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The Economics of Financial Markets

The Economics of Financial Markets presents a concise overview of capital
markets, suitable for advanced undergraduates and for embarking graduate students
in financial economics. Following a brief overview of financial markets – their
microstructure and the randomness of stock market prices – this textbook explores
how the economics of uncertainty can be applied to financial decision making.
The mean-variance model of portfolio selection is discussed in detail, with analy-
sis extended to the capital asset pricing model (CAPM). Arbitrage plays a pivotal
role in finance and is studied in a variety of contexts, including the arbitrage
pricing theory (APT) model of asset prices. Methods for the empirical evaluation
of the CAPM and APT are also discussed, together with the volatility of asset
prices, the intertemporal CAPM and the equity premium puzzle. An analysis
of bond contracts leads into an assessment of theories of the term structure of
interest rates. Finally, financial derivatives are explored, focusing on futures and
options contracts.
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The Theory of Economics does not furnish a body of settled conclusions imme-
diately applicable to policy. It is a method rather than a doctrine, an apparatus
of the mind, a technique of thinking, which helps its possessor to draw correct
conclusions. It is not difficult in the sense in which mathematical and scientific
techniques are difficult; but the fact that its modes of expression are much less
precise than these, renders decidedly difficult the task of conveying it correctly
to the minds of learners.

J. M. Keynes

When you set out for distant Ithaca,
fervently wish your journey may be long, –
full of adventures and with much to learn.

C. P. Cavafy
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Preface

How can yet another book on finance be justified? The field is already well
served with advanced works, many of impressive technical erudition. And,
towards the other end of the academic spectrum, an abundance of mammoth texts
saturates the MBA market. For the general reader, manuals confidently promising
investment success compete with sensational diagnoses of financial upheavals to
attract attention from the gullible, avaricious or unwary.

Alas, no one can expect to make a fortune as a consequence of reading this
book. It has a more modest objective, namely to explore the economics of financial
markets, at an ‘intermediate’ level – roughly that appropriate for advanced under-
graduates. It is a work of exposition, not of original research. It unashamedly
follows Keynes’s immortal characterization of economic theory as ‘an appara-
tus of the mind, a technique of thinking’. Principles – rather than assertions of
doctrine, policy pronouncements or institutional description – are the focus of
attention. If the following chapters reveal no get-rich-quick recipes, they should
at least demonstrate why all such nostrums merit unequivocal disbelief.

This book evolved, over more years than the author cares to admit, from
lecture notes for a course in financial economics taught at the University of
Essex. For reasons of space, one topic – corporate finance – has been omitted
from the book, though its core insight – the Modigliani–Miller theorem – is
slipped in under options (chapter 18, section 6). While the chapters are intended
to follow a logical sequence, pedagogy may require a different order. Any such
tensions should be straightforward to resolve. For example, chapter 2 (market
microstructure) appears early but was covered later in the course. Other changes
of the order in which the chapters are studied should be easy to implement.
Several obvious groupings are, however, readily apparent: portfolio selection in
chapters 4 and 5; asset pricing in 6 to 9; bond markets in 12 and 13; futures in
14 to 16; and options in 18 to 20.

xvii



xviii Preface

Taxing though it may be, chapter 7, on arbitrage, is so fundamental that it
deserves study as early as possible. The overused and commonly abused notion
of ‘efficiency’ infects much of finance: here it is confronted in chapter 3, though
its presence cannot escape notice elsewhere (especially in chapters 10 and 11).
‘Behavioural finance’ perhaps warrants greater attention than it gets. Rather than
segregate the topic into a ghetto of its own, an attempt is made to disperse its
message across chapters of particular relevance (especially 3, 4 and 10). No
apology is offered for adhering to a conventional treatment of financial markets,
eschewing as far as possible the caprice of academic fashion.

Students enrolled for the lecture course were absolved responsibility for the
technical appendices, included to justify and amplify claims in the text. The
appendices were much the most satisfying sections to write and, it is hoped,
will interest at least those readers embarking on graduate study. Lest there be
misconception that the coverage of any topic is definitive, each chapter includes
brief suggestions for further reading. A student’s work is never done.

The undergraduates to whom the lectures were addressed had a background in
economics but most had not previously encountered the subject of finance. Conse-
quently, while the book should be accessible to any moderately well-educated
undergraduate, an acquaintance with microeconomics and quantitative methods
is desirable. No more than the rudiments of differential calculus and probability
theory, together with a smattering of statistics, are really necessary.

Successive generations of Essex students have contributed more to the final
product than they can possibly have realized. Their toleration resembles that of
opera audiences, which, in repeatedly shouting for an encore, imagine that the
singer will eventually get it right. Individuals – too many to identify by name –
have pointed out errors, queried obscurities and, most importantly, asked critical
questions that revealed shortcomings. Attempts have been made to remedy the
most glaring faults. Others undoubtedly lurk, as yet undiscovered.

A Website has been established at www.cambridge.org/0521612802. It is
intended that this will form a repository for updates, feedback, exercises used in
the lecture course and other supporting ancillary material. Given the unpredictable
appearance, disappearance and revision of Web URLs, with a few exceptions these
have been omitted from the text. The book’s Website should – notwithstanding
the vicissitudes of the Web – enable rapid access to relevant locations via the
links listed there.

The author’s procrastination in completing the manuscript would have exhausted
the patience of a saint. But not of Patrick McCartan and Chris Harrison, at
Cambridge University Press, the forbearance of whom has been remarkable.
Persistent encouragement from Marcus Chambers and Abhinay Muthoo nudged
the project back to life on countless occasions when the author would have



Preface xix

cheerfully abandoned it. Without their unwavering support, the entire enterprise
would surely have been aborted. They must, therefore, be rendered partially
culpable for the appearance of the book, though they are innocent of its remain-
ing blemishes, infelicities and errors. For these, the author accepts exclusive
responsibility.

R. E. Bailey
Wivenhoe Park
November 2004





1

Asset markets and asset prices

Overview

Financial markets encompass a broad, continually evolving and not altogether
clearly delimited collection of institutions, formal and informal, that serve to
facilitate the exchange of assets. More to the point, the concept of an ‘asset’ is
open to a variety of interpretations.1 Rather than get bogged down in arbitrary
classifications – and in ultimately fruitless distinctions – the nature of ‘assets’ and
the markets in which they are traded is allowed to emerge from examples. To
place the examples in context, the chapter begins by reviewing, in section 1.1,
the fundamental properties of financial systems, and identifies various sorts of
capital market, several of which receive attention later in the book.

The main objective of this chapter is to outline the ideas that underpin explana-
tions of asset prices and hence rates of return. Sections 1.2, 1.3 and 1.4 describe
a framework for modelling asset price determination and comment on alternative
approaches.

Central to an understanding of finance is the process of arbitrage. Arbitrage
trading policies seek, essentially, to exploit price discrepancies among assets.
Of more interest than the policies themselves are their unintended consequences,
namely the implications they have for tying asset prices together in predictable
patterns. The examples in section 1.5 serve to introduce arbitrage. Its conse-
quences emerge in several places throughout the book.

Observers and analysts of capital markets frequently seek ways to appraise the
performance of the markets. The concepts of ‘efficiency’ introduced in section 1.7
show that different criteria can be applied in making judgements about how well
the markets function.

1 Perhaps it would be more accurate to use the clumsier term ‘financial instrument’, or possibly ‘security’,
instead of ‘asset’. But, for the purposes of this book, ‘asset’ is simpler and should not cause confusion.
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2 The economics of financial markets

1.1 Capital markets

Financial innovations are to the financial system what technological advances
are to the economy as a whole. They embrace changes in the methods of doing
business as well the assets traded in markets. In the broadest terms, financial
innovations refer to development in the institutions of finance made in response
to changes in the environment in which the institutions exist. The process of
financial innovation involves institutional adaptation and evolution even when
the functions of the system remain the same.

Merton and Bodie (chap. 1 in Crane et al., 1995) argue that the functions of
financial systems change more slowly than their institutions. They propose a
sixfold classification of functions.

1. Clearing and settling payments. Financial systems provide mechanisms that facilitate
exchanges of goods and services, as well as assets, followed by settlement, transferring
ownership in return for the agreed remuneration.

2. Pooling resources and subdividing shares. Financial systems enable multiple investors
to contribute to projects that no one of them alone could afford. Also, even if a single
investor could afford to fund a project, there may be incentives for diversification,
each investor contributing a small portion of the project’s cost and bearing a small
portion of its risks.

3. Transferring resources across time and space. A fundamental purpose of investing is
to delay consumption, for example as households accumulate wealth for retirement or
for the benefit of future generations. Firms in one industry, or in one location, may
seek to invest surplus funds in other industries or at other locations. Financial systems
enable the assignment of these funds from households and firms with surplus resources
to others that seek to acquire resources for investment and (intended) future return.

4. Managing risk. Financial systems provide ways for investors to exchange, and thereby
to control, risks. For example, insurance enables the pooling of risks, hedging enables
the transfer of risk to speculators, diversification exploits low correlations that may
exist among risky projects.

5. Providing information. Financial systems enable price discovery – that is, for those
who wish to trade to observe the prices (rates of exchange) at which agreements can be
made. Other information, for example about expectations of future asset price volatility,
can be inferred from market prices. (Chapter 19 explains how observed option prices
enable inferences about the magnitude of expected asset price fluctuations in the future.)

6. Dealing with incentive problems. It is reasonable to suppose that contractual obligations
can never stipulate the actions to be taken in every eventuality, even if every contin-
gency could be imagined. Financial systems can help individuals to construct the sorts
of contracts that fulfil their needs and to cope with the contingencies that the contracts
do not explicitly take into account. For instance, the shareholders of a firm may finance
its operations partly with debt, the contractual obligations for which are designed to
provide incentives for the firm’s managers to act in the interests of the shareholders.
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What explains financial innovation (i.e. what accounts for institutional change)?
There are many possible causes, including (a) technological change – e.g. advances
in information technology; (b) changes in the ‘real’ economy – e.g. the growth
of new industries and markets in South-East Asia; (c) changes in the demand
for assets – e.g. ageing populations saving for retirement; and (d) changes in
government regulation – e.g. the liberalization of trading rules, creating new
opportunities, or new regulations providing incentives to avoid, bypass or other-
wise profit from their introduction.

This book explores the operation of mature financial systems as of the early
twenty-first century. While there are hints about the pattern of financial inno-
vation, this is not a main focus of analysis. Also, the relationships between the
functions of the financial system and the institutions that currently perform them
remain implicit, though they should be straightforward enough to infer.

The following list of capital markets, although not comprehensive, identifies
the differences among markets (differences relevant for this book, anyway) and
the assets traded in them.

1. Equity, or stock, markets. The stock exchange is the main ‘secondary’ market for
shares in corporations – i.e. limited liability companies.2 It is a secondary market in
the sense that the shares are already in existence, so that trade takes place between
investors and need not directly involve the corporations themselves. The ‘primary’
market involves the issue of new shares by corporations. There are various categories
of shares (e.g. ordinary shares, preference shares) but the distinctions among them
are neglected here, being peripheral to the basic principles of price determination.
The pattern of share prices is normally summarized by reference to particular well-
known stock price averages or indexes, such as the Dow-Jones Industrial Average,
Standard and Poor’s 500 index, or the Financial Times Stock Exchange 100 index
(see appendix 1.1).

2. Bond markets. These are markets for long-term securities such as government debt
(known as gilt-edged securities in Britain) or corporate bonds.

Bonds are usually regarded as less risky than shares because bonds normally
oblige the issuer to promise to take specific actions at definite dates in the future.
The distinction is not quite as clear as it might first seem because bond contracts
can include clauses that provide for different actions in a multitude of different
contingencies. Also, it is possible that the issuer of the bond will default with respect
to some clause in the agreement. Even so, a typical bond is a promise to pay
(a) a sequence of coupons (commonly twice a year) and (b) a lump sum maturity
value (or face value) at a specified date in the future.

2 If there is any distinction between ‘stocks’ and ‘shares’, it is not one of any significance here. A company’s
‘stock’ could refer to the whole value of its equity, while ‘shares’ could refer to the ownership of a portion
of that stock.



4 The economics of financial markets

Bonds are commonly traded on stock exchanges in much the same way as shares.
A feature of medium-term and long-term bonds is that, like shares, much of the trade
is amongst investors, without the direct involvement of the issuer (government or
company).

3. Money markets. Money markets exist to facilitate the exchange of securities such as
treasury bills (commonly, three-month or six-month government debt) or other loans
with a short time to maturity. Although such securities are traded in markets, any
holder does not have to wait long before the issuer is obliged to redeem the debt in
compliance with the terms of the contract.

4. Commodity markets. Markets of some form exist for almost every commodity, though
financial studies are usually confined to highly organized markets for a fairly narrow
range of commodities, including precious metals (gold, silver, platinum), industrial
metals (such as lead, tin and copper), petrochemicals or agricultural commodities
(such as cereals, soya beans, sugar and coffee). This list is not exhaustive but it does
suggest that the commodities in question need to have certain physical characteristics:
namely, that they can be graded according to well-defined attributes, that they are
divisible into precisely defined units, and that they are storable (though often subject
to deterioration over time). As will be described later, most organized commodity
markets involve trading in contracts for the delivery of the stated commodity at a
future date, though perhaps one very near to the present.

5. Physical asset markets, such as for real estate. In this case, the relevant asset for
financial analysis is often a security (e.g. a mortgage) constructed to have a well-
defined relationship with the physical asset (e.g. a mortgage being a loan secured
against the equity of the property). It is not uncommon for mortgages to be securitized
by financial intermediaries that issue bonds backed by (and with payoffs defined by)
bundles of mortgages.

6. Foreign exchange markets – ‘FOREX’ or ‘FX’ markets. These are markets for
one currency against another. Governments often intervene in such markets – not
infrequently with disastrous consequences – to fix, or at least influence, exchange rates
among currencies. Two notable features of FX markets are (a) the vast turnover of
funds (often about $1.5 trillion each day in mid-2001) and (b) round-the-clock trading.

7. Derivatives markets. Corresponding to most of the above categories are derivative, or
synthetic, securities. They are ‘derivative’ in the sense that their payoffs are defined
in terms of the payoffs on an underlying asset or assets. The underlying asset could
itself be a derivative, so that a whole hierarchy of such instruments emerges. Almost
all derivatives are variants of two generic contracts.

(a) Forward agreements. These are contracts in which the parties agree to execute
an action (typically, the exchange of a specified amount of money for a speci-
fied amount of some ‘good’) at a stipulated location and date in the future. For
example, a forward contract might specify the delivery of 5000 bushels of domes-
tic feed wheat to a grain elevator in Chicago, six months from the date of the
agreement, at a price equal to $3.50 per bushel. A futures contract is a special
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type of forward contract designed to allow for trading in the contract itself. Repo
contracts are combinations of loans and forward agreements. Swaps are sequences
of forward contracts packaged together.

(b) Options. Options are contracts for which the holder has the right, but not the
obligation, to execute a specified action at an agreed date, or over a range
of dates. For example, an option might stipulate that its owner can purchase
100 IBM ordinary shares for $220 per share at any time prior to the following
30 September. Many sorts of option contracts are traded. For example, options
on futures are options to purchase or sell futures contracts; swaptions are options
on swap contracts. Exotic options encompass a variety of contracts involving
non-standard terms for their execution.

1.2 Asset price determination: an introduction

1.2.1 A single asset market

The simplest economic theory of price determination applied to asset markets
is that of ‘supply and demand’. The prices of many assets are highly flexible,
with rates of change that are rapid compared with the rates of change in the total
volume of the asset in existence. At each instant of time the total stock of the asset
is assumed fixed. The market price is allowed to adjust so that wealth holders, in
the aggregate, are just prepared to hold the existing stock – the demand to hold
the asset equals the stock in existence. Figure 1.1 depicts an equilibrium price of
p∗ that equates demand with the given stock denoted by Q.

In some cases, it makes sense to treat the total stock of the asset in existence as
zero. For example, corresponding to every futures contract there must be exactly
the same volume of purchases (‘long’ positions) as sales (‘short’ positions): they
net out to zero. The stock of outstanding purchases (or sales) – known as ‘open
interest’ – will, of course, change over time, but at each instant the total of
purchases and the total of sales each equals the open interest.

From this perspective, the relevant question is: what determines the demand
to hold the asset? An immediate but superficial response is that the demand
for an asset is determined by the same things as the demand for any good:
(a) preferences, (b) the price of this and other assets, and (c) income (here the
stock of wealth, not the flow of income, forms the relevant constraint). A more
complete and satisfactory response involves delving beneath the surface to analyse
the role of each of these elements.

1.2.2 Multiple asset markets: a more formal approach

What are the forces that determine the market prices for different assets? As a
start, consider a world with many market participants – investors – each of whom
has an initial amount of wealth available for investment.
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Quantity
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Fig. 1.1. Market equilibrium for a single asset

At each instant of time the total stock of the asset is fixed, say at Q. The
demand to hold the asset is depicted by the negatively sloped curve. At
price p∗ the market is in equilibrium – i.e. the demand to hold the asset
equals the stock available to be held.

In the presence of a large number of investors, it is plausible to assume that
each investor is a price taker, in the sense that no one investor has enough market
power to influence prices. Each investor thus treats asset prices as parametric,
though not necessarily constant over time. Initial wealth is also parametric, being
equal to the sum of each asset’s price multiplied by the quantity of the asset that
the investor starts out with (i.e. holds as a consequence of past decisions).

Faced with given asset prices and with given initial wealth, each investor selects
a portfolio in accordance with a decision rule. The decision rule – which can be
unique to each investor – determines the number of units of each asset to hold as
a function of the observed prices and initial wealth. Theories of decision making
under uncertainty provide the necessary foundation from which each investor’s
decision rule is derived (see chapters 4, 5 and 11).

The market equilibrium at each date is defined by a set of asset prices and an
allocation (portfolio) of assets among investors that, together, satisfy the following
conditions.
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1. Each investor’s portfolio is determined according to the investor’s decision rule.
In particular, the chosen portfolio is optimal subject to the investor’s preferences
(i.e. willingness to bear risk), beliefs (about assets’ payoffs) and constraints (the given
level of initial wealth and, perhaps, institutional limits on permissible trades).

2. Demand equals supply; that is, the total stock of each asset equals the total demand
aggregated over all investors.

Note that, in principle, some or all investors may be allowed to hold assets in
negative amounts – investors may be able to ‘short-sell’ assets (see section 1.4.2).

The main components of the approach so far are as follows.

1. At each instant of time total asset stocks (netting out assets and liabilities) are given.
2. Asset prices adjust so that existing stocks are willingly held.
3. With the passage of time asset stocks change (e.g. because companies issue new shares

and debt, or repurchase shares and redeem existing debt). Also, investors revise their
portfolios in response to changes in their circumstances or their beliefs about the
future. As a consequence, prices change.

This is merely the skeleton of a framework and makes no definite, testable
predictions. Even so, it is a useful way of viewing asset markets because most
of the models in the remainder of the book emerge as special cases, each of
which fits within the framework. The capital asset pricing model (see chapters 6
and 11), for instance, is perhaps the most notorious special case. It would be
wrong, however, to conclude that the approach outlined above is the only way
to model asset prices; an alternative framework, based on asset flows rather than
stocks, is explored in chapter 2.

1.2.3 Rates of return

Assets are typically held because they yield – or, at least, are expected to yield –
a rate of return. A general way of writing the rate of return on an asset is

rate of return ≡ payoff minus price

price
(1.1)

where ‘price’ is the observed market price (or outlay on the asset) as of today,
date t, and ‘payoff’ is the value of the asset at the next relevant point of time,
date t+1 (where t+1 could be tomorrow, next month, next year or whenever).

The gross rate of return on an asset is commonly defined as
payoff
price

. Thus, while

the rate of return might be a number such as 0�064 (6.4 per cent), the gross rate
of return would be 1.064.
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An asset’s payoff may have several components according to the type of asset.
For a bond, the payoff is its market price at t+ 1, plus any coupons received
between t and t+1. For a bank deposit, the payoff is the principal at t plus the
interest accumulated between t and t+1 minus bank charges. For a company’s
shares, the payoff is the share’s market price at t+1 plus the dividends, if any,
paid between t and t+1.

Let the asset’s price at t be denoted by pt and its payoff at t+1 by vt+1. Then
the asset’s rate of return between t and t+1, yt+1, is defined by

yt+1 ≡
vt+1−pt

pt
(1.2)

where y is intended to stand for ‘yield’. It is often convenient to interpret the
price at t+1, pt+1, to include any dividends or coupons received between t and
t+ 1. With this interpretation, vt+1 = pt+1. In words: the rate of return is the
proportional rate of change of the asset’s market price. Slightly more generally,
the rate of return is measured by the proportional rate of change of the asset’s
market value (i.e. it includes flows such as dividends or coupons as well as the
market price).

The real rate of return on an asset is defined as the rate of return measured
not in units of account, ‘money’, as in expression (1.1), but in terms of aggregate
‘real’ output.3 Call the rate of return in (1.1) the nominal rate of return. Then
the relationship between real and nominal rates of return – often attributed to the
eminent American economist Irving Fisher (1867–1947), of Yale University –
can be written as

real rate of return = nominal rate of return minus rate of inflation

(See appendix 1.2 for a derivation.) More substantively, the Fisher hypothesis is
commonly interpreted as the prediction that the real rate of interest is constant –
that fluctuations in the nominal rate and inflation tend to offset one another.

The distinction between nominal and real rates of return is important in many
branches of economics, especially monetary economics and macroeconomics
(where another distinction – between actual and expected inflation – is partic-
ularly relevant). In this book the distinction between nominal and real rates of
return is not prominent. Where necessary, an adjustment from nominal to real
rates can be made by subtracting the rate of inflation from the nominal rate.
This simple-minded approach is not intended to underrate the importance of the
difference between nominal and real rates. Rather, it serves to emphasize that the
determination of expected and actual rates of inflation is not studied here.

3 In principle, the rate of return can be defined in the units of any commodity, service or asset. In practice,
an index of aggregate output is used in an attempt to measure output as a whole.
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1.2.4 The roles of prices and rates of return

The most important aspect of rates of return for decision making is that they
are forward-looking: they depend on future payoffs. For almost all assets, the
payoff is, at least in part, uncertain when viewed from the present, date t. For
example, the prices of stocks and shares at date t can be observed at date t, but
their prices at date t+1 are matters of conjecture.

The current, observed market price for an asset plays two distinct roles in
financial economics.

1. The price represents an opportunity cost. An asset’s price appears in the wealth
constraint as the amount that has to be paid, or is received, per unit of the asset. This
is the conventional role for prices in economic analysis.

2. The price conveys information. Today’s asset price reveals information about prices
in the future.

The information conveyed by prices affects investors’ beliefs and hence their
actions (portfolios selected). Investors’ actions determine the demand to hold
assets in the aggregate and hence influence the assets’ market prices.

1.3 The role of expectations

A famous passage in John Maynard Keynes’s General Theory illustrates the role
of expectations formation in financial markets (Keynes, 1936, p. 156).

� � � professional investment may be likened to those newspaper competitions in which
the competitors have to pick out the six prettiest faces from a hundred photographs,
the prize being awarded to the competitor whose choice most nearly corresponds to the
average preferences of the competitors as a whole; so that each competitor has to pick, not
those faces which he himself finds prettiest, but those which he thinks likeliest to catch
the fancy of the other competitors, all of whom are looking at the problem from the same
point of view. It is not a case of choosing those which, to the best of one’s judgement, are
really the prettiest, nor even those which average opinion genuinely thinks the prettiest.
We have reached the third degree where we devote our intelligences to anticipating what
average opinion expects average opinion to be. And there are some, I believe, who
practise the fourth, fifth and higher degrees.

Here Keynes is posing a conundrum without proposing how to resolve it.
Keynes’s example may seem to involve circular reasoning: asset prices affect
expectations, expectations affect decisions, decisions affect prices, and so on.
Regardless of whether this is circular reasoning, the puzzle pinpoints the simul-
taneous interactions that occur between observed prices in the present and beliefs
about prices in the future.

One implication is that the demand curve drawn in figure 1.1 should be treated
with the utmost caution; when a price conveys information (as well as representing
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an opportunity cost) a simple downward-sloping demand curve may be difficult
to justify – for a higher price today could lead investors to infer that the price will
be even higher tomorrow, thus encouraging a greater demand to hold the asset in
anticipation of a capital gain. In the presence of such ‘extrapolative expectations’,
the demand curve could display a positive slope, at least for some prices.

It is common to assume that investors have ‘rational expectations’; that is, their
expectations are formed with an awareness of the forces that determine market
prices. Moreover, in a rational-expectations equilibrium, the forces that determine
prices include the decisions made by investors. This does not imply that investors
are blessed with perfect foresight, but, at least, it does exclude expectations that
are systematically wrong.

The rational-expectations hypothesis, on its own, is not much help in explain-
ing asset prices. Firstly, rational expectations make sense only in the context of
a model of price determination, including assumptions about investors’ prefer-
ences and the information they possess. Secondly, investors may differ in the
information they can bring to bear on their decisions – there may be asymmetric
information. Thirdly, the information available changes over time as investors
learn from their experience, or forget.

It is hardly surprising, in view of all these considerations, that building expec-
tations formation into asset-pricing theories is both (a) central to any explanation
of prices and (b) fraught with complications.

In an attempt to account for some of the imponderable features of price fluc-
tuations, Fischer Black (1986) has introduced the concept of noise to financial
analysis. From this perspective, some investors are assumed to act in arbitrary
ways that are difficult – perhaps impossible – to explain as the outcome of
consistent behaviour. These investors are called noise traders. Rational traders
(sometimes called ‘information traders’ or ‘smart-money investors’), on the other
hand, are assumed to behave according to more coherent precepts, or to have better
information, or better ways of processing the available information, than noise
traders. (Asset price determination in the presence of noise traders is examined
in more detail in chapters 2 and 10.)

The noise-trader approach falls with the broader framework of behavioural
finance, which exploits ideas from outside conventional economics, including
psychology. Behavioural finance can be understood as a modelling strategy that
seeks to explain many otherwise puzzling phenomena – for example, empirical
evidence that appears to be incompatible with the so-called efficient markets
hypothesis (see below, section 1.7, and chapter 3). Whether behavioural finance
can do a better job than orthodox theories in this regard remains an open question.
At present, behavioural finance has succeeded more as a critique of conventional
models than as a constructive alternative. Consequently, orthodoxy is likely to
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maintain its dominance for the analysis of a range of problems, at least until a
viable replacement paradigm emerges.

The acquisition and processing of information by investors is a subject that has
received scant attention in financial economics. Investors are typically assumed
to possess particular pieces of knowledge (e.g. of recent asset prices). Little, if
anything, appears explicitly about how this information is obtained or what sense
is made of it in drawing inferences about which risks are worth taking.

These aspects of the decision-making process are usually taken as given, or
ignored. They can, however, be important. For instance, the accuracy of accoun-
tants’ reports – derived from past data – are important influences on investors’
expectations of future performance. Once confidence in past data is undermined,
the repercussions can be widespread and profound; witness the response to reve-
lations about accounting malpractice at Enron, WorldCom and other companies
in 2001–2.

In constructing models of financial markets it should be recognized that different
investors may behave according to many different criteria. Faced with this
complexity, model builders can, perhaps, be forgiven for assuming that decision
makers act as if their preferences and beliefs are analytically tractable.

Each investor’s beliefs about assets’ payoffs can be viewed as predictions made
from the investor’s personal model of capital markets. The ‘model’ implicit in
behaviour is rarely – if ever – made explicit. In most applications, the ‘model’
is naïve – for example, that investors make decisions based on past asset prices
alone to maximize a simple objective of the sort studied in chapters 4 and 5.

Some investors, however, devote great energy and skill to their portfolio
choices. Instead of relying solely on past prices, they seek out potential invest-
ment opportunities, examine the strategies of individual companies, monitor the
markets in which the companies operate, and study the performance of their
investments with anxious vigilance. Even so, as Keynes cautions, no amount
of effort can eliminate human ignorance about what the future may bring forth:
‘The game of professional investment is intolerably boring and overexacting to
anyone who is entirely exempt from the gambling instinct; whilst he who has it
must pay to this propensity the appropriate toll’ (Keynes, 1936, p. 157).

1.4 Performance risk, margins and short-selling

1.4.1 Performance risk and margin accounts

Uncertainty about the future plays a central role in economics and permeates
every branch of financial analysis. A thorough treatment of uncertainty must
await chapter 4, but it is useful here to distinguish between price risk and perfor-
mance risk.
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Price risk, or market risk, refers to the prospect that the market value of an
asset will change by an unknown – though not necessarily entirely unpredictable –
amount in the future. Performance risk refers to the prospect that a contractual
obligation (e.g. the promise made to deliver an asset that the investor has agreed
to sell) will not be fulfilled. Price risk receives the most attention in this book,
but for the remainder of this section the focus is on performance risk.

That agreements will be honoured is taken for granted in much of economics,
problems of enforcement being largely ignored. The mechanisms adopted to
minimize performance risk do, however, impinge directly on some aspects of
financial analysis. In particular, evidence of ‘good faith’ in adhering to agreements
is often made via deposits in margin accounts. One party, or possibly both parties,
to a contract may agree to deposit funds with a third party – say, a clearing house
or other designated institution. These funds are returned (or form part-payment
for the relevant asset) when the contract is settled. In the event of default, the
deposit is used to compensate the injured party.

In many organized asset markets there are detailed, and often quite complicated,
rules that determine the minimum size of margins. In other markets the provision
of good-faith deposits is at the discretion of the parties themselves. The provisions
might be specified as clauses in the contract or agreed more informally. Either
way, it is possible for margin accounts to be used to increase an investor’s
exposure to price risk (relative to the investor’s wealth) while simultaneously
keeping performance risk within acceptable bounds.

Example: buying on margin

Consider an investor, A, who instructs a broker, B, to purchase 100 shares of
company XYZ when the market price is $10 each. Suppose that A and B have
an arrangement whereby A’s instructions are carried out so long as B holds a
margin of 40 per cent of the transaction value. Hence, in this case, A makes an
immediate payment of $400 and B has effectively loaned A $600. B holds the
shares as collateral against the loan to A.

Sooner or later, A will either (a) take delivery of the shares (and pay B an
additional $600 plus interest and commission fees), or (b) instruct B to sell the
shares (and repay the loan from B). The margin agreement works smoothly so
long as XYZ ’s share price increases above $10. But suppose that the price falls,
say, to $5. Now A owes B more than the value of the collateral, $500. If the
shares are sold, and if A does not pay B an additional $100 (plus transaction
costs), then B loses out. To guard against potential losses of this sort, margin
accounts may require replenishing from time to time. If A does not provide
additional funds when requested, then B might sell some or all of the shares to
avoid realizing a loss.
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A common method for managing margins is to monitor the actual margin,
defined by

actual margin = collateral− loan
collateral

where ‘collateral’ equals the market value of the shares purchased by A and ‘loan’
equals the value of the loan from B to A ($600 in this example).4 Typically, when
a transaction is initiated, the actual margin equals the initial margin (40 per cent
in the example). A maintenance margin is usually set somewhat below the initial
margin. If the actual margin then falls below the maintenance margin, a margin
call for a variation margin is made, obliging the investor to provide sufficient
funds, thus raising the actual margin.5 Thus, in this example, if the share price
falls to $5, A deposits an extra $300, thereby reducing the loan to $300 and
restoring the actual margin to its initial level of 40% = 
500−300�/500.

The authorities in many financial markets enforce rules that govern the provision
of margins. The administrative details differ across authorities and across time,
and are not described here. The important point to grasp is why the margin serves
to minimize the performance risk associated with trading agreements. In addition,
it should be clear that trading on margin can generate very high rates of return on
initial capital – and, also, very great losses. Hence, margin trading can accentuate
price risk.

1.4.2 Short-sales

The notion of ‘going short’ or taking a ‘short position’ is a common one in
finance. In its simplest form this refers to the action of selling an asset. For an
investor who owns an asset that is sold, the action is trivial enough. What may
appear more puzzling is the action of selling an asset that the investor does not
own. This is the act of making a ‘short-sale’ or ‘selling short’.

An immediate reaction might be that a short-sale is an act of deception and,
hence, fraudulent. This is not necessarily the case, however, because the asset may
have been borrowed immediately prior to the sale. Presumably, the motive of the
borrower is that, at a date following the short-sale, the asset will be purchased for
a lower price and returned to its lender. The short-seller then gains the difference
between the sale and purchase prices.

4 More formally, let m denote the margin. Let p equal the price per share, N the number of shares purchased
on margin, and L the value of the loan. Then m= 
pN −L�/pN , or m= 1− 
L/pN�. As p varies, so does
m. If p falls, m may fall so low that the broker demands funds from the investor to reduce L and raise m.

5 It is common to require that the actual margin be restored to its initial value, although it is possible that the
investor may be obliged to restore it only to the maintenance margin threshold. The precise requirement
depends on the terms of agreement between the parties to the transaction and the exchange authorities.
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Whatever the motive, short-sales can and do take place without breaching
codes of conduct or the law. Even so, exchange authorities commonly place
restrictions on the circumstances in which short-sales are permitted. For example,
the rules of an exchange might prohibit short-sales at times when the asset
price is falling. In some cases, short-sales are permitted only when the most
recent recorded transaction involved a price increase – the so-called ‘uptick rule’.
Exchange authorities tend to justify these sorts of rules on the ground that short-
sales at times of falling, or stationary, prices would tend to exacerbate price
volatility.

In addition, only a restricted group of investors may be permitted to engage in
short-sales. For example, short-sales may be limited, as a privilege, to designated
members – say, specialists or market makers – in an exchange. Once again, the
motive is probably to limit price volatility (though it also restricts the freedom to
compete). Also, by restricting the eligibility to undertake short-sales, the scope
for default or dishonesty can be restrained. At the same time, conferment of the
privilege to make short-sales rewards the designated exchange members for the
burdens imposed by their other responsibilities. (For example, each market maker
is normally obliged to ensure that investors can always succeed in trading shares
on a list of companies for which the market maker is responsible.)

Not surprisingly, even when short-sales are permitted, good faith or margin
deposits are normally required to insure against performance risk. Here the
potential for loss arises when the borrower purchases the asset (for return to its
lender) at a price higher than that at which it was initially (short-)sold. In this
circumstance, the existence of the margin deposit serves to ensure that sufficient
funds are available to enable the return of the asset to its owner, though, of course,
the short-seller incurs a loss on the transaction as a whole.

Example: margins with short-sales

Suppose that investor A has an agreement with broker B that allows A to make
short-sales of company XYZ’s shares (the shares might be borrowed from B’s own
portfolio or from the portfolio of one of B’s other clients). Now suppose that A
instructs B to short-sell 100 shares at a market price of $10 each. B will hold
the proceeds, $1000 in A’s margin account, and will also demand an additional
deposit of, say, $400.

Sooner or later A will return the borrowed shares by instructing B to purchase
100 XYZ shares at the ruling market price. If the price has fallen below $10, then
A stands to make a profit (after allowing for the deduction of B’s commission and
other expenses, such as a fee for the loan of the shares). However, if the share
is purchased at a price above $10, then A will make a loss – a loss that might
be so large that an additional payment has to be made to B. Suppose that the
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shares are repurchased at a price of $16. Then A would have to pay another $200
(plus transaction costs) to B. If A defaults, then B makes a loss. To guard against
this contingency, margin deposits are adjusted by margin calls in an analogous
fashion to that when shares are purchased on margin.

With regard to short-sales, the actual margin is defined by

actual margin = collateral− loan

loan

where now ‘collateral’ equals the funds held in the margin account and ‘loan’ is
the current market value of the shares that have been short-sold.6 In the example,
the initial margin is 
1000+400−1000�/1000 = 40%, as required.

Consequently, in the example, if the share price rises to $16 and the short-sale
remains in place, a variation margin of $840 would restore the actual margin to
its initial value, 40% = 
1400+ 840− 1600�/1600. (Once again, the rules for
margins are prescribed by the relevant regulatory authorities. The detailed rules
differ from market to market.)

Just as with buying on margin, short-selling can yield high rates of return but
can also be very risky. Even when short-sales are permitted, the rules governing
margins serve to limit the likelihood of default (performance risk), though the
potential for loss (as a reflection of price risk) remains substantial.

1.5 Arbitrage

1.5.1 The arbitrage principle

Arbitrage plays a central role in financial markets and in theories of asset prices.
Arbitrage strategies are – roughly speaking – patterns of trades motivated by the
prospect of profiting from discrepancies between the prices of different assets but
without bearing any price risk. This quest for profit has an important influence on
market prices, for, in a precise sense, observed market prices reflect the absence
of arbitrage opportunities (sometimes referred to as the arbitrage principle). If
arbitrage opportunities are not absent, then investors could design strategies that
yield unlimited profits with certainty and with zero initial capital outlays. Their
attempts to exploit arbitrage opportunities are predicted to affect market prices
(even though the actions of each investor are, in isolation, assumed not to influence
prices): the prices of assets in excess demand rise; those in excess supply fall.
The ensuing price changes eradicate potential arbitrage profits.

6 More formally, let m denote the margin. Let p equal the price per share, N the number of shares short-sold,
and C the amount of the collateral. The value of the loan from the broker to the short-seller is equal to pN ,
so that m= 
C−pN�/pN , or m= 
C/pN�−1. Once again, m varies with p. If p increases, m may fall so
low that the broker demands funds from the investor to increase the collateral, C, and thus raise m.
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In its simplest form, arbitrage implies the law of one price: the same asset
exchanges for exactly one price in any given location and at any given instant of
time. More generally, arbitrage links the prices of different assets.

Arbitrage reasoning lies at the heart of several important contributions to
financial theory. In particular, both the famous Black–Merton–Scholes theory
of options prices and the Modigliani–Miller theorems in corporate finance are
founded on the absence of arbitrage opportunities. The arbitrage principle also
plays a role in asset price determination when combined with other assumptions.
For example, arbitrage pricing theory is a consequence of marrying the arbitrage
principle with factor models of asset prices (see chapter 8).

Example 1: foreign exchange markets

Suppose that the following exchange rates are observed among British pounds
(£), US dollars ($) and Japanese yen (¥):

£1 = $1�50

¥150 = £1

$1 = ¥120

Given these exchange rates, an investor could borrow £1 and immediately sell it
for $1.50; buy ¥180 with the $1.50; buy £1 for ¥150. Profit = ¥30, after returning
the £1 loan. This is an arbitrage opportunity that, if it persists, would allow
the investor to make unbounded profits. The arbitrage opportunity is sometimes
called a ‘money pump’. Neglectingmarket frictions – a concept examined below –
such price differentials cannot persist. Market prices adjust so that the arbitrage
opportunity disappears. (In this example, £1 = $1�50; £1 = ¥150; $1 = ¥100
would eliminate the arbitrage opportunity.)

Example 2: a bond market

Consider a bond that promises to pay an amount v (its payoff) of, say, $115.50,
one time period from today. What is the price of the bond today?

Let r denote today’s rate of interest (for one-period loans) and suppose that
it is equal to, say, 5 per cent. Investors will be prepared to hold the bond only
if the rate of return is at least r. If the rate of the return on the bond exceeds
r, investors will seek to borrow an unbounded amount, with which to buy an
unlimited number of bonds. This cannot be consistent with market equilibrium
in a frictionless market. Similarly, if r exceeds the rate of return on bonds,
investors will seek to issue (or short-sell) an unlimited number of bonds and lend
the proceeds at rate r. Again, this cannot be consistent with market equilibrium
in a frictionless market.
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The only market equilibrium in this idealized framework is one in which r
equals the rate of return on the bond. The rate of return on the bond is defined by

rate of return on bond ≡ v−p
p

where p is the price of the bond today. Market equilibrium is expressed as

r = v−p
p

which implies that the bond price must be

p= 1
1+ r v=

1
1+0�05

115�50 = $110

Given the interest rate of 5 per cent, a bond that pays $115.50 next period must
have a market equilibrium price equal to $110 today.

1.5.2 Market frictions

Two of the most important market frictions are: (a) transaction costs; and (b) insti-
tutional restrictions on trades. The assumption of frictionless markets (i.e. zero
transaction costs and no institutional restrictions on trades) underpins the absence
of arbitrage opportunities.
Transaction costs intrude in a variety of ways. Among the most obvious are

the explicit commission fees, taxes and other charges levied when trades occur.
The difference between the bid price (at which shares can be sold to a dealer)
and the ask price (at which shares can be purchased) might also be interpreted as
a transaction cost, at least from the perspective of an investor. Other transactions
costs may be less tangible but nonetheless real. For example, the time devoted
to making decisions about buying and selling assets or to issuing instructions to
a broker constitutes a genuine opportunity cost, even though it typically remains
implicit.
Institutional restrictions take the form either of prohibitions on particular classes

of trades, or of conditions that must be fulfilled before trades are permitted.
For example, as already mentioned, short-sales of shares may be restricted in
terms of the circumstances in which they are allowed and who is permitted to
undertake them.

Other frictions are sometimes identified separately or, alternatively, subsumed
within the first two. These frictions include (a) the inability of investors to borrow
or lend in unlimited amounts at a common, risk-free interest rate, and (b) the
availability of some assets in only indivisible units (i.e. ‘lumps’ that are large
relative to the total stock of the asset outstanding). Conversely, in frictionless
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markets investors are unrestricted in their ability to borrow or lend at a given
interest rate, and assets are defined in as small units as needed.

The assumption of frictionless markets is a blatant idealization. In practice,
transaction costs and restrictions on trades are always present. This is no justi-
fication, however, for dismissing the relevance of arbitrage in asset price deter-
mination. For the important question is: how well do markets approximate the
ideal? Some markets are good approximations. In these cases, the absence of
arbitrage opportunities enables accurate predictions about patterns of asset prices.

When frictions are pervasive, few implications about asset prices can be drawn,
even if arbitrage opportunities are absent. Note, however, that frictions do not
necessarily impinge equally on all market participants. If the actions of those
investors for whom frictions are negligible – e.g. specialist institutions and profes-
sional traders – have a significant impact on asset prices, then the observed prices
are likely to reflect the absence of arbitrage opportunities. This will be so even if
most investors face high transaction costs or are restricted in the trades they can
execute.

Perfect and imperfect capital markets

The notion of a ‘perfect’ capital market – and, by implication, ‘capital market
imperfections’ – is widely used but seldom explicitly defined. Almost all defini-
tions would include the requirement that a perfect capital market is frictionless. In
addition, it is often assumed – or taken for granted – that the markets in question
are ‘competitive’ in the sense that the actions of individual buyers and sellers
have no direct impact on prices.

Yet more conditions are commonly assumed or implied. In view of the ambi-
guities inherent in the usage of ‘perfect capital market’, the concept is avoided in
this book.7

1.5.3 All sorts of assets

It is possible to extend arbitrage reasoning – albeit somewhat informally – to
include many different sorts of asset. The components of return (or cost) from
holding an asset can be classified as8

1. Direct, or own, return: q. For an asset such as a house this would be the utility
services (shelter, privacy, etc.) for the persons dwelling in it, or the rent if it is rented
out. For a bond, it would be the interest coupon. For a company’s shares, it would
be the dividend.

7 See Stigler (1967) for perceptive insights about the nature of capital market imperfections, especially in the
context of industrial organization.

8 The classification follows Keynes’s General Theory (1936, pp. 225–7).
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2. Carrying cost: c. This is the opportunity cost of storing the asset. It is negligible for
many financial assets but for physical commodities (e.g. wheat in storage or a house,
which needs maintaining over time) the carrying cost is positive.

3. Convenience or security yield: $. This reflects the ease with which the asset can be
turned into cash without risk of loss. Keynes calls $ the liquidity premium of an asset:
‘the amount � � � which they [investors] are will to pay for the potential convenience
or security given by [the] power of disposal’ (1936, p. 226).

4. Expected capital gain or loss: g. This is the amount by which the market value of the
asset changes over the ensuing time interval.

It might seem reasonable to suppose that, taking into account all four factors,
every asset should yield the same return – otherwise investors would sell assets
with low yields and buy those with high yields. Consequently, for any pair of
assets i and j

qi− ci+$i+gi = qj− cj+$j+gj (1.3)

Expression (1.3) forms the foundation for Keynes’s monetary theory in an intrigu-
ing chapter of The General Theory entitled ‘The Essential Properties of Interest
and Money’ (chap. 17). There is no consensus on exactly what Keynes is getting
at, and the chapter remains an enigma in monetary theory.

Although it is tempting to interpret equation (1.3) as an implication of the
absence of arbitrage opportunities, this is not strictly correct. The reason is that
the capital gain or loss terms, gi and gj , are typically unknown when investment
decisions are made, thus violating the requirement that arbitrage strategies are
risk-free. Even so, in the presence of forward markets, a variant of (1.3) is central
to the analysis of arbitrage (see chapter 14).

1.5.4 Summary of arbitrage

1. The word ‘arbitrage’ is often used in a loose and imprecise way. In this book its use is
confined to trading strategies that (a) require zero initial capital and (b) are risk-free.9

2. The implications of the absence of arbitrage opportunities are most revealing when
markets are frictionless. When frictions are not negligible, the absence of arbitrage
opportunities tends to be uninformative about the pattern of asset prices.

3. The arbitrage principle applies much more widely than in the examples outlined in
this section. The logic can be extended to circumstances in which asset payoffs are
uncertain (chapter 7) and also to assets that yield payoffs for many periods in the
future (chapter 10). It is particularly important in the study of derivatives, such as
options (chapter 18).

9 Occasionally it is necessary to examine investment strategies that are roughly like arbitrage in the sense
that risks are small but non-zero. In these cases, the usage of the term will be qualified as approximate or
limited arbitrage. The word ‘arbitrage’ on its own, as used here, always refers to the strict sense of being
risk-free and requiring zero initial capital.
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4. Arbitrage analysis places only mild requirements on investors’ preferences; it is
merely assumed that investors prefer more wealth to less. No assumptions are needed
about investors’ attitudes to risk or about their beliefs with regard to the prospects
of receiving particular payoffs. In this sense, the arbitrage principle applies very
generally.

5. In frictionless asset markets, the absence of arbitrage opportunities serves to link asset
prices. In the foreign exchange example, some patterns of exchange rates can be
excluded, but the absence of arbitrage opportunities on its own is silent about the level
of each rate. In the bond market example, the bond price is linked to the interest rate;
the absence of arbitrage opportunities on its own is not enough to determine both.
Hence, the arbitrage principle provides a partial theory of asset prices.10

1.6 The role of time

The length of the unit time interval – say, between dates t and t+1 – is often left
implicit in finance, as well as in economics more generally. This section seeks
to clarify the several interpretations that are given to time intervals in financial
economics. The simplest usage is just a convention that asset yields are expressed
as rates of return per annum (i.e. per calendar year) even though an asset may be
held for time periods greater or less than a year.

1.6.1 Measuring rates of return

Suppose that a security promises a payoff of $120 at the end of two years in return
for $100 invested today. Is the rate of return equal to 10 per cent per annum?
The answer depends on how frequently the return is compounded. If there is no
compounding at all, then the net payoff of $20 = $120−$100 averaged over two
years is 10 per cent per annum. But suppose that the return is compounded once
per year; then the rate of return is less than 10 per cent per annum because part
of the $20 is assumed to be paid at the end of the first year – the rate of return is
approximately 9.54 per cent per annum: $120 ≈ 
1+0�0954�
1+0�0954�×100.
It is as if a payoff of $9.54 is received at the end of the first year, with a 9.54
per cent rate of return on $109.54 in the second year.

If the return is compounded every six months, then the annual rate is even
lower at approximately 9.33 per cent: $120 ≈ 
1+0�0933/2�
1+0�0933/2�

1+0�0933/2�
1+0�0933/2�×100.11

10 In order to obtain definite predictions about the linkages among asset prices, the arbitrage principle on its own
is often not sufficient. For example, in the Black–Merton–Scholes option price model an assumption has to
be made about the random process generating stock prices – a process known as ‘geometric (or logarithmic)
Brownian motion’ in continuous time. Given this assumption, the absence of arbitrage opportunities permits
the derivation of a formula linking the option price with the underlying stock price (see chapter 19).

11 Notice that the six-monthly rate is approximately 0�0466 ≈ 0�0933/2, but, by convention, rates are quoted
per annum – i.e. 9.33 per cent.
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The example shows that, even if rates of return are quoted ‘per annum’,
their values depend on the frequency of compounding – i.e. how the payoff is
accumulated over the life of the asset. There is no consensus solution to this
ambiguity. A common practice in finance is to assume that the payoff on an asset
accumulates continuously over its life. In the example above this rate – known
as the ‘force of interest’ – is approximately 9.12 per cent per annum.

To calculate the force of interest, subtract the natural logarithm of the initial
investment from the natural logarithm of the investment’s payoff, then divide by
the length of time between the two. In the example: 
ln 120 − ln 100�/2≈ 0�0912.
It is as if the investment of $100 at date t grows at a continuous annual rate of
approximately 9.12 per cent, so that, at date T in the future, its value equals
100× e0�0912×
T−t�. Hence, for T − t = 2 years, 100× e0�0912×
2� ≈ 120 (where
‘e’ is the base of the natural logarithms). A detailed explanation of the principles
underlying these calculations is provided in appendix 1.3.

1.6.2 The horizon and the decision period

In studying portfolio behaviour it is important to distinguish two time intervals.

1. Horizon. An investor’s horizon is the time between the present and the date at which
investments are to be liquidated – that is, sold or turned into cash.12

2. Decision period. The decision period is the interval of time between successive dates
at which decisions are made about acquiring or disposing of assets.

An investor might, for example, have a horizon of twenty years but make
portfolio selection decisions every month. In the most basic models, such as
those in chapter 5, the horizon and the decision period are assumed to be the
same. In more complicated environments, such as those explored in chapter 11,
the horizon is longer than the decision period; also, the investor can choose to
liquidate capital for consumption at each decision date, or, alternatively, add to
the total portfolio with savings from other sources of income.

Personal circumstances normally determine the length of an investor’s horizon.
For example, a twenty-year-old might have a horizon of fifty or sixty years, while
that for an eighty-year-old will be much shorter.

What determines the decision period? Market frictions – in particular, transac-
tion costs – are crucial here. In the ideal world of frictionless markets, with zero
transaction costs, there is no reason why investors should not change their asset
holdings at every instant of time – trading would be continuous. In many abstract
finance models this is precisely what is assumed; a formal analytical framework
has been developed to handle trading in continuous time.

12 The investor’s horizon might differ among assets, with some to be liquidated sooner than others, but this
complication is ignored here.
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Regardless of whether continuous trading is a reasonable approximation of
reality, decision making is often easier to comprehend if there is a finite time,
such as a month or a year, between decisions. This interval could be interpreted
to reflect the presence of transaction costs, though this is not essential. Instead,
it is commonly assumed (with little explicit justification) that decisions are made
at discrete dates but that markets are otherwise frictionless.

1.7 Asset market efficiency

Throughout history, even to the present, financial markets have been susceptible to
extreme price fluctuations, even collapse. (Some of the most notorious incidents
are reviewed in chapter 10.) The potential, and sometimes actual, failure of capital
markets provokes wild accusations in the popular media, especially at times of
crisis. Financial economics tries to be less sensational than the media by assessing
asset market performance according to standards of ‘efficiency’. The concept of
efficiency has several varieties in this context. The main types are these.

1. Allocative efficiency refers to the basic concept in economics known as Pareto effi-
ciency. Briefly, a Pareto efficient allocation is such that any reallocation of resources
that makes one or more individuals better off results in at least one individual being
made worse off.13

The so-called ‘first fundamental theorem of welfare economics’ states that an
equilibrium with a complete set of perfectly competitive markets is Pareto efficient.14

It is commonly assumed that the set of markets is incomplete – i.e. that there are
many ‘missing markets’. Why this is so may not be immediately obvious, but it is
intimately bound up with time and uncertainty (see chapter 4). An implication of
the incompleteness of markets is that any allocation of resources is almost surely not
first-best Pareto efficient (even if markets are perfectly competitive). The challenging
intellectual problem of studying whether allocations are second-best efficient when
markets are incomplete is not examined in this book.

2. Operational efficiency mainly concerns the industrial organization of capital markets.
That is, the study of operational efficiency examines whether the services supplied by
financial organizations (e.g. brokers, dealers, banks and other financial intermediaries)
are provided according to the usual criteria of industrial efficiency (for example,
such that price equals marginal cost for the services rendered). Hence, studies of
operational efficiency investigate the determination of commission fees, competition
among financial service providers and even competition among different financial

13 For a detailed introductory treatment, see, for example, Varian (2003, chap. 30). Debreu (1959, chap. 6)
is definitive.

14 The second fundamental theorem asserts that, under certain conditions (essentially, convex preferences and
production technologies), any Pareto efficient allocation can be sustained as a competitive equilibrium in
conjunction with an appropriate redistribution of initial resource endowments among households.
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market centres. Some of these issues are reviewed in chapter 2, where it is found
that operational efficiency is intimately related to informational efficiency, introduced
next.

3. Informational efficiency refers to the extent that asset prices reflect the information
available to investors. In a sense that deserves to be made more precise, markets are
said to be informationally efficient if the market prices fully reflect available informa-
tion. The so-called efficient markets hypothesis is intended to provide a benchmark
for assessing the performance of financial markets in reflecting information. Although
the concept of informational efficiency appears transparent enough, there are pitfalls
in its application. These are studied, together with allied topics, in chapter 3.

4. Portfolio efficiency is a narrower concept than the others. An efficient portfolio is one
such that the variance of the return on the portfolio is as small as possible for any given
level of expected return. Efficiency in this context emerges from the mean-variance
theory of portfolio selection – a topic studied in chapter 5.

Among the concepts of efficiency, the second and third (operational and infor-
mational efficiency) feature most extensively in financial analysis. Allocative
efficiency is, in a sense, the most fundamental, in that it involves the whole
economy. However, the subject is a difficult one and little is known beyond a
few general – mostly negative – propositions.

Regrettably, ‘efficiency’ is one of the most overused and abused words in finan-
cial economics. Assertions are often made that markets are efficient or – more
commonly – inefficient, little or no attention being given to the term’s inherent
ambiguities. For this reason, ‘efficiency’ as a concept in financial economics is
best avoided unless accompanied by a precise characterization of its usage.

1.8 Summary

This chapter has introduced several of the main themes in financial economics –
themes that provide a framework for the study of asset markets and that are
explored in the following chapters.

1. Financial markets are treated as markets for stocks. Equilibrium prices are defined to
be those that clear markets at each date; that is, in equilibrium, asset prices are such
that existing stocks are willingly held, given the decision rules adopted by investors.

2. Investors are assumed to make their choices consistently, in accordance with their pref-
erences, taking into account their beliefs about the future and their wealth constraints.
The implications of this analysis provide the decision rules for selecting portfolios.

3. In frictionless markets the absence of arbitrage opportunities enables definite predic-
tions about how asset prices are linked together.

4. Rates of return are typically quoted at annual rates. But investors may have horizons
greater or less than a year and may revise their decisions many times before the
horizon is reached.
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5. Asset market efficiency is a concept open to different interpretations. Several aspects
of efficiency have been introduced, the two most commonly encountered in financial
economics being (a) informational efficiency (that asset prices reflect available infor-
mation) and (b) operational efficiency (that asset markets function according to the
tenets of industrial efficiency).

Further reading

Many textbooks in finance contain substantial amounts of introductory material.
For a thorough coverage, either of the following is worth consulting: Elton,
Gruber, Brown and Goetzmann (2003, chaps. 1–3); or Sharpe, Alexander and
Bailey (1999, chaps. 1–3). Tobin and Golub (1998) cover much of the subject
matter of financial economics with a different emphasis, namely that of placing
the subject in the context of monetary economics and banking.

Students of modern finance swiftly realize that a grasp of mathematics is
necessary to progress very far. Cvitanić and Zapatero (2004) offer a textbook
exposition in which mathematical methods find prominence. The coverage of
chapter 1 of their book is similar to that here. Subsequent chapters of the book,
while in a different sequence from that adopted here, explore many of the same
topics, though with significantly greater emphasis on the relevant mathematics.

The contributions comprising Crane et al. (1995) pursue in depth the func-
tional perspective outlined in section 1.1; chapter 1 is especially interesting.
A comprehensive description of financial institutions appears in Kohn (2004).

For details of stock price averages and indexes, a good starting point is The
New Palgrave Dictionary of Money and Finance (Newman, Milgate and Eatwell,
1992), particularly the entries on ‘stock market indices’, ‘Dow Jones indicators
of stock prices’ and ‘Financial Times indexes’. To keep up to date with the
precise rules by which the indexes are defined, the World Wide Web is a valuable
resource: all the major indexes can be found via any of the readily available
search engines.

A classic reference on the fundamental nature of capital markets, more impor-
tant for the problems it poses than for the solutions it derives, is that by Keynes
(1936, chap. 12).

Appendix 1.1: Averages and indexes of stock prices

It is common to express overall stock market trends in terms of averages or
indexes of the prices of individual companies’ shares. These averages are defined
in a variety of ways and used for a variety of different purposes. For example,
they are often used to provide a summary of share price changes on a particular
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day or over some time period, such as a week, month or year. Alternatively,
they can be used as benchmarks against which to evaluate the performance of
particular investment strategies. They also play an important role in tests of asset
pricing theories (see chapters 6 and 8).

Probably the most well-known of all stock price averages is the ‘Dow-Jones’,
the ‘Dow’ or – more precisely – the Dow-Jones Industrial Average (DJIA). The
DJIAt is an average of the prices of thirty large American corporations at date t.
The rule for its calculation is given by

DJIAt =
p1(t+p2(t+· · ·+p30(t

30z
(1.4)

where pj(t is corporation j’s share price at time t. If z, in the denominator
(the role of which is explained below), is set equal to unity, z = 1, then the
DJIAt is simply an equally weighted average of the prices for the thirty chosen
corporations. The ‘blue-chip’ corporations selected for membership of the DJIA
change only infrequently (typically as a consequence of mergers or the acquisition
of one company by another). In aggregate they represent about 20 per cent of the
total market value of all publicly quoted US shares.

Although the composition of the DJIA is quite stable over time, a complication
arises because corporations occasionally split their shares (say, making every old
share equal to two new ones) or pay dividends in the form of new shares (say,
one extra share for every five shares already held).15

Unless the average is adjusted, a discontinuity would occur whenever such an
event takes place. For example, suppose that there are just two corporations, A and
B, in the index, with prices of 100 and 60 respectively. The average is thus equal to
80 = 1

2 × 
100+60�. Now suppose that corporation A makes a two-for-one split.
Without adjustment, the average instantly drops to 55 = 1

2 × 
50+ 60�, though
no substantive change of any sort has occurred. This is where the z factor –
the divisor – in (1.4) comes in. The value of z is chosen so that the average
does not change instantly as a consequence of the change. In this case, if
z= 
50+60�/
100+60�= 11/16, then the average remains at 80:

100+60
2

= 50+60
2× 
110/160�

= 80

15 Stock splits are made for a variety of reasons. A common one is to make the total stock of a corporation
more highly divisible and thus possible to trade in small units. Suppose, for example, that the price of a
corporation’s shares is $200. The smallest increment for trading is then one share, or $200. If there is a
ten-for-one split, then the smallest increment is $20, a more convenient number for precise calculations that
seek to avoid rounding approximations.
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Of course, the average could change afterwards if investors draw inferences
(favourable or unfavourable) about the motives for corporation A’s stock split.

As time passes, numerous stock split and stock dividend events will occur. At
each such event, the z value will be changed (typically reduced) to reflect the
redefinition of units. Formally, the updating rule for divisor is as follows:

new divisor = total of prices after the event
total of prices before the event

×old divisor

For example, in August 2002 the DJIA divisor was reduced from 0.14445222
to 0.14418073 following Citigroup’s spin-off of its subsidiary Travelers Property
Casualty (TPC), an insurance company. (The shares were distributed to existing
Citigroup stockholders.) By June 2004 the divisor had become 0.14090166, when
(on 21 June) it was reduced to 0.13561241 as a consequence of a two-for-one
split in the common stock of Proctor & Gamble.

The DJIA is an example of a ‘price-weighted’ index. Despite their simplicity,
such indexes have drawbacks. Most importantly, they do not reflect the capital
value of each corporation in the market as a whole (a very small corporation with
a high share price could dominate the index). Also, price-weighted indexes are
not very convenient for making systematic appraisals of portfolio strategies or
testing asset pricing theories. In order to define more suitable measures, consider
first a very general expression for a stock market index as of date t:

It = w1p1(t+w2p2(t+· · ·+wnpn(t (1.5)

where there are n companies represented in the index and wj denotes the weight
attached to company j’s share price at date t. For the DJIA, n = 30 and wj =
1/30z.

Many stock price indexes are defined so that wj reflects the ‘size’ of the
company as measured by its total market value at a specified base date. Suppose
that the base date is labelled as date zero, 0. For these ‘value-weighted’ or
‘capitalization-weighted’ indexes, the weights are defined as

wj =
Xj(0

D
(1.6)

where

D = p1(0X1(0 +p2(0X2(0 +· · ·+pn(0Xn(0
where the zero, ‘0’, subscript denotes the base date, Xj(0 denotes the total number
of the jth company’s shares on the base date and pj(0 is the share price for the
jth company on the base date. Here the ‘divisor’, D, equals the total value of all
the shares in the index at the base date.
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Hence, with weights defined in (1.6), the index at date t represents an average
of share prices relative to the average of prices at a base date, each price being
weighted by the number of its company’s shares.

Suppose that the total number of shares changes for one or more compa-
nies. Should the ‘old’ number of shares outstanding be used (so that D remains
unchanged), or should D be recalculated with the ‘new’ number? This is a stan-
dard ‘index number problem’, for which there is no universally accepted solution.
Using the ‘old’ quantities corresponds to the Laspeyres weighting scheme, while
using the ‘new’ corresponds to Paasche weighting. Most share price indexes are
calculated according to the Paasche weighting scheme.

Determination of the Xj(0 (the number of shares outstanding for each company)
is not as obvious as it might appear, for a portion of shares might be held
under constraints that limit the opportunities for their sale. Consequently, in the
construction of some indexes an attempt is made to estimate the volume of each
company’s shares available for trading – the so called ‘free float’ – by excluding
the amounts of shares held by institutions, individuals or governments that, for
some reason, are unlikely (or unable) to sell them.

An example of a capitalization-weighted index is the Financial Times Stock
Exchange 100 (‘FT-SE 100’) index of the hundred largest companies, by capi-
talization, traded on the London Stock Exchange (LSE). Another example is
Standard and Poor’s 500 (‘S&P 500’), index of stocks traded in New York. The
FT-SE 100 was defined so that its value on 3 January 1984 equalled 1000. The
S&P 500 was constructed so that its value for 1941 to 1943 equalled 10.

While indexes such as the FT-SE 100 and S&P 500 are widely used, their
application is not without pitfalls. One complication is that they are often adjusted
to include dividend payments. This is not, in practice, a drawback, for it allows
the index value to be interpreted as the ‘payoff’ on a portfolio of shares with
weights given by the index.

An important pitfall is that the composition of the indexes changes, sometimes
quite frequently, with the passage of time. Thus, for instance, when the ranking
of the largest companies quoted on the LSE changes, it becomes necessary to
alter the membership of companies in the FT-SE 100 index. Quarterly reviews
are made of the index – and changes can take place more often than that. Conse-
quently, investment strategies such as ‘buying the market’ (where the ‘market’ is
represented by the composition of the relevant index) are not as simple as they
might at first seem. Moreover, because companies that perform poorly tend to
drop out of the index, an upward ‘survivorship bias’ is imparted to the stock index
over long periods of time.

Whatever their faults, it is possible to interpret the indexes considered so far as
portfolios that investors could purchase – in principle, at least. This is not so for
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all indexes. For instance, it is not the case for geometric averages or indexes (as
distinct from the arithmetic averages above). A geometric price-weighted average
of n share prices would take the form

n
√
p1(tp2(t � � � pn(t

that is, the index equals the nth root of the product of the share prices. An example
is the Value Line Composite Index of about 1700 stocks with prices quoted in
New York. Notice that the index, say Gt, is normally expressed relative to some
base date, 0, as follows:

Gt =
n
√
p1(tp2(t � � � pn(t

n
√
p1(0p2(0 � � � pn(0

= n

√
p1(t

p1(0
× p2(t

p2(0
×· · ·× pn(t

pn(0

In words: Gt equals the geometric mean of share prices relative to their values
at a base date.

The expression for the value line index suggests a variant sometimes known
as an arithmetic value line index, say At (as distinct form the geometric form
above):

At =
1
n

(
p1(t

p1(0
+ p2(t

p2(0
+· · ·+ pn(t

pn(0

)
In words: At equals the arithmetic mean of share prices relative to their values at
a base date.

While each of these indexes has its advocates, no one index dominates the rest.
It is comforting, at least, that they do all tend to move in the same direction, albeit
with different magnitudes.

Appendix 1.2: Real rates of return

This appendix derives an expression for the real rate of return on an asset. Let zt
denote the price level of output or ‘goods’ – that is, zt can be interpreted as the
amount of money that must be paid at date t, to obtain one unit of consumption.
(It is assumed that there is just one sort of commodity in the economy, so that
index-number problems in defining the overall price level can be ignored.) Let
the symbol 1t+1 denote the rate of inflation between t and t+1, formally defined
as 1t+1 ≡ 
zt+1/zt�− 1 (or 1t ≡ 
zt/zt−1�− 1). For example, if zt = 100 and
zt+1 = 105, the rate of inflation is 5 per cent – 1t+1 = 0�05.

Let yt+1 denote the rate of return on the asset in question between dates t and
t+1. By definition, yt+1 ≡ vt+1/pt−1. This is the nominal rate of return on the
asset (because the price and payoff are both denominated in units of money). For
example, if pt = 20 and vt+1 = 24, then yt+1 = 0�20 – i.e. 20 per cent.
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The real rate of return on the asset is defined as the rate of growth of output
achieved by investing one unit of output in the asset at date t and transforming
the asset back to output at date t+1. That is, one unit of output is sold for money
at t, the money being used to buy the asset. At t+1 the asset is sold for money,
which is then used to buy output. The real rate of return is, then, the proportional
rate of growth in the value of the asset measured in units of output rather than
units of money.

At t, one unit of output is worth zt in money. Thus, zt could be used to
purchase zt/pt units of the asset. Each unit of the asset is worth vt+1 (its payoff)
in money at t+ 1. Hence, the investment in the asset is worth vt+1 × zt/pt in
money at t+1. Now divide by the price level, zt+1, to give the value of the asset
at t+1 measured in units of output:

vt+1

pt

zt
zt+1

= 
1+yt+1�
zt
zt+1

= 1+yt+1

zt+1/zt
= 1+yt+1

1+1t+1
(1.7)

Expression (1.7) is the amount of output at t+1 accumulated by investing one
unit of output in the asset from t to t+1. The real rate of return on the asset is
simply this amount minus the one unit of output invested at t:

1+yt+1

1+1t+1
−1 = 1+yt+1−1−1t+1

1+1t+1
= yt+1−1t+1

1+1t+1
≈ yt+1−1t+1 (1.8)

Thus, the real rate of return equals the nominal rate of return, yt+1, minus the
rate of inflation, 1t+1; i.e. yt+1−1t+1. In terms of the numerical example,

1+yt+1

1+1t+1
−1= 24/20

105/100
−1≈ 14�29%≈ 15%= 0�20−0�05= yt+1−1t+1 (1.9)

Expression (1.9) becomes more accurate the smaller the rate of inflation. Alter-
natively, the approximation in expression (1.8) becomes an exact equality if the
rates of return are defined at an instant in continuous time – that is, if the length
of the time interval between t and t+1 is infinitesimal. Calculus reasoning then
establishes that the real rate of return at t equals yt−1t, exactly (see appendix 1.3).

Appendix 1.3: Continuous compounding and the force of interest

This appendix shows how the rate of return on an asset is measured when its
payoff accumulates over time at ever-increasing frequencies. The outcome is an
important limiting result, known as the force of interest, that provides a benchmark
for calculating rates of return.

Assume, following convention, that the unit time interval is one calendar year,
and let r denote the annual rate of return with no compounding. Suppose, for
example, that r = 0�10, i.e. 10 per cent. Then, at the end of the year, one unit of
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wealth grows to 1+0�10= 1�10. If the return arrives at six-monthly intervals, then
the rate of return, denoted by �, satisfies 
1+�/2�
1+�/2�= 
1+�/2�2 = 1�10.
The payoff now accumulates more frequently, and hence �< r (it is approximately
9.76 per cent).

Suppose that interest is paid ever more frequently. A table of values shows the
results:

Frequency

Annually 
1+��= 1�10 �= 0�10

Six-monthly
(
1+ �

2

)2 = 1�10 �≈ 0�0976177

Quarterly
(
1+ �

4

)4 = 1�10 �≈ 0�0964548

Monthly
(
1+ �

12

)12 = 1�10 �≈ 0�0956897

Weekly
(
1+ �

52

)52 = 1�10 �≈ 0�0953976

Daily
(
1+ �

365

)365 = 1�10 �≈ 0�0953226

Hourly
(
1+ �

8760

)8760 = 1�10 �≈ 0�0953107

Notice that, as the payoff accumulates more frequently, the rate of return
(measured by �) declines but converges to a positive number. It is possible to
show that � converges to approximately 0.09531018 – i.e. roughly 9.53 per cent.

A sketch of how the limit is obtained is as follows. Suppose that the return
is compounded n times per year (e.g. n = 52 for weekly compounding). Also,
define m≡ n/� and write the total amount accumulated as(

1+ �

n

)n = (
1+ 1

m

)m�
=
[(

1+ 1
m

)m]�
(1.10)

Increasing the frequency of compounding corresponds to a value of n (and
hence m) that becomes ever larger – so that with monthly compounding 
n= 12�,
weekly 
n= 52�, daily 
n= 365�, hourly (n= 8760), and so on. As m increases
without bound, it can be proved that the term in square brackets, 
1+ 1/m�m,
converges to e≈ 2�7182818284 – a positive constant.

The number ‘e’ appears widely in mathematics and forms the base of the natural
logarithms (ln e≡ 1). There is evidence to suggest that the discovery of emay have
had its origins in practical finance. (For a fascinating history of e, see Maor, 1998.)

In summary, one unit of wealth invested at a rate equal to �, continuously
compounded (i.e. in the limit as n→ �), accumulates to e� at the end of one
unit time interval (conventionally, a year). If r denotes the rate of return without
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compounding, then by construction 1+ r = e�, or, equivalently, �= ln
1+ r�. In
this context, � is referred to as the force of interest.

Time intervals greater or less than a year (the unit value) are handled as follows.
Areturncontinuouslycompounded for two-year intervals at rate�accumulates toe2�

at the end of the period. If the length of the period is T − t years, from today (date t)
to date T , then each unit of wealth accumulates to e�
T−t� at T , starting from t.

For a bank account or a bond, the frequency at which interest is accumulated
depends on the contract between the bank and the depositor (borrower and lender
in the case of a bond). It is not uncommon for interest on bank accounts to
be compounded daily. Hence, the exponential form may be a close approxima-
tion, at least with frequent compounding and for interest rates that are normally
experienced (i.e. not spectacularly high).

Notice that e�
T−t� can be referred to as an interest factor: it is the factor by
which any starting principal at date t is multiplied in order to obtain its value at
date T . Thus, an amount A at date t grows to Ae�
T−t� at date T . The reciprocal
of the interest factor is a discount factor: e−�
T−t�. Thus, an amount M to be
received at T has a net present value (NPV) today (date t) equal to Me−�
T−t�.

Calculating the force of interest, �, is straightforward. Suppose that an invest-
ment of $200 today increases in value to $500 in eight years’ time. Then,
�= 
ln
500�− ln
200��/8 ≈ 0�114536 – i.e. roughly 11.45 per cent.

More generally, suppose that an investment of A at t results in a payoff of M
at date T . Then, � is defined such that Ae�
T−t� =M . Hence, lnA+�
T − t�=
lnM . Rearranging gives � = 
lnM − lnA�/
T − t�. In the example, A = $200,
M = $500, and T − t = 8.

To allow for price level changes, suppose that the price level of output is
zt at date t, and zT at date T . Now, in real terms (i.e. in terms of output), an
investment of A/zt results in a payoff ofM/zT at T . Following the previous para-
graph, define �̃ to satisfy 
A/zt�e

�̃
T−t� =M/zT . Hence, lnA− ln zt+ �̃
T − t�=
lnM− ln zT . Rearranging gives

�̃= lnM− lnA
T − t − ln zT − ln zt

T − t = �−1
where 1 = 
ln zT − ln zt�/
T − t� denotes the continuously compounded inflation
rate (the ‘force of inflation’, if you like) over the time interval t to T . Thus, the
real interest rate, �̃, equals the nominal interest rate, �, minus the inflation rate, 1.

Continuing the previous example, suppose that an investment of $200 today
increases in value to $500 in eight years’ time and, over the same interval, the price
level increases from 100 to 170. Hence, 1 = 
ln
170�− ln
100��/8≈ 0�066329 –
i.e. roughly 6.63 per cent. The real interest rate then equals 11�45−6�63= 4�82% –
i.e. the nominal interest rate minus the inflation rate.
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2

Asset market microstructure

Overview

The previous chapter outlined an approach to asset price determination that focuses
on stocks. In summary: the realized market price is such that the existing stock
of each asset is willingly held by investors in the aggregate – the demand to
hold the stock is equal to its supply. A second approach to price determination
focuses on flows: the asset price is such that the flow of purchases over a short
interval of time equals the flow of sales. That is, the total demand from all those
investors who seek to add to their holdings of the asset equals the total supply
of all those investors who seek to reduce their holdings. The two paradigms are
not necessarily incompatible. Neither is necessarily right or wrong. They are
just different ways of analysing the same thing – namely, what determines asset
prices.

This chapter, unlike most that follow, adopts the second paradigm. Viewing
prices as determined by flows of assets is particularly useful in exploring the
details of how prices are set in practice and the behaviour of those who set them.
Following a brief review of some basic features of market activity in section 2.1,
section 2.2 studies the commonest trading mechanisms found in asset markets.
Section 2.3 considers asset markets from the perspective of industrial organization
and reviews the nature of competition within and between the markets.

The organization of asset markets continues to experience rapid and far-reaching
institutional change. Innovations, particularly with respect to information tech-
nology, the Internet and the expansion of e-commerce, are largely responsible
for these changes. Their impact is ongoing and yet to be fully grasped, though
tentative remarks are made at relevant points in the remainder of the chapter.

Sections 2.4, 2.5 and 2.6 study some of the models that have been proposed
to explain asset prices from the perspective of trade flows. The simplest of the
models evades the question of why investors seek to trade. It treats the trade flow
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as exogenous and explains the difference between ask prices (at which dealers
sell) and bid prices (at which dealers buy) as a reflection of the inventory costs
borne by dealers, together with their market power and their aversion to risk.

An alternative class of models emphasizes the motives for trade by investors that
emerge from differences in information among investors, and between investors
and dealers. Asset prices are then explained as the outcome of a process of
competition between market participants, some of whom have better information
than others about the underlying value of the assets they trade.

2.1 Financial markets: functions and participants

What is a ‘market’? From an economic perspective, a market is any set of
arrangements that enables voluntary agreements to be reached among its partici-
pants. There are three crucial elements in the definition. First, the set of arrange-
ments can include diffuse, largely unorganized networks, such as foreign exchange
markets, as well as highly organized institutions, such as futures markets. Second,
the agreements need not be formal contracts, though they may be so. Third, the
agreements are voluntary, although the coercive sanction of the law may be
invoked to ensure that the agreements are implemented.

Several functions must be performed by any market.

1. To disseminate information, thus promoting price discovery. That is, the market
should enable participants who want to buy or sell to find out the prices at which
trades can be agreed.

2. To provide a trading mechanism, thus facilitating the making of agreements. That is,
there must be a means by which those who wish to sell can communicate with those
who wish to buy.

3. To enable the execution of agreements (sometimes known as the ‘settlement function’).
That is, the market should ensure that the terms of each agreement are honoured:
(a) to confirm the transaction; (b) to clear the trade (ensure that the new ownership
of the security is registered with its issuer); and (c) for the settlement of accounts
(exchange of money). Broadly, there is a need to guard against fraud, default or other
misconduct. It is in this context that the regulation of financial markets is particularly
important.

Many, though not all, financial exchanges are associated with a designated clearing
house that supervises, and provides administrative procedures for, the settlement of
contracts. In addition, arrangements have to be made for the safe custody of assets.

The settlement function of financial markets is often taken for granted. Its fulfilment
is relegated to the ‘back office’ of financial organizations. Economic theory does not
have much to say about this function, except to suggest that it has the characteristics of
a ‘public good’, with implications for the stability of the financial system as a whole.
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It is noteworthy that the failure of settlement arrangements often signals the origin
of many dramatic upsets in financial markets – e.g. the collapse of Barings Bank in
1995. Also, deliberations about how to organize settlements can lead to protracted
controversies – e.g. over the development in the early 1990s of a settlement system
for shares traded on the London Stock Exchange.

The functions of a market are, in a trivial sense, performed directly or indirectly
by its participants. In addition to the authorities that regulate the markets, the
participants in markets can be classified into three broad groups, according to
their motive for trading.

1. Public investors, who ultimately own the assets and who are motivated by the returns
from holding the assets. Public investors include private individuals, trusts, pension
funds and other institutions that are not part of the market mechanism itself.

2. Brokers, who act as agents for public investors and who are motivated by the remu-
neration received (typically in the form of commission fees) for the services they
provide. Under this interpretation, brokers trade for others, not on their own account.

3. Dealers, who do trade on their own accounts but whose primary motive is to profit
from trading – rather than from holding – assets. Typically, dealers obtain their return
from the difference between the prices at which they buy and sell the asset over short
intervals of time.

In practice the three groups are not mutually exclusive: some public investors
may occasionally act on behalf of others; brokers may act as dealers as well
as holding assets of their own; and dealers often hold assets in excess of the
inventories needed to facilitate their trading activities. There may be several
categories of brokers and dealers distinguished by their access to, or ownership
of, the market institutions. Also, in many markets there are designated dealers
who have particular obligations to ensure that the trading mechanism functions
smoothly. These are the so-called market makers or specialists. In return for
fulfilling their obligations, market makers are normally granted privileged access
to certain administrative procedures or market information.

In the financial markets that exist around the world a wide variety of forms
of organization govern the interactions among market participants. The more
traditional, and still widespread, exchanges are reviewed in section 2.3. During
the late 1990s electronic communications networks (ECNs) emerged as rivals to
the more traditional exchanges. In response to this challenge, organized exchanges
have tended to adopt the new technologies in order to fend off encroachment from
the ECNs.

The trading mechanisms employed by organized exchanges and ECNs deserve
special attention, and are covered in the next section. Then, in section 2.3, the
industrial organization of financial markets is explored.
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2.2 Trading mechanisms

The many different trading mechanisms observed in financial markets fall roughly
into two groups: quote-driven and order-drivenmarkets. An inspection of existing
markets reveals immediately that a rigid demarcation between the two types is
an oversimplification. Moreover, rapid innovation (especially in the application
of information technology) has led to developments that could hardly have been
imagined only a few years ago. Even so, treating quote-driven and order-driven
markets as distinct yields insights, as described below.

2.2.1 Quote-driven markets

Quote-driven markets, sometimes known as dealer markets, are those in which
dealers quote bid and ask (or offer) prices at which they are prepared to buy or
sell, respectively, specified quantities of the asset. The LSE traditionally operated
in this way, although now an order-driven mechanism is available for trading
in the shares of large companies. In New York, NASDAQ1 is an outstanding
example of a quote-driven market.

Dealer markets require little formal organization but need mechanisms for
publicizing the dealers’ price quotations, for regulating the conduct of dealers
and for administering the settlement of contracts. In London the quotations are
publicized on the SEAQ (Stock Exchange Automated Quotations) system, similar
to NASDAQ in New York. In return for access to these facilities, the dealers must
adhere to the market authority’s rules, most importantly that of being obliged to
quote ‘firm’ bid and ask prices at which they guarantee to make trades of up to
specified volumes.

Figure 2.1 depicts a simplified view of the relationship between bid, pb, and
ask, pa, prices. The horizontal axis measures the quantity, Q, of the asset traded
each period. Q has a flow dimension: a number of units per unit of time. Thus, the
demand, Qd
p�, and supply, Qs
p�, functions express the decisions of investors
to trade (buy or sell) the asset. They are distinct from the stock demand and
supply functions, which express the preferences to hold the asset. When a unit
of the asset is traded, the buyer pays the ask price, pa, while the seller receives
the bid price, pb, the difference being the bid–ask spread, s = pa−pb, received
by the dealer.

The practice is more complicated than the diagram suggests, for in a quote-
driven market different dealers often post different bid–ask spreads. Trades
take place sequentially, so that the observed transaction price depends on whether

1 NASDAQ is short for National Association of Securities Dealers Automated Quotations. Formally,
NASDAQ is the information dissemination mechanism, owned and operated by the National Association of
Securities Dealers.
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Fig. 2.1. Flow demand and supply for a single asset

The bid–ask spread, s = pa−pb, is the difference between the price,
pa, paid by the purchaser (the dealer’s ask price) and the price, pb,
received by the seller (the dealer’s bid price). At prices pa and pb, the
flow supply of the asset equals the flow demand for the asset, resulting
in a volume of trade equal to Qe.

a sale or purchase takes place. Also, dealers may negotiate special prices for large
transactions. Moreover, dealers may undertake to execute trades at the highest
bid or lowest ask price (i.e. the most favourable price for the customer) currently
being quoted in the market. Although in many markets the narrowest spread can
be observed (in London it is known as the ‘touch’), dealers could still engage in
private negotiations with their clients. Thus, the actual bid–ask spread could be
narrower than appears from the published quotations (or, possibly, broader for
particularly large or small transactions).

2.2.2 Order-driven markets

Order-driven markets – sometimes known as agency or auction markets – include
the classic Walrasian tâtonnement process of economic theory. In the modern
literature, the mechanisms are modelled as ‘double auctions’, in which participants
issue orders to buy or sell at a stated price. More precisely, participants issue
instructions that specific actions should be taken in response to the arrival of publicly
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verifiable information, such as a price observation. The price is then adjusted by an
‘auctioneer’ until the total orders to buy equal the total orders to sell.

A market mechanism that approximates tâtonnement is the London gold fixing.
Twice each working day, five bullion dealers meet in Rothschild’s Fixing Room.
The representative of Rothschild’s Bank chairs the meeting and calls out a starting
price. After consulting their offices by telephone, the dealers report their net
purchases or sales at the stated price. The chairman aggregates the responses and,
if the proposed trades do not balance, calls out a new price. The process goes
on until each dealer signals acceptance with the announced price by lowering a
small flag on the table around which they sit.

The London gold price fixing is an example of a call market mechanism. Call
markets are discrete, or periodic, in the sense that the price is determined at a
limited number of specified times. Auctions are also widely employed for new
issues of government debt (e.g. British government gilt-edged securities and US
treasury bills and bonds) and sometimes for initial public offerings (IPOs) of
equity (e.g. Google in 2004). The call market as a mechanism in secondary
markets for stocks and shares has tended to disappear, although it was employed
on the Paris Bourse until the late 1980s. In recent years continuous trading
systems for securities have tended to displace call markets.

In continuous auction markets, public investors direct their instructions (‘orders’)
to brokers, requesting them to buy or sell, perhaps contingent upon observations
made by the broker when the order is executed. There are many different sorts
of order, the most well-known being limit orders (specifying purchase or sale
at maximum buying prices or minimum selling prices, respectively) and market
orders (specifying sale or purchase at the best available price). Both of these
types are known as public orders (because they come from outside the exchange).
The outstanding limit orders are generally listed in a limit order book. The
existence of a limit order book implies an element of automaticity in matching
trades, though, in practice, some element of discretion remains, particularly in
determining the priority of orders. Even so, automatic trade execution systems
are being introduced in financial markets, particularly in response to the opportu-
nities offered by modern information technology. An example is the SETS (Stock
exchange Electronic Trading Service) launched on the London Stock Exchange
in October 1997.

In many markets, such as the New York Stock Exchange (NYSE2) and the
Toronto Stock Exchange, there are specialists who are obliged to buy and sell
designated shares and who can deal as principals on their own behalf.3 The

2 The NYSE operates a hybrid mechanism, in which the trading day commences with a call market to
determine opening prices; thereafter, trading is continuous.

3 Tokyo is an exception, in that market makers (saitori) do not trade on their own behalf.
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presence of specialists serves to ensure that there is always a price at which
public investors can trade.

Some markets, especially for futures contracts, traditionally operate a system of
open outcry, in which the floor traders shout orders and communicate among one
another in a trading pit using complicated hand signals – an example is the Chicago
Board of Trade (CBOT). Advances in information technology and the consequent
spread of electronic trading mechanisms have challenged the dominance of open
outcry systems. Open outcry is defended in the markets that use the system,
though the question of whether this is because the exchange members stand to
lose if electronic trading prevails, or because open outcry genuinely offers a better
service to public investors, remains unresolved.

When the object of trade is more heterogeneous than in highly organized
exchanges, brokers tend to play an active role in matching buyers with sellers.
Having received an order to buy or sell, the broker seeks an investor with whom
to arrange an agreement. Examples of such over-the-counter markets include
those for: (a) real estate (few properties being identical with any other); (b) bonds
(the terms for repayment on which may have unique features); and (c) trading in
blocks of shares (for the blocks may differ in the number of shares they comprise,
even though the constituent shares are homogeneous).

2.2.3 Quote-driven and order-driven markets compared

Market mechanisms are often compared with respect to liquidity and transparency,
both of which are aspects of price discovery.

‘Liquidity’ is defined in The Oxford English Dictionary as ‘the interchangeabil-
ity of assets and money’. Its meaning is more elusive than the definition might
seem to imply, because ‘interchangeability’ embraces a variety of characteristics
commonly associated with liquid markets. Black (1971, p. 30) asserts that

a liquid market is a continuous market in the sense that almost any amount of stock can
be bought or sold immediately; and an efficient market, in the sense that small amounts
of stock can be bought or sold very near the current market price, and in the sense that
large amounts can be bought or sold over long periods of time at prices that, on average,
are very near the current market price.

By implication, a market is illiquid if an offer to buy (or sell) yields no
response to sell (buy) the offered quantity at the observed price. Perhaps the
quantity offered is too large or too small, or the buyer (seller) would have to wait
for some time for a seller (buyer) to appear.

‘Transparency’ is defined by the degree to which investors can observe, without
delay, recent trades in the asset (although the parties to the transaction themselves
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may remain anonymous). Why should market participants be interested in observ-
ing other trades in the asset? Presumably, because such information is relevant
for forecasting prices in the future, or for determining whether a trade is likely to
be executed at, or near, the reported price.

In terms of fundamental principles, quote-driven and order-driven markets
should result in the same market price if all trades are made public. In practice,
however, quote-driven markets tend to be more fragmented. Different dealers
quote different bid and ask prices, and deals that have been executed are not
necessarily public information or may be published only with a delay. Thus,
order-driven markets tend to be more transparent than quote-driven markets,
the existence of a limit order book tending to make the market less fragmented.
Moreover, in those order-driven markets for which the limit order book is available
to public view, the pattern of trades is normally easier for participants to discern.
For example, the ‘consolidated tape’ in New York provides information about
prices and quantities that have been traded.

Which type of market is the more liquid depends on a variety of considerations.4

For instance, in a discrete call market, investors must wait until the next price
fixing takes place. This restriction is not present for continuous order-driven
markets, which also have the advantage that the orders of all participants in the
market are consolidated.

Even so, investors may prefer the opportunity to negotiate individual agree-
ments with dealers in quote-driven markets. This opportunity can be of particular
benefit for investors trading large blocks of shares because of the scope for
negotiating advantageous terms with dealers. Also, quote-driven markets may
(depending on the rules governing the publication of trades) allow an element of
privacy so that deals can be kept secret, if only for a limited time.

Are liquidity and transparency always desirable? An unqualified ‘yes’ is
probably unjustified. Keynes in The General Theory (1936, p. 155) boldly voices
his reservations.

Of the maxims of orthodox finance none, surely, is more anti-social than the fetish of
liquidity, the doctrine that it is a positive virtue on the part of investment institutions to
concentrate their resources upon the holding of ‘liquid’ securities. It forgets that there is
no such thing as liquidity of investment for the community as a whole.

Keynes has highlighted what more recent literature would call an externality: a
difference between private and social benefits. Liquidity might be beneficial
for any individual investor but – because of its consequences for asset price
fluctuations – costly for investors in general, and perhaps for non-investors too.

4 In other words, whether a market is quote-driven or order-driven may not be the most important determinant
of its liquidity. Other dimensions of trading mechanisms need also to be taken into account.
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Keynes clearly thought he knew the right objective, if not the best policy. ‘The
social object of skilled investment should be to defeat the dark forces of time
and ignorance which envelop our future’ (p. 155). A few pages later he makes a
hesitant proposal, but then seems to withdraw his endorsement of it (p. 160).

The spectacle of modern investment markets has sometimes moved me towards the
conclusion that to make the purchase of an investment permanent and indissoluble, like
marriage, except by reason of death or other grave cause, might be a useful remedy
for our contemporary evils. For this would force the investor to direct his mind to the
long-term prospects and to those only. But a little consideration of this expedient brings
us up against a dilemma, and shows us how the liquidity of investment markets often
facilitates, though it sometimes impedes, the course of new investment.

This passage points to the dilemma of balancing the advantages of liquidity against
the prospect that restrictions on liquidity deter wealth holders from holding risky
assets (thus hindering productive investment). In the event, since Keynes’s day
financial markets have – if anything – become, like marriage, more ‘liquid’.

Rather less has been written about the desirability of market transparency. Just
as for liquidity, however, there is reason to allow that unlimited visibility of the
terms and conditions of all transactions might actually deter some trades – trades
that could be interpreted as socially beneficial, at least according to some criteria.

2.3 Industrial organization of financial markets

2.3.1 Control of market institutions

Not all financial markets operate within formally constituted exchanges,5 but
those that do can be divided into two categories.

1. Mutually owned cooperatives. In this case the exchange is organized as a club, or
cooperative, controlled and managed by its members. The cooperative controls the
market’s facilities (e.g. computer networks or dedicated telephone links), writes the
market’s rule book and administers the rules. The membership typically comprises
‘member firms’ (dealers) but, in principle, could include brokers and public investors.

2. Shareholder-owned companies. In this case a company, legally distinct from the
market participants, owns and operates the exchange.6 The company’s shares could
be privately owned (perhaps by another company); they might be owned partly or
wholly by the state. If constituted as a public company, its shares would be openly
traded. The exchange’s member firms may wholly or partly own its shares.

5 For example, foreign exchange markets are informal networks of banks and other financial companies,
which make deals with one another for buying and selling different currencies. The emerging ECNs do not
necessarily have any physical location. Even formal exchanges need not have a tangible, identifiable market
place where participants meet to make deals.

6 An example is OMgroup, which operates Stockholmsbörsen, the Stockholm Stock Exchange, and also
provides technical exchange services to other exchanges.
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Many financial exchanges started life as mutually owned organizations and
remained so until the late 1990s. Examples include the LSE, the NYSE, NASDAQ,
the CBOT, the London Metal Exchange (LME) and the International Petroleum
Exchange (IPE).

Recent years have witnessed a trend towards demutualization – a trend that gath-
ered momentum with most of the exchanges transforming themselves into share-
holder companies. The LSE, for instance, became a limited company in March
2000 and became a listed company – on the LSE – in July 2001.

The phase of demutualization was soon followed by further restructuring in
the form of mergers and takeovers. For instance, the IPE, which demutualized in
2000, became in 2001 a wholly owned subsidiary of IntercontintentalExchange,
based in Atlanta, Georgia. In late 2001 the London International Financial
Futures Exchange (LIFFE) accepted a bid from Euronext (a company that was
itself formed in 2000 from the merger of the Amsterdam, Brussels and Paris
exchanges).

This upheaval in the control of financial markets reflects the changes wrought
by advances in information technology (reducing the costs of share trading),
regulatory reform (encouraging competition) and globalization (promoting inter-
national capital flows). From their more traditional role as ‘public utilities’, stock
exchanges are rapidly evolving from highly regulated organizations protected with
monopoly powers into firms that face competition for the services that they offer.

Should it make any difference for their survival whether the exchanges are
cooperatives or shareholder-owned?

Mutually owned firms (cooperatives) tend to operate in the interests of existing
members – or of a dominant subset of members. They tend to be appropriate
forms of organization when the owners of the businesses (the exchanges) are also
their customers (the member firms, dealers or brokers). Thus, the members of
cooperatives might seek to reward only existing members by (a) restricting the
admission of newcomers; or (b) favouring one group of members over others; or
(c) discriminating against other market participants (namely non-member dealers,
brokers and public investors). Also, cooperatives have a reputation for resisting
innovations (such as electronic trading to displace open outcry trading) that might
damage the short-term interests of existing members.

Shareholder-owned companies are more likely to be motivated by profits, made
by charging fees for the use of the market’s facilities. They are less likely to be
anxious about the potentially adverse consequences of technological and financial
innovations, and also less likely to restrain competition among those who trade on
the exchange – i.e. the member firms and non-member dealers. Indeed, exchanges
might even seek to stimulate such competition if it results in a greater volume of
trading and profits for their shareholders.
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As already noted, the exchanges themselves now also compete with one another
for business (share listings and trading volume). The nature and extent of
this competition is affected by regulation as well as the underlying forces of
technology.

2.3.2 Regulation of financial markets

Practically all financial markets are regulated in some way or another. The
regulation is typically highly complex – too complex to warrant discussion here.
Very often exchanges themselves form part of the regulatory mechanism, together
with the involvement of external organizations. Thus, for example, the Securities
and Exchange Commission (SEC) oversees financial markets in the United States,
while the Financial Services Authority (FSA) has broadly similar responsibilities
in the United Kingdom.

The declared purpose of regulation is normally to protect investors from prac-
tices and conduct deemed to be unfair or improper. Most directly, the protec-
tion is intended to guard against fraud. More indirectly, regulation ostensibly
seeks to foster competition, with resulting benefits for the consumers of financial
services. Investors themselves would possibly favour protection against all losses
sustained on their investments, including losses incurred when asset prices fall.
Such comprehensive protection stretches beyond the bounds of regulation that has
been, or is likely to be, adopted. However, when losses occur as a consequence
of what is perceived to be bad advice, investors may feel justified in seeking
compensation – either from those who gave the advice or from the regulators
responsible for overseeing the advisers. In these circumstances, resorting to liti-
gation will test how far the law requires investors to bear the consequences of
their own decisions.

Much of the regulation in financial markets is self-regulation. Whatever the
merits of such regulation (such as the expertise of the regulators in their own lines
of business), the justification of its proponents should not necessarily be taken at
face value. For regulation can have its drawbacks. These include: (a) regulatory
capture, in which regulation is designed to protect the regulated institutions rather
than their customers; and (b) lax regulation, such that the activities of institutions
may not be properly supervised.

2.3.3 Competition within and among financial markets

As already mentioned, many financial markets approximate the competitive ideal
in that market participants typically take prices as given, beyond their individ-
ual control. However, although the underlying ‘commodities’ (the assets) are
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homogeneous, the services offered by brokers and dealers may well be differen-
tiated, offering the scope for non-price competition. Moreover, the organization
of exchanges and their regulation can have the effect of restricting competition
among market participants.

Competition among members of the market can be restricted in several ways.

1. It is commonly necessary for members of exchanges to be able to provide capital as
a guarantee against default or fraud. The capital requirement can be interpreted as a
cost of doing business, but may be used as a device to limit competition by restricting
the number of members.

2. The exchange may designate individual market specialists as monopolists in specified
securities, in the sense that only the specialists can trade on their own account; all
other members can act only on behalf of public investors. This monopoly power is
usually regarded as compensation for the obligation imposed on specialists to quote
firm prices guaranteed for trade with other market participants.

3. Members of an exchange may be restricted in their trading activities outside the
exchange. For example, rule 390 on the NYSE requires its members to trade listed
securities on the exchange rather than the over-the-counter market. The rationale for
this type of rule is, presumably, that it restricts the extent to which investors can
free-ride on the price discovery function of the exchange.

The merits of restricting competition are often difficult to appraise. Those who
promote the restrictions tend to emphasize the benefits for the customers, though
whether the customers would agree is another matter. Sceptics will recall Adam
Smith’s Wealth of Nations (Smith, 1776, p. 144):

People of the same trade seldom meet together even for merriment and diversion, but
the conversation ends in a conspiracy against the public, or in some contrivance to raise
prices. [� � �] The pretence that corporations are necessary for the better government of
the trade, is without any foundation. The real and effectual discipline which is exercised
over a workman, is not that of his corporation, but that of his customers. It is the fear of
losing their employment which restrains his frauds and corrects his negligence.

Smith’s ‘prices’ in this context correspond to the charges levied by the ‘workman’
(a member firm) on the ‘customers’ (public investors). Whatever the alleged
merits of restricting competition, Smith cautions that the restraints can impose
burdens on those who pay the resulting prices.

Even in markets with relatively free entry, such as NASDAQ, it is possible
that dealers collude to increase their profits. Circumstantial evidence suggests
that imperfectly competitive practices existed on NASDAQ at least for a time
(see Christie and Schultz, 1994, and Christie, Harris and Schultz, 1994). Price
quotations on NASDAQ are given in 1/8 points. If dealers act competitively, it can
be argued that odd-eighths quotes (i.e. 1/8, 3/8, 5/8 and 7/8) should be observed as
often as even-eighths quotes. There is evidence that odd-eighths quotes appeared
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less frequently than even-eighths quotes during some time periods. From this
the inference was drawn that dealers were colluding (tacitly or otherwise) to
coordinate their quotations in an anti-competitive way. A storm of indignant
dissent and protestations of innocence (as well as an inquiry by the governing
body of NASDAQ) followed this allegation. From among the various counter-
arguments put forward, it is worth noting that quoted prices are not the same
as transaction prices; many dealers, quite in accordance with the rules, execute
‘preference trades’ within their quoted bid–ask spreads (see Godek, 1996).

Competition among financial markets may also be the object of regulation.
Governments may grant monopoly status to designated exchanges requiring that
all trades in specified securities must take place on the exchange. For example, in
Paris all trades must be channelled through the exchange (although it is permitted
for agreements to be reached off the exchange). A rationale for this sort of
concentration is that it internalizes an externality: the services provided by the
market mechanism are costly and there is an incentive for market participants
to free-ride once the services have been provided. Sometimes the regulation is
justified in terms of promoting ‘fair’ competition among different market centres;
an example is regulatory harmonization within the European Union.

The propensity of exchanges to collude may render regulation – supposedly to
restrain ‘unfair’ competition – unnecessary. At the same time, collusion could
make regulation more desirable in order to restrain exchanges’ anti-competitive
practices. Advances in technology (e.g. Internet trading) can also undermine collu-
sive practices, drive down trading costs and stimulate competition for investors’
buy and sell orders.

Takeovers, mergers and joint ventures have been promoted among the more
traditional exchanges as a response to increased competitive pressures. For exam-
ple, negotiations for a merger of the London Stock Exchange and Deutsche Börse
took place in 2000, though they were subsequently aborted for a variety of techni-
cal, regulatory and commercial reasons. The rivalry among exchanges continues,
and has intensified, with the arrival of electronic exchanges such as virt-x.

2.4 Trading and asset prices in a call market

Among the market mechanisms described in section 2.2, a call market is one of
the simplest and provides a starting point for modelling flows of trading in asset
markets. In the model outlined here, market participants are divided into three
groups: (a) informed investors; (b) uninformed investors (or noise traders); and
(c) market makers.7 The informed and uninformed investors are interpreted as
public investors, while market makers exist to ensure that a price that balances the

7 The model is the simplest variant studied in the pioneering work of Kyle (1985).
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purchases and sales of public investors is realized. Members of all three groups
are assumed to be risk-neutral.

Exchanges of assets among investors could take place for a multitude of reasons,
here divided into two: (a) an information motive; and (b) a liquidity motive.

The information motive applies to those investors who trade because they seek
to make gains (or avoid losses) on the basis of their beliefs about future payoffs
from assets. The liquidity motive is a catch-all, encompassing the other reasons
why investors trade. It includes circumstances in which investors sell assets to
raise funds for consumption or to meet some unforeseen contingency, or when
savings flows are invested in traded assets. The caprice and whims that motivate
noise traders are also absorbed into the liquidity motive.

In this model, both motives are attributed to uninformed investors whose actions
are exogenous and random. The total amount they trade, U , is assumed to
be a Normally distributed random variable with expectation zero and variance
�2
u – in shorthand: U ∼ N
0(�2

u�. (The upper-case letters U and V are used to
label random variables, while their lower-case counterparts, u and v, denote the
respective outcomes – i.e. values drawn from the probability distributions.)

It is assumed that there exists exactly one informed investor, whose motivation
is to profit from information, albeit imperfect, about the price of the asset.8 Both
the market makers and the informed investor believe (correctly) that the value of
the asset, V , is determined according to a Normal distribution with expectation

v and variance �2

v – i.e. V ∼ N

v(�
2
v �. The informed investor’s advantage is

knowledge of the outcome v (i.e. not merely knowledge of the distribution from
which it is drawn – information that is also available to market makers).

The market makers do not observe v but do observe the aggregate trade, y,
of the informed and uninformed investors. Neither the informed investor nor
market makers observe the amount traded by uninformed investors, but both
know the distribution from which it is drawn. Market makers are assumed to
be competitive, in the sense that the price is chosen to maximize expected profit
(conditional on y) such that the level of expected profit is zero – zero expected
profit is the highest that can be achieved. (This implication would follow from
assuming free entry into the market-making business.)

The steps in price formation are as follows.

1. The informed trader learns v and chooses the amount of the asset to trade, x, so
as to maximize expected profits (being uncertain about the size of the uninformed
investors’ trade and the price chosen by the market makers, but knowing the market
makers’ behavioural rule).

8 The ‘value’ and market price are not generally equal, as should become clear.
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2. The trade of the uninformed investors, u, is determined randomly as a drawing from
N
0(�2

u�.
3. Upon the receipt of the batch of market orders from investors, y = u+x, the market

makers set the price.

Kyle (1985) now shows that the market price, p
y�, and the amount traded by
the informed trader, x
v�, are given by

p
y�= 
v+2
�v
�u
y x
v�= �u

�v

v−
v� (2.1)

Market makers observe the aggregate trade, y, but cannot infer its components,
u and x, separately. Hence, the equilibrium price depends on y alone, not on u
and x. The market makers are aware, however, of the way in which the informed
trader processes knowledge of v. Also, the informed trader knows the mechanism
by which market makers set the price.

What insights can be gleaned from this model?

1. The model shows how an asymmetry of information can generate trade and how
market makers can set prices to equilibrate the market even though they have less
information than the informed investor. (The market makers do observe the total
volume of trade, y – a number which is not known by, or at least is irrelevant for, the
uninformed investors.)

2. Suppose that the informed trader is ‘important’ in the sense that �v is large relative
to �u. Then, if market makers observe a large positive y, the price rises significantly
above 
v. The reason is that market makers infer that, in this case, a large y means
that the informed trader has information that v is high, and thus seek to avoid losses
by setting a high price. But the informed trader knows that the uninformed investors
don’t vary their trade much (small �u). Hence, when v is known to be high, the
informed trader limits the size of x
v� (see equation (2.1)) – otherwise the market
makers would raise the price above the level that maximizes the informed trader’s
expected profit.

Conversely, suppose that uninformed traders are important, in the sense that their
trade varies a lot – i.e. �u is large relative to �v. Now the price varies less with
respect to aggregate trade, y, because the market markers recognize that most of the
variation in trade comes from random fluctuations in uninformed investors’ trades. At
the same time the informed investor can exploit the ‘smokescreen’ of random trades
from the uninformed investors and will issue a higher demand x
v� (for each level
of v), because the market makers will be less able to disentangle the trade of the
informed investor from the uninformed investors. (Remember that the market makers
observe only y, not its two components – the separate trades of the informed and
uninformed investors.)

3. The model can be interpreted as a theory of insider dealing, the informed investor
being the ‘insider’. Despite the presence of an insider, Kyle shows that the asset
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market is efficient in the sense that the market price equals the expectation of V
conditional on y. This equilibrium is semi-strong form efficient in the sense that
the market price reflects (is a function of) all publicly available information – y is
public information, being known to all participants. Strong form efficiency would
require that price equals v, but this almost surely never occurs in the presence of
uninformed investors (i.e. �u > 0) – and, if no uninformed investors are present, all
insider trades would immediately, and fully, reveal the insider’s knowledge. (See
chapter 3, section 3.3, for a discussion of semi-strong and strong form efficiency.)

Kyle’s simplest model, outlined above, can be generalized in a number of ways
without destroying its main insights. Kyle (1985) pursues the approach further
by allowing for a sequence of auctions and, in the limit, to a model of continuous
trading. Extensions to allow for more than one informed investor, however, do
raise important questions about the impact of information. With more than one
informed investor, there will be a tendency for competition among them to reveal
their knowledge indirectly by affecting prices. Hence, the incentive to acquire
information is blunted, if not eradicated. (See O’Hara, 1995, pp. 106–12.) Also
relevant is the Grossman–Stiglitz paradox, outlined in chapter 3, page 71, below.

Kyle’s approach, focusing as it does on order-driven mechanisms, does not
address the determination of bid–ask spreads and the sequential formation of
transaction prices in dealer markets. These are the subject of the next two
sections, beginning with the role of inventory costs in section 2.5, returning to
informational issues in section 2.6.

2.5 Bid–ask spreads: inventory-based models

Explanations of the bid–ask spread fall into two groups: inventory-based theories,
and information-based theories. In each case market participants are classified
into market makers and public investors. Market makers are assumed to be dealers
who quote bid and ask prices at which they guarantee to buy and sell the asset
(if the size of each order falls within a pre-announced range). Public investors
are subdivided into informed and uninformed investors as in the previous section,
though this distinction is relevant only for the information-based models.

The framework studied here abstracts from reality in a number of ways. Dealers
who are not market makers are ignored. Brokerage services are not treated
separately from the services of market makers. Hence, the bid–ask spread should
be interpreted as including all transaction costs (such as commission fees and
taxes). Also, phenomena such as deals made within quoted spreads and special
arrangements for large block orders are neglected.

In both inventory-based and information-based theories, public investors are
assumed to arrive at the market in a random flow and to issue orders to buy or



Asset market microstructure 49

sell one unit of the asset. The market makers execute buy orders at the ask price
and sell orders at the bid price. Price quotations are then changed according to
some rule, studied below, according to the market makers’ observations of orders
to buy or sell the asset.

Inventory-based models view the price quotations as determined by the need
for market makers to hold inventories of the asset to satisfy the flow of demands
and supplies from public investors. The main influences on the bid–ask spread
are assumed to be these.

1. Costs of holding inventories. There is an opportunity cost of holding inventories, in
the sense that the funds could be invested elsewhere. For physical assets (e.g. soya
beans or precious metals) the cost of storage may be important, though storage costs
are probably negligible for most financial assets.

2. Market power. To the extent that competition among market makers is restricted, the
exploitation of their market power implies that bid prices are lower, and ask prices
higher, than otherwise. Also, the costs associated with the privileges of being a market
maker (e.g. the obligation to quote firm prices or the need to fulfil minimum capital
requirements) would be covered by the bid–ask spread.

3. Risk aversion. Market makers, because of their obligations to the market authorities,
or concern for their reputations, or for other reasons, may seek to avoid the prospect
of zero inventory.

Other than implying the existence of a non-zero spread, the predictions of
inventory models are rather weak.

1. It can be shown that the transaction prices, at which trades actually take place (the
bid price when the market maker buys and the ask price when the dealer sells), say
pt(pt+1( pt+2 � � � , are such that their differences �pt+1, �pt+2, etc. are negatively
autocorrelated. That is, increases tend to be followed by falls and vice versa (see
Roll, 1984).

2. It can be shown that the size of the spread is a decreasing function of the volume
of inventory. Note, though, that a market maker’s volume of inventory is, itself, the
object of choice. Hence, this implication is, in itself, not very revealing.

In spite of their weaknesses, inventory models are of value if sufficient detail
is known about the market in question (e.g. about the random pattern of order
flows). This knowledge could then be used to obtain more definite, testable,
predictions.

2.6 Bid–ask spreads: information-based models

The information-based models studied in this section take it for granted that
inventories are always adequate and that the costs of holding them can be
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ignored. Instead, the analysis highlights (a) the asymmetry of information between
informed and uninformed investors, and (b) the assumption that market makers
cannot observe whether the orders they receive come from informed or uninformed
investors.

In order to focus attention on the informational aspects of price determination,
assume that each market maker incurs zero transaction costs, is risk-neutral and
has no market power. Thus, the framework is similar to that of Kyle (1985),
studied in section 2.4. Here, however, there may be multiple informed investors,
though the size of each order is assumed fixed at one unit of the asset. The market
makers are assumed to receive orders sequentially, one at a time, in a random
flow from either informed or uninformed investors.

When a market maker receives an order, it may have come from an insider
who, by definition, knows more about the value of the asset than the market
marker (and, thus, profits at the market maker’s expense).9 Alternatively, the
order may have come from an uninformed investor who, by definition, is trading
for some reason other than to exploit information about the value of the asset. In
this framework, if only informed investors participate in trade, the market makers
cannot survive and the market will collapse. But if the market makers have some
knowledge, albeit imperfect, about the composition of the order flow then the
market can be viable. In particular, the market makers are assumed to know the
probability that an uninformed investor has issued an order.

One implication of the analysis is that each market maker will quote a non-zero
bid–ask spread. To understand why this is so, consider the gains or losses made by
market makers in trading with informed and uninformed investors, respectively.

In trading with informed investors, each market maker incurs an expected
loss – by assumption, the informed traders know something that the market
makers do not.

In trading with uninformed investors, each market maker would earn zero
expected profits if the bid price equals the ask price. (This is because, by
assumption, the market makers have no information advantage over the unin-
formed investors.) Hence, by quoting ask prices in excess of bid prices, the
market makers can, on average, gain in their dealings with uninformed investors.
This expected gain offsets the expected loss from trading with informed investors.

As in section 2.4, it is assumed that competition among market makers ensures
that they break even on average – i.e. make zero expected profits. (This is a
reasonable assumption in the presence of free entry, the absence of transaction
costs and risk-neutral market makers.) Hence, equilibrium bid and ask prices

9 Strictly, the value of the asset is a random variable even for informed investors. Their advantage is that they
learn the outcome of the random variable before acting, whereas the market makers and the uninformed
investors know only the distribution, not the outcome.
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are determined such that the expected profit of market makers from uninformed
investors just balances the expected loss from informed investors.

Not only is it possible to account for a non-zero spread, but learning can be
built into the evolution of prices. The orders to buy or sell received by market
makers contain partial information about the value of the asset – information that
the market makers exploit in revising their bid and ask prices over time. It is this
insight that is central to the contribution of Glosten and Milgrom (1985).10

Before trading commences at each date, every market maker begins with a
prior belief about the asset’s value. This prior belief is an input into the setting
of bid and ask prices. An order to buy or sell is then observed and the market
maker’s beliefs are updated. Formally, the market maker is assumed to behave
in accordance with Bayes’ Law to obtain updated, or posterior, beliefs about the
asset’s value. These updated beliefs form the prior beliefs at the next trading
date.

Several interesting implications follow from the analysis.

1. It can be shown that the transaction price follows a martingale.11 (The transaction
price is the bid price in the event of a sale to a market maker, or the ask price
in the event of a purchase from a market maker.) Notice that the relevant set of
information for this martingale is the set available to the market makers, not that of
the informed investors. Notice also that, in principle, it is possible to compare the
inventory-based approach with the information-based approach: the former predicts
that the differences in transaction prices are negatively serially correlated, while for a
martingale the differences are uncorrelated.

2. Given that (a) the informed investors know the probability distribution of the asset’s
value and (b) the market makers’ beliefs are updated according to Bayes’ Law, it
then follows that the market makers’ beliefs eventually converge to the probability
distribution of the asset’s value. That is, in a sense, the ‘truth’ is eventually revealed
by the process of trade. This does not mean that a unique value for the asset is
revealed, but, rather, that the probabilities associated with each possible asset value
become known to the market makers and, hence, are reflected in market prices. In
other words, the asset market is semi-strong form efficient at each date but tends
in the limit to being strong form efficient as the sequence of trading dates becomes
unbounded, so long as the underlying probability distribution of the asset’s value
remains unchanged. (See chapter 3, section 3.3, for a discussion of semi-strong and
strong form efficiency.)

3. It is possible for the market to fail altogether in the sense that the market makers
set the bid–ask spread so wide that no trade takes place. This can occur if there are
too many informed investors relative to uninformed investors. Given that the dealer
always makes a loss when trading with informed investors, it is possible that the

10 A detailed survey of Glosten and Milgrom’s model together with subsequent work appears in O’Hara (1995).
11 See chapter 3, page 57, for a discussion of random walks and martingales.
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bid–ask spread needed for the dealer to break even, on average, would have to be
so wide that no one would wish to trade. This is an extreme example of ‘adverse
selection’, in which the existence of asymmetric information destroys opportunities for
mutually beneficial trades. (See Akerlof, 1970, for the pioneering analysis of market
failure as a consequence of adverse selection.) Herein lies a possible explanation for
the emergence – and disintegration – of asset markets.

Useful though it is, the framework outlined above is simplistic and needs
extension in numerous ways, just three of which are as follows:

1. The model could be generalized to allow investors to choose the number of units of the
asset they trade. This would enable predictions to be made about the impact of trade
flows on asset prices, and also enable the study of the implications of transactions in
large blocks of shares that often arise in institutional trades.

2. The model could be generalized so that informed investors take into account the
effects of their actions on prices, thereby permitting strategic interactions between the
informed investors and the market makers.

3. The flow of trade from uninformed investors has been assumed to be exogenous in
the above. Although, by definition, uninformed investors cannot exploit information
they don’t have, they could choose the times of their trades. In this way it may be
possible for uninformed investors to benefit, at least partially, from the information
revealed by the actions of informed investors (see O’Hara, 1995, chap. 5).

These extensions make it possible to apply the information-based framework
to more realistic conditions and also to generate definite predictions about price
patterns. The main message of the information-based models remains, however,
that the bid–ask spreads need not simply reflect the costs of doing business but
also – and perhaps more importantly – that they depend on information asym-
metries that exist among the investors, each of whom seeks to exploit available
knowledge about the asset’s value.

2.7 Summary

The study of the microstructure of asset markets is important for the insights it
yields about how asset prices are formed and evolve.

1. Asset markets (in common with other markets) enable price discovery, provide a
trading mechanism, and support the settlement of contracts.

2. Existing asset trading mechanisms are complex, though there is a handy distinc-
tion between quote-driven and order-driven markets. In principle, both mechanisms
could provide the same degree of liquidity and transparency. In practice, quote-
driven markets tend to be more liquid but less transparent than order-driven markets.
Liquidity and transparency are normally regarded as desirable qualities, though their
desirability should be accepted only with caution.
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3. The rules and regulations of exchanges affect the competition among market partic-
ipants and the services offered to public investors. A trade-off may exist between
the competition among market members and the quality of service provided to public
investors.

4. Asymmetries in information among investors can have an important impact on asset
prices. The market mechanism can affect (a) the dissemination of new information
and (b) the extent to which the information is reflected in transaction prices.

5. The inventory approach to bid–ask spreads explains the spreads with reference to the
costs of doing business, the market power of dealers and their aversion to risk.

6. The information-based studies of bid–ask spreads focus on information asymmetries
in explaining the size of spreads. Here, wide spreads (high ask prices relative to bid
prices) reflect the importance of investors, whose information is superior to that of
the market makers, whose responsibility it is to quote prices at which trade can take
place.

Further reading

Spencer (2000, chaps. 4–6) surveys the literature on asset market microstructure
and provides a concise overview of financial regulation. Harris (2003) provides a
detailed description of the institutional aspects of asset trading, especially in US
markets.

O’Hara (1995) presents a comprehensive and detailed analysis of the mecha-
nisms by which asset prices are set, together with a bibliography of the litera-
ture. Further insights appear in O’Hara (2003). On auctions, Klemperer (2004)
provides an excellent entry point to the modern literature.

Spulber (1999) analyses firms as intermediaries in a broad context that encom-
passes brokers and dealers in asset markets. For research on the industrial orga-
nization of financial markets, Pirrong (1999, 2000) offers both theoretical and
empirical insights. Lo (1996, especially chaps. 1, 2 & 7) is also worth consulting.
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3

Predictability of prices and market efficiency

Overview

October. This is one of the peculiarly dangerous months to speculate in stocks in. The
others are July, January, September, April, November, May, March, June, December,
August, and February.

Mark Twain, The Tragedy of Pudd’nhead Wilson, 1894, chap. 13.

The extent to which asset prices in the future can be predicted on the basis
of currently available information is a matter of great significance to practical
investors as well as academic model builders. For academic researchers, the
objectives are to obtain an understanding of the determination of prices and to
find ways of assessing the efficiency of asset markets. For investors, the objective
is to exploit their knowledge to obtain the best rates of return from their portfolios
of assets.

The quest for profits implies, in an important though imprecise sense, that
market prices should reflect all available information. If investors detect an
opportunity to profit on the basis of information, then their actions (collectively,
not necessarily in isolation) cause prices to change until the profit opportunity
is eliminated. Considerations such as these motivate the famous martingale and
random walk models studied in section 3.1.

Section 3.2 discusses much the same material, in the context of informational
efficiency as introduced in chapter 1, while section 3.3 studies in more detail the
differing patterns of information. Section 3.4 reviews several of the common asset
market ‘anomalies’, so named because they are difficult to explain by conventional
means and, hence, are often regarded as evidence of inefficiency. Finally, ‘event
study’ analysis, outlined in section 3.5, serves to illustrate applied research on
asset market efficiency.

56
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3.1 Using the past to predict the future

3.1.1 Martingales and random walks

Perhaps the oldest and most well-known model of asset prices, the ‘martingale’
model has its origins in a system of gambling and is given a precise rendering by
the mathematical theory of probability. In its simplest form the martingale model
of asset prices can be written

E9pt+1�:t;= pt (3.1)

where pt denotes the price of an asset (say, one unit of a company’s stock) at
date t and :t is a set of information available at date t.

For the moment, assume that :t comprises all the past prices of the asset –
i.e.:t = <pt(pt−1( � � �=. In some applications, :t is assumed to contain additional
information (e.g. the prices of other assets, or companies’ earnings data). The
crucial features of :t are: (a) that it contains only things that are known at date t;
and (b) that it contains, at least, all current and past prices of the asset.1

Expression (3.1) asserts that the asset price evolves according to a random,
or stochastic, process that can take any form except that the expectation of next
period’s price, conditional on information available today, equals today’s price.
This may appear innocuous enough. It is not. For, in general, a conditional
expectation, E9pt+1�:t;, depends on all the conditioning information (i.e. every
element of :t). For example, the expected value of the price of Microsoft’s
shares, conditional upon last year’s rate of growth in the world economy, will,
in general, differ according to whether the rate of growth was 1 per cent, or
2 per cent or 0 per cent. The martingale model asserts that this is not so and that
all the information available as of date t is encapsulated in pt alone – as a result
of investors’ actions, the information that influences their decisions is somehow
reflected in pt.

If the activity of investing is likened to gambling, then the ownership of the
asset is viewed as participation in a fair game, in the sense that the expected gain
or loss is zero. From (3.1)

E9pt+1−pt�:t;= 0 (3.2)

In summary, the assumptions that imply that the asset price evolves according
to (3.1) or (3.2) are: (a) investors believe that holding the asset is just like playing
a fair game; and (b) they have access to the information contained in the set :t.

1 It is important in deriving the predictions of the theory that information acquisition also requires ‘perfect
recall’ (no forgetfulness) – i.e. that information, once in :t , does not subsequently disappear.



58 The economics of financial markets

As expressed so far, the martingale hypothesis predicts that the expected rate of
return on an asset equals zero: E9pt+1 −pt�:t;/pt = 0. Investment may or may
not be interpreted as gambling, but, regardless of whether it is, most assets are
assumed to yield non-zero – usually positive – expected returns.2 Hence, (3.1) is
replaced with the assumption that

E9pt+1�:t;= 
1+
�pt (3.3)

where 
 is a constant. (In probability theory, if 
 > 0, (3.3) is known as a
submartingale. For assets with limited liability, it is reasonable to assume at least
that 
� −1. Typically it is assumed that 
 > 0.)

Rearranging equation (3.3) gives


= E9pt+1�:t;−pt
pt

(3.4)

so that 
 can be interpreted as the expected rate of return from holding the asset,
conditional upon information set :t. In expression (3.4) it is assumed that the
asset’s payoff at date t+ 1 is equal to pt+1 – that is, any dividends or coupons
are absorbed in the price. Alternatively, dividends or coupons can be treated
explicitly by including another term in the numerator of (3.4).

The interpretation of 
 as the expected rate of return can be seen more clearly
by writing the rate of return, rt+1, as

rt+1 =
pt+1−pt

pt
(3.5)

It is important to recognize that rt+1 is assumed to be random – i.e. rt+1

takes on different values, each value being assigned a probability. The theory is
silent about how the probabilities are assigned to the values of pt+1 and, hence,
rt+1. The probabilities might be interpreted as reflecting the ‘true’ underlying
mechanism governing asset price fluctuations. But, if this seems puzzling (who
or what determines truth in this context?), the probabilities could be interpreted

2 No position is taken here about whether gambling should be condemned on moral grounds or whether it
should be viewed as reckless or imprudent behaviour. Often those who promote the purchase of securities
are keen to distinguish investing from gambling, perhaps to avoid potential condemnation. It is argued, for
instance, that investment in stocks and shares differs from gambling because firms’ equity represents ‘real’,
‘productive’ capital. While this may be true, a positive return on that capital is not guaranteed. Uncertainty
about future gain or loss is obviously not attenuated merely by branding the commitment of funds as
investment (good) rather than as gambling (bad). Alternatively, investing is sometimes distinguished from
gambling on the ground that gambling is the mindless casting of money to fortune, while investment does –
or at least should – involve exercising judgement and effort in the evaluation of various contingencies. From
this perspective, betting on a horse race is not gambling if the punter devotes time to assessing the form of
the horses and their riders.
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as expressing degrees of belief about asset prices held by investors.3 In any case,
to repeat, the hypothesis is silent on this matter.

Given that pt is an element of :t (so that pt is non-random with respect to :t),

E9rt+1�:t;=
E9pt+1�:t;−pt

pt
= 
 (3.6)

The force of the martingale hypothesis is the assumption that 
 is a constant,
in particular that 
 does not vary with any element of :t. This implies, using
a fundamental identity in probability theory (the ‘law of iterated expectations’),
that the unconditional expectation of rt+1 equals the conditional expectation, and
both equal 
:

E9E9rt+1�:t;;= E9rt+1;= 
 (3.7)

The expected rate of return conditional on information available at date t equals
the unconditional expectation of the rate of return. Thus, the information available
at date t is of no value in predicting rt+1( rt+2 � � � rt+k � � �

There are several other ways of expressing the martingale model. For instance,
from (3.7), E9rt+1�rt; = 
 (because rt is calculated from pt and pt−1, both of
which are elements of :t). Indeed, the reasoning can be extended to conclude
that E9rt+k�rt; = 
 for all k � 1 – that is, for all dates beyond the present.
Similarly, E9rt+k�rt( rt−1( � � �; = 
 (because :t contains all past prices of the
asset, from which its past rates of return are calculated).

Another way of writing (3.6) is

rt+1 = 
+�t+1

where E9�t+1�:t;= 0. This turns out to be convenient in many applications.
The martingale model places only mild restrictions on the random process

governing asset price changes – crudely, that the rate of return at one point of
time (proportional change in the asset’s price) provides no information about
the rate of return at any later date, or, less crudely, that the rate of return is
uncorrelated with any function of the return at any later point of time.

Most studies of asset prices stemming from the martingale model impose
additional restrictions on the underlying probability distributions in order to obtain
testable restrictions. The result is a set of random walk models that differ among
one another according to the assumptions made about �t (or, equivalently, about
rt or pt).

3 Of course, the investors’ beliefs could be the same as the true probabilities. It is legitimate, however, to be
sceptical about what meaning can be attached to the notion of ‘true’ probabilities or the ‘true’ underlying
mechanism in this context. The martingale model is, after all, just a model – an abstract idealization that
provides a more or less accurate representation of events in the world. From this perspective, it makes little
sense to dignify any model and its probabilities as being ‘true’. The model – any model – is just a handy
fiction, that’s all.
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Two of the commonest additional restrictions are (i) that the �t+k are statistically
independent of one another for all k �= 0, and (ii) that the �t+k are statistically
independent and identically distributed for all k �= 0. It can be shown that
(i) implies, but is not implied by, the martingale hypothesis – hence (i) is a genuine
restriction on the martingale hypothesis. Also, it is obvious that (ii) presents
yet another restriction (because in (i) the distributions are not required to be
identical).

The additional restrictions made to derive the random walk models provide
greater scope for evidence to contradict the models. That is, for some sets of
data, the random walk models might be rejected while the martingale is not.
However, the random walk models do not have quite the same appeal as the
less demanding martingale, because it is not altogether clear why the additional
restrictions should hold. Even so, the random walk models are easier to test and,
hence, are popular devices for exploring the data.

The models outlined so far are such close siblings that in what follows they
are referred to, rather imprecisely, as the ‘random walk hypothesis’ (i.e. the
distinctions among the variants are neglected).

Other models of asset prices

In order to make further progress in understanding asset prices, it is often neces-
sary to make yet more restrictive assumptions about the underlying probability
processes. The most famous of these is the assumption of geometric Brownian
motion (gBm) – widely used in the study of financial derivatives, especially
options.4

The mathematics of gBm are rather intricate but the basic ideas can be expressed
as follows. Define the log-price difference as yt+1 ≡ lnpt+1 − lnpt, where ‘ln’
denotes the natural logarithm operator. Now yt+1 can be interpreted as being
approximately equal to the rate of return on the asset, defined above in equa-
tion (3.5): rt+1 = 
pt+1 −pt�/pt (the approximation being closer the smaller the
rate of return or the shorter the time interval).

The gBm assumption implies not only that the asset’s rate of return, approxi-
mated by yt+1, is identically and independently distributed across time but also
that yt+1 obeys the Normal distribution, a cornerstone of probability theory. In
fact, gBm goes even further and assumes that the rate of return is independently,
identically and Normally distributed no matter how short the interval between
price observations. More formally, suppose that s > 0 denotes an interval of time,

4 Geometric Brownian motion is also variously known as logarithmic Brownian motion or as the logarithmic
Wiener–Einstein process.
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perhaps arbitrarily small, then yt+s ≡ lnpt+s− lnpt is distributed Normally and
independently of the log-price difference for every other time interval.

Being based on the Normal distribution, gBm is defined by two parameters: an
expectation or ‘drift’ parameter, 
, and a variance or volatility parameter, �2.5

The values of these parameters, particularly �2, have been subjected to a great
deal of empirical scrutiny. In addition, models in which volatility, �2, changes
over time or may even be infinite attract great interest in applied finance.

3.1.2 Empirical evidence

From the early twentieth century to the present many tests have been made of the
random walk hypothesis of stock market prices in all its variants. Following the
advent of inexpensive computers and the accumulation of plentiful data, the scope
for such tests increased dramatically. Consequently, the ingenuity and energy of
applied statisticians have resulted in the agglomeration of a bewildering mass of
empirical evidence.

Many of the test methodologies share a common theme, namely to investigate
the covariances of asset returns between different points of time. That is, the
tests are based on covariances such as cov
rt( rt−s�, for s �= 0. The martingale
hypothesis implies that cov
rt( rt−s�= 0, for s �= 0. Indeed, appendix 3.1 shows that
cov
rt+1( f
xt�� = 0 for every xt ∈ :t (i.e. xt is any information known at date t)
and where f
·� is any function of xt. In a statistical sense, pairs of variables for
which the covariances are zero are called ‘orthogonal’. Hence, these procedures
are known as orthogonality tests. They are common in applied econometrics.

More concretely, many of the tests are based on sample autocorrelation
coefficients using a time series of data on an asset or portfolio of assets.6 The
martingale and random walk models predict that all these autocorrelations equal
zero. Given a sample of data, the autocorrelations can be computed, together
with formal statistical tests of the null hypothesis that they are equal to zero.

As with much empirical work, the statistical results are mixed.7 The tests do,
however, provide at least some evidence that the autocorrelations are non-zero,
thus tending to reject the random walk hypothesis in one or other of its forms.
That is, the evidence suggests that future asset prices are predictable, albeit with

5 Formally, the expected value of yt+s equals 
s and the variance of yt+s equals �2s – the expectation and
variance are proportional to the length of the time interval. See Ross (2003, chap. 3) for an introduction to
geometric Brownian motion.

6 The autocorrelation coefficient between rt and rt−s is defined as the ratio of cov
rt( rt−s� to the product of
the standard deviations of rt and rt−s , respectively. In applied work, the rate of return is often calculated
as the difference in the logarithm of prices in adjacent periods – i.e. rt = lnpt − lnpt−1. This can be
interpreted as either (a) an approximation to the proportional rate of change of the asset’s value, or (b) an
exact measure of the continuously compounded rate of change over the interval t−1 to t.

7 A thorough review of the evidence appears in Campbell, Lo and MacKinlay (1997, chap. 2).
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error, from present and past asset prices. There is evidence that measured rates
of return for portfolios of shares are positively autocorrelated over short intervals
of time (i.e. high rates of return tend to be followed by high rates of return and
vice versa, over periods of several months).

For the individual assets that comprise portfolios, the evidence tends to be
more supportive of the random walk hypothesis. Negative autocorrelations of
returns are commonly estimated, though they are often found to be insignificantly
different from zero. The two sets of results are compatible if – as is observed –
rates of return are positively correlated across the individual assets, some of the
non-zero correlations being contemporaneous (i.e. for the same time interval),
others being non-zero across both assets and time.

The random walk models presented above are silent about the correlations
of rates of return across different assets. This weakness is addressed in more
sophisticated models of asset prices, where correlations of returns across assets
play an explicit, indeed vital, role. (This is so, for example, in the capital asset
pricing model, discussed in chapter 6.)

Over longer intervals of time – several years or decades – there is evidence of
mean reversion; i.e. ‘long-horizon returns’ are such that assets with low average
returns tend to experience a rise in return, and conversely for assets with high
average returns (returns being measured relative to a market average). This pattern
of predictability is, of course, incompatible with the martingale and random walk
models. But, beware. Small sample sizes (few observations) necessarily limit the
inferences that can be drawn from studies of long-horizon returns.

Statistical inferences based on small samples are less reliable than for large
samples. Even large samples may be of limited usefulness if a ‘regime shift’
(e.g. an abrupt technological change, a war or other political upheaval) is deemed
to have altered crucial underlying parameters. As Paul Samuelson puts it (in a
slightly different but closely related context; Samuelson, 1994, p. 17, italics in
original):

We have only one history of capitalism. Inferences based on a sample of one must
never be accorded sure-thing interpretations. When a thirty-five-year-old lost 82% of his
portfolio between 1929 and 1932, do you think it was fore-ordained in heaven that later
it would come back and fructify to +400% by his retirement at 65? 9� � �;

It is a dogma, not a guaranteed fact, that financial data are generated by a stationary
probability process. [� � �] The art of practical decision-making is to try to glean from
experience what aspects of it are likely to have relevance for the future. The Bible tells
us, ‘There is a time to remember, and a time to forget’. But the Good Book does not
inform us just how to ascertain those times.

Samuelson is careful not to dismiss statistical analysis as worthless but reminds
us, yet again, that statistics should always be used with caution. In particular,



Predictability of prices and market efficiency 63

making inferences from past data about the future is a much more delicate process,
and more prone to error, than its practitioners commonly admit.

Tests of geometric Brownian motion have focused on (a) estimation of the
volatility parameter, and (b), more generally, on whether the Normal distribution
accurately models the observed data on log-price differences.

The evidence on volatility is clear: studies of the �2 parameter agree that it
is not constant but varies across time for most assets. There is no consensus,
however, about how its variations are best modelled. Many attempts have been
made but no convincing empirical model of �2 has yet been found (and won’t be
until a plausible theory of variations in �2 becomes available to guide empirical
studies).

The evidence on Normality also tends to tell against the assumption. While
gBm appears to accord with the data for much of the time, observed asset prices
are notoriously subject to occasional ‘spikes’ – sudden large price changes of a
large magnitude either upwards or downwards. These phenomena lead to the
inference that empirical frequency distributions of log-price change data have ‘fat
tails’ – meaning that, compared with the Normal bell-shaped probability density
curve, very high and very low observations are more common than would be
predicted from a Normal distribution. Once again, many attempts have been
made to develop models that account for such patterns of data, but none, as yet,
commands widespread support as a replacement for gBm.

3.1.3 Security analysis

Investment managers and consultants often rationalize their success – or at least
their survival – by being able to detect patterns in asset prices from which they
can profit. That such patterns might occur is consistent with the evidence on
random walks, and the endeavour known as ‘technical analysis’, or ‘charting’,
involves the design of trading rules to exploit the profitable opportunities implied
by the patterns.

Technical analysis forms one branch of security analysis. A second branch,
sometimes referred to as ‘fundamental analysis’, focuses on predicting asset prices
by identifying the underlying, so-called ‘fundamental’, determinants of rates of
return.

Another illustration of security analysis is the claim that security returns are
‘mean reverting’ – that is, if a company’s shares are highly priced (according
to some – commonly unspecified – criterion) then they are likely to fall in the
future; and conversely for companies the share prices of which are unusually
low. It seems that such considerations might have influenced even Keynes in
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his investment decisions: ‘My central principle � � � is to go contrary to general
opinion, on the ground that, if everyone agreed about its merits, the invest-
ment is inevitably too dear and therefore unattractive’ (quoted in Skidelsky,
2000, p. 171).

From a casual viewpoint, claims that technical analysis enable profitable invest-
ment strategies are often interpreted as evidence of asset market ‘inefficiency’ –
on the argument that fundamental analysis provides the benchmark for efficiency,
and that fundamentals fail to explain patterns in asset prices. Allegations like
this are widespread in finance. They can be misleading and require the detailed
scrutiny undertaken below, in section 3.2.

3.2 Informational efficiency

3.2.1 Informational efficiency and the efficient market hypothesis

The concept of efficiency mentioned in the previous section is that of informa-
tional efficiency, introduced briefly in chapter 1. A standard definition is as
follows.

A capital market is said to be efficient if it fully and correctly reflects all relevant
information in determining security prices (New Palgrave Dictionary of Money and
Finance, Newman, Milgate and Eatwell, 1992, Vol. I, p. 739).

The definition may seem precise enough at first glance, but it is incomplete and
needs careful dissection to avoid misinterpretation. The two crucial phrases are
‘fully and correctly reflects’ and ‘all relevant information’.

Beginning with the second phrase, it is necessary to be clear about what
constitutes ‘relevant’ – and, by implication, irrelevant – information. From the
perspective of efficiency, the set :t (see above) comprises the relevant informa-
tion. While past and current asset prices are, almost invariably, deemed suitable
for inclusion in :t, it may be appropriate to include other information as well.
Conclusions about efficiency could differ according to what is included in, or
omitted from, :t.

8

Hence, it is important to stipulate the composition of :t when drawing infer-
ences about efficiency. Section 3.3 outlines a standard classification for different
compositions of :t. The question remains, however: which particular set :t

should be used in assessing efficiency? Or, expressed differently, conclusions
about the efficiency of asset markets (in the sense of the definition above) are
conditional on the postulated set of relevant information.

8 For example, it might be found that a company’s share price is not correlated with its past earnings. This
could be evidence of inefficiency if prices should reflect past earnings. But if past earnings are irrelevant –
say, because the future is what matters, not the past – then the evidence is consistent with efficiency.
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Sometimes fundamental information – and only fundamental information – is
assumed to be included in :t. This condition is a typical requirement in most
versions of the efficient markets hypothesis (EMH). That is, evidence supports
the EMH if and only if asset prices ‘fully and correctly reflect’ fundamental
information. But this begs the question of what is, and what is not, ‘fundamental’
information. Without a criterion for separating what is fundamental from what is
not, the distinctiveness of the EMH evaporates. Sometimes the EMH is expressed
loosely without specifying what belongs to :t – a looseness that broadens the
generality of the EMH while doing nothing to resolve its ambiguity.9

In this context, the ideas of behavioural finance can be invoked to provide
alternatives to the EMH. Thus, for example, noise traders can be treated as
investors who do not use fundamental information or who otherwise fail to use
it ‘fully and correctly’. Interpreted in this way, noise trading is part of a general
approach to studying the role of information (see Shleifer and Summers, 1990, or
Shleifer, 2000, chap. 2).

Turning to the first phrase, ‘fully and correctly reflects’, a way must be found
of distinguishing between those configurations of asset price changes that fully
and correctly reflect the set of information, :t, and those that do not. A model is
needed to translate the information into predictions with which the observed asset
prices can be compared. (The ‘model’ can be understood to comprise both (i) the
information set and (ii) the theory linking information and the predictions. It seems
clearer, here, to distinguish between the two rather than to lump them together.)

3.2.2 Appraising efficiency: methodology

The most important point established so far is that statements about whether
asset markets are efficient, or inefficient, invariably rely on the criteria chosen
to characterize efficiency – a trivial point but one that, when overlooked, is a
source of confusion. Why? Simply because markets may be judged as efficient
according to one set of criteria but inefficient according to another.

Where do the criteria for efficiency come from? They come from models
of asset prices and associated information sets that together provide criteria for
efficiency. Testable hypotheses about the patterns of prices compatible with
efficiency are then derived from each model and information set. These hypotheses
depend on the chosen model and information set – and hence on the criteria for
efficiency.

9 Scant attention is paid in finance as to whether information is reliable or, indeed, to address profound
questions about how decision makers make sense of the knowledge that they have somehow acquired. If
such matters are regarded as irrelevant or inconsequential, reflection on Bertrand Russell (2001) should
serve to induce salutary discomfort about the analysis of informational efficiency.
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Given a sample of data (typically observed prices and other relevant asset
market indicators), statistical tests can be made of the hypotheses. If the hypothe-
ses are rejected, the evidence favours inefficiency. If the hypotheses are accepted,
the evidence favours efficiency.10 This programme for assessing market efficiency
is summarized in figure 3.1.

The relevance of an underlying model is asserted boldly by Eugene Fama:

The Theory [of asset market efficiency] only has empirical content � � � within the context
of a � � � specific model of market equilibrium, that is, a model that specifies the nature
of market equilibrium when prices ‘fully reflect’ available information (Fama, 1970,
pp. 413–14).

� � � market efficiency per se is not testable. It must be tested jointly with some model of
equilibrium, an asset-pricing model (Fama, 1991, pp. 1575–6).

Every appraisal of asset market efficiency depends upon a model of asset prices.
Some researchers regard this requirement as trivially obvious. Others leave the
model implicit or overlook the requirement. But a model is necessary to provide
the criteria for distinguishing market efficiency from inefficiency. Even if the
criteria are not stated, they are present. Even if a model is not formally adopted,
it is implicit in the analysis. Why bother to make the model explicit? Because
the inferences drawn from the evidence depend upon it.

Dependence on a model does not mean, of course, that all models are equally
acceptable. Rather, it means that the conclusions about efficiency or inefficiency
are neither more nor less reliable than the underlying model from which they are
obtained.

Some models need few assumptions. For example, the absence of arbitrage
opportunities is compatible with a broad range of investment strategies. The
problem is that there are few instances when arbitrage reasoning can be applied
unencumbered by considerations of risk or market frictions, with the consequence
that whether or not a genuine arbitrage opportunity exists often remains in doubt.11

Other models (a) rely on more assumptions, (b) can be applied to a broader range
of phenomena and, consequently, (c) are more liable to rejection when confronted
with the evidence.

Exactly what constitutes a convincing model is open to debate. For some
people, a convincing model is one that accords most closely with observed
behaviour, no matter how bizarre, crazy or misguided that behaviour appears
to be. For others, a convincing model is one founded on how individuals ought
10 For many careful statisticians, hypotheses are either rejected or not rejected. If the evidence does not

reject a hypothesis, it does not mean that the hypothesis should be accepted, rather that the evidence is not
against it.

11 The same point is made, but from a rather different perspective, in Shleifer (2000, pp. 3–5, and chap. 4),
where the concept of risky, or ‘limited’, arbitrage is introduced. The nature and implications of arbitrage
are considered later, in chapter 7.
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Fig. 3.1. A method for appraising asset market efficiency

Appraisals of market efficiency involve examining whether evidence
about asset prices is compatible with criteria for efficiency. A model
of asset prices, together with an assumed information set, generates the
criteria. The criteria, in turn, provide testable hypotheses that, when
confronted with evidence, enable inferences to be drawn.

to act, according to some set of normative behavioural criteria. In either case, a
priori, theoretical considerations are unavoidable – and for the sake of clarity, at
least, should be made explicit.

Suppose that a model is chosen as a benchmark to express asset market effi-
ciency. If tests based on observed patterns of asset prices do not reject the
hypotheses derived from the model, it is tempting to conclude that the asset
market in question is informationally efficient. But (this is Fama’s point) such an
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inference is inextricably bound up with the chosen model. Another model might
generate different (even exactly contrary) inferences.

Different models are not necessarily incompatible with one another, of course.
They may even make the same predictions (i.e. be observationally equivalent). In
such circumstances, tests of efficiency are more robust because the results are not
dependent on a single model. But it is not possible to escape reliance on some a
priori modelling, no matter how widely applicable it might be.

A practical warning: every statistical test is susceptible to the well-known type
I and type II errors (respectively, that a true hypothesis is rejected, and that a false
hypothesis is not), though it is the investigator’s responsibility to control these as
far as possible. A particular weakness of many tests of market efficiency is that
the alternative often remains unspecified or loosely defined. Thus, the question
of which hypothesis finds favour when market efficiency is rejected is commonly
ignored.

Relative efficiency

A neglected issue (both here and in the literature) is whether one market is
more or less efficient than another (keeping in mind the caveats outlined above).
That is, there is a question of relative, or comparative, efficiency. Comparisons
might be between different market locations (e.g. Frankfurt versus New York), or
different parts of the same market (e.g. bonds versus equities) or the same market
at different points of time (e.g. Tokyo in 1990 and Tokyo in 2005).

In order to make inferences about relative efficiency, ways must be found of
ranking various degrees of inefficiency. Market efficiency is then interpreted as
an absolute characteristic – an absolute that is never attained in practice. Very
little is known about relative efficiency. Much more research is needed before
any confident inferences can be made, both about whether the concept is itself
interesting and, if so, about the outcome of comparisons made according to any
given set of efficiency criteria.

Summary

Tests of efficiency cannot be separated from the models and the information sets
on which their predictions are conditioned. Appearances can deceive; a test of
efficiency is not model-free merely because the model is left implicit. This does
not mean that tests of efficiency are impossible or worthless. It does mean that the
conclusions about efficiency must be conditional on the model that provides the
criteria for efficiency – the conclusions can never be incontrovertible. Hence,
the bold question ‘are financial markets efficient?’ is, at best, a rhetorical device
to initiate debate. Unequivocal answers deserve to be treated with the utmost
suspicion.
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3.2.3 Beating the market

Informational efficiency is often defined in terms of the profits that could be made
by exploiting information: ‘A market is efficient with respect to a particular set of
information if it is impossible to make abnormal profits (other than by chance) by
using this set of information to formulate buying and selling decisions’ (Sharpe,
Alexander and Bailey, 1999, p. 93). Similarly: ‘� � � efficiency with respect to
an information set, ?, implies that it is impossible to make economic profits by
trading on the basis of ?’ (New Palgrave Dictionary of Money and Finance,
Newman, Milgate and Eatwell, 1992, Vol. I, p. 739; the symbol ? denotes the
same set as the :t used here).

In the quotations, ‘abnormal profits’ and ‘economic profits’ (both can be under-
stood to mean the same thing) must be determined according to some criterion
or another. They are not model-free; i.e. in common with every other test of
efficiency, there must be a benchmark against which to make judgements about
efficiency or inefficiency.12

In this approach to efficiency, the model provides the prediction of what
constitutes ‘normal profits’. If a sample of asset prices is found for which profits
higher than normal can be obtained, these definitions imply that the market is
inefficient (at least for the sample of data under investigation). Alternatively, the
evidence could be interpreted as implying that the data reject the model (together
with its information set) from which the prediction is derived.

In a similar vein, ‘beating the market’ corresponds to market inefficiency if
decision rules (investment strategies) can be constructed to yield abnormally high
profits. To ‘beat the market’ presumably means that there are criteria that define
(a) the set of permissible decision rules and (b) the benchmark against which the
rules are to be judged. This is where the model and information set are relevant.

If, for example, one decision rule provides a higher rate of return than another,
and the latter represents ‘the market’ return, then the market has been beaten
and is judged to be inefficient. Different representations of what constitutes the
market lead, of course, to different conclusions. For example, ‘the market’ rate of
return in a stock exchange might be interpreted as the rate of return on a portfolio
of all the stocks traded in the market (suitably weighted according to each asset’s
share of the aggregate market capitalization). But, as will be shown in a later
chapter, many models of asset markets predict the existence of a trade-off between
return and risk. Returns that are higher than the market average can be obtained
by holding a greater proportion of risky assets than is representative of the market.

12 In constructing a benchmark, transaction costs could be important. For instance, a market may be inefficient
according to a particular set of criteria but, in the presence of transaction costs, abnormal profits may not be
available. Some benchmarks for efficiency assume that transactions costs are zero; others allow such costs
to be positive.
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It would be absurd to infer that the prospect of making higher-than-average returns,
in compensation for bearing risk, implies that the market is inefficient.

Instead, it makes more sense to construct a model of the trade-off between
expected return and risk (suitably defined) and then to test whether the data on
prices are compatible with the predicted trade-off. If the data are compatible
with the trade-off, this is evidence in support of efficiency – conditional upon the
adopted model, of course. If the data are not compatible, then either the market
is inefficient or the model is inappropriate (or both).

Note also the role of the information set. It may be reasonable to assume
that more information is better than less for any individual investor who seeks to
achieve the highest rate of return, given the actions of everyone else.13 As already
emphasized ad nauseam, definitions of efficiency are conditional upon the set of
information (as well as, or in combination with, the chosen model).

What has not yet been addressed is the role or significance of informational
asymmetries – i.e. circumstances in which some investors are assumed to possess
superior information compared with others. The existence of informational asym-
metries could in itself be interpreted as an attribute of inefficiency, though this is
not common in the literature. Instead, the implications of such asymmetries, not
merely their existence, for asset prices has attracted attention – as outlined in the
next section.

3.3 Patterns of information

3.3.1 Weak, semi-strong and strong form efficiency

It has already been suggested that different information sets could lead to different,
and possibly contradictory, conclusions about efficiency even in the context of
what is otherwise the same model. To avoid confusion, it is helpful to link each
claim about efficiency with the information set on which the claim is based.
A conventional classification is as follows.

• Weak form efficiency. Here, the relevant set of information comprises all current and
past prices (equivalently, rates of return) for the assets being studied. The simplest
of the random walk models reviewed above (section 3.1.1) provide examples of weak
form efficiency.

• Semi-strong form efficiency. This asserts that the asset market is efficient relative to all
publicly available information. The rationale here is that there are sufficient investors
who act upon publicly available information for their actions to result in observed
prices that reflect the information.

13 This sentence has been worded to avoid a trap: more information could benefit an individual investor but
might make everyone worse off if the information becomes widely available and if, as a consequence, asset
prices change when all investors act in their own, isolated, best interests.
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As with every other test, it is necessary to use the information in the context of
a chosen model of the asset market. The distinctive problem with respect to semi-
strong form efficiency is to determine what constitutes ‘public information’. This is
more ambiguous than it first seems, for there may be wide disparities of information
among investors according to how much effort they make to collect information
(even if the information is in the public domain). Hence, inferences about efficiency
could be contradictory depending on which information is deemed to be ‘publicly
available’.

• Strong form efficiency. Here, the assertion is that the market for an asset is efficient
relative to all information. For an asset market to be efficient in this sense, even
private information would be reflected in asset prices.

Presumably, strong form efficiency follows from the hypothesis that any investor
with private or inside information seeks to profit from that information. Strong form
efficiency then requires that the actions of such privileged investors affect prices
sufficiently quickly that the pattern of observed prices is as predicted by the model.

3.3.2 The Grossman–Stiglitz paradox

Up to this point, the distribution of information among all investors has been
taken as given, determined exogenously and separate from the mechanism of
price formation. If, however, investors with superior information can exploit
their advantage, there is an incentive to acquire information.

If information is freely available, it is reasonable to assume that it is shared
equally – that is, information is symmetric though not generally perfect.14 This
being so, and ignoring frictions in the price-setting mechanism, many models of
asset markets predict that prices fully reflect the information that is available and
common to all investors.

Suppose, instead, that information is costly to acquire. It is then plausible
to assume that investors collect information up to the level that marginal cost
equals the marginal benefit from acquiring it. Now, if the actions of the informed
investors are fully reflected in asset prices, it would be to the advantage of any
one investor to infer the information from the observed market price rather than
to incur the cost of acquiring it. But every investor is in the same position as
any other in seeking to infer the information from the observed price. Hence, no
individual investor has an incentive to bear the cost of obtaining the information.

14 ‘Perfect information’ could be understood to mean that prices in the future are known at the outset – i.e. with
perfect foresight. More generally, perfect information could mean that all investors act as if they know
the random process that generates future asset prices. The pitfalls in making sense of such an assumption
are noted above, in footnote 3. Geanokoplos (1992) discusses the more profound issue of how information
becomes ‘common knowledge’ when decision makers observe and take into account the decisions of others.
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If no investor is prepared to bear the cost, the asset price cannot reflect the
information that has not been collected.

This is the Grossman–Stiglitz paradox: if market prices reflect the information
there is no incentive to collect it – just observe the prices. Only if prices do
not fully reflect the information is there an incentive to expend resources in
collecting it. In summary, Grossman and Stiglitz argue that ‘because information
is costly, prices cannot perfectly reflect the information which is available, since
if it did, those who spent resources to obtain it would receive no compensation’
(Grossman and Stiglitz, 1980, p. 405).

The implication of the Grossman–Stiglitz paradox is that strong form efficiency
is a rare occurrence, likely to be observed only when all information is freely
(hence symmetrically) available. More importantly, the paradox suggests that
asymmetric information is probably commonplace in asset markets. This being so,
investigations of asset market efficiency should explicitly allow for investors to act
on the basis of different information sets. Yet again, modelling considerations are
unavoidable in drawing inferences about informational efficiency. A framework
suitable for analysing the propagation of information among investors – and
consequently to prices – was explored above, in chapter 2.

3.4 Asset market anomalies

For a phenomenon to be an anomaly there has to be ‘conventional wisdom’ that
the phenomenon violates. The conventional wisdom in this context is that certain
patterns of asset prices should be observed. The phrase ‘should be observed’ is the
warning that a model is lurking near, though perhaps below, the surface.

3.4.1 A catalogue of popular anomalies

There follows a list – representative, not encyclopedic – of asset price anomalies.

1. Calendar effects.

(a) The January (or ‘turn-of-the-year’) effect. The shares of many small companies
(those with a smaller-than-average market capitalization) tend to experience above-
average returns in January, especially in the first half of the month.15

(b) The September effect. It has been calculated that $1 invested in US stocks in 1890
would have grown to $410 by 1994 if the month of September had been excluded
(i.e. selling in late August and buying back in early October). This is about four
times the increase if the $1 had been invested for the whole of each year.16

15 ‘The turn-of-the-year effect occurs in the US with a very high degree of regularity, although since it became
widely publicized in the 1980s, the effect seems to have diminished in magnitude’ (New Palgrave Dictionary
of Money and Finance, Newman, Milgate and Eatwell, 1992, Vol. III, p. 705).

16 Based on calculations by J. J. Siegel (Economist, 1995).
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(c) Week-of-the-month effect. Shares tend to show above-average returns in the first
half of the month.

(d) Monday blues. Rates of return on many shares tend to be negative each Monday.
(e) Hour-of-the-day effect. On Monday mornings shares tend to show below-average

returns in the first forty-five minutes of trading but higher-than-average returns
during the early trading period for other days of the week.

2. Weather and stock markets. There is evidence that asset prices are positively correlated
with sunnydays. Ina studyof stockmarkets in twenty-sixcities around theworld for1982
to 1997, Hirshleifer and Shumway (2003) find evidence that, the cloudier the weather on
anyday, the greater the likelihoodof a fall in stockprices that day.17 Themagnitude of the
price fluctuations is, however, sufficiently small that even modest transaction costs tend
to outweigh the gains from trading strategies designed to exploit the effect of weather.

Is the association of cloudiness with asset prices an anomaly? It may seem implau-
sible that the weather should affect investors’ behaviour, but that there is evidence
of such an effect is not as bizarre as it might seem. Psychological studies readily
provide evidence that weather affects mood and, if mood influences trading decisions,
then it is hardly surprising that asset prices are correlated with the weather. Is such
investor behaviour ‘irrational’ (with results that could be interpreted as evidence of
asset market inefficiency)? If the weather affects individual preferences and individu-
als respond consistently to their preferences, it hardly behoves economists (or anyone
else, for that matter) to condemn the resulting actions as irrational.

3. The small-firm effect, or size effect. Evidence has been produced that small companies
earn higher returns than predicted by models such as the CAPM (introduced later, in
chapter 6). Reflecting on this finding, Black comments (1993, p. 37):

� � � it’s a curious fact that just after the small-firm effect was announced, it seems
to have vanished. What this sounds like is that people searched over thousands of
rules until they found one that worked in the past. Then they reported it, as if past
performance were indicative of future performance. As we might expect, in real-life,
out-of-sample data, the rule didn’t work any more.

4. The high earnings/price ratio effect. Companies with a high ratio of earnings to
stock price appear to have shares that earn excess returns (again, measured against a
common benchmark such as the CAPM). There is some disagreement about whether
or not this is the ‘size effect’ in another guise.

5. The closed-end mutual fund paradox. A closed-end mutual fund is essentially a
bundle of other securities that could themselves be purchased and sold individually.18

17 See also Saunders (1993). For contrary evidence, see Loughran and Schultz (2004).
18 The main difference between closed-end mutual funds (or investment trusts, as they are known in Britain)

and the more well-known open-ended mutual funds (open-ended investment companies, or unit trusts in
Britain) is that closed-end mutual fund shares are traded in the secondary market. Open-end fund shares are
exchanged directly with the trust managers at values that reflect the current market prices of the component
assets. Hence, the outstanding capital of open-end funds varies with new subscriptions and redemptions
while that of closed-end mutual funds changes as a consequence of management decisions approved by the
fund’s shareholders. Also, closed-end mutual funds have discretion to borrow, thus creating leverage for
their owners.
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The closed-end mutual fund paradox stems from the observation that the market
value of the funds often diverges from the current market value of their net assets.
Consequently, the paradox is sometimes interpreted as a violation of the ‘Law of One
Price’ (the prediction that two identical assets command the same market price).

Newly formed funds often sell at a premium above the value of the underlying
assets, but the shares of those that remain in existence after several years frequently
trade at significant discounts (that is, at prices below their net asset values). Most
models of asset prices predict that, apart from a margin to allow for management
expenses, the value of each fund should equal the sum of the values of the assets in
the fund, net of any borrowing. Otherwise, if the shares of a fund trade at a significant
discount, profits could be made by acquiring a controlling interest in the fund and
winding it up (or by turning the company into an open-ended mutual fund).

There is evidence that, following publicity about the paradox, discounts on closed-
end mutual funds declined, though they have not disappeared altogether. Also, the
discounts tend to differ among funds in ways that prove hard to explain.

6. Initial public offerings and seasoned equity offerings (SEOs). Distinctive patterns of
share price fluctuations have been documented following IPOs, when companies issue
publicly traded equity for the first time. Initial returns on the shares, in the weeks
immediately following an IPO, tend to be high (though the size of the short-term
gain is thought to vary cyclically across time). Over time-spans of several years the
shares of IPOs are observed, on average, to underperform relative to conventional
market benchmarks. The price patterns for SEOs – shares issued to raise additional
funds for an existing publicly traded company – are not dissimilar, though perhaps
less pronounced.

Three questions have been proposed for appraising the significance of
anomalies.19

1. Is the anomaly ‘real’, in the sense of arising repeatedly in similar circumstances, rather
than a one-off quirk or oddity?

2. Is there a mechanism that could explain the anomaly?
3. Does the anomaly represent a substantive phenomenon, of importance, rather than a

mere curiosity?

A feature of many financial anomalies is that they tend to disappear soon
after evidence of their existence enters the public domain. An example is the
small-firm effect – and also, to an extent, the closed-end mutual fund paradox.
The tendency of anomalies to evaporate may occur either because they signal
profitable investment opportunities, which disappear when they become widely
known, or because they were never genuine, in the sense that only a few studies
could detect their presence.

19 V. S. Ramachandran put forward the criteria in his BBC Reith Lectures (Ramachandran, 2003, p. 73).
Although Ramachandran’s lectures were on neurophysiology, his criteria are relevant here too.
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As for the second question, the very absence of a mechanism, or theory, to
account for a phenomenon in finance is commonly the justification adduced for
identifying it as an anomaly. Thus, ‘exceptions to the current body of knowledge
may be incorporated into that body of knowledge and become tomorrow’s conven-
tional wisdom’ (New Palgrave Dictionary of Money and Finance, Newman,
Milgate and Eatwell, 1992, Vol. III, p. 573). But, in finance at least, there is
more to anomalies than this, given that they are typically supposed to repre-
sent asset market inefficiencies – an explanation for an observed phenomenon
could be accepted as conventional wisdom yet remain excluded from the realm of
models that express market efficiency. (This appears to be so for many models
in behavioural finance.)

Finally, there is the question of whether phenomena that satisfy the first two
criteria are of substantive significance. In some cases, such as the price patterns
observed after IPOs, it is generally accepted that the consequences can have an
important impact on the companies issuing shares and their promoters. However,
others – such as some of the calendar effects or weather effects – probably add
little to an understanding of financial principles or have negligible impact on
decision making. Moreover, even if they might potentially be substantive, their
magnitudes may be so small (relative, say, to transaction costs) that their impact
can safely be ignored.

In summary, the study of anomalies provides a fruitful way of learning more
about financial systems, but rather as a spur to further analysis and investigation
than as an end in itself.

3.5 Event studies

An ‘event study’ refers to a particular method of testing predictions derived from
a model. The ‘event’ being studied is a well-defined incident, such as a takeover
bid by one company for another. Associated with the event are observations
such as, for example, data on the companies’ share prices near to the date of the
event. These observations are compared with the predicted outcome for the type
of event under investigation. Inferences can then be drawn about whether the data
are consistent with the model’s predictions. Statistical test procedures provide the
formal criteria for deciding whether the predictions are compatible with the data.

Event studies are widely used in assessments of market efficiency, but they
could be, and have been, employed in many other contexts. In the market
efficiency applications, the chosen model embodies the criteria for efficiency.
If the predictions are borne out in the data, this is interpreted as evidence in
support of efficiency (conditional on the criteria, of course). Conversely, if the
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data and predictions are incompatible, this is evidence of inefficiency (again,
given the specified criteria).

Near to midnight on 14 April 1912 the ocean liner Titanic, on her maiden
voyage, struck an iceberg in the north Atlantic and sank – an event that startled
the world. The loss of the Titanic was, presumably, unanticipated by investors in
the vessel’s parent company, the share price of which fell when the news broke.
Khanna (1998) addresses the question of whether the fall in the price of the
company’s shares accurately reflected the loss incurred as a result of the disaster.
After allowing for the insured portion of the loss and for overall stock market price
movements, Khanna’s calculations suggest that the reduction in the market value
of the company approximated the loss that it sustained. While the result can be
interpreted as evidence of market efficiency, Khanna is careful to caution that such
an inference has been made using a sample containing just a single observation.

Stock splits provide more readily available opportunities for event studies.
A ‘stock split’ involves a redefinition of the units in which a company’s stock
is measured – for example, each existing share becomes two new shares in a
two-for-one split. Most models of asset prices predict that stock splits should
have no effect on the company’s total market value. This implication follows
simply from the recognition that a stock split does not, in itself, change any real
asset of the company; it is merely a bookkeeping exercise (albeit one that is made
for a purpose: typically, that it enables the equity of the company to be traded in
smaller units).

Suppose that, when a stock split occurs, the market value of the company is
observed to increase. (Such observations are, apparently, quite common.) Is this
evidence of market inefficiency? The answer depends partly on how carefully
the test has been made. For it could be that the event (the stock split) and the
observations (higher share prices) are both consequences of a third influence,
such as improved company profitability. Of course, the tests can and should be
designed to control for the simultaneous occurrence of all relevant factors. Even
so, the omission of potentially relevant explanatory variables should be a warning
against making careless and extravagant inferences from event studies.

Event studies are instructive because the models upon which they rely are typi-
cally widely applicable and, hence, yield uncontroversial predictions. Fama (1991,
p. 1602) concludes that ‘event studies are the cleanest evidence we have on effi-
ciency (the least encumbered by the joint-hypothesis problem). With few excep-
tions, the evidence is supportive.’ By ‘joint-hypothesis problem’ Fama refers to
the impossibility of separating appraisals of market efficiency from the assumed
model of asset prices. Fama’s assertion about the ‘cleanest evidence’ can be
understood to mean that the evidence is compatible with many different models
of asset price determination – i.e. the results are robust to the choice of model.
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Stock splits are prominent in event studies because most models predict that
splits, on their own, have no effect on the company’s market value. There is,
thus, a broad consensus about what should be observed if the market is efficient.
Other event studies tend to involve rather more controversial models.

For example, suppose that a company executes a debt-for-equity swap – the
company issues bonds and uses the funds to buy back some of its equity. The
Modigliani–Miller theorem predicts that such a swap should have no effect on
the total market value (equity plus debt) of the company.20 But suppose that it is
observed that debt-for-equity swaps are correlated with an increase in the market
value of the company. What inference can be drawn? Perhaps the Modigliani–
Miller theorem is invalid – not in the sense that its logic is at fault, but because
its predictions follow from assumptions that are themselves implausible. Is this
evidence of market inefficiency? Yes, if the assumptions of the Modigliani–Miller
theorem define the criteria for efficiency. No, not necessarily, if other criteria are
used to characterize efficiency. Another possibility is that the Modigliani–Miller
theorem does hold but the swap occurred concurrently with some other event that
affected the company’s market value (e.g. news about its profitability). This sort
of problem has already been described in the context of stock splits.

In summary, although the elegant methodology of event studies yields valuable
evidence about asset market efficiency, it does not differ in principle from other
tests. If event studies do have a distinctive advantage over other methods, it is
largely because they offer an opportunity to make clear, unambiguous inferences
applicable to broad classes of models. From a formal statistical perspective,
however, sample sizes tend to be small and, hence, the tests are more vulnerable
to errors of inference.

3.6 Summary

Every investor would like to possess the capacity to forecast asset prices better
than anyone else. Almost all investors are doomed to disappointment. This
chapter has sought to explain why. The most important reasons are these.

1. Tests of market efficiency, or inefficiency, are always tests of models that are chosen
to represent efficient markets.

2. The martingale and random walk models of asset prices are motivated by the suppo-
sition that investors seek to exploit any profit opportunities and that prices adjust in
response. This being so, asset prices should be unpredictable on the basis of currently
available information.

20 See chapter 18, section 18.6, for a statement of the Modigliani–Miller theorem.
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3. Much of the empirical evidence finds against the random walk models and, hence,
implies that prices are, at least to some extent, predictable. The patterns of predict-
ability do, however, themselves vary across time.

4. Appraisals of asset market efficiency often rely on random walk models. Given the
evidence, the implication follows that asset markets are inefficient. Such a conclusion
is premature because other models might, arguably, provide more suitable criteria for
efficiency.

Even when the evidence favours a random walk model, it is not safe to conclude
that markets are efficient. Why not? Because the evidence may be compatible with
models that are considered to represent inefficiency (see chapter 10, section 10.3.
As a result, claims about efficiency, or inefficiency, should be treated with caution,
especially when they are unaccompanied by a statement of the criteria adopted to
separate efficiency from inefficiency.

5. Judgements about informational efficiency also need to take heed of the different
quantities and qualities of information available to predict asset prices. Moreover, in
some contexts the existence of asset market equilibrium may require the presence of
asymmetries of information across investors.

6. Asset price anomalies highlight phenomena that are incompatible with conventional
wisdom. Some anomalies survive but, once publicized, the phenomena may disappear,
or be absorbed into conventional wisdom.

7. Event studies provide a flexible and attractive method for studying propositions about
asset prices in general and informational efficiency in particular. While not model-
free, event studies can often be designed to be compatible with many different models
of asset prices.

Further reading

The statistical analysis of asset prices from the time series perspective of section 3.1
has a long and illustrious history. An excellent, though advanced, survey of
modern research is provided by Campbell, Lo and MacKinlay (1997, chap. 2).

The history of empirical studies exploring the randomness, or otherwise, of
stock prices is intertwined with arguments about efficiency. For a collection of
early influential contributions, particularly Louis Bachelier’s pioneering thesis on
the Theory of Speculation (presented in 1900), see Cootner (1964). Mandelbrot
(1997, 2000) provides an illustration of ongoing research pursuing one potentially
fruitful line of inquiry – the multifractal modelling of asset price fluctuations.

Most finance texts discuss asset market efficiency, though not all acknowledge
its reliance on a priori model building. Among the more reliable textbooks is
that by Elton, Gruber, Brown and Goetzmann (2003, chap. 17). The early survey
papers produced by Fama (1970, 1991) contain many valuable insights, as does
Fama (1998). In the more recent popular literature, Shiller (2000) presents a
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forthright critique of stock markets from the perspective of an acknowledged
expert. Shiller (2003) and Malkiel (2003a) bring the debates up to date from
contrary viewpoints.

The voluminous body of work on asset market anomalies continues to expand,
with the addition of newly discovered oddities in price patterns. Useful starting
points are the entries on ‘stock market anomalies’, ‘going public’ and ‘seasoned
equity issues’ in The New Palgrave Dictionary of Money and Finance (Newman,
Milgate and Eatwell, 1992). For discussions of closed-end mutual funds, see Lee,
Shleifer and Thaler (1990), Malkiel (2003b) and, in particular, Shleifer (2000,
chap. 3). Fama (1998) provides a critical assessment of anomalies and their links
with informational efficiency.

A seminal contribution to the analysis of stock splits and event studies is that of
Fama, Fisher, Jensen and Roll (1969). For a careful exposition of the methodology
of event studies in finance, with several illustrations, see MacKinlay (1997) or
Campbell, Lo and MacKinlay (1997, chap. 4).

Appendix 3.1: The law of iterated expectations and martingales

This appendix explains why the martingale result, E9rt+1�:t; = 
, where 
 is
the unconditional expectation of rt+1, implies that cov
rt+1( f
xt�� = 0, for any
function f
·� and any xt ∈:t.

The result follows directly from the ‘law of iterated expectations’ in probability
theory. The law of iterated expectations states that

E
[
E9Y �X;]= E9Y; (3.8)

where X and Y are any two random variables (with finite expectations). The
expression E9Y �X; denotes the expectation of Y conditional upon a given value
of X. The value of E9Y �X; depends on the value of X.

Now it is possible to compute the expectation of E9Y �X; with respect to the
random variable X. (That is, E9Y �X; is treated as a random variable – because X is
random – and its expectation is calculated.) The law of iterated expectations, (3.8),
asserts that this expectation of the conditional expectation equals the unconditional
expectation of Y .21

To show that cov
rt+1( f
xt�� = 0, begin with the conditional expectation
of rt+1:

E9rt+1�f
xt�;= 
 (3.9)

21 See Grimmett and Stirzaker (2001, especially chaps. 3, 4 & 12) for a thorough analysis of conditional
expectations and the mathematical theory of martingales.
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where E9rt+1; = 
, xt ∈:t and, hence, f
xt� ∈:t. For notational convenience
define zt as zt ≡ f
xt�, with expectation 
z ≡ E9zt;= E9f
xt�;. Therefore, (3.9)
can be written E9
rt+1−
��zt;= 0.

The covariance between rt+1 and zt is defined by

cov
rt+1( zt�≡ E9
rt+1−
�
zt−
z�;
which is shown to equal zero as follows:

E9
rt+1−
�
zt−
z�; = E9E9
rt+1−
�
zt−
z��zt;; (3.10)

= E9
zt−
z�E9
rt+1−
��zt;; (3.11)

= E9
zt−
z�0;
= 0

Equation (3.10) applies the law of iterated expectations, with Y = 
rt+1 −
�

zt−
z� and X = zt. In (3.11), 
zt−
z� can be factored out of the expectation
because, by construction, it is constant with respect to the conditional expectation.
The result then follows from the hypothesis that E9
rt+1 −
��zt;= 0. Hence, as
claimed, cov
rt+1( f
xt��= 0. Note that f
xt� includes any function of any of the
information in :t. Hence, it certainly implies that cov
rt+1( rt�= 0, as asserted.
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4

Decision making under uncertainty

Overview

It is universally acknowledged that uncertainty is pervasive in everyday life and,
hence, in economic decision making. What is not universally accepted, however,
is how to explain decision making under uncertainty, all the candidate models
being recognized as unrealistic for some reason or another. By their nature, of
course, all models are abstractions and, in some degree, unrealistic. A particular
difficulty with uncertainty is that every model proposed, up to the present, has
been the target of penetrating criticism. That said, the expected utility hypothesis
(EUH), outlined in section 4.2, remains the most popular approach to uncertainty
in economics. Two close relatives of the EUH, also studied in this chapter, are:
(a) the state-preference model, and (b) the mean-variance model.

The expected utility hypothesis can be interpreted as a special case of the state-
preference model (though such an interpretation is not mandatory). Similarly, the
mean-variance model (studied in section 4.4) can be interpreted as a special case
of the EUH. Thus, the three approaches form a hierarchy, with state-preference
being the most general and mean-variance the least. The reason why all three
deserve consideration is simple: more general models are applicable to a broader
range of phenomena but make fewer definite predictions; more special models
apply more narrowly but make more definite (and, hence, testable) predictions.

Section 4.3 digresses from the main theme to review briefly some of the
influential but less mainstream approaches to decision making under uncertainty.

Risk and uncertainty

Frank Knight (1885–1962), in his classic Risk, Uncertainty and Profit (1921),
distinguishes between the concepts of risk and uncertainty. He applies the notion
of risk to those unknown events for which ‘objective probabilities’ can be assigned.
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Uncertainty, on the other hand, Knight applies to events for which such proba-
bilities cannot be assigned, or for which it would not make sense to assign them.
Keynes takes a similar view (1936–37, pp. 213–14):

By ‘uncertain’ knowledge � � � I do not mean merely to distinguish what is known for
certain from what is only probable. The game of roulette is not subject, in this sense, to
uncertainty; [� � �] The sense in which I am using the term is that in which the prospect
of a European war is uncertain, or the price of copper and the rate of interest twenty
years hence, or the obsolescence of a new invention. [� � �] About these matters, there
is no scientific basis on which to form any calculable probability whatever. We simply
do not know.

Had he lived in a later age, Keynes might have added climate change to his
list, along with its associated environmental catastrophes.

Following Knight, a game of chance is risky because, although the outcome of
any one trial is unknown in advance, repetition of the game a large number of
times enables observed relative frequencies to be interpreted sensibly as objective
probabilities. Uncertain events, by contrast, are those that cannot be repeated in
any controlled way, thus rendering the calculation of relative frequencies difficult,
if not impossible. Even worse, the very definition of the uncertain event may be
problematical – few, in Keynes’s time, could have conceived of global warming
or could have described its potential consequences.

These difficulties need not imply, however, that probabilities have no role
in the analysis of uncertainty. For it can be shown that, if individuals act in
accordance with a set of well defined conditions (axioms briefly reviewed in
section 4.2), their decisions are made as if they assign probabilities to uncertain
events. Here it is appropriate to interpret the probabilities as subjective degrees
of belief, because there need be no consensus about how the probabilities are
assigned to events. Hence, there is no compelling reason why individuals should
agree on the probability that any particular event will occur.

Some phenomena (for example, death rates in large populations), while not
susceptible to repetition as in games of chance, do involve enough averaging over
individual outcomes to permit the accurate estimation of probabilities. Insurance
contracts (e.g. for life insurance) can then be negotiated, and insurance markets
become viable.

Insurance markets aside, most financial markets involve uncertainty rather
than risk, in the sense that relative frequencies are not readily available to esti-
mate probabilities. Even so, a strict distinction between risk and uncertainty is
not upheld here, the words ‘risk’ and ‘uncertainty’ being used interchangeably.
A distinction between the two is not crucial. Indeed, it may even be a hindrance
to clear thinking.
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Most applications in finance permit the estimation of probabilities from past data
or other information. In some circumstances the estimates are likely to be reliable,
less so in others.1 Financial analysis is thus typically located somewhere along
the spectrum between two polar extremes – with events allowing the calculation
of relative frequencies at one end of the spectrum, and unique, unforecastable
phenomena at the other.

4.1 The state-preference approach

4.1.1 Modelling uncertainty

The state-preference approach comprises three basic ingredients.

1. States of the world, denoted by the set S = <s1( s2( � � � ( s$=, where each sk is inter-
preted as a label for the description of some contingency that could occur. It is
assumed that exactly one state will occur, though decision makers do not know, at
the outset, which one. The description of each state is complete and exhaustive, in
the sense that all the relevant information is provided for the decision problem being
studied. In its application to asset markets, each state specifies the payoffs of every
asset, or, at least, provides enough information for the payoff in every state to be
determined.

2. Actions, which describe all relevant aspects of the decisions that are made prior to the
state of the world being revealed. In portfolio selection, an action is described by the
choice of a particular collection of assets. One action might be to hold all wealth in
cash; another might be to put half into the shares of one company and half into the
shares of a second; another might be to borrow $1000 and invest the dollars in euros;
and so on.

3. Consequences, which express the outcomes of an action corresponding to each state
of the world. In portfolio selection, the consequence of an action (a chosen portfolio)
is represented by a list, each element of which is the total value of the portfolio in the
corresponding state. This total value is termed terminal wealth. Terminal wealth is
determined only when the state is revealed and, hence, differs across states.

More generally, the consequence in any one state (given the decision maker’s
action) could be represented as a ‘bundle of goods’ (a vector), the elements of which
depend on the realized state and the individual’s action. In portfolio analysis, the
consequence is simplified by aggregating the elements of the vector (each asset’s
payoff) – a simplification that would not be appropriate if, for instance, the investor
has preferences about various distinctive, non-pecuniary, aspects of assets’ payoffs
(e.g. a work of art might be the source of pleasure to its possessor quite separate from
its capacity to yield a return in the form of an increase in its price).

1 In his provocative book The New Financial Order, Shiller (2003) proposes the introduction of markets for
several new financial instruments, with payoffs dependent on events the probabilities for which are difficult
to infer (notwithstanding the accumulation of voluminous data).
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Thus, if c denotes a consequence and a denotes an action, then the three compo-
nents of the theory are related by a function of sk and a such that c = f
sk( a�.
Formally, the function f
·( ·� maps states and actions into the space of conse-
quences. In portfolio selection, the function simply links the amount of each
asset held (the action) to each asset’s payoff in every state, and hence to the
consequence (terminal wealth).

In the state-preference model, each individual is assumed to possess preferences
defined over consequences, or (with little loss of generality) the individual has a
utility function the value of which serves to rank all the possible consequences.2

Formally, the utility function can be expressed as

� = U
f
s1( a�( f
s2( a�( � � � ( f
s$( a�� (4.1)

where the function U
·( ·( � � � ( ·� is allowed to differ across individuals.
Remember that, at the time when the action is taken, it is not known which

state will occur. The individual’s decision problem is to maximize utility, �,
by choosing a feasible action (i.e. an action that obeys whatever constraints the
individual faces). In the portfolio application, a feasible action is a portfolio that
satisfies the individual’s wealth constraint (the total net value of assets cannot
exceed initial wealth) and, perhaps, other constraints (e.g. an upper limit to the
amount that the individual can borrow, or a restriction to hold only non-negative
amounts of some or all assets).

Although only a single future date is assumed below, a ‘tree diagram’ illustrates
how a sequence of dates can be studied; see figure 4.1.

At date 0, ‘today’, investors have to make decisions not knowing which of the
six states, S = <s1( s2( � � � ( s6=, will occur at date 2. At date 1 it becomes known
that one of the events, (subsets of S) <s1( s2=, <s3( s4= or <s5( s6=, has occurred.
Finally, at date 2 the state is revealed.

Pursuing the example further, suppose that there is just one asset that changes
in value between dates 0 and 1 by +2, 0 or −2, depicted by the three branches in
figure 4.1. Between dates 1 and 2 the change is either +5 or 0, depicted by the
pairs of branches between dates 1 and 2 in figure 4.1. Hence, the set of states at
date 0 is S = <+7(+2(+5(0(+3(−2=, exactly one of which occurs at date 2.

For simplicity, in what follows it is assumed that investors make decisions with
respect to a single future date at which time the occurrence of precisely one state

2 Given conditions well known in choice theory, a utility function can be constructed to represent prefer-
ences. The assumptions needed are, in summary, that the preference ordering is complete (on a closed
convex outcome set), reflexive, transitive and continuous. See Varian (2003) for an introductory treatment.
A concise, rigorous analysis appears in Debreu (1959, pp. 56–9).
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Fig. 4.1. States in a two-period world

From the perspective of date 0 there are six states, one of which will
occur at date 2. At date 1 partial information is revealed about the state,
in particular whether it will be one of 
s1( s2� or 
s3( s4� or 
s5( s6�.

is realized. The payoffs on the n assets in the $ possible states can be arranged
in a payoff array, as follows:

Assets

1 2 � � � n

State 1 v11 v12 � � � v1n

State 2 v21 v22 � � � v2n
���

���
���

���
State $ v$1 v$2 � � � v$n

where rows correspond to states and columns correspond to assets. Thus, vkj is
the payoff to a unit of asset j if state k occurs.

Let pj denote the price of asset j observed today (when the portfolio decision
is made). Then the rate of return on asset j in state k is defined by

rkj = 
vkj−pj�/pj = 
vkj/pj�−1

The gross rate of return on asset j, Rkj , is defined by Rkj ≡ 
1+ rkj�= vkj/pj .
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In constructing the payoff array it is assumed that there is a finite number,
$, of possible states and a finite number, n, of assets. In practice, it makes
sense to interpret $ as an exceedingly large number (consider all the different
sets of circumstances that could conceivably occur). Formally, it is possible to
allow the number of states to be infinite, but to do so would require more subtle
mathematics than studied here. There could also be a large number of different
assets. Moreover, in some applications the number, n, of assets is endogenous –
that is, chosen by institutions or investors (who, for example, may be able to
create derivative securities with payoffs based on other assets). For the remainder
of this chapter, however, the number of securities is assumed to be given and
fixed exogenously.

A risk-free asset, if one exists, by definition has the same payoff in each state.
In what follows the risk-free asset is denoted with subscript 0, with payoff v0 in
every state and rate of return r0 = 
v0/p0�−1.

Suppose that there exists an asset that has a positive payoff of one unit of
wealth in a particular state, say k, and zero in every other state. This asset
could play the role of an ‘insurance policy’, the purchase of which allows the
investor to offset any adverse consequences in state k, and only in state k. Now
assume that one such asset exists for every state. Investors can then insure
against the adverse consequences of every possible contingency. This does not
mean that uncertainty vanishes but, rather, that the array of available assets is so
extensive that every separate state can be targeted. Conditional on the occurrence
of any state, investors could be certain of obtaining a known payoff, the cost
of which is the asset’s price (or ‘insurance premium’). The presence of such
an asset for every state is sufficient for the existence of a complete set of asset
markets. Otherwise, asset markets are said to be incomplete. Completeness is
an idealization, rarely claimed to be encountered in practice. It does, however,
have important implications for asset market equilibrium, and hence is useful as
a benchmark against which more realistic circumstances can be evaluated. (The
implications of asset market completeness are explored further in section 4.2 and
appendix 4.3.)

4.1.2 Decision making under uncertainty

To make the portfolio decision more definite, denote terminal wealth asWk, where
the subscript k denotes the state. The investor’s utility function is defined over
the consequences, Wk, k= 1(2( � � � ( $:

� = U
W1(W2( � � � (W$� (4.2)

Compare (4.2) with (4.1): Wk ≡ f
sk( a�.
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In comparison with standard consumer theory, the utility function, (4.2), may
look peculiar because exactly one – and only one – state will actually occur. But,
in the presence of uncertainty, the investor must make a decision before the state
is revealed, and hence must weigh up the consequences across all the conceivable
states – it is as if the investor is choosing all W1(W2( � � � (W$ (only one of which
will be obtained).

The wealth constraint states that the investor’s outlay on assets equals initial
wealth:

p1x1+p2x2 +· · ·+pnxn = A (4.3)

where A is initial wealth and x1( x2( � � � xn denote the number of units of each
asset in the portfolio, so that pjxj is the amount of wealth devoted to asset
j = 1(2( � � � ( n. (Strictly, the constraint should assert that the outlay on assets
is no greater than initial wealth, but the inequality can safely be ignored if the
investor always prefers greater terminal wealth to less – an assumption that is
maintained throughout.)

The value of A is assumed to be given and can be interpreted as the sum of
the number of units of each asset that the investor initially holds multiplied by
its price.3 According to the investor’s circumstances, other constraints (e.g. non-
negative holdings of assets, xj � 0 for all j) could be imposed, but they are
neglected here.

The portfolio is linked to terminal wealth via the payoffs of each asset in each
state of the world:

Wk = vk1x1+vk2x2 +· · ·+vknxn k= 1(2( � � � ( $ (4.4)

which is the sum of the payoff of each asset multiplied by the chosen amount of
the asset. Equation (4.4) identifies the explicit form for f
sk( a� in the portfolio
selection problem.

In summary, each investor chooses x1( x2( � � � ( xn to maximize

� = U
W1(W2( � � � (W$�

subject to

p1x1+p2x2 +· · ·+pnxn = A

where

Wk = vk1x1+vk2x2 +· · ·+vknxn k= 1(2( � � � ( $

3 The value of A can be written as the market value of initial holdings of assets: if the investor holds
B1(B2( � � � (Bn at the outset, then A= p1B1 +p2B2 +· · ·+pnBn. The important point is that, whatever the
construction of A, it is parametric – i.e. not chosen by the investor.
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The result is a portfolio decision in which the amount of each asset held depends
on asset prices, initial wealth and preferences – just as, by analogy with consumer
theory, the demand for goods depends on their prices and the consumer’s income.

The analysis can be extended to cover a multiperiod horizon, generalizing the
single-period decision problem described so far. Now the level of terminal wealth
must be indexed by date as well as state, so that Wkt denotes the level of wealth
in state k at date t. Note that ‘state k at date t’ would express the information
available to the individual at date t; more information would be revealed as time
passes. In the multiperiod generalization, preferences (and, hence, utility) depend
on the levels of wealth in all states and at all dates. Also, the wealth constraint
must be modified to reflect the opportunities for the investor to transfer wealth
from one date to the next. This, more complicated, multiperiod decision problem
is reserved for chapter 11.

The state-preference framework is useful as an abstract tool for understanding
the fundamentals of decision making under uncertainty, but it is more special than
it might at first appear. For example, the set of states, S, is given exogenously;
it cannot be affected by the actions of any of the investors. Also, it might seem
implausible to assume that investors are capable of ordering every possible conse-
quence of their actions across what may be a vast number of states. Consequently,
the state-preference model is not as widely applicable as it might at first seem.

Whether viewed as general or as special, the state-preference model yields few
testable predictions and, hence, is of limited worth. One way to proceed (the route
adopted here) is to specialize the theory, in particular, by restricting the range of
preferences or beliefs according to which investors make decisions.

4.2 The expected utility hypothesis

4.2.1 Assumptions of the EUH

Although it might seem natural that a numerical probability is somehow associated
with each state of the world – as a measure of the likelihood of the state’s
occurrence – such an association is by no means necessary. Indeed, the notion
of probability is completely absent from the analysis in the preceding section.
In view of the doubts about the concept of probability expressed early in this
chapter, its absence can be understood as a strength, not a weakness, of the state-
preference model. However, one way in which the state-preference model can be
modified to yield more definite implications is to permit a role for probability.

One such approach – the most popular – is that based on the expected utility
hypothesis. One aspect (not the only one) of the EUH is that probabilities are
assigned to states of the world. By attaching a probability to each state, the EUH
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enables a distinction to be drawn between the decision maker’s beliefs (expressed
by probabilities) about which state will occur and preferences about how the
decision maker orders the consequences of different actions.

The EUH can be presented in a variety of ways.4 The approach adopted here
begins by assuming that decision makers (investors) act in accordance with an
ordering of actions (portfolio choices). The implications of the EUH then emerge
by imposing a particular set of conditions on the orderings of actions. These
conditions – or axioms, or assumptions – are not studied in detail here but can be
summarized as follows.5

1. Irrelevance of common consequences. Consider an event (a set of one or more states)
and compare actions with consequences that differ among states in the event but with
consequences that are identical (i.e. common) to one another for states not in the event.
The first assumption is that the decision maker orders the actions independently of
the common consequences for states not in the event.6

An example should make the rather convoluted statement of the condition more
transparent. Consider circumstances in which there are three possible states and two
pairs of actions: A and B, and A′ and B′. (Think of the actions as portfolio decisions
with uncertain payoffs – i.e. outcomes that differ across states.) Suppose that the
payoff array is as follows.

Actions

A B A′ B′

State 1 10 0 10 0
State 2 0 10 0 10
State 3 20 20 0 0

Notice that A and A′ (and B and B′) differ only with respect to the payoff in state 3
(which is equal at twenty for A and B, and at zero for A′ and B′, respectively).

The ‘irrelevance of common consequences’ asserts that any decision maker who
prefers A to B will prefer A′ to B′, and conversely. Roughly speaking, if action A is
preferred over action B when the common consequences for states outside the event
are ‘favourable’, then action A remains preferred over action B when ‘favourable’ is

4 Most expositions of the EUH assume at the outset that probabilities (be they objective or subjective) can
be assigned to states. Others demonstrate the existence of probabilities as an implication of the theory.
(Strictly, probabilities are assigned to sets of states known as events. Such a procedure resolves a technical
problem that arises when there are an infinite number of states. It can be ignored where the number of states
is finite, as is assumed to be the case here.)

5 A precise statement of the three axioms, together with a careful analysis of their implications, can be found
in Marschak and Radner (1972, chap. 1). A classic exposition, elegant as well as precise, is that of Savage
(1954).

6 Note that the consequences in states outside the event are identical across actions, not across the states
outside the event. They are the same for each action, not necessarily for each state.
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replaced by ‘more favourable’, or ‘less favourable’ or whatever (i.e. when A becomes
A′ and when B becomes B′). Although this condition may seem innocuous, it is one
of the most contentious assumptions of the EUH, and has been the source of intense
controversy.

2. Preferences are independent of beliefs. Consider the consequences in any particular
state (i.e. in one row of the payoff array). The second assumption asserts that
preferences over consequences for the given state are independent of the state in which
they occur. Less formally, the decision maker cares only about the consequence, not
the label of, or index of (say, a subscript ‘k’), the state in which it is received. In
other words, a terminal wealth of $100,000 has the same personal value to an investor
whether it is received as a consequence of a stock market boom or in a depression
(boom and depression being identified as two separate states). One way of interpreting
this condition is that it requires the definition of a state to be complete, in the sense
that there are no hidden attributes of a state that might influence a decision maker’s
action separately from, and in addition to, the consequences of that state.

3. Beliefs are independent of consequences. The third assumption asserts (again, some-
what imprecisely) that the decision maker’s degree of belief about whether a state will
occur is independent of the consequences in the state.7 Thus, the decision maker’s
belief about whether it will rain tomorrow is independent of whether a million dollars,
or one dollar, or nothing, will be received in the event of rain tomorrow.

Together with the assumption of a complete ordering of actions and some purely
technical assumptions, the three conditions imply that: (a) the decision maker acts
as if a probability (a real number between zero and unity) is assigned to each
state; (b) there exists a function – the von Neumann–Morgenstern utility function –
that is dependent only on the outcomes; and (c) the decision maker orders the
actions according to the expected value of the von Neumann–Morgenstern utility
function.

Formally, using the notation of the state-preference approach, the EUH implies
that

� = U
W1(W2( � � � (W$�

= 11u
W1�+12u
W2�+· · ·+1$u
W$� (4.5)

where 1k is the probability that the individual investor assigns to state sk.
The function u
·� is the von Neumann–Morgenstern utility function. Notice
that the u
·� is the same for all states, though the value of its argument, Wk,
generally differs across states. Both the probabilities and the von Neumann–
Morgenstern utility function are allowed to differ across investors. It is assumed,

7 This statement is imprecise because ‘degree of belief’ is undefined. Formal statements of the assumption
are precise but they require construction of a more detailed analytical apparatus than is warranted here.
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however, that u′
W� > 0 for all relevant levels of W – i.e. investors prefer more
wealth to less.

By definition, the expected value of the von Neumann–Morgenstern utility
function is just the expression given by (4.5), hence justifying the title, expected
utility hypothesis. A common notation is to letW (note the absence of a subscript)
denote a label for wealth as a random variable. A random variable can be
understood as a list, each element of which is an outcome – Wk in this case –
together with its associated probability, 1k, one pair for each state, k= 1(2 � � � ( $.
Then the EUH is written compactly as stating that actions are ordered according
to E9u
W�;, where E9·; denotes the operation of summing over the product of
probabilities and utilities.

In summary, the EUH asserts that actions are chosen to maximize expected
utility:

E9u
W�;≡ 11u
W1�+12u
W2�+· · ·+1$u
W$�

4.2.2 Remarks on the EUH

1. Ever since the EUH was made famous by John von Neumann and Oskar Morgenstern
in their pioneering Theory of Games and Economic Behavior (1944), it has been the
subject of intense discussion and scrutiny.

As the title of von Neumann and Morgenstern’s book suggests, they applied the
EUH to games of chance and – more to the point – as a normative theory, a theory
of how the participants in games ought to behave. In finance, however, it is typically
invoked as a positive theory – that is, to explain how individuals actually behave.
Unfortunately for the theory, persuasive evidence has accumulated from many studies
that individuals often violate one or more of the EUH assumptions. The significance
of this evidence is a matter of debate, and several alternative theories have been put
forward. None of them has, however, yet achieved the level of acceptance (albeit,
grudging) of the EUH.

Also, it can be argued that, in evaluating a theory, more weight should be placed
on the extent to which evidence accords with its predictions and less on the validity –
or otherwise – of its assumptions. Whatever the merits of this standpoint (and it is
not a consensus view), the EUH remains one of the cornerstones of decision making
in general, and of portfolio selection in particular.

2. One implication of the EUH is that individuals act as if they assign probabilities
to states of the world. The existence of probabilities is deduced, not assumed at
the outset.8 It is not necessary to rely on the existence of objective probabilities
nor to assume that decision makers have any conscious awareness of the notion of
probability. Both of these consequences provide solace for model builders in financial

8 Even so, as already noted, expositions of the EUH commonly do assume the existence of objective prob-
abilities. The formal logic of the EUH is the same either way.



94 The economics of financial markets

theory, if only because the opportunity to engage in repeated experiments (of the sort
needed to justify objective probabilities) is, at best, a convenient fiction.

While the concept of ‘subjective’ probability is arguably more attractive than
‘objective’ probability in explaining individual behaviour, it is adopted here as a
modelling strategy rather than as an statement of dogma. Some problems may be
easier to solve, or to comprehend, by assuming the existence of underlying ‘true’,
objective, probabilities attached to states of the world. Whatever the approach, in
empirical applications it is necessary to find observable counterparts to some, at
least, of the theoretical concepts. For instance, asset price observations provide the
raw material for estimating probabilities, or – more commonly – sample statistics
(e.g. means and variances) corresponding to probability distributions, the values of
which individuals could (possibly, even, should) use in making their decisions.

3. Attitude to risk. The individual’s attitude towards risk is expressed by the u
·� function.
When the argument of the function is wealth, W , u′′
W� < 0 defines risk aversion
(the marginal utility of wealth, u′
W�, is decreasing in wealth), u′′
W� > 0 defines risk
loving (marginal utility of wealth is increasing) and u′′
W�= 0 defines risk neutrality
(constant marginal utility of wealth).

Risk-loving and, to a lesser extent, risk-neutral attitudes to risk lead to extreme
forms of behaviour that are seldom observed. Hence, most applications of the EUH
focus on risk-averse preferences. Two popular indicators of the degree of risk aversion
are available as (a) the index of absolute risk aversion, −u′′
W�/u′
W�, and (b) the
index of relative risk aversion, −Wu′′
W�/u′
W�.

4. Popular functional forms. Although some properties of individual behaviour can be
derived from the EUH, more definite predictions can be obtained if u
W� takes a
particular functional form.

The most popular functional form of u
W� in finance, and economics generally, is
the iso-elastic function, expressed by

u
W�=
{
W 1−C/
1−C� for C �= 1

lnW for C = 1
(4.6)

(The popularity of this functional form stems from its analytical tractability, not
because there is much evidence that it corresponds to individual behaviour.) In this
case, the index of relative risk aversion is equal to the parameter C; hence, it is
commonly known as the constant relative risk aversion (CRRA) utility function. Risk
neutrality corresponds to the case C = 0, with C > 0 corresponding to risk aversion.

A second functional form sometimes assumed is u
W� = 1− e−?W , where ? > 0.
In this case, the parameter ? equals the coefficient of absolute risk aversion and,
hence, the function is known as the constant absolute risk aversion (CARA) utility
function.

A third functional form – perhaps the simplest – is the quadratic: u
W�=W−bW 2,
where b > 0 is a parameter expressing preferences. The implications of this form are
explored below, in section 4.4.
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4.2.3 Portfolio selection in the EUH

Formally, the portfolio selection problem can be stated as: choose the portfolio
of assets to maximize expected utility subject to the wealth constraint. That is,
the investor chooses <x1( x2( � � � ( xn= to maximize E9u
W�; subject to the wealth
constraint, (4.3), above.

This is the static, or one-period, portfolio selection problem: it does not address
the issues of (a) revising decisions with the passage of time, or (b) the possibility
that the investor wishes to consume some wealth (or add to wealth by saving
non-asset income) before the terminal date. (These are studied in chapter 11.
Remarkably few alterations of the principles outlined below are required to cope
with these extensions.)

In portfolio theory it is usual to express the analysis in terms of rates of return
and proportions of initial wealth invested in assets. Thus, terminal wealth is
written

W = 
1+ rP�A (4.7)

where rP is the rate of return on the portfolio as a whole – that is, a weighted
average of the rates of return, each weight being the proportion of initial wealth
invested in the relevant asset. The details of the notation are reserved for
appendix 4.1. It is important to remember that W and rP in equation (4.7)
differ across states. The k subscript has been omitted to reduce notational clutter.
Initial wealth, A, by definition, does not differ across states.

In some parts of the analysis, depending on context, it is appropriate to assume
the existence of a risk-free asset – an asset that yields the same rate of return, say
r0, in every state. Being constant across states, r0 is non-random.

The excess rate of return on asset j over the risk-free rate is defined as rkj− r0.
This is usually written slightly more compactly as rj − r0, omitting the state
subscript.

The fundamental valuation relationship

Every portfolio that maximizes expected utility must satisfy a condition called the
fundamental valuation relationship (FVR). This relationship crops up whenever
the maximization of expected utility is the goal, although its appearance may differ
slightly according to the context. The FVR really is fundamental in finance.

The FVR is the first-order condition for maximizing expected utility. More
precisely, the FVR is the set of first-order conditions, one for each asset. In its
most general form the FVR is written as

E9
1+ rj�H;= 1 j = 1(2( � � � ( n (4.8)

where H is a ‘random variable’ in the sense that it varies across states.
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What is this H variable? It depends on the context. In the static portfolio
problem outlined so far it takes one form (explained below). In intertemporal
portfolio planning it takes another.

To obtain an intuitive grasp of the FVR, consider the one-period, static portfolio
problem in which the investor seeks to maximize the expected utility of wealth.
Suppose that the investor devotes one additional unit of wealth to asset j. The
payoff is 
1+ rj� and the increment to utility is 
1+ rj�u

′
W�. This varies
across states, the increment to expected utility being E9
1+ rj�u′
W�;. (In words:
weight the utility increment in each state by the state’s probability and sum over
the states.)

At a maximum of expected utility it is necessary that the expected utility
increment is the same, say E, for each asset, so that

E9
1+ rj�u′
W�;= E j = 1(2( � � � ( n (4.9)

Why? Because, if (4.9) does not hold, then expected utility can be increased by
shifting wealth from those assets with low values of E9
1+ rj�u′
W�; to those
with high values. Only when equality holds for every asset can expected utility
be at a maximum.9 A formal derivation of the FVR is outlined in appendix 4.2.

In view of the previous paragraph, the symbol E can be given a simple inter-
pretation. It is the increment to expected utility resulting from a small increase
in initial wealth – i.e. the expected marginal utility of wealth, E9u′
W�;. At a
maximum of expected utility, the expected marginal utility of wealth must equal
the increment to expected utility from a small change in the holding of any asset;
otherwise, expected utility is not at a maximum. The adjective ‘small’ is required
because E, although the same for all assets, is not generally constant when wealth
changes. Hence, changes in initial wealth lead to changes in E itself.10

Finally, divide both sides of (4.9) by E and observe that the FVR holds with
H ≡ u′
W�/E.

Another way to write the FVR, convenient in the presence of a risk-free asset, is

E9
rj− r0�H;= 0 j = 1(2( � � � ( n (4.10)

To obtain this expression, write equation (4.8) with r0 instead of rj , subtract from
the equality involving rj and rearrange to give (4.10). Now the E cancels out and
H can be replaced by u′
W�.

9 Note that (4.9) necessarily holds only if the investor can hold negative as well as positive amounts of each
asset – i.e. if short-selling is permitted. Suppose that short-selling is prohibited, so that negative holdings are
not allowed. Now it is possible that the investor’s portfolio is forced to a ‘corner’ at which a zero amount
of some asset is held, when the investor would prefer to short-sell the asset. In this case, the equality (4.9)
must be replaced by an inequality to reflect the extra constraint of no short-sales.

10 Formally, all these derivations involve limits as the change in initial wealth, A, becomes infinitesimal. This
enables the differential calculus to be applied. The intuition remains valid – though approximate – for finite
changes.
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The FVR provides a set of necessary conditions for a maximum. The second-
order conditions, together with the FVR, provide necessary and sufficient condi-
tions that a solution of the FVR constitutes a maximum of expected utility. The
second-order conditions are straightforward to interpret in the static portfolio prob-
lem. They amount to the requirement that u′′
W� < 0; that is, that the investor is
risk-averse.

If the investor is a risk lover, u′′
W� > 0, there is generally no solution at
all to expected utility maximization unless some extra (and perhaps arbitrary)
constraints are imposed on the investor’s choices. Risk neutrality, u′′
W� = 0,
provides a knife-edge case, considered below.

In order to calculate the amounts of each asset in an investor’s optimal portfolio,
it is necessary to assume that the utility function (and hence H) takes a particular
functional form – e.g. the constant relative risk aversion function, (4.6), above.
However, even with a specific function to represent utility, explicit solutions are
not generally available without making additional assumptions.

Note that the value taken by H differs across states. The values of H differ
also across investors. There is, however, a special case – important in some
applications – for which H is equal across investors (though not across states) in
market equilibrium. This result holds when (a) investors are unanimous in their
beliefs (they agree on the probability assigned to each state), and (b) asset markets
are complete (in the sense defined in section 4.1.1). Appendix 4.3 demonstrates
why H is the same for every investor under these conditions.

Risk neutrality

The case of risk neutrality, u′′
W� = 0, is more interesting than might first
appear. Risk neutrality implies that the marginal utility of wealth is indepen-
dent of wealth – say u′
W� = c, a positive constant. This means that (4.10) can
be written as

E9
rj− r0�u′
W�; = 0

cE9
rj− r0�; = 0

E9
rj− r0�; = 0

E9rj; = r0 j = 1(2( � � � ( n (4.11)

because the c is the same for each state and can be cancelled out. Expression (4.11)
does not involve any choice variable (that is, any xj) of the individual; it either
holds or it does not. If it does not hold, the investor would seek to borrow
at r0 and invest an unbounded amount in any asset for which E9rj; > r0; and
short-sell an unbounded amount of any asset for which E9rj; < r0, the proceeds
being invested at the risk-free rate, r0. This is just a way of acknowledging that
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there exists no solution to the maximization problem unless (4.11) holds; i.e. the
expected return on every asset equals the rate of return on the risk-free asset.
In such an equilibrium, risk-neutral investors are indifferent about which assets
they hold. (Obviously, other equilibria could exist if restrictions are imposed
on investors’ decisions – e.g. an upper limit on the amount of borrowing at the
risk-free rate or limits on short-sales.)

To an outside observer, a world of uncertainty with risk-neutral investors would
look rather like a world of certainty (in which asset payoffs, by definition, would
not differ across states). But note that (4.11) involves an expectation. Exactly
one state will be realized, and almost surely the actual excess return for asset j
will be negative or positive (not zero). The expectation may be equal to r0 but
the actual outcome, when the state is revealed, may well differ. The appearance
of certainty in a world of risk-neutral investors is potentially deceptive: risk is
present (the future is unknown) even if investors choose to ignore it.

4.3 Behavioural alternatives to the EUH

While the EUH plays a pivotal role in decision making under uncertainty, its
pre-eminent status is insecure. Some criticisms of the EUH have already been
mentioned; they apply much more broadly than to finance, or even to economics
as a whole. At the heart of scepticism about the EUH is its incompatibility with
observations of individual behaviour, especially evidence deriving from experi-
mental studies in which candidates are asked to make decisions in controlled, but
artificial, circumstances involving risk.

As a consequence of the apparent failure of the EUH, several alternatives
have been devised. The main objective has been to construct more plausible
descriptions of individual behaviour, less emphasis being given (a) to normative
(i.e. prescriptive) theories, and (b) to developing testable predictions about, for
example, the quantities held of particular assets. Instead, attention tends to centre
on the impact of heuristic ‘rules of thumb’ in decision making. Also, framing –
the way in which a decision problem is presented – is allowed to affect the
resulting decision.

While it is easy to criticize any theory such as the EUH as being unrealistic, it is
more challenging to propose an alternative that is testable – i.e. a theory that goes
beyond a post hoc rationalization of some observed phenomenon. Even so, active
research in behavioural finance is beginning to identify credible explanations that
can outperform the EUH.

Almost all proposed replacements for the EUH can be viewed, in one way or
another, as reflecting bounded rationality – that decision makers are unable to
process all the information needed to determine their actions in accordance with,
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say, the EUH. From this perspective, individuals accept (consciously or otherwise)
that they cannot adhere to the prescriptions of the EUH, even if they wish to do so.
Decision makers have to tolerate imperfect approximations to the ideal.

The approximations take one of a host of forms. For instance, it is possible
that the decision maker is internally consistent, in the sense that the assumptions
of the EUH are satisfied but that the probabilities used to weight utility levels
embody systematic errors – errors that the decision maker would avoid if only
they could be detected and recognized as such. The theory of cognitive dissonance
postulates that individuals experience difficulty in coping with new information
of a sort that implies that earlier decisions, based on erroneous beliefs, have led
to mistaken actions: the individual avoids revising beliefs that have unpalatable
consequences for past decisions. As a result, a reliance on beliefs that are known
to be wrong tends to distort decisions.

Two distinct, though closely related, approaches – prospect theory and regret
theory – modify the EUH’s objective function, E9u
W�; ≡ 11u
W1� +
12u
W2�+· · ·+1$u
W$�, by replacing either, or both, of the probability weights
and the von Neumann–Morgenstern utility function.

In prospect theory, ‘true’ (or objective) probabilities are assumed to exist but
are replaced with decision weights. Individuals’ decision weights reflect mistakes
in assessing probabilities, the desirability of outcomes in particular states, or
ambiguities in the interpretation of which state has occurred. It is typically
assumed, for instance, that decision weights over-weight low probabilities –
i.e. the decision weight assigned to a rare event exceeds its probability. However,
discontinuities in the relationship between probabilities and decision weights tend
to occur for events with very low and very high probability. Events for which the
probability approaches zero may be ignored (decision weight = 0), while those
with high probability are regarded as certainties (decision weight = 1).

Also, in prospect theory the utility function is replaced by a ‘value function’, say
z
W�, which is assumed to have the form depicted in figure 4.2. The important
attributes of the value function are: (a) it is a continuous, increasing function
of wealth; (b) there exists a kink at a ‘reference point’ or status quo point, S
(which can be identified with the individual’s initial wealth, so that W ∗ ≡ A);
(c) for wealth in excess of W ∗, the individual is risk-averse (z
·� is concave
from below – i.e. z′′
W� < 0); and (d) for wealth less than W ∗, the individual
is a risk lover (z
·� is convex from below – i.e. z′′
W� > 0). These properties,
together with the weights that replace probabilities, generate predictions that –
arguably – accord more closely with the evidence from individual experiments
than the EUH.

Unlike prospect theory, regret theory retains the ‘true’ EUH probabilities but
amends the von Neumann–Morgenstern utility function in such a way that the
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Fig. 4.2. The value function, z
W�, in prospect theory

The value function in prospect theory replaces the von Neumann–
Morgenstern utility function. It is assumed that there is a kink at
the ‘reference point’ or status quo point, S, with initial wealth, W ∗ –
what decision makers care about are changes in value. The value func-
tion exhibits risk aversion for wealth greater than W ∗, and risk-loving
behaviour for wealth less than W ∗.

decision maker compares the outcome in each state with outcomes in other states
that might have occurred but didn’t. Thus, once a state is revealed, the individual
may regret – or rejoice about – whatever action was chosen prior to the resolution
of the uncertainty. Being aware that such a reaction will occur, the decision
maker’s chosen action will take into account its potential impact. Once again, the
predictions of the theory are found to be consistent with experimental evidence
in ways that those of the EUH are not.

More radical departures from the EUH originate from psychology rather than
conventional economic reasoning. The theories attempt to incorporate a wide
range of behaviour, from the propensity of individuals to be overconfident about
their decisions, to a reliance on blatantly irrelevant information, through to a
penchant for guidance from superstition or even magic.

Many commentators about the world of finance go so far as to argue that a
substantial proportion of investors are completely irrational, at least for some
intervals of time. This need not imply that behaviour is beyond explanation,
though it does suggest that some events are difficult – perhaps impossible – to
analyse successfully with conventional tools. Psychological theories of the sort



Decision making under uncertainty 101

reviewed above are typically invoked to rationalize aberrant behaviour, extreme
price fluctuations or extraordinary incidents, rather than as expressions of normal
behaviour (see chapters 10 and 11). Arguably, the theories warrant a more central
position in finance than they have achieved. While undermining the pre-eminence
of the EUH, as yet, however, they have not displaced it.

4.4 The mean-variance model

4.4.1 The mean-variance approach to decision making

Even if the EUH is accepted as a reasonable expression of the decision maker’s
objective, for many purposes it remains too general, unless a specific form is
assumed for the von Neumann–Morgenstern utility function. One of the simplest
is that u
·� is quadratic in wealth.

If the von Neumann–Morgenstern function is quadratic, then expected utility
can be written as a function of the expected value (mean) of terminal wealth and
the variance (or its square root, the standard deviation) of terminal wealth; hence
the name ‘mean-variance analysis’ for a framework that greatly facilitates the
construction of optimal portfolios.11

More formally, denote the expected value of terminal wealth by E9W; and its
variance by var9W; ≡ E9
W −E9W;�2;. Then, if the function u
·� is quadratic,
the expected value of u
W� is a function of E9W; and var9W;:

E9u
W�;= F
E9W;(var9W;� (4.12)

where F
·( ·� is a function to be specified.

4.4.2 Remarks on mean-variance analysis

1. It is shown in appendix 4.4 that the function F
·( ·� must take a particular form if it
is derived from a quadratic von Neumann–Morgenstern utility function. It is written
more generally in (4.12) because the mean-variance objective can be justified on
grounds other than as the expected value of a quadratic utility function.

2. There are at least three ways of justifying the mean-variance objective.

(a) From the EUH, if the von Neumann–Morgenstern utility function is quadratic
in wealth, as already suggested.12 A quadratic approximation to a general utility
function could also justify mean-variance analysis.

11 The origin and early development of mean-variance analysis in the 1950s is credited to Harry Markowitz,
who shared the Nobel Memorial Prize in 1990 for his contributions to financial theory and practice.

12 A quadratic utility function may exhibit diminishing marginal utility for some levels of wealth but cannot be
monotonic throughout – the function reaches a maximum at a finite level of wealth and thereafter declines.
For this reason, if a quadratic utility function is specified, the level of wealth is assumed not to exceed the
level at which the function reaches its maximum.
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(b) From the EUH, if the rates of return are determined according to a multivariate
Normal distribution.13 The points to note in obtaining this result are that: (i)
Normal distributions are characterized entirely by their means (expectations),
variances and covariances; and (ii) linear combinations of Normal random vari-
ables are also Normal (hence, terminal wealth, or the rate of return on a portfolio
of assets with Normally distributed returns, is also Normally distributed).

(c) Directly on the grounds that such a criterion is plausible, without recourse to more
basic assumptions such as those of the EUH.

3. What is so special (i.e. restrictive) about mean-variance analysis? At first sight,
mean-variance analysis might appear to provide simply a definite form of the EUH.
It is common, after all, to express random variables in terms of their means and
variances. However, some important aspects of probability distributions cannot be
expressed by means and variances. For instance, any skewness in the distribution is
ignored.14

A less obvious feature of probability distributions, not captured by the variance,
is the tendency for some random variables to be concentrated either near to, or far
from, their means. An index of this tendency is the distribution’s kurtosis.15 There
is evidence that the distributions of many asset prices and rates of return have ‘fat
tails’ – i.e. that extreme values, or outliers, occur more frequently than consistent with
Normal random variables.

The upshot is that mean-variance analysis is compatible only with a restricted class
of random variables. To the extent that asset payoffs (and, hence, rates of return)
do not conform with these restrictions, mean-variance analysis is liable to result
in misleading conclusions. It could be, of course, that investors choose to ignore
the presence of skewness and kurtosis (perhaps as a consequence of maximizing a
quadratic von Neumann–Morgenstern utility function).

4. In most, though not all, mean-variance models the objective is written as a function
of the expected value and variance of the rate of return to wealth rather than the level
of wealth. The rate of return on wealth is defined as rP ≡ 
W −A�/A, where A is
initial wealth, as previously defined. The expectation and variance of rP are written as

P ≡ E9rP; and �2

P ≡ E9
rP−
P�2;, respectively (where the subscript P is intended to

13 While sufficient, Normality is not necessary – a broader class of distributions also implies a mean-variance
objective for EUH investors. Chamberlain (1983) provides an exhaustive characterization of the relevant
probability distributions. Further contributions appear in Meyer (1987), Levy (1989), Sinn (1989) and
Meyer (1989). For empirical evidence, see Levy and Duchin (2004).

14 Skewness is, formally, a property of the third moment of the probability distribution and reflects, roughly,
the tendency of the random variable to fall systematically either below (left-skewed) or above (right-skewed)
its mean. A skewed distribution is non-symmetric.

15 Kurtosis is a property of the fourth moment of the probability distribution. The Normal distribution provides
a benchmark and is said to be ‘mesokurtic’. Distributions with more probability than the Normal in the tails
are known as ‘leptokurtic’, and with less as ‘platykurtic’. The diagnosis of skewness and kurtosis is often
difficult in practice. For example, the presence of kurtosis may be confused with a variance that varies
across time. See Engle (2004).
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stand for ‘portfolio’ – i.e. the portfolio that results in the terminal wealth level W ).16

Expressed in this way, the mean-variance criterion can be written as

G

P(�
2
P� (4.13)

Starting with (4.13) has the attraction that the objective is independent of the investor’s
initial wealth. However, this form of the objective is not directly comparable with that
of the EUH because the level of initial wealth, A, has been absorbed in going between
F
·( ·� and G
·( ·� (see appendix 4.4 for details). Thus, for instance, to predict how
changes in A affect investors’ portfolio choices, it is necessary to revert to (4.12), in
which A appears explicitly.

5. It is common to interpret the variance of return, �2
P (or, equivalently, the standard

deviation, �P), as expressing the risk of the portfolio. Natural though it may seem,
this representation is adopted only provisionally. In chapter 6 a different interpretation
of risk, based on asset market equilibrium, is proposed.

To make sense of the trade-off between expected return, denoted by 
P , and risk,
expressed by �P , it is assumed that G

P(�

2
P� is increasing in 
P and decreasing in

�P .
17 In words, expected return is a ‘good’ and risk is a ‘bad’. Also, it is assumed that

the curves for which G

P(�
2
P� is constant in 
P(�P space (the indifference curves),

are convex from below. See figure 4.3.18

The justification for the convex-from-below shape of the indifference curves can
be made on several grounds: (a) intuitive plausibility – that it seems reasonable that,
at higher levels of risk, the greater are the increments to expected return needed to
compensate for increments in risk if the decision maker’s utility is kept constant;
(b) as an implication of a quadratic von Neumann–Morgenstern utility function that
is increasing in wealth; and (c) to draw the indifference curves otherwise would lead
to predictions that are inconsistent with commonly observed behaviour.19

A particular form of the G

P(�
2
P� function that satisfies the conditions above is

given by
G

P(�

2
P�= 
P−G�2

P (4.14)

where G > 0 is a parameter that represents the investor’s preferences.20 The magni-
tude of G reflects the investor’s attitude to risk (as expressed by the variance, �2

P).

16 In terms of E9W; and var9W;, 
P = 
E9W;−A�/A and �2
P = var9W;/A2.

17 Formally, the first partial derivative of G with respect to 
P is positive, HG/H
P > 0; and the first partial
derivative of G with respect to �2

P is negative, HG/H�2
P < 0. For the purposes of these qualitative conditions,

it does not matter whether the standard deviation, �P , or the variance, �2
P , is used to represent risk.

18 Note that it matters that �P , not �2
P , is used in the figure. More formally, the ‘convex from below’ property

of indifference curves follows from assuming that G

P(�
2
P� is quasi-concave in 
P and �P . In this context,

a function is quasi-concave if a straight line joining any two points on any given indifference curve lies
nowhere below the indifference curve.

19 For example, if the indifference curves are drawn as concave from below, the investor would always
‘plunge’, in the sense of holding either the least risky or the most risky feasible portfolio. Investors rarely
behave in this way. Hence, such indifference curves would not seem to provide a plausible foundation
for observed behaviour. Note that, even with convex-from-below indifference curves, investors might still
plunge (depending on the means and variances of returns), but, at least, they are not guaranteed to do so.

20 Portfolio selection to maximize 
P −G�2
P , as in (4.14), can be shown to maximize expected utility if

(a) assets’ rates of return are Normally distributed, and (b) the von Neumann–Morgenstern utility function
satisfies constant absolute risk aversion – i.e. u
W�= 1− e−?W , where G= ?/2.
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✲

✻
P

�P

Utility increases

Utility increases

✛

✻

Fig. 4.3. Indifference curves in 
P , �P space

In mean-variance analysis the investor’s preferences can be expressed
by indifference curves in the plane of expected return, 
P (a ‘good’),
and standard deviation of return, �P (representing risk, a ‘bad’). Points
to the north-west, depicting higher expected return and lower risk, are
more preferred to points in the south-east.

In particular, sometimes 1/G is referred to as a measure of the investor’s risk toler-
ance. If G = 0, risk has no influence: the investor is wholly tolerant of risk. At the
other extreme, if G is very large (formally, G→�), the investor becomes extremely
intolerant to risk. To see this, divide through (4.14) by G and then allow G→ �.
The objective function then becomes −�2

P , the maximization of which is equivalent
to minimizing risk, irrespective of expected return.21

4.4.3 The FVR in the mean-variance model

What form does the FVR take in the mean-variance model? Appendix 4.5 shows
that, in this case, the FVR can be written as


j− r0
�jP/�P

= 
P− r0
�P

j = 1(2( � � � ( n (4.15)

21 While plausible enough, this argument is imprecise. A more rigorous treatment specifies the objective
function as G

P(�

2
P� = C
P −G�2

P , where C > 0 is another parameter. The investor’s preferences with
respect to risk are now captured by the ratio C/G. As C → 0 for given G > 0, C/G→ 0: in words, the
investor becomes extremely intolerant to risk. In graphical terms, the indifference curves become vertical
and the investor acts to minimize risk no matter what the expected return.
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where �jP denotes the covariance between the rate of return on asset j and the
rate of return on the portfolio as a whole. This important set of equalities lies
at the core of mean-variance analysis and is studied in detail in chapter 5. In
particular, it is shown there that �jP/�P equals the increment to risk (as expressed
by �P) associated with an incremental change to the proportion of asset j in the
portfolio. Thus, the FVR states that each asset’s expected rate of return in excess
of the risk-free rate, 
j− r0, per unit of its contribution to overall risk, �jP/�P ,
is the same for all assets – a necessary condition for a mean-variance optimum.

Notice that the investor’s preferences (attitudes to risk) do not appear in expres-
sion (4.15). The equalities depend only on beliefs (expressed in terms of means,
variances and covariances of assets’ rates of return). This does not mean that
preferences are irrelevant but, rather, that there is a sense in which the role of
preferences is separate from the role of beliefs. For a mean-variance investor,
portfolio selection can be understood as the outcome of a two-stage process.

1. Choose a portfolio that satisfies the FVR conditions, (4.15). It is shown in chapter 5
that this portfolio takes a very special form, consisting of exactly two ‘special’ assets,
which are themselves portfolios of assets. If a risk-free asset is available, one of the
two special assets can be chosen to comprise just the risk-free asset alone. Investor
preferences are not relevant in constructing the special assets; their composition
depends only on means, variances and covariances that can, in principle, be estimated
from observed data.

2. According to investor preferences, choose the optimal portfolio that optimizes these pref-
erences – i.e. choose the portfolio that reaches the highest feasible indifference curve.

The practical importance of this approach is that it is often reasonable to assume
that the first stage is the same for all investors who have the same informa-
tion, while investors can be allowed to possess their own, unique preferences
(expressing attitudes to risk) in the second stage.

4.5 Summary

Three approaches to the study of uncertainty lie at the core of this chapter.

1. State-preference analysis. The state-preference model provides a general framework
for understanding decisions under uncertainty. A ‘state of the world’ represents
a complete description of all the relevant information (e.g. asset prices, company
profitability, technology, the weather, etc.) needed for a decision maker to evaluate
unknown future outcomes. Decisions are made before the state is revealed, and, once
it is revealed, all uncertainty is resolved. Decision makers are required to be able to
order their actions in a consistent way but, beyond this, little is assumed about their
behaviour. The drawback is that the model yields few, if any, testable predictions.
It is too general to handle many practical problems.
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2. Expected utility hypothesis. The EUH can be interpreted as a specialization of the
state-preference approach that (a) enables the use of probabilities to express beliefs,
and (b) characterizes preferences about uncertain outcomes with a von Neumann–
Morgenstern utility function that depends on the outcome (say, the level of wealth)
but that is the same function for all states. The EUH leads to the fundamental valuation
relationship, E9
1+rj�H;= 1, a condition necessary for the maximization of expected
utility in portfolio theory.

The EUH is the cornerstone of the economics of decision making under uncertainty,
but evidence on individual behaviour contradicts its predictions (and, by implication,
some of its assumptions). Moreover, the EUH’s predictions, whether contradicted or
not, are not sufficiently definite for most portfolio studies, unless a specific functional
form for the von Neumann–Morgenstern utility function is assumed.

3. Mean-variance analysis. Because means and variances are routine to estimate and
interpret, the mean-variance model is directly applicable to practical portfolio selection
problems. The model is, however, highly restrictive; indeed, so restrictive that
empirical evidence often casts doubt on its validity (for example, the model ignores
skewed distributions of asset returns). Even so, mean-variance analysis provides the
foundation for the capital asset pricing model (studied in chapter 6), one of the most
well-known (though frequently disparaged) models of asset prices.

Attempts have been made to overcome the inadequacies of these three
approaches, mainly by appeals to behavioural theories of choice under uncer-
tainty that are more commonly found in psychology than economics. Important
though the alternatives are, their emergence has not yet served to displace the
more orthodox models studied in this chapter.

Further reading

The economic theory of decision making under uncertainty extends far beyond
finance. Most of the contributions to the economics literature were not, and are
not, directed primarily to problems in finance such as portfolio selection. Interme-
diate microeconomics texts such as those by Varian (2003, chaps. 12 & 13) provide
an elementary starting point. An exposition of the expected utility hypothesis
(together with some alternative approaches to decision making under uncertainty,
such as ‘safety first’ and ‘stochastic dominance’, not covered here) appears in
Elton, Gruber, Brown and Goetzmann (2003, chaps. 10 & 11). Bernstein (1996)
offers an informative and entertaining account of the emergence and develop-
ment of ideas about uncertainty. For rigorous analyses of uncertainty in modern
finance, see Lengwiler (2004, especially chaps. 2–5) and Cvitanić and Zapatero
(2004, chap. 4).

The axiomatic foundations of the EUH have been intensively researched for
many years. Concise overviews of the literature are to be found in The New
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Palgrave Dictionary of Money and Finance (Newman, Milgate and Eatwell,
1992: ‘expected utility hypothesis’, Vol. I, pp. 856–62; and ‘uncertainty’, Vol. III,
pp. 712–19). The entry on ‘state preference approach’ (Vol. III, pp. 530–2) is
also worth consulting.

Most derivations of the EUH begin by assuming the existence of probabilities.
Although careful not to make claims of originality, Marschak and Radner (1972,
chap. 1) develop a clear and comprehensible account in which probabilities emerge
as part of the solution, and are not assumed to exist at the outset. Arrow (1971,
especially chaps. 1–4) provides what remains one of the finest treatments, at an
advanced level, of both the foundations and applications of the theory of choice
under uncertainty. For insightful discussions of the controversies about the EUH
axioms, see Drèze (1974) and Ellsberg (2001).

Excellent starting points for behavioural finance are the analyses by Shiller
(1999) and Kahneman (2003). Also worth consulting are Epstein (1992) and
Olsen (1998). These references discuss applications that go beyond the coverage
of this chapter to include topics relevant for chapters 10 and 11. Among the
many contributions not specifically directed to finance, those by Tversky and
Kahneman (1974), Kahneman and Tversky (1979), Loomes and Sugden (1982)
and Starmer (2000) deserve careful attention. Shiller (2000) applies the principles
of behavioural finance in a perceptive analysis of the US stock market boom of
the late 1990s.

Appendix 4.1: Useful notation

This appendix outlines convenient ways of expressing wealth and rates of return
that are handy in concise presentations of portfolio theory. It uses no more than
simple algebraic manipulations.

For brevity, the subscript k (denoting the state of the world) is omitted. Terminal
wealth can then be written as

W =
n∑
j=1

vjxj

where the expression
∑n
j=1 means ‘sum up over the j from 1 to n’. Often the

j = 1 and n are omitted when it is clear what is being summed and what its
range is.

Now substitute the relationship used to define the rate of return on asset j:
vj = 
1+ rj�pj . Remember that rj varies with the state but pj is observed at the
outset and hence does not. Hence

W =
n∑
j=1


1+ rj�pjxj (4.16)
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Suppose that initial wealth is positive: A> 0. This being so, much of portfolio
theory can be presented in terms of the proportion of initial wealth invested in
asset j, denoted by aj , where aj ≡ pjxj/A. By definition, all the a1( a2( � � � ( an
must add up to unity:

∑
aj = 1.

Now it is possible to construct an expression for the rate of return on the whole
portfolio, 
W −A�/A, or 
W/A�−1, as follows:

W =∑

1+ rj�pjxj from 
4�16�

=∑

1+ rj�ajA from the definition of aj

W

A
=∑


1+ rj�aj dividing through by A

rP ≡ W −A
A

=∑
rjaj using

∑
aj = 1

Thus, the rate of return on the portfolio, rP , equals the weighted sum of the rates
of return on each asset, the weights being the portfolio proportions. Note that the
rate of return is uncertain because rj , not aj , varies across states.

Finally, suppose that A = 0. This will be the case for arbitrage portfolios,
which by definition use zero initial wealth. It is not possible to divide by A and it
is convenient to define yj ≡ pjxj , the total investment in asset j. (In a non-trivial
portfolio constructed from zero initial wealth, yj will be positive for some assets,
negative for others.) Thus

W =∑

1+ rj�yj using yj ≡ pjxj

=∑
yj+

∑
rjyj

=∑
rjyj because A=∑

yj = 0 by assumption

In this case, rP cannot be defined as above because the denominator, A, is zero.

Appendix 4.2: Derivation of the FVR

Designate the risk-free asset as ‘asset 0’, with payoff v0 in every state. The FVR is
obtained by solving the problem: choose x0( x1( x2( � � � ( xn to maximize E9u
W�;
subject to p0x0+p1x1+p2x2+· · ·+pnxn = A, where x0 is the investment in the
risk-free asset. Consider the Lagrangian expression

� = 11u
W1�+12u
W2�+· · ·+1$u
W$�

+E
A−p0x0 −p1x1−p2x2 −· · ·−pnxn�
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where Wk = v0x0 + vk1x1 + vk2x2 + · · · + vknxn. Partially differentiating the
Lagrangian with respect to xj and E provides the first-order conditions:

11v0u
′
W1�+12v0u

′
W2�+· · ·+1$v0u
′
W$� = Ep0

11v11u
′
W1�+12v21u

′
W2�+· · ·+1$v$1u′
W$� = Ep1

���

11v1ju
′
W1�+12v2ju

′
W2�+· · ·+1$v$ju′
W$� = Epj

���

11v1nu
′
W1�+12v2nu

′
W2�+· · ·+1$v$nu′
W$� = Epn

p0x0 +p1x1+p2x2 +· · ·+pnxn = A

In a more compact form, the first-order conditions can be written as

E9vju
′
W�;= Epj j = 0(1(2( � � � ( n

Now divide through each equation by its respective pj:

E9
vj/pj�u
′
W�;= E j = 0(1(2( � � � ( n

and remember that, by definition, rj = 
vj/pj�−1, so that

E9
1+ rj�u′
W�;= E j = 0(1(2( � � � ( n

which is the FVR for the one-period portfolio problem.

Appendix 4.3: Implications of complete asset markets

This appendix shows that, if two conditions are satisfied, the H random variable in
the FVR does not depend on preferences; that is, it is the same for every individual
investor irrespective of the investor’s von Neumann–Morgenstern utility function.
The two conditions are (a) unanimity of beliefs and (b) a complete set of asset
markets. Unanimity of beliefs asserts that all investors behave as if they attach
the same probability to each state. The result can be demonstrated once the term
‘complete set of asset markets’ has been defined.
Definition of a complete set of asset markets: there exists a complete set of

asset markets if it is possible to construct $ distinct portfolios – one for each
state – such that each portfolio has a payoff of one unit of account in precisely
one state and zero in every other state. Thus, for every state it is possible to
obtain a unit payoff in that state and that state alone. Each of these portfolios
can be regarded as an asset in its own right, here called an ‘Arrow security’.22

22 So named for its originator, Kenneth Arrow (see Arrow, 1963–64).
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Formally, an Arrow security has a payoff of one in exactly one state and zero in
every other. Thus, completeness of asset markets is equivalent to the existence
of $ distinct Arrow securities – one for each state.

Assume that there exists a complete set of asset markets. To keep the notation
simple (and for no other reason), suppose that the completeness is represented by
the presence of $ Arrow securities labelled j = 1(2( � � � ( $ (there may be lots of
other securities as well, labelled j = $+ 1( $+ 2( � � � ( n). By construction, each
Arrow security, j, has payoffs

vkj =
{

1 if k= j

0 if k �= j

Also by construction, the rate of return on an Arrow security satisfies 
1+ rkj�=
1/pj if j = k, and 
1+ rkj�= 0 otherwise.

Consider the FVR written out in full for any asset j:


1+ r1j�H111+ 
1+ r2j�H212 +· · · 
1+ r$j�H$1$ = 1 (4.17)

Note that all investors agree on the rate of return in each state and, from the
assumption of unanimity of beliefs, the probabilities 
11(12( � � � (1$� are the
same for all investors.

The reasoning so far allows the Hk to differ across individuals in accordance
with their preferences (how they subjectively value the payoffs in different states).

Now consider equation (4.17) for the Arrow securities alone. By the definition
of Arrow securities, (4.17) specializes to


1+ rjj�Hj1j = 1

1
pj
Hj1j = 1

Hj =
pj

1j
j = 1(2( � � � ( $ (4.18)

By construction, the right-hand side of (4.18) is the same for every investor.
Hence, Hj is the same for every investor – the result asserted at the outset.
Notice that (4.18) is a consequence of asset market equilibrium (under the stated
conditions), not a feature of individual investors’ preferences.

Appendix 4.4: Quadratic von Neumann–Morgenstern utility

Any quadratic von Neumann–Morgenstern utility function can be written in the
form

u
W�=W −bW 2 (4.19)
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where b > 0 is a parameter characterizing preferences. (The multiplication of
(4.19) by any positive constant and the addition of any constant would leave
unchanged all decisions based on expected utility.) In order to ensure that utility
is increasing over the relevant range of wealth, b is assumed to satisfy b< 1/
2Wk�

for Wk in every state k= 1(2( � � � ( $.
Taking the expectations in (4.19):

E9u
W�;= E9W;−bE9W 2;= E9W;−b
var9W;+E9W;2�

which is the form the mean-variance criterion takes when derived from a quadratic
utility function.

To obtain the relationship between F
·( ·� andG
·( ·�, notice that terminal wealth
can be written as W = 
1+ rP�A. Hence, E9W;= 
1+
P�A and var9W;= �2

PA
2,

so that

G

P(�
2
P�≡ F

1+
P�A(�2

PA
2�

Appendix 4.5: The FVR in the mean-variance model

To obtain the FVR in the mean-variance model, note that marginal utility is
given by differentiating (4.19): u′
W� = 1−2bW . Also, recall that for any two
random variables, X and Y , E9XY; = E9X;E9Y;+ cov9X(Y;, from the definition
of covariance. A sketch of the derivation of the FVR is as follows:

E9
rj− r0�u′
W�; = 0

E9
rj− r0�;E9u′
W�;+ cov9
rj− r0�( u′
W�; = 0



j− r0�E9u′
W�;−2bA�jP = 0 (4.20)

where �jP ≡ cov9rj( rP;. Note that cov9
rj−r0�( u′
W�;= cov9rj−r0(1−2bW;=
E9
rj − r0 −
j + r0�
1− 2bW − 1+ 2bE9W;�; = −2bE9
rj −
j�
W −E9W;�; =
−2bAE9
rj−
j�
rP−
P�;=−2bA�jP , using W = 
1+ rP�A.

If condition (4.20) holds for any asset j, it must also hold for the portfolio as
a whole (the portfolio can be interpreted as a single, composite asset):



P− r0�E9u′
W�;−2bAcov9rP( rP; = 0



P− r0�E9u′
W�;−2bA�2
P = 0 (4.21)

since �2
P ≡ var
P�= cov9rP( rP;. Now rearrange (4.20) and (4.21), cancelling out

E9u′
W�; and 2bA, to give

j− r0
�jP/�P

= 
P− r0
�P

j = 1(2( � � � ( n

which is a standard expression for the FVR in mean-variance analysis.
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5

Portfolio selection: the mean-variance model

Overview
This chapter explores in greater depth than chapter 4 the study of portfolio
decisions when investors act to optimize a mean-variance objective function.

In addition to its significance as a testable theory of asset demand, mean-
variance analysis plays two other roles: (a) it provides a method for the practical
construction of portfolios; and (b) it forms the foundation for the capital asset
pricing model, the subject of chapter 6.

Although mean-variance analysis and the CAPM are close relatives, it is impor-
tant to distinguish between the two. Mean-variance analysis provides a theory
of individual behaviour regardless of whether the market, as a whole, is in equi-
librium. The CAPM, building on mean-variance analysis, provides a theory of
asset prices in market equilibrium.1 This chapter addresses only the former prob-
lem – of individual behaviour – and is silent about the implications of market
equilibrium for asset prices.

The analysis in this chapter proceeds in a sequence of steps, each of which
builds on the previous one. The steps are summarized as follows.

1. A review of the basic concepts of mean-variance analysis.
2. The choice between two risky assets: the objective here is to construct a frontier

between the expected rate of return on each portfolio and the portfolio’s standard
deviation of return. No risk-free asset is available.

3. The choice among many risky assets, again excluding risk-free lending or borrowing.
The portfolio frontier is found to take the same form as in the two-asset case, and an
important proposition – the first mutual fund theorem – is explained.

1 Market equilibrium refers here to an equality between the total of investors’ demands to hold assets and the
aggregate stocks available to be held.
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4. The choice among many assets when a risk-free asset is available. In this case, the port-
folio frontier takes a simple linear form, hence justifying the second mutual fund
theorem.

5. Optimal portfolio selection: here the selection of an optimal portfolio from among the
efficient portfolios is examined.

Risk. In this chapter, the standard deviation (or, equivalently for this purpose,
variance) of an asset’s rate of return is used to measure the risk associated with
holding the asset. As noted in chapter 4, this association should be treated as
provisional. Subsequent chapters argue that it needs to be qualified: there may
exist other, more suitable, measures of an asset’s risk than its standard deviation
of return.
Absence of market frictions. In common with much of financial theory, it is

assumed that market frictions (transaction costs and institutional restrictions on
trades) can be ignored. Just how restrictive this assumption is, of course, depends
on the severity of the frictions in any particular application. The treatment here
requires, at least, that market frictions do not impinge in a significant way on the
portfolio selection decisions of investors.

5.1 Mean-variance analysis: concepts and notation

5.1.1 The mean-variance objective

Each investor who acts according to a mean-variance objective is assumed to
choose a portfolio that maximizes

G=G

P(�
2
P�

subject to the constraint that the total value of assets (calculated at initial prices)
does not exceed initial wealth. The expected (or mean) rate of return on the
portfolio is denoted by 
P . Risk is measured by �P , the standard deviation of
the rate of return on the portfolio. Pairs of 
P and �P for which G

P(�

2
P�

is constant define indifference curves (examined later, in section 5.5; see also
chapter 4, page 103).

In this chapter, the investor is assumed to make exactly one portfolio decision;
a decision that (for whatever reason) remains unchanged for the whole of the time
period being studied. What happens after the decision has been made is ignored.
(More complicated decisions involving revisions to portfolios – and other relevant
choices – are explored in chapter 11.)

As explained in chapter 4, a mean-variance investor’s optimal portfolio selec-
tion can be split logically into two steps. First, the portfolio frontier, comprising
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those portfolios for which �2
P is minimized for each 
P , is constructed.2 Second,

a choice is made from among the frontier portfolios so as to maximize the objec-
tive, G, in accordance with preferences, expressed by the investor’s own, personal
G
·( ·� function. Assuming that the objective function is increasing in expected
return and decreasing in risk, only a portion of the portfolio frontier – the efficient
portfolio set – is relevant in the second step.

The expected return and standard deviation of portfolio return encapsulate
the investor’s beliefs about the rates of return on individual assets: by vary-
ing the composition of the portfolio, the investor effectively chooses 
P and �P .
The constraint on the investor’s portfolio choices is called the portfolio frontier ;
it is expressed in terms of 
P and �P , rather than directly in terms of the amount
of each asset held.

The mean-variance model acquires its practical relevance because means,
covariances and variances3 of rates of return can be estimated from past obser-
vations on asset prices or from other relevant information. That is, experience
(typically, price observations) can be used to represent an investor’s beliefs in a
way that involves standard statistical methods – methods that would not neces-
sarily be applicable in other models of portfolio selection. Armed with estimates
of means and variances, it is a routine matter to calculate the portfolio frontier.

In what follows, a distinction should be drawn between the theoretical concepts
(of means and variances) and the estimates that are made of them. They are
different things: the estimates are observable counterparts of the unobservable
theoretical concepts. In practical calculations of portfolio frontiers, it is necessary
to use numerical values (i.e. estimates) of means and variances. These can be
obtained using a variety of methods. Calculations based on past data may be
the most convenient way to estimate the means and variances. But individuals
may differ in their beliefs (perhaps they differ in their available information, or
in how they process it) and there is nothing that compels individuals to use one
method rather than another in forming their estimates. Indeed, from the standpoint
of economic analysis, investors may be assumed to act only as if they choose
according to a mean-variance criterion; there is no reason why they should be
consciously aware of means and variances.

If all investors have access to the same information, and if this information is
the set of past rates of return on the assets, then, arguably, all investors should
possess common beliefs and, hence, should arrive at the same estimates of the
means and variances. (More precisely, what is important is whether investors act

2 The diagrammatic treatment is given in terms of �P rather than �2
P . Given that the standard deviation is the

positive square root of the variance, minimizing one is equivalent to minimizing the other. Hence, it is a
matter of convenience about which to minimize.

3 From now on, ‘variances’ should be understood to include covariances, unless indicated otherwise.
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as if they agree. Whether they could or would acknowledge that they agree is
another matter, irrelevant in this context.)

To postulate that investors agree about means and variances is restrictive,
however, and is not needed in this chapter; the focus of attention is on the
decisions of a single investor. The question of whether investors act as if they
share the same beliefs about the means and variances of assets’ returns becomes
important in the theory of market equilibrium, involving as it does interactions
among all investors.

5.1.2 Notation

The following notation is used throughout the remainder of this chapter, and also
in chapter 6.

rj = rate of return on asset j = 1(2( � � � ( n (each rj is a random variable).

j = E9rj;, expected rate of return on asset j.
�ij = cov
ri( rj�≡ E9
ri−
i�
rj−
j�;, covariance between the rates of

return ri and rj .
�j = +√

�jj , standard deviation of return on j, where �jj = var
rj�≡
E9
rj−
j�2;.

�ij = �ij/
�i�j�, correlation coefficient between returns on assets i and j.
aj = pjxj/A, proportion of portfolio invested in asset j, with

∑
j aj = 1.

r0 = rate of return on risk-free asset, 
0 ≡ r0.

In the following, a subscript i or j refers to a single asset while an upper-case
subscript (e.g. P or Z) refers to a portfolio of several assets. A portfolio is
defined as a vector, or list, of asset holdings, x0( x1( x2( � � � ( xn, chosen subject
to the constraint Jpjxj = A, where A denotes initial wealth. The portfolio is
more conveniently written in terms of proportions: a0( a1( a2( � � � ( an. In this
representation asset prices and initial wealth are hidden in the background. The
expected rate of return and variance of the rate of return on any portfolio, P, take
the form


P =∑
j

aj
j

and �2
P =

n∑
i=1

n∑
j=1

aiaj�ij

The range of j in the above summation for 
P is j = 1(2( � � � ( n when there is no
risk-free asset, and j = 0(1(2( � � � ( n when there is a risk-free asset. It should be
clear from the context which is intended.
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5.2 Portfolio frontier: two risky assets

The case of two risky assets (with no risk-free asset) is a handy building block for
the general case of n assets. In figure 5.1 the two end points mark the expected
returns and standard deviations of the two assets; the curved line joining them
is the portfolio frontier. Note that the frontier must pass through the two dots
marked ‘Asset 1’ and ‘Asset 2’ because, with just two assets to choose between,
both are on the frontier: depending on the investor’s preferences, total wealth
could be devoted entirely to one of the assets. The goal here is to understand
how the frontier is constructed. Having grasped the two-asset model, the general
case of n > 2 assets can be understood with little extra effort.

Define a= a1 so that 
1−a�= a2. Then, from the definitions of expectations
and variances,


P = a
1+ 
1−a�
2

�2
P = a2�11+2a
1−a��12 + 
1−a�2�22

= a2�2
1 +2a
1−a��12�1�2 + 
1−a�2�2

2

Note that �11 ≡ �2
1 (�22 ≡ �2

2 (�12 ≡ �12�1�2.
Consider the special cases for which the correlation between the two rates of

return takes on extreme values: �12 =±1:

�2
P = a2�2

1 ±2a
1−a��1�2 + 
1−a�2�2
2

= 
a�1± 
1−a��2�
2

�P = �a�1± 
1−a��2�

Hence, bearing in mind that the standard deviation, �P , must be non-negative (by
definition),

�12 = +1 =⇒ �P = a�1+ 
1−a��2

�12 = −1 =⇒ �P = 
a�1− 
1−a��2�� 0 for a� �2

�1+�2

�12 = −1 =⇒ �P =−
a�1− 
1−a��2� > 0 for a <
�2

�1+�2

The expressions above trace out lines in the 

P(�P� plane after eliminating a,
using the definition 
P = a
1 + 
1− a�
2. The three lines are depicted in
figure 5.2.
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Fig. 5.1. The efficiency frontier with two assets

The portfolio frontier depicts the minimum �P for each level of 
P . It
is shown here for non-negative combinations of two assets. For a zero
proportion of asset 2 in the portfolio, the frontier is located at the point
labelled ‘Asset 1’. Similarly, for a zero proportion of asset 1 in the
portfolio, the frontier is located at the point labelled ‘Asset 2’.
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Fig. 5.2. The efficiency frontier with two assets and �12 =±1

The portfolio frontier depends, among other things, on the correla-
tion between the assets’ rates of return. At one extreme, �12 = +1,
the frontier is the line segment joining points labelled ‘Asset 1’ and
‘Asset 2’. At the other extreme, �12 =−1, the frontier consists of two
line segments, from ‘Asset 2’ to V , and from V to ‘Asset 1’.
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Fig. 5.3. The efficiency frontier allowing for short-sales

The frontier FF allows for all possible combinations of assets in the
portfolio (such that their proportions sum to unity) including a negative
proportion (short-sale) of one or other asset. The positively sloped
portion of FF approaches but never reaches the ray BC. The negatively
sloped portion of FF approaches but never reaches the ray BD. The
point marked MRP (minimum risk portfolio) identifies the portfolio for
which �P is smallest for all possible values of expected return (for this
portfolio, 
mrp = B).

Remarks

1. For all values of the correlation coefficient, �12, strictly greater than −1 and strictly
less than +1, the frontier is non-linear. For non-negative holdings of both assets it is
the line depicted in figure 5.1, lying within the triangular region bounded by the lines
in figure 5.2.

2. Extension of the portfolio frontier beyond the points given by a= 1 or a= 0 involves
the short-sale of one of the assets (the resulting funds being used to purchase the other).

3. It can be shown that the relationship between the expected return on the portfolio, 
P ,
and the variance, �2

P , is a parabola. Usually, as here, the graph is drawn using the stan-
dard deviation �P , in which case the relationship between 
P and �P is a hyperbola.

This hyperbola takes the form depicted in figure 5.3 on page 120. Note that the
frontier approaches, but never intersects, the two rays BC and BD as �P tends to
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infinity. The point MRP on the frontier, for which �P is at a minimum when ranging
over all expected return values (i.e. not for a given 
P), is called the minimum risk
portfolio.4 The expected rate of return corresponding to MRP is denoted by point B
in figure 5.3. For later reference, let 
mrp denote the expected rate of return on the
minimum risk portfolio. Also for later reference, note that the MRP is optimal only
for investors whose preferences, expressed by G

P(�

2
P�, focus entirely on risk and

give zero weight to expected return. Every investor who is prepared to tolerate higher
risk for a higher expected rate of return would choose a portfolio with greater risk
than that of the MRP.

4. The upward-sloping arm of the frontier defines the set of efficient portfolios – i.e. an
efficient portfolio is one for which 
P is maximized for a given �P . As already noted,
if G

P(�

2
P� is increasing in expected return and decreasing in risk, the choice of an

optimal portfolio will always be made from the efficient set.

5.3 Portfolio frontier: many risky assets and no risk-free asset

Suppose that there are n > 2 risky assets (with no risk-free asset). The shape
of the portfolio frontier is the same as for the two-asset case (it is a hyperbola).
Including additional assets allows for increased diversification – i.e. the attainment
of at least as low a level of risk for each level of expected return. The frontier
with a larger number of assets is located to the left of the frontier with fewer
assets. (More precisely, the frontier is nowhere to the right when additional assets
are available. This allows for the possibility that the additional assets have returns
that are perfectly correlated with combinations of existing assets, and hence do
not affect the trade-off between 
P and �P .)

It is assumed from now on that the n assets are ‘genuinely different’, in the sense
that the return on no asset can be formed as a linear combination of the returns
on other assets. Composite assets created as portfolios (linear combinations) of
existing assets play an important part in what follows, but for convenience they
are excluded from the list of n underlying assets.

To gain some intuition for the multiple-asset case, imagine starting with two
assets. Then form an efficient portfolio of the two. This portfolio has a random
return (with an expectation and a variance) that depends on the proportions of
the two assets held in it. Now treat this portfolio as if it is a single asset. This
composite asset is rather like a simple ‘closed-end mutual fund’ in the United
States or ‘investment trust’ in Britain. The composite asset can be identified with
a point on the efficient frontier for the two underlying assets, the location of the
point being determined by the asset proportions in the portfolio.

4 This terminology is convenient but could be misleading: all points on the frontier depict points of minimum
risk for a given expected return, 
P . The minimum risk portfolio is defined without holding 
P given at a
specified level. The MRP identifies a portfolio with global minimum risk.
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Fig. 5.4. The efficiency frontier with three assets

If a third asset becomes available, it is possible to construct a frontier
as if for two assets, one of which is a composite of assets 1 and 2 (such
as marked by point C), the other being asset 3. The line FF depicts the
overall portfolio frontier only if asset 3 on its own happens to be the
portfolio with minimum �P when 
P is set equal to 
3, the expected
rate of return on asset 3. (In general, frontier portfolios contain non-zero
proportions of at least two assets so that ‘Asset 3’ lies strictly inside,
not on, the boundary of the frontier.)

By including a third asset along with the first two, the portfolio selection
problem can be analysed just as if the choice is between the composite asset and
the third asset. All of the analysis of the previous section applies, the result being
depicted in figure 5.4.

Beware. While the analysis so far is suggestive, it is incomplete and could
be misleading, for the line FF in figure 5.4 is not necessarily the frontier in the
three-asset case. The reason is that FF denotes the frontier only for cases in
which a single asset – asset 3 in figure 5.4 – lies on the frontier. In general,
the portfolio frontier lies to the left of FF : an individual asset, while on its own
constituting a feasible portfolio (all initial wealth could be invested in a single
asset), is typically not on the frontier, with n > 2 assets.

Despite this warning, it is reasonable to suppose that a pair of composite assets –
mutual funds – can be constructed from subsets of any number n > 2 of assets,
and that these two composite assets can be used to trace out a frontier. There
are many such pairs, each of which generates its own frontier. The portfolio
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frontier for the n asset problem is that which is the ‘furthest to the left’ in the

P(�P plane. The upshot, explored further below, is that it is possible to trace
out the portfolio frontier as if there are exactly two assets, which are themselves
composites of the individual assets. (Note that both composite assets may need
to include a non-zero amount of every individual asset.)

The formal optimization problem from which the portfolio frontier is con-
structed is as follows: for a given value of 
P , choose portfolio proportions,
a1( a2( � � � ( an, to

minimize �2
P =∑n

i=1

∑n

j=1
aiaj�ij

subject to 
P =∑n

j=1
aj
j and

∑n

j=1
aj = 1

A separate minimization is carried out for each given value of 
P so that, as

P is changed, the frontier is traced out. (Appendix 5.2 offers a formal analysis.)

The description of the portfolio frontier above hints at the first mutual fund
theorem (or first separation theorem) of portfolio analysis.5 A precise statement
of the theorem is: given the existence of n� 2 assets, the random rates of returns
on which can be expressed entirely by their means and variances, there exist two
mutual funds (composite assets) such that the expected rate of return and variance
of every frontier portfolio can be obtained by holding only the two mutual funds.
That is, for any arbitrary frontier portfolio, the two mutual funds alone can be
combined to form a portfolio that has the same expected rate of return and the
same variance as the arbitrarily chosen frontier portfolio.

In order to gain some intuition for the importance of the first mutual fund
theorem, consider an investor whose beliefs can be expressed in terms of means
and variances and who seeks to choose a portfolio that maximizes G

P(�

2
P�.

The investor’s beliefs are expressed by


1 
2 
3 � � � 
n

�11 �12 �13 � � � �1n

�22 �23 � � � �2n

�33 � � � �3n

� � �
���

� � � �nn

5 Although the mutual fund theorems of portfolio analysis are most commonly found in mean-variance
analysis, they appear in more general treatments involving broader classes of preferences and distributions
of asset returns.
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Suppose that the number of assets, n, is very large (say, 1000) and that the
investor finds it too complicated and wearisome to choose among the n assets in
maximizing G

P(�

2
P�.

Thus, suppose that the information about beliefs (means, variances and covari-
ances) is handed to an expert. The expert does some calculations and replies
(correctly) that the investor can achieve a maximum of G

P(�

2
P� by choos-

ing between just two assets – say, A and B – that are themselves portfolios
(mutual funds) of the original n assets. The investor’s portfolio choice problem –
maximization of G

P(�

2
P� – is thus dramatically simplified. Note the following.

1. The expert needs to know nothing about the investor’s preferences, G

P(�
2
P�. Hence,

the same pair of assets, A and B, could be used to locate the optimum portfolio for
every investor who shares the same beliefs (means, variances and covariances).

2. The first mutual fund theorem guarantees that the expert is right to claim that the
problem simplifies to the choice between two assets (so long as the expert makes no
mistakes in the calculations).

3. The expert creates the two assets as follows. (a) For any level of portfolio expected
return, 
P , choose the portfolio that minimizes �2

P . By construction, the solution pair


P(�P� lies on the portfolio frontier. (b) Hence construct two portfolios, A and B,
on the frontier corresponding to any two different levels of 
P .

4. With a knowledge of 
A(
B(�
2
A(�

2
B(�AB (means, variances and covariance of returns

for A and B), the investor can construct exactly the same portfolio frontier as for the
original n assets. An optimal portfolio comprising just A and B is then chosen to
maximize G

P(�

2
P� from among the frontier portfolios.

While the discussion above is intended to motivate the mutual fund theorem,
it is not a proof. A sketch of a proof is as follows. First, it can be shown that
there is a unique portfolio of the n assets corresponding to each point on the
frontier.6 Second, choose any distinct pair of frontier portfolios: these correspond
to the mutual funds referred to in the theorem. Third, the expected return on
any arbitrary frontier portfolio can be expressed as a portfolio constructed from
the mutual funds.7 Fourth, it is possible to show that the newly constructed
portfolio satisfies exactly the same first-order (variance-minimizing) conditions
as the arbitrarily chosen portfolio. Fifth, because the constructed portfolio satisfies
the same conditions, it defines the same point on the frontier and hence has the
same variance. Finally, as far as mean and variance are concerned, the arbitrary
portfolio and the portfolio constructed from the mutual funds are identical. Hence,

6 Uniqueness follows from the assumption that all n assets are ‘genuinely different’ in the sense that there are
no linear dependences among their random rates of return.

7 For example, suppose that the expected returns on the mutual funds are 10 per cent and 20 per cent,
respectively. Let the expected return on some other portfolio be 
P . Then the portfolio of mutual funds
needed to obtain 
P is found by solving: 
P = 0�10K+0�20
1−K� for K. In this example, K = 2−10
P .
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the first mutual fund theorem holds: any frontier portfolio can be constructed from
the two mutual funds.

5.4 Portfolio frontier: many risky assets with a risk-free asset

5.4.1 Efficient portfolios

In the presence of a risk-free asset and any number of risky assets, the set of
efficient portfolios is a straight line. In figure 5.5 the efficient portfolios lie along
the line r0ZE, where r0 is the risk-free rate of return and Z is the point of tangency
between a ray from r0 and FF (the frontier for portfolios of risky assets only).
The set of efficient portfolios is obtained by minimizing the portfolio risk, �P ,
for each given expected portfolio return, 
P .

The point of tangency depicted by Z in figure 5.5 identifies the efficient
portfolio for which the proportion of the risk-free asset is zero. Efficient portfolios
to the left of Z, along r0Z, include a positive proportion of the risk-free asset,
while those to the right, along ZE, involve a negative proportion (i.e. borrowing
to finance the purchase of risky assets).

The formal optimization problem from which the set of efficient portfolios is
constructed is as follows: for a given value of 
P , choose portfolio proportions,
a0( a1( a2( � � � ( an, to

minimize �2
P =∑n

i=1

∑n

j=1
aiaj�ij

subject to 
P =∑n

j=1
aj
j+a0r0 and a0 +

∑n

j=1
aj = 1

A separate minimization is carried out for each given value of
P so that, as
P is
changed, the efficient set is traced out. (See appendix 5.3 for a formal analysis.)

Remarks

1. Why is the set of efficient portfolios a straight line? An intuitive argument is as follows.
First, construct the frontier,FF , for riskyassets alone, asdescribed in theprevioussection.
Next, plot the rate of return, r0, for the risk-free asset on the vertical axis of the (
P(�P)
diagram and connect this with a ray to any point on the frontier FF . Points along this ray
depict the expected return and risk for portfolios comprising the risk-free asset and the
portfolio of risky assets given by the chosen point on theFF frontier. Lower levels of risk
can be attained (for each level of expected return) by pivoting the ray through r0 to higher
and higher points along FF , until the ray is tangential with FF . No further reduction
in risk is feasible (for a given expected return and the frontier, FF , that is). The set of
efficient portfolios for all assets including the risk-free asset is then the ray formed from
this tangency – i.e. the line r0ZE in figure 5.5.

2. Must such a tangency (on the positively sloped portion of FF ) always exist? No.
A necessary and sufficient condition for the existence of the tangency depicted in
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Fig. 5.5. Efficient portfolios with a risk-free asset

When a risk-free asset, with rate of return r0, is available the portfolio
frontier becomes the ray r0ZE, starting at r0 and tangential to FF at Z.
To the left of Z, along r0Z, efficient portfolios contain a non-negative
proportion of the risk-free asset. To the right of Z, along ZE, efficient
portfolios involve borrowing at the risk-free rate.

figure 5.5 is that r0 < 
mrp; i.e. the risk-free interest rate must be less than the
expected rate of return on the portfolio of risky assets with minimum risk. (See
figure 5.3 on page 120, where point B corresponds to 
mrp.)
What happens if r0 � 
mrp? Suppose that r0 > 
mrp. In this case, it can be shown

that the investor would choose to short-sell a portfolio of risky assets and invest the
proceeds in the risk- free asset.8 The set of efficient portfolios remains a positively
sloped straight line through r0, the risk originating in the payoffs from the assets that
have been short-sold.

Suppose that r0 =
mrp. In this case, it can be shown that the investor could choose
a portfolio of risky assets such that

∑n
j=1 aj = 0 (i.e. with some assets short-sold and

some positive holdings) to yield an expected return equal to r0 and zero risk, �P = 0.
There is no optimal solution in this case; the investor perceives that there exists a
portfolio of risky assets that has precisely the same mean-variance properties as the
risk-free asset.9

8 The portfolio that would be short-sold can be identified with the point of tangency between a ray from r0 and
the lower, negatively sloped, arm of the FF frontier. For a detailed exposition, see Huang and Litzenberger
(1988, pp. 78–80).

9 It is tempting to interpret the basket of risky assets in question as being an arbitrage portfolio: a zero
outlay of initial capital on risky assets yields a risk-free return. As the analysis in chapter 7 shows, this
temptation should be resisted, for here the absence of risk is conditional upon the investor’s perceptions of
the means and variances of assets’ returns. Arbitrage in the strict sense of chapter 7 is not conditional on
this information.
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While r0 � 
mrp could conceivably hold for an individual investor, market equi-
librium is inconsistent with this inequality holding for every investor; some investor
has to be prepared to hold the assets sold by others. In summary: the circumstances
for which r0 � 
mrp are pathological – unusual, to say the least. From now on it is
assumed that r0 < 
mrp.

3. Second mutual fund theorem (second separation theorem) of portfolio analysis. Under
the same conditions as for the first separation theorem and in the presence of a risk-free
asset, any efficient portfolio can be attained by holding at most two assets, one of which
is the risk-free asset and the other is a mutual fund. Not just any mutual fund will do. It
must be a portfolio chosen from those in the efficient set (any one of these will do).

To understand why the theorem holds, suppose that the mutual fund is chosen to
be the efficient portfolio with expected return 
Z and risk �Z (point Z in figure 5.5).
Now any efficient portfolio (i.e. along the line r0ZE) can be formed as a combination
of this mutual fund and the risk-free asset.

4. Note that the efficient set is a straight line only if the investor can borrow and lend
at the same risk-free rate, r0. Suppose, instead, that the investor can lend at a rate
rL0 , lower than the rate, rB0 , at which funds can be borrowed. Now the set of efficient
portfolios has three segments (see figure 5.6).

For low levels of expected return and risk (such that the investor holds a positive
amount of the risk-free asset), the efficient portfolios are located on the ray from rL0
tangent to FF at point Y . Points beyond Y are irrelevant because, by assumption, the
investor cannot borrow at rate rL0 .

For high levels of expected return and risk (such that the individual borrows in
order to invest in risky assets), the efficient portfolios are located on the line segment
to the right of Z. Formally, Z is defined by the ray through rB0 that is tangent to FF .
Points between rB0 and Z are irrelevant because, by assumption, the investor cannot
lend at rate rB0 .

At intermediate levels of expected return and risk, the investor neither borrows nor
lends (initial wealth being invested entirely in risky assets) and the efficient portfolios
are located along FF between Y and Z. Thus, the whole set of efficient portfolios is
depicted by the connected line segments, rL0 Y , YZ and ZE.

5.4.2 The trade-off between expected return and risk

In mean-variance analysis, the investor chooses between efficient portfolios, where
an efficient portfolio is one for which expected return is maximized for a given
level of risk (standard deviation of portfolio return, �P). The following paragraphs
show how the efficient portfolios can be characterized in terms of assets’ means
and variances. This is accomplished by deriving expressions for the increment to
expected return and risk in response to incremental variations in the amount of
an asset in the portfolio.
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Fig. 5.6. Efficient portfolios with different lending and borrowing rates

If the rate at which funds can be borrowed, rB0 , exceeds the rate at
which funds can be lent, rL0 , the frontier comprises three segments: rL0 Y
(some funds are lent), YZ (neither lending nor borrowing), ZE (funds
are borrowed for investment in risky assets).

Suppose that an investor holds a portfolio labelled by P; this portfolio need not
be efficient, it is just any feasible portfolio of assets. Denote its expected return
and risk by 
P and �P , respectively. Now suppose that a small increase is made
in the holding of asset j, the necessary funds being borrowed at the risk-free
interest rate. The quantity of each of the other assets remains unchanged. Denote
the increase in the proportion of j in the portfolio by �aj (and, by construction,
�a0 =−�aj).
Expected return. The change in the portfolio’s expected return is the difference

between the expected return on asset j and the risk-free rate of interest, r0,
multiplied by the change in the proportion of asset j:

�
P = 

j− r0��aj (5.1)

Risk (standard deviation). Calculation of the change in the risk of return on
the portfolio, ��P , involves more effort. The derivation in appendix 5.4 shows
that

��P = �jP�P�aj where �jP = �jP

�2
P

(5.2)
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(Strictly, (5.2) is an approximation that approaches an equality in the limit as �aj
tends to zero.) The symbol �jP denotes the covariance of the return on asset j
with the whole portfolio. Formally, �jP =∑n

i=1 ai�ij . Equation (5.2) shows that
�jP�P can be interpreted as the increment to overall portfolio risk resulting from
an increment to the proportion of asset j held in the portfolio – i.e. ��P/�aj .

The �jP term plays a central role in the capital asset pricing model (chapter 6),
which is why equation (5.2) is written the way it is. In words, �jP captures the
relationship between variations in the rate of return on asset j and the rate of
return on the whole portfolio, P. Note especially that the change in �P associated
with a change in asset j is not equal to �j (the standard deviation of the rate of
return on asset j). Why not? Because asset returns may be correlated with one
another and these correlations must be taken into account. The influence of the
correlations is encapsulated in �jP .
Efficient portfolios. It is possible now to obtain a necessary condition that

must be satisfied if P is to represent an efficient portfolio. If P is efficient, it
must be the case that a small change in the portfolio proportion of any asset must
disturb the expected return per unit of risk by the same amount for all assets.
That is, �
P/��P must be equal for all assets. Taking the ratio of (5.1) and
(5.2), it follows that 

j− r0�/�jP�P must be equal for all assets j = 1(2( � � � ( n.
Otherwise, it would be possible to obtain a higher expected return with no higher
risk, contradicting the hypothesis that P is efficient.10

Finally, note that the slope of the trade-off between the expected return and
risk for the whole of any efficient portfolio, P, is equal to 

P − r0�/�P . The
reason for this is that the portfolio P can itself be interpreted as a single composite
asset for which the necessary condition must hold. The rate of return on the whole
portfolio must, by definition, always be perfectly positively correlated with itself,
so that �PP = 1, and the result follows.

The above analysis can be summarized by writing down the conditions that
must necessarily hold for every efficient portfolio, P:


1− r0
�1P�P

= 
2 − r0
�2P�P

= · · · = 
n− r0
�nP�P

= 
P− r0
�P

(5.3)

Notice that the �P terms in the denominator could be cancelled out in (5.3).

10 It is, of course, not permissible to divide by �jP if �jP = 0. This case (which is of some interest in chapter 6)
can be handled without difficulty because it can be shown that, if �jP = 0, the expected rate of return on
asset j equals the risk-free rate, 
j = r0. Also ignored are ‘corner solutions’ that arise when a zero quantity
of some asset is held in an efficient portfolio. These cases – which can occur if short-sales (i.e. negative
asset holdings) are prohibited – involve replacing the first-order equalities with inequalities.



130 The economics of financial markets

Equation (5.3) holds for every efficient portfolio. Hence, it holds for Z, the
portfolio comprising only risky assets. Equation (5.3) then becomes


1− r0
�1Z

= 
2 − r0
�2Z

= · · · = 
n− r0
�nZ

= 
Z− r0 (5.4)

Note that the common term, �Z, has been cancelled out in going from (5.3) to
(5.4). This is just for convenience. Conditions (5.4) are very important. They lie
at the heart of the CAPM. But there is more to the CAPM than the equalities of
(5.4). The extra conditions are studied in chapter 6.

5.4.3 The Sharpe ratio and risk-adjusted performance

The Sharpe ratio (named after its originator, William Sharpe) for any asset, or
portfolio of assets, j, is defined by

sj =

j− r0
�j

In words, sj denotes the expected excess return on asset j normalized by its
standard deviation. In practice, the Sharpe ratio would be measured by substituting
the sample mean rate of return for 
j and the sample standard deviation for �j .
It provides a way of comparing assets with differing expected returns and risks
(risk being identified with the value of �j).

For a graphical interpretation, figure 5.7 reproduces figure 5.5, with the FF
frontier omitted. Consider any asset, say asset 1, and draw a ray from r0 on the
vertical axis to the point labelled A1 

1(�1�. The slope of this line equals the
Sharpe ratio for asset 1, s1 = 

1− r0�/�1. The point A2 identifies a second asset
with a lower Sharpe ratio.

Suppose that se denotes the Sharpe ratio for an efficient portfolio. All efficient
portfolios share the same Sharpe ratio, which equals the slope of the line segment
r0E in figure 5.7. From the diagram it can be seen that sP � se for any asset or
portfolio of assets, P, whether or not P is efficient.

The risk-adjusted performance (RAP) is derived from the Sharpe ratio (see
Modigliani and Modigliani (1997)). To define the RAP, suppose that a ‘bench-
mark portfolio’ is identified. In principle, this can be any portfolio, but typically
it denotes a portfolio composed of a broad range of assets. Let �B denote its
standard deviation of return. The RAP for any asset j is defined as

RAPj = r0 +
�B
�j


j− r0�
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Fig. 5.7. The Sharpe ratio and risk-adjusted performance

The Sharpe ratio for any asset is the slope of a line from r0 to the point
in the (
P , �P) plane given by its expectation and standard deviation
of return. The risk-adjusted performance, RAP, of any asset equals
the hypothetical expected rate of return when its standard deviation of
return is normalized to some benchmark level – say, �B.

or RAPj = r0+�Bsj , substituting j’s Sharpe ratio. In words, RAPj would be the
expected rate of return on asset j if its risk equalled that of the benchmark but
its Sharpe ratio remained unchanged. Notice, for the illustration in figure 5.7, the
Sharpe ratio for asset 1 exceeds that of asset 2 even though asset 2 has a higher
expected rate of return.

In practice, sample means and variances are substituted for the theoretical
values and RAP values are calculated to compare the performance of assets (or
portfolios of assets) relative to the benchmark portfolio.

5.5 Optimal portfolio selection in the mean-variance model

What we have done so far is to trace out the portfolio frontier and identify the set
of efficient portfolios. With agreement about means and variances, the efficient
set of portfolios is the same for each investor. There is still scope, however,
for different investors to choose different portfolios. The reason is that investors
can differ in their preferences, commonly interpreted (in portfolio selection) as
reflecting different investors’ attitudes to risk.

In view of the mutual fund theorems outlined in previous sections, it is sufficient
to assume that the portfolio is selected as a combination of exactly two assets.
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Fig. 5.8. Optimal portfolio selection

The indifference curves express the investor’s preferences among differ-
ent values of 
P and �P . The most preferred (i.e. optimal) portfolio
lies on the highest indifference curve that is attainable subject to being
feasible (i.e. on or below the r0ZE line, denoting the efficient set). For
the preferences shown here, the optimum is at point O.

Consider the case in which a risk-free asset is available. In figure 5.5 the set
of efficient portfolios is represented by the straight line passing through r0 and
tangent, at Z, to the portfolio frontier (for risky assets). See figure 5.8, in which
the efficient portfolio set is depicted by the line r0ZE tangent to the frontier FF
at Z, the efficient portfolio comprising only risky assets.

Any efficient portfolio can be constructed as a combination of the risk-free asset
and the portfolio of risky assets depicted by the point Z. Given the indifference
curves shown in figure 5.8, the optimum portfolio is depicted by point O.

The trade-off between 
P and �P , expressed by the line r0ZE in figure 5.8,
can be written as


P = r0 +

Z− r0
�Z

�P

That is, the relationship between 
P and �P is linear, with intercept r0 and slope
equal to 

Z− r0�/�Z.

Suppose now that preferences can be expressed as G

P(�
2
P� = 
P −G�2

P ,
where G > 0 expresses attitude to risk and, hence, can differ between investors.
(Recall the discussion in chapter 4, pages 103–04.)
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Assuming that preferences take this form, it can be shown that the proportion
of initial wealth invested in the risky asset, q, is given by

q = 
Z− r0
2G�2

Z

(5.5)

(See appendix 5.5 for the derivation.)
Although this formula holds only for the objective function G

P(�

2
P� =


P −G�2
P , it is useful in practical applications. The result confirms intuition

that: (a) the greater the excess expected return, 
Z−r0, the greater the holding of
the risky asset; (b) the riskier the risky asset (i.e. the higher the level of �2

Z), the
lower the holding of the risky asset; and (c) the greater the risk tolerance (i.e. the
smaller is G), the higher the holding of the risky asset.

5.6 Summary

This chapter has shown that the following implications can be derived for investors
whose beliefs about asset returns are expressed in terms of means and variances.

1. The portfolio frontier for risky assets alone is obtained by minimizing risk, �P or
�2
P , for each level of expected return, 
P , and is a hyperbola in the 

P(�P� plane.

Consider any two distinct portfolios, A and B, on the frontier. Then every portfolio
on the frontier can be expressed as a combination of A and B. The efficient portfolios
are frontier portfolios for which expected return is maximized at a given level of risk.

2. When a risk-free asset is available, the set of efficient portfolios is described by
a straight line, with intercept at the risk-free rate and tangential to the risky asset
frontier. Every efficient portfolio can be expressed as a linear combination of any
two distinct efficient portfolios. The conditions that characterize the set of efficient
portfolios form the basis for the CAPM, studied in chapter 6.

3. The set of efficient portfolios depends only on investors’ beliefs about rates of return
(expressed by means and variances), not on preferences with respect to risk. Investors
with different risk preferences select different portfolios but always choose a member
of the efficient set.

Further reading

There exist many expositions of mean-variance analysis at various levels and
directed towards different audiences. For readers seeking a more extended,
management-oriented approach, the following are representative: Grinblatt and
Titman (2001, chaps. 4 & 5); Sharpe, Alexander and Bailey (1999, chaps. 7–9).
An excellent exposition appears in Elton, Gruber, Brown and Goetzmann (2003,
chaps. 4–6). At a more advanced level, a rigorous treatment can be found in
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Huang and Litzenberger (1988, chap. 4). This reference is particularly useful for
sorting out awkward special cases. An early and not very well-known analysis
of the portfolio frontier, still worth attention, is provided by Merton (1972). The
most comprehensive and detailed examination of mutual fund theorems remains
that of Cass and Stiglitz (1970).

Appendix 5.1: Numerical example: two risky assets

The following example corresponds to section 5.2 and focuses on the special
cases of perfect positive and negative correlations between assets’ rates of return.
Suppose that 
1 = 0�25, 
2 = 0�50, �1 = 0�20 and �2 = 0�40. Hence


P = 0�25a+0�50
1−a�
= 0�50−0�25a

The special cases, �12 =±1, result in

�12 =+1 =⇒ �P = 0�20a+0�40
1−a�
�12 =−1 =⇒ �P = 
0�20a−0�40
1−a��� 0

for a� 0�40
0�20+0�40

= 2
3

�12 =−1 =⇒ �P =−
0�20a−0�40
1−a��� 0

for a� 0�40
0�20+0�40

= 2
3

For �12 =+1

�P = 0�20a+0�40
1−a�= 0�40−0�20a

a = 0�40−�P
0�20


P = 0�50−0�25
(

0�40−�P
0�20

)
= 1�25�P (5.6)

For �12 =−1 and a� 2/3

�P = 0�20a−0�40
1−a�= 0�60a−0�40

a = �P+0�40
0�60


P = 0�50−0�25
(
�P+0�40

0�60

)
= 1

3
− 5

12
�P (5.7)
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For �12 =−1 and a� 2/3

�P = −0�20a+0�40
1−a�= 0�40−0�60a

a = 0�40−�P
0�60


P = 0�50−0�25
(

0�40−�P
0�60

)
= 1

3
+ 5

12
�P (5.8)

The equations (5.6), (5.7) and (5.8) define the three sides of the triangle in a
diagram such as figure 5.2 on page 119.

Appendix 5.2: Variance minimization: risky assets only

This appendix explores the properties of the portfolio frontier when the investor
chooses among n risky assets, beginning in A.5.2.1 with the formal minimization
of portfolio variance. Appendix section A.5.2.2 offers a graphical interpretation,
while A.5.2.3 describes a special case (relevant for the capital asset pricing
model, chapter 6) that compares portfolios, the rates of return on which are
uncorrelated.

A.5.2.1: The portfolio frontier

Form the Lagrangian

�=
n∑
i=1

n∑
j=1

aiaj�ij+C
(

P−

n∑
j=1


jaj

)
+E

(
n∑
j=1

aj−1

)
where C and E are Lagrange multipliers.

Noting that the minimization is carried out for each value of 
P , the first-order
conditions are found by partially differentiating � with respect to
a1( a2( � � � ( an(C(E, and setting the resulting expressions to zero:

H�

Haj
= 2

n∑
i=1

ai�ij−C
j+E= 0 j = 1(2( � � � ( n (5.9)

H�

HC
= 
P−

n∑
j=1


jaj = 0 (5.10)

H�

HE
=

n∑
j=1

aj−1 = 0 (5.11)
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The second-order conditions are messy and not very revealing. Given the
quadratic minimand (i.e. the variance, �2

P) and the linear constraints, it is tedious,
though not difficult, to check that the second-order conditions are indeed satisfied.

The optimum portfolio proportions can be found by solving the n+2 first-order
conditions for the portfolio proportions and the values of C and E. Instead of
deriving the explicit solution, it is more instructive to interpret the first-order
conditions. Multiply through (5.9) by aj and sum over j to give

2
n∑
j=1

n∑
i=1

ajai�ij−C
n∑
j=1

aj

j−B�= 0 (5.12)

where B≡ E/C.
Substituting from (5.10) and (5.11) into (5.9) and (5.12) and rearranging gives

�2
P = 
C/2�

P−B� (5.13)

�jP = 
C/2�

j−B� for j = 1(2( � � � ( n (5.14)

where �jP =∑n
i=1 ai�ij is the covariance of the return from asset j with port-

folio P. Combining (5.13) and (5.14) to eliminate C yields a condition that must
hold for all portfolios on the frontier:


j−B
�jP

= 
P−B
�2
P

for j = 1(2( � � � ( n

Given that the first-order conditions are linear in aj , the solution for the variance-
minimizing value of each aj is unique. A sketch of this result is as follows. From
(5.14) solve for the aj as functions of �ij(
j 
i( j = 1(2( � � � ( n�, C and B.
That this solution is unique follows from the linearity of the equations and the
assumption that there are no exact linear dependencies among the returns on the n
assets (i.e. the assets are genuinely different from one another). Next, substituting
the aj into the two constraints and rearranging yields a unique solution for each
of C and B as a function of the �ij(
j and 
P .

Finally, substitute the values of C and B back into the initial solutions for aj ,
which now become functions of the �ij(
j and 
P as required (i.e. C and B
have now been eliminated). The resulting expressions for aj are messy and not
otherwise needed here; hence, they are omitted.

A.5.2.2: A graphical interpretation

An interpretation of B can be given with reference to figure 5.9. Choose an
efficient portfolio and denote it by P. The slope of the frontier, d
P/d�P , at
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Fig. 5.9. The portfolio frontier with risky assets

Choose any portfolio on the frontier – say, P – and draw a straight line
tangent to FF . The line intersects the vertical axis at a point such as B.
All feasible portfolios (i.e. on or within FF ) with an expected return
equal to B (i.e. along the horizontal line starting at W ) have rates of
return that are uncorrelated with the return to portfolio P.

P is equal to 

P −B�/�P . This result can be obtained by, first, invoking the
envelope theorem to obtain d�2

P/d
P = C.11 Hence,

d�2
P

d
P
= d�2

P

d�P

d�P
d
P

= 2�P
d�P
d
P

= C (5.15)

Rearranging gives

d
P
d�P

= �P
2
C
= �P


P−B
�2
P

= 
P−B
�P

(5.16)

where (5.13) has been substituted to eliminate 2/C.

11 In this context the envelope theorem implies that d�2
P/d
P = H�/H
P , where the total derivative serves as

a reminder that the minimizing portfolio proportions and the Lagrange multipliers change in response to an
incremental change in 
P . A derivation from first principles – tantamount to proof of the envelope theorem –
involves totally differentiating � with respect to 
P , allowing for changes in the optimal portfolio proportions
in response to the change in 
P . Substitution from the first-order conditions then yields d�2

P/d
P = C. For
treatments of the envelope theorem, see Samuelson (1947, pp. 34–6), or The New Palgrave Dictionary of
Money and Finance (Newman, Milgate and Eatwell, 1992, Vol. II, pp. 158–9).
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A.5.2.3: Portfolios with uncorrelated returns

In the capital asset pricing model (see chapter 6, section 6.6) it is necessary to
identify portfolios, the rates of return on which have a zero correlation with any
given frontier portfolio. The following derivation shows that all such portfolios
have an expected return equal to B. (While the value of B depends on the frontier
portfolio, this dependence is not made explicit in the notation.)

Consider any portfolio (it need not be on the frontier) denoted by W with asset
proportions w1(w2( � � � (wn, rate of return rW =∑

wjrj and expected rate of return

W =∑

wj
j (see figure 5.9). The asset proportions in frontier portfolio P are
denoted by a1( a2( � � � ( an, with rate of return rP =∑

ajrj and expected rate of
return 
P =∑

aj
j .
The covariance between rP and rW , cov
rP( rW � is given by

cov
rP( rW � = E9
rP−
P�
rW −
W�;

= E

[
n∑
i=1

ai
ri−
i�
n∑
j=1

wj
rj−
j�
]

=
n∑
i=1

n∑
j=1

aiwj�ij

=
n∑
j=1

wj

n∑
i=1

ai�ij

=
n∑
j=1

wj�jP

= 
C/2�
n∑
j=1

wj

j−B� (5.17)

where the last equality follows from (5.14) because P denotes a frontier portfolio.
If rP and rW are uncorrelated, cov
rP( rW � = 0. It then follows from (5.17)

that 
W = B (because
∑
wj

j −B� = 
W −B∑wj , and portfolio proportions

sum to unity). Referring back to figure 5.9, the expected return on any portfolio
uncorrelated with P is equal to B. These portfolios are located along the horizontal
line beginning at point W .

It is now possible to demonstrate that the expected return, 
mrp, on the portfolio
with global minimum risk (depicted by MRP in figure 5.9) must satisfy 
mrp >B,
given that 
P > 
mrp (because P is on the upward-sloping portion of FF ).
Construct a new portfolio with proportion K of the portfolio denoted by P and
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1−K� of W . From the first mutual fund theorem, any frontier portfolio can be
constructed by an appropriate choice of K. Let S denote the variance of the rate
of return on this portfolio, so that

S = K2�2
P+ 
1−K�2�2

W

where �2
P and �2

W are the variances corresponding to P and W , respectively. Note
that no covariance term appears because, by construction, the returns on P and
W are uncorrelated.

The variance on the MRP portfolio is found by choosing K to minimize S.
Differentiating with respect to K and setting the resulting expression to zero
provides the first-order condition

dS

dK
= 2K�2

P−2
1−K��2
W = 0

The second-order condition for a minimum, d2S/dK2 = 2
�2
P + �2

W� > 0, is
certainly satisfied. The first-order condition can readily be solved to give
Kmrp = �2

W/
�
2
P +�2

W�. Therefore, 0 < Kmrp < 1. Hence, it follows that 
mrp =
Kmrp
P+ 
1−Kmrp�B > B as claimed, and as depicted in figure 5.9.

Appendix 5.3: Variance minimization with a risk-free asset

Although the analysis in the presence of a risk-free asset closely resembles that in
its absence, the outline below is self-contained as far as it goes.12 It is instructive
to recognize that B and r0 play exactly analogous roles (see appendix 5.2).

Note that a0 = 1−∑n
j=1 aj , so that


P =
n∑
j=1


jaj+a0r0

=
n∑
j=1


jaj+
(

1−
n∑
j=1

aj

)
r0

=
n∑
j=1



j− r0�aj+ r0

Form the Lagrangian

�=
n∑
i=1

n∑
j=1

aiaj�ij+C
(

P−

n∑
j=1



j− r0�aj− r0
)

12 The second-order conditions are ignored for exactly the same reason as in appendix 5.2.
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where C is a Lagrange multiplier. The value of 
P is a parameter in this
optimization – i.e. a separate minimization is carried out for each value of 
P .

The first-order conditions are found by partially differentiating the Lagrangian,
�, with respect to a1( a2( � � � ( an(C and setting the resulting expressions to zero:

H�

Haj
= 2

n∑
i=1

ai�ij−C

j− r0�= 0 j = 1(2( � � � ( n (5.18)

H�

HC
= 
P−

n∑
j=1



j− r0�aj− r0 = 0 (5.19)

The optimum portfolio proportions (one set for each value of 
P) are found by
solving these n+ 1 conditions for the portfolio proportions and the value of C.
Multiply through (5.18) by aj and sum over j to give

2
n∑
j=1

n∑
i=1

ajai�ij−C
n∑
j=1

aj

j− r0�= 0 (5.20)

Substituting from (5.19), equations (5.20) and (5.18) can be written as

�2
P = 
C/2�

P− r0� (5.21)

�jP = 
C/2�

j− r0� for j = 1(2( � � � ( n (5.22)

where �jP =∑n
i=1 ai�ij is the covariance of the return on asset j with the return

on the portfolio P.
Elimination of C from (5.21) and (5.22) yields


j− r0
�jP

= 
P− r0
�2
P

for j = 1(2( � � � ( n (5.23)

Inserting the definition of �jP ≡ �jP/�
2
P , equations (5.23) provide the neces-

sary conditions that hold for all efficient portfolios (see (5.3) on page 129 in
section 5.4).

Appendix 5.4: Derivation of ��P = �jP�P�aj

The standard deviation of the return on any portfolio is defined by

�P = [
�2
P

] 1
2 =

[
n∑
i=1

n∑
j=1

aiaj�ij

] 1
2
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Partially differentiate with respect to aj to give

H�p

Haj
= 1

2

[∑∑
aiaj�ij

]
 1
2−1�

[
2

n∑
i=1

ai�ij

]

= [
�2
P

]− 1
2 �jP = �jP

�P
= �jP

�2
P

�P

= �jP�P (5.24)

Therefore, using � to denote small, discrete, changes, (5.24) can be approximated
by ��P ≈ �jP�P�aj , which appears as an equality – expression (5.2) on page
128 in section 5.4.2.

Appendix 5.5: The optimal portfolio with a single risky asset

Suppose that the investor chooses a risk-free asset and a single risky asset with
expected return 
Z and variance of return �2

Z. (Typically, the risky asset will
itself be a portfolio of individual risky assets.) Let q denote the proportion of the
portfolio invested in the risky asset. It follows immediately that the expectation

P and variance �P of returns on the whole portfolio are


P = q
Z+ 
1−q�r0 and �2
P = q2�2

Z (5.25)

because the variance of the risk-free rate of return is zero.
In this case it is possible to obtain a very simple form for the trade-off between


P and �P . From (5.25), �P = q�Z and 
P = r0+

Z−r0�q. Eliminating q gives


P = r0 +

Z− r0
�Z

�P (5.26)

as described above in section 5.5. Note that the investor’s optimization problem
can be viewed as one of choosing 
P and �P to maximize G

P(�

2
P� subject to

the constraint (i.e. the trade-off) given by (5.26).
Given the functional formG

P(�

2
P�=
P−G�2

P , the maximization is achieved
by eliminating 
P and �P using (5.25) – that is

G= q
Z+ 
1−q�r0 −Gq2�2
Z

Differentiating with respect to the investor’s choice variable, q, and setting the
resulting expression to zero yields the first-order condition


Z− r0 −2Gq�2
Z = 0 (5.27)

The second-order condition for a maximum, d2G/dq2 =−2G�2
Z < 0, is satisfied

if G > 0, as assumed.
Rearranging the first-order condition, (5.27), to solve for q results in equa-

tion (5.5) on page 133.
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The capital asset pricing model

Overview

A core objective of asset market theory is to explain the risk premium, 
j − r0
(the expected rate of return minus the risk-free rate), for each asset. One of the
most widely discussed explanations is that provided by the capital asset pricing
model.

The CAPM extends the mean-variance model of portfolio selection for an
isolated individual investor to the market as a whole. It addresses the question: if
all investors behave according to a mean-variance objective and if they all have
the same beliefs (expressed by the means and variances of asset returns), then
what can be inferred about the pattern of asset returns when asset markets are in
equilibrium (in the sense that ‘supply = demand’ for each asset)? Equilibrium
does not require that prices are constant across time; it assumes that at each
point of time prices adjust so that the demand to hold each asset equals its total
stock.

The static version of the CAPM in the presence of a risk-free asset is sometimes
known as the Sharpe–Lintner model, named after its originators in the 1960s.1 If
a risk-free asset is absent, the CAPM is referred to here as the ‘Black CAPM’
after its originator, Fischer Black.

The steps in this chapter, listed according to section, are as follows.

1. Assumptions of CAPM. The conditions underlying the CAPM’s predictions are outlined
in section 6.1.

2. Asset market equilibrium. Section 6.2 places each investor’s portfolio selection deci-
sion in the context of market equilibrium. All investors are shown to select portfolios
that are located along the capital market line.

3. The characteristic line and the market model (section 6.3). Associated with each
asset is a linear relationship – the characteristic line – between its expected rate of

1 Sharpe shared the Nobel Memorial Prize in 1990 for his innovative work on the CAPM and portfolio theory.
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return and the expected return on the portfolio representing the market as a whole.
The characteristic line resembles an implication of the so-called ‘market model’ of
asset returns.

4. The security market line (section 6.4) is one of the most well-known implications of
the CAPM. It provides the focus for many applied studies of the CAPM.

5. Risk premia and diversification. In section 6.5 the concept of ‘risk’ in the CAPM is
explored, together with its relationship to diversification, construed as a strategy to
reduce risk.

6. Extensions. The implications of restrictions on investors’ ability to borrow or lend
unlimited amounts at a risk-free interest rate are examined in section 6.6. Some other
extensions to the CAPM are also sketched.

6.1 Assumptions of the CAPM

Many expositions of the CAPM present a long list of assumptions from which
the predictions of the model are derived. The assumptions can be condensed into
three sets of conditions: (1) that asset markets are in equilibrium (in the sense
that markets are frictionless and that prices adjust so that the existing stock of
each asset is willingly held); (2) that all investors behave according to a mean-
variance criterion (see chapter 5); and (3) that investors base their decisions on
the same values of means, variances and covariances – the investors are said to
have homogeneous beliefs. In more detail, the assumptions are as follows.

1: Asset markets are in equilibrium

(a) Frictionless markets. This assumption has two elements: (i) zero transaction costs;
and (ii) no institutional restrictions on asset trades (e.g. short-sales are allowed). This
assumption is, of course, an idealization, hardly ever likely to be strictly satisfied in
practice. Its relevance is to signal that the predictions of the CAPM are more likely
to be accurate if frictions are small than if they impinge significantly on investors’
decisions.

(b) Investors can borrow or lend unlimited amounts at the risk-free rate of interest. This
assumption could be interpreted as an implication of frictionless markets but is noted
separately to highlight its presence. It is abandoned in the Black CAPM.

(c) Assets are divisible into any desired units. In principle, investors should be able to
hold $10, or $1, or 1 cent of any asset. The implication is that the predictions of
the CAPM are unlikely to be accurate if there exist indivisible assets that consume a
large proportion of each investor’s initial wealth.

(d) All assets can be bought or sold at observed market prices.
(e) Investors are price takers: the decisions of any one investor do not affect asset prices.

This condition states that no investor can exert monopoly power; asset markets are
assumed to be competitive.
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(f) Taxes are neutral. What is relevant for the following analysis is not so much the
common assumption that taxes are zero but, rather, (i) that all investors face the same
tax rates and (ii) that tax rates are the same for all sources of investment income, in
particular for capital gains and dividends.

2: Mean-variance portfolio selection

(a) All investors behave according to a single-period investment horizon. That is, their
objectives focus on the value of terminal wealth at a specified date in the future, no
revisions to chosen portfolios being permitted during the intervening time period.
This restriction is relaxed in chapter 11.

(b) All investors select their portfolios according to a mean-variance objective.

3: Homogeneous beliefs

All investors use the same estimates of the expectations, variances and covariances
of asset returns. This condition is maintained throughout. It could be relaxed, but
only at the expense of greater complexity and burdensome notation.

6.2 Asset market equilibrium

6.2.1 Market equilibrium in the CAPM

The notation used here is that of chapter 5. Recall that the condition that defines
portfolio equilibrium for each investor is (see chapter 5, section 5.4.2)


j− r0
�jZ

= 
Z− r0 where �jZ = �jZ/�
2
Z for j = 1(2( � � � ( n (6.1)

and where Z denotes the efficient portfolio consisting of only risky assets. Let
z1( z2( � � � ( zn denote the proportions of risky assets in the Z portfolio. By
construction,

∑n
j=1 zj = 1 (i.e. z0 = 0 – that is, the risk-free asset is not held

in Z). The assumption of homogeneous beliefs implies that all expected returns,
variances and covariances are identical across investors. Hence, �jZ is the same
across investors for each asset, j. Consequently, zj is the same across investors
for each asset, j.

Let i= 1(2( � � � (m index the investors in the market. The value of investor i’s
holding of asset j is then equal to zjBi, where Bi is the total value of the investor’s
holding of all risky assets – Bi equals initial wealth Ai minus investor i’s holding
of the risk-free asset (or, plus the value of borrowing at the risk-free rate). The
equilibrium total market value of asset j equals the sum across investors of the
value of the asset j demanded:

pjXj =
m∑
i=1

zjBi = zj

m∑
i=1

Bi = zjB for j = 1(2( � � � ( n
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where pjXj is the total market value (price times quantity) of asset j, and B is
the total market value of all holdings of risky assets (i.e. B equals the sum of the
Bi over all investors). In market equilibrium

zj =
pjXj

B
≡mj for j = 1(2( � � � ( n

Market equilibrium implies that asset prices adjust such that the share, zj , of each
asset in the risky asset portfolio of every investor equals the share of that asset
in the whole market, pjXj/B, the market portfolio. From now on, mj is used to
denote the value of zj in market equilibrium.2 Also, write �jP as �j when P is
the market portfolio – i.e. �j ≡ �jM .

Summary: the proportion of each risky asset in the efficient portfolio compris-
ing exclusively risky assets is the same for every investor. That this portfolio is
identical for all investors follows from the assumption of homogeneous beliefs.
In market equilibrium, existing stocks of assets are willingly held. Hence, the
proportion of each asset in this portfolio equals its share in the market as a
whole.

More formally: the proportion, zj , of each risky asset, j, in the risky asset
portfolio, Z, is the same for every investor, and this proportion is equal to the
share, mj , of the market value, pjXj , of asset j in the total market value, B, of
all risky assets.

6.2.2 Capital market line

The capital market line (CML) is depicted in figure 6.1 as the ray drawn from
the risk-free interest rate, r0, tangential to the portfolio frontier for risky assets,
FF . The point of tangency is denoted by M(

M(�M�.

Figure 6.1 is constructed as follows. The assumption of homogeneous beliefs
implies that FF is identical for every investor. Together with a common r0 for
each investor, this implies that the efficient set of portfolios is the same for every
investor. Thus, as explained above, the efficient portfolio comprising exclusively
risky assets is the same for every investor – in figure 6.1 the point M depicts its
expected rate of return, 
M , and standard deviation of return, �M .

The CAPM does not imply that each investor’s entire portfolio (including
the risk-free asset) contains the same proportion of each asset as that for every
other investor, only that asset proportions are equal for assets belonging to the
efficient portfolio in which the risk-free asset is absent (recall that this is the
portfolio denoted by Z in the mean-variance analysis). The CAPM predicts that
different investors hold different proportions of the risk-free asset depending on

2 The proportion of asset j in the market portfolio, mj , should not be confused withm, the number of investors.
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Fig. 6.1. The capital market line

The CML depicts the locus of efficient portfolios in market equilibrium
if all investors share the same beliefs about means and variances. The
CML passes through r0 on the vertical axis and is tangent at M to
FF , the portfolio frontier for risky assets alone. Point M identifies the
market portfolio, in which the share of each risky asset equals its share
in the whole market.

their attitudes to risk; their optimal portfolios are located along the CML, not
necessarily all at the same point.

All efficient portfolios are located along the CML; they differ only according to
the proportion of the entire portfolio invested in the risk-free asset. It follows that
the Sharpe ratios for all efficient portfolios must equal one another (see chapter 5,
section 5.4.3). Let 

E(�E� denote any efficient portfolio. From the definition
of the Sharpe ratio,


E− r0
�E

= 
M − r0
�M

(6.2)

because the Sharpe ratios are equal for all efficient portfolios. Rearranging (6.2),


E = r0 +
�E
�M



M − r0� (6.3)

The result, (6.3), holds only for efficient portfolios. Expression (6.3) can, alterna-
tively, be derived by recognizing that the rates of return on all efficient portfolios
are perfectly positively correlated, �EM =+1, so that �E = �E/�M (see equations
(6.5) and (6.6)).
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The main prediction of the CAPM is expressed by writing equation (6.1) as

j− r0
�j

= 
M − r0 for j = 1(2( � � � ( n (6.4)

where M represents the market portfolio. (The M subscript in �jM is dropped
when the reference portfolio is the market portfolio.) In chapter 5 it was shown
that each asset’s ‘beta-coefficient’, �j , is given by �j = �jM/�

2
M . It is helpful,

for later interpretation, to recognize that this is the expression – well known in
elementary statistics – for the regression coefficient of rj on rM .

Equation (6.4) is commonly rearranged as


j = r0 + 

M − r0��j for j = 1(2( � � � ( n (6.5)

The value of 
j in (6.5) can be interpreted, alternatively, (a) as a function of
r0 and 
M for given �j , or (b) as a function of �j for given r0 and 
M . Both
interpretations are relevant in applications of the CAPM.

An asset’s beta-coefficient is a measure of the relationship between its rate of
return and the market rate of return. Recalling the definition of the correlation
coefficient between rj and rM , �jM ≡ �jM/
�j�M�, the covariance �jM can be
written as �jM = �jM�j�M , so that

�j =
�jM

�2
M

= �jM�j�M

�2
M

= �jM
�j

�M
(6.6)

The form �j = �jM�j/�M is handy later on.

6.2.3 Asset prices

The CAPM is a model of asset prices, though it is typically expressed in terms
of rates of return rather than prices. To appreciate why the two approaches are
equivalent, recall the definition of the rate of return on asset j:

rj ≡
vj−pj
pj

j = 1(2( � � � ( n (6.7)

where pj is the observed price for asset j and vj is the (uncertain) payoff for
asset j.

By taking expectations of (6.7), appendix 6.1 shows that the CAPM prediction
(6.5) can be written as

pj =
E9vj;

1+ r0 +K�j
for j = 1(2( � � � ( n (6.8)

where K≡
M−r0 denotes the excess expected return on the market portfolio. To
make sense of equation (6.8), recall the case of perfect foresight (see chapter 1)
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for which pj = vj/
1+ r0�. This is the simplest net present value relationship –
a consequence of the absence of arbitrage opportunities. Passing from this to the
CAPM prediction involves two amendments, both of them implications of risk.
First, the payoff, vj , is unknown and is replaced by its expected value E9vj;. This
is the only alteration needed if investors are risk-neutral (i.e. in the absence of risk
aversion). But, because investors behave according to a mean-variance objective
(and, by implication, are risk-averse), it is also necessary to replace the interest
factor, 1+ r0, with 1+ r0 +K�j .

If K�j > 0, investors discount the expected future payoff at a higher rate
when they are risk-averse, rather than risk-neutral. The reaction of investors to
risk makes asset j less attractive and, consequently, its market price is lower
(compared with an equilibrium in which all investors are risk-neutral). If, as
seems plausible, K > 0 (on average the expected excess return on the market
portfolio is positive), and if asset j’s return is positively correlated with the
market return (�j > 0), then K�j > 0. Later – in section 6.5.1 – the extra term in
the denominator is discussed further as asset j’s risk premium.

The equilibrating process for asset prices in the CAPM can be described as
follows. Each investor uses the same information about what determines vj (and
hence rj) for each asset. Given the mean-variance assumption, this information
can be summarized in terms of expectations, variances and covariances of asset
returns. On the basis of this information and their attitudes to risk, investors select
their portfolios. If the resulting demands for assets do not equal the (exogenously
given) supplies, then asset prices change in response to the market disequilibrium.
As prices change, investors adjust their portfolios. Only when equilibrium is
attained will the set of prices (and hence rates of return) be compatible with the
planned portfolios of investors and the stocks of assets.

Strictly, the CAPM asserts nothing about the equilibrating process; it is a theory
of asset market equilibrium. The story in the previous paragraph is intended to
support intuition, an informal guide, not a theory of dynamics.

6.3 The characteristic line and the market model

The characteristic line for each asset treats 
j − r0 as a function of 
M − r0;
see figure 6.2. From equation (6.5) the characteristic line is a graph of the
equation 
j− r0 = 

M − r0��j , with a slope equal to the beta-coefficient, �j , of
asset j.

In practice, some way must be found to calculate each asset’s beta-
coefficient. The most direct way (though not the only way) is to estimate �j
using regression analysis applied to past data on rates of return. To make sense
of this approach, note that 
j and 
M are unobserved – they represent purely
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Fig. 6.2. The characteristic line for asset j

The characteristic line treats the CAPM prediction, 
j−r0 = 

M−r0��j ,
as a linear relationship between 

j− r0� and 

M− r0� with slope equal
to �j . Each asset (including portfolios of assets) has its own characteristic
line. They differ according to the value of �j .

theoretical concepts. If 
j is replaced by rj and 
M by rM , then it is possible to
write

rj = r0 + 
rM − r0��j+�j j = 1(2( � � � ( n (6.9)

where �j is an unobserved random error. It is assumed that E9�j�rM;= 0; that is,
the expected value of the error, conditional upon the rate of return on the market
portfolio, is zero. This condition immediately implies that E9�j;= 0 and also that
cov
�j( rM�= 0 (recall the law of iterated expectations from chapter 3, page 79).
In words: the random error is assumed to be zero on average and uncorrelated
with the market rate of return. These conditions enable the estimation of the
beta-coefficients using data on rates of return – a subject explored in chapter 9.

In practice, the ‘market portfolio’ is represented by the portfolio corresponding
to a broadly defined stock price index (such as the S&P 500 index for US stocks
or the FT-Actuaries All-Share index for shares traded in London). A critical
challenge in testing the CAPM arises because these indexes are always approxi-
mations to the ‘market portfolio’, in the sense that they do not coincide exactly
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with the universe of assets available to investors. For example, many investors
have access to other assets, such as real estate, not included in whatever index is
assumed to represent the market.

The CAPM is a close relative of another model, the ‘market model’. The
market model asserts simply that there is a linear relationship between the rate of
return on each asset and the rate of return on the market portfolio:

rj = bj0 +bj1rM +�j j = 1(2( � � � ( n (6.10)

where bj0 and bj1 are parameters. Also, E9�j�rM;= 0, as for the CAPM.
The CAPM can be considered as a special case of the market model where

bj1 = �j and bj0 = 
1−�j�r0 (compare (6.9) with (6.10)). The market model
reappears in the guise of a ‘factor model’ in chapter 9. Although the market
model might be interpreted as a generalization of the CAPM, no argument has
been offered – so far, at least – to justify why the market model should hold.
The CAPM has the advantage that its foundations are explicit and, consequently,
that it provides definite predictions, some of which are explored in the following
sections.

6.4 The security market line

A central implication of the CAPM is the security market line (SML), depicted
in figure 6.3. The SML plots 
j against �j . As already remarked, it is another
way of interpreting equation (6.5), 
j = r0 + 

M − r0��j .

Here the intercept equals the risk-free rate, r0, and the slope equals 
M − r0.
The CAPM predicts that the expected rates of return and beta-coefficients for
all assets and portfolios of assets, not just efficient portfolios, lie on the SML.3

Sometimes the SML is written in terms of the excess of the expected return
over the risk-free rate, 

j− r0�; the SML then passes through the origin in the
diagram.

A practical application of the CAPM is to plot the observed average rates of
return on individual assets, or portfolios of assets, against their estimated beta-
coefficients. The CAPM predicts that the resulting graph will trace out the SML –
that is, a line with intercept given by the risk-free rate and slope equal to the
average return on the market portfolio minus the risk-free rate. It is always
necessary to allow for some statistical error, so that the observations will not fall
exactly on a line. Statistical analysis provides a systematic way of studying how
well the data matches the prediction of the theory (see chapter 9).

3 Why would any investor ever wish to hold an asset with a negative beta-coefficient? It is, after all, a
risky asset with an expected return lower than the risk-free rate. The answer is that such an asset might be
included in a portfolio of assets because its covariance with the return on other assets enables the investor
to control the risk on the portfolio as a whole.
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Fig. 6.3. The security market line

The SML views the CAPM prediction 
j = r0+

M−r0��j as a linear
relationship between 
j and �j . The model predicts that the average
rates of return and beta-coefficients for all assets, and all portfolios of
assets, will be located along the SML.

6.4.1 Disequilibrium

How are divergences of average rates of return and beta-coefficients from the
SML to be interpreted? One possibility is that the divergences are simply the
result of statistical variation or mismeasurement; 
j , 
M and �j are, after all,
purely theoretical concepts – unknown parameters that reflect investors’ beliefs.

As mentioned above, ways must be found for estimating these parameters in
order to implement the theory. Then, if the theory is to have any practical value,
it must be presumed that there is a correspondence, albeit imperfect, between the
theoretical concepts and their estimated counterparts.

Suppose that some of the estimated 
j and �j do not fall on the SML. Consider,
for example, assets A and B in depicted in figure 6.4. Asset A lies above the
SML; it has a mean rate of return higher than that predicted by the CAPM. This
is commonly understood to imply that asset A is underpriced (or undervalued).
In response, an adherent of the CAPM would wish to purchase asset A, believing
that its price will rise as the market tends towards an equilibrium.

Similar reasoning can be applied to asset B, the mean rate of which is lower
than that predicted by the CAPM. Asset B is overpriced (or overvalued). The
CAPM predicts that investors will sell B, believing that its price will fall as the
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Fig. 6.4. Disequilibrium in the CAPM

The mean rate of return on asset A is greater than predicted by the
CAPM given its beta-coefficient: the point A lies above the SML.
Hence, A is underpriced – conditional on the validity of the CAPM.
Point B indicates that the mean return on asset B is lower than predicted
by the CAPM given its beta-coefficient. Asset B is overpriced, again,
conditional on the validity of the CAPM.

market tends towards an equilibrium. In a sense, asset A ‘yields more than it
should’ (where should is not normative but refers to the CAPM prediction); and
asset B ‘yields less than it should’.

These informal stories – they are no more than that – invite the interpretation
of asset market disequilibrium when divergences occur such as those depicted by
A and B; call this ‘CAPM disequilibrium’. Notice that CAPM disequilibrium
is different from the notion of disequilibrium as an imbalance of demand and
supply. Asset markets could be in equilibrium in the sense that the existing
stocks are willingly held at the current market prices (i.e. demand equals supply)
but in disequilibrium in the sense depicted in figure 6.4.

A simple way of representing CAPM disequilibrium is to rewrite (6.5) as


j = Gj+ r0 + 

M − r0��j j = 1(2( � � � ( n

The term Gj measures the extent to which asset j is overpriced (Gj < 0) or
underpriced (Gj > 0) in comparison with the prediction of the CAPM. Thus,
non-zero Gj terms signal the presence of CAPM disequilibrium.

This is not the only interpretation, however. For the observation of non-zero Gj
terms could be viewed as evidence against the CAPM itself, rather than evidence
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that (a) asset prices are determined according to the CAPM and (b) there is
CAPM disequilibrium. In other words, evidence that Gj �= 0 might mean that
the CAPM should be discarded in favour of an alternative theory. This sort
of conclusion deserves to be handled with caution. (What, for instance, is the
alternative theory?) Even so, a systematic study of CAPM disequilibrium – the
possibility that Gj �= 0 – offers a suitable avenue for testing the CAPM (and is
pursued further in chapter 9).

6.5 Risk premia and diversification

6.5.1 Risk premia

The risk premium on asset j is commonly defined as the excess of its expected
rate of return over the risk-free rate of return – that is, 
j− r0. The magnitude of
the risk premium will, evidently, depend on its ‘risk’ – interpreted, so far, as the
standard deviation of its rate of return, �j . The CAPM, together with most other
models of asset prices, implies that the association of �j with risk is misleading.

In the case of the CAPM, the excess expected return is (see (6.5))


j− r0 = 

M − r0��j for j = 1(2( � � � ( n (6.11)

This asserts that the risk premium equals the product of the excess expected
return on the market portfolio, 

M − r0�, and the asset’s beta-coefficient, �j .
The standard deviation, �j , does not appear explicitly (though, clearly, it is one
of the determinants of �j = �jM�j/�M ).

In the context of equation (6.11), the CAPM implies that an asset’s risk premium
is a function of its beta-coefficient – not its standard deviation. That is (rather
imprecisely), the risk premium on any asset corresponds to the correlation between
its rate of return and the return on the market portfolio (rather than the variability
in the asset’s rate of return). To the extent that the CAPM is acceptable, ‘risk’
should be measured by each asset’s beta-coefficient, not its standard deviation of
return.

Pushing the intuition further, the larger is �j , the riskier the asset. An asset with
a zero beta-coefficient is uncorrelated with the market and has an expected rate of
return equal to the risk-free interest rate. It might seem contradictory to call such
an asset ‘risk-free’, for its return still varies randomly: rj is not certain and not
equal to r0 (even when �j = 0). Instead, for an asset with a zero beta-coefficient,
the expected return, 
j , equals r0.

Assets with negative beta-coefficients (if any such exist) offer a form of insur-
ance against variability in the rate of return on the market portfolio. Hence, the
expected rate of return on such an asset is lower than the risk-free rate – again,
a somewhat paradoxical result. The paradox is resolved by noting that ‘risk’ in
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the CAPM is associated with a positive correlation with the market rate of return,
so that the absence of risk corresponds not to the certainty associated with r0 but
rather to a negative correlation with the return on the market portfolio.

6.5.2 Diversification

The diversification of a portfolio refers to the choice of a portfolio of assets
designed to reduce the variability of the rate of return on the whole portfolio
compared with the variability of any of its constituents.4 Notice the absence of
the word ‘risk’ in the previous sentence; its omission is deliberate, for a reason
that should shortly become clear.

From equation (6.9), rj = r0 + 
rM − r0��j + �j , the variability in the return
on asset j has two sources: (a) variations in the market rate of return, rM , and
(b) variations in the random error, �j . More formally, it can be shown that

�2
j = �2

j �
2
M +�2

�j
(6.12)

where the variance of �j is denoted by �2
�j

.5 The two terms on the right-
hand side of (6.12) are, somewhat misleadingly, associated with market risk and
idiosyncratic risk, respectively – misleadingly because risk and variability are
distinct in the CAPM, as already argued. (Common synonyms for market risk in
this context are ‘systematic’ or ‘undiversifiable’ risk; and ‘unsystematic’, ‘unique’
or ‘diversifiable’ risk for idiosyncratic risk.)

The role of diversification in the CAPM is that portfolios comprising a suitably
chosen ‘wide array’ of assets serve to reduce idiosyncratic risk. To understand
how this can be achieved, notice that, because (6.12) holds for an individual asset,
it must hold for any portfolio P of assets:

�2
P = �2

P�
2
M +�2

�P

where �2
�P

is the variance of the portfolio’s random error term, �P . Note that
�P =∑n

j=1 aj�j , where aj is the proportion of asset j in portfolio P.
Now, by a suitable choice of the portfolio proportions, aj , it is possible to

reduce the idiosyncratic risk, �2
�P

, arbitrarily close to zero. To see how this
might be achieved, suppose that P is a ‘well-diversified’ portfolio constructed to
satisfy two criteria: (a) that the number of assets in the portfolio P is N with
aj ≈ 1/N (e.g. with N = 100 assets, each asset forms approximately 1 per cent

4 In this context, ‘variability’ can be understood as referring to the variance or standard deviation of assets’
returns.

5 The crucial assumption in obtaining (6.12) is that rM and �j are uncorrelated; otherwise, a covariance term
would appear. Unforeseen fluctuations in the risk-free rate, r0, are ignored throughout.
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of the portfolio); and (b) that the �j for each asset j in P is uncorrelated with the
�k for every other asset k in P. This being so, it follows that

�2
�P

=
N∑
j=1

a2
j �

2
�j

(because the returns on assets are uncorrelated)

≈
N∑
j=1

[
1
N

]2

�2
�j


given that aj ≈ 1/N�

�2
�P

≈ 1
N

{
�2
�1
+�2

�2
+· · ·+�2

�N

N

}
(6.13)

Consider the term in braces, < =, in equation (6.13). This is the total idiosyncratic
risk associated with all the assets contained in P divided by the number of assets,
N , in the portfolio. Both the numerator and denominator of the ratio increase
as N is increased. It is plausible to suppose that the ratio remains bounded as
N becomes arbitrarily large. This would be true if, for instance, the variances,
�2
�j

, are the same for every asset. But it can also be true under less restrictive

conditions.6

If the term in largebraces remains bounded, then, asN is increased,�2
�P

is reduced.
In the limit, as N → �, the idiosyncratic risk approaches zero. This is the sense
in which a well-diversified portfolio can eliminate idiosyncratic risk – or, more
precisely, that a well-diversified portfolio can eliminate idiosyncratic variability.

The two requirements of a well-diversified portfolio are, firstly, that it should
be ‘balanced’ so that the proportion held of each asset is approximately equal
and, secondly, that the idiosyncratic components should be uncorrelated across
assets. If the second condition is not satisfied, then covariance terms will appear
in the right-hand-side term of (6.13) (but see footnote 6). There is an awkward
incompatibility with the CAPM here in that the second condition cannot strictly
hold in a CAPM equilibrium: there must exist non-zero correlations among at
least some of the random errors, �j (see appendix 6.2).

An interpretation of diversification in the context of the CAPM is to view
the universe of assets in the entire market as exceedingly large – larger than
the number of assets likely to be held in any portfolio. Each of the component
assets in a diversified portfolio is then assumed to satisfy the condition that the
idiosyncratic components of return are uncorrelated, at least as an approximation.
However, the interpretation rests uncomfortably with the prediction of the CAPM

6 A more elegant way to state the relevant condition is to require that the probability distributions of the
random variables, �j , satisfy the assumptions of a law of large numbers. (A classic reference is Feller, 1970,
chap. 10.) Once this is recognized, it is also apparent that the assumption that �j are uncorrelated with one
another is more restrictive than necessary – some laws of large numbers permit such correlations.
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that the composition of every investor’s risky asset portfolio reflects the asset
proportions in the market as a whole.

Diversification should not, in any case, be construed as a panacea for attenuat-
ing, let alone eliminating, risk. Another way of reducing idiosyncratic variability
is for the investor to obtain more information about each asset’s issuer – for exam-
ple, to inquire about the policies of companies the shares of which are candidates
for inclusion in a portfolio. The mean-variance model underpinning the CAPM
takes the means and variances as given, not as the objects of active research. Some
investors may seek, instead, to achieve their goals not by spreading wealth across
a broad range of assets but by devoting effort to scrutinize individual companies,
and then concentrating their portfolios on assets that they judge to satisfy their
needs (either because the assets have low risk, or high expected return, or an
acceptable combination of both).

6.6 Extensions

6.6.1 The Black CAPM

Thus far it has been assumed that investors can borrow or lend without restriction.
Now remove this opportunity and assume, instead, that all assets are risky. All
the other assumptions of the CAPM remain in place. This defines what is called
here the ‘Black CAPM’ (see Black, 1972).

Retaining the assumption that investors have homogeneous beliefs, they all
face the same portfolio frontier, depicted by FF in figure 6.5. It should come as
no surprise that the market portfolio is efficient in the sense that it is located on
the upward-sloping portion of FF . (For a formal justification, see appendix 6.3.)

Let the market portfolio be depicted by the point M on FF . A line tangent
to M meets the vertical axis at some point, B, by construction. The ray from B

passing through M is interpreted as the capital market line in the Black model.
All the portfolios (or individual assets) located on the horizontal line starting

at W have an expected rate of return equal to B. It can be shown that the beta-
coefficients for all the portfolios located on this line are equal to zero: these are
the ‘zero-beta portfolios’ (see chapter 5, appendix 5.2.3). From the definition of the
beta-coefficient, it follows that there is a zero-correlationcoefficient between the rate
of return on the market portfolio and the rate of return on every zero-beta portfolio.

Intuitively (and also formally), B plays the same role as r0 when borrowing
or lending is permitted at a risk-free rate. Indeed, the resemblance is so intimate
that the expected rate of return for any asset (or portfolio) can be written as


j = B+ 

M −B��j j = 1(2( � � � ( n (6.14)

which is analogous to equation (6.5) (see appendix 6.3 for the details).
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Fig. 6.5. Zero-beta portfolios

In the absence of a risk-free asset, the market portfolio is located at a
point such as M on the frontier FF . The tangent to FF at M meets
the vertical axis at B. Feasible portfolios (or individual assets) with an
expected rate of return equal to B are located along the horizontal line
starting at W . The rate of return on all these portfolios is uncorrelated
with the return on the market portfolio. Hence, all their beta-coefficients
are zero.

Thus, even when all assets are risky, a ‘characteristic line’ for each asset and
a ‘security market line’ can be constructed from (6.14) in the same way as when
a risk-free asset is available. The difference is that the risk-free rate of return is
replaced by B, the expected rate of return on a zero-beta portfolio. Otherwise,
the analysis is identical with that of previous sections.

Applications of the model are much the same as when a risk-free asset is
available, except that now B must be estimated or calculated separately – say, by
constructing a zero-beta portfolio. In this case the predictions of the CAPM are
less definite – an additional unknown parameter, B, is present – but empirical
analysis is still feasible, as described in chapter 9.

It is possible to modify the Black CAPM to allow for lending at the risk-free
rate but not borrowing, or for lending at a lower rate than the borrowing rate. The
details are, of course, more involved but the approach is similar; consequently,
these cases are not studied further here.

6.6.2 Other CAPM models

Following the introduction of the CAPM, a host of extensions were proposed –
and they continue to be. They all boil down to relaxing one or more of the
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assumptions listed at the outset, in section 6.1, and result in models that bear a
more or less close resemblance to the CAPM according to the alterations that
are made. Some of the modifications are routine – for example, allowing for
different tax rates on dividend income and capital gains. Others, such as allowing
for heterogeneous beliefs (i.e. different values for means and variances across
investors), can be expressed only in complicated models.

Possibly the most important class of modifications to the CAPM involves
generalizing the underlying single-period mean-variance framework to allow for
intertemporal decision making. The resulting models are collectively known
either as the intertemporal CAPM (ICAPM) or the consumption-based CAPM
(CCAPM). They allow for intertemporal planning by investors who are now
assumed to have the opportunity to revise their portfolio decisions and to consume
part of their wealth, according to their preferences. In addition, other sources of
income (such as from employment) can be introduced. An examination of these
issues must await chapter 11.

Another way of obtaining the SML (also discussed in chapter 11) deserves
mention at this point. Recall the fundamental valuation relationship from chap-
ter 4. This states that each expected-utility-maximizing investor selects a portfolio
such that E9
1+ rj�H; = 1 for each asset, j, where H is a random variable that
depends on the investor’s preferences. In chapter 11 it is shown that the condition
needed to obtain the SML – 
j = r0 + 

M − r0��j – is that the random variable
H is perfectly positively correlated with rM (i.e. �HM = +1). It is possible to
show that the H for a mean-variance objective function satisfies this condition,
though �HM =+1 holds more generally, as explored in chapter 11.

6.7 Summary

This chapter has examined the assumptions and implications of the conventional,
static capital asset pricing model. The main points are these.

1. The CAPM assumes a world in which (a) asset markets are in equilibrium (supply =
demand); (b) investors choose portfolios according to a mean-variance objective; and
(c) investors behave according to common values of the means and variances of asset
returns.

2. The CAPM predicts that all investors hold the same risky asset portfolio (in which
the portfolio proportion of each asset equals its proportion in the market as a whole).
Not all investors need endure the same risk, because they need not all hold the same
proportion of the risk-free asset in their portfolios.

3. The CAPM implies that expected asset returns can be predicted from the security
market line (figure 6.3). This is the main prediction of the CAPM:


j = r0 + 

M − r0��j for j = 1(2( � � � ( n
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4. The variability of the rate of return on any asset, or portfolio, can be divided into
its systematic risk (how its return varies with the return on the market portfolio) and
idiosyncratic (or unique) risk. Portfolio diversification seeks to make the idiosyncratic
risk negligible. In view of the different sources of variability, the CAPM implies that
each asset’s beta-coefficient, �j , is a more appropriate measure of risk than its standard
deviation of return, �j .

5. The CAPM can be extended in a variety of ways, the most important being: (a) to
relax the condition that unlimited borrowing and lending are possible at a risk-free
interest rate; and (b) to allow for the intertemporal planning of portfolio allocation
and consumption decisions.

Finally, note that, although the CAPM predicts that mean rates of return
lie on the SML, the CAPM is not the only model from which this predic-
tion can be derived. In particular, it is possible to obtain the same predic-
tion as a special case of the arbitrage pricing theory instead of relying on the
mean-variance analysis that underpins the CAPM. The APT is the subject of
chapter 8.

Further reading

A rigorous exposition of the CAPM, together with some informative background
remarks about its development, can be found in the ‘capital asset pricing model’
entry in The New Palgrave Dictionary of Money and Finance (Newman, Milgate
and Eatwell, 1992, Vol. I, pp. 287–92). Perold’s (2004) reflections on the fortieth
anniversary of the CAPM provide an introduction to the topic that should be
attractive for students.

Extended, business-management-oriented expositions appear in many texts,
including Grinblatt and Titman (2001, chap. 5) and Sharpe, Alexander and Bailey
(1999, chap. 10). An excellent analysis at a level of detail one stage more advanced
than that offered here is provided by Elton, Gruber, Brown and Goetzmann (2003,
chaps. 13 & 14). A detailed but accessible exposition including several extensions
can be found in Fama (1976, chap. 8). The early sections of chapter 5 in Campbell,
Lo and MacKinlay (1997) contain a concise review, at an advanced level, of the
CAPM analysis.

Appendix 6.1: The CAPM in terms of asset prices

The CAPM can be expressed in terms of asset prices by manipulating equation
(6.5), 
j − r0 = 

M − r0��j , after substituting for the expected rate of return,

j = 
E9vj;−pj�/pj , as follows:


j− r0 = 

M − r0��j j = 1(2( � � � ( n
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E9vj;−pj
pj

− r0 = K�j where K ≡ 
M − r0
E9vj;

pj
−1− r0 = K�j

E9vj;

pj
= 1+ r0 +K�j

pj =
E9vj;

1+ r0 +K�j
which appears as equation (6.8) (page 148) in section 6.2.3.

An alternative to allowing for risk via an increase in the denominator of the
present value relationship is to account for its effect as a reduction in the asset’s
expected payoff – i.e. to subtract a term from the numerator. To do this, first
define the beta-coefficient for the payoff on asset j (instead of its rate of return)
as follows:

�∗
j ≡

cov
vj( vM�

var
vM�
j = 1(2( � � � ( n

where vM is the payoff on the market portfolio. Substituting into the definitions of
covariances and variances, it follows that �j = pM�

∗
j /pj , where pM is the market

price of a unit of the market portfolio. Using this relationship, and rewriting the
basic CAPM condition in the same way as before, gives

E9vj;−pj
pj

− r0 = K�j j = 1(2( � � � ( n

E9vj;

pj
−1− r0 = KpM�

∗
j

pj

E9vj;

pj
− KpM�

∗
j

pj
= 1+ r0

E9vj;−KpM�∗
j

pj
= 1+ r0

pj =
E9vj;−KpM�∗

j

1+ r0
(6.15)

Equation (6.15) expresses the price of each asset, j, as a net present value, not
by adding a term to 1+ r0 but, rather, by subtracting KpM�

∗
j from the expected

payoff, E9vj;. The term KpM�
∗
j reflects a notional deduction made to take

account of the aversion to risk that investors associate with uncertainty about
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the realization of vj . The notional amount deducted depends (via �∗
j ) on the

correlation between the payoff on asset j and the payoff on the market portfolio,
vM . The larger the value of �∗

j , the greater the variability in vj associated with
changes in vM and, hence, the greater the deduction from expected earnings
necessary to ‘compensate’ for the additional risk.

Appendix 6.2: Linear dependence of �j in the CAPM

This appendix demonstrates a property (noted in section6.5.2) of the randomerrors
in the CAPM. In particular, for the universe of assets in the market as a whole, the �j
in equation (6.9), rj = r0 + 
rM − r0��j+�j , must be linearly dependent.

To establish the linear dependence, first multiply (6.9) by mj , the proportion
of asset j in the market portfolio, and sum over j:

mjrj = mjr0 +mj
rM − r0��j+mj�j j = 1(2( � � � ( n

n∑
j=1

mjrj = r0

n∑
j=1

mj+ 
rM − r0�
n∑
j=1

mj�j+
n∑
j=1

mj�j (6.16)

By definition,

rM ≡∑n

j=1
mjrj∑n

j=1
mj = 1

and ∑n

j=1
mj�j =

∑n

j=1
mj�jM/�

2
M = �2

M/�
2
M = 1

Hence, from (6.16),

rM = r0 + 
rM − r0�+
n∑
j=1

mj�j

from which it follows immediately that
∑n
j=1mj�j ≡ 0. The �1( �2( � � � ( �n are,

therefore, linearly dependent in the CAPM, as asserted.

Appendix 6.3: The CAPM when all assets are risky

The following paragraphs seek to provide a formal justification for the Black
CAPM, as described in section 6.6.1, and, in particular, as depicted in figure 6.5.
It is necessary, first, to confirm that the market portfolio is mean-variance
efficient.

If the market portfolio lies on the portfolio frontier, then it must be efficient
(i.e. on the positively sloped arm of the frontier). The reason for this is that, by
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definition, the asset proportions in the market portfolio are all positive, mj > 0:
no asset can be short-sold in the aggregate. Hence, it is necessary to show only
that the market portfolio is indeed on the frontier. That it is on the frontier is
an implication of (a) homogeneous beliefs, so that each investor faces the same
portfolio frontier, and (b) the first mutual fund theorem, that all frontier portfolios
can be constructed as portfolios of two mutual funds (see chapter 5).

Given that all investors face the same portfolio frontier (homogeneous beliefs),
each investor can be assumed to choose a portfolio of the same two mutual funds.
Investors may differ in their preferences and, hence, hold different portfolios
of the two mutual funds. Some investors might even short-sell one of the two
mutual funds. All that then needs to be shown is that the market portfolio can be
constructed as a portfolio of the two funds.

Let the two mutual funds both be frontier portfolios and label them U and V ,
with asset proportions u1( u2( � � � ( un and v1( v2( � � � ( vn, respectively. (That is, for
example, vj is the proportion of j in portfolio V .) By construction,

∑n
j=1 uj = 1

and
∑n
j=1 vj = 1.

Let Ki denote the proportion of investor i’s total assets, Bi, invested in fund U ,
so that 1−Ki is the proportion invested in V . Thus, investor i effectively has an
investment in asset j equal to ujKiBi+vj
1−Ki�Bi. Summing over all investors
gives the total demand to hold asset j, which, in ‘supply = demand’ equilibrium,
equals its market value, pjXj:

pjXj =
m∑
i=1


ujKiBi+vj
1−Ki�Bi�

= uj

m∑
i=1

KiBi+vj
m∑
i=1


1−Ki�Bi j = 1(2( � � � ( n (6.17)

where
∑m
i=1 KiBi and

∑m
i=1
1− Ki�Bi are the total market values of U and V ,

respectively.
Let B ≡∑n

j=1 pjXj =
∑m
i=1Bi > 0 denote the aggregate market value of all

assets, and define

mU ≡
∑m
i=1 KiBi
B

mV ≡
∑m
i=1
1−Ki�Bi

B
(6.18)

Note that, by construction, mU +mV = 1.
The proportion of asset j in the market portfolio is mj = pjXj/B > 0. Dividing

through (6.17) by B, and substituting mU and mV from (6.18), enables the mj
proportions to be expressed as

mj = ujmU +vjmV j = 1(2( � � � ( n



164 The economics of financial markets

Hence, the market portfolio can be expressed as a portfolio of the mutual funds U
and V , with weights mU and mV , respectively. The market portfolio is, therefore,
on the frontier, as required.

Given that the market portfolio is efficient, it follows that B can be constructed
as depicted in figure 6.5. It remains to derive the equation for the security market
line. To obtain the SML, note that market portfolio must satisfy the conditions
derived for an efficient portfolio in appendix 5.2 to chapter 5, namely


j−B
�jM

= 
M −B
�2
M

(6.19)

Rearranging (6.19) and substituting �j = �jM/�
2
M yields equation (6.14) in

section 6.6.1, thus completing the derivation.
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7

Arbitrage

Overview

Arbitrage was introduced in chapter 1, where it was argued that an unintended
consequence of the quest for arbitrage profits is to link asset prices together
in predictable ways. This short chapter delves more carefully into the precise
implications of arbitrage trading. It is rather abstract because the analysis concen-
trates on exploring fundamental principles. Although, initially, the principles may
seem irrelevant for practical applications, they form the building blocks of many
models that are of immediate relevance in explaining observed patterns of asset
prices.

Section 7.1 reflects on the pitfalls commonly encountered in applications of the
arbitrage principle (i.e. the assertion that arbitrage opportunities vanish in market
equilibrium). Having acknowledged the pitfalls, section 7.2 ignores them and
offers a formal statement of the arbitrage principle. Section 7.3 continues the
analysis with the statement of two additional and equivalent ways of expressing
the arbitrage principle: in terms of the existence of state prices and the risk-neutral
valuation relationship (RNVR).

Together, sections 7.2 and 7.3 describe three fundamental propositions that
capture the essence of the arbitrage principle. (Appendix 7.1 sketches a proof of
the propositions.) Although the propositions have wide relevance, especially in
the study of financial derivatives (e.g. options), they are rarely applied directly to
calculate asset prices. Instead, the propositions make precise why arbitrage plays
such a key role in finance.

7.1 Arbitrage in theory and practice

In much of financial analysis, ‘arbitrage’ is interpreted loosely as the class of
investment strategies designed to profit from perceived discrepancies among asset
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prices, while incurring low (but non-negligible) risks.1 While this might be
a reasonable description of some investors’ behaviour, a narrower definition
serves to illuminate more clearly the implications of the absence of arbitrage
opportunities for asset prices. For this reason, throughout this book arbitrage is
confined strictly to investment strategies that entail zero risk. The payoff from
any such strategy is then the risk-free rate of return on the initial capital outlay –
or, more conveniently, a zero payoff from a zero initial outlay.

The advantage of the narrow definition adopted here is that it focuses atten-
tion on the arbitrage principle as a generalization of the ‘Law of One Price’
(LoOP). If the same asset has two different prices, there is an immediate arbitrage
opportunity: sell at the higher price and buy at the lower. (See the example in
chapter 1, page 16.) That such discrepancies cannot persist seems so natural as
to be self-evident.

There are pitfalls, however. Firstly, it may be difficult to determine whether or
not an arbitrage opportunity is present. The consequences of the absence of such
opportunities are then equally difficult to determine.

Secondly, suppose that unexploited arbitrage opportunities are observed. That
must be because one or more of the assumptions on which the arbitrage principle
rests is violated. The response is then either to refine the assumptions so as
to restore the principle or, alternatively, to deny its usefulness. The former
would, taken to its limit, render the principle a tautology and rob it of predictive
significance. The latter is potentially more damaging in implying that a keystone
of modern finance (indeed, of economics more broadly) requires replacement.

Counter-examples to the LoOP – suggesting the existence of unexploited arbi-
trage opportunities – in financial markets are well documented. A particularly
stark illustration is provided by 3Com (a computing equipment and services
provider), which, in March 2000, sold 5 per cent of the shares in its wholly
owned subsidiary, Palm (a manufacturer of hand-held computers). At the same
time, 3Com announced that it intended to dispose of all its remaining Palm shares.
Owners of 3Com shares would receive one and a half Palm shares for every 3Com
share – i.e. each 3Com share would become a bundle of one 3Com share and one
and a half Palm shares. Given that the worst that could have happened was for
3Com to become worthless after the disposal, the LoOP predicts that the value of
each existing 3Com share should have been at least one and a half times that of
each Palm share. In fact, for a time, the price of 3Com shares fell below Palm
shares, blatantly in contradiction of the LoOP prediction.2

1 For example, Shleifer (2000, especially chap. 4) presents a model in which limited arbitrage is identified
with the strategies of specialists who seek to exploit their perceptions of discrepancies among asset prices.
In Shleifer’s analysis, limited arbitrage is risky and requires a positive commitment of capital.

2 See Lamont and Thaler (2003b) for a detailed analysis of 3Com’s disposal of Palm, as well as several other
violations of the LoOP.
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Although the discrepancy eventually disappeared, it did so only over a period
of several weeks. Moreover, such episodes are not uncommon – they cannot be
dismissed as isolated incidents. The question here is: what relevance do such
observations have for the arbitrage principle?

Lamont and Thaler (2003b) contend that, while the LoOP was violated in the
3Com–Palm case, the arbitrage principle was not. The reason is that market
frictions – in particular, obstacles to short-selling shares – meant that the arbi-
trage opportunity was apparent rather than real: investors were unable exploit
it. Regardless of whether it is appropriate to claim that the arbitrage principle
remained intact, the substantive point is that market frictions hindered the effec-
tiveness of attempts that investors might have made to profit from the arbitrage
opportunity.3

To the extent that market frictions impede the operation of arbitrage, they
undermine the capacity of the arbitrage principle accurately to predict links among
asset prices, as the evidence from 3Com’s spin-off of Palm so clearly shows.
Market frictions are never entirely absent. And, the greater they are, the less scope
there is for arbitrage to yield useful implications about asset prices. Nonetheless,
if market frictions are small, their impact on asset prices should also be small.
Pursued to its extreme, the assumption of frictionless markets is an idealization,
but one that enables the arbitrage principle to provide a benchmark for determining
the links among asset prices. It is in this spirit that the remainder of this chapter
explores the implications of the absence of arbitrage opportunities.

7.2 Arbitrage in an uncertain world

The role of arbitrage in an uncertain world is the same as in a world of certainty:
it places restrictions on patterns of asset prices that are consistent with market
equilibrium. The predictions of arbitrage theory apply quite generally, in the sense
that they do not rely on the criteria that investors use to choose their portfolios –
other than on the mild requirement that more wealth is preferred to less. There is
a penalty for this generality: the arbitrage principle, on its own, cannot determine
equilibrium asset prices; it just rules out some as being incompatible with market
equilibrium.

Arbitrage is the process by which investors seek to make risk-free gains (posi-
tive payoffs) with zero initial outlay. That is, arbitrage refers to all the actions
that investors take to secure gains without committing any capital and without
bearing any risk.

3 The main thrust of Lamont and Thaler’s argument is, however, not about arbitrage but, rather, to highlight
the presence of ‘investors who are � � � irrational, woefully uninformed, endowed with strange preferences,
or for some other reason willing to hold overpriced assets’ (p. 231). Market frictions serve to identify the
existence of such investors, the actions of whom would otherwise not affect asset prices.
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An arbitrage portfolio is defined by the following conditions.

1. The portfolio requires zero initial outlay: some assets are held in positive amounts,
some in negative amounts and, perhaps, some in zero amounts.4 (Only portfolios that
contain a positive or a negative amount of at least one asset are considered – i.e. all
portfolios are assumed to be non-vacuous, or non-trivial.)

2. The portfolio is risk-free: the payoff on the portfolio in every state must be either
positive or zero. It must not be positive in some states and negative in others.

Formally, an arbitrage portfolio, x1( x2( � � � ( xn, satisfies these conditions.

1. Zero initial outlay : p1x1+p1x2+· · ·+pnxn= 0, with not all xj = 0 for j= 1(2( � � � ( n.
2. Risk-free : vk1x1 +vk2x2 +· · ·+vknxn � 0, for every state k= 1(2( � � � ( $,

where xj denotes the quantity of asset j, pj is the price of asset j, and vkj is the
payoff of asset j in state k. A risk-free asset is allowed but, if present, it is not
distinguished by a separate, identifying subscript (i.e. it is included among the
n assets). Let x denote the portfolio as a whole (i.e. the vector with elements
<x1( x2( � � � ( xn=).

For notational convenience, define the payoff for portfolio x in state k as

v
x( k�≡ vk1x1+vk2x2 +· · ·+vknxn
Thus, if x is an arbitrage portfolio, it involves zero initial outlay and v
x( k�� 0
for every state k. Several more definitions are useful in what follows.

Arbitrage opportunity: a set of asset prices such that an arbitrage portfolio
exists, and v
x( k� > 0 for at least one k. That is, a strictly positive payoff occurs
in one or more states and a loss in no state.

Arbitrage profit: the amount of the payoff from an arbitrage opportunity.
(Note that the amount of the payoff generally varies across states and also differs
from one arbitrage portfolio to another.)

Absence of arbitrage opportunities: a set of asset prices for which exactly
one of the following two conditions holds.

(a) For every arbitrage portfolio, v
x( k�= 0 in every state.
(b) No arbitrage portfolio exists. That is, for every portfolio requiring zero initial outlay,

v
x( k�� 0 for some state(s) and v
x( k� < 0 for some state(s).

Arbitrage principle: the arbitrage principle asserts that arbitrage opportunities
are absent.

Market equilibrium: a set of asset prices and an allocation of asset holdings
across investors such that the demand to hold assets is no greater than the supply

4 Some definitions allow the initial outlay to be negative; that is, the portfolio could generate a surplus of
funds at the outset. This would correspond to a situation in which the funds generated from the assets sold
short (i.e. held in negative amounts) exceeds the cost of the assets held in positive amounts. The extra
generality serves no purpose here.
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available. (If every asset price is greater than zero, demand equals supply in
market equilibrium.)

An alternative way of stating the arbitrage principle is to assert that any positive
initial outlay is either (a) a risk-free investment that yields the risk-free rate of
return (i.e. the rate of return on an asset that has the same payoff in every state) or
(b) a risky investment. Let A> 0 denote the initial outlay. In this formulation, an
arbitrage portfolio, by definition, must satisfy v
x( k�� 
1+ r0�A, in every state,
k, where r0 denotes the risk-free interest rate.5 An arbitrage opportunity now
becomes a portfolio with initial outlay A, a payoff v
x( k� � 
1+ r0�A in every
state, and v
x( k� > 
1+ r0�A in at least one. Finally, the absence of arbitrage
opportunities is characterized by a set of asset prices such that the rate of return
on the initial outlay either (a) equals the risk-free rate in every state, or (b) is
greater than the risk-free rate in some states and smaller in others.

The implications of the arbitrage principle are discussed below in the context of
three propositions that provide different sets of necessary and sufficient conditions
for the absence of arbitrage opportunities. A formal demonstration of each
proposition is outlined in appendix 7.1. The mathematical methods employed in
the appendix may seem rather daunting and are not necessary to understand the
remainder of this section.

The first proposition implies that the arbitrage principle is relevant in a range
of circumstances; it places only a mild restriction on investors’ behaviour (for
instance, individuals need not be mean-variance investors nor need they obey the
EUH).
Proposition I. The arbitrage principle holds in frictionless asset markets if, and

only if, there exists an investor who prefers more wealth to less and for whom an
optimal portfolio can be constructed.

To grasp why proposition I holds, suppose that the arbitrage principle fails
in the sense that there exists a portfolio that (a) requires zero initial outlay and
(b) yields a non-negative payoff in every state, with a positive payoff in at least
one state. Now identify an investor who prefers more wealth to less in each
state. The investor must be willing to hold the portfolio in question: it costs
nothing, is risk-free and yields a positive payoff in at least one state. But – here
is the crucial point – the investor would seek to magnify this portfolio (keeping
the asset proportions the same) to an unbounded extent (because more wealth
is preferred to less). Formally, the investor has no optimal portfolio. (Infinite
wealth, a fantasy that dreams are made on, is just that: a fantasy.)

Hence, by a contradiction, the existence of an investor who prefers more wealth
to less, and for whom an optimal portfolio can be found, must imply that the

5 That is: in an arbitrage portfolio with initial outlay A, the rate of return in each state equals 
v
x( k�/A�−1,
which is no less than r0.
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arbitrage principle holds true: arbitrage opportunities are absent. The converse –
namely that the arbitrage principle implies the existence of an investor satisfying
the stated conditions – is also true, but requires more delicate reasoning of the
sort described in appendix 7.1.

7.2.1 Implications of the arbitrage principle: an example

That the arbitrage principle has important implications for asset prices is shown
in the following example. Suppose that there are two possible states and three
assets with the following payoffs and prices:

Assets

A B C

State 1 10 8 9
State 2 8 0 12

Price 3 2 pC =?

The absence of arbitrage opportunities implies that the price of asset C, pC , is
not arbitrary. To see this, consider some arbitrary values of pC and check that
risk-free profits can be made (except at the equilibrium value of pC , of course).

Suppose that pC = 1. Now consider the portfolio: sell one unit of A, buy one
unit of B and buy one unit of C – that is: xA = −1( xB = +1( xC = +1. This
portfolio uses zero capital (the cost of B and C is met from the sale of A) and
has a positive payoff in both states:

10× 
−1�+8× 
+1�+9× 
+1� = 7> 0

8× 
−1�+0× 
+1�+12× 
+1� = 4> 0

Hence, pC = 1 cannot be an equilibrium: a portfolio can be found that costs
nothing and yields a positive, risk-free payoff.

Suppose, alternatively, that pC = 4. Now consider the portfolio: buy two units
of A, sell one unit of B and sell one unit of C – that is: xA = +2( xB = −1(
xC = −1. This portfolio uses zero capital (the revenue from selling B and C
equals the cost of A) and has a positive payoff in both states:

10× 
+2�+8× 
−1�+9× 
−1� = 3> 0

8× 
+2�+0× 
−1�+12× 
−1� = 4> 0
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Hence, pC = 4 cannot be an equilibrium: a portfolio can be found that costs
nothing and yields a positive risk-free payoff.6

What is the equilibrium value of pC? Consider any portfolio xA(xB( xC of
assets for which the payoff equals zero in each state. It must satisfy

10xA+8xB+9xC = 0

8xA+0xB+12xC = 0

These conditions imply that xA/xC =− 3
2 and xB/xC = 3

4 .
In the absence of arbitrage opportunities, portfolios with these ratios must

require a zero initial outlay:

3xA+2xB+pCxC = 0

Hence, if xC �= 0 (there is no point in choosing xC = 0)

3
xA/xC�+2
xB/xC�+pC = 0

3×− 3
2 +2× 3

4 +pC = 0

pC = 3

The price of C must equal 3. Any other price allows the construction of portfolios
that yield positive – and hence unbounded – profits.

Remarks

The example is simple but it illustrates some fundamental points about the oper-
ation of arbitrage in an uncertain world.

1. The arbitrage principle is a generalization of the law of one price. Assets A, B
and C clearly have different payoffs and have different prices, but there must exist
a particular relationship among the prices in order to rule out the opportunity for
arbitrage profits.

2. The arbitrage principle does not assert that every portfolio with a zero initial outlay
has a zero payoff in all states. Most zero-initial-outlay portfolios will be risky in the
sense that they yield a positive payoff in some states, a negative payoff in others and,
possibly, a zero payoff in yet others. These are not arbitrage portfolios.

3. There may exist no arbitrage portfolios at all. The arbitrage principle asserts that those
that do exist yield a zero payoff in every state. If an arbitrage portfolio exists, there
will exist infinitely many – for any arbitrage portfolio, scale all the asset holdings up
or down by an arbitrary positive proportion; the result is also an arbitrage portfolio.

6 Notice that there is an infinity of portfolios with a zero initial outlay and for which the payoff is positive in
one state and negative in the other. These are not arbitrage portfolios. In this context, they reveal nothing
about the pattern of equilibrium prices.
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4. If the arbitrage principle is to have predictive power, market frictions must be absent.
Conversely, in the presence of transaction costs or institutional constraints on trading,
the arbitrage principle implies little, if anything, about the pattern of asset prices
(according to the severity of the frictions).

5. The absence of arbitrage opportunities does not itself provide a way of computing
asset prices in market equilibrium. More modestly, it identifies links among prices.

The usefulness of the arbitrage principle varies among the problems to which it is
applied. In the study of derivatives markets, the absence of arbitrage opportunities is
often the vital element. Similarly, in corporate finance the Modigliani–Miller theorems
rest on the arbitrage principle (see chapter 18, page 457). But in equity markets the
applicability of the arbitrage principle is more limited: extra theoretical apparatus
(e.g. a factor model) is required; and approximations often need to be made, as in the
arbitrage pricing theory, explored in the following chapter.

7.3 State prices and the risk-neutral valuation relationship

The arbitrage principle has two further implications that, although rather abstract,
are useful in applications. One of these is the existence of state prices. So far,
prices have been associated with assets, but it is also possible to make sense
of prices that are associated with individual states of the world. Once the exis-
tence of state prices has been established, the risk-neutral valuation relationship
provides a convenient way of expressing any asset price in the absence of arbitrage
opportunities.

7.3.1 The existence of state prices

A state price, qk, is defined to be the price of an asset that has a payoff of one unit
of wealth in state k and zero in every other state. In most circumstances these
state prices (if they exist) are implicit, in the sense that they are not the prices of
any actual assets but, instead, can be inferred from the payoffs of assets that are
traded. It is conceivable, of course, that securities that have a unit payoff in one
state and zero in all others are observed in practice, but the importance of state
prices is not dependent on whether they are, or are not.
Proposition II. The arbitrage principle is equivalent to the existence of positive

state prices, q1( q2( � � � ( q$ such that

pj = q1v1j+q2v2j+· · ·+q$v$j j = 1(2( � � � ( n (7.1)

This result is often called the linear pricing rule. In words: in the absence
of arbitrage opportunities the price of each asset must be equal to the sum of
its payoff in each state multiplied by a state price corresponding to that state.
Appendix 7.1.1 is devoted to demonstating proposition II.
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The linear pricing rule is an equivalence: if arbitrage opportunities are absent,
state prices exist; if state prices exist, arbitrage opportunities are absent. Therefore,
if the arbitrage principle holds, it implies that every asset price can be written as
a weighted average of its payoffs, the weights being the state prices.

Proposition II makes no claim about the uniqueness of state prices. If they
exist at all, then there may be many sets of them. State prices are unique if
asset markets are complete in the sense discussed in chapter 4. (An asset market
is complete if there exist sufficiently many assets so that, for every state, it is
possible to construct an Arrow security – an asset with a unit payoff in the state in
question and a zero payoff in all other states. Construction of an Arrow security
involves choosing a portfolio of assets in such a way as to yield the required
payoff.)

7.3.2 The risk-neutral valuation relationship

An immediate implication of the linear pricing rule is the risk-neutral valuation
relationship (sometimes called the ‘existence of martingale probabilities’, or the
‘existence of an equivalent martingale measure’ or the ‘martingale valuation
relationship’). The RNVR states the following.
Proposition III. The linear pricing rule is equivalent to the existence of :

1. a risk-free rate of return, r0, with associated discount factor, N≡ 1/
1+ r0�; and
2. probabilities,7 11(12( � � � (1$, one for each state, such that

pj = NE∗9vj; j = 1(2( � � � ( n (7.2)

The symbol vj denotes the list of payoffs, one for each state, for asset j. (In
this context, vj is a ‘random variable’: a set of outcomes, each with its associated
probability.) The expectation, E∗9vj;, is the payoff of asset j in each state
weighted by the probability of that state and summed over the states

E∗9vj;≡ 11v1j+12v2j+· · ·+1$v$j (7.3)

The asterisk 
∗� superscript appears as a reminder that the probabilities in (7.3)
are purely artificial; they are an implication of the proposition and need not
correspond to any investor’s beliefs (see remark 1, below).

Remarks

1. The RNVR states that, in the absence of arbitrage opportunities, each asset’s price can
be written as the expected NPV of its payoff discounted at a risk-free rate of return.
A derivation of the RNVR appears in appendix 7.1.2.

7 The probabilities can be interpreted merely as numbers that are non-negative and sum to one. In this
application the probabilities are strictly positive.
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Be careful not to read too much significance into the RNVR. The probabilities do
not necessarily describe the beliefs of any investor who behaves in accordance with
some principle – e.g. the EUH, for which probabilities are relevant. Nor are they
the objective probabilities of states, whatever meaning might be given to ‘objective’.
(Recall the discussion in chapter 4 about the interpretation of probabilities.)

2. Example: refer to the example above, in section 7.2.1. The discount factor, N, and the
probabilities can be calculated by writing out the statement of the RNVR. With just
two states, the probabilities of the states can be denoted by 1 and 
1−1�, respectively,
so that the RNVR appears as

pA = 3 = N
101+8
1−1��
pB = 2 = N
81+0
1−1��
pC = 3 = N
91+12
1−1��

Substitutions between any two of these equations show that N= 5
16 and 1 = 4

5 .
8 Notice

that, in the absence of arbitrage opportunities, the values derived from any pair of
the three equations must satisfy the third. Finally, the implicit state prices q1 and
q2 can be calculated from q1 = N1 and q2 = N
1−1�, so that q1 = 5

16 × 4
5 = 1

4 and
q2 = 5

16 × 1
5 = 1

16 .
3. Another way of writing the RNVR condition is

E∗9rj;= r0 j = 1(2( � � � ( n (7.4)

This can be demonstrated by recalling that rkj = 
vkj−pj�/pj , substituting into pj =
NE∗9vj;, and rearranging the result. (Remember that rj and vj – omitting the k

subscript – denote the lists of rates of return and payoffs, respectively, for asset j,
with one element in each list corresponding to the state.)

Expressed in this way, the RNVR can be interpreted as the assertion that each asset
yields, on average, a rate of return, E∗9rj;, equal to the risk-free rate. Beware: as
already emphasized, the probabilities’ weights used in calculating the expectation are
purely artificial. Hence, the meaning of ‘on average’ in this context is confined to
expectations obtained using these probabilities.

Yet another rearrangement of pj = NE∗9vj; allows the RNVR to be written as

E∗9
1+ rj�N;= 1 j = 1(2( � � � ( n (7.5)

If (a) N is replaced by the random variable H , and (b) the probabilities are replaced by
those corresponding to individual beliefs, then (7.5) becomes the fundamental valua-
tion relationship in portfolio theory. While this is a purely formal reinterpretation, it
does hint at points of contact between the RNVR and the FVR.

4. What is ‘risk-neutral’ about risk-neutral valuation? If investors are risk-neutral
(see chapter 4) and if their beliefs are expressed by the probabilities 11(12( � � � (1$,

8 The implied risk-free interest rate is thus r0 = 
1/N�− 1 = 220%. It is rather far-fetched at such a huge
value – but this is only a numerical example.



176 The economics of financial markets

then expressions such as (7.2) or (7.4) or (7.5) express the fundamental valuation
relationship. (Once again, see chapter 4.)

5. Why is the RNVR worth studying? The RNVR is useful in many asset pricing
problems because it facilitates the calculation of equilibrium asset prices. This is
particularly so for the APT (chapter 8), options pricing theory (e.g. the Black–Scholes
model, chapter 19), corporate finance (the Modigliani–Miller theorem, chapter 18,
section 18.6) and many other problems involving derivative securities.

Summary

In a world of uncertainty with frictionless asset markets, the following conditions
are equivalent.

1. An absence of arbitrage opportunities.
2. The existence of at least one investor who prefers more wealth to less and for whom

an optimal portfolio can be constructed.
3. The existence of positive state prices, q1( q2( � � � ( q$, where qk is the market price of

an asset with a payoff of one unit of wealth in state k and zero in every other state.
4. The risk-neutral valuation relationship: namely, that there exists a risk-free rate of

return and state probabilities such that

r0 = E∗9r1;= E∗9r2;= · · · = E∗9rn;
or, equivalently p1 = NE∗9v1; p2 = NE∗9v2; · · · pn = NE∗9vn;

7.4 Summary

In frictionless markets, the absence of arbitrage opportunities corresponds to the
existence of links among asset prices. When market frictions (transaction costs or
institutional impediments to trading, or both) are non-negligible, observed prices
may be influenced more by the frictions than by the quest for arbitrage profits
(even though arbitrage opportunities are absent).

This chapter has examined circumstances in which investors, in seeking to
obtain arbitrage profits, unwittingly drive asset prices to follow particular patterns.
The most important aspects of the analysis are these.

1. By construction, arbitrage portfolios (a) require zero initial outlay and (b) are risk-free.
The arbitrage principle asserts that arbitrage portfolios yield a zero payoff in every
possible state of the world. Less formally: the return to capital investment is positive
only if either (a) a positive amount of capital is committed, or (b) the investment is
risky, or both.

2. By invoking the mild assumption that at least one investor prefers more wealth to
less, market equilibrium in frictionless markets implies that the arbitrage principle is
satisfied.
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3. Equivalently, the arbitrage principle implies the existence of state prices – one for
each state – for (possibly hypothetical) assets, each of which has a payoff equal to a
unit of wealth in exactly one state and zero in every other.

4. Also equivalently, the arbitrage principle implies the RNVR – i.e. the existence of a
set of artificial (‘risk-neutral’ or ‘martingale-equivalent’) probabilities such that the
price of each asset equals the expected payoff (using these probabilities), discounted
by a risk-free interest rate. Alternatively, the RNVR states that the expected rate of
return on each asset, again using the artificial probabilities, equals the risk-free interest
rate.

Further reading

An excellent starting point for the fundamentals of arbitrage is the paper by Varian
(1987). Also valuable are the entries on ‘arbitrage’ and ‘arbitrage pricing theory’
in The New Palgrave Dictionary of Money and Finance (Newman, Milgate and
Eatwell, 1992). These short articles are exemplars of conciseness, clarity and
rigour. Moreover, they provide a guide to the main contributions on arbitrage
analysis. An exploration of arbitrage policies, more broadly construed as practical
investment strategies, can be found in Shleifer and Vishny (1997), Shleifer (2000)
and Lamont and Thaler (2003a).

Appendix 7.1: Implications of the arbitrage principle

This appendix outlines a proof for each of the three propositions stated in
sections 7.2 and 7.3. The demonstration of proposition II requires the most
intricate reasoning and this is studied first. Proposition III then follows immedi-
ately. Lastly, a proof of proposition I is sketched.

A.7.1.1: The existence of state prices

The proof of proposition II offered here relies on a member of the family of
‘theorems of the alternative’: purely mathematical results that are well known
in the analysis of linear inequalities and that provide a foundation for linear
programming.9 All that needs to be done to prove proposition II is to state the
proposition in a suitable form and then make an appeal to the relevant theorem
of the alternative. The adoption of matrix notation simplifies some potentially
cumbersome algebra.

The first step in the proof involves stating the proposition in terms of matrices
and vectors. Matrices (arrays) are denoted by boldface upper-case letters, such as

9 Excellent references are those by Gale (1960, chap. 2) and Mangasarian (1994, chap. 2). Dorfman, Samuelson
and Solow (1958, app. B) provide helpful intuition.
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V, while vectors (here designated as matrices with a single column) are denoted by
boldface lower-case letters, such as x. The prime symbol, ′, denotes transposition,
so that x′ is a row vector that merely turns x from a column into a row. It is
important to be clear how inequalities apply to vectors: x > 0 states that every
element of x is positive; x � 0 states that every element x is non-negative but
all elements could be zero; x ≥ 0 states that every element of x is non-negative
and at least one element is strictly positive; and x = 0 states that every element
of x is zero.

Let V denote the matrix of asset payoffs. This matrix has $ rows (the number
of states) and n columns (the number of assets). A typical element of V is vkj ,
the payoff of asset j in state k. The payoff matrix is assumed to be non-vacuous
in the sense that not every element is zero.

Let p denote the vector of asset prices. This vector has n elements and is
assumed to be non-negative and non-vacuous: p ≥ 0. A typical element of p is
pj , the price of asset j.

Let x denote a portfolio. This vector has n elements, with xj (the number of
units of asset j) being a typical element. Each element of x could be positive,
negative or zero. It is assumed to be non-vacuous. The inner-product between
the prices and portfolio quantities, p′x, expresses the total outlay on the portfolio,
x (i.e. the sum of the price times the quantity of each asset).

An arbitrage opportunity is formally defined by a portfolio x satisfying[
V
−p′

]
x ≥ 0 (7.6)

This statement allows for the existence of an arbitrage portfolio with (a) zero
initial outlay, p′x= 0, and (b) non-negative payoffs in all states and positive in at
least one: Vx ≥ 0. But it also allows for a portfolio with a negative initial outlay
p′x< 0 and payoffs that might be zero in all states Vx � 0, though possibly with
some, or all, positive. Equation (7.6) thus allows very generally for a portfolio
that generates arbitrage profits.

At this point a theorem of the alternative is applied. One of the theorems, some-
times called ‘Stiemke’s theorem’,10 states that exactly one of the two following
results is true: either (a) there exists an x that satisfies (7.6); or (b) there exist a
vector z and a number K such that

z′V+K
−p′�= 0 with z> 0( K > 0 (7.7)

10 See Mangasarian (1994, p. 32) or Gale (1960, p. 49, corollary 2). A slightly different approach is adopted
in The New Palgrave Dictionary of Money and Finance (Newman, Milgate and Eatwell, 1992, Vol. I,
pp. 45–6).
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It is important to note that, if (7.7) holds, there is no x that satisfies (7.6); if there
exist z> 0 and K > 0, there is an absence of arbitrage opportunities. Conversely,
if (7.6) holds for some x, then it is not possible to find z and K that satisfy (7.7);
if there is an arbitrage opportunity, then (7.7) does not hold.

The final step is to interpret (7.7) in terms of state prices. Divide through by
K and rearrange (7.7):

q′V= p′ where q≡ z/K (7.8)

The vector q> 0 has n elements, with typical member qk denoting the state price
corresponding to state k. To check that (7.8) is identical with equation (7.1) in
the statement of proposition II, write out a typical column, say j:

q1v1j+q2v2j+· · ·+q$v$j = pj (7.9)

The proof of proposition II is complete. The theorem of the alternative shows
that exactly one of the following is true: (a) arbitrage opportunities are absent and
there exists a set of positive state prices; (b) an arbitrage opportunity is present
and there does not exist a set of positive state prices. The arbitrage principle
is equivalent to the existence of a set of positive state prices – precisely what
proposition II claims.

A7.1.2: The risk-neutral valuation relationship

Proposition III merely involves scaling the state prices so that they sum to one
and, hence, can be interpreted as probabilities. Let

∑
qk denote the sum of the

state prices: ∑
qk = q1+q2 +· · ·+q$

Define $ numbers, 1k ≡ qk/
∑
qk. These numbers have the required properties of

probabilities: they are non-negative (in fact, they are all positive) and they sum
to one. Hence, they can be interpreted as probabilities.

Now, using the linear pricing rule, (7.9), write the equilibrium asset prices as

pj = q1v1j+q2v2j+· · ·+q$v$j j = 1(2( � � � ( n

= (∑
qk
)

11v1j+12v2j+· · ·+1$v$j�

= NE∗9vj; (7.10)

where N is defined to be
∑
qk so that r0 = 
1/N�−1, as asserted in proposition III.

Conversely, starting from equation (7.10), define qk = N1k for k= 1(2( � � � ( $.
Hence, (7.9) can be constructed from (7.10). Thus, the RNVR is equivalent to
the existence of state prices – as proposition III asserts.
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A7.1.3: The arbitrage principle and the existence of an optimal portfolio

The simpler half of proposition I – that the existence of an optimal portfolio for
a wealth-preferring investor implies the absence of arbitrage opportunities – is
outlined in section 7.2 and is not repeated here. It is more challenging to prove
that the arbitrage principle implies the existence of an optimal portfolio. The
following sketch is intended to be suggestive rather than rigorous.

Consider an investor with preferences that can be represented by an objective
function of the form (see chapter 4):

� = U
W1(W2( � � � (W$�

where Wk is the level of wealth in state k:

Wk = vk1x1+vk2x2 +· · ·+vknxn k= 1(2( � � � ( $

The investor is assumed to maximize � subject to the constraint

p1x1+p2x2 +· · ·+pnxn = A

where A is the initial level of wealth. (Note that A need not be zero: it is not
necessary to assume that the investor is trying to exploit an arbitrage opportunity.)

In elementary consumer theory it is shown that, at a maximum of utility,
HU/Hxj = ?pj for every xj and for some number ? > 0. Now take account of
the indirect relationship between � and xj via Wk, to write HWk/Hxj = vkj , and
hence

HU

Hxj
= HU

HW1

HW1

Hxj
+ HU

HW2

HW2

Hxj
+· · ·+ HU

HW$

HW$

Hxj

= U1v1j+U2v2j+· · ·+U$v$j
where Uk≡ HU/HWk, the marginal utility of wealth in state k. Therefore, HU/Hxj =
?pj becomes

U1v1j+U2v2j+· · ·+U$v$j = ?pj

U1

?
v1j+

U2

?
v2j+· · ·+ U$

?
v$j = pj (7.11)

Equation (7.11) suggests that, if Uk > 0, the necessary condition for a utility
maximum can be expressed as an equality between a weighted sum of asset
payoffs, vkj (with weights Uk/?), and the price of each asset, pj . Proposition
II states that, if these weights are equal to state prices, qk, then the equality
is equivalent to the absence of arbitrage opportunities. Hence, if Uk/? = qk
(for k = 1(2( � � � ( $) the arbitrage principle implies the existence of an optimal
portfolio for an investor who prefers more wealth to less.
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The reasoning in the previous paragraph is loose and incomplete. It does
suggest, however, how a formal proof could be constructed.11 Proposition II
provides the crucial equivalence between the arbitrage principle and state prices.
The state prices can then be interpreted as marginal utilities (suitably scaled by ?)
in an optimization problem. While equation (7.11) is only a necessary condition
for preference optimization, an assumption – standard in consumer theory – that
U
·� is a strictly quasi-concave function of its arguments renders the necessary
condition sufficient as well as necessary. Thus, not only does the existence of
an optimal portfolio imply the arbitrage principle (as argued in section 7.2) but
also the arbitrage principle implies the existence of an optimal portfolio for an
investor who prefers more wealth to less – as proposition I asserts.

11 A more complete argument, from which that here has been adapted, appears in The New Palgrave Dictionary
of Money and Finance (Newman, Milgate and Eatwell, 1992, Vol. I, p. 46).
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8

Factor models and the arbitrage pricing theory

Overview

Arbitrage alone goes far to pin down asset prices, but not far enough. In order
to obtain definite predictions, it is necessary to embed the arbitrage principle in a
framework that imposes additional conditions on the observable pattern of prices.

Factor models, described in section 8.1, provide one such framework. These
models postulate that asset prices – or, equivalently, rates of return – are linear
functions of a small number of variables, the so-called ‘factors’. As such, factor
models can be treated as explanations of asset prices in their own right, without
any obligation to appeal to the arbitrage principle. But it will be argued in
section 8.1, and also in chapter 9, that factor models are of limited explanatory
power on their own. This is where arbitrage becomes useful.

The arbitrage pricing theory, analysed in section 8.2, applies the principles
studied in the previous chapter to factor models. Here it is shown how, in an
approximate but precise sense, arbitrage portfolios can be constructed when asset
returns are assumed to be determined in accordance with a factor model. In the
absence of arbitrage opportunities, these portfolios will yield zero payoffs (again,
in an approximate but precise sense) in every eventuality. The upshot is a set of
restrictions on asset prices (and, hence, rates of return) that are predicted to hold
under the stated conditions.

In the broadest terms, the predictions can be interpreted as explanations of
assets’ risk premia, the analysis of which begins section 8.3. The section goes
on to explore an important special case, in which the factors themselves take the
form of portfolio rates of return, and concludes with a comparison of the APT
with the CAPM.

183
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8.1 Factor models

8.1.1 A single-factor model

Factor models of asset prices postulate that rates of return can be expressed as
linear functions of a small number of factors. The simplest, single-factor model
is written as

rj = bj0 +bj1F1+�j j = 1(2( � � � ( n (8.1)

where rj is the rate of return on asset (or portfolio) j, F1 denotes the factor’s
value, bj0 and bj1 are parameters and �j denotes an unobserved random error.
The rate of return on asset j, rj , could be replaced by the excess return, rj− r0,
over a risk-free rate, r0, without affecting the analysis in any substantive way.
The slope parameter, bj1, is sometimes referred to as the ‘factor loading’.

It is assumed that E9�j�F1;= 0; that is, the expected value of the random error,
conditional upon the value of the factor, is zero. This implies, immediately,
that E9�j; = 0 and cov
�j(F1� = 0 (recall the law of iterated expectations from
chapter 3, page 79). In words: the random error is assumed to be zero on average
and uncorrelated with the factor.1

The model is silent about what the ‘factor’ represents – more about this later.
Whatever it is that the factor expresses, the model asserts merely that there exists
a linear relationship between the factor and the rate of return on each asset. The
same factor determines all the rates of return but also determines that the values
of the parameters bj0 and bj1 can differ across assets.

The factor model expressed by (8.1) is approximate in the presence of the error
term, �j . The role of �j is to allow unexplained forces to affect the rate of return.
In exact factor models the error is identically zero. Exact factor models are not
regarded as very plausible in practice but are useful for expositional purposes.
Unless explicitly stated to the contrary, ‘factor models’ are understood to be
approximate in the sense that �j is not identically zero.

The single factor model is illustrated in figure 8.1. According to the values
taken on by �j , the observed values of the factor and rates of return would result
in a scatter of points around the line defined by rj = bj0 +bj1F1.

Values of the factor F1 can, in principle, be observed, and although b0j and
b1j are not observed they can be estimated, given the assumptions made about
�j . Thus, knowledge of F1 could be used to predict asset returns, albeit not
perfectly given the presence of the random error. Moreover, if all asset returns
are determined according to the factor model (8.1), then an approximate absence
of arbitrage opportunities implies links among rates of return – this is the heart of

1 In some treatments of the APT it is assumed also that the covariances of the random errors for all pairs of
assets are zero – that is, cov
�i( �j�= 0 for all i �= j. This ‘strict’ version of factor models is more restrictive
than required for many applications and hence is neglected here.
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Fig. 8.1. A single-factor model

In a single-factor model, the rate of return on each asset, rj , is assumed
to be a linear function of a factor’s value, F1, with intercept bj0 and
slope bj1. The intercept and slope parameters may take positive or
negative values and generally differ across assets. The existence of a
random error means that observed values of rj are scattered around the
line.

the APT. (The absence of arbitrage opportunities is, in a precise sense, approxi-
mate given the presence of the error, �j , in the factor model.) The links among
rates of return then allow calculation of a risk premium associated with the
factor.

8.1.2 Models with multiple factors

For most applications the single-factor model is too restrictive; several factors are
allowed to affect the rates of return on assets. The generalization to two factors
takes the form

rj = bj0 +bj1F1+bj2F2 +�j j = 1(2( � � � ( n (8.2)

with factor loadings bj1 and bj2. In (8.2) there are two systematic influences on
the rate of return from each asset. Apart from this, the interpretation is exactly
the same as for the single-factor model.

The single-factor and two-factor models are convenient for expositional
purposes because their predictions extend to the multifactor model:

rj = bj0 +bj1F1+bj2F2 +· · ·+bjKFK+�j j = 1(2( � � � ( n (8.3)
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In (8.3) there are K distinct factors. As will be seen later, a restriction must be
placed on the number of factors in the APT. In particular, K must not be too large.
More precisely, K should be small relative to n, the number of assets: K� n.

The properties of the random errors are assumed to carry over to the multifactor
models – that is, E9�j�F1;= 0(E9�j�F2;= 0( � � � (E9�j�FK;= 0 for each asset j.

8.1.3 What are the factors?

An awkward question that is rarely asked, and even more rarely answered, is:
‘Where does the factor model come from?’ That is, what are the factor model’s
theoretical foundations? It is not underpinned by any one theory of investor
behaviour, at least not in any obvious way. Instead, factor models can be
understood as devices to make operational other theories of investors’ behaviour,
firms’ behaviour or other aspects of how the whole economy works. For example,
the intertemporal capital asset pricing model (mentioned in chapter 11) could be
interpreted as providing a justification for the use of factor models. Alternatively,
a straightforward – though not very satisfactory – answer to the question is that
any factor model is a simple representation of how the world works. It generates
testable hypotheses, a means of exploring the evidence, rather than representing
a profound behavioural explanation of financial markets.

Whatever the justification for factor models, criteria are needed to select the
factors. Very often this selection is ad hoc, the criterion being to choose those
variables that are considered most likely to influence asset returns. Thus, the
rate of growth of gross national product might be used, or changes in the rate of
inflation, or the unemployment rate, or the rate of capital accumulation, or the
foreign exchange rate. Some factors will, possibly, be relevant in the determina-
tion of some assets’ rates of return but irrelevant for others (i.e. some of the bji
parameters may be zero).

One important special case (often found in empirical applications) is where the
factors are rates of return on portfolios of assets. For example, the rate of return
on the market portfolio could be a factor. Similarly, rates of return on portfolios
formed in other ways could also play the role of factors. (It is often convenient,
though not essential, for the factors to be expressed as the excess rates of return
over a risk-free rate.) While popular in applications, factor models in which all
the factors are portfolio returns evade the fundamental issue of specifying the
economic forces that determine asset payoffs – they just explain asset returns in
terms of themselves. It is as if the capital markets are completely isolated from
the rest of the economy – hardly a very plausible assumption.

In chapter 9 it is argued that the freedom offered by the APT in the choice
of factors should be interpreted as a weakness of the model, not a strength.
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While it is possible in applied work to allow the factors to remain unobserved,
such an approach also incurs difficulties of interpretation. These are reviewed in
chapter 9.

8.2 APT

8.2.1 Arbitrage: a restatement

In order to keep the notation as simple as possible, it is helpful to write the
arbitrage conditions with different symbols. In particular, let yj denote the outlay
on asset j (i.e. yj ≡ pjxj) for each asset. Also, rates of return replace payoffs
using the definition rkj ≡ 
vkj/pj�−1. Finally, neglect the subscript for the state,
so that rj ≡ 
vj/pj�− 1. With these notational changes, an arbitrage portfolio
y1( y2( � � � ( yn satisfies:

1. zero initial outlay: y1 +y2 +· · ·+yn = 0, with yj �= 0 for at least two j; and
2. risk-free: r1y1 + r2y2 +· · ·+ rnyn � 0, for every state.

For every arbitrage portfolio, the arbitrage principle then asserts that in market
equilibrium

r1y1+ r2y2 +· · ·+ rnyn = 0 in each state

It is this condition that is applied (as an approximation) in the APT.
In factor models there are two distinct sources of risk.

1. Systematic risk, associated with the variations in factors.
2. Unsystematic risk, associated with the random error.

Suppose that a portfolio can be found that requires a zero initial outlay and that
eliminates both systematic and unsystematic risk. This is an arbitrage portfolio,
and (as a consequence of the arbitrage principle) in market equilibrium must yield a
zero rate of return in every state. In such a world the prices of the assets (and, hence,
rates of return) are linked. It is precisely this link that constitutes the APT. The
awkwardness is that the unsystematic risk can be eliminated only in an approximate
sense. Hence, the absence of arbitrage opportunities is only approximate.

8.2.2 The APT in a single-factor world

The APT is most straightforward to comprehend in a single-factor model. The
reasoning then extends readily to multifactor models. Write the single-factor
model as (see (8.1) on page 184):

rj = bj0 +bj1F1+�j j = 1(2( � � � ( n (8.4)
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An arbitrage portfolio, y1( y2( � � � ( yn, is now constructed for a world in which
asset returns are generated according to (8.4). By definition, the portfolio must
satisfy the following condition.
APT condition 1. The portfolio requires zero initial outlay:

y1+y2 +· · ·+yn = 0

The elimination of systematic risk involves choosing a portfolio such that,
whatever the value of the factor, F1, its effect on the portfolio return is zero. This
can be achieved, in the presence of at least two assets, by choosing the portfolio
to satisfy the next condition.
APT condition 2. The elimination of systematic risk:

y1b11+y2b21+· · ·+ynbn1 = 0 (8.5)

It is trickier to eliminate the unsystematic risk. The portfolio return stemming
from the unsystematic component is written as

unsystematic return = y1�1+y2�2 +· · ·+yn�n
The condition that E9�j;= 0 implies that the expected value of the unsystematic

return is zero. This can be understood as stating that ‘on average’ the unsystematic
return is zero. But this is not enough to eliminate risk, because it implies merely
that positive values in some states are balanced by negative values in others. The
arbitrage principle requires that the unsystematic return is zero in every state.
Such a stringent requirement cannot be satisfied without error in an approximate
factor model.

The problem of eliminating unsystematic risk occurs because there are generally
too few assets compared with the number of states. There are n assets and –
although n could be a large number – there might be an even larger number
of states. If the number of states is finite and small enough and if the number
of different assets is large enough, then unsystematic risk could be eliminated
in the same way as systematic risk. Such a possibility is implausible for most
applications. (Note that it is not permissible to generate additional assets merely
by taking linear combinations of existing assets. There must be sufficiently many
genuinely different assets, in the sense that linear combinations of existing assets
are not included in the count.2)

If unsystematic risk cannot be completely eliminated, resort must be made to
approximate elimination. This is achieved by choosing a well-diversified portfolio.
Under certain conditions – conditions needed to apply the law of large numbers

2 The precise meaning of ‘genuinely different’ in this context is that the payoffs of the n assets form a linearly
independent set.
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in probability theory3 – it can be shown that, if the number of assets, n, is large in
a precise sense, then the portfolio can be chosen so that the unsystematic return is
arbitrarily close to zero for every possible realization of the errors, �1( �2( � � � ( �n.
This implies the third condition.
APT condition 3. Unsystematic risk is eliminated approximately:

unsystematic return = y1�1+y2�2 +· · ·+yn�n ≈ 0

By applying conditions 1 to 3 to (8.4), it follows that

r1y1+ r2y2 +· · ·+ rnyn ≈ b10y1+b20y2 +· · ·+bn0yn (8.6)

Expression (8.6) denotes the return that could, almost surely, be obtained on the
chosen portfolio. The portfolio is approximately risk-free because all the terms
on the right-hand side of (8.6) are given and the same for all states.

From now on – with the sacrifice of precision – the approximation is replaced
by an exact equality. If the return on the constructed portfolio is not zero, there
is an opportunity for arbitrage profit. Hence, the arbitrage principle that there is
a zero return on the arbitrage portfolio 
r1y1+ r2y2 +· · ·+ rnyn = 0�, from (8.6),
implies the final condition.
APT condition 4. In market equilibrium, the zero return on the arbitrage

portfolio requires

b10y1+b20y2 +· · ·+bn0yn = 0

8.2.3 The APT: extension to multiple factors

The analysis so far holds for multifactor models, except that condition 2 must be
extended to cover each factor separately.
APT condition 2 (multifactor models). The elimination of systematic risk:

y1b1i+y2b2i+· · ·+ynbni = 0 i= 1(2( � � � (K (8.7)

The portfolio, y1( y2( � � � ( yn, is guaranteed to exist only if K < n; i.e. there are
fewer factors than assets. Otherwise, there may exist no portfolio that eliminates
the systematic risk.

The four APT conditions collectively imply that assets’ rates of return are linked
in a particular way in any market equilibrium – otherwise, arbitrage opportunities
would exist. Such opportunities would not provide entirely risk-free profits in the
presence of the random errors. However, condition 3 ensures that the risk can be

3 It is common to assume a ‘strict’ factor model (in the sense that the �j are independent across assets) when
invoking the law of large numbers. See Feller (1970, chap. 10) for a classic treatment. It is possible to relax
the assumption of independence and yet still apply some versions of the law of large numbers to eliminate
unsystematic risk.
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made arbitrarily small. By applying APT conditions 1, 2 and 4 to an exact factor
model, appendix 8.1 derives the predictions discussed in the next section. While
the appendix provides a formal justification for the APT, it is not essential for an
understanding of the rest of the chapter.

8.3 Predictions of the APT

8.3.1 Risk premia in the APT

In a single-factor model, the APT conditions imply the existence of E0 and E1

such that


j = E0 +E1bj1 j = 1(2( � � � ( n (8.8)

where the values of E0 and E1 are the same for every asset. Equation (8.8) holds
as a strict equality only for an exact single-factor model. For approximate single-
factor models (when the random error, �j , is not identically zero), expression (8.8)
shouldproperlybeexpressedasanapproximateequality. Thedifferencebetween the
implications of the two models can be important in applied work, but it is neglected
here. (A review of the issues relevant for empirical studies must await chapter 9.)

If a risk-free asset is present, its return, r0, equals E0. (By virtue of being
risk-free, �0 = 0, in every state, and hence b01 = 0.) Alternatively, if the factor
model is constructed to explain excess returns, rj− r0, then E0 = 0.

When E0 = r0, the APT prediction is often expressed as


j− r0 = E1bj1 j = 1(2( � � � ( n (8.9)

The weight E1 is interpreted as the risk premium associated with the factor – that
is, the risk premium corresponds to the source of the systematic risk. Imagine an
asset the return on which responds to a single factor with a unit factor loading

bj1 = 1�, then its risk premium, 
j− r0, would equal just E1.

In the single-factor model, the APT has a simple graphical representation, shown
in figure 8.2. The model predicts that all expected asset returns, 
j , are located
along the straight line with slope E1 and intercept r0. If assets, or arbitrary portfolios
of assets, fail to lie on the line, then the APT asserts that it is possible to construct
portfolios that yield arbitrage profits (in the approximate sense outlined above).

If there are two factors, 
j− r0 = E1bj1 is replaced with


j− r0 = E1bj1+E2bj2 j = 1(2( � � � ( n (8.10)

where E1 and E2 are risk premia associated with the factors F1 and F2, respectively.
Finally, in the multifactor model with K factors


j− r0 = E1bj1+E2bj2 +· · ·+EKbjK j = 1(2( � � � ( n (8.11)
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Fig. 8.2. The APT in a single-factor model

The APT with a single-factor model predicts that there is a linear
relationship between 
j and bj1 with intercept r0 and slope E1. If
bj1 = 1, the risk premium on asset j, 
j− r0, equals E1.

Not surprisingly, a graphical representation becomes more difficult with more
than one factor. In the two-factor model, expected asset returns are predicted to
lie in a two-dimensional plane in 
j( bj1( bj2, three-dimensional space. With K
factors, expected asset returns are predicted to lie in a K-dimensional hyperplane
in the K+1-dimensional space of 
j( bj1( bj2( � � � ( bjK .

To gain further understanding of the APT, take the expectations in the single-
factor model, rj = bj0 +bj1F1+�j , to give


j = bj0 +bj1E9F1;

Using the APT prediction, 
j = r0 +E1bj1, to eliminate 
j implies that bj0 =
r0 +bj1
E1−E9F1;�.

Now, substitute for bj0 in the factor model, to give

rj− r0 = bj1
E1+F1−E9F1;�+�j j = 1(2( � � � ( n (8.12)

This expression shows how variations in the rate of return (in excess of the risk-
free rate) on any asset can be broken down into to the effects of (a) factor variations
and (b) idiosyncratic risk (expressed by �j). The factor’s impact consists of a
systematic term, E1 (the factor risk premium), and a random term, F1 −E9F1;,
that is zero, on average. By assumption, the �j is also zero on average. Hence,
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the average asset return in excess of the risk-free rate (its risk premium) is equal
to the factor loading, bj1, multiplied by the factor risk premium, E1 – exactly as
the APT predicts.

The generalization to a multifactor model merely involves the clutter of more
notation. Here is the expression for a two-factor model:

rj− r0 = bj1
E1+F1−E9F1;�+bj2
E2 +F2 −E9F2;�+�j j = 1(2( � � � ( n

The APT can be expressed in terms of asset prices instead of rates of return by
using exactly the same reasoning as for the CAPM in chapter 6. Consider, once
again, the equilibrium condition for a single-factor model, 
j− r0 = E1bj1. All
that needs to be done is to substitute the definition of the asset’s expected rate of
return, 
j ≡ 
E9vj;−pj�/pj , and rearrange to obtain

pj =
E9vj;

1+ r0 +E1bj1
j = 1(2( � � � ( n (8.13)

where E9vj; is the expected payoff on asset j.4 In multifactor models the only
complication is that the E1bj1 term in the denominator must be replaced by the
sum E1bj1+E2bj2 +· · ·+EKbjK .

8.3.2 The APT when factors are portfolio returns

As already noted (section 8.1.3), it is often assumed that the factors are themselves
portfolios of assets. It turns out that this assumption has an interesting implication,
which is particularly relevant in applied studies.

Suppose for convenience that: (a) there are just two factors (the extension to
K factors involves extra notation, nothing more); (b) asset returns are expressed
as rates of return in excess of a risk-free rate; and (c) the value of each factor
is equal to the excess rate of return on a portfolio (the portfolio rate of return
minus the risk-free rate). The portfolios are not arbitrary; their composition is
part of the a priori specification of the model – an issue not addressed here.5 It
is possible that one of the portfolios is the market portfolio of all assets, but this
is not obligatory – it depends on the assumptions underlying the construction of
the factor model.

Label the portfolios A and B. Formally, the assumptions imply

rj− r0 = bj0 +bj1F1+bj2F2 +�j j = 1(2( � � � ( n (8.14)

where F1 ≡ rA− r0 and F2 ≡ rB− r0.
4 Notice that the expectation appears without an asterisk superscript. This is because the expectation in

(8.13) is taken with respect to the probabilities underlying the factor model, not the artificial martingale
probabilities.

5 An application is discussed briefly in chapter 9, section 9.5.
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As the factors are themselves portfolios of assets, the factor model also holds
for the factors considered as assets. Thus, portfolio A trivially satisfies the factor
model:

rA− r0 = bA0 +bA1F1+bA2F2 +�A (8.15)

with bA0 = 0, bA1 = 1, bA2 = 0 and �A ≡ 0. Similarly, for portfolio B: bB0 = 0,
bB1 = 0, bB2 = 1 and �B ≡ 0. Each factor satisfies the factor model exactly –
exactly but trivially.

It follows immediately from the APT that E1 = E9F1; = 
A− r0 and E2 =
E9F2; = 
B− r0. Now, for every other asset, take the expectations in the factor
model, equation (8.14), and compare the result with the APT prediction:


j− r0 = bj0 +bj1E9F1;+bj2E9F2; (factor model expectation)


j− r0 = bj1E1+bj2E2 (APT prediction)

Given that E1 = E9F1; and E2 = E9F2;, it follows that bj0 = 0 for every asset.
In summary, when the factors are expressed as returns on portfolios A and B,

asset returns must satisfy

rj− r0 = bj1
rA− r0�+bj2
rB− r0�+�j j = 1(2( � � � ( n (8.16)

The implication that bj0 = 0 constitutes an important prediction that can be tested
in empirical applications.

8.3.3 APT and CAPM

Suppose that (a) the APT holds in a single-factor model, and (b) the factor is
the excess rate of return on the market portfolio as defined in the CAPM, so that
F1 = rM − r0.

From equation (8.16) it follows that

rj− r0 = bj1
rM − r0�+�j j = 1(2( � � � ( n (8.17)

and hence


j− r0 = bj1

M − r0� j = 1(2( � � � ( n (8.18)

This is exactly the CAPM prediction if bj1 is interpreted as the beta-coefficient.
Hence, if asset returns are explained by a single-factor model, where the single
factor is the market rate of return, then the prediction of the APT is identical with
that of the CAPM.

It is possible for the CAPM and APT to be compatible with one another even
if the return on the market portfolio is not one of the factors – indeed, even if
the factors are not portfolio returns at all. To establish the compatibility assume
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that both the CAPM and APT are true. Suppose (again, only to avoid cumbersome
notation) that there are just two factors.

Assuming that the APT holds, consider two assets (portfolios, perhaps) labelled
P and Q such that: P has a risk premium equal to E1; and Q has a risk premium
equal to E2.

6 That is,


P− r0 = E1


Q− r0 = E2

Assuming also that the CAPM holds, its prediction for portfolios P and Q is


P− r0 = �P

M − r0� = E1 (8.19)


Q− r0 = �Q

M − r0� = E2 (8.20)

As always, the APT implies


j− r0 = E1bj1+E2bj2 j = 1(2( � � � ( n

Substitute for E1 and E2 from (8.19) and (8.20) to obtain


j− r0 = 9�P

M − r0�;bj1+ 9�Q

M − r0�;bj2
= 9�Pbj1+�Qbj2;

M − r0�
= �j

M − r0� (8.21)

where �j = �Pbj1+�Qbj2, for j = 1(2( � � � ( n.
Equation (8.21) is the CAPM prediction for asset j. This shows that both the

APT and CAPM could hold in the same capital market – not that they must, of
course. Both could be consistent with the same set of observations, though they
might not be. In a sense, the APT is more general than the CAPM because, if the
CAPM is true, the predictions of the two are indistinguishable (observationally
equivalent). However, there are circumstances for which the APT predictions
could hold when those of the CAPM do not.

8.4 Summary

On its own, the arbitrage principle, being founded on so few assumptions, provides
few testable predictions about asset prices. The principle is made empirically
relevant when applied to a model of asset prices.

This chapter analyses one such application, the arbitrage pricing theory. The
APT comprises two components.

6 P and Q are ‘factor-specific’ portfolios, chosen such that their rates of return respond only to factors 1 and
2, respectively; and respond with unit coefficients bP1 = 1, bQ2 = 1.
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1. Factor models. These postulate that each asset’s rate of return is a linear function
of a small number of factors. The models do not themselves involve arbitrage at all.
Instead, factor models provide a framework in which the arbitrage principle can be
invoked.

2. Application of the arbitrage principle. The absence of arbitrage opportunities in the
context of a factor model implies a set of restrictions on observable asset prices (or,
equivalently, on expected rates of return). In particular, the APT predictions enable a
risk premium to be associated with each of the factors. The risk premia differ across
factors but are equal across assets. It is this implication that gives predictive force to
the APT in empirical applications. Also:

(a) a special case, useful in applied studies, corresponds to factor models in which
the factors are themselves rates of return on portfolios of assets; and

(b) the APT and CAPM are not incompatible with one another, though the APT is
consistent with a broader range of empirical evidence – and consequently is more
difficult to reject in econometric studies.

Further reading

All modern finance texts offer expositions of factor models and the APT, though
the fundamental requirements for, and implications of, the arbitrage principle
often receive only scant attention. Accessible textbook treatments include those
by Elton, Gruber, Brown and Goetzmann (2003, chap. 16), Grinblatt and Titman
(2001, chap. 6) and Sharpe, Alexander and Bailey (1999, chaps. 11 & 12).

For the APT itself, the seminal reference remains that of Ross (1976), though
beginners will find this difficult. Also valuable is the entry on ‘arbitrage pricing
theory’ in The New Palgrave Dictionary of Money and Finance (Newman, Milgate
and Eatwell, 1992).

Appendix 8.1: The APT in a multifactor model

This appendix explains why the absence of arbitrage opportunities in a multifactor
model implies the existence of risk premia, E1(E2( � � � ( EK , together with E0, as
claimed at the start of section 8.3. The reasoning is analogous to that adopted
in appendix 7.1.1, in chapter 7: the formal conditions defining an arbitrage
opportunity are stated; an appeal is then made to one of the ‘theorems of the
alternative’ (different from but a close relative of the one applied in chapter 7) to
establish the existence of the risk premia.

To avoid the limiting arguments needed when appealing to the law of large
numbers, the factor model is assumed to be exact in the sense that the random
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errors are identically zero.7 In matrix notation, the multifactor model – see
equation (8.3) – can be written as

r = b0+BF (8.22)

where r is a vector of rates of return, one for each asset, with typical element rj;
F is a vector of factor values, with typical element fi; b0 is a vector of n intercept
parameters, with typical element bj 0; and B is a matrix with n rows (one for each
asset) and K columns (one for each factor) with typical element bji (so that bji
denotes the increment in the rate of return on asset j in response to a unit change
in factor i).

In this context, the vector y denotes a portfolio with typical element yj , the
outlay (price times quantity) on asset j. In section 8.2, the chosen portfolio
has zero total outlay: in matrix notation, y′� = 0, where � is the vector with n
elements, each taking the value 1, so that y′� equals the total outlay on the port-
folio. The portfolio is also chosen to eliminate systematic risk from the factors:
formally, y is chosen to satisfy y′B = 0 (where 0 is a row vector of K zeros).
Hence, from (8.22), y′r = y′b0. In words: the overall return on the portfolio
equals the sum of the portfolio proportions multiplied by the intercept parameter
for each asset (because systematic risk has been eliminated and unsystematic risk
was eliminated at the outset by assuming that the random errors are identically
zero).

In the absence of arbitrage opportunities, y′r = y′b0 = 0 (a risk-free portfolio
with zero outlay yields a zero return). Hence, an arbitrage opportunity can be
expressed by the existence of a portfolio, y, such that y′b0 > 0. If a positive
arbitrage profit can be made, then (by expanding or contracting the scale of the
portfolio to any degree) it can be fixed at any level. The profit may as well
(without loss of generality) be set at y′b0 = 1.

Summarizing so far, an arbitrage opportunity in the multifactor model can be
expressed by

y′9�(B;= 0 and y′b0 = 1 (8.23)

where y′9�(B; = 0 is a compact form of y′� = 0 and y′B = 0. (Note the incon-
sequential abuse of notation: 0 has K+ 1 elements for the product with the
augmented matrix, and K elements for the product of y with B alone.)

A theorem of the alternative can now be applied to (8.23). In this case, the
relevant theorem – sometimes known as ‘Gale’s theorem for linear equalities’8 –
states that exactly one of the two following results is true: either (a) there exists a y

7 An analysis that allows for non-zero random errors appears in The New Palgrave Dictionary of Money and
Finance (Newman, Milgate and Eatwell, 1992) entry on ‘arbitrage pricing theory’ (Vol. I, pp. 52–6).

8 See Gale (1960, p. 41 (theorem 2.5)) or Mangasarian (1994, p. 33).



Factor models and the arbitrage pricing theory 197

that satisfies (8.23); or (b) there exists a vector with elements 
E0( K1( K2( � � � ( KK�

such that

b0 = �E0 +BKKK (8.24)

where KKK denotes the K× 1 column vector with elements 
K1( K2( � � � ( KK�
′. The

implication is either: (a) that there exists an arbitrage opportunity, as expressed
by (8.23); or (b) that there exist K+ 1 numbers, E0(KKK satisfying (8.24), but not
both.

The derivation of the risk premia now involves merely giving an interpretation
to the numbers 
E0( K1( K2( � � � ( KK�. To do this, substitute for b0 in (8.22):

r = �E0 +B
KKK+F�

and take the expectations:




= �E0 +B
KKK+


F� (8.25)

where 


 is a vector of expected rates of return with typical element 
j = E9rj;,
and 


F is a K×1 vector of expected factor values with typical element E9Fi;.

Notice that KKK and 


F in (8.25) are the same for all assets. Hence, it is possible
to define a vector with elements 
E1(E2( � � � ( EK� such that Ei ≡ Ki+E9Fi;, for
i= 1(2( � � � (K. Now, writing out (8.25) for individual assets gives


j = E0 +E1bj1+E2bj2 +EKbjK j = 1(2( � � � ( n (8.26)

If a risk-free asset is present, E0 can be interpreted as its rate of return. Compare
(8.26) with (8.11) on page 190; they are identical. This completes the demon-
stration: in the absence of arbitrage opportunities in the factor model, there must
exist risk premia satisfying (8.26), above.

Appendix 8.2: The APT in an exact single-factor model

Appeal to the risk-neutral valuation relationship (see page 174) provides another
way of deriving risk premia in the APT. In what follows, the RNVR is applied to
an exact single-factor model (generalization to a multifactor model requires only
notational changes). The exact single-factor model is expressed as

rj = bj0 +bj1F1 j = 1(2( � � � ( n (8.27)

Recall that the RNVR requires that

r0 = E∗9rj; j = 1(2( � � � ( n

Now take the expectation in (8.27) to give

r0 = E∗9rj;= bj0 +bj1E∗9F1; j = 1(2( � � � ( n (8.28)
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Notice also that


j = bj0 +bj1E9F1; j = 1(2( � � � ( n (8.29)

where the expectation is taken with respect to the probabilities underlying the
factor model, not those implicit in the RNVR.

Define E1 ≡ E9F1;−E∗9F1; and combine (8.28) and (8.29) to eliminate b0j:


j− r0 = E1bj1 j = 1(2( � � � ( n

which is just (8.9) in section 8.3.1, page 190 – as claimed.
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9

Empirical appraisal of the CAPM and APT

Overview

Empirical work on the CAPM and APT has two main objectives: (i) to test
whether or not the theories should be rejected; and (ii) to provide information
that can aid financial decisions. The two aims are clearly complementary: only
theories that are compatible with the evidence are likely to be helpful in making
reliable decisions.

To accomplish objective (i), tests are conducted that could – potentially, at
least – reject the model. The model is deemed to pass the test if it is not
possible to reject the hypothesis that it is true. Such a methodology imposes a
severe standard, for it is invariably possible to find evidence that contradicts the
predictions of any testable economic theory. Hence, the methods of statistical
inference need to be applied in order to draw sensible conclusions about just
how far the data support the model. Definitive judgements are never possible
in applied work. This need not be an excuse for despair but should serve as a
counsel for cautious scepticism.

Tests are almost never as clear-cut as they at first seem. They are typically
tests of joint hypotheses, so that care is necessary to recognize what is, or is not,
being tested. Also, the relevant alternative to the hypothesis being tested often
remains vague, or, even more commonly, is ignored. For example, if the CAPM
is rejected, which theory is it rejected in comparison with? No simple answer
may be available. While these problems are in no way peculiar to financial
economics, they are as important here as in any empirical work. The art is to
frame meaningful hypotheses and draw justifiable conclusions from the evidence –
always a challenging task.

To accomplish objective (ii), above, the empirical work uses the theory as a
vehicle for organizing and interpreting data without deliberately seeking ways
of rejecting it. An illustration of this approach is found in the area of portfolio
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decision making, in particular with regard to the selection of which assets to buy or
sell. For example, investors may be advised to buy assets that the CAPM predicts
are ‘underpriced’ and to sell those that the CAPM predicts are ‘overpriced’.
Empirical analysis is needed to provide a guide – it can never do more than that –
about which assets fall into the respective categories.

Another illustration appears in the field of corporate finance, where estimated
beta-coefficients in the CAPM are sometimes used in assessing the riskiness of
different investment projects. It is then possible to calculate ‘hurdle rates’ that
projects must achieve if they are to be undertaken.

This chapter focuses on tests made of the CAPM and APT. The tests are,
of course, relevant for other applications of the models, though the emphasis
is somewhat different from that needed to aid portfolio selection or corporate
financial decisions.

9.1 The CAPM

Begin with the CAPM when a risk-free asset is present – that is, the Sharpe–
Lintner (SL) version of the model. Recall that the main prediction of the CAPM
(see chapter 6, section 6.2) is


j− r0 = 

M − r0��j j = 1(2( � � � ( n (9.1)

where 
j ≡ E9rj; is the expected rate of return on asset j, r0 is the risk-free inter-
est rate, 
M ≡ E9rM; is the expected rate of return on the market portfolio and
�j = �jM/�

2
M is the beta-coefficient for asset j.1 In assessing empirical studies it is

important to remember that one of the implications of the CAPM is that this equa-
tion holds not just for individual assets but also for all portfolios of assets (not just
efficient portfolios). For reasons discussed below, most applications of the CAPM
use portfolios of assets in carrying out the tests. From now on, ‘assets’ should be
understood, without further reminder, to include portfolios of individual assets.

The two main approaches to testing the CAPM differ from one another accord-
ing to how (9.1) is viewed.

1. Time series. These tests use observations on rates of return for a sequence of dates
to measure the excess returns 
j − r0 and 
M − r0 (one pair for each date). The
objectives are (a) to estimate �j for each asset and (b) to investigate how well (9.1)
fits the data.

2. Cross-section. These tests rely upon average excess returns (i.e. a value of 
j− r0 for
each asset) and estimates of �j coefficients. There is one pair, 

j− r0(�j�, for each
asset. The objective is to appraise the security market line – that is, 
j− r0 as a linear
function of �j . Here, the expected excess return on the market portfolio, 
M − r0, is
interpreted as a parameter to be estimated.

1 A different but equivalent notation for covariances and variances is used in the remainder of this chapter, so
that �j = cov
rj( rM�/var
rM�≡ �jM/�

2
M .
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Sometimes (with journalistic hyperbole) tests of the CAPM are posed in the
form of a question: ‘is beta dead?’ The death of beta simply corresponds to a
rejection of the CAPM in the sense that estimated beta-coefficients do not provide
an acceptable guide to observed risk premia.

If borrowing or lending at a risk-free rate is not possible, the ‘Black CAPM’
replaces r0 with the expected rate of return, B, on a zero-beta portfolio (see
chapter 6, section 6.6). In this case the tests are more complicated, because there
is typically no direct way of measuring B. Even so, tests can be constructed, as
explained below.

9.2 Tests of the CAPM: time series

9.2.1 Estimating alpha-and beta-coefficients

One way of allowing for the possibility that the CAPM does not hold is to add
an intercept, Gj , to (9.1) as follows:


j− r0 = Gj+ 

M − r0��j (9.2)

The CAPM predicts that the alpha-coefficient, Gj , is zero for every asset. Hence,
a test of the CAPM can be constructed by testing the hypothesis that Gj = 0
for each asset. Evidence that one or more Gj �= 0 is evidence against the
CAPM.

In order to test hypotheses about the CAPM as expressed by (9.2), it is necessary
to find observable counterparts for the theoretical values 
j , r0 and 
M . For r0, it
is normally acceptable to use a market interest rate (such as the rate on short-term
government debt), here denoted by r0t, the t subscript indicating the date at which
the interest rate is observed. Similarly, the measured rate of return on asset j at
date t, denoted by rjt, provides an observable counterpart for 
j .

The choice of an observable counterpart for 
M is more troublesome. The
portfolio for which 
M is the expected return should, according to the CAPM,
be the portfolio of all assets, with the weight of each asset equal to its market
share (i.e. the asset’s capital value in proportion to the total market value of
all assets). In practice, the shares underlying a more or less broadly defined
index of asset prices is used to represent the market portfolio. Very often one
of the published indexes – such as the S&P 500 index, for New York, or the
FT-Actuaries All-Share index, for London – is considered to form a reasonable
basis for measuring rM , the empirical counterpart of 
M . The fact that any one
of these indexes is at best an approximation to the price of the market portfolio
inspired ‘Roll’s criticism’ of CAPM tests, discussed later (see section 9.4). A way
of sidestepping the criticism is to acknowledge that the tests are conditional upon
whatever portfolio is chosen to represent the market.
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After making the necessary substitutions, 
j − r0 = Gj + 

M − r0��j , (9.2)
becomes

rjt− r0t = Gj+ 
rMt− r0t��j+�jt j = 1(2( � � � ( n t = 1(2( � � � ( T (9.3)

where rMt denotes the rate of return on the portfolio chosen to represent the market
and T is the number of observations in the sample. The unobserved random
errors �jt are introduced to acknowledge that the CAPM does not hold exactly
when the theoretical expected values are replaced by their observed counterparts.
It is assumed (see chapter 6) that E9�jt�rMt; = 0, a condition needed in the
interpretation of the statistical results.

In order to make (9.3) easier to comprehend, it is convenient to define new
variables: zjt ≡ rjt− r0t and zMt ≡ rMt− r0t. The zjt and zMt are excess rates
of return (i.e. rates of return in excess of the risk-free interest rate). Now (9.3)
becomes

zjt = Gj+ zMt�j+�jt (9.4)

where it is assumed that E9�jt�zMt; = 0. For any given asset (i.e. if j is fixed),
(9.4) can be interpreted as a regression equation via which estimates of Gj and

�j can be obtained by ordinary least squares (OLS). Let Ĝj and �̂j , respectively,
denote the OLS estimators. Then, from elementary statistics,

alpha-coefficient: Ĝj = zj− �̂jzM
beta-coefficient: �̂j =

cov
zj( zM�

var
zM�
(9.5)

where zj and zM are sample means of the excess returns; cov
zj( zM� is the sample
covariance between the excess return on asset j and the market; and var
zM� is
the sample variance of the return on the market portfolio.2

By applying the OLS formulae, (9.5), to time series data, it is possible to
obtain a pair of parameter estimates for each asset: 
Ĝj( �̂j�, one pair from each
regression. In order to make sense of the results as estimates of the parameters
Gj and �j , it is necessary to make further assumptions about the properties of �jt.
Standard sets of assumptions are readily available in econometrics.3

2 The theoretical expression for �j involves a covariance and variance defined in terms of the rates of return
rather than excess rates of return. By construction, however, the risk-free interest rate, r0, is non-random.
Hence, the covariance can be defined, equivalently, in terms of the excess rates of return. In the empirical
implementation of the SL model it is convenient to work with excess returns throughout. Note that the
presence of a risk-free asset does not mean that its rate of return is constant across time – strictly, r0 should
be written as r0t . It is necessary to allow for this variability across time in calculating the sample statistics.

3 See, for example, Hayashi (2000, chap. 1) or Brooks (2002, pp. 55–6). A standard set of assumptions –
the ‘classical linear regression model’ – requires most importantly that E9�jt�zMt;= 0. This implies that the
disturbance, �jt , is uncorrelated with the excess return on the market portfolio, zMt; i.e. cov
�jt( zMt�= 0 –
that the disturbance and market return are orthogonal. (Given the non-randomness of the risk-free rate,
zMt ≡ rMt− r0t and rMt can be used interchangeably here.)
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Many time series studies of the CAPM are based on portfolios rather than the
shares of individual companies. These artificial portfolios are constructed for a
variety of reasons, including these: (a) the random influences on individual stocks
tend to be large compared with those on suitably constructed portfolios (hence,
the Gj and �j are more accurately estimated for portfolios); and (b) the tests of
Gj = 0 are somewhat more straightforward to implement for portfolios (because
the portfolios can be chosen such that correlations among the Ĝj are smaller than
for the shares of individual companies).

9.2.2 Testing the CAPM

The time series tests of the CAPM focus on the hypothesis that the assets’
regression intercepts are jointly equal to zero – i.e. G1 = 0(G2 = 0( � � � (Gn = 0.
Also, various ‘diagnostic tests’ are available to provide evidence about how
closely the model fits the data and about whether the assumptions on �jt are
compatible with the data. If (a) the tests do not reject the null hypothesis that the
regression intercepts are zero, and (b) the diagnostic results support the model’s
specification, then the evidence favours the CAPM. Otherwise, the evidence casts
doubt on the CAPM.

Another way of testing the CAPM is to allow other variables (e.g. the rate of
economic growth, the level of unemployment, or whatever) to influence zjt as well
as zMt. The CAPM predicts that variables other than zMt should not influence
zjt. While test procedures for this sort of hypothesis are readily available, the
outcome of the tests may not be very informative; some imagination, combined
with a little effort, often suffices to locate other variables that are correlated with
zjt. This being so, there is a high probability of rejecting the CAPM even if it is
true. Hence, when other variables are found to contribute to the determination of
zjt in addition to zMt, their significance could result merely because they happen
to be correlated with zMt in the given sample of data – a statistical fluke. This
does not mean that the CAPM is immune to rejection. Instead, the evidence
deserves careful evaluation before the model is condemned.

It is never possible to know for sure what the tests imply about the validity
of the CAPM. For example, suppose that there is evidence that Gj �= 0 for some
asset(s). This could mean that the CAPM should be abandoned in favour of some
other model. Alternatively, it could mean that the CAPM normally holds but
that asset markets were in disequilibrium during part or all of the sample period.4

This sort of ambiguity is inevitable in applied work.

4 It is common in the CAPM to interpret Gj �= 0 as expressing disequilibrium in the sense of temporary
divergences of 

j(�j� pairs from the SML (see chapter 6, section 6.4.1).
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9.2.3 The Black CAPM

In applied studies it is rarely possible to be confident about whether it is reasonable
to assume that investors can borrow and lend unlimited amounts at the risk-free
rate. Consequently, it is worthwhile to modify the approach outlined so far, and
thereby to test the Black CAPM. Here the CAPM prediction can be written as


j = B+ 

M −B��j j = 1(2( � � � ( n (9.6)

where B is the expected rate of return on a zero-beta portfolio (see chapter 6,
section 6.6.1). An empirical counterpart of (9.6) is obtained by substituting rjt
for 
j and rMt for 
M .

If B is treated as a parameter, then the empirical model becomes

rjt = Gj+ rMt�j+�jt j = 1(2( � � � ( n( t = 1(2( � � � ( T (9.7)

where the intercept, Gj , is now defined by Gj ≡ B
1−�j�
As with the Sharpe–Lintner CAPM, it is routine to construct the OLS estimators,

Ĝj and �̂j:

alpha-coefficient: Ĝj = rj− �̂jrM beta-coefficient: �̂j =
cov
rj( rM�

var
rM�

where rj and rM are sample means of the rates of return; cov
rj( rM� is the sample
covariance between the rate of return on asset j and the market; and var
rM� is the
sample variance of the rate of return on the market portfolio. (See appendix 9.1
for the Black CAPM expressed in terms of excess returns.)

Expressed as (9.7), the CAPM predicts that Gj/
1−�j� – which equals B, the
expected excess return on any zero-beta portfolio – is the same for every asset,
j = 1(2( � � � ( n. Thus, for example, the estimated value for asset 5, Ĝ5/
1− �̂5�,
should equal that for asset 9, Ĝ9/
1− �̂9� (where ‘5’ and ‘9’ correspond to any
pair of assets). In practice, the two estimates always differ as a result of statistical
dispersion;5 they have to be significantly different to warrant a rejection of the
Black CAPM. Complicated though the hypothesis may appear, it can be tested,
albeit less simply than with the test of Gj = 0 in the Sharpe–Lintner model.

9.2.4 Summary

A beta-coefficient for each asset can be estimated if data are available for
(a) the rate of return on the asset, (b) the rate of return on the market portfolio and
(c) the risk-free interest rate. Excess returns on the asset and the market portfolio
are calculated by subtracting the risk-free interest rate from each, respectively.

5 Even if the model is correctly specified, the �jt terms are almost surely non-zero. Hence, estimates of Gj
and �j are almost surely not equal to any ‘true’ underlying values.
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Then the beta-coefficient is estimated as the ratio of the covariance between
excess returns on the asset and the market to the variance of the excess return on
the market portfolio.

In the presence of unlimited borrowing or lending at a risk-free rate, the CAPM
predicts that the alpha-coefficient for each asset is zero. If statistical tests imply
that some, or all, alpha-coefficients are non-zero, this constitutes evidence against
the CAPM.

In the absence of risk-free borrowing and lending, a beta-coefficient for each
asset can be estimated as the ratio of the covariance between the asset’s return and
the market return to the variance of the market return. Now the alpha-coefficient
for each asset is no longer predicted to be zero. Even so, it is possible to test
whether the pattern of alpha-coefficients is compatible with the Black CAPM.

9.3 Tests of the CAPM: cross-sections

9.3.1 Estimating the security market line

Like the time series tests, the cross-section tests begin with 
j−r0 = 

M − r0��j ,
(9.1), though now the equation is interpreted as a relationship between the expected
excess return, 

j− r0�, and the beta-coefficient, �j , for each asset.

In the cross-section tests – equivalently, tests of the SML – observable coun-
terparts must be found for 

j − r0� and �j . One way to proceed is to replace


j− r0� with the sample average of the observed excess return on each asset j,
the average being calculated over some time period – say, a year or several years.
Let zj ≡ rj− r0 denote the sample average for asset j. For the beta-coefficients,

it is natural to choose as their empirical counterparts the values, �̂j , obtained in
the time series estimations described in the previous section.

With these conventions, the empirical counterpart of the SML is written

zj = C0 +C1�̂j+Pj j = 1(2( � � � ( n (9.8)

where C0 and C1 are parameters and Pj is an unobserved random error, or
disturbance, term. In the cross-section of asset returns, the n observations come
in pairs with one observation per asset: 
zj( �̂j�, for j = 1(2( � � � ( n. Contrast this
with the time series analysis, for which there is a separate regression for each
asset, with one observation per time period: 
zjt( zMt�, for t = 1(2( � � � ( T .

The CAPM predicts that (a) C0 = 0 and (b) C1 equals the expected excess
return on the market portfolio, 
M − r0, which can be estimated by 
rM − r0�.
Alternatively, the CAPM predicts that C1 > 0 – a weaker hypothesis that may
be more appropriate because the value 
rM − r0� is itself obtained from sample
observations. Hence, comparing estimates of C0 and C1 with these predictions
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enables inferences to be drawn about the compatibility of the CAPM with observed
patterns of asset market returns.

The cross-section in the Black CAPM

For the Black CAPM, the empirical counterpart of the SML,
j =B+

M−B��j ,
(9.6) above, can be written as

rj = C0 +C1�̂j+Pj j = 1(2( � � � ( n (9.9)

Here C0 is interpreted as the expected rate of return on any zero-beta portfolio
(they all have the same expected return, by construction) and C1 is the excess of
the expected rate of return on the market over the expected return on a zero-beta
portfolio.

Alternatively, the Black CAPM can be expressed in terms of excess returns –
i.e. returns in excess of an asset with rate of return r0. Equation (9.8) still applies
but the interpretation of the parameters differs. Now C0 is the expected excess
return on a zero-beta portfolio, C0 =B− r0, and C1 equals the difference between
the expected rates of return on the market and a zero-beta portfolio, C1 =
M−B.
(A derivation appears in appendix 9.1.)

9.3.2 The CAPM with a single cross-section

In their study – a minor classic in finance – Black, Jensen and Scholes (1972)
use monthly data on stocks traded on the New York Stock Exchange. The results
listed in table 9.1 group the individual stocks into ten portfolios (the intention
being to generate a range of beta-coefficients as well as to attenuate estimation
errors). The column headed ‘Excess return’ lists the average excess return over the
years 1931 to 1965; the column headed ‘Beta-coefficient’ lists the �̂1( �̂2( � � � ( �̂10

estimated over the same period.
The values in table 1 are plotted in figure 9.1, together with the ordinary least

squares fitted line. In this illustration, the fitted line has intercept 0.0036 and
slope 0.0108, so that

average excess return = 0�0036+0�0108× estimated beta-coefficient

(more compactly, zj = 0�0036+0�0108�̂j)
As already indicated, the intercept and slope in this regression can be interpreted

as estimates of C0 and C1, respectively, in zj = C0 +C1�̂j+Pj , (9.8) above.
The CAPM predicts that C0 = 0. Although 0.0036 may look small, it is

significantly different from zero according to conventional statistical criteria.
Hence, this is evidence against the CAPM.
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Table 9.1. Estimates from Black, Jensen and Scholes (1972)

Excess return (%) Beta-coefficient

Portfolio 1 0.021 1.561
Portfolio 2 0.018 1.384
Portfolio 3 0.017 1.248
Portfolio 4 0.016 1.163
Portfolio 5 0.015 1.057
Portfolio 6 0.014 0.923
Portfolio 7 0.013 0.853
Portfolio 8 0.012 0.753
Portfolio 9 0.011 0.629
Portfolio 10 0.009 0.499
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Fig. 9.1. A test of the CAPM

Each point in the figure plots an excess return and beta-coefficient from
the list in table 9.1. The straight line depicts the ordinary least squares
estimate of the security market line. The observed points lie close to
the line – but are they close enough to support the CAPM?
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Also, the CAPM predicts that C1 equals the expected excess return on the market
portfolio, rM − r0. The measured value for rM − r0 in the Black–Jensen–Scholes
sample was 0.0142, somewhat higher than the estimate, 0.0108.6

In the many empirical studies of the CAPM a wide variety of results have been
reported. However, it is not unusual for tests similar to those reported here to
provide evidence against the CAPM (namely, too large an intercept and too small
a slope compared with what is predicted by the model).

A common, often revealing, practice in empirical work is to carry out the
statistical analysis for subsamples of the whole data set. This provides evidence
of whether the estimated parameters are ‘stable’ (i.e. differ only insignificantly
across the whole sample), and hence whether the model’s predictions are robust
to sampling variation. For instance, Black, Jensen and Scholes (1972) find
evidence of non-constant expected rates of return on zero-beta portfolios in the
Black CAPM – i.e. the parameters C0 and C1 appear to differ across time periods
(subsamples), providing further reason to doubt the empirical validity of the
CAPM.

Caution is necessary in interpreting the estimates of the SML reported so far.
One reason is that the beta-coefficients in the cross-section test are estimates.
Inevitably, errors of estimation creep in. Hence, conventional statistical tests
need modification to take these errors into account.

More troublesome is the fact that the use of estimated beta-coefficients can bias
the estimates. In particular, it can be shown that the estimated SML is flatter than
the ‘true’ line.7 Methods are available to correct for the bias and to provide tests
that take into account the first-stage estimation of the beta-coefficients. Indeed,
one of the reasons why Black, Jensen and Scholes (1972) group assets into the
ten portfolios is to circumvent this problem. Despite such efforts, caution should
remain in the interpretation of the results.

9.3.3 The CAPM with multiple cross-sections

In the cross-section analysis, so far, the sample average excess return, zj , repre-
sents the empirical counterpart of the expected excess return, 
j− r0, for asset j.
But this is not the only candidate for measuring 
j − r0. The observed excess
return, zit, for any time period, t, could form the dependent variable in a cross-
section regression.

6 But is the estimate significantly different from 0.0142? The standard error of the estimated coefficient turns
out to be approximately 0.0005. The difference, 0�0142−0�0108 = 0�0034, is more than twice the standard
error, suggesting in a rough-and-ready way that the evidence supports the interpretation of a significant
difference.

7 This is an example of the well-known ‘errors-in-variables’ problem in econometrics. See, for example,
Hayashi (2000, pp. 194–6) or Johnston and DiNardo (1997, pp. 153–5). In CAPM cross-sections the
variable measured with error is �̂j .
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In this context it is possible to obtain estimates of C0 and C1 for every time
period – i.e. as many cross-section regressions as there are time periods. These are
the so-called ‘Fama–MacBeth (FM) regressions’, named for the innovative contri-
bution of Fama and MacBeth (1973). Each of the cross-sections t = 1(2( � � � ( T
yields a separate (generally different) pair of estimates for 
C0( C1�. These esti-
mates can then be averaged to provide a summary estimate for each of C0 and C1.

Formally, the cross-section regression for each t is given by

zjt = C0t+C1t�̂j+Pjt j = 1(2( � � � ( n (9.10)

Notice the t subscript that now appears on the 
C0t( C1t� parameters, and on
the disturbance, Pjt. Ordinary least squares can be applied to obtain estimates

̂C0t( Ĉ1t� for each t.8 These can then be averaged to obtain the FM estimates:

Ĉ0 = 1
T

T∑
t=1

Ĉ0t

Ĉ1 =
1
T

T∑
t=1

Ĉ1t

How do the FM estimates, 
̂C0( Ĉ1�, compare with those obtained in the single
regression for the average excess return, zj? The answer is: they are identical if

the explanatory variables in the regression – in this case just the �̂j – are constant
across time (i.e. the same for each time period).9

If the parameter estimates are identical, then why bother with the Fama–
MacBeth regressions? There are two reasons. First, depending on the assumptions
made about the correlations among the disturbances Pjt (both across assets, j,
and time, t), the diagnostic statistics, such as standard errors, will be affected. If
the diagnostic statistics are affected then so may be the inferences about whether
the CAPM provides an acceptable explanation of asset returns.

Second – and more importantly – the FM regressions can accommodate explana-
tory variables that differ across time (valuable information may be lost if such
variables are averaged over the sample). For example, in Fama and MacBeth
(1973) the beta-coefficients are estimated for a sequence of time periods (months)
preceding the cross-section date (not for the whole sample of dates). Thus, each
cross-section of returns depends only on information that is, in principle, available

8 As always, the inferences from the estimates depend on the assumptions made about the disturbances, Pjt .
Here, the crucial assumption is that the disturbances are uncorrelated with the beta-coefficients.

9 For a proof of this result and a thorough analysis of Fama–MacBeth approach, see Cochrane (2001,
pp. 244–50). Notice that the result holds even if additional explanatory variables are included in the FM
regressions, so long as these variables are constant across time. Also, note that it is straightforward to
express the Black CAPM in terms of FM regressions.
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before the returns are observed – and hence relevant for tests of hypotheses about
asset market efficiency.

Once the FM estimates, 
̂C0( Ĉ1�, and the associated diagnostic statistics (such
as standard errors) have been obtained, the results can be analysed in the same
way as for the single cross-section described above. Some examples are discussed
below. Notice that, in the absence of a risk-free asset, the only modification
needed is to replace the excess return, zjt, for each asset with its rate of return
rjt, throughout, and reinterpret the parameter estimates in exactly the same way
as for the Black CAPM in the single cross-section.

9.3.4 The relevance of irrelevant variables

Among the many cross-section tests of the CAPM, the most popular is to investi-
gate whether other variables, as well as the beta-coefficient, influence the average
rates of return on assets; i.e. are there other determinants of 
j− r0?

A procedure designed to address this question is as follows: include additional
variables in the cross-section estimations and test whether their influence is statis-
tically significant. If the estimated coefficients on the additional variables are
not statistically significant this is evidence favouring the CAPM. Conversely, if
the impact of the additional variables on asset returns is significant, the evidence
points against the CAPM – because the CAPM predicts that beta-coefficients
alone are sufficient to explain the cross-section of returns.

This is not the inference that is always made, however. Sometimes the results
are interpreted to favour some extension or modification of the CAPM. Such an
inference should not be accepted uncritically. For, by experimenting with many
different combinations of variables in the cross-section regressions, it will almost
surely be possible to find some variables that are statistically significant. Until a
priori theoretical support is offered for one set of explanatory variables rather than
another, any such empirical specification is, at best, a tentative replacement for
the CAPM. The tests may provide evidence against the CAPM but are of limited
value unless the results can be interpreted as supporting an alternative theory of
asset returns.

In their study of asset returns, Fama and MacBeth (1973) construct two new
cross-section variables: �̂2

j , the square of asset j’s estimated beta-coefficient; and
sej , the standard deviation of the residual in the time series regression for asset

j. The former, �̂2
j , is intended to test the linearity of the relationship between

beta-coefficients and asset returns. The presence of sej can be understood as
a way of trying to capture the impact of time series variability in asset returns
other than the return on the whole market (which is what the beta-coefficients are
assumed to pick up) – i.e. sej should reflect the idiosyncratic components of risk.
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Formally, the cross-section regression becomes

rj = C0 +C1�̂j+C2�̂
2
j +C3sej +Pj j = 1(2( � � � ( n

where the time subscripts in the FM regression have been omitted for simplicity,
and the dependent variable is the level of asset returns (rather than the excess
over a risk-free rate).

Using monthly data on portfolios constructed for shares traded on the NYSE,
Fama and MacBeth (1973) obtain the following results for the time period 1935
to 1968:

average return = 0�0020+0�0114�̂j−0�0026�̂2
j +0�0516sej + residual error

What matters in testing the CAPM is whether the parameter estimates are signif-
icantly different from zero. In a battery of statistical tests, Fama and MacBeth
cautiously conclude that the coefficient estimate on �̂j is statistically significant –

supporting the CAPM – while those on �̂2
j and sej are not – again, supporting

the CAPM.10 Their results, however, offer only equivocal evidence favouring the
CAPM, leaving ample scope for doubt.

Enormous efforts have been devoted to identifying the determinants of cross-
sections in asset returns. Variables that have been found to be statistically
significant include: (a) the earnings/price ratio, E/P – profits as a proportion
of the share price; (b) the debt/equity ratio – an index of the company’s leverage;
(c) the size of the company, as measured, for example, by the market value of its
equity, ME; (d) the ratio of the book value of the firm’s equity, BE, to its market
value, ME – i.e. BE/ME.

In a paper that attracted intense scrutiny when it was published, Fama and
French (1992) focus on the impact of ME and BE/ME on monthly cross-sections
of individual company returns for over 2000 US non-financial firms. Fama and
French (FF) conclude provocatively (p. 445) that

� � � market � seems to have no role in explaining the average returns on [United States]
stocks for 1963–1990, while size [ME] and book-to-market equity [BE/ME] capture the
cross-sectional variation in average stock returns that is related to leverage and E/P.

An illustration of the results from their FM regressions is

average return = 2�07−0�17�̂j−0�12 ln
ME�+ 0�33 ln
BE/ME�

+ residual error
10 The t-ratios for the three slope coefficients are 1.85, −0�086 and 1.11, respectively (Fama and MacBeth,

1973, p. 623). While 1.85 is low relative to the conventional critical value, 2.00, Fama and MacBeth argue
that this provides adequate evidence that the coefficient on �̂j is non-zero, while the estimated coefficients

on �̂2
j and sej are not significantly different from zero.



Empirical appraisal of the CAPM and APT 213

where ln
·� denotes the natural logarithm operator. Notice that here the average
return responds negatively to the beta-coefficient, implying that more risky assets
yield a lower risk premium (after controlling for the effects of ME and BE/ME) –
directly contrary to the CAPM. Once again, it is the statistical significance of the
estimates that is most important: Fama and French report that the coefficient on
�̂j is insignificantly different from zero, while the coefficients on ME and BE/ME
are both significant – hence their conclusion quoted above.11

The FF results have been challenged in a variety of ways, most commonly in
critiques of their statistical analysis (e.g. by Kothari, Shanken and Sloan, 1995).
While there has been a limited measure of success in resuscitating a role for
beta-coefficients, there has been less success in providing convincing theoretical
explanations for the presence of the other influences on average returns. The
evidence inflicts serious damage on the CAPM, but – in the absence of widespread
support for an alternative – the damage has not proven fatal.

Jagannathan and Wang (1996) offer an alternative explanation in which the beta-
coefficients are allowed to vary across time. Evidence that the beta-coefficients
differ across time has already been noted. The CAPM itself does not require
that the �j parameters remain constant; investors presumably base their decisions
on whatever information is available, and hence may alter their views about the
values of the beta-coefficients. If the beta-coefficients are allowed to change
across time, Jagannathan and Wang show that more acceptable estimates of the
security market line can be obtained – and, in addition, their empirical model has
the advantage of theoretical support.

More recently, Campbell and Vuolteenaho (2003) present a model with two
beta-coefficients, one to express the impact on risk premia of firms’ expected
future earnings (‘bad beta’), the second to express the effect of the market interest
rate at which future returns are discounted (‘good beta’). A theoretical rationale
for their model – the intertemporal CAPM – is mentioned later, in chapter 11.
Their empirical results help to rectify the previous weaknesses of the CAPM and
imply that companies can be separated into groups, according to the values of the
two beta-coefficients. This will surely not be the last contribution in an active
research area.

9.3.5 Summary

Cross-section tests of the CAPM seek answers to two questions. (a) Are average
excess returns on assets correlated with their beta-coefficients? (b) Are other
variables important in determining average excess returns on assets?
11 The t-ratios for the three coefficients are −0�62, −2�52 and 4.80, respectively (Fama and French, 1992,

p. 448). Thus, using 2.00 as the conventional rough critical value, �̂j has no significant influence on average
returns but ME and BE/ME do.



214 The economics of financial markets

The answer to question (a) is an equivocal ‘maybe’. To some extent, the answer
depends on which other variables are included in the explanation along with the
beta-coefficients. On the whole, estimates of the SML find that it appears to be
rather ‘flat’ (i.e. the slope coefficient with respect to the beta-coefficients is small)
even though the influence is sometimes statistically significant (i.e. significantly
different from zero).

The answer to question (b) is almost always an emphatic ‘yes’. But the
justification for any particular explanation over its rivals is rarely compelling and
typically less than persuasive.

9.4 Sharpe ratios and Roll’s criticism

Recall the definition of the Sharpe ratio (see chapter 5, section 5.4.3) for asset j:
sj = 

j− r0�/�j . An observable counterpart of the Sharpe ratio is

ŝj =
rj− r0
�̂j

where �̂j is the sample standard deviation of the return on asset j. Replacing j
with M defines the observed Sharpe ratio for the market portfolio, ŝM .

The capital market line (see chapter 6, section 6.2.2) in the CAPM implies that
sj � sM for every asset. Hence, a comparison of ŝj with ŝM provides a test of
the CAPM. If ŝj exceeds ŝM for any asset(s), this is evidence against the CAPM.
From portfolio analysis, ŝj > ŝM suggests that the market portfolio is not efficient
in a mean-variance sense.

According to the CAPM, the market portfolio must, at least, be mean-variance
efficient. Hence, any finding that ŝj > ŝM constitutes evidence against the CAPM.
Tests using Sharpe ratios essentially test the same hypothesis as Gj = 0 though in
a rather less sophisticated way than outlined above, in section 9.2.

This insight is relevant because Roll’s criticism asserts that every test of the
CAPM is nothing more than a test of whether the portfolio that represents M
is mean-variance efficient. (The assertion is true also for the tests outlined in
previous sections.) Roll (1977) presents his criticism rather more forcefully.
While acknowledging that the CAPM is testable ‘in principle’, Roll argues with
unrelenting tenacity (pp. 129–30) that ‘(a) no correct and unambiguous test of
the theory has appeared in the literature, and (b) there is practically no possibility
that such a test can be accomplished in the future’.

Roll’s pessimistic conclusion seems to hint that a test of the CAPM would be
possible with enough ingenuity and effort. To satisfy Roll it would be necessary to
obtain data for the rate of return on the ‘true’ market portfolio. No approximations
are allowed. But the market portfolio is, by its nature, a purely theoretical concept.
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Compromises and approximations always have to be made to construct relevant
empirical counterparts in any theory. For a purist, the ‘true’ market portfolio could
never be observed. Even so, in deference to Roll it should be acknowledged that
most empirical representations of the market portfolio are blatantly crude and
inadequate approximations to the universe of assets available to investors.

Three possible responses to Roll’s criticism are as follows.

1. Accept that ‘there is practically no possibility’ of testing the CAPM.
2. Always try to construct the empirical market portfolio to correspond as faithfully as

possible with the theoretical market portfolio.
3. Acknowledge that every test of the CAPM is a test of a joint hypothesis (namely, a

model of assets’ rates of return jointly with the choice of a market portfolio). In other
words: every test of the CAPM is conditional upon the portfolio chosen to represent
the market.

The second and third responses are compatible with one another and, not
surprisingly, dominate empirical evaluation of the CAPM.

9.5 Multiple-factor models and the APT

Empirical work on multiple-factor models (multifactor models) and the APT
bears a close resemblance to that on the CAPM, though from a different theoreti-
cal perspective. Both time series and cross-section studies of rates of return make
an appearance in much the same way as for the CAPM.

Time series studies are often made of the multifactor models introduced in
chapter 8. Statistically at least, they take a form very similar to the regression
model outlined above, in section 9.2. The main difference is that other explanatory
variables are introduced in addition to, or instead of, the market rate of return.
The cross-section tests involve similar methods as in section 9.3, above, except
that now the interpretation is based on the arbitrage principle and the explanatory
variables are the parameter estimates from the time series regressions (instead of
estimated beta-coefficients together, possibly, with other variables).

9.5.1 Multifactor models

Consider, for simplicity, the two-factor model:

rjt = bj0 +bj1F1t+bj2F2t+�jt j = 1(2( � � � ( n t = 1(2( � � � ( T (9.11)

where F1t and F2t are the values of the two factors at date t; bj0, bj1 and bj2 are
parameters; and �jt is an unobserved random error. In some studies, asset returns
in excess of a risk-free rate are used instead of rjt – the empirical methods are
the same, only the interpretation of the results is affected.
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Just as with the CAPM, the parameter values generally differ across assets so
that there is a separate time series regression for each asset. Unlike the CAPM,
the return on the market portfolio need not be one of the factors. With time series
of observations on rates of return and the factors it is a routine matter to obtain
estimates b̂j0, b̂j1 and b̂j2 for the three parameters, bj0, bj1 and bj2.

In some specifications the factors are chosen from among financial indica-
tors (e.g. interest rate differentials between long-term and short-term government
bonds) or macroeconomic variables (e.g. forecast errors for the growth of national
income). In others the factors are themselves the rates of return on specially
constructed portfolios of assets (one of which might be the market rate of return).
It is even possible to dispense entirely with the selection of variables to represent
the factors; the factors can be allowed to remain implicit in the data on assets’
rates of return.

Fama applauds the multifactor models, but with a hint of irony (for his applause
soon becomes muted: Fama, 1991, p. 1594).

The multifactor models are an empiricist’s dream. They are off-the-shelf theories that
can accommodate tests for cross-sectional relations between expected returns and the
loadings of security returns on any set of factors that are correlated with returns.

9.5.2 The APT

By applying the arbitrage principle to the multifactor model (9.11), the APT
predicts a cross-section relationship (see chapter 8, section 8.3):


j = E0 +E1bj1+E2bj2 j = 1(2( � � � ( n (9.12)

where E0, E1, and E2 are parameters to be estimated. (The adjustments to allow for
the presence of a risk-free interest rate are not pursued in this section. A risk-free
interest rate could be introduced, as in chapter 8, without affecting the methods
in any substantial way.)

By analogy with the CAPM, the cross-section regression could be expressed as

rj = E0 +E1̂bj1+E2̂bj2 +Qj j = 1(2( � � � ( n (9.13)

where b̂j1 and b̂j2 are estimates from the time series regression for asset j, rj is
the sample average return on asset j and Qj is an unobserved random error. Now
the E0, E1, and E2 parameters are estimated and analysed in the same way as the
cross-section coefficients in the CAPM.

Extending the cross-section tests of the CAPM to the APT is, however, more
delicate than it might first seem. For, even if bj1 and bj2 were known without
error, the APT implies that (9.12) is an approximation. The addition of a random
error to (9.12) would be a rough-and-ready way to allow for the approximation.
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This random error can then be absorbed into the error in (9.13). Thus, Qj is now
interpreted as a combination of the error of approximation and the disturbance in
the cross-section regression. The problem with this approach is that it adds to
the difficulty of testing the APT: the two sources of error are awkward to disen-
tangle. Nonetheless, investigations based on (9.13) are the most straightforward
to implement even if the results are tricky to interpret.

An alternative approach is to treat the APT predictions, (9.12), as restrictions
imposed on the time series estimations of the multifactor model. A test of
the APT can then be made by comparing the restricted estimates that force
(9.12) to hold as against the unrestricted estimates of (9.11). If the two sets
of estimates are close, this is evidence in support of the APT; otherwise, it is
evidence against the APT.12 Notice, however, that this approach makes sense
only if there is an underlying exact multifactor model; otherwise, the restrictions
expressed as (9.12) should be understood as approximations, not equalities. In
this interpretation the addition of a random error, �jt, in (9.11) is justified because
some factors that should be included have been omitted from an exact multifactor
model – not because an approximate multifactor model is assumed at the outset.
In practice, it is difficult to distinguish between an exact model for which some
factors have been omitted and an approximate model for which all the factors are
present.

In another of their influential contributions, Fama and French (1993) explore
the implications of a factor model relevant for both equities and bonds. They
propose five factors, all of which can be interpreted as excess returns on particular
portfolios. Three of the factors are chosen to represent the stock market: (i) the
excess return on a market portfolio; (ii) the difference in the rates of return between
small companies and large companies, ranked according to their aggregate equity
values; and (iii) the difference in the rates of return of companies ranked accord-
ing to their BE/ME ratio (the book value of equity as a proportion of the market
value of equity). The two remaining factors represent the bond market: (iv) the
difference between long-term and short-term interest rates; and (v) the differ-
ence between the yield on corporate (high-risk) bonds and government (low-risk)
bonds.

The focus of Fama and French’s paper is on time series analysis of the degree
to which the five factors can account for US equity and bond returns over the
period 1963 to 1991. They find that the five factors are able to explain asset
returns satisfactorily, the three stock market factors being particularly relevant for
equity returns and the two interest rate factors for bonds.

12 The details are too messy to merit inclusion here. A comprehensive treatment appears in the advanced
literature – for instance, Campbell, Lo and MacKinlay (1997, chap. 6, pp. 226–8) outline statistical procedures
designed to test the hypothesis that the restrictions are satisfied.
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In addition, Fama and French test the APT prediction that the intercepts in
the regressions should be zero.13 The test results they report are on the margin
of statistical significance (not decisively rejecting the null hypothesis that the
intercepts are jointly zero). They argue, however, that the magnitudes of the
intercepts are sufficiently small to render them economically (if not statistically)
insignificant. Of broader importance is their reflection (1993, p. 53) that ‘the
choice of factors, especially the size and book-to-market factors, is motivated by
empirical experience. Without a theory that specifies the exact form of the state
variables or common factors in returns, the choice of any particular version of the
factors is somewhat arbitrary.’

Despite this reservation, it is possible (as already mentioned) to construct multi-
factor models – and, by implication, the APT – without designating observable
variables to represent the factors. Instead, statistical methods are applied to infer
the presence of factors from patterns in the time series data on assets’ rates
of return. The specialized tools of ‘factor analysis’ and ‘principal components
analysis’ are employed in these investigations. The results, however, demand care-
ful interpretation, largely because it is a matter of judgement about the number
of factors that are permitted. While the freedom of the data to detect the implied
factors is a strength of the approach, its weakness is that the results do not provide
any guidance about the underlying economic forces that the factors reflect.

Despite the technical sophistication of the tools for studying multifactor models
and the APT, a fundamental problem remains: how to select the factors. In an
age of powerful computers and abundant data, the temptation is to keep trying
different sets of factors until one is found that fits the data well. This process of
‘data mining’ or ‘data snooping’ often results in empirical estimations that appear
highly satisfactory. But they should be regarded with the greatest suspicion, for
conventional statistical criteria are not valid when results are reported only after
the data have been searched for the best-fitting specification. (Unless adjustments
are made, the criteria fail to take into account the steps by which the final results
are obtained.)

There are at least two possible ways to circumvent the problem of factor selec-
tion. One is to use the estimated parameters to make out-of-sample forecasts –
that is, to forecast observations that were not included in estimating the param-
eters used to make the forecast. This can be a handy method of eliminating
bad models, but it provides little guidance about how to find good ones. The
second method is to build multifactor models that correspond more closely to the
predictions of economic theory. Ultimately, empirical specifications are likely
to survive only if they have theoretical support (though, admittedly, theories are

13 See chapter 8, section 8.3.2. Fama and French (1993, pp. 31–2) point out that the hypothesis can be derived
from theoretical considerations other than the APT.
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often built post hoc to explain regularities that have been observed in the data).
An obstacle here is that theory tends to be unhelpful in recommending variables
for selection as factors.

9.5.3 Summary

From a statistical viewpoint, multifactor models and the APT can be interpreted as
generalizations of the CAPM, in the sense that asset returns are allowed to depend
on several different factors instead of the market return alone. Many investigations
have been undertaken. Most find empirical support for their chosen multifactor
model and some also support the APT. However, they are weakened by the lack
of reliable criteria for selecting among the candidate factors. Once again, Fama
makes the relevant point most clearly (1991, p. 1595).

Since multifactor models offer at best vague predictions about the variables that are
important in returns and expected returns, there is the danger that measured relations
between returns and economic factors are spurious, the result of special features of a
particular sample (factor dredging).

The ‘empiricists’ dream’ has become a nightmare.

9.6 Summary

1. Tests of the CAPM focus on time series and cross-section studies. Time series studies
are employed to obtain estimates of the beta-coefficients for assets or portfolio of
assets. Cross-section studies investigate how well the rates of return among different
assets are correlated with their beta-coefficients.

2. The cross-sectional evidence for a correlation between assets’ rates of return and their
beta-coefficients is mixed. Some studies find a positively sloped SML. Others cannot
reject the hypothesis that the SML is flat (i.e. that there is no association between
expected rates of return and beta-coefficients).

3. Most studies find that variables other than beta-coefficients are correlated with cross-
sections of average rates of return. The challenge remains to construct acceptable
theories that predict which variables should affect assets’ rates of return.

4. Tests of multifactor models and the APT are constructed in a similar way to those for
the CAPM. Although there is freedom to choose variables to represent the factors, the
challenge is the same as for the CAPM: to develop a reliable way to select the factors.

Further reading

Most finance texts review applied work on the CAPM, multifactor models and the
APT, although not always with the care that the topics merit. A clear treatment
is given by Elton, Gruber, Brown and Goetzmann (2003, chaps. 15 & 16).
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An excellent students’ guide for empirical work on the CAPM is by Jagannathan
and McGrattan (1995). Fama and French (1992, 1993) stimulated much of the
applied research that has taken place since the early 1990s. For a perceptive
commentary on the empirical weaknesses of the CAPM revealed over its first
forty years, see Fama and French (2004). Research in the area remains active,
with successive issues of the Journal of Finance and the Journal of Financial
Economics containing many influential contributions to the field.

Brooks (2002) provides an accessible introduction to the econometric meth-
ods used in finance. At a more advanced level, Campbell, Lo and MacKinlay
(1997, especially chaps. 5 & 6) and Cochrane (2001, chaps. 10–15) provide
comprehensive integrated surveys of the modern literature.

Appendix 9.1: The Black CAPM in terms of excess returns

The Black CAPM can be written in terms of excess returns simply by subtracting
r0 from 
j , B and 
M in 
j = B+ 

M −B��j , equation (9.6) on page 205:


j− r0 = B− r0 + 

M − r0 − 
B− r0���j j = 1(2( � � � ( n (9.14)

Now rearrange (9.14) as


j− r0 = 
B− r0�
1−�j�+ 

M − r0��j j = 1(2( � � � ( n (9.15)

where excess returns have been introduced by subtracting r0 as needed.14 The
empirical counterpart of (9.15) is then

zjt = zBt
1−�j�+ zMt�j+�jt j = 1(2( � � � ( n t = 1(2( � � � ( T (9.16)

where zBt ≡ rBt− r0t is the excess rate of return on a zero-beta portfolio, with rBt
denoting the random rate of return on a zero-beta portfolio. This is sometimes
known as the two-factor form of the CAPM, with zMt and zBt as the two factors.
The problem with (9.16) is that, although in principle it should be possible to
observe zBt, in practice it is not. Typically, the same regression, (9.4), as for
the SL model is calculated. The difference is one of interpretation: Gj is now
interpreted as Gj = 
B− r0�
1−�j�. This specification of the model is more
complicated to test because �j is now absorbed into Gj , only the term 
B− r0�
being predicted to be identical for all assets.

14 The use of excess returns in the context of the Black CAPM might seem rather contradictory: the Black
CAPM is relevant precisely when borrowing or lending at a risk-free rate is not possible. But here r0 is
intended to identify a low-risk interest rate, such as the treasury bill rate, irrespective of whether investors
can borrow or lend at the rate. The construction of excess returns is then just a device to make more
transparent comparisons with the Sharpe–Lintner model.
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10

Present value relationships and price variability

Overview

Perhaps the commonest equation in the whole of finance is the one that sets the
value of an asset equal to the net present value (or ‘present discounted value’) of
a sequence of its payoffs. The equation plays a central role in corporate finance,
where NPV criteria constitute the basis for the selection of investment projects.
In particular, the NPV rule is applied to value assets (projects) the market prices
of which may not be readily observed.

This chapter’s objective is somewhat different from, though consistent with, that
of corporate finance. Here the NPV relationship appears as a market equilibrium
condition that has testable implications for observed asset prices.

In its simplest and most broadly applicable form, studied in section 10.1, the
NPV relationship is a consequence of the arbitrage principle. In this sense it
is nothing more than the extension of the results of chapter 7 to a multiperiod
framework.

While central to financial theory, arbitrage ideas on their own tend to yield few
predictions. Stronger assumptions – in particular about investors’ expectations –
permit predictions about asset price volatility to be derived. Section 10.2 reviews
these assumptions and discusses the degree to which empirical evidence casts
doubt on the validity of a theory commonly interpreted as expressing rational
investor behaviour. By implication, doubt is also cast on asset market efficiency.

Section 10.3 explores other models, also motivated by the NPV, that seek to
provide more empirically acceptable explanations of asset price volatility. These
models incorporate facets of ‘noise trading’ to represent behaviour that could be
interpreted as capricious or perhaps even irrational.

Asset markets are notorious for experiencing occasional bouts of optimism
followed by pessimism, leading to sharp rises, and subsequent crashes, in prices.
Episodes of extreme price fluctuations, sometimes known as ‘bubbles’, are well
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documented in the historical record. Their compatibility with the NPV relationship
is examined in section 10.4, which reviews several of the more famous examples of
asset price bubbles. The section concludes with comments on Ponzi investment
schemes – enterprises commonly found during asset market frenzies and from
which accusations of fraud invariably emerge.

10.1 Net present value

The purpose of this section is to construct the NPV relationship. Familiar though
it is, the NPV equation is open to misinterpretation. However, if constructed
carefully the NPV relationship provides several insights into the determination
of asset prices, as well as revealing some awkward complications. A provisional
assumption is that the future returns are deterministic – that is, known with
certainty. Unrealistic though it may be, the assumption of deterministic returns is
at the core of many studies of present values. A relaxation of the assumption, to
allow for uncertainty, is outlined in section 10.1.2, though a thorough exploration
of the topic must await chapter 11.

10.1.1 Certainty

Recall from chapter 1 the relationship between an asset’s rate of return and its
payoff:

rate of return on the asset ≡ v−p
p

where p is the price of the asset today and v is the asset’s payoff. Timing is
important in what follows, dates being denoted by time subscripts. The present
date, ‘today’, is identified with a t subscript so that pt is the current price and
pt+i is the price i periods into the future. It is assumed that the pay-off is
received one time period from the present, so that the asset’s rate of return equals

vt+1−pt�/pt.

In constructing the NPV relationship, it is assumed that: (a) the payoff,
expressed by v, is known with certainty; and (b) the interest rate, r, at which
funds can be borrowed or loaned in unlimited amounts is known with certainty
and is constant across time. Each of these assumptions is relaxed as the analysis
progresses.

Here, as elsewhere in these chapters, time is divided into unit intervals, with prices
being observed and investors’ decisions being made only at t, t+1, t+2, etc.
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Time passes in discrete intervals.1 Appendix 10.1 studies the NPV when time is
treated as a continuous variable rather than as a sequence of discrete unit intervals.

The asset’s payoff at each date, vt, can be split into two components: a ‘divi-
dend’, or ‘coupon’, paid by the issuer to the holder, denoted here by dt; and the
market price of a unit of the asset, denoted by pt. Thus, vt+1 = dt+1 +pt+1.
The absence of arbitrage opportunities (see chapter 1) implies that the payoff
in the coming period as a proportion of the initial asset price must equal the
interest rate:

r = vt+1−pt
pt

= dt+1

pt
+ pt+1−pt

pt
(10.1)

Implicit in this expression is a timing convention that asset prices are quoted
ex-dividend; that is, pt+1 measures the price after, and hence excludes, the divi-
dend paid at that date, dt+1.

Rearranging (10.1) provides an expression for the current price:

pt =
1

1+ r 
dt+1+pt+1� (10.2)

Given that r is assumed constant across time, for any date, t+ i, i� 0:

r = dt+i+1

pt+i
+ pt+i+1−pt+i

pt+i
(10.3)

or, rearranging,

pt+i =
1

1+ r 
dt+i+1+pt+i+1� (10.4)

Equation (10.4) is central to all present value expressions because it is possible
to extend the timing forward by substituting out future prices one period at a time.
For instance, eliminating pt+1 from (10.1) gives

pt =
1

1+ r
(
dt+1+

1
1+ r 
dt+2 +pt+2�

)
= dt+1


1+ r� + dt+2 +pt+2


1+ r�2 (10.5)

Now pt+2 can be eliminated, then pt+3, and so on. Thus, from (10.5), the price
today can be written as the familiar NPV form:

pt =
dt+1


1+ r� +
dt+2


1+ r�2 +
dt+3


1+ r�3 +· · ·+ dt+N +pt+N

1+ r�N (10.6)

1 For the purposes of the theory discussed here the length of the unit interval is unspecified. It could be, for
example, a day, week, month or year. Of course, in empirical applications the choice of a unit interval is
likely to be a vital consideration.
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The right-hand side of (10.6) is the sum of each dividend dt+i discounted back to
the present by multiplication with a discount factor, 1/
1+r�i. Typically, the last
period, t+N , denotes the end of the asset’s life of N periods, so that pt+N would
be a specified value, possibly zero – such as the scrap value for a physical asset
or the maturity value if the asset is a bond. Perhaps the asset has no determinate
life (as for a company’s ordinary shares), so that pt+N could be eliminated by
repeated substitution for ever larger N . This important special case is explored
shortly.

Recall the underlying justification for expression (10.6): the absence of arbi-
trage opportunities. If (10.6) does not hold, it would be possible for investors to
make unbounded (arbitrage) profits by borrowing at the risk-free rate and buying
the asset (if the asset’s price is less than the discounted present value of its future
returns), or by short-selling the asset and lending the proceeds at the risk-free rate
(if the asset’s price exceeds the discounted present value of its future returns).2

Sometimes the NPV relationship is presented as a definition of the value of an
asset or as a definition of its ‘internal rate of return’ (i.e. the rate, r, that results
in the equality (10.6)). This is not the sense used here; (10.6) is an equilibrium
condition, not a definition (of the value of an asset, its internal rate of return, or
anything else).

It is convenient to write the NPV formula in a slightly different way to aid
generalization. The modification involves defining Nt+i to be the discount factor
between date t and t+ i. Thus, in (10.6), Nt+i = 1/
1+ r�i. This done, it is
possible to generalize the NPV to allow for a risk-free rate of return that varies
from date to date in a known way (note that the assumption of certainty is
not yet relaxed). Let rt+1 denote the risk-free rate of return between dates t
and t+ 1. Then the same reasoning that led from equation (10.3) to (10.6)
shows that

Nt+i =
1


1+ rt+1�
1+ rt+2� · · · 
1+ rt+i�
i� 1

with the NPV condition written as

pt = Nt+1dt+1+Nt+2dt+2 +Nt+3dt+3+· · ·+Nt+Ndt+N +Nt+Npt+N

=
N∑
i=1

Nt+idt+i+Nt+Npt+N (10.7)

where (10.7) introduces more compact notation.

2 Clearly, (10.6) holds only if asset markets are frictionless in the sense used in chapters 1 and 7.
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While this form of the NPV condition has many applications, it is important also
to study indefinitely lived assets – i.e. to examine what happens when N →�.
It is tempting to replace (10.7) with

pt = Nt+1dt+1+Nt+2dt+2 +· · ·+Nt+idt+i+· · ·

=
�∑
i=1

Nt+idt+i (10.8)

that is, the NPV of an infinitely long sequence of dividends is just the sum of the
sequence of discounted dividends. Caution should be exercised, however, before
too hasty acceptance of the formula.

Firstly, infinite series do not necessarily converge. A natural requirement to
impose is that Nt+Ndt+N becomes arbitrarily small as N becomes large – formally,
limN→� Nt+Ndt+N = 0. While necessary for convergence, this condition is not
sufficient. Rather than attempt to write down a general condition to ensure that
(10.8) is well defined, it is assumed here that the sum converges to a finite value;
individual cases will be checked for convergence where necessary.

Secondly, notice that the term Nt+Npt+N is neglected as N →� (it is assumed
to converge to zero). While this neglect does not mean that (10.8) is wrong, it
does hint that the equilibrium pt may not be unique. That there is, indeed, a
multiplicity of solutions follows by noting that the NPV relationship is nothing
more nor less than a solution of the difference equation (10.3), allowing N →�.
When the life of the asset is finite – so that pt+N is exogenously determined – its
value ensures a unique solution. Otherwise, allowing an unbounded life for the
asset, the solution to equation (10.3) is not unique, unless some other condition
is imposed. Equation (10.8) provides one solution, but there exists an infinity of
others. The sense in which the solution expressed as (10.8) should be the focus
of attention, to the exclusion of all other solutions, is discussed in section 10.4.
Until that point, solutions other than (10.8) are ignored.

A special case of infinitely lived assets is that for which (a) the interest rate
is constant rt+i = r, so that Nt+i = 1/
1+ r�i, and (b) the dividend, dt, grows at
a constant rate, g (possibly zero), so that dt+1 = 
1+g�dt(dt+2 = 
1+g�2dt( � � �
Given these assumptions, appendix 10.2 shows that

pt =
dt+1


r−g� if r > g (10.9)

If r � g, the NPV is undefined: here the growth rate of dividends is so high that,
even when discounted, the contribution of each return far into the future becomes
unbounded. Therefore, their sum is also unbounded and thus undefined.
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Special though it is, models deriving from (10.9) play a very important role in
applied finance. These ‘dividend growth models’ seek to forecast equity prices
on the basis of assumptions about the future growth of dividends for given current
dividends and interest rates.

An even more special case of (10.9) occurs when dt+i = c, a constant for every
t+ i so that g = 0 and pt = c/r. This is the NPV relationship for a perpetuity,
such as a bond each unit of which pays a coupon c per period indefinitely into
the future. (See chapter 12, especially page 284.)

10.1.2 Uncertainty

If uncertainty replaces the assumption of deterministic future returns, it is tempting
to insert the expected value of each return in the NPV relationship:

pt = Nt+1Etdt+1+Nt+2Etdt+2 +· · ·+Nt+iEtdt+i+· · ·

=
�∑
i=1

Nt+iEtdt+i (10.10)

where Etdt+i denotes the expectation, conditional on information available today,
date t, of the return to be received i periods in the future.3 Expressions such as
(10.10) are often encountered in finance, one example being the dividend growth
models of share prices.

Theproblem is: what sense canbemadeof the expectations inpt =
∑
Nt+iEtdt+i?

Trivially, their presence must imply that the returns, dt+1(dt+2( � � � ( dt+i( � � �, are
generated by a random process. In financial theory, random processes together
with their expectations usually express investors’ beliefs – beliefs that are subjec-
tive and, thus, that generally differ among individual investors. The expectations
in (10.10) are not indexed by individual and, hence, there is an implicit assumption
that investors are unanimous in their beliefs. Typically in the literature on this
topic it is assumed, implicitly or explicitly, that there is some exogenous ‘true’
process generating the returns and that the process is known to all investors.
Even if the plausibility of this is accepted, a behavioural mechanism is required
to justify why the NPV should take the form given by pt =

∑
Nt+iEtdt+i.

In the simplest case of deterministic returns, the absence of arbitrage oppor-
tunities implies the NPV relationship. Analogous reasoning can be used in the
presence of uncertainty, and the result is an equality very similar in appearance
to (10.10). (See appendix 10.3 for the details.) The appearance is somewhat

3 The expression Etdt+i can be read as shorthand for E9dt+i�:t;, where :t represents the set of information
available at date t. Uncertainty about the discount factors, Nt+i, is ignored in (10.10) – a common, if not
entirely satisfactory, practice. Nothing of substance is lost, or gained, by focusing on infinitely lived assets
as in (10.10) from now on.
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deceptive, however. For appeal to the arbitrage principle implies that the prob-
abilities underlying the expectations in the NPV relationship are the artificial
‘martingale probabilities’ that emerge as part of the derivation itself; they do not
necessarily correspond to any investor’s beliefs. Moreover, the martingale prob-
abilities are unique only under very special circumstances, namely when markets
are complete (in the sense defined in chapter 4, section 4.1.1).

Another way of justifying pt =
∑
Nt+iEtdt+i, (10.10), is to assume that investors

are risk-neutral as well as being unanimous in their beliefs about the probabilities
underlying the expectations. In these circumstances, market equilibrium requires
that every asset yields a rate of return equal to the risk-free rate; otherwise,
investors would seek to buy those assets with an expected rate of return in excess
of the risk-free rate and sell those with an expected return less than the risk-free
rate. It follows that an NPV relationship of the form (10.10) must hold for each
asset.

Once the assumption of risk neutrality is relaxed in favour of risk aversion,
equation (10.10) is no longer appropriate to characterize market equilibrium.
When the assumption of risk neutrality is abandoned, allowance needs to be made
for a risk premium; otherwise, some other replacement for the NPV condition
must be found. This was done in a single-period context for the CAPM and APT
by amending the discount factor to include an additional term, the risk premium
(see chapters 6 and 8). In the multiperiod context a theory of intertemporal
optimization can be applied to construct an asset pricing formula in the presence
of risk aversion. This topic is studied in chapter 11.

Why should it matter to construct theoretical justification for pt =
∑
Nt+iEtdt+i?

Because the justification aids the interpretation of empirical evidence about asset
price fluctuations. From one perspective, the NPV relationship is studied as a
normative guide, prescribing how asset prices should be determined if investors
behave according to criteria that are considered to be ‘rational’. From another
(positive) perspective, no special significance is bestowed on the NPV relation-
ship; it is treated as just another hypothesis that may, or may not, find support
in the evidence. If, as the next section shows, much of the evidence casts doubt
on the reliability of NPV equalities such as pt =

∑
Nt+iEtdt+i, there is plenty of

scope for either criticizing the performance of asset markets or constructing better
models of asset prices – or both.

10.2 Asset price volatility

Empirical tests of the NPV relationship take a variety of forms. One approach,
which became popular in the 1980s, focuses on the volatility (observed vari-
ability) in asset prices. A claim, commonly heard among critics of financial
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markets, is that asset prices are ‘too volatile’. The tests described below provide
a systematic way to examine this claim, given the assumption that a particular
form of the NPV relationship is appropriate as a benchmark against which to judge
volatility.

In this section the discount factors applied to future returns are assumed to
be based on a constant interest rate, r. Hence, the NPV relationship, pt =∑
Nt+iEtdt+i, becomes

pt =
Etdt+1


1+ r� +
Etdt+2


1+ r�2 +
Etdt+3


1+ r�3 +· · · =
�∑
i=1

Etdt+i

1+ r�i

This representation of the NPV relationship is interpreted in what follows as
the net present value of a dividend stream, dt+1(dt+2( � � �, paid on a company’s
ordinary shares.

A pioneering analysis of asset price volatility was made by Robert Shiller. It
is his approach that is described here.4 Shiller defines the ex post rational asset
price p∗t at date t as

p∗t =
dt+1


1+ r� +
dt+2


1+ r�2 +
dt+3


1+ r�3 +· · · =
�∑
i=1

dt+i

1+ r�i (10.11)

The ex post rational price can be understood as an idealization, a sort of equili-
brium: it is the price predicted by the NPV relationship if investors have perfect
foresight about future dividends – that is, if their expectations about future divi-
dends are fulfilled. Note for later reference that the ex post rational price at date
t can also be written in the form (recall equation (10.2) above)

p∗t =
1

1+ r 
dt+1+p∗t+1� (10.12)

Being dependent on the stream dt+1(dt+2(dt+3( � � �, unobserved as of date t,
the ex post rational price is also unobserved at date t. The relationship between
p∗t and the observed market price, pt, is obtained by writing

dt+i = Etdt+i+�t+i (10.13)

where Etdt+i ≡ E9dt+i�:t; is the expectation of dt+i conditional upon informa-
tion available at date t, :t, and �t+i is an unobserved forecast error such that

4 For a collection of his papers, see Shiller (1989). Another early contribution, made independently of
Shiller’s, is that of LeRoy and Porter (1981).
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E9�t+i�:t;= 0.5 Substituting from (10.13) into (10.11), the ex post rational price
can be broken into two components:

p∗t = Etdt+1+�t+1


1+ r� + Etdt+2 +�t+2


1+ r�2 + Etdt+3+�t+3


1+ r�3 +· · ·

= Etdt+1


1+ r� +
Etdt+2


1+ r�2 +
Etdt+3


1+ r�3 +· · · (10.14)

+ �t+1


1+ r� +
�t+2


1+ r�2 +
�t+3


1+ r�3 +· · ·

Define ut as the NPV of forecast errors:

ut =
�t+1


1+ r� +
�t+2


1+ r�2 +
�t+3


1+ r�3 +· · ·

thus enabling (10.14) to be written compactly as

p∗t = pt+ut (10.15)

In words: the ex post rational price equals the observed market price plus a
forecast error. The market price can be interpreted as the ‘market’s forecast’ of
the ex post rational price; in this model, pt plays the role of a forecast of p∗t .

The forecast error, ut, is a weighted average of all the future forecast errors
of asset returns. It follows from the assumption on �t+i that E9ut�:t; = 0
and E9ut; = 0. Hence, E9p∗t �:t; = pt. Also, E9ut�pt; = 0, because pt ∈ :t.
Consequently, cov
pt( ut� = 0: observed asset prices are uncorrelated with the
forecast errors. This result is sometimes known as an orthogonality condition.

In order to render (10.15) testable, it is necessary to construct a measure of p∗t
and, hence, ut. The measurement of p∗t will be discussed shortly but suppose,
provisionally, that an estimate has been obtained. Given the estimate of p∗t (and
conditional upon its accuracy), one approach to testing the hypothesis expressed
by (10.15) is to examine whether the estimated forecast errors, ut, are correlated
with any members of the information set :t. The hypothesis asserts that all
such information is reflected in pt and, this being so, the correlations should be
zero: hence the title of orthogonality tests given to this approach. (See chapter 3,
section 3.1.)

An alternative, variance bounds, approach follows by writing down the variance
for p∗t in (10.15):

var
p∗t � = var
pt�+var
ut�+2cov
pt( ut�

= var
pt�+var
ut� (10.16)
5 The information set, :t , is assumed to include pt , pt ∈:t , but could encompass much else besides. Here

the scope of :t remains unspecified, subject to the caveat that only information available at date t is eligible
for inclusion.



Present value relationships and price variability 231

where (10.16) follows directly from the orthogonality condition, cov
pt( ut�= 0.
Given that var
ut� > 0, (10.16) implies immediately that var 
pt� < var
p∗t �, or,
equivalently, that the standard deviation of observed price is less than the standard
deviation of the ex post rational price: s�d�
pt� < s�d�
p∗t �. This inequality asserts
formally that the variability (volatility) of a forecast, pt, must be less than that
of its target, p∗t , so long as the error, ut, is uncorrelated with the forecast itself.
An upper bound, s�d�
p∗t �, is placed on the volatility of observed market prices,
thus providing a precise statement of what is meant by claims of the sort that
asset prices are ‘too volatile’. Asset prices are regarded as too volatile if the
variability of pt equals or exceeds that of p∗t : s�d�
pt�� s�d�
p∗t �. But notice that
this inference is conditional upon the benchmark rule used to define p∗t , and also
on the method used to estimate it.

In several empirical studies Shiller applies expression (10.12) to construct
estimates of ex post rational prices (see, for example, Shiller, 1989, chap. 4).
A terminal year is chosen – say, 2003 – for which a value of p∗2003 is assumed.6

By working backwards through earlier years, successively adding the discounted
values of observed dividends, it is possible to estimate ex post rational prices:

p∗2002 = 1

1+ r�
d2003+p∗2003�

p∗2001 =
1


1+ r�
d2002 +p∗2002� (10.17)

p∗2000 = 1

1+ r�
d2001+p∗2001�

���
���

As his source for price and dividend observations, Shiller (2003) uses data from
1871 for Standard and Poor’s Composite Index of US stock prices measured in real
terms (i.e. the observed price series divided by a price index for economy-wide
prices of goods and services).

In order to estimate p∗t , a value for r – the real interest rate at which the
dividends are discounted – must also be assumed. One candidate measure for r
is an average of observed real rates of return on the index for the sample period.
Another candidate is to allow r to vary from year to year with market interest
rates, rather than being constant, as assumed in (10.17).7

6 Shiller (2003) obtains p∗2003 as the net present value of dividends projected forward at a constant growth rate
from 2002, discounted at a constant real interest rate. The rates chosen were the historical averages over
Shiller’s sample, 1871 to 2003.

7 Shiller (2003) uses a geometric average equal to 6.67 per cent for the first candidate. For the second, he uses
a market rate of interest (adjusted for inflation) plus a risk premium (measured by the average excess return
on the index minus the average market interest rate). Shiller’s calculations embody a small timing difference
from the process defined here: he uses p∗t = dt+p∗t+1/
1+ r� rather than p∗t = 
dt+1 +p∗t+1�/
1+ r�.
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Fig. 10.1. Observed US stock prices, p̃t, and ex post rational prices, p̃∗t

The figure plots Standard and Poor’s Composite Index of US stock
prices, adjusted for inflation, pt, together with ex post rational prices,
p∗t , estimated as net present values of future dividends discounted by
[1] a constant real rate of return and [2] a time-varying observed real
market interest rate. The observed price index shows more variation
than either measure of the p∗t , directly contrary to the hypothesis that
p∗t is an optimal forecast of pt.

Source: Shiller (2003). The data are available from Shiller’s Yale
Website: www.econ.yale.edu/˜shiller.

Figure 10.1 plots the results of Shiller’s calculations. Notice that the ex post
rational price based on a constant real interest rate (line [1]) shows little variation
around a shallow trend. The ex post rational price based on market interest rates
shows rather more variation, but still much less than for observed prices.

Contrary to being more variable than observed prices, the ex post rational price
series are both much less variable: stock prices are too volatile. The sample
standard deviation of pt is approximately 264.23, in comparison with 76.46 and
88.93, respectively, for the two measures of p∗t . In both cases, the model’s
prediction is rejected by a wide margin.8

8 Caution should be exercised in applying standard statistical criteria when comparing the standard deviations.
The strong evidence of a time trend (non-stationarity) in each of the price series implies that the conventional
statistical tests procedures are inappropriate. See, for example, Hayashi (2000, chaps. 9 & 10).
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How sensitive is this conclusion to (a) the rule for calculating p∗t , (b) the
sample period and (c) the data set? While almost any outcome could be obtained
by manipulating the rule for estimating p∗t , alternatives constructed in the spirit of
equation (10.11) tend to contradict the prediction. The result has also been robust
to the choice of sample period and data set. Although it would be rash to draw
definitive conclusions in this sort of work, it is an understatement to suggest that
the evidence raises serious doubts about the empirical plausibility of the NPV
model underlying p∗t .

Shiller draws a strong conclusion from the evidence: stock prices are too
volatile for compatibility with asset market efficiency.9 Not surprisingly, such
a startling claim has been the subject of detailed scrutiny and criticism. The
criticisms fall into three groups: (a) technical, involving the statistical proce-
dures employed; (b) substantive, challenging the rule for calculating p∗t ; and
(c) interpretational – i.e. what the results imply for the determination of asset
prices.

The technical criticisms centre on whether the unobserved ‘true’ (or ‘popu-
lation’) standard deviations are accurately estimated by their observed sample
counterparts. Particular attention has been devoted to three issues.

1. The two price series, pt and p∗t , should be stationary (that is, essentially trend-free)
in order for conventional statistical criteria to apply. Without transformation of some
sort, the evidence implies unambiguously that the data are non-stationary.

2. Successive values of p∗t are not independent of one another (they are serially corre-
lated), and this needs to be taken into account.

3. The sample size may be too small to draw valid inferences. Attention here centres
on the presence of the price observed at the end of the sample in the calculation of
p∗t . (See equation (10.17), where the terminal price in question is p∗2003.) Although
the discounted value of the terminal price in the formula becomes negligible in a
sufficiently large sample, its inclusion could have an impact on the inferences made
from a finite sample of data.

These and other statistical matters have been the subject of intensive research, but
without implications that decisively overturn the results described so far.

The second, substantive, group of criticisms focuses on the definition of the
ex post rational price, p∗t , itself. Perhaps the most important issue here is the
choice of the most appropriate rate, or rates, at which to discount the future
dividend stream: the more variable the discount rate, the more variable the

9 Shiller (2000, pp. 185–6) justifies the conclusion as follows. ‘If the dividend present value moved up and
down massively over time, and if the actual stock price appeared to move with these movements as if it
were successfully forecasting the changes in the dividend present value, then we could say that there was
evidence that stock prices were behaving in accordance with the tenets of efficient markets theory. But we
see no such tendency of the stock price to forecast the dividend present value: the dividend present value
is not doing anything especially dramatic, whereas the price is jumping around a great deal.’
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estimate of p∗t . Shiller argues strongly, however, that allowing for reasonable
variability in the discount factor will not upset the result. (See the entry on
‘volatility’ in The New Palgrave Dictionary of Money and Finance (Newman,
Milgate and Eatwell, 1992, Vol. III, pp. 762–6).)

More fundamentally, doubts can be expressed about the appropriateness of
the NPV relationship in the presence of uncertainty about future dividends. The
justification of the NPV formula in such circumstances rests on assumptions
(e.g. risk neutrality and the unanimity of beliefs) the appropriateness of which
are, to say the least, debatable. Hence, it can be argued that modification or
replacement of the NPV relationship is required in order to be compatible with
plausible assumptions about the behaviour of investors. Various alternatives have
been proposed. One such approach – originating in behavioural finance – is
outlined in the next section; another – derived from intertemporal optimization –
is explored in chapter 11.

The third group of criticisms, those of interpretation, challenges the economic
significance of the statistical results even if they are accepted at face value. As
already indicated, the model underpinning the construction of the ex post rational
price relies on stringent assumptions. If the assumptions are intended to express
normative criteria for asset market efficiency (with its implicit notion of individual
rationality), the conditions may be unduly restrictive. Less restrictive assumptions
about investor behaviour – involving, for instance, risk aversion and intertemporal
consumption planning – need hardly be regarded as irrational but could lead to
different predictions.10 In summary: even if Shiller’s specification accords well
with the notion of asset market efficiency, rejection of the hypothesis may provide
few insights about how well asset markets function.

Alternatively, suppose that the normative aspects of the model are disregarded.
The tests are then interpreted, instead, in a positive way. That is, they provide
evidence about how closely a fairly simple, but widely accepted, benchmark
model fits the data. Viewed in this way, it is clear that observed asset prices
display excess volatility in comparison with the predictions of the model described
above – in other words, the model underpredicts observed volatility.

A popular class of alternative explanations seeks to explain how expectations
are formed about the stream of future asset returns, dt+1(dt+2( � � � Notice how
the motivation changes from studying the pattern of prices that should evolve
in conformity with certain criteria (normative) to exploring which models can
best explain observed prices (positive). Many of the tests find that some excess
volatility remains, though now the conclusion is weaker: the evidence undermines
support for the model as an explanation of observed asset prices. The tests are

10 Caution is in order here, because the results reported in chapter 11 for a more general intertemporal planning
framework raise similar concerns about the empirical viability of the models.
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relevant for asset market efficiency only to the extent that the model is allowed
to prescribe the criteria for efficiency.

10.3 Behavioural finance, noise trading and models of dividend growth

The quest for ways to account for asset price volatility has pursued a variety of
routes, most of which now shelter under the umbrella of behavioural finance.
A representative example, mentioned in chapter 1, is the noise trading model.

The noise trading framework distinguishes between two groups of investors:
rational investors (sometimes called smart-money traders) and noise traders.
Rational investors are assumed to make decisions according to ‘fundamental
information’ (presumably, the stream of asset returns). Noise traders, by contrast,
act according to whim, fad or fancy, their decisions being made without due
regard for commonly accepted investment criteria.11

A consequence is that asset prices tend to reflect the capricious actions of noise
traders. Expectations of share price increases (or decreases), whether well founded
or not, become self-fulfilling. It is as if a positive feedback mechanism governs
asset prices: price rises stimulate further increases, and conversely. Although
rational investors are still present in the market, their actions may be swamped
by those of noise traders.

Although attractive at first sight, the distinction between noise traders and
rational investors should be treated with caution. For, to the extent that the
actions of noise traders affect asset prices, rational investors would be sensible
to take these actions into account when making their own decisions. Even if
it is feasible to partition information into ‘fundamental’ and ‘non-fundamental’,
rational investors would not ignore the supposedly irrational activities of noise
traders deriving from non-fundamental information. Thus, rational investors
might not appear so rational after all. However, despite this reservation, the noise
trader approach does succeed in accounting for the impact of investors’ beliefs
and actions that appear from some external, objective standpoint to be misguided
or, at least, neglectful of relevant information.

Barsky and De Long (1993) present an explicit model that captures the role of
noise traders.12 Their model can be expressed in the simple form

pt =
dt


r−gt�
(10.18)

11 Sometimes noise traders are assumed to include investors who trade for liquidity purposes (for instance,
when assets are sold to provide cash for consumption or when assets are purchased as a consequence of
income in excess of consumption). The liquidity motive is, of course, not necessarily to be construed as
irrational.

12 Another important contribution following a similar approach is that of Campbell and Shiller (1989), which
focuses on expectations about the ratio of dividends to prices.
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where gt is what Barsky and De Long call the ‘permanent’ growth rate in dividends
as of date t – essentially, the average dividend growth rate expected from date
t onwards. Notice the close resemblance between (10.18), pt = dt/
r− gt�, and
(10.9), pt = dt+1/
r−g�. Apart from a minor technical difference concerning the
timing of dividends, the two are identical if there is a fixed dividend growth rate
into the infinite future. Although gt is constant as of date t (i.e. the same for all
future time), it is not fixed; investors revise their estimates of dividend growth at
each date (presumably as a consequence of the arrival of new information).

Barsky and De Long postulate that dt and gt are positively correlated: when
dividends change, investors extrapolate the change into the future so that the
dividend growth rate changes in the same direction. Thus, an increase in
the dividend, dt, has a direct effect – via the numerator of pt = dt/
r − gt� –
and an indirect effect – via the growth rate, gt – on the asset price, pt.

Given that gt responds positively to dt, the share price increases more than
proportionately with the increase in dividend. Hence, the model accounts for the
commonly reported responsiveness (overreaction) of the share price to dividends.

Barsky and De Long present evidence that supports their model when applied to
US data. They interpret the evidence as conforming with a rational expectations
approach: investors are assumed to act as if information about the past growth
of dividends is used to construct forecasts for the future. The forecasts are not
‘ex post rational’ in the sense of the previous section, but neither are they irrational
expressions of fads or fancies.

Closely allied with noise trading is the notion of ‘style investing’ (Barberis and
Shleifer, 2003). Here, a substantial proportion of investors are supposed to favour
particular ‘styles’ – groups of companies – for reasons that have little to do with
the prospects of the companies paying dividends in the future. An example of a
style might be the ‘dot.coms’ in the late twentieth century.

When a style is in fashion, the market values of its companies tend to increase
by amounts that appear excessively optimistic. This is despite the presence of
investors who base their decisions on plausible forecasts of future profits. But
fashions come and go, so that, over the longer term, average returns tend to
be mean-reverting: companies that are in style at one time eventually become
inordinately ‘out of style’ – i.e. unfashionable.

A substantial body of evidence suggests that the mechanisms driving aggre-
gate market indexes (e.g. the S&P 500) are different from those for individual
companies’ shares. The prices of individual shares tend to fluctuate in ways more
compatible with the NPV relationship than do market indexes.13

13 This difference has come to be known as ‘Samuelson’s dictum’ of ‘micro efficiency and macro inefficiency’
(see Samuelson, 1998). Recent evidence is reported by Vuolteenaho (2002) and Jung and Shiller (2002).
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For both individual shares and market indexes, price fluctuations may be unpre-
dictable over short periods – but for different reasons. The evidence tends to be
consistent with companies’ profitability, prospects, etc., dominating fluctuations
in individual share prices, with aggregate indexes being more susceptible to
the inexplicable vicissitudes of investor sentiment. Shiller sums up forcefully
(1989, p. 8).

Returns on speculative assets are nearly unforecastable; this fact is the basis of the
most important argument in the oral tradition against a role for mass psychology in
speculative markets. One form of this argument claims that because real returns are
nearly unforecastable, the real price of stocks is close to the intrinsic value, that is, the
present value with constant discount rate optimally forecasted future real dividends. This
argument for the efficient markets hypothesis represents one of the most remarkable
errors in the history of economic thought.

While this view is widely held, not all would agree with Shiller’s claim that
‘mass psychology may well be the dominant cause of movements in the aggregate
stock market’ (1989, p. 8). The next section reviews the role of mass psychology
as a cause of extreme asset price fluctuations.

10.4 Extreme asset price fluctuations

Asset price volatility sometimes takes the form of spectacular increases in prices
followed by equally spectacular collapses. Many such historical episodes have
been documented, each with its own unique characteristics, some more extra-
ordinary than others. Typically they include: (a) a period of manic optimism or
frenzy (in which the majority of investors convince themselves that increasing
asset prices really are justified by ‘fundamentals’); (b) a crisis of confidence (at
the juncture of price increases and declines); (c) blatant fraud (which may instigate
the crisis of confidence, or which is blamed, ex post, for the crisis); and (d) intense
pessimism accompanied by economic distress (during which the majority opinion
is that low prices are justified by ‘fundamentals’ – and, by implication, that the
earlier optimism was misplaced).

From at least the seventeenth century these phenomena have commonly been
called ‘bubbles’, though in the modern literature the word is used in a very specific
sense, discussed further below. Closely related phenomena emerge from ‘Ponzi
schemes’, also considered separately below. Yet other incidents are associated
with speculative manias or wild bouts of optimism and pessimism in a single
market, or a closely aligned set of markets. Rather than attempting to construct
a taxonomy of all these events, there follows an overview of some of the most
notorious historical examples.
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10.4.1 Some examples from history

Tulipmania, 1636–7

One of the first recorded speculative manias is that for tulip flower bulbs in
the Netherlands in the 1630s. Although data are sparse by modern standards, it
appears that there was a rapid rise in bulb prices from late 1636 and then a steep
decline after February 1637. The magnitude of the rise and subsequent decline
remains controversial, because several varieties of tulip bulbs were traded. For
the commonest varieties of bulbs, the early months of 1637 saw both a frenzied
rise and an equally precipitate decline of prices. The prices of more unusual,
exotic varieties increased somewhat less rapidly over several months and then
declined, again somewhat less rapidly and over a longer period of time.

To the extent that the evidence can be relied upon, it seems that prices for the
more exotic bulbs may have responded to a genuine shortage of supply relative
to the demand from those who sought to grow the flowers. The price fluctuations
for common varieties were probably stimulated more by speculative motives –
that is, the desire to profit from subsequent price changes.14

The Mississippi and South Sea Bubbles, 1719–20

Two distinct but closely related sequences of extreme price fluctuations in the
years up to 1720 provide early examples of speculative booms and busts in the
market for shares in joint-stock companies. Both involve public share offerings
by companies (the Mississippi Company in Paris and the South Sea Company in
London), and both involve companies that procured monopoly privileges (from
the French and British governments, respectively) in return for taking the respon-
sibility to service government debts.

The Mississippi bubble preceded that in London and was the culmination
of a number of financial experiments promoted by John Law, a famous – or
infamous – Scotsman who was a prominent financier in France until he fell
into disgrace shortly after the bubble burst. John Law established or acquired
several companies, of which the Mississippi Company was one. Subsequently
they merged into a conglomerate, the Compagnie des Indes. Much of the stock
of these companies was issued in exchange for government debt (the obligations
on which were then renegotiated with the government). Also, the companies
initiated various commercial and financial ventures. The prospects for quick,
high profits made the shares popular, the rising prices reflecting their popularity
at the same time as embodying the potential gains that made them so attractive
in the first place. Early in 1720 this self-fulfilling spiral ended suddenly, when
some shareholders sought to realize their gains. The collapse in prices was rapid

14 See Garber (1990) for a modern analysis that also discusses the role of futures markets in the tulipmania.
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and sustained despite Law’s claims that the ventures would lead ultimately to a
stream of future returns.

The sequence of events in London mirrored that in Paris. The South Sea
Company acquired responsibility for significant amounts of government debt on
terms that were perceived to be highly favourable for the company’s shareholders.
An approximately sevenfold increase in the company’s share price occurred during
the six months prior to its peak in mid-1720, after which the price fell at an
accelerating rate to leave it, in October, roughly where it had started the year.
Precisely why the price increase was so rapid and why it peaked when it did
are matters of debate. That the episode took place at all is testimony to the
capacity of financial markets to undergo manic bouts of optimism and pessimism
accompanied by enormous short-term gains and losses.

The Wall Street Crash, 1929

In the week following 23 October 1929 the main share price indexes in New York
fell by nearly 30 per cent. While dramatic enough in itself, even more noteworthy
is the fact that the crash marked the beginning of a prolonged decline in prices
(of practically all goods and services, not just assets) that lasted for several years.
Accompanying the price declines were widespread bank failures in the United
States and the onset of the Great Depression, a slump that persisted throughout
the 1930s in much of the developed world.

The causes and consequences of the Wall Street Crash remain the subject of
lively debate among economic historians. The controversy is largely about what
linked the crash with the subsequent depression, but there is also a debate about
whether the crash was in any sense ‘justified’ in response to the price increases
that preceded it. Some commentators interpret the crash as a natural outcome of
a speculative mania in 1928 and early 1929. Others claim that share prices were
not ‘too high’, and were forced down by the monetary authorities and the US
government as a deliberate act of policy. Whether or not prices were ‘too high’
and the crash ‘justified’ depends, of course, on an underlying model of share price
determination. While some models are undoubtedly more plausible than others,
the available evidence does not favour any one cause of the crash to the exclusion
of others. Almost certainly it never will.

The stock market crash, 1987

The most startling feature of the 1987 crash was the fall in share prices of over
20 per cent in New York on a single day, Monday 19 October. Repercussions
were felt in all the major stock markets around the world, and prices had fallen
by nearly a third towards the end of 1987. Thereafter share prices stabilized
and began to rise, albeit unsteadily. Share prices had increased rapidly for about
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a year before the October crash, so that, with hindsight, the events of 1987 appear
as a short-lived boom and bust.

From the early 1970s an expansion in the trading of financial derivatives
(options and futures) had gathered momentum. By 1987 the increasing sophisti-
cation of these instruments and the prevalence of associated investment strategies
(in particular ‘programme trading’) led some observers to blame the crash on
their use. Other commentators disputed this, placing more emphasis on US trade
and budget deficits, and on proposed tax legislation under consideration in the
US Congress. Although the range of contending causes for the 1987 crash differs
from that for 1929, again the evidence does not point unambiguously to any
simple explanation of the timing and magnitude of the price fluctuations. What
is notable is that, by contrast with 1929, the crash of 1987 is not associated with
a subsequent recession. The financial system continued to function – there was
no collapse.

The stock market bubble, 1999–2000

In the late 1990s the stock prices of companies promoting new information
technologies – especially the dot.com Internet companies quoted on NASDAQ15 –
began their rapid ascent, even though many had never reported any profits. The
prices of other shares, especially in New York, had begun their swift ascent several
years earlier, in the mid-1990s, marking the onset of ‘irrational exuberance’. (The
oft-quoted phrase is attributed to Alan Greenspan, chairman of the US Federal
Reserve Board, in a speech on 5 December 1996.)

Despite the misgivings of cautious but perceptive analysts (e.g. Shiller, 2000),
asset prices continued to increase. Then, in March 2000, the prices of the
Internet stocks fell precipitately. By mid-2001 the steep descent of share prices
had become widespread, and it continued as the US economy slowed towards
recession.

While stock markets recovered swiftly in the immediate aftermath of the terror-
ist attacks on 11 September 2001, ‘9/11’, a more sustained collapse of share prices
began in mid-2002. Labelled ‘the Great Telecoms Crash’ in The Economist
(20 July 2002), the price falls were precipitated by the financial distress that
had become apparent among telecommunications companies. Many of these
companies had accumulated heavy burdens of debt during their boom years.
Moreover, corporate scandals emerged from the discovery of widespread account-
ing practices that allowed the overstatement of profits. Bankruptcies followed
(e.g. WorldCom, a large American telecoms firm), together with an atmosphere

15 NASDAQ is an abbreviation for the National Association of Securities Dealers Automated Quotation system,
in New York. NASDAQ was introduced in 1971 as a development in the operation of the over-the-counter
securities market.
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of distrust, especially following the collapse of Enron, the huge American energy
trading corporation.

10.4.2 Bubbles

The concept of a financial bubble has been given a more formal interpretation
in economic research than in the rather imprecise senses used so far. This inter-
pretation stems from a recognition that the NPV relationship, pt =

∑�
i=1 Nt+idt+i

(10.8), is only one of the solutions to the condition linking prices across time,
namely pt = 
dt+1+pt+1�/
1+r� (10.2).16 To construct other solutions, suppose
that bt( bt+1( � � � bt+i( � � � is any sequence of numbers satisfying bt+1 = 
1+ r�bt.
Now rewrite the NPV relationship as

pt =
�∑
i=1

Nt+idt+i+bt (10.19)

It can also be checked that (10.19) satisfies pt = 
dt+1 +pt+1�/
1+ r�. Hence,
because bt is arbitrary, the NPV relationship is not unique.

Furthermore, it is possible to allow for uncertainty in the usual way, by replacing
variables with their expectations, so that equation (10.10) becomes

pt =
�∑
i=1

Nt+iEtdt+i+bt (10.20)

The sequence bt( bt+1( � � � ( bt+i( � � � is assumed to satisfy Etbt+1 = 
1+ r�bt(

Etbt+2 = 
1+ r�2bt( � � � (Etbt+i = 
1+ r�ibt( � � �
In these extensions of the NPV relationship, the bt term is called the ‘bubble’.

The discounted value of the dividend stream is called the ‘fundamental’ value
of the asset. Viewed in this way, asset prices need not equal the NPV of
future payoffs but can become any one of an infinite number of values according
to the size of the bubble. The ‘bubble’ term captures all the speculative and
self-fulfilling aspects of potentially wild asset price changes. If, as in most
circumstances, asset prices are non-negative 
pt � 0�, then negative bubbles can
be ruled out (otherwise, at some finite date, R, pR < 0). Apart from this restriction,
any positive value for the bubble at any date is sufficient to instigate the explosive
process.

The bubbles, as expressed by (10.19) or (10.20), never burst. The sequence
of price changes goes on for ever. This implausible feature can be eliminated
by assuming that at each date there is a non-zero probability, say 1, that the
bubble continues and a probability 1−1 that it bursts (all subsequent values of
the bubble becoming zero, thereafter).
16 It is assumed for simplicity, and without loss of generality, that the interest rate is constant.
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Much research has been devoted to theoretical and empirical aspects of bubbles.
In the theoretical vein the research tends to focus on the circumstances in which
bubbles will not occur. That is, it seeks to answer the question: what assumptions
are sufficient to ensure that all the bt+i values are zero? The required assumptions
typically involve investors who optimize over an infinite horizon with perfect
foresight (or, at least, know the random process governing the bubble). But the
conditions for ruling out bubbles are model-sensitive, without generally applicable
conclusions. Given the evidence that bubbles, although dramatic when they occur,
are isolated incidents, it is a weakness of the approach expressed by (10.19) or
(10.20) that it leaves unanswered the question of when the bubble terms are likely
to be non-zero.

Although, in a sense, the size of a bubble is arbitrary (it can start from any posi-
tive value), its trajectory, once initiated, is not. Empirical work thus concentrates
on examining the evidence that time series of prices follow the predicted pattern.
Because future dividend streams are unobserved, such exercises are fraught with
difficulties. Careful studies of the data suggest that many phenomena that appear,
on first inspection, to be bubbles can be explained by the ‘fundamentals’ term.
This result can be interpreted in two ways: (a) that bubbles are rare; or, (b) that
a more comprehensive theory of bubbles than is expressed by (10.20) is needed
to explain the evidence.

10.4.3 Ponzi schemes

Ponzi schemes are named after one Charles Ponzi (of Boston, Massachusetts),
who persuaded investors to participate in the exploitation of foreign exchange rate
fluctuations during the unstable period following the First World War. Ponzi’s
venture ostensibly sought to earn arbitrage profits by trading in international postal
coupons. Whatever the exact nature of Ponzi’s motives and strategy, the scheme
collapsed and Ponzi earned a prison sentence for his ingenuity.
The Oxford English Dictionary (vol. XII, p. 101) defines a Ponzi scheme as

‘a form of fraud in which belief in the success of a fictive enterprise is fostered
by payment of quick returns to first investors from money invested by others’.
The crucial aspect of Ponzi schemes (also known as ‘pyramid schemes’ or ‘chain
letters’) in economics is the way in which investors’ gains accumulate from
the subsequent contributions of later participants. The funds remitted by later
investors are used to pay off those who invested earlier.

The investment may or may not pay a positive stream of dividends, but, if it
does, the nature of Ponzi schemes require the dividends to be paid out of the flow
of funds from new investors. Ponzi schemes are much like bubbles and can be
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analysed using expressions such as (10.20), the distinguishing feature being the
continuous arrival of new investors prepared to participate in the schemes.

Pay-as-you-go pension plans organized by governments resemble Ponzi
schemes. By taxing the younger, working generations, governments offer to
pay an increasing flow of pensions to older, retired generations. Given (a) the
confidence that governments will always have access to the requisite tax-raising
powers, (b) the arrival (birth) of successive new generations and (c) a suffi-
ciently strong rate of economic growth, then pay-as-you-go schemes could satisfy
everyone concerned – for ever.

Non-government (private) Ponzi schemes have invariably – to date, at least –
ended in collapse, typically in a blaze of recriminations accompanied by the
disappearance, castigation or imprisonment of the scheme’s promotor. All that
is needed for a scheme to fail is a slow down (not even a decline is required) in
the arrival rate of new funds. As soon as this happens, existing investors, failing
to receive their promised returns, take fright, and try to liquidate their assets. By
design and of necessity, there will be insufficient funds to meet the promised
payoffs.

Despite the inherent fragility of Ponzi schemes, they are commonplace, espe-
cially in newly emerging financial systems. Witness the popularity of several
such schemes following the retreat of communism in the Soviet Union and
eastern Europe in the early 1990s. Examples include the Caritas scheme in
Romania (1992/93), the MMM company in Russia (1995/96), several schemes in
Albania (1996) and the ‘Banyumas Mulia Abadi’ company in Indonesia (1999).
In most cases the promoters advertise their companies as investing in assets
purporting yield a genuine stream of returns. The veracity, or otherwise, of their
claims is revealed as soon the inflow of funds slows down. Even more blatant
(in the sense of exploiting pure greed) are the Internet pyramid schemes invit-
ing email subscribers to make a number of small payments in anticipation of
massive returns.

10.5 Summary

1. The NPV relationship is pervasive in finance.

(a) It expresses the current price of an asset as the discounted value of its stream of
future returns, the discount factors being based on interest rates at which funds
can be borrowed or lent.

(b) If the stream of returns is deterministic (known with certainty), the NPV
relationship can be obtained as a consequence of the absence of arbitrage
opportunities.
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(c) If the stream of returns is uncertain, the validity of the NPV is more fragile and relies
on either: (a) expectations based on artificial martingale probabilities (implied by
the absence of arbitrage opportunities); or (b) risk-neutral preferences of investors,
together with unanimous beliefs about the occurrence of future states of the world.

2. A substantial body of empirical evidence suggests that asset prices are more volatile
than predicted by the NPV relationship, when investors base their decisions on accurate
forecasts of future dividends.

3. More successful attempts to model asset price volatility are founded on (a) the exis-
tence of ‘noise traders’ – investors who respond to fads and fashions; or (b) imperfect,
though not necessarily irrational, forecasts of future dividends.

4. Extreme fluctuations in asset prices may be compatible with the NPV relationship,
although the usefulness of the relationship in such circumstances (i.e. in studying
‘bubbles’) is debatable, because the necessary modifications to the relationship are
difficult to construct.

Further reading

The NPV relationship is ubiquitous in finance texts, often being taken for granted.
Its close relatives, the so-called ‘dividend growth models’ (or ‘dividend discount
models’) of share prices, are also commonplace in the literature. See, for example,
Sharpe, Alexander and Bailey (1999, chap. 18). LeRoy (1989) surveys the
literature on asset price volatility, a subject treated thoroughly by Shiller in his
collection of essays on Market Volatility (1989). Much of the more recent applied
work is reviewed carefully by Campbell, Lo and MacKinlay (1997, chap. 7). The
noise trader approach received early stimulus from Black (1986); an overview
is provided by Shleifer and Summers (1990) and a detailed analysis by Shleifer
(2000).

The literature on extreme asset price fluctuations is large and varied. Taking a
historical viewpoint, Kindleberger’s Manias, Panics and Crashes (1978) provides
an entertaining and perceptive account. Less reliable, but equally entertaining, is
McKay (1980). More seriously, Garber (1990) offers some important insights.17

Several entries in The New Palgrave Dictionary of Money and Finance (Newman,
Milgate and Eatwell, 1992) provide admirably concise surveys from an analytical
perspective. Of particular interest are the entries on: asset price bubbles; crashes;
Ponzi games; rational bubbles; the South Sea Bubble; speculation; the stock
market crash of October 1929; and the stock market crash of October 1987.
Shiller (2000) provides one of the most carefully researched accounts of the Wall
Street boom of the late 1990s. Shiller (2002) and LeRoy (2004) explore the
determinants of bubbles in modern financial markets.
17 For a more detailed study, with the same conclusions, see Garber (2000).
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Appendix 10.1: Present values in continuous time

If time is measured continuously rather than in discrete unit intervals, the substance
of NPV relationships is the same even though appearances differ. The rate of
return on an asset is now defined as the proportional rate of change in its value at
each instant of time – that is, the ratio of its payoff to its market value, v
t�/p
t�.
Given that the payoff is the sum of the asset’s dividend and its capital gain or
loss, the instantaneous rate of return, �
t�, at time t (sometimes called the force
of interest) is given by

�
t�= d
t�+ ṗ
t�
p
t�

(10.21)

where v
t�= d
t�+ ṗ
t�, and ṗ
t� denotes the rate of change of the asset’s price
with respect to time – i.e. its time derivative. Equation (10.21) can be rearranged
as a linear ordinary differential equation:

ṗ
t�= �
t�p
t�−d
t� (10.22)

For the mathematical background and method of solution for this sort of equation,
see, for example, Sydsæter and Hammond (1995, chap. 21).

Suppose, provisionally, that �
t� = � is constant across time. This could
be so because the rate of interest is constant and, in the absence of arbitrage
opportunities, equal to the rate of return on the asset. With �
t� constant, the
solution of (10.22) can be written

p
t�=
∫ T

t
e−�
R−t�d
R�dR+pe−�
T−t� (10.23)

where p denotes the value of the asset at the end of its life, time T . The integral
replaces the summation operator in discrete time and e−�
R−t� is the discount
factor between today, t, and time R. Note carefully the distinction between d
R�,
the flow of dividends at time R, and dR, the differential operator defined in
conjunction with integration.

More generally, if �
t� is allowed to vary across time, the solution, (10.23), is
replaced with

p
t�=
∫ T

t
e−

∫ R
t �
��d�d
R�dR+pe−

∫ T
t �
��d� (10.24)

where the discount factor, e−
∫ R
t �
��d�, is analogous to the reciprocal of the product

of the ‘one plus the interest rate’ terms that appear in the discrete time version of
the NPV. Samuelson (1936–37) merits careful reading for details of this analysis.
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If the asset is infinitely lived, T →�, then (10.24) is typically replaced by the
so-called ‘improper’ integral:

p
t� =
∫ �

t
e−

∫ R
t �
��d�d
R�dR

or

p
t� =
∫ �

t
e−�
R−t�d
R�dR if � is constant (10.25)

In order for (10.25) to hold, notice that (a) the limit of the integral as T → �
must be well defined (i.e. conditions must be placed on the convergence of the
present value of the dividend stream), and (b) the solution for p
t� is not unique
unless some condition is imposed to rule out the presence of bubbles.

In a further generalization, much of modern financial analysis is conducted in
continuous time, allowing for random dividends and interest rates. This advanced
topic is not explored here.

Appendix 10.2: Infinitely lived assets: constant growth

If the dividend stream grows at a constant rate, g, the NPV relationship for an
infinitely lived asset takes the form

pt =
dt+1


1+ r� +

1+g�dt+1


1+ r�2 + 
1+g�2dt+1


1+ r�3 +· · ·

= dt+1


1+ r�

(
1+

(
1+g
1+ r

)
+
(

1+g
1+ r

)2

+· · ·
)

= dt+1


1+ r�

 1

1− 1+g
1+ r


= dt+1


r−g� if r > g (10.26)

If r ≤ g, pt is unbounded – i.e. formally undefined.

Appendix 10.3: The RNVR with multiple time periods

In chapter 7 it was shown that the absence of arbitrage opportunities is
equivalent to the risk-neutral valuation relationship. Applying the notation of
this chapter, the RNVR can be summarized as pt = E∗

t 9vt+1;/
1+ rt+1�, which
repeats the relevant expression in chapter 7 with the addition of subscripts to
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denote the time dimension implicit in the earlier discussion. Recall that the
∗ superscript appears as a reminder that the probabilities underlying the expec-
tation emerge as a consequence of the absence of arbitrage opportunities (and
need not correspond to any investor’s beliefs). Substituting the definition of the
payoff, vt+1 = dt+1+pt+1,

pt =
E∗
t 9dt+1+pt+1;


1+ rt+1�
(10.27)

Note that E∗
t 9·; has a time subscript: the state probabilities depend on the date at

which they are evaluated. Equation (10.27) holds for any date, t+ s, in the future
and hence can be written

pt+s =
E∗
t+s9dt+s+1+pt+s+1;


1+ rt+s+1�
for s � 0 (10.28)

By letting s take on the values s = 1(2( � � �, successive values for pt+s from
(10.28) can be substituted into (10.27). Repeated application of the law of
iterated expectations shows also that Et9Et+s9·;;= Et9·; (see chapter 3, page 79).

After making the substitutions using (10.28), and assuming the convergence of
the sum of expected discounted returns, (10.27) becomes

pt = E∗
t 9Nt+1dt+1+Nt+2dt+2 +· · ·+Nt+sdt+s+· · · ; (10.29)

where Nt+s = 9
1+ rt+1�
1+ rt+2� · · · 
1+ rt+s�;−1, for s� 1, so that Nt+s denotes
the discount factor for the time period t to date t+ s. Note that, if the individual
discount factors are all equal, then Nt+s = 
1+r�−s – that is, the common discount
factor expressed in terms of a constant interest rate.

If a behavioural interpretation is given to the condition (10.29), the probabilities
underlying the expectation correspond to investors’ (unanimous) beliefs and the
∗ superscript can be omitted. It is necessary to remember, however, that, to
make sense of the result, an additional assumption about individual behaviour –
typically, risk neutrality – must be invoked. Furthermore, in the NPV as expressed
by equation (10.10), pt =

∑�
i=1 Nt+iEtdt+i, the expectations operator is applied on

the assumption that the discount factors are non-random – i.e. the risk-free interest
rates, though not necessarily constant across time, are known with certainty at
date t.
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11

Intertemporal choice and the equity premium puzzle

Overview

While all financial decisions involve the future, in earlier chapters individual deci-
sion making has been limited to a single date. In chapter 10 several intertemporal
aspects of asset price determination were studied, but individual maximizing deci-
sions were neglected. In this chapter the optimizing choices of investors return to
the foreground. As a consequence, it is possible to address questions about how
investors’ portfolios are affected by the opportunity to change their asset holdings
in the future, or to consume some of their wealth, or to add to their investments
from a flow of saving.

Although the analysis of investment decisions becomes more complicated in
a multiperiod setting, the fundamental valuation relationship plays a central role
throughout. Recall that the FVR, introduced in chapter 4, takes the form

E9
1+ rj�H;= 1 (11.1)

where E9·; is an expectations operator reflecting the beliefs of the investor, rj
is the rate of return on asset j 
j = 1(2( � � � ( n�, and H is a random variable
that depends on each investor’s risk preferences. The FVR remains the focus
of attention in portfolio selection, and the inclusion of time subscripts makes
explicit the role of the dates at which decisions are made or information becomes
available. Most importantly, in the multiperiod choice setting, H can be given a
particular and precise interpretation as a stochastic discount factor.

Several new dimensions are added to the analysis when individual choice is
extended to intertemporal planning. One is to treat the investor as a consumer
whose decisions are ultimately made to optimize the allocation of consumption
among different goods and across time. Here, the accumulation of wealth is an
intermediate objective, a stepping stone towards the consumption of goods and
services; the optimal choice of consumption according to preferences is assumed
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to be the ultimate aim of individual decisions. Section 11.1 begins with a review
of a two-period world for which the future is certain. Simplistic though this must
seem, the principles generalize readily to a world with uncertainty, many assets
and long time horizons; the extensions are made in section 11.2.

The remainder of the chapter applies the ideas developed in sections 11.1 and
11.2. Section 11.3 studies the life cycle portfolio decisions of investors. The
famous equity premium puzzle is explored in section 11.4, while section 11.5
shows how the capital asset pricing model can be extended to allow for investors’
intertemporal planning.

11.1 Consumption and investment in a two-period world
with certainty

The allocation of consumption over time introduces, by implication, a saving
decision – a second way in which wealth can be accumulated or depleted (the
first way being via the return on assets). Each individual’s decisions can, in
principle, be extended to include labour supply and, consequently, a new source
of income (remuneration for employment) in addition to the return on assets.
The analysis is already complicated enough, however, and this chapter neglects
labour/leisure choices. Also, sources of income other than the return on assets
are ignored in this section. Finally, it is assumed that goods at each date can be
aggregated into a single ‘consumption’ good each unit of which has a price equal
to one unit of account (so that changes in the general price level are neglected).
Each of these assumptions can be relaxed without sacrificing the fundamental
insights of the analysis.

In elementary microeconomics the intertemporal consumption decision is
modelled by assuming that the individual chooses consumption Ct in the present
period and consumption Ct+1 one period into the future. The individual is assumed
to be ‘endowed’ with a given quantity of goods in each of the two periods, and,
inasmuch as Ct and Ct+1 differ from the endowments in t and t+1, the individual
saves or borrows between the present, t, and the future, t+1. Here it is assumed
that the endowment takes the form of wealth, Wt, available at the present, date
t. (Presumably, Wt was accumulated in the past – i.e. dates prior to t.) The
difference between wealth and current consumption, Wt−Ct, represents saving
(if positive) or borrowing (if negative).1

It is assumed provisionally that wealth is transferred between t and t+1 at a
given, certain interest rate, rt+1. Hence, wealth at the start of the next period,

1 Commonly, saving is defined as the excess of current income over current consumption. Here flows of
income other than returns on assets are assumed to be zero, so that ‘saving’ is used in an unconventional
way to refer to wealth net of current consumption.
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date t+1, equals Wt+1 = 
1+ rt+1�
Wt−Ct�. Given that all wealth is consumed
at t+1, the individual’s budget constraint is simply

Ct+1 = 
1+ rt+1�
Wt−Ct� (11.2)

In this framework each ‘date’, t, denotes the start of the time period, and consump-
tion in period t takes place between date t and date t+1. Also, the rate of return,
rt+1, corresponds to wealth accumulated in the period immediately preceding date
t+1. These timing conventions are maintained throughout.

The individual’s preferences are assumed to be defined over the planned
consumption bundle, Ct(Ct+1, with preferences represented by a utility function
U
Ct(Ct+1�. For little reason other than tractability and ease of interpretation, it
is assumed that the utility function takes the form

U
Ct(Ct+1�= u
Ct�+Nu
Ct+1� (11.3)

where N� 1 denotes a subjective discount factor, which reflects the rate at which
the individual weights future consumption relative to the present.2 Sometimes the
subjective trade-off between the present and the future is expressed by the ‘rate
of time preference’, defined as 
1/N�−1.

The function u
·� applies to consumption in just one time period and is some-
times called the ‘felicity function’ to distinguish it from U
·( ·�.3 It is assumed
to be the same for every time period, thus reinforcing the interpretation of N
as encapsulating a preference for consumption in the present compared with the
future. Marginal utility is assumed to be positive but diminishing: u′
·� > 0,
u′′
·� < 0, at each level of consumption.

Figure 11.1 depicts an optimum, at E, for the consumer. Just as in elementary
consumer theory, E denotes a tangency between the budget constraint (the line
joining Wt and 
1+ rt+1�Wt) and an indifference curve – the highest that can be
attained subject to the budget constraint.

For the purposes of this chapter the relevant implication of figure 11.1 is the
condition that defines the tangency – i.e. the necessary, or first-order, condition
for an interior maximum of utility.4 The condition plays such an important role
that it deserves explaining in words.

Suppose that the individual transfers one ‘small’ unit of wealth from the present
period to the next. This results in a loss of utility, equal to the marginal utility of
forgone consumption, in the present. By the next date wealth will have grown in

2 The N parameter should not be confused with discount factors derived from market interest rates. Here N
reflects an aspect of preferences, and only in rather special equilibria will N equal a market discount factor.

3 The distinction between the utility function and the felicity function is neglected except where ambiguity
may result.

4 By definition, an interior maximum excludes a corner solution at which one of the chosen consumption
levels is zero.
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Indifference curves

Fig. 11.1. Two-period consumption plans

The investor chooses between consumption ‘today’, Ct, and consump-
tion ‘tomorrow’, Ct+1. The choice is made to maximize utility subject
to a wealth constraint. Each indifference curve is drawn for a given
level of utility. The line joining Wt and 
1+ rt+1�Wt represents the
wealth constraint. Point E depicts the point of maximum utility, such
that consumption is allocated to reach the highest possible indifference
curve without violating the wealth constraint. The tangency at E defines
the necessary, or first-order, condition for a maximum of utility.

proportion to the interest rate. The increment to wealth yields a gain in utility –
viewed from the present – equal to one plus the interest rate times the discount
factor times the marginal utility next period. Unless the gain of utility (in the
future) equals the loss (in the present), utility cannot be at a maximum.

More formally, a necessary condition for an interior optimum is that


1+ rt+1�×N×u′
Ct+1� = u′
Ct�


1+ rt+1�N
u′
Ct+1�

u′
Ct�
= 1 (11.4)

The solution of (11.4) together with the budget constraint, (11.2), yields the utility
maximizing values, C∗

t (C
∗
t+1, for consumption, depicted by point E in figure 11.1.
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(The asterisk, ∗, superscript is normally omitted to keep the notation as uncluttered
as possible.)

Simple though it is, equation (11.4) provides a foundation for the analysis in
the remainder of this chapter. It is really nothing more than the FVR – equation
(11.1) in this very special setting. The next section extends the analysis to allow
for (a) uncertainty, (b) multiple assets and (c) long time horizons.

11.2 Uncertainty, multiple assets and long time horizons

11.2.1 Uncertainty

Uncertainty is typically introduced by assuming that at each date the individual
acts to maximize the expected value of utility; i.e. the axioms of the expected
utility hypothesis are assumed to be satisfied. Whether it is appropriate simply to
introduce uncertainty by assuming that individuals maximize the expected value of
the same objective function as under conditions of certainty is a debatable matter.
It is not a debate pursued here. Instead, the standard practice is followed, namely
to assume that the individual maximizes the expected value of U
Ct(Ct+1�.

If the EUH holds, the necessary condition (11.4) becomes

NEt

[

1+ rt+1�

u′
Ct+1�

u′
Ct�

]
= 1 (11.5)

where the expression Et9 · ; denotes the expectation conditional upon whatever
information the individual has at date t – that is, Et9 · ; ≡ E9 · �:t;, where :t

denotes the information set at date t.
Condition (11.5) is the FVR for the individual’s decision problem under uncer-

tainty.5 Compare (11.5) with (11.1) to see that, in this case,H = Nu′
Ct+1�/u
′
Ct�.

Admittedly, a single asset only is present here, and no formal justification has
been given for equation (11.5). Next, multiple assets are introduced and the FVR
is derived rather than merely asserted.

11.2.2 Multiple assets

In the presence of multiple assets the notation for the rate of return must distinguish
among assets. Thus, rt+1 is replaced with rj(t+1 where the subscript ‘j’ labels the
asset and j = 1(2( � � � ( n, for the n available assets. In the FVR all that needs to
be done is (a) to replace rt+1 with rj(t+1 and (b) to recognize that, at a portfolio

5 In view of the law of iterated expectations, it is permissible to take the ‘expectation of the expectation
conditional on information at date t’ and to write the FVR omitting the t subscript on the expectations
operator. Thus, the FVR holds regardless of whether the information available at t affects the investor’s
decision. This does not imply that the solution of the FVR is unaffected by the information, rather that the
algorithm, applied to whatever information is available, remains the same.
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optimum, the equation must hold for every asset, j = 1(2( � � � ( n. The reasoning
that justifies the FVR in this framework is as follows.

The FVR is a necessary (or first-order) condition for the maximization of
expected utility. Hence, it is appropriate to start at an optimum – i.e. a consump-
tion and portfolio plan that maximizes expected utility. Now suppose that a small
amount of wealth becomes available for investment in any of the assets.6 The
return on the additional investment generates some extra wealth for consumption
in the next period (at date t+1).

The increment to the expected utility of consumption next period must be the
same the holding of whichever asset is increased – otherwise, the investor could
not have started at an optimum. If the additional wealth at date t is invested in
asset j, then wealth at t+1 increases by 
1+rj(t+1�. Expected utility increases by
NEt9
1+ rj(t+1�u

′
Ct+1�;. (Notice that N appears because the investor evaluates
the present value, at t, of expected utility at t+1.)

This increment in expected utility must be the same for all assets:

NEt9
1+ rj(t+1�u
′
Ct+1�;= Et j = 1(2( � � � ( n (11.6)

where Et is not yet determined but does not have a j subscript – it is the same
for all assets.7

The next step is to eliminate Et. Suppose that, starting again from an optimum,
the investor shifts a small amount of consumption from date t to t+ 1. Given
that the starting point is an optimum, it follows that the present value of the gain
in expected utility at t+1 equals the loss of utility at t.8 Formally,

NEt9
1+ rj(t+1�u
′
Ct+1�;= u′
Ct� (11.7)

where the left-hand side is the present value of the increment in expected utility
at t+1 and the right-hand side is the loss of utility at t. Any asset j can be used
to evaluate the left-hand-side term. Thus, Et = u′
Ct�.

Now replace Et in (11.6) with u′
Ct�, and rearrange to obtain the FVR, in this
context sometimes called an Euler condition:

NEt9
1+ rj(t+1�u
′
Ct+1�; = u′
Ct�

Et

[

1+ rj(t+1�N

u′
Ct+1�

u′
Ct�

]
= 1 j = 1(2( � � � ( n (11.8)

6 The ‘small amount’ may seem vague but can be made precise: it is the limiting value obtained in differential
calculus needed to make sense of marginal concepts.

7 The expression is an equality because corner solutions, with a zero holding of one or more assets, are
ignored.

8 Notice that, from (11.6), it does not matter which asset is used to transfer the wealth from t to t+1, because
at an optimum all assets yield the same increment in expected utility.
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Normally, a shorthand symbol, Ht+1, is defined: Ht+1 ≡ Nu′
Ct+1�/u
′
Ct�. In

words: Ht+1 denotes the discounted value of the marginal rate of substitution
between consumption at t+ 1 and t. As previously mentioned, the random
variable, Ht+1, is often called the stochastic discount factor. Sometimes it is
called the intertemporal marginal rate of substitution, or the pricing kernel.

In principle, though rarely in practice, the equations in defining the investor’s
optimum can be solved for assets’ portfolio proportions and for the investor’s
consumption plan. More relevant than obtaining an explicit solution to (11.8) in
the following sections is to explore the implications of the FVR for investors’
decisions.

Just as for the EUH applied to the single-period portfolio selection problem
studied in chapter 5, few implications can be obtained without specifying the form
of the utility function, u
·�. A common assumption is that the utility function is
iso-elastic – i.e. has constant relative risk aversion, defined by the parameter C
(see page 94).9

Formally, the iso-elastic utility function can be expressed as

u
C�=
{
C1−C/
1−C� for C �= 1

ln C for C = 1
(11.9)

where C, a constant, is the coefficient of relative risk aversion. (The time subscript
on C, consumption, has been omitted to simplify the notation.) From (11.9) it
follows that u′
C�=C−C; the marginal utility of consumption, u′
C�, has constant
elasticity, equal to −C, the negative of the coefficient of relative risk aversion.
Thus, C is a measure of how rapidly marginal utility declines when consumption is
increased. The larger is C the more sensitive the investor’s utility is to fluctuations
in consumption, which are a consequence of fluctuations in wealth that occur in
response to random changes in assets’ returns.

The assumption of iso-elastic utility implies some important predictions about
investor behaviour.10

1. Consumption, Ct, at each date is proportional to wealth, Wt, although the factor of
proportionality generally differs from one date to another. For logarithmic utility,
C = 1, the factor of proportionality equals N−1 at each date.

9 In chapter 4, utility is expressed as a function of terminal wealth rather than consumption, because in that
setting it is as if the investor consumes the entire accumulated wealth once the assets’ pay-offs become
known. Chapter 4 ignores the investors’ decision to allocate consumption across time.

10 For proofs, see Samuelson (1969), the methods of which are outlined in appendix 11.1.
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2. The proportion of wealth invested in each asset is independent of the level of wealth.
The portfolio proportions generally differ across time but do not depend on the level
of wealth. Thus, given the CRRA assumption, if an individual invests 10 per cent of
his/her wealth in a particular asset when wealth equals $5000, then 10 per cent will
be invested in the asset if the individual’s wealth is $2000, or $500,000, or whatever.

These restrictions enable calculations to be made that would otherwise be difficult
or impossible. For that reason – not because there is any compelling reason
investors should behave according to CRRA utility – the iso-elastic form is widely
used.

11.2.3 Long time horizons

So far only two dates, t and t+1, have been considered. However, the reasoning
that resulted in the FVR (11.8) above is the same no matter the length of the
investor’s horizon. Hence, no changes are needed in (11.8); it holds for all
adjacent dates between which the investor allocates wealth.

If the investor’s horizon is T time periods (say, ‘years’) from the present,
t, then a function U
Ct(Ct+1( � � � (CT � is assumed to represent the investor’s
preferences – i.e. ‘life-time utility’. Moreover, the function is typically assumed
to take the special form

U
Ct(Ct+1( � � � (CT �= u
Ct�+Nu
Ct+1�+N2u
Ct+2�+· · ·+NT−tu
CT �
(11.10)

The investor is then assumed to choose a consumption and portfolio plan that
maximizes the expected value of lifetime utility – i.e. to maximize Et9U
 · �; –
where the t subscript is a reminder that the expectation is made on the basis
of beliefs at the current date, t. The investor implements the consumption and
portfolio plan for the current date. Then, as time moves forward to date t+ 1,
the investor re-optimizes on the basis of new information, looking forward from
t+1 to T , implements the plan for t+1, and so on.

In some formulations of the intertemporal optimization problem, the investor’s
preferences are modified to allow for bequests – i.e. passing wealth on to the
investor’s heirs. This is achieved by writing utility as

U
Ct(Ct+1( � � � (CT �= u
Ct�+Nu
Ct+1� + N2u
Ct+2�+· · ·
+ NT−tu
CT �+NT−t+1B
WT+1�

where B
·� denotes a bequest function that depends on the amount of wealth
bequeathed at the end of the investor’s life.

Even allowing for bequests in this way, the additive form for lifetime util-
ity neglects many potentially important aspects of human nature. For example,
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an investor’s behaviour may be influenced by consumption in previous peri-
ods, resulting in habit persistence. Also, quite apart from habit, preferences may
depend differently on consumption at different points in the life cycle (e.g. depend-
ing on whether there are children in the household).

Yet another complication is to allow for the investor to plan over the indefinite
future, so that T −→�. A complication – not studied here – is that, in this case,
the value of expected utility may be unbounded. Hence, additional assumptions
are required to ensure that the investor’s planning decisions are well defined
(i.e. that there exists a solution to the optimization problem).

Summary

The most important result of this section is that, in the presence of uncertainty,
multiple assets and a long time horizon, the FVR is expressed as (11.8), above.
A less informal treatment of intertemporal investment decision making appears
in appendix 11.1, which provides a derivation of the FVR.

11.3 Lifetime portfolio selection

While the previous section outlined the principles of intertemporal decision
making based on the EUH, it obtained no definite predictions about individual
behaviour. This section applies the principles to explore a particular issue, namely
how an investor’s portfolio composition changes with the passage of time through
the life cycle.

Suppose for simplicity that investors choose between just two assets, one risky –
say, a bundle of equities – and the other risk-free – say, a bond or other fixed-
interest security. Should a young investor (with a long time horizon) hold a
higher proportion of equities than an old investor (with a short time horizon)?
The conventional recommendation in financial wisdom replies with a confident
‘yes’. Why?

It is generally accepted that the average return on equity is higher than that
on bonds. Although equities are riskier than bonds, it is argued that over long
periods (say, twenty years or more) the ups and downs of the stock market tend to
‘even out’ the risks. Thus, young investors – facing long horizons – are advised
to hold a high proportion of equities in their portfolios, because ultimately the
payoff is higher than that from bonds in return for bearing little, if any, extra risk.
Older investors – facing shorter expected lifespans – are advised to hold a higher
proportion of bonds in order to avoid equities’ inherent risks.

Plausible though the recommendation seems, probing its underlying assump-
tions uncovers challenges to its validity. The challenges raise several questions
(addressed below). (a) Is it reasonable to suppose that equity returns become less
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variable over long horizons? (Section 11.3.1.) (b) Even if equities do have this
property, how sensitive is the portfolio decision to alternative investor objectives,
in particular to different risk preferences? (Section 11.3.2.) (c) How important
are transaction costs – i.e. the costs of buying or selling assets? (Section 11.3.3.)
(d) How does the existence of other sources of income, especially from employ-
ment, affect the composition of an investor’s optimal portfolio? (Section 11.3.4.)

11.3.1 Asset return distributions

The total rate of return over a period of, say, twenty years is approximately the
sum of the annual rates for each of the component years. If the annual rates of
return are identically and independently distributed (i.i.d.), then the expected total
return increases in proportion to the period’s length, while the standard deviation
of total return increases more slowly, in proportion to the square root of the
period’s length. This is the sense in which the average return on equities becomes
less variable as the horizon becomes longer.

If annual returns are not i.i.d., however, this result may no longer hold. For
example, suppose that equity returns are mean-reverting; i.e. sequences of above-
average returns are followed by sequences of below-average returns and vice
versa – a phenomenon for which there is some evidence. In this case, the
payoff on a portfolio could be enhanced by switching into equities before a spell
of above-average returns and into bonds immediately before a spell of below-
average returns. Such a strategy obviously requires foresight about when returns
will be above or below average – not merely that they do fluctuate in this way –
and a model that enables prediction of future returns conditional upon current
information (see below, section 11.4.4, for comments on the role of conditioning
information in forecasting equity returns).

Adapting portfolio strategies to exploit asset returns that are not i.i.d. may, thus,
introduce additional hazards, because the strategies depend upon knowledge of a
sort that is likely to be difficult to acquire and to use with any confidence. Despite
evidence for the fragility of the assumption that asset returns are i.i.d., no specific
alternative commands widespread support. For this reason, the i.i.d. assumption
is retained in what follows.

11.3.2 Investors’ objectives

Investors’ objectives express their preferences for bearing risks that follow from
their actions (i.e. portfolio choices). If the assumptions underlying the EUH are
deemed plausible, then the preferences are expressed in terms of each investor’s
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von Neumann–Morgenstern utility function.11 Even with the EUH, additional
assumptions about the utility function are needed to obtain definite predictions
about behaviour. The most common assumption was introduced above, namely
that the coefficient of relative risk aversion, C, is constant (CRRA utility), imply-
ing that the proportion of wealth invested in each asset is constant for different
levels of wealth – the higher is C the lower the proportion of wealth invested in
risky assets. This proportion does not, however, depend on the level of wealth.

Consequently, as wealth changes with age, investors with CRRA utility func-
tions do not change the share of their portfolios invested in risky equity relative
to safe bonds. (This result also requires the i.i.d. assumption on asset returns.)
Hence, the conventional recommendation outlined above is not implied in this
case; CRRA investors should not change the composition of their portfolios across
the life cycle.

Of course, investors could behave according to the EUH but need not have
CRRA utility functions. A utility function could be found that justifies almost
any relationship between wealth and portfolio shares. Thus, as noted above, the
EUH on its own does not allow definite predictions about portfolio composition
over the life cycle.

If the EUH is abandoned, an even greater range of patterns of behaviour can
be rationalized. The commonly encountered alternatives include the following.

1. Target wealth. The investor may seek to accumulate a target level of wealth at
a particular age – say, just before retirement. If the young investor believes that
the target can be achieved by investing in low-risk bonds, then an optimal portfolio
strategy would be to hold a high proportion of bonds early in life. Once the target
is attained, the investor can afford to take risks and place surplus wealth in equities.
Note that this is directly contrary to the conventional recommendation; in this scenario
the share of equities would increase, not decrease, with age. If – as perhaps seems
more likely – the rate of return on low-risk investments is not sufficient to reach the
target wealth level, then, once again, there are no clear predictions about how portfolio
shares should change over the life cycle.

2. Minimizing the risk of loss. The argument here highlights the ambiguities in the notion
of ‘risk’. The EUH provides just one way for investors to weigh up the alternative
outcomes.

But perhaps investors instead focus on some particular aspect of the asset return
distribution – for example, on the probability of making any loss at all. In this case,
if equity returns are i.i.d. then the longer the time horizon the smaller the probability
of loss, justifying a high share of equity investment when young – the conventional
recommendation, again. However, if ‘risk’ refers to the magnitude of any loss, a high

11 See chapter 4, especially section 4.2. With the investor consuming some part of wealth throughout the life
cycle, the von Neumann–Morgenstern utility function is assumed to depend on consumption at each date,
rather than terminal wealth.
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share of equities could result in the loss of a high proportion of the portfolio. The result
is now an investment strategy directly contrary to the conventional recommendation.

The rather trivial conclusion is that ambiguities in the meaning of risk imply
ambiguities about which portfolio policy to adopt.12

3. Behavioural alternatives. Doubts about the meaning of risk can be broadened to
encompass the concerns raised in the behavioural alternatives that focus on investor
psychology. The issues outlined in chapter 4, section 4.3, are relevant here. Adding
the time horizon to the agenda provides yet another opportunity for the complexities
of investor psychology to have an impact on decisions.

11.3.3 Transaction costs

So far in this section it has been assumed that the portfolio composition can be
changed, without cost, as many times as necessary over the horizon. The presence
of transaction costs implies that investors may choose to make changes in the
portfolio only infrequently, perhaps only once every several years.

Given infrequent changes in the portfolio and the perceived high returns on
equities over long periods, it might seem plausible that, the longer the horizon,
the higher the share of equities held in the portfolio. However, while equities
offer the prospect of high returns over long periods, they also bring the possibility
of high losses. Once again, the investor’s decision will depend on how risk is
assessed. More risk-averse investors are likely to hold a smaller proportion of
equities regardless of whether the portfolio’s composition is changed infrequently
as a result of transaction costs (or for other reasons).

11.3.4 The role of human capital

The most obvious source of income for an investor, other than from investments, is
from employment – i.e. labour income (wages or a salary). The net present value
of future labour income – human capital – can be interpreted as a component of the
investor’s total wealth, along with financial wealth (and other forms of wealth such
as real estate, an automobile or other consumer durable goods). Viewed in this
light, the composition of the financial wealth portfolio (the share of equities rela-
tive to bonds) could depend upon other aspects of each investor’s wealth-holding.

Whether or not financial portfolio composition is affected by an investor’s
human capital depends on the random pattern of returns from human capital. If
labour income is risky (perhaps because of the prospect of unemployment), this
could affect the investor’s willingness to bear financial risks, and consequently the
12 Kritzman and Rich (2002) explore the importance of risks associated with fluctuations in asset values

throughout the period of investment, not just at the investor’s horizon.
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proportion of equity could be lower than for an investor in a secure occupation.
Pursuing this reasoning, a young person in a secure job has high human wealth and
would tend to invest a high proportion of financial wealth in equities. An older
person, with little if any time remaining in employment, would have low human
wealth and tend to hold a higher share of financial wealth in low-risk bonds.

Potentially more important, however, is the correlation between the rate of
return on financial assets and labour income. The higher the correlation between
labour income and equity returns, the lower the proportion of equity that a
risk-averse young investor would tend to hold. As the investor becomes older,
human capital declines (fewer years of employment remain), the importance of the
correlation between labour income and equity returns declines, and the individual
would tend to hold a higher share of equities relative to bonds.

The magnitude and sign of the correlation between returns on equities and
human capital depends on the investor’s occupation. For some individuals it
could have an important impact on financial investments; for others it would be
irrelevant.

11.3.5 Summary

The conclusion of this section is negative: no generally applicable recommenda-
tion is available for how the composition of an investor’s portfolio should change
over his or her life cycle. The analysis does, however, point to the factors relevant
in formulating a recommendation, which are, most importantly, (a) the distribu-
tion across time of the returns on risky investments, (b) the investor’s attitude to
risk and (c) the correlation among risky asset streams, particularly between labour
income and the return on equities.

11.4 The equity premium puzzle and the risk-free rate puzzle

11.4.1 The puzzles

The equity premium puzzle (EPP), proposed by Mehra and Prescott (1985), stems
from an incompatibility between the model outlined in section 11.2 and observed
differences between the rates of return on equity and low-risk assets. The puzzle is
commonly stated by asserting that the equity premium – the excess of the average
return on equity above a low-risk rate – is too large to be explained by the intertem-
poral optimization model of section 11.2. The EPP is a quantitative puzzle, in
that the model predicts a positive premium but smaller than commonly observed.

Accepting that the measurements are accurate, it is surely the model that is at
fault (because it predicts too low an equity premium), not financial markets for
generating the wrong observations. Table 11.1 summarizes the evidence.
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Table 11.1. Estimates of the equity premium

Equity Low-risk Equity
Country Time period return(%) return(%) premium(%)

United States 1802–1998 7.0 2.9 4.1
United States 1889–2000 7.9 1.0 6.9
United States 1926–2000 8.7 0.7 8.0
United States 1947–2000 8.4 0.6 7.8
United Kingdom 1947–1999 5.7 1.1 4.6
Japan 1970–1999 4.7 1.4 3.3
Germany 1978–1997 9.8 3.2 6.6
France 1973–1998 9.0 2.7 6.3

Source: Mehra (2003). The reported measures are compound, or geometric,
annual percentage rates of return over the given time periods. The equity return is
an estimate of the overall market rate. The low-risk rate is the return on bonds or
bills, intended to approximate a ‘risk-free’ rate. The rates have been corrected for
inflation and, hence, should be interpreted as ‘real’.

For the United States at least, average returns on stocks (equity) have averaged
over 7 per cent for long intervals since the early 1800s. What seems to have made
the US equity premium high since the 1920s is a low, risk-free real rate of return
(less than 3 per cent, and by some measures less than 1 per cent). The equity
premium in other countries is not so consistently high as in the United States but
is nonetheless still of a magnitude that merits investigation.

A second puzzle, the risk-free rate puzzle (RFRP), follows immediately from
the evidence in table 11.1. According to the RFRP, the reported risk-free rate
is too low to be compatible with the model given the observed rate of growth
in consumption, Ct. The model predicts that, with such a low risk-free rate,
consumers should have saved less and consumption should have grown more
rapidly. Given that both the EPP and RFRP are so closely related, they are
studied together.

11.4.2 EPP: theory and evidence

Three specific assumptions are typically invoked in studies of the EPP.

1. Beliefs and preferences. Every investor is assumed to have preferences of the form
assumed in section 11.2, with an iso-elastic utility function, u
C� = C1−C/
1−C�.
Differentiation and substitution intoH = Nu′
Ct+1�/u

′
Ct� results inH = N
Ct+1/Ct�
−C

(where, again, the time subscript on H is omitted for simplicity).
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Although all investors may act as if they have iso-elastic utility, this does not in itself
imply that H is the same for everyone, for there may exist differences across investors
in wealth and other sources of income as well as the parameter C.13 A multiplicity
of H values would make the theory difficult to apply. Consequently, some way of
justifying a common, uniqueH is needed. One approach is to assume that investors are
identical in every respect so that the analysis applies to a ‘representative individual’.
This very restrictive condition can be relaxed by assuming instead that markets are
‘complete’, as follows.

2. Complete markets. Markets are complete in the sense introduced in chapter 4, when
it is as if, for each state, there exists an asset with a payoff of one unit of wealth
if that state occurs and zero if any other state occurs.14 This does not mean that
uncertainty has evaporated, but can be interpreted as asserting that every risk can be
insured: every state of nature has its price. Armed with this assumption it is possible
to demonstrate that the stochastic discount factor is the same for all investors – i.e. H
is unique. (Chapter 4, appendix 4.2, contains a proof.)

The assumption of complete markets may seem too far-fetched to make sense,
though this is a matter of debate among researchers. In any case, it plays a role by
identifying a benchmark for which H is unique, without requiring the arguably more
unrealistic assumption that investors are identical.

3. Frictionless markets. This assumption – that transaction costs are zero and that there
are no institutional constraints on asset trades – is implicit in all the analysis. It is
made explicit now in order to highlight it as a potential culprit for the failure of the
model to predict the observed equity premium.

The EPP can be exposed by manipulating the FVR, (11.1):

E
[

1+ rj�H

]= 1 (11.11)

Choose two assets, equity, with rate of return re and bonds15 with rate of return,
rb. Hence

E9
1+ re�H; = 1

E9
1+ rb�H; = 1 (11.12)

E9
re− rb�H; = 0 (11.13)

13 Another potential source of diversity across investors is differences in beliefs. This can be avoided either
by assuming unanimity of beliefs or by assuming that the formal expectations operations that appear in
the derivations are taken over all investors’ beliefs, not merely over one, unanimously believed, set of
probabilities.

14 These so-called Arrow securities do not actually have to be traded. All that is needed is to assume that
investors could, in principle, create them by holding the appropriate portfolios of assets that do exist.

15 Although bonds are not normally entirely risk-free, their rates of return are used in calculating the equity
premium. In any case, as the derivation shows, it is not necessary to assume that the rate of return on bonds
is entirely risk-free. Invariably, the equity premium is measured and interpreted in ‘real’ terms, either by
adjusting both equity and bond returns for inflation or as the difference between two nominal rates (so that
the impact of inflation cancels out).
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Now, under the assumption of iso-elastic utility in the intertemporal consumption
and portfolio selection model, (11.13) becomes

E9
re− rb�
1+ c�−C;= 0 (11.14)

where c ≡ 
Ct+1/Ct�−1 denotes the rate of growth of consumption. Similarly,
(11.12) can be written

NE9
1+ rb�
1+ c�−C;= 1 (11.15)

Notice that N can be factored out of the expectation and eliminated from (11.14)
but not from (11.15).

The EPP asserts that the value of C needed to satisfy (11.14) in the data is much
larger than values of C estimated in other contexts (which focus on measuring
C as an index of risk aversion). While there is no consensus about the exact
magnitude of C obtained in these other models, many studies favour a value
less than three. This is much lower than estimates obtained from using sample
averages to represent expected returns, and the average rate of growth per capita
consumption for c, in (11.14). Kocherlakota (1996), for example, finds that a C
of at least 8.5 is needed to satisfy the sample variant of (11.14).16

A second way of expressing the EPP is in terms of the covariance between
equity returns and the rate of growth of per capita consumption. Appendix 11.2
shows that the equity premium can be approximated as

E9re;− r0 =
Ccov
re( c�
1−CE9c;

(11.16)

where the risk-free rate, r0, replaces rb – the difference is cosmetic because a
bond rate of return is almost always used to represent the risk-free rate.17

From this perspective, the EPP asserts that the covariance between the equity
returns and consumption growth for acceptable values of C is too high. Alter-
natively, for observed equity premia and acceptable values of C, the observed
covariance between equity returns and consumption growth is too low. It should
not be forgotten that these assertions follow from the assumptions enumer-
ated above. If these assumptions are called into doubt, then so also are the
assertions.

The RFRP is expressed via (11.15): NE9
1+ rb�
1+c�−C;= 1. Here the value
of N is relevant as well as C. It is typically assumed that N< 1: individuals tend to
value present consumption more highly than consumption in the future. In other
16 Kocherlakota (1996) uses data for the United States over the period 1889 to 1978. Over these years the

average annual, inflation-adjusted rate of return on equity was approximately 7 per cent, the average rate
of return on risk-free bonds was about 1 per cent and the average rate of growth of per capita consumption
was about 1.8 per cent.

17 A close relative of (11.16) is the ‘Hansen–Jagannathan lower bound’ for H , which appears in appendix 11.2,
(11.35), on page 277.
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words, it is commonly supposed that any consumer who faces a constant stream
of consumption over time would prefer to shift some of it from the future to the
present. Whether this is a plausible assumption is open to debate. However,
as Kocherlakota (1996) shows, the values of N and C estimated to satisfy both
(11.14) and (11.15) imply that N= 1�08, at least for his sample.

11.4.3 Assessing the evidence

In summary, the evidence supports:

(a) the equity premium puzzle: that investors tend to hold too high a proportion of
low-risk bonds relative to equities for plausible values of C; and

(b) the risk-free rate puzzle: that, given a high value of C, investors tend to transfer too
much wealth from the present to the future for plausible values of N.

Another, less dramatic, interpretation is that the evidence obtained by applying
(11.14) and (11.15) favours estimates of C and N higher than conventional wisdom
allows (i.e. higher than found in other studies). Yet another interpretation is that
(11.14) and (11.15) represent a flawed model; that is, the assumptions underlying
the model are open to doubt, at least in some respects.

How can the EPP and RFRP be resolved? Here are several possibilities.

1. Mismeasurement. The estimates of C and N could be spurious in the sense that they
are the result of incorrect inferences from the data.

Incorrect inferences can arise for a variety of technical reasons, but the most
important is perhaps that the estimates rely on one historical sample of data, essentially
from the late nineteenth century to the present. While this may seem a long period
and while empirical studies have been made for several countries, doubts have been
raised about whether reliable estimates of the parameters are obtained. (See below,
section 11.4.4, for additional remarks about measurement issues.)

2. Inappropriate comparisons. Suppose that the estimates of C and N from (11.14) and
(11.15) are reasonably accurate. It could be that the values obtained from other,
non-financial applications are misleading. From this perspective, it is argued that the
estimates of N and C – often obtained informally – are too low. While this is possible,
doubts about the reliability of parameter estimates in EPP and RFRP studies suggest
that it would probably be rash to resolve the puzzles simply by dismissing estimates
from other applications.

3. Faulty model. If the model’s assumptions are flawed, then its predictions are likely
to be inconsistent with the evidence, given values of C and N that are considered
reasonable. For example, in the framework outlined above, the C parameter plays
a dual role: it represents preferences with respect to both risk aversion and the
intertemporal substitution of consumption. Relaxing the rigid link between the two
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would make the model compatible with a broader range of behaviour and thus offer
some prospect of resolving the puzzles.

Intensive research efforts have been devoted to exploring different specifications
of the model outlined above. Each of the three main assumptions – preferences,
complete markets and frictionless markets – has been scrutinized to see whether
it can be held responsible for the puzzles. While many studies claim to resolve,
at least partially, the EPP and RFRP, a consensus view has yet to emerge. (See
Kocherlakota, 1996, for a survey of results obtained by modifying the model’s
assumptions.)

4. Flawed individual behaviour. Investors do not behave as they are supposed to. It
is tempting, from the literature on the puzzles, to form the view that individuals’
preferences or beliefs – and hence their decisions – are at fault, not the model. Such
an interpretation may be naïve, though it is not unusual to associate the model of
sections 11.2 and 11.5 as representing one variety of ‘market efficiency’. Hence, the
evidence could be understood to imply that investors are irrational or misbehave in
some way. Such a conclusion should be treated with caution. For the model relies
on assumptions that, even when relaxed in the ways outlined above, may be too
restrictive to encompass rational behaviour.

11.4.4 Forecasting the equity premium

The discussion of the EPP so far has explored why the observed equity premium
appears to be incompatible with the intertemporal optimizing model of investor
behaviour. In this context, the model generates predictions about the magnitude
of the unconditional expectation of the equity premium. Averages of realized
asset returns are then constructed to estimate the unconditional expectation, with
the results described above.

A different approach focuses on estimating the conditional equity premium –
i.e. the equity premium conditional upon information available to investors when
the expectation is formed. Such estimates tend to be ‘forward-looking’ and hence
are sometimes referred to as ‘ex ante’ measures or forecasts. From this perspec-
tive, estimates of the unconditional equity premium are ‘ex post’ measures –
although both estimates are typically computed using the same historical data.

In order to construct conditional estimates, it is necessary to postulate a model
from which the relationship between the expected premium and available infor-
mation can be derived. For this purpose, consider the simplest variant of the
‘dividend growth models’ (see chapter 10, pages 227 and 235):

re =
d

p
+g (11.17)
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where, rather imprecisely, re denotes the future rate of return on equity, d/p is the
current ratio of the dividend to the equity price and g denotes the future growth
rate of dividends. Here, the ‘future’ could refer to a year or several years beyond
the present.

The equity premium, re− r0, can now be forecast as the sum of the forecasts of
d/p and g, minus the risk-free rate, r0.

18 If forecasts are made for the immediate
future, r0 is typically approximated with an index of currently observed interest
rates (e.g. a short-term government bond or bill rate). The dividend/price ratio,
d/p, is commonly assumed to be stationary, even though its components, d and
p, may well exhibit non-stationarity in the form of time trends. Hence, forecasts
of d/p can be set equal to averages of values observed immediately prior to the
forecast period. Similarly, forecasts of the growth rate, g, are often set equal to
averages of recently observed dividend growth rates, although other indexes, such
as the rate of growth of corporate earnings, are sometimes used instead.

All these assumptions can be problematical in practice, for the future has an
irritating propensity to diverge from extrapolations of the present. It is precisely
when fluctuations (in stock prices or whatever) are imminent that the present is
likely to be an unreliable guide to the future. Even so, crude estimates of the
ex ante or conditional equity premium constructed in this way deserve comparison
with measures of its ex post counterpart. For example, when a stock market boom
nears its peak, as it did in early 2000, p will have increased significantly – the
ex post equity premium is high. But, if (as is common) dividends have increased
less rapidly, d/p will be low and forecasts of dividend growth may be more
modest than recently observed appreciations in stock prices. Consequently, the
ex ante equity premium is lower than the ex post premium. Conversely, after
prolonged falls in equity prices, d/p may be relatively high and g may remain
stable, such that the ex ante equity premium exceeds its ex post counterpart.

Comparisons between ex ante and ex post measures of the equity premium
are fragile in the sense that ex ante values necessarily depend on – and may
be sensitive to – the assumptions of the model from which the forecasts are
generated. Although perhaps less problematical, the estimation of the ex post
or unconditional equity premium using a sample average of historical data may
not withstand close scrutiny. It may, for instance, be reasonable to assume that
models of the unconditional equity premium should permit changes in expected
returns on equity, for example as a consequence of technological advance, or a
discrete ‘regime shift’, in which ‘true’ (i.e. model-based predictions of) equity
returns change over time. In such circumstances, the sample averages of the

18 As remarked in footnote 15, above, adjustments are made to remove the effect of economy-wide inflation.
It is also worth noting that an estimate of the ex post equity premium can be obtained by replacing g with
the realized rate of change in equity prices during the sample period.
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realized equity premium require adjustment to allow for changes in the underlying
expected equity return over the sample period.

Clearly, there is ample scope for controversy about the size of the equity
premium – and hence about whether the EPP is a genuine puzzle. For example,
it can be (and has been) argued that realized equity premia in the second half of
the twentieth century (see table 11.1) are greater than estimates of ex ante premia
obtained from data on dividends or earnings. One possible inference is that the
ex post equity premium has been overestimated. Another is that the ex ante
estimates are unreliable, perhaps because the forecasting models on which they
rest are at fault. A third is that both estimates are accurate but investors’ forecasts
were systematically in error throughout the sample period. There is no consensus
about which inference is correct, although the third – persistent expectational
errors – perhaps warrants least respect.

Why should these potentially conflicting inferences command attention? Partly
because they are relevant for the EPP. But, while the EPP may appear to be merely
an academic exercise, its resolution has implications for the optimal allocation of
investments between equities and bonds. If the equity premium is, say, 2 per cent
rather than 6 per cent, this could have a significant impact on the composition of
investors’ portfolios.

11.5 Intertemporal capital asset pricing models

While the intertemporal consumption and portfolio selection model can be used
to study problems such as the equity premium puzzle, it can also be deployed to
build asset pricing models of the sort studied in chapters 6 and 8. The CAPM
discussed in those chapters involved a theory of investor behaviour (the mean-
variance model), together with assumptions about financial markets (homogeneous
beliefs about future returns, and an equilibrium of supply and demand for each
asset).

The purpose of this section is much the same as chapters 6 and 8, but it
uses the multiperiod framework outlined in section 11.2 as the model of investor
behaviour. What emerges is the consumption capital asset pricing model. There
are, in fact, several varieties of the CCAPM, and, in addition, other sorts
of intertemporal capital asset pricing models as well. Two of these deserve
mention.

1. The CAPM when each investor has a terminal wealth objective. In this model
investors choose portfolios to maximize a mean-variance objective at the horizon
date, T – i.e. allowing portfolios to be revised at each date t to T−1, but not allowing
any of the accumulated wealth to be consumed along the way. Now it is possible
to ask whether the static CAPM (see chapter 6) still holds for each separate period.
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The answer is a cautious, rather equivocal, ‘yes’ – it does hold but only under
restrictive conditions. In particular, if (a) each investor has a mean-variance objective
(quadratic terminal preferences) and (b) rates of return are distributed independently
across time, then the CAPM continues to hold – even though investors may have
different time horizons. The CAPM also holds if returns are Normally distributed
and, once again, distributed independently across time.19

2. The intertemporal CAPM. In this approach it is assumed that there exists a limited
number of ‘state variables’ (e.g. technology, employment income, the weather) that
are correlated with assets’ rates of return. Then, using a framework similar in spirit
to that of the previous section, it is possible to derive predictions similar to those of
the multifactor models introduced in chapter 8.

The ICAPM is typically constructed under the assumption that portfolio and
consumption decisions are made in continuous time. This being so, it can be shown
that the CCAPM emerges as a special case of the ICAPM. The mathematics of contin-
uous time stochastic processes are too advanced to be presented here, and, instead, the
CCAPM is introduced in terms of the simpler model of investor behaviour in discrete
time.

Following tedious algebraic manipulations, the FVR, E9
1+ rj�H;= 1, can be
written in the form


j−
0 = KH�jH j = 1(2( � � � ( n (11.18)

an expression that bears a striking resemblance to the static, one-period CAPM,
prediction, 
j − r0 = 

M − r0��j . (See appendix 11.3 for the derivation of
(11.18), and chapter 6 for the static CAPM.) In (11.18) the symbols are interpreted
as follows:


j = the expected rate of return on asset j, E9rj;;
�jH ≡ cov
rj(H�/var
H�: the beta-coefficient between j and H ;

0 = the expected return on an asset with zero beta-coefficient with H –

i.e. �0H = 0; and
KH = a number, the same for all assets.

Equation (11.18) can be interpreted similarly to that for the CAPM. It states
that the ‘excess return’ on each asset is proportional to its beta-coefficient (where
the beta-coefficient is now defined for the asset’s rate of return and the stochastic
discount factor, H). Its distinctive features are these.

1. The excess expected return, 
j−
0, is defined in terms of the expected rate of return
on a zero-beta asset, or portfolio. This asset plays the same role as the zero-beta
portfolio in the ‘Black CAPM’. In the CCAPM, however, the ‘zero-beta’ corresponds

19 Levy and Samuelson (1992) present a formal justification for these conclusions, together with an analysis
of other conditions that result in the CAPM when investors plan over long horizons.
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to H , rather than the rate of return on the market portfolio. That is, suppose that
the rate of return on the asset in question is r0, then �0H ≡ cov
r0(H�/var
H� = 0
is equivalent to cov
r0(H� = 0 – the rate of return r0 is uncorrelated with H . The
symbol r0 – normally reserved for the risk-free asset – has been chosen deliberately
because, if a risk-free asset exists, it would certainly have a zero beta-coefficient (with
respect to H , or anything else).

2. In the CCAPM, KH replaces 

M −
0�, the excess expected return on the market
portfolio. The actual value of KH is not especially interesting (it is derived in
appendix 11.3). But KH is not the same as in the CAPM, because H need not
be the rate of return on any portfolio. It can be shown that, if there exists an asset
(such as the market portfolio) the rate of return on which has a correlation coefficient
of +1 with H , then (11.18) can be written in the CAPM form.20 In this sense, the
CCAPM is a generalization of the CAPM. Whether it is a very helpful generalization
is another matter.

Given the definition of �jH , it is possible to construct – just as with the CAPM –
a regression model for each rj and H :

rj = GjH +�jHH+�j j = 1(2( � � � ( n (11.19)

where GjH =
j−�jHE9H; and �j is an unobserved random variable with standard
properties: E9�j; = 0, E9�j�H; = 0.21 By construction of the regression model,
�jH = cov
rj(H�/var
H�, as required.

The main limitation of the CCAPM as expressed by (11.18) is immediately
apparent: H , the stochastic discount factor, is a purely subjective reflection of
preferences and can differ from one investor to another. Without additional
restrictions on H , the model is simply too general.

The commonest refinement of the CCAPM is to replace H with the (propor-
tional) rate of growth of aggregate (economy-wide) consumption. Indeed, the
model is sometimes defined this way. This specialization comes about by recog-
nizing that H depends on consumption – here, at last, the intertemporal model of
section 11.2 appears – and by approximating H with H ≈ 1−Cc, where c is the
rate of growth of consumption and C, is the (constant) coefficient of relative risk
aversion (see equation (11.9) on page 256). Appendix 11.3 provides a formal
explanation of why the approximation makes sense.

20 This assertion is not hard to prove because, if H has a correlation coefficient equal to +1 with any random
variable x, then H can be written as a linear function of x. Substitution in the definitions underlying (11.18)
then proves the result.

21 It is worth noting that the regression model would take the same form if rj were replaced by the excess
return, rj− r0. The �jH coefficient is unchanged because, by construction, being risk-free, r0 is uncorrelated
with H .



272 The economics of financial markets

As already noted, H may differ across investors. Thus, in general, the model
does not apply to c as defined because the rate of growth of consumption may
differ across investors. Conditions implying that H is unique – i.e. the same for
all investors – were outlined above in the context of the equity premium puzzle
(section 11.4). These conditions are assumed to hold here also.

If H is replaced with c, it is possible to rewrite the CCAPM equation, 
j−
0 =
KH�jH , as


j−
0 = Kc�jc j = 1(2( � � � ( n (11.20)

where �jc = cov
rj( c�/var
c� and Kc, as before, is a number that is the same for
all assets. With identical reasoning as for H , a regression model for rj and c can
be constructed:

rj = Gjc+�jcc+�j j = 1(2( � � � ( n (11.21)

where Gjc = 
j −�jcE9c; and �j is assumed to have the same properties as in
(11.18).

Equations (11.20) and (11.21) are at the heart of the CCAPM. They show that
the CCAPM can be interpreted much like the static CAPM but with the rate of
growth of consumption, c, replacing the rate of return on the market portfolio, rM .
Alternatively, (11.21) can be viewed as a factor model with c as one of the factors.
The two interpretations are complementary, not incompatible. Furthermore, as
already hinted, the CCAPM can be placed within the context of the ICAPM; the
latter includes a wider range of factors along with c in (11.21).

Empirical tests of the CCAPM can be formulated in the same way as for the
CAPM, with observations on c replacing those on rM . Similarly, the ICAPM can
justify the introduction of additional factors in the context of multifactor models
(see chapter 9).

Much as for the static CAPM, the evidence on the CCAPM is equivocal and
certainly not entirely supportive. In particular, the covariance between rates of
return and the rate of growth in consumption (reflected in estimates of �jc) tend
to be lower than predicted. This result is just another way of expressing the
observations at the core of the equity premium puzzle.

Summary

The multiperiod consumption and portfolio planning model of individual
behaviour is used as a building block for several models of asset prices. Most
generally, the models imply a linear relationship between (a) the expected rate
of return on each asset in excess of the expected return on a zero-beta asset and
(b) the asset’s beta-coefficient (defined using the stochastic discount factor, not
the rate of return on the market portfolio). Given that the stochastic discount
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factor, H , is unobserved, it is usually replaced by the rate of growth of aggregate
consumption, though, in principle, it could be replaced by any variable with which
H has a perfect positive correlation.

11.6 Summary

This chapter has shown how the FVR condition for optimal portfolio selection
can be interpreted when investors make consumption and investment decisions in
an intertemporal setting. The main implications are as follows.

1. Under restrictive but commonly made assumptions about intertemporal preferences,
it is possible to reduce multiperiod planning to a sequence of one-period decision
problems.

2. When investors plan to consume during each period of time, the FVR implies the exis-
tence of a stochastic discount factor that depends on the investor’s level of consumption
at adjacent dates.

3. The conventional financial wisdom – that young investors should hold a higher propor-
tion of their wealth in (risky) equities relative to (safe) bonds than older investors –
should be treated with caution. While not necessarily wrong, the basis of the advice
is less secure than initially appears.

4. The equity premium puzzle and the risk-free rate puzzle highlight evidence incom-
patible with the intertemporal optimizing model. Attempts to resolve the puzzles
by modifying the assumptions underlying the model have been only partially
successful.

5. The consumption CAPM is derived from the intertemporal consumption and portfolio
selection model. In the CCAPM, the rate of growth of consumption plays a role
analogous to the rate of return on the market portfolio in the static CAPM.

Further reading

Important though they are, the topics studied in this chapter have received
extensive textbook treatment only at an advanced level. Access to the subject
matter is probably most easily motivated via the equity premium puzzle, for
which Kocherlakota (1996) and Siegel and Thaler (1997) provide illuminating
entry points. The more recent controversies are well covered by Jagannathan,
McGrattan and Scherbina (2000), Constantinides (2002), Fama and French (2002)
and Mehra (2003). Also worth consulting is the summary in Lengwiler (2004,
sect. 7.2). Mehra and Prescott (2003) offer a comprehensive survey of all the
major contributions.

Multiperiod portfolio decisions are studied by Markowitz (1987, chap. 3).
Formidable and dated though it may appear, the paper by Samuelson (1969)



274 The economics of financial markets

remains among the more accessible expositions that integrate multiperiod portfo-
lio and consumption decisions; it contains many useful insights, and repays careful
study. A thorough investigation of long-term portfolio decisions is presented by
Campbell and Viceira (2002).

Cochrane’s advanced text, Asset Pricing (2001), develops the entire theory of
finance based on the stochastic discount factor, together with empirical appli-
cations. Chapter 21 focuses explicitly on the equity premium puzzle. At a
similarly advanced level, Campbell, Lo and MacKinlay (1997, chap. 8) present
a concise survey of the literature written from the perspective of applied
econometrics.

Appendix 11.1: Intertemporal consumption and portfolio selection

This appendix studies the intertemporal planning of consumption and portfolio
selection, following the approach introduced in Samuelson (1969). The analysis
relies on the standard dynamic programming device of reducing the intertemporal
optimization problem to a sequence of single-period problems.

The investor is assumed to choose a consumption and portfolio plan to maximize
the expected value of a von Neumann–Morgenstern utility function of the form
given in expression (11.10), on page 257, with horizon at date T . At each date
the investor looks forward exactly one period, starting from the penultimate date
T −1, the solution for which enables optimization at T −2, and so on back to the
present, date t.

At date T−1 there is one period remaining and the investor solves the following
problem:

choose CT−1 and aT−1 to

maximize u
CT−1�+ET−19u
WT�;

where WT = 
WT−1−CT−1�
1+ rP(T �
rP(T−1 =

∑
j
aj(T−1rj(T and

∑
j
aj(T−1 = 1

Note that aT−1 is the vector shorthand for the list of asset proportions, aj(T−1,
chosen at date T −1. The range of j is j = 1(2( � � � ( n if all assets are risky, and
j = 0(1(2( � � � ( n if a risk-free asset, 0, is available.

The maximized value of lifetime utility as of date T −1 is given by

JT−1
WT−1�≡ max
CT−1(aT−1

<u
CT−1�+NET−19u
WT�;= (11.22)
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remembering that WT = 
WT−1−CT−1�
1+ rP(T �. Using the same reasoning that
yields (11.22), the maximized value of utility viewed from any date t+ i can be
written

Jt+i
Wt+i�≡ max
Ct+i(at+i

<u
Ct+i�+NEt+i9Jt+i+1
Wt+i+1�;= (11.23)

for i= 0(1(2( � � � ( T − t−1, with Wt+i+1 = 
Wt+i−Ct+i�
1+ rP(t+i+1�.
For notational simplicity, consider the optimization problem for the current

date, t:

choose Ct and at to

maximize u
Ct�+Et9Jt+1
Wt+1�;

where Wt+1 = 
Wt−Ct�
1+ rP(t+1�

rP(t+1 =
∑

j
ajtrj(t+1 and

∑
j
ajt = 1

This problem can be studied by constructing the Lagrangian:

�= u
Ct�+NEt9Jt+1

Wt−Ct�
∑

j
ajt
1+ rj(t+1��;+Tt
1−

∑
j
ajt� (11.24)

where Tt is a Lagrange multiplier.
At a maximum, the partial derivative of � with respect to any asset proportion

must be zero at an interior optimum:

H�

Hajt
= N
Wt−Ct�Et9J ′t+1
Wt+1�
1+ rj(t+1�;−Tt = 0

NEt9J
′
t+1
Wt+1�
1+ rj(t+1�;−Et = 0 for Wt �= Ct (11.25)

where Et = Tt/
Wt−Ct�. Multiplying (11.25) by ajt and summing over j yields

NEt9J
′
t+1
Wt+1�
1+ rP(t+1�;−Et = 0 (11.26)

bearing in mind that
∑
j ajt = 1.

Also, at a maximum, the partial derivative of � with respect to consumption at
date t must be zero at an interior optimum:

H�

HCt
= u′
Ct�−NEt9J ′t+1
Wt+1�
1+ rP(t+1�;= 0 (11.27)

Therefore, combining (11.25), (11.26) and (11.27),

NEt9J
′
t+1
Wt+1�
1+ rj(t+1�;= u′
Ct� j = 1(2( � � � ( n (11.28)

In order to obtain the FVR, (11.8), it remains to establish that J ′t+1
Wt+1� =
u′
Ct+1�. This is an implication of the envelope theorem applied to (11.23) for
i = 1. In words: the increment to maximized utility at any date obtained from
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an increment of wealth must equal the marginal utility of consumption at that
date. Why? Because the increment in wealth could be immediately consumed,
providing an increment to maximized utility equal to the marginal utility of
consumption. This increment also equals the present value of the increment to
utility obtained from investing the increment in wealth (and thereby delaying
consumption to a later date); otherwise, the individual could not have been at a
utility maximum, as required by the definition of Jt+i
Wt+i�.

Appendix 11.2: Simplifying the FVR

This appendix presents derivations that simplify the FVR, especially in the context
of the equity premium puzzle. It also obtains a linear approximation for H in
terms of the rate of growth of consumption.

First, note that the following identities hold for any two random variables, X
and Y :

cov
X(Y� ≡ E9
X−E9X;�
Y −E9Y;�;

= E9XY;−E9X;E9Y;

E9XY; = cov
X(Y�+E9X;E9Y; (11.29)

Recall the FVR, E9
1+ rj�H; = 1 – a condition that holds for every asset in
the investor’s portfolio.22 Hence, for any two assets j and 0,

E9
1+ rj�H; = 1

E9
1+ r0�H; = 1 (11.30)

E9
rj− r0�H; = 0 (11.31)

Now apply (11.29) to (11.31) with X = 
rj− r0� and Y =H , to obtain

0 = cov
rj− r0(H�+E9rj− r0;E9H; (11.32)

In this book, r0 typically denotes the non-random rate of return on a risk-free
asset. By implication, r0 is uncorrelated with any random variable, and hence
cov
r0(H�= 0. But the zero-covariance property holds more generally – that is,
for any risky asset with a rate of return uncorrelated with H .23 Consequently,

22 The expectations, variances and covariances in what follow could (indeed, should) be conditioned on
information available at date t, at which investment decisions are taken. However, the expressions derived
for the conditional moments hold also for their unconditional counterparts. Therefore, because the issue of
timing is not the focus of attention here, and in order to avoid inessential notation, only the unconditional
operators appear in what follows.

23 Such an asset is often termed a zero-beta asset (or portfolio). Here, the ‘beta-coefficient’ is defined as
�0H ≡ cov
r0(H�/var
H�. The rationale for this definition becomes clearer in the context of the consumption
CAPM.
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cov
rj−r0(H�= cov
rj(H�. Notice also, from (11.30), that E9H;= 1/
1+E9r0;�,
or 
1+E9r0;�= 1/E9H;.

Applying the zero-covariance property to (11.32) and rearranging gives

E9rj;−E9r0;=−cov
rj(H�

E9H;
(11.33)

an expression that suggests an interpretation of the risk premium on an asset in
terms of the covariance of its rate of return with the stochastic discount factor, H .

Equation (11.33) is central to the analysis of asset price fluctuations from
the perspective of intertemporal choice models. One well-known variant of
(11.33) is the ‘Hansen–Jagannathan lower bound’24 for H , obtained as follows.
Let �jH denote the correlation coefficient between rj and H . By definition,
�jH�
rj��
H� = cov
rj(H�, where �
·� denotes the standard deviation of its
argument. Now eliminate cov
rj(H� from (11.33) and rearrange to give

E9rj;−E9r0;

�
rj�
=−�jH�
H�

E9H;
(11.34)

Now, because −1 ≤ �jH ≤+1,∣∣∣∣E9rj;−E9r0;

�
rj�

∣∣∣∣� �
H�

E9H;

Hansen–Jagannathan lower bound on H� (11.35)

The left-hand side of (11.35) is the Sharpe ratio for asset j (or any portfolio,
such as that comprising all equities). Depending on the definition of H , it may be
possible to estimate the right-hand side, �
H�/E9H;, and hence test an implication
of the model.

Nothing in the derivation so far requires H to take any particular form.
Equations (11.31) and (11.33), for instance, hold for any FVR. In order to
obtain a simpler interpretation for the risk premium, it is helpful to assume
that H = N
Ct+1/Ct�

−C , as implied for the iso-elastic utility function (for which
u′
C�= C−C).

A further simplification is achieved by noting that the non-random N parameter
can be factored out of the expectations involving H . As a consequence, N can
be cancelled from the expressions that follow. To save making the cancellation
explicitly at each step, H is written as H = 
Ct+1/Ct�

−C in this appendix from
now on.

Define x ≡ Ct+1/Ct, and write H = f
x� where f
x� ≡ x−C . Also, note that
f ′
x�=−Cx−C−1. Now a Taylor series expansion about the point x= 1 is applied
to obtain a linear approximation for H as a function of c ≡ 
Ct+1/Ct�− 1, the

24 Named after the authors’ pioneering paper: Hansen and Jagannathan (1991).
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rate of growth of consumption.25 Retaining only the first two terms in the Taylor
series implies

H = f
x�

≈ f
1�+f ′
1�
x−1�

≈ 1+ 
−C�1−C−1
x−1�

≈ 1−C
(
Ct+1

Ct
−1

)
≈ 1−Cc (11.36)

Now, allowing the approximation to become a genuine equality, cov
rj(H� =
−Ccov
rj( c�, and the risk premium

E9rj;−E9r0;=−cov
rj(H�

E9H;
= Ccov
rj( c�

1−CE9c;
(11.37)

In equation (11.16), on page 265, rj is replaced by the rate of return on equity and
E9r0; is replaced by the risk-free rate of return, r0 (instead of the slightly more
general rate of return that satisfies the zero covariance condition outlined above).

Appendix 11.3: The consumption CAPM

The fundamental CCAPM predictions, 
j −
0 = KH�jH and 
j −
0 = Kc�jc,
follow immediately from the derivations in appendix 11.2.

Rearranging equation (11.33) gives

E9rj− r0;
cov
rj(H�

= −1
E9H;

E9rj− r0;
cov
rj(H�/var
H�

= −var
H�
E9H;

E9rj− r0;
�jH

= −var
H�
E9H;

E9rj;−E9r0; = KH�jH


j−
0 = KH�jH (11.38)

where KH ≡ −var
H�/E9H;(
j ≡ E9rj; and 
0 ≡ E9r0;. This establishes the
CCAPM as expressed by (11.18).

25 The time subscript, t+1, is omitted from ct+1 to avoid excessive notation.
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To obtain the CCAPM in terms of c, recall the approximation, (11.37),
and treat the approximation as an equality26: H = 1− Cc, so that E9H; =
1− CE9c;( cov
rj(H� = −Ccov
rj( c� and var
H� = C2var
c�. Hence, �jH =
−cov
rj( c�/
Cvar
H��. Substituting into (11.39), above, yields


j−
0 = KH�jH

=
(−var
H�

E9H;

)(
cov
rj(H�

var
H�

)
=
(−C2var
c�

1−CE9c;

)(−Ccov
rj( c�

C2var
c�

)
= Cvar
c�

1−CE9c;

cov
rj( c�

var
c�

= Kc�jc (11.39)

whereKc = Cvar
c�/
1−CE9c;�. This concludes the derivation of equation (11.20).

26 The N parameter has been omitted throughout because it cancels from the following derivations.
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12

Bond markets and fixed-interest securities

Overview

Among all the assets available to investors, bonds are accorded a special status.
Their distinctive characteristic is that bonds are low-risk assets. In some circum-
stances the risks can be ignored altogether. In others the risks can be quantified
with a precision that is not available for most other assets, especially stocks and
shares.

Consequently, the concept of the ‘yield’ on a bond can be more predictable,
less uncertain than for other assets. Also, bonds share characteristics that enable
them to be classified according to just a few dimensions, most importantly the
time to maturity and the sequence of payments (typically fixed in advance) made
in fulfilment of the bond contract.

Section 12.1 describes the main characteristics of bond contracts and outlines
some examples of the bonds commonly found in practice. Although zero-coupon
bonds are not among the commonest, they are key to an understanding of the links
among all bonds. Their properties are studied in section 12.2. The properties
of the more familiar coupon-paying bonds are studied in section 12.3, which
also introduces an index of the responsiveness of a bond’s price to its yield: the
Macaulay duration.

Only for those bonds that are openly traded will market prices be readily
observable. For others, including bonds that are traded infrequently (illiquid
bonds), ways need to be devised for ascribing notional market values. One such
method, suggested by the arbitrage principle, is discussed in section 12.4.

Although bonds are low-risk investments, typically some risks remain.
Section 12.5 outlines the various sorts of risk. Section 12.6 goes on to show
how the Macaulay duration can be applied to control the exposure of bond port-
folios to one sort of risk, namely the risk of bond price changes that occur as a
consequence of unforeseen yield fluctuations.

281
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Most of this chapter treats bond prices (and hence rates of return) as the outcome
of open market trading – i.e. of the balance between demand and supply. Another
approach is to view the theory as providing a method of valuing bonds that may
or may not be traded in open markets. In over-the-counter (OTC) markets it
is often the case that some bonds are not actively traded – their markets are
‘illiquid’; hence, the need for a method of valuation if a reliable market price is
not available. This is the subject of section 12.4.

The unit time period

While rates of return are conventionally measured at an annual rate, other rele-
vant time intervals need not coincide with a calendar year. (Recall chapter 1,
section 1.6.) In particular, returns may be compounded more or less frequently
than once per year, investors may have planning horizons longer or shorter than
a year, and they may take the opportunity to revise their decisions many or a few
times each year. For most of this chapter these distinctions are neglected. Unless
explicitly noted, it should be assumed that the unit time interval corresponds to
‘one year’. The complications that occur when it is necessary to consider intervals
of different length will be addressed as they arise.

12.1 What defines a bond?

The prototypical bond is a contract that commits the issuer to make a definite
sequence of payments until a specified terminal date. For example, the issuer
might promise to pay $100 per annum from the present until 30 June 2025, at
which time the contract will terminate with a lump sum payment of $1000.

An important characteristic of many bonds is that they are commonly bought
and sold in secondary markets. In this context, bonds are a special form of loan,
which is commonly an agreement between two parties (borrower and lender)
that is typically not traded with anyone else. Also, bonds are often long-lived;
e.g. twenty or more years from the date of issue is not uncommon.

While, in principle, bonds can be issued by anyone, in practice they are issued
by governments, their agencies (including supranational bodies, such as the World
Bank) and incorporated companies. For companies, bonds provide a way of
acquiring capital at a known cost, without sacrificing rights of control over the
company if the terms of the contract are fulfilled.

In the example above, 30 June 2025 is called the maturity date, the lump sum
of $1000 is called the face value (or ‘maturity value’, or ‘principal’) and the
sequence of $100 payments are known as coupons. Sometimes the bond would
be referred to as a ‘10% bond’, because $100 is 10 per cent of $1000. But, note
carefully, there is no particular reason to suppose that the rate of return on the
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bond – however measured – equals 10 per cent. Various ways of defining the rate
of return are described in the following sections. The remainder of this section
outlines some of the important characteristics that serve to differentiate one bond
from another.

Bonds can be, and often are, quite complex financial instruments, with all sorts
of provisions written into the formal contract – known as the bond’s indenture.1

Three important attributes have already been mentioned: the maturity date; the
face value; and the coupons. A fourth attribute, the rights conferred on bond-
holders in the event of the issuer’s default, may be omitted from the indenture
and resolved by litigation if a dispute arises. Alternatively, the rights may be –
partially, at least – specified in the contract.

About the face value there is little more to add, except to note that it can be set
equal to any convenient value (e.g. $100 or $1) so long as the bond’s coupons
and its price are scaled accordingly; i.e. the face value effectively defines the unit
of measurement for a bond.

The remaining three attributes of a bond deserve further elaboration.

12.1.1 Maturity (redemption) date

Let T denote the maturity date and let t denote the present date, ‘today’. Then
the ‘life’ or time to maturity of the bond, n, is simply n = T − t. The maturity
date may be fixed and finite, though it need not be. Other possibilities include
the following.

1. Callable bonds, which include provisions specifying conditions in which the issuer
can terminate the contract before T , typically by paying the face value of each bond
to its current owner. Rates of return on callable bonds can be analysed with the aid of
option price theory, for a callable bond is effectively a package of (a) a bond without
such a provision and (b) a call option held by the issuer, who has the right pay a
stated sum to terminate the contract according to the conditions stated in the bond’s
indenture (see chapter 18).

2. Convertible bonds, which allow holders to exchange the bond for another asset. For
example, a convertible bond indenture might specify that it is to be redeemed either
(a) in cash at face value or (b) with a unit of the issuer’s ordinary shares, at the
discretion of the holder. Alternatively, the indenture might stipulate that the holder
can convert the bond into shares over a specified period during the bond’s life.

Just as for a callable bond, a convertible bond can be interpreted as a bundle
comprising an inconvertible bond (i.e. without the conversion facility) and an option.

1 Originally, bond contracts were inscribed as documents that were torn in two, one piece held by the owner,
the other by the issuer. When the time arrived for an obligation on the bond to be met (e.g. repayment), the
issuer could confirm the legitimacy of the claim by matching the indents on the two halves of the document.
If they tallied, the claim was probably genuine.



284 The economics of financial markets

In this case, the bondholder owns the option – i.e. the discretion to act (make the
conversion).

3. Perpetuities, for which T →�. A perpetuity is a promise to make a coupon payment
every time period, indefinitely into the future. It is a special sort of annuity 2 – one
with no specified termination date.

The British government consol 3 is commonly treated as a perpetuity. This is not
strictly correct, because the government can redeem the bond (or convert it to another
security) at its discretion. Given that the coupon on most consols is £2.50 per £100 of
face value, only if the interest rate falls below 2.50 per cent is redemption likely to be
contemplated. Redemptions – more accurately, conversions to lower-coupon stock –
have, in fact, occurred in times of exceptionally low interest rates.4

4. Sinking funds, which oblige the issuer to redeem existing bonds over an extended
period of time, typically by the purchase of outstanding bonds at current market
prices.

12.1.2 Coupons

Denote the sequence of coupons by ct+1( ct+2( � � � ( cT per unit of the bond.5

Normally, the bond also repays its face value, m, at date T . Bonds that pay a
sequence of coupons together with the face value at maturity are sometimes called
‘balloons’.

The simplest, and most commonly encountered, bond is one for which the
coupons are constant: c( c( � � � ( c. As already noted, c is usually expressed as a
percentage of the face value, so that, for example, ‘21/2% consols’ pay £2.50 per
annum, for each £100 face value.

Timing of coupon payments

Although coupons are almost always expressed at annual rates, their payment is
commonly split into instalments, typically made at six-monthly intervals. For
example, a 5 per cent coupon means that five units of account (dollars, euros or
whatever) are promised each year on a bond with face value of 100 units. With
six-monthly instalments, 21/2 per cent of the face value is paid twice per year.
Between the dates at which coupons are paid, the price at which a bond is traded
is ‘dirty’, in the sense that the price reflects an element of accrued interest. It is

2 An annuity is a coupon-paying bond with face value equal to zero (i.e. m = 0); it provides a sequence of
payments, c, that terminates at a specified date (or when a specified event, such as the death of the annuitant,
occurs).

3 The label ‘consol’ is an abbreviation of ‘Consolidated Fund Stock’, first issued in the early 1750s.
4 Readers with long memories will recall the Goschen conversion of 1888, when British government stock

with a coupon rate of 3 per cent was reduced to 21/2% – see Palgrave’s Dictionary of Political Economy
(Higgs, 1894, Vol. I, pp. 404–5). Another conversion was made in the early 1930s.

5 Coupons acquired their name from the practice of issuing bonds with attached tickets – ‘coupons’ – that
holders would clip off on each stipulated date and present to the issuer in return for the amount due.
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possible to estimate the implied value of accrued interest and to subtract it from
the dirty price to obtain a clean price. In this chapter, all bond prices are assumed
clean – i.e. a correction has been made to eliminate the effect of interest accrued
since the last coupon payment.

Zero-coupon bonds

Also called ‘pure discount bonds’ or ‘bullet bonds’, zero-coupon bonds are those
for which c= 0. They pay a lump sum, the bond’s face value, at maturity. Zero-
coupon bonds play an important role in financial analysis, for reasons shortly to
be explained.

While zero-coupon bonds do exist (e.g. treasury bills, very short-term govern-
ment debt), they are less commonly issued than theory might suggest. Given their
importance in financial analysis, zero-coupon bonds are often created synthetically
as stripped bonds, or ‘strips’. To create a stripped bond, a financial intermediary
purchases a coupon-paying bond and ‘repackages’ it in the form of a sequence
of zero-coupon bonds, one for each coupon (each coupon of the underlying bond
becomes the face value of one of the stripped bonds) and one for the face value
paid at maturity. The trading of stripped government bonds has become active,
with official sanction and support, in several markets since the 1980s.

A coupon-paying bond can be viewed as a portfolio of zero-coupon bonds. For
example, a three-year bond, with face value $1000, promising to pay a coupon
of $40 every six months, can be treated as a portfolio of five zero-coupon bonds
each with face value $40, each maturing separately at six-month intervals, and
one three-year zero-coupon bond with face value $1040. Viewing coupon-paying
bonds from this perspective simplifies the analysis, which can otherwise prove
intractable.

Variable coupons

Rather than the promise of a constant coupon, the bond indenture might contain a
rule for calculating regular payments over the life of the bond. Examples include:
(a) floating-rate bonds, for which the coupon is linked to an observed interest
rate that varies across time; and (b) index-linked bonds, for which the coupon is
linked to a specified index of prices, such as the retail price index in Britain (see
chapter 13, section 13.2).

12.1.3 Default

In the event that the issuer defaults on any clause of the contract (e.g. by failing
to make a coupon payment), it is at the discretion of the bondholders to make
a legal claim on the issuer’s assets. Bond indentures sometimes include clauses
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that place restrictions on, or provide privileges for, parties to the contract.6 Here
are two examples.

1. The contract could give priority to some bonds over others with respect to their claims
on the issuer’s assets. For instance, senior debt contracts include provisions to the
effect that the issuer pledges not to take on other debt obligations that have a prior
claim on the issuer’s assets in the event of default. A hierarchy of debt can be built
up, with an array of subordinated bonds, the holders of which have no claim on the
issuer’s assets until the obligations to other nominated bondholders are met. The
courts of law are, of course, the arbiters for the dispersal of assets in the event of
default, but, subject to the ultimate judicial prerogative, there may be opportunities
for a bond issuer to designate priorities for some creditors relative to others.

2. A specific asset, or group of assets, may be identified as collateral for the bond. In
the case of collateralized bonds, the specified assets alone constitute security for the
bond (i.e. the holders have no other claim on the assets of the issuer).

In some cases, by specifying particular assets as collateral, an issuer may make
loans more marketable (transferable from one holder to another). This process can
lead to the securitization of loans. For instance, loans on real estate can be packaged
together and traded as bonds backed by the property that was mortgaged to obtain the
loan.

Bond rating agencies (e.g. Moody’s or Standard & Poor’s) make a living out of
appraising the prospects for bonds’ default. However, this important topic is not
pursued here; in the remainder of this chapter, except where explicitly noted, it
is assumed that default does not occur in any state of the world. In this sense, at
least, bonds are risk-free. Even in the absence of default, bonds are not entirely
free of risk, as explained below.

12.2 Zero-coupon bonds

12.2.1 Nominal zero-coupon bonds

Zero-coupon (pure discount) bonds play a pivotal role in bond market analysis.
The reason is simple: zero-coupon (ZC) bonds are much easier to analyse than
coupon-paying bonds. Any ZC bond can be specified with just two parameters:
its face value, m, and the date, T , at which the issuer pays m to the bond’s holder.
Unless explicitly indicated otherwise, ZC bonds are assumed to be nominal in the
sense that the redemption value is fixed in units of account – e.g. m= $100.

6 A bond covenant, appended to the indenture, might specify how conflicts between issuer and holder should
be resolved in the event of dispute, possibly by passing rights of corporate control to the bondholders. The
label ‘debentures’ encompasses a class of securities that include clauses allowing holders to obtain a stake
in the issuing company under certain conditions. For an entertaining discussion of the differences between
British and American usage in this and other respects, see The New Palgrave Dictionary of Money and
Finance (Newman, Milgate and Eatwell, 1992, Vol. II, pp. 102–3).
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It is usual to express the secondparameter as the time tomaturity,n≡ T− t, where
t denotes the present date. Thus, as of t = 2006, a ZC maturing in T = 2020 is a
‘fourteen-year’ 
n= 14� bond. In 2007 it becomes a thirteen-year bond, and so on.

In fact, only one parameter – the time to maturity – is needed to define a ZC
bond, because its price (market value) can be expressed as a proportion of m,
which is typically set at a factor of 100 (e.g. $1000 or $100,000). For this reason,
ZC bonds are described only as bonds with a given number of years to maturity
(e.g. ‘fourteen-year’ bonds). In what follows, however, a separate symbol, m, is
retained to denote the face value.

Let pn denote the market price today of an n-period ZC bond. Then the yield
to maturity, or spot yield, on this n-period ZC bond is defined as the constant
annual rate of return, yn, that would be received if the bond is held until maturity:

yn =
(
m

pn

)1/n

−1 (12.1)

Thus, a bond with face valuem= 100, four years to maturity, n= 4, and with price

p4 = 83 has a spot yield of approximately 4�77% ≈
(

100
83

)
1/4�
− 1 per annum

(the return being compounded once per year).
Equivalently, yn can be defined to satisfy

pn =
m


1+yn�n
(12.2)

In words: the spot yield on a ZC bond is the rate of return that equates its market
price to the net present value of its face value. (Appendix 12.1.3 outlines the
analogous expressions for continuously compounded yields.)

At each date there exists a sequence of spot yields y1( y2( � � � ( yn( � � � ( one for
each maturity. The spot yields are not necessarily equal. Indeed, analysis of the
relationship among them forms the subject matter of the term structure of interest
rates (see chapter 13).

Also, the prices (or yields) fluctuate over time. Strictly, the notation should
reflect this. However, except where ambiguity would ensue, additional notation
for the date is omitted in what follows.

The spot yield, yn, is the rate of return on the bond only if it is held to maturity.
If the investor’s holding period differs from n, the bond is risky because either:
(a) for a holding period less than n, the bond will be sold before maturity; or
(b) for a holding period greater than n, m will be reinvested at date T (when the
bond matures) for a subsequent return that is not known until T , or later.

Consider, for example, the holding period yield on an n-year bond over the
coming year. Let pn(t denote the price of an n-year bond today (date t) and
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pn−1(t+1 denote its price at t+ 1 (by which time the bond will have n− 1
years remaining to maturity). Then the one-year holding period yield is defined

as
pn−1(t+1

pn(t
− 1 (i.e. the capital gain, or loss, on the bond over the period in

question).
Except for bonds about to mature (i.e. such that p0(t+1 ≡ m) the future value

of the bond is uncertain: pn−1(t+1, for n > 1, depends on market conditions at
date t+1 in the future. Hence, holding period yields tend to be uncertain. In this
context, bonds are just like any other asset the future value of which is unknown.

The relationship between a ZC bond’s price and its spot yield is shown in
figure 12.1. (The subscripts have been omitted for simplicity; i.e. the curve
depicts the relationship between price and yield for a particular bond at a given
date.) Two properties of the relationship hold for all bonds: (a) the curve is
negatively sloped; and (b) it is convex from below. That is, (a) the higher the
yield, the lower the bond price, and (b) for successive increases in the yield,
the smaller are the reductions in price.7 Somewhat imprecisely, the convex
relationship between p and y is often called simply the bond’s ‘convexity’.

The motivation for studying a bond’s price as a function of its yield stems from
the recognition that bond yields are intimately related to one another and to the
risk-free interest rate (which can here be interpreted as the yield on a one-year
bond, y1). Suppose then – as is common – that central bank monetary policy
controls the risk-free rate. The policy-determined risk-free rate then impacts upon
bond yields and, hence, their prices. In the simplest (and unrealistic) case, if the
yields on all bonds equal the risk-free interest rate, then monetary policy directly
determines all bond prices. Realistic scenarios are more complex. Even so, the
impact is broadly similar: restrictive monetary policy (higher interest rates) is
associated with a fall in bond prices.

12.2.2 Real zero-coupon bonds

Consider a ZC bond the face value of which is protected against changes in the
price level of goods and services between its date of issue – say, t – and maturity,
T . The payoff at maturity of this real bond is then equal to m× zT/zt, where zt
is an index of the price level when the bond is issued and zT is the index value
when the bond matures at T . For example, suppose that m= $100, zt = 180 and
zT = 270. The price level increases by one-half, 
270−180�/180, over the life
of the bond; consequently, the payoff at maturity is $150.

7 These results can be demonstrated by differentiating expression (12.2) with respect to y (omitting the n
subscripts): dp/dy =−nm/
1+y�n+1 < 0, and d2p/dy2 = n
n+1�m/
1+y�n+2 > 0.
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✲

✻
m

p

y

Fig. 12.1. A zero-coupon bond’s price, p, as a function of its yield, y

A ZC bond’s price, p, is related to its yield via p=m/
1+y�n (omitting
the n subscript on price and yield, for simplicity). The curve has
a negative slope because a higher value of y implies that the future
payoff on the bond, m, is discounted at a higher rate, thus resulting in
a lower value for its net present value (which, by definition, is equal
to the bond’s price). Note that different values for n and m shift the
curve: there is a separate relationship for each bond.

In order to explore the relationship between nominal and real yields, let p̃n
denote the price of an n-year real ZC bond. Its nominal spot yield, ỹn, is defined
by the solution to

p̃n =
m× zT/zt

1+ ỹn�n

= m
1+1n�n

1+ ỹn�n

(12.3)

where 1n denotes the annual inflation rate for the n years between t and T –
i.e. 1n = 
zT /zt�

1/n−1. Notice that zT is unknown at any time before T . Hence,
the nominal spot yield on a real ZC bond is uncertain until its maturity date.

Let ỹ∗n denote the real spot yield on the real n-year ZC bond. This yield can be
defined analogously with the (nominal) spot yield on the nominal bond, to satisfy

p̃n =
m


1+ ỹ∗n�n
(12.4)
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Notice that the real spot yield on a real ZC bond can be calculated (from pn and
m) at any date prior to maturity: ỹ∗n is not uncertain.

Combining (12.3) and (12.4) to eliminate p̃n and m gives


1+ ỹn�= 
1+ ỹ∗n�
1+1n� or ỹn ≈ ỹ∗n+1n (12.5)

where the approximation becomes a strict equality if rates are continuously
compounded. In words: (12.5) expresses the familiar decomposition of a nominal
rate into a real rate plus an inflation rate; the nominal spot yield equals the real
spot yield plus the rate of inflation.

Given that the price level at date T , zT , and hence the rate of inflation, 1n, is
not observed until the bond matures, it is not possible to determine the nominal
spot yield for t < T with certainty. As already noted, however, its real spot yield
can be measured with certainty, from (12.4).

Symmetrically, for a nominal ZC bond it is possible to measure its nominal
spot yield with certainty, but its real spot yield is uncertain at any date prior to
maturity.8 The following table summarizes the various yield measures.

Spot yields

Nominal Real

Nominal ZC bond yn, certain y∗n, uncertain
Real ZC bond ỹn, uncertain ỹ∗n, certain

It might seem natural to argue that competition among investors in the markets
for nominal and real bonds will ensure that their expected nominal spot yields
are equal, yn = ỹn – or, alternatively, that their expected real yields are equal,
y∗n = ỹ∗n. If that were so – it is a big ‘if’ – then it would be possible to infer the
expected rate of inflation between dates t and T (or, more precisely, the expected
annual average rate of inflation between the two dates). More formally, given that
yn and ỹ∗n can both be calculated at any date, it is tempting to replace ỹn with yn
in ỹn ≈ ỹ∗n+1n, enabling the calculation of 1n as 1n ≈ yn− ỹ∗n (with continuous
compounding the approximation becomes an exact equality, as usual).

The reason why such calculations should be interpreted with caution is that the
returns on both nominal and real bonds are uncertain (because the future price

8 The real spot yield on a nominal n-year ZC bond, y∗n, is defined to satisfy pn =
m× zt/zT

1+y∗n�n

, implying

that 
1+ yn� = 
1+ y∗n�
1+1n� or yn ≈ y∗n+1n. Notice that the price levels, zt and zT , are interchanged
compared with (12.3). For both nominal and real ZC bonds, m is set in units of account (e.g. dollars).
But, for real bonds, m is adjusted for inflation while for nominal bonds it is not. The real value of a fixed
nominal payoff diminishes if the price level increases between t and T , while a fixed real payoff does not,
because m is scaled up by the requisite amount.
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level is unknown). The real return on nominal bonds is uncertain just as the
nominal return on real bonds is uncertain. More formally, y∗n (the real yield on a
nominal ZC bond) and ỹn (the nominal yield on a real ZC bond) are unknown at
all dates t < T . Consequently, the expressions in the previous paragraph should be
replaced with yn = Et 9̃yn; (equality of nominal yields) and Et9y

∗
n;= ỹ∗n (equality

of real yields), where Et9·; denotes the operator for expectations conditional upon
information at date t. Thus, for example, Et91n;≈ Et 9̃yn;− ỹ∗n.

Only if unknown future values are replaced with their expected values (typically
rationalized on an assumption of investors’ risk neutrality) is it legitimate to predict
that the nominal, or real, yields on both sorts of bonds will be equal. Apart from
such extreme circumstances, risk premia create a wedge between the (nominal or
real) yields on nominal and real bonds.

Example

Suppose that the price of a ten-year nominal ZC bond with face value $100 is
currently p10 = $52, while the price for a real ZC bond is p̃n = $78. The nominal
spot yield on the nominal bond, y10, is (approximately) 6.8 per cent, while the
real yield on the real bond, ỹ∗10, is (approximately) 2.5 per cent.9 Thus, the
expected annual inflation rate over the ensuing ten years might be measured by
y10 − ỹ∗10; i.e. 6�8−2�5 = 4�3%. But, as argued, this ignores risk aversion on the
part of investors who are uncertain about future inflation rates.

12.3 Coupon-paying bonds

In practice, the number and volume of coupon-paying bonds dominate bond
markets. The existence of coupons complicates the analysis, partly because a
bond’s yield will depend on the amount of its coupon but also because the
definition of ‘yield’ is itself more problematical.

Consider a bond that promises to pay to its holder a coupon of c per year for
n years plus the face value, m, when the bond terminates at maturity. If the
current market price of the bond is p, then its yield to maturity, y, is defined as
the solution to

p= c


1+y� +
c


1+y�2 +
c


1+y�3 +· · ·+ c+m

1+y�n (12.6)

The yield to maturity can be understood as the internal rate of return on the bond.
Notice that both p and y depend upon: (i) the time to maturity, n; (ii) the coupon,
c; and (iii) the face value of the bond, m. This dependence has been suppressed

9 Formally, y10 =
(

100
52

)1/10

−1 ≈ 0�068, and ỹ∗10 =
(

100
78

)1/10

−1 ≈ 0�025.
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in the notation to avoid clutter.10 But it should be emphasized that the prices
(and yields) of bonds with different n, c and m will almost certainly differ among
one another. While this is not explicit in the notation, it should be clear from the
context.

It is sometimes convenient to simplify (12.6) as

p= c

y

(
1− 1


1+y�n
)
+ m


1+y�n (12.7)

(See appendix 12.1.1 for the derivation of (12.7).) For coupon-paying bonds –
unlike those with c= 0 – an explicit algebraic formula for y is unavailable except
for special cases (in particular, when n< 5). But, if all coupons are non-negative,
a unique solution exists and can be found by numerical methods.

The yield to maturity on a coupon-paying bond does not have the same inter-
pretation as the spot yield on a ZC bond. In particular, it need not be the case
that the rate of return from holding a coupon-paying bond from the present until
maturity equals the value of y that satisfies (12.6). Why not? Because the stream
of coupons received between the date of purchase and maturity may, of necessity,
be reinvested at rates different from y. Indeed, the coupons might not be rein-
vested at all. Only if every coupon is reinvested (from the date of its receipt until
maturity) at rate y will the rate of return from holding the bond until it matures
equal the yield to maturity, y, as calculated from (12.6).

For coupon-paying bonds, the value of y is, at best, an approximation to the
rate of return from holding the bond from the present until it matures. Unless
forward contracts are available to guarantee the rates at which future coupons
can be reinvested, then the rate of return on a coupon-paying bond is inherently
uncertain. The risk associated with the rates at which coupons can be reinvested
is referred to as reinvestment risk.

Two other concepts of yield are occasionally useful for coupon-paying bonds.
First, if the price of the bond equals its face value (p = m in (12.7)), then the
resulting y is termed its par yield. The par yield equals the coupon as a proportion
of the bond’s face value – i.e. c/m. Thus, for example, if a bond with face value
m = $100 pays a coupon of $10 and has a market price of $100, then its par
yield (and also, with p= 100, its yield to maturity) equals c/m= 10%. To show
that p = m implies that y = c/m, substitute for p in (12.7) and rearrange the
expression.

Second, a bond’s flat (or current) yield is defined as c/p. The flat yield
is a misleading measure of the return on a bond except for perpetuities –

10 A complication neglected here – again, to avoid notational clutter – is that coupons are expressed at an
annual rate but commonly paid twice a year; i. c/2 is paid every six months. While the complication is of
practical relevance, it raises no new issue of principle.
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coupon-paying bonds for which n→ �. For these bonds, c/p is the annual
yield on the bond, when purchased at price p if it is held indefinitely. To show
this, let n tend to infinity in (12.7).

For example, if c= $10 and p= $200, the flat yield equals c/p= 10/200= 5%.
An investor would obtain a return of 5 per cent per annum indefinitely. But, if
the bond is disposed of at some date in the future (as it surely will be), the rate
of return between purchase and disposal differs from 5 per cent if the selling
price is other than $200, its purchase price. Even so, the flat yield is a handy
approximation for the rate of return on a perpetuity (or a bond with a long time
to maturity) if it is held for many years.11

Many of the topics studied in the context of ZC bonds carry over to coupon-
paying bonds, albeit with complications. Thus, holding period yields are uncer-
tain, partly because of the prospect of capital gains and losses but also as a
consequence of reinvestment risk. Also, as for ZC bonds, the price of a bond is
a negative and convex function of its yield to maturity – a result that should not
be surprising given that the coupon-paying bond can be construed as a portfolio
of ZC bonds.

Macaulay duration

Probably because of their dominance in bond markets, much attention is devoted
in bond analysis to the relationship between yields to maturity and the prices of
coupon-paying bonds. Formal analysis focuses on the responsiveness of p to y.
One possible measure is Hp/Hy, the rate of change of price with respect to yield.
(The partial derivative notation is used as a reminder that n, c and m are held
constant in calculating the rate of change.)

The partial derivative is unsatisfactory, in the sense that its value depends on
the units in which the bond is measured (e.g. doubling c and m doubles �Hp/Hy�).

The Macaulay duration, named after its inventor, Frederick Macaulay, provides
a more robust measure for the responsiveness of p to y. (See Macaulay (1938,
pp. 48–9) for the original definition and analysis.) The Macaulay duration, D, is
defined as

D = 1

p

(
1 · c

1+y� +

2 · c

1+y�2 +

3 · c

1+y�3 +· · ·+ n · 
c+m�


1+y�n
)

(12.8)

11 But remember that some bonds – e.g. consols – that are commonly treated as perpetuities can, according to
their terms of issue, be redeemed at the issuer’s discretion. In this case, holders face the contingency that, if
market interest rates fall low enough (such that p > m), the issuer may choose to redeem the bonds at face
value. The prospect of a capital loss from such a ‘conversion’ (refinancing one bond with another) may
limit investors’ demand for the bonds; consequently, their market prices would be lower than otherwise.
(See above, page 284, for the conversion of British government consols.)
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(A formal derivation of D appears in appendix 12.1.2.) For example, suppose that
a bond with face value m= $100 pays a coupon c= $20 for two years, n= 2. If
y = 10%, then the bond price is

p= 20

1+0�10�

+ 20+100

1+0�10�2

≈ 117�36 (12.9)

and the Macaulay duration is

D = 1
117�36

(
1×20


1+0�10�
+ 2× 
20+100�


1+0�10�2

)
≈ 1�85 (12.10)

It should be remembered that the value of D depends upon n, c and m. Indeed,
the main purpose of constructing D is to obtain a single number to measure the
responsiveness of p to y, allowing for differences in c and n among bonds.12

An important aspect of D is its time dimension. In the example above, the
time to maturity is n= 2 years, while D ≈ 1�85< 2. For a coupon-paying bond,
D < n, always. Intuitively this is because a portion of the payoff on the bond –
the coupon of $20 at date 1 – is received before the bond matures at date 2. It is
as if the bond will mature shortly before date 2: the Macaulay duration captures
the precise sense of this notion.

Apparently unaware of the Macaulay duration, Hicks (1939, p. 186) indepen-
dently expresses the same concept as the average period. ‘It is the average length
of time for which the various payments are deferred from the present, when the
times of deferment are weighted by the discounted values of the payments.’

The payoff on a zero-coupon bond occurs entirely at maturity. Consequently,
D = n for zero-coupon bonds. To show this, substitute c = 0 into the definition
of D, (12.8).

For coupon-paying bonds with the same time to maturity and with the same
yield, the one with the higher coupon has the smaller D – that is, HD/Hc < 0. In
words: higher coupons mean that a higher proportion of the bond’s payoff occurs
before maturity and, hence, its ‘average period’ is smaller.

Similarly, for bonds with the same coupon and the same yield, the longer the
time to maturity the greater is D; that is, HD/Hn > 0 – the higher the value of n,
the longer bondholders must wait for the bond’s payoff.

The relationship between D and Hp/Hy is given by

Hp

Hy

1
p
=− D


1+y� (12.11)

12 A second, alternative, definition of duration replaces y in the definition of D with the spot yield on a ZC
bond with the same term to maturity as the relevant payment. For example, the discount factor applied to
a coupon payment due in two years’ time becomes 1/
1+y2�

2 rather than 1/
1+y�2, where y2 is the spot
yield on a two-year ZC bond and y is the yield to maturity on the coupon-paying bond. A sequence of
spot yields (one for each payment date) is required for this calculation. The justification for this procedure
should be inferred from the discussion in section 12.4.
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which can be obtained by calculating Hp/Hy, (12.6) – i.e by partially differentiating
p in (12.6) with respect to y, and then dividing by p.

The larger is D the greater the responsiveness of the bond’s price to a change in
its yield. Sometimes (12.11) is referred to as the modified duration. It measures
the proportionate change in the bond price in response to a change in the bond’s
yield. (Notice the minus sign: an increase in the yield is associated with a fall in
price.)

Finally, note that (12.11) represents the proportionate rate of change as a linear
approximation. That is, treating D as a constant (for given values of y, c, n and
m) provides an accurate measure of responsiveness only for ‘small’ changes in
y – changes such that the convexity of the relationship between p and y can be
neglected. If closer approximations are needed (for ‘large’ interest rate changes),
then the second derivative, H2p/Hy2 (an index of convexity), becomes relevant.13

12.4 Bond valuation

The analysis in the previous section is appropriate for bonds the prices of which
are observed as the outcome of open market trading.14 Fortunately, the analysis
can be adapted to prescribe a rule for valuing bonds that are not traded or are
traded only infrequently (i.e. traded in ‘thin’ markets). The rule is designed to
provide a method for computing bond values as functions of observed prices
for other bonds that are actively traded. The arbitrage principle provides the
necessary link between the bond valuation and observed prices.

Consider, for example, a zero-coupon bond that pays $100 one year from the
present. Also, suppose that the risk-free rate of interest is 25 per cent. In a
frictionless market, the absence of arbitrage opportunities ensures that the bond
will be traded for $80. Why? Because only at this price is the rate of return on
the bond, 
100/80�−1, equal to the interest rate, 25 per cent. At any other price,
arbitrage profits can be made: if the bond’s price is lower than $80, funds would
be borrowed to buy the bond; if the bond’s price exceeds $80, it would be sold
short, the proceeds being lent at interest.

To generalize the analysis, first note that the spot yield on the bond, y1, equals

m/p�−1. (See equation (12.1) on page 287, with n= 1.) In words: the arbitrage
principle implies that the spot yield on a one-period ZC bond equals the risk-free
interest rate.

13 In the context of bond prices, convexity is conventionally expressed as
1
p

H2p

Hy2
; i.e. the rate of change of

price in response to yield, as a proportion of price. For details, see de La Grandville (2001, chap. 7).
14 The assumption is that secondary markets for these bonds as sufficiently active that realized market prices

are reliable indicators of the prices at which investors can buy or sell the bonds.
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Thus, a rule for valuing one-period ZC bonds is: the bond’s value equals the
net present value, discounting at the risk-free interest rate. In the example, the
discount factor equals 1/
1+ 0�025� and the bond’s valuation is $80 = $100×
1/
1+0�25�.

The trivial reasoning in this example can be applied to more realistic bond
contracts. Consider, for instance, a bond contract that promises to pay a coupon
c for the next n years, together with an amount m at maturity. Label this bond
as ‘B’.

Bond B can be regarded as equivalent to n ZC bonds, the first paying c after
one year, the second paying c after two years, and so on to the one that pays
c+m after n years. In the absence of arbitrage opportunities, the value of B
equals the sum of its stream c( c( � � � ( c+m weighted by the ZC bond prices:

value of B = p1c+p2c+p3c+· · ·+pn
c+m� (12.12)

where pj denotes the price of a ZC bond paying one unit of account (say, $1)
after j years. If bond B could be purchased or sold for a value different from
that given by (12.12), then an investment strategy (involving bond B and the
zero-coupon bonds) could be devised that would guarantee arbitrage profits.

Expression (12.12) can, equivalently, be written as

value of B = c


1+y1�
+ c


1+y2�2
+ c


1+y3�3
+· · ·+ c+m


1+yn�n
(12.13)

where pj = 1/
1+ yj�j (see equation (12.2) on page 287, with m = 1). Note
carefully that (12.13) is not the same as equation (12.6) on page 291. Compare
the two. Equation (12.6) defines a yield to maturity, y, for a bond with observed
market price p. Expression (12.13) values the bond for a given sequence of spot
yields, y1( y2( y3( � � � ( yn, on ZC bonds. In the absence of arbitrage opportunities,
the value of B equals p. But note the difference. In (12.6) it is assumed that the
bond price, p, is known (observed in the market) and y is calculated to satisfy
the condition. In (12.13) it is assumed that realized ZC bond prices are used to
value a bond, B, the market price for which may not be observed.

In summary, it is often possible to derive a rule, such as (12.13), to value a
bond as a function of the realized prices (or spot yields) of other bonds. The
result is commonly called the ‘fair’ value of the bond. (The adjective ‘fair’ in this
context has no ethical connotation; it merely refers to the absence of arbitrage
opportunities in frictionless markets.)

But there is a catch. Spot yields are calculated from the prices of ZC bonds.
While such bonds do exist, they may be traded for only a restricted range of
maturities; a spot yield may not be observed for every maturity. Indeed, the
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practice of creating stripped bonds effectively creates ZC bonds artificially from
coupon-paying bonds (see above, page 285).

Possibly the most important reason why it is necessary to make bond valuations
(whether for ZC bonds or bonds with complicated indentures) is the presence of
market frictions. Market frictions may restrict the range of bonds that are traded.
But recall that the arbitrage principle (invoked in the rule described above) relies
for its validity on the absence of frictions.

The upshot is that the bond valuation rules are justified on the basis of an
assumption – frictionless markets – that is, at best, an idealization. Just as with
the application of any theory, in practice the rules require approximations in the
form of assumptions that should signal the need for caution, even scepticism,
about their applicability.

12.5 Risks in bond portfolios

While bonds are normally less risky than many other assets, such as equities,
bond portfolios are rarely risk-free. The risks associated with holding bonds
can be divided into two broad categories: (a) interest rate risk; and (b) basis
risk.

Interest rate risk reflects the impact of market-wide credit conditions on bond
prices. If, as is commonly observed, bond yields tend to move broadly together,
then a general rise in the cost of borrowing (e.g. as a consequence of restrictive
monetary policy) raises bond yields, thus reducing bond prices and the market
value of portfolios containing bonds. The Macaulay duration serves to measure
the responsiveness of bond prices to their yields, and hence provides an index of
the magnitude of interest rate risk.

Basis risk encompasses all sources of risk except interest rate risk, including
the following.15

1. Credit risk reflects the possibility of default, ignored in much of this chapter. Event
risk forms a subset of credit risk associated with specific incidents (e.g. an earthquake,
environmental catastrophe or terrorist attack) that could precipitate default.

2. Reinvestment risk : reflects unforeseen changes in future interest rates at which the
coupon receipts from a bond can be reinvested (see page 292).

3. Timing risk reflects the contingency that the cash flow of a bond is altered during
its lifetime. For example, the issuer of a callable bond might exercise the option to
terminate the contract prior to the bond’s maturity date. At any date prior to maturity,
it is uncertain whether the option will be exercised

15 See The New Palgrave Dictionary of Money and Finance (Newman, Milgate and Eatwell, 1992, Vol. I,
pp. 218–19).
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4. Exchange rate risk reflects unforeseen fluctuations in the exchange rates among
currencies. For example, a Japanese investor who holds bonds denominated in US
dollars faces exchange rate risk if the investor’s portfolio is valued in terms of
Japanese yen.

5. Purchasing power risk reflects unanticipated changes in the future value of money and,
hence, the real value of bond returns. Real bonds and other index-linked securities,
for which the payoffs are adjusted in accordance with price changes, protect the holder
against this contingency.

12.6 Immunization of bond portfolios

Immunization strategies (also known as neutral hedge strategies) are designed to
eliminate (or, at least, manage) changes in the market value of bond portfolio as
a consequence of yield fluctuations; i.e. they seek to ‘immunize’ against interest
rate risk. The fundamental principle of immunization in this context is that bond
portfolios should be selected such that, when yields change, individual bond
values also change so as to offset one another. This being so, the Macaulay
duration of each bond plays a key role in guiding decisions about the bond’s
proportion in the portfolio.

Immunization strategies tend to be adopted by organizations that have
predictable liabilities (e.g. to make future payments) and that seek to ensure
that their assets are adequate to fulfil these obligations.16 Portfolio selection poli-
cies can then be devised to match their assets and liabilities so as to minimize,
or even eliminate, interest rate risk. The principle is: choose a portfolio of assets
and liabilities such that the overall Macaulay duration of the assets equals the
overall Macaulay duration of the liabilities.

For example, if a company has a liability falling due after eight years, it can
immunize against interest rate risk by choosing an asset portfolio with an overall
duration equal to eight years. In this context, ‘overall’ refers to a weighted
average of individual bonds’ Macaulay durations, as explained below.

A typical portfolio immunization problem is: for a given liability stream (say,
a flow of payments on a bond that has been issued) choose a portfolio of bonds
that has the same Macaulay duration as the liability stream. Then, changes in
interest rates should lead to changes in assets and liabilities that exactly offset
one another.

To understand the immunization rule, begin by assuming that the yields to
maturity on all bonds are equal to one another at a level denoted by y. This
implausible condition is relaxed later.
16 Insurance companies and pension funds once tended to favour bond portfolio immunization, but, in the

closing decades of the twentieth century, many became attracted by the higher returns on equities. They
subsequently learned that the risks of equities are not so readily controlled as those of bonds.
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Suppose that the investor has a liability with a current market value of z
y�.
A portfolio comprising two bonds with market prices p1
y� and p2
y�, respec-
tively, is chosen such that

x1p1
y�+x2p2
y�= z
y� (12.14)

where x1( x2 denote the number of units of the two bonds in the portfolio. (It is
straightforward to extend the analysis to allow for more bonds in the portfolio.)

The condition required for immunization is that any variation in y should be
associated with a change in the value of assets by the same aggregate amount
as the change in the value of liabilities. Formally, from (12.14), with ‘small’
changes in y

x1
Hp1

Hy
+x2

Hp2

Hy
= Hz

Hy
(12.15)

where Hpj/Hy, for j = 1(2, denotes the rate of change of pj in response to the
change in y. Similarly, Hz/Hy is the change of z in response to the change in y.
Expression (12.15) can be written as

x1p1

z

(
−
1+y�Hp1

Hy

1
p1

)
+ x2p2

z

(
−
1+y�Hp2

Hy

1
p2

)
=−
1+y� Hz

Hy

1
z

(12.16)

(To obtain (12.16), divide (12.15) by z, multiply by −
1+ y�, then multiply and
divide the terms on the left-hand side by p1 and p2, respectively.)

Finally, rewrite (12.14) and (12.16) as

a1+a2 = 1 (12.17)

a1D1+a2D2 = Dz (12.18)

where aj = xjpj/z is the portfolio proportion of bond j = 1(2, Dj is the Macaulay
duration of bond j and Dz is the Macaulay duration of the liability stream.

Choosing portfolio proportions a1 and a2 to satisfy (12.17) and (12.18) achieves
immunization. With these choices, small fluctuations in y result in changes in the
value of assets p1x1 +p2x2 that equal the changes in liabilities z. The portfolio
has been immunized.

Complications

1. Unequal yields. It has been assumed so far that the yields of all assets and liabilities
equal y. While this is normally a poor approximation for observed yields, what matters
is whether changes in yields are equal. If all yields move up or down together by
roughly equal amounts, then the conclusion still holds (because the Macaulay duration
is a measure of the impact of small changes in y).

Yield differences among bonds are the consequence of a variety of factors, with the
time to maturity, n, being given most prominence. The relationships between bond
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yields and n, known as yield curves, are the centre of attention in theories of the term
structure of interest rates, which are explored in chapter 13.

Essentially, what has been assumed so far in this section is that yield curve shifts
are parallel – i.e. that yields on bonds with differing maturities change by the same
amount. If yield curve shifts are non-parallel, then immunization against interest
rate risk is more complicated. In particular, it is necessary to predict how the yields
on bonds respond to changes in monetary policy, the stocks of bonds (e.g. as a
consequence of government debt management policies) or any other determinant of
the supply of, and demand to hold, bonds.

An additional complication is that yields are not a function of time to maturity
alone; they depend also coupon rates c/m – rates that commonly differ across bonds.
Yield curves are constructed for bonds with differing maturities but with the same
coupon rate (normally, zero – i.e. zero-coupon bonds), thus resulting in the need for
adjustments to allow for coupon rates that differ across bonds.

2. Multiple solutions. When many bonds (with different maturities, coupons, etc.) are
available, there may exist more opportunities to achieve immunization. For example, a
portfolio manager could seek to match the terms to maturity of individual assets closely
to those of individual liabilities (resulting in so-called ‘bullet’, or ‘focused’, portfolios).

3. Rebalancing. The above analysis holds only for ‘small’ changes in interest rates –
small to the extent that linear approximations of the relationship between bond prices
and yields are tolerable. When yield changes are large, the non-linear relationship
between p and y renders the linear approximation inaccurate: the resulting errors can
become significant. Here is where the convexity of the relationship between p and y
becomes important. It is possible to improve the accuracy of the linear approximation
implicit in (12.11) by adding a quadratic term (essentially, the second term in a
Taylor series expansion of the non-linear relationship between bond price and yield to
maturity). More importantly, immunization in response to large yield changes requires
adjustments – ‘rebalancing’ – of the bond portfolio to preserve the effectiveness of
the strategy. Such adjustments can be of practical significance, because rebalancing,
by definition, involves trading bonds. Hence, if trading is frequent, transaction costs
may outweigh the benefits of immunization.

4. Basis risk. Other sources of risk (e.g. credit risk) may, at times, have a greater impact
on bond prices than interest rate risk. Insofar as immunization is effective at all, it is
with respect to interest rate risk. Immunization does not confer immunity to basis risk.

12.7 Summary

1. Among all classes of assets, bonds are special because they promise to pay specified
amounts of money at designated dates in the future. This makes the risks of holding
them easier to control than for most other assets.

2. Two key parameters that distinguish bonds from one another are (a) the date of
maturity, at which the obligations on the bond terminate, and (b) the coupons (if any)
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paid to bondholders. The face value of a bond (typically paid to holders at maturity)
effectively defines the units in which it is measured. Though bonds also differ in
the likelihood that the issuer will default on the obligations stipulated in the bond’s
indenture, the prospect of default has been ignored in this chapter.

3. Zero-coupon bonds are central to financial theory. As the name suggests, these bonds
oblige their issuers to make a single payment on maturity. A coupon-paying bond can
be analysed as a portfolio of ZC bonds, each corresponding to one of the scheduled
payments on the coupon-paying bond. The payoff of most ZC bonds is fixed in
nominal terms – i.e. units of money. The payoff on real ZC bonds is adjusted to
allow for changes in the price level from the bond’s date of issue until it matures.

4. The spot yield on a ZC bond is the rate of return that would accrue to an investor
who holds the bond from the date of purchase until it matures; the spot yield on a ZC
bond is its yield to maturity. The yield to maturity on a coupon-paying bond is its
internal rate of return, the rate such that the net present value of the bond equals its
market price. An index of the responsiveness of a bond’s price to its yield to maturity
is provided by the Macaulay duration. It has a time dimension: for ZC bonds the
Macaulay duration equals the time to maturity, while for coupon-paying bonds it is
smaller than the time to maturity (reflecting the fact that bondholders receive part of
the bond’s payoff before it matures).

5. The risks associated with holding bonds are divided into two groups: interest rate
risk, and basis risk. Interest rate risk results from the impact of general interest rate
fluctuations on bond prices. Basis risk refers to all the other contingencies that affect
bonds’ rates of return.

6. Immunization strategies are, by construction, designed to protect the value of bond
portfolios against interest rate risk. Portfolios can be immunized against interest
rate risk with varying degrees of success, according to the range of available bonds,
fluctuations in the term structure of interest rates and the magnitude of interest rate
fluctuations.

Further reading

All finance texts devote some attention to bond markets, such as those by Elton,
Gruber, Brown and Goetzmann (2003, chaps. 20–21) and Luenberger (1998,
chap. 3). For concise expositions, see the entries on ‘bond markets’ and ‘dura-
tion and immunization’ in The New Palgrave Dictionary of Money and Finance
(Newman, Milgate and Eatwell, 1992). Modern specialist texts dedicated to fixed-
interest securities include those by de La Grandville (2001) and Jarrow (2002).
See also Cvitanić and Zapatero (2004, chaps. 2 & 10) for a modern treatment of
the markets in fixed-interest securities.

The three volumes of Ross (2000) incorporate a comprehensive collection of
classic contributions to the economics of bond markets. Most of the articles
found in these volumes are at an advanced level, being at the frontier of research
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when they were written. From an applied (econometric) perspective, chap-
ter 10 of Campbell, Lo and MacKinlay (1997) offers a concise overview of the
literature.

Appendix 12.1: Some algebra of bond yields

This appendix derives the summation formula for coupon-paying bonds, (12.7),
the Macaulay duration, (12.8), and expressions for yields when rates are contin-
uously compounded.

A12.1.1: Yield to maturity on coupon-paying bonds

In order to obtain equation (12.7), first rearrange (12.6) as

p= c

{
1


1+y� +
1


1+y�2 +
1


1+y�3 +· · ·+ 1

1+y�n

}
+ m


1+y�n (12.19)

The expression in large braces, <·=, is a geometric series. Let Sn denote the sum
in <·=. It follows that Sn+1 can be written in two different ways:

Sn+1 = Sn+
1


1+y�n+1
or Sn+1 =

Sn
1+y +

1
1+y

Equating the expressions for Sn+1 and simplifying,

Sn+
1


1+y�n+1
= Sn

1+y +
1

1+y

1+y�Sn+

1

1+y�n = Sn+1


1+y�Sn−Sn = 1− 1

1+y�n

Sn =
1
y

(
1− 1


1+y�n
)

(12.20)

Now substitute (12.20) for the expression (i.e. Sn) in braces in (12.19), to give

p= c · 1
y

(
1− 1


1+y�n
)
+ m


1+y�n

which is just (12.7), as required.
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A12.1.2: Macaulay duration

In order to obtain the formula for the Macaulay duration, D, equation (12.8) begin
by differentiating p with respect to y in

p= c


1+y� +
c


1+y�2 +
c


1+y�3 +· · ·+ c+m

1+y�n

to give

Hp

Hy
= −1 · c

1+y�2 +

−2 · c

1+y�3 +

−3 · c

1+y�4 +· · ·+ −n · 
c+m�


1+y�n+1

= −1

1+y�

(
1 · c

1+y� +

2 · c

1+y�2 +

3 · c

1+y�3 +· · ·+ n · 
c+m�


1+y�n
)

−
1+y�
p

Hp

Hy
= 1
p

(
1 · c

1+y� +

2 · c

1+y�2 +

3 · c

1+y�3 +· · · + n · 
c+m�


1+y�n
)

12�21�

The right-hand side of (12.21) is the Macaulay duration, D – compare also with
equation (12.11).

A12.1.3: Continuous compounding

Throughout chapter 12 it is assumed that yields are measured as rates compounded
once per unit time period – i.e. once per year. Assume, instead, that yields
are measured at continuously compounded rates, as described in chapter 1,
appendix 1.3. Then the spot yield, yn, on an n-year zero-coupon bond with
face value m trading at price pn is defined as

yn =
ln
m�− ln
pn�

n
(12.22)

or, equivalently, as the value of yn that satisfies pn = me−nyn . Beware: to
conserve notation, the same symbol, yn, is used for the continuously compounded
yield as for the annually compounded yield. The value of yn will depend on
the frequency of compounding. For example, if n = 2, m = 100 and pn = 80,

then the yield with annual compounding is
(

100
80

)1/2

−1 ≈ 11�80%, while, with

continuous compounding, it is
ln
100�− ln
80�

2
≈ 11�16%.

For a real ZC bond, the nominal spot yield (again using the same notation as
in section 12.2) is the value of ỹn that satisfies

pn =m
zT/zt�e
−ñyn

that is

ỹn =
ln
m�− ln
pn�

n
+ ln
zT �− ln
zt�

n
= ỹ∗n+1n
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In words: the nominal interest rate (spot yield) equals the real interest rate (spot
yield) plus the rate of inflation.

For a (nominal) coupon-paying bond, the continuously compounded yield to
maturity is defined as the value of y that satisfies

p= c · e−1y+ c · e−2y+· · ·+ c · e−
n−1�y+ 
c+m� · e−ny (12.23)

where a coupon of c is paid at discrete dates ‘1’, ‘2’, � � � ( ‘n’ (separated by
yearly or half-yearly intervals) from the present. Compare (12.23) with (12.6).
No explicit formula for y is available for coupon-paying bonds (just as is the case
with annual compounding).

If it can be imagined, as an approximation, that coupons are paid in a continuous
stream between dates t and T , then (12.23) becomes

p=
∫ n

0
ce−yR dR+me−ny = c

y

1− e−ny�+me−ny

where n= T − t, the life of the bond.
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Cvitanić, J., and F. Zapatero (2004), Introduction to the Economics and Mathematics of
Financial Markets, Cambridge, MA, and London: MIT Press.

de La Grandville, O. (2001), Bond Pricing and Portfolio Analysis, Cambridge, MA, and
London: MIT Press.

Elton, E. J., M. J. Gruber, S. J. Brown and W. N. Goetzmann (2003), Modern Portfolio
Theory and Investment Analysis, New York: John Wiley & Sons, 6th edn.

Hicks, J. R. (1939), Value and Capital, Oxford: Oxford University Press.
Higgs, H. (ed.) (1894), Palgrave’s Dictionary of Political Economy, London, Macmillan

(three volumes).
Jarrow, R. A. (2002), Modeling Fixed-Income Securities and Interest Rate Options,

Stanford, CA: Stanford University Press, 2nd edn.
Luenberger, D. G. (1998), Investment Science, New York and Oxford: Oxford University

Press.
Macaulay, F. R. (1938), Some Theoretical Problems Suggested by the Movements of Inter-

est Rates, Bond Yields and Stock Prices in the United States since 1856, New York:
National Bureau of Economic Research.

Newman, P., M. Milgate and J. Eatwell (eds.) (1992), The New Palgrave Dictionary of
Money and Finance, London: Macmillan (three volumes).

Ross, S. A. (ed.) (2000), The Debt Market, The International Library of Critical Writings
in Financial Economics, Cheltenham: Edward Elgar (three volumes).

305



13

Term structure of interest rates

Overview

Bonds share attributes – described in the previous chapter – that make them
suitable for treatment as a class separate from, for instance, equities. While they
may constitute a separate class, bonds are not homogeneous. Of the dimensions
relevant for distinguishing among bonds, the time to maturity is one of the most
important. It is on the relationship between each bond’s time to maturity and its
rate of return that analysis of the term structure of interest rates focuses.

A common way of representing the term structure is as a yield curve that depicts
the yields on different bonds as a function of the number of years to maturity.
Section 13.1 studies the construction of yield curves for nominal bonds – those
with payoffs fixed in units of money – illustrated with a yield curve for British
government bonds. The illustration is pursued further in section 13.2, which
presents a yield curve for index-linked bonds – those with payoffs adjusted to
protect against inflation. Section 13.2 also reviews how estimates of expected
future inflation rates can be obtained by comparing the yield curves for nominal
and index-linked bonds.

Another way of expressing the term structure of interest rates is via a set of
‘implicit forward rates’ – interest rates that are implicit in, and can be inferred
from, the prices of bonds with different maturities. Section 13.3 studies the role
and interpretation of implicit forward rates.

The remainder of the chapter explores the determinants of the term structure,
beginning in section 13.4 with the ‘expectations hypothesis’, a theory central to
all explanations of the yield curve’s shape. Central though it is, the expectations
hypothesis is open to attack on several fronts, particularly for neglecting the
impact of risk aversion on the decisions of bondholders and issuers. Section 13.5
discusses the implications for the term structure of allowing for risk aversion.
Finally, section 13.6 comments on the role of the arbitrage principle in the theory
of the term structure and its applications.
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13.1 Yield curves

13.1.1 Yield curves in principle

A bond’s time to maturity is one of its distinguishing characteristics, but not
the only one. As chapter 12 has showed, bond contracts differ across several
dimensions. The diversity can be narrowed substantially, however, because yield
curves are almost always constructed for government bonds. For these, the risk
of default is negligible and can be ignored. Also, government bonds tend to be
standardized such that their differences reduce to just two dimensions: time to
maturity, n, and the coupon rate, c/m.1

Given that yield curves are drawn with the yield to maturity, y, as a function of
n, a way must be found for controlling for coupons. This is most straightforwardly
achieved by assuming that all coupons are zero; i.e. the yield curve is constructed
for zero-coupon bonds, the spot yield (yield to maturity on ZC bonds) being
plotted against the time to maturity. Recalling that coupon-paying bonds can be
treated as portfolios of ZC bonds, this assumption is not as restrictive as it might
first appear. (See chapter 12, page 285.)

Panel (a) in figure 13.1 depicts an upward-sloping yield curve. This is the
conventional and most commonly observed shape, with bonds of longer maturities
attracting higher yields. Intuitively, the rationale is that bonds with many years to
redemption (long-term bonds) are riskier – because future interest rate fluctuations
will have a greater impact on their prices – than bonds nearing maturity (short-
term bonds). Hence, long-term bonds command premia, as reflected in higher
yields, relative to short-term bonds. Consequently, the yield curve is positively
sloped. This argument receives scrutiny later, in section 13.5.

Yield curves are not necessarily positively sloped, however. They are, on
occasion, observed to slope downwards, with short-term bond yields exceeding
those of long-term bonds. A convenient assumption in theory – and sometimes a
close approximation, in fact – is that the yield curve is flat – i.e. y is the same for
all maturities, n. (See, for instance, the analysis of immunization in chapter 12,
section 12.6.)

But there is no reason, in principle, why yield curves should be monotonic
(positively sloped, negatively sloped, or flat) throughout. For example, it is
possible that the yield curve is negatively sloped for some maturities and positively
sloped for others, as depicted in panel (b) of figure 13.1. Such shapes, while
perhaps uncommon, are by no means pathological. When observed, they are
usually attributed to specific or peculiar events in bond markets, often following
an abrupt reversal or intensification of monetary policy.

1 It is not necessary to treat the face value, m, and the coupon, c, separately. As pointed out in chapter 12, m
can be treated as the unit of measurement for defining bonds, and is typically a factor of 100 – e.g. $1,000,000.
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Fig. 13.1. Yield curves

Each point on the yield curve plots the spot yield on a ZC bond as a
function of its time to maturity. A typical, positively sloped yield curve
is shown in panel (a). Alternatively, yield curves may be negatively
sloped or constant across maturities (flat yield curve). Also, it is
possible for yield curves to be positively sloped over some maturities
and negatively sloped over others, as panel (b) shows.

13.1.2 Yield curves in practice

As already hinted, a stumbling block in the practical construction of yield curves
is that bond markets are populated largely with coupon-paying bonds rather
than ZC bonds, the prices of which are required for the calculation of spot
yields. Recognizing, once again, that coupon-paying bonds can be interpreted as
portfolios of ZC bonds, it is possible to disentangle spot yields on hypothetical ZC
bonds, with various maturities, from the realized prices of coupon-paying bonds.

Even so, in practice, the range of realized bond maturities rarely spreads
uniformly across the maturity spectrum. There may, for example, be no bonds to
be redeemed thirteen or fourteen years from the present, while several bond issues
with a maturity of either eleven or fifteen years happen to exist. In particular
(in Britain, at least), few government bonds (‘gilts’), with less than two years to
maturity, are traded. Consequently, methods need to be found that ‘fill in’ the
gaps, using the available data to estimate yield curves that are robust to transient
quirks that would otherwise distort the outcome.

The Bank of England publishes daily yield curves for British government debt,
estimated from realized bond prices and ‘repo’ rates (see chapter 14, section 14.5)
for maturities less than two years.2 Panel (a) of figure 13.2 depicts the estimated

2 See Anderson and Sleath (1999, 2001) for details of how the yield curves are estimated. The data needed
to construct the yield curves are available from the Bank of England’s Website.
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(a) United Kingdom yield curve, 29 March 2004

(b) United Kingdom yield curve, 16 September 1992

Fig. 13.2. Estimated yield curves

Estimated yield curves for British government bonds are drawn for
two different dates. Both depict the spot yield to maturity on nomi-
nal ZC bonds (i.e. bonds that promise to make a single specified
money payment after the number of years to maturity shown in the
figure). Panel (a) shows a commonly observed yield: a positively
sloped curve, albeit with slightly lower yields for high-maturity bonds.
Panel (b) shows the yield curve on ‘Black Wednesday’ in 1992, when
restrictive monetary policy raised short-term interest rates in an attempt
to stave off a speculative attack against sterling.
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yield curve for late March 2004. It has broadly the conventional shape, being
positively sloped, though perhaps with a tendency to decline at longer maturities.
But don’t be deceived: notice from the vertical axis that the yields for all maturities
lie within a narrow band of less than one percentage point. The yield curve in
figure 13.2 (a) is almost flat.

By way of contrast, figure 13.2 (b) shows the dramatically downward-sloping
yield curve for ‘Black Wednesday’, 16 September 1992, when the British govern-
ment was obliged to concede that it could no longer fulfil its obligations under
the European Exchange Rate Mechanism (ERM). Immediately before this date,
monetary policy had been intensified to raise short-term interest rates in a futile
attempt to keep the sterling exchange rate within the narrow band required for
membership of the ERM. The policy failed to stem massive sales of sterling as
speculators anticipated the capital gains that would accrue if sterling depreciated
upon exit from the ERM – which it did. While the restrictive monetary policy
may have raised the yields on bonds of all maturities (relative to what they would
otherwise have been), it raised short-term interest rates much more than long-
term rates. Invoking the theories studied later, in sections 13.4 and 13.5, the
negatively sloped yield curve may have been the consequence of investors acting
on beliefs that interest rates would not remain high for very long – probably
because they anticipated (correctly) that sterling’s membership of the ERM was
doomed.

13.2 Index-linked bonds

Thus far, attention has centred on yield curves for nominal (or ‘conventional’)
ZC bonds, the maturity values of which are specified in money terms. While
nominal yield curves are by far the most commonly encountered, it is possible
to construct yield curves for other sorts of bonds, in particular real ZC bonds –
i.e. bonds for which the maturity values are adjusted to protect against changes
in the price level.3

Yield curves for real bonds receive particular attention because they facil-
itate estimates of expected future inflation rates, as described in chapter 12,
section 12.2.2, and below. No new issues of principle arise in the construction of
yield curves for real bonds. Strictly, however, actual instances of real bonds are
not observed. Instead, they are approximated by index-linked (IL) bonds.

The main distinction between real and IL bonds is that, for IL bonds, the issuer’s
payments are not adjusted for the change in the price level from the bond’s issue

3 In practice, the adjustments are always for increases in the price level – i.e. as a consequence of inflation.
Although decreases in the price level can – and do – sometimes occur, securities that approximate real bonds
have always been issued to counteract the effect of increases in the price level.
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to the date at which the payment is due but, rather, to a stipulated date that
precedes the payment date. For instance, the payments on British government
IL bonds (‘IL gilts’) are adjusted for increases in the retail price index (RPI)
to that prevailing eight months prior to the payment date.4 After allowing for
the complications of timing, it is possible to estimate real yield curves using the
methods outlined above for nominal bonds.5

Figure 13.3 depicts estimated real yield curves corresponding to the same
dates as the nominal yield curves of figure 13.2. The values shown in the
graphs can be interpreted as the annual average rates of return over the indicated
times to maturity, after allowing for inflation. For example, as of late March
2004 the average real interest rate for the ensuing ten years was approximately
1.83 per cent per annum. In September 1992 the real interest rate for 1992 to
2002 was approximately 5.09 per cent per annum.

The values shown in figure 13.3 are estimates obtained from market yields.
Hence, they may be compared directly with the nominal yields of figure 13.2, so
as to estimate the expected rates of inflation implied by market bond prices (the
expectations prevailing on the dates for which the yield curves are drawn). For
example, as of late March 2004 the average expected inflation rate over the ensuing
ten years was 2.91 per cent per annum – i.e. a nominal yield of 4.74 per cent
minus a real yield of 1.83 per cent. Similarly, as of September 1992 the expected
annual inflation rate for 1992 to 2002 was 3.82 per cent 
= 8�91−5�09�.

Setting aside measurement errors in constructing the estimates, inspection of
the graphs shows that the expected inflation rates differed little across time
periods into the future (i.e. across maturities), though they did differ markedly
between 1992 and 2004. This is not uncommon: although investors change
their perceptions of inflation as time passes, at any one date they appear to
expect that roughly the same annual inflation rate will be observed for several
years.

For the reason outlined in chapter 12, section 12.2.2, caution should be exer-
cised when interpreting the differences between realized nominal and real yields
as expected inflation rates. For nominal and real bonds are both risky, each in their
own way. Because future inflation is uncertain, the real return on nominal bonds
is unknown. Similarly, the nominal return on real bonds is unknown. Hence,
interpreting the difference between nominal yields on nominal bonds and real

4 That is, formally, the amount paid equals m× 
RPIT−$/RPIt�, where m is the amount in money (e.g. £100)
promised at the date of issue; t is the date of issue; T is the date at which the payment falls due; and $,
the ‘indexation lag’, equals eight months for British IL gilts. Once again, coupon-paying bonds are treated
as portfolios of ZC bonds, so that each coupon can be interpreted as the face value of a ZC bond with the
relevant maturity.

5 For details, see Anderson and Sleath (2001). In addition to the eight-month indexation lag, the estimation
process allows for two additional complications, namely that (a) calendar months differ in the number of
days they comprise, and (b) the RPI is observed only two weeks after the date to which it applies.
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Fig. 13.3. Estimated real yield curves

Real yield curves are obtained from the prices of IL bonds, which
promise returns adjusted for increases in the retail price index (intended
to counteract the effect of inflation on the value of the bonds’ payoffs).
Estimated real yield curves are shown for the same two dates as in
figure 13.2. Subtraction of the real yield from the corresponding
nominal yield enables the estimation of expected inflation rates (average
annual rates corresponding to selected time intervals into the future).
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yields on real bonds as the expected rate of inflation is appropriate only if the
expected real yield on nominal bonds equals the realized real yield on real bonds –
or, equivalently, that the expected nominal yield on real bonds equals the realized
nominal yield on nominal bonds. Estimates of expected inflation measured as
the difference between nominal and real yields will be inaccurate to the extent
that the realized yields reflect investors’ risk aversion about future inflation
rates.6

13.3 Implicit forward rates

13.3.1 Definitions

Implicit forward rates are indicators of future interest rates inferred from – and
thus implicit in – observed bond prices. They provide a way of characterizing
the term structure of interest rates that is equivalent to the yield curve: for each
sequence of spot yields (one for each maturity) there exists a unique sequence
of implicit forward rates, and vice versa. Explicit forward rates are interest rates
relevant for agreements made today on loans that begin and end at stipulated
future dates. Implicit forward rates can be understood, instead, as forecasts of
interest rates on loans that will begin and end in the future. Being forecasts, there
is no guarantee that the implicit forward rates will be realized when the future
arrives. However, as shown below, there is reason to assert that implicit forward
rates will equal explicit forward rates, where forward markets for loans exist. It
should be emphasized that, throughout the remainder of this section (as for the
whole of the chapter), markets are assumed to be frictionless.

In order to define an implicit forward rate, consider the investment of $1 in
a zero-coupon bond that matures five years from the present. Alternatively,
suppose that $1 is invested in a four-year ZC bond, followed by an investment of
the proceeds (i.e. the bond’s face value at redemption) in a one-year bond. The
one-year rate that results in the same payoff after five years for both strategies is
the implicit forward rate between years 4 and 5.

More formally, consider the investment of $1 in a ZC bond that matures n
years from the present. After n years, when the bond matures, the investment
will be worth 
1+yn�n, where yn is the spot yield on an n-period bond purchased
today. Similarly, $1 invested in a ZC bond that matures n−1 years from today
will accumulate to 
1+ yn−1�

n−1, after n− 1 years. The implicit forward rate
between n−1 and n years in the future is the interest rate that equates the payoffs
from the two strategies.

6 Evans (1998) reports evidence for the presence of risk premia implied by investors’ risk aversion with regard
to uncertainty about future inflation.
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In other words, the implicit forward rate is the rate of return that would be
received from investing the proceeds of the 
n− 1�-year ZC bond, at maturity,
for one more year if the rate of return over n= 
n−1�+1 years exactly equals
the yield from holding an n-year ZC bond to maturity. In symbols, the implicit
one-year interest rate beginning n− 1 years from today, n−1fn, is defined to
satisfy


1+yn�n = 
1+yn−1�
n−1
1+ n−1fn� (13.1)

For example, consider one-year and two-year ZC bonds; then 1f2 satisfies


1+y2�2 = 
1+y1�
1+ 1f2� (13.2)

The implicit forward rate, 1f2, is the interest rate on a one-year investment between
dates 1 and 2 if the yield from holding a one-year bond from today followed by
a second one-year bond (commencing one year from today) equals today’s yield
on a two-year ZC bond.

Rearranging (13.1), the implicit forward rate, n−1fn, can be written explicitly
as

n−1fn =

1+yn�n


1+yn−1�
n−1

−1 = pn−1

pn
−1 (13.3)

This expression shows how the implicit forward rate can be calculated from the
prices of ZC bonds with the two relevant maturities.7

Example

Suppose that p5 = 60 and p4 = 66 for two ZC bonds each with a face value of
$100. The implicit forward rate on a one-year bond beginning four years from
the present is 4f5 = 
66/60�− 1 = 10%. An investor who expects the one-year
interest rate four years from now to exceed 10 per cent could make a speculative
profit by selling (i.e. effectively by issuing) five-year bonds, and investing the
funds in four-year bonds. After four years (when the four-year bonds mature) the
payoff would be invested at the one-year interest rate. If the investor’s expectation
turns out to be correct, a profit would be made after five years (beginning today)
following redemption of the five-year bonds (i.e. payment of the face value of
the bonds sold, or issued, today). This investment strategy is risky: there is no
guarantee that the investor’s expectation of the interest rate between years 4 and
5 will be realized.

7 Don’t confuse the implicit forward rate defined in (13.3) with the rate of return – holding period yield –
obtained from buying an n-year bond today and selling it, as an 
n−1�-year bond, next year. The holding
period yield is the unknown (as of the present) rate of return on a particular bond over the ensuing time
period. The implicit forward rate is known at the present, being obtained from the currently observed prices
of two different bonds.
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The example shows why implicit forward rates may be important for an investor.
They enable inferences about interest rates applicable for loans over intervals in the
future. This information is relevant for determining which bonds should be sold
or purchased, depending on the investor’s expectations or future commitments.

13.3.2 Remarks on implicit forward rates

1. The definition of implicit forward rates can be extended readily to cover time-spans
different from the unit period of a year. Thus, for example, 12f15 – defined to satisfy

1+ y12�

12
1+ 12f15�
3 = 
1+ y15�

15 – is the implicit forward rate on a three-year ZC
bond commencing twelve years from the present.

2. If ZC bonds exist for all maturities from the present to n years from today, then
successive substitution into (13.1) for ZC bonds of ever-shorter duration results in


1+yn�n = 
1+y1�
1+ 1f2�
1+ 2f3� · · · 
1+ n−2fn−1�
1+ n−1fn� (13.4)


1+yn−1�
n−1 = 
1+y1�
1+ 1f2�
1+ 2f3� · · · 
1+ n−2fn−1� (13.5)

���


1+y3�
3 = 
1+y1�
1+ 1f2�
1+ 2f3� (13.6)


1+y2�
2 = 
1+y1�
1+ 1f2� (13.7)

These expressions would look neater if y1 were replaced by 0f1. But y1 ≡ 0f1: a one-
year bond commencing today is trivially identical to a forward agreement commencing
zero years from the present (i.e. today). Forward agreements merit separate attention
only when they take effect in the future.

Expressions (13.4) to (13.7) show how to recover spot yields from forward rates.
They also suggest that the yield on any bond can be interpreted as being dependent
on future one-year interest rates – roughly, that bond yields are averages of implicit
forward rates on one-year loans. While suggestive, the formula has no predictive
force, however, because it does not specify values for the implicit forward rates. For
this, a theory of the term structure is required.

3. Time subscripts have been omitted from the definitions of implicit forward rates.
This omission is purely to avoid clutter: there is no reason to suppose that the rates
will remain constant over time. To denote explicitly the date, t, at which the rate is
measured, append a t subscript, so that n−1fn(t denotes the implicit forward rate as of
date t on a one-year bond issued at date t+n−1 for redemption at t+n.

4. Spot yields on ZC bonds constitute the data needed for calculating implicit forward
rates. Yields to maturity on coupon-paying bonds are unsuitable for the purpose
because there should be no presumption that the coupons will be reinvested at the
calculated yield (and, hence, no guarantee that the measured yield to maturity will
turn out to equal the rate of return on the bond even if held to maturity).
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13.3.3 Forward markets for bonds

Suppose that a market exists for loans that commence in the future – i.e. for
bonds to be bought and sold (or issued) in the future, not just at the present. For
example, a contract signed today (date t = 0) might specify that a bond with face
value $100 is to be issued four years from the present, t = 4, and redeemed one
year later. If the bond’s price today (but paid at t = 4) equals $88, then its spot
yield equals 
100/88�−1≈ 13�64%. This rate of return is an observed – explicit,
not implicit – forward rate.

Given the existence of such forward markets for bonds, the definition, equation
(13.1), now becomes an equilibrium condition if n−1fn now denotes the observed,
rather than the implicit, forward rate. (In effect, market equilibrium requires
that the observed forward rate equals the implicit forward rate.) If the observed
forward rate differs from the implicit forward rate, then – in the absence of market
frictions – there exists an arbitrage opportunity.

Continuing the earlier example, for which the implicit forward rate is 4f5 =

66/60�−1 = 10%, suppose that the investor has access to a forward market in
bonds. Suppose also that the market price of a bond commencing four years
from today that promises to pay $100 after one year is currently trading for $88 –
i.e. its spot yield exceeds the implicit forward rate, 13�64%> 10%. Notice that,
while the agreement is made today, the $88 is paid, or received, not today but
in four years’ time, when the bond commences. Consider the following strategy:
sell eleven five-year bonds for $660 
= 11× 60� and use the proceeds to buy
ten four-year bonds.8 Also, in the forward market, buy eleven one-year bonds
commencing four years from today: this is a commitment to pay $968 
= 11×88�
four years from today in return for $1100 five years from today (one year after
the acquisition of the bonds). Four years from today, $1000 is received upon the
maturity of the ten four-year bonds. Of this, $968 is used to pay for the eleven
one-year bonds (as committed in the forward market contract). One year later (five
years from today), the eleven one-year bonds mature with a payoff of $1100 –
exactly enough to redeem the eleven five-year bonds sold at the outset. The
payoff from the strategy is an arbitrage profit of $32 
= 1000−968� four years
from today – an outcome incompatible with market equilibrium in frictionless
markets.9

8 The number, eleven, of five-year bonds sold is immaterial to the argument and is chosen to keep the
arithmetic simple. Any positive number could be chosen. As for every arbitrage opportunity, the scale of
the portfolio affects the magnitude of the gain, not the result that the payoff is always risk-free.

9 Even with frictionless markets, it is conceivable that the investor will default on the promise to buy bonds
four years into the future or to redeem the five-year bonds at maturity, or both. Chapter 1 describes how
good-faith deposits paid into a margin account can eliminate this performance risk (or, at least, control it
within tolerable bounds).
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In the absence of arbitrage opportunities, n−1fn equals the market rate of return,
observed today, for bonds issued n−1 years from the present and redeemed after
n years. Chapter 14 explores in greater depth how forward markets serve to link
the prices of assets traded today for future delivery.

13.4 The expectations hypothesis of the term structure

The expectations hypothesis provides a starting point for all explanations of the
term structure. It asserts that expectations about future bond yields determine the
shape of the yield curve. Credit for devising the theory is normally accorded to
Friedrich Lutz (1940), though others, particularly Sir John Hicks (1939), were
pursuing similar lines of enquiry.

At the outset it should be emphasized that the ‘expectations hypothesis’ is open
to a variety of interpretations. Here a fairly strict interpretation – sometimes
known as the pure expectations hypothesis – is adopted. Some versions tend
to make particular assumptions about the expectations formation mechanism or
investors’ decision-making behaviour.10 Others concede a loose interpretation
of the theory, asserting little more than that expectations of future interest rates
influence bond prices.

An informal argument captures the essence of the expectations hypothesis.
Consider a world in which one-year (‘short-term’) and two-year (‘long-term’) ZC
bonds are traded. Suppose initially that the yields on both bonds happen to be
equal. If the yield on one-year bonds is expected to rise in the future, investors
may prefer to hold one-year bonds so that, when they mature, the proceeds can
be reinvested in one-year bonds commencing next year, thus benefiting from
the higher expected yield in the future. This preference would be expressed by
investors selling two-year bonds and buying one-year bonds, hence leading to
an equilibrium in which the price of two-year bonds is lower, and the price of
one-year bonds is higher, than otherwise. Given the inverse relationship between
yields and prices, the equilibrium yield on two-year bonds becomes higher than
the yield on one-year bonds. Hence, the theory predicts that the yield curve has
a positive slope if investors expect interest rates to rise.

Conversely, if the one-year bond yield is expected to fall in the future, the
expectations hypothesis predicts that the yield curve will be negatively sloped. It
is predicted to be flat if the one-year yield is expected to remain at its current level.
More complicated shapes are consistent with the theory for more complicated
patterns of expected future bond prices.
10 Throughout the remainder of this chapter it is assumed that the intervals at which investors review their

decisions correspond to the unit period for reporting interest rates – i.e. one year. Allowing investors to
revise their portfolios more or less frequently would not materially affect the exposition. But it would surely
make it more tortuous.
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In order to make the informal reasoning more precise, it is necessary to adapt
the notation of previous sections to make explicit the dates at which various bond
prices (yields) apply. Let pn(t denote the price today, date t, of a ZC bond with
n years to maturity. Let yn(t denote its spot yield. (It is harmless to assume that
all bonds have the same face value, m – say, $100.)

After one year, at t+ 1, the same bond will have n− 1 years to maturity.
Its price and spot yield are then written as pn−1(t+1 and yn−1(t+1, respectively;
similarly, for different terms to maturity and different dates – e.g. p4(t+2 and
y4(t+2 denote the price and yield two years from the present for a ZC bond that
will then have four years to maturity. The first subscript denotes the time to
maturity. The second subscript denotes the date for which the price (or yield)
applies.

Assume, temporarily (and heroically), that bond prices on all future dates are
treated as known, or are expected with certainty, as of today, date t. More
precisely, investors act as if they know for sure what bond prices will be –
they have ‘point expectations’. Also, they all agree on these point expectations.11

(Whether the expectations are realized is another matter. The expectations hypoth-
esis is silent about this, though it would seem to require that realized prices do
not systematically deviate from expectations made about them. Otherwise, the
theory would hardly merit attention.)

Now compare ZC bonds with one year and two years to maturity. There are
three bonds: (i) one-year bonds available today, yielding, y1(t; (ii) one-year bonds
issued at t+1, yielding y1(t+1; and (iii) two-year bonds available today, yielding
y2(t. By assumption, all three rates are known today, date t. Hence, it seems
reasonable to claim that in market equilibrium the payoff from investing $1 in
a two-year bond must equal that from investing $1 in a one-year bond and then
reinvesting the proceeds in another one-year bond for the second year:


1+y2(t�2 = 
1+y1(t�
1+y1(t+1� (13.8)

If this equality does not hold, then investors have an incentive either to issue
two-year bonds and invest the proceeds in two successive one-year bonds, or to
issue two successive one-year bonds and invest the proceeds in two-year bonds.
Consequently, for example, if the one-year yield is expected to increase from
5 per cent to 8 per cent next year, today’s yield on two-year bonds will equal
approximately 6.5 per cent, for 
1+0�065�2 ≈ 
1+0�05�
1+0�08�. Interest rates
are expected to rise, and the yield curve is positively sloped, 6�5%> 5�0%.

11 Formally, point expectations can be understood as the extreme circumstance in which the entire probability
mass collapses on exactly one outcome (state of the world) – an event with probability 1. Explicit uncertainty
(a consequence of relaxing this assumption) allows for many outcomes, each with a non-negative probability.
Expectations are then defined in the conventional way, as the sum of probabilities multiplied by the value
of the relevant random variable (bond price or yield).
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Another way of writing (13.8) exploits the relationship between bond prices
and yields:

y1(t =
p1(t+1

p2(t
−1 (13.9)

In words: the yield on a one-year bond equals the expected payoff on a two-year
ZC bond purchased today and sold after one year.

It is tempting to interpret the reasoning underlying this result as an illustration
of arbitrage: if the equality does not hold, there is an arbitrage opportunity. Such
reasoning is ill-conceived, because p1(t+1 and, hence, y1(t+1 are expectations,
albeit expectations held with certainty, about future prices (yields). Strictly, the
arbitrage principle applies only if investors can trade at prices such as p1(t+1,
rather than expect to be able to trade at p1(t+1 when date t+ 1 arrives. If
forward contracts are available, it may indeed be possible for investors to enter
into agreements to buy or sell bonds in the future for prices known today. The
expectations hypothesis maintains, however, that expectations of future bond
yields determine the relationships among currently observed yields, irrespective
of the existence of forward markets.

Although the analysis so far involves only one-year and two-year bonds, it
holds for bonds of any maturity. For example, suppose that investors have access
to trading in one-year bonds and n-year ZC bonds (where n≥ 2). Then, reasoning
exactly as before, in market equilibrium the yield on one-year bonds equals the
expected return on n-year bonds held for one year:

y1(t =
pn−1(t+1

pn(t
−1 = 
1+yn(t�n


1+yn−1(t+1�
n−1

−1 (13.10)

The expectations hypothesis of the term structure can be written in at least four
ways, all of which are equivalent, assuming point expectations. The variants can
be expressed as follows.

1. Local expectations hypothesis (LEH): the expected one-year rates of return on all
bonds are equal to the spot yield observed on one-year bonds. The LEH is expressed
in (13.10), above. In other words: the LEH asserts the equality of the one-year
holding period yields on all bonds.

2. Return to maturity (RM-EH): the expected return to $1 invested for n years is the
same irrespective of the combination of bonds in which the funds are invested. In the
example with one-year and two-year bonds, this form of the hypothesis is expressed
as (13.8), above, or for n > 2 as


1+yn(t�n = 
1+y1(t�
1+y1(t+1�
1+y1(t+2� · · · 
1+y1(t+n−1� (13.11)

In words: the expected payoff on an n-year bond equals the return from investing
$1 in a sequence of one-year bonds, the payoff on each being invested in another
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one-year bond for the next period. More generally, the sequence of investments
need not be in one-year bonds, but in any combination of maturities covering the
n years.

To understand the equivalence between the LEH and RM-EH, notice that the
assumption of known future bond prices (yields) implies not just that the LEH holds
between today and next year (t and t+ 1) but between every pair of dates in the
future – e.g. t+ 5 and t+ 6, so that 
1+ yn−5(t+5�

n−5 = 
1+ y1(t+5�
1+ yn−6(t+6�
n−6.

Tedious algebraic substitutions – either into (13.10) to obtain (13.11), or into (13.11)
to obtain (13.10) – demonstrate that the LEH and RM-EH are equivalent.

3. Yield to maturity: the yield to maturity on $1 invested for n years is the same
irrespective of the combination of bonds in which the funds are invested. This form
of the expectations hypothesis differs only trivially in appearance from the RM-EH.
For the two-year bond, (13.8) is replaced with

y2(t = <
1+y1(t�
1+y1(t+1�=
1/2 −1 (13.12)

or, more generally, for n-year bonds with

yn(t = <
1+y1(t�
1+y1(t+1�
1+y1(t+2� · · · 
1+y1(t+n−1�=
1/n−1 (13.13)

4. Unbiased expectations (UB-EH): implicit forward rates equal expected yields. More
concretely, in the example above, this form of the expectations hypothesis asserts that

1f2 = y1(t+1. Now compare expression (13.2) with (13.8):


1+y2�
2 = 
1+y1�
1+ 1f2�


1+y2(t�
2 = 
1+y1(t�
1+y1(t+1�

The are identical, apart from the inessential t subscripts on y1(t and y2(t in (13.8).
Looking beyond two years, more generally, the implicit forward rates become

� � � n−1fn = y1(t+n−1U n−2fn−1 = y1(t+n−2U � � � 2f3 = y1(t+2U 1f2 = y1(t+1 (13.14)

Beware: the UB-EH does not assert that all implicit forward rates are equal to one
another; instead, that each equals the expected one-year rate corresponding to the
future year for which the forward rate applies.

Substitution from (13.14) into (13.11) or (13.4) suffices to show the equivalence
between the UB-EH and RM-EH (and hence also equivalence with the other variants).

Although the LEH has been defined for a one-year holding period, comparison
with the RM-EH suggests that it can be extended to any holding period. That
is, the expectations hypothesis implies that the expected rate of return over any
time interval – say, seven years – starting today is equal to today’s spot yield
on seven-year bonds. Notice that the expectations hypothesis does not assert that
expected rates of return are the same for different holding periods; rather, that
they are equal across bonds for any given holding period.
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More formally, but at the cost of yet more notation, let rn(t+1 denote the one-year
(i.e. t to t+1) holding period yield on an n-year bond – i.e. the rate of return on an
n-year bond held over the coming year. By definition, rn(t+1 = 
pn−1(t+1/pn(t�−1
(see (13.10)). The LEH can now be written as

· · · = rn+1(t+1 = rn(t+1 = rn−1(t+1 = · · · = r2(t+1 = r1(t+1 (13.15)

where r1(t+1 ≡ y1(t is the spot yield on one-year bonds – i.e. ‘the rate of interest’.
As noted above, the expectations hypothesis holds also for other holding peri-

ods: ‘t+1’ can be replaced with, say, ‘t+5’ for a five-year holding period, with
the consequence that, for all bonds, holding period yields equal the spot yield on
five-year bonds. In symbols: rn(t+5 = y5(t for any n ≥ 5.12 But the expectations
hypothesis does not assert the equality of holding period yields across different
holding periods; thus, for example, r8(t+1 is not predicted to be equal to r8(t+5, or
r8(t+6, or even the spot yield today on eight-year bonds, y8(t.

The analysis so far has generated definite predictions about the equality of
holding period yields, but it is based on a highly implausible assumption: namely,
that investors act as if all future bond prices (yields) are known with certainty.
When this assumption is abandoned, it may seem reasonable to replace unknown
values with their expectations. Thus, for example, condition (13.15) becomes

· · ·Et9rn+1(t+1;= Et9rn(t+1;= Et9rn−1(t+1;= · · · = Et9r2(t+1;= r1(t+1 (13.16)

where Et9·; denotes an expectation conditional upon information available today, t.
While the replacement of unknown future values with their mathematical expec-

tations appears to be a natural way of allowing explicitly for uncertainty, there
are awkward implications.

1. The various forms of the expectations hypothesis described above are no longer
equivalent. If one holds, the others do not. (See appendix 13.1 for a demonstration.)
By implication, if the LEH holds for a one-year holding period, it will not do so for
any other holding period – six months, two years, five years or whatever. Thus, to
make the theory operational it is necessary to stipulate, in advance, which version
is assumed. The trouble is that nothing in the analysis so far suggests that any one
variant is to be preferred over the others.

2. What justification, grounded on economic principles, can be provided for replacing
unknown rates of return with their expectations? This is precisely the question that
arose in chapter 10 in going from certain to uncertain future dividend streams. And
the answer is the same. Rather than repeat the arguments of chapters 10 and 11,
it suffices to note here that bonds can be treated just as other assets and analysed
using the same tools. (Appendix 13.2 outlines how this may be achieved.) Except

12 Roll-over strategies are required for bonds with less than five years to maturity – e.g. a three-year bond
followed by a two-year bond, or two one-year bonds followed by a three-year bond, and so forth.
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in unusual circumstances (e.g. risk-neutral preferences), it is not acceptable merely to
replace unknown future returns by their expectations.13

Together with a model that explains what determines the relevant expectations,
each version of the expectations hypothesis generates testable predictions. The
theory is not empirically vacuous. In view of the reservations outlined above,
however, theories of the term structure that allow for risk-averse decision makers
are, at the very least, worthy of consideration. These are the subject of the next
section.

13.5 Allowing for risk preferences in the term structure

13.5.1 The liquidity preference theory of the term structure

One of the first, and most influential, modifications of the expectations hypothesis
was proposed by Hicks, and is known variously as the liquidity preference,
liquidity premium or risk premium theory.14 Although not directly motivated by
the criticisms raised in the previous section, Hicks’s contribution foreshadowed
later developments by allowing investors’ risk preferences to affect the pattern of
bond prices, and hence the term structure.

The theory asserts that, while investors are influenced by expectations of future
rates of return, they are risk-averse when making decisions about which bonds
to hold (or to issue). For example, risk aversion may imply that investors prefer
to hold short-term, ‘liquid’, assets unless a premium is included in the return
expected from long-term assets: bonds nearing maturity would be preferred to
bonds for which maturity is far off. Consequently, long-term bonds would be held
only if the expected payoff from holding them exceeds that on short-term bonds.
The pattern of bond prices thus reflects the premia demanded by investors if the
aggregate demand to hold bonds with different maturities is to match the supply.
In the context of the term structure of interest rates, the premia are referred to as
risk, liquidity or term premia. For the purpose of this section, these labels can be
treated as synonyms.

Acknowledging (as contended in the previous section) that the expectations
hypothesis takes several distinct forms, so also does its modification allowing
for risk aversion. Two characterizations of term premia deserve mention here.
The first – probably the more common in the literature – is to define the premia
13 Cox, Ingersoll and Ross (1981) show that even risk neutrality is not in itself sufficient (or necessary) to justify

the replacement of unknown rates of return with their expectations: it depends on the general equilibrium
model within which assumptions about risk preferences are embedded. The sort of risk neutrality implied
by the absence of arbitrage opportunities is considered later, in section 13.6.

14 See Hicks (1939, chaps. 11–13). Although, as befits a classic, this book is neglected now, it remains one
of the most influential contributions to economic theory in the twentieth century. Sir John won the Nobel
Memorial Prize in 1972, jointly with Kenneth Arrow. Together they represent two of the most original
economists in their respective generations.
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as differences between implicit forward rates and the relevant expected future
interest rate. Formally, using the notation developed in previous sections, let
E2 denote the term premium for one-year bonds maturing two years from today,
date t. This is defined as E2 = 1f2 −Et9y1(t+1;. In words: the term premium
equals the implicit forward rate between one and two years in the future minus
the expected spot yield on a one-year bond maturing two years from the present.
More generally, En = n−1fn−Et9y1(t+n−1; defines the term premium relevant for
one-year bonds maturing n years in the future.15

A second definition of the term premium focuses on holding yields. Consider
a one-year holding period. Let $2 denote the term premium on a two-year bond,
defined as $2 = Et9r2(t+1;− r1(t+1. That is: the term premium on a two-year bond
equals the expected return on the bond, if held for one year beginning today –
i.e. Et9r2(t+1;, minus the interest rate (today’s yield on one-year bond, r1(t+1,
or, equivalently, y1(t). More generally, the term premium on an n-year bond is
defined as $n = Et9rn(t+1;− r1(t+1.

16

Now the term structure can be expressed as

Et9rn(t+1;−$n = Et9rn−1(t+1;−$n−1 = · · · = Et9r2(t+1;−$2 = r1(t+1 (13.17)

Compare (13.17) with the prediction of the expectations hypothesis, (13.16).17

To understand the result, compare (for example) a five-year bond with a one-year
bond. Hicks argues that the five-year bond, being riskier than the one-year bond
over the ensuing year, has a higher expected holding period yield (positive term
premium):

Et9r5(t+1; > r1(t+1

the difference being the term premium, $5.
It is, of course, possible to define the term premia such that the equalities in

(13.17) always hold. If so, as a theory of the term structure, (13.17) is vacuous: it
predicts nothing. A testable theory requires that a priori restrictions are imposed on
the pattern of term premia. For example, the expectations hypothesis asserts that
$n = $n−1 = � � �= $2 = 0. Loosely specified forms of the expectations hypothesis
might allow the term premia to be non-zero but constant across time, or, perhaps,
equal to one another.
15 Full generality would require extending the notation to distinguish not only the time interval for which

the term premium applies (n− 1 to n years from today, as described here) but also the date at which the
expectation is formed (today, t, here).

16 Again, full generality requires extending the notation to distinguish not only the bond for which the term
premium applies and the holding period but also the date at which the expectation is formed. The extra
clutter would add nothing but fatigue to a grasp of this section.

17 Notice that the equalities (13.17) define term premia for a one-year holding period. They could be defined
for other holding periods. There is no reason to presume that, for example, the term premium on an
eight-year bond over a three-year holding period equals its premium for a five-year (or any other) holding
period.
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Hicks’s theory predicts that term premia have a positive relationship with time
to maturity: the expected holding period yield on a long-term bond includes
a higher premium than that on a medium-term bond, which includes a higher
premium than on a short-term bond. Formally: $n > $n−1 > � � � > $2 > 0. (The
theory allows some of the strict inequalities to be replaced with weak inequalities.)

In this theory there is an asymmetry between the preferences of lenders and
borrowers: lenders prefer to hold short-term bonds, while borrowers prefer to issue
long-term bonds. Here is how Hicks expresses it (1939, pp. 146–7 (emphasis
added)):

[Bond markets] may be expected to have a constitutional weakness on one side, a
weakness which offers an opportunity for speculation. If no extra return is offered
for long lending, most people (and institutions) would prefer to lend short � � � But this
situation would leave a large excess of demands to borrow long which would not be met.
Borrowers would thus tend to offer better terms in order to persuade lenders to switch
over into the long market � � �

Speculation thus equilibrates the bonds markets. If long-term bonds are in
excess supply, their prices tend to fall, thus providing incentives for speculators
to hold the bonds in the expectation of returns in excess of the returns from holding
short-term bonds.18 Consequently, bond prices (and yields) reflect the asymmetry
between lenders’ and borrowers’ preferences – the ‘constitutional weakness on
one side’ of the market.

An implication of the liquidity preference theory is that yield curves are posi-
tively sloped if interest rates (i.e. short-period bond yields) are expected to remain
constant or to increase in the future. Only if a fall in interest rates, sufficient to
outweigh the term premia, is expected would the yield curve display a negative
slope.

Plausible though it may seem, and pioneering though it was, Hicks’s assertion
that most lenders seek to lend short and most borrows seek to borrow long is
somewhat arbitrary. An alternative approach, more securely located in the theory
of individual behaviour, is to assume that investors behave according to the
principles of choice under uncertainty, as studied in chapter 4. Bonds can be
treated just like other assets, each investor’s decisions being expressed in terms
of the fundamental valuation relationship, in portfolio theory. (A sketch of such
a theory appears in appendix 13.2.)

The theory of portfolio selection is typically constructed so that the one-period
interest rate is identified with ‘the’ risk-free rate (i.e. the ‘r0’ of chapter 4 becomes

18 There is no need to designate speculators as a class apart from borrowers and lenders; the pattern of bond
prices may tempt lenders to speculate by holding long-term bonds and borrowers to speculate by issuing
short-term bonds. Hicks’s theory appears again in the guise of the ‘normal backwardation’ of commodity
prices in futures markets (see chapter 15).
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r1(t+1, or, equivalently, y1(t in the above notation). This approach makes sense
for many applications, in which only a single future date is considered or in which
all investment decisions are reviewed every ‘period’ – i.e. frequently.

However, Hicks’s theory implies (a) that investors, including bond issuers,
have diverse risk preferences with regard to consumption at different future dates;
(b) that they select bond portfolios according to these preferences; and (c) that
the pattern of bond prices adjusts to balance portfolio demands with supplies in
the aggregate. These considerations provide the stimulus for the preferred habitat
theory, outlined next.

13.5.2 The preferred habitat theory of the term structure

The preferred habitat or hedging pressure theory of the term structure refines
the liquidity preference theory to allow for differing preferences among lenders
and borrowers with respect to the maturity of the bonds they hold or issue.19 As
described above, some investors prefer to hold, or issue, short-term bonds, while
others prefer to hold, or issue, long-term bonds.

The main implication of this theory is that expectations of future interest rates
are not exclusively responsible for the pattern of current bond yields: the stocks
of bonds, and investors’ demands to hold them, also influence the term structure.
If the differentials in bond prices are large enough then investors may choose
maturities different from those that they most prefer, but they have to be offered
an incentive to do so. The dispersion of risk preferences and stocks of bonds with
different maturities can, therefore, exert an impact on the term structure.

An extreme version of the theory – the segmented markets hypothesis – asserts
that bonds with different times to maturity can be grouped together, such that the
prices of bonds within each group are related to one another but not to the prices
of bonds belonging to other groups. For instance, it might be that bonds with zero
to five years to maturity form one group, six to twelve years another, and thirteen
to thirty years a third. If this were so, then the determinants of prices in one group
would be irrelevant for the others. Thus, for example, monetary policy (acting on
short-term interest rates) might impact upon bond prices in the first group only.
Similarly, the actions of pension funds (which, say, hold mainly long-term bonds)
might impact upon bonds with thirteen to thirty years to maturity but not upon
those with shorter maturities.

Expressed in this extreme way (that markets for bonds with different maturities
are completely unrelated), the segmented markets hypothesis has few adherents.
19 The preferred habitat theory was proposed by Modigliani and Sutch (1966), and further developed

by Modigliani and Shiller (1973). The late, great Franco Modigliani, in collaboration with his numer-
ous co-workers, made many contributions to modern economics and finance. He was awarded the Nobel
Memorial Prize for economics in 1985.



326 The economics of financial markets

The evidence that bond yields tend to move together, at least in some degree,
suggests that there are common influences that affect all bond markets. A less
extreme variant of the hypothesis – that markets for bonds with different matu-
rities largely respond to different forces – is less objectionable but is vague
(how much is ‘largely’?), and differs from the preferred habitat theory only in
emphasis.20

13.6 Arbitrage and the term structure

While the theories of the term structure reviewed above can make some claim for
their empirical relevance, none of them furnishes a satisfying general explanation.
They propose illustrations rather than a coherent theoretical framework. Modern
attempts to provide such a framework focus on (a) the arbitrage principle or
(b) theories of investor behaviour (sometimes embedded within models of general
equilibrium). The two need not be incompatible, of course: theories of investor
behaviour can serve to give substance to the arbitrage principle, and reinforce its
implications.

As a starting point, recall the risk-neutral valuation relationship outlined in
chapter 7 (see page 173). The RNVR states that, in the absence of arbitrage oppor-
tunities, there exists a set of artificial probabilities (the ‘equivalent martingale
measure’) such that the price of any asset equals its expected payoff discounted
at a risk-free interest rate. Equivalently, the expected rate of return on each asset
(calculated using the equivalent martingale measure) equals the risk-free interest
rate.

In the context of bond markets, the relevant rates of return are one-year holding
period yields.21 Hence, in the absence of arbitrage opportunities,

· · · = E∗9rn+1(t+1;= E∗9rn(t+1;= E∗9rn−1(t+1;= · · · = E∗9r2(t+1;= r1(t+1

(13.18)
where, once again, r1(t+1 ≡ y1(t is the spot yield on one-year bonds and rn(t+1

is the holding period yield on an n-year bond between dates t (today) and t+1.
The asterisk, ∗, appended to the expectations operator, E∗9·;, serves as a reminder
that the probabilities are those implied by the arbitrage principle, not (necessarily)
those corresponding to the beliefs of any investor. (Formally, the expectations

20 The segmented markets hypothesis is often associated with Culbertson (1957). Culbertson advocates one
of the less extreme versions of the hypothesis, which is, perhaps, sensibly understood as a precursor of the
preferred habitat theory.

21 Cox, Ingersoll and Ross (1981) show, in the context of a continuous-time model, that only this form of the
expectations hypothesis (i.e. the LEH) is compatible with the absence of arbitrage opportunities when bond
returns are random.
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operator should be accompanied by a t subscript to indicate that the expectation
is taken conditional on information available at date t, but this is omitted for
simplicity.)

The result, (13.18), bears a striking resemblance to (13.16). But there is
a crucial difference, namely that (13.18) relies only on the weakest assumption
about investors’ behaviour (that they prefer more wealth to less) and, thus, applies
very generally. The shortcoming of such generality is, as usual, that additional
assumptions must be made before predictions about the pattern of bond prices
(and hence the term structure of interest rates) can be derived.

A common assumption is that bond returns are determined according to a
factor model, just as described in chapter 8 – i.e. applying the APT to bonds.
The factors could be expressed as observable ‘state variables’ that characterize
the impact of economy-wide forces on the bond market; i.e. variables that emerge
from intertemporal optimizing models in much the same way as analysis of the
stochastic discount factor informed construction of the CCAPM in chapter 11. In
some applications the factors are themselves rates of return on a representative
subset of bonds – for example, a short-term bond and a long-term bond. Alterna-
tively, the state variables could be treated as unobservable forces, the impact of
which has to be inferred statistically from bond prices observed in the past.

The latter approach appears most often in financial analysis, usually couched in
the mathematics of continuous-time stochastic processes. The most basic set-up
is the so-called ‘one-factor’ model, in which the risk-free interest rate is assumed
to evolve according to some postulated random process. The arbitrage principle
is then invoked to link all other bond prices to one another, and thence to the
process assumed for the risk-free rate. Models with multiple factors are analysed
slightly differently, each bond price being assumed to respond in its own way to
the same set of factors. The arbitrage principle then places restrictions on the
pattern of responses, thus linking the bond prices (yields) to provide a model of
the term structure.

While these models could be tested in the same ways as other economic models,
the emphasis typically focuses on applying them to ‘value’ bonds or other assets
(‘derivatives’), the payoffs on which have a determinate relationship to bond
returns.22 In this context, the goal is to obtain a numerical representation of
the term structure that enables prediction of any bond price and allied deriva-
tives’ prices. These predictions – often called ‘fair’ values – are notional prices
that would be realized (a) in frictionless markets with the absence of arbitrage

22 This approach is sometimes called the ‘derivatives approach to pricing’ because of its similarity to the
methods used in determining option prices. See the introduction to volume I of Ross (2000) and the
references cited there.
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opportunities, and (b) if the model of the term structure were correct (i.e. an
acceptably close approximation to the actual evolution of bond prices).

The predictions can then be compared with realized bond prices in order
to inform investment strategies (i.e. to provide signals about which bonds to
buy or sell) or to provide price quotations in negotiations about OTC contracts.
Alternatively, from a more disinterested academic perspective, the predictions can
be tested using methods similar to those described in chapter 9. Here the goal
is to identify which theories of economic behaviour are more (or less) consistent
with the observed patterns of bond prices and their rates of return.

13.7 Summary

1. Studies of the term structure of interest rates seek to reveal the relationship among
the yields on bonds with different times to maturity. Commonly, the term structure
is expressed by a yield curve, which plots yields as a function of the number of years
remaining before redemption of the bonds.

2. Because the time to maturity is not the only dimension across which bonds differ, it
is necessary to control for other characteristics of bonds, in particular their coupon
payments. The most straightforward approach is to construct yield curves for zero-
coupon bonds (bonds that promise to make a single payment at maturity).

3. Another attribute of some bonds is that the promised payments are adjusted for changes
in the price level. From the observed prices (yields) of these index-linked bonds, it
is possible to estimate real yield curves that express yields to maturity adjusted for
future price level changes as a function of time to maturity. It then becomes possible
to extract estimates of expected inflation rates, for various periods in the future, from
market prices (yields) for real and nominal bonds.

4. Implicit forward rates provide an alternative, and equivalent, way of expressing the
term structure of interest rates. Implicit forward rates are interest rates that currently
observed bond prices imply would occur for various periods in the future if forward
loan contracts could be negotiated in the present. In the event that such forward
markets do exist, the arbitrage principle would serve to link the prices of bonds with
rates on forward loan contracts.

5. Theories of the term structure attempt to explain the shape of the yield curve (or,
equivalently, the pattern of implicit forward rates). The cornerstone of term struc-
ture theories is the expectations hypothesis, which asserts that expectations of bond
prices (yields) determine observed bond prices (yields). Despite its prominence, the
expectations hypothesis (which appears in several guises, some of them equivalent)
has weaknesses, both theoretical and empirical.

6. Many early adaptations of the expectations hypothesis stress the relevance of risk
aversion on the part of the holders and issuers of bonds. The liquidity preference
theory predicts that term, or risk, premia are higher the longer the time to maturity,
while the preferred habitat theory argues that term premia depend on the distribution
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of investors’ risk preferences across the maturity spectrum (i.e. that term premia do not
necessarily increase with time to maturity). The most extreme version of the theory,
the segmented markets hypothesis, suggests that bonds with different maturities are
essentially different from one another, the forces that impact on one market having
little influence on the others.

7. Modern analyses of the term structure tend to apply the arbitrage principle in the
context of the expectations hypothesis, with factor models representing the underlying
forces that drive bond prices.

Further reading

Concise expositions of term structure analysis, including helpful references to the
early literature, appear in The New Palgrave Dictionary of Money and Finance
(Newman, Milgate and Eatwell, 1992) entries on ‘term structure of interest rates’
and ‘yield curve’.

Modern studies of the term structure invariably focus on the formal modelling
of relationships among bond prices (yields). They are strong on mathematical
technique and weak on economic hypotheses, for which they have little need.
Among the more accessible expositions are those by de La Grandville (2001,
especially chap. 9), Jarrow (2002), Cairns (2004) and Luenberger (1998, chap. 4).
For clear, concise surveys of term structure models and empirical studies, see
Yan (2001) and Chapman and Pearson (2001).

Ross (2000) presents a comprehensive collection of the most influential contri-
butions to the theory and applications of the term structure. A more recent
survey, elegant though technically challenging, appears in Dai and Singleton
(2003). Also at an advanced level, Campbell, Lo and MacKinlay (1997, chap. 11)
survey the empirical literature with an emphasis on the application of economic
models.

Appendix 13.1: The expectations hypothesis with
explicit uncertainty

The equivalence of the four versions of the expectations hypothesis with known
future bond prices does not survive the introduction of explicit uncertainty. Funda-
mentally, this follows from a property of the expectations operator E9·;: in partic-
ular, that the expectation of a non-linear function of a random variable is not
equal to the same function of the expectation of the random variable.23

The significance of this result for the expectations hypothesis can be understood
by comparing the LEH and the return to maturity forms of the hypothesis, with
23 In this appendix, expectations are not conditioned on information available at date t; i.e. the expectations

operator appears as E9·; rather than Et9·;. The notation is simpler and nothing of substance is affected.
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just one-year and two-year bonds. Consider first the LEH. Allowing for explicit
uncertainty, the LEH asserts that $1 invested in a one-year bond for one year
equals the expected payoff on a two-year bond held for one year; that is,


1+y1(t�= E

[

1+y2(t�2

1+y1(t+1�

]
(13.19)

Compare (13.19) with equation (13.10). Because 
1+y2(t�2 is known today (it is
just the return to maturity on the two-year bond), the LEH can be written as


1+y1(t�= 
1+y2(t�2E
[

1+y1(t+1�

−1] (13.20)

Now consider the RM-EH version, which asserts that


1+y2(t�2 = E
[

1+y1(t�
1+y1(t+1�

]
(13.21)

Compare (13.21) with equation (13.11). Because 
1+ y1(t� is known today,
(13.21) can be written as


1+y2(t�2 = 
1+y1(t�E
[

1+y1(t+1�

]
(13.22)

Rearranging (13.22):


1+y1(t�= 
1+y2(t�2<E
[

1+y1(t+1�

]
=−1 (13.23)

Now compare (13.20) with (13.23). The LEH and RM-EH versions express
different hypotheses, because

E9
1+y1(t+1�
−1; > <E

[

1+y1(t+1�

]
=−1 (13.24)

Inequality (13.24) follows from a proposition known as Jensen’s inequality, which
states that, for any strictly convex function, F
·�,

E9F
X�; > F
E9X;� (13.25)

(A strictly convex function is such that F ′′
·�> 0 – so long as the second derivative
is well defined, of course.) In the context of (13.24), X ≡ 
1+ y1(t+1� and
F
X�≡ X−1, which is a strictly convex function for X > 0.

Reasoning analogous to that above shows that each version of the expectations
hypothesis is incompatible with the others. Also, if the LEH holds for a particular
holding period, it will not hold for any other. The upshot is that any application of
the expectations hypothesis of the term structure, for the interpretation described
here, must stipulate which of the versions is assumed. Different versions imply
different predictions and, hence, potentially different empirical inferences.
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Appendix 13.2: Risk aversion and bond portfolios

An investor’s bond portfolio choices can, in principle, be analysed in the same
way as the selection of a portfolio comprising any assets. If the investor behaves
according to an expected utility criterion, then the optimal portfolio must satisfy
the fundamental valuation relationship:

E9
1+ rj�H;= 1 j = 1(2( � � � ( n (13.26)

where rj is the rate of return on asset j (e.g. a bond) and H is the stochastic
discount factor, a random variable dependent on the investor’s risk and time
preferences. (See chapters 4 and 11.)

In order to gain insights into bond portfolio selection, it is necessary to provide
a more definite interpretation of H and rj in the FVR. Assume that investors make
their decisions to maximize the expected value of a multiperiod utility function,
U = U
Ct(Ct+1( � � � (CT �. The stochastic discount factor for choices between
consumption at dates t and t+1 can then be written as Ht+1 = Ut+1/Ut, where
subscripts denote partial differentiation (i.e. Ut+j ≡ HU/HCt+j�. If the utility func-
tion takes the familiar additively separable form, then Ht+1 = Nu′
Ct+1�/u

′
Ct�
(see chapter 11).

Notice that Ht+1 is relevant for a unit period – i.e. one ‘year’ – holding period.
Restricting attention to zero-coupon bonds, the one-year holding period rate of
return on a bond with j years to maturity is given by rj(t+1 = 
pj−1(t+1/pj(t�−1
(for j= 1, p0(t+1 ≡m, the redemption value of the bond). Thus, the FVR becomes

Et9
1+ rj(t+1�Ht+1;= 1

or

Et

[
pj−1(t+1

pj(t
Ht+1

]
= 1 j = 1(2( � � � ( n (13.27)

(The distinction between nominal and real bonds is neglected in this appendix.)
For the one-year holding period, r1(t+1 = 
m/p1(t�−1 is risk-free, so that


1+ r1(t+1�Et9Ht+1;= 1 (13.28)

Also, the FVR can, as usual, be expressed for rates of return in excess of the
risk-free rate:

Et9
rj(t+1− r1(t+1�Ht+1;= 0 j = 2( � � � ( n (13.29)

Suppose that the investor is risk-neutral, so that Ht+1 = c, a constant (for all
states). Then Ht+1 can be factored out of the expectation in (13.29), and, as a
consequence,

Et9rn(t+1;= Et9rn−1(t+1;= · · · = Et9r2(t+1;= r1(t+1 (13.30)
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These equalities involve bond prices (from which rates of return are calculated)
and investors’ beliefs (the probabilities underlying the expectations), but not
preferences. Hence, if investors are unanimous in their beliefs, the equalities
(13.30) characterize market equilibrium for the bond market (not merely necessary
conditions for an investor’s optimal bond portfolio).

The implication is that, if risk neutrality is regarded as a plausible approximation
for individual preferences, then the FVR predicts that expected returns will be
equated for a one-year holding period. Thus, risk neutrality can be used to
rationalize the LEH variant of the expectations hypothesis (see (13.16)).

Consider, instead, a holding period of s years. For example, a five-year
holding period (s = 5) would be relevant for an individual who, for whatever
reason, wishes to consume the payoff of an investment after five years (but not
before or after). The relevant FVR becomes

Et9
1+ r̂j(t+s�Ht+s;= 1 j = 1(2( � � � ( n (13.31)

where Ht+s is the stochastic discount factor relevant for choices between t and
t+ s, Ht+s = Ut+s/Ut and r̂j(t+s is the s-year holding period return on a bond
with j years to maturity. The circumflex, ̂( notation is used to signal that the
time interval over which the return is measured is s years, not one year. Thus,
r̂j(t+s = 
pj−s(t+s/pj(t�−1, rather than rj(t+s = 
pj−s(t+s/pj(t�1/s−1, the definition
appropriate for ‘annual’ rates of return.24

For an s-year holding period, the risk-free asset is an s-year bond, with 
1+
r̂s(t+s�=m/ps(t. Substituting into (13.31) provides


1+ r̂s(t+s�Et9Ht+s;= 1 (13.32)

Thus, for example, a five-year ZC bond is risk-free for an investor with a five-year
holding period.

Applying exactly the same reasoning as in appendix 11.2 of chapter 11, the
FVR can be written as

E9
̂rj(t+s− r̂s(t+s�Ht+s; = 0

cov
̂rj(t+s(Ht+s�+ 
E9̂rj(t+s;− r̂s(t+s�E9Ht+s; = 0 (13.33)

24 The definition given here is appropriate for bonds that mature after the end of the holding period – i.e. for
j > s. For j < s, r̂j(t+s could be constructed as the return from a sequence of bonds in which an investment
in j-year bonds is rolled over into other bonds for the remainder of the holding period. While the return on
the j-year bond is certain if j < s, the returns on the bonds into which its redemption value is invested are
not.
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where (for convenience) unconditional expectations are used rather than expec-
tations conditional on present information (i.e. the t subscript to the expectations
operator is omitted). Rearranging (13.33) gives

E9̂rj(t+s;− r̂s(t+s =−cov
̂rj(t+s(Ht+s�
E9Ht+s;

j = 1(2( � � � ( n (13.34)

This result aids the interpretation of the preferred habitat theory. Suppose, for the
sake of example, that all investors have an s-year holding period. Then (13.34)
shows that the risk premium on any bond, E9̂rj(t+s;− r̂s(t+s, is proportional to the
covariance of its rate of return with the stochastic discount factor. In this context,
‘risky’ assets are bonds the rates of return on which are highly correlated with the
marginal utility of consumption at the holding period, t+ s, for it is this marginal
utility that determines Ht+s. Bonds with maturities close to s would tend to have
small risk premia relative to bonds with longer or shorter maturities.25

It is, of course, implausible to assume that the holding period is the same for
all investors. Allowing for heterogeneous preferences would greatly complicate
the analysis. Even so, this approach shows how it is possible to study the impact
of investors’ risk preferences on the term structure of interest rates. (A pioneering
contribution on similar lines to that sketched here appears in Stiglitz, 1970.)

25 In the context of their model, Cox, Ingersoll and Ross (1981) demonstrate that the behaviour of investors
with long holding periods is more subtle than this analysis might suggest. In some circumstances, such
investors may choose to bear the risk associated with holding a sequence of short-term bonds even though
the expected return over the holding period is no greater than that on a bond with a maturity equal to the
holding period – i.e. a bond that is ‘risk-free’ in the terminology used here.
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14

Futures markets I: fundamentals

Overview

Futures contracts and the markets in which they are traded represent one of
the most important classes of financial derivatives. A crucial feature of futures
contracts is that certain actions, such as the delivery of some asset or commodity,
are deferred from the present to a determinate date in the future, though many
aspects of the actions to be executed are agreed at the outset. But at least as
important as this is the fact that futures contracts are themselves traded. Thus, it
is necessary to distinguish between the promise to deliver (the futures contract)
and whatever object it is that is to be delivered (the underlying asset).

It may seem puzzling that the promises to deliver may, and very often do, vastly
exceed the total amount of the commodity that could conceivably be delivered.
This chapter, and the following two, seek to demystify what at first sight may
appear to be the magical operation of futures markets. Once the specialized
jargon and administrative complexity are stripped away, the principles of futures
trading become much less puzzling, and, indeed, can be understood by applying
conventional economic reasoning.

Futures contracts evolved from a simpler sort of agreement, the forward
contract. Section 14.1 begins by describing forward contracts, the features of
which serve to highlight the distinctive aspects of futures markets. Having
described the main characteristics of futures, section 14.2 outlines how futures
exchanges operate in practice. Section 14.3 shows how the arbitrage principle
links the forward prices and the current, spot prices of assets underlying forward
contracts. Also, a link is established between forward and futures prices for the
same underlying asset. The remaining two sections illustrate the application of
arbitrage reasoning in foreign exchange markets (section 14.4) and repo markets
for the sale and repurchase of bonds (section 14.5).

336
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14.1 Forward contracts and futures contracts

14.1.1 Forward contracts

In a forward contract, two parties agree to take a specified action on a specified
date in the future. The typical forward contract is an agreement between a buyer
and a seller in which the seller agrees to deliver a certain amount of a partic-
ular ‘good’ on a date and place at a price determined at the outset (i.e. when
the agreement is made, not when the good is delivered). The ‘good’ in this
context could be a physical commodity (e.g. soybeans), shares in a company
or foreign currency. Indeed, it is anything that could be the object of an
agreement.

When the agreed date arrives, the contract is executed with the delivery by the
seller and payment by the buyer. Let F
t(T � denote the price agreed at date t for
the delivery of the asset at date T . Note that the contract (which stipulates the
price, among other things) is agreed at date t but is executed only at T � t. Full
payment for the asset is not made until it is delivered, at T . There is no reason
to rule out a side payment between the parties at date t (or any date before T ),
but, purely for simplicity, this is assumed to be zero.1

A spot contract is for delivery at, or very shortly after, the agreement of the
contract. Let p
t� denote the price agreed in a spot contract. A trivial arbitrage
argument – hardly more than a definition – establishes that p
t�= F
t( t�.

Forward markets (together with their associated contracts and prices) have been
in existence for as long as recorded history and for a wide range of commodities.
Three categories of traders in forward markets are usually identified.

1. Arbitrageurs seek to exploit price differentials among spot and forward prices in order
to make arbitrage profits (risk-free payoffs that require a zero initial outlay). Market
equilibrium is usually defined such that arbitrage opportunities are absent – i.e. that
arbitrageurs have successfully exploited any such opportunities, with the unintended
consequence that their collective actions have driven arbitrage profits to zero.

2. Speculators have ‘the object of securing profit from knowing better than the market
what the future will bring forth’.2 That is, speculators seek to profit by trading accord-
ing to their expectations about the future. They bear the risk that their expectations
may turn out to be wrong.

3. Hedgers trade in forward markets to eliminate (or, in practice, to reduce) the risks
associated with other production or merchandising commitments. For example, a
grain merchant may wish to sell wheat forward – adopt a ‘short position’ – in order
to guard against the possibility that the value of the stored grain will have fallen by

1 Another way of stating the assumption is that the forward price, F
t(T �, is agreed such that the value of
the contract to both parties at date t is equal to zero. Section 14.3.4, later in the chapter, studies the role of
side payments when existing forward contracts (agreed in the past) are renegotiated.

2 Keynes (1936, chap. 13, p. 170). Earlier (chap. 12, p. 158), Keynes defines speculation as ‘the activity of
forecasting the psychology of the market’.
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the date at which it is sold. A miller, on the other hand, may wish to buy forward –
adopt a ‘long position’ – in order to guard against a rise in the price of grain before
it is needed in the milling process. Here is the classic description given by Keynes in
1930 (Vol. II, chap. 29, sect. 5).3

In the case of organized markets for staple raw materials there exist at any time two price
quotations–the one for immediate delivery [spot price], the other for delivery at some
future date, say six months hence [forward price]. Now if the period of production is of
the order of six months, the latter [forward] price is the one which matters to a producer
considering whether he shall extend or curtail the scope of his operations; for this is the
price at which he can at once sell his goods forward for delivery on the date when they
will be ready. If this [forward] price shows a profit on his costs of production, then he
can go full steam ahead, selling his product forward and running no risk.

Although it is common to imply that arbitrageurs, hedgers and speculators
are different decision makers, such a distinction is naïve because the activities
listed above more appropriately apply to motives, not individuals. Motives reflect
decision makers’ preferences, which may well be impossible to infer from public
information (the decision makers’ actions) or even from any objective information,
public or private. Moreover, a blend of motives could be inextricably combined
in determining a given action. For example, all but the simplest hedging strategies
involve bearing some risk, and, this being so, the investor may be prepared to take
on more risk if compensated with a higher expected return – that is, there may be
a tincture of speculation in hedging decisions. Similarly, arbitrage strategies (in
the strict sense) may be infeasible, although low-risk actions approximating those
of arbitrage may be possible. Once again, the action may smack of speculation
as much as another motive. Despite these cautions, the distinction between the
motives behind arbitrage, speculation and hedging is worth preserving, and is
maintained in what follows.

Recall the distinction between price risk and performance risk (or credit risk)
introduced in chapter 1. Forward contracts allow investors to eliminate price risk –
the risk that prices will change between the date of a decision and the delivery
of the asset. But forward contracts accentuate performance risk – the risk that
one of the parties to the contract will fail to uphold the bargain when the contract
matures and payment becomes due. The parties to a contract commonly control
performance risk via the provision of good-faith deposits or margins, the role of
which is significant in futures markets.

Sometimes spot and forward markets are referred to as cash markets, to distin-
guish them from the futures markets, studied next. The reason for drawing the
distinction should become clear from the nature of futures contracts.

3 Keynes developed his theory of forward and spot prices in a Manchester Guardian (newspaper) article in
1923.
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14.1.2 Futures contracts

Futures contracts form a subset of forward contracts. They are legally binding
forward contracts designed to facilitate trading in the contracts themselves at any
time prior to the maturity date of the contract, T , specified for the delivery of
the asset. (‘Maturity date’ and ‘Delivery date’ are used interchangeably in this
context.) Futures, like forward agreements, commit the parties to the contracts to
take specified actions at date T – that is, for the person who has promised to sell
to deliver the asset, and for the person who has promised to buy to take delivery
and to pay for it. Futures contracts, however, possess characteristics that enable
the parties to ‘undo’ their commitments at low cost and without breaching any
contractual obligations.

Where no ambiguity will result, in the remainder of this chapter the asset
underlying any forward or futures contract is called simply ‘the asset’ or ‘the
commodity’, as appropriate. Forward and futures contracts as financial instru-
ments typically have value and are assets in their own right. Even so, the
distinction between the derivative contract (forward or futures) and the asset on
which it is defined should always be kept in mind.

Let f
t(T � denote the price of a futures contract at date t for delivery at T .4

Just as for a forward contract, the price is the amount per unit of the asset to be
paid at date T when the asset is exchanged – if the contract remains in existence at
T . A trader who adopts a long position at t on a contract specifying delivery at T
promises to pay f
t(T � at date T in return for receiving the asset at T . Similarly,
a trader who adopts a short position at t on a contract specifying delivery at T
promises to deliver the asset at T in return for f
t(T � payable at T .

The marketability of futures contracts allows the possibility that only a small
proportion of the contracts remain in existence at the delivery date, T . Most of
the contracts are typically offset (or ‘closed out’ or ‘liquidated’) between t and
T . A snapshot of the market at any instant of time reveals the total number
of contracts – the open interest – that are outstanding. For every buyer there
must be a seller. Hence, the total of long positions must equal the total of short
positions – a condition sometimes called the ‘bucket shop’ assumption.5 At any
date t prior to delivery, T , the open interest could be greater or smaller than the
total amount of the asset available for delivery. Certainly, there is no reason to
require equality between open interest and the amount of the asset in existence
for t < T . At date T , the stocks of the asset must suffice to allow delivery of
the contracted volume; otherwise, default (or urgent negotiations among those
holding contracts) will ensue.

4 Futures contracts invariably allow an interval (sometimes as long as a month) during which delivery is
permitted. This fact is neglected for simplicity.

5 See Merton (1973) for the origin of the term, albeit in a slightly different context.
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Until the contract delivery date draws near, the open interest often exceeds the
volume of the asset that could conceivably be delivered. When the prospect for
delivery becomes closer, many of the contracts are offset – the parties ‘unwind
their positions’ – so that, at T , the amount of the asset exchanged is quite
modest. For example, in 2003 the proportion of contracts in grain futures held
to maturity was about 15.4 per cent of the average open interest, and much less
than 1 per cent of all the grain contracts traded during the year (Commodity
Futures Trading Commission, Annual Report to Congress, 2003).6 Indeed, many
financial futures contracts are written in such a way that delivery of the asset is not
permitted, even if it were physically possible; how this can be so is explained in
chapter 16.

14.1.3 Distinguishing between forward and futures contracts

Although forward and futures contracts share many common features, their differ-
ences are crucial for understanding the operation of futures markets.

1. A forward contract is typically a private agreement between two identified, named
parties, one of whom takes a ‘long’ position (the buyer), the other taking a ‘short’
position (the seller). With futures contracts, the identity of the party who takes
the other side of the contract is irrelevant. Futures contracts are traded on formal
exchanges and involve a third party, the exchange clearing house, which acts as a
guarantor for the contracts.7

Once a futures contract has been agreed, the clearing house guarantee effectively
makes the contract an anonymous agreement, thus facilitating further trading in the
contract prior to the stipulated delivery date.8 At the delivery date, a trader with short
position must deliver the asset but would not know, until that date, to whom delivery
should be made. In practice, even when delivery takes place, warehouse certificates
are exchanged. Physical movement of the asset need not occur on the delivery date.
Not surprisingly, exchange authorities impose obligations on the parties to ensure that
the bargains are upheld. (See section 14.2.4.)

By construction, futures contracts are homogeneous: for a given exchange, commod-
ity and maturity date, one contract is identical with another. This is a corollary of the
anonymity of contracts.

2. Futures contracts are standardized, in the sense that they are expressed in terms of
stipulated quantities of a specified quality, or range of qualities, with a determinate

6 Note that the open interest refers to the stock of contracts outstanding at the end of each month, while the
volume of trade expresses the flow of contracts exchanged prior to delivery.

7 The exchange authorities may very well be vigilant to monitor the identity of both parties to all contracts, in
order to uphold compliance with exchange regulations and legal obligations. For example, many exchanges
stipulate upper bounds for the number of contracts (long or short) that an investor is permitted to hold.

8 Exchanges often allow the parties to a trade to know with whom they are trading – a concession that need
not undermine, and that does not invalidate, the clearing house guarantee.
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delivery date at a particular location. Neglecting some technicalities, the standardiza-
tion is in terms of the following.

(a) Quantity: the contracts are written for a standard number of units; e.g. a wheat
futures contract on the Chicago Board of Trade is for 5000 bushels.

(b) Grade: the quality (or acceptable range of qualities) is specified. For example,
for wheat on the CBOT: ‘No. 1 & No. 2 Soft Red, No. 1 & No. 2 Hard Red
Winter, No. 1 & No. 2 Dark Northern Spring, No. 1 Northern Spring at 3
cent/bushel premium and No. 2 Northern Spring at par.’

(c) Date: the date of delivery is typically a calendar month, known as the ‘contract
month’, delivery being permitted on any working day, though the time interval
could be shorter. (Delivery may be permissible for a few days beyond the end of
the contract month.) There is commonly a limited set of delivery months; e.g., for
wheat in Chicago, the delivery months are July, September, December, March
and May.

(d) Location: a list of the geographical locations (typically warehouses, grain eleva-
tors, etc.) at which delivery is permitted.

No obligation exists to standardize forward contracts, the terms of which are at the
discretion of the parties to the contract. For this reason, forward contracts are often
referred to as over the counter, in contrast with the standardization and anonymity of
futures contracts.

3. Forward contracts are normally held to the date of delivery, at which time delivery
takes place and payment is made. (It is at the discretion of the counterparties to
renegotiate the contract at any time if they so choose.) Because futures contracts are
easily tradable, delivery of the commodity in question need not (and commonly does
not) occur, most contracts having been offset before maturity.

4. Unlike forward contracts, futures contracts are marked to market at the end of every
trading day. To grasp what this means, suppose that an investor purchases ten futures
contracts at a price of $1000 each and that the next trading day the price rises to
$1050. The investor’s margin account is credited by the exchange with a gain of $500

= 10× $50�. It is as if the position is offset and immediately reinstated with ten
new contracts. Note that the gain of $500 is a genuine profit if the investor sells ten
contracts at $1050; otherwise, the trader begins the following day with a long position
of ten contracts valued at $1050 (not $1000). If the price happens to fall below $1050
on the next day, the investor makes a loss, the margin account being debited with the
change in price multiplied by the number of contracts.

Conversely, suppose that the investor sells ten futures contracts at $1000 each.
If the price rises to $1050, the investor’s margin account is debited with $500: the
position is effectively offset and immediately reinstated, so that the investor has
now sold ten contracts at $1050 (instead of $1000). Whether this constitutes an
eventual loss for the investor depends on the price at which the position is subse-
quently offset (or the spot price if the commodity is delivered at the maturity of the
contract).
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Although with futures contracts there is much crediting and debiting of margin
accounts during the life of the contract, it should be remembered that the futures
contract price refers to a price at which the asset changes hands upon delivery. Prior
to that time, the flows of cash into or out of margin accounts (described further below)
exist to minimize performance risk, not as final payment for the asset itself.

The differences between forward and futures contracts reveal that they perform
rather different functions for traders. Forward contracts can be tailor-made to meet
the peculiar needs of those who deal in them. But, having been agreed, forward
contracts may be costly to renegotiate, or to exchange with third parties. Futures
contracts are designed to be easily tradable – liquid – but are not customized to
suit the precise needs of those who seek to make, or take, delivery of the asset.
Some assets, such as foreign exchange, are sufficiently homogeneous and liquid
that the distinction between forward and futures contracts is of little economic
consequence. For others, such as agricultural commodities, the distinction is
more important because the asset may be heterogeneous in one or more relevant
dimensions.

14.2 The operation of futures markets

14.2.1 Futures exchanges and their members

Some of the more well-known futures exchanges include: the Chicago Board of
Trade (founded in 1848, a market in agricultural commodities and, since the early
1980s, financial futures); the Chicago Mercantile Exchange (CME, founded in
1874, a market in livestock futures and, since the early 1980s, financial futures,
especially contracts in foreign currency and interest rate futures); the New York
Mercantile Exchange (NYMEX, formed in 1994 from the Commodity Exchange
in New York, a market in precious metals and energy futures); the London Metal
Exchange (founded in 1877, a market in base metals); the International Petroleum
Exchange (founded in 1980, a market for oil and natural gas products); and the
London International Financial Futures Exchange (founded in 1982, a market in
futures and options).9

While competition among traders on each exchange is normally taken for
granted, exchanges themselves also compete for business. Copper futures, for
example, are traded both on the LME and NYMEX. The contract specifications
are not identical across exchanges; different contracts will suit different investors.
Even so, exchanges have an incentive to make their contracts as attractive as
possible. Also, investors may seek to exploit opportunities to profit from price
discrepancies that they perceive among contracts traded on different exchanges.

9 In late 2001 the Euronext group acquired LIFFE and renamed it Euronext.liffe. For convenience, the
abbreviation LIFFE is used here and in the remaining chapters.
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The exchanges are commonly owned and controlled by member firms, which
may also be floor traders (acting as principals, on their own behalf) or floor
brokers (acting on behalf of others). The exchange authority has an obligation
to uphold the rules of the exchange in order to minimize dishonesty and to make
the exchange an attractive place for trading in the contracts it offers. ‘Investors’
can be identified with principals (i.e. dealers acting on their own account), who
instruct member firms or brokers to make deals.

The exchange clearing house is a legal entity separate from the exchange itself10

(though, typically, there is an overlapping membership). All contracts must be
registered with the clearing house; margins are deposited with it; it administers
settlement (see 14.2.3, below); and it arranges compensation in the event of
default.

14.2.2 Trading mechanisms

Most exchanges operate order-driven continuous auctions (see chapter 2). Instruc-
tions in the form of market or limit orders11 to by or sell contracts are given by
investors to their brokers (typically, members of the exchange). Each instruction
is then communicated to a floor broker, who operates in the trading pit by engag-
ing in an elaborate ritual of open outcry to make a trade. The trade may be with
another broker acting on behalf of an exchange member or a floor trader acting as
a principal. Many exchanges have now adopted various forms of computerized
trading, such as the CME’s GLOBEX or LIFFE’s CONNECT trading platform,
which provides an electronic limit order book for recording and executing orders.
In some markets computerized trading has displaced open outcry altogether. In
others it runs in parallel with open outcry, while in yet others computerized trad-
ing is allowed at times when the open outcry trading pit is closed. Open outcry
may soon be consigned to history.

As already noted, the exchange authority determines the specification of each
type of contract and the terms on which it can be traded. The contract size,
or trading unit, defines the unit of measurement for the ‘commodity’ (e.g. for
the FT-SE 100 index future one contract is equal to $10 times the value of the
FT-SE 100 index). The tick size defines the minimum unit for price changes
(e.g. 0.5 of each index point for the FT-SE 100 index). The tick value is the
tick size multiplied by the trading unit (e.g. 0�5×$10 = $5�00 for the FT-SE 100
contract).

10 In London, for example, the London Clearing House (LCH) is the clearing house for the IPE, LME and
LIFFE.

11 These are the simplest types of order; most exchanges also allow other more complicated instructions to be
executed.
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Many exchanges impose price limits, which restrict the absolute magnitude of
price fluctuations that are allowed in any one trading day. For example, for CBOT
wheat futures the price per contract is allowed to change by at most $1500 (30
cents per bushel) each day, except that no limit applies during the delivery month.

Instead of price limits, some exchanges require trading to cease for a while if
prices change by a large amount over a short interval. For example, on LIFFE,
when a limit is reached trading is suspended for a one-hour recess – a cooling-off
period. This sort of restraint is common for financial futures contracts.

Exchange authorities may also impose limits on the number of contracts held by
any one investor. For example, for NYMEX oil futures each investor is allowed
to be long or short in at most 20,000 contracts. Such a restriction reduces the
scope for an investor to become dominant in the market (and, hence, to manipulate
the price). Also, it limits the impact on the market in the event of an investor’s
default.

At the end of each trading day, the settlement price defines the price at which
outstanding contracts are marked to market. Typically, the settlement price is set
equal to the closing price – i.e. the price agreed for the last trade of the day. It is
possible, however, that, when no trades have taken place towards the end of the
day, the exchange authorities may decide that the last trade is unrepresentative
for some reason and a different settlement price will be announced.

14.2.3 Terminating futures positions

If an investor has a position in futures, be it long or short, some action must be
taken with regard to the contracts before or at the maturity date. How are futures
contracts liquidated? There are three main ways.

1. Offsetting trades. The commonest form of settlement is for offsetting trades to be
made sometime before the delivery date. An investor with a long position sells the
same number of contracts previously purchased. An investor with a short position
buys the same number of contracts previously sold. The gains or losses on the deal
are then credited or debited to the investors’ margin accounts. The process of marking
to market ensures that the profit or loss is reflected in the value of the margin account
when the offsetting trade is settled.

The payoffs from futures positions, subsequently offset, are depicted in figure 14.1.
Consider a long futures position, in which one contract is purchased at price f0. If
the position is offset (with the sale of one contract) at a higher price, there is a
gain equal to the difference between the purchase and sale prices. Conversely, if
the position is offset at a lower price, a loss is made, again equal to the difference
between the purchase and sale prices – hence the positively sloped line with slope +1
in figure 14.1.
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Fig. 14.1. payoffs from long and short futures positions

Suppose that the futures position is opened (contracts purchased or sold)
at price f0. When a long position is offset (closed), the contracts are
sold. Hence, the payoff is positive if the price (at the date of offset)
exceeds f0, and negative if the price is less than f0. Conversely, when
a short position is offset, the contracts are purchased. Hence, the
payoff is positive if the price is less than f0, and negative if the price
exceeds f0.

Now consider a short futures position, in which one contract is sold at price f0.
If the position is offset (with the purchase of one contract) at a lower price, there is
a gain equal to the difference between the sale and purchase prices. Conversely, if
the position is offset at a higher price, a loss is made, again equal to the difference
between the sale and purchase prices – hence the negatively sloped line with slope −1
in figure 14.1.

2. Exchange of futures for physicals (EFP). Two investors, one with a long position, the
other with a short position, may agree to fulfil their obligations by the delivery of
(and payment for) the commodity prior to the maturity of the contract. The clearing
house must be notified of this agreement, upon which it cancels the contracts. The
advantage of this procedure is that the parties can exchange a commodity that does
not match the exact requirements of the futures contract. On some exchanges it is
permissible to initiate futures positions via an EFP. For example, two parties may
agree to trade a futures contract (one taking the short position, the other the long) as
one component of an agreement involving, say, the exchange of the asset. Clearly,
the parties to the EFP must inform the exchange authorities and deposit the necessary
margins with the clearing house.

3. Delivery. Sometime during the stipulated delivery period an investor – say, A – with
a short position submits a delivery notice to the clearing house signalling that delivery
is to be made. The clearing house then selects (at random or according to a previously
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determined rule) an investor – say, B – with a long position in the same contract to
accept delivery.12 Investor B must then make payment and receive the commodity,
typically a warehouse receipt, from A.

For most financial futures (and also for some physical commodity contracts)
exchange regulations may allow, or require, cash settlement, without any exchange
of the asset. Cash settlement is accomplished by calculating the gain or loss on the
contract, the amount of which is credited to the party that gains and debited to the
party that loses; the asset underlying the contract does not change hands. For example,
on LIFFE the FT-SE 100 index futures contract is settled in cash, whereas the British
government long-term bond (‘long gilt’) contract can be settled in cash, or by the
delivery of bonds from an eligible list specified, in advance, by LIFFE. It is quite
common, both for commodity and financial futures contracts, that there is a range of
‘qualities of the commodity’ (for physical commodities known as the contract grades)
or ‘securities’ that qualify for delivery; the investor who is short presumably chooses
the cheapest eligible means of settlement. (Also, it is open to A and B, in the above
example, to agree on terms for the delivery of the asset other than those specified in
the original contract. This is known as an alternative delivery procedure (ADP), and
is effectively the same as EFP.)

14.2.4 Margins

When an investor instructs a broker to buy or sell futures contracts, the investor
deposits (‘posts’) an initial margin (or ‘original margin’) with the broker. Each
trading day thereafter, until the investor offsets the position, the contracts are
marked to market at the day’s settlement price. Depending on the new, marked-
to-market value of the contracts, the investor must hold at least a maintenance
margin (normally somewhat less than the initial margin) with the broker. This
may involve the broker making a margin call for the investor to deposit a vari-
ation margin with the broker, so that the credit balance does not fall below the
maintenance margin.

Example

An investor purchases ten futures contracts on day 1 for $1000 each. The initial
margin is $250 per contract and the maintenance margin is $200 per contract.13

See the following table for a hypothetical sequence of price changes, together
with the associated gains or losses.

On day 7 the position is reversed and the investor makes a profit of $100 =
10× 
1010− 1000�. Notice that this is exactly equal to the increment in the

12 Notice that only by chance would B be the investor to whom A sold the futures contract at the outset.
13 Note that the details of the example will differ if the margin is specified as a percentage of the contract

price rather than a given amount per contract. The principles are exactly the same, however.
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Day Price
Gain
(Loss)

Margin
account

Margin
call

1 1000 — 2500 —
2 1020 200 2700 —
3 970 (500) 2200 —
4 930 (400) 1800 700
5 950 200 2700 —
6 980 300 3000 —
7 1010 300 3300 —

value of the margin account, including the margin call made on day 4: $100 =
3300− 
2500+700�.

The variation margin on day 4 restores the margin account to its initial margin
level. It is possible, depending on the rules of the exchange, for the margin call
to restore the deposit to the maintenance level, in which case $200 would have
been deposited at the end of day 4. The net gain or loss when the contracts are
offset is, of course, unaffected.

The size of the margin deposit depends on the rules of the exchange and may
differ among contracts for different commodities. Also, the required margin
normally depends on each investor’s entire bundle of contracts – that is, on the
net exposure of the investor in the contracts. A market rate of interest is normally
paid on margin deposits. Instead of cash, it may be permissible for an investor
to deposit securities in fulfilling the margin requirement. For these reasons, the
effect of margin regulations on futures prices, if any, is not at all simple or
obvious. The obligation to hold a margin should be interpreted as a way of
ensuring performance (good faith) rather than as a transaction cost, though there
is an opportunity cost if investing the funds lodged in the margin account could
earn a higher return elsewhere. Explicit transaction costs for investors typically
take the form of commission charges levied by their brokers.

Not only do investors hold margin deposits with their brokers but the brokers
also maintain their balances with the clearing house (or hold each investor’s
margin in an account at the clearing house). The rules vary according to the
exchange, but may take the form of the broker paying a margin to the clearing
house as a proportion of the net value of all the contracts made on behalf of the
broker’s customers. The principle at the root of all these margin regulations is
that, in the event of an investor’s default, the funds in the margin account plus the
market value of the contract will be no less than the liability of the investor to the
broker (and the broker to the clearing house). Default could occur either when
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there is inadequate response to a margin call or, at maturity, when the payment of
cash (for a long position) or delivery of the commodity (for a short position) fails
to take place. Exchange authorities tend to fix margin requirements according to
the volatility of the relevant futures contract price: the more volatile the contract
price, the higher the margin.

14.2.5 Bundles of futures contracts

Traders in futures contracts often package contracts together to serve investors
(typically companies) with particular needs. Two of the commonest are straddles
and strips.

Straddles

A straddle consists of a package of short and long positions in the same contract
but with different delivery dates. Thus, for example, a straddle might comprise a
short position in two pork-belly contracts for December delivery, together with a
long position in two contracts, one for delivery in March and the other in June.

Sometimes straddles are known as spreads, though, strictly, a spread is the
difference between the prices of the contracts that form the straddle. A straddle
with a short position in one contract and a long position in another has two
‘legs’, referring to its component contracts. Straddles could also be constructed
for contracts that differ not in delivery date but in some other dimension, such as
the location at which the delivery of the commodity is to be made. When traded
on the same exchange, straddles require smaller margins than for their separate
components. Straddles can be attractive to investors for a variety of reasons – for
example, to exploit beliefs that the gap between the prices will either expand or
contract (without taking a view about whether the general level of prices will rise
or fall).

Strips

A strip (or calendar strip) consists of a package of contracts, all long or all short,
with different delivery dates. For example, an investor might acquire a ‘long
strip’ by purchasing four contracts, one of which matures at each of the next
four delivery dates. Why might the strip be attractive? Suppose that a trading
company has a long-term supply contract that requires delivery to a customer of
a commodity at a fixed price for a sequence of months. If designed carefully, the
purchase of a strip could provide the company with protection against a rise in
the commodity price during the life of the contract with its customer.
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14.3 Arbitrage between spot and forward prices

Consider a homogeneous commodity that can be stored at zero cost, and the
possession of which does not itself directly convey anything of worth. What is
the relationship between the spot price, p
t�, and the forward price, F
t(T �, of
this commodity for delivery at date T? The arbitrage principle provides the link.

Digression: borrowing and lending

Before establishing the link, recall the principle of compound interest.14 Suppose
that a loan of $1 (i.e. one unit of wealth or unit of account) is made at date t.
Let R
t(T � denote the value of the loan (principal plus interest) at date T . For
example, if T− t equals one year and the annual rate of interest is 10 per cent, then
R
t( t+1�= 
1+0�10�= 1�10, with no compounding. If compounding takes place
every six months then R
t( t+1�= 
1+0�05�2 = 1�1025. Slightly more generally,
suppose that the rate of interest is r per period and interest is compounded once per
period; then R
t(T �= 
1+r�
T−t�. The ‘period’ is commonly, but not necessarily,
one calendar year. If there is continuous compounding, then R
t(T � = er
T−t�.
These expressions assume that r is constant over the interval t to T ; they are
messier if r is non-constant, but no new principle is involved. The expression
R
t(T � is commonly termed the ‘interest factor’ or ‘gross interest rate’. Note,
finally, that the net present value at date t of $1 to be received at T is just
1/R
t(T � – that is, the price at date t of a risk-free zero-coupon bond paying $1
at date T .

14.3.1 Arbitrage: the simplest case

Suppose that F
t(T � > R
t(T �p
t�. Then arbitrage profits could be earned by
borrowing enough money, p
t�, to buy one unit of the commodity at the spot
price. Simultaneously, sell one unit of the commodity forward for F
t(T �. Store
the commodity until date T . At T deliver the stored commodity, collect the
cash – i.e. F
t(T � – and payoff the loan (i.e. R
t(T �p
t�), leaving a sure profit
of F
t(T �−R
t(T �p
t� > 0. This cannot be consistent with equilibrium in a
frictionless market.

Suppose that F
t(T � < R
t(T �p
t�. Then arbitrage profits could be earned by,
simultaneously, selling short one unit of the commodity at the spot price, investing
the proceeds and purchasing a forward contract for delivery of the commodity
at date T . At date T collect R
t(T �p
t� from the investment, pay F
t(T � for
the commodity and return the unit of the commodity to its lender (i.e. from
whomever it was borrowed at the outset, date t). This leaves a sure profit of

14 This paragraph summarizes and extends the analysis of chapter 1, section 1.6, and appendix 1.3.
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R
t(T �p
t�−F
t(T � > 0, and hence cannot be consistent with equilibrium in a
frictionless market.

Thus, in the simplest case, the absence of arbitrage opportunities implies that

F
t(T �= R
t(T �p
t� (14.1)

This is the fundamental arbitrage relationship in forward markets. Note that each
component – F
t(T �, R
t(T � and p
t� – can be observed at date t, when the
bargain is struck. (Note, in particular, that the spot price, p
t�, is not the spot
price at the date, T , when the forward contract matures.)

14.3.2 Complications

What determines whether (14.1) accurately predicts the relationship among F
t(T �,
p
t� and R
t(T �?

1. Frictionless markets. Transaction costs are assumed to be zero and there are assumed
to be no institutional restrictions on trades. Also, it is taken for granted that perfor-
mance risk can be neglected. To the extent that market frictions impinge on trading,
F
t(T � may diverge from R
t(T �p
t�.

2. Storage (or carrying) costs. For some assets (particularly physical commodities, such
as grain or gold), the cost of storage (including insurance) may be significant, though
for most financial assets such costs are negligible. Storage costs can be included
by adding them to the right-hand side of equation (14.1). For later reference, let
c
t(T �p
t� denote the storage cost of one unit of the commodity, so that c
t(T �
expresses the storage cost of $1 (one unit of account) invested in the commodity at
date t and held until date T .

3. Convenience yield. The ownership of many assets confers benefits, merely by the
fact of possession. Such benefits might take the form of pecuniary returns, such as
dividends on shares or coupons on bonds. Alternatively, the benefits could be as
intangible utility to the owner. Examples include: (a) a miller who finds it worthwhile
to hold stocks of grain to facilitate the day-to-day scheduling of the milling process;
(b) a miser who finds pleasure in gazing at a hoard of gold ingots; (c) an investor
who finds some financial assets especially attractive because they can easily be sold
for cash. In the case of (c), the benefit is sometimes expressed as a liquidity premium.
(Keynes’s enigmatic chapter 17 of The General Theory (1936) merits reading in this
context.)

The convenience yield is introduced by subtracting a term from the right-hand side
of (14.1), or adding it to the left-hand side. For later reference, let y
t(T �p
t� denote
the convenience yield for one unit of the commodity, so that y
t(T � expresses the
convenience yield on $1 invested in the commodity at date t and held until date T .

4. Availability of stocks. Restrictions in the availability of inventories present a compli-
cation that tends to be more relevant for physical commodities than for financial assets.
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For agricultural commodities, stocks tend to be depleted immediately before harvests.
It is also possible, though for different reasons, for the inventories of non-agricultural
commodities (e.g. metals) to be limited at certain times and in some places. Even
if inventories are plentiful, they may be held by firms or individuals who intend to
process them, and, hence, not be readily available to trade.

When stocks available for trade are limited, the arbitrage principle fails to predict
the equality (14.1). This is because there is not enough of the commodity in existence
to allow it to be short-sold. Hence, F
t(T � < R
t(T �p
t� may be consistent with
market equilibrium, when inventories are low. This is especially likely to be true if
T is a long time away relative to t.

Allowing for the complications outlined above, the market equilibrium condi-
tion, (14.1), becomes

F
t(T �<= 9R
t(T �+ c
t(T �−y
t(T �;p
t� (14.2)

where the inequality allows for circumstances in which stocks become so low
that short-selling is infeasible. Neglecting possible restrictions on short-sales, and
suppressing the date arguments of the interest factor, storage cost and convenience
yield, (14.2) can be expressed more compactly as

F
t(T �= 
R+ c−y�p
t� (14.3)

Given its subjective nature, for most assets it is exceedingly difficult to measure
the convenience yield, y, independently of the other components of (14.3). Conse-
quently, sometimes y is defined to make (14.3) hold:

y ≡ R+ c− F
t(T �

p
t�
(14.4)

This is merely an identity, and predicts nothing. However, in the context of
futures markets – replacing F
t(T � with f
t(T � – theories of storage have been
constructed to explain y as defined in (14.4). It is postulated that the convenience
yield varies inversely with the stocks of the asset. When stocks are low, y is high.
As stocks increase, y falls, tending to some small constant value (possibly zero)
when stocks are abundant.

14.3.3 When are forward and futures prices equal?

Suppose that two contracts are identical in every respect except that one is a
forward contract and the other is a futures contract. If the rate of interest between
dates t and T is non-random (i.e. known for sure) then the two prices are equal:
F
t(T � = f
t(T �. (See appendix 14.1 for a demonstration.) The condition that
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the interest rate is non-random does not require that r is constant over the interval
t to T but, rather, that its changes are known at the outset, date t.

Pairs of identical forward and futures contracts are rarely encountered in prac-
tice. The significance of the result is that it shows (a) why forward and futures
prices may differ, and (b) the circumstances in which they are likely to be close
approximations to one another. In particular, the result suggests that the differ-
ence between F
t(T � and f
t(T � is likely to be small if the interval between t
and T is short (say, six or nine months), for then the prospect of large, unforeseen
changes in interest rates is also small.

From here on, futures and forward prices are used interchangeably unless clarity
requires otherwise.

14.3.4 Revaluation of a forward contract

Forward contracts, once agreed, typically remain in existence until the delivery
date, at which time the asset is exchanged for cash. It is possible, however, that
one or other party to the contract may seek to renegotiate the agreement before
the delivery date. For example, a company with a long position in a forward
contract for the delivery of heating fuel might decide that it no longer wishes to
take delivery. This being so, it could propose to cancel the contract or try to sell it
to a third party. Similarly, a company with a short position in a forward contract
might find that it cannot deliver the asset and would, thus, be in breach of its
contractual obligations. Consequently, it could seek to renegotiate the contract or
try to offset its position by purchasing an identical contract from a third party.

The question of how to value a forward contract after it has been agreed, but
before it matures, can be posed as follows. Suppose that the forward price for
delivery at date T is given by F̂ , where F̂ has been determined at a date, t′,
sometime before today, date t – i.e. t′ < t. What is the value of the contract
today, t (where t < T )?

For example, suppose that a contract is negotiated in January for the delivery of
1000 barrels of oil in December at a price of $35 per barrel (thus, F̂ = $35(000=
$35×1000). The question is: what is the value of this contract at a later date –
say, in March?

Let V
t(T( F̂ � denote the value at date t of a forward contract agreed for
delivery at date T with underlying asset price F̂ . In a frictionless market and
in the absence of arbitrage opportunities, the value, V
t(T( F̂ �, of the previously
agreed forward contract is given by

V
t(T( F̂ �= F
t(T �− F̂
R
t(T �

(14.5)
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To interpret this result, note that F
t(T � is the price as of today, date t, for the
delivery of the asset at date T . The price F
t(T � can, and generally will, differ
from any previously determined price (e.g. F̂ ) for the same asset to be delivered at
T . The expression (14.5) states that V
t(T( F̂ � equals the net present value of the
difference between the current forward price, F
t(T �, and the contract price, F̂ ,
stipulated in the earlier agreement. (For a derivation of (14.5), see appendix 14.2.)

To continue the example, suppose that the forward price set in March for
delivery in December is $38�30 and that the interest factor for borrowing or
lending between March and December is 1�10; then the value of the contract
to deliver 1000 barrels of oil for $35 per barrel in December equals: $3000 =
1000× 
38�30−35�/1�10. That is, it is worth paying $3000 for 1000 barrels of
oil at $35 for delivery in December when the current forward price (in March) is
$38�30.

It is crucial not to confuse the value of the contract with the price to be paid for
the underlying asset when the contract matures (at the delivery date). The value
of an existing forward contract is not necessarily positive. Indeed, it will always
be non-positive from the perspective of one party to the contract. To pursue the
example further, a company that has sold 1000 barrels of oil at $35 for December
delivery would be obliged to pay $3000 to cancel the contract if the current price
for December delivery rises to $38�30 (with an interest factor of 1.10).15

Another interpretation of the above analysis follows if side payments are permit-
ted at the inception of forward contracts. Typically, it is assumed that side
payments are zero. But there is no reason in principle why this must be so: one
party to a contract could agree to pay a sum to the other at the outset. What equa-
tion (14.5) predicts is that the side payments and forward prices would be related
in a precise way (not forgetting the conditions that the market is frictionless and
arbitrage opportunities are absent). Returning to the example, if the forward price
(with zero side payment) equals $38�30, then a contract to deliver 1000 barrels
of oil at $35 will exchange for $3000 (if the interest factor is 1.10).

If, as is typically assumed, no money changes hands at the commencement of
a forward contract, then the value of a forward contract is said to be zero. In
symbols: V
t(T(F
t(T �� = 0. With the passage of time, the forward price on
newly arranged contracts rises or falls. Consequently, previously agreed contracts
(arranged with lower or higher prices) become positive or negative in value.

Consistent with the earlier discussion, in section 14.1.3, futures contracts are
forward contracts that are revalued each trading day. When a futures contract

15 Alternatively, the seller would find it necessary to pay $3000 to induce a third party to take over the
contract (to deliver 1000 barrels of oil in December for $35 per barrel) when the current forward price for
December delivery stands at $38�30 (and under the conditions already assumed – i.e. an interest factor of
1.10, frictionless markets and the absence of arbitrage opportunities).
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is marked to market, it is just as if an existing forward contract is cancelled
and immediately renewed at the current forward price, the change in price being
credited or debited to the investor’s margin account. The interest factor, R
t(T �,
appears because the market interest rate is the opportunity cost of funds held in a
margin account.

14.4 Arbitrage in foreign exchange markets

Arbitrage, speculation and hedging in foreign exchange markets operate according
to the same principles as in other asset markets. Any differences are of form rather
than substance – consequences of different terminology and different institutional
arrangements.

The most important institutional feature of foreign exchange markets is that they
largely involve OTC contracts in which agreements are negotiated by telephone
amongst dealers operating from banks located around the globe. This feature,
together with the fact that each currency is homogeneous (one US dollar is
identical to any other), tends to favour forward foreign exchange contracts rather
than futures markets, though foreign exchange futures contracts are traded – on
the Chicago Mercantile Exchange, for example.

Arbitrage in foreign exchange markets operates in two distinct ways: (a) to
link exchange rates among three or more currencies (see chapter 1 for a simple
example); and (b) to link the spot and forward exchange rates between a pair of
currencies. The latter link is expressed as the covered interest parity condition,
found in international finance.

In order to state the covered interest parity condition, consider any pair of
currencies, one domestic (say, pounds sterling, £), the other foreign (say, dollars,
$). Let p
t� denote the spot price of dollars (i.e. the price of $1 in units of £).
Let F
t(T � be the price of $1 (in units of £) for delivery at date T , the agreement
being reached today, date t. Denote the interest factor in pounds by R
t(T � and
the interest factor in dollars by R∗
t( T �. The absence of arbitrage opportunities
in frictionless markets implies that

F
t(T �= R
t(T �

R∗
t( T �
p
t� (14.6)

This is the covered interest parity condition. If (14.6) is not satisfied, it is possible
to make positive arbitrage profits in a frictionless market. Hence, the equality
must hold in market equilibrium.

To justify (14.6), examine the consequences of violating the equality. Suppose
that F
t(T � > R
t(T �p
t�/R∗
t( T �. Note, for later reference, that this can be
arranged as FR∗/p > R, where the date arguments are omitted for conciseness.
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Consider the following investment strategy at date t: (i) £1 is borrowed (to be
repaid, with interest, at date T ); (ii) the £1 is exchanged for $1/p, which are
lent at interest; (iii) $R∗/p are sold in the forward market, to be delivered at
date T in exchange for sterling. When date T arrives, the dollar investment
yields $R∗/p, which are exchanged (in fulfilment of the forward contract) for
£FR∗/p. Also, at date T , £R are paid to discharge the sterling loan. The net
payoff equals £FR∗/p−R > 0. This is an arbitrage profit, which is inconsistent
with equilibrium in a frictionless market.

Conversely, suppose that F
t(T � < R
t(T �p
t�/R∗
t( T �. Now the arbitrage
opportunity can be exploited as follows: (i) borrow dollars; (ii) exchange the
dollars for pounds, which are lent at interest; (iii) sell pounds for dollars in the
forward market. At date T the pounds that were lent are received (including
interest), and are exchanged for dollars in fulfilment of the forward contract.
Some of the dollars are then paid to discharge the dollar loan. Leaving the
details as an exercise, it should be straightforward to check that the net payoff is
necessarily positive. Once again, an arbitrage profit has been made.16

More frequently encountered in international finance is the uncovered interest
parity condition, which can be expressed in the present notation as

E9p
T ��:t;=
R
t(T �

R∗
t( T �
p
t� (14.7)

where E9p
T ��:t; denotes the spot exchange rate expected for date T , conditional
upon information, :t, at date t. A common error is to assert that (14.7) is a conse-
quence of the arbitrage principle. While it is possible that E9p
T ��:t;= F
t(T �,
its justification requires assumptions about investors’ behaviour much stronger
than needed in arbitrage analysis. If investors are risk-neutral and unanimous in
their expectations about future spot exchange rates, then (14.7) could be regarded
as a plausible prediction.

14.5 Repo markets

Repo is shorthand for ‘repurchase’ – more appropriately, ‘sale and repurchase’.
Repo agreements are typically negotiated for financial assets, though, in principle,
they could be applied to any commodity.

Suppose, for example, that the ‘commodity’ is British government debt –
i.e. gilt-edged securities. One party to the agreement, A, sells stock to a coun-
terparty, B, for cash today and a promise to repurchase the stock from B at a
specified later date for a specified price. Party A is said to reverse out of the
stock. Party B is said to reverse in to the stock.
16 Notice that, by suitable choice of the amount traded in the forward contract, the payoff can be denominated

in either dollars or sterling.
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The motives for repo agreements are many and various. One way of viewing a
repo is as a loan, with the collateral being the asset underlying the agreement. In
the example, A obtains a loan from B, the collateral being the stock that B holds
until the loan is repaid (with repurchase of the stock).

Another way to view the repo is as the combination of a spot transaction and a
forward transaction. In the example, A sells in the spot market and simultaneously
purchases in the forward market. Both transactions are bundled together and made
with the counterparty, B.

Notice that there is an implicit interest rate in the repo agreement. For simplic-
ity, suppose that the agreement is to last exactly one time period, that the price
A receives today is $100 and that the price A pays one period from now is $104.
Then the implicit repo interest rate is 4% = 
104− 100�/100. Interest rates are
quoted on an annual basis, so that when the time period is different from a year
(it is normally much shorter) the rate is rescaled to allow for the duration of the
loan. Also, it may be necessary to allow for the accrual of interest (forthcoming
coupons) during the life of the repo. Neither of these refinements affects the
basic principle. Hence, the repo agreement can equivalently be specified in terms
today’s security price ($100, in the example) and a repo interest rate (4 per cent,
in the example).

Repo agreements can be used as vehicles for exploiting arbitrage opportunities.
In the example, suppose that A can lend funds at 5 per cent. Then A could profit
by borrowing at 4 per cent in the repo market and lending at 5 per cent. Whether
or not this investment strategy should be interpreted as arbitrage depends, of
course, on whether it is risk-free. If it is, equilibrium – in a frictionless market,
with the absence of arbitrage opportunities – is attained only when prices and
interest rates change such that the two interest rates are equal.

The assumption of frictionless markets is, of course, an idealization. Repo
transactions are no exception to the impediments to trades and transaction costs
that obscure the consequences of arbitrage. For example, regulations governing
the borrowing of securities and tax laws can affect the feasibility and profitability
of repo agreements. Reforms in the British gilt-edged securities market in early
1996 illustrate how institutions can impact on the operation of financial markets.
In this instance, the liberalization of trading in securities enhanced the scope for
an expansion of the repo market in government stocks.17

Just as with any forward transactions, performance risks can impinge on repo
agreements: one or other party may default by failing to deliver the securities,
or by neglecting to make the promised cash payment, when the contract matures.
Thus, in the example, default would result if either A cannot afford to repurchase

17 For details of the reforms, see Bank of England (1995).
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the securities from B or if B is unable to deliver the securities (which B perhaps
sold between the inception of the repo agreement and its maturity). However,
much as in futures markets, mechanisms exist to minimize the risk of default.
In particular, (a) the securities designated for repurchase may be kept in the
custody of a reputable third party, (b) the parties may agree to deposit the funds
in margin accounts, and (c) the process of marking to market ensures that the
margin accounts reflect fluctuations in security prices.

The prospect of exploiting an arbitrage opportunity is only one of the motives
for repo trading. For instance, security dealers use repos to maintain inventories of
stocks when balancing the fluctuating trading flows with their customers. Banks
use repos to replenish their cash reserves in the event of unforeseen withdrawals
by their customers. In some financial systems repo markets are integral to the
mechanism for conducting the central bank’s monetary policy. The Bank of
England, for example, implements monetary policy by trading in two-week repos
at its policy-determined interest rate. The profit-seeking actions of banks then
serve to transmit the policy throughout the financial system, and beyond into the
rest of the economy.

14.6 Summary and conclusion

1. Forward and futures contracts enable agreements made at one date to be executed at
a later date. Forward contracts are private, over-the-counter agreements negotiated
between the relevant parties.

2. Futures contracts are exchange-traded contracts, the terms of which are controlled and
guaranteed by organized exchanges. Forward contracts can be customized but are
often expensive to renegotiate. Futures contracts are standardized but can be traded
immediately and with low transaction costs.

3. The arbitrage principle links spot and forward prices at each date in frictionless
markets. The principle can be applied to any market in which both spot and forward (or
futures) contracts are traded. However, if ownership of the underlying asset provides a
convenience yield or if storage is costly (or both), the absence of arbitrage opportunities
plays a more limited role, as a guide to the measurement of convenience yields.

4. Forward contracts are normally constructed to begin life with a zero value. But,
as time passes, the forward prices are likely to change, with the consequence that
contracts acquire a positive value for one party and an equal negative value for the
other. The arbitrage principle enables the revaluation of previously negotiated forward
contracts at any date prior to their maturity.

5. Examples of markets for which the arbitrage principle links forward and spot prices
include (a) foreign exchange markets (for which the covered interest parity condition
expresses the absence of arbitrage opportunities) and (b) repo markets for the sale and
repurchase of securities.
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Futures markets have often been treated with suspicion, as arcane institutions
that operate in mysterious ways. Some of the mysteries should have been illumi-
nated, if not resolved, in this chapter. However, among the questions that remain
are these. Why do futures markets exist at all? Why do futures markets exist
for some ‘goods’ and delivery dates rather than others? What determines futures
prices?

Apart from an inherent human propensity to bet on the outcome of future
events (to speculate), futures markets facilitate the planning of actions that, for a
variety of reasons, will be taken at a later date. Fundamentally, it is too costly –
perhaps infinitely costly – for the supply of some goods to be changed instantly.
Futures markets enable the planning of production and consumption across time
to alleviate the uncertainties occasioned by supply inflexibilities. But it can be
argued that forward markets perform this function just as well as futures markets.
Thus, the existence of futures markets requires further justification: either that
they perform the same functions as forward markets but more efficiently, or that
they also serve some other purpose(s).

A distinctive role claimed for futures markets is that they facilitate price
discovery; i.e. futures markets promote the dissemination of information about the
equilibrium price for the asset underlying the futures contract. From this perspec-
tive, futures prices reflect the strength of demand and supply in circumstances
when it would otherwise be difficult to obtain an accurate guide to the market
price – perhaps the asset is heterogeneous in quality, or traded infrequently,
possibly at widely dispersed locations. In the absence of futures markets for these
assets, equilibrium prices would remain obscure, or even entirely hidden.

The effectiveness of markets’ price discovery relies, partly at least, on the
presence of active trading in contracts – accurate prices require market ‘depth’ (in
the sense of many traders and many trades). Closely allied with price discovery is
liquidity – the ability to execute trades swiftly (see chapter 2, section 2.2.3). But
the liquidity of the market could also be deemed important for ensuring the attrac-
tiveness of futures markets in fulfilling the original function of forward markets.

Moreover, market depth and liquidity are relevant in determining the range of
futures markets that exist. Only if there are sufficiently large volumes of demand
and supply for delivery at specific dates is any market likely to operate success-
fully. This factor may help to explain why futures markets tend to be active for
only a limited number of delivery dates, rarely with contract dates beyond eigh-
teen months from the present. There may simply be too little potential demand
and supply for delivery at dates further into the future – a consideration that begs
the question of why there is so little demand and supply. For an answer, it is
necessary to reflect upon the fundamental reasons, sketched above, to explain the
existence of any futures market.
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This chapter has explored one of the determinants of futures prices, namely
the arbitrage motive that serves to link futures with current spot prices. The next
chapter extends the inquiry to include the impact of speculation and hedging.

Further reading

Among the specialist texts on futures markets, those by Hull (2005) and, at a
more advanced level, Hull (2003) are highly recommended. Chapters 1 and
2 in Hull (2005) are particularly useful to reinforce the subject matter of this
chapter. Also worth consulting are the books by Duffie (1989, chaps. 2, 3 & 5),
Luenberger (1998, chap. 10) and Edwards and Ma (1992, chaps. 1–3). For
up-to-date information on contract specifications, access to the Internet is highly
advantageous.

Williams (1986) explores important issues of economic principle and advocates
the analysis of futures markets from the perspective of spreads among different
contract prices. Also relevant is Holbrook Working’s pioneering series of papers
on the role of storage for futures prices; see, for example, Working (1949). More
recent contributions that also merit attention include those by Houthakker (1959),
Black (1976), Telser and Higginbotham (1977), Telser (1981) and Carlton (1984).

Appendix 14.1: Forward and futures prices

This appendix demonstrates that f
t(T � = F
t(T �: futures prices equal forward
prices in frictionless markets with non-stochastic interest rates.

Consider, first, a forward contract for the purchase of one unit of the commodity
at date t for delivery at date T > t, when it is sold for p
T �. The profit (which
cannot be known until T ) from this action is given by

1F = p
T �−F
t(T � (14.8)

Second, consider a strategy involving futures contracts for the same commodity
(but not, generally, for the same number of futures contracts) that is initiated at
t and that results in the sale of one unit of the commodity at T . Such a strategy
must yield exactly the same profit (or loss) as that using the forward market;
otherwise, arbitrage profits could be made by adopting, at t, a long position in
one market and a short position in the other.

Let 1f denote the profit at date T on the futures strategy. The argument below
demonstrates that the profits 1F and 1f differ unless the forward and futures
prices are equal – i.e. f
t(T �= F
t(T �, where f
t(T � is the futures price at t for
delivery at T . Thus, even though 1f is unknown at t < T , unless the forward and
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futures prices are equal there is scope for making arbitrage profits by exploiting
the difference between the two prices – both of which are known at date t.

To obtain the result, an appropriate trading strategy in the futures market is
constructed. Let R
t+1( T �(R
t+2( T �( � � � (R
T−1( T � denote the sequence of
interest factors for loans from t+1 to T , t+2 to T , and so on, beginning at each
date between t+ 1 and 
T − 1�. By assumption (non-stochastic interest rates),
these are known at t. Now, starting at date t, consider a sequence of futures
contracts each of which is liquidated the following day and reopened (at a scale
to be determined) such that, ultimately, one unit of the underlying asset is sold in
the spot market at T . At each date it may be necessary to lend (or borrow) funds
at the known rate embodied in the interest factor.

At date t suppose that the investor purchases R
t+ 1( T �−1 futures contracts,
which are liquidated at t+1 for a profit (or loss) of R
t+1( T �−1
f
t+1( T �−
f
t(T ��. This essentially reflects the impact of marking to market, except that the
contracts are not automatically renewed. The profit (loss) is loaned to (borrowed
from) the capital market, yielding, at T , a payoff equal to f
t+ 1( T �− f
t(T �.
At date t+ 1 the investor purchases R
t+ 2( T �−1 futures contracts, which are
liquidated at t+2 in the same way as for t+1, the preceding day. This sequence of
trades continues until date T−1, when the investor purchases a futures contract for
one unit of the asset at price f
T−1( T �. Finally, the asset is sold at the spot price,
p
T �. The payoff (profit or loss) from the futures trading strategy is then given by

1f = p
T �+ 
f
t+1( T �−f
t(T ��+ 
f
t+2( T �−f
t+1( T ��+· · ·
+
f
T −1( T �−f
T −2( T ��−f
T −1( T �

= p
T �−f
t(T � (14.9)

Thus, unless F
t(T �= f
t(T �(1F �= 1f – as asserted.

Appendix 14.2: Revaluation of a forward contract

This appendix demonstrates expression (14.5) – i.e. V
t(T( F̂ � = 9F
t(T �−
F̂ ;/R
t(T �. Begin by rewriting the equality as VR = F − F̂ , where the t( T
arguments are omitted for brevity.

If the equality, VR= F− F̂ , does not hold, then there is an arbitrage opportunity
in a frictionless market. Suppose, first, that VR < F − F̂ , or, equivalently, F −
F̂ −VR > 0. Consider the following investment strategy undertaken at date t.

1. Borrow an amount V from t to T .
2. Use the funds to pay V for a contract that promises to take delivery of the underlying

asset at date T in return for a payment of F̂ at T .
3. Negotiate a contract to sell the asset for F on its delivery at date T .
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At date T the asset is acquired for F̂ , and immediately delivered in return for
F . Also, the loan, V , must be repaid, amounting to a payment of VR. The net
payoff at T thus equals F − F̂ −VR, which is positive by assumption. Hence, for
zero outlay, the strategy yields a positive, risk-free payoff. Such an outcome is
incompatible with equilibrium in a frictionless market.

Alternatively, assume that VR > F − F̂ . Exactly analogous reasoning shows
that an arbitrage opportunity is available. In this case, a contract for the delivery
of the asset at T , in return for F̂ , is sold for V at t. The proceeds, V , are lent at
interest until T . Also at t, a contract is negotiated for the purchase of the asset
for F at T . At date T the asset is acquired for F and delivered in return for F̂ .
Also at T , the funds lent at interest amount to VR. The net payoff is VR−F + F̂ ,
which is positive, by assumption.

Therefore, in the absence of arbitrage opportunities, V = 9F − F̂ ;/R – as
asserted.
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15

Futures markets II: speculation and hedging

Overview

Two of the main determinants of futures prices are speculation (explored in
section 15.1) and hedging (section 15.2). Hedging, although associated with risk
reduction, rarely succeeds in eliminating price risk entirely. Hence, section 15.3
pursues the analysis further by deriving the degree of hedging needed to minimize
risk. Also in section 15.3, it is argued that speculation and hedging may not be so
easy to distinguish as first appears. Section 15.4 draws together the motives for
trading in futures contracts to offer an overview of the determination of futures
prices. Finally, section 15.5 explores how unscrupulous traders can render futures
markets vulnerable to manipulation.

15.1 Speculation

In chapter 14 the motives for trading in futures contracts were grouped into
arbitrage, speculation and hedging. If futures contracts are treated as financial
instruments, it may seem odd to analyse the investors’ decisions about holding
them from the perspective of separate motives (speculation, hedging and arbi-
trage). Such an approach contrasts with that of portfolio selection, in which
the investor’s preferences are represented by a single objective function. The
investor’s objective (usually expressed by an expected utility function or mean-
variance trade-off) can, in principle, capture all the relevant motives for asset
holding.

Speculation and hedging both involve risk and, hence, could be treated as appli-
cations of portfolio selection, or, more generally, of choice under uncertainty.1

Such an approach, while it yields insights, is sufficiently unconventional to be
relegated to appendix 15.1. Hedging, though it almost invariably involves risk,

1 Admittedly, arbitrage – at least in its strict form, being risk-free – does tend to be studied separately.
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is associated with risk minimization. Thus, it is speculation that most nearly
coincides with the activity of portfolio decision making.

Speculators in futures markets are typically viewed as highly specialized
investors with a thorough knowledge of the market for a particular commodity
(e.g. wheat) or a narrow range of commodities (e.g. grains, including wheat).
These investors are assumed to seek to profit from their beliefs about price
patterns in the future. It may be that some investors have access to superior
information or perceive themselves as being better equipped to draw accurate
inferences from information that is universally available. A narrow definition
of speculation requires the speculator to trade in futures contracts only, not the
underlying asset, but this view is more restrictive than needed here.

Speculators are often assumed to be risk-neutral, though an element of risk
aversion is not incompatible with their activities. Given that (a) asset returns
generally involve uncertainty about future payoffs, and (b) investors make deci-
sions about how much of each asset to hold, speculation need not be regarded as
unusual or exceptional behaviour. It is argued later (in section 15.3) that hedging
decisions can be interpreted to involve an element of speculation, albeit perhaps
small. Nonetheless, either for ease of analysis or because of the specialized
knowledge required, speculators in futures markets are often treated as a separate
class of investors.

The risk borne by speculators is that of adverse price fluctuations. A speculator
who takes a long position (purchases futures contracts) is betting that the price
will increase between the date of purchase and the date at which the contract is
offset (sold). Conversely, a speculator who takes a short position (sells futures
contracts) is betting that the price will decrease between the date of sale and
the date at which the contract is offset (purchased). The presumption is that the
speculator has no intention of taking, or making, delivery of the underlying asset
(on which the futures contracts are written) – though, as already emphasized, this
possibility need not be ruled out either in principle or in practice.

Hicks long ago noted the importance of speculation in futures markets (1939,
p. 138). ‘Futures prices are … nearly always made partly by speculators, who
seek a profit by buying futures when the futures price is below the spot price they
expect to rule on the corresponding date …’

Three points should be noted.

1. Hicks claims only that speculators are partly responsible for futures price determina-
tion. Hedging and arbitrage also play a role, though the consequence of arbitrage is
for the link between futures and current spot prices, rather than on the general level of
prices. The usual presumption is that speculators and hedgers inhabit opposite sides
of the market (one group buying contracts from the other). This is a view discussed
below, in section 15.4.
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2. Hicks refers to the expected spot price at the delivery date (what Hicks calls the
‘corresponding date’). Hicks has in mind that the futures contracts will be held
to maturity when the speculator will either take delivery (or make delivery) of the
underlying asset and simultaneously sell (or purchase) it at the spot price. The
speculator’s profit or loss is then the difference in the price at which the futures
contract was acquired and the spot price upon delivery. Of course, in active futures
markets the contract may well be offset before delivery takes place. But the principle
is the same: the profit or loss depends on the change in price between the date at
which the contract is acquired and the price when it is offset.

3. In the quoted passage, only speculation in the form of buying futures is mentioned.
There is no reason, in principle, that speculation by selling futures should be excluded.
The direction – purchase or sale – depends on whether the investor believes that the
price will rise or fall. However, Hicks was describing a market in which most hedgers
seek to reduce risk by selling futures contracts. Speculators take the other side of the
bargain; that is, they buy the contracts sold by hedgers. This is the crucial feature of
a theory of futures prices outlined in section 15.4.

Any theory of speculation requires a theory of expectations formation. Such a
modelling exercise is inherently difficult, because expectations are almost invari-
ably unobserved. Even if investors could express definite estimates of their
expectations (and they cannot), expectations are typically private and unique to
the individual.2 It is common in the modern literature to assume that price
expectations are formed ‘rationally’ as predictions derived from a model of price
formation. As always, there is no avoiding the necessity of constructing a model
of prices, regardless of whether investors’ expectations are formed rationally.
This issue is discussed further in section 15.4, after the analysis of hedging.

15.2 Hedging strategies

15.2.1 Hedging in principle

Hedging exploits the following principle: reduce the risk associated with holding
one asset by holding a second asset so that, together, the payoffs cancel out
across states of the world.3 The risk involved with holding one asset cancels
out the risk associated with the other. In rare circumstances the hedge is perfect
(risk-free). Typically, it is risky in the sense that the payoffs of one asset are not

2 Surveys asking individuals to reveal their expectations are not uncommon. Whether the answers given bear
any systematic relationship with the beliefs that genuinely inform investors’ actions is another matter.

3 Don’t confuse hedging strategies with hedge funds. Hedge funds are collections of assets, rather like
sophisticated investment trusts, designed to exploit specialized knowledge about capital markets, including
markets for derivatives. While the objectives of the fund managers might be to reduce risks, hedge funds
can turn out to be highly risky investments – as investors in Long-Term Capital Management found out to
their embarrassment in September 1998.
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exactly matched by the payoffs in the other. Note also that asset ‘holding’ is here
used in a general sense: it could refer to either long or short positions.

Hedging: a simple example

Consider a world with two states (labelled 1 and 2) and two assets (labelled A
and B) with payoffs as follows:

Asset A Asset B

State 1 −2 6
State 2 3 −4

Assets A and B are risky: their returns differ across states. But any strategy that
holds A and B in the ratio 2:1 results in a payoff that is identical across states,
thereby eliminating risk. Thus, asset A could be used as a perfect hedge for asset
B, and conversely.

In many cases the motive for hedging is to insulate against the risk of changes
in an asset’s price between the present, t, and date, t′ > t, at which the asset
is to be traded (bought or sold). It is possible that the owner of an asset may
not be committed to selling it at date t′ but, instead, seeks to avoid exposure
to fluctuations in the asset’s price. It is as if the investor wishes to acquire the
opportunity to sell for a guaranteed price – a price known today, t – at a date t′ in
the future, regardless of whether a sale is executed. Conversely, an investor may
seek to have the security of buying an asset at t′ in the future for a price that is
determined today, t < t′.

Futures contracts provide one vehicle (though not the only one) for hedging
against price changes. Historically, hedging has been applied to trading physical
commodities (e.g. cotton, wheat or pork bellies), but now it is common to apply
it in the context of a wide variety of financial instruments (see chapter 16 for
examples).

In the remainder of this chapter futures contracts form the hedge instrument
(or hedge asset). The hedge is adopted in order to avoid price fluctuations in
what is referred to below simply as ‘the asset’. Thus, for example, wheat futures
contracts with maturity date next October could form a hedge instrument against
fluctuations in the price of wheat (‘the asset’) intended for delivery in October.
In principle, other financial instruments (e.g. forward contracts or options) could
play the role of hedge instruments, though only futures contracts are considered
in this chapter. (See chapter 20 for a sketch of options as hedge instruments.)

A short-hedge refers to the sale of the hedge instrument. A long-hedge refers
to the purchase of the hedge instrument. Of course, whether or not any particular
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transaction in futures is part of a hedge strategy depends on the investor’s other
commitments or opportunities.

15.2.2 Hedging in practice

In an influential paper Working (1962) challenges the description of hedging
outlined above. He points out that investment strategies in futures markets rarely
fall into the neat categories of arbitrage, speculation and hedging – they often
comprise elements of at least two, if not all three, motives. Here is Working’s
taxonomy.

1. Carrying-charge hedging. This is essentially an arbitrage strategy in which the
investor chooses to hold stocks and then hedges against the risk of price changes
in the future. However, in the presence of storage costs and convenience yields,
the strategy is not entirely risk-free. (See chapter 14, especially page 349.) Thus,
carrying-charge hedging constitutes an imperfect hedge.

2. Operational hedging ‘normally entails placing and “lifting” hedges in such quick
succession that expectable changes in the spot-future price relation over the interval
can be largely ignored’ (Working, 1962, p. 439). Here the main goal appears to be to
design a strategy that enables the futures price to be used instead of the cash market
spot price (which, given heterogeneity in the underlying commodity, may be difficult
to determine with any confidence). Operational hedging reflects the ‘price discovery’
function of futures markets.

3. Selective hedging ‘is the hedging of commodity stocks… according to price expec-
tations’ (p. 440). This appears to be just a respectable depiction of speculation.
Working, however, would probably insist that the difference is that selective hedging
is undertaken by traders who also hold stocks and, hence, who have some commitment
to an industry that produces or consumes the underlying commodity. Speculation is
treated as a pure gamble involving short or long positions in futures contracts. In this
interpretation, speculators do not hold stocks of the commodity.

4. Anticipatory hedging ‘is ordinarily guided by price expectations … [and] serves as a
temporary substitute for a merchandising contract that will be made later’ (p. 441).
From a theoretical perspective, there seems little to distinguish this from the previous
category.

5. Pure risk-avoidance hedging. This is the residual category, studied in detail below.

The principles outlined below – distinguished by motive – are not inconsistent
with Working’s classification. Each of his strategies can be interpreted as an
amalgam of the more narrowly defined concepts studied in this and the previous
chapter.

In practice, hedging often seeks to reduce particular sorts of risk. For exam-
ple, the payoff on a security might depend upon unknown future interest rates,
among other sources of risk. A hedge strategy might then be designed to
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reduce or eliminate only the interest rate risk, without affecting the impact of
other risks.

15.2.3 Perfect hedge strategies

Perfect, or risk-free, hedging completely eliminates an asset’s price risk – the
risk that the price at t′ will be different from that agreed today, not the risk of
changes in the spot price between today, t, and some date t′ > t (because the spot
price today, being for immediate delivery, is irrelevant for delivery at t′). Perfect
hedging is seldom found in practice, but it does provide a benchmark for more
realistic cases in which price risk can be alleviated but not eliminated.

Example

Suppose that ‘today’, t, is a day in February. A company plans to sell a consign-
ment of 100,000 gallons of crude oil for delivery in November, date T . The
company may, or may not, own the oil today: it might be held in storage; it
might be awaiting shipment from a distant port; it might not yet even have been
drilled. For whatever reason, the company cannot, or does not wish to, wait
until the oil arrives and transact at the spot price. Suppose that the futures price
for November delivery is f
t(T � = $40 per barrel. By selling 100 contracts
(each of 1000 barrels) today, the company guarantees that $4m 
= $40× 100
contracts ×1000 barrels) will be received when the oil is delivered in November
in fulfilment of the futures contract.4

In this example the underlying asset is the crude oil, and the hedge instrument
is the futures contract. Given that – as implicitly assumed – the company can
deliver the oil in accordance with the futures contract, a forward contract would
achieve exactly the same hedging objective.

Suppose instead that, today, a company plans to acquire (for whatever purpose)
crude oil in November. By purchasing the requisite number of futures contracts,
the company can completely eliminate price risk. Having purchased the contracts,
it waits until November and takes delivery at the price quoted in the previous
February. This is an example of a perfect long hedge.

For the hedge to be perfect, it is crucial that either (a) the asset can be delivered
according to the terms specified in the futures contract, or (b) – which amounts to
the same thing – the futures price at maturity (date T , November) exactly equals
the spot price of the asset. If either of these conditions fails, the hedge is risky.

Clearly, either the short-hedger or the long-hedger will have reason, in
November, to regret the decision made in February. If the November spot
price exceeds $40 per barrel, the short-hedger could have received a higher price

4 A complication that makes even this hedge less than perfect is described below under ‘tailing the hedge’.
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by waiting until November and selling in the spot market. If the November spot
price is less than $40, the long-hedger could have obtained the oil a lower price
by waiting until November and purchasing in the spot market. But the spot price
in November is unknown in the previous February. Price risk has, however, been
eliminated. The hedge has achieved its objective.

Perfect hedges are rarely available in practice, for the following reasons.

1. A market in a suitable hedge instrument may not exist. Futures contacts (and options,
for that matter) are traded for only a limited range of commodities or financial
securities. Although in principle a forward contract could be negotiated, it may be
too expensive, or impossible, to find a counterparty to accept the other side of the
bargain.

2. Futures contracts, where available, are standardized. The specification of the futures
contract may not correspond exactly with the requirements of the company seeking
to acquire a hedge. For example, the grade of crude oil that a short-hedger plans to
supply may not match that specified in the futures contract. Similarly, the date or
location of delivery may differ from that of the futures contract: the company may
wish to deliver in December for storage in New York, while the (NYMEX) contract
specifies delivery to Cushing, Oklahoma.

3. The company adopting the short-hedge may not be certain about the date at which
the oil will be ready for delivery. A futures contract maturing in November may be
available but the short-hedger may not know whether the oil will have arrived at a
designated location by then. Similarly, the company with a long-hedge may not know
whether it will be ready to take delivery in November.

4. Tailing the hedge. Even if the company is sure to make (or take) delivery of the
commodity according to the terms of the futures contract, a complication arises
because futures contracts are marked to market. If the price of the futures contract
changes on any day prior to delivery, outstanding contracts are revalued at the new
market price, any gain (or loss) being credited (or debited) to the holder’s margin
account. Although interest accrues to the funds in the margin account, the gain or
loss for any investor holding an open futures position (short or long) will depend
upon the pattern of price changes while the position remains open. Hence, the
amount of interest earned or forgone as a result of marking to market is unknown
at the outset and may require some adjustment (rebalancing) of the futures position.
This may seem trivial, but it may be significant for investors with large futures
positions.5

Although a perfect hedge is feasible only in special circumstances, it is illumi-
nating to study it formally, before turning to more realistic conditions that allow
only risky hedging. To avoid complicated notation, denote today as date t = 0.

5 The difference between forward and futures prices is at the root of ‘tailing the hedge’: see chapter 14,
appendix 14.1, and Figlewski, Landskroner and Silber (1991).
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Let t′ = 1 denote the date at which the hedge is terminated (i.e. is ‘liquidated’,
‘raised’ or ‘lifted’). In the example above, t′ = 1 is a date in November, when
the oil is delivered.

Let p denote the market price of the asset and f the price of the futures contract.
Then f0 ≡ f
0(1� denotes the futures price quoted at date 0 for delivery at date
1. Also, f1 ≡ f
1(1�. While p0 and f0 are known today, the prices p1 and f1 are
not observed until date 1.

Let N denote the number of units of the asset to be delivered, or acquired,
at date 1. Consider a company that is committed to making delivery at date 1.
Without a hedge, the revenue from the sale, p1N , is unknown as of date 0,
and hence is subject to price risk. The hedge is accomplished with the sale of
M futures contracts at date 0. The position is offset with the purchase of M
futures contracts at date 1.6 At date 1, the gain (if positive) or loss (if negative)
on the futures contract is 
f0 − f1�M . Thus, the overall value of the hedged
position, W1, is

W1 = p1N + 
f0 −f1�M (15.1)

As of today, W1 is uncertain, because p1 and f1 are unknown. A perfect hedge
uses the uncertainty about f1 to eliminate the uncertainty about p1.

If the asset is identical in every respect (grade, location and delivery date) to
that specified in the futures contract, then p1 = f1. Hence, the choice of M = N

completely insulates the portfolio from price risk. The terms involving f1 and p1

cancel out, the value of the hedge strategy being known for sure at the outset:
W1 = f0N .

Pursuing the analysis further, define the initial value of wealth as W0 = p0N .
(This is the value of wealth if the asset could be sold at date 0 – perhaps purely
hypothetical, because at date 0 the investor may not possess the asset to sell.)
Now the change in wealth over the life of the hedge is defined as �W ≡W1−W0,
which, from equation (15.1), can be written as

�W ≡W1−W0 = 
p1−p0�N + 
f0 −f1�M (15.2)

Equation (15.2) shows that the change in wealth stems from the change in the
price of the asset and the change in the price of the hedge instrument. To make
this more precise, define �p ≡ p1 −p0 and �f ≡ f1 − f0. The terms �p and
�f are the price changes of the asset and hedge instrument prices between dates
0 and 1. (Note that they are not the price changes over some short interval of

6 Note that the futures contract date could be equal to, but should be no later than, date 1. A perfect hedge
to be liquidated in November could not normally be achieved using futures contracts that mature in the
previous September.
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time – say, a day – unless the life of the hedge just happens to equal the trading
interval, a ‘day’.)

Rewrite (15.2) as follows:

�W = N�p−M�f (15.3)

A perfect hedge requires the M to be chosen to cancel the effects of price changes
over the life of the hedge. In symbols, M is chosen to eliminate the impact of
�p and �f on �W . Hence, �W = 0:

N�p−M�f = 0 (15.4)

Hence, for a perfect hedge, M is chosen such that M/N = �p/�f . The value
M/N is commonly known as the hedge ratio. Note that the hedge ratio takes this
form only for a perfect hedge.

What matters for a perfect hedge is that there is an exact relationship between
the underlying asset price and the hedge instrument price. Otherwise, the hedge
ratio takes a more complicated form, as shown in section 15.3, below.

Long-hedges

The reasoning for a long-hedger – an investor who is committed to making a
purchase at date 1 – can be adapted straightforwardly from the short-hedge. For
a long-hedge, reinterpret (15.1) as the cost of acquiring the asset at date 1 rather
than the value of the sale of the asset. That is, N is the number of units of the
asset to be purchased at date 1, M futures contracts are purchased at date 0, and
W1 denotes the cost of acquiring the asset at date 1. As before, a perfect hedge
eliminates the uncertainty in W1. With the long-hedge, the asset is acquired for a
spot price p1 (unknown as of date 0) at the same time as the futures contract is
sold at a price f1 (also unknown at date 0). Given the exact relationship between
p1 and f1, the uncertainty in W1 vanishes.

15.2.4 Risky (imperfect) hedging

Expression (15.1) identifies the source of risk in non-perfect hedging: the prospect
that the hedge instrument price differs from the asset price when the hedge is
lifted – i.e. f1 �= p1. For reasons already outlined, hedges are rarely perfect.
Except when the asset is identical to that specified in the futures contract, f1 may
differ from p1. As will be seen shortly, what causes the riskiness is not that f1

differs from p1 but rather that an exact relationship between the two is not known
with certainty at date 0.
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Risky hedging seeks to attenuate – because it cannot eliminate – the price risk
associated with the value of an asset in the future. Risk reduction is achieved by
taking a position in a hedge instrument the price of which is correlated with the
price of the asset. In risk-free hedging the correlation is perfect; in risky hedging
the correlation is imperfect.7

Consider again the example of a company that plans, in February, to deliver
100,000 barrels of oil in November. Suppose now that the grade of oil to be
delivered does not correspond to that stipulated in any futures contract. Suppose
also, to make the problem even more transparent, that no futures contracts are
quoted for any grade of oil with a delivery date of November.

These circumstances do not imply that hedging is impossible, though it will
be risky. Suppose that a futures contract for some specified grade of oil is
available for delivery in December. If – an important ‘if’ – the price of oil to
be supplied is correlated with that specified in the futures contract, then a hedge
can be constructed. In this case, the company will sell futures contracts (though,
as explained below, the volume of oil stipulated in the futures contracts is not
necessarily equal to the volume of oil it intends to supply). Shortly before the
company delivers its consignment of oil (say, in early November), it offsets its
futures position by buying the same number of futures contracts (for December
delivery, of course) as it sold in the previous February. The oil is then delivered
and sold at the spot price on that date.

If oil prices fall between February and November, the decline tends be reflected
in the futures price. Why? Because, in December, when the futures contract
matures, the futures price equals the spot price for the grade of oil stipulated in
the futures contract. The presumption is that in November, shortly before the
delivery month, the futures and spot prices will be close, though not necessarily
equal. The more accurate this presumption, the closer the prices and the less risky
the hedge.

Conversely, if oil prices rise between February and November, the increase
tends to be reflected in the futures price. There is no absolute guarantee that
the futures price increases or decreases exactly in line with the price of the oil
supplied by the company. However, being the same physical commodity – ‘oil’ –
and with delivery dates close to one another, it is reasonable to assume that the
two will be correlated, even if not perfectly. It is this less than perfect correlation
that makes the hedge risky. But a risky hedge may be preferable to no hedge at
all. Why? Because price risk is lower than without the hedge.

7 Formally, risk-free hedging corresponds to a linear correlation coefficient (between changes in the asset
price and hedge instrument price over the life of the hedge) equal to +1 or −1. Risky hedging corresponds
to a correlation coefficient in between the extremes, with zero designating a strategy that fulfils no hedging
purpose.
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Summary

Risky hedging requires the choice of a hedge instrument the price fluctuations of
which are closely correlated with the price of the asset (the greater the correlation,
the lower the risk). The hedge instrument is sold or purchased according to
whether the investor plans to sell or purchase the asset at a designated date in the
future. The correlation between the hedge instrument price and the asset price
then serves to attenuate the price risk associated with a transaction in the asset
alone.

15.2.5 The basis

Risky hedging attains its goal if there is, at least, an approximate relationship
between the price of the asset and the price of the futures contract (the hedge
instrument). This relationship is often expressed in terms of the basis, defined as
the difference between the two prices:

basis = asset price minus hedge instrument price

Beware: the basis is sometimes defined as the asset price minus the hedge
instrument price, sometimes as the hedge instrument price minus the asset price.
The former is, of course, just the negative of the latter. Also, the basis is often
defined as a proportion of one of the prices. There is no standard usage in this
regard.

In the examples above, the basis is just the spot price of the asset minus the
futures price – i.e. at date 0 the basis is b0 ≡ p0−f0, and at date 1 it is b1 ≡ p1−f1.
If the asset is identical with that specified in the futures contract, then the p1 and
f1 are tightly linked to one another in a frictionless market and the absence of
arbitrage opportunities.

The basis plays a crucial role when the asset differs from the asset underlying
the futures contract. For example, the hedge instrument might be a futures contract
for silver quoted on NYMEX, while the asset is silver coin in London.8 In these
circumstances, hedging is risky. It involves a looser association between the p1

and f1, and the scope for variation in the basis is greater than when the arbitrage
principle binds the two together.

In order to understand the role of the basis in financial analysis, consider an
investor who owns one unit of the asset and has sold one unit of the hedge
instrument (a futures contract). Such an investor is said to be long in the asset

8 The NYMEX contract requires the delivery of ‘refined silver, assaying not less than 0.999 fineness, in
cast bars weighing 1000 or 1100 troy ounces each and bearing a serial number and identifying stamp of a
refiner approved and listed by the Exchange’. Also, delivery of the necessary warehouse certificates must
be made at designated locations in the United States. Silver coin in London evidently does not satisfy these
requirements.
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and short in the futures contract. Over the interval between dates 0 and 1, the
investor’s wealth changes as follows:

change in wealth = 
p1−p0�+ 
f0 −f1�

= 
p1−f1�− 
p0 −f0�

= b1−b0

= �b (15.5)

(Note that, if the asset pays a dividend or provides any other services of ownership,
these should be added to the right-hand side of (15.5). Similarly, the costs of
holding the asset should be deducted.)

Equation (15.5) shows that the change in the value of the hedged position
(the change in wealth) is equal to the change in the basis. If the basis increases
(i.e. the asset price increases relative to the futures price), the investor gains, and
conversely if the basis falls.

Consider, instead, an investor who has a liability for one unit of the asset
(perhaps the asset has been short-sold) and has purchased one unit of the hedge
instrument. Such an investor is said to be short in the asset and long in the hedge
instrument. In this case, the change in the value of wealth is simply −�b. If
the basis decreases (i.e. the asset price decreases relative to the futures price), the
investor gains, and conversely if the basis increases.

The ‘basis’ is a widely used term in futures markets and in studies of the
determination of futures prices. However, caution is needed in its application to
hedging: there is no reason, in principle, why the number of units of the asset
and the hedge instrument should be equal (as is implicitly assumed in defining
the basis).

15.3 Optimal hedging

15.3.1 Risk minimization

When hedging is risky, the number, M , of units of the hedge instrument sold or
purchased generally differs from the number of units of the asset to be sold or
purchased. To understand why this should be so, consider an investor who plans
to sell N units of the asset at date 1 and who hedges by selling M units of the
hedge instrument. Rewrite (15.3) as follows:

�W

N
= �p−h�f (15.6)

where h≡M/N is the hedge ratio.
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The risk associated with the hedged position stems from uncertainty about �p
(because p1 is unknown at date 0) and �f (because f1 is unknown at date 0).
Given that �p and �f are unknown at date 0, it follows that no choice of h can
guarantee to eliminate the risk of fluctuations in �W/N .9

The hedge ratio that minimizes the variance of �W/N takes a simple form.
From equation (15.6), the variance of �W/N can be written as

var
(
�W

N

)
= �2

p+h2�2
f −2h�pf (15.7)

where �2
p is the variance of �p, �2

f is the variance of �f and �pf is the covariance
between �p and �f . The value of h that minimizes the variance, var
�W/N�,
is found by differentiating (15.7) with respect to h and setting the derivative to
zero.10 The resulting value, h∗, here called the pure hedge ratio, is given by

h∗ = �pf

�2
f

(15.8)

(Sometimes h∗ is called the optimal hedge ratio, but, here, this term is reserved for
a different concept, introduced below.) Another way of writing h∗ is h∗ = ��p/�f ,
where � is the correlation coefficient between �p and �f . The value of �2 has
been proposed to measure the effectiveness of hedging.11 The closer the linear
relationship between �p and �f , the less risky the hedge. In the limit as �2 →+1
the hedge becomes perfect.

The pure hedge ratio, h∗, is nothing more than the slope coefficient in an
ordinary least squares regression of �p against �f . That is, the pure hedge ratio
could be constructed from

�p= K+h∗�f +� (15.9)

where � is an unobserved random error, such that E9���f;= 0, and K= E9�p;−
h∗E9�f;. The presence of the random error is just another way of expressing the
riskiness of the hedge – if the random error is identically zero, a perfect hedge
could be constructed.

Given that, for a risky hedge, the relationship between �f and �p is not exact,
it is also unlikely that h∗ can be known for sure. The regression equation, (15.9),
suggests a way, however, of estimating h∗ from data on �f and �p. A graphical

9 The analysis here ignores uncertainty about interest earned or forgone as a consequence of fluctuations in
the funds held on margin in the process of marking to market. For an explanation of how tailing the hedge
allows for such uncertainty, see Duffie (1989, pp. 239–41).

10 The sceptical reader can confirm that the necessary first-order condition, 2h�2
f − 2�pf = 0, suffices for a

minimum, because �2
f > 0 ensures that the second-order condition is satisfied.

11 The symbol �2 expresses the coefficient of determination, or R2, in a regression of �p on �f (i.e. � is
the correlation coefficient between �p and �f ). Ederington (1979) proposes the use of �2 as an index of
hedging effectiveness.
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Fig. 15.1. The slope of the fitted line is an estimate of the pure hedge ratio, h∗

Each dot represents an observed pair 
�p(�f ) measured for a particular
time interval. The line depicts the ordinary least squares ‘line of best
fit’, the slope of which is an estimate of �pf/�

2
f , the pure hedge ratio.

The closer the observations to the fitted line, the more accurate the
estimates and the less risky the hedge.

illustration appears in figure 15.1. Each dot in figure 15.1 denotes a pair of
realized values of 
�f(�p�. The slope of the OLS line is, by construction, equal
to the pure hedge ratio, where sample values of the covariance, �pf , and variance,
�2
f , are obtained from the observations.
Suppose, for example, that h∗ is estimated to be equal to 0.8 and that 1000

units of the asset are to be sold at date 1. Then, the variance-minimizing number
of units to sell via futures contracts, M , equals 800 
= 0�8× 1000�. While this
strategy minimizes the variance it does not completely eradicate risk, because
(a) the linear relationship between �p and �f is not exact and (b) the value of
h∗, being obtained from a sample of data, is subject to statistical error.

The hedging studied here is linear, in the sense that the relationship between �p
and �f is linear, so that h∗ is constant. More complicated hedging strategies – for
example, using an options contract as the hedge instrument (see chapter 20) – may
result in non-linear hedging, for which the hedge ratio varies with respect to one
or more observed variables (e.g. the asset price). In this case, hedging becomes
dynamic, in the sense that the strategy requires continuous review throughout the
life of the hedge. Consequently, it may prove necessary to adjust the amount of
the hedge instrument held during the interval between the date that the hedge is
initiated (‘date 0’) and when it is lifted (‘date 1’).
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15.3.2 Hedging as portfolio choice

In the choice of a pure hedge ratio, above, the objective is assumed to be that of
minimizing risk, as measured by the variance of the payoff per unit of the hedged
position, var
�W/N�. More generally, in decision making under uncertainty,
investors take into account the expected return as well as risk. In other words,
investors may consider that they are not totally ignorant about future changes in
asset prices, and, consequently, allow their beliefs to influence their decisions.

In the context of mean-variance analysis, the investor’s objective can be
expressed as follows. Choose h to maximize

� = E
[
�W

N

]
−G ·var

[
�W

N

]
(15.10)

where E9�W/N; denotes the expectation of �W/N and var9�W/N; denotes the
variance of �W/N . The parameter G > 0 represents the investor’s preference
for risk minimization relative to expected wealth maximization: the larger is G
the more weight is placed on risk minimization. (See chapter 4, section 4.4.2,
especially page 103.)

It is shown in appendix 15.2 that the optimal hedge ratio, h̃ (i.e. the one that
maximizes �), is given by

h̃= h∗ + f0 −E9f1;

2G�2
f

(15.11)

The first term, h∗, on the right-hand side of (15.11) is the pure hedge ratio,
derived above. The second term is known as the speculative hedge, an oxymoron
that highlights the entwining of investment motives. The speculative hedge
measures the extent to which the investor trades in futures in order to gain from
an expected change in the futures price. For finite values of G the investor is a
speculator as well as a hedger.

For an investor who is very sensitive to variance (i.e. for whom G is large), the
second term in equation (15.11) is small and can be neglected. Then the optimal
hedging ratio is merely the one that minimizes the variance of �W/N . Thus,
the pure hedge ratio, h∗, equals the optimal hedge ratio if G is arbitrarily large;
variance minimization then dominates the investor’s decision.

Equation (15.11) shows that optimal hedging can be viewed as an application
of portfolio selection theory. An investor who holds a risky asset can benefit by
holding a second asset (the hedge instrument) the price of which is correlated
with the first. The correlation between the prices enables the investor to reduce
the overall level of risk. Also, depending on the weight accorded to risk reduction
relative to expected gain, the investor’s decision can be interpreted as speculation
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in the hedge instrument, even though the motive to hedge is also present. The
two motives, speculation and hedging, need not be mutually exclusive.

15.4 Theories of futures prices

This section turns from studying particular influences on futures trading – arbi-
trage, speculation or hedging – to theories of the determination of futures prices.
Most theories seek to explain the price difference, f
t(T �−p
t�, or its negative,
the basis (sometimes expressed as a proportion of p
t�).

One approach, introduced in chapter 14, focuses on the role of storage costs and
convenience yields. To pursue this, write the condition expressing the absence of
arbitrage opportunities (see expression 14.3, page 351) as

f
t(T �= 
R+ c−y�p
t� (15.12)

where f
t(T � replaces the forward price (assuming f
t(T �= F
t(T �).12 Subtract-
ing p
t� from both sides of (15.12) and dividing by p
t� makes the proportionate
difference between the futures and spot price, 
f
t(T �− p
t��/p
t�, equal to
R+ c−y−1, which can be interpreted as the net opportunity cost of storage.

While the interest factor, R, is straightforward to measure, for many commodi-
ties estimation of the storage cost, c, and convenience yield, y, presents difficulties.
In practice, therefore, models of futures prices based on (15.12) explore indirect
proxy measures for the impact of c and y rather than attempting to construct
immediate empirical counterparts for them. For example, the impact of c and
y may be reflected indirectly, but clearly, in seasonal fluctuations in the price
difference, f
t(T �−p
t�, for some agricultural commodities.

A second approach to futures prices focuses on the role of price expectations.
To pursue this, rewrite the futures/spot price difference as

f
t(T �−p
t�= <f
t(T �−Et9p
T �;=+ <Et9p
T �;−p
t�= (15.13)

where Et9p
T �; is shorthand for E9p
T ��:t; – i.e. the expected value of the spot
price at date T conditional upon information, :t, available at date t < T .

Although expression (15.13) is an identity with no predictive power, it identi-
fies two sources of any observed discrepancies between futures and spot prices.

12 Recall that R
t(T � denotes the interest factor, c
t(T � denotes the storage cost and y
t(T � denotes the
convenience yield. The t( T arguments of R, c and y are omitted to simplify the notation. Recall also that
stocks of the asset must be sufficiently abundant if the arbitrage principle is to enforce an equality, rather
than merely a weak inequality, in (15.12).
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The first term in braces, f
t(T �−Et9p
T �;, can be interpreted as a ‘bias’ or
‘premium’ reflecting the difference between the (known) futures price and the (as
yet unknown) spot price at the futures contract delivery date. The second term,
Et9p
T �;− p
t�, denotes the expected change in the spot price between dates
t and T .

Predictive power is often accorded to (15.13) by assuming that

f
t(T �= Et9p
T �; (15.14)

In words: the futures price reflects expectations about the spot price of the
underlying asset at its delivery date. This assumption accords with the intuition
that the futures price corresponds to an asset (a commodity, financial instrument or
whatever) to be delivered at date T . If the futures price differs from the expected
spot price, then there are opportunities for speculative profit. It is tempting
to suggest that (15.14) represents the efficient markets hypothesis applied to
futures markets. Indeed, it has much in common with the martingale hypothesis,
introduced in chapter 3.

Given that futures contracts are traded prior to the delivery date, the reasoning
underpinning (15.14) can be extended to futures prices at any date t′, t < t′ � T ,
so that the hypothesis becomes f
t(T � = Et9f
t

′( T �;. For example, with
t′ = t+1,

f
t(T �= Et9f
t+1( T �; (15.15)

which asserts that futures prices (for a given delivery date) evolve according to
a martingale process (if past and present prices are known at date t). Invoking
the analysis of chapter 3, equation (15.15) implies that changes in futures prices,
f
t+ 1( T �− f
t(T �, are uncorrelated with any information available at date
t (i.e. uncorrelated with every element of :t, the information set at date t).
Thus, it implies the testable prediction that changes in futures prices are serially
uncorrelated.

Expressions (15.14) and (15.15) can be obtained from (15.11) when (a) p1 = f1

(i.e. the futures contract delivers exactly the same commodity as is traded in
the spot market at date 1 (where T = 1)) and (b) G→ 0 (i.e. when investors
are speculators, and ignore the hedging motive implicit in utility-maximizing
strategies).

More broadly, (15.14) and (15.15) can be viewed as a consequence of risk-
neutral preferences held by investors. (An outline of the reasoning underpinning
this result is offered in appendix 15.1.) Risk neutrality is, however, an extreme
and stringent assumption. Once risk aversion (and, by implication, hedging)
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is permitted, (15.14) no longer expresses market equilibrium. As a result, risk
premia become relevant and, if relevant, require modelling.13

Although they focus on different aspects of futures price determination, the
approach via price expectations is not inconsistent with that via storage costs and
convenience yields. They reflect different facets of the interdependences among
futures prices, underlying asset prices and price expectations.

There is no reason, in principle, why models of asset prices (e.g. the CAPM,
or APT) should not apply to futures markets. For instance, application of the
CAPM to futures markets implies

E9f1;−f0 = 

M − r0��f (15.16)

where 
M is the expected rate of return on the market portfolio and r0 is the
rate of return on a risk-free asset. Equation (15.16) simply expresses the security
market line for futures contracts. Notice that it differs from the standard SML
because the return on the futures contract is expressed simply as the change in its
price.14

If the CAPM is deemed too special, a more general approach would be to
construct a multifactor model for futures prices, to which the APT could be
applied. Models of futures prices based on the CAPM receive little attention in
the literature. Why? Black (1976) offers two reasons: (a) futures contracts do not
appear in the market portfolio (remember that the aggregate holding of any futures
contract is zero by construction: the total of short positions equals the total of
long positions, exactly); (b) evidence that beta-coefficients for futures contracts
are close to zero. While these arguments do not imply that the CAPM – or a
multifactor model – cannot be employed for futures contracts, any such approach
needs to be justified on its own merits rather than merely with reference to the
CAPM or APT.

15.4.1 Normal backwardation

One of the most celebrated and debated theories of futures prices was devised
by Keynes, who proposed what has come to be known as the normal back-
wardation theory. Keynes – together with Hicks, who subsequently refined

13 That is, it is necessary to address questions such as: are the risk premia constant? What do the risk premia
depend on?

14 The reason the return is expressed in this way is that futures contracts are peculiar in that payment for
the asset does not occur until the maturity of the contract (or until the futures position is offset). Hence,
the ‘excess return’ equals the difference between the price at sale and the price at purchase. The risk-free
rate is ignored. Another approach, which leads to a different expression for the expected excess return, is
explored in appendix 15.1.
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the theory – applied their analysis to forward markets. Their ideas carry over,
however, to futures markets, and it is these that are analysed here.15

Ignoring the special case of exact equality, f
t(T �= p
t�, there are two possi-
bilities:

f
t(T � < p
t� V backwardation

f
t(T � > p
t� V contango

(The terms ‘backwardation’ and ‘contango’ originate in London Stock Exchange
transactions, where ‘backwardation’ refers to a fee paid by the seller of securities
for the privilege of delaying their delivery. ‘Contango’ refers to a fee paid by the
buyer of securities for deferring delivery and payment.)

In its simplest form, the Keynes–Hicks theory asserts that backwardation is
normally observed in futures markets. Hicks develops Keynes’s argument as
follows (1939, pp. 137–8).

� � � while there is likely to be some desire to hedge planned purchases, it tends to be less
insistent than the desire to hedge planned sales. If forward markets consisted entirely of
hedgers, there would always be a tendency for a relative weakness on the demand side;
a smaller proportion of planned purchases than of planned sales would be covered by
forward contracts [footnote omitted] � � �

[This provides an opportunity for speculators, whose] action tends to raise the futures
price to a more reasonable level. But it is of the essence of speculation, as opposed to
hedging, that the speculator puts himself into a more risky position as a result of his
forward trading � � � He will therefore only be willing to go on buying futures so long as
the futures price remains definitely below the spot price he expects; for it is the difference
between these prices which he can expect to receive as a return for his risk-bearing, and
it will not be worth his while to undertake the risk if the prospective return is too small.

The steps in the Keynes–Hicks theory are as follows.

1. In ‘normal’ conditions, futures markets are dominated by short-hedgers.

2. The sales of futures contracts by short-hedgers depresses the futures price relative
to the spot price. The arbitrage condition allows for this to the extent that (a) the
‘convenience yield’ is high, or (b) stocks of the asset are limited.

3. Speculators seek to profit from the difference between the futures price and the
expected spot price, Et9p
T �;, at the maturity date of the futures contract.

4. The actions of speculators (in buying futures contracts sold by short-hedgers) constrain
the extent to which the futures price can fall below the current spot price, p
t�.

15 The reason for the focus on forward, as opposed to futures, markets by Keynes and Hicks is probably that
futures markets were almost non-existent in Britain when they wrote in the 1920s and 1930s. No contentious
issues are at stake in the substitution of futures for forward contracts in this context.
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Unfortunately, as Duffie (1989, pp. 98–103) points out, Keynes is ambiguous
in his use of the word ‘backwardation’. Should it be


a� f
t(T � < p
t�

or 
b� f
t(T � < Et9p
T �;?

It is the former, (a), that can be observed at date t (and that formally expresses
the backwardation), but it is (b) that provides a risk premium for the speculators.
The problem with using (b) is, as usual, that the expectations are unobserved. To
highlight the difference between the two interpretations, consider the identity

f
t(T �−p
t�≡ f
t(T �−Et9p
T �;+Et9p
T �;−p
t�

Clearly, the expected change in the spot price, Et9p
T �;−p
t�, is pivotal to the
distinction between the two versions of the theory. If spot prices are expected
to increase over the life of the futures contract, then it is possible for normal
backwardation to hold in the sense of (b) but not (a). As always, expectations of
prices in the future are what matter for speculators.

The validity of the ‘normal backwardation’ theory remains controversial (partly
as a consequence of the ambiguity described above). Several criticisms have been
levelled at it.

1. Empirical studies are inconclusive. In an important sense the studies must be inconclu-
sive. Why? Because Et9p
T �; is not observed and must be obtained as the prediction
of a model. Tests of ‘normal backwardation’ can be implemented only in conjunction
with a model of prices. Hence, it is possible to disagree about the plausibility of
‘normal backwardation’ as a result of disagreement about the model from which the
prediction of the expected future spot price is derived.

2. Not all futures markets are dominated by short-hedgers. Keynes may have restricted
himself to a special case. As Hicks perceptively remarks in the footnote omitted
from the quotation above, the ‘congenital weakness of the demand side of course
only applies to forward markets in commodities, and will not apply (for instance)
to forward markets in foreign exchange’ (1939, pp. 137–8). For financial assets
(including foreign exchange), reliance on the hedging motive of ‘producers’ makes
little sense. Moreover, stocks of the assets specified in financial futures are unlikely to
follow the systematic annual pattern associated with agricultural commodities. Even
so, if the holders of assets seek to insulate themselves from subsequent price falls,
they would tend to adopt short-hedging strategies.

3. The theory treats the market in question as isolated from other asset markets and,
hence, ignores the covariances among assets’ prices. Asset pricing theories such as
the CAPM or APT imply that risk premia are determined by the covariance pattern
of prices amongst all assets – idiosyncratic variability can, in principle, be diversified
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away. As mentioned above, however, there is reason to doubt whether these theories
are applicable to futures markets.

4. Lastly, according to one of the most respected analysts of futures markets, Hendrik
Houthakker, ‘the most telling argument of the critics of normal backwardation is
that, as a body, small speculators tend to lose money rather consistently’ (The New
Palgrave Dictionary of Money and Finance, Newman, Milgate and Eatwell, 1992,
Vol. II, p. 212).

15.5 Manipulation of futures markets

Futures markets are often considered to be vulnerable to practices that are regarded
as ‘unfair’. It is claimed that markets can be manipulated for profitable advantage
by unscrupulous traders, who are judged to act in an ‘improper’ way. There
is widespread disagreement about what constitutes ‘improper’ conduct in this
context, and hence about how to determine whether manipulation has occurred.
The disagreement encompasses everyone involved in making pronouncements
about manipulation: market traders, exchange authorities, regulators, lawyers,
judges, politicians and, of course, economists.

Commentators are usually confident in their ability to identify incidents of
manipulation. Precise and generally acceptable characterizations are, however,
unavailable. From an economic perspective, manipulation involves the exercise
of monopoly power in the sense that at least one trader is a price maker, rather
than a price taker, and can thereby act to influence the market price. Actions
that take advantage of this influence are often regarded as improper, and may
lead to the imposition of disciplinary sanctions by exchange authorities against
the alleged manipulator, or to litigation instigated by regulatory authorities or
aggrieved parties.

The most well-known form of manipulation is that of cornering the market.
This works as follows, using – by way of example – the market for silver.

Suppose that a trader – say, H – succeeds in acquiring a substantial proportion
of the stocks of silver bullion in approved warehouses. Also, H adopts a long
position in a large proportion of the futures contracts outstanding for a narrow
range of delivery dates.16

As the delivery dates draw near, traders with short positions (‘short-traders’ in
what follows) purchase contracts in order to offset their obligations to deliver the
underlying commodity (silver). But suppose that H declines to sell. Given H’s

16 The anonymity of futures contracts implies that these trades can often be undertaken without other traders
being aware that any one investor has taken such actions. Most futures exchange authorities restrict the
number of contracts that any single investor is allowed to hold and may also have the discretion to require
the identification of the counterparty to any contract traded on the exchange. In practice, the rules are hard
to enforce. Even so, when the possibility of manipulation becomes a cause for concern, the finger of blame
is commonly pointed at one investor, possibly acting in concert with collaborators.
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dominant position, futures prices rise sharply as short-traders scramble to offset
their positions. Short positions can also be settled by exchanges for physicals
(e.g. by delivering stocks of silver coins toH), or by delivering warehouse receipts
for silver bullion to H as specified in the futures contracts. But, here also, short-
traders are in a quandary: H already owns much of the silver bullion and could
dictate punitive terms for the delivery of silver coins in settlement of the contracts.

Investor H can thus exploit the discomfort of short-traders. They can (a) offset
their positions by buying futures contracts at very high prices; or (b) negotiate
with H to take silver coins, or delay delivery (on terms imposed by H), in order to
be released from the obligations specified in the futures contracts; or (c) default
(in which case H could seek redress from the futures exchange or take legal
action for breach of contract). In common parlance, H has the short-traders ‘over
a barrel’.

The events described so far are often referred to as a ‘squeeze’ in the literature.
The term ‘corner’ is sometimes reserved for the subsequent actions taken by an
investor such as H , who can profit from the monopoly power as a consequence
of owning a large proportion of outstanding stocks of the commodity, silver.

Should the squeeze, or corner, constitute a manipulation? Perhaps H genuinely
wishes to accumulate large stocks of silver. Proof of manipulation requires
evidence of H’s motive. Preferences are not observed, and, hence, a crucial
element of the evidence is necessarily circumstantial. Also, in practice, the trades
alleged to constitute a manipulation may be much more complex than suggested
by the description above. They typically involve different delivery dates, different
markets, different grades of the commodity, non-standard private agreements, a
multiplicity of trading accounts, and so forth. It may be difficult to determine
what has happened, let alone to ascribe motives.17

Quite apart from whether manipulations can be proved to have taken place,
there is doubt about whether the alleged perpetrators always profit from their
actions. Ignore, for the moment, the futures market. In the market for the
underlying asset, one trader may succeed in forcing the price up by purchasing a
large proportion of the available supply. To profit from the price-making power
this bestows the asset will have to be sold, and, when this is done, its price will
tend to fall.18 As a result, the price maker is not necessarily rewarded with high
profits: the commodity is acquired at rising prices and disposed of at falling
prices. Whether profits can be made depends on the pattern of the price over
time, and this pattern cannot be guaranteed to favour the alleged manipulator.

17 The example of H’s operations in the silver market described here is a caricature of the events of 1979–80
drawn from Williams (1995).

18 This is known in futures markets as the problem of ‘disposing of the corpse’.
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Now reintroduce the futures market. Here the prospect for profit from the
‘squeeze’ (as described above) is more transparent. Even so, are short-traders so
naïve as to ignore the possibility of a squeeze? If they recognize it as a possibility,
they should factor their beliefs about this contingency into their decisions. In
particular, investors considering whether to take a short position will not sell until
the price is high enough to compensate for the possibility that the market might
be manipulated. This is not to suggest that manipulation never occurs, nor that
it is harmless if it does occur.19 Instead, it can be argued that manipulation is
not, on average, a profitable activity (setting aside considerations of how well or
badly the markets are regulated). The potential to make profits by manipulating
markets thus remains a debatable matter.

The activities of the Sumitomo corporation in the copper market during the
mid-1990s illustrate several of the above issues. In this incident there is evidence
that the head of copper trading at the Sumitomo corporation, Yasuo Hamanaka,
accumulated stocks of copper and long positions in futures contracts at the London
Metal Exchange. Mr Hamanaka, acting in consort with a copper merchant (Global
Minerals), was, it is alleged, able to drive up the price of copper over several
years before mid-1996, to levels that would not otherwise have been observed.
Shortly after accusations against Mr Hamanaka became public he was reassigned
to other duties and the price of copper fell sharply.20 Although Sumitomo
incurred substantial losses as a result of the alleged manipulation, much of the
company’s copper trading involved non-exchange transactions at prices linked to
those quoted on the LME. Given that commission fees on the transactions are
commonly greater the higher the price of the metal, profits could thus be increased
even if both purchases and sales were made at artificially high prices.

All legal decisions are open to error, either of acquitting the guilty or convicting
the innocent. Although judgements about market manipulation may be particularly
susceptible to error, regulatory authorities and courts of law in many jurisdictions
are, nonetheless, obliged to address allegations of such wrongdoing. Evidence
can take a variety of forms, including the results of statistical hypothesis tests.
For instance, if the alleged manipulation focuses on a narrow range of delivery
months, the futures prices for those contract months would be exceptionally high
relative to prices for later delivery. Also, spot prices in the cash market tend to fall
abruptly during, or shortly after, the delivery period for a manipulated contract.

19 There could be social costs if futures markets are disrupted (become less liquid) because traders restrict their
participation, fearing that they may be vulnerable to manipulation.

20 Mr Hamanaka subsequently pleaded guilty to fraud and forgery in the Japanese courts and was sentenced to
eight years’ imprisonment. It seems that his actions were motivated by an attempt to recover losses made in
copper trades in the 1980s and early 1990s. Mr Hamanaka’s employers claim that he was a ‘rogue trader’,
acting on his own initiative and not at their behest. However, many of the relevant facts remain confidential
to the Sumitomo corporation. Consequently, the information needed to resolve the case may never enter the
public domain.
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With regard to quantities, abnormal volumes of the commodity would be shipped
to the designated delivery points shortly before the contract matures and then
away again soon after it matures. Markets for similar commodities (e.g. with
different delivery locations, contract dates or standardized quality grades) that
are not subject to the alleged manipulation would not exhibit such patterns, and,
hence, could be used to provide a benchmark.

Pirrong (2004) develops and tests these hypotheses in the context of the alleged
manipulation of the soybean market in Chicago by the Ferruzzi corporation, an
Italian conglomerate, during 1988–89. He concludes unequivocally that statistical
tests enable him to ‘reject decisively the null hypothesis that Ferruzzi was acting
as a price taker on the May and July 1989 soybean futures contracts, in favor of the
alternative that the firm exercised market power’ (p. 67). This being so, Pirrong
goes on to argue that the ex post detection and punishment of manipulation is less
costly to society than attempts to prevent its occurrence, for prevention imposes a
heavy burden of bureaucratic regulations that can distort markets and reduce their
effectiveness. If potential malefactors realize that their motives are likely to be
revealed and punished, then, it is argued, the propensity to engage in manipulation
will be much diminished. Episodes as apparently clear-cut as the Ferruzzi soybean
manipulation may warrant such a view. However, the opportunities for market
specialists to conduct complex manoeuvres that obscure their actions – let alone
their motives – are manifold. And cautious market authorities, mindful of their
responsibilities, may feel obliged to intervene before any suspected manipulation
reaches its climax, thereby restricting the volume of data available for statistical
tests (and thus limiting their reliability).

The cases outlined above describe classic forms of manipulation long known
in futures and commodity markets. Various other types have been identified. For
example, a trader may seek to spread a rumour that leads others (erroneously)
to believe that the underlying commodity price will rise. The futures price then
rises, and the manipulator seeks to sell before it is realized that the rumour is
false.

A common feature of all types of manipulation is that a trader seeks to become
a price maker – i.e. to take actions that influence prices. There is little doubt
that traders can sometimes acquire this power. Whether they can be confident of
profiting from their actions, whether their conduct imposes costs on society and
whether prevention is superior to punishment are much more contentious issues.

15.6 Summary

1. Speculators in futures markets seek to profit from exploiting their beliefs – i.e. their
expectations about subsequent changes in contract prices. In principle, the incentives
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are no different from other investment activities, though knowledge about futures
markets is often regarded as being of a specialized nature, available only to experts.

2. Hedging strategies are motivated by the aim to eradicate, or at least to mitigate,
price risk in asset markets. Hedging involves buying or selling a hedge instrument
(e.g. futures contracts) in such a way that the fluctuations in its price offset those in
an underlying asset, which the investor is committed to buy or sell at a definite future
date. Suitably chosen, the hedge attenuates the risks originating in ignorance about
the future spot price.

3. Hedges rarely eliminate price risk altogether but can be chosen to minimize risk. More
generally, hedging can be understood as a type of portfolio decision in which investors
balance the expected return against risk. Consequently, hedging and speculative
motives may both be present.

4. Hedging, speculation and arbitrage all affect futures and spot prices. One of the
most well-known theories of futures prices is ‘normal backwardation’, a theory that,
however, receives at best limited support from empirical evidence.

5. Futures markets are widely believed to be vulnerable to manipulation by traders who
seek to influence prices to their private advantage. The extent of manipulation is
difficult to establish, and doubts have been voiced about whether traders who seek to
manipulate futures prices can systematically profit from their actions.

Further reading

Three particularly clear textbook expositions of hedging are those by Duffie (1989,
chap. 7), Edwards and Ma (1992, chaps. 5 & 6) and Hull (2005, chap. 3).

In focusing on evidence from the silver market during 1979–80, Williams
(1995) provides an attractive alternative to textbook expositions of futures trading.
This fascinating book disentangles a notorious alleged manipulation and, in so
doing, illuminates the operation of commodity markets.

Another exemplar of applied economics in unravelling evidence for market
manipulation is that provided by Pirrong (2004). His earlier work, Pirrong
(1996), is equally valuable, though from a broader perspective. Telser (1992)
and Kumar and Seppi (1992) also provide noteworthy contributions to debates
about futures market manipulation. Finally, see Gilbert (1996) for one of the few
papers to illuminate the Sumitomo copper market manipulation.

Appendix 15.1: Futures investment as portfolio selection

Consider the fundamental valuation relationship, introduced in chapter 4. This
asserts that an expected-utility-maximizing decision maker adopts an investment
strategy such that

E9
1+ rj�H;= 1 (15.17)
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where rj is the rate of return on asset j and H is the stochastic discount factor,
a random variable dependent upon the investor’s preferences (see chapter 4 for
details). Strictly, the expectation should be conditioned on the set of information,
:t, available today, date t, so that (15.17) becomes

E9
1+ rj�H�:t;= 1 (15.18)

This complication is neglected until it is needed.
The FVR can be applied to futures contracts, though some reinterpretation

is necessary. For simplicity, suppose that asset j is a forward contract agreed
today, t, exactly one period before the delivery date T , so that T = t+ 1. The
‘payoff’ on the investment in the forward contract is the spot price at delivery,
p
T�, while the price paid for that payoff is the forward price agreed today,
F
t(T�. Hence, the gross rate of return – essentially, ‘one plus the rate of
return’ – could be defined as p
T�/F
t(T�. This definition, however, ignores the
fact that the investor pays F
t(T � only at date T , not when the contract is agreed,
at t. The investor has the use of the funds between t and T – funds with an
opportunity cost equal to the risk-free interest rate, r0. This being so, the gross
rate on return on the forward contract, 
1+ rj�, can be expressed as


1+ rj�=
p
T �

F
t(T �

1+ r0� (15.19)

This definition asserts that the investment in the forward contract should be under-
stood as an investment in the risk-free asset today, coupled with a commitment
(the forward contract) to exchange (buy or sell) the underlying asset for F
t(T � at
date T . The market price of the asset at T – the payoff on the forward contract –
is p
T �. Whether the investor actually invests in the risk-free asset at date t is
irrelevant; what matters is that there is an opportunity cost of funds between the
date at which the contract is agreed, t, and T , the date of delivery.21

It is straightforward to extended the analysis to forward contracts with more
than one period before maturity. In this case, 
1+ r0� is replaced by a general
interest rate factor R
t(T �, thus allowing for interest rate changes, if any, and
compounding between t and T . Also, note that the stochastic discount factor,
H , depends on both t and T , though this has been suppressed in the FVR,
equation (15.17).

Application of the reasoning to futures contracts is also straightforward, because
the process of marking to market requires the value of the futures contract to be

21 Any good-faith margin deposit associated with the forward transaction is logically separate from the invest-
ment in the forward contract itself. Funds held in the margin account typically attract a market interest rate,
and hence can be ignored in this analysis.
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recalculated each trading day.22 Consider two successive days t and t+ 1 such
that t+ 1 < T , so that delivery is not an issue. Any contract (short or long)
held at t and valued at f
t(T � is revalued the next day at whatever the price
happens to be then – i.e. f
t+1( T�. For notational brevity, define f0 ≡ f
t(T�

and f1 ≡ f
t+1( T� (where, of course, t+1< T ).
If the investor’s decision interval is one trading day, then the rate of return

can be measured as for forward contracts, but replacing F
t(T� with f0 and p
T�
with f1 so that

1+ rj =
f1

f0

1+ r0� (15.20)

A time-span between dates 0 and 1 different from the unit interval can be handled
by replacing 
1+ r0� by the interest factor, R
t(T �, as noted above for forward
contracts. This complication is neglected here.

It is possible to express the excess return on the futures contract over the
risk-free rate (i.e. rj− r0) by subtracting 1+ r0 from both sides of (15.20), to give

rj− r0 =
f1−f0

f0

1+ r0�

The expected excess return is then given by

E9rj;− r0 =
E9f1;−f0

f0

1+ r0� (15.21)

because f0 and r0 are known at date 0 and, hence, are non-random. Notice that the
expression in (15.21) differs from that given in the text, (15.16). The difference
reflects an ambiguity in how the return on a futures contract should be defined,
given the peculiarity that (apart from the margin deposit) investment in a futures
contract does not require any initial outlay of funds.

Returning to the analysis of the FVR, substitution from (15.20) yields

E9
1+ rj�H; = 1

E
[
f1

f0

1+ r0�H

]
= 1

f0 = 
1+ r0�E9f1H; (15.22)

where the final equality follows because r0 and f0 are known at date 0, and hence
can be factored outside the expectations operator.

In principle, with assumptions about the stochastic discount factor, H , equation
(15.22) could provide the foundation for a model of investment in futures contracts
22 As with forward contracts, the margin deposit required to support the futures contract is logically separate

from the payoff from the contract itself, although, of course, the margin account provides the bookkeeping
device for recording the daily gains and losses.
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and also of futures price determination. This is not attempted here. Instead,
consider the extreme case of risk-neutral preferences – that is, H = c, where c is
a constant, the same for all states. It follows from the FVR that c= 1/
1+ r0�.23

Thus

f0 = 
1+ r0�E9f1H;

f0 = 
1+ r0�cE9f1;

f0 = E9f1; (15.23)

Equation (15.23) asserts that, if investors are risk-neutral, the futures price today
equals the expected futures price at date 1. To understand the relationship between
this and f
t(T �= E9p
T ��:t; (equation (15.14) in the text), let date 1 denote the
delivery date of the futures contract, so that p
T � = f1. Finally, recall that the
expectation in the FVR should be conditional upon currently available information.
Thus, (15.23) and (15.14) amount to the same thing: risk neutrality implies that
the futures price equals the spot price expected (as of t) to be observed at the
futures contract delivery date. The equality will not generally hold if investors
are risk-averse.

Appendix 15.2: Derivation of h̃

From equation (15.6), �W/N = �p−h�f , the expected value of �W/N is

E9�W/N;= E9�p;−hE9�f; (15.24)

The variance of �W/N is obtained as follows:

var
�W/N� ≡ E9
�W/N�−E
�W/N�;2
= E<�p−E9�p;−h
�f −E9�f;�=2

= �2
p+h2�2

f −2h�pf (15.25)

Substituting from (15.24) and (15.25) into the objective function, � =
E9�W/N;−G ·var9�W/N;, gives

� = E9�p;−hE9�f;−G<�2
p+h2�2

f −2h�pf = (15.26)

The first-order condition for maximizing � with respect to h is found by setting
the derivative of (15.26) with respect to h to zero:

d�

dh
=−E9�f;−2Gh�2

f +2G�pf = 0

23 To see this, recall that the FVR holds also for the risk-free asset. Hence, substitute r0 for rj and c for H in
(15.17). Because both r0 and c are non-random, the expectation E9
1+ r0�c; = 
1+ r0�c. From the FVR,

1+ r0�c = 1, and the result follows.
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The second-order condition is

d2�

dh2
=−2G�2

f < 0

as required for a maximum of �.
Finally, substitute E9�f;= E9f1;−f0 and solve to give equation (15.11):

h̃= h∗ + f0 −E9f1;

2G�2
f

where h∗ ≡ �pf/�
2
f .
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16

Futures markets III: applications

Overview

The aims of this chapter are (a) to extend the analysis of futures markets with illus-
trations from non-commodity futures contracts; and (b) to study futures contracts
for which the underlying asset is not an object that can easily be delivered –
or, perhaps, is intangible and, thereby, impossible to deliver – when the contract
matures. These contracts are essentially the same as commodity futures. Their
specifications may at first sight, however, appear to be peculiar, especially with
respect to the nature of the underlying asset, the process of contract settlement
and, in some cases, the purposes of the strategies that make use of the contracts.

Much of the chapter focuses on financial futures contracts for which the under-
lying asset is a financial instrument that could (in principle, if not in fact) be
delivered in fulfilment of the contract. The chapter begins, however, with an
examination of weather futures contracts (section 16.1), for which ‘delivery’ of
the underlying asset appears to be nonsensical.

Section 16.2 turns to financial futures with an outline of the characteristics of
typical forms of these contracts. The following sections study three main sorts
of financial futures contracts: (i) short-term interest rate futures (section 16.3);
(ii) long-term interest rate (or, bond) futures (section 16.4); and (iii) stock index
futures (section 16.5). Finally, section 16.6 illustrates the analysis of section 16.5
with a brief discussion of the failure of Barings Bank in late February 1995.

16.1 Weather futures

16.1.1 The CME degree day index

Forecasting the weather months in advance is a notoriously imperfect science –
almost as imperfect as economic forecasting – yet it is of profound importance
for some enterprises. For instance, the volume of rainfall in particular months of
the year can make the difference between a bountiful harvest and crop failure.

393
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‘Weather’, of course, has several dimensions (rainfall, temperature, humidity,
wind speed, etc.), all of which are susceptible to wide variations across time and
place. The futures contracts described here are based on temperature. Temper-
ature variations would be of relevance, for example, to a company that supplies
electricity, the demand for which tends to be unusually high during especially
cold winters (for heating) and hot summers (for air-conditioning).

For a futures contract to be successful there must exist a pool of investors who
would consider trading it. As always, this requires standardization of the contract.
On the Chicago Mercantile Exchange, standardization is achieved with a ‘degree
day index’ (DD index), which is a measure – to be defined shortly – of extreme
temperature variations at a stipulated geographical location. Investors (typically
companies and professional traders) can then buy or sell contracts specified in
terms of the magnitude of the DD index that will be realized during a designated
time period (e.g. a particular month) in the future. At the end of the designated
period, the ‘weather’ (i.e. the DD index) cannot be delivered. Instead, cash
settlement closes all outstanding contracts at the maturity of the contract.

There are, in fact, several DD indexes embedded within the CME contracts.
First, the DD indexes are location-specific: they are quoted for various cities in
the United States and Europe. Second, contracts cover different time periods:
months or seasons (winter or summer) – only contracts defined for designated
calendar months are described below.

Third, separate indexes measure exceptionally high and low temperatures: cool-
ing degree day (CDD) and heating degree day (HDD) indexes, respectively. The
CDD index is defined as follows.

Daily CDD = maximum<0(daily average temperature

minus 65� Fahrenheit=

Thus, if the average temperature during a day is 80� the CDD is 15, while if the
average temperature is 58� the CDD is zero for that day. The daily CDD values
are added up to provide an index of high temperatures (relative to 65� Fahrenheit)
for each calendar month. Similarly, the HDD index is defined as follows.

Daily HDD = maximum<0(65� Fahrenheit

minus daily average temperature=

Thus, the HDD is an index of low temperatures while CDD is an index of high
temperatures (both relative to 65� Fahrenheit). The labels ‘CDD’ and ‘HDD’ are
chosen because high temperatures imply a demand for energy for cooling while
low temperatures imply a demand for energy for heating.

As an illustration of how the futures contracts might be utilized, assume that
‘today’ is in February and suppose that the HDD index contract for December
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delivery in Boston, Massachusetts, is trading at 800. This means that profits or
losses will be made on any contract purchased or sold today, according to whether
the actual HDD index for next December in Boston turns out to be greater or less
than 800 (assuming that the contract is held until the delivery date). Suppose that
one contract is purchased at 800 and the realized HDD index turns out to be 880.
This provides a gain of $8000 – i.e. 80 points each worth $100 (the contract terms
stipulate that each point is worth $100). It is as if the contract has been offset
(sold) at 880, the observed HDD index. Corresponding to each investor with a
long position (who has purchased the contract) there must be an investor with
a short position (who has sold the contract). In this example, any investor who
took a short position at 800 loses $8000 per contract when the contract is settled
at 880 – it is as if the investor offsets the short position by purchasing at the
settlement price of 880.

Just as for any futures contract, positions may be offset before the delivery
date. In that case, each position is settled at the HDD index value quoted in
the market when the contract is offset. In the example above, suppose that the
HDD index (for December delivery in Boston) stands at 900 in November. Long
positions could be offset with a gain of $10,000 (100 points times $100 per
point). Short positions taken on at 800 and offset at 900 would incur a loss of
$10,000 per contract. Given that futures contracts are marked to market on a daily
basis, the gain or loss when the position is offset is reflected in the investor’s
margin account, so that the final gain or loss will have accumulated in increments
throughout the period the contract is open depending on daily fluctuations in the
market value of the HDD index (see chapter 14, section 14.1.3).

16.1.2 Hedging with weather futures

Why might a company use weather futures as a hedge instrument? Suppose
that an energy supply company’s trading profits vary with the temperature in
a city – say, Boston. The company could seek to protect itself against a mild
winter (low energy sales) by taking a short position in HDD index contracts for
December delivery in Boston. If the winter turns out to be mild, temperatures
will be relatively high and the realized HDD index will turn out to be relatively
low.1 The company then offsets its short position by purchasing contracts at a

1 Low relative to what? Relative to the quoted HDD index on the date at which the futures position is
initiated. The quoted index will, presumably, reflect whatever information is available to investors at each
date – information typically including evidence accumulated in the past about weather conditions during
the delivery month. This evidence will influence trading in the contract and, thus, its market quotation.
Towards the end of the delivery month, weather observations make it increasingly clear what the realized
index value will turn out to be. Hence, the regular futures market prediction holds: as the delivery date
approaches, the futures price (in this case the quoted index value) converges to the ‘spot price’ (in this case
the realized value of the HDD index).
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lower price than that at which it initially sold them, thus gaining from its futures
strategy. The gain on futures will serve to offset its lower profits (or losses) as a
consequence of the mild winter.

Conversely, if the winter turns out to be relatively harsh, observed
temperatures are relatively low and the actual HDD index will be relatively
high. The company offsets its futures position with losses that are compen-
sated for by its trading profits (resulting from a high demand for the energy it
supplies).

What determines the size of the company’s futures position (the number of
contracts it sells)? If the company seeks to minimize the variance of its net
revenues, it will estimate the relationship between changes in its energy sales
and the HDD index. This the company could do statistically, using data from
past years, or from other information about the market it serves and weather
predictions. Once estimated, the relationship enables the company to calculate
the relevant pure hedge ratio (see chapter 15, section 15.3.1).

Winters are, of course, not confined to a single month. Typically, a company
that seeks to hedge against a mild winter would acquire a strip of futures for a
subset of contracts maturing in each of the winter months (say, from October to
March in Boston).

By construction, hedging strategies smooth out profits and losses. In order
to increase its profits, the company might be prepared to bear additional risks
by not hedging to the extent required by the pure hedge ratio. It might even
choose to purchase futures contracts if it has information suggesting that the
realized HDD index will be higher than quoted in the market. By undertaking a
policy different from that implied by the pure hedge ratio, the company adopts a
speculative strategy – a strategy that presumably reflects (a) its tolerance of risk
and (b) its beliefs about the future compared with the prices it observes in the
market.

While the above discussion corresponds to the HDD index, exactly the same
principles apply for the CDD index. For the CDD, the typical hedge strat-
egy would be against average summer temperatures that turn out to be unusu-
ally high. In these circumstances, market quotations for the CDD prior to the
summer months will tend to reflect normal temperatures. If the summer is
abnormally hot, the realized CDD observations for the summer ‘delivery’ months
(say, from May to August in Boston) will be higher than the market quota-
tions (made earlier in the year, when the summer temperatures were expected
to be normal). It is this divergence between the market quotations before the
summer and the realized values when the summer arrives that provides scope for
hedging.
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16.2 Financial futures contracts

16.2.1 Spread betting

Spread betting on financial indexes resembles trading in financial futures contracts
and, because it may be easier to understand, is outlined first. With spread betting,
a company – the ‘bookmaker’ – quotes the price for a particular index at a
particular ‘delivery’ (expiry) date. The investor (or ‘client’, or ‘punter’) can then
bet on the index by buying or selling at the quoted price. When the contract
expires, the client wins or loses according to the observed value of the index at
that date. Just as with futures contracts, the spread bet need not be held until
expiry, and can be offset at whatever price the bookmaker quotes on the day that
the investor closes it.

A small, though significant, complication is that the bookmaker quotes not
one price but two: there is a bid-ask spread. For example, if ‘today’ is a date
in February, the bookmaker may quote 5550–5570 for the FT-SE 100 index in
December. Suppose that a client buys by staking £10 per point on the December.
This involves a starting price of 5570, the bookmaker’s ‘ask price’. Now suppose
that the client closes the bet in October, at which date the bookmaker is quoting
5585–5605 for the December FT-SE 100 index. It is as if the client sells the
index at the bookmaker’s ‘bid price’ of 5585. In this case the client gains
15 = 5585−5570 points times the £10 bet per point, a total of £150.

Alternatively, suppose that in October the bookmaker quotes 5525–5545, and
that, for some reason, the client closes the bet. The client sells at 5525, a loss
of 45 = 5570−5525 points, thus incurring a loss of £450 (at £10 per point). As
already noted, if the bet remains open at the expiry date, it is settled at the observed
index value. The bookmaker may apply a spread around the observed value
according to the terms of the agreement when the bet was initiated. (Bookmakers
tend to have standard forms of agreement to cover such matters. In addition,
clients are required to hold good-faith deposits with bookmakers for exactly the
same purpose as for futures contracts.)

Evidently, an investor who expects the index to rise will bet on a rise by buying
from the bookmaker (at the quoted ask price). An investor who expects the index
to fall will bet by selling to the bookmaker (at the quoted bid price).

One of the main differences between spread betting and futures trading is
that bets are not between punters but, rather, punters trade with the bookmaker,
who quotes the prices.2 In futures markets, contract prices are determined to
balance supply and demand between sellers and buyers – the exchange authorities
guarantee that the contracts will be honoured but do not initiate the buy and

2 The exception is at the expiry date, when the realized index value is the value applied to close the bet.
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sell orders. In general, spread betting is designed for private investors who
can commit only small amounts of capital, compared with companies for which
futures markets generally provide more favourable terms as a consequence of
large outlays.

16.2.2 Contract specifications

Two aspects of financial futures that might seem perplexing, initially at least, are
(a) that the underlying asset – henceforth, ‘the asset’ – may be harder to identify
than for commodity futures; and (b) that, at the delivery date, contracts may
often – for some contracts, must – be settled in cash, not by delivery of the asset.
Even if delivery is permitted, there is typically a range of securities that satisfy
the terms of the contract. (In this regard, financial futures are no different from
commodity futures, for which several specified grades of the commodity may be
delivered in settlement.)

In common with commodity futures markets, a high proportion of financial
futures contracts tends to be offset before maturity. To review the principles,
suppose that the price of a futures contract today (date 0) for delivery at date T is
f0 and that the contract is offset at date 1 where T > 1 (i.e. the position is closed
before maturity).

Assume that M contracts are sold at date 0 (M< 0 corresponds to the purchase
of contracts). At date 1 the M contracts are offset (purchased if M> 0, sold if
M< 0). The payoff equals 
f0 −f1�Mv, where v is the money value per unit of
the futures contract price. For example, if the futures price is ‘5587’ and v= £10,
then the market value of one contract is £55,870 = 5587×10.

The number v is known in advance – it can be calculated from the terms of the
contract. In practice, v is the money value per unit of the contract price, defined
by the tick value divided by the tick size. The tick size measures the smallest
permitted change in the contract price, and the tick value measures the amount of
money corresponding to the tick size:

v≡ tick value

tick size

Thus, if the tick size is 0.5 (i.e. the futures price moves in half unit inter-
vals – e.g. 5384.0, 5384.5, 5385.0, 5385.5, � � �) and the tick value is £5.00, then
v= £5�00/0�5 = £10.

What happens if the contracts are held to maturity (T = 1 in the above notation)?
The only difference of principle, at T = 1, is that f1 is determined according to
the terms of the contract, not by the supply of and demand for futures contracts.
In particular, for a cash-settled contract, fT is set equal to the market value of the
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underlying asset at date T .3 This is a value calculated from observations of the
asset price, the method of calculation being made according to rules stipulated in
the contract (examples are provided below).

For some financial futures it is permissible to deliver the assets (securities)
underlying the contract, during the prescribed delivery period, in settlement of
the contract. Subject to minor differences, the result is the same as for cash
settlement – by construction, the delivered securities have a market value equal
to fT . The important point is that the futures price at the delivery date equals
the price of the asset at that date. Sometimes there are technicalities that must be
taken into account to determine precisely what constitutes ‘the asset’, but these
do not alter the principle.

Lastly, it should be remembered that the gains or losses expressed by

f0 − f1�Mv accumulate between dates 0 and 1 via debits and credits to the
investor’s margin account. The final outcome is the same, but the gains and
losses accumulate daily through the process of marking to market.

16.2.3 Arbitrage, speculation and hedging with financial futures

The investment motives associated with arbitrage, speculation and hedging are
exactly the same as for non-financial futures.

Arbitrage

A characteristic of many financial instruments is that they have a designated date
of maturity. For example, the date on which a bond terminates is almost always
stipulated in the bond indenture.

The maturity date for the bond must be distinguished from the delivery (matu-
rity) date for a futures contract for exchange of the bond. The maturity date
for the bond is never earlier (and is normally later) than the delivery date for
the corresponding futures contract. Thus, a futures contract on a one-year bond
requires the delivery of a one-year bond, when the futures contract matures. If
the delivery date for the futures contract is, say, six months from the present, then
viewed from the present the bond matures after eighteen months – i.e. one year
from the futures contract delivery date.

The distinction between the maturity dates for (a) the futures contract and
(b) its underlying asset is important for arbitrage strategies. Suppose again
that the futures contract matures in six months from the present and stipulates
the delivery of a one-year bond. In this example, the relevant comparison for
arbitrage purposes is between the futures price and the price of a bond that matures

3 fT is just a less cumbersome way of writing f
T(T �. They denote the same price: fT ≡ f
T(T �.
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eighteen months from the present, for it is a bond with this maturity that could
be delivered to satisfy the futures contract.

Speculation and hedging

The principles of speculation and hedging are just the same for financial futures
as for other futures contracts. Speculation involves seeking to profit from beliefs
that futures prices will follow a particular pattern, so that an investor who buys
futures believes that the price will subsequently increase and one who sells
believes that the price will fall. Hedging involves seeking to minimize the risk of
loss associated with unforeseen asset price changes, realized only at a later date.

One notable feature of hedging with financial futures is that a hedge may
be sought for an asset (or portfolio of assets) already in the possession of the
hedger. This could, of course, be the case for any hedging strategy, but it seems
especially common with regard to stock index futures. In this case the investor
holds a portfolio of securities, the hedge being designed to limit the variability in
the investor’s wealth at a specified date in the future.

What is the criterion for the success of such a hedge? Given that capital is tied
up in the assets, it is reasonable to suppose that a return is received even if the
capital is successfully insulated from risk. Thus, in this circumstance, the criterion
for a perfect hedge is that the rate of return on capital invested in the assets is
equal to the risk-free interest rate over the life of the hedge. Most hedges are, of
course, risky, but the risk-free rate provides an appropriate target, or benchmark,
for appraising their success or failure. This principle applies generally when
the investor owns the asset at the outset. A detailed illustration is provided for
stock index futures in section 16.5. (Note that no capital is tied up in the hedge
instrument – the futures contract – apart from margin deposits, on which it is
reasonable to assume that the risk-free interest rate is paid.)

16.3 Short-term interest rate futures

16.3.1 Contract specifications

The defining characteristic of short-term interest rate futures is that the asset
stipulated in the contract is a security with a short time period – say, three or
six months – to maturity after the futures’ delivery date. It is helpful to treat the
life of the asset as starting at the delivery date for the futures contract. Thus,
if the underlying asset is a three-month treasury bill and the delivery date for
the futures contract is the end of June, then the treasury bill will mature at the
end of September, three months after the futures contract matures. Contracts for
‘13-week US treasury bills’ are traded on the CME; at the delivery date, investors
with short positions deliver treasury bills with ninety-one days to maturity to
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investors with long positions, in return for the previously agreed futures contract
price. As always with futures contracts, the market price of these bills as of the
delivery date is exchanged in return for the bills. The funds lodged in margin
accounts reflect the gains or losses on the futures position as a consequence of
marking the contracts to market in the usual way.

Some short-term interest rate futures contracts, however, must be settled in
cash. This is the case for the ‘Three-Month Sterling (Short-Sterling) Interest Rate
Future’ traded on LIFFE. The asset underlying this contract is a notional £500,000
bank time deposit of three months’ duration. The time deposit is notional because
no time deposit changes hands at the delivery date; the contract is settled in cash,
as outlined below.

The short-sterling contract price is quoted as f
t(T � = 
1− r
t( T ��× 100,
where r
t( T � is the interest rate (expressed at an annual rate) that would be
obtained on a three-month deposit starting at date T . The purchase of a contract
at date t should guarantee a rate r
t( T � for a three-month deposit initiated at T .
(Complications are discussed later.) For example, if f
t(T �= 96�50, the implied
rate of interest for three-month deposits made at T equals 3�50% = 100−96�50.

The tick size is 0.01 per cent, so that a change from 5.00 per cent to 4.00 per cent
is equal to 100 ticks. The tick value equals £12.50, so that v = £12�50/0�01 =
£1250 per contract. Why is the tick value set at £12.50? It is chosen to equal
0.01 per cent of £500,000 for three months (3/12 of a year):

£12�50 = £500(000×0�01%×3/12

As usual, many contracts do not run to maturity but are offset before maturity
at whatever futures price happens to rule at the date when the position is offset.

Suppose, however, that a contract does remain open at maturity. How is it
settled? As already noted, a three-month deposit is not exchanged. Instead, cash
settlement occurs by terminating all remaining open positions at a contract price
obtained from an average of observed three-month interest rates at date T . This
price is called the exchange delivery settlement price (EDSP). It is calculated as
100 minus the average on the contract’s last trading day of interest rates quoted
by a designated list of banks for three-month deposits.

Suppose that the average interest rate is 4.21 per cent at date T . Then every
existing contract – open position – is settled as if the futures price is f
T(T � =
100− 4�21 = 95�79 (this is the EDSP). Although few contracts may survive to
maturity, the EDSP calculation is important because the knowledge that it will be
made in this way influences the actions of investors at dates prior to maturity.

To understand how this works, suppose that your rich aunt has just died (say, in
February) leaving you £500,000, which you plan to deposit for three months when
the money reaches you – say, at the end of June. If the futures price in February,
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for contracts maturing in June, is 95.00, you can ensure a rate of 5 per cent on
your planned deposit by buying one contract (taking a long position) in February.
Suppose that the three-month interest rate has fallen to 4 per cent at the end of
June. The EDSP would then be 96.00, at which your long position is settled as
if the contract is sold at that date. Hence, the difference of 96�00−95�00 = 100
ticks yields a gain of 100×12�50 = £1250 – i.e. 1 per cent of £500,000 for three
months. If you make the deposit, as planned, you will receive the going interest
rate, 4 per cent. The gain on the futures contract (1 per cent of your deposit)
means that, in total, you receive the 5 per cent ‘locked in’ when the contract was
purchased in the previous February.

Complications and discussion

1. Given that the EDSP is calculated as an average of rates, a three-month deposit made
to a particular bank on the maturity date might bear an interest rate that does not
exactly equal the EDSP. In the example above, even though the EDSP is calculated
from observed interest rates, the rate paid by the bank at which the deposit is made
might be lower, or higher. Of course, there is no obligation for the investor actually
to make such a deposit; what matters for the settlement of the futures contract is the
EDSP, not any particular bank’s interest rate.

2. If the futures position is offset before maturity, there is no guarantee that the observed
three-month interest rate equals the rate implied by the futures price when the contract
is offset. Although it is likely that the two rates will be correlated, that does not mean
that they are equal.4 Only at maturity is the contract price calculated using realized
interest rates.

3. In the illustration above, if the three-month interest rate is higher than 5 per cent at
the end of June there will be a loss on the position. But this will be balanced by
the higher interest rate received on the deposit. For example, if the interest rate is
6 per cent there will be a loss of £1250 (i.e. 1 per cent of £500,000 for three months)
on the futures contract, but the actual deposit yields 6 per cent, resulting in an overall
net return of 5 per cent.

4. Although the trading strategy might be devised such that the gain or loss from the
futures contracts matches the loss or gain from interest rate changes, there is a subtle
difference between the two sources of income. The difference occurs because the gain
or loss from the futures contracts accrues when the contracts are liquidated (perhaps at
the contracts’ maturity date, but possibly before), while the interest on the deposit is
paid after the deposit has been made (typically, at the end of the three-month deposit
period). Thus, if a gain is made on the futures contracts the investor can deposit the

4 The quest for arbitrage profits links interest rates and futures prices so that, if the term structure of interest
rates does not fluctuate wildly, changes in the futures contract price tend to be correlated with observed
three-month interest rates.
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gain and earn extra interest. If, instead, a loss is made on futures, the loss accrues
before the deposit is made; the gain from a higher rate of interest on the deposit is
received later on. Admittedly, the difference is likely to be minor (reflecting, as it
does, interest on interest), but the power of compound interest is non-negligible if the
capital outlays are large.

16.3.2 A short-term interest rate hedge

Consider a company that has borrowed £5 million on 1 February for six months
at 8 per cent per annum for the first three months, the interest rate for the second
three months of the loan being determined later, say on 1 May. Suppose that the
company seeks to reduce or eliminate the risk of an interest rate increase for
the second three-month period. It can do this by acquiring a short position in
three-month sterling futures contracts. Assume, for the sake of example, that the
price on 1 February for the June futures contract is 94.00.

Suppose that the overall level of interest rates rises between February and May,
so that (for example) the company must pay 9 per cent for the second three
months. Thus, the interest cost of the loan would increase by 1 per cent per
annum – i.e. by £12(500 
= 5(000(000× 3

12 × 1%�. The company could hedge
against this contingency by recognizing that the futures price falls when the
interest rate rises. Suppose that the futures price falls from 94.00 to 93.00 (100
ticks) between 1 February and 1 May. If the company sells ten contracts at 94.00
and offsets its position at 93.00, it gains £12(500 = 100 ticks×£12�50×10.

Thus, for a company with an obligation to refinance a loan in three months’
time, a short-hedge is appropriate. This is consistent with the general principle of
hedging, because a commitment to borrow in three months’ time at an unknown
interest rate is essentially an obligation to sell (i.e. to issue) a bond at that date.
The appropriate hedging strategy is then to sell the hedge instrument, in this
case the short-term sterling futures contract. Alternatively, an investor with a
commitment to lend at some point in the future could hedge a fall in the interest
rate by acquiring a long position in futures (by buying contracts).

Remarks

1. In the example, if the interest rate falls rather than rises, the company fails to benefit
from the fall because the futures price tends to rise, inducing a loss on the futures
contracts – a loss that must be set against the gain from paying a lower interest rate
over the period 1 May to 31 July. As with all hedges, the benefit is that a price (in
this case the interest rate) is locked in at the outset. But there will always be cause to
regret the decision if the price moves in the wrong direction – in this case, if interest
rates fall.



404 The economics of financial markets

2. The illustration assumes that the interest rate paid by the borrower fluctuates exactly
one for one with the rate implicit in the futures price. If this is not the case, so that for
whatever reason there is some discrepancy between the changes, the hedge becomes
risky (imperfect).

16.4 Long-term interest rate, or bond, futures

16.4.1 Contract specifications

There are many instances of bond futures. One is the thirty-year US Treasury
Bond Futures contract traded on the CBOT. For this contract, the underlying asset
is a coupon-paying bond that the US government has undertaken not to ‘call’ –
i.e. redeem – for at least fifteen years from the futures contract delivery date.

Another example, which differs only in detail, is the Long Gilt Future contract
traded on LIFFE. Here the asset is a notional British government bond with a face
value (nominal value) of £100,000, paying a 6 per cent coupon over a period of
8.75 to 13 years from the maturity date of the futures contract.5

A number of bond issues satisfy the criteria laid down by LIFFE for inclusion in
the ‘list of deliverable gilts’ underlying the futures contract. Investors who have
open short positions when the contract matures are permitted to deliver any bonds
on the list in settlement of the contract. Every investor who has an open long
position at maturity must be prepared to take delivery of bonds on the list. (When
an investor with an open short position signals to the exchange that a delivery will
be made, the exchange authorities select an investor with an open long position,
who is then obliged to take delivery and make the necessary payment.) Just as
for all futures contracts, what happens to open positions at maturity is important
because it influences decisions made at earlier dates.

Prices for gilt-edged securities are listed per £100 nominal value of the stock.
If the price is quoted as 107.50, then £100,000 of stock costs £107(500 =
107�50×100(000/100. Futures contract prices are quoted according to the same
convention.

The tick size for the futures contract is 0�01 and the tick value is £10.00,
so that v = £1000 = £10�00/0�01. Thus, if one contract is sold at a price of
107.50 and offset (purchased) at a price of 107.35, the gain equals £150 =

107�50−107�35�×£1000 (i.e. a gain of fifteen ticks, each tick being worth £10).

Now suppose that the maturity date is reached and delivery takes place. During
the life of the futures contract, the daily price changes for the contract accrue as
gains or losses, which are credited or debited to the investor’s margin account

5 Note that the specification of futures contracts changes from time to time at the discretion of the exchange
authorities. The long gilt contract, for instance, was changed in 1998 from a bond with £50,000 paying a
coupon of 9 per cent over a period of 10 to 15 years to one with a 7 per cent coupon maturing after 8.75 to
13 years, and then, in December 2003, to the specification described here.
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(through the regular process of marking to market). At the date of delivery,
therefore, the amount to be paid by the investor with a long position to the
investor with a short position is the futures price shortly before the contract
matures (two days, to be precise). This price is the EDSP for the long gilt future.
The ‘invoice amount’ (i.e. the amount to be paid by the investor with a long
position to the investor who delivers the securities) is calculated as follows:

invoice amount = 
EDSP×price factor×100(000/100�+ accrued interest

The two adjustments are these.

1. Price factor (or conversion factor): the net present value (divided by 100) of the
security to be delivered if the yield to maturity is set at 6 per cent. This accounts
for the fact that none of the bonds on the ‘list of deliverable gilts’ exactly matches
the terms of the futures contract. The price factor for each bond is published by the
exchange authority.

2. Accrued interest: the amount of interest accruing to the delivered bond between the
most recently paid coupon and the date at which the bond is delivered in settlement
of the futures contract. Coupon payments made after the delivery date are paid to the
holder of the bond at whatever dates are stipulated in the bond indenture (commonly,
payments are made at six-month intervals).

Thus, the adjustment for accrued interest compensates the investor who delivers the
bond for that portion of the coupon that would have been received if coupon payments
were made continuously rather than separated by discrete intervals of time.

During the period allowed for delivery, investors with short positions will be
able to compare the market prices, price factors and accrued interest corresponding
to bonds eligible for delivery. From among these it is possible to determine the
bond that is ‘cheapest to deliver’, in the sense of being the least costly to hand
over in settlement of the contract. Neglecting market frictions, this is the bond
selected for delivery.6

16.4.2 A long-term interest rate hedge

Consider a portfolio manager who expects to receive a sum of money in three
months that is to be invested in long-term interest-bearing securities. The manager
could wait until the funds are received or acquire a long position in long gilt futures
contracts. If the yield to maturity on long-term bonds falls, bond prices rise, and
so does the futures price (assuming that the arbitrage principle operates and that
market frictions can be ignored). Thus, when the position is offset – the hedge

6 It is possible that an investor with a short position holds eligible bonds that are not the cheapest to deliver.
In this case, transaction costs would be saved by delivering these bonds rather than buying, then delivering,
those that are otherwise cheapest to deliver.
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is lifted – a gain on the futures position compensates for the higher bond price.
Conversely, if the interest rate rises, bond prices and the futures price tend to fall
such that the lower bond price compensates for a loss on the futures contracts.

How many futures contracts should be purchased? If the manager intends to
use the inflow of funds to hold bonds similar in specification to those that could
be delivered at maturity, then the number of contracts can be determined by taking
into account the price of the bond that is cheapest to deliver and its associated
price factor (although these may change between the date at which the futures
contracts are purchased and the maturity date). Alternatively, if the position is
to be offset before maturity, or if the plan involves acquiring bonds other than
those on the list eligible for delivery, a variance-minimizing hedge ratio could
be estimated by regressing changes in the price of the bonds to be purchased on
the changes in the long gilt futures price observed in the past. (See chapter 15,
section 15.3, for the relevant hedging principles.)

16.5 Stock index futures

16.5.1 Contract specifications

The asset underlying a stock index futures contract is the bundle of shares the
prices of which are averaged to form the index. Examples include the S&P
500 index futures traded on the CME, the Dow Jones Industrial Average futures
traded on the CBOT, and the FT-SE 100 index futures traded on LIFFE.7 All
share the same general characteristics. For concreteness, it is the FT-SE 100
futures contract that is studied in detail here.

The FT-SE 100 futures contract essentially promises to deliver the bundle
(portfolio) of shares that makes up the FT-SE 100 index, each share having the
same weight as in the index itself. Positions remaining open at the contract’s
delivery date are, however, not settled by delivering the requisite package of
shares: cash settlement is mandatory. The exchange delivery settlement price for
the FT-SE 100 futures contract is the value of the FT-SE 100 index on the last
trading day of the contract. In fact, it’s not quite so simple as this, because the
index fluctuates from minute to minute; consequently, the exchange prescribes
a rule for calculating the EDSP as an average of the FT-SE 100 index over a
specified time period on the last trading day for the contract.

The tick size is 0.5 of an index point with a value of £5.00. Hence,
v= £10�00 = £5�00/0�5 per index point of the futures contract price.

7 The S&P 500 index is a capitalization-weighted index of 500 stocks traded in New York, the DJIA is a
price-weighted average of thirty large US stocks (the weights are adjusted to allow for stock splits, but
otherwise the DJIA is equally weighted) and the FT-SE 100 index is a capitalization-weighted index of the
shares of the 100 largest companies traded on the LSE. See chapter 1, appendix 1.1, and The New Palgrave
Dictionary of Money and Finance (Newman, Milgate and Eatwell, 1992, Vol. III, pp. 582–8).
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Stock index futures trading is exactly the same as for any other futures contract.
For example, suppose that an investor purchases five contracts at 5304.5. If the
futures price rises to 5319.0 the investor is credited with a gain of 
5319�0−
5304�5�×£10= £145 per contract – a total of £725= 5×£145. The futures price
is linked to the FT-SE 100 index by the rules governing settlement at maturity,
even though many, perhaps most, positions are offset before maturity.

16.5.2 Arbitrage with stock index futures

The arbitrage principle links stock index futures prices with the underlying share
prices in the same way as for any other asset. Recall, first, the arbitrage condition
for forward prices (see chapter 14, section 14.3):

F
t(T � � 9R
t(T �+ c
t(T �−y
t(T �;p
t� (16.1)

where F
t(T � is the forward price at date t for delivery at T , p
t� is the market
value of the index at t, and R
t(T �, c
t(T � and y
t(T � denote the interest factor,
storage cost and convenience yield, respectively, between t and T .

Now make the following simplifications.

1. Replace the forward price, F
t(T �, with the futures price, f
t(T �, on the stock index.
This substitution is likely to be harmless for contracts with a delivery date less than
about twelve months from the present. The maturities of exchange traded futures
contracts rarely extend much beyond a year.

2. Replace the inequality with an equality, because there is unlikely to be any significant
limitation on available stocks of the bundle of shares that comprise the index.

3. Assume that there is exactly ‘one period’ between t and T (i.e. T = t+1), and that
there is no compounding of interest within the period, so that R
t(T �= 
1+ r�.

4. Set c = 0: the cost of holding the stock index is assumed to be zero.
5. Denote the yield, y
t(T �p
t�, on the stock index by dp
t�, where d is the dividend

return on the stock index from t to t+ 1. The dividend return is just the weighted
average of the dividend rates of all the component stocks in the index, each with the
same weight as in the index.

These simplifications imply that

f
t( t+1�= 
1+ r−d�p
t� (16.2)

Why might equation (16.2) fail to hold? Here are some possible answers.

1. The most prominent candidate is the impact of the transaction costs incurred when
buying or selling all the component shares comprising the index. (Transaction costs for
the futures contract are typically small and are neglected here.) It is, however, possible
to trade in mutual funds (unit trusts) the composition of which tracks the commonly
reported indexes – it is, in this sense, possible to ‘buy the market’. The transaction
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costs of dealing in such mutual funds are not zero but are significantly lower than
buying and selling each individual company’s shares.

2. The precise times at which the futures contract price is recorded in each trading day
may not match the times at which the stock index is calculated. The difference is
likely to be small except when intra-day price volatility is large.

3. Investors may differ in their expectations of the dividend yield for the shares compris-
ing the stock index, or in their beliefs about the interest rate, r, relevant for borrowing
and lending. These differences are normally tiny, again because the maturity date
for most stock index futures contracts is usually within about twelve months of the
present.

4. In practice, (16.2) is often written as

f
t(T �= e
r−d�
T−t�p
t� (16.3)

which allows for arbitrary time periods to maturity, T − t, and also for the continuous
compounding of interest and dividends. The effects of these adjustments are typically
minor, because e
r−d�
T−t� ≈ 1+ 
r−d�
T − t� for short periods of time if interest and
dividend rates are small.

16.5.3 Hedging with stock index futures

Suppose that an investment manager controls a portfolio of shares quoted on the
London Stock Exchange, the value of which is to be hedged with respect to a
future date – say, twelve months from today. Let t = 0 denote the present and
T = 1, twelve months from today. The manager could hedge the portfolio by
selling FT-SE 100 futures contracts at date 0, offsetting the position at date 1. If
share prices generally fall between dates 0 and 1, there is a gain on the futures
contract that should balance the fall in the price of the shares in the portfolio.
If share prices generally rise between dates 0 and 1, the increased value of the
portfolio should balance a loss on the futures contract, assuming that the futures
price reflects the rising share prices.

Why bother to hedge the portfolio at all? Instead, the shares could be sold, the
resulting funds being deposited at the risk-free interest rate. However, there are
circumstances in which a hedge might be needed. For example, stock markets
are not as frictionless as assumed; transactions costs may be significant. Also,
the investment manager may be legally bound to hold stocks rather than cash.

As remarked in section 16.2, a reasonable criterion for the success of this
hedge is that the value of the portfolio should increase by an amount equal to the
risk-free rate of return between dates 0 and 1. If such an increase can be achieved
without error, the hedge would be perfect, in the sense that the capital value of
the portfolio at date 0 earns exactly the rate of return that would be obtained by
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selling all the shares at the outset and investing the funds at the risk-free rate.
Errors, however, do tend to creep in, as described below.

A challenge for the design of the hedge is that the portfolio is likely to differ
in composition from the bundle of shares corresponding to the FT-SE 100 index.
Hence, fluctuations in the market value of the portfolio are unlikely to be mirrored
exactly in the FT-SE 100 index.

In order to use a stock index futures contract as a hedge instrument, it is
necessary to establish a link between the return on the portfolio to be hedged and
the return on the stock index. This relationship has to be modelled in some way –
a fact that means that such hedges are rarely perfect. A common approach is to
use a market model, with the stock index in question representing the price of the
market portfolio (see chapter 6, section 6.3).

Example of hedging with a stock index futures contract

Suppose that the market value of the portfolio to be hedged is £2 million and
that the portfolio’s beta-coefficient is 1.2. In this example the FT-SE 100 index
corresponds to the price of the market portfolio. Assume also that (a) the risk-
free rate of interest is 6 per cent; (b) the dividend return on the FT-SE 100
bundle of shares is 4 per cent; and (c) the FT-SE 100 index equals 5000 today,
date 0.

Assume that the arbitrage principle links the stock index and its futures counter-
part: f
t( t+1�= 
1+ r−d�p
t�, so that f0 = 
1+ r−d�p0. Consider a futures
contract that matures at date 1, exactly one year from date 0. This being so, the
price of the futures contract today is 5100 
= 
1+0�06−0�04�×5000�.

Now suppose that the portfolio is hedged by selling 48 FT-SE 100
futures contracts maturing at date 1. A method for choosing the number of
contracts sold, 48, is described below.

At date 1 the futures contracts are settled for cash and the value of the hedged
portfolio is calculated at the prevailing market prices. Suppose that the FT-SE
100 index at date 1 is 4800 (i.e. a fall of 200 relative to its value at the outset).
The value of each futures contract at date 1 is also 4800 (because the market
value of any futures contract equals the value of the underlying asset when
the futures contract matures: f
T(T � = p
T �). The payoff on the 48 futures
contracts equals £144(000 = 
5100−4800�×48×10. Note that the number ‘10’
appears because the futures contract specifies that each point of the index is
worth £10. (As noted earlier, this is merely a choice of units. Any other amount
could be specified without affecting the results, though the number of futures
contracts traded does depend on this value.)
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What is the return on the portfolio of shares worth £2 million at date 0? If
the market model holds exactly, it can be shown that the portfolio falls in value
(allowing for dividends received on the shares) by £24,000. The justification for
this result is explained below.

Thus, the total payoff from the hedging strategy is equal to £120,000, which
is 6 per cent of £2 million. The return on the hedged portfolio (stocks and
shares together with the short position in 48 futures contracts) is equal to the
risk-free interest rate.

Suppose that, instead of falling to 4800, the FT-SE 100 index rises to, say,
5300 at date 1. The payoff on the 48 futures contracts equals minus £96(000 =

5100− 5300�× 48× 10 – a loss. But, if the market model holds, the portfolio
of shares will increase in value (including dividends) by £216,000. Once again,
the total payoff is £120(000 
= 216(000− 96(000� – exactly the same as when
the FT-SE 100 index fell.

The reasoning underlying this illustration is that the change in the futures
contract price reflects, in a precise way, changes in the underlying stock index.
The rate of return on the portfolio is linked to the stock index via the market
model. Thus, the rate of return on the portfolio is linked to changes in the
futures contract price. The hedging strategy exploits this link so as to ensure
that the fluctuations in the return on the futures position match those on the
portfolio.

Analysis of hedging with stock index futures

A formal argument justifies the numerical example. First, the payoff on the
futures contracts is given by

futures payoff = nv
f0 −f1� (16.4)

where n is the number of futures contracts sold and v is the value of each futures
contract per unit of the stock index (v= £10 in the case of the FT-SE 100 index
futures contract).

Second, it is necessary to forecast the rate of return on the portfolio to be
hedged. The market model predicts that the rate of return, rP , on a portfolio, P,
is related to the market rate of return, rM , by

rP = r0 + 
rM − r0��+� (16.5)

where r0 is the risk-free rate, � is the portfolio’s beta-coefficient and � is a random
error (with expectation zero: E9��rM − r0;= 0).
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The rate of return on the market portfolio can be written as the sum of its
dividend component, d, and its capital gain (or loss) component, 
p1 −p0�/p0.
Substitute these into equation (16.5) and simplify, as follows:

rP = r0 +
(
d+ p1−p0

p0
− r0

)
�+�

= r0 +
(
d+ f1−p0

p0
− r0

)
�+�

= r0 +
(
f1− 
1−d+ r0�p0

p0

)
�+�

= r0 +
(
f1−f0

p0

)
�+� (16.6)

Thus, the estimated return on the portfolio of shares is obtained by multiplying
the expression in equation (16.6) by V0, the market value of the portfolio at date 0.

The overall payoff from the hedge strategy (the portfolio of shares and the
futures contracts) equals the sum of the payoff from the futures position, (16.4),
and the return on the portfolio itself:

hedge strategy payoff = nv
f0 −f1�+ r0V0 +
(
f1−f0

p0

)
�V0 +�V0 (16.7)

where the payoff is expressed net of the initial value of the portfolio, V0.
There are two elements of (16.7) that are unknown at date 0: (i) the random

error, �; and (ii) the futures price at date 1, f1.
The impact of f1 on the payoff can be eliminated by choosing n as follows:

n= �V0

vp0
(16.8)

If n is chosen to satisfy (16.8), the return on the hedged portfolio equals 
r0+��V0.
If the expectation of � is zero, then, on average, the return is r0V0 (the error can
be neglected) and the average rate of return equals the risk-free rate.

Expression (16.8) establishes why, in the example above, 48 contracts
were sold: 
1�2×2(000(000�/
10×5000�= 48.

Equation (16.6) justifies why the portfolio in the numerical example is estimated
to fall by £24,000 if the FT-SE 100 index falls from 5000 to 4800. From (16.6),
setting �= 0,

rP = 0�06+ 
4800−5100�
5000

1�2 =−0�012

rPV0 = −0�012×2m =−£24(000

where 2m is 2 million.



412 The economics of financial markets

Similarly, if the FT-SE 100 index increases from 5000 to 5300, the value of
the shares increases by £216,000:

rP = 0�06+ 
5300−5100�
5000

1�2 = 0�108

rPV0 = 0�108×2m = £216(000

Why the hedge strategy is risky

The hedge strategy, even if successful, is typically imperfect, for the following
reasons.

1. Calculating the number of units of the hedge instrument to be sold relies on a model
that generates forecasts of the return on the hedged portfolio. Models never give
perfect results. Two obvious reasons for errors are these.

(a) It is not possible to know the disturbance � in advance (its expected value is zero
but, almost surely, a positive or negative value will be realized). Models – even
if correctly specified – never fit the data exactly.

(b) The model’s parameters (just � in the market model) are estimated, not known
with certainty.

Even worse, the model may be mis-specified, so that the forecasts are systematically
in error. Possibly a more general, multifactor, model could provide better forecasts.
Be that as it may, the risk remaining in the hedge strategy could be significant.

2. The conditions defining the available futures contracts may not match the requirements
of the hedge. For example, there are only a limited number of maturity dates for
which futures contracts are available, so that date 1 (one year from the present in the
illustration) may not correspond to the maturity date of any contract.

16.6 The fall of Barings Bank

At the beginning of March 1995 Barings Bank, London’s oldest merchant bank,
collapsed and, being effectively insolvent, was taken over by the ING banking
group. The losses incurred by Barings were a consequence of derivatives trading
undertaken by one of its employees, Mr Nick Leeson. Leeson, operating from
Singapore, achieved international notoriety when his role in Barings’s predicament
was revealed. While Leeson’s activities were spread across several markets in
both futures and options, the losses that proved fatal for the bank stemmed from
long positions in the Nikkei 225 stock index futures contracts quoted on the
Osaka and Singapore (SIMEX) exchanges. The Nikkei 225 is an index of prices
for stocks quoted on the Tokyo stock market. The delivery date for the futures
contracts was in March 1995, and subsequent months.

Sometime in late 1994 it appears that Leeson purchased Nikkei 225 index
futures contracts on both SIMEX and the Osaka exchange. It seems that his



Futures markets III: applications 413

superiors in London believed that Leeson was pursuing arbitrage opportuni-
ties from the small price differentials that occurred between similar contracts
in Osaka and Singapore. Instead, long positions were taken in both markets, with
ever-increasing volumes beginning in mid-January 1995. For such a strategy to
be profitable, the futures price would need to have risen as the delivery date
approached. As it turned out, exactly the opposite happened. The Nikkei 225
index fell, and – in accordance with the arbitrage principle – so did the futures
contract prices. The increasingly volatile fall of the index was partly, at least,
attributed to a devastating earthquake that struck the city of Kobe in the early
morning of 17 January that year.

As the stock index and the futures contract price both fell in late January
and during February 1995, Leeson increased the number of futures contracts he
purchased on behalf of Barings. With the fall in the futures price, variation
margin calls were made on the contracts – an implication of the daily marking
of the contracts to market. The funds required to honour the margin calls were
partly provided by the London head office and partly generated by Leeson’s
other derivatives trading – in particular, it seems, from the sale of put options.
But by late February funds sufficient to fulfil additional margin calls were no
longer forthcoming. Leeson then disappeared – he turned up in Frankfurt a few
days later – and the regulatory authorities intervened to take over the administra-
tion of Barings. Leeson was arrested and returned to Singapore, where he was
tried, convicted and sentenced to a term of imprisonment. (He was released in
July 1999.)

In early 1995 the Nikkei futures contract was trading in the range 18,000
to 20,000, with each point worth ¥1000. Hence, each contract would have been
worth ¥18 million to ¥20 million (then worth approximately £117,000–£130,000).
It appears that Leeson purchased between 20,000 and 40,000 contracts. With a
loss of about ¥2 million on each contract, as the index fell from about 19,600 to
17,600 the loss on 20,000 contracts amounted to about ¥40 billion. This was an
exceptionally large position for any one bank to accumulate in a single futures
contract. It appears that, by mid-February, Barings held almost 20 per cent of the
open interest in the contract on the Osaka exchange alone.8

Leeson’s motives for increasing the number of futures contracts held in January
and February (the mortal blow for Barings) remains something of a puzzle, and
is open to different interpretations. Of course, Barings would have made large
profits had the futures price increased, but the Nikkei 225 index continued to fall
and, with the approach of the contract delivery date, so did the futures price. One
conjecture is that, by purchasing an ever-larger number of contracts, Leeson was

8 The information in this paragraph is taken from the Financial Times, 27 February and 1 March 1995.
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trying to force the futures price up, so that he could, at least, have liquidated his
positions with only a small overall loss.9 Usually, futures prices are treated as if
they follow the price of the underlying asset (in this case the bundle of securities
representing the Nikkei 225 index). But arbitrage between the futures contract
and the underlying asset serves only to link the two prices. They are jointly
determined, and, in principle, the causation could go in either direction. Hence,
large purchases of the futures contract might drive up the price of futures contracts
and, as a result, could induce the stock index to move in the same direction. If
this was indeed Leeson’s strategy, it evidently went badly wrong.

16.7 Summary

1. The analysis of commodity futures holds also for a broad range of agreements that
differ according to the asset underlying each contract.

2. Weather futures provide an example of contracts linked to an index of the weather at
a designated future date. Although it makes no sense for the underlying asset to be
delivered when the contract matures, cash settlement provides a natural mechanism
for closing contracts that remain open at the ‘delivery date’.

3. With regard to financial futures, some of the terminology, measurements and account-
ing detail are different from commodity contracts, but the principles are the same.
For example, hedging strategies can be devised to attenuate the price risk associated
with positions in the underlying financial assets in the same way as for commodity
futures.

4. Short-term interest rate futures are contracts on financial instruments with a time to
maturity typically of three or six months measured from the delivery date for the
futures contract. Some, such as for US treasury bills, can be settled with the delivery
of the relevant security. For others, such as three-month sterling interest rate futures,
cash settlement is mandatory.

5. Long-term interest rate futures are contracts for the delivery of bonds (of a specified
type) at the maturity of the contract. A range of actual, traded bonds is normally
available to satisfy the terms of the contract, though accounting adjustments are usually
necessary to ensure compatibility between the bonds delivered and the hypothetical
bonds stipulated in the futures contract.

6. Stock index futures may be interpreted as contracts for the delivery of a specified
bundle of shares (those comprising the index) at the delivery date for the contract. In
practice, the shares comprising the bundle are not delivered. The contracts are settled
in cash, with the futures price at maturity set equal to the stock index on the delivery
date.

9 In addition, Leeson’s positions in options markets would have benefited from an increase in, or at least
stability of, the index.
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The arbitrage principle can be used, with a high degree of accuracy, to predict
the relationship between stock index futures contract prices and the relevant stock
indexes. The relationship becomes vulnerable to error, however, when stock prices
are highly volatile.

Further reading

A textbook treatment of financial futures is provided by Elton, Gruber, Brown
and Goetzmann (2003, chap. 23). For a more detailed coverage, see Edwards and
Ma (1992, chaps. 10 (stock index futures), 12 (short-term interest rate futures) and
13 (long-term interest rate futures)). Hull (2005, chap. 6) provides, among other
things, a careful treatment of arbitrage in markets for long-term and short-term
interest rate futures. In addition, Hull (2005, chap. 22, sect. 22.2) offers a short
introduction to weather derivatives.

The books that chart the fall of Barings Bank tend to exploit the sensational
dimensions of the incident. Most, though, do contain excerpts that aid an under-
standing of derivatives markets. In particular, Fay (1996) is worth consulting.
Also see Hunt and Heinrich (1996), Rawnsley (1996) and Zhang (1995), and
Mr Leeson’s own self-justifying account in Leeson and Whitley (1996).
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17

Swap contracts and swap markets

Overview

Financial swaps, like ice cream, come in a variety of flavours and packaging.
An early flavour, popular since the 1970s, is the foreign exchange swap, an
arrangement in which one currency is exchanged for another at regular intervals
over an agreed time period. These foreign exchange (currency) swaps, together
with several other sorts of swap, are described in section 17.1, where their affinity
with forward contracts is explained. Also described here are ‘swap futures’, a
sort of futures contract involving not the delivery of swap contracts themselves
but, rather, cash settlements based on interest rate movements, which are relevant
in many swap agreements.

Section 17.2 applies an elementary comparative advantage argument that
provides a rationale – not the only one – for the existence of swaps. Although
swaps are acknowledged to be low-risk financial instruments, they are not risk-
free; the attendant risks are outlined in section 17.3. During the life of a swap,
the parties to it may need to determine the swap’s market value – i.e. what a third
party would be prepared to pay for it. This is the subject of section 17.4. Finally,
section 17.5 reviews the case of Metallgesellschaft, a large German conglomerate
that incurred damaging losses from trading in derivatives, of which swap contracts
were a significant component.

17.1 Swap agreements: the fundamentals

Swap contracts often include complicated provisions that tend to obscure their
fundamental principles – principles that turn out to be simpler than they appear
at first glance. Hence, it is instructive to begin with an example that, although
unrealistic, focuses attention on the crucial aspects of swaps.

417
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Suppose that two investors, A and B (they might be companies, financial insti-
tutions or private individuals), agree that, six months from the present, A will pay
£1m (m ≡ million) in return for $1.44m. The two investors have negotiated a swap
contract between US dollars and pounds sterling. If this were all there is to swaps,
there would be no need for further analysis: the agreement betweenA andB is noth-
ingmore nor less than a forward contract. Trivial though the example is, the intimate
relationship between swaps and forward contracts should always be kept in mind.

Forward markets in foreign exchange are so highly developed that the swap, as
a separate financial instrument, may not appear to serve any distinctive purpose.
Forward markets are, however, not highly developed for all assets. Hence, swap
contracts could simply be the form that forward contracts take when the relevant
forward markets do not exist.

Alternatively, there could be other dimensions to swap agreements that distin-
guish them from contracts in forward markets. A relevant consideration might
be that A and B, in the above example, cannot trade in the forward market, or,
at least, cannot trade at the current market exchange rate. Perhaps the creditwor-
thiness of A or B is such that neither could trade at the current market rate, and
both would find a private agreement more attractive. Private or not, however,
the agreement remains, effectively, a forward contract. The prospect that one of
the parties to the contract may default introduces no new issues of principle, and,
hence, the existence of performance risk is not in itself sufficient to differentiate
swaps from forward agreements.

An aspect of swaps that does clearly distinguish them from other forward
contracts is that each swap comprises a sequence of exchanges. To extend the
example, the swap might require A to pay £1m to B in return for $1.44m every six
months for the next five years – the swap is a ‘package’ of ten forward contracts,
two per year for the next five years. Slightly more formally, each exchange in
a swap can be written as a ‘(payment, receipt)’ pair. For A the swap is, thus, a
sequence of ten pairs each equal to (£1m, $1.44m). For B, each exchange equals
($1.44m, £1m).

While many currency swaps are essentially no more complicated than this, they
may often appear to be so. First, the swap is normally expressed as as set of
interest flows on a notional principal. In the example, suppose that the notional
principal is £20m and that the current spot exchange rate is £1 = $1.60 (so that
the dollar value of £20m equals $32m). Now the swap could be expressed as an
exchange of £10 per cent per annum in return for $9 per cent per annum. Every
six months, A pays £1m 
= 0�050×20m = 1

2 ×10%×£20m� to B in return for
$1.44m 
= 0�072× 20m = 1

2 × 9%× 1�60× £20m�. If the notional principal is
denoted by N = £20m, then, from A’s perspective, each exchange takes the form

£0�05N( $0�072×1�60×N�.
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A second apparent complication is that swaps typically involve a financial
intermediary (e.g. a bank) that collects a portion of the flow of funds between A
and B in recompense for its services. The intermediary plays a role in bringing
the parties together and may, according to the terms of the agreement, act as
a guarantor in the event of default (see below, section 17.3). Intermediaries in
swap markets often perform a ‘warehousing’ function in that they specify the
standard conditions for swap contracts available to their clients. Consequently,
the intermediary may end up being a party to a swap deal if it cannot find a client
who will agree to become the swap counterparty.

It is helpful for later reference to express the example in a more general way.
For any party to the contract, a swap consists of (i) a notional principal, N , and
(ii) a sequence of the form


x1( y1�( 
x2( y2�( � � � 
xi( yi�( � � � 
xn−1( yn−1�( 
xn( yn�

where n denotes the number of exchanges and where xiN is the payment in the
ith exchange in return for yiN .

In the example, for party A, N = £20m( n = 10( xi = 0�050 and yi = 0�072.
FromB’s perspective, each exchange equals 
yiN(xiN� – i.e. 
$0�072N(£0�050N� –
in the absence of an intermediary. In the presence of an intermediary, there will
normally be a discrepancy between what one party pays and the other receives;
the discrepancy constitutes the intermediary’s fee.

The swap contract may require that specified payments are made at the outset,
before the sequence of exchanges begins. For instance, currency swaps commonly
stipulate that the notional principal is to be exchanged. In the example, A would
pay £20m to B in exchange for $32m. In some swaps a side payment is made
from one party to the other when the swap commences. The side payment reflects
the swap’s value: it expresses the present value of the difference between the two
streams of payments. Commonly, however, the values of the streams, xi and yi,
are chosen such that the initial side payment is zero.

Most swap agreements can be expressed in the general form outlined above.
Thus, in a plain vanilla interest rate swap, fixed-interest-rate payments are
exchanged for a stream of floating interest payments. For example, a company
might agree to pay 9.25 per cent per annum on a notional principal of £10m at six
monthly intervals for ten years in return for a floating rate on the same principal
over the same time period.

How is the floating rate determined? This is a facet of the swap agreed
between the parties, and is stipulated in the contract. A typical arrangement
is to set the floating rate equal to LIBOR plus a specified number of basis points
(b.p. – 1 b.p. = one-hundredth of 1 per cent per annum). LIBOR is an acronym
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for the London interbank offered rate, an average of rates that banks in London
offer to lend to one another.1

In the example, suppose that the company agrees to pay 9.25 per cent and
receive LIBOR+40b.p. Applying the notation introduced above, the swap can
be expressed in terms of the notional principal, N = £10m, and the sequence


x( y1�( 
x( y2�( � � � 
x( yi�( � � � 
x( y19�( 
x( y20�

where x = 0�04625 (9.25 per cent per annum for six months) and yi = 1
2 ×


LIBORi + 0�40�%. LIBORi denotes the floating rate applicable for the ith
exchange, a value not known until the time of the exchange.

Consider any one of the exchanges, say 
x( y4�. This is a promise to pay a
known sum, xN = £462(500, for an unknown amount, yi, after two years (four
six-month intervals) from the present. It is equivalent to a long forward position
in which a promise is made to pay a known sum in return for an ‘asset’ (in this
case a sum of money) the value of which is not known in advance. Thus, y4
corresponds to a spot price, not realized until immediately before the exchange
occurs.

In summary, an interest rate swap paying a fixed rate in return for a floating
rate is equivalent to a sequence of long forward contracts. The swap coun-
terparty, who pays a floating rate in return for a fixed rate, has effectively
negotiated a sequence of short forward contracts – i.e. promises to deliver an
asset the value of which is not known at the outset in return for an agreed sum,
xN . For this sort of swap, as for many others, the parties would exchange net
amounts at each payment date. Thus, the one party pays 
x− yi�N (which is a
receipt if negative) to the other party (minus any commission fees accruing to an
intermediary).

There are many other flavours of interest rate swap contract. For instance,
roller-coaster swaps involve changes in the notional principal over the duration
of the swap. For basis rate swaps, floating rate payments with different bases
(e.g. LIBOR and the prime commercial rate in New York) are exchanged. For a
forward rate swap, the sequence of exchanges commences at a designated date
in the future. For a zero-coupon swap, a sequence of floating rate payments is
exchanged for a lump sum amount at the termination date of the swap.

It should be clear that swaps are contrivances that can accommodate a host of
diverse cash flows. From among these, the following illustrate several distinctive
features of swap contracts.

1 There are several different LIBOR rates, corresponding to time periods of different length from overnight to
a period of several years, though the three-month and six-month rates are the most widely quoted. LIBID is
an abbreviation for the London interbank bid rate, an average of rates at which London banks bid for funds.
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1. Commodity swap. Although quantities of two commodities could, in principle, be
exchanged, in practice commodity swaps consist of financial flows that fluctuate
according to stipulated commodity prices. Commodity swap agreements include
provisions that cover: (i) the specification of each underlying commodity (e.g. grades
of fuel oil at particular locations); (ii) the notional volume of each commodity; and
(iii) the duration of the swap and the intervals between payments. For example, two
companies might agree to swap prices for different grades of fuel oil on a notional
volume of 50,000 barrels, every six months for the next five years.

A common form of commodity swap is a fixed-for-floating swap, in which
one party agrees to pay the other a fixed price – or, at least, a price that is
determined, and hence known, at the outset – in return for the spot (i.e. float-
ing) price of the same commodity. The commodity itself does not change hands.
Rather, the price difference, multiplied by the notional volume of the commodity, is
exchanged at each of the stipulated dates. Just as for other swaps, it is straightfor-
ward to interpret a commodity swap as a sequence of forward contracts. The party
that pays the fixed price in return for the floating price has effectively acquired
a long position in forward contracts. The party that pays the floating price in
return for the fixed price has effectively acquired a short position in forward
contracts.

2. Total return swap. A total return swap commits one party to pay the flow of
returns on one asset (e.g. a government bond) in return for the flow of returns
on another (e.g. a corporate bond) from the counterparty. These swaps usually
involve credit instruments, such as bonds, and the total return – coupon plus capital
gains (minus capital losses) – changes hands. When one of the underlying assets
is a company’s shares (or a stock index), this sort of swap is often called an
equity swap.

3. Credit default swap. In a typical credit default swap, one party makes regular
payments but receives nothing in return unless default occurs on an asset specified
in the contract. In the event of default, the first party (that made the sequence of
payments) receives a lump sum amount from the counterparty, and the swap termi-
nates. Thus, a credit default swap is a form of insurance contract for which each
regular payment is effectively a premium and ‘default’ is the contingency against
which insurance is obtained.

More formally, suppose that the parties to the swap are identified as companies
A and B. A third company (or sovereign state), C, has issued a debt instrument,
C-bonds, which are risky in the sense that C might renege on some aspect of the
bond contract (e.g. fail to make coupon payments, or to repay the principal). A credit
default swap could specify that (i) A pays an agreed amount to B every six months
during the life of the C-bonds, or (ii) B pays nothing to A unless a credit event
occurs, at which time B makes a one-off payment to A. The agreed amount would be
fixed in advance (it would depend on the notional number of C-bonds) or determined
according to a stipulated rule (commonly based on the value of a floating rate of
interest at each payment date). The credit event is typically defined to be the failure
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of C to fulfil some aspect of its contractual obligation with respect to the C-bonds.2

The one-off payment by B to A triggered by the credit event is typically the payoff
promised (but not delivered) in the C-bond contract. It could, for example, be the
face value of the C-bonds if the credit event is a default at their redemption date.

As described so far, swaps are over-the-counter contracts. While financial inter-
mediaries may quote standard terms and conditions, many swaps are customized,
bespoke or ‘tailor-made’ to suit the needs of the parties. Consequently, swap
contracts are, in general, not suitable for trading on organized exchanges.

Swaps resemble packages of forward contracts rather than packages of futures
contracts. Even so, it is possible to buy or sell bundles of futures contracts that
have swap-like features. For instance, the so-called calendar strip is a package
of futures contracts written on the same underlying asset with a sequence of
delivery dates (and futures prices) bundled together as a single transaction (see
chapter 14, especially page 348). For instance, on NYMEX it is permissible to
trade in calendar strips in ‘light sweet crude oil’ with consecutive delivery dates
up to thirty months into the future. Note that thirty months is quite short by the
standards of swap contracts, which not infrequently have lives as long as five
years, or more.

Futures on swaps

In July 2001 LIFFE launched Swapnote3 – a form of swap futures, or, more aptly,
futures on swaps – for swaps denominated in euros. Swap agreements themselves
are not traded. Instead, the contract is for a hypothetical swap of two, five or ten
years’ duration, commencing at the maturity of the futures contract.

LIFFE Swapnote contracts resemble bond futures contracts in the sense that the
underlying asset (the hypothetical swap) is treated as a bond with notional principal
of E100,000 paying a notional coupon of 6.0 per cent. What makes these contracts
like swaps is the rule for calculating the exchange delivery settlement price, which
depends on both fixed and floating interest rates. The EDSP is expressed as a
bond valuation, the notional flow of fixed coupons being discounted using a set
of floating Euribor rates (published daily by Reuters).4

Swap futures contracts were introduced on the Chicago Board of Trade in
October 2001 (ten-year swaps) and June 2002 (five-year swaps). These contracts
are effectively bond futures for which the underlying asset is a notional bond

2 Although the swap agreement would seek to define the credit event as precisely as possible, ambiguity almost
surely remains. That is, swap agreements are inevitably incomplete. What happens if, for example, C delays
on payments rather than defaults, or makes payments in a different currency from that promised? Evidently,
there is scope for complex and prolonged litigation.

3 Swapnote is a registered trademark of Euronext.liffe.
4 See chapter 12, section 12.4 for a description of bond valuation rules. Euribor is an acronym for euro

interbank offered rate, compiled by the European Banking Federation (FBE – Fédération Bancaire de
l’Union Européenne) and published daily in Brussels.
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(with five or ten years to run, as of the date that the futures contract matures) that
pays a fixed coupon of 6 per cent per $100,000. What links this bond to swap
contracts is – once again – the way in which the EDSP is calculated at maturity.
The EDSP is set equal to the value of the bond calculated by discounting the
fixed stream of coupons at a benchmark rate, quoted by the International Swaps
and Derivatives Association (ISDA) and published daily by Reuters.

All these futures contracts are cash settled. The value of each futures contract
at maturity then enables investors to calculate the initial value of a hypothetical
interest rate swap commencing at the futures maturity date.

By treating futures on swaps as bond futures with a fixed coupon discounted at
a floating interest rate, the contracts mimic plain vanilla interest swaps. Hence,
trading in LIFFE Swapnotes, or CBOT swap futures, provides ways for investors
to hedge against, or speculate in, the uncertain value of a swap as of the date when
the futures contract matures. (For more about swap valuation, see section 17.4.)

Swaptions

Swaptions are options on swap agreements. For example, a company may know
that in six months’ time it will seek to enter into a swap agreement but does
not know, today, the terms of such an agreement (in particular, the level of the
fixed rate or the mark-up over the the floating rate). The company could enter
into an agreement (perhaps via an intermediary) to take an option on a swap,
the terms of which are stipulated at the outset. The company would naturally
pay a fee (premium) for this privilege. In six months’ time the option would
be exercised, or allowed to die, according to changes to interest rates over the
intervening period and alterations in the company’s plans.

A swaption is similar to a forward rate agreement (in which the swap is agreed
today but begins at a future date), except that it can be allowed to lapse, whereas
a forward rate agreement is an unconditional contract to implement the swap.
The option premium is the payment for the freedom to let the swaption lapse at
expiry. Swaptions, like swaps, are customized OTC agreements, not normally
traded on organized exchanges.

17.2 Why do swaps occur?

Swap agreements – like all financial contracts – are negotiated because the parties
perceive that it is in their interests to do so. Superficial though this remark is,
it serves as a reminder that there is no intrinsic need to justify the existence of
contracts leading to particular payoff patterns. One explanation for the exis-
tence of swaps has already been implied, namely that swaps – interpreted as
a sequence of forward contracts – could provide attractive hedge instruments
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Another justification, rather more special to swap contracts, is that of compar-
ative advantage (a concept commonly encountered in economics, where it is
applied to explain patterns of international trade).

The theory of comparative advantage is invoked in this section as a device
to illuminate the principles of financial swaps. Two illustrations are described:
a plain vanilla interest rate swap, and a foreign exchange (currency) swap.

17.2.1 A plain vanilla interest rate swap

Suppose, for definiteness, that two companies, A and B, separately and indepen-
dently of one another both plan to borrow £10m for eight years. The companies
face different borrowing costs, however, according to whether the loan is obtained
at a fixed rate or a floating rate:

Fixed rate Floating rate

Company A 10.00% LIBOR + 80b.p.
Company B 8.50% LIBOR + 30b.p.

There may appear to be no reason why a swap should be attractive to both
companies, for B has an absolute advantage over A: B’s borrowing costs are lower
than those of A at either fixed or floating rates. It might, for example, be the case
that B is more creditworthy than A, and hence can borrow funds at a lower cost
in both the fixed-rate market (say, by issuing bonds) and the floating-rate market
(say, by negotiating a bank loan).

However, A, despite its absolute disadvantage, enjoys a comparative advantage
in the floating-rate market, for it pays only 50b.p. more than B at a floating
rate (LIBOR + 80b.p. compared with LIBOR + 30b.p.), while the extra cost of
borrowing at a fixed rate is 150b.p. (10 per cent compared with 8.5 per cent).
(Alternatively, A faces a higher comparative cost in the fixed-rate market relative
to the floating-rate market.)

Assume now that, for whatever reasons, company A prefers to borrow at a fixed
interest rate and company B prefers to borrow at a floating rate. The conditions
for a mutually advantageous swap are now satisfied.

Consider the following three actions.

1. Company A borrows £10m for eight years in the capital market at LIBOR + 80b.p.
2. Company B borrows £10m for eight years in the capital market at 8.50 per cent.
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3. An intermediary arranges a swap between A and B such that:

– A pays 9.25 per cent in return for LIBOR + 45b.p.;
– B pays LIBOR + 65b.p. in return for 9.25 per cent;
– the intermediary collects 20b.p. for its services.

All of these interest rates are applied to £10m over a period of eight years. Thus, each
year for eight years, A pays £925,000 in return for (LIBOR + 45b.p.)×£10m.; B pays
(LIBOR + 65b.p.)×£10m in return for £925,000; and the intermediary receives a fee
of £200,000 
= £10m× 0�20%�. (If the payments are made at six-month intervals,
these amounts must be halved. Nothing substantive is affected thereby.)

The payoffs are as follows:

Company A Capital market Pay LIBOR + 80b.p.
Swap agreement Pay 9.25%
Swap agreement Receive LIBOR + 45b.p.

Net cost 9.60%

Company B Capital market Pay 8.50%
Swap agreement Pay LIBOR + 65b.p.
Swap agreement Receive 9.25%

Net cost LIBOR − 10b.p.%

Intermediary Swap agreement Pay LIBOR + 45b.p.
Swap agreement Receive LIBOR + 65b.p.

Net gain 20b.p.%

Both A and B gain from the swap. Company A borrows, in accordance with its
preference, at a fixed rate. Moreover, it borrows at a rate equal to 9.60 per cent –
i.e. 40b.p. less than the 10 per cent it would pay in the capital market. Company
B borrows, in accordance with its preferences, at a floating rate. Moreover, it
borrows at a rate equal to LIBOR – 10b.p. – i.e. 40b.p. less than the LIBOR +
30b.p. it would pay in the capital market.

From the perspective described here, two conditions must be satisfied for the
swap to be attractive to both A and B.

1. The parties face different comparative costs of capital. In the example, the comparative
cost of borrowing is higher for A in the fixed-rate market, and higher for B in the
floating-rate market.

2. Each party prefers to borrow in the market for which its comparative cost is higher.
In the example, A prefers to borrow at a fixed rate, while B prefers to borrow at a
floating rate.
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There is no reason to believe that these conditions will always be satisfied. If
they are, a swap can be justified. If they are not, a swap is not justified – at least,
not for the reason described above. Note also that the swap outlined above does
not characterize the unique arrangement that would be attractive to both parties.
The swap described is only one of many that would benefit both A and B. All
that must be satisfied is that A ends up paying a fixed rate less than 10 per cent,
and that B ends up paying a floating rate less than LIBOR + 30b.p.

Similarly, the payoff of 20b.p. to the intermediary is also by way of example.
It might be higher or lower. Presumably, the intermediary will demand a fee for
bringing A and B together. More importantly, part of the intermediary’s payoff
could represent a return to the risk it bears if the swap agreement obliges the
intermediary to act as guarantor in the event of default by either A or B. In this
case, the intermediary commits itself to continuing the swap with A if B defaults,
or with B if A defaults.

17.2.2 Foreign exchange swaps

To illustrate a foreign exchange swap, assume that company A, for whatever
reason, seeks to obtain a loan denominated in pounds sterling while B seeks to
obtain a loan denominated in dollars. Perhaps A is located in London, while B is
located in New York.

For the sake of example, suppose that the current exchange rate is £1 = $1�60,
that A wishes to borrow £10m at a fixed interest rate for five years, and that B
wishes to borrow $16m, also at a fixed rate for five years. The interest rates
confronting the companies are assumed to be as follows:

Dollar rate Sterling rate

Company A 10% 12%
Company B 9% 8%

Company B has an absolute advantage over A in that it can borrow at a lower
rate in both sterling and dollars. But A has a comparative advantage in the dollar
loan market because its cost of borrowing is only one percentage point higher
than that of B. By implication, B has a comparative advantage in the sterling
loan market, where it pays 4% = 12%−8% less than A.

Because – by assumption – A seeks to borrow in sterling, while its comparative
advantage is to borrow in dollars, and B seeks to borrow in dollars, while its
comparative advantage is in sterling, a currency swap attractive to both companies
can be designed.
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Consider the following three actions.

1. Company A borrows $16m for five years in the capital market at 10 per cent per
annum.

2. Company B borrows £10m for five years in the capital market at 8 per cent per annum.
3. An intermediary arranges a swap between A and B such that at the outset A exchanges

the $16m it has borrowed in return for the £10m borrowed by B. Thereafter, for five
years, the following happens.

– A pays £11 per cent in return for $10 per cent – i.e. it pays £1.1m in exchange for
$1.60m each year.

– B pays $8 per cent in return for £8 per cent – i.e. it pays $1.28m (8 per cent of
$16m) in exchange for £0.8m each year.

– The intermediary pays a net $2 per cent and receives a net £3 per cent per year.
That is, given the notional principal of £10m = $16m, it makes a net payment
of $0.32m 
= 1�60m− 1�28m� and a net receipt of £0.3m 
= 1�1m− 0�8m� each
year. At an exchange rate of £1 = $1�60, this amounts to a net gain of $0.16m
(i.e. 1 per cent of $16m) per year.

The payoffs are as follows:

Company A Capital market Pay 10% ($)=$1.60m
Swap agreement Pay 11% (£)=£1.10m
Swap agreement Receive 10% ($)=$1.60m

Net cost 11% (£)=£1.10m

Company B Capital market Pay 8% (£)=£0.80m
Swap agreement Pay 8% ($)=$1.28m
Swap agreement Receive 8% (£)=£0.80m

Net cost 8% ($)=$1.28m

Intermediary Swap agreement Pay 2% ($)=$0.32m
Swap agreement Receive 3% (£)=£0.30m

Net gain 1%

Notice that the intermediary is exposed to the risk of exchange rate fluctuations –
i.e. the risk that the exchange rate will not remain at £1 = $1�60 throughout the
life of the swap. In order to manage this risk, the intermediary could hedge using
forward contracts in the foreign exchange market.

Both A and B gain from the swap. Company A effectively borrows in
accordance with its preference (in sterling). Moreover, it borrows at a rate
of 11 per cent – i.e. one percentage point less than the 12 per cent it would pay
in the capital market. Company B effectively borrows in accordance with its
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preferences (in dollars). Moreover, it borrows at a rate of 8 per cent – i.e. one
percentage point less than the 9 per cent it would pay in the capital market. Just
as for the interest rate swap, the percentage gains of the parties to the swap are
purely illustrative. (Insufficient information is provided above to determine the
precise terms of the agreement.) The principle is that A makes a net outlay in
sterling but at a rate lower than it would pay in the capital market, and that B
makes a net outlay in dollars but at a rate lower than it would pay in the capital
market. Also, the intermediary is compensated for its services.

17.2.3 Accounting for the interest rate differentials

For both the interest rate and foreign exchange swap examples described above,
a necessary condition for the swaps to be mutually advantageous is that the
companies face different comparative borrowing costs. While it will occasion no
surprise that some companies must pay higher interest rates than others (e.g. as a
consequence of different risks of default), it is more challenging to explain why
the differentials should differ across markets.

Why should such differentials exist? An overly superficial reply is to ascribe
the differentials to capital market imperfections. Here are three less superficial
responses.

1. Asymmetric information is pervasive in capital markets and could explain why the
cost of borrowing varies among the sources of funds. For example, company A may
choose to borrow at a floating rate from its local bank because the bank knows A’s
business. A fixed-rate loan could be relatively expensive because it would involve
issuing bonds in the capital market, where A is less well known. Company B, on the
other hand, might be a secure investment bank with a high credit rating, and hence
able to borrow at low interest rates in whichever market it chooses.

2. Arbitrage opportunities. The presence of interest rate differentials of the sort described
could be a reflection of the existence of arbitrage opportunities. Swaps could then
be interpreted as a vehicle designed to exploit such opportunities; that is, instead of
assuming that arbitrage opportunities are absent, swaps contribute to the process by
which such opportunities are competed away.

3. Market frictions. In the presence of transaction costs, institutional constraints on
trading, tax differentials or regulatory obligations, some transactions may be less
costly than others. Thus, it might be that swap contracts represent the least-cost way
of achieving a desired pattern of payoffs on an investment.

17.2.4 Summary

A combination of differential borrowing costs across markets and different
preferences among the relevant parties provides a justification for at least some
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sorts of swap (in particular, interest rate swaps and foreign exchange swaps). If
(a) comparative borrowing costs differ among companies, (b) the companies seek
to borrow similar amounts for similar durations and (c) each company prefers
(for whatever reason) to borrow in the market for which it has a comparative
disadvantage, then it is possible to construct a mutually advantageous swap. Swap
contracts do not have to be justified in this way, however, and may be negotiated
to fulfil other investment motives (e.g. such as hedging or speculation).

17.3 Risks associated with swaps

Swaps are susceptible to performance risks, in the sense that one or other of the
parties may fail to honour one or more conditions of the contract. Given that
swaps involve contracts for future delivery (typically of cash), it should occasion
no surprise that the parties often agree to make good-faith deposits as collateral
against default. Normally, the good-faith deposits are held with an intermediary,
which, depending on the terms of the contract, acts as guarantor for the swap.

The risks associated with swaps are somewhat broader than default alone, and
include the following.

1. Credit risk: the risk of default by one of the parties – i.e. the risk that one of the parties
will fail to comply with some provision of the swap (e.g. premature termination of
the payment sequence as a consequence of insolvency).

2. Funding risk: the risk that a party is unable to provide the necessary funds when it is
required to increase its good-faith deposit. Typically, an intermediary guaranteeing the
swap holds such deposits, the amount of which would fluctuate according to market
circumstances. For example, suppose that a company has agreed to a commodity
swap, which commits it to pay the spot price in exchange for a fixed price. If the
spot price increases significantly for a sustained period during the life of the swap,
the company would be expected to increase its collateral (the good-faith deposit) with
the intermediary. If the extra collateral is not forthcoming, the intermediary might
decide to terminate the contract (and possibly to seek legal redress).

3. Market risk (sometimes called basis risk): the risk of adverse movements in market
conditions (e.g. a sustained change in LIBOR, or in a variable price that underlies
a swap). It is exactly this sort of risk that swaps are designed to share between the
parties to a swap. Hence, market risk is relevant for the viability of a swap only
insofar as its occurrence is reflected in credit or funding risks.

17.4 Valuation of swaps

Although a large volume of business is transacted in swap markets, as OTC
agreements, swap contracts can be customized according to the particular needs,
preferences and opportunities of the parties. Hence, there is wide scope for
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differentiation in the terms of swap agreements. Benchmarks exist for common
sorts of swaps (e.g. plain vanilla interest rate swaps), but, apart from these, there
is no obvious package of ingredients to serve as a standard.5 Most swaps are
designed such that the initial value to both parties is zero – that is, so that no side
payment takes place at the outset.

During the life of a swap, as information is revealed about the variable compo-
nent of the sequence of exchanges, the swap contract typically becomes more
valuable to one party and less so to the other. Consider, for example, a com-
modity swap in which the exchange of a variable spot price is exchanged for
a pre-arranged fixed price. If the spot price falls, the party that pays the vari-
able price gains relative to the party that receives it. This need not imply, of
course, that the swap represents a bad decision, because the future spot price was
unknown when the agreement was negotiated. However, when the spot price
falls, the value of the swap contract tends to increase (from zero at the outset)
for the party that pays the spot price, and decreases for the party that receives it.
Strictly, the valuation of the swap depends upon beliefs about future changes in
the variable component of the swap. The current, realized value is important only
insofar as it informs beliefs about the future. The relevant point is that, after a
swap contract has been signed, its value can become positive or negative at any
time during its life.

If the swap continues in existence for the whole of the period agreed at the
outset, then there is no compelling reason why it should be assigned a value,
though each of the parties to the contract may continuously monitor its worth.6

Valuation becomes necessary when one of the parties requests the premature
termination of the swap or fails to comply with its obligations. In these circum-
stances, an existing swap contract may be taken over by another party, or the
sequence of exchanges may be curtailed before the originally agreed date. In
either case a side payment, equal to the swap’s value, changes hands to compen-
sate the party that is deemed to have lost out as a consequence of the revised
arrangements.

The valuation of a swap is not a trivial exercise, depending as it does on beliefs
about fluctuations in the variable component during the remainder of the swap’s
life and on an appraisal of the risks of default. A common practice is to associate
each of the swap’s payment streams with a security for which a market price can
be observed. The value of the swap is then the difference between the market

5 See above, page 422, for an outline of how futures contracts can aid the valuation of interest rate swaps.
6 Also, if the contract is guaranteed by a third party, the guarantor may determine the level of collateral on

the basis of a calculation of the swap’s value. If default occurs, it will most likely be the party for which
the swap’s value is negative that reneges on the agreement. Hence, it is from this party that the guarantor
is most likely to demand collateral (the good-faith deposit).
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values of the two securities. For example, a plain vanilla interest rate swap could
be valued as the difference between the price of a bond with fixed coupons and the
price of a bond paying a floating rate. Clearly, the bonds used for the valuation
exercise would need to be selected such that their coupon streams approximate, as
closely as possible, the conditions that define the sequence of payments specified
in the swap.

A commodity swap can be assigned a value equal to the difference between
(a) the present value of the fixed payment stream and (b) the present value of
the variable payment stream. The calculation of (a) should present no major
obstacles. The calculation of (b) is, however, more problematical, as it relies on
price expectations. A common practice is to use currently observed forward prices
for the commodity to estimate each of the spot prices in the variable payment
stream.

It should be unsurprising that there is scope for significant differences of opinion
about the valuation of swaps. The prices of existing assets can, to some degree,
provide objective information about the elements of a swap. Arbitration, or even
litigation, may, however, be required to resolve disagreements about the terms of
complicated swap contracts.

17.5 Metallgesellschaft: a case study

Metallgesellschaft A.G. (MG-AG), a large German industrial conglomerate, was
brought to the verge of bankruptcy in late 1993, with losses estimated at $1.3
billion – an amount reckoned to be equal to about half the firm’s capital at the time.
The losses were attributed to derivatives trading by one of MG-AG’s subsidiaries
based in the United States, Metallgesellschaft Refining and Marketing (MG-RM).
MG-RM’s business centred on buying petroleum products (diesel fuel, heating
fuel and gasoline) at spot prices, mostly in the open market, and selling to its
customers on long-term contracts guaranteeing delivery at fixed prices. Many of
the contracts were for delivery up to ten years from the date of agreement. Also,
MG-RM traded in futures and swaps for which the underlying assets were oil
products.

In the months prior to December 1993 the spot price of oil fell and MG-RM
lost heavily on its derivatives trading. Its parent company, MG-AG, inter-
vened to stem the losses by terminating MG-RM’s derivatives contracts. Also,
many of MG-RM’s customers were offered the opportunity to renegotiate their
contracts. Following these decisions, controversy ensued about the interpretation
of MG-RM’s policies and, consequently, about whether its parent’s reactions were
appropriate.



432 The economics of financial markets

MG-RM’s trading activitieswere complexbut comprised threemain components.

1. Long-term contracts for the sale of oil at fixed prices. The terms of these contracts
varied but were such that approximately 160m barrels of refined oil products were to
be delivered over periods of up to ten years. MG-RM’s customers had, essentially,
purchased packages of forward contracts for the delivery of oil. Subject to a caveat
discussed later, MG-RM was thus guaranteed a known price for the oil it sold,
promising to supply the oil whatever the spot price at each delivery date.

2. MG-RM acquired oil, in spot markets or by private agreement with refining companies,
for delivery to its customers. (MG-RM had agreed to purchase the entire output of
a company, Castle Energy, in the ownership of which it had acquired a large stake
several years previously.)

3. MG-RM purchased – i.e. adopted ‘long’ positions in – oil futures contracts. It also
negotiated swap contracts, agreeing to pay a fixed price in exchange for returns linked
to the (floating) spot price of oil. It is estimated that underlying the contracts were
about 55m barrels of oil in the futures contracts and approximately 110m barrels in
the swap contracts.

There were effectively two branches to MG-RM’s activities: a trading branch
and a derivatives branch. The trading branch purchased oil at spot prices for
delivery to MG-RM’s customers at fixed prices over long periods of time. The
derivatives branch purchased financial derivatives (futures and swaps) such that
profits would be made if the price of oil increased, losses being incurred if the
price of oil fell.

To what extent should the two branches be interpreted as part of an integrated
strategy combining the two branches or, alternatively, as separate activities within
the firm? The answer to this question is central to the controversy about the
efficacy of MG-RM’s policies.

The argument favouring MG-RM’s management is that its activities should
be considered as a whole and interpreted as a risk-reducing hedging strategy.
The case against MG-RM’s management is that it became exposed to excessive
risks by speculating in derivatives and also, perhaps, by making long-term supply
agreements with its customers.

17.5.1 The case for MG-RM

There is general agreement that MG-RM’s business was risky. In favour of
MG-RM is the argument that its actions were risk-reducing – i.e. could be inter-
preted as hedging. Simply stated, MG-RM had promised to deliver oil at fixed
prices; it hedged these commitments by buying futures and making swap agree-
ments to pay a fixed price in exchange for a floating price. If the price of oil
increased, MG-RM’s trading branch would make losses, as MG-RM bought oil
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at spot prices and made deliveries in return for the fixed prices agreed with its
customers. But the derivatives branch would make profits, as the futures contracts
were offset (i.e. sold) at prices higher than those at which they had been acquired,
and as the swap contracts resulted in an increased inflow of cash (as a consequence
of higher spot prices) in return for a fixed outflow.

Conversely, if the price of oil decreased, MG-RM’s trading branch would make
profits, as MG-RM bought oil at lower spot prices for delivery to its customers
at fixed prices. But the derivatives branch would make losses, as the futures
contracts were offset (i.e. sold) at prices lower than those at which they had been
acquired, and as the swap contracts resulted in a decreased inflow of cash (as a
consequence of lower spot prices) in return for a fixed outflow.

In the event, oil prices tended to decrease during the latter months of 1993.
Several complications obscure the simple interpretation of MG-RM’s strategy as

being one of straightforward hedging. The most important is that of a mismatch
in duration between the trading branch contracts and the derivatives contracts.
MG-RM’s contracts for the supply of oil were of much longer duration (up to
ten years) than for the swaps and futures (mostly, it appears, for less than a
year).7 MG-RM had adopted a so-called ‘stack-and-roll’ hedge. That is, it
‘stacked’ its derivatives contracts with purchases that approximated the whole of
the 160m barrels of oil to be delivered over the subsequent years. But, because the
derivatives contracts stipulated delivery in the near future, they had to be ‘rolled
over’ – i.e. renewed at frequent intervals. If the strategy had been successful, the
number of contracts rolled over would have gradually declined (at a rate equal to
that at which the oil was delivered to MG-RM’s customers), such that, after ten
years, the mismatch in duration would have completely disappeared.

A stack-and-roll strategy involves two sorts of risk. Firstly, there is a ‘roll-over
risk’ – that the outstanding contracts are renewed at a loss. MG-RM incurred
such losses: the futures were offset (sold) at prices lower than those at which
they had been acquired. (Contracts with later delivery dates were then purchased
at the ruling market price.)

Secondly, the contracts remaining open were subject to funding risk as ever-
larger good-faith deposits were demanded as collateral. For a company with a
parent as large as MG-AG, there is scope for disagreement about the significance
of the funding risk. If the parent had been satisfied with MG-RM’s strategy, the
necessary funds would, it is argued, have been forthcoming. On the other hand,

7 There is also the question of whether MG-RM would have benefited from a different choice of hedge ratio –
i.e. for the amount of oil underlying the derivatives contracts to differ from the total amount that it had
promised to deliver. Edwards and Canter (1995) discuss this issue without offering a definite prescription.
Pirrong (1997) concludes that the minimum-variance hedge ratio would have been much lower than the one
MG-RM actually chose.
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the costs of such liquidity, even for a conglomerate such as MG-AG, could have
been prohibitive; so, it seems, MG-AG eventually decided.

The roll-over losses (though not the funding costs) could have been avoided
had MG-RM acquired a ‘strip hedge’ – calendar strip – with payoffs matching
its liabilities. This was not readily available, because futures contract prices are
rarely quoted for more than about two years, and swaps for as long as ten years
could have been so costly as to have eliminated MG-RM’s trading profits.8

A complication

A complication, the existence of which helps to explain the stack-and-roll strategy,
is that many of MG-RM’s supply contracts included ‘cash-out’ options. These
permitted MG-RM’s customers to terminate their agreements in the event that
oil prices increased above the contractually fixed price. MG-RM, which would
have gained from premature termination in such circumstances, agreed to split
the gain equally with any customer who chose to exercise the option. The gain
would be calculated for the whole volume of oil promised for the remainder of
the contract.9

Notice that the options could be exercised only if the spot price of oil had
exceeded the contract price. This would have tended to occur only if the spot price
had increased significantly, in which case MG-RM’s derivative contracts would
have yielded profits. In that event, the presence of the cash-out options could
have justified MG-RM’s stacked hedge: if the options had been exercised, the
company would have needed to retain a smaller volume of outstanding derivatives
as hedges for the remaining oil supply contracts.

As it happens, the spot price fell rather than increased. But that is not the point.
Rather, it is that the possibility of rising spot prices favoured the adoption of a
stack-and-roll strategy.

Summary

MG-RM’s policies can be defended on the ground that the company was hedging,
albeit imperfectly. Its supporters would claim that MG-RM’s losses stemmed
from an inevitable mismatch between its trading contracts and the derivatives
it used as hedging instruments. Moreover, had MG-RM’s activities not been

8 Even if futures prices are quoted for periods in excess of about twelve months, the markets for distant delivery
dates are notoriously ‘thin’, in the sense that only a small volume of trading takes place. Consequently,
only contracts on disadvantageous terms are likely to have been available. Similarly, although OTC swaps
with long durations might have been forthcoming, the relevant issue is the terms on which they would have
been offered.

9 Why would a customer have ever exercised an option to abandon a contract that allowed it to purchase oil
at a fixed price below the spot price? One answer is that the customer might have decided, possibly for
reasons unconnected with price fluctuations, to terminate the contract. Another is that the customer might
have speculated that the spot price would fall in the future and, hence, sought to benefit from an immediate
cash gain, and also to be released from its obligation to buy oil at the contractually fixed price later on.
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interrupted by its parent, they would, it could be argued, have ultimately yielded
profits (or, at least, much smaller losses). It has also been claimed that MG-RM’s
difficulties were exacerbated by German accounting rules – rules that effectively
treated the trading branch separately from the derivatives branch. With such
accounting conventions, hedging is bound to show a loss for some facet of the
firm’s activities. Why? Because, by construction, hedges are designed to offset
losses from one set of transactions with profits from another; profits should not
be expected from both branches.

17.5.2 The case against MG-RM

The case against MG-RM’s management emerges from the reservations implicit
in the defence, above. In short, MG-RM was gambling in derivatives contracts.
By failing to choose the volume and duration of its futures and swap contracts
more judiciously, MG-RM was incurring unnecessary and unacceptable risks.
Also, MG-RM can be criticized for ignoring the magnitude of the funding that
would have been necessary to maintain its derivatives positions if prices fell (as,
in fact, they did).

From this perspective, if MG-RM’s managers sought to act in accordance
with hedging motives, they made a mess of it. Alternatively, if their motives
were speculative, they were acting improperly (gambling with MG-AG’s capital).
Either way, the managers deserved to be fired.

It is tempting to conclude on a cynical note: had the price of oil risen, MG-RM’s
managers would have probably been rewarded with bonuses, rather than punished
with dismissal. Less cynically, motives are always difficult to discern, and,
especially when uncertainty is involved, the wisdom of hindsight is unreliable. In
this context, the scope for reasonable disagreement remains.

17.6 Summary

1. Swap contracts are agreements to exchange flows of funds that vary over a specified
period of time according to the terms of the contract. Typically, one party agrees to
make a stream of fixed payments in return for a variable stream of payments linked
to the price of an underlying asset.

2. Swaps can be interpreted as a package, or sequence, of forward contracts. Like forward
contracts, swaps are traded over the counter, and can be customized in a host of ways.

3. Among the most common swaps are: interest rate swaps (e.g. the exchange of a
floating interest rate for a fixed interest rate on a given notional principal); foreign
exchange swaps (of one currency for another); commodity swaps (of the price of one
commodity for another or for a sequence of fixed payments); total return swaps (of
the total return on one asset for that of another); and credit default swaps (in which
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a sequence of payments is made in return for a payoff in the event of default on a
designated security).

4. Swaps can be justified on a variety of grounds, one of which is that comparative costs
of borrowing and lending differ across investors. Alternatively, swaps can be viewed
merely as extending the range of financial instruments available to satisfy whatever
motives drive investors.

5. The experience of Metallgesellschaft in late 1993 illustrates how swaps can be under-
taken for hedging purposes, but also how difficult it can be to achieve complex
strategies, and why it is likely to be difficult to infer the motives for investment
decisions from observed actions.

Further reading

Abken (1993) and Wall and Pringle (1993) together provide a concise introduction
to swap analysis. An excellent textbook treatment of swaps is presented by Hull
(2005, chap. 7), with a somewhat more technical analysis in his earlier book
(Hull, 2003, chap. 6). These texts are particularly instructive with respect to
the valuation of swaps. Marshall and Kapner (1993) give a comprehensive, but
nonetheless straightforward and accessible, exposition of many sorts of swap
contracts. A detailed analysis of some of the newer types of swap agreements is
provided by Duffie (1999).

The experience of Metallgesellschaft is well covered by Culp and Miller (1995)
and Edwards and Canter (1995), with both articles being reprinted, together with
other contributions to the debate, by Schwartz and Smith (1997). For a statistical
analysis and a critique of MG-RM’s policies, see Pirrong (1997).
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Options markets I: fundamentals

Overview

An option contract provides its owner with the discretion to buy or to sell an
underlying asset. A call option confers the discretion to buy the asset, while
a put option confers the discretion to sell. Unlike futures contracts, where the
owner must either offset the contract or make delivery at maturity, the owner of
an option can simply let the contract expire; that is, the option can be thrown
away. This is the crucial distinction between futures and options.

Options form a subset of a broader class of ‘contingent claims’ contracts –
financial instruments the payoffs on which depend upon the payoffs of some
other underlying asset. Thus, for stock options the option to buy or sell a unit
of a company’s equity depends, among other things, on the market value of the
shares. Options are, perhaps, the most commonly encountered sort of contingent
claim, but, as shown in chapter 19, the basic ideas can be applied more generally.

This chapter is the first of three that explore option contracts and the markets in
which they are traded. Chapter 19 studies option price determination, while chap-
ter 20 applies the principles to a variety of contracts found in financial markets.

Section 18.1 defines call and put options, outlines their main properties and
introduces some notation. The most commonly studied option contracts are
options to buy or sell the ordinary shares of a publicly traded company – i.e. equity
options. It should be assumed that these are the contracts being analysed unless
stated otherwise. Section 18.2 outlines the many other sorts of option contracts
that are traded in financial markets. In addition, some financial assets that do
not appear to be options have option-like features. A brief commentary on these
forms the subject of section 18.3.

Returning to the simplest option contracts, section 18.4 examines how the
arbitrage principle can be applied to place bounds on option prices in relation
to their underlying asset prices. The arbitrage principle is invoked again in

438
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section 18.5 to construct the put-call parity relationship. Section 18.6 illustrates
put-call parity with one of the most famous results in corporate finance, if not in
all of finance, namely the Modigliani–Miller theorem.

As with so much of financial theory, in what follows asset markets are assumed
to be frictionless (a reminder is occasionally issued). The reason for the assump-
tion is the same as elsewhere: it enables definite predictions in the absence of
arbitrage opportunities.

18.1 Call options and put options

18.1.1 Definitions

This section introduces the main terminology and notation needed for the study
of options. Little generality is sacrificed by studying the case of options on
a company’s ordinary shares. The shares represent the underlying asset for
the option. For conciseness, the adjective ‘underlying’ is omitted wherever no
ambiguity would ensue.
Call option: a security that gives its owner the right, but not the obligation, to

purchase a specified asset for a specified price, known as the exercise price or
the strike price.
Put option: a security that gives its owner the right, but not the obligation,

to sell a specified asset for a specified price, known as the exercise price or the
strike price.

The owner, or holder, of an option – who is said to adopt a long position –
acquires the option by paying a premium (also called the option price) to the
writer – who is said to adopt a short position. If the holder of a call option
chooses to exercise the option, the exercise price is paid to the call writer in
exchange for the asset. If the holder of a put option chooses to exercise the
option, the asset is delivered to the put writer in exchange for the exercise price.
In summary:

Call option
Holder: may buy asset for exercise price from writer
Writer: must sell asset for exercise price, at holder’s discretion

Put option
Holder: may sell asset for exercise price to writer
Writer: must buy asset for exercise price, at holder’s discretion

An American option can, by definition (i.e. as stipulated in the option contract),
be exercised before or at the specified expiry (expiration) date. A European option
can be exercised only at the expiry date, if it is exercised at all. Options that
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expire, unexercised, are said to die, and are worthless. Both American and
European options are traded in financial markets across the world, not just in
America and Europe, respectively. American options are more common but are
more difficult to analyse than European options.

18.1.2 Trading in option contracts

As with other financial instruments, the option contracts that can be easily stan-
dardized, and for which there is a sufficiently large volume of business, tend
to be traded on organized exchanges, such as the Philadelphia Stock Exchange,
the Chicago Board Options Exchange (CBOE) or LIFFE. These exchange-traded
options should be distinguished from over-the-counter options. OTC options, as
their name implies, are customized contracts between investors (often arranged
with the intermediation of a financial institution, which might itself be one of the
parties to the contract).

Given that OTC options are constructed to satisfy particular needs, they may
include non-standard, indeed esoteric, conditions. Consequently, market prices
for OTC options may not be observed, implying that the parties must reach
agreement about how to calculate their values. The commonest principle is to
value OTC options such that, if they were traded in the open market, arbitrage
opportunities would be absent; the resulting arbitrage-free value is referred to as
the ‘fair’ value or price. The estimation of OTC option values in this way is not
as easy as it might seem, especially when the assets underlying the contracts are
not widely traded (so that their market prices are not readily observable).

While there are similarities between exchange-traded options and futures
contracts, there are also some important differences. Perhaps the most important
is that an option owner – an investor with a long position – can simply allow the
option to die, unexercised. The same opportunity is not available to an investor
with a long position in a futures contract, who must either offset the position
before maturity or take delivery (and pay for) the asset on which the contract is
written.

An option writer does not have the same privilege as an option owner and
must accept that the option may be exercised, thereby imposing a loss on the
writer. Thus, there is an asymmetry between long and short option positions – an
asymmetry that is not present with futures contracts.

18.1.3 Margins

The asymmetry between buyer and seller affects the good-faith margin deposits
that are required for option positions. When an option is purchased the buyer
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pays the premium, up front, at the outset, to the option writer.1 The purchaser
(i.e. with a long position) has no further commitment. Consequently, no margin
deposit is needed.

A call option writer, however, will be obliged to deliver the underlying asset if
the option is exercised. Similarly, a put option writer will be obliged to pay for
the underlying asset if the option is exercised. Consequently, good-faith deposits
are required from investors with short positions in options.

For call options, the good-faith deposit could take a very simple form, namely
the deposit (with an intermediary, clearing house or exchange authority) of the
asset on which the option is written. If the option is exercised, the asset is
exchanged for the agreed exercise price (which is then paid to the option writer).
In this case the option writer is said to have a covered position.

Option positions that are not covered are said to be naked, and, for these,
margin deposits are obligatory. The purpose of the margin is to ensure that the
option writer will not default (i.e. the deposit attenuates or eliminates performance
risk). Given that the potential loss varies with the price of the underlying asset, so
will the margin that is required. Exchange authorities stipulate rules to govern the
size of margins. For OTC options, a bank or other financial institution typically
guarantees against default and would negotiate terms for a good-faith deposit with
the option writer.

18.1.4 Terminating an option investment

An option owner has three ways of terminating the contract.

1. Allow the option to die, unexercised, at the expiry date.
2. Exercise the option. Exercise occurs at the expiry date for a European option, or any

time up to the expiry date for an American option.
3. Offset the position by selling an identical option before the expiry date. Offsetting is

a routine operation for exchange-traded options, and can also occur for OTC options
by the renegotiation of the contract.

For an option writer, the only legitimate way of terminating the contract before
expiry is by an offsetting purchase. Such an action would be profitable if the
writer makes the offsetting purchase at a lower premium than the initial sale.
A profit equal to the value of the initial premium accrues, of course, to the option
writer in the event that the option dies unexercised, though this profit is not
realized until the expiry date.

1 While this is typical, there are some options for which the purchaser makes only a margin deposit at the
outset. The ultimate outcome is the same, though the bookkeeping during the life of the contract differs.
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18.1.5 Notation

C = American call option price, or premium
P = American put option price, or premium
c = European call option price, or premium
p = European put option price, or premium
S = current price of the underlying asset
X= exercise, or strike, price
T = expiry date
t = current date, so that R ≡ T − t = time to expiry
r = rate of interest, assumed to be positive

Note that all of the prices C(P( c(p and S normally vary over time; i.e. they
depend upon t. Their values at the expiry date are made explicit with a T
subscript – e.g. ST denotes the price of the stock at date T . For dates prior to T ,
the time subscript is omitted.

The interest factor, R
t(T �, depends on r (recall chapter 14, section 14.3).
In the simplest case, for which the interest rate is constant, T − t = 1 period,
and in which there is no compounding between t and T , R
t(T � = 
1+ r�.
Another common assumption is that of a continuously compounded constant
interest rate, in which case R
t(T �= erR . Clearly, there are many other possibil-
ities, which is why it is convenient to use R
t(T � to include all of them.2 Note
for future reference that, if r > 0, then R
t(T � > 1 – a property that is assumed
to hold throughout. Where no ambiguity is likely, R
t(T � is written simply
as R.

18.1.6 Payoffs from an option investment

Figures 18.1 and 18.2 depict the payoffs and net gains, upon exercise, for long
positions (18.1) and short positions (18.2). In each case, the horizontal axis
measures the asset price, S, at the date of exercise. For European options this
date must be T , the expiry date. For American options it is any date before or
at T .

Note that the payoff is gross of the premium paid by the purchaser to the option
writer when the position was initiated. The net gain equals the gross gain minus
the premium paid by the purchaser to the option writer.

On the innocuous assumption that more wealth is preferred to less, an option
will never be exercised unless it is profitable to do so. Thus, a call option will

2 A general case is that of continuously compounded but non-constant interest rates, for which R
t(T � =
exp

(∫ T
t
r
R�dR

)
.
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Fig. 18.1. Payoffs at exercise for call and put options: long positions

The exercise of a call option by its holder involves the purchase of the
underlying asset at price X. The exercise of a call option would occur
only if the market price of the asset, S, is at least as great as X: S ≥X.
The payoff equals S−X (panel (a)).

The exercise of a put option involves the sale of the underlying asset,
by the writer to the option-holder, at price X. The exercise of a put
option would occur only if the exercise price, X, is at least as great as
the market price of the asset, S: X ≥ S. The pay-off then equals X−S
(panel (b)).

Panels (c) and (d) show the net gains for call and put options respec-
tively, found by subtracting the premium paid from the payoff.

not be exercised if the asset price is less than X, and a put option will not be
exercised if the asset price exceeds X. The assumed absence of market frictions
could be significant here. For example, the payoff from exercising a call option
would be reduced by the transaction costs incurred from selling the asset acquired
from exercising the option: if S−X is smaller than the cost of selling the asset,
then the option may be allowed to die unexercised. Conversely, an investor who
intends to hold on to the asset following the exercise of a call option may be
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Fig. 18.2. Payoffs at exercise for call and put options: short positions

The exercise of a call option requires the option writer to sell the
underlying asset to the option holder at price X. The exercise of a call
option would occur only if the market price of the asset, S, is at least
as great as X: S ≥ X. The payoff then equals X−S (panel (a)).

The exercise of a put option requires the option writer to purchase the
underlying asset from the option holder at price X. The exercise of a
put option would occur only if the exercise price, X, is at least as great
as the market price of the asset, S: X ≥ S. The payoff then equals
S−X (panel (b)).

Panels (c) and (d) show the net gain for call and put options respec-
tively, found by adding the premium received to the pay-off.

prepared to exercise the option even if S−X < 0, because it might otherwise be
more expensive to buy the asset in the open market.

The payoff for an option writer is the negative of the payoff to an option
holder – it is a transfer from one to the other – as shown in figure 18.2. For
a put option writer the maximum loss is the exercise price, X, per unit of the
underlying asset (if the asset becomes worthless). For a call option writer, the
potential loss is, in principle, unlimited.
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Because European options can be exercised only at expiry, their values at expiry
(date T ) can be written

call V cT =
{
ST −X if ST > X

0 if ST � X
put V pT =

{
0 if ST > X

X−ST if ST � X

More succinctly,

call V cT = max90( ST −X; put V pT = max90(X−ST ;

where ‘max9A(B;’ means ‘the larger of A and B’.
American options can be exercised early (before expiry). Consequently, their

market prices cannot be less than the return from an immediate exercise; otherwise,
it would be profitable to buy the option and exercise it immediately (a trivial
arbitrage opportunity). Hence,

call option V C � max90( S−X; put option V P � max90(X−S;

Time subscripts on C, P and S, have been omitted to avoid clutter; for American-
style options, these inequalities hold at each point of time (up to and including
the expiry date).

18.1.7 In and out of the money

During the life of an option (before it expires or is exercised), the underlying
asset price may differ from the exercise price stipulated in the option contract.
The owner of a call option will not exercise the option when the exercise price
exceeds the asset price – because the asset could be acquired more cheaply in the
market at a price S < X. Similarly, the owner of a put option will not exercise
it when the asset price exceeds the exercise price – because the asset could be
sold at a higher price in the market, S > X. In such circumstances, the options
are said to have zero intrinsic (or parity) value.

Even when options have a zero intrinsic value their market prices are likely to
be positive. Why? Because there is a chance that the asset price will move in a
‘favourable’ direction (up in the case of a call option, down in the case of a put
option) before the option expires. That is, all options are said to have a positive
time value before expiry. Other things being equal, the time value of an option
declines as the expiry date becomes closer (because, in a sense, there is less time
for the asset price to move in a favourable direction).
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This implies the following classification:

Call option Put option

S < X Out of the money In the money
Intrinsic value = 0 Intrinsic value: X−S > 0

S > X In the money Out of the money
Intrinsic value: S−X > 0 Intrinsic value = 0

S = X At the money At the money
Intrinsic value = 0 Intrinsic value = 0

18.2 Varieties of options

The range of available option contracts is limited only by the ingenuity of those
who construct them. Such is the variety of contracts that have been observed
that the non-standard options are sometimes grouped into a catch-all category
referred to as exotic options. Rather than attempt to be encyclopedic, this
section identifies the main ways in which options are differentiated and describes
some examples.

Option contracts differ across several dimensions, including the underlying
asset, the date(s) at which exercise is permitted and the rule used to calculate
the payoff if the option is exercised. Some contracts even allow the holder to
choose, at an agreed date, to stipulate whether the option is a put or a call. These
are called as-you-like-it or chooser options.

18.2.1 Underlying assets

Exchange-traded options tend to adhere to the standard American or European
puts and calls, and differ mainly in the assets underlying the contracts. Among
the more common exchange-traded options are these.

1. Equity options (or stock options) written on the shares of publicly traded corporations.
2. Interest rate options to buy or sell securities that promise to pay fixed returns. These

include bond options, written with government or commercial bonds as the underlying
assets.

3. Stock index options for specified indexes; for example, Standard & Poor’s 500 index
on the Chicago Mercantile Exchange. On LIFFE, both European-style and American-
style options are traded for the FT-SE 100 index.

4. Foreign currency options, such as the options on sterling traded on the CME.
5. Options on futures to buy or sell futures contracts. Most financial exchanges that

list futures contracts also provide for trading in options corresponding to the futures
contracts (see chapter 20, section 20.2).
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For some options, the asset underlying the option contract is not uniquely
defined. For example, bond options often specify a range of bonds that can be
delivered (just as for bond futures).

Stock index options are effectively options on a bundle of securities (i.e. those
for which the index is computed). Options such as this, which involve several
underlying assets, are sometimes called rainbow or basket options. Yet another
variant is the exchange option, in which one asset is exchanged for another (rather
than cash in return for an asset).

The asset underlying an option could be another option. Such contracts are
known as compound options.

18.2.2 Exercise dates

Some option contracts come into effect only at a specified date in the future.
These are known as forward start options.

An American-style contract for which exercise is permitted only at a limited
number of specified dates is known as a Bermudan option. More generally,
exercise may be permitted for a restricted range of dates – a cross between
American and European options.

18.2.3 Payoff rules

For regular contracts studied elsewhere in this and later chapters, the payoff when
an option is exercised is just the difference between the exercise price and the
value of the underlying asset at the exercise date. Other rules are often stipulated,
including the following.

1. Instead of a fixed exercise price, the contract could specify that the payoff is the
difference between the asset price at the exercise date and the maximum (puts) or
minimum (calls) asset price during the life of the option. Thus, for a call, the option
holder is able to purchase the underlying asset for the lowest price observed between
the date at which the option is initiated and the exercise date. Similarly, for a put, the
option holder is effectively able to sell the asset at the highest price observed during
the life of the option. These contracts are known as look-back options.

2. In some contracts, it is possible for a European option holder to guarantee (or
lock in) a minimum payoff at the expiry date. For example, suppose that a call
option with an exercise price of $100 expires at the end of June and that on some
earlier date the asset price equals $140. The option holder may be allowed to
signal – ‘shout’ – that the payoff at expiry will be at least $40 = 140−100. At the
expiry date, if the asset price exceeds $140, the holder receives the normal payoff
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(the asset price minus the exercise price); otherwise, the payoff is $40. For these
so-called shout options, the holder is typically allowed only one opportunity to shout
a minimum payoff.

3. Instead of calculating the payoff using the asset price at the exercise date, it is possible
to use an average of the asset prices over a specified period. This is a characteristic
of Asian options. Another variant is for the exercise price to equal an average of
observed asset prices rather than a fixed sum.

4. Options may have discrete payoffs. For example, the contract could specify a fixed
payoff if it is exercised; here, comparison of the asset price with the exercise price
determines whether it is exercised, not the payoff. These cash-or-nothing contracts
are examples of binary options.

Another variant is the asset-or-nothing option, for which the payoff is the value
of the asset at exercise – i.e. the exercise price is zero.

5. Some contracts are written such that the option either comes into existence or ceases
to exist according to whether the asset price rises above or falls below a specified
level. These are called barrier options. One example is a down-and-out call option,
which ceases to exist if the asset price falls below a stated level (normally set below
the asset price at the inception of the option).

18.3 Option-like assets

In addition to contracts that are recognized as options, there are many securities
with ‘option-like’ characteristics. Here is a selection.

1. Warrants. The commonest type of warrant is that issued by a company. The warrant
holder has the right to buy shares from the company at a specified exercise price
on or before a specified expiry date. Warrants differ from options in three ways:
(i) warrants typically have long lives (with years, perhaps an indefinite number, rather
than months before expiry); (ii) the exercise of warrants increases (or ‘dilutes’) the
company’s total equity; and (iii) complex provisions may be attached to the exercise
of warrants (e.g. the company may include a clause allowing it to vary the expiry date
according to changes in the share price).

The effect of (i) is that standard models of option prices (such as those studied in
chapter 19) are unlikely to make accurate predictions of warrant prices, especially for
warrants with several years to expiry. The effect of (ii) is that dilution will, other
things being equal, tend to reduce the value of each existing share. The effect of
(iii) depends, of course, on the terms of the warrant itself.

2. Callable bonds. A bond indenture may grant its issuer the right to ‘call’ (redeem) the
bond at some specified value (typically the face value, or ‘par’) before its redemption
date. The issuer has an incentive to call the bond if its price rises above the speci-
fied value at which it can be redeemed. Commonly, the bond indenture restricts the
opportunities for the issuer to redeem the bonds. For example, the indenture may
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stipulate that the bond is not to be redeemed during the first twenty years of its life.
Callable bonds can be viewed as non-callable bonds (i.e. without the call provision)
bundled together with a short position in a call option on the bonds. A callable bond
usually trades at a lower price than its non-callable counterpart, reflecting the premium
corresponding to the implicit call option.

3. Convertible bonds. These are typically corporate bonds that include provisions permit-
ting their holders to exchange the bonds for equity in the company according to stated
conditions, on or at a specified date. A convertible bond can be viewed as a package
of an inconvertible bond (i.e. a bond without the conversion facility) bundled together
with a warrant for shares in the company.

4. Rights. A rights issue gives existing shareholders of a company the opportunity to
purchase additional shares in the firm, at a stated exercise price over a specified time
period. The shareholders can then (a) exercise the rights; (b) sell them for cash;
or (c) throw them away. (The rights become worthless if, at the expiry date, the
company’s share price is lower than the exercise price.) Rights issues can also be
interpreted as a type of dividend (because the exercise price is normally fixed below
the market price of the shares, thus giving the rights a positive market value).

18.4 Upper and lower bounds for option prices

18.4.1 The role of the arbitrage principle

Application of the arbitrage principle establishes limits, or ‘bounds’, on option
prices relative to their underlying asset prices. That is, some combinations of
option prices and asset prices can be excluded because they would permit unlim-
ited, risk-free profits for zero capital outlay. In deriving each of the bounds
described below, the logic follows identical steps: (i) suppose that the bound
fails to hold; (ii) construct a portfolio with zero initial outlay that results in
a non-negative payoff in every state (eventuality) and a positive payoff in at
least one state; (iii) the existence of the portfolio contradicts the arbitrage
principle. Hence, conclude that the initial supposition is false and the bound
must hold.

As emphasized ad nauseam in previous chapters, the force of the arbitrage
principle rests on the assumption of frictionless markets. In particular, it is
assumed that (a) transaction costs are zero, (b) there are no institutional constraints
on trades (so that unrestricted short-sales are permitted), (c) investors can borrow
or lend at a risk-free (but not necessarily constant) interest rate, and (d) assets are
divisible, as finely as needed, into small units.

For concreteness, the option is assumed to be written on a company’s traded
ordinary shares, or stock. For simplicity, it is assumed that one unit of stock
corresponds to one option: this is merely a choice of units.
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More importantly, it is assumed that the company pays no cash dividends
during the life of the option, t to T .3 The prospect of dividend payments during
the life of an option affects the attractiveness of the option to investors and, hence,
the premium that it commands.

Other things being equal, share prices fall upon the payment of a dividend as the
quotation changes from cum-dividend (with the dividend) to ex-dividend (without
the dividend). The greater the dividends over an interval of time, the smaller
any increase in the share price (other things being equal, of course); effectively,
a portion of the return to holding the share is in the form of a dividend. Given
that options are not protected against cash dividends, a call option becomes less
attractive and, hence, commands a lower premium than otherwise; and conversely
for a put option.

A second implication of the payment of a dividend is that holders of American
call options may find it profitable to exercise the options earlier than otherwise
in order to collect the dividend.

18.4.2 Four simple bounds

1. Option values are always non-negative. This holds because it is not obligatory to
exercise an option, which can be allowed to die if it is in the holder’s advantage
to do so.

2. American options are worth at least as much as their European counterparts –
i.e. C � c and P � p. American options provide the extra opportunity for early
exercise (i.e. exercise before T ). This opportunity can never have negative value
(though, as shown below, the extra opportunity may have zero value).

3. A call option is never worth more than the value of its underlying asset. Suppose
not. Then (i) write one call option, (ii) buy one unit of the asset and (iii) deposit the
(positive) difference at the risk-free interest rate. The worst that can happen is that the
option is exercised, in which case the asset is delivered in exchange for the option’s
exercise price. The net payoff is equal to either (a) the deposit plus the exercise price
if the option is exercised; or (b) the deposit plus the value of the asset if the option is
not exercised. Either way, an arbitrage profit is obtained and, hence, the stated bound
must hold.

4. A put option is never worth more than its exercise price. Suppose not – i.e. P > X

(for an American option). Then write one option and deposit the cash at the risk-free
interest rate. If the option is exercised, X is paid in exchange for the asset. The
payoff is positive and equal to the value of the asset (non-negative), plus the excess

3 Option contracts are typically protected against changes in the units in which the underlying asset is measured,
so that, for example, the number of shares per contract would be changed automatically in accordance with
a stock split if one occurs during the option’s life. Normally, options are not protected with respect to the
payment of cash dividends; i.e. it is possible to exercise an American call option immediately prior to a
dividend payment, thereby collecting the dividend.
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on deposit, P−X (positive, by hypothesis), plus interest (non-negative). If the option
dies unexercised, the payoff is the whole deposit, P, plus interest. Either way, an
arbitrage profit is assured; hence P � X – as asserted.

For a European put option the upper bound is more restrictive; a European put
option is never worth more than the net present value of its exercise price.4 Suppose
not – i.e. p > X/R; Rp > X. Once again, write one option and deposit the cash. At
the expiry date, if the option is exercised, X is paid in return for the asset. Because
Rp > X, the value of the deposit, including interest, is more than sufficient to cover
the exercise price. Hence, the investor’s payoff is positive and equal to Rp−X > 0,
plus ownership of the asset (which must have a non-negative value). Alternatively, if
the option dies unexercised, the payoff is the whole deposit, p, plus interest. Again,
an arbitrage profit is obtained; hence p� X/R – as asserted.

18.4.3 Tighter bounds for option prices

The bounds established so far are quite loose. Further application of the arbitrage
principle enables narrower bounds to be placed on European call and put option
prices. These are depicted in figure 18.3, and explained below.

Lower bound for a European call option

c � max
[
0( S− X

R
t(T �

]
(18.1)

To interpret the bound, note first that it asserts that c� 0 – the value of an option
is never negative. Next, it states that, if S > X/R, then c � S−X/R.

If the interest rate is positive, it follows that R� 1 and X/R� X: the present
value of the exercise price is no greater than the exercise price itself. Hence, it
certainly follows that c � S−X: the call option premium is at least as great as
its payoff if exercised at asset price S.5

A justification for the bound is given here using a numerical example. (A more
formal demonstration is offered in appendix 18.1.) Suppose that S = $110(
X = $110( c = $5 and R
t(T � = 1�1. (This will be the case, for instance, if the
interest rate is 10 per cent per period, T − t = 1 and interest accrues, without
compounding, only at date T .) This configuration clearly violates (18.1), for
$5< 10 = 110−110/1�1.

4 This more restrictive version of the bound does not hold for an American put option because early exercise
is possible.

5 A European option cannot, of course, be exercised before expiry, by which time the asset price may have
fallen below X. But, as the argument in the text shows, this is irrelevant in establishing the bound. The
reason why X/R appears in the bound rather than X is that the exercise price is not paid until T ; the investor,
in planning to exercise the option, can invest the funds at interest between t and T . For this reason, Merton
(1990, p. 260) points out that the intrinsic value of the call option is more appropriately given by S−X/R,
not by the conventional measure S−X.
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Fig. 18.3. Absence of arbitrage opportunities (AoAO) regions for European options

The regions marked AoAO denote pairs of option and asset prices –
c and S for calls, p and S for puts – such that it is impossible for
investors to make positive arbitrage profits. If option and asset prices
occur outside these regions, it is possible to design investment strategies
(i.e. trading in options, the underlying asset and risk-free borrowing or
lending) that guarantee arbitrage profits.

Construct the following portfolio: (i) short-sell one unit of stock for $110;
(ii) buy one call option for $5; and (iii) lend $105 at the risk-free interest rate.

At the expiry date, T , the loan is worth $115.50. The stock price at the expiry
date, ST , may be greater or less than the exercise price, $110. Suppose, for the
sake of definiteness, that ST is either 120 or 100, and consider the following table:

Initial outlay Outcome: ST = 120 Outcome: ST = 100

Buy one call option −5 120−110 0
Short-sell stock 110 −120 −100
Make a loan −105 115�5 115�5

Net total 0 5�5 15�5

Suppose that ST = $120. In this event the option is exercised, the asset acquired
being delivered to redeem the short-sale. The cash deposited on loan more than
covers the exercise price of $110, and the strategy yields a net payoff of $5.5.

Suppose, instead, that ST = $100. In this event the option dies unexercised, but
the unit of stock is purchased (to redeem the short-sale) for $100 – an amount that,
again, is more than covered by the deposit. A net payoff of $15.5 is obtained.

It should be clear that, whatever the stock price at the expiry date, the chosen
portfolio (which requires zero initial outlay) yields a positive net payoff in every
state (though the size of the payoff depends on the ST if ST < X). Such an



Options markets I: fundamentals 453

outcome is incompatible with the arbitrage principle. Hence, the hypothetical
violation of (18.1) is inconsistent with equilibrium in frictionless markets. The
formal argument justifying the bound follows exactly the same steps, replacing
the numbers with abstract symbols.

Lower bound for a European put option

p� max
[
0(

X

R
t(T �
−S

]
The lower bound for a European put can be demonstrated using the same reason-

ing as for the call option. No new ideas are needed and the derivation is omitted.
(However, for completeness a formal justification appears in appendix 18.2.)
An American call option is worth more alive than dead: C � S−X. In words:

it is not worth exercising an American call before its expiry date. Why not?
Because the payoff from exercising the option is never greater than its market
price. An investor who terminates a long position in American call options
would always make at least as much profit from selling the options as from
exercising them.

To understand why C � S−X, suppose not: C < S−X (i.e. S−C−X > 0).
Buy the option for C and exercise it immediately at a cost of X to acquire the
asset. Sell the asset for S. The net payoff is S−C−X > 0. This is an arbitrage
profit and, hence, incompatible with equilibrium in frictionless markets. Thus it
must be that C � S−X, as asserted.6

While an American call can be exercised at any time to provide a payoff of
S−X, it is more profitable to sell the option (for C) in the open market (assuming,
as always, that markets are frictionless and arbitrage opportunities are absent).

If the market ensures that an American call option is not worth exercising
before expiry, it follows that it is equivalent to an European option (for which
exercise before expiry is disallowed). The corollary is that C = c; that is, an
American call option is worth no more than a European call option.7 The right of
early exercise is worthless. This conclusion is guaranteed only if the asset does
not pay a dividend during the life of the option. If a dividend is paid before the
expiry date, it might be profitable for an American option to be exercised early
in order to allow its owner to collect the dividend.

6 Similarly for American put options: P � X− S. Suppose not: P < X− S (i.e. X−P− S > 0). Buy the
option for P and the asset for S. Exercise the option immediately by delivering the asset for X. The net
payoff is X−P−S > 0. This is an arbitrage profit and, hence, incompatible with equilibrium in frictionless
markets.

7 For a formal justification, suppose that C> c. Then write one American call option for C, buy one European
call for c and invest the difference, C−c, in a risk-free asset. It has already been shown that the American
call will not be exercised prior to expiry. At the expiry date, either (a) both options will be exercised, in
which case the loss from the American option exactly cancels the gain from the European, or (b) neither
option is exercised. Hence, there is a certain net gain of R
C− c� – an arbitrage opportunity inconsistent
with market equilibrium.
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18.5 Put-call parity for European options

The put-call parity relationship for European options states that

c+ X

R
t(T �
= p+S (18.2)

In words: the price of a European call plus the present value of its exercise price
equals the price of a European put plus the underlying asset price, at each date.
It should be obvious that the relationship makes sense only for options defined
on the same asset, for the same exercise price and with the same expiry date.
Equation (18.2) also requires that the stock in question does not pay any dividend
between t and T . The put-call parity relationship is sometimes called the option
conversion relationship, because it can be used to construct put options from call
options, and call options from put options. The put and call options must both be
of the European type.

The put-call parity relationship is yet another implication of the absence of arbi-
trage opportunities. In this context, the familiar reasoning is applied twice: once
to rule out c+X/R < p+S, and again to rule out c+X/R > p+S. The reason-
ing is illustrated with a numerical example. A formal demonstration involves the
same steps, with symbols replacing numbers. (See appendix 18.3 for a formal
demonstration.)

Case (A): c+X/R < p+S.
Suppose that S = $110(X = $110( c = $15( p = $10 and R
t(T � = 1�1. This

configuration violates the put-call parity relationship:

115 = 15+110/1�1 < 10+110 = 120

c+ X

R
< p+S

Construct a portfolio as follows: (i) write one put option; (ii) buy one call
option; (iii) short-sell one unit of stock; and (iv) lend the balance at interest.

Assume for concreteness that the stock price at expiry is either ST = 120 or
ST = 100, and consider the following table:

Initial outlay Outcome: ST = 120 Outcome: ST = 100

Write one put option 10 0 
100−110�
Buy one call option −15 
120−110� 0
Short-sell stock 110 −120 −100
Make a loan −105 115.50 115.50

Net total 0 5.50 5.50
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Suppose that ST = $120. In this event (i) the put option dies, costing the
investor nothing; (ii) the call option is exercised, with payoff $10; (iii) a unit
of stock is purchased for $120 and returned to its lender in fulfilment of the
short-sale; and (iv) the payoff on the loan, with interest, equals $115.50. Thus,
the net payoff on the strategy equals $5.50 
= 10−120+115�50�.

Suppose, instead, that ST = $100. In this event (i) the put option is exercised,
with a loss of $10; (ii) the call option dies unexercised; (iii) a unit of stock is
purchased for $100 and returned to its lender in fulfilment of the short-sale; and
(iv) the payoff on the loan, with interest, equals $115.50. Once again, the net
payoff on the strategy equals $5.50 
=−10−100+115�50�.

Notice that the magnitude of ST (either $120 or $100 in the example) is
irrelevant. In each case its value cancels out from the option that is exercised and
the purchase of the asset at date T . (The singular case ST = X is trivial, both put
and call options having exactly zero value at expiry.)

In summary, a portfolio has been constructed, with zero initial outlay, that
yields a positive payoff in every eventuality. Such an outcome is inconsistent
with market equilibrium for a frictionless market in the absence of arbitrage
opportunities.

Case (B): c+X/R > p+S.
Suppose now that S = $110(X = $110( c = $20( p = $5 and R = 1�1. This

configuration clearly violates the put-call parity: $20+ 110/1�1 = 120 > 115 =
5+110.

Construct a portfolio as follows: (i) buy one put option; (ii) write one call
option; (iii) buy one unit of stock; and (iv) borrow the funds needed for zero
initial outlay.

Assume once again that the stock price at expiry is either ST = 120 or ST = 100,
and consider the following table:

Initial outlay Outcome: ST = 120 Outcome: ST = 100

Buy one put option −5 0 
110−100�
Write one call option 20 
110−120� 0
Buy stock −110 120 100
Borrow 95 −104�5 −104�5

Net total 0 5.5 5.5

Suppose that ST = $120. In this event (i) the put option dies, unexercised;
(ii) the call option is exercised, at a cost to the investor of $10; (iii) the unit of
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Fig. 18.4. Bounds for American and European put option prices

In the absence of arbitrage opportunities P � X− S for an American
put option, and p � X/R for a European put option. Define Ŝ by
X− Ŝ = X/R. If S < Ŝ, then P > p: the price of an American put
exceeds that of its European counterpart.

stock is sold for $120; and (iv) the loan is repaid, with interest, at a cost of $104.50.
Thus, the net payoff on the strategy equals $5.50 
=−10+120−104�50�.

Suppose, instead, that ST = $100. In this event (i) the put option is exercised,
with a gain of $10; (ii) the call option dies unexercised; (iii) the unit of stock
is sold for $100; and (iv) the loan is repaid, with interest, at a cost of $104.50.
Once again, the net payoff on the strategy equals $5.50 
= 10+100−104�50�.

Yet again, a portfolio has been constructed, with zero initial outlay, that yields a
positive payoff in every eventuality. Such an outcome is inconsistent with market
equilibrium for a frictionless market in the absence of arbitrage opportunities.
This justifies the put-call parity relationship for European-style options.

Why put-call parity does not extend to American options

While C = c (subject to the conditions assumed in this chapter), it need not be
the case that P = p. Hence, it is not permissible simply to replace c with C and p
with P in the put-call parity relationship. This is because there are circumstances
in which the premium for an American put strictly exceeds that for its European
counterpart – i.e. P > p.

To show that there are patterns of S, X and R for which P > p, recall the
bounds on option prices: X � P � X−S and X/R� p� X/R−S. The relevant
bounds here are P � X−S and X/R� p. See figure 18.4.
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For every S < Ŝ in figure 18.4, X− S > X/R and, hence, P > p, because
P � X−S and X/R� p. That is, X−S > X/R implies that P > p. Given X and
R, it follows that P > p for sufficiently small S.

Intuition may be aided with a numerical example. Suppose that S= 15, X= 120
and R= 1�20. Now, in the absence of arbitrage opportunities, P � 105= 120−15,
and p � 100 = 120/1�20. If P = p, there is an arbitrage opportunity for trading
in one of the options. For example, if P = p = 95, unlimited profits could be
made by purchasing American options and exercising them immediately, with a
risk-free gain of 10 = 120−15−95 (i.e. X−S−P) per option.

18.6 The Modigliani–Miller theorem

Among the applications of the put-call parity relationship, the Modigliani–Miller
(MM) theorem is perhaps the most prominent. The MM theorem, central to
modern theories of corporate finance, asserts that the market value of a firm is
invariant with respect to the composition of its financial liabilities.8

More precisely, the MM theorem states that, under certain conditions, the
market value of the firm does not depend on its debt /equity ratio (i.e. its ‘leverage’
or ‘gearing’). Thus, if a firm’s equity is worth a total of $100m when it has zero
debt, then, all other of the firm’s decisions remaining the same, if the firm has
debt with a market value of – say – $25m the market value of its equity will
equal $75m. It should be no surprise that the MM theorem has given rise to
immense controversy, not least because the ‘certain conditions’ demand careful
statement. Also, a firm’s financial decisions are rarely made in isolation from all
the other decisions that everyone accepts will affect its market value. This makes
it difficult to isolate the separate impact of financial decisions.

From the perspective of options theory, the essence of the MM theorem can
be understood if S is interpreted as the total market value of the firm – not as
the value of a unit of its equity, as in previous sections. Let X denote the face
value of bonds issued by the firm. Assume that the firm will be wound up at date
T in the future, the total value of its assets, ST , being then distributed to those
with claims on the firm – i.e. the holders of its bonds (debt) and ordinary shares
(equity).

At date T the bondholders have first claim on the firm’s assets: they are
entitled to recompense up to X. Default occurs in those states (if any) for which
the value of the firm’s assets is less that its debt: ST < X. In the event of

8 Strictly, the MM theorem comprises a group of several propositions that collectively identify the relationship
(or its absence) between the value of a firm and its financing decisions. See the entry on ‘Modigliani–Miller
theorem’ in The New Palgrave Dictionary of Money and Finance (Newman, Milgate and Eatwell, 1992). For
the original contributions, see Modigliani and Miller (1958), Miller and Modigliani (1961) and Modigliani
and Miller (1963).
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default the bondholders receive the whole value of the firm, ST , and (in a world
of limited liability) the shareholders receive nothing. Thus, the payoffs to the
claimants are:

Solvency ST � X Default ST < X

Shareholders ST −X 0
Bondholders X ST

Total ST ST

These payoffs can be related to the payoffs on options expiring at T . It is as
if shareholders possess a call option on the assets of the firm, with exercise price
X at expiry date T . In the event that the firm’s assets are sufficient to redeem its
bonds (i.e. ST � X), the shareholders exercise the option for a payoff of ST −X.
In the event that the firm defaults, ST < X, the shareholders allow the option to
die unexercised, with a payoff of zero.

The firm’s debt is risky; bondholders are paid in full only if the firm does not
default – i.e. if ST � X. The payoff on the bonds equals min9X(ST ;, or, more
conveniently, can be written as X−max90(X− ST ;. The first term, X, is the
payoff on risk-free bonds, while the second term, max90(X−ST ;, is the payoff
at expiry (date T ) on a put option, with exercise price X and underlying asset
value ST . That is, the payoff on risky bonds equals the payoff on risk-free
bonds minus the payoff on a put option. Consequently, at any date, t, prior to
expiry the value of the firm’s bonds equals the present value of risk-free bonds,
X/R, minus the value, p, of a put option. It is as if the holders of risk-free bonds
have written a put option with exercise price equal to the promised payoff, X,
on the bonds.

Let c denote the value of the call option on the firm’s assets, with payoff at
expiry equal to ST −X if the firm is solvent and zero if it defaults; i.e. the payoff
on the call option equals max90( ST −X;. Thus, the market value of the firm’s
assets, S, at each date, t, equals the value of its shares, c, plus the value of its
risky bonds 
X/R�−p:

S = c+ X

R
t(T �
−p (18.3)

which is nothing more nor less than the put-call parity relationship. While (18.3)
suggests that the total market value of a firm, S, is invariant with respect to the
composition of its liabilities (equity and debt), it is not a proof. A proof, using
reasoning similar to that of previous sections, is offered in appendix 18.4.
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18.7 Summary

1. Options form one of the most important classes of contingent claims. The defining
feature of an option is that it provides its holder with the right, but not the obligation,
to take a specified action at a date, or over a range of dates, in the future.

2. Call options give their holders the right to buy an asset for a stipulated exercise price.
Put options give their holders the right to sell an asset at the stipulated exercise price.
European-style options can be exercised only at the expiry date. American-style
options can be exercised at any time before or on the expiry date.

3. An investor who takes a short position is said to ‘write’ an option in return for a
premium (the option’s price) which the buyer pays up front. There is an asymmetry
between long and short option positions. An option holder can always allow the
option to die, unexercised. An option writer must stand ready to fulfil the terms of
the contract until it expires.

4. The arbitrage principle can be applied to place upper and lower bounds on the prices
of options traded in frictionless markets.

5. The put-call parity relationship for European-style options links the prices for put and
call options on the same underlying asset, with the same exercise price and expiry date.
Once again, the arbitrage principle is invoked to obtain the relationship. A notable
application of put-call parity is the Modigliani–Miller theorem, which asserts that the
market value of a firm is independent of its leverage (debt/equity ratio).

Further reading

The notation used here is close to that used by Hull (2005), who has produced
one of the most accessible textbook expositions, covering the subject in more
detail than here (see, in particular, chaps. 8 & 9). It is also worth consulting
Edwards and Ma (1992, chap. 18) and Elton, Gruber, Brown and Goetzmann
(2003, chap. 22).

For an appreciation of the fundamental principles of options as derivatives, see
Varian (1987) and Rubinstein (1987). At a more advanced level, the seminal
contribution of Merton (1990, chap. 8, pp. 255–81), though challenging, rewards
diligent effort. Yet another thorough exposition of the principles of option price
theory is provided by Cox and Rubinstein (1985, chaps. 1–4). Dixit and Pindyck
(1994) present an analysis of options applied to the investment decisions of
firms – that is, of ‘real options’, in contrast with the options on financial assets
studied here.

For the Modigliani–Miller theorem, the entry with this heading in The New
Palgrave Dictionary of Money and Finance (Newman, Milgate and Eatwell,
1992) provides a rare precise analysis of the theorem. Miller (1988) points
out that the MM theorem takes precedence over the put-call parity relationship
developed by Stoll (1969).
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Appendix 18.1: Lower bound for a European call option premium

This appendix establishes the lower bound in a more formal way than in the text,
using symbols instead of a numerical example. Recall that the bound states that

c � max
[
0( S− X

R
t(T �

]
(18.4)

The inequality is demonstrated by showing that, if it does not hold, arbi-
trage profits can be made in a frictionless market. Begin by supposing the
contrary to (18.4):

c < S− X

R
(18.5)

where c > 0. Note for later reference that, because R > 0, (18.5) is equivalent to


S− c�R−X > 0 (18.6)

(By assumption R > 1, though only R > 0 is needed here.)
Now construct a portfolio, with zero initial outlay, by purchasing one call

option for c, short-selling one unit of stock for S and lending S− c (ST denotes
the price of the stock at date T ):

Initial outlay Outcome: ST > X Outcome: ST � X

Buy one call option −c ST −X 0
Short sell stock +S −ST −ST
Make a loan −
S− c� R
S− c� R
S− c�

0 R
S− c�−X R
S− c�−ST

At the expiry date, either ST > X, in which case the option is exercised, or
ST � X, in which case the option dies.9 Suppose that ST > X, so that the payoff
is R
S− c�−X. From (18.6) the payoff is positive.

Suppose instead that ST � X, so that the payoff is

R
S− c�−ST = R
S− c�−X+ 
X−ST � > 0 (18.7)

because R
S− c�−X > 0 and X−ST � 0.
Thus, if (18.5) holds, a portfolio with zero initial outlay yields a positive

return whatever the asset price, ST , at date T . This is an arbitrage portfolio
with a positive payoff in both states. From the arbitrage principle, it cannot be
consistent with market equilibrium. Hence, (18.4) must hold in the absence of
arbitrage opportunities in a frictionless market.

9 If ST = X, nothing would be affected if the option is exercised.
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Appendix 18.2: Lower bound for a European put option premium

Recall that the bound states that

p� max
[
0(

X

R
t(T �
−S

]
(18.8)

The inequality is demonstrated by showing that, if it does not hold, arbi-
trage profits can be made in a frictionless market. Begin by assuming the
contrary to (18.8):

p <
X

R
−S (18.9)

where p > 0. Note for later reference that, because R> 0, (18.9) is equivalent to

X− 
S+p�R > 0 (18.10)

Now construct a portfolio, with zero initial outlay, by purchasing one put option
for p, buying one unit of stock for S and borrowing S+p:

Initial outlay Outcome: ST � X Outcome: ST < X

Buy one put option −p 0 X−ST
Buy one unit of stock −S ST ST
Borrow S+p −R
S+p� −R
S+p�

0 ST −R
S+p� X−R
S+p�

At the expiry date, either ST < X, in which case the option is exercised, or
ST � X, in which case the option dies.10

Suppose that ST < X, so that the payoff is X−R
S+p�. From (18.10) the
payoff is positive.

Suppose instead that ST � X, with payoff

ST −R
S+p�= ST −X+X−R
S+p� > 0

because X−R
S+p� > 0 and ST −X � 0.
Thus, if (18.9) holds, a portfolio with zero initial outlay yields a positive return

whatever the price ST at date T . This is an arbitrage portfolio with a positive
payoff in both states. By the arbitrage principle, it cannot be consistent with market
equilibrium. Hence, (18.8) must hold in the absence of arbitrage opportunities in
a frictionless market.

10 If ST = X, nothing would be affected if the option is exercised.
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Appendix 18.3: Put-call parity for European options

This appendix establishes the parity relationship in a more formal way than in
the text, using symbols instead of a numerical example. Recall that the parity
relationship states that

c+ X

R
t(T �
= p+S

The proof follows a familiar pattern, showing that, if the relationship fails, arbi-
trage profits can be made in frictionless markets. Given that the absence of
arbitrage profits is a criterion for market equilibrium, the equality must hold.
Two analogous arguments are needed: one if ‘>’ replaces the equality, a second
for ‘<’.

Suppose, first, that c+X/R > p+ S (where the arguments of R
t(T � are
omitted for convenience). For later reference, rearrange the inequality

X−R
p+S− c� > 0 (18.11)

which holds because R > 0.
Consider the following strategy: buy one unit of stock for S, buy one put for

p, write one call for c and borrow B = p− c+ S, so that the strategy requires
zero initial outlay.11

At expiry, T

Initial outlay ST > X ST � X

Buy one put option −p 0 X−ST
Write one call option +c X−ST 0
Buy one unit of stock −S ST ST
Borrow B −RB −RB

0 X−RB X−RB

The table shows that, if ST > X, the call option is exercised and the put option
is allowed to die. Conversely, if ST � X, the put option is exercised and the call
option is allowed to die. The payoff is the same in either case. From (18.11),
X−RB = X−R
p− c+ S� > 0. Hence, the payoff is positive irrespective of
whether ST is greater than, less than or equal to X.

Thus, if c+X/R > p+S, a portfolio with zero initial outlay yields a positive
return whatever the price ST at date T . This is an arbitrage portfolio with a

11 Note that B could be positive or negative. If B < 0, the strategy involves lending. In a frictionless market,
lending is simply negative borrowing.
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positive payoff in both states. By the arbitrage principle, it cannot be consistent
with market equilibrium.

Suppose now that the put-call parity is violated with c+X/R < p+S. Rear-
ranging the inequality, it follows that

−X−R
c−p−S� > 0 (18.12)

Consider the following strategy: short-sell one unit of stock, write one put,
buy one call and borrow B = c−p−S, so that the strategy requires zero initial
outlay. (Because B could be of either sign, remember that B< 0 is interpreted as
lending.)

At expiry, T

Initial outlay ST > X ST � X

Write one put option +p 0 ST −X
Buy one call option −c ST −X 0
Sell one unit of stock +S −ST −ST
Borrow +B −RB −RB

0 −X−RB −X−RB

Once again, the table shows that the payoff is the same whatever the outcome.
From (18.12), −X−RB = −X−R
c−p− S� > 0 by hypothesis. Hence, the
payoff is positive no matter whether ST is greater than, less than or equal to X.
Consequently, if c+X/R < p+ S, a portfolio with zero initial outlay yields a
positive return whatever the outcome: there is an arbitrage opportunity.

In conclusion, if the put-call parity relationship is violated with either inequality,
arbitrage profits can be made in frictionless markets. Hence, the put-call parity
relationship holds under the stated conditions.

Appendix 18.4: The Modigliani–Miller theorem: a proof

Section 18.6, above, describes how the MM theorem can be illustrated using the
put-call parity relationship, with the market value of the firm, S, equal to the
value of its shares, c (a call option on the firm’s assets at date T ), plus the value
of the risky bonds it has issued, 
X/R�−p; i.e. S = c+ 
X/R�−p. In order to
prove the MM theorem, it must be shown that S is invariant with respect to its
debt obligation, X (the amount promised to bondholders at date T ). That is, it
must be shown that the value of S is the same for any value of X. It suffices to
compare the outcomes for any two levels of X – say, X1 �= X2.
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An arbitrage argument proves that the value of the asset underlying the options
is invariant with respect to the options’ exercise price. Suppose not. In particular,
assume that

c1+
X1

R
−p1 < c2 +

X2

R
−p2 (18.13)

where c1( p1 are the option values corresponding to the exercise price, X1, and
c2( p2 are the option values corresponding to X2.

12 For later reference, note that
(18.13) can be rearranged as X2 −X1−R
c1−p1− c2 +p2� > 0.

Consider the following strategy (portfolio): (i) write one call option for c2, buy
one put option for p2; (ii) buy one call option for c1, write one put option for p1;
(iii) borrow13 B = c1−p1− c2 +p2, such that the initial outlay is zero.

Now, if it can be shown that the portfolio yields a positive payoff for at least one
value of ST and a non-negative payoff for all, there is an arbitrage opportunity,
and the configuration of prices assumed in (18.13) cannot be compatible with
market equilibrium (an absence of arbitrage opportunities).

To demonstrate that there is indeed an arbitrage opportunity, consider separately
the three components of the strategy.

Payoff from (i): −max90( ST −X2;+max90(X2 −ST ;= X2 −ST
Payoff from (ii): max90( ST −X1;−max90(X1 −ST ;= ST −X1

Payoff from (iii): −RB =−R
c1 −p1 − c2 +p2�

Sum the payoffs from each of the three components, (i), (ii) and (iii), to give
the overall payoff:

X2 −ST +ST −X1−R
c1−p1− c2 +p2�

= X2 −X1−R
c1−p1− c2 +p2� > 0 (18.14)

Notice that, before date T , ST is the only unknown quantity in (18.14). As ST
cancels from (18.14), the payoff is certain (i.e. independent of the state of the
world). From (18.13), the payoff is positive, implying that the strategy provides
an arbitrage opportunity. This is incompatible with market equilibrium. Hence,
the inequality cannot hold.

It is straightforward to establish the same conclusion if the ‘<’ in (18.13) is
replaced with ‘>’. For completeness, here are the steps. Suppose that

c1+
X1

R
−p1 > c2 +

X2

R
−p2

12 Thus, for example, c2 is shorthand for the value of the call option with exercise price X2 at date t and expiry
date T : c2 ≡ c
X2( t( T �. More generally, ci ≡ c
Xi( t( T � and pi ≡ p
Xi( t( T �. The arguments of R
t(T �
are omitted to reduce clutter.

13 Lending corresponds to negative borrowing.
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which implies that X1 −X2 −R
c2 −p2 − c1 +p1� > 0. Consider the following
strategy: 
i′� write one call option for c1, buy one put option for p1; 
ii

′� buy one
call option for c2, write one put option for p2; 
iii

′� borrow B= c2−p2−c1+p1,
such that the initial outlay is zero.

The payoffs are as follows.

Payoff from 
i′� V −max90( ST −X1;+max90(X1 −ST ;= X1 −ST
Payoff from 
ii′� V max90( ST −X2;−max90(X2 −ST ;= ST −X2

Payoff from 
iii′� V−RB =−R
c2 −p2 − c1 +p1�

Sum the payoffs from each of the three components, 
i′�, 
ii′� and 
iii′�, to
give the overall payoff:

X1−ST +ST −X2 −R
c2 −p2 − c1+p1�

= X1−X2 −R
c2 −p2 − c1+p1� > 0

Once again, as asserted, the strategy’s payoff is positive irrespective of the value
of ST : there is an arbitrage opportunity. Hence, the inequality cannot hold in
market equilibrium.

The reasoning shows that the value of S in (18.3) does not depend on the value
of X. In words: the market value of the firm is invariant with respect to the size
of its debt, thus proving the MM theorem. Needless to say, the result depends on
the assumption of frictionless markets; disputes about precisely how this is to be
interpreted in the context of the MM theorem provide limitless opportunities for
debate in the study of corporate finance.
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19

Options markets II: price determination

Overview

In chapter 18 bounds were obtained on the range of option prices compatible with
the absence of arbitrage opportunities. No attempt was made, however, to predict
the level of an option price. This is the purpose of the present chapter. While
attention concentrates throughout on the arbitrage principle, extra assumptions are
required about the determinants of the underlying asset price in order to obtain the
option price itself. Armed with these extra assumptions, the objective is to obtain
a formula for an option price, where the arguments of the formula comprise a
set of explanatory variables including, among other things, the option’s exercise
price and its time to expiry.

Very often the aim of the analysis is expressed in terms of determining the
‘fair’ option price, or of option ‘valuation’. This approach typically makes most
sense for an over-the-counter option that is not exchange traded, where the goal
is to calculate the option’s price as if the option were openly traded in the absence
of arbitrage opportunities – and together with the other assumptions needed to
make the calculation. It should be obvious that the ‘fair’ price depends on the
assumptions of a model, but in practice it is often overlooked that the computed
value may well be sensitive to the model on which it is based.

Section 19.1 outlines the assumptions common to most option price theories
and describes the method of analysis. While the theory applies to any underlying
asset on which options can be traded, there is no harm in assuming that the asset
in question is a unit of stock (one ordinary share) issued by a publicly quoted
corporation. Also, where no ambiguity would result, the asset underlying the
option is simply referred to as ‘the asset’.

Section 19.2 presents the simplest theory of option prices and shows how
an arbitrage argument can be used to predict the price of a call option, albeit
under an unrealistic ‘two-state’ assumption. Section 19.3 introduces the famous

467
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Black–Scholes model, named after Fischer Black and Myron Scholes, whose
famous paper in the Journal of Political Economy (1973) contains the original
statement of the model. Although known as the Black–Scholes model, the theory
was, in fact, developed jointly by Black, Scholes and Robert Merton in the late
1960s.1

The Merton–Black–Scholes analysis does not apply just to options, narrowly
defined, but extends also to the broader class of contingent claims. An introduction
to this analysis is outlined in section 19.4.

19.1 The fundamentals of option price models

The goal of an option price model is to construct a formula that expresses an
option’s price as a function of a small number of explanatory variables. The
standard explanatory variables are (i) the asset’s price, S; (ii) the option’s exercise
price, X; (iii) the option’s time to expiry, R ≡ T−t; (iv) the interest factor, R
t(T �;
and (v) a measure of the volatility in the rate of return on the asset.

For the simple model studied in section 19.2, the volatility could be measured
as the difference between the asset price in the event that it rises minus the price
in the event that it falls, divided by today’s observed price. In the Black–Scholes
model, volatility is measured by the standard deviation (or its square, the variance)
of the rate of return on the asset. The index of volatility is typically denoted by � .

The option price theories studied in this chapter apply the arbitrage principle
to derive a function, f
·�, such that

c = f
S(X( R(R(�� (19.1)

where c is the premium for a European call option. Each of S, R, R and, perhaps,
� are functions of time, t, though this is not made explicit in (19.1). The formula
for a European put option would have the same arguments and is obtained using
the put-call parity relationship, or, from scratch, in the same way as for the call
option.

It should be noted that equation (19.1) links the derivative (i.e. option) price,
c, with the asset price, S. The option price is conditional on the asset price.
The formula does not purport to represent a general theory of option prices.
Here, ‘general’ refers to a theory that determines both c and S simultaneously
as functions of fundamental influences, such as investor preferences and the
stocks of assets. The principles upon which the pricing formula rests, as for
all arbitrage reasoning, serve only to link security prices. Partial though it is,

1 Merton’s (1973) paper stands alongside that of Black and Scholes as the other seminal contribution to the
theory of options. See Bernstein (1992) for an account of the pioneering research from which these papers
emerged. Merton and Scholes were joint winners of the 1997 Nobel Memorial Prize for economics in
recognition of their contribution (Black had died in 1995).
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the model’s strength is that it makes only a mild assumption about investors’
preferences (that more wealth is preferred to less), and, consequently, it is widely
applicable.

Every option held by an investor must have been written by another investor.
In other words, the net total of options in existence must always be zero. It is
reasonable, therefore, to postulate that the asset price, S, is independent of the
option – the, so-called, ‘bucket shop’ assumption. Consequently it makes sense to
interpret causation as going from S to c, rather than that the two prices are jointly
determined.2

It is important to be aware that every option price model relies on assumptions
about the distribution of S beyond the condition (essentially, frictionless markets)
needed to apply the arbitrage principle. The nature of these additional assumptions
is explored in sections 19.2 and 19.3. Predicted option prices are not solely an
implication of the absence of arbitrage opportunities but depend also on the form
taken by the distribution of S. The significance of this fact will emerge as the
analysis unfolds.

Various methods of deriving option price formul appear in the literature.
Although the methods may appear somewhat different, on closer inspection they
are equivalent. Among the frequently encountered approaches are these.

1. Construct a portfolio of the option and the asset in such a way that the value of
the portfolio is independent of S. (This is the so-called ‘hedged position’ in Black
and Scholes, 1973.) Given that S is the only source of uncertainty, the value of
the portfolio is certain. It is risk-free. In the absence of arbitrage opportunities, the
portfolio must yield the risk-free rate on the capital invested in it.

2. Construct a portfolio of risk-free borrowing or lending and the asset, such that the
payoff on the portfolio in each state exactly equals the option’s payoff in the same
state – the payoffs on the portfolio replicate those of the option. In the absence of
arbitrage opportunities, the value of the option must equal the value of the portfolio.

3. Direct application of the arbitrage principle. Construct a portfolio comprising
(a) options, (b) the asset and (c) risk-free borrowing or lending, such that the portfolio
(i) requires zero initial capital outlay and (ii) has a non-negative payoff in every
state. In the absence of arbitrage opportunities, the portfolio must yield a zero payoff
in every state. The conditions that must be satisfied are sufficient to determine the
option price.

Each of the three approaches results in the same option price, given the process
assumed to generate the asset price, S, and for given values of the explanatory
variables in the option formula, equation (19.1).

2 This would not be true for warrants, the exercise of which increases the total number of the issuing firm’s
shares in existence. See Merton (1973, footnote 4) for the origin of the term ‘bucket shop’ in this context.
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Fig. 19.1. Call and put option prices as a function of the asset price, S

The solid line in each panel depicts the option premium as a function
of the underlying asset price (for given values of the other determinants
of the option premium). Markets are assumed to be in equilibrium if,
and only if, arbitrage opportunities are absent. Hence, the heavy lines
appear in the regions (delimited with dashed lines) for which arbitrage
profits are zero.

Figure 19.1 depicts European call and put option prices as functions of S.
The diagrams indicate that c and p obey the bounds established in chapter 18,
namely S � c � max90( S−X/R; and X/R� p� max90(X/R−S;. The bounds
serve to limit the admissible range of option prices in the absence of arbitrage
opportunities. The additional assumptions, mentioned above, then determine the
precise value of each option price (i.e. where it lies within the bounds).

The following assumptions are required in almost every model of option prices.

1. Frictionless markets: zero transaction costs and no institutional restrictions on trading.
More precisely,

(a) transaction costs are zero for trading in the option and in the asset;
(b) borrowing or lending in unlimited amounts is possible at the same, given and

constant (risk-free) interest rate;
(c) it is possible to short-sell the asset without any penalties or restrictions; and
(d) the asset is perfectly divisible, such that any fraction of a unit can be purchased

or sold.

2. Options contracts:

(a) the asset pays zero dividends during the life of the option, and the option is
protected against stock splits;

(b) the option is European: exercise is permissible only at the expiry date.

Although these assumptions can be relaxed to some extent (e.g. the interest rate
does not have to be constant over time), it should be no surprise that frictionless
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markets are needed if the arbitrage principle is to make any definite predictions
about prices.

19.2 A two-state option-pricing model

The model studied in this section is simple, because (a) there is exactly one unit
time interval, T − t = 1, until the option expires, and (b) there are exactly two
states of the world: at date T the asset price moves to one of two values, uS
or dS, where u and d are positive numbers and S is the asset price observed at
the outset (date t). It is not known which of the two states will occur. It is not
necessary to assign probabilities, subjective or objective, to the states.

This approach can be extended to any number of unit intervals – hours, days,
weeks, or whatever – between the present and the expiry date of the option.
During each unit interval the asset price can move to one of two possible values.
The result is the binomial model of option prices.3 Although it may seem absurd
to assume that the asset price can change to only one of two possible values
each unit interval, the binomial model can be used as a starting point for other
models, such as the Black–Scholes model. Also, the binomial model can be used
as a practical device to obtain approximate option prices corresponding to more
complicated contracts for which no explicit formula is available.

The reasoning outlined below is as follows: a portfolio consisting of call
options, the asset and borrowing (or lending) is constructed such that (a) it
requires zero initial capital, and (b) it is risk-free (in the sense of resulting in
a non-negative payoff in every state). Given that market equilibrium requires
the absence of arbitrage opportunities, the portfolio must yield a zero payoff
in every state. Together, these conditions imply a unique equilibrium option
price (given S, X, and r).4 Any other option price would provide an arbitrage
opportunity.

To grasp the reasoning, consider a numerical example in which the values of
S(X(u(d and R
t(T � are specified. The value of c is then derived in such a
way that a portfolio with zero initial outlay yields a zero payoff regardless of
whether S changes to uS (state 1) or dS (state 2). Suppose that S = 80(X = 88(
u= 1�6(d = 0�6 and r = 20% per time period. Assume that interest is paid at T

3 See Cox, Ross and Rubinstein (1979), the approach of whom is followed closely here.
4 The exercise price, X, is chosen such that the option is worth exercising – it is ‘in the money’ – in at least

one state (otherwise the option would be worthless at the outset). That is, for a call option, either uS > X
or dS > X, or both. For a put option, either uS < X or dS < X, or both. If the same parameter values are to
be used for both calls and puts, X would be chosen such that uS > X and dS < X. Also, R< u and R> d:
otherwise, arbitrage profits can be made by trading in the asset and borrowing or lending alone, without
involving options at all.
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with no compounding, and T − t = 1. Hence, R
t(T �= 
1+ r�= 1�20. Thus, the
asset price starts at 80 and rises to 128 (state 1) or falls to 48 (state 2).5

The portfolio decision involves choosing the number of shares, N , to buy

N > 0� or to sell 
N < 0�; the number of option contracts, M , to buy 
M > 0� or
to write 
M < 0�; and the amount of borrowing, B > 0, or lending, B < 0.6

The goal is to choose N , M and B such that the initial outlay is zero. If
the payoff is zero in each state (an absence of arbitrage opportunities), then the
option premium, c, will be determined uniquely. Consider the table:

Initial State 1 State 2
Outlay uS = 128 dS = 48

Option contracts −Mc 
128−88�M 0
Shares −80N 128N 48N
Borrowing +B −1�2B −1�2B

Total B−80N −Mc 40M+128N −1�2B 48N −1�2B

From this information it is possible to determine the relationships that must
exist among M , N and B to yield a zero payoff in each state. These relationships,
together with the zero initial outlay, determine the equilibrium value of c.
Step 1: In state 2, B/N = 40.
Step 2: Using B/N = 40 from step 1, it follows that 40M+
128/40�B−1�2B=

0 in state 1. Hence, 40M + 3�2B− 1�2B = 0, and B/M = −20. Also note that
N/M =−1/2.
Step 3: Write the initial outlay as

M
−20− 
−1/2�×80− c� = 0

M
−20+40− c� = 0

20− c = 0

Note that M cancels out, reflecting the arbitrary scaling of any arbitrage portfolio,
and the option’s price is c = 20.

5 The units of measurement are dollars, pounds, euros, or whatever – i.e. the relevant unit of account. From
now on the arguments to the interest factor are omitted: R≡ R
t(T �, when T − t = 1.

6 Each option contract is assumed to be for the purchase of one share. The amount of borrowing is measured
in units of account.
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To make the example more concrete, suppose that an investor writes two
options, buys one share and borrows 40. The total initial outlay is 2c−80+40 =
2c−40, and the payoff in each state is zero:

Initial State 1 State 2
Outlay uS = 128 dS = 48

Option contracts +2c −2× 
128−88� 0
Shares −80 +128 +48
Borrowing +40 −1�2×40 −1�2×40

Net total 2c−40 0 0

In state 1 the asset is worth 128, but the options are exercised against the
investor, resulting in a loss of 80, and the loan is repaid at a cost of 48, resulting
in a net payoff of zero = 128−80−48. In state 2 the share is worth 48, the option
dies unexercised and the loan is repaid with a payment of 48, again resulting in
a net payoff of zero.

Given that the payoff for the portfolio is zero in both states, in the absence of
arbitrage opportunities it must have zero initial outlay. Hence, 2c− 40 = 0 and
the equilibrium option price must be c = 20.

It should be emphasized that, in the absence of arbitrage opportunities, any
portfolio (N , M and B) that yields a zero payoff in every state and zero initial
outlay results in an option price c = 20. In common with all arbitrage portfolios,
there is an element of arbitrariness about the composition of the portfolio: buying
two options, selling one share and lending forty serves to obtain the result equally
well. Similarly, writing ten options, buying five shares and borrowing 200 also
works. What matters is to find a portfolio such that the payoff in every state
is zero. In the absence of arbitrage opportunities, the initial outlay for such a
portfolio equals zero, and hence the equilibrium option price can be determined.

Interpretation in terms of a replicating portfolio

Consider a portfolio of the asset and debt that replicates the payoff from the option –
i.e. the payoff from the portfolio equals the payoff from the option in each state.
In the absence of arbitrage opportunities, it follows that the initial value of such a
portfolio must exactly equal the market value of the option that it replicates.

This is exactly what happens in the argument above. The payoff from the
portfolio in each state equals the payoff from the option with the opposite sign,
positive or negative; together they add to zero. The option price is determined
such that the initial outlay is zero; the initial value of the portfolio (of shares and
debt) equals the value of the option, again with the opposite sign.
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19.2.1 An option price formula

One way of obtaining a formula for the call option price in the simple model
described above is to invoke the risk-neutral valuation relationship (see chapter 7).
The RNVR states that, in the absence of arbitrage opportunities, there exists a set
of artificial ‘martingale’ probabilities such that the price of each option can be
written as the NPV of the option’s expected payoff (where the discount factor is
defined using the risk-free rate of return and the expectation is calculated using
the martingale probabilities).

To understand how this works, begin by writing the payoff (expiry value) of
the option in terms of uS and dS:

cu = max90( uS−X; in state 1 cd = max90(dS−X; in state 2

Also note that R = 
1+ r� is the interest factor, so that expected payoffs are
discounted by dividing by R.

The following table lists the two states, the martingale probabilities together
with the payoffs on the option and the asset:

Martingale Option Asset
probability payoff payoff

State 1 1 cu uS
State 2 1−1 cd dS

The RNVR implies that the option price is the discounted value of the expected
payoff of the option:

c = 1cu+ 
1−1�cd
R

(19.2)

Notice that the only unknown argument in (19.2) is 1.
The value of 1 is determined by applying the RNVR to the asset price:

S = 1uS+ 
1−1�dS
R

(19.3)

In (19.3), S can be cancelled from both sides. Solving for 1 and 1−1 gives

1 ≡ R−d
u−d

and 1−1 ≡ u−R
u−d

With 1 known, the option price, c, is determined from equation (19.2).
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An inspection of equation (19.2) reveals that the pricing formula for options
requires no information about investors’ preferences (i.e. their attitudes to risk).
Investors’ beliefs are expressed via the values uS and dS to which the asset
price moves in states 1 and 2, respectively. No assumption is needed about
whether investors assign probabilities, subjective or otherwise, to the states. The
irrelevance of investors’ preferences should be no surprise given that the reasoning
relies on the arbitrage principle. The assumption that the asset price changes to
either uS or dS serves as a reminder that predicted option prices are not solely
a consequence of the absence of arbitrage opportunities (i.e. the simple two-state
assumption expresses the ‘distribution of S’ mentioned earlier).

The RNVR is, of course, not the only way to obtain (19.2). An argument
from first principles can be made by rewriting the payoffs in the example using
symbols rather than numbers:

Initial State 1 State 2
outlay Asset price = uS Asset price = dS

Option contracts −Mc Mcu Mcd
Shares −NS NuS NdS
Borrowing B −RB −RB
Net total B−NS−Mc Mcu+NuS−RB Mcd+NdS−RB

The goal is to find an expression for c in terms of S(X(u(d and R, but
excluding the chosen B(M and N . The steps are exactly the same as for the
numerical example: find the set of values of the portfolio 
B(M(N� such that
the payoff in each state is zero. Substitute these values into the cost of the
initial portfolio B−NS−Mc. Set this equal to zero and, hence, obtain the
equilibrium value of c. Elementary but tedious algebraic manipulations result in
equation (19.2).

19.2.2 Price of a European put option

Similar reasoning to that outlined above shows that the price of a European put
option in the two-state framework is given by

p= 1pu+ 
1−1�pd
R

(19.4)

where

pu=max90(X−uS; in state 1 and pd=max90(X−dS; in state 2 (19.5)
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There are several ways to obtain (19.4). One way is to apply the RNVR. Another
is to reason from first principles, just as for the call option. Yet another is to
apply the put-call parity relationship (see chapter 18, page 454).

19.2.3 Multiple time periods to expiry of the option: the binomial model

The analysis so far can be extended to cover circumstances where there are any
number of unit time intervals between the present, t, and the option expiry date, T .
Suppose that there are exactly two periods to expiry, with t = 0 and T = 2. The
asset price changes, first, to either uS or dS and then, in the second period, either
(a) from uS to u2S or udS, or (b) from dS to udS or d2S. See figure 19.2.

To understand how the call option premium can be derived, begin at date 2 and
consider the ways in which each outcome can arise from date 1. Clearly, u2S can
occur only from uS at date 1; udS can occur from either uS or dS; and d2S can
occur only from dS. Now work back from date 2 to date 1, using the argument
for an option with just one period to expiry. This provides a value (generally not
zero) needed at date 1 in each of the two possible events such that the payoffs
at date 2 would be obtained. Treat the date 1 payoffs as if they are the terminal
values of the option, and then use the same principles to obtain the option value
today, date 0.

More explicitly, write the three possible values of the option at date 2 as:

state 1: cuu = max90( u2S−X;, the value of the option when u2S occurs;
state 2: cud = max90( udS−X;, the value of the option when udS occurs; and
state 3: cdd = max90(d2S−X;, the value of the option when d2S occurs.

From equation (19.2), using the same definition of 1, the option value at date 1
will have one of two possible values:

at uS V cu =
1cuu+ 
1−1�cud

R
(19.6)

at dS V cd = 1cud+ 
1−1�cdd
R

(19.7)

At date 0, today, using (19.2) again and substituting from (19.6) and (19.7),
the option price is

c = 1cu+ 
1−1�cd
R

= 12cuu+21
1−1�cud+ 
1−1�2cdd
R2

(19.8)
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Fig. 19.2. The pattern of underlying asset prices: the two-period case

At date 1 the underlying asset price moves up to uS or down to dS.
Starting from uS at date 1, at date 2 the asset price moves up to
u× uS ≡ u2S or down to d× uS ≡ udS. Starting from dS at date
1, at date 2 the asset price moves up to u× dS ≡ udS or down to
d×dS ≡ d2S.

Formula (19.8) has exactly the same interpretation as in the one-period case.
The martingale probabilities corresponding to the three states (at date 2) are 12,
21
1−1� and 
1−1�2, respectively; the discount factor between dates 0 and 2
is 1/R2; and the RNVR implies that the option price today is the NPV of the
expected payoff using the martingale probabilities.

Not surprisingly, the formula becomes more complicated as the number of
periods is increased. But the principle remains the same. The result is the so-
called binomial option pricing model. Cumbersome though it might appear, the
method outlined above is commonly used in the construction of option prices,
especially for complicated or non-standard option contracts that are not widely
traded (or not traded at all) in organized markets. Computer algorithms for
calculating these prices are often based on this approach.

The binomial model is also useful as a way of gaining insights into the Black–
Scholes model, discussed below. In the analysis so far, no specific calendar time
is associated with the unit time interval. That is, it is possible to interpret the
entire period from 0 to T as being one interval of length T , or two intervals each
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of length T/2, or three intervals each of length T/3, and so on. More generally,
suppose that there are n intervals each of length T/n. If the number of intervals
is allowed to increase indefinitely, the values to which the asset price can move
must be adjusted accordingly. This adjustment can be made in a variety of ways,
with each leading potentially to a different limiting result. At this point the
mathematical technicalities become delicate.

One limiting process corresponds to that in which the asset price does not
change at all in most time intervals but experiences discrete changes (up or down)
at infrequent instants of time. In this case, the limiting result is a so-called
‘jump process’. Such an approach – assuming a Poisson distribution to model the
jumps – has been the subject of research for circumstances in which asset prices
evolve smoothly, except for occasional abrupt changes (the jumps).

Another limiting process leads to the crucial assumption on which the Black–
Scholes model rests. Here, in each unit time interval the asset price is assumed
either to increase by a constant amount or to decrease by a constant amount.
(The values of the increase and the decrease are not necessarily equal.) As n, the
number of unit time intervals, becomes large, the process can be understood to
assert that the asset price changes in a continuous way without discrete jumps.
It is as if a graph of S as a function of time can be drawn without taking
the pen off the paper (whereas a jump process would require lifting the pen
at the instant a discrete jump occurs). In plain words, this is, essentially, the
assumption made about the evolution of the asset price in the Black–Scholes
model.

Perhaps a more realistic assumption would be that S is continuous for most of
the time, punctuated at isolated dates by discrete changes – i.e. the combination
of a continuous process and a jump process, as mentioned above. Figure 19.3
shows example sample paths (i.e. hypothetical outcomes over a given time period)
corresponding to the two assumptions. Panel (a) assumes that the asset price
changes continuously (the limit of a sequence of ‘small’ price changes). In panel
(b) the asset price jumps at dates A, B and C.7

While figure 19.3 results from two quite different assumptions about the random
processes generating asset prices, in empirical applications the two are not so
easy to distinguish. For discrete jumps, such as at A, B and C, might be approxi-
mated as steep – but nonetheless smooth – changes in a continuous sample path.
Equally, some of the steeper changes in the continuous sample path could be more
appropriately interpreted as discrete jumps. While the evidence may favour one
assumption over the other, inevitably both are idealizations. It is never possible

7 Strictly, the continuous lines shown in figure 19.3 are constructed as approximations to geometric Brownian
motion – an assumption central to the Black–Scholes model (see section 19.3).
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Fig. 19.3. Sample paths for asset prices in continuous time

Panel (a) shows the sample path (a hypothetical realization of the asset
price over a given time period) for an asset price that changes smoothly,
as an approximation to geometric Brownian motion. In panel (b) the
asset price changes smoothly except at dates A, B and C, when it makes
a discrete jump (up or down).
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to know for sure which the true (whatever ‘true’ is supposed to mean in this
context) random process is that generates the realized asset prices. Ultimately,
the issue boils down to one of modelling tactics, namely to adopt the assumption
that does least injustice to the data – always a formidable challenge.

19.3 The Black–Scholes model

19.3.1 Assumptions of the Black–Scholes model

Formally, the Black–Scholes model makes two assumptions in addition to those
listed in section 19.1, above.

1. Trading takes place continuously throughout time. Obviously, this assumption cannot
be taken literally, but it follows by allowing the number of unit time intervals
(described at the end of the previous section) to become indefinitely large. The
relevant issue is whether the assumption provides an acceptable approximation to
trading in options markets.8

2. The asset price, S, evolves according to a geometric (or logarithmic) Brownian motion
process with continuous sample paths. The formal statement of this assumption
involves specialist mathematics and only a sketch is given here. The idea is, roughly,
that the change in the logarithm of S over any short interval of time is identically and
independently distributed with a Normal distribution, characterized by its expectation,

, and variance, �2. In symbols, lnSt+� − lnSt is independently and Normally
distributed for every � > 0, no matter how small.

Recall from elementary probability theory that the Normal distribution has the
familiar, symmetric ‘bell-shaped’ density function completely characterized by two
parameters, its expectation, 
, and its variance, �2. Assuming that the asset does
not pay a dividend over the time interval in question, its rate of return is equal to its
capital gain or loss.

More formally, the asset’s rate of return is equal to the proportional rate of change
in S, written as lnSt+�− lnSt for arbitrarily small �.9 The expectation of this rate of
return is denoted by 
. Its standard deviation, � , is a measure of the variability of
the rate of return on the asset.

It is well known in probability theory that the Normal distribution can be deduced
as the limit of the binomial distribution if the limit is taken in the way described,
rather simplistically, in the previous section. What makes the mathematics difficult
is that the time interval over which the price changes take place is arbitrarily short
(infinitesimal).

8 It can be argued that the assumption of continuous trading is really an implication of an earlier assumption,
namely that of frictionless markets. From this perspective, transaction costs are what cause trading to take
place only at discrete instants of time.

9 For time intervals of finite length (e.g. a day), the rate of return is usually measured by
St+1 −St

St
, where a

day is of length ‘1’. This measure is closely approximated by lnSt+1− lnSt if the rate of return is sufficiently
small, as it will be under the assumption of geometric Brownian motion if the time interval is short enough.
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A Normally distributed random variable can take any value between plus infinity
and minus infinity. But, as a consequence of limited liability, most asset prices cannot
become negative. The assumption that the change in the logarithm of the asset price
is Normally distributed avoids this incompatibility.10

Is the assumption of geometric Brownian motion a good one? Does the assumption
capture asset price movements as an acceptable approximation? This is an empirical
issue: in many circumstances the assumption may turn out to be reasonably accurate.
But there is nothing to ensure that asset prices must behave according to geometric
Brownian motion. The assumption will have to be abandoned, or at least modified,
if evidence appears that an alternative assumption better approximates the observed
patterns of prices.

19.3.2 The Black–Scholes formula

Given the two extra assumptions together with those in section 19.1, Merton,
Black and Scholes derived a formula for the price of a European call option on
a company’s stock with current price S, standard deviation � , exercise price X,
time to expiry R = T − t and interest rate r. It is given by

c = SW
x1�− e−rRXW
x2� (19.9)

where

x1 =
ln
S/X�+ 
r+ 1

2�
2�R

�
√
R

x2 = ln
S/X�+ 
r− 1
2�

2�R

�
√
R

= x1−�
√
R

and W
·� is the cumulative distribution function of the standard Normal distribu-
tion.11

The Black–Scholes formula can be derived as an implication of the arbitrage
principle. Black and Scholes developed the argument along the following lines.

Consider an investor with continuous access in frictionless markets to
(i) the asset (a company’s ordinary shares); (ii) a call option on the asset; and

10 Remember that the logarithm is defined only for positive values of its argument, and takes on values from
minus infinity to plus infinity.

11 The function W
z� expresses the probability that a standard Normal random variable, Z, has a value smaller
than z – i.e. W
z�≡ Prob
Z < z�. Formally,

W
z�≡
∫ z

−�
e−Q2/2√

21
dQ

Two important properties of W
z� are (i) that it is increasing in z, and (ii) that it takes values between zero
(as z→−�) and one (as z→+�). The curve of W
z� as a function of z is S-shaped, from zero at −�,
through 1

2 at z= 0 (a point of inflection) towards one as z tends to +�.
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(iii) risk-free borrowing or lending. Using any given amount of initial capital, the
investor forms a portfolio of the asset and the option. The portfolio weights are
chosen, and continuously adjusted, to eliminate any risk associated with changes
in the asset price from one instant of time to the next; the impact of changes in S on
the market value of the portfolio is expunged. Such a strategy is feasible given the
assumptions of the model, in particular that the asset price evolves according to a
geometric Brownian motion and that continuous portfolio rebalancing (i.e. contin-
uous trading) is possible. In the absence of arbitrage opportunities, the initial
capital invested in risk-free portfolio must yield exactly the risk-free interest rate.

A crucial insight of Black and Scholes was to recognize that the equation they
derived is the partial differential equation known as the heat-transfer equation in
physics, the solution to which is given by (19.9).12

Another way of understanding the Black–Scholes reasoning is to notice that it
is possible to construct a portfolio of the asset and risk-free borrowing or lending
that replicates the pattern of returns of an option on the asset. The portfolio
and the option must then, in the absence of arbitrage opportunities, be of equal
market value. Once again, given the assumptions, the same formula is obtained.
Merton concludes (1990, p. 293): ‘The key to the derivation is that any one of the
securities’ returns over time can be perfectly replicated by continuous portfolio
combinations of the other two.’

Notice that c does not depend on 
; the expected rate of return, 
, on the
asset does not appear in the Black–Scholes formula. Hence, the predictions of the
model will hold even if investors disagree about the expected return on the asset.

Merton (1973) shows that it is possible to obtain the Black–Scholes formula
under less restrictive assumptions than those outlined above. For instance, volatil-
ity can be allowed to vary across time, albeit in a known way, and interest rates
need not be constant. However, it is vital for the validity of the model that
investors are unanimous in their beliefs that the asset price evolves according
to a geometric Brownian motion, and also that they agree on the value of the
volatility parameter. Samuelson is forthright in issuing the necessary caution
(1972, footnote 6).

The market need not believe in the Black–Scholes formula in the way that it must believe
in formulae that prevent [arbitrage opportunities] from being possible. Thus, how can a
rational arbitrager ‘know with certainty’ what the � is that he needs to do the arbitrage?
9� � �; Query: what pattern of pricing, if it were known to hold with certainty (if, if!),
would prevent the possibility of arbitrage? What pricing pattern will yield no profits to
locked-in arbitrage strategy that must be engaged in until expiration time? Answer: the
Black–Scholes pattern of pricing and no other.

12 This differential equation, not reproduced here, can be applied to obtain valuation formul for many other
financial instruments that differ from one another with respect to their so-called ‘boundary conditions’ – the
conditions that must be satisfied when the instrument is created and when it expires.
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If the Black–Scholes assumptions hold then the arbitrage principle implies their
formula. But if the assumptions break down, say because investors disagree
about � , the validity of the formula is in doubt. Even then, the formula may
provide an acceptable approximation, especially in the absence of a better
alternative.

19.3.3 Measuring volatility

Apart from the parameter � , the arguments of the Black–Scholes formula can
be observed or calculated with a high degree of accuracy. Formally, � is the
standard deviation of the asset’s rate of return.

As already noted, if the asset pays no dividends over the time interval in
question, its rate of return can be written as 
St+1 −St�/St, the proportional rate
of change in price (i.e. its capital gain or loss). Define gt+1 ≡ 
St+1−St�/St. The
standard deviation gt+1 can now be used to estimate � .

Suppose that a sample of daily asset prices is available, S0( S1( S2( � � � ( SN .13

The rate of return for each date is then given by g1( g2( g3( � � � ( gN , where g1 =
S1−S0

S0
, g2 =

S2 −S1

S1
, g3 =

S3−S2

S2
, and so on. Now �2 can be estimated by the

sample variance:

�̂2 = 
g1−g�2 + 
g2 −g�2 + 
g3−g�2 +· · ·+ 
gN −g�2
N −1

where g denotes the sample average, g =∑N
1 gt/N . The standard deviation, �̂ , is

then obtained as the positive square root of the variance. For convenience, from
now on the circumflex, ,̂ over � is omitted, though it should not be forgotten
that its value is never known with certainty.

Other methods of estimating volatility include assuming that g = 0 (the mean
is likely to be tiny for daily data) and assigning different weights to the gt
observations. In particular, it is common to assign a greater weight to the most
recent observations, the weights declining for observations in the more distant
past; the argument for this is, presumably, that recent observations contain ‘more
information’, though the justification for this practice typically remains vague.

More important is the possibility that volatility is not constant; that is, � may
not be a fixed parameter but may change over time. Many sophisticated statistical
studies have explored time-varying volatility.14 At present, however, there is no
generally accepted economic theory that predicts or can account for non-constant

13 The unit time interval does not have to be a day, though this is commonly assumed.
14 See Engle (2004) for an overview of the literature. Robert Engle shared the 2003 Nobel Memorial Prize in

economics, partly for his pioneering econometric studies of time-varying volatility.
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volatility. Hence, it is assumed here that � is constant for the lack of any
well-supported alternative.

Volatility, �2 or � , has a time dimension: it is usually expressed at an
annual rate. On the assumption that the daily gt are independent of one another
(an implication of the Black–Scholes geometric Brownian motion assumption),
the variance form days is equal tom times the variance for one day. Suppose there
are 250 trading days per year. Then �2

annual = 250�2
daily and �annual =

√
250�daily.

For example, if the daily variance is 1.8 per cent, the annual variance equals
450% = 250×1�8%; the daily standard deviation is approximately 1.34 per cent,
giving an annual standard deviation of 21�19% ≈√

250×1�34%.
Armed with an estimate of � , it is possible to predict the arbitrage-free value of

c given the other arguments of the Black–Scholes formula, namely the underlying
asset’s price, the option’s exercise price, its time to expiry and the risk-free
interest rate. If the option is actively traded, the observed price can be compared
with that calculated from the formula. Alternatively, as mentioned earlier, the
formula can be used to calculate the so-called ‘fair’ price for an over-the-counter,
bespoke option.

Comparisons between option prices predicted by the formula and observed
market prices can be used to test the Black–Scholes model. What, in principle,
can be inferred from discrepancies between the observations and predictions?
One, or more, of the following might be responsible.

1. The Black–Scholes formula may not be the correct rule to predict arbitrage-free prices.
As already noted, the assumptions could be at fault. For example, transactions costs
might create market frictions. Or perhaps the asset price does not evolve according
to a geometric Brownian motion. Or investors might disagree about the value of � .

2. One, or more, of the arguments of the formula may have been mismeasured. It is
possible, for instance, that the asset price, S, may be observed at a different instant
of time from that for the option price. Or errors may be made in approximating the
risk-free interest rate.

The most likely culprit is, however, an inaccurate estimate of volatility, � . Black
and Scholes themselves reported evidence that the formula predicts too high a price
for options with high estimated volatilities relative to those with low estimated volatil-
ities, for which the formula predicts too low a price. Later research tends to support
their finding.

3. The market is in disequilibrium: arbitrage profits could be made by trading in the
option and its underlying asset (together with borrowing or lending at the risk-free
interest rate). In principle, it should be routine to determine whether arbitrage profits
could be made. If even small market frictions are present, however, it may appear
that potential arbitrage profits are available when, in fact, they are not. The evidence,
cautiously interpreted, suggests that, for actively traded options, the magnitude of
such profits is negligible.
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19.3.4 Implicit volatility

Despite what may appear to be its dubious assumptions, the Black–Scholes model
is widely accepted as the benchmark option pricing model, almost as an article
of faith. Instead of being used to predict the option price, the formula is often
invoked to calculate the implicit, or implied, volatility of the asset’s rate of return.
To compute the implicit volatility, the observed option price is substituted into
the Black–Scholes formula, (19.9), together with all the right-hand-side variables
except � . The implicit volatility is then estimated as the value of � that satisfies
the formula.

Measures of implicit volatility can prove useful in practical applications, when
standard deviation estimates are needed to assess the risk associated with hold-
ing an asset. An advantage of implicit volatility is that it is ‘forward-looking’
(i.e. based on investors’ perceptions about the future), rather than based on the
past realizations of asset prices used to estimate standard deviations.

Separate implicit volatility measures can be computed from each of several
different option contracts with the same underlying asset. Given that volatility
is a characteristic of the asset price distribution, the calculated volatilities should
equal one another if the Black–Scholes formula holds. But there is evidence
of systematic departures from equality. This is another way of expressing the
finding, mentioned above, that there are biases in applying the Black–Scholes
formula. The observed patterns of implicit volatilities have attracted financial
jargon: ‘smiles’, ‘smirks’ and ‘skews’. These terms are applied to graphs of
implicit volatilities for options on the same asset but that differ with respect to
exercise price, time to expiry, divergence between exercise price and asset price,
or in some other aspect of the option contract. For example, there is evidence
that implicit volatility is lower the longer the time to expiry.

Also, implicit volatility is commonly found to be lower for options with an
exercise price close to the asset price and higher for large differences. The causes
of these patterns is not well understood, though it is generally accepted that the
assumption of Brownian motion requires modification. A topic of active research
focuses on adapting Brownian motion to be compatible with volatility that varies
over time. The challenge is to build robust models that identify the determinants
of time-varying volatility.

19.3.5 Dividend payments and other underlying assets

If dividends are paid on the underlying asset before the option expires, the
Black–Scholes formula, (19.9), no longer holds. Although a general formula for
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dividend-paying assets is not available, one special case is of particular inter-
est. This is when the dividend on the asset is paid at a continuous and known
rate, q, so that the dividend equals qS at each instant of time. If the other
assumptions of the Black–Scholes model remain in place, it can be shown that
the Black–Scholes formula also holds, except that S is replaced everywhere in the
formula with Se−qR .

While the special assumption of a continuous divided stream is, at best, a
convenient fiction for ordinary shares, Black (1976) shows that the resulting
formula is applicable to a range of other underlying assets, including futures
contracts and stock indexes. (Options on futures contracts and on stock indexes
are studied in chapter 20.)

When dividends are payable, an American call option will command a higher
premium than its European counterpart, because early exercise may be profitable.
In this circumstance no general formula for the call option price is available. An
approximation is sometimes made by using the higher of two European option
prices: one is the price of a European option with the same specification as the
American option; the other is the price of a European option that expires just
before the last ex-dividend date of the stock before the expiry of the American
option.

19.4 Contingent claims analysis

An option contract is a special case, albeit a central one, of a derivative security –
a security with payoffs that depend on the payoffs on another security, the
underlying asset. A derivative security thus inherits its riskiness from the asset,
and is more or less risky than the asset according to the function that maps the
asset’s payoffs to those of the derivative. If, as the previous sections have sought
to explain, an option price can be linked to the market price of the asset, then it
should be possible to extend the reasoning to a broader class of derivatives. This
is the objective of contingent claims analysis.

A contingent claim can be interpreted as any contract the payoffs on which
bear a precisely defined, but perhaps complicated, relationship with the payoffs
on one or more other securities. Contingent claims analysis then seeks to
assign a value to such a security by applying the arbitrage principle. If markets
are frictionless, the value obtained is the one that will be realized in market
equilibrium. This is the logic used to determine option prices. The result here is
the same, namely a function that links the contingent claim value with the price
of the underlying asset. Of course, the function itself will depend, among other
things, on the relationship between the payoffs on the asset and the contingent
claim. However, the reasoning is the same as for options.
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A two-state example reveals the close similarities in the analysis with that for
determining option prices. Suppose that a company’s shares will be worth either
120 or 100 units of account each at date T (assumed to be one time period from
today). Assume that the price of each share today is 80 and the risk-free interest
factor, R, for one period from today is 1�20 (equivalent to an interest rate of 20
per cent per period with no compounding). Suppose that a contingent claim is
available with a payoff (also one period from today) equal to either (a) 110 or
(b) one of the company’s shares, at the discretion of the claim’s owner. In this
example, the contingent claim could be interpreted as a convertible zero-coupon
bond: the company promises to redeem the bond for 110 after one period or to
provide the bondholder with a share in the company. If the share price is 120
(state 1) the bondholder will convert, while if the share price is 100 (state 2) the
bond is redeemed for 110.

In this example, contingent claims analysis seeks to answer the question: what
is today’s price for the convertible bond? It is possible to determine the market
price of the bond as follows. Construct a portfolio of the bond and risk-free
borrowing or lending, such that the portfolio’s payoffs exactly replicate the payoffs
from holding shares. In the absence of arbitrage opportunities, the value of the
replicating portfolio must equal the value of the shares. This equality determines
the value of each unit of the contingent claim, the bond.

More concretely, suppose that an arbitrage portfolio is constructed from the
shares, bonds and risk-free borrowing or lending. In market equilibrium, the
payoff from the portfolio must equal zero in every state. Suppose, in particular,
that one share is purchased, two bonds are sold at a price of Z each and a risk-free
loan of 100 is made. The payoffs are as follows:

Initial State 1 State 2
outlay ST = 120 ST = 100

Shares −80 120 100
Contingent claim 2×Z −2×120 −2×110
Loan −100 1�2×100 1�2×100

Total 2Z−180 0 0

In the absence of arbitrage opportunities, the initial outlay that generates these
(zero) payoffs must be zero: 2Z− 180 = 0. Hence, the price of the contingent
claim (convertible bond) must be Z = 90. Any other value of Z would provide
an arbitrage opportunity.
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It may not be obvious how the proposed portfolio was constructed. To see this,
suppose more generally that N shares are purchased, M units of the contingent
claim are purchased and B is borrowed.15 The payoff table then becomes:

Initial
outlay State 1 State 2

Shares −80N 120N 100N
Contingent claim −ZM 120M 110M
Loan B −1�2B −1�2B

Total 0 0 0

Reasoning identical to that applied in the option example (section 19.2) shows
that a zero payoff in both states implies that M = −2N and B = −100N . Zero
initial outlay then implies 0=−80N−ZM+B=−80N+2ZN−100N = 
−80+
2Z−100�N , and Z= 90. (For every arbitrage portfolio there is an arbitrary scale
factor. It is N in this application.)

The purpose of this example is to show how the reasoning that generated
an option price formula in a two-state world can be applied directly to more
general contingent claims. In practice, of course, it is necessary to allow for
many more than two states. This is achieved using exactly the same methods
as for options; that is, by assuming that asset prices are determined according
to a more realistic process (e.g. geometric Brownian motion), or by constructing
approximations using the binomial model with multiple states over a sequence
of hypothetical time intervals. For some contingent claims (e.g. those equivalent
to European options), it may be possible to obtain an explicit formula for the
price; for others, a method of numerical approximation will be the best that can
be accomplished.

Only a limited, though expanding, range of contingent claims are traded in
organized exchanges. The scope for OTC (customized, or bespoke) contingent
claims is much greater. For these, the method outlined above can be used to
calculate a value deemed fair by the parties engaged in the transaction. Yet again,
‘fair’ in this context refers to the market price that would be predicted to hold in
the absence of arbitrage opportunities in a frictionless market.

Elaborate investment strategies involving claims that are not traded in any
market can be constructed by financial managers for their companies or on behalf
of their clients. While the valuations implied by these strategies are consequences
of the arbitrage principle, and hence may appear to be risk-free, caution is merited.

15 As before, negative values of N and M denote sales, and B < 0 denotes lending.
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Why? Because embedded within the calculations are assumptions about the
probability distributions of asset prices. For example, an estimate of the volatility
of each of the relevant asset prices is almost always required. By utilizing the
technical skills of modern finance, the investment strategies work as predicted
so long as the assumptions underpinning them are not violated. But if market
frictions intervene, or if the volatility changes in unpredictable ways, disaster
may befall. Witness the difficulties encountered by the hedge fund, Long Term
Capital Management (LTCM), in September 1998.

LTCM was established in 1994, numbering among its founders Merton and
Scholes. During the summer of 1998 LTCM’s approaching collapse led to the
intervention of the US banking authorities, which arranged loan support from a
consortium of international banks in order to bail out, and effectively take over,
the fund.16 Although the details remain opaque, according to news reports LTCM
had short-sold low-risk government securities and obtained loans, the resulting
funds being invested in high-risk bonds (‘junk’ bonds and emerging country debt).
LTCM would have made large capital gains if the spread between interest rates on
low- and high-risk debt had narrowed. Instead, the spread widened dramatically
when Russian bonds defaulted in August 1998. It appears that LTCM took a bet
that spreads would narrow, and suffered the consequences when they moved in
the opposite direction.

LTCM’s investment strategies were much more complicated than conveyed by
this brief summary.17 Even so, they illustrate fundamental principles. One aspect
that is sometimes overlooked is that the models on which investment strategies
are based often assume that asset prices (and rates of return) change smoothly,
thus approximating the geometric Brownian motion described in earlier sections.
This may be a reasonable assumption most of the time. The trouble is that
the models’ predictions become inaccurate if asset prices change abruptly or if
volatility changes in unpredictable ways. Essentially what happens is that, when
asset prices change, the models signal that assets should be purchased or sold,
but the models’ prescriptions may not properly allow for abrupt – and large –
changes in asset prices. Such abrupt changes tend to be rare, but, when they do
occur, they can prove exceedingly costly.

16 In the diplomatic words of Alan Greenspan, chairman of the US Federal Reserve Board at the time, ‘Officials
of the Federal Reserve Bank of New York facilitated discussions in which the private parties arrived at
an agreement that both served their mutual self-interest and avoided possible serious market dislocations.’
(Testimony before the Committee on Banking and Financial Services, US House of Representatives 1 October
1998.)

17 See Edwards (1999) and The Economist (1998). For a discussion of the performance of hedge funds, see
Edwards and Liew (1999).



490 The economics of financial markets

19.5 Summary

1. Option pricing theory seeks to construct a relationship between an option premium
and the price of the underlying asset. Information on the risk-free interest rate, the
time to expiry, the exercise price and the volatility of the underlying asset price is
also required.

2. The arbitrage principle is applied to obtain the option price formula. In common with
all arbitrage arguments, the formula links the prices of different financial instruments.
The analysis does not purport to determine the option price independently of the
underlying asset price.

3. A simple arbitrage-free price formula is available if there is a single time period before
the expiry of a European option, and if the asset price can take on one of only two
values at the end of the period. The formula can be extended to allow for multiple
unit time intervals to expiry, the asset price being assumed to move to exactly one of
two values in each unit interval.

4. The Black–Scholes formula rests (in the absence of arbitrage opportunities) on the
assumptions of (a) continuous trading in frictionless markets and (b) an asset price
that evolves in accordance with geometric Brownian motion.

5. Apart from a measure of asset price volatility, the information needed to compute
the option price is usually readily available (or can be approximated to a high degree
of accuracy). One of the main problems in option pricing is that of estimating the
relevant index of volatility.

6. Measures of implicit volatility are calculated by assuming the correctness of an option-
pricing formula (typically, the Black–Scholes formula). The resulting measures can
then be used in place of the estimates of volatility obtained more conventionally from
historical data, or to reveal anomalies in the pricing of related contracts.

7. Contingent claims analysis extends option price theory to a broader range of financial
instruments, namely all those with payoffs that depend on the payoffs of one or
more other securities.

Further reading

Hull (2005, chaps. 11 & 12) provides an accessible textbook analysis of the
determination of option prices. At a more advanced level, Cox and Rubinstein
(1985, chaps. 5 & 6) and Hull (2003, chaps. 10–12) offer more detailed analyses.

From among the vast journal literature, the pioneering papers by Black and
Scholes (1973) and Merton (1973) deserve close attention, but they are not easy
reading. The excellent paper of Cox, Ross and Rubinstein (1979) provides a
detailed treatment of the binomial model and shows how, by taking appropriate
limits, the Black–Scholes model emerges. It rewards careful study. The brilliance
of Samuelson’s early (1972) tour de force will be appreciated only by those who
have thoroughly grasped the later contributions. Merton (1998) and Scholes
(1998) offer more readily accessible overviews of the literature.
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For an illuminating discussion of the mathematics of continuous time in the
context of finance, see Merton (1990, chap. 3). Among the textbook treat-
ments of the relevant mathematical methods, beginners may wish to consult
Ross (2003), while those with more confidence can proceed directly to Etheridge
(2002). An elegant formal treatment of Brownian motion is provided by Pollard
(2002, chap. 9). (The book as a whole is highly recommended for its rigorous,
yet accessible, exposition of modern probability theory.)

Introductory expositions of contingent claims analysis are given by Fridson and
Jónsson (1997) and Mason and Merton (1985). Lively descriptions of the fate
that befell LTCM are provided by Lowenstein (2001) and Dunbar (2000).
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20

Options markets III: applications

Overview

Options contracts are used in a multitude of different ways for different purposes.
For example, an investor who plans to acquire shares in a company but considers
that the current price is too high might choose to write put options on the shares.
If the share price remains high during the life of the options, the options are
not likely to be exercised and the investor pockets the option premium, without
buying the shares. Alternatively, if the share price falls and the options are
exercised against the investor, the shares are acquired, as the investor intended,
at the exercise price. (In addition, the investor keeps the premium, of course.)

Rather than attempt to catalogue all these policies, this chapter studies several
applications that illustrate different aspects of options analysis. Section 20.1
begins with a review of stock index options. Sections 20.2 and 20.3 introduce
options on futures contracts, together with a variety of applications. In particular,
section 20.3 explains how options on interest rate futures can be used to construct
caps and floors on the effective interest rate for borrowing or lending.

Section 20.4 outlines how the inclusion of options in portfolios can mitigate the
impact of uncertainty about future asset prices. Hedging, introduced in chapter 15,
is re-examined using options (rather than futures) as hedge instruments.

A successful hedge reduces the risks associated with asset price fluctuations. It
is not designed to reap the benefits of asset price increases while also protecting
the investor against losses when asset prices fall. Such protection is the goal of
portfolio insurance, a class of policies designed to place a floor under the value of
a portfolio, while not restricting its growth in the event of increases in the prices
of assets held in the portfolio. Section 20.5 outlines several strategies that have
been proposed to accomplish portfolio insurance, and discusses their strengths
and weaknesses. Section 20.6 returns to more conventional options policies, with
a brief overview of how option contracts can be bundled together to achieve
particular payoff patterns.

494
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20.1 Stock index options

Stock index options are almost identical to options on the shares of a single
company. The main difference is what ‘exercise’ means for a stock index option.
Suppose that a call option is exercised. This requires the exchange of the agreed
amount of the underlying asset in return for the previously agreed exercise price.
For a stock index option, exercise would imply that a bundle of securities, exactly
matching the composition of the stock index, changes hands. The holder of
a call would receive the bundle from a call writer, while the holder of a put
would deliver the bundle to a put writer. Such exchanges would incur prohibitive
transaction costs, and, for this reason, stock index options – like their futures
counterparts – are settled in cash.

Consider, for instance, the FT-SE 100 index option traded on LIFFE. This
option is available in both American and European styles. Expiry dates for the
American option are at the end of June and December, together with other months
so that options in the nearest three calendar months can be traded. Exercise prices
are set at 25- to 100-point intervals close to the observed FT-SE 100 index.
Quotations are made in index points, each point being valued at £10 (the tick size
being 0.5 point, with value £5). The contract specifications for European options
are similar, though, of course, exercise can take place only at expiry. A ‘FLEX’
contract is also available: this allows the parties to the contract (instead of the
exchange authorities) to set the exercise price and the expiry date. Although
more flexible, such contracts are likely to be less liquid (i.e. more expensive to
offset).
Example (of the American-style option). Suppose that on a day in March the

FT-SE 100 index is at 5100, and a premium of 150 is quoted for an American
call option with exercise price 5000 and a June expiry date. An investor (who
expects the index to rise above 5100) buys one call option for £1500. Suppose
that in April the FT-SE 100 index rises to 5300 and the option premium increases
to 380. The investor’s position can be offset by selling one option, yielding a net
gain of £2300, as shown in the table below.

FT-SE 100 Exercise
Date index price Expiry date Premium Action

March 5100 5000 June 150 Buy one call for £1500
= 1×10×150

April 5300 5000 June 380 Sell one call for £3800
= 1×10×380

Net profit = £2300
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What would have happened if the investor had chosen to exercise the option
in April, instead of offsetting the position with a sale? An investor who had
written one call option (with an exercise price of 5000 and a June expiry date)
would be chosen at random by the exchange, and would have to pay £3000 =
1× 10× 
5300− 5000� to the investor who exercises the option. But, if an
American option is worth more alive than dead, then it will be more profitable to
offset the position with a sale rather than to exercise the option.1 In this example,
the investor gains £1500 = 3000− 1500 from exercising the option, as against
£2300 made by selling it. (Here, as elsewhere, transaction costs are neglected.)

Spread betting

Spread betting was outlined in chapter 16, section 16.2.1, where the bets were
compared with futures contracts. The same ideas carry over to options contracts.
Just as for the description of spread bets in chapter 16, clients trade directly with
the bookmaker, who quotes bid and ask prices. In this context, the ‘prices’ are
equivalent to option premia.

20.2 Options on futures contracts

On many organized exchanges it is possible to trade in options on futures contracts
as well as in the futures contracts themselves. For instance, on NYMEX it is
possible to trade in options on crude oil futures, where one option contract
corresponds to each futures contract. On LIFFE it is possible to trade in options
on the short sterling futures contract. There are many other examples.
Expiry date and delivery date. Options on futures are usually constructed in

such a way that the option expires at, or shortly before, the delivery date for the
futures contract on which it is written. It would be pointless for the option to
expire after the delivery date on the futures contract, but there is no reason, in
principle, why it should not expire before the delivery date.

A call option on a futures contract confers the right to take a long position in
the futures contract. A put option confers the right to take a short position in
the futures contract. The relationship between options and the assigned futures
position can be summarized as follows:

Call options Put options

Long futures long call (holder) short put (writer)
Short futures short call (writer) long put (holder)

1 Recall from chapter 18, page 453, that an American call option premium is at least as great as the payoff
from exercising it early, in market equilibrium with the absence of arbitrage opportunities.



Options markets III: applications 497

The writer of options on futures receives the option premium in return for an
obligation to take a futures position opposite to the buyer in the event that the
option is exercised. Thus, suppose that a call option is exercised: the holder
receives a long futures contract with the price set equal to the option’s exercise
price, the corresponding short futures position being assigned to a call option
writer. Similarly, suppose that a put option is exercised: the holder receives a
short futures contract with the price set equal to the option’s exercise price, the
corresponding long futures position being assigned to the put option writer.

Options that remain in existence and ‘in the money’ at their expiry dates are
normally exercised automatically. The futures position can then be offset, yielding
an immediate gain (minus commission fees) for the option holder.
Example 1: a call option on a futures contract. Suppose that, in March, an

investor buys one American-style call option, with an exercise price of $30 per
barrel, on crude oil futures for December delivery. Each contract is for 1000
US barrels of oil. If, in September, the futures price for December delivery
is $34 per barrel, the investor might choose to exercise the option. Exercising
the option involves the receipt of $4000 = 1000× 
34− 30�, together with a
long position in one futures contract for December delivery. The futures posi-
tion acquired in this way could be offset (sold) immediately, with no additional
gain or loss (apart from commission fees, etc.). Thus, the result is a gain of
$4000 minus the premium paid for the option in the previous March (and any
transaction costs).

Notice that, when the option is exercised, the option writer (a) makes a cash
payment to the option holder and (b) transfers a futures contract to the option
holder. Given that the cash payment in (a) reflects the difference between the
option’s exercise price and the futures contract price, and that the futures contract
can be offset immediately, it might seem unnecessary for step (b) of the transaction
to take place at all. The gain from exercising the option appears to be captured
in step (a) alone, while step (b) contributes nothing. In the absence of market
frictions, this is true. However, in practice there is likely to be a discrepancy
(possibly small, but non-zero) between the futures price used in the calculation
of the option’s payoff and the futures price at which the contract transferred in
step (b) can be offset. This being so, the transfer of the futures contract can make
a difference for both option holder and writer. It is possible, for instance, in the
above example that the investor (option holder) may wish to take delivery of the
oil in accordance with the terms of the futures contract. Thus, in the presence
of market frictions, the exchange of the futures contract (when the option is
exercised) is of significance.

However, if markets are frictionless, in the absence of arbitrage opportu-
nities it would be more profitable to sell the option rather than to exercise
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it early.2 The assumption of frictionless markets is, of course, an idealiza-
tion. Acknowledging this, the example illustrates how the magnitude of frictions
impacts on the sequence of profitable transactions.
Example 2: a put option on a futures contract. Suppose that in May an investor

buys one American-style put option with an exercise price of $400 per troy ounce,
on gold futures for December delivery. On the COMEX exchange (a division of
NYMEX), each futures contract is for the delivery of 100 troy ounces of refined
gold. If, in October, the price of gold futures for December delivery is $390,
the investor might choose to exercise the option. Exercise involves the receipt
of $1000 = 100× 
400−390�, together with a short position of one contract for
the delivery of gold in December (i.e. a promise to deliver 100 ounces of gold in
December in exchange for $39,000 
= 100×$390 per ounce)).

Keeping in mind the caveat about market frictions noted above (example 1),
the futures position could be offset immediately, resulting in a gain of $1000
minus the premium paid for the option in the previous May. The purchase of a
put option with an exercise price of $400 thus means that the investor has bought
the right to sell gold (for December delivery) at $400 per ounce. In October this
right can be exercised when the futures market price is $390. The gain arises
from selling at $400 and buying at $390 per ounce. The investor could, of course,
hold onto the short futures position. Then an additional gain would be made if
the futures price falls before it is offset. (Obviously, a smaller gain, or even a
loss, would be made if the futures price rises above $390 before being offset.)
Although the early exercise of the option cannot be ruled out, it may be more
profitable to sell the option prior to expiry rather than to exercise it, just as for a
call option.
Example 3: options on weather futures. Weather futures contracts that trade

on the Chicago Mercantile Exchange were outlined in chapter 16, section 16.1.
Options on the futures contracts also trade on the CME, both for heating degree
day and cooling degree day contracts. One HDD option corresponds to one
futures contract (similarly for CDD options). The option premium is quoted
in HDD (or CDD) index points, each point being valued at $100 (so that an
option quoted at ‘12’ has a premium of $1200). The options are European-
style, with expiry dates in November through to March (i.e. winter) for options
on HDD futures, and May through to September for options on CDD
futures.

2 To see this, suppose that the option premium is less than the payoff from immediate exercise of the option:
C < f −X, where C is the option premium, f is the futures contract price and X is the option’s exercise
price. Now an immediate arbitrage profit can be made from buying an option for C and exercising it
immediately, yielding a payoff of f −X−C > 0. This is ruled out if C � f −X, as asserted.
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Option payoffs

The payoffs at expiry for options on futures can be described in the same way as
for options on other assets, where now the futures price at maturity, fT , replaces
the underlying asset price, ST . Hence, if the options are exercised, the payoffs cT
and pT are

call option: cT = max90( fT −X; put option: pT = max90(X−fT ;

where X denotes the exercise price.
These results suggest that options on futures can be used to replicate the

payoffs on the underlying futures contracts. To understand how this is achieved,
recall that the payoff for a long futures position held to maturity is given by
fT −f per contract – i.e. the contract is purchased at price f and offset by selling
it for fT at maturity.

Now suppose that the futures price today, f , equals the options’ exercise price,
X: f = X. Consider a portfolio comprising the purchase of one call option and
the writing of one put option – sometimes called a ‘synthetic futures contract’. If
at maturity fT > X, the call option is worth fT −X = fT −f , exactly equal to the
payoff on the futures contract. (The put option is not exercised if fT > X.)

Alternatively, if fT < X, the put option is exercised with a (negative) payoff
fT −X = fT − f , exactly equal to the payoff on the futures contract. (The call
option is not exercised if fT < X.)

Hence, the payoffs for the portfolio of one long call and one short put are
exactly the same at expiry as for a long futures contract, when the futures contract
is purchased at the option exercise price. (If fT = f = X both options and the
futures contract have zero payoffs.)

Similarly, the payoff at maturity for a short futures position is exactly the
same as for a portfolio comprising one long put option and one short call option,
again assuming that f = X.

Suppose that f �= X. In this case, the put-call parity relationship is helpful.
With a futures contract as the underlying asset, the put-call parity relationship for
European options is

c+ X

R
= p+ f

R
(20.1)

where R is the abbreviated form of R
t(T�, the interest factor.3 (See appendix 20.1
for a derivation of (20.1).)

3 Notice that it is not the case that f simply replaces S in the put-call relationship, c+X/R
t(T� = p+S,
which appears in chapter 18, section 18.5. The reason is that the payment for futures is made only at the
delivery date, T . Hence, the present value f/R replaces S, the underlying asset price.
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Returning to the replication of futures contracts with options, notice that the
put-call parity relationship implies that f = X+R
c−p�; the difference in the
option prices compensates for any difference between f and X.4

Example. Suppose that f = $122, X = $100 and R = 1�10. The put-call parity
relationship implies thatc−p= $20. A long futurespositionhasapayoffoffT−122
per contract. Compare this with the payoff from buying one call and writing one put
(i.e. a synthetic futures contract). The payoff at expiry on the portfolio of options
is fT − 100. (If fT > 100 the call is exercised; if fT < 100 the put is exercised.)
However, the net cost of purchasing a call and writing a put equals c−p= $20,
an amount that must be borrowed at the outset and repaid with interest at date
T : R
c−p� = 1�10
20� = $22. Thus, the net payoff from the options portfolio
equals fT −100−22, precisely the same as for the futures contract.

Valuation of options on futures

The theory of option prices can be extended to options on futures with an adjust-
ment to allow for the fact that a futures contract requires zero initial outlay.
Consequently, under the assumptions of the Black–Scholes model, the premium
of an option on a futures contract can be determined by replacing the asset price
S with fe−rR in the formula, where f is the futures price, r is the risk-free interest
rate and R is the time to expiry of the option, R ≡ T − t. Because the futures
contract requires zero initial outlay of funds, the underlying asset price is replaced
with its net present value, fe−rR (i.e. f/R
t(T� in the notation used here, where
R
t(T� is a generalization of erR).5

20.3 Interest rate options

Interest rate options, of which there are many varieties, differ primarily according
to the asset on which the options are written. The underlying assets include
futures contracts as well as bonds. The bonds or debt contracts differ with respect
to time to maturity, whether their coupons are fixed or variable, and the currency
in which they are denominated.

A range of exchange-traded option contracts are available, but even more are
created over the counter by financial institutions for their clients. Interest rate
options introduce no new issues of principle, though the Black–Scholes model
requires modification. This is because the volatility of the rate of return on the
underlying asset, a bond, is not constant (as assumed in the Black–Scholes model)
but diminishes as the bond approaches its redemption date.

4 The reason for the presence of the interest factor, R, is that the option premia are paid at the outset, while
the futures contract payoff occurs only at maturity, when the options are exercised.

5 The opportunity cost of margin deposits is assumed to be zero because the depositor normally receives
interest on the margin account balance.
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Fig. 20.1. Interest rate caps and floors

An interest rate cap (left panel) places a ceiling on the rate at which
funds can be borrowed. Notice that the cap is not free: the effective
interest rate (i.e. the cost of funds) exceeds the market rate at low market
interest rates. An interest rate floor (right panel) places a lower bound
on the rate at which funds can be lent. Again, notice that the floor is
not free: the effective interest rate (i.e. the return on funds) is less than
the market rate for high market interest rates.

The multitude of interest rate options is illustrated here with options on three-
month sterling (short sterling) interest rate futures traded on LIFFE. American-
style call and put options are available for trading.

An investor who buys a short sterling call option (a ‘long call’) acquires the
right to buy a futures contract (i.e. to take a long position) at the stated exercise
price any time up to the last trading day of the futures contract (at which date
in-the-money options are automatically exercised on behalf of their holders). One
difference between these option contracts and most others is that the premium is
not paid at the outset. Instead, investors make margin deposits, which are marked
to market on a daily basis so that gains are credited, or losses debited, until the
position is offset or expires.

The motives for buying or selling short sterling options are much the same as
for any financial instrument. Consider, for example, the construction of interest
rate caps and floors, illustrated in figure 20.1. The following paragraphs describe
how interest rate options can be applied to create an interest rate cap and a floor,
respectively.

Example: interest rate cap

Assume that a company plans, in March, to borrow £500,000 for three months
from 1 July at whatever market interest rate then rules. An option contract can
be used to obtain an interest rate cap, with the objective of placing an upper limit
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on the interest rate paid on the loan. Suppose that a put option with an exercise
price of 95.00, expiring at the end of June, currently trades at a premium of
0.24 (i.e. 24 ticks), where each tick equals 0.01 percentage points, worth £12.50
per tick.

One put option is purchased for £300 = 24× 12�50. Now suppose that, at
expiry, the futures price (i.e. the EDSP) is 94.00, calculated from a market
interest rate of 6.00 per cent 
94�00 = 100− 6�00�. The option is automatically
exercised and the investor is assigned a short futures position.

The futures position is then cash settled with the sale of one contract for 95.00
at a date when the market price equals 94.00 (the EDSP), thus yielding a gain
of 100 ticks – i.e. £1250 = 100× 12�50. Consequently, there is a net gain of
£950, equal to 0.76 per cent of £500,000 for three months. Hence, if £500,000 is
borrowed at 6 per cent, the effective borrowing rate is capped at 5.24 per cent.

In essence, a futures contract has been sold at 95.00 and repurchased at 94.00.
The purchase of the option ensures that no loss is incurred if the futures price
is greater than 95.00 at the maturity date. This benefit is not free. Its cost is
reflected in the option premium of 24 ticks.

Each one-point increment in the interest rate is matched by a different payoff
on the option contract, as shown in the following table:6

Interest Futures Gain 
+� or % gain 
+� or Effective borrowing
rate∗ price∗ loss 
−� loss 
−� rate∗

9.00% 91.00 +4700 +3�76% 9�00−3�76 = 5�24%
8.00% 92.00 +3450 +2�76% 8�00−2�76 = 5�24%
7.00% 93.00 +2200 +1�76% 7�00−1�76 = 5�24%
6.00% 94.00 +950 +0�76% 6�00−0�76 = 5�24%
5.00% 95.00 −300 −0�24% 5�00+0�24 = 5�24%
4.00% 96.00 −300 −0�24% 4�00+0�24 = 4�24%
3.00% 97.00 −300 −0�24% 3�00+0�24 = 3�24%
2.00% 98.00 −300 −0�24% 2�00+0�24 = 2�24%
1.00% 99.00 −300 −0�24% 1�00+0�24 = 1�24%

(∗ Rates and prices realized at the option expiry date.)

If the interest rate (on the expiry date) is at or below 5 per cent, the option is
allowed to die, unexercised. The company then benefits from lower interest rates
but pays 0.24 percentage points above the market rate, the extra reflecting the
option premium. But, if the interest rate (as of the option expiry date) exceeds 5
per cent, the company caps its borrowing cost at 5.24 per cent.

6 Note that the compensation provided by the option for the interest rate rise is received when the option
expires – i.e. before interest accrues on the loan.
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In practice, of course, investors often need to adopt strategies that do not match
the amounts or durations as neatly as in the example. In such cases it might
be profitable to offset the position prior to the expiry date or to devise more
complicated strategies, involving, say, a sequence of options with different expiry
dates.

Example: interest rate floor

Assume that a company plans, in March, to make a deposit of £1m on 1 July for
three months at whatever market interest rate then rules. An option contract can
be used to obtain an interest rate floor, with the objective of securing a minimum
for the interest rate received on the deposit. Suppose that a call option with
exercise price equal to 95.00, expiring at the end of June, trades at a premium of
0.26 (i.e. 26 ticks).

Two call options are purchased for £650 = 2× 26× 12�50. Note for later
reference that £650 = 0�26% of £1m for three months. Suppose that, at expiry,
the futures price (i.e. EDSP) is 97.00, calculated from a market interest rate of
3 per cent 
97�00 = 100− 3�00�. The option is automatically exercised and the
investor is assigned a long futures position.

The futures position is then cash settled with the purchase of two contracts for
95.00, each at a date (the futures contract delivery date) when the market price is
97.00 (the EDSP), thus yielding a gain of 200 ticks on each contract – i.e. a total
of £5000 = 2×200×12�50. Consequently, there is a net gain of £4350, equal to
1.74 per cent of £1m for three months. Hence, if £1m is deposited at 3 per cent
for three months, the effective lending rate is 4.74 per cent.

Each one-point decrement in the interest rate is matched by a gain on the option
contract, as shown in the following table:

Interest Futures Gain 
+� or % gain 
+� or Effective lending
rate∗ price∗ loss 
−� loss 
−� rate∗

9.00% 91.00 −650 −0�26% 9�00−0�26 = 8�74%
8.00% 92.00 −650 −0�26% 8�00−0�26 = 7�74%
7.00% 93.00 −650 −0�26% 7�00−0�26 = 6�74%
6.00% 94.00 −650 −0�26% 6�00−0�26 = 5�74%
5.00% 95.00 −650 −0�26% 5�00−0�26 = 4�74%
4.00% 96.00 +1850 +0�74% 4�00+0�74 = 4�74%
3.00% 97.00 +4350 +1�74% 3�00+1�74 = 4�74%
2.00% 98.00 +6850 +2�74% 2�00+2�74 = 4�74%
1.00% 99.00 +9350 +3�74% 1�00+3�74 = 4�74%

(∗ Rates and prices realized at the option expiry date.)
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If the market interest rate (on the expiry date) is at or above 5 per cent (i.e. if
the futures settlement price is less than or equal to 95), the option is allowed
to die, unexercised. The company then benefits from higher interest rates but
receives 0.26 percentage points below the market rate, the difference representing
the option premium. But, if the interest rate, as of the option expiry date, is below
5 per cent, the company is assured of 4.74 per cent on its deposit.

Just as for the interest rate cap, the assumptions of the example are, at best,
approximations in practice. Hence, more complicated strategies will be adopted,
or the attainment of the interest rate floor will be imperfect.

20.4 Options and portfolio risks

20.4.1 Portfolios of options and their underlying assets

Portfolios that include options as well as their underlying assets facilitate the
control and measurement of portfolio risks. To avoid unnecessary complications,
this section focuses on a portfolio comprising N units of an asset (e.g. a company’s
shares) and M European call options on the asset (one share underlying each
option).

The value of the portfolio at date t, Wt, is expressed as

Wt = NSt+Mct
where ct is the option premium and St is the price of its underlying asset. Hence,
the change in the value of the portfolio between date 0, ‘today’, and date 1, in
the future, can be written

�W = N�S+M�c (20.2)

where �W ≡ W1 −W0, �S ≡ S1 − S0 and �c ≡ c1 − c0. For reasons that will
become clear shortly, it is convenient to write (20.2) as

�W =
(
N +M �c

�S

)
�S (20.3)

What makes the valuation of �W in equation (20.2) special is that, in the
absence of arbitrage opportunities, an exact relationship is predicted between ct
and St (and hence between �c and �S). In chapter 19 (page 468) the option
premium was expressed as

c = f
S(X( R(R(��

Of particular interest here is the relationship between S and c.
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If �S is sufficiently small, �c/�S in (20.3) can be approximated by the partial
derivative of c with respect to S, Hc/HS. In addition, if the Black–Scholes model
is appropriate for predicting c, it can be shown that7

�c

�S
≈ Hc

HS
=W
x1� (20.4)

where W
·� and x1 are defined in chapter 19 (see page 481). The partial derivative
of c with respect to S, Hc/HS, plays such a prominent role in option price theory
that it is given a name: the option’s delta.

20.4.2 Hedging with options

The results in (20.3) and (20.4) show how options could be used in hedging
strategies. Suppose that N and M are chosen such that the hedge ratio, M/N ,
equals −�S/�c. Now changes in the asset price, S, leave �W unchanged: a
perfect hedge has been constructed.8

If the Black–Scholes model is appropriate to link c with S, then the hedge ratio
becomes

M

N
=−�S

�c
≈− 1

W
x1�

Recall from chapter 19 that 0<W
x1� < 1 (in particular, W
x1� is the probability
that a Normally distributed random variable is less than x1). Hence, to hedge
against fluctuations in the value of a positive holding 
N > 0� of the asset, it is
appropriate to take a short position in call options 
M < 0� – i.e. to write call
options. Suppose, for example, that an option’s delta is found to be 0.05; then
the hedge ratio of 1/0.05 requires 20 call options to be written for each unit of
the asset, M =−20N .

Put options could, instead, be used to implement the hedge. Applying the
put-call parity relationship for European options, it follows that the delta for a put
option, with premium p, is

�p

�S
≈W
x1�−1

This is a negative number between zero and minus one. Consequently, an investor
who seeks to hedge a positive holding of the underlying asset would adopt a long
position in put options:

M

N
=−�S

�p
≈− 1

W
x1�−1
> 0

7 The result is not as obvious as it may appear from the formula, because x1 and x2 are themselves functions
of S. Tedious calculations show that it is, nonetheless, correct.

8 See chapter 15. Note that the negative sign in −�S/�c appears because M> 0 is interpreted here as a long
position (positive holding) in options, by contrast with a short position in futures contracts in chapter 15.
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Suppose, for example, that a put option’s delta is found to be −0�10; then ten put
options need to be purchased for each unit of the asset, M = 10N .

Referring back to equation (20.3), the asset and the option appear symmetrically
in the sense that either could be interpreted as the hedge instrument. It may be
convenient to consider that the option is used to hedge against fluctuations in the
underlying asset price. But it would be just as valid to interpret the asset as being
held to hedge against fluctuations in the option price. Either way, the hedging
strategy involves – as it always does – a reduction in overall portfolio risk through
a cancelling of the price risks associated with the component assets.

20.4.3 Measuring portfolio volatility

Equation (20.3) can be helpful in measuring the volatility of portfolios including
options, quite apart from hedging. Investors, particularly regulated financial
institutions, often need to estimate the probability of ‘worst-case’ scenarios. In
particular, value at risk (VaR) processes seek to estimate the largest loss that a
portfolio would suffer with specified (small) probability over a specified period.
For example, the holder of a portfolio currently worth £350m may need to forecast
the lowest value to which it might fall over the next ten days with probability at
most 0.05.

There are many ways of obtaining such estimates, several of which involve
estimating the volatility of the portfolio’s market value (volatility being measured
by the variance or, equivalently, standard deviation of the portfolio’s value). This
estimate is derived from the price volatility of the assets comprising the portfolio.
Given that the volatility of option prices is often even harder to estimate than
that of the underlying assets, linking the option price to the underlying asset price
(say, via the Black–Scholes model) can simplify the computations. This is what
is implied in equation (20.3), where an estimate of the variance of �W can be
made from an estimate of the variance of �S (the change in the asset price) and
a knowledge of Hc/HS (which provides the link between the option price and the
asset price).

Armed with an estimate of the portfolio’s variance and an assumption about
the probability distribution of the portfolio’s returns (typically that it is Normal),
it is possible to obtain measures of VaR.

The method outlined here need not, of course, be restricted to portfolios contain-
ing options, but can be applied to any portfolio in which derivative securities, the
values of which can be linked to underlying asset prices, are represented. Reliable
estimates of portfolio volatility can then be made, given estimates of the volatility
of the underlying asset prices.
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20.4.4 Some Greek letters and their purpose

So far in this section attention has concentrated on Hc/HS, the response of an
option price c to changes in S – that is, the option’s delta. But option prices
depend on other variables too, as indicated by the formula c = f
S(X( R(R(��.

The partial derivative of f
S(X( R(R(�� with respect to each of its arguments
is crucial in designing strategies involving options. Collectively, the partial
derivatives are known as ‘the Greeks’ – gamma, theta, rho and even ‘vega’
appear, as well as delta.

The meaning ascribed to each term is as follows: gamma equals H2f/HS2 –
i.e. the rate of change of delta with respect to S; theta equals the rate of change
of the option premium with respect to time, t, or −Hf/HR, because R ≡ T − t;
rho equals the rate of change of the option premium with respect to the risk-free
interest rate – i.e. Hf/Hr (where r denotes the risk-free interest rate, assumed
constant, so that R = er
T−t�); and vega (not a letter in the Greek alphabet and
sometimes known as kappa, which is) equals Hf/H� , the rate of change in the
premium with respect to volatility.

The presence of gamma, H2f/HS2 �= 0, serves as a reminder that option prices are
nonlinear functions of their arguments (at least in the context of the Black–Scholes
model). That is, the magnitude of delta varies with the value of S.

One implication of the non-linearity is that the gamma should be taken into
account to improve the accuracy in approximating �c/�S. This becomes of
significance the larger is �S.

Another implication of the non-linearity is that effective hedging strategies
employing options are ‘dynamic’, in the sense that the number of options held
changes as the price of the underlying asset changes. Changes in option holdings
should, in principle, be made continuously via a process sometimes called ‘rebal-
ancing’. Such a process can be expensive in transactions costs, consequently
reducing the attractiveness of options as hedge instruments.

20.5 Portfolio insurance

‘Portfolio insurance’ encompasses a set of strategies that became popular in the
1980s among investment managers who sought to combine the opportunity for
increased wealth when stock prices increase (‘upside potential’ in common jargon)
with a limit on the losses incurred when prices fall. The goal is to find a strategy
that succeeds in placing a ‘floor’ under the market value of a portfolio without at
the same time imposing any ceiling on its value.

The benefits conferred by portfolio insurance should be distinguished from
the reduction in risk achieved as a consequence of diversification. Recall that
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well-diversified portfolios are those for which idiosyncratic risks are negligible.
Diversification protects against asset-specific (idiosyncratic) risks but not against
market risk. Thus, when security prices are generally low, all well-diversified
portfolios are adversely affected to a roughly equal degree. Portfolio insurance
seeks to achieve the more ambitious outcome of obtaining positive returns when
asset prices increase without incurring large losses when they fall.

The variants of portfolio insurance include the following.

1. Stop-loss selling and buying.
2. The purchase of put options.
3. Lending and the purchase of call options.
4. The creation of synthetic put options.

Stop-loss selling and buying

With this strategy, assets are sold when their prices fall to, or below, a specified
lower threshold and purchased when their prices rise to, or above, a specified
upper threshold. Stop-loss selling is likely to be successful when prices change
smoothly and in an extrapolative way – i.e. when price falls tend to be followed
by further falls, and when price increases tend to be followed by further increases.
It is less satisfactory when there are sudden, sharp changes in prices or if the
trading of assets is subject to delay. Also, the strategy is likely to incur signif-
icant transaction costs, because assets may be sold and repurchased on several
occasions over any interval of time. Other portfolio insurance strategies share this
drawback.

Portfolio insurance with put options

Suppose that the portfolio to be insured comprises a single risky asset for which
a put option is available. Now the investor can place a floor under the asset’s
value with the purchase of a put option – a ‘protective put’. The option can be
exercised (or sold) if the asset’s price falls below a specified value (the exercise
price of the option). Let S denote the value of the security, and suppose that
its value is insured using a put option with exercise price X and expiry date T .
The market value of the asset at date T is denoted by ST , and the value of the
put option at T is max90(X− ST ;. Thus, the value of the insured portfolio is
given by

ST +max90(X−ST ;= max9ST (X;

Allowing for the option’s premium, p, the net payoff equals max9ST (X;− p.
In words: at date T the investor’s wealth equals the greater of the value of the
security or the exercise price of the option, minus the premium paid for the option.
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Fig. 20.2. Portfolio insurance with a put option

Panel (a) shows the payoff from a put option as a function of the
underlying portfolio’s market value at the expiry date, T . (The portfolio
is assumed to comprise a single asset, with price ST at T .) The dashed
line in panel (b) shows the value of an uninsured portfolio; i.e. the payoff
equals ST . The purchase of the put option provides a lower bound of
X−p for the payoff when ST < X. In the event that ST > X, the payoff
increases one for one with the market value of the underlying portfolio,
though its level is lower by the amount of the option premium, p.

The outcome is shown in figure 20.2. In addition to the cost of the option, the
strategy may prove unattractive because of the following.

1. Portfolios rarely consist of a single asset and normally contain many. When many
assets are held, the purchase of options on all, or even some, of them could incur high
transaction costs.
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Options on stock indexes could provide inexpensive substitutes for options on
individual shares. The effectiveness of this substitution depends on how closely
the composition of the insured portfolio matches that of the index underlying the
option – that is, on the correlation between the rate of return on the portfolio and the
rate of return on the stock index.

2. Traded options tend to have a short time (typically weeks or months) to maturity, while
the horizon for portfolio insurance may be much longer (several years, perhaps). This
can make it costly – if, indeed, it is feasible – to obtain the desired floor to the value
of the portfolio.

Portfolio insurance with call options

This strategy is similar to that using put options, except that, instead of holding
risky assets and purchasing put options, the investor holds a risk-free interest-
bearing bond (or makes a loan at the risk-free rate of interest) and purchases
call options. Assume, again, that the risky portfolio comprises a single asset for
which a call option is available. In this case the call option can be exercised (or
sold) if the asset’s price rises above a specified value (the exercise price of the
option). Suppose that the call option has an exercise price equal to X with expiry
date T . Each unit of the risky security can be insured at value X by lending
X/R
t(T� and buying the option for a premium c. The value of the call option
at date T equals max90( ST −X;, so that the value of the insured portfolio is
given by

X+max90( ST −X;= max9ST (X;

Allowing for the option’s premium, c, the net payoff equals max9ST (X;− c.
Again, at date T the investor’s wealth equals the greater of the value of the
security or the exercise price of the option, minus the premium paid for the option.

The shortcomings of the protective put option, outlined above, apply also to
portfolio insurance using the call option. Also note that, in this case, the insured
portfolio contains only risk-free bonds (or a loan) and options to purchase the
risky assets – not the underlying assets themselves.

Portfolio insurance with synthetic put options

This form of portfolio insurance stems from the recognition that the put option
needed to insure a portfolio is unlikely to be available, ready-made, in the market.
Perhaps the portfolio to be insured comprises many risky assets, making it costly
to purchase a put option on each. Or perhaps the time horizon for the insurance
of the portfolio lies beyond the expiry dates of the available options.
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The reasoning that results in the Black–Scholes formula serves to motivate the
design of strategies based on synthetic options. One method for deriving the
formula involves replicating the payoffs on an option via a portfolio comprising
the underlying assets and risk-free lending or borrowing. If this logic enables the
valuation of options, it should also permit the creation of synthetic options using,
as raw materials, (a) the risky asset portfolio and (b) risk-free bonds. The idea
is to mimic the payoffs of a put option on the portfolio and, hence, realize the
protection that a put option provides. This seems too good to be true. Here are
some of the potential drawbacks.

1. Although there is no explicit premium for creating a synthetic option, there is an
implicit premium in the sense that a greater initial investment of funds is required
to achieve the same returns in the ‘good states’ (high share prices) for an insured
portfolio compared with an uninsured portfolio. The insured portfolio is protected
against the losses suffered by the uninsured portfolio in the ‘bad states’ (low share
prices), but more funds must be invested at the outset.

2. The strategy involves dynamic replication. Under the Black–Scholes assumptions,
replicating the payoffs on an option requires continuous changes in the composition
of the portfolio between risky assets and bonds. Such a strategy can incur high
transaction costs as a result of frequent trading: the closer the approximation to the
payoffs on a put option, the greater the number of transactions and the higher the costs.

3. The effectiveness of the strategy in replicating the option payoffs depends on exactly
the same assumptions as made in the Black–Scholes model. These may or may
not provide reasonable approximations to market conditions. The most sensitive
conditions are (a) the absence of transaction costs (or, which can be interpreted as
the same thing, the ability to trade assets continuously); (b) no sharp jumps in share
prices (so that it is reasonable to assume that each asset price evolves according to a
geometric Brownian motion); and (c) the ability to obtain accurate estimates of the
volatility of asset returns.

If, contrary to (a), transaction costs are non-negligible, they may overwhelm the
benefits of portfolio insurance. If, contrary to (b), unforeseen jumps in share prices
occur, then the portfolio manager may not have the opportunity to rebalance the
holdings of risky assets and bonds so as to replicate the put option. If, contrary to
(c), the volatility of share returns changes unpredictably, then the chosen combination
of shares and bonds could fail to replicate the option payoffs. Consequently, it may
be difficult – perhaps impossible – to create a synthetic put option on the portfolio
with the required degree of accuracy.

4. The put option replication strategy requires the purchase of shares when their prices
are rising, and the sale of shares when their prices are falling (see O’Brien, 1988).
Counter-intuitive though it might at first seem, this strategy often forms a component
of programme trading, in which stock purchases and sales are triggered automatically
in response to observed changes in their market prices.
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In view of the potentially high transaction costs incurred when trading in many
assets, stock index futures contracts provide an attractive alternative for construct-
ing a synthetic put option on the portfolio. Such a strategy resembles hedging
the value of a portfolio using stock index futures, except that portfolio insurance
requires the continuous revision of the position via the process of dynamic repli-
cation. If options on the relevant stock index are also readily available (i.e. widely
quoted), these might incur lower transaction and administrative costs than synthet-
ically created options.

Summary

The objective of portfolio insurance is to place a floor under the value of a
portfolio without thereby restricting increases in its value. In the latter respect
the strategies differ from hedging, which minimizes the risk of changes in the
value of the portfolio, both up and down. The ‘miracle’ of portfolio insurance
may resolve into a mirage when its costs are taken into account: (a) a premium
has to be paid (either explicitly for traded options, or implicitly for synthetic
options); and (b) continual rebalancing of the portfolio may incur high transaction
costs. Active portfolio management in the form of portfolio insurance may yield
benefits, but it is not free. Also, note two other reservations about portfolio
insurance: (a) the time horizon is unspecified (different horizons could lead to
different strategies and outcomes); and (b) except for special cases portfolio
insurance is not implied by the principles of portfolio decision making, such as
the expected utility hypothesis (i.e. the logical foundations of portfolio insurance
could be construed as weak).

20.6 Combinations and spreads

Call and put options are often bundled together with the intention to create
portfolios that have payoffs designed to achieve specific objectives. One objective
might be, for example, to obtain a high payoff from extreme volatility (unfore
seen sharp increases or decreases in an underlying asset’s price), while tolerating
a low payoff, or even a small loss, if volatility turns out to be lower than
anticipated – see ‘straddles’, below. Another might be to obtain a certain payoff
(the difference between two exercise prices) if an underlying asset price rises
significantly, while incurring a small cost (the difference between two option
prices) if the asset price falls – see ‘bull spreads’, below.

The bundles of call and put options constructed to satisfy these specific objec-
tives can be classified in a variety of ways. Here they are grouped into ‘combi-
nations’ and ‘spreads’, as follows.
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Combinations comprise bundles, either all of long positions or all of short
positions in call and put options on the same asset. For conciseness, only long
positions are described here. Each corresponding short position entails exactly
the opposite trade in each of the component options.

• Straddles. A long straddle consists of a long position in a call and a put with the same
exercise price and expiry date.

• Strips. A long strip consists of buying one call and two puts with the same exercise
price and expiry date.

• Straps. A long strap consists of a buying two calls and one put with the same exercise
price and expiry date.

• Strangles (or bottom vertical combinations). A long strangle consists of a long position
in a call and a put with the same expiry date but different exercise prices. The put
exercise price, X1, is lower than call exercise price, X2: X1 < X2.

Spreads comprise bundles of long and short positions in either two or more
calls, or two or more puts in the same asset. Vertical (or cylinder) spreads contain
options with the same expiry date but different exercise prices.

• Bull spreads. A bull call spread involves buying a call with exercise price X1 and
writing a call with the same expiry date but higher exercise price, X2 – i.e. X2 > X1.

• Bear spreads. A bear call spread involves buying a call with exercise price X1 and
writing a call with the same expiry date but lower exercise price, X2 – i.e. X2 < X1.

• Butterfly spreads. A long butterfly spread consists of buying a call with a low exercise
price, X1, buying a call with a high exercise price, X3, and writing two calls each with
an exercise price, X2, equal to the average of X1 and X3. All the expiry dates are the
same and X2 is typically chosen close to the current stock price.

• Horizontal (or calendar) spreads. A horizontal spread comprises a bundle of options
with different expiry dates but the same exercise price. For example, a calendar spread
could be achieved by (a) writing a call option and (b) buying a call option on the same
asset, with the same exercise price but a later expiry date. The second option (with a
later expiry date) is sold when the first expires.

The listed spreads refer to call options: each has an exact analogue using put
options. Each of the listed spreads has a rotated variant for which the opposite
position is adopted in each of the options (i.e. purchases become sales and sales
become purchases).

While the above list is not exhaustive, it would be tedious and unilluminating
to extend it further. To gain an appreciation of what can be achieved with
spreads and combinations, it is instructive to graph their payoffs as functions of
the underlying asset price. As an example, figure 20.3 shows the payoffs for a
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Fig. 20.3. A long straddle

A put option with exercise price, X, has been purchased at a cost of
p. A call option on the same underlying asset, with the same exercise
price and expiry date, has been purchased at a cost of c. The dashed
lines depict the payoffs (net of the premium paid for each option), at
exercise, for the put and call, respectively. The solid line depicts the
payoff of the combination of the put and call (i.e. a long straddle) as a
function of the underlying asset price at the exercise date. (While the
figure is drawn with p < c, there is no guarantee that this would be so;
p could be greater or smaller than c, depending on the asset price when
the options were purchased.)

long straddle. The construction of diagrams for the remaining cases is left as an
exercise for the reader.

20.7 Summary

1. Stock index options are written and traded for bundles of shares, the values of which
are equal to commonly quoted stock price indexes. If a stock index option is exercised,
settlement is in cash (not by the delivery of the bundle of securities underlying the
stock index).

2. Options on futures contracts are options to acquire short or long positions in the futures
contracts (including, for example, futures on stock indexes). Options on futures are
written to expire on or before the futures delivery date. Normally, the options expiry
date is shortly before the futures delivery date.

3. Interest rate options take a variety of forms (e.g. options on interest rate futures
contracts). This sort of option is convenient for creating interest rate caps or
floors.
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4. Options can be used as hedge instruments in constructing hedge strategies. The
relationship between changes in the option’s price and the underlying asset’s price
provides the crucial link that determines the hedge ratio.

5. Portfolio insurance strategies seek to place a floor under the value of a portfolio
while, at the same time, guaranteeing that the value of the portfolio increases in line
with increases in the market value of its component assets. While trading in options
can, in principle, achieve the objectives of portfolio insurance, the strategies normally
involve the creation of synthetic options. Synthetic options are created by trading in
the underlying assets and risk-free bonds in such a way as to replicate option payoffs.

6. Combinations and spreads are bundles of options packaged together with a view to
achieving specific objectives. The components of the bundles differ according to the
type of option (call or put), their exercise prices, their expiry dates and whether they
are purchased or written (sold). As a consequence, it is possible to devise strategies
that result in payoffs that are known functions of the underlying asset price realized
at specific dates in the future.

Further reading

Hull (2005, chaps. 13–15 & 19) provides an excellent exposition of the material
covered in this chapter but in greater depth. For a more advanced treatment, Hull
(2003, chaps. 13–17) should be consulted.

Analyses of portfolio insurance include those by Leland (1980) and O’Brien
(1988). The stock market crash of 1987 inspired much analysis, discussion
and controversy about the role of portfolio insurance in the crash. On this topic,
Rubinstein (1988) and Miller (1991, especially chaps. 3, 4 & 6) provide thoughtful
assessments.

Appendix 20.1: Put-call parity for European options on futures

The put-call parity relationship for options on futures is a straightforward extension
of the relationship for stock options, and is demonstrated here for completeness.
Recall that the parity relationship states that

cf +
X

R
t(T�
= pf +

f

R
t(T�

The proof follows the familiar pattern of showing that, if the relationship does not
hold and if markets are frictionless, there exists an arbitrage opportunity. Given
that the absence of arbitrage profits is a criterion for market equilibrium, the
equality must hold. Two analogous arguments are needed, one when ‘>’ replaces
the equality, and the second for ‘<’.
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Suppose, first, that cf +X/R > pf +f/R (where the arguments of R
t(T� are
omitted for convenience). For later reference, rearrange the inequality

X−f −R
pf − cf � > 0 (20.5)

which follows because R > 0.
Consider the following strategy: buy one futures contract for f , buy one put

for p, write one call for c and borrow B= p−c, so that the strategy requires zero
initial outlay (fT denotes the futures settlement price at date T ).9

At expiry, T

Initial outlay fT > X fT � X

Buy one put option −pf 0 X−fT
Write one call option +cf X−fT 0
Buy one futures contract 0 fT −f fT −f
Borrow B −RB −RB

0 X−f −RB X−f −RB

The table shows that, if fT > X, the call option is exercised and the put option
is allowed to die. Conversely, if fT � X, the put option is exercised and the call
option is allowed to die. The payoff is the same in either case. From (20.5),
X−f −RB= X−f −R
pf −cf � > 0. Hence, the payoff is positive irrespective
of whether fT is greater than, less than or equal to X.

Thus, if cf +X/R > pf + f/R, a portfolio with zero initial outlay yields a
positive return whatever the price fT at date T . This is an arbitrage portfolio
with a positive payoff in both states. From the arbitrage principle, it cannot be
consistent with market equilibrium.

Suppose now that the put-call parity is violated with cf +X/R < pf + f/R.
Rearranging the inequality, it follows that

f −X−R
cf −pf � > 0 (20.6)

Consider the following strategy: take a short position in one futures contract,
write one put, buy one call and borrow B = cf −pf , so that the strategy requires

9 Note that B could be positive or negative. If B < 0, the strategy involves lending. In a frictionless market,
lending is just negative borrowing.
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zero initial outlay. (Because B could be of either sign, remember that both cases
are covered if negative borrowing is interpreted as lending.)

At expiry, T

Initial outlay fT > X fT � X

Write one put option +pf 0 fT −X
Buy one call option −cf fT −X 0
Sell one futures contract 0 f −fT f −fT
Borrow +B −RB −RB

0 f −X−RB f −X−RB

Once again, the table shows that the payoff is the same whatever the outcome.
From (20.6), f −X−RB = f −X−R
cf −pf � > 0, by hypothesis. Hence, the
payoff is positive no matter whether fT is greater than, less than or equal to X.
Consequently, if cf +X/R < pf +f/R, a portfolio with zero initial outlay yields
a positive return whatever the outcome; there is an arbitrage opportunity.

In conclusion, if the put-call parity relationship is violated with either inequality,
arbitrage profits can be made in frictionless markets. Hence, the put-call parity
relationship must hold under the stated conditions.
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