical developments in the SEM field may
necessitate adjustments to some of our recommendations, but, on the
whole, our recommendations should be acceptable for most forms of
communication in most social and behavioral science disciplines.

Describing the Conceptual and Statistical Models

The typical application of SEM is to a system of relations, collec-
tively referred to as a model. A model can include relations among

158

Writing Abous Structural Equation Models 159

measured variables and latent variables (i.e., factors, constructs) as well
as nondirectional and directional (direct and indirect) relations (see
Chapter 1). Given the potential complexity of structural equation mod-
els, a clear description of the model is critical. Indeed, it provides the
foundation on which the remainder of the communication rests. The
model typically is presented at two levels: conceptual and statistical. In
a well-crafted communication, the presentations are complementary
and nonredundant.

THE CONCEPTUAL MODEL

The conceptual model specifies the relations among concepts that
are operationalized in the empirical study. A diagram can provide an
effective means of presenting the full system of relations in a unified
and integrated manner and represents a direct translation of theoretical
predictions (Tanaka, Panter, Winborne, & Huba, 1990). In presenta-
tions at the conceptual level, we recommend against presenting a full
path diagram with all indicators, measurement errors, and loadings
depicted, as it may be better suited for presenting the statistical model
and results. Rather, we recommend that the model be first introduced
conceptually using a diagram that refers to constructs and their inter-
relations using familiar terminology from the substantive literature.

In such a diagram the concepts are clearly labeled according to the
substantive theories in which they are embedded, and understanding of
the diagram requires no familiarity with notation rules for path dia-
grams. If the model is integrative rather than representative of a single
theory, the diagram might further be embellished by labeling the paths
between concepts with the names of the theoretical perspective or
theorist whose work underlies the predicted relation. Alternatively,
multiple panels may be presented showing the conceptual diagram and
highlighting predictions made by competing theories.

Each diagram should be accompanied by written explanation and
justification in text for each proposed relation or path, as well as each
lack of relation or path. The written description of the model can either
culminate in the presentation of the diagram (e.g., “The set of relations
we have described is displayed in Figure x.”) or the diagram can serve
as a starting point for describing the model (e.g., “The model we are
proposing is displayed in Figure x.”). In either case, the diagram should
include no relations that are not explained and fully justified in the text
of the communication and should omit no relations that are proposed or
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implied in the text. Moreover, the provision of a theoretical rationale
for the absence of relations among constructs is as vital as the rationale
for predicted relations among constructs.

THE STATISTICAL MODEL

The precise statistical model that will be tested cannot be deduced
from the presentation of the conceptual model. As such, each construct
represented in the conceptual model must be operationalized, and the
model must be translated into the statistical manifestation that has been
or is to be tested. A path diagram can be an effective means of commu-
nicating structural equation models at the statistical level and, in some
cases, can help clarify thinking about testing hypotheses within a
particular theoretical framework (Tanaka et al., 1990). MacCallum
(Chapter 2) describes and illustrates the use and notation of path
diagrams (see also Figures 8.1, 10.1, 11.1, 12.1, 12.2, 13.1, and 13.2 in
this volume).

Ideally, the path diagram, although more detailed, is a direct exten-
sion of the conceptual model. A reader should be able to ascertain
precisely the statistical model to be tested from the number of observed
indicators, latent variables, and the presence and absence of paths
depicted in the diagram. Furthermore, the diagram should clearly indi-
cate the location of all fixed and free parameters in the model (Chap-
ter 2). It is particularly useful if the written description of the diagram
points out the number and types (e.g., factor loadings, error variances)
of free parameters and derives the number of degrees of freedom on
which the %? test will be based (see Chapter 2). Care in labeling
constructs and variables in the diagram will simplify presentation of
parameter estimates in a table or in the text.

There is no clear consensus about where the description of the
statistical model should be placed in a manuscript. One possible place-
ment for this description would be in a separate section just after the
presentation of the conceptual model. Such a positioning may be desir-
able because it emphasizes the direct translation of the conceptual
hypotheses into hypotheses based on specific operationalizations of
variables in the study. Alternatively, the description of the statistical
model could be placed in a separate section in the Methods portion of
the manuscript. That location might be advantageous because it would
directly follow the detailed description (including psychometric prop-
erties) of the measures that give rise to the observed variables in the
model. A third option is to place the description of the statistical model
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at the beginning of the section in which the results are presented. A
virtue of that positioning is that it would provide a clear context for
evaluating the results of the data analyses. We see no consistent advan-
tage of one placement over the other; individual styles, disciplines, and
research studies will determine where in the manuscript the statistical
model is presented. The important point is that a detailed presentation
of the statistical model appears in a separate section in the manuscript.

Details About the Data

Not unlike more traditional approaches to data analysis, the validity
of the SEM approach rests on first meeting assumptions regarding the
data that are analyzed. Indeed, because questions remain in the techni-
cal literature about the behavior of particular methods of estimation and
assessments of fit under certain conditions, a presentation of basic
descriptive information about the data on which an SEM analysis is
based is essential. Such information is of two sorts: the matrix to be
analyzed and distributions of the individual variables on which the
matrix is based.

MATRIX TO BE ANALYZED

Estimation of structural equation models should always be based on
covariance, not correlation, matrices (Cudeck, 1989). Although there
was a time when it was reasonable to estimate from a correlation matrix
in order to obtain standardized parameter estimates, this is not the case
at present in light of the well-documented liabilities of employing
correlation matrices as data under particular model constraints and the
ability of SEM software to provide standardized estimates when covari-
ances are used as input. Of course, covariances are not as informative
as correlations for communicating the pattern of bivariate relations
among measured variables. Thus we recommend presenting a correla-
tion matrix accompanied by standard deviations of the variables, thereby
permitting the interested reader to recover the covariance matrix (major
SEM software packages will recover the covariance matrix when pro-
vided a correlation matrix and standard deviations). In reporting these
data, rounding to three rather than the customary two decimal places
will ensure that additional data analyses take full advantage of the
precision offered by SEM computer programs.
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Barring nonnegotiable page limitations, the covariance matrix or
correlation matrix and standard deviations should be included in the
body of the manuscript or in an appendix. Inclusion of the covariance/
correlation matrix offers two appealing benefits. First, it provides the
opportunity for other researchers to fit their own alternative models—
models that either were not considered or not formally proposed in the
published report. Second, these data show the relations among variables
in the most rudimentary fashion, permitting curious (and suspicious)
readers to see the simple bivariate relations that underlie the models
that were estimated.

When the data to be analyzed are ordered categorical data, not
interval-level data, a sample covariance matrix is no longer appropriate
for SEM analyses and may in some cases lead to incorrect statistical
inference (e.g., Huba & Harlow, 1987; Muthén, 1993). In such cases,
which often arise when analyzing item-level information (e.g., true-
false or yes-no response formats), the data may be preprocessed so that
a tetrachoric (for dichotomous data) or polychoric (for ordered-categorical
variables) matrix is estimated and analyzed. Software such as PRELIS
(Joreskog & Sorbom, 1993c) followed by LISREL (Jéreskog & Sérbom,
1993b) and LISCOMP (Muthén, 1984, 1988) can easily handle dichoto-
mous, ordered categorical data, and mixtures of such data, although
sample size requirements for estimating latent correlations become
especially large and sometimes beyond the practical constraints of data
collection. When additional assumptions are made about the measure-
ment level of the raw data in the model, such assumptions should be
explicitly reported in the manuscript, so that readers readily see that
estimation methods for noncontinuous variables were employed.

DISTRIBUTIONS

Information should be provided about the distributions of individual
variables and the multivariate distribution of the variables in the
model(s) to be estimated. Typically, that information can be presented
in summary form in the body of a manuscript, although certain appli-
cations that necessitate greater detail may call for adding such informa-
tion to the table that includes the covariance or correlation matrix (e.g.,
additional columns for skewness and kurtosis parameters). Two pieces
of information are of particular import and, therefore, we recommend
that authors routinely present them at least in summary form in reports
of SEM analyses. The validity of normal theory estimators such as
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maximum likelihood and generalized least squares does not hold under
excessive kurtosis (Browne, 1984a; Hu, Bentler, & Kano, 1992; Chap-
ter 4, this volume). Descriptive information about univariate kurtosis is
provided by PRELIS (J6reskog & Sérbom, 1993c), EQS (Bentler, 1989;
when raw data are used as input), and CALIS (SAS Institute, 1991) and
should be consulted, summarized, and interpreted. In addition, infor-
mation about multivariate normality should be presented (and inter-
preted) in the form of Mardia’s (1970) coefficient (also provided by
PRELIS, EQS, and CALIS). Sigaificant departure from normality should
prompt corrective measures (see Chapter 4) that will affect presentation
of fit indexes and parameter estimates later in the manuscript.

Describing the Results

Interpretation and evaluation of SEM results requires knowledge of
the method used to obtain parameter estimates and the criteria by which
the overall model and individual estimates will be evaluated. A com-
plete presentation of results necessitates complete disclosure of pa-
rameter estimates and fit statistics, as well as a clear rationale for
modification and comparison of models. Following is a set of recom-
mendations for providing an informative and complete account of the
results of an SEM analysis.

ESTIMATION AND FIT CRITERIA

It is increasingly apparent that not all estimation methods and fit
indexes lead to the same inferential outcome when evaluating structural
equation models (e.g., Hu et al., 1992; Chapters 3 and 5, this volume).
As such, an informed evaluation of the results of an SEM analysis
requires knowledge of the estimation method used to produce the
estimates reported in the manuscript and the fit criteria used to evaluate
the model and the estimates.

Method of Estimation. The standard method of estimating free pa-
rameters in structural equation models is to employ maximum likeli-
hood (ML). A growing body of research indicates that ML performs
reasonably well under a variety of less-than-optimal analytic conditions
(e.g., small sample size, excessive kurtosis). Because ML is so widely
available and is the most widely researched estimator among those



R
Rectangle

R
Rectangle


164 STRUCTURAL EQUATION MODELING

otherwise available (e.g, ordinary least squares, generalized least squares,
asymptotic distribution-free), we recommend that authors routinely
report results from ML estimation. If characteristics of the data raise
question as to the appropriateness of ML, then the results of alternative
estimation procedures might be reported in summary form if they
contradict ML results or in a footnote if they corroborate them. In light
of recently published analyses (Hu et al., 1992; Chapter 5, this volume),
we recommend against asymptotic distribution-free estimation in favor
of distribution-based adjustments to results of ML estimation (Satorra
& Bentler, 1988a, 1988b, 1994).

Fit Criteria. Consistent with recommendations by Tanaka (1993),
we suggest that authors provide an inferential context within which
indexes of overall fit are to be presented and interpreted prior to
reporting results of SEM analyses. A suitable context includes at least
three pieces of information: (a) Authors should state which omnibus fit
indexes will be reported along with justification for choosing those
indexes based on characteristics of the study and information from the
most recent literature on the indexes chosen. (b) Authors should provide
a clear conceptual definition of each index to be reported. Incremental
fit indexes often are interpreted as indicators of percentage of variance
accounted for—a transfer of multiple-regression logic that is incorrect.
The type-2 and type-3 indexes we recommend below carry somewhat
different interpretations despite the fact that the range of values they
take on are similar. (c) The “critical value” of each index that will
indicate acceptable fit should be specified prior to reporting and inter-
preting observed values of the indexes. As Hu and Bentler (Chapter 5,
this volume) note, with the exception of x?, the sampling distributions
of overall indexes of fit are unknown. Therefore, for most omnibus fit
indexes, critical values in the standard sense are not defined. Bentler
and Bonett (1980) proposed a value of .90 for normed indexes that are
not parsimony adjusted as a reasonable minimum for model acceptance;
that value is used widely among social and behavioral researchers. Hu
and Bentler report emerging evidence that .90 might not always be a
reasonable cutoff for all adjunct fit indexes under all modeling circum-
stances. At present, however, there exists no empirical or reasoned basis
for choosing particular alternative cutoff values. Thus, .90 stands as the
agreed-upon cutoff for overall fit indexes. As such, the choice of an
alternative cutoff value, particularly a lower one, should be justified in
- the manuscript.
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INDICATORS OF OVERALL FIT

Typically, initial evaluation of a structural equation model concerns
omnibus fit. The performance of omnibus fit indexes has been a par-
ticularly active area of SEM research and development and regularly
produces updated evaluations of a growing number of indexes. The
recommendations we provide below are well-reasoned given the cur-
rent state of the literature; however, that literature changes frequently
and should be consulted when choosing and justifying the use of
particular indexes of fit.

The meaning of the term “fit,” as it applies to evaluating structural
equation models, is not entirely straightforward (Tanaka, 1993). At the
most general level, references to and evaluations of the fit of a structural
equation model can refer to one of two characteristics of the model:

1. Absolute fit concerns the degree to which the covariances implied
by the fixed and free parameters specified in the model match the
observed covariances from which free parameters in the model were
estimated (see Chapter 1). Indexes of absolute fit typically gauge
“badness of fit”; optimal fit is indicated by a value of zero, and
increasing values indicate greater departure of the implied covariance
matrix from the observed covariance matrix.

2. Incremental fit concerns the degree to which the model in question
is superior to an alternative model, usually one that specifies no covari-
ances among variables (i.e., the “null” or independence model), in
reproducing the observed covariances. Indexes of incremental fit typi-
cally gauge “goodness of fit”; larger values indicate greater improve-
ment of the model in question over an alternative model in reproducing
the observed covariances.

At present there is little consensus concerning the best index of
overall fit for evaluating structural equation models. Thus most inves-
tigators who have evaluated and compared extant indexes encourage
reporting multiple indexes of overall fit (Bollen, 1989b; Marsh, Balla,
& McDonald, 1988; Tanaka, 1993; Chapter 5, this volume). We concur,
yet we do not recommend that researchers, for completeness sake,
report a long list of fit indexes such as those routinely provided in SEM
computer output.

In Table 9.1 we describe some recommended indexes of overall fit
for evaluating structural equation models. We have divided the indexes
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TABLE 9.1 Currently Recommended Indexes of Overall Model Fit

Index Reference Description and Comments

Stand-Alone/Absolute Indexes

1% SCALED x2 Bollen (1989b, pp. 263-269)  Statistical test of the lack
Satorra & Bentler (1994) of fit resulting from over-

identifying restrictions
placed on a model. Contrary
to common belief, the xz
evaluates the fixed rather
than the free parameters in a
structural equation model.

Goodness-of-fit Joreskog & Strbom (1981) Indexes the relative amount of

index (GFI) Tanaka & Huba (1985, 1989) the observed variances and
covariances accounted for by
a model. Analogous to R
commonly used to summarize
results of multiple regression

analyses.
Type-1 Indexes
Not recommended.
Type-2 Indexes
Tucker-Lewis index Bentler & Bonett (1980) Compares the lack of fit of a
(TLI)/Nonnormed fit  Tucker & Lewis (1973) target model to the lack of
index (NNFI) fit of a baseline model,

usually the independence
model. Value estimates the
relative improvement per
degree of freedom of the
target model over a baseline
model. Not recommended for
very small samples (< 150),
particularly with GLS
estimation.

Incremental fit index  Bollen (1989a) Same interpretation as TLI/

(IFI) NNFI. Less variable than TLI/
NNFI in small samples and
more consistent across
estimators than TLI/NNFI.

continued
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TABLE 9.1 Continued

Index Reference Description and Comments

Type-3 Indexes

Comparative fit index Bentler (1989, 1990) Indexes the relative reduction

(CFI) in lack of fit as estimated
by the noncentral x2 of a
target model versus a baseline
model. CFI is an adaptation
of FI/RNI forced to vary
between O and 1. It overcomes
liabilities of the popular and
intuitive but problematic
normed fit index by replacing
the central with the
noncentral xz.

Fit index (FI)/ Bentler (1989, 1990) Equivalent to CFI. Differs
Relative noncentrality McDonald & Marsh (1990) only in that FI/RNI is not
index (RNI) truncated at 0 and 1, extremes

it can exceed because of
sampling error or overfitting.

NOTE: Typology of incremental fit indexes is based on Hu and Bentler’s (Chapter 5, this volume) typology.

into the categories described by Hu and Bentler in Chapter 5 of this
volume. From among the stand-alone or absolute fit indexes, we rec-
ommend %2. Despite the numerous ambiguities associated with inter-
preting %2 according to the traditional dichotomous decision rule, the
value of the statistic itself holds the most promise for the development
of an index of fit for which the sampling distribution is known. It also
forms the basis for nested model comparisons. Reports of %2 should be
accompanied by degrees of freedom, sample size, and p-value (see
example format later in this chapter). When the distributions of the
observed variables depart from normality, Satorra and Bentler’s (1988a,
1988b, 1994) adjustment, referred to as SCALED x’, should be reported
along with the unadjusted x? (for more detail on this adjustment, see
Chapter 5, this volume).

In addition to %2, researchers may wish to report the value of the
goodness-of-fit index (GFI; Joreskog & Sorbom, 1981) as an index of
absolute fit. Although GFI (Equation 5.8, this volume) is moderately
associated with sample size (Marsh et al., 1988), it carries an intuitive
interpretation because it is analogous to the familiar R2-value often
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reported alongside F-values associated with multiple regression models
(Tanaka, 1993; Tanaka & Huba, 1985, 1989). If overfitting (i.e., an
excessive number of free parameters) is a potential problem, either the
shrinkage adjustment proposed by Jéreskog and Sérbom (1981) or the
parsimony correction described by Mulaik, James, Van Alstine, Bennett,
Lind, and Stillwell (1989) might be reported along with GFI (for a
classification of these indexes, see Tanaka, 1993).

In terms of incremental fit indexes, we recommend that researchers
report at least two, one each from the type-2 and type-3 indexes
described by Hu and Bentler (Chapter 5, this volume). (In agreement
with Hu and Bentler, we recommend against reporting the normed fit
index and Bollen’s, 1986, type-1 index.) From among the type-2 in-
dexes, we recommend either Tucker and Lewis’s (1973) index (TLI),
also called the nonnormed fit index (NNFI; Bentler & Bonett, 1980), or
Bollen’s (1989a) incremental fit index (IFI; referred to as “BL89” in
Chapter 5). TLI/NNFI (Equation 5.3, this volume) performs well when
ML estimation is used but is significantly downwardly biased when
based on generalized least squares (GLS) estimation and the relatively
small sample sizes (< 1000) characteristic of social and behavioral
research (Hu & Bentler, 1993). IFI (Equation 5.4, this volume) performs

consistently across ML and GLS and, therefore, is to be preferred over

TLI/NNFI when estimates are obtained using the GLS method.

From among the type-3 indexes, we recommend Bentler’s (1989,
1990) fit index (FI; referred to as BFI in Chapter 5, this volume), which
is the same as McDonald and Marsh’s (1990) relative noncentrality
index (RNI), and the comparative fit index (CFI; Bentler, 1989, 1990).
As noted by Hu and Bentler (Chapter 5, this volume), the FI and RNI
(Equation 5.6, this volume) are identical to CFI (Equation 5.7, this
volume) when their values fall between 0 and 1; unlike FI and RNI,
values of CFI cannot fall outside the 0-1 range. Thus CFI is somewhat
preferable because its values fall within the familiar “normed” range.
Overfitting and sampling error can lead to values of FI/RNI greater
than 1.

Formats for presenting statistical results vary somewhat across dis-
ciplines. Using the format prescribed by the American Psychological
Association’s style manual (APA, 1994, p. 247), overall fit information
for a structural equation model can be written, for example, x2(48, N=
500) = 303.80, p < .001, TLI = .86, CFI = .90. Although other styles of
presentation may be required by other disciplines, we recommend
presentation of all the information included in the example.
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An additional issue regarding omnibus fit indexes concerns compari-
sons between competing models. In general, we recommend against the
relatively common practice of making decisions between different
models based on comparisons of incremental fit indexes. As a rule,
comparison of absolute fit indexes is reasonable, although such com-
parisons must account for model complexity. Thus x2-difference tests
between nested models (i.e., all of one model’s free parameters are a
subset of a second model’s free parameters), which index xz-change
relative to difference in number of free parameters between two models,
and parsimony-adjusted absolute indexes, which control for number of
free parameters in competing models, are to be preferred.

PARAMETER ESTIMATES

Full information about parameter estimates should be reported and
accompanied in the text of the manuscript by a full explanation of the
information reported. We offer the following recommendations regard-
ing presentation of the parameter estimates:

1. The plausibility of parameter estimates, particularly variances,
should be established in text. Heywood cases (negative error variances)
and out-of-range covariances (standardized estimates greater than 1)
indicate problems with estimation or model specification and raise
questions about the validity of the remaining estimates in the model.

2. All parameter estimates, including error variances and variances
of latent variables, should be reported. Estimates can be tied to particu-
lar paths as part of a diagram (see Figures 13.1 and 13.2, this volume)
or can be given in a table (see Tables 8.2, 10.3, and 11.2, this volume).
A virtue of presentation of parameter estimates in a diagram is that the
location of specific estimates in the model is clear. One drawback to
that method of presentation, however, is that a diagram that includes
many variables, constructs, and paths can become indecipherable when
parameter estimates are added to it. One means of avoiding such clutter
is to present parameter estimates for the measurement model in one
diagram or set of diagrams, then, in a second diagram or set of diagrams
(one that omits indicators of latent variables) present only estimates
relevant to the structural model. The virtue of presentation in a table is
that multiple estimates of each parameter (e.g., ML, GLS; see Table
8.2, this volume) can be presented along with standard errors, critical
ratios, and p-values. One drawback to presenting parameter estimates
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in a tabular format is that, apart from using Greek letters and subscripts
to denote parameters (the use of LISREL notation is a strategy we dc
not recommend), labeling parameters in a manner that makes clear their
place in the model can be difficult and can require an extra layer of
processing by the reader. The Bentler-Weeks (1980) “double-label”
notation (e.g., F1,F1 for the variance of factor 1) is more straightfor-
ward than LISREL notation (i.e., subscripted Greek letters); however,
we prefer even more straightforward labels that make reference to the
variables and constructs with which each estimate is associated. For
example, following our recommendation, the row in a table that in-
cludes information about the estimate of the variance of the latent
variable self-esteem would refer to “Self-Esteem” rather than “§,”
(LISREL) or “F1” (Bentler-Weeks).

3. Either standard errors of estimates, critical ratios (i.e., estimate/
standard error) for estimates, or notation that indicates p-values asso-
ciated with estimates (e.g., *p < .05, **p < .01, etc.) should be pre-
sented. The last option is least preferred because it discloses the least
about the parameter estimates. When unstandardized estimates are
presented, then either standard errors or critical ratios should be pro-
vided. The provision of standard errors or critical ratios (from which
standard errors can be recovered if unstandardized estimates are given)
carries two additional benefits over the “rs and stars” approach (Chaplin,
1994). First, atypically high or low standard errors can signal estimation
problems or instability in a model. Second, standard errors can be used
by readers to construct tests of differences of estimates from values
other than 0.

4. Estimates fixed at nonzero values (e.g., one factor loading per
latent variable to fix the metric of the latent variables) were neither
estimated nor tested and should be clearly indicated as such.

5. As with the presentation of information about overall fit, informa-
tion about parameter estimates should be presented within an interpre-
tational context. The critical value of the test statistic (usually +1.96)
should be noted explicitly prior to presentation and interpretation of
estimates. Figures and tables should indicate clearly whether unstan-
dardized or standardized estimates are presented. In either case, readers
should be given a conceptual definition of the kind of estimate being
provided (see Chapter 1).
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ALTERNATIVE MODELS

Rarely does an SEM analysis involve estimating a single model
(Joreskog, 1974). Indeed, the strategic choice of alternatives to the
target model can strengthen support for it. Alternative models emerge
at one of two points in an SEM analysis. Either the researcher specified
a priori alternative models to be compared with the target model (the
deductive approach) or the estimation process revealed misspecifica-
tion in the target model that led to post-hoc modifications of it (the
inductive approach). In either case, the report must provide details
concerning estimation of alternative models, particularly when the
alternatives are based on consultation of empirical modification in-
dexes. Such information typically appears in a separate section within
the Results section, clearly labeled (e.g., “Alternative Models,” “Model
Respecification”) so as to differentiate fit information and parameter
estimates associated with alternative models (particularly empirically
derived models) from similar information about the target model.

A Priori. The strongest SEM analysis proposes a target model based
on careful consultation of relevant theory and prior research and then
compares that model with one or more previously specified competing
models indicated by other theoretical positions, contradictions in the
research literature, or parsimony. Joreskog (1993) refers to that ap-
proach as the alternative models approach. When possible, alternative
models should be specified prior to estimation of the target model so
that nested comparisons can be made between each alternative model
and the target model. For instance, multifactor measurement models
might be compared to the more parsimonious (i.e., fewer free parame-
ters) single-factor model. The statistical criteria for choosing one model
over the other should be clearly specified and x’-difference tests Ax,
Adf) should be conducted when the target and alternative models are
nested. As a rule, the comparison of adjunct fit indexes such as those
described above, particularly the incremental fit indexes, should be
avoided. When a number of alternative models are compared to the
target model, a single table that details omnibus fit indexes for the
various alternatives along with results of model comparisons (e.g.,
Table 8.1, this volume) can provide the reader with a comprehensive
view of the data-analytic strategy and results.



R
Rectangle

R
Rectangle


172 STRUCTURAL EQUATION MODELING

Post-Hoc Modifications. A less desirable yet more common ap-
proach to model comparison—the model generating approach (Joreskog,
1993)—involves respecification of a target model based on misspecifi-
cation revealed after initial estimation and examination of the target
model (MacCallum, Roznowski, & Necowitz, 1992). The most signifi-
cant implication of respecifying a target model in successive iterations
based on post-hoc criteria is the potential for capitalizing on the idio-
syncracies of the particular sample on which the covariance matrix is
based. The potential is particularly great in small samples (MacCallum
et al., 1992: Tanaka, 1987), with which the likelihood of finding a
replicable model is quite low.

Two types of post-hoc modifications are particularly problematic:
(a) correlated errors of measurement (note that some models, for in-
stance, longitudinal models with latent variables, include correlated
errors of measurement that are specified a priori) and (b) nonstandard,
or specific, effects (see Hoyle & Smith, 1994). Errors of measurement,
which typically are assumed to be independent, frequently are freed to
covary in order to improve the fit of measurement models. Rarely are
plausible explanations offered for covariances among error terms. In-
deed, covariances among error terms identified by empirical modifica-
tion methods frequently are implausible and, therefore, unjustifiable.
Similarly, nonstandard effects—those that involve the covariance be-
tween an error of measurement and another substantive variable in the
model—often are discovered post hoc and are, therefore, unlikely to
replicate.

As arule, we recommend against post-hoc modifications unless there
exists an unusually clear and compelling substantive reason why such
modifications are reasonable. MacCallum et al. (1992) provide some
evidence that post-hoc modifications are likely to replicate when sam-
ple size is at least 800; however, the luxury of a sample that large in
social and behavioral research is rare. Post-hoc modifications of models
estimated for samples of the more typical size (100 to 400) should not
be taken seriously unless they are replicated in an independent sample.
Finally, we urge researchers to consider the plausibility of post-hoc modi-
fications, avoiding those that make no sense given the constructs and the
model and offering clear, compelling explanations for those retained.

We believe it is particularly important that authors distinguish be-
tween results based on estimation of theory based models that were
specified prior to analysis of the data and results based on post-hoc
modifications of a priori models. On occasion, presentations of SEM

Writing About Structural Equation Models 173

results report a mixture of predicted and “discovered” paths without
distinguishing between the two (Biddle & Marlin, 1987). A straightfor-
ward means of distinguishing between predicted and discovered find-
ings in reports of SEM results is to relegate presentation of the latter to
a separate, clearly labeled section in the Results section of the manu-
script. If the eventual model was derived through multiple, sequential
modifications of an a priori model, then authors should describe the
history of the development of the final model from the a priori model
(Biddle & Marlin, 1987).

Equivalent Models. A frequently ignored class of alternative models
consists of models that are statistically equivalent to the target model
(Lee & Hershberger, 1990). Because equivalent models comprise the
same variables and are no more or less parsimonious than the target
model, they cannot be ruled out as alternatives to the target model
(Breckler, 1990; MacCallum, Wegener, Uchino, & Fabrigar, 1993). In
agreement with MacCallum et al. (1993), we recommend that authors
routinely derive and report, either in a separate section of the Results
section or as a component of interpretation of the results in the Discus-
sion section, equivalent models in order to facilitate understanding of
what can and cannot be inferred from their results.

ADDITIONAL INFORMATION ABOUT MODEL FIT

In addition to the essential information described above, two addi-
tional pieces of information bring clarity to the task of evaluating the
overall fit of a structural equation model and, therefore, merit consid-
eration for inclusion in reports of SEM analyses. Recent progress in the
area of power analysis of structural equation models (e.g., Saris &
Satorra, 1993; Chapter 6, this volume) has made the task more straight-
forward and the process more understandable for applied researchers.
Moreover, simulation research (MacCallum et al., 1992) has revealed
the unreliability of post-hoc model modification in small samples typi-
cal of social and behavioral research (see also Breckler, 1990). Thus
information about statistical power and replicability of structural equa-
tion models is desirable and likely to become commonplace in reports
about SEM analyses in the near future.

Statistical Power. It is not uncommon for researchers who estimate
models from large-sample data to discredit the x2 test as too powerful
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and, therefore, likely to reject models that account for their data reason-
ably well. That claim should be weighed carefully for at least two
reasons: (a) few studies in the social and behavioral sciences can boast
samples of sufficient size to qualify as large and (b) the statistical power
of a structural equation model is as much a function of characteristics
of the model as size of the sample (Saris & Satorra, 1993; Chapter 6,
this volume). An irony of the x” test of overall fit is that low statistical
power can lead to a nonsignificant +® value and failure to reject a model
that does not adequately fit the data from which it was estimated. Thus,
when power is low (< .60) and x? is nonsignificant or when power is
high and xz is significant, the question of whether a model adequately
reflects a set of observed relations remains unanswered. In order to
strengthen the basis on which inferences are made about structural
equation models, we recommend a consideration of statistical power in
reports of structural equation models.

Cross-Validation. A recent analysis by MacCallum et al. (1992)
revealed that post-hoc model modifications based on empirical criteria
are unlikely to replicate in samples smaller than 800. Because post-hoc
modification is quite common in applications of SEM (Breckler, 1990),
the likelihood of unreliable associations appearing in SEM analyses is
high. One means of increasing confidence in the replicability of a
model, particularly one that has been “discovered” through modifica-
tion of an a priori model, is to either cross-validate the final model or
estimate the likelihood of cross-validation from the data on which the
final model is based. Cudeck and Browne (1983) described a two-
sample cross-validation index based on the value of the fitting function
(see Chapters 1 and 3), and Browne and Cudeck (1989) proposed a
single-sample index that approximates the value of the two-sample
index. We recommend that authors report one of these indexes after a
series of modifications have identified a model unanticipated on the
basis of a priori theory or reasoning.

Interpretation

Perhaps the strongest criticisms (e.g., Freedman, 1987) and cautions
(e.g., Cliff, 1983) regarding the SEM approach have targeted the inter-
pretation of findings from SEM analysis. Early references to SEM used
the term “causal modeling” and at least implied that the SEM approach
could reveal causal relations in nonexperimental data. The conditions
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for establishing causality (e.g., Holland, 1986) are no different when
data are analyzed using SEM than when they are analyzed using corre-
lation, multiple regression, or analysis of variance. Independent variables
must be isolated, association must be demonstrated, and directionality
must be established (Hoyle & Smith, 1994). The directionality criterion
has created the most confusion among readers and, too often, users of
the SEM approach.

The literature on equivalent models (e.g., Lee & Hershberger, 1990;
MacCallum et al., 1993) provides the most compelling demonstration
of the inability of SEM to establish directionality. In many models,
switching the direction of the association between two variables changes
neither the overall fit of the model nor the parameter estimate of the
association between the variables. In the end, directionality is estab-
lished either by logic (e.g., ethnicity cannot be caused by income),
manipulation of the putative cause, or strong theoretical arguments.

So, how are the results of SEM analyses to be interpreted? In most
instances, the associations in a structural equation model are necessary
but not sufficient evidence of causal relations. In other words, one
might argue that a particular model is consistent with a set of causal
hypotheses, although the data on which the model is based might be
equally consistent with other causal hypotheses. In the end, associations
in structural equation models are interpreted no differently from asso-
ciations in traditional statistical models. If the research methods and
design that generated the data favor a causal inference, then such an
inference can be made. Otherwise, the appropriate inference is that
variables are reliably associated in the context of the model but the
exact nature of the association cannot be demonstrated.

Additional limitations regarding the interpretation of SEM results
might also be included in the written discussion and interpretation of
them. If the sample size is small, the liabilities associated with small
sample estimation and inferences should be discussed. If the distribu-
tions of the variables are nonnormal, then the limitations imposed by
nonnormality should be noted. In particular, if the final model was
obtained through a series of empirically determined modifications, it
should be described as tentative until replicated.

Conclusions

The typical application of SEM is to a sometimes complex system
of relations among measured and latent variables. The result can be an
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overwhelming amount of technical information regarding estimation,
fit, and parameter estimates. Although the conscientious researcher will
attend to all of that information during the course of analyzing and
elucidating the data, he or she must distill it, sometimes radically, for
presentation in manuscript form. In this chapter we have proposed a set
of recommendations for describing and reporting results of SEM analy-
ses. In some instances, our goal has been to provide advice on narrow-
ing a list of options (e.g., estimators, fit indexes); in other instances we
have proposed desirable formats for presenting information in text,
diagrams, and tables and have proposed reporting information that, at
present, is not routinely included in reports of SEM results. As we noted
earlier, the SEM approach is the subject of a large amount of research
and development; theory, software, and recommended strategy are
updated regularly. Thus the recommendations we provide, particularly
those that concern estimation and fit, must be considered in light of
recent advances in the application of SEM. As such, our final and
perhaps most important recommendation is that authors keep abreast of
the latest developments in SEM as they evaluate, describe, and interpret
results of their own applications of SEM.

1 0 Latent Variable Models of
Multitrait-Multimethod Data

HERBERT W. MARSH

DAVID GRAYSON

Campbell and Fiske (1959) argued that construct validation requires
both convergent and discriminant validity. They proposed the multitrait-
multimethod (MTMM) design, which apparently is the most widely
used paradigm for assessing construct validity. In this design two or
more traits are each measured with two or more methods. Traits are
attributes such as multiple abilities, attitudes, behaviors, or personality
characteristics, whereas methods refer broadly to multiple test forms,
methods of assessment, raters, or occasions. In the Campbell-Fiske
approach an evaluation of an MTMM matrix is used to infer convergent
validity, discriminant validity, and method effects. Convergent validity
refers to true score or common factor trait variance; it is inferred from
large, statistically significant correlations among different measures of
the same trait. Discriminant validity refers to the distinctiveness of the
different traits; it is inferred when correlations among different traits
are less than the convergent validities and reliabilities. Method effect
refers to the influence of a particular method that inflates a correlation
among the different traits measured with the same method; it is inferred
when correlations among traits measured by the same method exceed
correlations among the same traits measured by different methods.
Construct validity is supported when convergent validity and discrimi-
nant validity are high and method effects are negligible. Here we briefly
summarize the original Campbell and Fiske (1959) guidelines used to
inspect an MTMM correlation matrix and subsequent latent variable
models that employ structural equation modeling.
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Important problems with the Campbell-Fiske guidelines are well
known (e.g., Marsh, 1988, 1989; Schmitt & Stults, 1986) and have led
to many alternative analytic approaches. Considerable attention was
given to confirmatory factor analysis (CFA) approaches (Joreskog,
1974; Marsh, 1988, 1989; Widaman, 1985); however, researchers have
noted an apparently inherent instability in the general CFA model,
leading Kenny and Kashy (1992) to conclude that even after 30 years
of widespread use, we still do not know how to analyze MTMM data
adequately. Partly in response to this problem, researchers have pro-
posed alternative approaches that are more likely to result in proper
solutions, including the correlated uniqueness model (Kenny, 1976;
Kenny & Kashy, 1992; Marsh, 1988, 1989) and the composite direct
product model (CDP; Browne, 1984b, 1989; also see Bagozzi & Yi,
1992; Cudeck, 1988) considered here.

The Campbell and Fiske (1959) Approach

For present purposes we will consider data described by Marsh
(1988, 1989), who examined the relations between three academic
self-concept traits (T1 = Math, T2 = Verbal, and T3 = General School)
measured by three different instruments (M1, M2, M3). The nine scores
representing all combinations of the three traits and three methods were
based on multi-item scales, and the three instruments had strong psy-
chometric properties. Consistent with theory and considerable prior
research, it was found that the math and verbal self-concepts were
nearly uncorrelated with each other and were substantially correlated

_with school self-concept (satisfying the Campbell-Fiske recommenda-
tion to include two traits “which are postulated to be independent of
each other,” p. 104). This MTMM matrix (Table 10.1) is divided into
triangular submatrices of correlations among different traits assessed
with the same method (heterotrait-monomethods; HTMM), square sub-
matrices of relations among measures assessed with different methods
(heterotrait-heteromethods; HTHM), and relations among the same
traits assessed with different methods (convergent validities). Campbell
and Fiske proposed four guidelines that we apply to this MTMM matrix.

1. Convergent validities are substantial. All nine convergent validi-
ties are statistically significant, varying between .54 and .87 (mean r =
.70), thus providing strong support for this guideline.
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TABLE 10.1 An MTMM Correlation Matrix With Three Traits and Three
Methods
Method 1
TIMI 89"
T2M1 384 (.79)
T3M1 441 .002 (.92)
Method2
TIM2 622 .368 .353 (.84)
T2M2 438 .703 .008 441 (.89)
T3M2 465 .069 .871 424 136 (.95)
Method 3
TIM3 678 .331 .478 .550 .380 .513 (.87)
T2M3 458 .541 .057 381 .658 .096 584 (.90)
T3M3 414 027 .825 372 .029 .810 592 .135 (.94)

NOTE: T1 = general school self-concept, T2 = verbal self-concept, T3 = math self-concept; M1, M2, and M3
are three different self-report instruments.
a. Values in parentheses are coefficient alpha estimates of reliability.

2. Convergent validities are higher than HTHM correlations. Be-
cause convergent validities (mean r = .70) are higher than the HTHM
correlations (mean r = .31) in all 36 comparisons, there is good support
for this guideline of discriminant validity.

3. Convergent validities are higher than HTMM correlations. Be-
cause the convergent validities (mean r = .70) are higher than the
HTMM correlations (mean r = .35) for 33 of 36 comparisons, there is
reasonable support for this criterion of discriminant validity. All three
failures involve M3, for which correlations among the traits (mean r =
.44) are higher than for M1 (r = .28) or M2 (r = .33).

4. The pattern of correlations among different traits is similar for
different methods. All correlations between T2 and T3 are consistently
small (mean r = .06) whereas T1 is substantially correlated with both
T2 (mean r = .42) and T3 (mean r = .45), thus providing support for this
guideline.

Campbell and Fiske (1959) further noted that a clear violation of
discriminant validity occurred “where within a monomethod block, the
heterotrait values are as high as the reliabilities” (p. 84). They also
stated that “the presence of method variance is indicated by the differ-
ence in level of correlation between parallel values of the monomethod
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block and the heteromethod block, assuming comparable reliabilities
among the tests” (p. 85). Marsh and Grayson (in press) proposed
additional guidelines based on these suggestions.

Campbell and Fiske (1959) were aware of most of the limitations in
their approach, specifically stating that their guidelines should be viewed
as “common-sense desideratum” (p. 83). Their intent was to provide a
systematic, formative evaluation of MTMM data at the level of the
individual trait-method unit, qualified by the recognized limitations of
their approach, not to provide a summative evaluation or global sum-
maries of convergent validity, discriminant validity, and method ef-
fects. More generally, Campbell and Fiske had a heuristic intention to
encourage researchers to consider the concepts of convergent validity,
discriminant validity, and method effects; in this intention they were
remarkably successful. Unfortunately, this formative, heuristic aspect
that was the very essence of the Campbell-Fiske approach seems to have
been lost in the quest to develop ever more mathematically sophisti-
cated approaches to MTMM data. Thus one of our intentions is to
evaluate latent-variable approaches critically in relation to this forma-
tive goal—assessing construct validity at the level of the individual
trait-method combination and providing diagnostic information on how
to improve the measures.

The Confirmatory Factor Analysis (CFA) Approach

MTMM matrices, like other correlation matrices, can be factor-
analyzed to make inferences about the possible underlying dimensions.
Factors defined by different measures of the same trait suggest trait
effects, whereas factors defined by measures assessed with the same
method suggest method effects. With CFA the researcher can define
models that posit a priori trait and method factors and can test the ability
of such models to fit the data. The CFA approach to MTMM data is the
most widely applied alternative to the Campbell-Fiske guidelines. Fur-
thermore, the subsequently popularized CFA representation of MTMM
data was apparently a basis of the guidelines proposed by Campbell and
Fiske (1959; also see Campbell & O’Connell, 1967; Kenny & Kashy,
1992). Kenny and Kashy (1992) are even more emphatic, stating that
“this [general CFA] model is particularly attractive in that its structure
directly corresponds to Campbell and Fiske’s original conceptualiza-
tion of the MTMM matrix” (p. 165).
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In the general MTMM model adapted from Joreskog (1974; also see
Marsh, 1988, 1989; Widaman, 1985) (a) there are at least three traits
(T = 3) and three methods (M = 3), (b) T x M measured variables are
used to infer T + M a priori factors, (c) each measured variable loads
on one trait factor and one method factor but is constrained so as not to
load on any other factors, (d) correlations among trait factors and
among method factors are freely estimated but correlations between
trait and method factors are fixed to be zero, and (e) the uniqueness of
each scale is freely estimated but assumed to be uncorrelated with the
uniquenesses of other scales. This general model, which we refer to as
the CFA model with correlated traits and correlated methods (CFA-
CTCM), is presented (Figure 10.1) for a 4T x 4M design. As has been
noted elsewhere (e.g., Kumar & Dillon, 1992, p. 54), the lack of
correlation between trait and method factors is an assumption that may
be unrealistic in some situations. The constraint seems to be routinely
applied to avoid technical estimation problems and to facilitate decom-
position of variance into trait and method effects, not because of the
substantive likelihood or empirical reasonableness. This potential limi-
tation of the CFA approach is common to all the latent variables models
considered in this chapter.

An advantage of this general CFA-CTCM model is the apparently
unambiguous interpretation of convergent validity, discriminant valid-
ity, and method effects: large trait factor loadings indicate support for
convergent validity, large method factor loadings indicate the existence
of method effects, and large trait correlations—particularly those ap-
proaching 1.0—indicate a lack of discriminant validity. Also, in stan-
dardized form, the squared trait factor loading, the squared method
factor loading, and the error component sum to 1.0 and can be inter-
preted as components of variance for each item. It is important to
emphasize that these effects are not the same as the convergent, discrimi-
nant, and method effects inferred from the Campbell-Fiske approach.
Consistent with Kenny and Kashy’s (1992) assertion, our interpretation
of Campbell and Fiske (1959) suggests that their original guidelines
were implicitly based on a latent trait model like the CFA models. From
this perspective, the operationalizations of convergent validity, dis-
criminant validity, and method effects in the CFA approach apparently
better reflect Campbell and Fiske’s (1959) original intentions than do
their own guidelines.

Widaman (1985) proposed a taxonomy of models that systematically
vary different characteristics of the trait and method factors; the taxon-
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Figure 10.1. Continued
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omy was expanded by Marsh (1988, 1989). This taxonomy is designed
to be appropriate for all MTMM studies, to provide a general framework
for making inferences about the effects of trait and method factors, and
to objectify the complicated task of formulating models and repre-
senting the MTMM data. Whereas detailed consideration of the taxon-
omy is beyond the scope of the present investigation (see Marsh, 1989),
four models (Figure 10.1) are considered that we recommend as the
minimum set of models for all CFA-MTMM studies.

The trait-only model (CFA-CT; Figure 10.1) posits trait factors but
no method effects, whereas the remaining models posit trait factors in
combination with different representations of method effects. Hence,
the trait-only model is nested under the other CFA models so that the
comparison of its fit with the fit of the other CFA models provides an
indication of the size of method effects. Implicit in this operationaliza-
tion of method effects is Joreskog's (1971) contention that “method
effects are what is left over after all trait factors have been eliminated”
(p- 128; also see Marsh, 1989). The model with correlated trait factors
but uncorrelated method factors (CFA-CTUM; Figure 10.1) differs
from the CFA-CTCM model only in that correlations among the method
factors are constrained to be zero. Hence the comparison of the CFA-
CTCM and CFA-CTUM models provides a test of whether method
factors are correlated.

In the correlated uniqueness model (CFA-CTCU; Figure 10.1),
method effects are inferred from correlated uniquenesses among mea-
sured variables based on the same method instead of method factors
(see Kenny, 1976; Kenny & Kashy, 1992; Marsh, 1989; Marsh &
Bailey, 1991). Like the CFA-CTUM model, the CFA-CTCU model
assumes that effects associated with one method are uncorrelated with
those associated with different methods. The CFA-CTCU model differs
from the CFA-CTCM and CFA-CTUM models in that the latter two
models implicitly assume that the method effects associated with a
given method can be explained by a single latent method factor (here-
after referred to as the assumption of unidimensionality of method
effects), whereas the correlated uniqueness model does not. This im-
portant distinction is testable when T > 3. When T = 3 the CFA-CTUM
and the CFA-CTCU models are formally equivalent (i.e., the number
of estimated parameters and goodness of fit are the same, and parameter
estimates from one can be transformed into the other).

The juxtaposition of the CFA-CTUM, CFA-CTCM, and CFA-CTCU
models is important. The comparison of the CFA-CTUM and CFA-
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CTCU models tests the unidimensionality of method effects (i.e.,
whether the method effects associated with each method form a single
latent method factor), whereas the comparison of the CFA-CTUM and
CFA-CTCM models tests whether effects associated with different
methods are correlated. In general, the CFA-CTCU and CFA-CTCM
are not nested, so their comparison is more complicated. For example,
if both the CFA-CTCM and CFA-CTCU models fit the data substan-
tially better than the CFA-CTUM, all three models may be wrong: The
CFA-CTUM may be wrong because it assumes that the effects associ-
ated with each method are unidimensional and unrelated to the effects
associated with other methods; the CFA-CTCM may be wrong because
it assumes that the effects associated with each method are unidimen-
sional; and the CFA-CTCU may be wrong because it assumes that the
effects associated with each method are unrelated to the effects associ-
ated with other methods.

From a practical perspective, the most important distinction between
the CFA-CTCM, the CFA-CTUM, and the CFA-CTCU models is that
the CFA-CTCM model typically results in improper solutions, the
CFA-CTUM model often results in an improper solution, and the
CFA-CTCU almost always results in proper solutions (Kenny & Kashy,
1992; Marsh, 1989; Marsh & Bailey, 1991). For example, Marsh and
Bailey (1991), using 435 MTMM matrices based on real and simulated
data, showed that the CFA-CTCM model typically resulted in improper
solutions (77% of the time) whereas the CFA-CTCU model nearly
always (98% of the time) resulted in proper solutions. Improper solu-
tions for the CFA-CTUM and particularly the CFA-CTCM models were
_ more likely when the MTMM design was small (i.e., 3T x 3M vs. 5T x
S5M), when the sample size was small, and when the assumption of
unidimensional method effects was violated. From this practical per-
spective, the complications in comparing the CFA-CTCM, CFA-CTUM,
and CFA-CTCU models may be of limited relevance because in many
applications only the CFA-CTCU model results in a proper solution.

In conclusion, some recosnmendations can be offered about the
design of CFA-MTMM studies. The typical MTMM study is a 3T X 3M
design with a sample size of about 125. This design is apparently not
adequate for the appropriate application of the CFA approach and may
account for some of the problems typically encountered. The minimum
sample size should be at least 250 and probably much larger given the
apparent instability of CFA-MTMM solutions. It may be unrealistic to
estimate six latent factors from only nine measured variables. The
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Marsh and Bailey (1991) study suggests that more stable solutions can
be obtained when the number of traits and methods increased at least
up to the 7T x 4M and 6T X 6M designs that they considered. Also, the
differentiation of models in Figure 10.1 requires T > 3. For these
reasons we recommend a minimum of 4 traits and 3 methods, although
it would be preferable to have even more traits and methods. If these
minimal recommendations of T = 4, M = 3, and N > 250 cannot be
achieved, the CFA approach may not be appropriate and should be
interpreted cautiously.

Direct Product Models

The CFA approach to MTMM data discussed above assumes that
trait and method factors contribute additively to the MTMM correla-
tions, but Campbell and O’Connell (1967) suggested that the MTMM
data sometimes show a multiplicative structure. They noted that MTMM
matrices based on observed data (CORR) may have a structure consis-
tent with intertrait correlations being attenuated by a multiplicative
constant (smaller in magnitude than unity) when different methods are
used. Swain (1975) proposed a direct product (DP) model that posits
this type of structure for the observed covariance matrix but is easily
reformulated to apply to the observed correlation matrix (see Browne,
1984b, section 4):

Ry1 Rz Ry3 R §;2R §;3R 1 812 Si3
CORR = R21 R22R23 = Sle R SzgR = SZ] 1 Szg XR=SXR,
Ry Ry Ry3| | SR SR R S3; 832 1

(10.1)

where “x” represents the direct product, and § and R have the same
structure as correlation matrices, although they need not be interpreted
in this way (see below). The typical element S;; (= S;;) of S represents
the attenuation of trait-intercorrelations associated with different meth-
ods, i and j. The elements in S and R may or may not have an immediate
interpretation in terms of method and trait factors (see distinction 2
below). Swain’s DP model is more restrictive than the multiplicative
model implied by Campbell and O’Connell (e.g., the DP model assumes
HTMM correlations, R, are constant across methods). In subsequent
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discussion we use the multiplicative observed data to refer to data that
conform to Swain’s DP model.

The particular strength of this DP model is that when the data
conform to the model, the model provides a mathematically elegant,
summative test of the Campbell-Fiske criteria discussed previously (see
Bagozzi & Yi, 1990; Cudeck, 1988, pp. 133-137; and Kumar & Dillon,
1992, for good expository accounts of this relation between parameters
and criteria). Under certain conditions, the observed correlation matrix,
CORR = S x R, will satisfy all four of the Campbell-Fiske criteria.
Criterion 1 is met if the §;; terms are “large”; criteria 2 and 4 are ensured
because R has the structure of a correlation matrix; criterion 3 is met
whenever all the off-diagonal elements of S are larger than the off-
diagonal elements of R.

Browne (1984b) extended this model to what is referred to as the
composite direct product (CDP) model. In terms of the observed corre-
lation matrix (see Goffin & Jackson, 1992), the CDP model may be
written as

CORR = Z(CORR, + E)Z =Z(S. X R. + E)Z, (10.2)

where Z and E are diagonal and the direct product §. X R can now be
viewed as applying to the common factor scores underlying the T x M
observed measures and disattenuated of “error” with correlation matrix
CORR.. That is, R_ and S play the same role with the common factor
scores and CORR, in Browne's CDP model as R and § played in
Swain’s (1975) DP model in relation to the observed scores and CORR,
these latter being the locus of Campbell and O’Connell’s (1967) com-
ments. The parameters in Z are designed primarily to absorb scaling
changes in going from a covariance matrix to common factor correla-
tion matrix and are typically of little interpretive interest. The E values
reflect measurement error. Browne (1990) subsequently developed the
MUTMUM statistical package used in the present investigation to
estimate parameters for the CDP models.

At this stage, it is appropriate to emphasize several distinctions that
may serve to avoid confusion in subsequent discussion of this new and
frequently ill-understood area.

1. “Additive” versus “Multiplicative” observed data. We can antici-
pate multiplicativity of the above sort in relation to the observed
MTMM matrix CORR. We also can contemplate observed data in which
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additivity replaces multiplicativity (i.e., S;; + R replaces §;;R, while still
allowing CORR to be a correlation matrix). Whether the data conform
to either of these patterns is entirely an empirical question. Additive
data in this sense are not much discussed in the literature, and we may
expect data in actual applications, particularly “formative” ones, not to
conform to either of these types. However, if the data are multiplicative
then the parameters in R and S provide an elegant and succinct way of
describing how such data relate to the Campbell-Fiske (1959) criteria.
Conversely, if the data do not have such a multiplicative structure and
such a DP model is fit, then criteria 2 and 4 are forced on the data and
the parameters relate to criteria 1 and 3 in some “summative” or
aggregated manner that may be misleading (e.g., the model forces
monomethod blocks to be identical).

2. “Additive” versus “Multiplicative” score models. Suppose y;, is
the score (omitting the subject subscript) observed with trait i and
method r. Then y;, may empirically have arisen from an additive combi-
nation of trait and method factors: y;, = a + t; + m, + e, where a and e
represent constant intercept and error-score components, respectively.
This is the view underlying the CFA approach and much psychometric
thinking in, say, the usual interpretations of correlation coefficients.
Alternatively, y;, may have arisen from the multiplication of trait and
method factor scores that are themselves of empirical interest: y;, =a +
T;|,. If these latter multiplicative components are independent, then
such a multiplicative-score model will yield multiplicative data like
that discussed by Campbell and O’Connell (1967). In this case Swain’s
(1975) DP model will be appropriate and parameter matrices R and §
will have direct empirical interpretations in terms of correlations among
trait factors or correlations among method factors that combine multi-
plicatively to produce the data. However, such multiplicative data may
also arise from an additive score model (see Kumar & Dillon, 1992). In
this case, the DP model will fit, but R and S should not be interpreted
directly as trait and method factor score intercorrelations; they are no
more than elegant mathematical parameters that enable succinct sum-
marization of the (additive) Campbell-Fiske (1959) criteria, and even
they may be misleading when the data are not actually multiplicative.
Similarly, the parameters in R; and S; will have empirical interpreta-
tions if the common factor scores have arisen from multiplication of
trait and method factors (but will have only heuristic value when the
common factor scores have arisen additively). So the “user” must
decide whether a multiplicative or an additive score model is substan-
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tively and theoretically appropriate, as this profoundly affects the inter-
pretation of the DP (or CDP) parameters, even when the observed (or
common factor) data may be unambiguously multiplicative in the sense
of distinction 1 above. We join Kumar and Dillon (1992, see particu-
larly pp. 58-59) in warning that entertaining multiplicative score mod-
els may have a substantial impact on much of what is psychometrically
taken for granted.

3. Multiplicative/additive observed data versus multiplicative/addi-
tive score models. These issues are potentially even more confusing
when one examines the relations between data and models. Swain’s
(1975) DP model can produce only multiplicative observed data; how-
ever, both the general CFA model and the CDP model can produce
observed data that are multiplicative or additive. One situation in which
the CDP model must produce multiplicative data is when it specializes
to the DP model (i.e., when Z = I and E = 0). Furthermore, the same
data are predicted by both the CDP and the CFA models under some
specific conditions (see Browne, 1989).

In summary, these distinctions serve to emphasize that CFA and CDP
models can sometimes both fit the same data, whether or not the data
are “multiplicative.” So the CDP parameters should be interpreted as
either parameters that may aid in the “summative” evaluation of the
Campbell-Fiske (1959) criteria if we entertain an additive-score model
or as trait factor and method factor intercorrelations if we entertain a
multiplicative-score model—and in this case the Campbell-Fiske crite-
. ria may no longer by psychometrically appropriate. The choice between
“additive and multiplicative score models, however, must be made ex-
ternal to the analysis and based on substantive and theoretical grounds.
We strongly emphasize that if a multiplicative score model is assumed,
the concepts of convergent and divergent validity need psychometric
rethinking (see Kumar & Dillon, 1992).

Application of the CFA and CDP Approaches

Initially we focus on the ability of the CFA and CDP models to fit
the data in Table 10.1. The evaluation of fit in structural equation modeling
has recently received considerable attention and a detailed discussion
of the issues is beyond the scope of this chapter (see Bentler, 1990;
Cudeck & Henly, 1991; Marsh, Balla, & McDonald, 1988; McDonald
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& Marsh, 1990; and Chapter 5, this volume, for general discussions;
and Marsh, 1989, for a discussion in relation to MTMM data). Although
there are no well-established guidelines for what minimal conditions
constitute an adequate fit, a general approach is to (a) establish that the
solution is “proper” by establishing that the model is identified, the
iterative estimation procedure converges, parameter estimates are within
the range of permissible values, and the size of the standard error of
each parameter estimate is reasonable; (b) examine the parameter esti-
mates in relation to the substantive, a priori model and common sense;
and (c) evaluate the X? and subjective indexes of fit for the model and
compare these to values obtained from alternative models.

PROPER SOLUTIONS

For both the CFA and CDP models, solutions are proper if the model
is identified and if the estimated parameters fall within their permissible
range. For models considered here a proper solution requires that all

matrices of parameter estimates are positive definite. Thus, for exam-.

ple, in the CFA models there are no negative or zero variance estimates,
and in the CDP models the matrices of scaling components and error
components contain no negative or zero values. For the MTMM matrix
considered here (Table 10.1), the CFA-CT and CFA-CTCU resulted in
proper solutions whereas the CFA-CTUM and CFA-CTCM did not.
Although the analysis of a single data set provides no basis for gener-
alization, this pattern is typical of the CFA approach to MTMM data
(see Marsh & Bailey, 1991).

The CDP model resulted in an improper solution and so we consid-
ered the slightly more restrictive version of the CDP model (see CDP-
KE in Table 10.2) in which errors are constrained to have a direct
product structure (see Browne, 1984b, 1990), a model that did result in
a proper solution. In published studies the CDP typically results in
proper solutions, so our improper solution for one data set may be
atypical. We, however, used a somewhat more conservative definition
of what constitutes a proper solution in that we judged a solution to be
improper if it had “boundary conditions” (e.g., residual variance esti-
mates of 0.0 or correlations of 1.0). This is consistent with our earlier
criterion that all parameter estimation matrices must be positive defi-
nite. This is an important concern for CDP solutions based on Browne’s
(1990) MUTMUM statistical package, because it invokes many in-
equality constraints that require parameter estimates to fall within their
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TABLE 10.2 Goodness of Fit of Alternative MTMM Models

Model Proper 1’ df TLI RNI
CFA-CT Yes 452 24 877 918
CFA-CTUM No 65 15 977 990
CFA-CTCM No 28 12 991 997
CFA-CTCU Yes 65 15 977 990
CDP No 150 21 958 975
CDP-KE Yes 232 25 943 961

NOTE: TLI = Tucker-Lewis Index, RNI = Relative noncentrality index. See Figure 10.1 for a description of
the CFA models. The null model used to compute the TLI and RNI posited that the nine measured variables
represented nine uncorrelated factors (x2 = 5310, df = 36).

permissible range (e.g., nonnegative variance estimates) so that bound-
ary conditions typically reflect what would have been out-of-range
parameter estimates (e.g., negative residual variances) if no constraints
were imposed. Fortunately, however, the program specifically identi-
fies all boundary conditions so the users can use appropriate caution in
making interpretations.

More generally, whenever the CFA or CDP models result in im-
proper solutions, it may be possible to impose further constraints on the
models that will result in proper solutions as demonstrated with the two
CDP models considered here (for a more detailed discussion of alter-
native, more highly constrained CDP models see Bagozzi & Yi, 1992;
Browne, 1984b, 1990). For the CFA models, Marsh, Byrne, and Craven
(1993) demonstrated how constraining parameters to be equal across
multiple groups or constraining parameters to be equal within a single
group can result in proper solutions when less constrained models result
in improper solutions.

GOODNESS OF FIT

Here we evaluated goodness of fit in terms of the %2 that can be used
to compute values for most other indexes, the relative noncentrality
index (RNI; McDonald & Marsh, 1990; also see Bentler, 1990), and the
Tucker-Lewis index (TLI; Tucker & Lewis, 1973; also see Marsh et al.,
1988; McDonald & Marsh, 1990). Both the TLI and RNI indexes scale
goodness of fit along a scale that, except for sampling fluctuations,
varies between 0 and 1. Values greater than .9 are typically interpreted
as indicating an acceptable fit, although it may be more useful to
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compare the values of alternative models. The TLI and RNI differ in
that the TLI contains a penalty function based on the number of esti-
mated parameters whereas the RNI does not. For all the models consid-
ered here the RNI and, except for the CFA-CT model (TLI = .877), the
TLI are greater than .90. Although the best fit is for the CFA-CTCM
model (TLI = .991), this model resulted in an improper solution. The
next best fit was for the CFA-CTCU model (TLI = .977) and this
solution was proper. Although the fit of the CFA-CT model was clearly
poorer, even this parsimonious model that posited no method effects
resulted in a marginal fit (at least in relation to the “.90 guideline™),
suggesting that the method effects are not large. For the CDP models,
the more highly constrained CDP solution with a direct product error
structure does not fit the data as well as the unconstrained CDP model,
even though the CDP solution is improper (Table 10.2).

The comparison of the fit indexes for the various CFA models (Table
10.2) is facilitated by the nested relations among the models. The
CFA-CT model is nested under the other CFA models considered here
so that comparisons with the other models provide an indication of the
size of the method effects. Table 10.2 shows that the fit of the CFA-CT
model is significantly poorer than those of the other CFA models,
indicating the existence of method effects. Although the comparisons
vary somewhat depending on which models are compared, the inferred
method effects are not large.

The comparison of the CFA-CTUM and CFA-CTCU models pro-
vides a test of the unidimensionality of method effects associated with
each method. When T = 3, as is the present situation, the CFA-CTUM
and the CFA-CTCU models are equivalent although the CFA-CTUM
solution may be improper if the three correlated uniquenesses in the
CFA-CTCU model cannot be represented as a single latent factor. Thus
inspection of Table 10.2 indicates that the CFA-CTCU solution is
proper even though the CFA-CTUM solution is improper.

The comparison of the CFA-CTUM and CFA-CTCM models pro-
vides a test of whether the method effects associated with different
methods are correlated. Table 10.2 shows that the fit of the CFA-CTCM
is better than that of the CFA-CTUM model, suggesting that effects
associated with different methods may be correlated. These results
must, however, be viewed cautiously because both the CFA-CTCM and
CFA-CTUM solutions are improper.

In general the CFA-CTCM and CFA-CTCU models are not nested,
so it is possible for either medel to fit the data better; however, when
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T = 3, the models are equivalent, and so it follows that both the
CFA-CTCU and CFA-CTUM models are nested under the CFA-CTCM
model. Table 10.2 indicates that whereas the CFA-CTCM fit is margin-
ally better than the CFA-CTCU fit, interpretations must be made cau-
tiously because the CFA-CTCM solution is improper.

The examination of goodness of fit (proper solutions and the fit
indexes) supports the CFA-CTCU model. There are, however, some
relevant qualifications to these conclusions. Several different models
provided apparently acceptable fits in that the solutions were proper
and both the TLI and RNI were larger than .90. Because the CFA-CTCU
model is considerably less parsimonious—uses more estimated parame-
ters to fit the same data—it may be premature to claim that it fits the
data better. Also, because the CFA and CDP models are so different, it
is important to evaluate the usefulness of alternative models in terms
of interpretations of the parameter estimates in relation to providing
information about convergent validity, discriminant validity, and method
effects, and to providing a formative evaluation of each trait-method
unit.

INTERPRETATION OF PARAMETER ESTIMATES

Standardized CFA Parameter Estimates. For all the CFA models,
large and statistically significant trait factor loadings provide an indi-
cation of convergent validity, whereas large trait factor correlations—
particularly those approaching 1.0—suggest a lack of discriminant
validity. Method effects are inferred from large and statistically signifi-
cant method factor loadings in the CFA-CTCM and CFA-CTUM mod-
els, and from large and statistically significant correlated uniquenesses
(among different variables assessed by the same method) in the CFA-
CTCU model. In the CFA-CTCU solution (Table 10.3) the trait factor
loadings are consistently very large, the trait factor correlations are
small or moderate, and the correlated uniquenesses are small to moder-
ate. As predicted, correlations between T2 and T3 are small whereas
other trait correlations are larger. It is also evident that method effects
are smaller for M1 than for M2 and particularly M3, whereas trait
effects are smaller for M3. These results provide strong support for the
construct validity of interpretations of these data.

CDP Parameter Estimates. We fit the CDP model with errors pos-
ited to be structured as direct products (see Browne, 1984b, 1990;
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TABLE 10.3 Parameter Estimates for the Best-Fitting Models

CFA-CTCU Model
Trait

Factor Uniqueness SMC Uniqueness Correlations

TIM1 .852 275 .724 1.000

T2M1 775 394 604 -.100 1.000

T3M1 942 113 .887 -.010 -.116 1.000

TIM2 .707 .498 .501 1.000

T2M2 .865 224 .770 .145 1.000

T3M2 931 142 .859 130 495 1.000

TiM3 766 381 606 1.000

T2M3 758 .450 .561 .538 1.000

T3M3 .849 .241 .750 455 213 1.000
Trait Correlations

T1 1.000

T2 .605 1.000

T3 .606 046 1.000

CDP Model Direct Product Error Structure
Trait Correlations Method Correlations

T1 1.000 Ml 1.000

T2 .695 1.000 M2 964 1.000

T3 616 164 1.000 M3 .849 .838 1.000

Squared Multiple Correlations

TiM1 T2M1 T3M1 TIM2 T2M2 T3M2 TIM3 T2M3 T3M3
.640 .698 .901 .645 707 .904 .857 .886 .968

NOTE: Each measured variable is a trait-method unit. TIMI, for example, is Trait 1 measured by Method 1.
The squared multiple correlations (SMC) are an estimate of the communality for each measured variable.

Cudeck 1988) as a pragmatic alternative to the CDP model, because the
CDP model resulted in an improper solution (Table 10.3). Critical
parameters in the CDP solution, with or without additional constraints
on the error structure, are those in the R. and Sc matrices previously
discussed. In light of earlier distinctions there are two ways of inter-
preting these results in relation to the P. (disattenuated) matrix. If we
assume that the data arose additively, we can apply the Campbell-Fiske
guidelines in a summative sense. In this case, as noted earlier, large
values in the off-diagonal of the S. matrix are interpreted as support for
convergent validity. Support for discriminant validity is inferred when
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the off-diagonal values in S¢ are all larger than the off-diagonal values
in Rc. In the present application, S. parameter estimates are consistently
very large and consistently larger than the parameter estimates in R..
The estimated parameters, however, should not be directly interpreted
as correlations among underlying additive trait and method factors, and
so their formative value is limited.

If we assume that the common factor scores arose multiplicatively,
then we are justified in interpreting the R parameters as trait correla-
tions and the S parameters as method correlations; however, such a
multiplicative relation would undermine much of the intuitive appeal
of the Campbell-Fiske guidelines that are based on an additive logic
(and, more generally, classical approaches to psychometrics; see Kumar
& Dillon, 1992).

Summary and Implications

Different approaches to the analysis of MTMM data are described
here. Even though all the approaches use a similar terminology (conver-
gent validity, discriminant validity, and method effects), they employ
different operationalizations of these terms and so are not equivalent.
This has led to considerable confusion in MTMM research. For this
reason it is useful to summarize strengths and weakness of the different
approaches and to offer recommendations for their use.

The Campbell-Fiske (1959) approach continues to be the best known
and most widely applied of the approaches. Despite important limita-
tions such as a reliance on measured variables instead of latent con-
structs, this approach continues to be a potentially useful and heuristic
approach to the formative evaluation of MTMM data. We recommend
a systematic application of the expanded set of Campbell-Fiske guide-
lines to provide a preliminary inspection of the MTMM data prior to
the application of more sophisticated approaches. The guidelines should
not, however, be the sole basis for evaluating MTMM data.

The widely known terminology used in the Campbell-Fiske (1959)
approach has provided an important starting point for other approaches;
however, the terms convergent validity, discriminant validity, and
method effects were not adequately defined in the Campbell-Fiske
approach and so there is ambiguity in how they are operationalized in
the alternative approaches. As asserted by Kenny and Kashy (1992), it
appears that Campbell and Fiske (1959) implicitly based their original
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guidelines on a general CFA model. In the CFA-CTCM model it is clear
that convergent validity, discriminant validity, and method effects are
a function of the sizes of trait factor loadings, trait factor correlations,
and method factor loadings, respectively. Because of this apparently
unambiguous interpretation of these features based on the CFA-CTCM
model, we recommend that this model should be used as a touchstone
for defining terminology in MTMM studies and for evaluating new
models or different approaches.

The CFA approach is the most widely used latent variable approach
for the evaluation of MTMM data. A major limitation of this approach
has been its reliance on the CFA-CTCM model that typically results in
improper or unstable solutions. A growing body of research (e.g.,
Kenny & Kashy, 1992; Marsh, 1989; Marsh & Bailey, 1991) indicates
that the problem of improper and unstable solutions is largely overcome
through the application of the CFA-CTCU model. We recommend that
at least the subset of CFA models considered here should be applied in
all MTMM studies, but that the major emphasis should be placed on
only those models that result in proper solutions. The preferred model
within this set will depend on which models result in proper solutions
and the ability of the alternative models to fit the data, but the CFA-
CTCU model appears to be the strongest model in the CFA approach.

Although the direct product models have not been applied as widely
as the CFA models, published findings reviewed earlier suggest that the
CDP model typically results in proper solutions and provides an appar-
ently good fit to MTMM data. Consistent with Browne’s (1984b) claim,
the CDP model may provide evidence about the Campbell-Fiske guide-
lines and about convergent and discriminant validity as embodied in
these guidelines. Whereas the CDP model is extremely parsimonious,
this may be at the expense of considerable formative information that
was the original focus of the MTMM design. Although this inevitable
compromise between parsimony and detail is both a strength and a
weakness of the CDP approach, researchers need to be aware of this
consideration when applying the CDP model. Indeed, we contend that
DP and CDP models are of limited use to researchers who want to focus
on the trait and method components associated with a particular trait-
method combination, on the formative evaluation of their measures, and
on the improvement of measurement instruments as originally advo-
cated by Campbell and Fiske (1959).

Beyond the scope of this chapter is a discussion of a variety of new
directions in MTMM analyses. Most MTMM studies using Campbell-
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Fiske guidelines, CFA models, or CDP models begin with single indi-
cators of each trait/method combination even though each trait/method
combination is often based on multiple indicators (e.g., the individual
items composing a scale). There are, however, important advantages in
incorporating the multiple indicators into models like those considered
here (see Marsh, 1993; Marsh & Hocevar, 1988). Although MTMM
studies typically consider data from only one group, Marsh et al. (1993)
demonstrated pragmatic and substantive benefits in testing the invari-
ance of solutions across multiple groups. There may also be advantages
in testing invariance constraints within a single group for CFA (Marsh
et al., 1993) or direct-product (Bagozzi & Yi, 1992) models. MTMM
studies typically focus on a “within-construct” component of construct
validation, but Marsh (1988) and Marsh et al. (1993) demonstrated how
external validity criteria can be incorporated into CFA-MTMM models.

In conclusion, this chapter has an important message for applied
researchers who wish to use the MTMM paradigm. MTMM data have
an inherently complicated structure that will not be fully described in
all cases by any of the models or approaches typically considered. There
is, apparently, no “right” way to analyze MTMM data that works in all
situations. Instead, we recommend that researchers consider several
alternative approaches to evaluating MTMM data—an initial inspection
of the MTMM matrix using the Campbell-Fiske guidelines followed by
fitting at least the subset of CFA models recommended by Marsh and
Grayson (in press) and the CDP model. The Campbell-Fiske guidelines
should be used primarily for formative purposes, the CDP model seems
most appropriate for summative evaluations of the extent to which the
MTMM data fulfill the Campbell-Fiske guidelines, and the CFA models
apparently serve both summative and formative purposes. It is, how-
ever, important that researchers understand the strengths and weak-
nesses of the different approaches. For each of the different latent-
variable approaches, researchers should evaluate results in relation to
technical considerations such as convergence to proper solutions and
goodness of fit, but they should also place more emphasis on substan-
tive interpretations and theoretical considerations. Despite the inher-
ent complexity of MTMM data, we feel confident that the combination
of common sense, a stronger theoretical emphasis on the design of
MTMM studies, a better quality of measurement at the level of trait-
method units, an appropriate arsenal of analytical tools such as recom-
mended here, and a growing understanding of these analytic tools will
allow researchers to use the MTMM paradigm effectively.

1 1 Sex-Race Differences in
Social Support and Depression
in Older Low-Income Adults

JANE A. SCOTT-LENNOX

RICHARD D. LENNOX

Biomedical research, after years of using a universal (young, white
male) model, has been forced to recognize the important influences of
sex, race, age, and other characteristics on disease processes and treat-
ment outcomes. Social science has long recognized sex, race, and their
interaction as fundamental stratifying attributes in American society.
They help define social roles and responsibilities, resources, socializa-
tion, and experiences a person has throughout life. Lifelong exposure
to health hazards, economic disadvantage, and limited access to health
care place female and black American rural elders at greater risk of
physical disability, multiple chronic illnesses, and poverty (Crystal &
Shea, 1990). Chronic stresses such as these increase the risk of depres-
sive symptoms, which, in turn, reduce the effectiveness of medical
treatments and discourage interaction with others, thereby perpetuating

AUTHORS’ NOTE: We would like to thank Jane E. Morrow, E. Michael Bohlig, Lore K.
Wright, Deborah L. Gold, Rick Hoyle, and an anonymous reviewer for helpful comments on
earlier drafts of this chapter, and Dr. Harold L. Cook for the use of the data analyzed here.

The research was supported by NIH Multipurpose Arthritis Center Grant AM-30701 to the
University of North Carolina at Chapel Hill, by the Numerical Science Core of the UNC
Thurstone Multipurpose Arthritis Center, and by a National Institute of Aging Post-Doctoral
Research Training Fellowship grant to the Center for the Study of Aging and Human
Development at Duke University Medical Center.
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200 STRUCTURAL EQUATION MODELING

the chronic stress cycle (Blazer, 1982). Despite these disadvantages, or
perhaps because of them, high levels of informal social support—the
care and help received from family members and friends—often are
observed among populations at the most risk of chronic stress (Mercier
& Powers, 1984).

As its label implies, social support theory generally assumes the
universal utility of social relationships: If available and needed, sup-
portive relationships with other people should help protect an individ-
ual from stress and its consequences. Hence, high levels of available
support among disadvantaged groups would be expected to reduce their
experience of stress and prevent distress. However, supportive relation-
ships are embedded in social networks consisting of bivalenced ties—
social relationships that contribute to stress in people’s lives, even
though they are supportive on other dimensions. The amount of support
needed, the size of the network available to provide it, and even the
characteristics of supporters all contribute to the adequacy of a social
support network and to the extent of dependence on bivalenced networks.

Studies that find that the types and amounts of support available vary
depending on a person’s sex and/or race do not violate this basic
assumption of the universal utility of support (e.g., Chatters, Taylor, &
Jackson, 1985; Palinkas, Wingard, & Barrett-Connor, 1990; Scott &

/Roberto, 1985). However, studies also have found that the same social
support resources differ in their ability to reduce or prevent distress for
men and women (Dean, Kolody, & Wood, 1990; Haines & Hurlbert,
1992), for blacks and whites (Krause, 1989; Quevillon & Trennery,
1983; Vaux, 1985), or for men and women of the same race (Husaini
et al., 1991). The source of supportive relationships and the extent to
which the support source affects the proportion of bivalenced ties in the
social network are important qualifiers to gender differences (Leffler,
Krannick, & Gillespie, 1986), and perhaps race differences, in the
benefits of social support.

In one of the most intriguing studies of gender differences in social
support, Haines and Hurlbert (1992) found that three dimensions of
support network range (density, diversity, and size) differentially affect
exposure to stress for men and women, access to social support, and
level of distress. Because their analyses were based on data from a
population survey that could not fully control for major life stress
associated with poverty or chronic illness, the complex relationships
among support, stress, and depression implied by chronic stress theo-
ries are only partially explicated by these results. In addition, their
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analyses did not explore moderating effects of race or of sex-race
interactions suggested by Husaini et al. (1990, 1991) and others.

Universal Versus Group-Specific Models
of Support and Depression

The coincidence of high levels of social resources on one hand and
high exposure to chronic stressors on the other, when combined with
the many stratifying effects of sex and race, raises the following ques-
tion: Given comparable levels of chronic stress and similar life circum-
stances, are the same social support resources equally available and
valuable for reducing psychological distress, regardless of moderating
effects of sex, race, or their interaction (sex-race)? Empirically, the
most precise answer to this question lies in results of multigroup
structural equation modeling (MSEM), wherein dimensions of support
are used to predict depression for sex-race subgroups. When the theory
underlying the model indicates that a mediating relationship among
predictors of outcomes may vary by population subgroups, MSEM is
preferable to multiple linear regression path-analytic models.

MSEM is uniquely suited for exploring this question because of its
ability to test a theoretical model for its applicability to different groups
simultaneously. MSEM models do not require cumbersome interaction
terms and nested models to estimate hypothesized group differences in
path-analytic model coefficients or model fit. A single %2 goodness-of-
fit statistic evaluates a set of complex models—one for each group. To
validate the usual assumption that groups are equivalent, groups can be
required to have identical estimates for all parameters (a “fully con-
strained” or universal model). Differences among groups can be evalu-
ated for their appropriateness by “freeing” some parameters (allowing
one or more groups to vary uniquely), “fixing” (setting parameters to
zero), and/or “constraining” (requiring two or more groups to have
equal parameters) any or all parameters for different groups. MSEM
analyses often begin by estimating a fully constrained model (equiva-
lent to a full sample regression model), then relaxing constraints to
allow for group-specific differences in particular parameters based on
theory or inductive evidence (e.g., Lagrange multiplier tests for impact
of freeing one or more constraints on model fit).

In deference to the substantial literature on social support and de-
pression in older adults (for reviews, see Blazer, 1982; George, 1989),
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our study focuses on two dimensions of social networks that are likely
to impact the mental health of older adults undergoing chronic stress.
The first and most powerful social support dimension is a person’s
perception of the adequacy of her or his support network. Because
evaluation of the adequacy of support resources is a function of re-
sources desired, available, and used (Krause, 1989), satisfaction with
support is a psychological experience in its own right and thus is closely
associated with depressive symptoms and other measures of mental
health. In contrast, quantitative or structural aspects of a person’s social
support network help determine whether a person is satisfied with her
or his support, and only indirectly contribute to depressive illness. From
the path-analytic perspective, this places satisfaction with support as a
mediator in the linear relationship between support network charac-
teristics and depression (Lin, 1986).

Based on Haines and Hurlbert (1992), three measures of network
range are expected to predict satisfaction with support: network size,
network density, and sex composition of network. People with larger
social networks (size) are assumed to have, on average, access to more
social resources overall, and thus a greater probability of having access
to appropriate and desired social support. If so, network size should be
an important predictor of satisfaction with available support and of
mental health. Social resources also are more likely to be rallied to the
person’s support if the members of the network know one another well
(high network density). Finally, differential gender roles that occupy
today’s social environment may translate into the provision of different
types and amounts of social support. All other things equal, this would
suggest that people whose networks contain both men and women are
more likely to have access to a wider range of support than are those
whose networks consist only of same-sex network members. When
considering self-reported mental health, however, these structural fea-
tures of social networks are likely to be useful only if people perceive
them to be adequate and desirable. Therefore, objective components of
network size, network density, and sex homophily are expected to affect
self-reported mental health only as mediated through perceived ade-
quacy of social support.

This theoretical model is illustrated in the path diagram in Figure
11.1, wherein three intercorrelated network structure components (size,
density, and sex homophily) determine perceived support adequacy,
which in turn predicts an individual’s level of depressive symptoms.
The three network structure variables do not directly influence depres-
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Figure 11.1. A Model of the Relationship Among Social Support Network
Structure, Perceived Adequacy of Social Support, and Depressive Symptoms

sion in this model. Of course, all things are not equal, particularly when
considering the various socioeconomic roles and resources allocated by
gender and race. For this reason, we suspect that the adequacy of this
model, or at least specific parameters in it, is likely to differ for men
and women of different races.

TESTING THE EMPIRICAL MODEL

Three multigroup structural equation models are evaluated to test the
theorized mediating effect of satisfaction with support, illustrated in
Figure 11.1, as well as the moderating effects of sex and race. Compari-
son of the goodness-of-fit indexes for the models allows us to evaluate
the appropriateness of each model.

For each group, depressive symptom severity is the ultimate depen-
dent variable. It is predicted by perceived adequacy of social support,
which mediates the effect of network size, density, and sex homophily.
Residual variances in the dependent variables (depressive symptom
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severity and perceived adequacy of social support) not explained by the
model are estimated as well. Network size, density, and sex homophily
are free to correlate. Because all effects of support networks are ex-
pected to be mediated through perceived adequacy of support, their
direct effects on depression are assumed to be zero, except in the final
model, where the appropriateness of this assumption is formally tested.

The first model tested is a “universal” model that constrains all
sex-race subgroups to have equal parameter estimates. It is comparable
to a traditional path analysis for the full sample. Sex and race differ-
ences in the utility of support resources detected in past studies are
assumed to be artifacts of the higher incidence of disadvantage experi-
enced by some groups compared to others. Presumably, neither sex nor
race is responsible for observed differences in depression but, rather,
the higher incidence of disability, poverty, illness, and levels of sup-
port available that covary with sex and race is responsible. Once
income, disability levels, and rural residence are controlled (as was
done through the sampling frame in these data), the universal model
hypothesizes (a) no significant group differences in parameter esti-
mates and (b) equivalent model fit for all groups.

The second, “group-sensitive,” model estimated acknowledges that
sex-race subgroups may have distinct relationships among support and
depression, despite the general applicability of the theoretical model.
Its theoretical basis arises from Haines and Hurlbert (1992) and other
studies that have found that sex or race stratify the utility of support
resources for promoting psychological well-being. Extending these
single modifier studies, our model assumes that the interaction of sex
and race may predict different relationships in the theoretical model of
depression and support. To identify significant group-specific differ-
ences, Lagrange multiplier (LM) tests of equality constraints across
samples estimated in the universal model were examined. Equality
constraints were removed only if they dramatically improved model fit.
A change in y? of 5.0 or more points per degree of freedom (i.e., p <
.01) was considered significant, rather than the usual 3.84 (when df =
1) or less.

Finally, in addition to freeing the parameters identified in the group-
sensitive model, a third “direct-effect” model tested the assumption that
most of the effects of support structure on depressive symptoms are
mediated through satisfaction with support.
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Method

SAMPLE

Assessing the effects of informal support among economically dis-
advantaged Americans precludes the use of patients who present them-
selves for treatment. Barriers to treatment associated with race, age, and
economic disadvantage create a selection bias that would adversely
affect the validity of the study. Therefore, we used data from a survey
designed specifically to sample multiply disadvantaged rural elders
who had arthritis (Cook et al., 1986). To participate in the study, a
person had to (a) reside in a rural region of a predominantly rural
Southern county, (b) have an annual household income at or below
185% of the federally established poverty level, and (c) believe he or
she had arthritis. Because there were no rheumatology clinics in the
county, and because low-income rural residents are less likely to use
specialty medical care, subjects were recruited from lists of names
referred by local general practice physicians, social service and county
extension agents, enrolled study participants, and indigenous lay inter-
viewers. Telephone screening and scheduling excluded the poorest
candidates, whose homes had no telephone. Of those that could be
contacted, roughly equal numbers of black and white Americans of each
sex were used to test for the interaction of sex and race.

Demographics. Of the 219 subjects interviewed, 214 had complete
data on all variables. Normal age distributions associated with arthritis
generated a predominantly older sample with more than two thirds of
the subjects age 60 or older (range = 32 to 88 years); however, mean
age did not differ significantly across subgroups, F(3, 210)=1.59, p =
ns. Years of education, F(3, 210) = 5.04, p < .01; percent married, F(3,
210) = 12.38, p > .01; percent widowed, F(3, 210) = 19.54, p > .01;
household size, F(3, 210) = 4.44, p > .01, and proportion living alone,
F(3, 210) = 5.77, p > .01, varied by sex, race, or their interaction.
Women of both races completed more years of formal education than
did black males and were more likely to live alone, with almost half
(48%) of the white females living alone. Equally as many black males
as white females were currently married, but black males reported
substantially larger average household size than white females (2.4 vs.
1.2, respectively). Black females were dramatically more likely to be
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widowed than any other group, but many black widowed women still
lived with others.

Health Status. Sex-race subgroups had comparable levels of func-
tional limitations, pain severity, and years with arthritis, but white
respondents reported more doctor diagnosed chronic illnt?sses, FQ@3,
210) = 5.75, p < .01, possibly a reflection of greater lifetime use of
medical services than a true difference in health status across races.
Epidemiologic studies would not have anticipated differences in type
of arthritis observed in this sample (Cunningham & Kelsey, 1984). In
particular, the overrepresentation of white males with rheumatoid ar-
thritis (37.9%, compared with 20.4% for white females, 13.2% for black
males, and 16.7% for black females) indicates a marked difference in
health status among groups. Absence of differences in levels of func-
tional disability or pain severity notwithstanding, there may be psycho-
logical or social consequences of having rheumatoid arthritis versus
other type of arthritis that may have contributed to differences observed

here.

PROCEDURE

In-home, 1.5- to 2-hour structured interviews conducted by sex- and
race-matched interviewers provided self-report information on subjects’
health status, functional limitations, social networks, and depressive
symptoms, and authorization for rheumatologists to examine subjects’
health records. For subjects whose medical records did not report the
results of a standard rheumatological examination, arthritis diagnosis
and physician assessment of functional limitations were obtained. dur-
ing examinations conducted by licensed rheumatologists assocn.ated
with the project. Although 12.5% of the respondents were not examined
by a rheumatologist, arthritis diagnosis was confirmed in ?5% of _all
subjects who underwent a diagnostic examination, suggesting a 'hlg_h
correspondence between self- and physician-diagnosis of arthritis in
this sample.

MEASURES

Depressive Symptoms. The dependent variable, depressive symp-
tom severity, was operationalized as the number and severity of self-
reported depressive symptoms experienced during the two weeks pre-
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ceding the interview using items from the Center for Epidemiological
Studies Depression Scale (Radloff, 1977). The summary score used
here is based on a total of the 16 negatively worded symptoms to avoid
educational confounding of positively worded symptoms reported by
Lin (1989). Each item has a possible range of 0 to 3 (0 = not at gll to 3
=5 or more days in the last two weeks); hence, the summary score had
a possible range from 0 to 48; 43 was the highest reported score in these
data. Internal consistency of the unit-weighted CESD16 scale was high
(coefficient alpha = .90).

Perceived Adequacy of Social Support (PASS, ). How satisfied a
person was with her or his network was operationalized as the sum of
responses to questions adapted from the Instrumental-Expressive Sup-
port Scale (Ensel & Woelfel, 1986) and from measures developed by
Strogatz (Strogatz & James, 1986) to detect desire for more support.
Scores for how often a respondent was bothered by not having a close
companion, not seeing enough of people he or she feels close to, not
having enough close friends, and not having someone who shows love
and affection (with values ranging from 1 = all the time to 5 = never)
were added to scores for whether the respondent wished she or he knew
more people to talk with, to have a “good time” with, to depend on for
help with chores or errands, and to rely on for help with arthritis-related
problems (coded 1 = wish I knew more people to 5 = already know
enough people). The unit-weighted sum of these eight items appeared
to be internally consistent (coefficient alpha = .80) and resulted in the
Perceived Adequacy of Support Scale (PASS), which ranged from ex-
tremely dissatisfied (coded as 8) to completely satisfied (coded as 40)
with the quality and quantity of a subject’s social support network.

Measures of Social Support Networks. To identify who subjects
considered to be members of their social networks, the survey included
two network *“name generator” questions: one identifying all the people
close to the respondent (a) who had (or would have) helped during a
hard time or emergency and (b) with whom the respondent discussed
important matters. Network size was operationalized as a count of all
names elicited in response to the two network name generators (ob-
served range = 0 to 13). Network density and sex homophily measured
the structure and sex composition of a respondent’s network. Density,
based on “core” networks (the first five names mentioned in response
to either question; Marsden, 1987), is a measure of how close the
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respondent believes network members are to each other. It is the mean
of tie-level (member 1’s relationship to member 2 and so on) variables
that were coded 0 if the network members were strangers to one another,
1if they were very close, and .5 if they were neither close nor strangers
(range: 0 = completely disconnected to 1 = completely connected). Sex
homophily, the proportion of the respondents’ total support network
members that were the same sex as the respondent, was created by
coding each network member as same sex (1) or opposite sex (0) of
respondent, the sum of which was then divided by total network size
(range: 0 = all opposite sex or no network to 1 = all same sex).

STATISTICAL ANALYSES

Mean Comparisons. Group differences in access to support were
evaluated as mean differences in each of the support measures across
subgroups. Having controlled for socioeconomic and health status vari-
ations usually argued to determine mean psychological well-being and
social support, mean support levels across sex-race subgroups were
compared using analysis of variance.

. Multigroup Structural Equation Models. Covariance matrices of the
/ variables for each group were analyzed using EQS (Bentler, 1992a). In
~ the first model, all parameters were constrained to be equal for all
| groups.

N

.

Results

SEX-RACE DIFFERENCES IN ACCESS TO SUPPORT

Table 11.1 presents means, standard deviations, and Pearson product
moment correlations for each study variable by sex-race subgroup.

Depressive Symptoms (CESD16). Considering the multiple chronic
disadvantages that study respondents were experiencing, it is not sur-
prising that subgroups reported uniformly high levels of depressive
symptoms, F(3, 210) = 1.24, p > .29. Indeed, means for all subgroups
exceeded national averages for the 20-item standard scale, which aver-
age below 10 out of 60 possible points (Radloff, 1977). However, they
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TABLE 11.1 Variable Means and Correlations by Sex-Race Subgroup

Variable Mean sD CESD16 PASS Size Density
White Males

CESD16 11.9 8.4

PASS 33.9 59 -0.26

Size 29 20 -0.01 0.01

Density 0.8 04 0.04 -0.15 0.36

Homophily 03 0.3 0.02 -0.00 0.37 0.52

White Females

CESDI16 15.4 10.2

PASS 30.7 8.3 -0.43

Size 32 1.5 -0.01 0.12

Density 0.8 0.3 0.17 0.19 0.39

Homophily 0.5 0.3 0.24 -0.31 0.29 0.30
Black Males

CESDI16 14.9 129

PASS 30.2 8.1 -0.25

Size 38 23 -0.11 0.06

Density 0.8 0.3 -0.11 0.07 0.45

Homophily 0.4 0.3 0.04 -0.07 0.37 0.02

Black Females

CESD16 13.7 9.8

PASS 314 7.4 -0.42

Size 4.2 23 0.32 -0.02

Density 0.8 04 0.06 0.04 0.45

Homophily 0.6 03 0.03 0.34 0.32 0.32

NOTE: CESDI16 = 16-item Center for Epidemiological Studies Depression Scale; PASS = Perceived
Adequacy of Social Support Scale.

were comparable to means reported in samples of disabled adults
(Turner & Wood, 1985).

Satisfaction With Support (PASS). Most subjects were satisfied with
the number of supporters in their social networks and felt the support
they had was adequate. White males reported higher levels of satisfac-
tion with their support networks, on average, but only marginal sub-
group differences in means were observed, F(3, 210) = 2.62, p = .052.
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Structure of Support Networks. For all sex-race subgroups except
white males, average network size was greater than the 3.01 ties re-
ported in the national probability survey (1985 General Social Survey;
GSS) that used a similar name generator (Marsden, 1987). Bonferroni
tests found the most significant differences between groups were those
between the large networks of black females and small networks of
white males, F(3, 210) = 4.46, p < .005. Networks reported here
generally were more dense than those observed in national samples
(Marsden, 1987), presumably because of the combined effect of rural
residence, poverty, and advanced age, which have each been argued to
constrain the range of social networks (Linn, Husaini, Whitten-Stovall,

& Broomes, 1989). There were no sex-race differences in mean density,

F(3, 210) = .25, p > .86. A comparison of sex-race subgroup means
revealed dramatic differences in sex composition of networks, with
same-sex ties more common for women, especially black women, F(3,
210) = 11.47, p < .001.

THE UNIVERSAL MSEM MODEL

Derivations of Degrees of Freedom. The universal model estimated
the theoretical model depicted in Figure 11.1, assuming that sex-race
groups would not differ in parameter estimates or model fit. The
universal structural equation model is based on four covariance matri-
ces, each with five measured variables, for a total across the samples
of 20 variances and 40 covariances (df = 60). For all three models,
variances are free to differ by group for all variables. In the universal
model, 27 parameters were estimated for all four groups simultane-
ously: three coefficients for the covariances among the exogenous
variables, another three for the direct effects of network variables on
perceived social support, one for direct effects of perceived social
support on depression, plus the 20 variances (five variables x four
groups). Thus the xz for the universal model is based on 33 degrees of
freedom (60 possible parameters minus 27 estimated parameters). The
group-specific model consumes an additional 5 degrees of freedom to
estimate differences implied by LM tests (df = 28). Finally, the model
evaluating the appropriateness of the mediation model uses another 12
degrees of freedom (df = 16).

Table 11.2 presents standardized coefficients and goodness-of-fit
tests estimated in the fully constrained universal model and in the
group-sensitive multisample structural equation models tested here.
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TABLE 11.2 Standardized Coefficients for Two Models of Social Network
Characteristics (Size, Density, and Sex Homophily), Perceived
Adequacy of Social Support (PASS), and Depressive Symptom
Severity (CESD16)

Universal Model Estimates  Group-Sensitive Model Estimates
White White Black Black White White Black Black

Parameters Males Females Males Females Males Females Males Females
CESD16-PASS =33 -39% -29% -38* -32* _39* _30* -.38*
PASS-Size .03 .02 .03 .03 .04 02 .03 .03
PASS-Density .00 .00 .00 .00 -.11 33 07 -.08
PASS-Homophily -00 -00 -00 -.00 04 -44* -7 36*
Size-Density 39 47 37+ 37+ 40*  48* 41* 38*
Size-Homophily 37+ 41 26 27* J38* 42*  30* 27+
Density-Homophily 36 33 29* 31+ 45 41* -04 37*
CESD16 Equation Error .94 .92 95 93 .95 .92 95 .93

PASS Equation Error  1.00  1.00 1.00 1.00 1.00 .90 1.00 94

Goodness-of-Fit Indexes

Model chi-square xz =51.94,df =33, p=.02 12 = 24.60, df = 28, p = .66
Nonnormed fit index .79 1.04
Comparative fit index .83 1.00

Asterisks indicate parameters that are different from 0 at the .05 level
of statistical significance. Group differences in standardized parameter
estimates reflect group-specific differences in variances for the variable.
Not surprisingly, the fully constrained model produced a less than
desirable fit to the observed data. The nonnormed fit index (= .79) was
unimpressive, as was the comparative fit index (= .83). From an infer-
ential perspective, the fit between the observed and modeled covariance
matrix was reasonably good, x2(33, N=214) =51.94, p = .02, although
it was statistically significant at less than the .05 level, which indicates
the fit may be improved by freeing some of the equality constraints.

THE GROUP-SENSITIVE MODEL

LM tests indicated that the removal of five equality constraints
would significantly improve the fit of the model. The LM tests indicated
that releasing the requirement that network density and sex homophily
be associated at the same level for the white and black males would
improve the fit of the model, Ax%(1, N = 214) = 8.06, p = .005. Evidence
of this inequality is reflected in the correlations between sex homophily
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and network density (see Table 11.1) for these two groups. The r for
density-homophily was .51 for white males but only .02 for black males;
correlations for women of both races were nearly identical, although
somewhat lower than for white males. These differences suggest that
the tendency for dense networks to comprise members of the same sex
does not hold for black males but does for all other subgroups, particu-
larly white males.

Allowing group-specific estimates for the relationship between sex
homophily and perceived social support also should significantly im-
prove the fit of the model. Specifically, men of both races appeared to
be more similar in the effects of sex ratio on satisfaction with support
than were women; however, white and black women had opposite
relationships between satisfaction with support and the sex composition
of their networks. This is reflected in the correlation (Table 11.1)
between PASS and sex homophily; for white women, the correlation is
substantial and negative (r=—.31), whereas black women have a strong
positive association between same-sex networks and satisfaction with
support (r = .34). The LM test indicated that allowing groups to have
unique estimates of the degree of association between sex homophily
and satisfaction would reduce the %2 by at least 10.66 (df = 3, p < .005).

Finally, race and sex also interacted to predict the relationship
between network density and perceived social support. Dense networks
were associated with low perceived social support in the white male
sample but with high perceived social support among white females;
however, network density was not a strong predictor of satisfaction with
support for either black men or women in this sample. LM test results
indicated that releasing the constraint that white females be equal to
other groups would reduce the 2 by 5.46 (df = 1, p = .019).

The appropriateness of the implied group-specific model was con-
firmed by the expected impact both on parameter estimates and on
model fit. The following constraints were removed to capture signifi-
cant group-specific differences in the universal model:

1. White females were allowed a unique parameter estimate for the relation-
ship between network density and perceived support adequacy (1 df).

2. All groups were allowed unique estimates for the association between sex
composition of support networks and satisfaction with support (3 df).

3. Black males were allowed a unique parameter estimate for the association
of density and sex composition (1 df).
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The goodness-of-fit indexes for the group-specific model support the
removal of these equality constraints. All three indexes indicate that the
group-specific model provides an excellent fit to the observed data with
little significant covariance left to be explained. Removing these five
equality constraints significantly improved overall model fit, Ax*(5,
N = 214) = 27.34, p < .001—a significantly better fit between the
observed and modeled covariance matrices for all subgroups. The value
of the nonnormed fit index fell outside its usual range because of
sampling fluctuation as a result of the small sample on which the
analyses are based. The comparative fit index, which is more reliable
in smaller samples, indicates an excellent fit of these data with the
group-specific model.

From the perspective of the fit indexes, the group-specific model in
which the effects of three network variables are mediated through
perceived social support is consistent with the data. Satisfaction with
support was a strong predictor of lower levels of depressive symptoms
for all four groups. However, network characteristics predicted satis-
faction only for women. This is reflected in individual parameter esti-
mates as well as in larger R? for the equation predicting satisfaction.

Relationships Among Network Characteristics. Correlations among
the three network variables were positive and significant, with the
exception of network density and sex homophily in the black male
sample (r = —.04). The contrast among the groups on this specific
relationship was most striking when black males were compared to
white males (r = .45).

Network Characteristics as Predictors of Satisfaction With Support.
Direct effects of network variables on perceived adequacy of social
support were more distinctive than were relationships among network
characteristics. None of the parameter estimates of the direct effects of
structure on satisfaction for males of either race was significantly
different from zero. In contrast, dense networks and networks with
opposite sex network members predicted satisfaction with support in
the white female sample. The relationship between sex-composition of
network and satisfaction was reversed in the black female sample;
female-dominated networks were associated with greater satisfaction
with support for black women.
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Satisfaction With Support and Depressive Symptom Severity. Per-
ceived social support predicted depression for all groups, although the
estimate of this relationship varied by almost .10.

DIRECT EFFECTS OF NETWORKS
ON DEPRESSIVE SYMPTOMS

To evaluate the assumption that direct effects of support structure on
depressive symptoms are unimportant, a final model was tested (pa-
rameters not reported). This direct-plus-mediated-effect model freed
each group to have unique estimates of the direct effects of network
structure variables on depressive symptoms beyond those captured by
the mediating effects through perceived adequacy of support. Twelve
new parameters were tested for their ability to improve the fit to the
observed data.

Out of the twelve new parameters, z-tests indicated that only two
were statistically different from zero. For white females, there was a
positive relationship between network density and depression that was
significant (b = .27, z = 1.98, p < .05), whereas for black females the
direct relationship between network size and depression was statisti-
cally different from zero (b = .34, z = 2.34, p < .05). For white women,
the more dense their social network, the more depressive symptoms
they reported; for black women, the larger their social network, the
more depressive symptoms they experienced, irrespective of their per-
ceived social support. Although removing the constraints that the direct
effects were zero reduced the %2 associated with the initial model from
24.60to 13.51, the loss of 12 degrees of freedom made the fit no longer
statistically significant (p = .009). Moreover, the Ay? with 12 degrees
of freedom did not indicate a significant statistical improvement in fit
by removing the zero constraints on the direct effects.

Discussion

When taken together, differences and similarities observed in the
group-sensitive model recommend it for understanding the relationship
between perceived adequacy of support and depression, as well as in
the ability of social network characteristics to predict satisfaction with
support. Moreover, MSEM made it possible to evaluate the adequacy
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of a theoretically derived model as well as to test the generalizability
of parameter estimates across major social groups. Substantively, this
multigroup structural equation model suggests that different causal
mechanisms may link social support networks with perceived adequacy
of support. These data also demonstrate a universal linkage between
perceived social support and severity of depressive symptoms in this
chronically stressed sample of low-income rural elders who have
arthritis.

Palinkas et al. (1990), in summarizing their findings, argued that the
structure of support networks

is influenced by age, physical disability, and mortality of network mem-
bers, and by culturally-determined rules that define the individuals and
institutions available for support. However, these rules appear to differ for
men and women,. (p. 441)

Data presented here support and extend these conclusions by showing
that race interacts with sex to define the availability and benefit asso-
ciated with informal supportive relationships. For all groups, satis-
faction with support was associated with lower depressive symptom
severity scores. Beyond this, race differences within gender and gender
differences within race were as common as the larger effects of gender
or race on both access to support and its utility for promoting or
protecting psychological well-being. It may be that some groups must
rely more heavily on ties that are stressful as well as supportive. If so,
the hypothesized benefits of network size, density, and sex composition
would be attenuated for these groups relative to other groups.

These findings must be replicated in other samples before they are
used to direct policy decisions. The sampling framework for this study
was limited and nonrepresentative. In addition, the snowball technique
used to generate the sample was not a random process and may over-
sample unusual subgroups. Generalization of these results beyond
sex-race comparisons of low-income rural Southern elders who have
arthritis is inappropriate, unless the results are first replicated on more
representative samples. In addition, the small samples studied, coupled
with the use of post-hoc inductive model fitting techniques, and the
large number of parameters estimated in these models are known
contributors to increased likelihood of Type I errors. To ensure that
these results are not serendipitous, they must be replicated on inde-
pendent samples.
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In conclusion, past research anticipated that the subjects in this
sample would be particularly vulnerable to psychological distress if
their support systems were inadequate. However, because physical
health status, functional limitations, income, and age were controlled
through sampling, the usual explanation that race or sex differences are
artifacts of disadvantages in health or economic status is untenable
here. Observed differences in the amount of available support, as well
as in the effectiveness of support for protecting or promoting psycho-
logical well-being, emphasize the need for a more sophisticated theo-
retical and methodological appreciation of the impact of sex and race
on social worlds. In particular, we need theories integrating social
support and social stratification that recognize structural constraints on
well-being that sex and race create, and how these operate throughout
the life course. Future theories need to address sex and race inde-
pendently and interdependently as determinants of psychologically
protective social environments, so that formal support programs and
policies can be developed to meet the needs of chronically stressed
elders.

Multigroup structural equation models serve as powerful tools for
advancing theory of the roles of sex and race in the psychological
effects of social relationships. Rather than accepting a “one-size-fits-all”
theory or relying on cumbersome and often uninterpretable complex
interaction models, MSEM provides a direct method for simultaneous
testing and evaluating of hypotheses about group effects. MSEM also
can be used to estimate group-specific measurement error in latent
structure equations, including those based on categorical observed
variables. The diversity of MSEM estimation techniques available
invites more use of these models for theory building and testing in
social and behavioral research.

1 Modeling the Relation of
Personality Variables to
Symptom Complaints

The Unique Role of
Negative Affectivity

JAY G. HULL
JUDITH C. TEDLIE

DANIEL A. LEHN

The last decade has witnessed a proliferation of personality constructs
theorized to be relevant to health and health behaviors. These include
negative affectivity (Watson & Pennebaker, 1989), self-esteem (An-
tonucci, Peggs, & Marquez, 1989), social anxiety (Snyder, Smith,
Augelli, & Ingram, 1985), sense of challenge (Hull, Petterson, Kumar,
& McCollum, 1993), optimism (Scheier & Carver, 1985), cynical hos-
tility (Dembroski & Costa, 1987), hardiness (e.g., Hull, Van Treuren,
& Virnelli, 1987; Kobasa, 1979), perceived self-efficacy (Bandura,
O’Leary, Taylor, Gauthier, & Gossard, 1987), attributional style (Pe-
terson, Seligman, & Vaillant, 1987), and Type A coronary-prone be-
havior pattern (Booth-Kewley & Friedman, 1987). When confronted
with such a list, the question naturally arises: To what extent are all of

AUTHORS’ NOTE: Portions of this chapter were presented at the annual meeting of the

American Psychological Society, Washington, DC, June, 1991.
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these variables related to health because they are tapping into the same
general construct? This question involves two separate issues: (a) is
there a general construct that underlies many health relevant personality
traits and (b) is it the general trait rather than unique aspects of the
individual traits that is related to health outcomes?

General Personality Factors and
Their Relation to Health

Recently, considerable progress has been made in specifying a gen-
eral model of the structure of personality traits. According to this
model, personality traits share a five-factor structure (e.g., John, 1990).
Typical labels for these factors are neuroticism, extraversion, consci-
entiousness, agreeableness, and culture. If personality traits have a
general structure, then which dimensions of that structure are most
strongly related to health behaviors and outcomes? The answer most
likely depends on the health outcome of interest. For the present
investigation, the domain of principal inferest is symptom complaints.
Many have suggested that symptom complaints are related to the gen-
eral factor of neuroticism. This argument has been made both in general
reviews of the literature (e.g., Costa & McCrae, 1987; Watson &
Pennebaker, 1989) and in research on alternative explanations for the
relation of specific personality characteristics to symptom complaints
(e.g., as an alternative to hardiness, Funk & Houston, 1987; as an
alternative to optimism, Smith, Pope, Rhodewalt, & Poulton, 1989).
Others have argued that illnesses are related to variables that are easily
recognized as components of neuroticism (e.g., anxiety and depression).

General Factors or Unique Traits?

If one adopts the view that there is a general factor underlying the
personality characteristics related to symptom complaints, then one
needs to test whether or not a general factor does underlie such traits
and whether it is this general factor rather than the unique traits that is
responsible for the association of the individual traits with health
complaints.
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TESTING FOR THE PRESENCE
OF A GENERAL FACTOR

Using a confirmatory factor-analytic approach, it is possible to
compare different models of personality traits in order to address the
question of whether a single factor is adequate to capture the interrela-
tions of a collection of personality characteristics. The models of
greatest interest are (a) a first-order one-factor model, (b) a higher-order
factor model with one second-order factor, and (c) a group factor model.

According to a first-order one-factor model, all of the items from all
of the various trait scales are measuring the same thing. More formally,
the reason that items from a particular scale are highly correlated with
each other (interitem reliability) and the various scales are highly
correlated with each other is that all of these measures assess the same
construct (e.g., neuroticism).

In contrast to the first-order one-factor model, according to a higher-
order factor model the individual scales are associated with discrim-
inable dimensions of a higher-order construct. More formally, the
reason that items from a particular scale are highly correlated with each
other is that they all measure the same, somewhat specific construct.
The reason that these specific constructs correlate with each other is
that they are all related to a single, general construct. Despite sharing
a significant amount of variance with this general construct, the specific
constructs retain a significant amount of variance that is unique (un-
shared with the general construct).

Finally, according to a group factor model, individual scales are
associated with discriminable dimensions that are linked in compli-
cated, although theoretically sensible, ways. As a consequence of this
complexity, considerable variation exists in the degree to which the
specific constructs are related. A single, general construct is inadequate
to account for this variation.

Each of these models can be subjected to an explicit statistical test
using structural equation modeling techniques (e.g., Bollen, 1989b).
Such models are typically evaluated in three ways: (a) using overall fit
statistics to judge the general adequacy of a particular model, (b) using
component fit statistics to judge the adequacy of individual aspects of
a particular model, and (c) using overall fit statistics and rules of
parsimony to compare alternative models to each other (see Chapters 2
and 5). An acceptable model should show statistically significant com-
ponents and good overall fit according to a variety of statistics. Direct
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comparison should reveal the best model among those hypothesized.
Among models that fit equally well, preference is given to the most
parsimonious (see Chapter 7). In structural equation modeling, parsi-
mony is judged according to the number of parameters that must be
estimated (e.g., Anderson & Gerbing, 1988). In general, first-order
factor models are more parsimonious than higher-order factor models,
which are in turn more parsimonious than group factor models. If, in
fact, a general factor underlies a variety of personality characteristics,
then a first-order or higher-order factor model should fit the data as well
as a group factor model and should be preferred on the basis of parsi-
mony. Even in cases in which a group factor model fits better than a
first-order or higher-order factor model, the latter models might be
preferred when a small improvement in fit is gained at the cost of a
considerable loss in parsimony.

TESTING FOR THE EFFECTS OF
GENERAL FACTORS AND UNIQUE TRAITS

Given evidence that a general factor underlies a variety of health-
relevant personality characteristics, it is necessary to test whether the
general factor or the unique aspects of individual traits is responsible
for an association with health outcomes. Let us take the Watson and
Pennebaker (1989) proposition that a variety of personality traits exist
that are all related to symptom complaints because they are indicators
of neuroticism. This hypothesis is represented in Figure 12.1 as Model
1. In Model 1, each trait (t) is responsible for variation in responses to
a number of questionnaire items (i). Variance in the items that is not
due to the trait is considered to be a consequence of measurement error
(e). At the same time, each trait is associated with the other traits in the
model because of their common association with the general latent
variable of neuroticism (N). Although each trait is related to N, each
also retains some unique variance (u). This unique variance can be
thought of as variance in the trait that is unrelated to N but is not simply
measurement error. In Model 1, it is the general factor N (rather than
the unique aspects of the individual traits) that is responsible for
variation in symptom complaints (SC).

Although Model 1 represents our initial theory, let us imagine that
we are wrong: Trait t, is related to symptom complaints because of
something unique about it. This can be represented by Model 2 (indi-
vidual items and errors are not represented in subsequent models for
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Figure 12.1. Five Models of the Relations Among Personality Traits, General
Neuroticism, and Symptom Complaints

the sake of simplicity). In this case, the uniqueness (u) of trait t, is
related to the uniqueness (u) in symptom complaints (i.e., variance in
symptom complaints that is not explained by N). Two additional models
are statistical (although not conceptual) equivalents to Model 2 and
deserve consideration. Model 2’ holds that trait t, and symptom com-
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plaints are both indicators of their own factor (N2) that is correlated
with neuroticism (N1). Model 2” holds that N and trait t, are inde-
pendently responsible for variance in symptom complaints.

Finally, let us consider the case in which it is trait t, and not the
general factor N that is responsible for symptom complaints. This
possibility is represented in Model 3. Model 3 is a slightly simplified
version of Model 2” in which the direct path between N and symptom
complaints has been dropped. According to this model, trait t, can be
thought of as mediating the association between neuroticism and symp-
tom complaints. Thus t, is either the aspect of neuroticism responsible
for symptom complaints or it is a separate construct that is affected by
neuroticism and in turn affects symptom complaints.

Our own preliminary research suggested that, consistent with the
reasoning of Watson and Clark (1984) and Watson and Pennebaker
(1989), many traits are related to symptom complaints because of their
association with a general factor that we labeled neuroticism. However,
one particular trait appeared to play a unique role in predicting symptom
complaints. Thus negative affectivity, or a general tendency to report
negative emotions, was more highly related to symptom complaints
than its#ssociation with general neuroticism would suggest. We there-
fore conducted the three studies reported in this chapter to explore the
generality of this effect. In each of these studies, we tested the five
models illustrated in Figure 12.1. To foreshadow our findings: In Model
1 the general factor N was always related to symptom complaints
despite the fact that the particular personality traits used as indicators
of N varied widely across the three studies. Furthermore, Model 2 with
negative affectivity playing the role of trait t, always fit better than
Model 1. Although Models 2, 2’, and 2” provided equivalent fits, Model
2’ showed evidence of misspecification and in Model 2” the general
factor N was never associated with symptom complaints when a direct
relation was postulated between negative affectivity and symptom
complaints. Given the latter finding, we were always led to Model 3 as
a more parsimonious account of the data.

Studies 1-3

Although our data were collected as parts of three separate studies,
each study differing from the other in terms of measurement instru-
ments, we report them simultaneously for the sake of brevity and
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clarity. Studies 1-3 differed in terms of the particular personality traits
that were measured. In each case, traits were selected that other re-
searchers have argued (a) are associated with neuroticism and (b) pre-
dict psychological and physical health. In our view, Watson and Clark
(1984) have made the strongest argument that a variety of apparently
diverse personality scales are in fact measures of the same stable and
pervasive trait of neuroticism (e.g., “a number of personality mea-
sures . . . , despite dissimilar names, nevertheless intercorrelate so
highly that they must be considered measures of the same construct,”
p. 465). In Study 1, four constructs that Watson and Clark (1984)
identified as components of this trait were investigated: negative affec-
tivity, self-esteem, sense of challenge/threat, and social anxiety. In
Study 2, social anxiety and self-esteem were replaced as indicators of
neuroticism with another variable discussed by Watson and Clark
(1984): optimism-pessimism. Study 3 included all five measures of
neuroticism included in Studies 1 and 2, plus the six neuroticism
subfacets from the NEO Personality Inventory (Costa & McCrae, 1985).

Watson and Pennebaker (1989) argued that the latent variable under-
lying neuroticism traits is strongly associated with symptom com-
plaints. As evidence, they cite numerous studies that have found an
association between symptom complaints and measures they identify
as indicators of neuroticism. These arguments were the basis of Model
1 in the present studies. According to this model, all of the individual
traits that we have chosen for the present studies are related to symptom
complaints only because of their association with a single higher-order
factor.

Method

SUBJECTS

Subjects in Study 1 were 177 undergraduates. Subjects in Study 2
were 187 undergraduates. Subjects in Study 3 were 168 undergraduates.
All subjects participated in one and only one of the three studies. In
each case, subjects participated in return for extra credit in an introduc-
tory psychology course. All subjects completed a multiple question-
naire booklet that included the instruments used in these studies. In each
study, some subjects failed to complete all of the items from all of the
scales and were excluded from further analysis (11 subjects in Study 1,
16 in Study 2, and 22 in Study 3).
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INSTRUMENTS

Study 1. Subjects completed the trait version of the Positive and
Negative Affect Schedule (PANAS; Watson, Clark, & Tellegen, 1988)
as a measure of dispositional negative affect (Study 1 negative affect
subscale o = .82), the Rosenberg Self-Esteem scale (RSE; Rosenberg,
1979) as a measure of global self-esteem (Study 1 o = .88), the Self-
Consciousness Scale (SCS; Fenigstein, Scheier, & Buss, 1975) as a

measure of dispositional social anxiety (Study 1 & =.72), and the Life -

Situations Scale (LSS; Hull et al., 1993) as a measure of dispositional
challenge (Study 1 o = .86). Finally, subjects completed the Cohen-
Hoberman Inventory of Physical Symptoms (CHIPS; Cohen & Hober-
man, 1983) as a measure of symptom complaints (Study 1 o = .88).

Study 2. Subjects completed the Life Orientation Test (LOT; Scheier
& Carver, 1985) as a measure of dispositional optimism (Study 2 o =
.82). As in Study 1, negative affectivity was assessed using the negative
emotion traits from the PANAS (Watson et al., 1988; Study 2 o = .83),
challenge was assessed using the LSS (Hull et al., 1993; Study 2 a. =
.84), and symptoms were assessed using the CHIPS (Cohen & Hober-
man, 1983; Study 2 a = .81).

Study 3. Subjects completed the NEO-PI (Costa & McCrae, 1985)
as a measure of the five major factors of personality. The neuroticism
factor is itself divided into six subfacets: self-consciousness, impulsiv-
ity, anxiety, depression, hostility, and vulnerability. In the present
study, these subfacets were each treated as indicators of neuroticism
and were associated with acceptable reliability coefficients (self-con-
sciousness, o = .74; impulsivity, o = .71; anxiety, a.= .87; depression,
o = .83; hostility, o = .77; vulnerability, o = .79). As in Studies 1 and
2, negative affectivity was assessed using the PANAS (Watson et al.,
1988) as a measure of dispositional negative affect, challenge was
assessed using the LSS (Hull et al., 1993), and symptoms were assessed
using the CHIPS (Cohen & Hoberman, 1983). As in Study 1, social
anxiety was assessed using the SCS (Fenigstein et al., 1975) and
self-esteem was assessed using the RSE (Rosenberg, 1979). As in Study
2, optimism was assessed using the LOT (Scheier & Carver, 1985).
Reliabilities of all scales were similar to those observed in the previous
studies.
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Results

The first step in analyzing the results involved parcelling each
personality trait scale by assigning one third of the items to each of three
indicators. Parcelling has multiple advantages over using individual
items as indicators (e.g., Rindskopf & Rose, 1988). Of key concern for
the present investigation, parcelling allows for the tripartite separation
of scale variance into (a) measurement error, (b) variance resulting from
the higher-order latent variable of neuroticism, and (c) uniqueness, or
variance associated with the individual scale that is not attributed to
measurement error or to the higher-order latent variable. Without par-
celling, estimates of (b) are attenuated by error, and (a) cannot be
distinguished from (c). Finally, specifying three indicators per latent
variable is widely recommended as a means of avoiding problems with
identification, negative variance estimates, and nonconvergence (e.g.,
Bollen, 1989b).

PERSONALITY FACTOR MODELS

Before examining the relation of the selected personality traits to
symptom complaints, we tested a variety of measurement models of the
personality traits themselves. As outlined in the introduction, we spe-
cifically compared (a) a one-factor model in which the parcels for all
of the individual traits all loaded on a single factor, (b) a higher-order
factor model in which parcels for the individual traits loaded on specific
trait factors and the latter all loaded on a single higher-order factor, and
(c) a group factor model in which parcels for the individual traits loaded
on specific trait factors, but the latter correlated in complex ways that
were not adequately captured by a single higher-order factor structure.
Overall fit was evaluated using xz, the Tucker and Lewis (1973) index
(TLI), and Bentler’s (1990) comparative fit index (CFI). The signifi-
cance of individual model components was estimated using critical
ratios.

One-Factor Model. In Study 1, the one-factor model was associated
with 54 degrees of freedom (78 observed variances and covariances, 24
estimated parameters); in Study 2, the one-factor model was associated
with 27 degrees of freedom (45 observed variances and covariances, 18
estimated parameters); in Study 3, the one-factor model was associated
with 495 degrees of freedom (561 observed variances and covariances,
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66 estimated parameters). According to overall fit criteria, the one-
factor model resulted in a poor fit to the data in all three studies: Study
1, x2(54, N = 166) = 341.89, p < .001, TLI = .64, CFI = .71; Study 2,
%227, N=171)=254.91,p <.001, TLI=.63, CFI = .72; Study 3, *(495,
N = 146) = 1418.40, p < .001, TLI = .62, CFI = .64 . In each case the
model resulted in statistically significant ill fit and accounted for an
unacceptably low percentage of the observed covariation.

Second-Order Factor Model. According to overall fit criteria, the
second-order factor model resulted in a reasonable fit of the data in
Study 1, x%(50, N = 166) = 99.56, p < .01, TLI = .93, CFI = .95, and
Study 2, x*(24, N = 171) = 33.00, p = .10, TLI = .98, CFI = .99. The
data provided a more modest fit of the substantially larger model in
Study 3, x%(484, N = 146) = 835.49, p < .001, TLI = .85, CFI = .87. The
factor loadings of the individual parcels on the first-order factors were
all sizable and statistically significant. The factor loadings of the
first-order latent variables on the second-order latent variable were also
all sizable and statistically significant. Furthermore, despite their asso-
ciation with this second-order factor, each of the first-order factors also
retained a significant amount of variance that was unique.

Group Factor Model. According to overall fit criteria, the group
factor model resulted in a reasonable fit of the data in all three studies:
Study 1, x(48, N = 166) = 98.56, p < .01, TLI = .93, CFI = .95; Study
2,%%(24,N=171)=33.00, p = .10, TLI = .98, CFI = .99; Study 3, x%(440,
N = 146) = 637.36, p < .001, TLI = .91, CFI = .92. Given the nesting
hierarchy, the group factor model can fit no worse than the second-order
factor model, although it can fit significantly better than the latter
(Rindskopf & Rose, 1988). The individual first-order factor loadings
were all statistically significant and their standardized values were all
very similar to those that appeared in the second-order factor model. In
addition, all of the first-order latent variables were significantly inter-
correlated in Studies 1 and 2 and 47 out of 55 of these correlations were
significant in Study 3.

Model Comparison. Given that these models are nested versions of
each other, they can be directly compared. According to these tests, the
one-factor model fits significantly worse than the second-order factor
model in all three studies: Study 1, Ax2(4, N =166) =242.33, p <.001;
Study 2, Ax*(3, N = 171) = 221.91, p <.001; Study 3, Ax*(11, N = 146)

Personality Variables and Symptom Complaints 2217

= 582.91, p < .001. Given the number of variables used in Study 2, the
second-order and group factor models cannot be directly compared in
that sample. In Study 1, however, the second-order factor model is not
significantly different from the group factor model, difference x%(2, N =
166) = 1.00, n.s. Therefore, given the logic of parsimony the second-
order factor model constitutes the preferred solution in Study 1.

In Study 3, the group factor model fit significantly better than the
second-order factor model, difference x%(44, N = 146) = 198.13, p <
.001. Modification statistics indicated that this was in large part due to
the strong relation between particular personality traits assessed by
individual scales and particular subfacets of the NEO-PI. In nearly all
cases, these relations were consistent with the logic of convergent
validity. Thus, by relating all scales and NEO-subfacets to a single
general factor, the original model underestimated relations between
particular scales and those NEO-subfacets with which they were closely
related conceptually (e.g., self-consciousness and social anxiety, opti-
mism-pessimism and depression, challenge and anxiety). At the same
time, the majority of these scales and NEO-subfacets were strongly
related to the higher-order factor postulated in the second-order factor
model (8 of 11 loaded in excess of .75). Because of the a priori status
of the second-order factor model, its degree of parsimony and preferred
status in Study 1, and its sizable factor loadings, it was retained for the
purpose of testing relations among personality traits and symptom
complaints.

On the basis of these results, it makes sense to think in terms of
discriminable personality traits that share a simple underlying structure
while retaining their own unique characteristics. The question then
becomes, is this general factor responsible for variation in symptom
complaints that is observed to be associated with these personality traits
or is this variation due to unique characteristics of particular traits?

PREDICTING SYMPTOM COMPLAINTS

The relation of these personality characteristics to symptom com-
plaints was modeled within the framework provided by Model 1 illus-
trated in Figure 12.1. The measure of symptom complaints was parcelled
by assigning one third of the items to each of three indicators. An initial
model was then specified in which the latent variable of symptom
complaints was only related to the second-order factor of neuroticism.
In Study 1, Model 1 was associated with 85 degrees of freedom (120
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observed variances and covariances, 35 estimated parameters); in Study
2, Model 1 was associated with 50 degrees of freedom (78 observed
variances and covariances, 28 estimated parameters); in Study 3, Model
1 was associated with 582 degrees of freedom (666 observed variances
and covariances, 84 estimated parameters).

According to overall fit criteria, Model 1 resulted in a reasonable fit
to the data in Study 1, x*(85, N = 166) = 149.88, p < .001, TLI = .94,
CFI = .95, and Study 2, x%(50, N = 171) = 75.03, p = .01, TLI = .97,
CFI = .97. Study 3 involved a considerably larger model and resulted
in a slightly poorer fit for Model 1, 12(582, N=146)=967.12, p < .001,
TLI = .85, CFI = .86.

As expected, in all three studies, component fit criteria indicated that
the second-order variable of neuroticism was significantly related to
symptom complaints, standardized path Study 1 = .35, p <.001; Study
2=.39, p < .001; Study 3 = .43, p < .001. In addition, in each study,
modification statistics suggested that this Model 1 could be improved
by allowing the residual variance in the latent variable of negative
affectivity to correlate with residual variance in symptom complaints.
Multivariate modification statistics indicated that in all three studies
this was the only personality trait residual related to the symptom
complaint residual. As noted earlier, this indicates that the second-order
factor model is inadequate to account fully for the variance shared by

. negative affectivity and symptom complaints. At the same time, it is

important to note that the second-order factor model was adequate to
account fully for the variance shared by symptom complaints and all of
the other personality traits in all three studies.

Model 2 was identical to Model 1 except that it allowed residual
variance in negative affectivity to correlate with residual variance in
symptom complaints (see Figure 12.1). In each study, the result was a
significant improvement in fit, Study 1, Ax*(1, N = 166) = 8.03, p < .01;
Study 2, Ax%(1, N = 171) = 7.46, p < .01; Study 3, Ax*(1, N = 146) =
433, p < .05. The interpretation of the altered model is as follows:
Although it is useful to think of many traits as redundant for the sake
of predicting symptom complaints (and these traits vary widely across
Studies 1-3), this is not true of negative affectivity. Although negative
affectivity is related to the general variable of neuroticism, it is more
strongly related to symptom complaints than would be expected given
its association with neuroticism.

We considered two additional ways to model the unique relation of
negative affectivity and symptom complaints within the framework of
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the higher-order factor model of neuroticism. These two models are
identical in overall fit to Model 2 and are simply alternative ways of
conceiving the observed relations (see Breckler, 1990; Chapter 2, this
volume). Model 2’ allowed the personality traits other than negative
affectivity to load on one second-order factor (neuroticism 1) and
negative affectivity and symptom complaints to load on their own
separate second-order factor (neuroticism 2). The two second-order
factors were then allowed to correlate. Although this model resulted in
the same %2 as Model 2, it also yielded a negative residual variance
estimate for negative affectivity in both Study 1 and Study 2. Such
results may indicate that the model is misspecified (e.g., Bollen, 1989b).

Model 2” allowed all personality traits to load on the second-order
factor of neuroticism; however, both neuroticism and negative affectiv-
ity were used as independent predictors of symptom complaints. Again,
this model yields a x? identical to that observed for Models 2 and 2.
However, when modeled in this way, the independent association of
neuroticism and symptom complaints is nonsignificant in all three
studies (standardized path Study 1 = —20, n.s.; Study 2 = -.29, n.s.;
Study 3 = .15, n.s.), whereas the path associating negative affectivity
and symptom complaints is significant in all three studies (standardized
path Study 1 = .58, p < .01; Study 2 = .64, p < .01; Study 3 =.35,p <
.05). Dropping the nonsignificant neuroticism-symptom complaints
path results in Model 3. In this model, negative affectivity was signifi-
cantly related to symptom complaints in all three studies (standardized
path Study 1 = .40, p <.001; Study 2 = .40, p <.001; Study 3 = 48,p <
.001). Because Model 3 is a nested version of Model 2”, it can be
directly compared to it. The resulting %2 is not significant in any of the
three studies, Study 1, Ax?(1, N = 166) = .94, n.s.; Study 2, Ax?(1, N =
171) = 1.44, n.s.; Study 3, Ax%(1, N = 146) = .84, n.s. Because Model 3
estimates one less parameter, it may be preferred on the basis of
parsimony. Model 3 for Study 3 is shown in Figure 12.2.

Discussion

On the basis of these studies, it would appear that (a) a variety of
personality traits that have been argued to relate to physical and psy-
chological health might usefully be considered to share a common
association with an underlying general factor of neuroticism; (b) de-
spite their association with neuroticism, each of these traits retains a


R
Rectangle

R
Rectangle


230 STRUCTURAL EQUATION MODELING

(&

9
=
-

Challenge

0’§‘

3
9
~

.

Social

Anxiety 75¢

A8*

g
bl
K-l

r

-3
w
.

[ %Y
*

97%

(53
*

3

OROROIROLOL0)

Figure 12.2. Study 3, Model 3: Negative Affectivity as a Mediator Between
General Neuroticism and Symptom Complaints
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substantial amount of unique variance; and (c) in most cases these
personality traits are related to symptom complaints because of their
association with general neuroticism rather than because of their unique
characteristics; however, (d) negative affectivity is more strongly re-
lated to symptom complaints than can be explained by its association
with the general factor of neuroticism.

Given that negative affectivity would appear to be ill-conceived as
simply an indicator of general neuroticism, we considered a variety of
ways to model its association with symptom complaints and the remain-
ing personality characteristics. Model 3 was offered as providing the
most parsimonious account. This model has a rather straightforward
interpretation: A variety of different personality traits are to some
extent overlapping constructs that share a common source of variance
with a general factor of neuroticism. These variables are related to each
other and to negative affectivity because of their shared association
with neuroticism rather than because of anything unique about them as
personality traits. Negative affectivity in turn serves to mediate the
influence of general neuroticism on symptom complaints.

THE UNIQUE QUALITIES OF NEGATIVE AFFECTIVITY

The results of these studies naturally lead one to ask: What is unique
about negative affectivity? Obviously, the answer to this question goes
beyond the data at hand. Nevertheless, in comparing personality trait
measures used in the present studies, it became apparent to us that they
vary in their assessment of subjects’ dispositional tendencies to think,
feel, and/or act in particular ways. Specifically, some scales are domi-
nated by questions regarding thoughts (e.g., the Rosenberg Self-Esteem
Scale, the Life Orientation Test of optimism-pessimism) and others are
dominated by questions regarding acts (e.g., the NEO impulsivity
subfacet), but most contain a mix of questions regarding thoughts and
feelings (e.g., the NEO depression subfacet, the NEO anxiety subfacet,
the Life Situation Scale of challenge). In contrast to the other scales,
the negative affectivity subscale of the PANAS exclusively asks about
subjects’ feelings or emotions. Thus one way to view the present results
is that general neuroticism is composed of a variety of thoughts, feel-
ings, and behaviors; however, the feeling component (best assessed by
the PANAS measure of negative affectivity) is responsible for symptom
complaints. From this perspective, thoughts and behaviors give rise to
symptom complaints only to the extent that they are associated with
negative emotionality.
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Why should negative emotions be especially likely to yield symptom
complaints? Salovey (1991) has offered several distinct reasons for
such an effect. Negative emotions may (a) focus attention inward,
leading to increased awareness of all internal states including physical
symptoms (see also Watson & Pennebaker, 1989), (b) bias memory and
hence reporting of physical complaints, (c) lead to behaviors that
damage health (e.g., smoking, alcohol consumption) and hence in-
creased illness, (d) damage the immune system leading to increased
susceptibility to illness, or (¢) motivate a desire for attention from
others and hence increased likelihood to express symptom complaints
to elicit sympathy. To this list we would add that physiological changes
associated with chronic negative emotions may be confused with symp-
toms of physical illness.

Regardless of the specific interpretation of the unique association of
negative affectivity and symptom complaints, it is apparent that nega-
tive affectivity does not operate like other indicators of neuroticism. As
a consequence, we recommend that measures be developed that clearly
separate affective from nonaffective components of personality so that
the effects of these components can be independently observed. Devel-
opment of such measures is particularly important to the extent that
personality variables have effects that are not affectively mediated and
trait affectivity has sources that are not personality based (e.g., life
circumstances). In addition, separation of affective from nonaffective
aspects of personality will yield models whose affective components
can be subjected to more rigorous tests of causality through independent
manipulation. For example, in research relevant to the current studies,
Salovey and Birnbaum (1989) demonstrated that manipulations of nega-
tive affect do in fact increase symptom complaints.

METHOD AND KNOWLEDGE:
THE UTILITY OF STRUCTURAL EQUATION MODELING

General and Specific Effects. Elsewhere we have detailed the advan-
tages of structural equation modeling approaches to evaluating multi-
dimensional personality constructs (Hull, Lehn, & Tedlie, 1991; Hull
& Mendolia, 1991). The principal advantage in the present research has
been to identify the existence and predictive utility of the unique
variance in different health relevant personality constructs. In all of the
models, this was accomplished by dividing the variance in the observed
measures into (a) variance resulting from the general, second-order
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construct, (b) variance resulting from the unique aspects of the specific
construct, and (c) variance resulting from measurement error. Tradi-
tional approaches obscure these sources and as a consequence make it
difficult to assess the unique versus redundant aspects of personality
measures.

In this context, it is worth noting that although the unique aspects of
the personality traits other than negative affectivity were not useful in
predicting symptom complaints, the estimated size of these variances
is large and statistically significant. It is quite reasonable to expect that
the unique aspects of these variables will prove useful in predicting
variables other than symptom complaints.

Modeling Strategy. In addition to adopting a measurement approach
that allows more detailed examination of the source of observed effects,
we also used data-analytic strategies that we recommend to anyone
using structural equation modeling. First, we adopted a measurement
model (the second-order factor model) that tried to balance the twin
criteria of quality of fit and parsimony. Second, we examined a variety
of a priori structural models (Models 1-3) including some that were
statistically identical in fit (Models 2, 2’, and 2”"). Third, we attempted
to document the robust character of the observed effects by conducting
replications in multiple samples while varying the specific indicators
of the latent variable of interest.

LIMITATIONS OF THE PRESENT RESEARCH

Although our approach has definite advantages over alternative
approaches, the methods used in the present studies also have distinct
limitations. These limitations include (a) a select range of neuroticism
indicators, (b) the potential for misunderstanding the status of models
as evidence, and (c) reliance on symptom complaints as a measure of
health behavior.

Neuroticism Indicators. As in any research, we have been forced to
rely on a limited number of measured variables to make a more general
case. In doing so, we have tried to sample broadly from the variety of
measures available. Most of the measures included in our models have
been identified as key components of neuroticism in general reviews of
the literature. For example, Watson and Clark (1984) explicitly identi-
fied self-esteem, negative emotions, pessimism, and a tendency to
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perceive the environment as threatening (i.e., low challenge) as aspects
of general negative affectivity. Similarly, Costa and McCrae (1987)
identified self-esteem, negative affectivity, social anxiety, and a per-
ceived inability to cope (i.e., low challenge) as aspects of neuroticism.
In addition to including a wide variety of measures, we have also varied
these measures across studies in an attempt to demonstrate that our
results are not dependent on a particular combination of items. As a
consequence, we are reasonably confident as to the generalizability of
our results. Nevertheless, the variety of health relevant personality
constructs is large enough that not all constructs may be subsumed
under this general model. In particular, constructs that are unrelated to
neuroticism need to be identified and validated.

Interpreting the Results of Structural Equation Modeling. Despite
its distinct advantages, structural equation modeling does not provide
evidence of causality, and it does not “prove” the superiority of one
model over all possible alternative models (e.g., Breckler, 1990; CIiff,
1983; Chapters 1 and 2, this volume). With respect to the latter issue,
although we have shown that certain models are superior to specific
alternatives, we have not eliminated the universe of alternative models.

Measures of Health and Health Behaviors. We have no illusions that
by predicting symptom complaints we have demonstrated a link be-
tween personality and disease. Many researchers have provided exten-
sive evidence calling into question the use of symptom reports as valid
measures of physical illness (e.g., Costa & McCrae, 1987; Watson &
Pennebaker, 1989). Most of these researchers see symptom complaints
as health relevant behaviors that are to some extent a function of
personality neuroticism. It is from this perspective that we view symp-
tom complaints as providing an appropriate context for testing the
unique predictive utility of the various subcomponents of neuroticism.

Conclusion

Based on the present research, it is our view that some researchers
have moved too quickly toward the view that a variety of health relevant
personality constructs are simply surrogates for neuroticism. With
respect to the alternative models described in the introduction, the
one-factor model is clearly wrong. Furthermore, the single higher-order
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factor model, although adequate in some respects, clearly fails to
account fully for the association of negative affectivity and symptom
complaints. Finally, the group factor model appears to be unnecessarily
complex. The model that was ultimately derived and replicated com-
bines a higher-order factor model with a group factor model. According
to this approach, some health relevant personality constructs have their
influence on symptom complaints via the general factor of neuroticism,
whereas others (i.e., negative affectivity) actually serve to mediate the
influence of general neuroticism on symptom complaints. Future re-
search should be directed toward determining the aspect of negative
affectivity that distinguishes it from other traits related to neuroticism
in such a way that it is a uniquely strong predictor of symptom com-
plaints.
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1 3 Predictors of Change in
Antisocial Behavior During
Elementary School for Boys

MIKE STOOLMILLER
TERRY E. DUNCAN

GERALD R. PATTERSON

Lykken (1993) recently came to some rather startling and discomforting
conclusions about the level of antisocial and aggressive behavior in the
United States:

The United States has the highest per capita incidence of interpersonal
violence of any nation not actively engaged in civil war. In a comparison
of homicide rates (per 100,000 inhabitants) of 20 industrialized countries,
the United States not only ranks first but has a rate more than four times
greater than the nearest competitor. (p. 17)

The above quotation underscores the importance of understanding
the emergence, escalation, and eventual maintenance of serious antiso-
cial behavior.

This chapter utilizes structural equation modeling (SEM) techniques
to test a social learning perspective on the development of antisocial

AUTHORS' NOTE: Preparation of this chapter was supported in part by grant MH 46690
from the Prevention Research Branch, NIH; grant MH 37940 from the Center for Studies of
Antisocial and Violent Behavior, NIH; grant MH 38318 from the Mood, Anxiety, and
Personality Disorders Research Branch, NIH; and grants DA 07031 and DA 03706 from the
National Institute on Drug Abuse.
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behavior in grade-school boys that has emerged from years of research
by Patterson and his colleagues on coercive family interaction (see
Patterson, Reid, & Dishion, 1992, for details). Coercion theory empha-
sizes simple, well-founded principles of positive and negative rein-
forcement from learning theory to explain the emergence, escalation,
and eventual maintenance of serious antisocial behavior in children.
Specifically, coercion theory holds that over many thousands of trials
during family interaction, the problem child learns via negative rein-
forcement to shut off irritable, aversive intrusions from parents and
siblings with his or her own aversive counterattacks. With parents,
these attack-counterattack sequences typically occur during discipline
encounters and undermine the parents’ abilities to socialize and super-
vise the child properly. Although it does not emphasize biological or
temperamental variables, coercion theory is still consistent with the
view of Lykken (1993) that some children may be more susceptible to
the detrimental effects of coercive family interaction than others. As
the result of an abrasive, aggressive interpersonal style and low parental
supervision, the child is rejected by normal peers, fails to learn at
school, and eventually winds up in a delinquent peer group as an
adolescent (Dishion, Patterson, Stoolmiller, & Skinner, 1991).

It is increasingly clear that antisocial behavioral patterns begin early
and are highly stable across development (Loeber, 1982; Loeber &
Dishion, 1983). Robins (1978) concluded that nearly all adults with
antisocial personality disorder had demonstrated troublesome and op-
positional behavior beginning between 8 and 10 years of age. More
recent studies strongly suggest that the pattern begins before first grade
(Campbell, Ewing, Breaux, & Szumowski, 1986; Loeber & Dishion,
1983). West and Farrington (1977) concluded that about 7% of the
adolescent population who were chronically antisocial accounted for
between 50% and 70% of all the reported juvenile criminal acts. Thus,
on the basis of the continuity and intensity of the problem, identifying
potentially malleable predictors of childhood antisocial behavior such
as parenting practices could have important implications for efforts to
prevent or reduce such behavior.

The focus of this chapter is on expanding the test of key coercion
theory variables such as parental discipline skill and monitoring prac-
tices. This is accomplished by including other potentially competing
explanatory variables in a model of changes in antisocial behavior in
the school setting from Grade 4 to Grade 5.
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Focusing on changes in antisocial behavior in the school setting as
an outcome has several advantages. First, it minimizes any potential
biases or distortions that might arise when all information comes from
one informant in one setting (e.g., the mother reporting about child
behavior at home). Second, it demonstrates that aggressive and antiso-
cial behavior learned at home will generalize or spill over to school
settings. Third, it focuses attention on antisocial behavior that would
tend to undermine success in school, which in turn carries negative
long-term implications for successful adult adjustment.

Emphasizing dynamic change in antisocial behavior from Grade 4 to
Grade 5 as opposed to just status at Grade 5 also strengthens the test of
coercion theory. It avoids the implicit, untested, and unreasonable
assumption that predictors of Grade 5 antisocial status are equivalent
to predictors of change. This assumption will hold only when antisocial
behavior essentially emerges de novo in the school setting at Grade 5
or change is completely determined by Grade 4 status. Neither of these
conditions seems plausible. A focus on models of change enables an
examination of how key coercion theory variables exert an influence on
an ongoing process.

Studying competing predictors also strengthens the test of coercion
theory. Meehl (1990) has argued persuasively that, in general, rejecting
the statistical null hypothesis of no effect is a very weak test of a
substantive theory in psychology. Thus a large number of other plausi-
ble explanatory variables will be examined for their independent con-
tribution to the prediction of changes in antisocial behavior. Grade 4
characteristics of the child such as self-esteem, depressed moods, and
peer relations; parent characteristics such as depression, antisocial
tendency, irritability, and marital adjustment; and family character-
istics such as parental socioeconomic status, family income, and family
problem solving skill will all be included. In addition, the key coercion
theory variables of parent discipline skill, parent monitoring practices,
and child coerciveness will be included.

The hypothesis to be examined for this study is that key coercion
theory variables will exert significant, direct effects on two measures
of change in antisocial behavior at school, even when controlling for
the effects of the competing variables. The statistical model that will
be utilized will be a measured variable path model that is essentially a
simultaneous multiple regression model with two correlated outcome
measures.
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Method

SAMPLE

The sample used for these analyses comes from two successive
Grade 4 cohorts of the Oregon Youth Study (OYS) being conducted by
Patterson and his associates. Schools in the metropolitan Eugene-
Springfield area of Oregon were ranked from highest to lowest by police
statistics for rates of delinquency. For Cohort I, six schools were
randomly selected from the top 10 and all families with a boy in Grade
4 were invited to participate. For Cohort II, recruited one year later,
seven schools were randomly selected from the top 10. This scheme
generated a sample of 206 families (102 for Cohort I and 104 for Cohort
II), for an overall participation rate of 74.4%. The sample is primarily
European-American (86%), and a majority of the boys come from
two-parent families (70%). For these analyses, 10 single-father families
were excluded because of the small sample size, which brought the total
sample size to 196. At least 50% of the families in both cohorts were
of either low socioeconomic status or working class. The families were
paid up to $300 for participating in the annual assessments.

INSTRUMENT DESCRIPTION

The OYS annual assessment battery includes structured interviews
and telephone interviews with the study boy and his parents; question-
naires administered to the boy, his parents, and the boys’ teachers; three
home observation sessions lasting one hour each; and a structured
family problem solving task completed in the lab. Data for these
analyses were taken from the initial assessment at Grade 4 and again
one year later at Grade 5.

To complete the telephone interview, each family is called six times
over approximately three weeks. Items for the telephone interview
consist of the occurrence of behaviors of interest either in the last 24
hours or in the last three days. In all cases, the average score from the
six calls is used as the basic item in scales.

Each family was observed three times over approximately three
weeks for one hour each time in order to complete the home observa-
tions. In addition, home observers filled out observer impressions
inventories immediately after each observation session. Observations
were conducted in the late afternoon near the dinner hour. Behavior was


R
Rectangle

R
Rectangle


240 STRUCTURAL EQUATION MODELING

recorded during home observations using the Family Process Coding
(FPC) system, which was described in detail by Dishion et al. (1983).

In general, scales were created separately for each unique combina-
tion of respondent and assessment method. A priori item pools were
created on the basis of strong face validity. Items were standardized
prior to item analyses to ensure that arbitrary scaling differences across
respondents and instruments did not influence the total variance of the
construct score. Item analysis was conducted on the a priori item pools;
items with nonsignificant, corrected item-to-total correlations were
dropped from the scales. Scales had to produce a coefficient of internal
consistency above .60 or they were dropped. Scales were computed if
at least 60% of the items were present; otherwise, the score was coded
as missing. All scales for a given respondent were averaged to form a
respondent-specific indicator of the construct. Finally, construct scores
were computed by averaging over all the respondents, given that at least
60% of the respondent-specific indicators were present. Computing
constructs by aggregating across methods and respondents minimizes
any bias unique to a method or respondent that would tend to limit the
generalizability of the findings.

CHILD CONSTRUCTS

School antisocial behavior at Grade 4 was obtained from teacher
ratings using the CBC-L (Achenbach & Edelbrock, 1986) and peer
nominations for aggressive and troublesome behavior. Peer nomina-
tions were standardized within classrooms. At Grade 5, two school
antisocial construct scores were derived. The first was based solely on
teacher ratings on the CBC-L and was available for all 196 subjects.
The second was a much richer measure that included direct observation
of behavior in the classroom (amount of time on task) and on the
playground (negative social interaction), discipline contacts, atten-
dance, and a teacher rating of positive school adjustment from the
Walker-McConnell scale of social competence and school adjustment
(Walker & McConnell, 1988). Unfortunately, the additional school
antisocial measures were obtained for only a subsample (n = 79) of the
OYS. Therefore, SEM techniques for missing data (described in greater
detail in the modeling section) were utilized in order to include both
antisocial outcome measures in a single model.

The playground negative social interaction measure was derived
from the Target/Peer Interaction Code (TPIC; O’Neil, Ramsey, Shinn,
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Todis, & Spira, 1985), which recorded the free play and social behavior
of the target subjects and their peers in playground settings. The play-
ground measure is a combination of the total negative behaviors by the
target subject and the total negative behaviors by peers directed at the
target subject. Academic engaged time was assessed within each sub-
ject’s classroom using a definition and duration recording procedure
developed by Walker, Severson, Haring, and Williams (1986). A stu-
dent was defined as academically engaged if he was attending to the
assigned material and the academic tasks involved, was making appro-
priate motor responses (e.g., writing or computing), or was appropri-
ately asking for assistance in an acceptable manner. Direct observation
of engaged time was conducted during two 15-minute sessions in which
reading or math was being taught and the students were expected to do
independent seat work. Attendance and discipline contacts with the
school principal were obtained at the end of the school year from
official school records. Change in school antisocial behavior for these
analyses refers to residual change; that is, the part of Grade 5 school
antisocial behavior that is not accounted for by Grade 4 school antiso-
cial behavior.

Tantrums and disobedience was derived from parents’ ratings on the
CBC-L (Achenbach & Edelbrock, 1983), the parent interview, and
parent telephone interview. Scores were first derived for tantrums and
disobedience separately and then combined so that each would contrib-
ute more or less equally. Separate ratings of depressed mood and good
peer relations were obtained from parents’ and teachers’ ratings on the
CBC-L. Self-esteem was based on self-report using Rosenberg’s (1965)
Self-Esteem Scale.

PARENT CONSTRUCTS

Depression was derived from the CES-D (Radloff, 1977). Irritability
was based on observers’ impressions of observed irritability during the
home observations. Antisocial was computed from arrest records ob-
tained from the Oregon Department of Motor Vehicles and from FBI
records. Marital adjustment was based on the proportion of behavior
by one partner directed toward their spouse that was coded as aversive
using a priori aversive categories of the FPC. Good discipline includes
both observed rates of behavior and observer impressions items pertain-
ing to discipline practices and lack of discipline control of the boy. The
observed rates included nattering, the proportion of the parents’ behav-
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jor directed at the child that was coded as low intensity aversive (i.e.,
not physically aggressive), and abusing (i.e., physically aggressive)
using a priori aversive categories of the FPC. Inept monitoring was
based on separate interviewers’ impressions for the mother, father, and
child concerning the adequacy of parental monitoring and supervision
of the study boy. Problem solving was based on a structured problem-
solving task that was conducted in the lab and includes the total number
of positive solutions suggested by family members, a binomial z-score
reflecting the tendency of the parents to encourage the child’s partici-
pation, and observers’ impressions concerning the quality of the problem-
solving process and proposed solutions. SES was scored using the
method of Hollingshead (1975) and includes educational attainment
and occupational prestige. Poverty is computed by dividing the total
family income by the number of family members, standardizing over
the sample, and reversing the scaling. Family type is a nominal code
indicating at Grade 4 whether the family is a two-parent family (n = 54
with complete data, n = 86 with missing Grade 5 data) or a single-
mother family (n = 25 with complete data, n = 31 with missing Grade
5 data).

MODELING DESCRIPTION

Some additional description of modeling techniques is warranted
because of the additional complexity involved in handling missing data
on the Grade 5 school antisocial measure. A subsample of 79 boys was
selected from the larger sample of 196 for more intensive study in the
school setting. Selection was based on a global measure of antisocial
behavior obtained at Grade 4 that included parent, peer, and teacher
ratings and direct observation in the home and lab. The 40 most
antisocial boys on the global index were included along with a random
sample of 39 from the remaining 166 boys. Clearly, the subsample of
79 cannot be considered a completely random sample from the larger
sample of 196. However, the use of SEM techniques for missing data
can proceed under the much milder assumption that the missing data at
Grade 5 are missing at random (MAR) once the sampling mechanism
is accounted for (Little & Rubin, 1990; Muthén, Kaplan, & Hollis,
1987). In other words, the school antisocial data that are missing at
Grade 5 are not systematically related to the (unobserved) level of
school antisocial at Grade 5 once the Grade 4 selection criteria are
considered. In the terminology of Little and Rubin (1990), the missing
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data mechanism is said to be ignorable and the techniques suggested by
Allison and Hauser (1991), Bentler (1989), and Muthén et al. (1987)
can be used. Interested readers should refer to the above references for
more details and sample programs.

Briefly, the strategy for handling missing data consists of expanding
the usual SEM model to include means and intercepts, and partitioning
the sample into subgroups with distinct patterns of missing data. Equal-
ity constraints across the missing data groups are used in a multisample
analysis to obtain unbiased, consistent estimates. It should be empha-
sized that these equality constraints across the missing data subsamples
are not substantively interesting; they function solely to ensure correct
estimation of model parameters. For these data, preliminary regression
analyses indicated that there were also significant differences in the
models across family-type groups (two-parent vs. single-mother). Thus
the sample was split into four separate groups defined by family type
(single-mother vs. two-parent) and missing data (complete vs. missing
data on additional Grade 5 school antisocial measures). Equality con-
straints across the missing data groups within family-type groups were
employed to obtain correct parameter estimates.

Results

Regression imputation was used separately in the two-parent and
single-mother subsamples to replace a small number of missing values
that were scattered over the data (eight subjects missing one value
each). Missing values on the predictor variables were estimated from
regressions using the other predictors with complete data. One missing
value on the Grade 5 teacher CBC-L. ratings of school antisocial behav-
ior was estimated using the Grade 4 school antisocial behavior measure.

The teacher ratings of school antisocial behavior showed a signifi-
cant mean level increase from Grade 4 to Grade 5. Boys in stepparent
families increased the most relative to boys in intact or single-mother
families, although the difference was only marginally significant at the
.07 level.

Separate, preliminary regression analyses for each Grade 5 outcome
were conducted using the entire sample (N = 196) for the Grade 5
teacher ratings of school antisocial behavior and the subsample (n = 79)
for the general school antisocial behavior measure. The purpose of
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these analyses was to reduce the number of potential predictors and to
examine the data for outliers and highly influential observations. The
following variables were dropped from the models because they had no
impact on either Grade 5 outcome measure when controlling for other
predictors: depressed mood (both parent and teacher ratings), self-esteem,
good peer relations (parent ratings), irritability, marital adjustment,
SES, and problem solving. Variables retained for further consideration
either had significant effects in the preliminary analyses or were con-
sidered key theoretical variables.

Because the model includes an interaction term, Figure 13.1 shows
estimated, unstandardized regression weights for the two outcome
variables and means and variances for the predictor variables for single-
mother versus two-parent families with no constraints across family-
type groups. The overall model %2 is 194.63 with 130 degrees of
freedom (df) and a p-value less than .001. The large % value and df
result from the constraints across missing data groups. If there were no
missing data, the model shown in Figure 13.1 would be completely
saturated, using up all available df and fitting the data perfectly. The
missing data constraints represent a test of the hypothesis that the data
are missing completely at random. As mentioned earlier, this is not
substantively interesting because the sampling mechanism is known
and is definitely not a simple random sampling scheme. The obtained
x? value is useful, however, as a baseline for testing more substantively
interesting hypotheses about the equality of regression weights across
family-type groups. The df for each family-type group can be obtained
by noting that the group with missing data will contribute 65 df (45
covariances, 10 variances, and 10 means), and the group with no
missing data will contribute 77 df (55 covariances, 11 variances, and
11 means) for a total of 142 df. The model being fit has 77 estimated
parameters: 54 covariances, variances, and means for the 9 predictors;
1 residual variance and 1 intercept for the outcome with no missing

data; 18 regression weights linking the predictors to the outcomes—all -

of which are constrained to be equal across missing data groups—and,
finally, 1 residual variance, 1 intercept, and 1 residual covariance for
the outcome that has missing data. Subtracting the 77 df for the 77
estimated parameters from the total available 142 df leaves 65 df per
family-type group. For the model with no constraints across the two
family-type groups, there are 284 total available df (142 df per family-
type group X two family-type groups) and 154 estimated parameters,
leaving the model df equal to 130.
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Figure 13.1, Change in School Antisocial Behavior, No Constraints Across
Family Type
NOTE: Estimates are unstandardized. Two-parent family values shown on top, single-mother values

on bottom.
*p < .05, **p < .01.

For the model with complete constraints across family-type groups,
the total available df is still 284 but now only 77 parameters are
estimated, leaving the model df equal to 207 with a %2 of 421.79 and a
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p-value less than .001. The difference in %s between the full constraints
model and the no constraints model can be used as a statistical test of
the hypothesis that the models are the same in two-parent and single-
mother families. This Ax? is equal to 227.16 with 77 df and a p-value
less than .001. The test indicates that some aspect(s) of the model differ
significantly across the two family-type groups. The comparative fit
index (CFI) for comparing the completely constrained versus the un-
constrained models is a substantial .699.

In order to explore differences in the model across family types,
modification indices were used to identify 16 constraints across family-
type groups that seemed untenable. Once these 16 constraints were
relaxed, the model generated a )2 of 263.80 with 191 df for a p-value
less than .001. The test of the significance of the 16 relaxed constraints
was obtained by subtracting this %2 from the full constraints model X2
to obtain a Ay? of 157.99 with 16 df and a p-value less than .001. The
CFI corresponding to this comparison is .661. Clearly, relaxing the 16
constraints results in a large and significant improvement in fit of the
model. A test of the tenability of the remaining constraints is obtained
by subtracting the no constraints model > from the partially con-
strained model %2 to obtain a Ay? of 69.17 with 61 df and p-value greater
than .05. The CFI for this comparison is only .112. Thus the rest of the
constraints can be considered reasonable. Most of the model parameters
(61 out of 77) can be considered the same across the two family-type
groups. Note that results concerning differences in specific parameter
values across family types should be considered exploratory, and sig-
nificance tests should not be taken too seriously.

Unstandardized regression weights for both outcomes and means and
variances for the predictors for the partially constrained model are
shown in Figure 13.2. Different values in Figure 13.2 across family
groups indicate significant differences in parameter estimates across
family groups. Single-mother families were significantly higher on both
poverty and depression. Single-mother families also had significantly
larger variances on good discipline, the interaction term of tantrums and
disobedience with good discipline, antisocial, and poverty.

The effects of the predictors were much more variable across family
groups for teacher ratings than for general school antisocial behavior.
Seven of the eleven estimated parameters for the teacher ratings were
different across family groups as compared to only one of the eleven
for general school antisocial behavior. In fact, for the teacher ratings of
school antisocial behavior, teacher ratings of good peer relations had
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opposite effects in the two family-type groups. The effect was negative
and strongly significant in the single-mother families but positive and
marginally significant in the two-parent families. In contrast, the effect
was essentially zero in both family types for the general school antisocial
behavior measure. Poverty was the only variable that had significantly
different effects across family groups for general school antisocial
behavior. Poverty was positive and significant for two-parent families
and nonsignificant for single-mother families.

Main effects of key coercion theory variables were variable, but the
interaction of tantrums and disobedience with good discipline was
significant for both outcomes across both family types. The interaction
indicates that the effect of good discipline depends on the level of
tantrums and disobedience, and vice versa. The main effects represent
the effect of good discipline when tantrums and disobedience is zero,
and vice versa. More specifically, because the means of good discipline
and tantrums and disobedience are essentially zero in both family-type
groups, the main effects represent the effect of good discipline at the
mean level of tantrums and disobedience, and vice versa. Following
Aiken and West (1991), the basic regression equation can be algebrai-
cally manipulated to clarify the dependence of the good discipline
effect on the level of tantrums and disobedience. Omitting the other
predictors for clarity, the equation becomes

(Bpisc * Bpisc by Tantrums Tantrums)Discipline = School Antisocial.
(13.1)

The terms in parentheses represent the simple slope or the effect of
discipline at some specified level of tantrums and disobedience. For
example, for a tantrums and disobedience score of zero (i.e., the mean
level), the simple slope is just the estimated main effect of good
discipline, Bp;sc.

Figure 13.2 shows that the main effects of good discipline and
tantrums and disobedience are significant only for two-parent families
on teacher ratings of school antisocial behavior. In other words, good
discipline is an important predictor of change in teacher ratings of
school antisocial behavior at average levels of tantrums and disobedi-
ence only for two-parent families. For the other three models, good
discipline is important only for above-average levels of tantrums and
disobedience. The bulk of the findings in these analyses indicate that
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changes in school antisocial behavior are primarily related to the cooc-
currence of both a highly coercive child and a lack of good discipline
practices. The other key coercion variable, inept monitoring, had small
and variable effects across outcomes.

In addition to the key coercion theory variables, both depression and
antisocial had significant effects on changes in school antisocial behav-
ior. The effect of parent depression was more variable than was the
effect of parent antisocial, being significant for single mothers but
nonsignificant for two-parent families on teacher ratings of school
antisocial behavior,

In summary, changes in both measures of school antisocial behavior
from Grade 4 to Grade 5 are significantly predicted by the interaction
of tantrums and disobedience with good discipline for both single-
mother families and two-parent families. The cooccurrence of both the
lack of skilled parental discipline and a coercive child is at the heart of
coercion theory. In addition, measures of parent depression and antiso-
cial had significant effects.

Discussion

Structural equation modeling techniques were used to test a theoreti-
cal model for residual change in boys’ antisocial behavior at school
from Grade 4 to Grade 5. The theoretical model stipulated that family
management practices such as skilled parental discipline should be the
most proximal predictors of changes in antisocial behavior, whereas
parent characteristics such as antisocial tendencies and depression
would not contribute once family management practices were included
in the model. In addition, other characteristics of the child such as
depressed mood, peer relations, and self-esteem, and other family
characteristics such as income and socioeconomic status, were tested
in preliminary models. Teacher ratings of problematic behavior were
collected for the entire sample, and direct observation of classroom and
playground behavior, discipline contacts, and additional teacher rat-
ings, combined into an additional antisocial outcome measure, were
obtained for a subset of the complete sample. A multisample regression
model was estimated across both single-mother families and two-parent
families for both Grade 5 school antisocial outcome measures, simul-
taneously controlling for Grade 4 school antisocial using SEM tech-
niques for missing data.



R
Rectangle


250 STRUCTURAL EQUATION MODELING

COERCION THEORY AND
CHANGE IN ANTISOCIAL BEHAVIOR

Following previous work by Patterson and his colleagues (i.e., Patterson
& Bank, 1989; Patterson, Bank, & Stoolmiller, 1990), it was hypothe-
sized that one of the significant contributors to the preadolescent’s
antisocial behavior would be the contribution made by the preadoles-
cent himself or herself to the disruption of appropriate parenting prac-
tices. Findings from the present study appear to support the contention
that coercive behavior of the child, in conjunction with unskilled and
coercive parental discipline practices, adequately describe a process
that may, in fact, be one of the most significant contributors to the
developmental change of the child’s antisocial behavior. That is, boys
who exhibited higher levels of coercive behavior at home and whose
parents demonstrated a lack of appropriate discipline practices were
more at risk for experiencing an increase in their antisocial behavior in
the school setting.

Parental monitoring practices, however, appeared to be unrelated to
changes in antisocial behavior at school from Grade 4 to Grade 5. In
other work on the OYS sample, lax supervision has been found to be
both an important outcome and predictor of antisocial behavior for boys
during middle adolescence (Forgatch & Stoolmiller, 1994; Patterson
et al., 1990). Thus it may be that parental discipline practices are more
important in childhood whereas supervision practices become more
important in adolescence.

Another facet of the present investigation was concerned with exam-
ining competing predictors that have been implicated in the formation
of adolescent antisocial behavior. Results indicated that parental de-
pression and antisocial behavior were those contextual variables contrib-
uting most to the child’s development of antisocial behavior between
the 4th and 5th grades, effects that were evident for both family types
and for both outcome measures. In addition, although restricted to the
teacher report of school-based antisocial behavior, findings also sup-
port previous work that has demonstrated inadequate peer relations to
be a factor in the at-risk adolescent’s subsequent submersion into the
coercion process. However, results from the present study appear con-
sistent with our position that even when specific contextual and per-
sonal variables are accounted for, key coercion theory predictions are
still tenable.

It is increasingly clear that antisocial behavior begins early in child-
hood and is highly stable across development (Loeber & Dishion,
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1983). The linchpin of our theoretical model is that the antisocial
child’s constant conflict with others at both individual and institutional
levels is at the core of the youngster’s development or continuation of
antisocial behavior in each new setting and with each new relationship.
Children who have developed an early coercive pattern of interacting
with parents will quickly involve themselves in coercive cycles in new
settings that will sustain and exacerbate their development toward
antisocial behaviors. This demonstrable developmental continuity makes
antisocial children acutely at risk for a panoply of other problems such
as substance abuse, chronic unemployment, divorce, a range of physical
and psychiatric disorders, and dependence on welfare services (Caspi,
Elder, & Bem, 1987; Robins & Ratcliff, 1979). '

Not only is antisocial behavior highly stable, costly to society, and
disruptive to the long-term adjustment of the child, it also is extremely
difficult to change. In reviewing the intervention research with antiso-
cial behaviors, Kazdin (1987) concluded that the most promising strate-
gies included a focus on family-management practices, broad based
interventions that targeted the child’s adjustment in the school, and
community interventions that emphasized changing contextual influ-
ences on the determinants of antisocial behaviors. Nonetheless, re-
search clearly indicates that as the age-at-referral of the child increases,
the probability of successfully intervening and preventing the contin-
ued development of antisocial behavior decreases (Dishion, 1984).

ANALYZING INCOMPLETE LONGITUDINAL DATA

Despite the best efforts of researchers, few studies interested in the
etiology of antisocial behaviors are completed without the loss of
subjects over time or the collection of incomplete data. Data gathered
from such studies are most often analyzed using traditional methods
such as listwise deletion of missing cases; however, loss of data through
attrition, unforeseen budget problems, or other missing data mecha-
nisms can sometimes cause the sample of subjects with complete data
to differ substantially from the original sample (Brown, 1990).

Research has shown that traditional estimation methods are inferior
to likelihood estimators that use all available information in terms of
large sample bias and efficiency (Muthén et al., 1987). The present study
involved a situation in which the data could not be considered missing
completely at random. However, utilizing SEM techniques, correct
maximum-likelihood estimation for the model parameters was obtained.
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Such analytical techniques are not, however, without limitations.
One problem with the computational approach utilized in the present
study is that in many situations there may be a number of missing data
patterns so that the number of observations in each group frequently
falls below the number of variables. When this occurs it may be
necessary to delete some parts of the data, much like the approach of
listwise deletion, so that a reasonable number of groups with large
sample sizes remain (Muthén et al., 1987). Unless this loss of data
introduces strong selective missingness not predictable by observed
variables for which there is no missingness, little bias is likely to result.
Regardless of the mechanism for the pattern of missingness, utilizing
information from a few substantial missing data pattern groups will
likely yield more appropriate results than the use of data from only the
complete-data group. However, the usual caution concerning gener-
alizability is necessary in that results may be limited not only by the
regression model and the pattern of missingness studied but also by the
particular specification of the missing data mechanism.

The method described here should make collecting and analyzing
longitudinal data in which missing data are likely to occur more attrac-
tive to researchers. By combining data from a complete-case subsample
and nonresponse subsample, efficient estimates of the coefficients and
consistent estimates of their standard errors for a linear model are
possible. The method does so introducing only mild assumptions con-
cerning the missing data mechanism beyond those generally made for
structural equation modeling.

Summary and Conclusions

In summary, these preliminary analyses of the effect of the key
coercion theory variables on the ongoing process of antisocial behavior
acknowledge the necessity for differentiating between those develop-
mentally threatening events (e.g., the disruption of family management
skills) and those pathogenic processes that are proximal to the devel-
opment of behavioral problems in the child. Although studies con-
ducted over the past 20 years have demonstrated the ability to predict
the likelihood of subsequent delinquency with relative accuracy (e.g.,
Loeber & Dishion, 1983, 1987), our understanding of the processes by
which some children start early and persist into adolescence lags far
behind. Of interest, therefore, is whether the present findings add
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sufficiently to our understanding of this process to facilitate the devel-
opment of intervention strategies designed to interrupt the progression
of antisocial behaviors.

There is an obvious need for additional research that integrates our
basic knowledge of how key coercion variables exert their influence on
the ongoing development of serious antisocial behavior, with the as-
sumption that different combinations of these factors are set into motion
for different subpopulations of children exposed to major risk factors
(Reid, 1991). This assumption becomes increasingly important to ef-
forts aimed at interrupting the coercion process, because it is likely that
an increased understanding of the role these mediators play in the
etiology of antisocial behavior will ultimately lead to the development
of distinct interventions tailored to the needs of the individual.
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160

example of, 26, 142, 143, 182, 183,
184, 203, 221, 230, 245, 247

Power:

and model evaluation, 107-108, 117,
173-174

and modification, 101, 115

calculation of, 102

individual parameters, 102-104

multiple parameters, 104-105,

116

R?, 82, 167

Relations between variables, 3, 18
Residual matrix, 5, 7, 98-99
Robust statistics, 46, 52-54

Sample size, 47, 62-63, 74, 87-88, 89-93,
95-96, 107
Scale of measurement, 57
continuous, 70-71
coursely categorized, 59-60, 63-64,
68-70
ordered categorical, 68-70
SEMNET, xix, xxi
Significance test. See Evaluation of fit,
overall; component
Simulation (Monte Carlo), 46-54, 79-80,
109
Simultaneous equations, 20, 40
Skewness. See Distribution, skewness
Software. See Computer program
Specification:
defined, 2
example of, 25-27
Specific effect, 228-229, 230, 232-233
Standard error. See Bias, in standard
errors
Standardized estimate. See Parameter,
standardized estimate
Start values, 5
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Statistical test. See Evaluation of fit,
overall; component
Structural equation modeling:
compared to other statistical models,
2-3, 13-15
defined, 1, 17, 37
Structural model, 3, 136

Test. See Evaluation of fit, overall; com-
ponent

Transformation. See Variable, transfor-
mation of

T statistic. See Evaluation of fit, overall,
22 test

T-value. See Evaluation of fit, compo-
nent, T-value

Underdetermination of theories, 124,
125

Underidentification. See Identification,
underidentification

Uniqueness. See Error, of measurement
Unstandardized estimate. See Parameter,
unstandardized estimate

Variable:
exogenous vs. endogenous, 19
latent. See Latent variable
observed (measured), 18
transformation of, 71-73
See also Data; Distribution; Scale of

measurement
Variance of endogenous variable, 21,
106-107

Wald test. See Model modification, Wald
test
Weight matrix, 64-65, 79

z test. See Evaluation of fit, component,
Z test
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